
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2008

An iterative approach towards web service
composition using feedback from analysis of
composition failures
Dinanath Nadkarni
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Nadkarni, Dinanath, "An iterative approach towards web service composition using feedback from analysis of composition failures"
(2008). Graduate Theses and Dissertations. 10896.
https://lib.dr.iastate.edu/etd/10896

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10896&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Fetd%2F10896&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10896?utm_source=lib.dr.iastate.edu%2Fetd%2F10896&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

An iterative approach towards web service composition using feedback from

analysis of composition failures

by

Dinanath Nadkarni

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Robyn Lutz, Major Professor

Samik Basu
Vasant Honavar

Iowa State University

Ames, Iowa

2008

Copyright c© Dinanath Nadkarni, 2008. All rights reserved.

ii

TABLE OF CONTENTS

LIST OF FIGURES . iv

ACKNOWLEDGEMENTS . vi

ABSTRACT . vii

CHAPTER 1. INTRODUCTION . 1

1.1 Thesis Outline . 3

CHAPTER 2. BACKGROUND . 4

CHAPTER 3. WEB SERVICE COMPOSITION 9

3.1 Introduction . 9

3.2 The Composition Algorithm . 13

CHAPTER 4. FAILURE ANALYSIS AND RECOVERY 17

4.1 Goal of Failure Analysis . 17

4.2 Approach towards Failure Analysis . 18

CHAPTER 5. CASE STUDIES . 24

5.1 Library Book Reservation System . 24

5.2 Stadium Reservation System . 30

CHAPTER 6. CORRECTNESS AND COMPLEXITY ANALYSIS 34

6.1 Correctness . 35

6.2 Complexity Analysis . 38

CHAPTER 7. IMPLEMENTATION . 42

7.1 Service Creation and Representation . 43

iii

7.2 Architecture . 44

7.2.1 Web Service Representation . 44

7.2.2 Processing Module . 44

7.3 Demonstration . 46

7.3.1 Demonstration: E-Library case study 46

7.3.2 Demonstration: Stadium Reservation System Case Study 50

CHAPTER 8. CONCLUSION AND FUTURE WORK 53

8.1 Contribution and Future Work . 53

8.2 Conclusion . 55

APPENDIX A. COMPOSITION ALGORITHM 57

APPENDIX B. FAILURE ANALYSIS . 60

BIBLIOGRAPHY . 66

iv

LIST OF FIGURES

Figure 2.1 Two different types of composition [2]: (a) Orchestration based (b) P2P

based . 5

Figure 2.2 Goal service specified at an abstract level 6

Figure 3.1 Web service as a Symbolic Transition System 10

Figure 4.1 Computation tree in a failure scenario 19

Figure 5.1 e-Library: initial goal service . 25

Figure 5.2 e-Library: Component Services . 26

Figure 5.3 e-Library: suggested modification to the goal service after first failure . 27

Figure 5.4 e-Library: final suggested goal service 28

Figure 5.5 e-Library: choreographer corresponding to the final suggested goal service 29

Figure 5.6 Stadium Reservation: Initial goal service 31

Figure 5.7 Stadium Reservation: Component services 32

Figure 5.8 Stadium Reservation: Suggested goal service with failed transition . . 33

Figure 5.9 Stadium Reservation: Partially generated choreographer 33

Figure 7.1 MOSCOE Service Composition tool: screenshot 42

Figure 7.2 MOSCOE: Creating a guard on a transition 43

Figure 7.3 UML diagram depicting the web service data 44

Figure 7.4 UML diagram depicting the composition manager classes 45

Figure 7.5 The e-Library goal service in MoSCoE 46

Figure 7.6 e-Library component services and goal service selected 47

v

Figure 7.7 e-Library status message . 48

Figure 7.8 e-Library final suggested goal service 48

Figure 7.9 e-Library choreographer corresponding to the final suggested goal service 49

Figure 7.10 MoSCoE: Stadium Reservation goal service 50

Figure 7.11 MoSCoE: Stadium Reservation composition status message 51

Figure 7.12 Stadium Reservation System: final suggested goal service 51

Figure 7.13 Stadium Reservation System: Choreographer corresponding to sug-

gested goal service . 52

vi

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to all the people who helped

with the various aspects of my research and the writing of this thesis. First and foremost, I

would like to thank my major professor Dr. Robyn Lutz for the guidance and support that

she provided for the entire span of time that I was in graduate school. I greatly appreciate her

patience and advice in matters concerning this research as well as thesis writing.

I would also like to thank Dr. Samik Basu and Dr. Vasant Honavar for their willingness to

serve on my POS committee. A special thanks to Dr. Samik Basu for his insight and guidance

into my research and for taking the time to help me with all the questions that I had during

my research.

I would like to thank Dr. Jyotishman Pathak for his contribution towards MoSCoE, on

which this work is based. I would also like to thank Mohammed Alabsi, Melissa Yahya,

Rakesh Setty and Mahantesh Hosamani for their contribution towards the implementation of

the MoSCoE composition algorithm. In addition, I would also like to thank Linda Dutton for

her guidance and assistance in all matters related to graduate school.

Last but not the least, I would like to thank my parents Laxmicant and Revati and my

brother Mukul for their unwavering support and guidance.

vii

ABSTRACT

The Web service composition problem involves the creation of a choreographer that provides

the interaction between a set of component services, to realize a goal service. It is desirable to

have an automated or semi-automated composition process that accepts a business requirement

specification in the form of a goal web service and automatically creates a composite service

from a set of available component web services.

A one-step composition process is inadequate in scenarios where the complete requirements

are not known or the user is unaware of the functionality provided by the component services.

In such cases, composition of the goal web service might fail, because of an incomplete speci-

fication of the goal service or because the specified goal service cannot be composed using the

available component services. An iterative approach towards web service composition would

help to address failures that can occur during composition, by providing the user with feedback

as to the cause of the failure and possible recovery solutions to the failure. The user can then

change the goal service based on this feedback to arrive at a successful composition.

This work addresses the analysis of failures that occur during composition and the type

of feedback to be provided to the user. The approach first identifies the cause of failure and

explores all possible recovery options for the failure. If possible, suggestions are made to modify

the goal service based on the solution provided by every recovery option. The composition

process is then simulated on the modified goal services to detect future failures. From amongst

these modified goal services, the service which has the least failures is then provided to the

user as feedback.

The main contribution of this work is an approach towards analysis and recovery from

failures that occur during web service composition. The web service composition algorithm is

viii

explained, the goal of failure analysis and recovery is described and the approach towards failure

analysis is then described in detail. This is followed by a demonstration of the implementation

of the algorithm in two case studies.

1

CHAPTER 1. INTRODUCTION

One benefit of Web Service Composition is that it allows a web service or an application

developer to derive a very specific functionality from a set of independently developed com-

ponents, in an economical and time saving manner. This concept provides a high potential

for reusability and also allows the developer of the application to focus on the business logic,

instead of the technical intricacies. In this context, the developer is a person involved in the

creation or development of the web service or the business application. The client is defined

as the entity that uses the developed application or web service. The client can be a person

or another application or web service.

Many approaches towards automated or semi-automated web service composition have

been investigated, using concepts of AI planning and workflow composition [9]. One such

approach is based on the translation of the BPEL4WS specification into state transitions

systems[10] and the specification of the goal service in a formal requirements language known as

EAGLE[11]. Another approach denotes the composite service in terms of a process model[12].

The component services are selected during the execution of the composition and not during the

design stage. The selection of component services is formulated as an optimization problem and

solved using linear programming methods. Carman et al. [13] treat the web service composition

as a planning problem and use a combination of a semantic type matching algorithm and an

interleaved search and execution algorithm to automate the web service composition.

A single step composition approach suffers from one drawback; if the required goal service

cannot be realized in the first step, the composition process fails. The developer then has

to create a new goal service possibly without having any idea as to why the composition

failed. Furthermore, it forces the developer to specify a complete goal service on the first go,

2

which is not always possible. It would be highly desirable to allow the developer to specify

an incomplete goal service and build on it based on feedback provided by the composition

process. In such cases, if any failures occur, the developer would be able to reformulate the

goal service based on the feedback given. This feedback based, iterative composition process

is followed in MoSCoE [3]. The developer can start off with an abstract or incomplete goal

service, and reformulate the goal service in subsequent iterations based on feedback received

from the composition process.

MoSCoE is inspired by the COLOMBO framework presented by Berardi et al. [6]. This

framework describes the behavior of web services using finite state transition systems. In

MoSCoE, Web services are represented as Symbolic Transition Systems [3]. The developer

specifies a business requirement in terms of a Symbolic Transition System known as the goal

service. The developer then selects a set of services which can be used to compose the goal

service. Such services are known as the component services. A set of component services from

which a subset of component services can be selected to take part in composition is known as

the services repository. Component services are also expressed as Symbolic Transition Systems.

The web service composition algorithm creates a choreographer that acts as a communica-

tion interface between the goal service and the component services, in a manner so as to realize

the goal service. The choreographer is therefore, a composite service that interacts between

the goal service and the component services via message passing, to realize the functionality

of the goal service. The composition process is described in more detail in chapter 3.

An iterative composition process must provide the user with feedback in the event of

composition failure. This feedback should provide the developer with a description of the

cause of failure, as well as a possible recovery from the failure. As a side effect, the feedback

might also provide the developer with a fair idea of the functionality of the component services.

This knowledge would help the developer to modify the goal service accordingly, so as to avoid

the failure in the subsequent iterations.

This work describes one such approach of providing feedback to the user. When failure

occurs, the cause of the failure is identified and possible recovery options from this failure are

3

explored. Duplicate goal services are created and each duplicate service is modified according

to each of the possible recovery options. The composition process is then simulated on these

modified goal services to ensure that failures do not occur in these modified services in the

future. One of the modified goal services and the choreographer corresponding to that goal

service are then presented to the developer as feedback. This approach is described in detail

in chapter 4.

This work then describes the composition and failure recovery process in two case studies,

the Library book reservation system and the Stadium reservation system.

1.1 Thesis Outline

The rest of this thesis is organized as follows:

Chapter 2: This chapter provides background information on web services and iterative

web service composition.

Chapter 3: This chapter provides an introduction to web service composition. The rep-

resentation of services is described and the composition algorithm is described in considerable

detail.

Chapter 4: The Failure analysis and recovery approach is described in complete detail in

this chapter.

Chapter 5: Two case studies are described in this chapter. The case studies illustrate

the composition process and the failure analysis and recovery for a Library book reservation

system and a Stadium reservation system.

Chapter 6: This chapter describes the correctness of the composition algorithm. The

complexity analysis of the composition algorithm and the failure analysis is then described.

Chapter 7: MoSCoE provides an open source composition tool which implements the

composition process described in this work. This chapter demonstrates the functioning of this

tool for the service composition in the case studies.

Chapter 8: The conclusion of this thesis is presented here. Some research directions for

future work are also listed.

4

CHAPTER 2. BACKGROUND

A Web service is a web application which is available on the web via a URL and which

can be found and accessed using standard XML based protocols, such as SOAP and WSDL. A

web service can be considered as a reusable component that can be used to fulfill part of the

business requirement for an application. Formally, a Web service is a software system designed

to support interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other systems interact with

the Web service in a manner prescribed by its description using SOAP messages, typically con-

veyed using HTTP with an XML serialization in conjunction with other Web-related standards

[1].

Based on the design, availability and functionality of web services, it is possible to realize

a business requirement by combining the functionality of different web services, either by

accessing the web services in parallel or in a sequence. This process is commonly known as web

service composition. There are two different types of web service compositions: orchestration

based and P2P based [2].

In orchestration based composition, the services interact by exchanging messages amongst

each other through a common endpoint, known as the mediator [6]. The mediator manages the

interaction among the component services by controlling the exchange of messages between

them. P2P based compositions do not use a choreographer, rather the component services

interact directly with the client to arrive at a composite goal service. The two approaches to-

wards service composition have been illustrated in Figure 2.1. This work uses an orchestration

based algorithm to compose web services.

In many cases, the complete requirements for an application are not available at the be-

5

Figure 2.1 Two different types of composition [2]: (a) Orchestration based
(b) P2P based

ginning. Also, new requirements may be introduced during the later iterations of software

development. A web service developer tasked with creating a goal service based on such re-

quirements will therefore specify an incomplete service, with the intention of building up this

service as new requirements arrive. Furthermore, since the components used in a composi-

tion are often fetched from disparate and independent sources, it might not be possible for

a developer to specify the goal service exactly in terms of the functionality provided by the

component services. The developer will therefore, specify the goal service at an abstract level

and refine the goal based on how the composition process goes.

We illustrate the specification of an abstract and possibly incomplete goal specification with

an example. Consider a scenario where a developer is asked to create a shopping cart processing

system from a set of component services. The developer is also told that the current goal service

is required only to process items in the shopping cart and charge the customer. The system

would later be extended with a delivery processing feature. The developer would start out by

creating a goal service with only the functionality required to process shopping cart items. If

the developer is not completely aware of the details involved in processing of shopping cart

items, he would specify the goal service at an abstract level. For instance, the entire processing

of shopping cart items might be abstracted using a single function processShoppingCart().

Similarly, the credit card processing function can be abstracted by specifying a single function

6

chargeCreditCard(). This shopping cart goal service has been illustrated in Figure 2.2. As

shown, the processShoppingCart() and chargeCreditCard() functions have been abstracted and

the goal service does not contain any functionality for delivery processing.

Figure 2.2 Goal service specified at an abstract level

A single step composition process will not work in such circumstances. In the shopping

cart scenario, the initial goal service specified by the developer would fail to compose if the

component services did not have the functions required for it. Consider for example, that

the developer has the following functions available in the component services: findItemsIn-

Inventory(), obtainDeliveryDetailsByCustomerId(), reserveItemsForDelivery(), chargeVisaC-

ard(), chargeDiscoverCard() and chargeMasterCard(). Since none of these functions are men-

tioned in the goal service, composition of the goal service using these components will fail.

In such scenarios, an iterative approach towards composition is needed [3]. The developer is

given feedback at the end of each iteration of the composition process, allowing the developer

to refine the goal service based on such feedback in subsequent iterations. This work is based

on such an iterative composition process [3].

An iterative approach for composition requires that the service developer be given feedback

during the composition process. If the goal service can be composed in a single iteration, then

the only feedback required would be the composite service. In some cases however, it might

7

not be possible to compose the goal service in a single iteration. In such cases, the composition

process could fail to create a composite service in some iterations. The cause of this failure

must be identified in order to formulate an appropriate feedback message for the user. It

would be advantageous for the composition process to automatically attempt to recover from

a failure. This would have two advantages; it would be able to determine how the user can

change the goal service to avoid the failure and in doing so, it would provide the user with some

information about the functionality provided by the component services. This work focuses

on the analysis of failures and approaches towards recovery from failures that occur during

composition.

When composition fails during an iteration, the algorithm identifies the cause of the failure

and automatically attempts to modify the goal service in a manner so as to avoid this failure.

The user is provided with a list that describes the failures that occur during the iteration,

along with the modified goal service and the composite service corresponding to the modified

goal service. This form of feedback has a number of advantages:

1. The list of failures contains descriptions about the cause of each failure. This will provide

the user some information about the functionalities and requirements of the component

services. For example, if a failure occurred due to unavailability of some input data, the

detailed message would indicate the component that requires the data.

2. A goal service could be modified in different ways to recover from a failure, based on

the component services being used in the composition. This approach would explore

all such modified services and provide the best composite service to the user, based

on user specified criteria. The advantage here is that all the possible modifications to

the goal service are considered in an iteration, saving the user from trying out different

modifications to the goal service manually.

3. If the user decides to keep the modified goal service, the composition process need not be

repeated since the composite service corresponding to the modified goal service is already

provided along with the modified goal service.

8

A detailed explanation on the goals of failure analysis and recovery and the approach taken

towards failure recovery is presented in chapter 4.

9

CHAPTER 3. WEB SERVICE COMPOSITION

3.1 Introduction

Web services are normally described using Web Service Definition Language (WSDL) [8].

In this work, web services are described in terms of Symbolic Transition Systems (STS). An

STS is a transition system with guards on transitions and state variables on an infinite domain

[2]. An STS provides an intuitive way of visualizing a web service as a transition diagram,

with each state representing a specific state of the web service process and transitions leading

the service from one state to another. A web service represented by an STS consists mainly

of three types of transitions: a transition that accepts input from the client, a transition that

performs an atomic action or function and a transition that provides output to the client. In

STSs, these three types of transitions are represented by input, output and atomic actions

respectively. The three actions are described below:

• Input action indicates the receipt of data. Such actions indicate that the client has passed

a message to a component or service. Input actions have the format ?msgHeader(msgSet).

The ? at the start of the action indicates that the action is an input action. msgHeader

is the name of the input action, and msgSet is the message content that is passed via the

input action. For example, ?studentDetail(ID, Address) is an input action which inputs

variables ID and Address into the system.

• Output actions indicate the sending of data. They are used to indicate the sending

of a message to a client or to another web service. An output action is denoted by

!msgHeader(msgSet), where msgHeader is the name of the output action and msgSet

is the content of the message being passed from the component or goal service. For

10

example, !studentGrade(sGrade) is an output action named studentGrade that passed

sGrade as the message.

• In terms of STSs, atomic actions represent function calls. An atomic action is of the

form funcName(I; O) where set I represents the input message or input arguments to the

function and O is the output value returned by the function. For example, atomic action

add(x,y; z) represents a function that adds two integers x and y and returns the sum in

variable z.

Every transition can have a guard condition associated with it. A guard condition must be

satisfied if that transition is to be carried out. In the STS representation of the goal service,

guard conditions are enclosed in square brackets.

Figure 3.1 Web service as a Symbolic Transition System

Figure 3.1 illustrates a sample web service expressed as an STS. The action ?fetchUserDe-

tailForUpdate(userName, userAddress) indicates the receipt of a message with variables user-

Name and userAddress by the service. The client passes these variables on to the goal service.

The Atomic action updateUserAddress takes in userName and userAddress and returns a sta-

tus indicating whether the address update was successful or not. The status is checked at the

guard condition on the outgoing transitions on state s3 . If the update was successful (status =

1), the service outputs ”success” via the output action !app(”success”), otherwise it outputs a

”fail” message. Guard conditions exist on the outgoing transitions from state s3. Dependencies

among component stores are specified in terms of flow links [3].

11

The goal service Tg and the component services T1, . . . , Tn are specified as STSs. The com-

position process attempts to identify a subset of the component services that when composed

with a choreographer STS Tcr realizes the goal service Tg. The choreographer orchestrates this

by passing messages to and from the component services and the goal service. The choreog-

rapher adopts the input and output actions of the goal service and realizes the goal service

by making the appropriate calls to atomic actions provided by the component services. Thus

the choreographer acts as an interface that interacts with the component services and the goal

service, in a manner so as to replicate the functionality of the goal service using the compo-

nent services. The choreographer is also responsible for storing data that is passed from the

component services or from the goal service, so that the data might be used at the appropriate

time.

Communication between the component services and the choreographer takes place via

message passing. If a component service houses a function call that takes parameters, it must

take the parameters to the function call through an input action. To call this function, the

choreographer sends a message to the component service via an output action. This message

is received by the component service via an input action specified in its STS. The component

service can then execute its function. The component service uses an output action to pass

the results of the function call back to the choreographer, which indicates the receipt of this

message through an input action.

The composition algorithm described in this work is based on the composition algorithm

used in MoSCoE [3]. The composition algorithm has been modified so as to facilitate the failure

analysis and recovery process. These changes are described below, followed by a description of

the composition algorithm. The changed composition algorithm is shown in Appendix A.

(a) Inclusion of individual message stores for each of the component services. The

original composition algorithm [3] maintained a message store only for the choreographer.

The algorithm used in this work maintains message stores for the individual components

in addition to the choreographer store. The message store for a component is used to hold

the messages received by that component as well as the messages that are encountered

12

when that component is traversed. If the goal service has a transition on an atomic

action and the choreographer store does not have the required input message set, but the

message set is present in some component store, it indicates that the component has to

be traversed prior to processing the current transition in the goal service. Having such

component message stores allows the components to store messages, so the choreographer

can ask for the message only when required while composing the goal service. This

reduces the creation of unused transitions in the choreographer. For example, if a function

call on a component service returns an output message which is not used in the goal

service, the choreographer need not send a message to the component service asking for

it. If the goal service needs this message later on, the choreographer will then request

the message from the component service.

(b) Handling of the guard conditions. If a guard condition requires variables that are not

present in the choreographer store, the component stores are checked to see if any of the

components have encountered those guard variables. If some component does have those

variables, it is traversed so as to make the guard variables available to the choreographer.

This differs from the original composition algorithm which would mark the missing guard

variables as a failure.

(c) Handling of missing parameters in function calls. If a function invocation cannot

be processed because the choreographer cannot provide input parameters to the function,

the component stores are searched for those missing parameters. If any component store

has the required parameters, it indicates that the component must be parsed as well, so

as to provide the choreographer with the missing parameters. In comparison, the original

algorithm would mark missing parameters as a failure.

(d) Handling of atomic actions. If an atomic action is encountered in a component service,

a transition on the atomic action is not inserted into the choreographer immediately.

The message store of the component service is updated with the variables of the atomic

action and the atomic action is marked as done. If the atomic action in the component

13

has an output value, this output value is retained in the component store. This way, if

the output value of the atomic action is required in the choreographer, the component

service can be traversed again to find an output action which sends the output message

to the choreographer. If the atomic action does not have any output value or the output

value is not used in the goal service, the choreographer can avoid creating a transition

on it.

3.2 The Composition Algorithm

The composition algorithm parses the goal service one state at a time and creates the

choreographer Tcr based on the kind of actions and guard conditions encountered at every

state of the goal service. The choreographer maintains a repository of the messages received

during the composition process. The individual components also maintain their message stores.

The entry point to the composition algorithm is the function GENERATE (r, [s1,. . .,sn],

[R1,. . .,Rn], t, G, R). Here, r is the start state of the goal STS, s1, . . . , sn are the start states of

the component services and R1, . . . , Rn are the variable repositories for each component. Each

component repository Ri holds the input and output messages encountered while interacting

with component Ti. t is the current state of the choreographer. The guard condition G is

initialized to true and R holds the input and output message headers encountered by the

choreographer. A global set done keeps track of the function invocations in the composition.

There are 4 cases to consider:

Case 1: Input from the client. A transition with an input action in the goal service

indicates input from the client. When an input action is encountered in the goal service,

a corresponding transition is created in the choreographer. Choreographer store R is then

updated with the variables used in the action. This indicates that the choreographer now

has the input message and can use it anytime in the course of the service composition.

At this point, the message stores of the component repositories are not updated. This

case corresponds to the receipt of a message from the client.

Case 2: Output to the client. If there is a transition on an output action in the goal

14

service, a corresponding transition is created in the choreographer if the message for the

output action is available (present in choreographer store R). If the choreographer does

not hold the message set, it might be possible that the output message is present in the

message store of a component service. Hence the component stores are searched and if

the message is found in any component store, the algorithm attempts to find an output

action in that component which will provide the message to the choreographer. This

case corresponds to the passing of a message to the client. If the output message is not

available, a failure is reported.

Case 3: Function invocation. The processing of a function invocation or atomic action in

the goal service is dependent on the availability of the input message for that function

and on the current states of the service components providing that function. There are

three sub-cases:

(a) The input message required for the function invocation is not in the

choreographer store R but is present in the message stores of the com-

ponent services. Variables are inserted into the message store of a component

service when they are encountered while traversing the component service or when

the choreographer sends a message to the component. If the variables are present in

a component message store, an output action is required to send those variables to

the choreographer. The composition algorithm searches for such an output action in

the corresponding component service. If it finds the output action, a corresponding

transition is created in the choreographer, the current states of the choreographer

and the component service are advanced and the composition method is recursively

invoked. For example, if the function in the goal service is fname(I;O), I = i1, i2

and both i1 and i2 are not available in the choreographer store, the algorithm

searches for components which have the variables i1 and i2 in their message stores.

If such component services are found, the algorithm attempts to find output action

on i1 and i2 in those components so that variables i1 and i2 can be passed to the

choreographer.

15

(b) Current transition in the goal service has a function invocation and none

of the component services provide a transition on that action from their

current states. The algorithm selects a component Ti that provides the required

function. There are four sub-cases:

(i) The current state si of component Ti is an input action for which the choreog-

rapher can provide the input message

(ii) si is an input action for which the choreographer cannot provide the input

message

(iii) si has an output action

(iv) si has a transition on a function invocation

In cases (i) and (iii), corresponding transitions on input or output actions are created

in the choreographer, variables are inserted into the message store of the component

and R, followed by a recursive call to procedure GENERATE.

In case (ii), flow links [3] are explored in an attempt to find an output action that

will provide the message set for the input action. If no such flow links exist, failure

recovery action is initiated. If there is a component Tj that can provide the output

action, the current state of component Tj is examined and the set of transitions

leading to the required output action are followed. If the current transition on

component Tj is an output action or an input action for which the choreographer can

provide the message set, the corresponding transition is created in the choreographer

and store R is updated followed by a recursive call to GENERATE.

Case (iv) applies if Tj has a transition on a function call and the choreographer

store can provide the input message to this function. In this situation, the function

is marked as done and GENERATE is recursively called. If the input message at

sj cannot be provided, flow links are followed again in similar manner.

(c) The transition in the goal service has a function invocation and some

component provides a transition on that action from its current state.

In this case, the behavior of the algorithm depends on the availability of the input

16

message. If the choreographer can provide the input message for this function, the

function is marked as done, the message is inserted into store R as well as the

corresponding component store and procedure GENERATE is recursively called.

If the function has an output value, a transition on the output message for that

valuation is not created in the choreographer at this point. Instead the transition

is created when it is called for in the goal service.

(d) Variables in the guard are not available in the choreographer store R. If

all of the guard variables are available in the component stores, those components

are explored one by one to find output actions which will pass the required variables

to the choreographer. This results in the creation of a series of transitions in the

choreographer so as to make the guard variables available to the choreographer.

The composition algorithm is shown in Appendix A.

17

CHAPTER 4. FAILURE ANALYSIS AND RECOVERY

Service composition can fail for a number of reasons, some of which have been mentioned in

chapter 3. This chapter describes the goal of failure analysis, lists the reasons for composition

failures and describes the actions taken to recover from failures.

4.1 Goal of Failure Analysis

As mentioned earlier, the feedback given to a user is of utmost importance in iterative

service composition. If a composite service can be devised in a single iteration without any

failure, the user can simply be given the composite service itself. However, if the composition

process fails during an iteration, the user must be given feedback as to the cause of the failure

and how to resolve the failure. This raises the question of what is to be given as feedback and

how that feedback is to be presented to the user.

When failure occurs in composition, the first step towards failure analysis is to identify the

source of the failure. If the goal service can be changed so that the failure can be avoided, it

would help the user if the changes required to resolve the failure were presented. If it is not

possible to recover from the failure at all, a partial list of changes would still help the user

acquire a better understanding of the functionality provided by the component services.

The feedback mechanism described in this work attempts to make suggestions that modify

the goal service so as to avoid the failure. If recovery from the failure is not possible, the

goal service is modified as much as possible in an attempt to avoid the failure and a partially

modified goal service is presented to the user. This approach provides both of the requirements

of feedback described in the previous paragraph.

18

4.2 Approach towards Failure Analysis

When failure occurs during composition, the cause of the failure is identified. Failures occur

mostly due to missing message sets or missing function invocations. Most failures are resolved

by finding alternate paths in the component services or by calling on components that provide

the missing message sets. Hence, multiple resolutions are possible for most failures. The failure

analysis approach presented in this work explores each such recovery option. On failure, we

identify all possible recovery options. For every possible recovery solution, a new branch of

computation is created with its own copy of the component services, the goal service and the

message stores. In every branch, the goal service is modified based on the recovery solution

corresponding to that branch. Once the goal service has been modified, the composition

process is then simulated on the modified goal service for that branch by calling the composition

algorithm recursively. For a failure, the modified goal services corresponding to all the possible

recovery options are simulated in parallel. When composition completes or the user decides to

abort, the goal service corresponding to one of the branches is selected.

The choice of the goal service to be presented to the user depends on how many goal

services were successfully composed. If only one of the goal services was composed without

failures, that service is presented to the user. If all the goal services have failures or more than

one goal service has been successfully composed, the choice of the goal services is defined by

user specified non-functional criteria, such as cost, reliability and historical performance.

The computation process followed can best be described in the form of a tree, with every

failure occurrence denoting a node in the tree. When a failure occurs in the composition, the

algorithm creates a copy of the goal service, the component and the choreographer messages

stores for that node and modifies the goal service for that node to recover from the failure.

Starting from that node, the algorithm creates a branch of computation for every possible recov-

ery option from that failure, after marking that node as failed. For each of those branches, the

algorithm then simulates the composition process on the corresponding modified goal service

for that branch. If a branch of computation does fail at some later transition, corresponding

computation branches are created for that node in a similar manner. For performance reasons,

19

we limit the depth of this computation tree to three failures, but it is possible to customize

this depth based on performance requirements. At the end of the simulation, the algorithm

selects a goal service which has not been marked as failed. If no such goal service is available,

then one of the goal services is selected based on user specified criteria, as mentioned above.

If different variations of the goal service are possible, one of those variations is selected based

on user specified criteria.

A sample computation tree has been illustrated in the Figure 4.1. The composition process

starts and fails for the first time at node n1. Three branches are created from this node,

each branch representing one solution to the failure at node n1. Two of these solutions fail

during the simulation, but node n3 indicates that the modified goal service corresponding to

the second solution is successfully composed. There are two possible solutions to the failure

at node n2 and both of them are explored, as shown. Node n8 indicates that the goal service

modified at node n6 results in failure. This branch is marked as failed since there have been

three failures in this branch.

Figure 4.1 Computation tree in a failure scenario

The following scenarios would result in failures during the composition process:

1. A guard condition cannot be examined as variables required for the condition are not

available

20

2. Message that has to be sent is not available, that is, variables required for an output

action are not available

3. Variable required for input action in a component is not available or the input message

set required for a function invocation cannot be provided

4. A required function cannot be completed, that is, no component provides a function

specified in the goal service

5. An input action is being processed and the message set required for the input action is

not available and the message header cannot be provided via flow links

When a failure is encountered, the algorithm creates a node in the computation tree and

marks this node as failed. It then identifies the number of possible solutions to this failure

and creates a branch for each of those solutions starting from that node. The goal service is

modified for each branch based on the recovery solution corresponding to that branch, followed

by a recursive call to procedure GENERATE.

Scenario 1: Variables used in guard conditions are not available

This case corresponds to the failure of a guard condition because the choreographer store

does not have the variables required for the guard condition. This can happen when a variable

that has not yet been encountered during composition is used in a guard condition.

There are two possible recovery options from this failure:

(i) to create an input action from the client asking for the missing variables or

(ii) to ensure that one of the component services sends a message containing the missing

variables to the choreographer

We first attempt to resolve this failure using the second option, since it does not involve

input from the client. In this case, the algorithm attempts to insert transitions in the goal

service in a way that ensures that the variables used in the guard are available to the choreog-

rapher store when the guard condition is encountered during the composition process. These

transitions are based on function invocations and output actions in the component services.

21

For each missing variable in the guard condition, the algorithm searches for a component Ti

that has a function funcName(I;O) which provides the variable as output. If multiple com-

ponents house such a function, we consider each of those components in a separate branch of

computation, as described above. For each such component, if the input message to that func-

tion is in the chorographer store R, a transition on that function invocation is created in the

suggested goal service. If the input message to that function is not available, the same process

is repeated for every variable in the input message for that function. This results in a series

of transitions on function calls that provide the missing variables followed by a transition on

function call funcName(I;O). When the composition process is continued on this modified

goal service and a transition on funcName(I;O) is encountered, the algorithm will find the

component that houses the function and carry out the function invocation by traversing that

component service. During simulation, when the composition algorithm encounters the earlier

failed guard transition, it will have the missing variable in one of the component stores. The

algorithm will then search that component for an output action that has the missing variable

in its message set. This corresponds to the passing of a message from that component to the

choreographer, making the missing variable available to the choreographer and avoiding the

failure.

The first option involves the insertion of a transition in the goal service with an input

message on the missing variable. This is equivalent to getting the variable as part of an input

message from the client. We undertake this option only if none of the component services can

provide for the missing variable.

Scenario 2: Variable required for an output action is not available

In this scenario, the composite service has to pass an output message to the client but is

unable to do so as it does not have the output message set. This happens when the algorithm

encounters an output action in the goal service and the choreographer store does not have the

output message.

There are two ways to recover from this failure. The first option is to search the available

component services for a function call which has the missing message in its output. If some

22

component does have such a function, a transition on this function is inserted in the goal

service. When the composition process encounters this function invocation in this modified

goal service, the algorithm will traverse the component that has this function invocation and

will place the missing message set in the component message store. When the failed output

action is encountered, the algorithm will find the component store that has the required message

set and will parse that component till it encounters an output action with the required message

set. This output action is then placed in the choreographer.

The second option is to place an input action with the missing message set in the goal

service. This means that the client provides the missing message set.

Scenario 3: Variable required for input action in a component is not available

or the input message set required for a function invocation cannot be provided

An input action might be encountered when parsing a component service. This means that

the choreographer has to pass a message to the component, which might fail if the choreog-

rapher does not have the required message set to pass on to the component. This scenario

also includes the case where a function is to be called and the message set required to call the

function is not available.

The resolution to these failures is similar to the resolution of failures in scenarios one and

two. We explore the available components and find function invocations with output valuations

resulting in the missing message set. When the goal service is modified by inserting transitions

on these function invocations and the composition algorithm later simulated on this modified

goal service, an attempt is made to find output actions on the missing variables from the

available components. These output actions are placed in the choreographer.

Scenario 4: No component provides a function specified in the goal service

In this case, the goal service has a function call and none of the component services provide

a transition on this function.

To recover from this failure, we search for a semantically equivalent function with the same

input and output messages as the required function. The transition on the missing function in

the goal service is then replaced by a transition on this semantically equivalent function.

23

Scenario 5: An input action is being processed and the message set required

for the input action is not available and the message header cannot be provided

via flow links

The input action referred to in this scenario is an input action in a component service. When

a component is being traversed and an input action is encountered for which the message set is

not available, the composition algorithm normally explores flow links to find an output action

with the missing message set. If such an output action is not available, the composition fails.

To recover from this failure, we find a function invocation with an output valuation on the

missing message set, in a manner similar to scenario one. The goal service is then modified by

inserting into it a transition on such a function invocation. When this modified goal service is

simulated, the composition process will search for an output action on the missing message set

and insert it into the choreographer. Thus, when the composition process reaches the original

failed transition, the choreographer store R will have the missing message set and flow links

will not have to be explored.

The code snippets corresponding to the failure scenarios which have been described above

are shown in Appendix B.

24

CHAPTER 5. CASE STUDIES

This chapter illustrates the complete web service composition, failure analysis and recovery

process using two examples, namely eLibrary; the library book reservation system and the

SportsReserve Service, a Stadium reservation system.

The two case studies illustrate the behavior of the composition algorithm in two capacities.

The library book reservation system describes a scenario in which composition fails given the

available set of components, but from which recovery is possible. This example describes the

modifications made to the goal service to avoid these failures and the way in which simulation

proceeds after the goal service has been modified.

The Stadium Reservation service is a scenario where the composition process fails and

cannot be recovered given the available component services.

5.1 Library Book Reservation System

The library book reservation system requires three main functionalities; book searches,

book delivery requests and book reservations. The goal of the system is to allow a library

member to search through the library catalog for a book based on parameters such as book

title, the author and the ISBN number of the book. If the library has copies of the book, the

system checks if a copy is available to be checked out. If it is, the system places a request for

delivery of the book to the member’s home address, which is stored in the member’s account

information. If all copies of the book have been checked out, the system places a hold request

on the book.

The web service developer is assigned the task of composing a goal service that realizes

the above mentioned requirements. The goal service can be composed from five available com-

25

ponent services: Availability, BookReservation, DeliveryRequest, MemberAddress and Search-

Book. The availability service accepts a book title and the date and checks if a copy of the

book can be checked out on the entered date. BookReservation accepts the book title, the

date and the member ID and reserves a copy of the book for that member on the specified

date. DeliveryRequest places a request for delivery of a book to the address specified in the

member’s account. MemberAddress accesses the member’s account details and returns the

member’s home address. The SearchBook service searches the library catalog for a book given

the title, the name of the author or the ISBN number.

Figure 5.1 e-Library: initial goal service

The developer is assumed to be unaware of the exact nomenclature used in the component

services. The developer will therefore have to give an abstract specification of the goal service.

Given the requirement specification for eLibrary, the developer creates an initial goal service as

shown in Figure 5.1. This goal service first accepts the variables title, author, ISBN number,

date and the library member ID from the client using the input action ?getRequestDetail(title,

author, isbn, memberId, date). The next step for the developer is to search the library catalog

for the book. The developer does this by invoking a function findBook(title, author, isbn;

isPresent) in the next transition in the goal service. The findBook function takes in three

26

input parameters title, author and isbn and has one output value isPresent.

Figure 5.2 e-Library: Component Services

If the book is not present in the library as indicated by the value of isPresent, the application

halts. If the book is present, the developer checks if a copy of the book can be checked out

using the checkAvailability function. This function accepts a date and the title of the book and

returns an output value of avail. The value of avail is 1 if a copy of the book can be checked

out, otherwise avail is set to 0. If a copy can be checked out, the developer places a request

for delivery of the book using the requestDelivery function. The application then halts with

a success or failure message based on the response from the requestDelivery function. If no

copies of the book can be checked out, the developer uses the placeBookOnHold function to

place a hold request on the book. The application then halts with a success or failure message

based on the response from the placeBookOnHold function.

The composition algorithm accepts the goal service as specified by the developer and the

27

Figure 5.3 e-Library: suggested modification to the goal service after first
failure

set of component services and attempts to create a choreographer for the eLibrary system.

The input action ?getRequestDetail(title, author, isbn, memberId, date) in the goal service

corresponds to the receipt of a message from the client, meaning that the user has entered data

in the system. The choreographer copies this input action and stores the parameters in the

choreographer message store R. The next step in the composition is to create a transition that

realizes the function invocation findBook. At this point, the process reaches case 3(b) described

in section 3.2, where none of the component services are at a transition on the required function

invocation. The algorithm searches for a component which has a transition on the function

findBook, but fails at this point since none of the components house such a function. Failure

recovery action is initiated at this point. The searchBook service has a function searchCatalog

that is semantically equivalent to the findBook function in the goal service. Based on this

recovery option, a separate branch of computation is created with its own copy of the goal

service, the choreographer, the component services and the message stores. Since there is only

one failure recovery option, only one branch is created. All the computation is now carried

out in this branch. The goal service is modified by replacing the findBook function call with a

function call to the searchCatalog function. The composition process is then simulated on this

28

modified goal service. A transition on the input action ?details(title, author, isbn) is created

in the suggested choreographer. The goal service as modified after the first failure is shown in

Figure 5.3.

Figure 5.4 e-Library: final suggested goal service

Composition proceeds without any failures till the algorithm reaches state s5. The compo-

sition algorithm processes each transition in a branch sequentially. It first sees the function call

on requestDelivery(isbn, date, addr, memberId; delStatus) and fails. This is because it cannot

provide the addr variable as it has not yet been encountered in the composition process. This

corresponds to case 3(a) described in section 3.2. To recover from this failure, the algorithm

searches the component services for a function with an output valuation on the variable addr.

There is only one possible recovery option from this failure and it is provided by the component

service memberAddress, which has a transition on a function call getMemberAddress(memberId;

addr). Furthermore, this component service also has an output action !memberAddress(addr)

that provides the message to the choreographer. As before, a separate branch of computation

is created and it is given a copy of the goal service, the choreographer, the component services

as well as the message stores. The input variables required to invoke the getMemberAddress

29

function are available to the choreographer store R, so the algorithm inserts a transition on

the getMemberAddress in the goal service for the new branch of computation.

Figure 5.5 e-Library: choreographer corresponding to the final suggested
goal service

To support this function invocation in the modified goal service, two new transitions on the

output and input actions !memberDetails(memberId) and ?memberAddress(addr) are created

in the suggested choreographer. Composition of the modified goal service is then simulated

in this newly created branch of computation. Since the entire message set for the requestDe-

livery function is now available, this function can now be invoked. The algorithm supports

this invocation by creating actions !deliveryDetails(isbn, date, addr, memberId) and ?deliv-

30

eryDetails(delStatus) in the suggested choreographer. This means that an output message

!deliveryDetails(isbn, date, addr, memberId) was sent to the memberAddress service, the func-

tion getMemberAddress was invoked and the output of the function call was then sent back to

the choreographer. The composition for that branch of the goal service then completes without

any further failures. The composition process returns to state s5 of the goal service to handle

the transition on placeBookOnHold. The composition process encounters another failure here,

as none of the component services have such a function. However, the bookReservation service

has a function reserveBook that is semantically equivalent to the placeBookOnHold function.

To recover from this failure, the algorithm creates a new computation branch and modifies the

goal service in that branch by replacing the transition on placeBookOnHold with a transition

on reserveBook. During simulation, the output action !reserveDetails(title, memberId, date)

and input action ?reserveStatus(resStatus) are placed in the suggested choreographer as a re-

sult of replacing placeBookOnHold function with reserveBook. The final suggested goal service

and the suggested choreographer are shown in Figures 5.4 and 5.5 respectively.

5.2 Stadium Reservation System

The Stadium reservation system describes a typical scenario of booking a stadium. The

requirements for this system are described as follows. First the user would search for a stadium

of the required capacity and near a specified location. Having found such a stadium, the user

would proceed to check the availability of this stadium for a given dates. If available, the

user would proceed to book this stadium. If not, the system would return an error message

stating that the stadium cannot be booked for the entered dates. Figure 5.6 describes the goal

service for the Stadium reservation system. This case study illustrates the scenario where the

choreographer cannot be composed due to lack of sufficient information.

The set of available component services include the StadiumAvailabilityService, Stadi-

umSearchService, CreditRecordStorageService and the BookStadiumService, as shown in Fig-

ure 5.7. StadiumSearchService takes in the required capacity and a location and returns a

stadium having capacity greater than or equal to the specified capacity within 20 miles of

31

Figure 5.6 Stadium Reservation: Initial goal service

the specified location. StadiumAvailibilityService checks if a stadium can be reserved. Cred-

itRecordStorageService accepts the credit card number and the name of the customer and stores

the record for that credit card number in the system for future reference. It returns a unique

customerID for that customer if successful. BookStadiumService accepts a customerID and

reserves the selected stadium for the given range of dates. The algorithm searches for a semanti-

cally equivalent function with the same input and output parameters in the component services

and finds the function searchStadiums(capacity, location; stadium) in StadiumSearchService.

There is only one recovery option for this failure; the current node is marked as failed and

the goal service is modified by replacing the call to findStadium with a call to searchStadiums.

Composition proceeds normally on the modified goal service until the transition on findAvail-

ability(stadium, startDate, endDate; avail) is encountered. Since no component service houses

such a function, another failure is reported. Once again, the algorithm searches the compo-

nent services for a function equivalent to findAvailability, and finds StadiumAvailabilityService

which has a transition on function checkAvailability(stadium, startDate, endDate; avail). The

current node is marked as failed and the goal service for this node is once again modified by

32

Figure 5.7 Stadium Reservation: Component services

replacing findAvailability with checkAvailability. Composition proceeds on this modified goal

service, but encounters another failure at the transition on reserveStadium(stadium, startDate,

endDate, sponsor; status). To recover from this the algorithm searches the component services

for a function equivalent to reserveStadium. However, the component services which provide

for stadium reservation require a sponsorID that had not been accounted for in the goal ser-

vice. Hence the algorithm is unable to recover from this failure and returns the modified

goal service after highlighting the failed transition. The suggested goal service and the partial

choreographer for this case study are shown in Figures 5.8 and 5.9.

In Figure 5.9, the transition from state t8 to state t10 has been grayed out to indicate that

it will not be included in the partial choreographer.

33

Figure 5.8 Stadium Reservation: Suggested goal service with failed tran-
sition

Figure 5.9 Stadium Reservation: Partially generated choreographer

34

CHAPTER 6. CORRECTNESS AND COMPLEXITY ANALYSIS

This chapter describes the correctness and the complexity analysis of the composition

algorithm and the failure analysis and recovery module.

We first discuss the correctness of the composition algorithm by itself. Given the initial

goal service and the component service, we show that the algorithm always terminates, either

in failure or with a complete choreographer. We then proceed to describe the correctness of

the failure analysis module. When failure occurs, suggestions are made to the goal service

to recover from failure. We show that the process of finding recovery solutions to a failure

always terminates for all the failure scenarios; and if possible, returns a suggestion to the goal

service that avoids the failure. This is followed by a section on the complexity analysis of the

composition algorithm.

To facilitate the recovery from failure, we have made some assumptions about the compo-

nent services. These assumptions are listed below:

(i) Every component service has at least one input action and one output action. Since every

component is an independent entity, the component must have at least one input action

to accept input messages. This serves to provide data to the component service. The

component service will send the result of its computation through an output action, and

hence must have at least one output action. Under this assumption, a component service

minimally has two transitions, a transition on an input action and a transition on an

output action.

(ii) The input to a function is provided by means of an output action by the calling entity or

is obtained by the results of earlier function invocations in the same component service.

In the case where the choreographer calls a function in a component service, the choreog-

35

rapher must send a message containing the input parameters to the component service.

Otherwise, the function call in the component service must be preceeded by a number of

function invocations, which provide the input parameters as their output values.

(iii) If a component service provides an output value that was obtained as a result of some

computation within the component service, the output action that provides the output

message must be preceeded by one or more function calls that provide the output message

as their result.

6.1 Correctness

Claim: Given a goal service Tg with start state s0 and n component services T1,. . .,Tn

the procedure GENERATE always terminates with a successful composite service Tcr that is

equivalent to the goal service or provides a partial composite service in the event of composition

failure.

Proof Sketch: The composition algorithm processes the goal service one state at a time,

managing the transitions in the choreographer based on the transition in the goal service. The

recursive algorithm terminates when all the states in the set of final states of the goal service

sF are processed. Thus the composition process always terminates.

The proof of equivalence is stated using contradiction. There are four possible cases:

(i) for an input action in Tg there is no corresponding input action in Tcr

(ii) there is no output action in Tcr corresponding to an output action in Tg

(iii) a function invocation in Tg is not modeled by Tcr

(iv) certain transition sequences in Tg cannot be provided by Tcr because some guards are not

available

Case (i) This situation cannot be true, because an input action in the goal Tg is directly

copied into the choreographer.

36

Case (ii) For every output message in Tg, a corresponding output action is placed in Tcr if

the required message is present in the choreographer store R. If the message is not available in

R, the component stores are searched for this message. If the msgSet required for the output

message is available in the component stores, the algorithm proceeds to find output actions in

the component services that can get the msgSet into the choreographer store. The component

stores are finite and every component service has a finite number of transitions. After parsing

all the required output actions from the component services, the choreographer store R will

get the entire msgSet. At this point, the output action is created in the choreographer. If the

msgSet is not provided by the component stores as well, the composition step halts in failure.

Hence, case (ii) cannot be true.

Case (iii) This case relates to function invocations. Function invocations in the goal

service are handled by creating a series of transitions in Tcr which interact with the component

services so as to provide for the function invocation. Such a sequence must include transitions

that send messages containing the input parameters to the component service that provides

the function as well as transition that accepts the message from the component service if the

function has an output value. For this function to be invoked, the choreographer store R must

contain all the input parameters required for the function. If the input msgSet to this function

is not in R, the component stores are searched for the input parameters. If the component

stores contain the msgSet, the corresponding component services are traversed to find output

actions that can put the function input parameters into R. Once the component services are

parsed, the sequence of transitions required to realize the function invocation are placed in the

choreographer. If the input parameters are not available in the component stores, composition

stops with a failure. Also, if no components provide the function, the composition halts with

a failure. Thus the choreographer models a function invocation in the goal service.

Case (iv) Whenever a guard condition is encountered, the algorithm checks if it can pro-

vide all the required variables for the guard condition. If the required variables are present in

R, the guard condition is placed in the choreographer. If R does not contain all the variables,

the component stores are searched for these variables. If the component stores provide the

37

variables, the corresponding component services are traversed for output actions that put the

variables into R. If the component stores do not provide the variables, failure is reported. Once

the choreographer has all the variables required to realize the guard condition, the choreog-

rapher creates the transition corresponding to the transition in the goal service. Thus, guard

conditions are always realized if the choreographer can provide the variables required for the

guard condition.

Claim: Given a goal service Tg with start state s0 and n component services T1,. . .,Tn, the

failure analysis module always terminates. Also, for a given failure scenario, if it is possible to

recover from the failure, the changes that are suggested to the goal service as part of recovery

ensure that the failure is avoided in subsequent composition on the suggested goal service. If

recovery is not possible, the algorithm terminates in failure.

Proof sketch: We consider the proof in terms of the five failure scenarios as described in

Chapter 4. There are five scenarios:

(i) Variables used in a guard condition are not available

(ii) Variables required for an output action are not available

(iii) Variables required for an input action or the input message set of a function invocation

are not available

(iv) A function invocation cannot be provided

(v) An input action in a component service is being processed and the message set required

for the input action is not available and the message header for the input action is not

provided by the flow links

We consider the first case. If variables for the guard condition are not available, the

algorithm attempts to search for output actions in the component services which can provide

the required variables to the choreographer. For each variable in the guard, a component

service must send a message to the choreographer containing this variable so that the variable

becomes available in R. To ensure that this component service sends such a message to the

38

choreographer, a function invocation is searched in the component service that provides an

output value of the missing variable. Failure recovery in this case suggests the creation of

a transition on this function call in the goal service. When composition proceeds on the

suggested goal service, the choreographer will send a message to the component service to

invoke the function and will get an output message from the component service which will

provide it with the missing variable. If the choreographer store cannot provide all the input

parameters for this function call, the process is recursively invoked for every input parameter

of this function. Thus, the failure recovery process in this case would result in the creation

of a sequence of transitions in the goal service that will provide the missing variables for the

guard condition. This process always halts, since the number of recursions is bounded by the

number of transitions in the component services, which is finite. Also, the suggestions made to

the goal service ensure that the variables for the guard condition are available in R, avoiding

the failure. The proof of termination and correctness for cases (ii),(iii) and (v) is similar to

that of case (i).

To recover from the failure in case (iv), the algorithm searches the component services for

a semantically equivalent function that can provide for the missing function invocation. For

every component service that provides an alternate function, a suggestion is made to replace

the function that is unavailable in the goal service with the equivalent function provided by the

component service. Since the functions are semantically equivalent and have the same input

and output parameters, the replacement does not affect the functionality of the goal service.

Also, the replacement function can be provided by the component services, which avoids the

failure. Since there are a finite number of component services, this process always halts.

6.2 Complexity Analysis

The complexity analysis of the entire composition process is described in terms of the

complexity of the composition algorithm and the complexity of the failure analysis scenarios.

We first consider the complexity of the composition algorithm by itself. We then determine

the complexity of the failure analysis and recovery modules for each of the failure scenarios.

39

Then we describe the complexity of the overall process.

The complexity of the composition algorithm is determined by the number of recursive

calls made to function GENERATE while traversing the goal service from the start to the

final states. Let |Sg| be the number of states in the goal service. Let there be n component

services, each component service having |Sc| number of states. During each recursive call,

the goal service is at a particular state and corresponding to this state in the goal service,

the component services are at particular states. Each of the n component services can be at

any one of their |Sc| number of states. Since there are n component services, there can be

|Sc|n number of combinations of states in the component services that can be associated with

the current state of the goal service. There are |Sg| number of goal states, hence there will

be a total of (|Sg| × |Sc|n) number of possible combinations of states. Each combination is

associated with constraints over variables in the choreographer and the component stores. By

constraints, we mean that every combination of states can be associated with a guard condition,

that uses a number of variables from the choreographer and component stores. Let k be the

total number of constraints over variables in the choreographer and the component stores.

Variable constraints are updated when the current states of the goal and component services

are changed. Hence the complexity of the composition algorithm itself is O(|Sg| × |Sc|n × 2k).

We now consider the complexity analysis of the failure scenarios. For each scenario, the

complexity is defined in terms of the number of steps required to identify the number of possible

solutions and for each solution, the steps required to suggest changes to the goal service.

Consider scenario 1, where the guard variables required for a transition in the goal service

are not available. To recover from this failure, the algorithm attempts to find component

services which can provide the variables in the guard condition to the choreographer. Hence,

for every variable in the guard condition which is not available in R, the algorithm searches

for component services which contain a function having an output value of that variable.

Let the number of variables in the guard condition be represented by vars(g). For every

v ∈ vars(g), all the component services are searched for the function which provides the

variable in its output. In the worst case, all the transitions in the component services will be

40

searched, which is O(n|Sc|2). For every selected component that provides this function, the

algorithm travels to the transition on the function, in the worst case, this requires the traversal

of O(|Sc|2) transitions in the component service. The choreographer store R must have the

input parameters required to call this function. If it does not, this process is recursively called

on the input message set of the function. Since the component services have at most O(n|Sc|2)

transitions, the component services can provide a maximum of O(n|Sc|2) functions. Hence,

the maximum number of recursive calls that can be made is O(n|Sc|2). For each recursive

call, the same steps as listed above are repeated, hence the number of steps required in each

recursive call is given by O((n+ 1)(|Sc|2)). Hence, the total complexity required to suggest a

goal service for a single v is O(n2|Sc|4). The same steps are repeated for every v ∈ vars(g),

hence the total complexity of this scenario is still O(n2|Sc|4).

The handling of failures in scenarios 2, 3 and 5 is similar to that of scenario 1, in that the

failure is caused due to missing variables and the algorithm attempts to suggest changes to the

goal service to account for those missing variables. The complexity analysis of scenarios 2, 3

and 5 is the same as that of scenario 1.

We now consider the complexity of the failure scenario 4. When a function in the goal

service cannot be provided by any of the component services, the algorithm has to scan at most

n(|Sc|)(|Sc| − 1) transitions in the component services before finding an equivalent function.

This is O(n|Sc|2). For every component service that provides such an equivalent function, we

create a copy of the goal service, which will require O(|Sg|2) steps. If there are l components

which provide equivalent functions, the complexity to replicate the goal service for each of

those components will be O(l|Sg|2). For each such goal service, we replace the transition

on the missing function with a transition on its equivalent function provided by the relevant

component. The corresponding transitions on the goal service and the component service are

marked during the search itself and the replacement can take place in constant time. Hence,

the total complexity for failure scenario 4 is O(n|Sc|2 + l|Sg|2).

The complexity of the entire process is the sum of the complexities of the composition

process and the failure scenarios. If a failure occurs and it is possible to recover from the

41

failure, the composition process is repeated on the suggested goal service. After the goal

service is modified based on the suggestions made to recover from the failure, the complexity

of the subsequent composition on the suggested goal service will be dependent on the number

of states added to the suggested goal service. Furthermore, if multiple goal services are created

to explore different solution paths to a failure, the composition on these goal services is done

in parallel with each other. Hence, for every failure, we need to consider the worst complexity

among the complexities of the goal services suggested to recover from this failure. If it is

not possible to recover from a failure, the process halts and returns a partially modified goal

service and its corresponding choreographer to the user. In this case, we need to consider the

complexity of the composition algorithm and failure analysis upto the point of failure.

Consider for example, a scenario where the composition fails, but it is possible to recover

from failure. In this case, the initial composition of a goal service is O(|Sg| × |Sc|n × 2k).

On failure, we add the complexity of the failure scenario to the overall complexity as well as

the complexity required for the subsequent composition on the suggested goal service. If the

composition failed due to missing input variables and m new states were added to the suggested

goal service, the overall complexity of the composition process becomes O((|Sg| × |Sc|n × 2k)

+ (n2|Sc|4) + (|Sg +m| × |Sc|n × 2k)).

42

CHAPTER 7. IMPLEMENTATION

MoSCoE provides an open source tool for composing web services expressed in terms of

LTSs [2]. This tool has been implemented using Java for the core processing and uses Swing

API and the Cytoscape plugin to render the services. The tool is available at www.moscoe.org.

Figure 7.1 shows a screenshot of the MoSCoE tool.

Figure 7.1 MOSCOE Service Composition tool: screenshot

43

7.1 Service Creation and Representation

A web service in MoSCoE is expressed in terms of an LTS. A user can create a web service

using the tool itself. Future versions of the tool will provide the ability to import a web service

specified in BPEL and automatically convert it to an LTS. The tool provides a set of items

that can be rendered on the screen to create the goal service. It provides for the insertion of

transitions as well as start (colored red), intermediate (colored blue) and final states (colored

green) of the goal service. Actions and guard conditions can be inserted through the actions

menu. Figure 7.2 shows the assignment of a a guard condition [x==0] on the transition from

state s1 to s2.

Figure 7.2 MOSCOE: Creating a guard on a transition

The composition algorithm and the failure analysis and recovery approach described in this

work have been implemented in version 2 of MoSCoE. We now provide a description of the

architecture of the tool.

44

7.2 Architecture

7.2.1 Web Service Representation

A Labeled Transition System is represented by an Automata object. Transitions within

this LTS are represented by a list of Transition objects. Every Transition object describes the

action and guard condition associated with it, via the Action and Guard objects. The states

in the LTS are represented by State, and every Transition object contains a begin and end

state representing the start and end states of that transition. A guard uses the Variable and

the Operator objects to represent the guard condition. A UML diagram of the classes used to

represent an LTS is shown in Figure 7.3.

Figure 7.3 UML diagram depicting the web service data

7.2.2 Processing Module

We introduce a number of new classes to support the framework for the composition process

as well as the failure analysis and recovery. These classes include the CompositionManager,

Composer, CompositionHandler, ServiceRepository and AutomataHelper. The Composi-

tionManager class manages all aspects of the composition process. It maintains a record of

the number of compositions performed during an iteration by using a list of Composer classes.

Every Composer object holds a goal service and a choreographer corresponding to that goal ser-

vice. The Composer objects represent the nodes of the computation tree as described in chapter

45

Figure 7.4 UML diagram depicting the composition manager classes

4. At the end of the entire composition process, the CompositionManager selects one Composer

from amongst the list of Composer objects and presents it to the user. This corresponds to

the selection of the best possible goal service and its choreographer. The CompositionManager

is responsible for handling the failure analysis and the recovery options. CompositionHandler

class contains the composition algorithm and is responsible only to compose. If a failure oc-

curs, the CompositionHandler class propogates this failure to the CompositionManager class.

When the user clicks on compose, the CompositionManager creates an initial Composer object

and calls on CompositionHandler to begin the composition process. If a failure occurs, the

CompositionHandler passes control to CompositionManager along with information about the

failure. CompositionManager then creates the appropriate number of Composer objects with

their own goal services, based on the failure scenario. It then calls upon the CompositionHan-

dler to simulate the composition on every Composer object. The ServiceRepository maintains

the list of component services and provides functions associated with the component services.

AutomataHelper provides utility functions for traversing automata. The UML diagram for

these classes is shown in Figure 7.4.

46

7.3 Demonstration

We now demonstrate the working of MoSCoE composition tool on the E-Library and the

Stadium Reservation System which have been described in chapter 5.

7.3.1 Demonstration: E-Library case study

The user can create the goal service by drawing it in the editor panel, using the icons

provided. Once the service has been created, it will be displayed in the list of available

automata. This is shown in Figure 7.5

Figure 7.5 The e-Library goal service in MoSCoE

Once the goal service has been specified, the list of component services must be provided.

The user can specify the services repository by selecting component services from the list of

available component services. To begin composition, the user then selects a goal service from

the list of goal services and clicks on compose. This is shown in Figure 7.6

47

Figure 7.6 e-Library component services and goal service selected

MoSCoE begins the composition process when the user clicks on the compose button.

An initial Composer object represents the original goal service specified by the user. This

composer object also maintains a choreographer Automata object. The service repository

provides the list of component services, corresponding to the component services selected by

the user. The CompositionHandler always works on one Composer object at a time. Any

changes to the choreographer are made to the choreographer contained in this Composer object.

The CompositionHandler also maintains a track of the current state of the goal service, the

choreographer and the component service, while composing the current Composer object.

Whenever failure occurs, a new Composer object is created and a copy of the the current

failed composer’s goal service is provided to this new Composer. The new Composer then

has its goal service modified based on the solution to the failure. The composition is then

simulated on this new Composer object.

48

Figure 7.7 e-Library status message

Every Composer object has a set of failure messages which are encountered during com-

position. Every time a failure occurs and a new Composer object is created, the set of failure

messages from the current Composer object are copied into the new Composer object. Failure

messages related to new failures encountered while composing the current Composer object is

then added to the list of failure messages held by that Composer object. In this manner,

Figure 7.8 e-Library final suggested goal service

the tool maintains a record of all the failures encountered during composition. At the end

49

of the composition process, the tool selects the best possible composer object and provides

the user with the goal service and the choreographer corresponding to this Composer object.

The user is also given the list of failure messages held by this Composer object. Finally, the

user is presented a status message indicating the status of the composition process. The sta-

tus message for the composition of the E-Library goal service has been shown in Figure 7.7.

As indicated by the status message for the e-Library system, three failures were encountered

Figure 7.9 e-Library choreographer corresponding to the final suggested
goal service

during composition, but it was possible to suggest changes in the goal service so as to recover

from these failures. At the end of the composition process, a number of Composer objects

with their own goal services and choreographers are available. The user is presented with the

choreographer and the goal service of one of these Composer objects. If there are more than

one Composer objects with goal service and choreographers that successfully composed, the

non-functional requirements as specified by the user are applied to select one of those Com-

poser objects. The specification of non-functional requirements is a future expansion of the

MoSCoE tool and has not been implemented in this version. Currently, if there are more than

50

one successfully composed Composer objects, the first one in the list is selected and its goal

service and choreographer are presented to the user. If all of the Composer objects failed

during their respective compositions, one of them is selected and the partially modified goal

service and partial choreographer corresponding to that goal service are presented to the user.

The goal service which has been modified based on these suggestions and the choreographer

corresponding to this goal service are shown in Figures 7.8 and 7.9.

7.3.2 Demonstration: Stadium Reservation System Case Study

Figure 7.10 MoSCoE: Stadium Reservation goal service

The Stadium Reservation System is used to demonstrate the working of the composition

process when it is not possible to recover from a failure that occurs during composition. The

user specifies the goal service as shown in Figure 7.10. This is the same as the goal service

illustrated in Figure 5.6.

51

Figure 7.11 MoSCoE: Stadium Reservation composition status message

The composition algorithm fails twice initially but it is able to suggest modifications to the

goal service that allow recovery from these failures. However, at the third failure, it is unable

to find a function to replace the reserveStadium function and reports that the composition has

failed and recovery is not possible. This message is shown in Figure 7.11. The suggested goal

service is shown in Figure 7.12

Figure 7.12 Stadium Reservation System: final suggested goal service

As indicated in the message, the MoSCoE tool was able to recover from the first two failures

52

by suggesting changes in the goal service. It was unable to recover from the third failure and

returns the partially modified goal service and the partial choreographer corresponding to this

goal service. This has been shown in Figure 7.13

Figure 7.13 Stadium Reservation System: Choreographer corresponding
to suggested goal service

Note: The current implementation does not simulate the suggested goal services for a failure

in parallel. The suggested goal services are run in sequential order with the help of queue. The

composer objects are placed in the queue as they are created during failure recovery. The

composition algorithm is then called on each composer object as it is removed from the queue.

53

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1 Contribution and Future Work

The focus of this thesis is the analysis of failures that can occur in web service composi-

tions and the identification of possible recovery options from those failures. The composition

algorithm used in this work is based on the composition algorithm used in MoSCoE [3]. The

composition algorithm has been modified, to facilitate the implementation of the failure anal-

ysis and recovery approach proposed in this work. This thesis also addresses the issue of what

is to be presented to the user as feedback from the composition process and how that feedback

is to be presented.

The specific contributions of this thesis include:

• Modified Service Composition Algorithm based on MoSCoE composition al-

gorithm The composition algorithm used in this thesis is based on the composition

algorithm proposed in MoSCoE [2, 3]. The changes were necessary to support the failure

analysis framework proposed in this work.

• Analysis of Composition Failures This thesis identifies five scenarios in which failures

can occur and provides techniques to identify possible recovery options for failures in each

of those scenarios. For each recovery option, the goal service is automatically modified

in an appropriate manner, so as to recover from that failure.

• Resolution of Failures and Composition simulation This work proposes that the

goal service be modified based on the possible recovery solutions to a composition fail-

ure. Furthermore, the technique simulates the composition process on the modified goal

service so that future failures can be identified and addressed.

54

• Feedback to the user This approach suggests that the user be given feedback in the

form of a modified goal service and the choreographer corresponding to the modified goal

service. In addition to these services, the feedback also contains a list of the failures that

occurred and the status of the composition.

In terms of future work, we list several possible research directions below:

• Non-functional requirements

The approach addressed here tackles web service composition based only on the func-

tional requirements. The STSs that represent the goal and the component services cur-

rently support only functional requirements. Non-functional requirements are only used

to select one of the possible goal services when there are multiple goal services that re-

solve a failure. They are expressed independently from the component services and the

goal service. Future work can involve the extension of the STSs and the composition

and failure analysis algorithm to handle non-functional requirements. The considera-

tion of non-functional requirements has the benefit of reducing the number of candidate

compositions that need to be considered during the composition process. Furthermore,

non-functional requirements can aid in the selection of a suggested goal service to be

presented to the user, when multiple equivalent goal services exist.

• Run-time Failure Analysis

The composition approach discussed in this thesis applies at the design level. The com-

position can also fail during run-time, while the composite service is being executed.

Failures could occur due to some component service being unavailable during runtime,

changes in the design of the component services, or changes to the non-functional aspects

of the component services. The failure analysis approach can be extended to include iden-

tification and recovery from run time composition failures.

• Composite Functions in the Goal Service

The functions or atomic actions specified in the goal service might not be provided by the

component services. But it is also possible that the component services provide a number

55

of functions which when composed together or called in a specific sequence, provide for

the missing atomic action. The identification of such functions and the determination

of the sequence in which they should be called can be based on the input and output

parameters of the candidate functions. Thus, the failure analysis of failures caused by

missing functions can be extended by attempting to find a set of functions that when

called in sequence, provide the missing function.

• Selection of optimum component service to provide the required function or

input variable

The composition algorithm has to select a component to which to send a message in

order to invoke a function or get required messages. Currently, the composition algorithm

selects the first component service that it encounters in such scenarios. The algorithm can

be extended to identify all the component services which provide the required function

or message, and then select the best component based on certain criteria, such as Non-

functional requirements.

8.2 Conclusion

One benefit of Web Service Composition is that it allows the developer to derive a very spe-

cific functionality from a set of independently developed components, in an economical manner.

MoSCoe [2, 3] suggests an iterative orchestration based composition technique. During each

iteration, the developer is provided feedback about the composition process and based on this

feedback; the developer can reformulate the goal service. This allows the developer to start off

with an abstract and possibly incomplete specification of the goal service, which can be refined

in subsequent iterations. Furthermore, feedback given to the developer can help the user to

understand why a composition might have failed and how to recover from this failure. This

feedback can provide the developer with improved information regarding the functionalities

provided by the component services.

The failure analysis and recovery technique proposed in this work addresses the issue of

analyzing the failures and providing feedback to the developer. The approach identifies the

56

possible cause of failure and recommends that the goal service be modified if possible, for every

possible recovery solution to the failure. The composition process is then simulated on each

modified goal service to identify future failures. The modified goal service and the suggested

choreographer are then presented to the developer as feedback, along with a list of failure

messages for failures encountered during the composition process.

One form of feedback would be to identify the cause of failure and suggest to the developer

a way in which the goal service can be modified to recover from this failure. The approach

suggested in this work takes this a step further and modifies the goal service automatically

based on the recovery option. It modifies the goal services differently for every possible way

to recover from this failure. It then simulates the composition algorithm on the modified goal

services to search for future failures. This approach thus examines all the possible ways in which

a failure can be avoided and saves the developer from having to modify the goal service at the

end of every iteration. Also, if the developer decides to adopt the modified goal service provided

by the algorithm, the choreographer corresponding to the goal service is already available and

the developer need not compose the modified goal service again. This approach saves the

developer from experimenting with different modifications to the goal service, reducing the

effort required in subsequent iterations of the composition process.

57

APPENDIX A. COMPOSITION ALGORITHM

Appendix A contains the composition algorithm. This algorithm is based on the composi-

tion algorithm presented in MoSCoE[3, 4]. The algorithm contains modifications required to

facilitate failure analysis. These modifications include additional checks on guard conditions

and changes in the handling of function invocations.

/**

* r is the current stat of the goal state

* si is the current state of the component service Ti

* t is generated choreographer state

* G is the conjunction of guard conditions

* R is the choreographer store

* Ri is the message store for component Ti

*/

proc GENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G) {
if (!visited(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G)) {
mark as visited(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G);

} else {
return;

}
forall (r

g, a−→ r′) && (G ∧ g) do {
if (g is not empty && (!(G ∧ g))) { /* ∀ v ∈ g, ∃ v 6∈ R */

if (∀ v ∈ g such that v 6∈ R, ∃ a Ti such that v ∈ Ri) {
for (every such v) {

if (v 6∈ R) {
SUBGENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G, Ti);

}
}

} else {
Failure scenario 1: Variables required for guard condition are missing

}
} else {

case 1: a = ?m(~x) /* Input action from the client */

create transition t
g,a−→ t′;

R = R ∪ ~x;
GENERATE(r′, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t′, G ∧ g);

case 2: a = !m(~x) /* Output action to the client */

if (~x ∈ R) {

58

create transition t
g,a−→ t′;

GENERATE(r′, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t′, G ∧ g);
} else if (∃i such that ~x ∈ Ri) {

SUBGENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G, Ti);
} else {

Failure scenario 2: Variables required for output action are missing

}
case 3a: a = funcName(I; O) && I 6∈ R

/* Current action is an atomic action and not all variables required to call this function

* are available. Check the component stores for the presence of these variables

*/

if (∀ v ∈ g such that v 6∈ R, ∃ a Ti such that v ∈ Ri) {
for (every such v) {

if (v 6∈ R) {
SUBGENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G, Ti);

}
}

} else {
Failure scenario 1: Variables required for guard condition are missing

}
case 3b: a = funcName(I; O) && I ∈ R && no si has a transition on a

select component service Ti that houses this function;

if (no such Ti exists) {
Failure scenario 4: Function required by the goal service is not available

} else {
SUBGENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G, Ti);

}
case 3c: a = funcName(I; O) && I ∈ R && current state si in component Ti

has a transition on a

/* Let current transition on Ti be si
gi, ai−→ s′

i */

if (G ∧ g ⇒ gi) {
Failure scenario 1: Variables required for guard condition are missing

} else {
done = done ∪ funcName(I; O);
Ri = vars(ai);

GENERATE(r′, [s1, s2, . . . , s′
i, . . . , sn], [R1, R2, . . . , Rn], t, G);

}
}
}
}

proc SUBGENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G, Ti) {
/* Let current transition on Ti be si

gi, ai−→ s′
i */

/* flowStack maintains an account of flowlink traversal */

if ((ai = !m(~x) || (ai = ?m(~x) && ~x ∈ R)) && G ⇒ gi) {
create transition t

gi,ai−→ t′;
R = R ∪ ~x;
Ri = Ri ∪ ~x;
GENERATE(r, [s1, s2, . . . , s′

i, . . . , sn], [R1, R2, . . . , Rn], t′, G);
} else if (ai = ?m(~x) && ~x 6∈ R && G ⇒ gi) {

if (m ∈ FLij) {

59

msgH = m;

k = i;

pushIntoFlowStack((msgH, k));

}
while (flowStack is not empty) {

(msgH,k) = pop(flowStack);

while (sk
gk, ak−→ s′

k && header(ak) 6= msgH) {
if (ak = ?m(~y) && ~y 6∈ R && G ⇒ gi) {

if (mk ∈ FLkl) {
pushIntoFlowStack((msgH, k));

pushIntoFlowStack((mk, l));

continue; // to beginning of outer while loop

}
} else if ((ak = !m(~y) || (ak = ?m(~y) && ~y ∈ R)) && G ⇒ gk) {

create transition t
gk,ak−→ t′;

R = R ∪ vars(ak);
Rk = Rk ∪ vars(ak);
GENERATE(r, [s1, s2, . . . , s′

k, . . . , sn], [R1, R2, . . . , Rn], t′, G);
if (t′ is the root of a partial choreographer) {

select next transition from sk;

}
} else if (ak = funcName(Ik; Ok) && G ⇒ gk) {

if (Ik 6∈ R) {
Failure scenario 3: Input variables required for function are not available

} else {
done = done ∪ ak;

Rk = Rk ∪ vars(ak);
}

} else {
Failure scenario 1: Variables required for guard condition are missing

}
}
if (sk

gk, ak−→ s′
k && header(ak) = msgH) {

if (G ⇒ gk) {
create transition t

gk,ak−→ t′;
R = R ∪ vars(ak);
Rk = Rk ∪ vars(ak);
GENERATE(r, [s1, s2, . . . , s′

k, . . . , sn], [R1, R2, . . . , Rn], t′, G);
} else {

Failure scenario 1: Variables required for guard condition are missing

}
}

}
} else if (ai = funcName(I; O) && I ∈ R && G ⇒ gi) {

done = done ∪ funcName(I; O); Ri = Ri ∪ vars(ai);
GENERATE(r, [s1, s2, . . . , s′

i, . . . , sn], [R1, R2, . . . , Rn], t, G);
} else {

Failure scenario 1: Variables required for guard condition are missing

}
}

60

APPENDIX B. FAILURE ANALYSIS

Appendix B contains the code snippets for the different failure scenarios. Each code snippet

or function describes the steps taken towards analysis and recovery for one failure scenario.

Each function desrcibes the identification of the possible solutions for the scenario that it de-

scribes; as well as the suggestions made to the goal service to avoid those failures.

Failure Scenario 1: Variables required for guard condition are unavailable

/*

* This function addresses failure scenario 1: Variables required for a guard

* condition are not available. The argument to this function is the transition

* having the guard conditions for which the variables are missing.

*/

proc missingGuardVariables(s
g, a−→ s′) {

if (not the third failure in this branch of computation

&& for every v ∈ g such that v 6∈ R ∃ component Ti with a transition on

a function call fi with v ∈ ovars(fi)) {
place goal service into goalServices queue;

for (every v ∈ g) {
- find the number of component services Ti that provide a function fi with output

value = v;
- remove all the goal services from the queue and maintain the list of goal

services temporarily

- for (each component Ti) {
replicate every goal service from the temporary list;

call suggestTransitions(R′, ts, lhsV ars(g), {}, s g, a−→ s′, Ti); on the

replicated goal service;

place suggested goal service into queue;

}
}
if (goalServices queue is not empty) {

for (every goal service from queue) {
spawn a new child thread, with copy of goal service;

call GENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G) on

this child thread in parallel with other child threads spawned in

this code block;

61

}
}

}
manageThreadReturn(currentThreadID);

}

Failure Scenario 2: Variable required for output action is not unavailable

/*

* This function addresses failure scenario 2: Variable required for an output

* action condition is not available. The argument to this function is the

* transition on the output action for which the variables are missing.

*/

proc missingOutputVariable(s
g, a−→ s′) {

if (not the third failure in this branch of computation

&& for every v ∈ ovars(a) such that v 6∈ R ∃ component Ti with a transition on

a function call fi with v ∈ ovars(fi)) {
place goal service into goalServices queue;

for (every v ∈ g) {
- find the number of component services Ti that provide a function fi with output

value = v;
- remove all the goal services from the queue and maintain the list of goal

services temporarily

- for (each component Ti) {
replicate every goal service from the temporary list;

call suggestTransitions(R′, ts, ovars(a), {}, s g, a−→ s′, Ti);
replicated goal service;

place suggested goal service into queue;

}
}
if (goalServices queue is not empty) {

for (every goal service from queue) {
spawn a new child thread, with copy of goal service;

call GENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G) on

this child thread in parallel with other child threads spawned in

this code block;

}
}

}
manageThreadReturn(currentThreadID);

}

Failure Scenario 3: Input parameters for an atomic action are not available

/*

* This function addresses failure scenario 3: Input parameters for an atomic action

* are not available. The argument to this function is the transition on the atomic

* action for which the input variables are missing.

62

*/

proc missingInputVariables(s
g, a−→ s′) {

if (not the third failure in this branch of computation

&& for every v ∈ ivars(a) such that v 6∈ R ∃ component Ti with a transition on

a function call fi with v ∈ ovars(fi)) {
place goal service into goalServices queue;

for (every v ∈ ivars(a)) {
- find the number of component services Ti that provide a function fi with output

value = v;
- remove all the goal services from the queue and maintain the list of goal

services temporarily

- for (each component Ti) {
replicate every goal service from the temporary list;

call suggestTransitions(R′, ts, ivars(a), ovars(a), s
g, a−→ s′, Ti);

replicated goal service;

place suggested goal service into queue;

}
}
if (goalServices queue is not empty) {

for (every goal service from queue) {
spawn a new child thread, with copy of goal service;

call GENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G) on

this child thread in parallel with other child threads spawned in

this code block;

}
}

}
manageThreadReturn(currentThreadID);

}

Failure Scenario 4: Atomic action specified in the goal service is not available

/*

* This function addresses failure scenario 4:a function invocation in the goal

* service cannot be provided by the component services. The argument to this

* function is the transition on the missing function in the goal service,

* where a = funcName(I; O)
*/

proc missingFunctionInvocation(s
g, a−→ s′) {

if (not the third failure in this branch of computation

&& ∃ components with transition on a function f with ivars(f) = I
&& ovars(f) = O) {
for (every Ti that provides a transition on such a function f) {

/* Let the transition on the component Ti be c
gi, ai−→ c′ */

- Spawn a new child thread with a copy of the goal service of this thread at

its start state r, an new choreographer at start state t, empty component

repositories [R1, . . . , Rn] and empty R and with all component services

at their start states [s1, . . . , sn];
- Let G represent the guard conditions, and set it to empty for this

child thread;

63

- Replace transition s
g, a−→ s′ in the child thread’s goal service

with a transition on s
gi, ai−→ s′

- call GENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G) on

this child thread in parallel with other child threads spawned in this

code block;

}
}
manageThreadReturn(currentThreadID);

}

Failure Scenario 5: Required message header cannot be provided by flow links

/*

* This function addresses failure scenario 5: required message header cannot

* be provided by flow links. The first argument to this function is the transition

* in the goal service at which the algorithm started to explore the flow links. The

* second argument to this function is the transition in the component service that

* was being traversed, but for which the input message was not available

*/

proc flowLinksInsufficient(s
g, a−→ s′) {

if (not the third failure in this branch of computation

&& for every v ∈ ivars(ak) ∃ components Ti with transition on

a function fi with v ∈ ovars(fi){
place goal service into goalServices queue;

for (every v ∈ ivars(ak)) {
- find the number of component services Ti that provide a function fi with output

value = v;
- remove all the goal services from the queue and maintain the list of goal

services temporarily

- for (each component Ti) {
replicate every goal service from the temporary list;

call suggestTransitions(R′, ts, ivars(ak), ovars(ak), s
g, a−→ s′, Ti);

replicated goal service;

place suggested goal service into queue;

}
}
if (goalServices queue is not empty) {

for (every goal service from queue) {
spawn a new child thread, with copy of goal service;

call GENERATE(r, [s1, s2, . . . , sn], [R1, R2, . . . , Rn], t, G) on

this child thread in parallel with other child threads spawned in

this code block;

}
}

}
manageThreadReturn(currentThreadID);

}

proc suggestTransitions

64

proc suggestTransitions(R′, ts, s
g, a−→ s′, Ti, si

gi, ai−→ s′
i) {

Let TR be an ordered set of transitions. This is initially empty;

if (ivars(ai) ∈ R′) {
TR = TR ∪ {(ts

gi, ai−→ ts′)}
} else {

for (every (y ∈ ivars(ai) such that y 6∈ R′) {
recFinder(y, y, Tr);

}
}
if (TR ∩ (a transition to/from fail state sfail) 6= φ) {

return partial choreographer and partial suggested goal service;

} else {
for suggested goal service, create chain of transitions joining

all transitions from TR in order of insertion;

add transition ts
g, a−→ s′ to the transition chain;

}
}

proc recursiveFinder

proc recursiveF inder(a, b, TR) {
find component Tk such that Tk contains transition sk

gk, ak−→ s′
k

where ak is an atomic action and ovars(ak) = a
if (ivars(ak) ∈ R′) {

Let ts is the end state of last transition in TR

TR = TR ∪ {(ts
gk, ak−→ ts′)}

R′ = R′ ∪ a;
} else {

for (every m ∈ ivars(ak) such that m 6∈ R′) {
if (m == b) {

TR = TR ∪ {(sfail −→ ts)}
}
} else {
recursiveFinder(m, b, TR);

}
}
}

Manage thread return

proc manageThreadReturn(threadID) {
if (this thread is the main thread) {

if (there exist children threads which have not been marked as failed) {
- select one of the threads based on requested criteria and display suggested

goal service and choreographer;

} else { /* all the spawned threads have been marked as failed */

- Select one thread from among the failed threads and return the corresponding

goal service and choreographer;

65

}
}
}

66

BIBLIOGRAPHY

[1] Web Services Architecture, World Wide Web Consortium Working Group. Last accessed:

24th September, 2008. URL http://www.w3.org/TR/ws-arch/whatis

[2] J. Pathak. Interactive and verifiable web services composition, specification reformulation

and substitution. PhD thesis, Iowa State University, 2007.

[3] J. Pathak, S. Basu, R. Lutz, V. Honavar. Parallel Web Service Composition in MoSCoE:

A Choreography-based Approach. In 4th IEEE European Conference on Web Services,

2006.

[4] J. Pathak, S. Basu, R. Lutz, V. Honavar. MoSCoE: A Framework for Modeling Web

Service Composition and Execution. In IEEE 22nd Intl. Conference on Data Engineering

Ph.D. Workshop, Page x143.IEEE CS Press, 2006.

[5] J. Pathak, S. Basu, R. Lutz, V. Honavar. Selecting and Composing Web Services through

Iterative Reformulation of Functional Specifications. In 18th IEEE International Confer-

ence on Tools with Artificial Intelligence, 2006.

[6] D. Berardi, D. Calvanese, D. G. Giuseppe, R. Hull, and M. Mecella. Automatic Compo-

sition of Transition-based Semantic Web Services with Messaging. In 31st International

Conference on Very Large Databases, pages 613-624, 2005.

[7] D. Berardi, D, Calvanese, G. D. Giacomo, M. Lenzerini, M. Mecella. Automatic Service

Composition based on Behavioral descriptions. International Journal on Coop-erative In-

formation Systems, 14(4):333-376, 2005.

67

[8] Web Services Description Language (WSDL) 1.1. Last accessed: 24th September, 2008.

URL http://www.w3.org/TR/wsdl.

[9] J. Rao, X Su. A survey of Automated Web Service Composition methods. In Proceed-

ings of the First International Workshop on Semantic Web Services and Web Process

Composition, 2004.

[10] M. Pistore, P. Traverso, P. Bertoli, A. Marconi. Automated Synthesis of Executable Web

Service Compositions from BPEL4WS Processes. In 14th international conference on

World Wide Web, 2005.

[11] U. Dal Lago, M. Pistore, P. Traverso. Planning with a Language for Extended Goals. In

Proc. AAAI’02, 2002.

[12] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q. Sheng. Quality Driven Web Ser-

vices Composition. Proceedings of the 12th international conference on World Wide Web,

2003.

[13] M. Carman, L. Serafini, P.Traverso. Web Service Composition as Planning. In The 13th

International Conference on Automated Planning and Scheduling, 2003.

[14] D. Berardi. Automatic Service Composition: Models, Techniques and Tools. PhD thesis,

Universit‘a di Roma, La Sapienza, Italy, 2005.

[15] J. Pathak, S. Basu, V. Honavar. Assembling Composite Web Services from Autonomous

Components. In Emerging Artificial Intelligence Applications in Computer Engineering,

Frontiers in Artificial Intelligences and Applications, 2007.

[16] J. Pathak, S. Basu, V. Honavar. Modeling Web Services by Iterative Reformulation of

Functional and Non-Functional Requirements. In proceedings of the 4th International Con-

ference on Service Oriented Computing, 2006.

	2008
	An iterative approach towards web service composition using feedback from analysis of composition failures
	Dinanath Nadkarni
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Thesis Outline

	2. BACKGROUND
	3. WEB SERVICE COMPOSITION
	3.1 Introduction
	3.2 The Composition Algorithm

	4. FAILURE ANALYSIS AND RECOVERY
	4.1 Goal of Failure Analysis
	4.2 Approach towards Failure Analysis

	5. CASE STUDIES
	5.1 Library Book Reservation System
	5.2 Stadium Reservation System

	6. CORRECTNESS AND COMPLEXITY ANALYSIS
	6.1 Correctness
	6.2 Complexity Analysis

	7. IMPLEMENTATION
	7.1 Service Creation and Representation
	7.2 Architecture
	7.2.1 Web Service Representation
	7.2.2 Processing Module

	7.3 Demonstration
	7.3.1 Demonstration: E-Library case study
	7.3.2 Demonstration: Stadium Reservation System Case Study

	8. CONCLUSION AND FUTURE WORK
	8.1 Contribution and Future Work
	8.2 Conclusion

	A. COMPOSITION ALGORITHM
	B. FAILURE ANALYSIS
	BIBLIOGRAPHY

