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ABSTRACT

This work focuses on multi-agent learning in market contexts. It reports findings from a

comparative study of three reinforcement learning algorithms currently in use for a variety of

market applications. Two double-auction market testbeds are developed and used to carry out

benchmark comparisons involving intensive parameter sweeps with heat map visualization of

parameter sensitivities. A primary concern is the degree to which each tested algorithm permits

learning agents to converge to the choice of a best action measured in terms of accumulated

profits. Some findings from a mathematical analysis of the algorithms’ properties are also

reported.

The three reinforcement learning algorithms studied in this work are: the Roth-Erev algo-

rithm proposed by Erev and Roth [1], the Modified Roth-Erev (MRE) reinforcement learning

algorithm proposed by Nicolaisen et al [2] and the Variant Roth-Erev (VRE) learning algorithm

proposed by Sun and Tesfatsion [3].



1

CHAPTER 1. OVERVIEW

The current literature about multi-agent reinforcement learning (RL) is relatively scarce

because of the inherent complexity involved in understanding a dynamic system with many

agents learning and interacting simultaneously. Mathematical analysis too is not available

in many areas. The inherent difficulty of analytical study of learning algorithms in a multi-

agent setting makes computational experiments a much better choice of understanding their

behavior.

This work is a step in that direction. We consider a very well known reinforcement learning

algorithm developed by Roth and Erev [1] on the basis of human-subject experiments, together

with two variations of this algorithm currently being used for the study of wholesale power

markets. The behavior of these algorithms in a multi-agent context has not been completely

understood and by systematically and exhaustively testing these algorithms over their entire

parameter space, we determine the performance of these algorithms and we attempt to explain

their behavior. The algorithms that we have considered for this work are widely used in

wholesale power market simulations and we hope that this work allows others to understand

the parameter settings in order to achieve the best performance for the learning agents.

A wholesale power market is in essence a single commodity double auction and we compare

the performance of the RL algorithms in two testbeds based on the clearing house double

auction. Double auctions are a good choice as testbeds, since they have been studied widely,

especially from the perspective of learning agents and the overall market efficiency [4]. The

first testbed is a simple double auction model that simulates a single-commodity clearing

house double auction. For the second testbed, we use the computational platform (”AMES”)

currently being used to study the performance of restructured wholesale power markets [2].
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Using the two testbeds, we define five increasingly complex experimental test cases, starting

from a very simple setup involving a single learning agent to a highly complex setup with five

competing reinforcement learning agents. To improve the visualization and to make the results

readily available to the readers, we have introduced the concept of using “heat maps” to display

the information generated by the experiments.

This work is immediately relevant to the Agent-based Computational Economics (ACE)

group in the Economics department at Iowa State University 1 and the PowerACE group based

in Germany2. The ACE group can utilize the results from this work in specifying the parameter

values in their future work.

This work attempts to lay down a foundation for analysis of computational experiments

to understand the behavior of RL algorithms. Presently, researchers are studying algorithms

that incorporate evolutionary techniques and reinforcement learning. One of the candidate

RL algorithms that can be considered is NEAT+Q proposed by Whiteson and Stone [5].

This sophisticated evolutionary-learning algorithm based on NEAT [6] attempts to combine

an artificial neural network based genetic algorithm with reinforcement learning to merge the

best features of both types of learning in a single algorithm. However, a deeper understanding

of RL performance under alternative parameter specifications would seem to be an important

prerequisite. We intend to investigate the possibility of comparing NEAT+Q and other RL

algorithms in future studies.

The tested RL algorithms are listed in chapter 2. In chapter 3, the five test cases based on

the testbeds are described. Chapter 4 shows the results from the experiments. In chapter 5,

some simple mathematical analysis is done on the algorithms. The appendices provide greater

information on the software used in this work, and the architecture and implementation of the

testbeds used.
1The ACE homepage is available at http://www.econ.iastate.edu/tesfatsi/ace.htm
2The PowerACE group homepage is available at http://www.powerace.de/engl/index.html
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1.1 History

The Roth-Erev Algorithm was proposed by Alvin Roth and Ido Erev [1]. The authors con-

ducted a series of human experiments and proposed this algorithm to replicate the behavior of

their test subjects. This algorithm is considered as one of the prime algorithms to model hu-

man behavior and is one of the important algorithms developed in this manner. An interesting

difference between the Roth-Erev algorithm and the specifications of reinforcement learning

given in Sutton and Barto [7] is that there is no explicit value function in the Roth-Erev

algorithm.

The MRE RL algorithm was proposed by Nicolaisen, Petrov and Tesfatsion [2] in response

to some of the perceived drawbacks of the Roth-Erev algorithm. The authors state that the

original Roth-Erev algorithm fails to learn if the action taken has zero payoff. In the context

of a double-auction electricity market, the authors show that market efficiency is substantially

higher when the learning traders use the MRE RL algorithm instead of the default Roth-Erev

RL algorithm.

The VRE RL algorithm modifies the MRE RL algorithm to ensure that action choice

probabilities are properly calculated as nonnegative values even when rewards (profit earnings)

can take on negative values. In the MRE RL algorithm, the probabilities are defined to be

proportional to the propensity values and in the case of the VRE RL algorithm, the probabilities

are calculated based on the exponents of the propensities for each action. This algorithm is

currently used as the default learning algorithm in the AMES market framework [3], [8] and

[9].
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CHAPTER 2. TESTED LEARNING ALGORITHMS

2.1 Roth-Erev Reinforcement Learning Algorithm

The Roth-Erev RL algorithm specifies an equal initial propensity value q(0) for each of the

N actions of the learning agent at time t = 0. The action propensities are then updated based

on the action selected at each subsequent time t = 1, 2, . . ..

If the action ak is selected at time t, then the propensities for the actions at time t+ 1 are

defined as:

qj(t+ 1) = (1− r)× qj(t) + πk(t)× (1− e) if j = k (2.1)

qj(t+ 1) = (1− r)× qj(t) + πk(t)× e

N − 1
if j 6= k (2.2)

The choice probability of each action at time t, pj(t) i.e. the probability of choosing the

action aj at time t, is defined as:

pj(t) =
qj(t)

N−1∑
i=0

qi(t)

(2.3)

where

• qj(t) is the propensity of action j at time t

• qj(0) is the propensity of action j at time t = 0, also known as initial propensity.

• πk(t) is the reward obtained for action k at time t

• r is the recency parameter

• e is the experimentation parameter
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• N is the total number of actions

• ak is the kth action among the set of N possible actions for the learning agent.

2.2 Modified Roth-Erev Reinforcement Learning Algorithm

The MRE RL algorithm initially assigns an equal initial propensity value q(0) to each of the

N actions of the learning agent, similar to the Roth-Erev RL algorithm. However, the action

propensities at time t are calculated in a slightly different way. If the action ak is chosen at

time t, the action propensities at time t+ 1 are calculated to be

qj(t+ 1) = (1− r)× qj(t) + πk(t)× (1− e) if j = k (2.4)

qj(t+ 1) = (1− r)× qj(t) + qj(t)× e

N − 1
if j 6= k (2.5)

The choice probability of each action at time t, pj(t) is given by

pj(t) =
qj(t)

N−1∑
i=0

qi(t)

(2.6)

2.3 Variant Roth-Erev Reinforcement Learning Algorithm

The VRE RL algorithm is a variant of the MRE RL algorithm. The setup of the initial

propensities and the propensity update functions are unchanged from the MRE RL algorithm.

Therefore, the action propensities at time t + 1 based on the action ak chosen at time t are

given by:

qj(t+ 1) = (1− r)× qj(t) + πk(t)× (1− e) if j = k (2.7)

qj(t+ 1) = (1− r)× qj(t) + qj(t)× e

N − 1
if j 6= k (2.8)

The choice probability of each action at time t, pj(t) is calculated using a Gibbs-Boltzmann

distribution given by:



6

pj(t) =
e

qj(t)

T

N−1∑
i=0

e
qi(t)

T

(2.9)

where

• T is the Boltzmann cooling parameter

Conceptually, the parameters used in these three RL algorithms can be further motivated

as follows:

• Experimentation e: The two components of on-line learning ‘exploration’ and ‘exploita-

tion’ have to be balanced correctly in order to obtain maximum payoffs. Over-exploration

and over-exploitation lead to non-optimal solutions [7], [10]. The experimentation pa-

rameter controls the degree of exploration. By increasing the experimentation parameter

value, the propensity of the actions not chosen at time t is increased by some factor

(‘spillover’). This increases the probability of these actions to be chosen at time t + 1.

This also prevents ‘premature fixation’ on some action, where the agents fixates on a

single action at a very early stage and fails to test any other action.

• Recency r: The recency parameter allows an effect called ‘forgetting’ [1]. Due to this

effect, the learning agent ignores the past effect of learning by a factor given by the

recency parameter. Increasing the recency parameter increases this ‘forgetting’ effect. In

a dynamic system where the rewards for an action vary over time, the recency parameter

should be large to allow a greater forgetting and negate the effect of actions taken over

a longer period. This allows the agent to ignore the rewards obtained in past actions,

because they might have become sub-optimal over time.

• Initial Propensity qj(0): The initial propensity for each action j indicates the learning

agent’s reward expectation from taking this action. Typically, if the initial propensity is

too high as compared to the expected rewards from the agent’s actions, then the agent

will cycle through a lot of actions. If the initial propensity is too low, then there is a
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likelihood of early fixation in which the agent will fixate on some non-optimal action at

a very early stage and reduce the probability of choosing the remaining actions to an

infinitesimal value.

• Boltzmann cooling parameter: The Boltzmann cooling parameter is used to help control

the degree to which differences in action propensities are emphasized in the transition

from action choice propensities to action choice probabilities. If the variations in the

action propensities are not too large, a judicious selection of the cooling parameter allows

the differences between the propensities to be amplified in the probability calculations.
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CHAPTER 3. FIVE TEST CASE STUDIES

3.1 SimpleModel-I: One Learning Agent with One Profitable Action

3.1.1 Model Design

The structural environment consists of a simple single-commodity double auction with a

fixed number of buyers and sellers. There are a total of twelve agents, six sellers and six

buyers. There is one seller with a reinforcement learning component and four possible actions.

We denote this agent as the ‘learning seller’. There are five fixed sellers that sell at a fixed

ask price. All the buyers are passive buyers that buy at a fixed bid price. The market is run

for one thousand trading periods. At the end of each trading period, based on the bid and ask

prices of the traders, the market computes the supply-demand curve and the clearing price. In

a given trading period, if the trader is infra-marginal, he gets a positive profit. The actions of

the learning seller are fixed such that one of the actions makes the agent infra-marginal and

the remaining actions make him extra-marginal. Due to this setup, there is only one action

that generates a fixed positive reward and the rest of the actions generate zero rewards.
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Figure 3.1 SimpleModel-I: One Learning Agent with One Profitable Action

3.1.2 Calculating the uniform clearing price

The demand curve is calculated by first randomly sorting the bid price/quantities given by

the buyer agents. The price/quantities are then sorted in decreasing order of price.

Similarly the supply curve is calculated by first randomly sorting the ask price/quantities

given by the seller agents. The price/quantities are then sorted in increasing order of price.

The intersection point between the two curves above is calculated. This is the uniform clear-

ing price. All agents to the left of the uniform clearing price point are known as infra-marginal

and obtain a profit given by the difference between the uniform price and the reservation value

of the buyer or seller.

If there exist multiple intersection points with different prices, the average of the prices is

considered as the uniform clearing price.

If there exist multiple intersection points with different quantities, the point with the largest

quantity is considered as the intersection point, indicating that at the point where the ask and

bid prices are the same, the transaction is considered to have taken place.
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Figure 3.2 Demand/Supply Curve for SimpleModel-I with true reservation

values

3.1.3 Experimental Design

The treatment factors that primarily affect how well the learning agent learns are the

experimentation and the recency. Since the learning algorithm determines the actions based

on the probabilities that are updated in every iteration, a certain number of simulations are

run using unique random seeds. This ensures that the stochastic effects of the algorithm are

minimized.

We vary the experimentation and recency parameters from 0.0 to 1.0 with an interval of

0.1 and with a 100 randomly generated random seeds. This gives rise to a total to 11 × 11 ×

100 simulations. Each simulation was run for 1000 time periods. One time period corresonds

to a single trading period. For the SimpleModel experiments, the simulations are run for two

settings of initial propensity, viz. 1.0 and 1000.0.

Two sets of experiments are conducted based on the above parameter settings. In one set of

experiments, the learning agent is a Roth-Erev RL agent and in the second set of experiments,

the learning agent is a MRE RL agent.
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3.2 SimpleModel-II: One Learning Agent with Two Profitable Actions

3.2.1 Model Design

The model setup is very similar to the one used in the above scenario. The only change is

that the learning agent now has two actions that make the agent infra-marginal in the market

and therefore both actions generate a fixed positive profit. Though both actions generate

nearly equal profits, one of the actions always generates a greater profit than the other action.

Figure 3.3 SimpleModel-II: One Learning Agent with Two Profitable Ac-

tions
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Figure 3.4 Demand Supply Curve for Simple Model-II with true reserva-

tion values

3.2.2 Experimental Design

We run the similar set of experiments by varying the experimentation and recency param-

eters from 0.0 to 1.0 with an interval of 0.1 and with a 100 random seeds. The random seeds

are exactly the same as the random seeds used in the previous test case in order to make the

enivornmenal conditions as similar as possible.

3.3 AMESModel-I: One Learning Agent

3.3.1 Model Design

The AMES market package is a wholesale power market platform simulation that consists of

a transmission grid with a set of electricity traders consisting of generators and load supplying

entities (LSEs) situated on the nodes of the transmission grid.

During each time period, based on the load schedule and the generator ask prices, the

market operator, known as the independent service operator (ISO), calculates the commitments

from each generator and therefore the generator profits.
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The AMES package is explained in detail in the testbed implementation section D.2.1.

The AMES package comes with an example of a transmission grid containing five nodes.

The experimental setup is based on this five node test case. This setup has five generators and

five LSEs located on the transmission grid. All generators are fixed to use the same experimen-

tation and recency parameter settings, except the learning generator G5. This generator uses

the settings specified in the multi-run parameter file to sweep through the parameter space.

The number of actions for the generators G1 - G4 is set to one, while the number of actions

of the learning generator is set to forty.

For the AMESModel experiments, a modification has been made to the original Roth-

Erev algorithm to avoid the possibility of negative propensities and to be able to compare the

Roth-Erev and the VRE RL algorithms on an equal footing. Therefore, for the AMESModel

experiments using the Roth-Erev RL algorithm, the choice probability update function 2.3 has

been replaced by the Gibbs-Boltzmann distribution function shown in the VRE RL algorithm

2.9.

Figure 3.5 5-Node Test Case

3.3.2 Experimental Design

In the AMESModel-I experiments, for the learning generator G5, the recency and experi-

mentation parameters were varied from 0.0 to 1.0 in increments of 0.1. All non-learning gener-

ators submit their true costs and capacities during each trading round. The initial propensity

for all actions of the learning generator G5 were fixed at 140000 and the cooling parameter

was fixed at 35000.
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In the second experiment, all the parameters were the same as in the first experiment,

except for the initial propensity being set to 6000 for the learning generator G5. The cooling

parameter for the learning generator G5 was fixed at 1000.

Two sets of experiments are carried out with the above parameter settings. In one set of

experiments, the learning agent is a Roth-Erev RL agent and in the second set of experiments,

the learning agent is a VRE RL agent.

A total of 2×2×11×11×100 simulations were carried out in the AMESModel-I experiments.

3.4 AMESModel-II: Two Learning Agents

3.4.1 Model Design

AMESModel-II is exactly the same as AMESModel-I with the following changes. Generator

G4 is now a learning generator with forty actions and at each time period chooses its action

using the VRE RL algorithm. For G4, the experimentation parameter was fixed at 0.97 and the

recency parameter was fixed at 0.04 for all runs. In the first experiment, the initial propensity

of generator G4 was fixed at 140000 and the Gibbs-Boltzmann cooling parameter was set to

35000.

In the second experiment, all the parameters were the same as in the first experiment,

except for the initial propensity for generator G4 being set to 6000. The cooling parameter for

generator G4 was also fixed at 1000.

3.4.2 Experimental Design

Same as AMESModel - I.

3.5 AMESModel-III: Five Learning Agents

3.5.1 Model Design

AMESModel-III has the same setup as AMESModel-I with the following change. Genera-

tors G1 - G4 are now learning agents with forty actions and choose their actions during each
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time period using the VRE RL algorithm. For generators G1 - G4, the experimentation pa-

rameter was fixed at 0.97, and the recency parameter was fixed at 0.4 for all runs. In the first

experiment, the initial propensity for G1 - G4 was fixed at 140000 and the Gibbs-Boltzmann

cooling parameter was set to 35000.

In the second experiment, all the parameters were the same as in the first experiment, except

for the initial propensity for generators G1 - G4 being set to 6000. The cooling parameter for

generators G1 - G4 was also fixed at 1000.

3.5.2 Experimental Setup

Same as AMESModel-I.
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CHAPTER 4. RESULTS

The following four criteria are used to compare the performance of the three tested RL

algorithms: Original Roth-Erev; Modified Roth-Erev (MRE); and Variant Roth-Erev (VRE).

1. Average Total Profits: For each simulation run, the total profits for the learning agent

accrued over the run are calculated and reported as the Total Profit for the run. For each

tested setting of the recency and experimentation parameters r and e, 100 simulation

runs are conducted corresponding to 100 distinct random seeds. The Average Total

Profits is the sum of the Total Profit obtained over the 100 runs divided by the number

of runs.

For the SimpleModel experiments, the Average Total Profits are calculated based on the

profits of the learning seller only, and for the AMESModel experiments, the Average

Total Profits are calculated based on the profits of the generator G5 only.

For the SimpleModel experiments, the color scale varies from 0 to the maximum Average

Total Profits that can be obtained by the learning seller agent.

2. Convergent Action: In a simulation run, at the final time period, for the learning seller,

the action with choice probability greater than 0.999, if any, is denoted as the Convergent

Action. A unique color is used denote each action in the generator’s set of actions. For

each simulation, if the Convergent Action exists, then using the unique color of that

action, a dot is placed on the appropriate cell in the heat map. If no Convergent Action

exists for a simulation run, then it is marked in black on the heat map.

For the SimpleModel experiments, the Convergent Action is noted for the learning seller

only, and for the AMESModel experiments, the Convergent Action is noted for the

generator G5 only.
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For the SimpleModel experiments, the color scale indicates the colors corresponding to the

two actions, red for Action 0, and blue for Action 1. For the AMESModel experiments,

the color scale indicates the color corresponding to each action in the learning agent’s

action domain and varies from 0 to 40.

Figure 4.1 Sketch of a simulation run indicating the Convergent Action

3. Average Time for Convergent Action to reach Threshold Probability : The time periods

at which the choice probability of the Convergent Action for the learning seller reaches

the threshold probability of 0.6, 0.9 and 0.999 are noted. For the 100 simulations with

the same experimentation and recency settings, the averages of such time periods are

calculated. This average time is denoted as the Average Time for Convergent Action

Reaching Threshold Probability. In the convergence graph, each cell is colored based on

the average time at which the Convergent Action choice probability exceeds the threshold
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probability. For a given experimentation and recency setting, if no simulation runs have

a Convergent Action, then the cells are left blank.

For the SimpleModel experiments, the Average Time Periods are calculated based on the

Convergent Action for the learning seller only, and for the AMESModel experiments, the

Average Time Periods are calculated based on the Convergent Action for the generator

G5 only.

The color scale indicates the time value starting from 0.

4. Scaled Average Total Profits: In the AMESModel experiments, the cells are colored based

on the ratio of the Average Total Profits of the cell to the maximum Average Total Profits

over the entire parameter space.

The Average Total Profits are calculated based on the Total Profits of generator G5 only.

The graph colors are based on a ratio and so the color scale indicates a value varying

from 0.0 to 1.0.
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4.1 SimpleModel-I: One Learning Agent with One Profitable Action

4.1.1 Experiment 1: High initial propensity

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.2 Average Total Profits for the learning seller in SimpleModel-I:

Experiment 1 (High Initial Propensity)

The graph for the profits of the learning seller on the Roth-Erev RL experiment shows a

large gradation in the Average Total Profits. The mathematical analysis explains the results

5.4 and 5.5. The results are consistent with the results from [11].

In the MRE RL experiment, the green triangular zone at the top of the graph is because

in that region, the recency r is such that r < e
N−1 . A mathematical explanation of this region

is given in 5.10. The learning seller using the MRE RL algorithm is able to obtain maximum

profit over a much larger range of recency r and experimentation e.

The largest profits obtained in the Roth-Erev RL experiment are at (r, e) = (1.0, 0.0) and

(0.9, 0.0). The largest profits obtained in the MRE RL experiment are at (r, e) = (1.0, 0.1)

and (1.0, 0.2).
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.3 Choice Probability of the profitable action at tick 1000 for the

learning seller in SimpleModel-I: Experiment 1 (High Initial

Propensity)

In the Roth-Erev RL experiment, the choice probability of the profitable action converges

to a smaller probability value as the experimentation e value increases. This affects the profits,

since only a single action generates a positive profit. There is a clear correlation between the

choice probability of the profitable action and the profits obtained by the learning seller in both

algorithms: when the profitable action appears to converge to a probability 1.0, the profits are

maximum.
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.4 Average Time period for the choice probability of the profitable

action to reach 0.6 for the learning seller in SimpleModel-I: Ex-

periment 1 (High Initial Propensity)

In the Roth-Erev RL experiment, the only convergence occurs when the recency is 0.0.

This is a result of the convergence to a different value than 1.0 as shown in the mathematical

analysis of SimpleModel-I (Refer to: 5.4 and 5.5). In the MRE RL experiment, the profitable

action choice probability converges to 1.0 relatively fast over a large area. The MRE RL agent

does not appear to converge only in the top right triangular region.
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.5 Average Time period for the choice probability of the profitable

action to reach 0.9 for the learning seller in SimpleModel-I: Ex-

periment 1 (High Initial Propensity)

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.6 Average Time period for the choice probability of the profitable

action to reach 0.999 for the learning seller in SimpleModel-I:

Experiment 1 (High Initial Propensity)
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4.1.2 Experiment 2: Low initial propensity

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.7 Average Total Profits of the learning seller in SimpleModel-I:

Experiment 2 (Low Initial Propensity)

In the Roth-Erev RL experiment, the profits obtained by the learning agent do not seem

to be impacted by substituting the high initial propensity of the learning agent with a low

initial propensity. This can be explained by the convergence of the profitable action choice

probability to a value less than 1.0 1. In the MRE RL experiment, the heat map is very similar

to Experiment 1 (High Initial Propensity), indicating that the algorithm appears to be largely

unaffected by the initial propensity.

The largest profits obtained for the learning seller in the RE RL experiment are at (r, e)

= (1.0, 0.0) and (0.9, 0.0). The largest profits obtained for the learning seller in the MRE RL

experiment are at (r, e) = (1.0, 0.1), (1.0, 0.2), (1.0, 0.3), (1.0, 0.4) and (1.0, 0.5).
1Refer to 5.4 and 5.5
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.8 Convergent Action for the learning seller in SimpleModel-I: Ex-

periment 2 (Low Initial Propensity)

Once again, the profits are higher when the algorithm converges to the profitable action.
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.9 Average Time period for the choice probability of the profitable

action to reach 0.6 for the learning seller in SimpleModel-I: Ex-

periment 2 (Low Initial Propensity)

As can be seen from the graphs above, reducing the initial propensity to 1.0 has negi-

gible effect on the Average Time Period for the Convergent Action reaching the Threshold

Probabilities.
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.10 Average Time period for the choice probability of the prof-

itable action to reach 0.9 for the learning seller in SimpleMod-

el-I: Experiment 2 (Low Initial Propensity)

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.11 Average Time period for the choice probability of the prof-

itable action to reach 0.999 for the learning seller in Simple-

Model-I: Experiment 2 (Low Initial Propensity)
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4.2 SimpleModel-II: One Learning Agent with Two Profitable Actions

4.2.1 Experiment 1: High initial propensity

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.12 Average Total Profits of the learning seller in SimpleModel-II:

Experiment 1 (High Initial Propensity)

It is likely that the increased profits for the learning seller shown in the two experiments are

because there are two actions that generate positive profits. This directly increases the chance

of selecting a rewarding action even in a pure random selection policy. The mathematical

analysis done for SimpleModel-I can probably be used to explain the very similar gradations

in the SimpleModel-II experiments. The upper-triangular region in the MRE RL experiment

is due to the propensity limit 5.10. Once again, the MRE RL algorithm performs much better

over a wide range of parameter settings.

The largest profits obtained in the RE RL experiment are at (r, e) = (0.1, 0.0) and (0.2,

0.0). The largest profits obtained in the MRE RL experiment are at (r, e) = (0.5, 0.9) and

(0.4, 0.7).
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.13 Choice Probability of the Convergent Action at tick 1000 for

the learning seller in SimpleModel-II: Experiment 1 (High Ini-

tial Propensity)

Interestingly enough, neither the Roth-Erev nor the MRE RL algorithms are able to consis-

tently converge to the action with the largest profit. This is probably because of the relatively

small difference between the rewards that are obtained in both actions for the learning seller.

To accentuate the differences, a Gibbs-Boltzmann distribution can be used with an appropriate

cooling parameter.
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.14 Average Time Period for the Convergent Action choice prob-

ability reaching 0.6 for the learning seller in SimpleModel-II:

Experiment 1 (High Initial Propensity)

The graphs show a gradient in the convergence. As the recency moves from 1.0 to 0.0

and experimentation parameters moves from 0.0 to 1.0, the time taken to converge to the

Convergent Action increases. The increase rises as the recency parameter decreases and the

experimentation parameter increases. This increase appears to be almost exponential and

we conjecture that the convergence time will increase faster with smaller variations in the

experimentation and recency parameters. Also, with the increase in the convergence time, the

variance also increases sharply. The convergences are comparable in both the experiments.
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.15 Average Time Period for the Convergent Action choice prob-

ability reaching 0.9 for the learning seller in SimpleModel-II:

Experiment 1 (High Initial Propensity)

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.16 Average Time Period for the Convergent Action choice proba-

bility reaching 0.999 for the learning seller in SimpleModel-II:

Experiment 1 (High Initial Propensity)
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4.2.2 Experiment 2: Low initial propensity

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.17 Average Total Profits of the learning seller in SimpleModel-II:

Experiment 2 (Low Initial Propensity)

With low initial propensity, the profits and the convergences for the learning seller are very

similar. The results can be explained in a similar manner as in Experiment 1 (High Initial

Propensity).

The largest profits obtained for the learning seller in the RE RL experiment are at (r, e)

= (0.0, 0.0) and (0.1, 0.0). The largest profits obtained in the VRE RL experiment are at (r,

e) = (0.4, 0.9) and (0.5, 0.9).
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.18 Convergent Action for the learning seller in SimpleModel-II:

Experiment 2 (Low Initial Propensity)

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.19 Average Time Period for the Convergent Action choice prob-

ability reaching 0.6 for the learning seller in SimpleModel-II:

Experiment 2 (Low Initial Propensity)
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(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.20 Average Time Period for the Convergent Action choice prob-

ability reaching 0.9 for the learning seller in SimpleModel-II:

Experiment 2 (Low Initial Propensity)

(a) Roth-Erev Algorithm (b) Modified Roth-Erev Algorithm

Figure 4.21 Average Time Period for the Convergent Action choice proba-

bility reaching 0.999 for the learning seller in SimpleModel-II:

Experiment 2 (Low Initial Propensity)
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4.3 AMESModel-I: One Learning Agent

4.3.1 Experiment 1: High initial propensity

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.22 Scaled Average Total Profits for generator G5 in AMESMod-

el-I: Experiment 1 (High Initial Propensity)

The profits shown in the cells of the heat map are scaled by a factor of 103.

Similar to the results in SimpleModel-II and [11], the maximum rewards occur when the

experimentation is close to 0. The results from the Roth-Erev and the VRE RL experiments

are very similar because the setup of the transmission grid is such that generator G5 is always

dispatched and always obtains a profit. Therefore, generator G5 never reaches a state where

the ‘zero updation’ effect in the Roth-Erev RL algorithm arises.

The small region in the top left corner is the region where the convergence to a single action

happens very fast. This does not tend to have the maximum rewards. The intermediate region

has the maximum reward because the convergence to a single action happens based on the

updating of the propensities that occurs due to experimentation. The lower region below that

is the region where the propensity values shrink to such an extent that the probability of all
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actions tends to remain the same. This is the effect of the probabilities being updated based

on the Gibbs-Boltzmann distribution and the large cooling parameter.

The different bands shown on the graph are a function of the recency and experimentation

parameter settings. We observe that the bands appear to be on the periphery of the graph

where the sum of the recency and experimentation appear to be constant. This can be explained

by observing the update function in the RE and MRE RL equations 2.1 and 2.4. As the initial

propensity and profits are similar in size, the effect of reducing the recency by 0.1 and at the

same time adding 0.1 to the experimentation is approximately the same. This may explain the

shape of the band for the maximum rewards.

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.23 Convergent Action for generator G5 in AMESModel-I: Exper-

iment 1 (High Initial Propensity)

The largest profits occur when the convergence is close to 20-25 ticks, indicating that

a certain amount of experimentation is desirable even when there are no competing agents.

In the top left corner, there is no clear single action to which the learning agent converges

consistently. This is because all the actions in the action domain generate a positive profit and

the algorithm can therefore converge to any one of them with some probability. In the region
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where the profits are the maximum, the simulation converges to a smaller subset of actions

indicating that some actions are better than others and the learning agent is able to converge

to this subset. In the remaining area of the graph, no single action attains a probability greater

than 0.999 within the specified time period.

By viewing output XML files from the simulation runs corresponding to the remaining area

in the graph, it is seen that the propensity values reduce much faster due to the large recency

and experimentation parameters. The propensity values drop more rapidly because of the

VRE RL algorithm spillover function 2.8, as compared to the Roth-Erev RL algorithm spillover

function 2.2. However, in both cases, the cooling parameter remains very large in comparison

to the propensity values. This attenuates the differences between the action propensities, and

is reflected in the choice action probabilities. The learning agent therefore does not fixate on

a single action.

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.24 Average Time Period for the Convergent Action choice proba-

bility reaching 0.6 for generator G5 in AMESModel-I: Exper-

iment 1 (High Initial Propensity)

In both the Roth-Erev and VRE RL experiments, with zero recency and zero experimen-

tation, the spillover function does not update the propensities of any action. The update
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function simply adds the reward to the action propensity and calculates the profits. Since

the probability calculation uses a Gibbs-Boltzmann distribution, the probability of the action

chosen at the first tick increases much higher as compared to the other actions, thus tending

to reach early convergence.

With increasing recency value and experimentation value, the propensity values reduce

and the reward added to the propensity is reduced by a fraction based on the experimentation

parameter. This makes the propensity of the remaining actions competitive with respect to

the action chosen and this affects the convergence of the action.

As the recency and experimentation parameters are increased, the propensity values de-

crease even faster and because of the cooling factor, the probability of all actions tends to be

approximately the same, making convergence to a single action nearly impossible.

The effect is more prominent because the initial propensity and the cooling parameter are

larger compared to the actual profits obtained by the learning generator.

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.25 Average Time Period for the Convergent Action choice proba-

bility reaching 0.9 for generator G5 in AMESModel-I: Exper-

iment 1 (High Initial Propensity)
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.26 Average Time Period for the Convergent Action choice prob-

ability reaching 0.999 for generator G5 in AMESModel-I: Ex-

periment 1 (High Initial Propensity)
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4.3.2 Experiment 2: Low initial propensity

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.27 Scaled Average Total Profits for generator G5 in AMESMod-

el-I: Experiment 2 (Low Initial Propensity)

The profits shown in the cells of the heat map are scaled by a factor of 103.

The Average Total Profits for generator G5 across practically the entire parameter range

are relatively constant. It is only with a large value of recency and experimentation parameters

that the profits are higher. For almost the entirety of the parameter space, the recency and

experimentation parameters are such that even an attenuated reward overwhelms the low initial

propensity. The propensity of the action chosen at time t = 0 is approximately a 1000 times

more than the propensity of the other actions at time t = 1. Due to this high action propensity,

the probability of choosing that action in subsequent time steps immediately becomes greater

than 0.999. This experiment shows the problem of ‘early fixation’. Since the action that the

agent fixates to is a random selection at time t = 0, the learner can be considered to be a

‘zero-intelligence’ learner.

For the small region where the recency and experimentation parameters are large, the
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experimentation parameter attenuates the reward in the update and spillover functions to

such an extent that the remaining actions remain competitive compared to the action chosen.

Hence, there is greater experimentation and a greater possibility of higher profits.

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.28 Convergent Action for generator G5 in AMESModel-I: Exper-

iment 2 (Low Initial Propensity)

The action to which the learning agent converges is essentially a random guess from the

action domain, hence the Convergent Action in the simulation runs is distributed evenly across

the action domain.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.29 Average Time Period for the Convergent Action choice proba-

bility reaching 0.6 for generator G5 in AMESModel-I: Exper-

iment 2 (Low Initial Propensity)

The simulation convergences to a single action at the first tick. This is true for nearly the

entire parameter space.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.30 Average Time Period for the Convergent Action choice proba-

bility reaching 0.9 for generator G5 in AMESModel-I: Exper-

iment 2 (Low Initial Propensity)

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.31 Average Time Period for the Convergent Action choice prob-

ability reaching 0.999 for generator G5 in AMESModel-I: Ex-

periment 2 (Low Initial Propensity)
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4.4 AMESModel-II: Two Learning Agents

4.4.1 Experiment 1: High initial propensity

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.32 Scaled Average Total Profits for generator G5 in AMESMod-

el-II: Experiment 1 (High Initial Propensity)

The profits shown in the cells of the heat map are scaled by a factor of 103.

The pattern of the graph is very similar to that in AMESModel-I. The top right corner

corresponds to the region where the convergence occurs too rapidly for learning. The region

with the maximum rewards is where the rate of convergence is not too low and the propensities

do not become too low with respect to the cooling parameter.

Since there are now two learning generators able to adapt, generator G5 begins to appear

more competitive. Also, the locational marginal prices (LMPs) are higher now that there are

two generators that are bidding higher than their true costs. 2

The band for maximum profits for generator G5 has moved toward the bottom right corner.

This could be because the rewards for generator G5 are higher as compared to AMESModel-I.
2Refer to appendix D.2.1 for a full description of the AMES Market package
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A higher experimentation and recency settings allow the algorithm to settle into a subset of

actions that provide larger profits for generator G5.

The Roth-Erev and VRE RL experiments are again comparable for the same reasons as in

AMESModel-I.

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.33 Convergent Action for generator G5 in AMESModel-II: Ex-

periment 1 (High Initial Propensity)

Once again, the patterns observed are very similar to that in AMESModel-I. In the top left

corner, the generator G5 converges too quickly and so the simulations show a wide variation

in the Convergent Actions. In the band with the maximum profits, the simulations appear

to converge to a subset of the actions. In the remaining area of the graph, no single action

reaches a probability greater than 0.999 in the specified time period. The explanation for this

is similar to AMESModel-I.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.34 Average Time Period for the Convergent Action choice proba-

bility reaching 0.6 for generator G5 in AMESModel-II: Exper-

iment 1 (High Initial Propensity)

The convergence graph is very similar to that of AMESModel-I except that the band with

the largest profit has moved closer to the bottom right corner. The area with maximum profits

have a higher convergence time period as compared to AMESModel-I. This could be because

the rewards are larger as compared to the initial propensity. The agent requires a larger

experimentation and recency to be able to settle into an action that gives a larger payoff.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.35 Average Time Period for the Convergent Action choice proba-

bility reaching 0.9 for generator G5 in AMESModel-II: Exper-

iment 1 (High Initial Propensity)

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.36 Average Time Period for the Convergent Action choice proba-

bility reaching 0.999 for generator G5 in AMESModel-II: Ex-

periment 1 (High Initial Propensity)
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4.4.2 Experiment 2: Low initial propensity

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.37 Scaled Average Total Profits for generator G5 in AMESMod-

el-II: Experiment 2 (Low Initial Propensity)

The profits shown in the cells of the heat map are scaled by a factor of 103.

As above, this experiment corresponds to the ‘zero-intelligence’ learning agent. This is once

again, an example of ‘early fixation’.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.38 Convergent Action for generator G5 in AMESModel-II: Ex-

periment 2 (Low Initial Propensity)

As expected, the actions vary widely because a random action is chosen for a given random

seed and that action converges to a very high probability at the first tick itself.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.39 Average Time Period for the Convergent Action choice proba-

bility reaching 0.6 for generator G5 in AMESModel-II: Exper-

iment 2 (Low Initial Propensity)

The actions again converge too rapidly to be able to learn anything. The simulation

converges to the random action selected on the first day of the simulation run. There is

therefore no learning involved.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.40 Average Time Period for the Convergent Action choice proba-

bility reaching 0.9 for generator G5 in AMESModel-II: Exper-

iment 2 (Low Initial Propensity)

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.41 Average Time Period for the Convergent Action choice proba-

bility reaching 0.999 for generator G5 in AMESModel-II: Ex-

periment 2 (Low Initial Propensity)
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4.5 AMESModel-III: Five Learning Agents

4.5.1 Experiment 1: High initial propensity

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.42 Scaled Average Total Profits for generator G5 in AMESMod-

el-III: Experiment 1 (High Initial Propensity)

The profits shown in the cells of the heat map are scaled by a factor of 103.

The explanation of the graph is very similar to that in AMESModel-I. The graph has

shifted further toward the bottom-right corner. This could be because the rewards are much

higher and hence, action propensities in AMESModel-III will tend to be higher as compared to

the action propensities in AMESModel-I for a given time period. We can also expect greater

variation in the actions chosen in the early stages. This is similar to the results in [12], where

higher initial propensity encourages greater experimentation.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.43 Convergent Action for generator G5 in AMESModel-III: Ex-

periment 1 (High Initial Propensity)

In the maximum profit zone, most of the simulations tend to converge to a subset of actions

that obtain a larger profit.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.44 Average Time Period for the Convergent Action choice prob-

ability reaching 0.6 for generator G5 in AMESModel-III: Ex-

periment 1 (High Initial Propensity)

Since the average daily profits are much higher than in the case of AMESModel-I and

AMESModel-II, the slower rate of reduction in the initial propensity causes larger experimen-

tation in choosing different actions and a longer convergence time. The average convergence

is about 42 days as compared to around 25 days for AMESModel-I and AMESModel-II.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.45 Average Time Period for the Convergent Action choice prob-

ability reaching 0.9 for generator G5 in AMESModel-III: Ex-

periment 1 (High Initial Propensity)

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.46 Average Time Period for the Convergent Action choice prob-

ability reaching 0.999 for generator G5 in AMESModel-III:

Experiment 1 (High Initial Propensity)
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4.5.2 Experiment 2: Low initial propensity

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.47 Scaled Average Total Profits for generator G5 in AMESMod-

el-III: Experiment 2 (Low Initial Propensity)

The profits shown in the cells of the heat map are scaled by a factor of 103.

Once again, the profits shown can be considered as the profits obtained for a ‘zero intelli-

gence’ learning agent. The agent converges to an action in the first time period itself. Since

the other agents are choosing among forty actions, all of which are equal to higher than their

default non-learning price, the LMP values tend to be much higher than in AMESModel-I and

II. The learning generator (G5) has almost the same commitment as in AMESModel-I and II,

but since the LMPs are much higher, the profits obtained are also comparatively higher.
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.48 Convergent Action for generator G5 in AMESModel-III: Ex-

periment 2 (Low Initial Propensity)

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.49 Average Time Period for the Convergent Action choice prob-

ability reaching 0.6 for generator G5 in AMESModel-III: Ex-

periment 2 (Low Initial Propensity)
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(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.50 Average Time Period for the Convergent Action choice prob-

ability reaching 0.9 for generator G5 in AMESModel-III: Ex-

periment 2 (Low Initial Propensity)

(a) Roth-Erev Algorithm (b) Variant Roth-Erev Algorithm

Figure 4.51 Average Time Period for the Convergent Action choice prob-

ability reaching 0.999 for generator G5 in AMESModel-III:

Experiment 2 (Low Initial Propensity)
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Table 4.1 Best parameter settings from the AMESModel experiments

Experiment Recency

(r)

Experim.

(e)

Average

Total

Profits

(×105)

Ticks

for

pb > 0.6

Ticks

for

pb > 0.9

Ticks for

pb > 0.999

RE and

AMESModel-I

0.5 0.0 117.0 × × ×

0.4 0.1 116.4 25.93 26.51 26.51

0.4 0.0 115.4 19.55 19.80 19.80

VRE and

AMESModel-I

0.5 0.0 117.0 × × ×

0.4 0.1 116.2 27.03 27.59 27.59

0.4 0.0 115.4 19.72 19.80 19.80

RE and

AMESModel-II

0.3 0.5 188.9 20.88 22.05 25.12

0.4 0.4 186.4 28.73 29.17 29.56

0.4 0.3 183.1 17.75 18.21 19.91

VRE and

AMESModel-II

0.3 0.5 188.3 22.93 22.09 22.83

0.4 0.4 186.3 29.15 29.49 31.60

0.3 0.6 181.8 40.78 40.22 41.77

RE and

AMESModel-III

0.5 0.6 338.4 39.13 40.02 42.28

0.9 0.3 336.8 45.96 51.62 46.59

0.7 0.4 335.2 41.18 41.43 42.00

VRE and

AMESModel-III

0.4 0.7 340.0 44.84 43.66 44.76

0.5 0.6 335.6 41.50 41.26 42.25

0.7 0.4 335.0 42.93 43.68 45.17
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CHAPTER 5. MATHEMATICAL ANALYSIS OF THE ALGORITHMS

This section provides some mathematical analysis for both the original Roth-Erev rein-

forcement learning (RL) algorithm and the modified Roth-Erev (MRE) RL algorithm within

the context of the SimpleModel-I test case introduced and discussed in earlier sections.

Recall that the SimpleModel-I test case has a single learning agent with N ≥ 2 possible

action choices denoted by j = 0, 1, . . . , N − 1. One of these action choices, denoted by 0,

always results in a particular positive reward π0. All other action choices j always result in

zero rewards. However, the learning agent does not know this pattern of rewards at the initial

time 0. The key issue of interest is whether the Roth-Erev or MRE reinforcement learning

algorithms permit the learning agent to converge to a choice of best action 0 and, if so, how

rapidly does this convergence occur.

The Roth-Erev RL algorithm equations are given in 2.1 and the MRE RL algorithm equa-

tions are given in 2.4. Throughout this section it will be assumed that the value e for the

experimentation parameter lies strictly between 0 and 1, the value r for the recency parameter

lies strictly between 0 and 1 and the initial choice propensity qj(0) for each of the learning

agent’s action choices j is strictly positive.

5.1 Roth-Erev RL Algorithm

5.1.1 Positive Propensity Values

Under the maintained parameter restrictions given above for r, e, the initial choice propen-

sity values qj(0) and the reward π0 for the best action choice, the Roth-Erev learning agent’s

choice propensities qj(t) are always positive. To see this, first recall that all the initial choice

propensities are positive by assumption. Suppose the best action 0 is chosen at time 1. Then,
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for the best action 0,

q0(1) = (1− r)× q0(0) + (1− e)× π0 > 0

and for any other non-chosen action j,

qj(1) = (1− r)× qj(0) + π0 × e/[N − 1] > 0

Suppose, instead, that action j is chosen with j 6= 0. Then for action j,

qj(1) = (1− r)× qj(0) + (1− e)× 0 > 0

and for action 0,

q0(1) = (1− r)× q0(0) + 0× e/[N − 1] > 0

It follows by a simple induction argument that all of the learning agent’s choice propensities

are positively valued at all times t = 1, 2, . . . .. The corollary is that the probability for any

action can never be strictly zero.

pj(t) > 0 , 0 ≤ j < N, t = 0, 1, . . . (5.1)

5.1.2 Experimentation limits for learning

As earlier remarked by [11], if the value e of the experimentation parameter is set to

[N − 1]/N in the Roth-Erev RL algorithm, the choice propensities at each time t will be

exactly the same as at time (t + 1). In other words, no learning will occur from one time

period to the next. If e is greater than [N − 1]/N , the choice probability for the best action 0

will actually decrease each time it is selected and a positive reward is obtained, thus tending

to push this choice probability to zero.
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5.1.3 Limiting values of probabilities

From the computational experiments conducted with SimpleModel-I, it appears that the

choice propensity for the best action 0 converges over time. Here we analyze the Roth-Erev RL

algorithm to see whether this computational finding can be given any mathematical support.

Consider the case in which, for all sufficiently large t, the learning agent always chooses

the best action 0. Without loss of generality, it can be assumed that this persistent choice of

action 0 starts in time period 1. Following the choice of action 0 at time 1, the initial choice

propensity q0(0) for action 0 is updated as follows:

qo(1) = (1− r)q0(0) + π0(1− e)

At time t = 2, this becomes

q0(2) = (1− r)
(

(1− r)q0(0) + π0(1− e)
)

+ π0(1− e)

At a general time t the formula is

q0(t) = (1− r)tq0(0) +
(

(1− r)t−1 + (1− r)t−2 + . . .+ (1− r)0
)
π0(1− e)

As time t→∞, this becomes

q0(∞) =
1

1− (1− r)
π0(1− e)

or

q0(∞) =
π0(1− e)

r
(5.2)

This implies that there exists a positive limiting value for the choice propensity of the best

action if it is persistently chosen.

Now consider what happens to the choice propensities qj(t) of any other action j while the

best action 0 is persistently being chosen starting at time t=1.
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qj(1) = (1− r)qj(0) + π0 ×
e

N − 1

.

Similarly, at time t = 2,

qj(2) = (1− r)
(

(1− r)qj(0) + π0(0)× e

N − 1

)
+ π0(0)× e

N − 1

At a general time t, then,

qj(t) = (1− r)tqj(0) +
t−1∑
i=0

π0 ×
e

N − 1
× (1− r)i

As t→∞,

qj(∞) = π0 ×
e

N − 1
× 1
r

(5.3)

It follows from equations (5.2) and (5.3) that, if the best action 0 is persistently chosen for all

sufficiently large t, then the choice propensities for the learning agent for its N possible actions

converge to well-defined limits. This implies that the choice probabilities for the learning agent

also converge to well-defined limits. Specifically, for the best action 0,

p0(∞) =
q0(∞)
N−1∑
i=0

qi

=
π0(1−e)

r∑N−1
i=1

π0(e)
(N−1)(r) + π0(1−e)

r

= (1− e)

Or more succinctly,

p0(∞) = (1− e) (5.4)

Similarly, the choice probability for each of the N − 1 non-best actions j converges to
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pj(∞) =
e

N − 1
(5.5)

Now suppose that some action j other than the best action 0 is also chosen infinitely often.

Each time that this action j is chosen, the only effect is to uniformly shrink all propensity

values by a factor of [1 − r], so that all choice probabilities are unaffected by this choice. It

follows that (5.4) and (5.5) are the limits for the choice probabilities as long as the best action

0 is chosen infinitely often, whether or not any other action j is chosen infinitely often as well.

For example, if e = 0.8 and N=4 and if the best action 0 is persistently chosen for all

sufficiently large t, then the choice probability for the best action converges to 0.2 and the

choice probability for each of the three non-best actions converge to 0.8/3. This is seen in

figure 5.1, which depicts a sample run from SimpleModel-I assuming the learning agent uses

the Roth-Erev RL algorithm with the following parameter settings:

• initial choice propensity values qj(0): 6000.0

• Number of actions N : 4

• experimentation e: 0.8

• recency r: 0.9
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Figure 5.1 Choice Probability of the profitable action for the learning seller

in the SimpleModel-I experiment using the Roth-Erev RL algo-

rithm (I)

5.2 Modified Roth-Erev RL Algorithm

5.2.1 Positive Propensity Values

Under the maintained parameter restrictions given above for r, e, the initial choice propen-

sity values qj(0) and the reward π0 for the best action choice, the MRE learning agent’s choice

propensities qj(t) are always positive. To see this, first recall that all the initial choice propen-

sities are positive by assumption. Suppose the best action 0 is chosen at time 1. Then, for the

best action 0,
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q0(1) = (1− r)× q0(0) + (1− e)× π0 > 0

and for any other non-chosen action j,

qj(1) = (1− r)× qj(0) + e/[N − 1]× qj(0) > 0

Suppose, instead, that action j is chosen with j 6= 0. Then for action j,

qj(1) = (1− r)× qj(0) + (1− e)× 0 > 0

and for action 0,

q0(1) = (1− r)× q0(0) + e/[N − 1]× q0(0) > 0

It follows by a simple induction argument that all of the learning agent’s choice propensities

are positively valued at all times t = 1, 2, . . . .

5.2.2 Necessary Conditions for Best Action Choice Probability to Increase

For the MRE RL algorithm, in order for the choice probability for the best action 0 to

increase from period t to t+1, the following has to hold:

q0(t+ 1)∑N−1
i=0 qi(t+ 1)

≥ q0(t)∑N−1
i=0 qi(t)

∴

(1− r)q0(t) + [1− e]π0

(1− r)q0(t) + [1− e]π0 +
∑N−1

i=1 [(1− r)qi(t) + eqi(t)
N−1 ]

≥ q0(t)∑N−1
i=0 qi(t)

∴

(
(1−r)q0(t)+[1−e]π0

)
×
N−1∑
i=0

[qi(t)] ≥ q0(t)×
(

(1−r)q0(t)+[1−e]π0+
N−1∑
i=1

[(1−r)qi(t)+
eqi(t)
N − 1

]
)

∴
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(
(1− r)q0(t) + [1− e]π0

)
× q0(t) +

(
(1− r)q0(t) + [1− e]π0

)
×
N−1∑
i=1

[qi(t)] ≥

q0(t)×
(

(1− r)q0(t) + [1− e]π0

)
+ q0(t)×

(N−1∑
i=1

[(1− r)qi(t) +
e× qi(t)
N − 1

]
)

This inequality reduces to

(
(1− r)q0(t) + [1− e]π0

)
×
N−1∑
i=1

[qi(t)] ≥ q0(t)
[(N − 1)(1− r)] + e)

N − 1
×
N−1∑
i=1

[qi(t)]

Since the sum of the propensities for the actions 1 to N − 1 cannot be zero, this inequality

further reduces to

(1− r)q0(t) + [1− e]π0 ≥ q0(t)
[(N − 1)(1− r)] + e

N − 1

∴

(1− r)q0(t) + [1− e]π0 ≥ (1− r)q0(t) + q0(t)
e

N − 1

∴

(1− e)× π0 ≥ q0(t)
e

N − 1
(5.6)

∴

[1− e]π0[N − 1]
e

≥ q0(t) (5.7)

These derivations imply that the choice propensity for the best action has to be less than

or equal to some constant dependent on {e,N, π0} in order for the choice probability for the

best action 0 to increase from time t to (t+ 1).
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5.2.3 Propensity limits

The results of the computational experiments conducted with the SimpleModel-I test case

suggest that the choice propensity for the best action converges over time. Here we ana-

lyze the MRE RL algorithm to explore whether this computational finding can be given any

mathematical support.

For the best action 0, the updated choice propensity following an action choice at time

t = 1 can take one of two forms depending on whether action 0 was selected or not:

q0(1) = (1− r)q0(0) + π0(0)(1− e) or

q0(1) = (1− r)q0(0) + q0(0)
e

N − 1

The updated choice propensity for the best action 0 following an action choice at time t = 2

can therefore take one of four forms depending on what actions were chosen at times t = 1

and t = 2:

q0(2) = (1− r)
(

(1− r)q0(0) + π0(0)(1− e)
)

+ π0(0)(1− e) or

q0(2) = (1− r)
(

(1− r)q0(0) + π0(0)(1− e)
)

+
(

(1− r)q0(0) + π0(0)(1− e)
) e

N − 1
or

q0(2) = (1− r)
(

(1− r)q0(0) + q0(0)
e

N − 1

)
+ π0(0)(1− e) or

q0(2) = (1− r)
(

(1− r)q0(0) + q0(0)
e

N − 1

)
+
(

(1− r)q0(0) + π0(0)(1− e)
) e

N − 1
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Figure 5.2 Possible initial propensity values for the profitable action of the

learning agent in the SimpleModel-I experiment using MRE RL

algorithm

Continuing in this fashion for t periods, we observe that the choice propensity for the best

action 0 will be within the limits given by

q0(t) = (1− r)tq0(0) +
t−1∑
i=0

π0(1− e)× (1− r)i and

q0(t) = (1− r)tq0(0) +
t−1∑
i=0

q0(0)
e

N − 1
× (1− r)i

Letting t approach ∞, these limits become

q0(∞) =
π0(1− e)

r
and (5.8)

q0(∞) =
qj(0)(e)

(N − 1)× r
(5.9)

5.2.4 Recency limits for learning

The spillover function for the MRE RL algorithm has some interesting consequences. Sup-

pose the spillover function is set such that the choice propensity for each action always increases.
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If the propensities increase irrespective of the rewards and the actions chosen, this may cause

the propensities to grow exponentially large. We consider if there is a relation between the

parameters to prevent the choice propensities from increasing without limit.

Suppose that the choice propensities for a non-best action j satisfy

qj(1) > qj(0)

∴

(1− r)qj(0) + qj(0)× e

N − 1
> qj(0)

∴

(1− r) +
e

N − 1
> 1

∴

e

N − 1
> r (5.10)

The following graphs show the probability of the best action with the following settings:

• initial propensity values qj(0): 6000.0

• Number of actions N : 4

• experimentation e: 0.75

• recency r: 0.26
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Figure 5.3 Choice Probability of the profitable action for the learning seller

in the SimpleModel-I experiment using the MRE algorithm (I)

and

• initial propensity values qj(0): 6000.0

• Number of actions N : 4

• experimentation e: 0.75

• recency r: 0.24
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Figure 5.4 Choice Probability of the profitable action for the learning seller

in the SimpleModel-I experiment using the MRE algorithm (II)
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CHAPTER 6. CONCLUSION AND FUTURE WORK

We have conducted a series of experiments to study and compare the Roth-Erev reinforce-

ment learning algorithm and its variants in double auction scenarios. In the above scenarios,

the modified Roth-Erev algorithm is comparable to the original Roth-Erev algorithm.

We make a case for computational study of algorithms, especially in multi-agent contexts.

For example, mathematical analysis of the algorithms may not show the the existance of a

band of maximum profits that can be seen in the scaled average total profit graphs in the

AMESMarket scenarios. Mathematical analysis was done only for very simple cases, and in

the original Roth-Erev algorithm, this is used to show that it in certain scenarios, the algorithm

will converge to a strictly dominated mixed strategy.

6.1 Cooling parameter

The Gibbs-Boltzmann distribution causes a significant impact on the learning of the agents.

Since the cooling parameter is fixed, the continuous reduction in the propensities causes the

difference between the probabilities to be reduced. Exploring mechanisms to update the cooling

factor similar to simulated annealing should make the learning algorithm capable of learning

over a wide range of parameter settings.

6.2 Evolutionary reinforcement learning

Presently work is being done in the Economics Department of Iowa State University to

study Q-learning in the AMES market package [26]. An evolutionary learning online rein-

forcement learning algorithm implementation can be added to compare highly sophisticated

learning algorithms against the existing relatively simple and myopic reinforcement learning.
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6.3 Variable demand

The next release of the AMES market framework contains the implementation for the real

time market for contingency power (as documented in the FERC white paper) and variable

load schedules. This work can be extended to the new framework to study the impact of the

environment in learning.
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APPENDIX A. DEFINITIONS

Definitions

1. Double Auction: A double auction is an double-sided auction in which both buyers and

sellers have to post their offers. Buyers post their bid offers, while sellers post their ask

offers. Buyers and sellers are matched by constructing a supply-demand curve. Assuming

a single-commodity auction, the buyer with the highest bid price is matched with the

seller with the lowest ask price. If there is any quantity of goods left over for the seller

after this transaction, he is matched with the buyer with the next largest bid price. If the

seller is unable to fully satisfy the demand of the buyer, the seller with the next lowest

ask price is matched with the buyer and so on. This process continues until the only

buyers in the market are those whose ask price is too low to be matched by any seller

and sellers whose bid prices are too high to be matched by any buyer. The traders who

are matched in the auction are called ‘infra-marginal’. Traders who are not matched in

the auction are called ‘extra-marginal’.

There are two types of double auctions: Continuous and clearing house auctions. In

continuous auctions, matching is done as and when bids and asks are posted, while in a

clearing house auctions, matching occurs only at discrete time intervals. [13]

2. Reservation Price: The reservation price for a seller is the price below which the seller is

unwilling to trade. Similarly, the reservation price for a buyer is the price above which

he is not willing to trade. [13]

3. Ask price: The price quoted by the seller in an auction. [13]

4. Bid price: The price quoted by the buyer in an auction. [13]
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5. Supply-demand curve: The demand curve is constructed by ordering the buyers in de-

scending order of their bid prices. The supply curve is constructed by ordering the sellers

in ascending order of their ask prices. [13]

6. Clearing price: The intersection point of the supply and demand curves is known as the

clearing price. All sellers with ask prices above the clearing price do not trade. All buyers

with bid prices below the clearing price do not trade. In other words, these sellers and

buyers fail to be matched with any trader. The clearing price is used to compute the

profits for the traders. [13]
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APPENDIX B. LITERATURE REVIEW

Reinforcement Learning

In the book ‘Reinforcement Learning: An Introduction’ [7], the authors define the charac-

teristics of a reinforcement learning algorithm to be: policy, reward function, value function [7,

Page 7-8]. Since the RE algorithm is essentially stateless, it does not have any means of main-

taining a history and defining a value function. It does however have the basic requirements

of a reinforcement learning algorithm: ‘the law of effect’and ‘the power law of practice’ [1].

In [14], the authors construct a game theoretic approach to a multi-agent system and define

0-level, 1-level and 2-level learning agents. Applying the definition to the Roth-Erev family of

algorithms, the algorithms are called ‘reactive’ and ‘0-level non-estimating agents’ that do not

attempt to model the other agents.

Multi-agent Learning

While attempting to categorize the different aspects of multi-agent learning in [15], the

authors classify the Roth-Erev RL algorithm as ‘descriptive’ because the algorithm attempts

to model natural agents learning in an environment with other interacting agents.

While there is a clear difficulty in attempting to extend Q-learning to multi-agent context,

there are some algorithms that attempt to incorporate the effect of other interacting agents

into a learning algorithm. The minimax Q-learning [16] and the Nash-Q learning [17] are two

examples of this attempt.
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Roth-Erev Algorithm

In [12], the author analyzes the Roth-Erev algorithm, notes that the ‘weight of history’

makes the algorithm unable to adjust quickly in case of change in the payoff of the actions.

The author also notes that setting the initial propensity greater than the payoff for all actions

causes greater experimentation.

In [18], the authors define a General Reinforcement Learning algorithm by merging the

Bush-Mosteller and the Roth-Erev equations into a single form. The authors give a study of

the GRL algorithm in the context of two-person zero-sum games.

MRE RL Algotihm

In [19], the authors use the AMES market framework of Nicolaisen et al to measure the

market efficiency obtained by evolving trading strategies using genetic programming instead

of the MRE algorithm.
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APPENDIX C. SOFTWARE

Software

An introduction to the software used in this work is given below.

Simple Double Auction

The Simple Double Auction software was developed as an extension to the JReLM package.

It contains an implementation of a simple uniform price double auction. It simulates a single-

commodity market where the sellers and buyers can choose among several actions and a clearing

house auctioneer who computes the supply-demand curve , the uniform price and the set of

infra-marginal sellers and buyers. The sellers and buyers can be set up to have a reinforcement

learning component with multiple actions.

JReLM

The Java Reinforcement Learning Module is a software package developed by Charlie

Geiseler [20]. The package implements the RE, MRE and the VRE RL algorithms within a

Repast framework. It can be used as a stand-alone extension to the RepastJ package. JReLM

is used as the reinforcement learning module within the AMES framework.
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Figure C.1 JReLM interaction with Repast [20]

RepastJ

The Recursive Porous Agent Simulation Toolkit is a

specification for agent-based modeling services or functions

[21]. It was developed primarily to model social agents. From the Repast 3 homepage 1,

...the toolkit gives users complete flexibility as to how they specify the properties

and behaviors of agents

. This allows the modeler to use Repast in a wide variety of domains. In the AMES market

package [22], the software is built as a Repast model. In this work, we use the pure Java

implementation of Repast, RepastJ v3.1

AMES Market Package

The Agent-based Modeling of Electricity Systems (AMES) market package was developed

as a wholesale energy market implementation based on the U.S. Federal Energy Regulatory
1http://repast.sourceforge.net/repast 3/index.html
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Commission in an April 2003 White Paper recommendations [22]. It contains the core com-

ponents required for a wholesale power market platform. In this work, we use version 1.31 of

the AMES framework for our test bed.

Figure C.2 Core Modules of the AMES Market Package [22]

DCOPFJ

DC-OPFJ stands for the DC-Optimal Power Flow [23]. The software package is a Java-

based OPF solver which takes in as input the electricity demand and supply at different nodes

in a transmission grid and returns the locational marginal price (LMP) at each node. The

solver finds the minimum LMP for the network. The DCOPFJ software is used in the AMES

market package to determine the power required from each generator and therefore the profits

for each generator.
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Figure C.3 DC-OPFJ Solver [23]
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APPENDIX D. TEST BED IMPLEMENTATIONS FOR THE FIVE

TEST CASES

D.1 Simple Double Auction Testbed Implementation for SimpleModel-I

and II

D.1.1 Introduction

The software simulates a simple repeated clearing house double auction with uniform pric-

ing. At the start of the simulation, the following parameters are read from a user-specified

file.

• Number of sellers

• Number of buyers

• Reservation values of each seller and buyer

• Number of actions with the corresponding bid and ask price/ quantities for each seller

and buyer

• Type of reinforcement learning component for each seller and buyer.

• Learning parameters for each seller and buyer.

• Number of time periods for which the simulation is to be run.

If no actions are specified for a seller or buyer, the seller or buyer always bids using their true

reservation values as the bid or ask prices. It is not possible to modify the market parameters

after initialization, so there is no way to add or remove agents or their actions in the middle

of the simulation. Also, no buyer can switch to be a seller, or vice versa.
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The simulation can be run in two ways.

• Single Run: In this type of run, all parameters are fixed in the parameter file and the

simulation runs for the specified time period. The XML file generated contains the results

of the run.

• Multi-run: A multi-run is a feature of RepastJ. In this type of run, not all parameters

are required to be set in the parameter file. Instead a file name can be provided that

specifies the range in which the parameters can be modified. The file has to be specified

in the Repast multi-run parameter format [24].

During a single period of the double auction, based on the bid and ask prices, the market

operator constructs the supply-demand curve and determines the clearing price. The market

operator then reports the clearing price to all agents. The market operators also reports to

each agent if it was infra-marginal or extra marginal in that time period. If the agent is infra-

marginal, then the profit for the agent in that period is the difference of the uniform clearing

price and the agent’s reservation value. If the agent is extra marginal, the profit for that agent

in that period is zero.

Using this testbed, it is possible to study the interrelatedness of the experimentation,

recency and initial propensity and action domain size.

D.1.2 Architecture

The RE, MRE and VRE RL algorithms are already implemented in the JReLM package.

An additional package edu.iasate.jrelm.demo.doubleauction was created on the lines of the

existing edu.iastate.jrelm.demo.bandit package. Also, a few classes were developed in the

edu.iastate.jrelm.demo package to duplicate the functionality of the existing classes to support

the usage of the MRE RL algorithm.

The classes developed are:

• DoubleAuctionModel: This class contains the main() method to invoke the simulation.

This class extends the SimpleModel from the RepastJ framework. The main() function
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loads the user-specified parameter file. The class also contains functions to log the input

parameters and intermediate results in an XML file.

• DASellerAgent: This class extends the RothErevAgent<DAAgentAction> class present

in JReLM. This class has a reinforcement learning component. A seller agent contains

an object of type DAAgentActionDomain.

• DABuyerAgent: This class extends the RothErevAgent<DAAgentAction> class present

in JReLM. This class has a reinforcement learning component. A buyer agent contains

an object of type DAAgentActionDomain.

• DAAgentActionDomain: The class is a container of objects of type DAAgentAction.

• DAAgentAction: An object of this class defines an action that can be taken by the

DASellerAgent or DABuyerAgent. Each DAAgentAction contains the quantity and price

associated with the action.

• FixedSeller: This class has no learning component and always sells at a fixed price as

determined by its reservation value.

• Seller: This interface contains the functions common to both the fixed seller and the

DASeller.

• Buyer: This interface contains the functions common to both the fixed buyer and

DABuyer.

• FixedBuyer: This class has no learning component and always buys at a fixed price as

determined by its reservation value.

• Market: This class contains the functions required to compute the demand supply curve

and notifies the agents that are infra-marginal in the demand-supply curve.
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Figure D.1 Class Diagram of the Simple Double Auction Demo package

D.1.3 Running the model

The DoubleAuctionModel has a setup() function in which based on the user-specified num-

ber and type of agents, the corresponding DASellerAgent, DABuyerAgent, FixedSeller and

FixedBuyer agents are initialized. For each learning agent, a number of DAAgentActions is

created based on the user-specified input parameters. The XML log file is created in this

function.

The buildSchedule() function specifies that the step() function is to be invoked at each tick

and that the stop() function is to be invoked at the user specified time period. The stop()

function stops the simulation.

In the step() function, first each agent specifies an action which has a price and quantity

offer. For a FixedBuyer or FixedSeller agent, the price and quantity corresponds to its reser-
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vation value and fixed quantity. For the learning agents, the actions are specified by their

policy. All the price/quantities specified by the seller and buyer agents are provided to the

Market object to compute the demand-supply graph and determine the uniform price. Also,

the market object notifies the agents that are infra-marginal. If the agent is infra-marginal,

the profit is computed as the difference between the market clearing price and the agent’s

reservation value. Each learning agent updates its internal propensity and probability values

based on the clearing price declared by the Market object.

The stop() function closes the XML log file. The log file contains all the parameters used

to set up the simulation as well as the propensity and probabilities of the various actions of

each agent, the action selected at each tick and the reward obtained at each tick.

D.2 AMES Testbed Implementation for AMESModel-I through III

D.2.1 Introduction

The testbed is based on the AMES market package developed by Sun and Tesfatsion [3].

Version 1.31 of the software is used for this work 1 [22].

The package is an implementation of a uniform price double auction market in the dereg-

ulated electricity markets environment. It is based on the FERC White paper in which the

specifications are collected as the Wholesale Power Market Platform (WPMP).

At the heart of the implementation is a day-ahead market, wherein all sellers (generators)

and buyers (load serving entities (LSEs)) specify their supply and demand commitments for

the next day. This supply and demand schedule is provided indicating the hourly demand

and supply required for the next day. The market operator known as the Independent System

Operator (ISO), or Regional Transmission Organizations (RTOs) are responsible for the secu-

rity and maintenance of the transmission grid. The market operator collects the supply and

demand offers from all agents in the market. From the given supply and demand offers, the

market operator computes the minimum cost of supplying power using a sophisticated non-

linear optimization problem solver. This minimum cost of power is known as the locational
1The software can be downloaded from www.econ.iastate.edu/tesfatsi/AMESMarketHome.htm
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marginal pricing (LMP) since it depends not only on the supply and demand offers, but also

the location of the generators and LSEs on the transmission grid and the network capacity

constraints.

Based on the minimum cost of power, the market operator computes the hourly commit-

ments from each generator and therefore, the profits accrued by each generator.

The ISO calculates the profits for each generator for the day and pays the money to the

generator. The generator updates its revenues with the profits. There is no penalty for the

revenues to be negative. It is assumed that the generator is still able to function with no

impact. The system is assumed to have no shocks, so that there are no outages and no need

for a real-time trading to mitigate lost generators.

Typically, the generators have a reinforcement learning component and they modify their

behavior based on the profits generated by the actions.

A modification in the existing software is done to allow multiple-runs using properties files

as specified in the RepastJ manual.

Using the parameters M1, M2 and M3, it is possible to adjust the number of actions for a

given generator. We can restrict the action domain of the generator to contain a single action.

The single action of the generator corresponds to its true supply offer of the generator. Since

there are no options for the agent to learn, the generator always selects the single action and

hence is a non-learning agent.
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Figure D.2 AMES Architecture [3]

D.2.2 Architecture

The architecture of the AMES framework is built as a RepastJ model.

The main class of the AMES framework is the AMESMarket class which extends the

SimpleModel class from RepastJ. This class has step() function which runs the actions to be

performed at each time period and the stop() function, which stops the simulation and is used

for any clean-up activities.

The AMESFrame class is a GUI front end to the AMESMarket class and allows the user

to create a test case, or load an existing test case. On reading the test case parameters, it

constructs an AMESMarket object and initializes it with the test case parameters. The test

case consists of the number of generators, the LSEs and the parameters associated with the

generators and the LSEs. It also contains the network layout of the transmission grid, including

the locations of the generators and LSEs and the transmission line characteristics (reactances

and line capacities).
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Figure D.3 Class Diagram for the AMES market package
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Figure D.4 Sequence Diagram for the step() function in the AMES market

package

D.2.3 Modifications

Since the main class of the AMES framework is AMESGUIFrame.AMESFrame, it is not

possible to run the application as a RepastJ multi-run based on parameter files. Hence, a few

modifications were made to the classes to support this.

• AMESMarket.AMESMarket.main function: A new main function was added to the class

to provide an entry point. Also, the main function can take in parameter file as an

argument which allows it to run the model as a multi-run simulation.

• AMESMarket.AMESMarket.log functions: An XML file is generated for each simulation
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• AMESMarket.AMESMarket.addGenAgents: This function was modified to allow the

user to specify the number of learning agents allowed in the simulation. If the number

of non-learning agents is specified to be greater than 0, then the action domain for the

non-learning agents GenAgent has only one action. The regular non-learning agents can

have their action domain size specified by the M1, M2 and M3 parameters. The last

agent in the list is always the learning agent which we are interested in. We can specify

the reinforcement learning algorithm used by this agent.

• AMESMarket.GenAgent.GenAgent constructor: A new constructor is provided to allow

it to accept an object of type REParameters. This is to allow the GenAgent to have a

Roth-Erev reinforcement learning component. The implementation to allow the GenA-

gent to have a Modified Roth-Erev learning component is already present in the AMES

framework.

D.2.4 Running the model

The model can be run in two ways:

• Single run: The single run is initialized by running the AMESFrame main class. This

loads the GUI for the AMES market framework. On loading a test case, the simulation

can be started by clicking on the ‘Start’ button. This loads the test case as a transmission

grid with the grid information, the location of the generators and LSEs and the generator

parameters and the LSE daily load schedule. In v1.31 of the AMES market, the LSEs

are assume to have a constant load for every hour of every day. Once the stopping rule

has been reached, the GUI can be used to view the information of the run in a graphical

or tabular format.

• Multi-run: In a multi-run, the AMESMarket class is invoked using a RepastJ parameter

file. The parameter file contains the interval to be used for the learning parameters and

the random seed list used to invoke the run. For each run of the simulation, an XML file
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is generated with the parameters used to set up the simulation as well as the intermediate

learning parameters.
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