
Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

A distributed system for integrating and sharing
biology data and tools
Mohammed Alabsi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Alabsi, Mohammed, "A distributed system for integrating and sharing biology data and tools" (2007). Retrospective Theses and
Dissertations. 14657.
https://lib.dr.iastate.edu/rtd/14657

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14657?utm_source=lib.dr.iastate.edu%2Frtd%2F14657&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

A distributed system for integrating and sharing biology data and tools

by

Mohammed Alabsi

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Science

Program of Study Committee:
Leslie Miller, Major Professor

Wallapak Tavanapong
Drena Dobbs

Iowa State University

Ames, Iowa

2007

Copyright © Mohammed Alabsi, 2007. All rights reserved.

UMI Number: 1447509

1447509
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

ii

To my parents

iii

TABLE OF CONTENTS

ABSTRACT

CHAPTER 1. INTRODUCTION

CHAPTER 2. BACKGROUND

CHAPTER 3. WEB SERVICES
 Specifications
 SOAP
 WSDL
 UDDI
 Web Services Invocation

CHAPTER 4. HIBERNATE
 Architecture
 Sessions, Transactions, and Object States

CHAPTER 5.SYSTEM DESIGN AND GOALS
 Graphical User Interface (GUI)
 Web Services
 Data Sources
 Gene Ontology (GO)
 Data Warehouse
 Server Tools
 Mediator

CHAPTER 6. SYSTEM USAGE
 User Accounts
 Searching for Data
 Sharing User Data
 Tools

CHAPTER 7. CONCLUSION AND FUTURE WORK

REFERENCES

ACKNOWLEDGEMENTS

iv

 1

3

6
7
7

10
12
12

14
14
18

20
20
21
22
23
24
25
25

27
27
29
31
35

40

41

43

iv

ABSTRACT

During the last few years, the number and size of biological databases have increased

dramatically. Existence of these databases has been significant to recent biological research,

providing biologist with an increasingly large and valuable set of data. Still, current

biological databases have some shortcomings. A single data source does not usually have all

the data a biologist needs. Also, biological databases are normally subject specific,

containing data about a certain biological discipline. Hence, providing biologists with a

single source of data gathered from multiple sources and covering many subjects would

provide them with the breadth and depth of data needed for many biological studies. Such

source should also include the needed tools to conduct necessary analytical studies on the

integrated data.

A system model is introduced that gathers integrated data from multiple diverse biological

databases, enables biology labs to share their data with each other, and provides support for

analytical tools relevant to biological research of users. External tools can also be attached to

the platform using the notion of plug-ins. The design of the system is provided and the

implementation details are explained.

1

1. INTRODUCTION

The usage of technology and prediction programs as a cheap and fast way to generate biology

data has dramatically increased the amount of biological data available. Research institutes,

educational institutes and companies have created their own databases containing the data

they discover. As a result, the number of publicly available databases has been growing

dramatically. Galperin declared the number of publicly available databases to be 968 in 2007,

compared to 858 in 2006 and 719 in 2005 [8, 9]. The existence of these databases has been

significant to recent biological research, providing biologists with increasingly large and

valuable data. Still, current biological databases experience some shortcomings: typically, a

single data source does not have all the data a biologist needs. Biological databases are

normally subject-specific. Since many biological experiments require data from different

domains, obtaining access to data distributed across multiple data sources is essential.

Several difficulties are faced when integrating data of different origins. The data may have

different formats, and are usually stored in heterogeneous systems. Along with syntactic

differences, semantic gaps are normally present. A word or phrase in one source may have a

different meaning in another. Only by overcoming such challenges, can the data be properly

integrated. To bridge these problems, we would like to expand the traditional notion of

“biological data warehouse”, which focuses on solving the problem of biological data

integration, to handle the integration analytical and visualization biological tools as well.

Furthermore, a data warehouse could be thought of as a “user community” where users can

add their own data, and share it with others; as well as having the ability to plug in their own

tools to the platform. Hence, giving users the power and flexibility needed to customize the

platform the way it suits their needs.

In this paper, a data warehouse system for integrating and sharing biological data and tools is

designed and implemented. The warehouse system provides users with the ability to add

databases or tools to search data gathered from public sources or shared by others, and access

to a number of biology tools available on the server. Web services are used to query and

2

retrieve data from public data sources, and a Hibernate-based object-relational database is

used to store the complex biological entities cached from the available data sources.

A survey of the recent work in the area of biological data integration is described in Chapter

2. The general concepts of web services and their architectures are surveyed in Chapter 3.

Object-relational DBMSs and the basics of Hibernate are introduced in Chapter 4. The design

goals for the system are discussed in Chapter 5. System usage is described in Chapter 6.

Finally, the conclusions about this work are drawn and future improvements related to this

work are given in Chapter 7.

3

2. BACKGROUND

The issue of biological data integration has been addressed since late nineties; as solutions

and systems, following different design patterns and goals, have been developed. The first

generation of systems was navigational-based, where textual data is indexed and navigated

every time a query is posted. The most successful was the Sequence Retrieval System (SRS),

which is developed with the assumption that the data sources are text-based. SRS parses data

files and as they are scanned, it creates indexes used to speed up the search process. No

ontology or dictionary is used to find semantically equivalent entries, rather links are

established between entries that have similar words. Still, SRS has its short comings:

scanning all the data files, which can be in the order of terabytes, is very expensive; also,

there is the need to re-scan the data files every time there is an update; linking entries that

have similar words does not necessarily provide an efficient semantic integration mechanism;

and finally, SRS does not address biological tools integration [11].

Later systems were either mediator-based, systems with un-materialized databases where data

sources are queried on demand, or data warehouse systems, where data was gathered from the

data sources and stored in the database. The first of such systems was K2/Kleisli, which is a

mediator-based system where the mediator communicates with the data sources through

wrappers. User queries, which are expressed in CPL (later replaced with OQL in K2), where

passed to the mediator, which in turn generates a query for each data source. Wrappers,

receiving the CPL query, translate it to a source-based query and return the results back to the

mediator. Although this system was an improvement over SRS, in the sense the data sources’

data can be in any format, it lacked any solution to impose semantic data integration. It also

did not address tools integration as well [6, 7].

Another popular mediator system is TAMBIS (Transparent Access to Multiple

Bioinformatics Information Sources). TAMBIS is divided into three major components:

conceptual model, a dictionary of elementary terms that could be used to for complex terms

and is organized in a hierarchy based on “is_a” relationships; source model, which provides

description of the underlying sources and mappings between the sources and terms from the

4

conceptual model; and a user interface which allows users to formulate queries. The interface

also includes a navigation tool, which lets the user navigate terms in the conceptual mode,

and once a term of interest is found, the term can be used to formulate a query. TAMBIS is

better than K2/Kleisli in the sense it addressed semantic integration, but it still does not

handle tools integration [4].

A popular data warehouse system is BioWarehouse, which physically parses and loads data

from the integrated data sources into its database. Such approach has many advantages:

system performance is generally much better than in an on-demand environment, as

communication with external data sources is eliminated; system reliability should be higher

since the number of dependencies (data sources) is much less; and more query optimization

techniques could be implemented. Still, this approach suffers from the high cost of building

and maintaining such system along with the fact that such data warehouses are out of date

every time the data sources are updated. Hence, they need to be updated continuously.

Although BioWarehouse uses Gene Ontology to find semantically related entities, it does not

address tools integration [14].

Middleware integration systems are a category of systems that are directed towards

bioinformatics developers, with interest to develop integration systems, rather than biologists.

IBM’s Discovery Link was the first successful middleware integration system. It integrated

data sources by generating a wrapper for each source, which translates the data source model

and describe the data available in the underlying sources. Using the information provided by

the wrappers, the query processor breaks the query into portions that be handled by each

source. Applications would submit queries to DiscoveryLink, in SQL format, over the global

schema without knowing the schema of the data sources [10]. With the recent popularity of

web services, many biological institutes have developed web services to provide

programmatic access to their data and tools. The European Bioinformatics Institute (EBI) is

one of the first institutes to adopt web services. Their web services provide biological data

(including PDB, EMBL, Interpro, UniprotKB and Medline), and tools such as Fasta and Blast

[15]. Both DiscoveryLink and EBI’s web services require a user interface in order to be used

by biologists.

5

Hence, although issue of physical data integration has been addressed by all of the above

systems, semantic integration was left out by some of them. Many systems did not handle

tools integration, and none allow users to add their own data (and share it with other users) or

attach their tools to the system. As a result, we believe that the system presented in this work,

is the only current solution that encloses all of these features.

6

3. WEB SERVICES

The W3C defines a web service as a “software system designed to support interoperable

machine to machine interaction over a network” [13]. They are software applications that are

self-contained and self-describing. They can be published, discovered and used by other

applications. Web services can perform simple tasks, like currency conversion and weather

reports, or complex tasks like business processes. Web services receive requests over open

protocols (HTTP and HTTPS are most commonly used), performs the necessary operations

and returns its response to the requesting machine. Both the request and response are

formatted in the eXtensible Markup Language (XML), whose primary usage is to facilitate

the exchange and sharing of data between different systems by describing data in a tree-based

structure that is readable by both humans and machines.

Many approaches to distributed computing have been explored and used in recent years, but

none has experienced the fast growth that web services have recently seen. So what are the

reasons behind that? We can summarize the main advantages of web services as follows:

1. Reusability: There are situations where the same feature(s) are needed by a number of

applications. So instead of each of these applications building its own from scratch,

they can all request these features from a single web service. Hence, saving

application developers a lot of time and eliminating unnecessary redundancy.

2. Data Exchange: As web services are based on XML, they are both programming

languages and platforms independent. Hence, a web service implemented in C# on a

windows machine can be used buy a Java client application on a Linux machine and

vice-versa.

3. Firewall Friendly: Since web services are implemented over open protocols, such as

HTTP/HTTPS, they are not blocked by firewalls. This is major advantage over other

software-to-software communication protocols such as mobile agents or sockets,

where uncommonly used ports must be opened in order for communication to take

place.

7

3.1 Specifications

Web services are composed of core specifications that are usually used by all web services

and other additional specifications that are used when the technology of choice dedicates.

Section 3.1 describes web services’ core specifications, while Section 3.2 explains the

process of invoking web services.

3.1.1 SOAP

SOAP stands for Simple Object Access Protocol. It is a communication protocol used to

exchange XML-based messages between software applications over a network connection,

most commonly HTTP. SOAP was first designed by Dave Winder, Don Box, Bob Atkinson,

and Mohsen Al-Ghosein in 1998 as is an object-access protocol. Currently, SOAP is a W3C

standard and provides the foundation for Web Services communication.

Both SMTP and HTTP protocols can be used by SOAP to transport messages between

applications, although HTTP is used more widely. SOAP may also use HTTPS to provide the

necessary encryption for message passing between software applications. Because SOAP

uses such internet protocols for communication, its messages are not blocked by firewalls.

SOAP formats its messages using XML, which is widely used to exchange and share data.

Still, SOAP has some limitations. Since it uses XML, it can be slower than other middleware

technologies like CORBA. Also, most of the SOAP implementations have limitations on the

amount of data sent by each message.

A basic SOAP message is constructed from the required elements of Envelope and Body. It

can also have other optional elements such as Header and Fault (Figure 3.1).

8

Figure 3.1: SOAP message template [17].

• Envelope: Identifies the document as a SOAP message. The namespace “xmlns:soap”

should always be used in Header, with the value of

“http://www.w3.org/2001/12/soap-envelop”. Otherwise, an error will be shown and

the message will be disposed. An “encodingStyle” attribute is used to describe the

data types used in an element. This attribute can be used by an element in the SOAP

message, and it applies to children of the element it is described in.

• Body: Contains the SOAP message intended to be received by the proper endpoint.

Such a message can be a “request” message or a “response” message. For example, in

Figure 3.2a, the message is a request for “GetWeatherReport” operation for zip code

50014. Figure 3.2b, shows the associated response message where the temperature in

both Celsius and Fahrenheit is described.

• Header: This optional portion of the message contains application-specific

information. If present, it must be the first child of the Envelope element. SOAP

defines three default attributes in the Header element:

o Actor: Specifies the particular machine or end-point for which this header is

intended through the message path.

9

o mustUnderstand: Indicates whether it is optional or mandatory for the

endpoint to process the header.

o encodingStyle: As described in Header element.

• Fault: If an error message is carried in the SOAP message, it will be described in the

Fault element. It mentions the error code, who/what caused the error, an explanation

regarding the error, and other details if necessary [17].

Figure 3.2a: SOAP request message asking for weather report.

Figure 3.2b: SOAP response message with weather information described.

Figure 3.2a shows that the HTTP protocol is used to communicate the request message, and

POST is used as the request operation. The host name, content type and content length are

10

also specified. The HTTP response code is mentioned in the top of the response message; in

this case it is 200, resembling status “success”.

3.1.2 WSDL

The Web Services Description Language, or WSDL, is an XML-based language that is used

to describe web services and the features they provide. It is usually published by the service

developer to describe the functions provided by the service, the inputs required for each

function and the output they provide, and the complex data types the service uses. Complex

types are data structures that are supported by WSDL by default; hence it is up to the

developer to specify the serialization and de-serialization of such objects. Since WSDL is

XML-based, it not only works as the basis of client server communication, but it can also

provide the client developer with the necessary documentation. The current version of WSDL

is 2.0, which supports binding all HTTP request methods, not only POST and GET, as in

Version 1.1.

Figure 3.3a: PdbProtein, a complex data type described in UserQuery’s WSDL file.

11

Figure 3.3b: Some of the request and response operations from UserQuery’s WSDL file.

Figure 3.3a shows an example of a complex data type used by UserQuery, the main Web

Service used in this integrated platform. It first describes the name of the object, PdbProtein,

and that it extends the class Protein. Then it shows the group of attributes associated with this

object. Please note that the attributes of Protein are not show here. Figure 3.3b shows some of

the request and response operations of UserQuery. If the operation is a request, the needed

parameter will be described in the attribute “wsdl:part”; while if the operation is a response

one, “wsdl:part” will describe the return type. For example, “dbExistsResponse” returns a

Boolean value, while the “getCompleteColumnListRequest” requires an argument of type

string.

12

3.1.3 UDDI

The Universal Description Discovery and Integration, UDDI, is an XML-based repository for

storing information about web services, enabling everybody to publish their services and

discover other services of interest. UDDI registrations consist of three components:

• White Pages: contains address and contact information.

• Yellow Pages: describes the category of the Web Service based on standard

taxonomies.

• Green Pages: Technical information about the service published.

The UDDI data model consists of four components:

• businessEntity: the top level entity, describing the entity for which the information is

registered.

• businessService: describes services that contain bindingTemplates.

• bindingTemplate: Information needed to call a given service.

• tModel: a unique identifier for a given service [16].

3.2 Web Services Invocation

After looking at the necessary components of a web service, we go through an example of

web services usage, explaining each of its steps (Figure 3.4). For this example, a client is

interested in retrieving weather reports from an available web service:

1. Since the client does not know where and which service to query, it asks a web

service locator (or UDDI) for web services that provide weather reports.

2. The service location returns the URL, or location, of the matching web service,

if any.

3. Although the client does know the web service location, it does not know the

exact function to invoke, what its parameters are, and what is the return type.

Hence, the client asks for the description of the web service.

4. The web service shows the client the WSDL documentation that describes the

operations available.

13

5. The client uses the WSDL documentation to lookup the operation to be called

and what parameters are needed. In this case, the required parameter is the zip

code of the desired city.

Please note that steps 1 and 2 are not needed if the service location is already known.

Figure 3.4: Sequence of invoking web services.

14

4. HIBERNATE

Hibernate is an open-source, object-relational mapping (ORM) tool for Java applications. It

provides the framework to easily map Java object-oriented models to relational databases (ex.

MySQL). Hibernate relieves the developer from significant amount of common data

persistence-related programming tasks. It provides data query and retrieval facilities and

significantly reduces the time spent on manually handling SQL and JDBC calls. Hence, when

using Hibernate, the developer does not worry about how the objects are stored in the

database as records or how data is retrieved as objects. Hibernate is free and is distributed

under the LGPL license (http://hibernate.org).

4.1 Architecture

Any application that uses Hibernate is composed of three major components (Figure 4.1):

Figure 4.1: High-level model of Hibernate architecture [12].

1) The application level, the Java code, is written to access Hibernate operations and

retrieve data objects. Each Java data object, stored or to be stored into the database,

15

must be represented by a Java bean class where each attribute is a serializable type (no

primitives) and each has a public getter and setter.

2) The Hibernate level: Works as an intermediate level between the Java code and the

relational database. It receives the requests and operations from the user, either as

Hibernate methods or HQL queries, and converts them into SQL before applying

them to the database. Along with the Hibernate jars, this level also contains:

a. Configuration File:

The configuration file is an XML-based file containing information about the

underlying database upon which Hibernate will operate. It describes the driver

by which Hibernate should connect to the database, the database name and

location, the username and password to access the database. It also describes

some of the Hibernate options such as the number of JDBC connections, SQL

dialect used, Hibernate session management option, second-level caching

option, whether the SQL statements executed by Hibernate should be printed

out or not, and finally whether the tables specified in the Hibernate mappings

should be generated or not. The last part of the configuration file contains

links to all of the mapping files to be used. A sample configuration file is

illustrated in Figure 4.2.

XML has been chosen because it is a standard way to represent data, it is

easily parsed and a number of good parsers (like DOM and SAX) are already

available, and because it can be easily read by both machines and humans. The

configuration file is read once by Hibernate at run-time, and its information is

used to establish a connection to the database, and build the mapping between

the Java files using in the application and the corresponding database tables.

To perform the later task, the names of the mapping files specified in the

configuration file must represent valid mapping files. Mapping files are

explained next.

16

Figure 4.2: A sample Hibernate configuration file.

b. Mapping File:

A mapping file is used to map a Java class, with all of its attributes, to a

relational database table. It works by first mapping the Java class to a specific

table. It then maps each attribute in the Java class to a column in the table.

Note that all Java class attributes should be included in the mapping, but it is

not necessary that each table column is mapped.

Figure 4.3 provides an example of how a data object is mapped using

Hibernate. In this example, “Synonym” is a Java class with three attributes: id

(Integer), synonym (String) and type (String) as shown in Figure 4.3a. In the

mapping file (4.3b), the first thing specified is that table “synonym” is mapped

to the Java class “Synonym”. Afterwards, each attribute (or property) in the

17

class is mapped to a column in the table. The tag “<generator class

=”native”/> in the id column means that it is an auto-increment valued

column.

Figure 4.3a: Synonym as a Java class.

18

Figure 4.3b: Hibernate mapping file for the class Synonym.

3) The Database level, where the actual data is being stored and retrieved. Hibernate is

relatively DBMS independent, so it may run over MySQL, Oracle, DB2, etc … as

long as the proper JDBC driver is specified.

4.2 Sessions, Transactions, and Object States

Within the application, to start using Hibernate functions, a Hibernate session must first be

created. A Hibernate session is a single-threaded object that represents communication

between the application and the database. It wraps around JDBC connections and behaves as

a transaction factory, where a transaction is a set of instructions that must be performed as a

unit of work. All Hibernate operations must exist within the context of a session. A session

is obtained from a session factory object, which is a cache of compiled mappings that are

specified in the mapping files.

Within a session, before any Hibernate function is invoked, a transaction object must be

created. A transaction specifies is important when a group of Hibernate operations are related

to each other and the failure of one would result in the failure of the entire sequence of

operations. In such cases, a rollback can be invoked, and any changes to the data would be

undone. Once a transaction is created, objects can be saved to the database using “save”,

updated using “update”, removed from the database using “delete”, or retrieved using “get”.

19

In all of these operations, the object id (table’s primary key) and the object type are used as an

identifier of the data object. HQL (Hibernate Query Language) or SQL queries can also be

invoked when what is needed is more than storing, deleting or update an object.

Within the application, an object may be in any of the following states:

• Transient: An object that has never been associated with the persistent context. In

other words, it is an object that never been stored in the database (and does not have a

primary key). A transient object can be changed to persistent by saving it using the

“save” operator.

• Persistent: An object that is associated with the database. It is an object that has an id

(or primary key) and has a corresponding row in the database. Only for persistent

objects can an application retrieve related data (using foreign keys).

• Detached: An object that was once associated to the database, but it’s Hibernate

session (where the association took place) was lost or disconnected. For this object to

be persistent again, it needs to be reloaded in a new session [12].

In the next chapter, the warehouse system design and goals are examined.

20

5. SYSTEM DESIGN AND GOALS

In this chapter, a complete description of the system architecture and design will be

explained, while describing how the components behave and interact with each other (Figure

5.1).

Figure 5.1: Model of the system architecture.

5.1 Graphical User Interface (GUI)

The most visible part of the system, and the component the user will directly interact with, is

the graphical user interface (GUI). The GUI, shown in Figure 5.2, is a light-weight Java-

based interface that allows the user to interact with the server-side of the system. In other

words, the GUI receives users’ requests and passes them to the server, and then gets the

results from the server and shows them to the user. Through the GUI, users can send search

queries (for DNA, RNA, or Proteins), run server-side tools in data, or plug in their own tools

to the GUI and run them on the data retrieved.

21

The GUI communicates to the server through SOAP web services, which provides the

flexibility of changing some functionality on the server, or modifying the data sources

integrated, without the need to update the user’s GUI. It also ensures that users will only need

to download a small, light-weight package of software to their desktops rather than

downloading the whole system. There will be future work to build an AJAX web-based

interface that will include most of the features in the desktop GUI.

Figure 5.2: Java-Based Graphical User Interface.

5.2 Web Services

As mentioned above, web services work as the connector of the client-side GUI to the server-

side. For now, there is one web service that is dedicated to handle all clients’ requests. It

contains functions to handle user login, receive query requests, search and retrieve user

shared data, run a server-side tool, and many more. The web service is developed in Java

using Apache Axis 1.4 library; which is an open-source web service framework that consists

22

of both Java and C++ SOAP server implementation, allowing the developer to generate and

deploy SOAP servers and clients [18]. After little processing, the web services pass the client

requests to the mediator, which figures out how to best address these requests. Other web

services clients are implemented to search and retrieve data from public integrated data

sources. One connects to PDB’s web service, which provides structural data about proteins

along with related publications; another connect to EBI’s Web Service, which provides data

from Interpro, UniprotKB, EMBL, Medline and other well known data sources (currently

only Interpro and UniprotKB data is retrieved and parsed into the data warehouse) [15].

Although these services are useful to the client, the client does not directly interact with them.

All web services run under an Apache Tomcat 5.0 server.

5.3 Data Sources

Several public, well known, data sources have been integrated into the system, which provide

the users with a convenient way to access a large pool of interesting and trusted data. Because

of time constraints, efforts were focused on integrating protein data sources only, with a

vision to expand that in the future. After investigating public protein data sources, it was

found that Protein Data Bank (PDB), Universal Protein Resource (UniProt), and InterPro

were the most commonly known, trusted protein data sources. Hence, they were the data

sources selected in this effort. The following is a short description of each data source:

• Protein Data Bank (PDB) is a worldwide depository of information about three-

dimensional structures of large biological molecules, particularly proteins and nucleic

acids. A variety of information is associated with each structure including sequence

details, atomic coordinates, crystallization conditions, 3-D structure neighbors

computed using various methods, derived geometric data, structure factors, and 3-D

images [5].

• Universal Protein Resource (UniProt) is a central repository of protein sequences and

functions created by joining the information contained in Swiss-Prot, TrEMBL, and

PIR. The UniProt Consortium is comprised of the European Bioinformatics Institute,

the Swiss Institute of Bioinformatics, and the Protein Information Resource [2].

23

• InterPro is an integrated documentation resource for protein families, domains and

sites. InterPro combines a number of databases that use different methodologies and a

varying degree of biological information on well-characterized proteins to derive

protein signatures. Member databases include: PROSITE, Gene3D, PANTHER,

PIRSF, Pfam, SMART, SUPERFAMILY, TIGRFAMs, and PRINTS [1].

Information retrieved from these data sources is returned as text, formatted in the standard

format used by the data source. Once received, the mediator parses the text and stores it into

the data warehouse as objects, which is usually returned to the user. Since each data source

has its own data format, it was necessary to build a parser for each data source.

5.4 Gene Ontology (GO)

Gene Ontology is a structured, controlled vocabularies and classifications that cover several

domains of molecular and cellular biology; freely available for community use in the

annotation of genes, gene products and sequences. GO is divided into three sub-vocabularies:

one describes the molecular function of gene products, one describes their roles in biological

processes, and the third specifies their localization to cellular components. Each GO term

consists of a unique alphanumerical identifier, a common name, a definition, and possibly

synonyms. Relations like: “is_a” and “part_of” are defined between GO terms, and are used

to find relations between biological entities mapped to these terms (Figure 5.3) [3].

GO is used to search for related entities and find results that are semantically similar, and

hence improve the search result. Currently, we are only using “is_a” relations. GO data is

obtained by downloading GO file from gene ontology’s FTP server. A parser reads the files

content and stores it in the data warehouse. Figure 5.3 shows an example GO entry for id

0002273, taken from a GO file. It shows the name of the biological entity, its category

(namespace), a brief description about the entity, and a list of the gene ontology ids that are

synonyms of this entity.

24

Figure 5.3: Example Gene Ontology entry.

5.5 Data Warehouse

The data warehouse makes use of two components, namely MySQL and Hibernate, to store

data on the server.

• MySQL: is a multithreaded, multi-user, relational SQL Database Management System

(DBMS). Version 5.0.27 is used.

• Hibernate: An object-relational mapping solution for Java that maps an object-

oriented domain model to a traditional relational database. Chapter 4 provides a

detailed description about Hibernate basics and how it works. Version 3.2 of

Hibernate is used.

The data warehouse is used to cache data retrieved from the data sources to improve

performance. We have currently set the amount of time data is cached for to 7 days; which

can be changed easily once we feel the need to in the future. The data warehouse is also used

to store Gene Ontology (GO) data, which is queried to find semantically related results.

Finally, it stores information about user accounts, and the databases users share with others;

particularly, it keeps track of the type of data stored in each shared table (DNA, RNA or

Protein), and the data attribute that each column in the table maps to (i.e. Protein Name,

Pathway Name, etc…). This way, the system keeps track of which columns in which tables

need to be queried to return the results requested by the user.

25

5.6 Server Tools

The system does not only focus on providing users with integrated biology data, but also with

interesting tools that can be used to analyze the data retrieved. To do so, tools are placed on

the server, and are made available to be used by all users. The process of adding tools to the

server has been simplified so that adding any future tools would take very little time and

effort. Specifically, there are three steps to add tools to the server:

• The tool should implement a simple interface, which contains five methods: three

methods provide information and description about the tool and its usage, one method

specifies the arguments needed by the tool, and one method used to invoke the tool

(after the arguments being set).

• The tool is then placed into a JAR, which in turn is placed into a “tools” folder under

Tomcat’s home directory.

• A method in the server code is called, which checks the existing tools, from the

“tools” folder, and reloads these tools to the server’s memory. This results in that all

new connections by clients will see the new list of tools.

Besides the speed and easiness of use, this mechanism allows the addition of tools that are

not developed in Java, by simply building a Java wrapper on top of it. Therefore, tools

developed in C#, for example, can be easily incorporated into the system as well. Currently,

there are two tools that reside on the server: the first is a simple global sequence alignment

tool that is based on Needleman-Wench's algorithm; and the second tool, called “ZiFit”,

assists in the design of zinc finger proteins by identifying sites in DNA sequences for zinc

finger protein design. More information about these tools and how to use them is described in

chapter 7.

5.7 Mediator

The mediator is the component responsible for determining how to best handle user requests,

for querying data sources and parsing their results, and for communicating with user shared

26

database and server tools. Hence, the mediator is considered the glue that brings the

integration process together.

As a user query is passed to the server, it is immediately handed over to the mediator, which

determines whether the data sources need to be queried or whether querying the server’s data

warehouse is sufficient enough to return the required results. To do so, the mediator checks

whether the query has been submitted within the last week (7 days have been chosen because

it would provide the system with enough cache power, and at the same time the system can

ensure relatively up-to-date data). If the results are cached, the data warehouse is queried and

the results are returned to the client. Otherwise, the mediator determines which data sources

need to be queried, and in turn queries are sent to the data sources of interest. Upon receiving

the results from the data sources, the results are parsed and cached into the data warehouse as

objects, and returned to the client. In both cases, the mediator also queries user shared data

for any possible matches. For every result, the mediator queries the Gene Ontology to find

synonym results and return those as well, hence ensuring more complete and rich results. The

mediator also acts as a middle-man when receiving user requests to run server tools: it runs

the tool requested by the user, passing the needed arguments to it, and once the tool finishes

execution it get the result from tool and passes it to the client.

Next chapter will show how the warehouse system is implemented, and explain how the

system is used.

27

6. SYSTEM USAGE

This chapter describes the features of the system, and how it can be used by interested

biologists. Mainly, the focus will be on: creating and managing user account, searching and

exporting data, sharing data, and finally using client and server tools.

6.1 User Accounts

Most of the features of the system can be used by people who are not registered nor have a

user account; so a guest user can search for data from public sources, export data to local

files, and run client and server tools. Still, in order to obtain access to user shared data, a user

must have an account. In the current implementation, singing up is free, and it can be done by

simply filling in a sign up form as shown in Figure 6.1. From the “User Account(s)” menu,

choose “create new account”. After choosing a user name, filling in your name, email and

password, and clicking submit, the user account will be ready and the user can sign in right

away.

28

Figure 6.1: Creating a user account.

To login, the user clicks on “Login” under the “User Account(s)” menu; a login window will

appear. Then, the user enters his/her username and password, and clicks submit. If the

username and password provided match a record in the system database, the login will be

successful and the user’s name will be shown on the top of the GUI (Figure 6.2).

29

Figure 6.2: User logging into the system.

Once logged in, the user can try all of the features of the system, which are shown in the other

section of this chapter.

6.2 Searching for data

To search for data, the user first specifies whether he/she is looking for Protein data, DNA

data or RNA data. Then, the search term is entered and the search attribute is selected. For

example, as in Figure 6.3, the user may choose to search for proteins whose species is

“mouse”. In this case, mouse is the search term and search attribute is “species”. If results are

found, the GUI will show a counter, below the results table, to describe how many results

have been found so far. In case the user wants to stop the search before all possible results are

explored, he/she can press the “Stop Search” button.

30

Figure 6.3: Search for protein data.

After receiving the results, the user can customize the columns shown; for example

“Sequence” and “Keywords” can be added to the results table as in Figure 6.4. Also, rows can

be ordered by a column of the user’s choice, or filtered by a keyword entered by the user. If

the entry is from Interpro, UniprotKB or PDB, the user can open the web browser to a page

from the data source that provides data about the entry selected. Finally, chosen entries can be

exported to Excel files, or the default file format of the data source where the entry came

from (if the entry is not from data shared by other users).

31

Figure 6.4: Result Set ordered by Protein Id, and filtered using the keyword “arath”. Also, the column

“Keywords” is added to the results table.

6.3 Sharing User Data

Users can also share data with each other. To do so, the user first creates a “database profile”,

which is simply the information needed in order for the system to be able to access the

database (or part of it) to be shared; information like database name, database URL, username

and password, and DBMS type (Figure 6.5). Once the profile is created, the user can choose

table(s) from the database to share with others, as shown in Figure 6.6.

32

Figure 6.5: Creating database profile.

In order to do so, the user needs to provide information about the domain of data stored in the

table (Protein, DNA, or RNA), and the type of data stored in each column, as shown in

Figures 6.7 and 6.8. For example, the table may contain protein data, and its columns contain

data about Protein Name, Protein Id and Gene Name. Once the table information is provided,

the table is available for other users to query and retrieve data from.

33

Figure 6.6: Choosing table from the database to share with other users.

Figure 6.7: Providing description about the table to be shared and its data.

34

Figure 6.8: Mapping each column to the data type of the values it stores.

Anytime after its creation, database profiles can be edited or deleted. Similarly, shared table’s

mapping information can be changed, and the user can specify the table as not to be shared

with others later, if desired. Finally, a report of the currently shared data can be viewed by

choosing “view all tables properties” under the “My Data” menu, as shown in Figure 6.9.

35

Figure 6.9: Viewing tables shared by the user.

6.4 Tools

There are two groups of tools that are available to the users: local, client based tools and

server-side tools. Users can add their own tools to the first group, and plug in their own tools

to the GUI, by wrapping each tool with a Java class that extends the “BioWarehousePlugin”

class. Particularly, the wrapper class specifies the constructor of the tool, where an object of

that tool is generated. It also defines a method that is called when the tool is being chosen by

the user. Once the wrapper class is created, it is placed into a JAR which in turn is placed into

the “plugins” folder. After restarting the client GUI, the user can see the tool added under the

“Tools” menu, which can be run by selecting it from that menu.

The client GUI comes with a plug-in for an application called “PubMed Assistant”, which is

a Java program that allows biologists to search for publications based on keywords provided

by the user. By selecting an entry of interest from the results table, and choosing PubMed

Assistant from the “Tools” menu, a window will appear that will ask the user to specify the

36

column that will be used to search for publications (Figure 6.10). Once that column is chosen,

PubMed Assistant will appear, with the value of that column used to search for publications.

Figure 6.10: Choosing the column(s) whose value will be used to search for publications in PubMed Assistant.

The result of the search will be a list of publications, where the PubMed Id, publication title,

and year shown (Figure 6.11). When a publication is selected, it’s abstract and complete

author list is shown, with the ability to link to the PubMed page that contains the chosen

publication.

37

Figure 6.11: PubMed Assistant showing the results of search submitted by a user.

Another group of tools will reside on the server, and will be available for all clients to

execute and receive the results through the GUI. Adding tools to the server is very straight

forward, and is similar to the process of plugging in tools to the GUI. First, the tool is

wrapped with a Java class that implements the “BioTool” interface; which contains five

methods: three methods provide description and information about the tool, one method

describes the required arguments for the tool, and the final method is used to run the tool.

The wrapper class is then placed in a JAR, which is in turn put in a “tools” folder under

tomcat’s home directory. Finally, a method on the server-side is called to reload the existing

tools, which now include the new tool.

A server tool that currently incorporated into the system is ZiFit, which helps designing zinc

finger proteins by identifying sites in DNA sequences for zinc finger protein design. Much

like any other server tool, the tool has its sub-menu under the “Tools” menu. The tool’s

38

submenu is composed of three items: one runs the tool when clicked on; the second is used to

pass and set arguments needed by the tool; and the third item shows a brief description of the

tool and how it works.

Figure 6.12: Setting up the required arguments for the server tool ZiFit.

Figure 6.12 shows the arguments setting window for ZiFit; it shows that four arguments are

required, while showing the type of value needed for each argument. The first three

arguments specify whether the Carlos Barbas module, and the Sangamo BioSciences Inc.

modules, and ToolGen Inc. modules will be used in identifying target sites. The last argument

specifies the number of spaces to be considered when looking for sites. Once, the arguments

are provided, with valid values, the user can run the tool on the chosen DNA sequence.

Figure 6.13 shows the result of running the ZiFit tool, which can be exported to a local file.

39

Figure 6.13: The result of executing ZiFit on the chosen DNA sequence.

40

7. CONCLUSION AND FUTURE WORK

Biological data integration is problem that the biology community continues to face; and as

the size and number of available databases increases, the need for efficient and powerful

solutions will increase along with it. In this project, we have introduced a solution that aims

not only at handling the traditional issue of just gathering data from distributed sources, but

rather ensuring that semantically similar data (discovered using Gene Ontology) are provided

as well. Novel to such a system, efforts have been focused on integrating and sharing

biological tools as well as allowing users to share data between each other. The system design

was based on the client-server paradigm, where the main features of the systems resided on

the server-side, and the client is used as an interface to the system and as a mean to pass user

requests and queries. This provides the flexibility to change features and functionalities in the

system, by applying changes to the server, without the need to update the client GUI. Client

and server communicate with each other using SOAP-based web services. The system design

and goals describes in chapter 5 have been met, and the system have been implemented

successfully.

In the future, some features or functionality could be added to the system to enhance its

flexibility and versatility:

• More public data sources could be integrated, particularly ones that provide RNA, DNA

and publications data.

• Users would have the ability to browse Gene Ontology, and search data using GO terms.

Also, users would have their own customizable ontology, where they can add new terms

or modify existing ontology.

• Users would have a “friends list”, and they could specify the level of privacy for each

dataset shared. For example, a dataset can be “public”, where it is available to all other

users; or “protected”, where it is only available to friend users.

• Building an AJAX-based web interface to the warehouse system.

41

REFERENCES

[1] Apweiler R, et al, “The InterPro database, an integrated documentation resource for

protein families, domains and functional sites”, Nucleic Acids Research, Vol. 29, 2001.

[2] Apweiler R., et al, “UniProt: the Universal Protein knowledgebase”, Nucleic Acids

Research, Vol. 32, 2004.

[3] Ashburner M., et al, “Gene Ontology: tool for the unification of biology”, Nature

Genetics, Vol. 25, 2000.

[4] Baker P., et al, “TAMBIS - Transparent Access to Multiple Bioinformatics Information

Sources”, in Proc. 6th International Conference on Intelligent Systems for Molecular Biology,

1998, pp. 25-34.

[5] Berman H.M., et al, “The Protein Data Bank”, Nucleic Acids Research, Vol. 28, 2000.

[6] Davidson S., et al, “K2/Kleisli and GUS: Experiments in Integrated Access to Genomic

Data Sources”, IBM Systems Journal, Vol. 40, No. 2, 2001.

[7] Davidson S., Buneman P., Harker S., Overton C., Tannen V., “Transforming and

Integrating Biomedical Data Using Kleisli: A Perspective,” SIGBIO Newsletter, Vol. 19,

pp.8-13, Aug.1999.

[8] Galperin M., “The Molecular Biology Database Collection: 2006 update”, Nucleic Acids

Research, Vol. 34, 2006.

[9] Galperin M., “The Molecular Biology Database Collection: 2007 update”, Nucleic Acids

Research, Vol. 35, 2007.

[10] Haas L, et al, “DiscoveryLink: A System for Integrated Access to Life Sciences Data

Sources”, IBM Systems Journal, Vol. 40, No. 2, 2001.

[11] Hernandez T., Kambhampati S., “Integration of Biological Sources: Current Systems

and Challenges Ahead”, SIGMOD Record, Vol. 33, No. 3, Sept 2004.

42

[12] “HIBERNATE - Relational Persistence for Idiomatic Java”, 2006,

http://www.hibernate.org/hib_docs/v3/reference/en/html/

[13] Lafon Y., “Web Services @ W3C”, Sept 2007, http://www.w3.org/2002/ws/.

[14] Lee T., et al, “BioWarehouse: a Bioinformatics Database Warehouse Toolkit”, BMC

Bioinformatics, Vol. 7, pp. 170-184, March 2006.

[15] Pillai S., et al., “SOAP-based services provided by the European Bioinformatics

Institute”. Nucleic Acids Research, Vol. 33, April 2005.

[16] “Universal Description Discovery and Integration”, Nov 2007,

http://en.wikipedia.org/wiki/Universal_Description_Discovery_and_Integration.

[17] “W3C SOAP Activities”, 2007, http://www.w3schools.com/w3c/w3c_soap.asp.

[18] “Web Services – Axis”, 2006, http://ws.apache.org/axis/.

43

ACKNOWLEDGEMENTS

This work would not have been possible without the support of many people.

First, I would like to thank my major professor Dr. Les Miller for his guidance and support

while working on this project, and for being a source of motivation and inspiration

throughout my graduate education.

I would also like to thank Dr. Tavanapong and Dr. Dobbs for their willingness to serve on my

POS committee and for their help when needed. Thanks also to Linda Dutton for her

assistance and guidance in many matters.

Last but certainly not least, my deepest thanks go to my parents, Samir and Randa, for their

continuous love and support that helped me become the person I am.

Mohammed Alabsi

	2007
	A distributed system for integrating and sharing biology data and tools
	Mohammed Alabsi
	Recommended Citation

	thesisTitlePage

