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ABSTRACT

Big data refers to information which cannot be processed and analyzed using

traditional approaches and tools, due to 4 V’s—sheer Volume, Velocity at which data

is received and processed, and data Variety and Veracity. Today massive volumes

of data originate in domains such as geospatial analysis, biological and social net-

works, etc. Hence, scalable algorithms for efficient processing of this massive data

is a significant challenge in the field of computer science. One way to achieve such

efficient and scalable algorithms is by using shared & distributed memory parallel

programming models. In this thesis, we present a variety of such algorithms to solve

problems in various above mentioned domains. We solve five problems that fall into

two categories.

The first group of problems deals with the issue of community detection. De-

tecting communities in real world networks is of great importance because they consist

of patterns that can be viewed as independent components, each of which has distinct

features and can be detected based upon network structure. For example, commu-

nities in social networks can help target users for marketing purposes, provide user

recommendations to connect with and join communities or forums, etc. We develop

a novel sequential algorithm to accurately detect community structures in biological

protein-protein interaction networks, where a community corresponds with a func-

tional module of proteins. Generally, such sequential algorithms are computationally

expensive, which makes them impractical to use for large real world networks. To
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address this limitation, we develop a new highly scalable Symmetric Multiprocessing

(SMP) based parallel algorithm to detect high quality communities in large subsec-

tions of social networks like Facebook and Amazon. Due to the SMP architecture,

however, our algorithm cannot process networks whose size is greater than the size of

the RAM of a single machine. With the increasing size of social networks, community

detection has become even more difficult, since network size can reach up to hundreds

of millions of vertices and edges. Processing such massive networks requires several

hundred gigabytes of RAM, which is only possible by adopting distributed infras-

tructure. To address this, we develop a novel hybrid (shared + distributed memory)

parallel algorithm to efficiently detect high quality communities in massive Twitter

and .uk domain networks.

The second group of problems deals with the issue of efficiently processing

spatial Light Detection and Ranging (LiDAR) data. LiDAR data is widely used in

forest and agricultural crop studies, landscape classification, 3D urban modeling,

etc. Technological advancements in building LiDAR sensors have enabled highly

accurate and dense LiDAR point clouds resulting in massive data volumes, which

pose computing issues with processing and storage. We develop the first published

landscape driven data reduction algorithm, which uses the slope-map of the terrain

as a filter to reduce the data without sacrificing its accuracy. Our algorithm is highly

scalable and adopts shared memory based parallel architecture. We also develop a

parallel interpolation technique that is used to generate highly accurate continuous

terrains, i.e. Digital Elevation Models (DEMs), from discrete LiDAR point clouds.

vi



PUBLIC ABSTRACT

Big data refers to information which cannot be processed and analyzed using

traditional approaches and tools, due to 4 V’s—sheer Volume, Velocity at which data

is received and processed, and data Variety and Veracity. Today massive volumes

of data originate in domains such as geospatial analysis, biological and social net-

works, etc. Hence, scalable algorithms for efficient processing of this massive data

is a significant challenge in the field of computer science. One way to achieve such

efficient and scalable algorithms is by using shared & distributed memory parallel

programming models. In this thesis, we present a variety of such algorithms to solve

problems in various above mentioned domains. We solve five problems that fall into

two categories.

The first group of problems deals with the issue of community detection. De-

tecting communities in real world networks is of great importance because they consist

of patterns that can be viewed as independent components, each of which has distinct

features and can be detected based upon network structure. For example, commu-

nities in social networks can help target users for marketing purposes, provide user

recommendations to connect with and join communities or forums, etc. We develop

a novel sequential algorithm to accurately detect community structures in biological

protein-protein interaction networks, where a community corresponds with a func-

tional module of proteins. Generally, such sequential algorithms are computationally

expensive, which makes them impractical to use for large real world networks. To

vii



address this limitation, we develop a new highly scalable Symmetric Multiprocessing

(SMP) based parallel algorithm to detect high quality communities in large subsec-

tions of social networks like Facebook and Amazon. Due to the SMP architecture,

however, our algorithm cannot process networks whose size is greater than the size of

the RAM of a single machine. With the increasing size of social networks, community

detection has become even more difficult, since network size can reach up to hundreds

of millions of vertices and edges. Processing such massive networks requires several

hundred gigabytes of RAM, which is only possible by adopting distributed infras-

tructure. To address this, we develop a novel hybrid (shared + distributed memory)

parallel algorithm to efficiently detect high quality communities in massive Twitter

and .uk domain networks.

The second group of problems deals with the issue of efficiently processing

spatial Light Detection and Ranging (LiDAR) data. LiDAR data is widely used in

forest and agricultural crop studies, landscape classification, 3D urban modeling,

etc. Technological advancements in building LiDAR sensors have enabled highly

accurate and dense LiDAR point clouds resulting in massive data volumes, which

pose computing issues with processing and storage. We develop the first published

landscape driven data reduction algorithm, which uses the slope-map of the terrain

as a filter to reduce the data without sacrificing its accuracy. Our algorithm is highly

scalable and adopts shared memory based parallel architecture. We also develop a

parallel interpolation technique that is used to generate highly accurate continuous

terrains, i.e. Digital Elevation Models (DEMs), from discrete LiDAR point clouds.

viii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

1 BIOLOGICAL DOMAIN . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Features of PPI Network . . . . . . . . . . . . . . . . . . . . . . 6
1.5 BLLP Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.5.1 Preprocessing: Topological Weight Assignment (Level 1) . 12
1.5.2 Coarsening . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.3 Labeling and Interpolation . . . . . . . . . . . . . . . . . 14
1.5.4 Label Propagation . . . . . . . . . . . . . . . . . . . . . . 16

1.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 18
1.6.1 BLLP on PPI yeast network . . . . . . . . . . . . . . . . 20
1.6.2 Functional Module Prediction for Uncharacterized Proteins 23
1.6.3 Comparative Study . . . . . . . . . . . . . . . . . . . . . 27

1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 PARALLEL PROGRAMMING MODELS . . . . . . . . . . . . . . . . 32

2.1 P-threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Message Passing Interface (MPI) . . . . . . . . . . . . . . . . . . 38
2.5 Map-Reduce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 SOCIAL NETWORKS DOMAIN : SHARED MEMORY . . . . . . . 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4 MCML Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Preprocessing: Edge Strength Assignment . . . . . . . . . 47
3.4.2 Remove Weak Edges . . . . . . . . . . . . . . . . . . . . . 48

ix



3.4.3 Multi-level Coarsening . . . . . . . . . . . . . . . . . . . . 49
3.4.4 Parallel Implementation . . . . . . . . . . . . . . . . . . . 50

3.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.1 Benchmark Datasets . . . . . . . . . . . . . . . . . . . . . 55
3.5.2 Facebook Forum Dataset . . . . . . . . . . . . . . . . . . 59
3.5.3 Amazon Product Dataset . . . . . . . . . . . . . . . . . . 63

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 SOCIAL NETWORKS DOMAIN : DISTRIBUTED MEMORY . . . . 66

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Hybrid Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.5.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 SPATIAL DOMAIN : DATA REDUCTION . . . . . . . . . . . . . . . 86

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 Data Reduction Algorithm . . . . . . . . . . . . . . . . . . . . . 89

5.4.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.3 Parallel Implementation . . . . . . . . . . . . . . . . . . . 93

5.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 95
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6 SPATIAL DOMAIN : INTERPOLATION . . . . . . . . . . . . . . . . 100

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Spatial Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4.2 Parallel Implementation . . . . . . . . . . . . . . . . . . . 105

6.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . 106
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 EXPERIMENTAL ENVIRONMENT . . . . . . . . . . . . . . . . . . 110

x



7.1 Chapter 1 : Biological Domain . . . . . . . . . . . . . . . . . . . 110
7.2 Chapter 3 : Social Networks Domain - Shared Memory . . . . . . 110
7.3 Chapter 4 : Social Networks Domain - Distributed Memory . . . 110
7.4 Chapter 5 & 6 : Spatial Domain - Data Reduction & Interpolation 111

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

xi



LIST OF TABLES

Table Page

1.1 Jaccard Index to quantify the distance between protein complexes in MIPS
database and functional module partitions by BLLP algorithm . . . . . . 19

1.2 Number of detected communities and corresponding sizes, in PPI yeast
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Incorrect prediction of functional modules made by the BLLP algorithm,
for uncharacterized proteins . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.4 Correct prediction of functional modules made by the BLLP algorithm for
uncharacterized proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Comparing various community detection algorithms on PPI yeast network 28

2.1 Synchronization Functions in CUDA . . . . . . . . . . . . . . . . . . . . 36

3.1 Comparing various community detection algorithms for Karate and Dol-
phin club benchmark datasets . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Comparing various community detection algorithms for Facebook Forum
and Amazon datasets based on modularity and computational time using
16 cores. (The blank values are not available in the literature of this
research area. To get the computational time we include all the three
stages of the algorithm.) . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 Random graph datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2 Real world social network datasets . . . . . . . . . . . . . . . . . . . . . 78

xii



LIST OF FIGURES

Figure Page

1.1 PPI yeast network in which 2361 proteins are linked by 7182 interactions
and 536 self interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Properties of PPI yeast network . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 (a) Network G (b) Pre-processing : Topological weight Assignment (Level
1) (c) Coarse graph G′ (d) Labeling : Find connected components and give
common label to nodes in same component (e) Interpolation : Transfer
labels from G to G′ (f) Label Propagation . . . . . . . . . . . . . . . . . 15

1.4 (a) PPI yeast network with 123 communities : red = largest community
with 1279 nodes, blue = second largest community with 602 nodes (b)
Correctness of groupings made by BLLP . . . . . . . . . . . . . . . . . . 19

1.5 YIL070C uncharacterized protein interacts with other known proteins . . 23

1.6 (a) FC clustering with largest community having 250 proteins (b) LPA
clustering with largest community having 2224 proteins . . . . . . . . . . 30

2.1 Programming models and their supported system architecture . . . . . . 33

2.2 GPU Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Map-Reduce Computation Semantics . . . . . . . . . . . . . . . . . . . . 40

2.4 Map-Reduce Task and Job Tracking . . . . . . . . . . . . . . . . . . . . 41

3.1 MCML Algorithm : General Schema . . . . . . . . . . . . . . . . . . . . 49

3.2 Parallel Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Parallel Multilevel Coarsening . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Karate Club : (a) β = 0.0 (b) β = 0.1 (c) β = 0.4 (d) β = 0.6 (e) β = 1.0
(Note: Edges highlighted in (d) and (e) have stronger connections than
other edges in the graph) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Non-community nodes vs strength : (a) Karate club (b) Dolphin club . . 57

3.6 Accuracy Plot : Karate club and Dolphin club . . . . . . . . . . . . . . . 57

xiii



3.7 Dolphin club : (a) β = 0.0 (b) β = 0.1 (c) β = 0.4 (d) β = 0.6 (e) β = 1.0
(Note: Edges highlighted in (d) and (e) have stronger connections than
other edges in the graph) . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 (a) 2-mode weighted network (b) preprocessed 1-mode weighted network 60

3.9 Facebook forum : (a) Computational time Vs number of cores (b) Speed-ups 61

3.10 Amazon : (a) Computational time Vs number of cores (b) Speed-ups . . 63

4.1 Example : Hybrid Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Run-time while scaling up the number of processor cores over varying
graph sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Speedups compared to sequential hybrid algorithm while scaling up the
number of processor cores over varying graph sizes . . . . . . . . . . . . . 80

4.4 Run-time while scaling up the graph sizes over varying processor cores . 81

4.5 Change in error percentage of final modularity compared to that achieved
by sequential execution of hybrid algorithm . . . . . . . . . . . . . . . . 82

4.6 Run-time while scaling up the number of processor cores . . . . . . . . . 83

4.7 Speedups compared to base run of hybrid algorithm while scaling up the
number of processor cores up to 128 . . . . . . . . . . . . . . . . . . . . . 84

4.8 Change in error percentage of final modularity compared to that achieved
by base run of hybrid algorithm while scaling up the number of processor
cores up to 128 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1 (a) Imagery of the study area (b) 2-D LiDAR point cloud of the study
area which is colored based on variations in elevation . . . . . . . . . . . 89

5.2 (a) Statistical analysis of elevation data for the terrain (b) Slope-map
consisting of four slope ranges . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Data reduction algorithm : Grid overlayed on processed LiDAR data . . 92

5.4 Parallel implementation of data reduction algorithm . . . . . . . . . . . . 94

5.5 DEM generated for the original dataset having 6.94 million LiDAR points 95

xiv



5.6 (a) Parallel speed-ups for LiDAR data reduction algorithm (b) Data re-
duction and DEM accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7 (a) β = 80%, reduced dataset comprising of 2.2 million points (b) β =
90%, reduced dataset containing 3.1 million points . . . . . . . . . . . . 98

6.1 (a) Grid of k sq.m. (k > 0) overlaid on the LiDAR data (b) Selecting
a cut-off radii and assigning weights to grid intersections (c) Assigning
weights to each grid cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2 Parallel split and merge phases of our spatial interpolation algorithm . . 106

6.3 (a) Imagery of study area for dataset 2 (b) Elevation map of dataset 2
showing terrain with less roughness, shallow valleys and flat regions . . . 107

6.4 (a) Parallel speed-ups for our spatial algorithm (b) RMSE for IDW and
modified IDW at different LiDAR density levels for two datasets using
validation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xv



1

CHAPTER 1
BIOLOGICAL DOMAIN

1.1 Introduction

Most cellular processes are believed to be carried out by groups of highly inter-

acting proteins called functional modules, protein complexes, or molecular complexes.

Recent large-scale high-throughput experiments, and integration of published data,

have generated large protein-protein interaction (PPI) networks. Even one of the

simplest eukaryotic organism, yeast, has more than five thousand proteins. Protein

complexes can be detected by identifying highly connected sets of proteins in PPI

networks. Computational identification of functional modules or protein complexes

can provide an inexpensive guideline for biological experiments. Protein-protein in-

teractions can alter kinetic properties of enzymes, create new binding sites for small

effector molecules, destroy or inactivate the protein, exhibit a new functionality which

a single protein cannot exhibit alone, etc.

There have been many recent computational approaches to disclose the un-

derlying biological structures ([6, 21, 42, 79, 94, 98]). These approaches are divided

into two groups. One group uses machine learning approaches to construct weighted

networks by integrating existing datasets to predict protein complexes ([42, 98]). An-

other group tries to extract highly connected subgraphs or divide a whole network into

groups of clusters on a protein-protein interaction (PPI) network ([6, 21, 79, 94, 63]).

There are a number of challenges in treating protein-protein interaction data.
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One is that many high-throughput experiments have high error rates, which results

in a great many false positives for interactions between proteins. Another challenge

is that some proteins are interaction mediating proteins that interact with very large

numbers of other proteins; these might, for example, provide common services to many

different parts of the cell. The former challenge can make accurate identification

of functional modules difficult, while the latter challenge tends to make the entire

proteome appear to be a single indivisible functional module.

Protein complexes corresponds to modules, which can be viewed as dense sub-

networks or communities in PPI networks. Community detection algorithms can be

used extract these dense sub-networks/communities. Modules can be defined in many

ways with, for example, densely connected sub-networks with more intra-node edges

as compared to inter-node edges. Some of these definitions are present in the liter-

ature ([75]). Functional module detection in PPI networks is computationally very

hard. Based on different definitions of modules, there are many community detec-

tion algorithms in the current state of the art, which are used to identify functional

modules in PPI networks. Trivial algorithms are not well suited for this job ([96]).

One class of the community detection technique relies on finding completely

connected sub-networks (cliques) in PPI network ([89]). This technique is very ineffi-

cient for detecting modules for large PPI networks, and also proteins participating in

a complex, rarely have interactions with all other proteins in that complex. Another

class of community detection algorithms rely on finding dense sub-networks in PPI

network (not essentially cliques) ([2]). Such algorithms mis-classify low-shell proteins
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into distinct clusters, whereas they could have been classified in a same core cluster.

Due to this weak connectivity, many biological interactions are ignored. Similar pit-

falls are also been observed, when hierarchical community detection algorithms are

used to find modules in PPI networks ([46, 77]). We have developed a bi-level com-

munity detection algorithm based on label propagation (BLLP) [65], which eliminates

the above pitfalls in identifying modules in PPI networks, and also helps to control

large communities which dominate the network. Hence we retrieve communities with

high modularity, high accuracy of matching with ground truth functional modules,

and in less computational time.

The remainder of this chapter is organized as follows: In Section 1.2, we

describe the related work. We state our contributions in Section 1.3. In Section 1.4,

we will talk about important features of PPI networks and describe the PPI yeast

network that we used for all simulations, followed by the description of our bi-level

label propagation algorithm in Section 1.5. In Section 1.6 we show the computational

results along with a comparative study with other well known community detection

algorithms. We also show the accuracy of BLLP algorithm in predicting functional

modules of uncharacterized proteins. We finally end this chapter with some discussion

in Section 1.7.

1.2 Related Work

Multi-level Spectral Algorithms : Pothen et al. ([79]) proposed a two-

level architecture for a yeast proteomic network. They construct small networks from
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a PPI network by removing proteins which interact with too many or too few pro-

teins. Removing proteins with too few interactions can eliminate many effects of

false positives. These proteins have a tendency to be classified in larger clusters to

which they interacts, even if the interaction has low confidence value. Such low-shell

proteins generally group with other low-shell proteins. There are specific proteins

that function as substrates of protein receptors, such as G-protein coupled receptors

(GPCR’s). This is a specific interaction between molecules that have concordant

configurations. We can also apply clustering again to these low-shell proteins which

are removed, to avoid ignoring important biological processes. On the other hand, re-

moving proteins with the largest numbers of interactions can make the finer structure

of the interactions more evident. A clustering algorithm is applied to this residual

network. Validation of clusters is performed by comparing the clustering result with

the protein complex database, the Munich Information Center for Protein Sequences

(MIPS). A spectral clustering method plays a critical role for identifying functional

modules in the PPI network in their research.

S.Oliveira and S.C. Seok ([62]) successfully applied a multilevel spectral al-

gorithm to cluster a group of documents using similarity matrices which are mostly

dense with entries between 0 and 1, and has developed a matrix-based multilevel

approach to identify functional protein modules ([63]). Like large-scale networks, the

vertex connectivities of proteomic networks follow a scale-free power-law distribution

([13]). That means that, the proteomic network consists of a small number of high

degree nodes and a majority of low degree nodes. However, the proteomic network
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has no edge weights. Multilevel algorithms have a long history, mostly for partial

differential equations in numerical analysis but also for network partitioning, such

as METIS ([34]). Multilevel schemes have been applied to network clustering too

([20, 62]).

Community Detection Algorithms : A community in a network is a set

of nodes that are densely connected with each other and sparsely connected to the

other nodes in the network. A group of proteins in the same community within a PPI

network, frequently coincide with known functional modules or protein complexes.

Many proposed algorithms to detect community structures in complex networks are

based on graph theory. Most of the work in this area is focused on enhancing the

modularity [61], that is to increase the number of intra-cluster edges as opposed

to inter-cluster edges. In our comparative study, we use modularity as a metric to

determine the quality of our results over other well known algorithms, when applied

to PPI network. Some of these algorithms use techniques like betweenness centrality

([19]), hierarchical clustering ([91]), and label propagation ([40]). A thorough review

of community detection algorithms for networks is given in ([24]). It consists of various

techniques, methods and datasets for detecting communities in biology, computer

science and other disciplines, where the system is represented as a network. More

literature review on community detection algorithms is given in Chapters 3 and 4.
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1.3 Contribution

We develop a bi-level community detection algorithm based on label propaga-

tion (BLLP) [65], which we use to accurately identify functional protein modules in

PPI networks. The BLLP algorithm involves a pre-processing stage, where the edge

weights of the network are computed based on its topological features, a step similar to

coarsening of the original network, followed by a label propagation algorithm ([76])

and a post-processing step to improve the quality of communities detected. Even

though it is possible for a protein to have multiple functional modules, our algorithm

does not detect overlapping communities, i.e., does not identify multiple functional

module for a single protein. Instead it identifies one strong functional module for a

protein under consideration. Using BLLP algorithm, we design a prediction model to

predict functional module of uncharacterized proteins.

1.4 Features of PPI Network

Graph theory is commonly used as a method for analyzing PPIs in Computa-

tional Biology. Each vertex represents a protein, and edges correspond to experimen-

tally identified PPIs. Proteomic networks have two important features ([17]). One

is that the degree distribution function P (k) (the number of nodes with degree k)

follows a power law P (k) ≈ constant k−α and so is considered a scale-free network.

This means that, most vertices have low degrees, called low-shell proteins, and a few

are highly connected, called hub proteins. The other feature is the small world prop-

erty which is also known as six degrees of separation. This means the diameter of the
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network is small compared with the number of nodes.

The standard tools to understand these networks are the clustering coefficient

(Cc), the average path length, and the diameter of the network. The clustering

coefficient (Cci) is defined in terms of E(G(vi)), the set of edges in the neighborhood

of vi. The clustering coefficient is the probability that a pair of randomly chosen

neighbors of vi are connected. That is,

Cci =
2

deg(vi)[deg(vi)− 1]
· |E(G(vi))| (1.1)

where G(vi) is the neighborhood of vi, and E(G(vi)) is the set of edges in G(vi).

Since the denominator is the maximum possible number of edges between

vertices connected to vi, 0 ≤ Cci ≤ 1. The global clustering coefficient can be simply

the average of all individual clustering coefficients (Cci) like

Cc =
n∑
i=1

Cci/n (1.2)

But this ‘average of an average’ is not very informative ([17]); one alternative is to

weight each local clustering coefficient

Cc =
n∑
i=1

deg(vi)

MaxDeg
Cci/n (1.3)

where MaxDeg is the maximum degree in the network. We use the latter Cc as our

clustering coefficient for the rest of the report.

The path length of two nodes vi and vj is the smallest sum of edge weights of

paths connecting vi and vj. For an unweighted network, it is the smallest number of

edges connecting vi and vj. The average path length is the average of path lengths
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of all pairs (vi, vj). The diameter of the network is the maximum path length. Some

other important features about PPI networks are:

� The hub proteins have interactions with many other proteins, so it is hard to

limit them to only one cluster and the computational complexity increases when

they are included.

� There are many low-shell proteins, which increases the size of the network.

These nodes are easy to cluster when the nodes they are connected to are

clustered first.

� Proteomic networks are mostly comprised of one big component and several

small components.

Now we shall talk about these features with our model of yeast network.

There are databases which contain protein-protein interactions as well as cellular

localization, gene regulation, and the context of these interactions. The best known

are KEGG (www.genome.ad.jp/kegg), BIND (www.bind.ca), MIPS (mips.gsf.de),

PROnet (www.pronet.doubletwist.com) and DIP (dip.doe-mbi.ucla.edu) which

are used to test the algorithms.

Over the last decade, high throughput interaction detection approaches like

yeast two-hybrid system ([90]), protein complex purification technique using mass

spectrometry ([30]), correlated messenger RNA expression and genetic interaction

data ([32]), etc., have created number of datasets of PPI interactions for several

eukaryotic organisms, like yeast. The interactions produced by using the above

www.genome.ad.jp/kegg
www.bind.ca
mips.gsf.de
www.pronet.doubletwist.com
dip.doe-mbi.ucla.edu
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techniques have many false positives. In order to measure the accuracy of these

interactions, authors of ([92]) checked 80, 000 interactions amongst 5400 yeast pro-

teins and assigned each interaction a confidence value. To eliminate the effect of

false positives in our predictions, we focus on 7182 interactions with high confi-

dence value (above 75%), among 2361 proteins. This proteomic network for yeast is

given in Pajek Datasets (http://vlado.fmf.uni-lj.si/pub/networks/data/bio/

Yeast/Yeast.htm). To evaluate the clustering results, we compare with the func-

tional modules given in the Munich Information center for Protein Sequence (MIPS),

which has a list of experimentally trusted functional modules in yeast. Each pro-

tein is given a short label for identification (called PIN on MIPS) and a functional

module. We select 57 proteins from 2361 proteins, having the following functional

modules: 20 r-RNA, 11 Ribosome biogenesis, 7 Splicing, 6 Lipid oxidation, 2 Protein

binding, 3 t-RNA, 3 m-RNA, 2 Tricarboxylic acid pathway, 2 Nuclear degradation

and 1 Catabolism. Then we mask these functional modules for the 57 proteins and

term them as uncharacterized proteins. We then make predictions on which func-

tional modules they belong to, based on the BLLP algorithm’s outcome and compare

it with the ground truth functional module. We also conduct network analysis to

determine the following features of PPI Yeast network we use for our study:

Betweenness Centrality Distribution : Betweenness centrality is the num-

ber of shortest paths between a pair of vertices that pass through a node. There is a

pair of proteins in the PPI yeast network, through which ≈ 950 shortest paths pass.

These proteins are considered as a hub-proteins. In our data set, these proteins are

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm
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Figure 1.1: PPI yeast network in which 2361 proteins are linked by 7182

interactions and 536 self interactions

labeled YMR093W and YHR052W. Their functional module is r-RNA processing.

These proteins have majority of interactions with other proteins within the largest

community we detected in our dataset, being the functional module for r-RNA pro-

cessing. They also have considerable interaction with proteins in the ribosome bio-

genesis functional module.

Clustering Coefficient : The clustering coefficient of the PPI yeast network,

i.e., the measure of the degree to which nodes in this network tend to cluster together

is 0.271. There are ≈ 1300 nodes whose clustering coefficient is 0; i.e., low-shell pro-

teins.
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Figure 1.2: Properties of PPI yeast network

Closeness Centrality Distribution : The closeness centrality Ci of a node

i in a network is the inverse of the mean shortest path distance from i to every other

node in the network

Ci =
n− 1∑

i 6=j dist(i, j)
(1.4)

where dist(i, j) is the shortest path distance between nodes i and j, and n is total

number of nodes in the network. If there exists no path between i and j then, n

nodes are used in Equation 4, instead of the path length.

Degree Distribution : In Figure 1.2(d), we can see that the degree distribu-
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tion function for PPI yeast network P (k) (the number of nodes with degree k) follows

a power law P (k) ≈ constant k−α, and hence is a scale-free network ([13, 73, 72]).

Diameter, Average Path length, Number of Shortest Paths and Con-

nected Components : The density of the network is 0.003. The diameter of the

yeast network is 11. So the diameter is much smaller as compared to the number of

nodes in the PPI yeast network network, thus it exhibits the small world property.

The average path length is 4.3762. The total number of shortest paths is 4, 944, 096.

There are 78 weakly connected components.

1.5 BLLP Algorithm

In this section, we present a bi-level label propagation community detection

algorithm, involving a pre-processing stage where the edge weights of the network

are computed based on its topological features, a step similar to coarsening of the

original network (level 1), followed by applying label propagation algorithm ([76])

once on coarsened network (level 2), and then iteratively in level 1, incorporating a

post-processing step to improve the quality of the communities detected.

1.5.1 Preprocessing: Topological Weight Assignment (Level 1)

The BLLP algorithm finds communities in a network G(V,E) where V rep-

resents the nodes/vertices/proteins and E represents the edges/interactions between

the nodes, by assigning weights to the edges and tracking the propagation of the

label through the network. It is desirable to assign edge weights that most accurately
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represent the topological structure of the network in the BLLP algorithm. Since we

do not have any prior knowledge of the community structure, we assign weights to

each edge based on the significance of that edge to the other nodes in the network,

and to the nodes at the end points of that edge. For each edge e(i, j) (where i and j

are nodes) in the fine network G, the topological edge weight wtop(i, j) assigned to it

is the ratio of number of triangles that edge e(i, j) participates in to the total number

of triangles containing node i. If the weight of the edge e(i, j) is greater than other

edges in the 1-neighborhood of i then, node i and node j are more likely to be in the

same community. Whereas on the contrary, if edge e(i, j) has lower weight than most

other edges in the 1-neighborhood of i, then node i and node j are less likely to be

in the same community. Mathematically,

wtop(i, j) =
t(i,j)∑

(i,k)(t(i,k))
; k ∈ Ni (1.5)

where Ni is the 1-neighborhood of i, and t(i,j) is the total number of triangles whose

sides contain edge (i, j).

The BLLP algorithm also works well with weighted networks, where the edges

are assigned weights winput as an input. To get the total weight of an edge, we simply

have to take product of the topological weight of that edge, with its input weight.

wtotal(i, j) = wtop(i, j)× winput(i, j) (1.6)

We initialize the label of each node in the fine network G to their corresponding node

id, which is also the label weight for that node. The propagation function used to
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transfer labels between nodes in the network is given by:

L(i) = argmaxj∈Ni
(Lj) (1.7)

where Lj is the label (also referred as weight of the label) of node j in Ni (nodes

one edge away from i). In the later subsections, we modify this propagation function

before using it in the label propagation step.

1.5.2 Coarsening

In this step of the BLLP algorithm, we apply coarsening to the fine network

G. For each node i of network G, we find the maximum weighted edge e(i, j) in its

1-neighborhood. Now we find all such edges in the fine network G and copy them to

a new network G′ = (V ′, E ′). That is, the set of edges E ′ is the set of edges e(i, j)

where e(i, j) has the maximum weight in the 1-neighborhood of i. The set of vertices

is the set of all i and j where e(i, j) is in E ′. Note that |V | ≥ |V ′|. There always

exists some node pairs say n1 and n2 such that (n1, n2) is connected with a maximum

weight edge and conversely so is (n2, n1). It is very important to label these nodes

with the common label, to avoid oscillatory behavior, where these 2 nodes will keep

on exchanging labels and algorithm will not converge, thus degrading the quality of

the results.

1.5.3 Labeling and Interpolation

Now in level 2 we find the connected components in this coarse network G′

and then perform a label propagation algorithm until all the nodes in each component

have common labels. This phase of finding locally relevant communities ensures good
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Figure 1.3: (a) Network G (b) Pre-processing : Topological weight As-

signment (Level 1) (c) Coarse graph G′ (d) Labeling : Find connected

components and give common label to nodes in same component (e) In-

terpolation : Transfer labels from G to G′ (f) Label Propagation

quality results. By doing this we also eliminate all the overlapping pairs. These

components are local communities in the network. We then transfer the labels of the

nodes in coarse network G′ back to the fine network G. These are the new labels

which will be used when the label propagation step begins.

Now before we go ahead let us take a small example to understand the pre-
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processing, coarsening, and interpolation steps of the algorithm. We apply pre-

processing step to the fine network G in Figure 1.3(a), where weights are assigned

to all the edges based on the topological structure of G. Assume the weights are as-

signed as shown in Figure 1.3(b). All six nodes are given initial labels corresponding

to their node identifier. In the coarsening step of BLLP algorithm, for each node

in the fine network G, we find the maximum weighted edge in its 1-neighborhood.

For example in Figure 1.3(b), edge(1, 2) is the maximum weighted edge for node 1

as well as node 2. Similarly, edge(3, 5) and edge(5, 6) are maximum weighted edges

in the 1-neighborhoods of nodes 4 and 6 respectively. We copy all such edges and

corresponding nodes in the new network G′. In the interpolation step we find con-

nected components in this coarse network G′. Then we apply one iteration of label

propagation, where all the nodes in G′ send their label to every other node in their

1-neighborhood and each node assigns itself the lowest label it receives. This way all

the nodes in each component have a common label. In Figure 1.3(d), we have two

connected components in G′ with label 1 and label 3. We then transfer these labels

from coarse network G′ to fine network G shown in Figure 1.3(e).

1.5.4 Label Propagation

Now we shall apply the label propagation algorithm to the fine network G.

Each iteration of the label propagation algorithm includes the following steps;

1. every node i in the fine network G sends a label L(i)new given in Equation 1.9,

to every other node in its 1-neighborhood



17

2. each node then assigns itself the maximum value label it receives

3. if the label of some node changed, repeat step 1

The algorithm terminates when all the nodes are stably labeled. It takes six iterations

for the algorithm to terminate on the PPI yeast network. The nodes having the same

labels after the termination of the label propagation algorithm, belong to the same

community.

We use the label given in Equation 1.9 and not the label L(i) given in Equa-

tion 1.7 because, if there is a large dominating community in the network, it will

dominate all the other communities leading to the scenario where all the nodes in the

network have same label. This is similar to spread of disease and is also referred to

as epidemic spread in the network. BLLP controls the community size by assigning

weight to each label, in each iteration of the label propagation, based on the following

formula;

Wlabel(Li) = 1− dC
2m

(1.8)

where dC is the sum of degrees of all the nodes in community C with label Li and m

is total number of edges in the network. The modified label propagation function is

L(i)new = argmaxj∈Ni
[(Lj)× wtotal(j, i)×Wlabel(Li)] (1.9)

where Lj is the label of node j, and wtotal(j, i) is the total weight of an edge(i, j).

So we can see that, if the size of the community increases the value of Wlabel(Li)
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decrease and so the chances of this label to propagate further in the network decreases.

Conversely, if the size of the community decreases the value of Wlabel(Li) increases

and so the chances of this label to propagate further in the network increases.

For more clarity on how labels are propagated, let us consider the example

given in Figure 1.3(f), where node 4 propagates its label to its neighbor node 3. The

label propagation function used by node 4 to propagate its label to node 3 is given by

L(4)new = (current label of node 4) × (edge weight of edge(4, 3)) ×Wlabel(L4), where

Wlabel(L4) is determined by Equation 1.8, which prevents the epidemic spread in the

network. Node 3 receives labels from nodes 2, 4, 5 and 6 and then assigns itself the

maximum value label it receives.

We determine the quality of the detected communities using the modularity

metric, denoted by,

Q =
1

2m

[∑
i,j

[A(i,j)δ(Ci, Cj)]−
∑
i

dCi

di

]
(1.10)

where A(i,j) is the adjacency matrix. Ci and Cj denotes the communities in which

nodes i and j belong respectively. δ(Ci, Cj) is the Kronecker function such that

δ(Ci, Cj) =


1 ; Ci = Cj

0 ; Ci 6= Cj

dCi
denotes the degree of community Ci and di is the degree of node i.

1.6 Computational Results

Computational results for BLLP algorithm when applied to PPI yeast network

is shown in this section. We show that, using our algorithm, highly accurate predic-
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Figure 1.4: (a) PPI yeast network with 123 communities : red = largest

community with 1279 nodes, blue = second largest community with 602

nodes (b) Correctness of groupings made by BLLP

Communities Jaccard Coefficient Jaccard Distance

Community 1 (1279 proteins) 1501
1276+258

= 0.6974 1− 0.6974 = 0.3026

Community 2 (602 proteins) 510
602+92

= 0.7348 1− 0.7348 = 0.2651

Community 3 (73 proteins) 62
73+11

= 0.7380 1− 0.7380 = 0.2619

Table 1.1: Jaccard Index to quantify the distance between protein com-

plexes in MIPS database and functional module partitions by BLLP algo-

rithm
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tions are made to identify functional modules for uncharacterized proteins. We also

conduct a comparative study, comparing three different community detection algo-

rithms ([19, 40, 10]) on PPI yeast network, based on modularity of the communities

discovered, and computational time.

1.6.1 BLLP on PPI yeast network

The PPI yeast network we studied involves, 2361 proteins and 7182 interactions

with 536 self-interactions, and 78 weakly connected components. BLLP extracts 123

different communities from this data set. The modularity of the extracted communi-

ties is 0.592. The MIPS Comprehensive Yeast Genome Database (CYGD) provides

the catalog of protein-protein interactions, the protein complex catalog and the pro-

tein localization catalog which stores information related to the proximity of proteins

in yeast ([57]). The protein complexes include more than 200 manually extracted

protein complexes. We check the communities obtained by BLLP against the MIPS

database to determine the percentage of correct matching.

In Table 1.1, Jaccard coefficient and Jaccard distance for the largest three

communities detected by BLLP, compared with MIPS protein complexes is shown.

Jaccard similarity coefficient, is a statistic used for measuring similarity between finite

sample sets, and is defined as the size of the intersection divided by the size of the

union of the sample sets. The Jaccard distance, which measures dissimilarity between

sample sets, is complementary to the Jaccard similarity coefficient ([81]). As shown

in Figure 1.4, in the largest community having 1279 proteins; the BLLP algorithm
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# of communities # of Nodes percentage of whole network

1 1279 54.21

1 602 25.5

1 73 3.13

1 44 1.86

1 38 1.61

1 27 1.14

1 25 1.06

1 18 0.76

1 12 0.64

1 10 0.51

2 9 0.34

2 7 0.3

5 6 0.25

6 4 0.21

5 3 0.13

17 2 0.08

76 1 0.04

Table 1.2: Number of detected communities and corresponding sizes, in

PPI yeast network
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matches 1051 proteins correctly to their functional module i.e.82.20% correctness. In

the second largest community having 602 proteins of which 510 proteins have been

correctly matched i.e. 84.71% correctness and in the third largest community having

73 proteins of which 62 proteins have been correctly matched i.e. 84.93% correctness.

All the components with ≤ 25 nodes and > 1 node are grouped with 92+% accuracy.

We observe that, the largest community with 1279 proteins is dominated by

proteins with functional module of r-RNA processing; of which 1051 proteins are

classified correctly and 91% of mis-classified proteins belong to functional module of

ribosome biogenesis. The second largest community with 602 proteins is dominated

by proteins within the ribosome biogenesis functional module; of which 510 proteins

are classified correctly and 87% of mis-classified proteins belong to the functional

module for r-RNA processing. From this observation we infer that there are many

proteins in the largest two communities detected, that may have multiple functional

modules i.e., ribosome biogenesis as well as r-RNA processing. The third largest com-

munity with 73 proteins is dominated by proteins in the splicing functional module, of

which 62 proteins are classified correctly, and remaining 11 proteins are mis-classified

to functional module for r-RNA processing and oxidation of fatty acids, lipids, and

bio-synthesis. Some of these 11 mis-classified proteins are classified into larger com-

munities, which are dominated by proteins in the r-RNA and ribosome biogenesis

functional modules. This effect is much less as compared to same seen when other

community detection algorithms (Subsection 1.6.3) are applied to the PPI yeast net-

work.
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1.6.2 Functional Module Prediction for Uncharacterized Proteins

Figure 1.5: YIL070C uncharacterized protein interacts with other known

proteins

We have 57 uncharacterized proteins in our data set and we shall make pre-

dictions based on the communities detected by BLLP algorithm. We check the cor-

rectness of these predictions against the MIPS database, to determine the accuracy

of our results. We determine the functional modules of uncharacterized proteins, by

checking its interactions with known proteins. We assign the uncharacterized protein

the functional module of that of majority of the known proteins that it interacts with

belonging to the same community. For example, YIL070C interacts with YGL237C,

YIL061C, YKL108W, YJR035W, YOL108C, YOL054W, YPR015C, YJL115W, etc.,

where the majority of these have a functional module r-RNA, so we assign YIL070C
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the functional module r-RNA. In case of a tie, we assign any one of the functional

modules randomly to the uncharacterized protein. It is possible for a protein to have

multiple functional modules, but our algorithm does not resolve the issue of overlap-

ping communities in the network. We mainly focus on finding one strong functional

module for an uncharacterized protein. We follow the same procedure for all the

uncharacterized proteins and assign them a functional module based on same rule.

We then verify our functional module assignment using the MIPS database/ ground-

truth dataset, making 46 out of 57 correct predictions i.e. accuracy of 80% for PPI

yeast dataset. Functional modules of 11 out of 57 uncharacterized proteins are in-

correctly predicted. In Table 1.3, we have shown 11 uncharacterized proteins whose

functional modules are incorrectly predicted by BLLP algorithm and Table 1.4 con-

tains 46 uncharacterized proteins whose functional modules are correctly predicted,

by BLLP.

No. Protein Pin BLLP assigned modules Correct modules

1 YKL155C r-RNA processing Ribosome biogenesis

2 YNL177C r-RNA processing Ribosome biogenesis

3 YMR158W r-RNA processing Ribosome biogenesis

4 YPL012W Ribosome biogenesis r-RNA processing

5 YPR144C Ribosome biogenesis r-RNA processing

6 YNL002C Ribosome biogenesis r-RNA processing

7 YJL069C Ribosome biogenesis r-RNA processing
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8 YGL111W Ribosome biogenesis r-RNA processing

9 YLR222C Ribosome biogenesis r-RNA processing

10 YDR428C Splicing Lipid oxidation

11 YLR186W Splicing r-RNA processing

Table 1.3: Incorrect prediction of functional modules made by the BLLP

algorithm, for uncharacterized proteins

No. Protein Pin BLLP assigned modules

1 YGR263C Catabolism

2 YBL004W r-RNA processing

3 YPR034W r-RNA processing

4 YDR449C r-RNA processing

5 YIL070C r-RNA processing

6 YER126C r-RNA processing

7 YGR128C r-RNA processing

8 YGR145W r-RNA processing

9 YHR196H r-RNA processing

10 YHR088W r-RNA processing

11 YHR052W r-RNA processing

12 YKR060W r-RNA processing



26

13 YMR093W r-RNA processing

14 YOR001W r-RNA processing

15 YDR517W Lipid oxidation

16 YOR093C Lipid oxidation

17 YBL055C Lipid oxidation

18 YDL193W Lipid oxidation

19 YNL026W Lipid oxidation

20 YGL211W Protein binding

21 YGL059W Protein binding

22 YMR310C Ribosome biogenesis

23 YMR117C Ribosome biogenesis

24 YMR074C Ribosome biogenesis

25 YIL093C Ribosome biogenesis

26 YDR036C Ribosome biogenesis

27 YGL129C Ribosome biogenesis

28 YJR014W Ribosome biogenesis

29 YGR156W Ribosome biogenesis

30 YGR285C Splicing

31 YDL209H Splicing

32 YKL018W Splicing

33 YKL059C Splicing
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34 YLR424W Splicing

35 YPL151C Splicing

36 YGR278W Splicing

37 YNL123W t-RNA synthesis

38 YDR428C t-RNA synthesis

39 YJR008W t-RNA synthesis

40 YJL046W Tricarboxylic acid pathway

41 YNL168C Tricarboxylic acid pathway

42 YLR421C Nuclear degradation

43 YPL252C Nuclear degradation

44 YDR018C m-RNA processing

45 YLR074C m-RNA processing

46 YKR081C m-RNA processing

Table 1.4: Correct prediction of functional modules made by the BLLP

algorithm for uncharacterized proteins

1.6.3 Comparative Study

In this subsection, we compare the results obtained by applying the following

three community detection algorithms to PPI yeast network, to that obtained by

BLLP.
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1. Fast unfolding of communities in large networks (FC) ([10]), which is a heuristic

method based on modularity optimization.

2. Label Propagation Algorithm for Community Detection (LPA) ([76]), uses label

propagation method, without the bi-level frame-work used in BLLP.

3. Generalized Louvain Method for Community Detection in Large Networks (LM)

([19]) also uses concept of network modularity optimization, while exploiting the

measure of edge centrality .

Algorithm Modularity Time (secs) No. of communities

FC 0.581 2.56 115

LPA 0.10 24.23 94

LM 0.546 7.72 111

BLLP 0.592 6.23 123

Table 1.5: Comparing various community detection algorithms on PPI

yeast network

The computational time taken and quality of the results in terms of modularity

obtained by applying the above three algorithms on PPI yeast network is given in

Table 1.5. FC algorithm gives 115 communities with the largest community having

250 proteins (Figure 1.6(a)). The PPI networks has many low-shell proteins, which
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increases the size of network. They generally comprise of one big component and

several small components. So the idea to divide the networks based on modularity

optimization doesn’t yield good results for the PPI yeast network. The grouping

made by FC are highly inaccurate. In the largest community with 250 proteins, 60%

of proteins has functional module of r-RNA processing, 22% has functional module

of ribosome biogenesis, and the remaining proteins has multiple mixed functional

modules. LM algorithm behaves quite similar to FC, since both these algorithms are

based on the same concept of modularity optimization. Whereas LPA algorithm gives

94 communities (Figure 1.6(b)), but there is an epidemic spread which gives rise to

a community of size 2224 proteins. This results in low modularity communities and

incorrect grouping of proteins. To avoid this situation BLLP takes care that epidemic

spread does not take over the network.

In order to detect functional modules in PPI yeast network, one should not

just focus on modularity maximization community detection algorithms. More novel

community detection techniques are required for correct groupings of proteins in these

networks. Novel techniques involving pre-processing the original network based on

its topological features proves promising. Also, multi-level algorithmic frame-works

have a better scope to achieve accurate clustering results on biological networks, thus

making accurate predictions. Since we are just comparing the various algorithms on

PPI medium sized yeast dataset, computational time does not play an important role.
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Figure 1.6: (a) FC clustering with largest community having 250 proteins

(b) LPA clustering with largest community having 2224 proteins

1.7 Discussion

This research [65] focuses on matching groups of proteins which are more likely

to be part of the same functional modules. Using our BLLP algorithm we achieve

more accurate groupings of proteins in less computational time. We show that the pre-

dictions by the BLLP algorithm of the functional module of uncharacterized protein

is also highly accurate. Our computational analysis also proves that our algorithm

extracts higher modularity communities when compared to other well known com-

munity detection algorithms. Compared to the state of the art community detection

algorithms, the computational time is also close to the best. The BLLP algorithm and

other sequential algorithms mentioned above are designed to find community struc-

tures on small, and medium sized datasets. These algorithms prove computationally



31

very expensive to use on large networks. Hence we require parallel programming

models to design scalable algorithms to tackle large volume of data.



32

CHAPTER 2
PARALLEL PROGRAMMING MODELS

Most of the sequential algorithms are computationally very expensive, and

hence impractical to use on large real world datasets. Tackling large volume of data

requires parallel programming models to achieve scalable algorithms. In this sec-

tion, we introduce the state of the art parallel architectures, and programming mod-

els which are scalable to large real world datasets having size upto few Tera-bytes.

Overview of parallel computing for graph analysis is given in ([54]). A detailed survey

of parallel programming models is given in ([37]). There are six qualitative criteria

to evaluate parallel programming models :

1. System Architecture : The two main architectures are ‘shared memory’ and ‘dis-

tributed memory’. Shared memory architecture refers to systems like Symmetric

Multi Processing (SMP)/Massive Parallel processing (MPP) nodes, where all

processors share a single address space. Applications with such models can only

utilize processors within a single node. Whereas distributed memory architec-

ture refers to systems such as a cluster of compute nodes, where there is one

address space per node, and applications developed with these models can run

on multiple nodes as well.

2. Worker Management : It guides the creation of worker threads, and pro-

cessors. Worker management is ‘implicit’ when programmers don’t have to

manage the lifetime of workers i.e., they only need to specify the number of
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Figure 2.1: Programming models and their supported system architecture

threads/processors required for the section of code to be run in parallel; whereas

in the ‘explicit’ approach, programmers need to code the creation and destruc-

tion of threads/processors.

3. Task Partitioning : It defines how the workload should be divided into smaller

chunks called tasks. In the implicit approach the programmer just needs to

specify whether workload can be processed in parallel. The partition of the

workload into tasks need not be managed by the programmer. Whereas in

the explicit approach, programmers need to manually decide how the workload

should be partitioned into tasks.

4. Task Mapping : It defines how tasks are mapped onto threads/ processors.

In the implicit approach, programmers do not need to specify which thread is

responsible for a particular task; whereas in the explicit approach programmers
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are required to manage how tasks are assigned to workers.

5. Synchronization : It defines the order and time in which threads/ processor

access shared data. In the implicit approach, either there is no synchronization

constructs needed, or its enough to just specify that synchronization is needed.

Whereas in the explicit approach, the programmers need to manage the thread’s

access to the shared data.

6. Communication Model : It specifies the model of communication used. Ex.

message passing model, shared address space, etc.

2.1 P-threads

Portable Operating System Interface (POSIX) also known as P-threads, is a

set of C programming language types and procedure calls ([15]). pthread.h contains

the implementation of P-threads and can be used as a library to create and manipulate

threads/ processors. Worker management in P-threads requires the programmer to

explicitly create threads using pthread_create and destroy threads using pthread_

exit, functions. pthread_create requires the following parameters : (a) the thread

used to run tasks, (b) attributes, (c) tasks to be run by thread in routine call, and (d)

routine argument. The thread will terminate as soon as it encounters pthread_exit.

Task partitioning, and mapping are specified by the programmer, as arguments to the

pthread_create function, in the third passing parameter i.e. routine call, and first

passing parameter respectively. A thread can join other threads using pthread_join.

When this function is called, the calling thread will pause its execution until the target

pthread.h
pthread_create
pthread_exit
pthread_exit
pthread_create
pthread_exit
pthread_create
pthread_join
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thread finishes, before joining the threads. When multiple threads access the shared

data, programmers need to look for data race and deadlocks conditions. To protect

a critical section, P-threads provides mutex (mutual exclusion) and semaphore ([3]).

Mutex allows only one thread in the critical section at a time, whereas semaphore

allows multiple threads to enter a critical section.

2.2 OpenMP

It is used for shared memory parallelism ([9]). It provides a set of compiler

directives, runtime libraries and environment variables that extend Fortran, C and

C++ programs. OpenMP is portable across the shared memory architecture. The

worker management is implicit, and special directives are used to specify which section

of code is to be run in parallel. The number of threads to be used is specified using an

environment variable. Here there is no need for programmers to manage the lifetime of

threads. Task partitioning, and mapping requires relatively few programming effort,

with programmers just having to specify compiler directives to denote a parallel

region, namely #pragma_omp_parallel{} for C/C++. OpenMP also abstracts away

how a task is divided into sub-tasks, and how these sub-tasks are assigned to threads.

OpenMP supports implicit synchronization where programmers specify only where

synchronization occurs, and not worry about actually dealing with synchronization

mechanism.

#pragma_omp_parallel{}
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2.3 CUDA

Compute Unified Device Architecture (CUDA) is C/C++ programming lan-

guage designed to support parallel processing on Nvidia Graphics Processing Unit

(GPUs) ([38]). CUDA views a parallel system as consisting of a host device (CPU),

and computation resource (GPU). Set of threads in GPU run in parallel to perform all

the computations. The GPU architecture for threads consist of two-level hierarchy,

namely block and grid, (Figure 2.2).

Function Description

Barrier Allow synchronization on all threads within the same group

Atomic Allow all threads execute, but only one thread of load, or store at a time

Ordered Allow the block of code to be executed sequentially

Flushed Ensure all threads have a consistent view of certain objects in memory

Table 2.1: Synchronization Functions in CUDA

Block is a set of tightly coupled threads where each thread is identified by a

thread ID, while grid is a set of loosely coupled blocks with similar size and dimen-

sion. Worker management in CUDA is done implicitly, so the programmer just has

to specify the dimensions of the grid and block required to process a certain task.

Task partitioning and mapping in CUDA is done explicitly. Programmers have to

define the workload to be run in parallel by using GlobalFunction$<<<$dimGrid,

Barrier
Atomic
Ordered
Flushed
Global Function$<<<$dimGrid, dimBlock$>>>$ (Arguments)
Global Function$<<<$dimGrid, dimBlock$>>>$ (Arguments)
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dimBlock$>>>$(Arguments), where (a) GlobalFunction is the function call to be

run in threads, (b) dimGrid is the dimension and size of the grid, (iii) dimBlock

is the dimension and size of each block and (iv) Arguments represent the passing

value for the global function. The task mapping in CUDA programming is defined

in $<<<$dimGrid,dimBlock$>>>$. Synchronization for all threads is done implic-

itly through function syncthreads(), which coordinates the communication among

threads of the same block. Some synchronization functions along with their descrip-

tion is given in Table 2.1.

Figure 2.2: GPU Architecture

Global Function$<<<$dimGrid, dimBlock$>>>$ (Arguments)
Global Function$<<<$dimGrid, dimBlock$>>>$ (Arguments)
Global Function
dimGrid
dimBlock
Arguments
$<<<$dimGrid, dimBlock$>>>$
syncthreads()
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2.4 Message Passing Interface (MPI)

Message Passing Interface (MPI) is a specification for message passing oper-

ations ([67]). MPI is currently the widely used standard for developing HPC ap-

plications on distributed memory architecture. It provides language bindings for

C, C++, and Fortran. Each thread is defined as a process in MPI. Some of the

well-known MPI implementation includes OpenMPI, MVAPICH, MPICH, GridMPI,

and LAM/MPI. Worker management is done implicitly in MPI, so programmer only

needs to use a command mpirun, to determine the number of processors needed, and

to (optionally) map the tasks to processors. Task partitioning and mapping have to

be done by programmers. Communication among processes adopts the message pass-

ing paradigm where data sharing is done by one process sending the data to other

processes. Message passing operations in MPI are classified as point-to-point and

collective. Point-to-point operations such as the MPI_Send/MPI_Recv pair facilitate

communications between processes, whereas operations such as MPI_Bcast facilitate

communications involving more than two processes. MPI_Barrier specifies the need

for synchronization. It blocks each process from continuing its execution until all pro-

cesses have entered the barrier. It is used to verify whether global data is distributed

to appropriate processes.

2.5 Map-Reduce

Map-Reduce is a framework for processing massive data sets on certain kinds

of distributable problems using a large number of nodes, collectively referred to as

MPI_Send
MPI_Recv
MPI_Bcast
MPI_Barrier
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a cluster. It offers clean abstraction between data analysis task and the underlying

systems challenges involved in ensuring reliable large scale computation. Distributed

File System (DFS) is the primary storage system used by Map-Reduce applications.

It creates multiple replicas of data blocks and distributes them on compute nodes

throughout a cluster, to enable reliable and rapid computations.

Map-Reduce computations are defined by the developed map and reduce func-

tions mentioned in [78]. It executes as follows (shown in Figure 2.3): In the ‘Map

task’, initially the Input Reader divides the input data into appropriate size splits

and assigns one split to each map function. The ‘Map tasks’ converts the data into

key-value pairs, based on the code written by the programmer for the map function.

Multiple such map functions running in parallel on the data that is partitioned across

the cluster. Key-value pairs are collected by these ‘Map Tasks’ and sorted by keys.

These keys are divided and distributed to the ‘Reduce tasks’, leading to all the key-

value pairs with same key to fall in the same ‘Reduce task’. These ‘Reduce Tasks’

work on one key at a time, combining all the values associated with them in a way

determined by the programmer in the reduce function. It then writes the output,

which is much smaller than the input file, to the DFS or other databases. The ‘Reduce

Tasks’ can run on one or more processor at a time.

Map Processing : The main job of a Map-Reduce programmer is to pro-

gram map and reduce functions, such that map function outputs key-value pairs,

which are processed by reduce functions to generate final output. The map function

is defined with a key-value pair as an input, representing some part of the original

map
reduce
map
map
reduce
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Figure 2.3: Map-Reduce Computation Semantics

file. It generates zero or more key-value pair from that input.

Reduce Processing : The reduce function is called for each key outputted

by the map function. The input to the reduce function is all the values outputted by

the map function for a certain key. The reduce function also generates zero or more

key-value pair from that input and writes the output to the DFS or other database.

2.6 Hadoop

Hadoop is a framework developed for running applications on large clusters.

Apache Hadoop is an open source implementation of Google’s Map-Reduce method-

ology, where application is divided into several chunks of tasks which may be executed

on any node in the cluster. Hadoop provides with Distributed File System (DFS) a
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way to store data on several nodes. Node failure instances regarding Map-Reduce

tasks is automatically handled in Hadoop. Map-Reduce is an infrastructure to parse

and build large datasets. A map function creates key-value pairs from input data,

and this data is reduced using reduce function that merges all values with the same

keys. Parallelization and execution of programs are automated on the run time sys-

tem which manages partitioning of data, scheduling, managing communication, and

also recovery from failure.

Figure 2.4: Map-Reduce Task and Job Tracking

map
reduce
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Hadoop cluster architecture consists of nodes called TaskTrackers which are

managed by JobTrackers. JobTrackers coordinates with TaskTrackers processes by

accepting Map-Reduce requests from clients, and then scheduling map and reduce

tasks on the TaskTrackers. Map functions reads the input from HDFS and outputs

it on local disk, from where reduce tasks reads it, and write their outputs back to

HDFS. In Figure 2.4, TaskTrackers transmits heart beat signals at regular intervals

to JobTrackers, indicating when they can take a new map and reduce tasks for exe-

cution. JobTrackers uses a Scheduler to assign tasks to TaskTrackers, and sends this

information to TaskTrackers along with the heart beat response.

Some of the main advantages of Hadoop are as follows: (i) Its ability to write

Map-Reduce programs in high level language like, Java. (ii) Its ability to process

massive data in parallel. (iii) Its ability to be deployed on large clusters of cheap

commodity hardware, as opposed to expensive parallel-processing hardware. (iv) Its

ability to be accessed as a on-demand service, ex. Amazon’s EC2 cluster comput-

ing services. More details related to Hadoop’s physical architecture, performance,

portability, and available algorithms is given in [84].
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CHAPTER 3
SOCIAL NETWORKS DOMAIN : SHARED MEMORY

In Chapter 1 of this thesis, we developed a BLLP community detection algo-

rithm which was capable of tackling small to medium sized graph-structured data.

But this algorithm, when used on large real world networks, is computationally ex-

pensive which makes it impractical to use. Hence we require parallel programming

models, which we described in Chapter 2, to design scalable algorithms to tackle this

large volume of data. In this chapter, we develop a shared memory based multi-

core multi-level community detection algorithm, to tackle large volumes of graph-

structured data.

3.1 Introduction

One of the most relevant and widely studied structural properties of networks

is their community structure or clustering. Detecting communities is of great impor-

tance in social networks, where systems are often represented as graphs. Community

detection in a network also extracts the structural properties of the network ([26])

and the various interactions in the network ([8]). There is no universally accepted

definition for community detection. Hence most of the recent work in this area does

not have a community structure defined in its literature, but has a quality function

defined to quantify how well the network is divided into communities. So the com-

munity detection problem focus on optimizing this quality function ([60]). One of

the quality functions often used is modularity ([61]). Different community detection
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algorithms have been introduced in the past few years, which look at the problem

from different perspectives. Most of these algorithms including our BLLP algorithm,

however, have expensive computational time which makes them impractical to use

for large networks found in the real world.

The remainder of this chapter is organized as follows: In Section 3.2, we de-

scribe the related work. We state our contributions in Section 3.3. In Section 3.4, we

describe various stages of the MCML algorithm along with its parallel implementa-

tion. In Section 3.5, we describe computational results of applying MCML algorithm

on two benchmark datasets (Karate club and Dolphin club), followed by large datasets

like Facebook forum and Amazon product network, along with its comparative study.

We finally end this chapter with some discussion in Section 3.6.

3.2 Related Work

Community detection is an interesting problem in the domain of graph par-

titioning. Interest in community detection problem started with the new partition-

ing approach by ([26]),([61]); where the edges in the network with the maximum

betweenness are removed iteratively, thus splitting the network hierarchically into

communities. Similar algorithms were proposed later on, where attributes like ‘lo-

cal quantity’ i.e. number of loops of a fixed length containing the given edge ([75])

and a complex notion of ‘information centrality’ ([25]), is used to decide removal of

edges. Hierarchical clustering is another major technique used for community detec-

tion, where based on the similarity between the nodes, an agglomerative technique
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iteratively groups vertices into communities. There are different existing methods

to choose the communities to be merged at each iteration. ([60])([91]) developed an

algorithm which starts with all the nodes as individual communities and iteratively

merges them to optimize the ‘modularity’ function. Many other algorithms in the

literature of community detection, like one proposed by ([19])([28]), rely heavily on

modularity maximization. Label propagation is another well known technique used for

community detection, which finds communities by iteratively spreading labels across

the network. Raghavan et al.([76]) proposed an algorithm where each node picks

the label in its 1-neighborhood that has the maximum frequency. These labels are

permitted to spread synchronously and asynchronously across the network until near

stability is attained in the network. This method has some limitations, where large

communities dominate the smaller one’s in the network, this phenomenon is called

‘epidemic spread’. This limitation was resolved by ([65]). Liu et al.([48]) used affinity

propagation, which is a similar approach to label propagation, for finding communi-

ties/clusters in images. The algorithm we propose uses label propagation ideas and

also prevents ‘epidemic spread’ in the network, thus avoiding extremely large com-

munities that dominate the entire network. Some community detection algorithms

use random walks as a tool. The idea is that, due to the higher density of internal

edges, the probability of staying inside the community is greater than going outside.

This approach is used in Walktrap ([69]) and Infomap ([82]) algorithms. A thorough

review on community detection algorithms for networks is given in ([24]).

Community detection algorithms is a well studied research area, but achiev-
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ing strong scalability along with detecting high quality communities is sill an open

problem. One of the recent parallel algorithms developed to detect disjoint com-

munity structures based on maximizing weighted network partitioning is given in

([69]). Recently, ([88]) proposed a scalable parallel algorithm for community detec-

tion, based on label propagation, which is optimized for GPGPU architectures. This

algorithm just works on local information which drives the high scalability of this al-

gorithm. ([71]) proposed a scalable community detection algorithm, which partitions

the network by maximizing the Weighted Community Clustering (WCC), a recently

proposed community detection metric based on triangle analysis ([70]). Some other

works which focus on developing parallel implementation for existing community de-

tection heuristics is given in ([83]). We develop a shared memory based community

detection algorithm, which achieves a good balance between scalability and quality of

the communities discovered.

3.3 Contribution

We summarize our main contribution to this problem as follows:

1. We develop an MCML community detection algorithm which achieves a good

balance between scalability and quality of the communities detected, compared

to other algorithms in the current state of the art.

2. We show that the quality of the results obtained by the MCML algorithm for

benchmark datasets with ground truth is highly accurate.

3. We show that applying MCML to datasets without ground truth detects com-
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munities roughly as meaningful as other well known algorithms in the current

state of the art and in some cases even better (Facebook forum). The compar-

ison is done using modularity as the metric.

3.4 MCML Algorithm

In this section, we present the MCML algorithm involving a preprocessing

stage, where each edge is assigned a strength based on the topology of the graph.

Then based on the strength requirement of the communities, weak edges are removed

and coarser graph instances are recursively created by identifying and removing com-

munities, using the node with highest centrality each time. We recursively apply this

step until every node is assigned to a community.

3.4.1 Preprocessing: Edge Strength Assignment

The MCML algorithm finds communities in a graph G(V,E) where V repre-

sents the nodes/vertices and E represents the edges between the nodes, by assigning

strength to the edges initially. It is desirable to assign an edge strength value that

most accurately represents the topological structure of the graph in the MCML al-

gorithm. Since we do not have any prior knowledge of the community structure,

we assign a strength value to each edge based on the significance of that edge to

the other nodes in the graph, and to the nodes at the end points of that edge. For

each edge e(i, j) (where i and j are nodes) in the fine graph G, the topological edge

strength value α(i, j) assigned to it is the ratio of number of triangles that edge e(i, j)

participates in to the total number of triangles containing node i.
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If the strength value of an edge e(i, j) is greater than other edges in the 1-

neighborhood of i then, node i and node j are more likely to be in the same community.

Whereas on the contrary, if edge e(i, j) has lower strength value than most other edges

in the 1-neighborhood of i, then node i and node j are less likely to be in the same

community. Mathematically,

α(i, j) =
t(i,j)∑

(i,k)(t(i,k))
; k ∈ Ni (3.1)

where Ni is the 1-neighborhood of i, and t(i,j) is the total number of triangles whose

sides contain edge (i, j).

The MCML algorithm also works well with weighted graphs, where the edges

are assigned weights winput as an input. To get the total weight of an edge, we simply

have to take product of the topological edge strength value, with its input weight.

αtotal(i, j) = α(i, j)× winput(i, j) (3.2)

After this we normalize the edge strength for all the edges, such that they range in

between 0 and 1.

3.4.2 Remove Weak Edges

The procedure of removing the weak edges from the fine graph G is based on

the required strength β of the communities. Edges with α(i, j) < β are removed.

This simply means that, for low values of β, fewer edges will be removed from the

fine graph G, as compared to when β has higher values. After deleting these edges

we might label some nodes as non-community nodes i.e., the degree of these nodes
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Figure 3.1: MCML Algorithm : General Schema

is zero. For higher values of β we get a higher number of non-community nodes and

more stronger, smaller and significant communities are extracted. Whereas for lower

values of β we get smaller number of non-community nodes, and higher number of

nodes are assigned a community.

3.4.3 Multi-level Coarsening

Let Gi (i ≥ 1), be the graph obtained by removing weak edges (i.e., α(j, k) <

β) from G. We apply the following coarsening step recursively to extract meaningful

community structure.

Multilevel coarsening : We select a node v from Gi, having highest centrality and
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label it i. Now we distribute this label i assigned to v, to all the neighbors of v,

denoted by N(v). We continue distributing labels to the neighbors of all the nodes

with label i. We do this until there no more neighbors are left to send the label, or the

maximum required size of the community is reached. Then we obtain a coarse graph

Gi+1 by removing all the nodes with label i from Gi, along with their associated edges.

We continue this process recursively until all the nodes are assigned a community.

The communities having number of nodes less than the minimum number required in

a community, labels all the nodes in that community as non-community nodes. The

general schema for the algorithm is shown in Figure 3.1.

3.4.4 Parallel Implementation

Parallel shared-memory based, multi-core implementation, for each stage of

our MCML algorithm is described in this subsection.

Parallel Preprocessing : In the preprocessing stage, we designate a master

thread, which divides the graph roughly into k equal parts, where k is the number

of cores/threads available. We perform a k partition on the input graph. We can

also use an existing k way graph partitioning library like KaHIP, METIS, PMETIS,

etc. to divide the graph into k parts. The master thread then assigns each of these k

parts to k threads individually (including itself), as shown in Figure 3.2. Then each

thread computes the edge strengths in the part of the graph assigned to them, using

Equation 3.1. The inter-partition edges, which are the dashed edges in Figure 3.2, are

excluded in this computation. Once all the threads have completed their edge strength
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Figure 3.2: Parallel Preprocessing

assignment computations, the master thread merges the k parts of the graph back

together and computes the edge strengths of the previously excluded dashed edges.

Parallel Weak Edge Removal : In weak edge removal stage of the algo-

rithm, we again partition the preprocessed graph in to k parts and assign each part

to each of the k cores/threads individually, in the similar way we did in the prepro-

cessing stage. Each core removes the edges having strength less than threshold value

(β) from the corresponding part of the graph they process. Note that, here we do not

have to worry about the inter-partition edges (dashed edges in Figure 3.2) because, if

they have strength less than the threshold they will be removed, else will be restored,

by both the threads they are assigned to. Once all the threads have completed their

weak edge removal process, the master thread merges all k parts of the graph back

together.
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Figure 3.3: Parallel Multilevel Coarsening

Parallel Multilevel Coarsening : In the multilevel coarsening stage of the

algorithm, we designate a master thread, which first finds the node with highest

degree centrality in the graph and labels it i (i ≥ 1). We then create a global queue,

such that all the k cores point to the rear-end of this queue, as shown in Figure 3.3.

The highest centrality node is then pushed into this global queue. The master thread

is then assigned to this node, based on our construction of the queue. Then the

master thread distributes label i to 1-neighborhood of this node and also add the new

nodes it discovers in the 1-neighborhood to the queue. Similarly in the consequent

rounds, the threads are assigned nodes from the queue as shown in Figure 3.3 and

each thread distributes label i to a 1-neighborhood (nodes that have not yet received

the label i) of the node assigned to it, along with adding the newly discovered nodes
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to the queue. So at a given time, there are k nodes that are assigned to k cores in a

cyclic fashion, which can simultaneously propagate its labels. In Figure 3.3, initially

the master thread i.e. core 1 finds node 1 (red node) which is the highest centrality

node and adds it to the queue after assigning label i to it. Node 1 is then assigned to

core 1, which distributes label i of node 1 to the nodes in its 1-neighborhood (green

nodes) which have not yet been labeled. Along with label distribution, it also add

these nodes to the queue. Nodes 2, 3, 4, 5, 6, 7, and 8 are added to the queue. In the

second round, nodes 2, 3, 4, and 5 are assigned to cores 1, 2, 3, and 4 respectively in a

cyclic fashion from the rear-end of the queue. Each of the cores then follow the same

steps that was followed by core 1 in the initial round.

We place appropriate barriers and write locks to the queue in order avoid race

conditions between threads. This process continues in cyclic fashion, until the queue

is empty (disjoint component found) or maximum desired size of the community is

reached. After finding a community, the k threads remove the community with label

i from the graph (using a trivial parallel for loop) and the same process is iteratively

applied on the remaining graph with label i+ 1. We continue this until the algorithm

terminates, i.e. all nodes are assigned to a community. Note that we did not perform

a graph partition in this stage to avoid nodes of the same community to be assigned to

multiple threads. The pseudo code for the MCML algorithm is given in Algorithm 3.1.
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Algorithm 3.1 : MCML Algorithm

Require: Graph G(V,E), β, max size, min size

1: return Community of each node

2: for all thread T do

3: Assign nodes and edges to each thread T

4: for all Edge e(i, j) assigned to thread T do

5: Find strength α(i, j) using Equation 3.1

6: end for

7: for all Edge e(i, j) assigned to thread T do

8: if (α(i, j) < β) then

9: Delete e(i, j)

10: end if

11: end for

12: while (All nodes are assigned to a community) do

13: for all Node assigned to thread T do

14: Find node v with highest centrality, label it i

15: end for

16: while (No neighbors left or max sized reached) do

17: Assign nodes and edges to each thread T

18: Distribute label to the neighbors of the nodes, with label i

19: end while

20: for all Node assigned to thread T do

21: Delete node with label i and associated edges

22: end for

23: end while

24: end for

25: return community label for each node
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3.5 Computational Results

In this section, we describe computational results of applying MCML algorithm

on two benchmark datasets (Karate club and Dolphin club), followed by large datasets

like Facebook forum and Amazon product network, along with its comparative study.

3.5.1 Benchmark Datasets

We use the benchmark datasets, Karate club ([97]) and Dolphin club ([55]) to

determine the quality of the results obtained by applying MCML algorithm. Since

these two datasets have ground truth communities, we measure the quality of the

results based on the accuracy metric i.e., the number of nodes correctly assigned by

MCML algorithm to the community they actually belong to in real life. We run

MCML algorithm for various values of β (0, 0.1, 0.4, 0.6, 1.0). We also have a plot

showing the number of nodes marked as non-community nodes, versus different values

of β. Comparison of various community detection algorithms on Karate and Dolphin

club benchmark datasets is shown in Table 3.1. The comparisons are made on the

basis of the number of communities detected, number of correct matches and incorrect

matches of the community nodes with its ground truth communities.

Karate Club : This is a social network of friendships between 34 members

of a karate club. It contains 156 edges and the dataset is unweighted and undirected.

The real life known partition of this graph is into 2 groups. The group breaks down

into 1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 17, 18, 22 and 9, 10, 14, 15, 16, 19, 20, 21, 23, 24, 25,

26, 27, 28, 29, 30, 31, 32, 33, 34. In Figure 3.4(a), where β = 0.0 and maximum size
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Figure 3.4: Karate Club : (a) β = 0.0 (b) β = 0.1 (c) β = 0.4 (d)

β = 0.6 (e) β = 1.0 (Note: Edges highlighted in (d) and (e) have stronger

connections than other edges in the graph)

= 34, when compared to the ground truth communities of this network, all the nodes

are correctly grouped, except node number 17, which becomes the non-community

node. All the nodes in white are non-community nodes. The nodes with different

colors belong to different communities. The accuracy plot for groupings made by

MCML algorithm is shown in Figure 3.6. In Figure 3.4(e), where β = 1.0, we extract

the strongest link in the club, which is between node 1 and 9. In Figure 3.5(a), we can

see that, as the value of β increases the number of non-community nodes increases

and the more stronger and smaller communities are extracted. The edges extracted



57

represent stronger connections compared to edges associated with non-community

nodes.

Figure 3.5: Non-community nodes vs strength : (a) Karate club (b) Dol-

phin club

Figure 3.6: Accuracy Plot : Karate club and Dolphin club
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Algorithm Karate club (34 nodes) Dolphin club (62 nodes)

— # comm. correct incorrect # comm. correct incorrect

Jancura et al.([33]) 3 24 10 3 46 16

Raghvan et al.([76]) 2 27 7 4 45 17

Soman et al.([88]) 2 29 5 2 49 13

MCML 2 33 1 3 56 6

Table 3.1: Comparing various community detection algorithms for Karate

and Dolphin club benchmark datasets

Dolphin Club : This is an undirected social network of frequent associations

between 62 dolphins (nodes) in a community living off Doubtful Sound, New Zealand.

Dolphin club is an unweighted network containing 159 edges. In Figure 3.7(a), where

β = 0.0 and maximum size = 62, when compared to the ground truth communities of

this network, 56 nodes are correctly grouped, 3 node become non-community nodes

and 3 nodes are incorrectly grouped. These 3 incorrectly grouped nodes form a new

community, since they have much stronger connection amongst each other, than with

community with the red label. All the nodes in white are non-community nodes.

Accuracy plot is shown in Figure 3.6. In Figure 3.7(e), where β = 1.0 and we extract

the strongest link in the club, which is between node 51 and 46. In Figure 3.5(b), we

can see that as the value of β increases the number of non-community nodes increases.
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Figure 3.7: Dolphin club : (a) β = 0.0 (b) β = 0.1 (c) β = 0.4 (d)

β = 0.6 (e) β = 1.0 (Note: Edges highlighted in (d) and (e) have stronger

connections than other edges in the graph)

On the basis of the above experiments on the 2 benchmark datasets, we can conclude

that the, higher the value of β the stronger and smaller is the extracted community.

3.5.2 Facebook Forum Dataset

Facebook Forum dataset is obtained from Facebook online social network. The

main focus in this network is on user’s activity in the forum. The forum represents a 2-

mode network between primary nodes which are 899 users, and secondary nodes which

are 522 topics in the forum. It is a weighted network where the weights represent



60

the number of messages a user posted on a particular topic. We use the preprocessed

version of this dataset for our experiments, where 2-mode network is transformed into

a 1-mode network maintaining the primary nodes which are users, and containing

142, 761 edges. This dataset is available from http://toreopsahl.com/datasets/

#online_social_network.

Figure 3.8: (a) 2-mode weighted network (b) preprocessed 1-mode

weighted network

Figure 3.8(1), represents the format of original dataset. User A posts 3 mes-

sages on topic 1 and 4 messages on topic 2. User B posts 1 message on topic 1 and

5 messages on topic 2. When this dataset is preprocessed to eliminate the secondary

nodes, we have 2 directional links between A and B, i.e., A to B which has weight

7 and B to A having weight 6, as shown in Figure 3.8(2). The 1-mode projection

of a weighted 2-mode network is based on the weights the two nodes have, directed

http://toreopsahl.com/datasets/#online_social_network
http://toreopsahl.com/datasets/#online_social_network
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towards common nodes. The two nodes interact with the common node, and Fig-

ure 3.8 shows how to project it onto a directed weighted 1-mode network. This data

set does not have ground truth communities, so we use modularity to determine the

quality of the communities found. The quality comparison based on modularity and

computational time for Facebook Forum data set is given in Table 3.2. The modular-

ity achieved for communities detected by MCML (β = 0.15) is 0.3566, which is the

best so far in the present state of the art. So even though we do not achieve the best

running times as compared to other well known algorithms like ([10]), we manage to

maintain a good balance between the quality of the results and running times.

Figure 3.9: Facebook forum : (a) Computational time Vs number of cores

(b) Speed-ups

Finding communities in this interesting data set implies, finding groups of users

sharing similar interests. This information can be used by social networking sites to

provide friend suggestions to users, or suggestions to join a particular community
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forum having common interests. The performance of MCML algorithm, on this data

set is shown in Figure 3.9, where we achieve speed-ups up to 14.97 times using 16

cores. This is close to a k fold improvement using k core processor where (k ≥ 1).

Algorithm Facebook Forum Amazon

— Modularity Time (secs) Modularity Time (sec)

Newman & Girvan([61]) 0.0488 — — —

Pons & Latapy([69]) 0.2031 — 0.451 —

Rosvall & Bergstorm([82]) 0.1372 — 0.470 —

Raghvan et al.([76]) 0.1733 47 0.210 > 10,000

Jancura et al.([33]) 0.3458 3 — —

Yang & Leskovec([95]) — — 0.125 1890

Prat-Perez et al.([71]) — — 0.295 15

Lancichinetti et al.([45]) — — 0.510 4800

MCML 0.3566 4.83 0.494 2389

Table 3.2: Comparing various community detection algorithms for Face-

book Forum and Amazon datasets based on modularity and computational

time using 16 cores. (The blank values are not available in the literature

of this research area. To get the computational time we include all the

three stages of the algorithm.)
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3.5.3 Amazon Product Dataset

This dataset represents a graph of products, where each node is a product and

there is an edge between two products if they have been co-purchased frequently. This

dataset has 334, 863 nodes and ≈ 1 million edges. This data set has a 151, 037 ground

truth communities, in which top 5000 communities are the most significant. We use

this dataset (http://snap.stanford.edu/data/index.html) in our experiments, to

show that MCML algorithm gives fairly good performance and speed-up when applied

to this dataset, and also, we do not degrade the quality of the results while achieving

this.

Figure 3.10: Amazon : (a) Computational time Vs number of cores (b)

Speed-ups

For β = 0.1 and maximumsize = 80 which is the largest community in ground

truth community data, it takes≈ 7.34 hrs to extract communities in this dataset using

http://snap.stanford.edu/data/index.html
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1 core and≈ 39.82 minutes using 16 cores (i.e. speed-up of 11.4 times). In Figure 3.10,

we show the time taken to find communities in this dataset for 1, 2, 4, 8, 16 cores and

corresponding speed-up’s respectively. The quality comparison based on modularity

and computational time for Amazon data set is given in Table 3.2. The modularity

achieved for communities detected by MCML (β = 0.1) is 0.494, which is better than

most of the other algorithms in the present state of art. Even though we do not

achieve exceptional running times as compared to other well known algorithms like

([71]) and ([95]), we manage to maintain a good balance between the quality and

running times.

3.6 Discussion

This research [64] focuses on developing a multi-core multi-level (MCML) com-

munity detection algorithm, which achieves a good balance between running times

and quality of the communities discovered, which is a well known challenging prob-

lem in this area. We have shown that, the quality of the results obtained by the

MCML algorithm for benchmark datasets with ground truth is highly accurate. We

also compare MCML with other well known algorithms for datasets without ground

truth, using the modularity metric for quality analysis, and conclude that MCML can

detect communities roughly as meaningful as other known algorithms and in some

cases even better (Facebook forum).

Partitioning the network into sub-networks to achieve the highest level of paral-

lelism requires more cores. As the social networks become larger and larger the ability
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to process them using shared memory architecture on one single machine becomes

infeasible due to both memory and time constraints. Hence distributed memory algo-

rithms exploiting multiple cores of multiple machines is essential to overcome this. In

the next chapter, we present a novel hybrid (shared + distributed memory) parallel

algorithm to efficiently detect high quality communities in massive social networks.
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CHAPTER 4
SOCIAL NETWORKS DOMAIN : DISTRIBUTED MEMORY

4.1 Introduction

One of the most relevant and widely studied structural properties of networks

is their community structure. A community in a network is a set of nodes that are

densely connected with each other and sparsely connected to the other nodes in the

network. Community detection in a network extracts the structural properties of

the network ([26]) and the various interactions in the network ([8]). Detecting com-

munities in social networks is of great importance because social networks consists

of patterns which can be viewed as independent components, with each component

having distinct features and can be detected based on network structure. For exam-

ple, community detection in social networks can help to target users for marketing

purposes, providing recommendations to users to connect with other users, join com-

munities or forums, market basket analysis, etc.

The increasing size of social networks like Facebook, Twitter, LinkedIn, etc.

has made community detection more difficult, with data size which can reach up to

billions of vertices and edges. For example, Facebook has ≈ 1.1B users, LinkedIn has

≈ 500M users, etc. As a result the ability to process this large graph-structured data

in memory of a single machine is infeasible due to time and memory constraints. Most

of the research in community detection has been focused on sequential algorithms on

SMP machines and a thorough review of the same is presented in ([24]). Where as
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some fast scalable community detection algorithms ([10], [64], [76]) which have been

developed can only tackle network sizes which can be stored in the RAM of one

machine. All of these algorithms adopt sequential, parallel shared-memory and non-

distributed architecture. Processing networks with hundreds of millions of vertices

and billions of edges require several hundred gigabytes of RAM. To address this

challenge, parallel distributed community detection algorithms are necessary. To

avoid any confusion, we use the term cluster only for computer cluster, a part of the

computer cluster will be denoted as machine or node, the objects in a network will be

denoted as vertex and groups of vertices will be denoted as communities.

In this chapter, we modify and extend our multi-level multi-core (MCML),

shared-memory based community detection algorithm ([64] we described in Chapter 3,

to distributed memory parallel framework using Message Passing Interface (MPI).

This hybrid (shared + distributed memory) algorithm can process massive social

networks to extract high quality communities efficiently. The main challenges we

encountered were (1) the initial partitioning of the network and assigning each of

these parts to different nodes in the parallel computers in such a way that, when

community detection algorithm is applied on each individual node, it should not

incur high communication overhead, (2) each node in the parallel computers should

intelligently reduce the size of the network partition assigned to it such that, after

merging, the entire network should fit in memory of one machine and quality of the

communities detected is not compromised.

In this work, we integrate an existing network partitioning algorithm in our
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hybrid algorithm’s flow such that, it will partition the original network into chunks to

be distributed across the network of parallel machines, incurring minimum commu-

nication overhead between them. In order to minimize the probability of distributing

vertices belonging to the same community across different machines, we use network

partitioning algorithm which tries to minimize the inter-partition edges ([36]). After

network partitioning and distribution, we intelligently reduce the size of every net-

work partition on each machine in such a way that, when merging all the partitions

back in the master node, the entire network can fit into the memory of a single master

node to which we apply our MCML algorithm to extract high quality communities.

All our simulations are done using MPI and OpenMP implementation on the HPC

Neon cluster at The University of Iowa.

The remainder of this chapter is organized as follows: In Section 4.2, we

describe the related work. We state our contributions in Section 4.3. In Section 4.4,

we describe our hybrid community detection algorithm. In Section 4.5, we discuss

and present our datasets used and results, followed by some discussion in Section 4.6.

4.2 Related Work

Network partitioning : It aims to divide the network into k-parts in such

a way that edge cuts are minimized and each partition roughly has same number of

vertices. Most of the network partitioning problems are NP-Hard ([24]). One group

of techniques in graph partitioning relies on optimizing an objective function which

is defined as a ratio of number of intra-partition edges to number of inter-partition
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edges. Another group of partitioning uses multi-level partitioner ([36], [35]) whose

implementation is in METIS and PMETIS library respectively. There exists many

other better partitioning algorithms which scales better than METIS ([39], [56]) but

we plan to utilize parallel PMETIS to perform our initial graph partitioning, due

to its low communication overhead, ease of use and wide availability. The parallel

implementation was implemented using GNU C++ and MPI.

Community Detection : It is an interesting problem in the domain of

graph partitioning. Interest in community detection problem started with the new

partitioning approach by ([26], [61]); where the edges in the network with the max-

imum betweenness are removed iteratively, thus splitting the network hierarchically

into communities. Similar algorithms were proposed later on, where attributes like

‘local quantity’ i.e. number of loops of a fixed length containing the given edge ([75])

and a complex notion of ‘information centrality’ ([25]), is used to decide removal of

edges. Hierarchical clustering is another major technique used for community detec-

tion, where based on the similarity between the nodes, an agglomerative technique

iteratively groups vertices into communities. There are different existing methods

to choose the communities to be merged at each iteration. Algorithms described in

([60]) and ([91]) starts with all the nodes as individual community and iteratively

merge them to optimize the ‘modularity’ function. Many other algorithms in the lit-

erature of community detection, like ones proposed by ([19]) and ([28]) rely heavily on

modularity maximization. Label propagation is another well known technique used for

community detection, which finds communities by iteratively spreading labels across
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the network. Raghavan et al. ([76]) proposed an algorithm, where each node picks

the label in its 1-neighborhood that has the maximum frequency. These labels are

permitted to spread synchronously and asynchronously across the network until near

stability is attained in the network. This method has some limitations, where large

communities dominate the smaller one’s in the network, this phenomenon is called

‘epidemic spread’. This limitation was resolved by ([65]). Liu et al.([48]) used affinity

propagation, which is a similar approach to label propagation, for finding communi-

ties/clusters in images. Some community detection algorithms use random walks as

a tool. The idea is that, due to the higher density of internal edges, the probability of

a random walk staying inside the community is greater than going outside. This ap-

proach is used in Walktrap ([69]) and Infomap ([82]) algorithms. A thorough review

on community detection algorithms for networks is given in ([24]).

Parallel Community Detection : Community detection algorithms is a

well studied research area, but achieving strong scalability along with detecting high

quality communities is an open problem. Most of the past research on community

detection has focused on single threaded algorithms. There is a rich and vast liter-

ature of such algorithms and the ones based on modularity maximization being the

most prominent amongst them ([61]). The Louvain method which is based on mod-

ularity maximization ([10]) is the most widely used community detection algorithm

which can scale to networks with millions of vertices. However, the quality of results

obtained deteriorates as the size of the network increases ([44]). It is observed that

modularity maximization based algorithms are unable to detect small and well-defined
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communities in large networks ([59], [74]). One of the recent parallel algorithms devel-

oped to detect disjoint community structures based on maximizing weighted network

partitioning is given in ([69]). A scalable community detection algorithm, which par-

titions the network by maximizing the Weighted Community Clustering (WCC), is

proposed in ([71]) which uses community detection metric based on triangle analysis

([70]). Some other works which focused on developing parallel implementation for

existing community detection heuristics is given in ([83]). Recently, ([88]) proposed

a scalable parallel algorithm for community detection, based on label propagation,

which is optimized for GPGPU architectures. This algorithm just works on local

information which drives the high scalability of this algorithm.

Recent works mentioned above on exploitation of parallelism for community

detection has the form of multi-core algorithms for SMP machines i.e. shared memory

architecture. In ([53]), a parallel multi-core Louvain algorithm is proposed which ex-

hibits the above mentioned pitfalls. In ([7]) a parallel version of Infomap is presented

which relaxes the concurrency assumption of the original method ([82]), achieving

parallel efficiency of 70%.

There is minimal literature work on distributed algorithms for community de-

tection. In ([93]), a distributed memory parallel algorithm extending the Louvain

method is proposed. Here, the most costly iteration of the algorithm is made embar-

rassingly parallel without any noticeable loss in final modularity. This approach was

validated using an MPI implementation on a High Performance Computing (HPC)

cluster. However, the original pitfalls of Louvain’s method mentioned above and in
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([44]) prevails. Hadoop Map-Reduce Model can be used speed up algorithms which

can break down into embarrassingly parallel tasks. In ([58]), the proposed algorithm

is a distributed memory parallel version of the Girvan-Newman algorithm ([61]). This

version adopts the Map-Reduce framework where it breaks down the algorithm into

four embarrassingly parallel tasks: (1) calculating all-pair shortest paths in the net-

work, (2) calculating the edge betweenness for every pair of nodes in the network, (3)

k-edges are selected based on edge betweenness and removed, (4) network update for

next iteration. The performance results showed that elapsed time decreased almost

linearly with the number of reducers. Most simple community detection algorithms

which can be broken down into the embarrassingly parallel independent tasks, does

not yield high quality communities on real world networks.

We propose to extend our MCML shared memory parallel algorithm ([64]),

to distributed memory parallel framework using the MPI implementation on The

University of Iowa’s Neon HPC cluster, to detect communities in massive networks

with high accuracy and attain scalability.

4.3 Contribution

We summarize our main contribution to this problem as follows:

1. We propose a hybrid (shared + distributed memory) community detection al-

gorithm, a modification and extension of our shared memory based MCML

algorithm ([64]), which utilizes multiple cores of multiple machines and scales

to hundreds of millions of vertices and edges without compromising quality of
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the detected communities.

2. We showcase our algorithms’ efficiency by using synthetic graphs ranging from

100K up to 16M vertices.

3. We further test for efficiency and quality on real world networks like (a) section

of Twitter-2010 network having ≈ 41M vertices and ≈ 1.4B edges (b) UK-

2007-05 (.uk web domain) having ≈ 1.2B vertices and ≈ 3.2B edges.

4.4 Hybrid Algorithm

In this section, we describe our hybrid community detection algorithm which

utilizes multiple cores of multiple machines and scales to hundreds of millions of

vertices and edges without compromising quality of the detected communities. We

use our shared memory based MCML community detection algorithm described in

Chapter 3 and ([64]) as a subroutine in our hybrid algorithm.

We take advantage of the initial network partitioning when designing parallel

distributed community detection algorithms, in order to speed up the processing time

by minimizing the communication between processors. This reduces the possibility of

vertices in the same community to spread across multiple partitions. We modify our

parallel shared memory MCML algorithm presented in Section 3.4 of Chapter 3, to

enable it to adapt the distributed MPI framework for processing massive networks.

Our hybrid algorithm follows a multilevel algorithmic framework which includes the

following steps (also explained with an example in Figure 4.1):

1. Level 1 - Network Partitioning : Using network partitioning we aim to
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Figure 4.1: Example : Hybrid Algorithm

split the original network k-ways such that, the edge cuts between partitions

are minimized and there is a balance in the number of vertices in each partition.

Network partitioning is aNP-Hard problem ([24]). Most of the existing network

partitioning techniques use network processing tools such as Apache Giraph ([5])

which is based on hashing or vertex ordering i.e. random graph partitioning.

We use parallel METIS partitioning algorithm (PMETIS) ([35]) due to its low

communication overhead, ease of use and wide availability. We use the k-way

partitioning library which divides the network based on minimum edge cuts.
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The parallel implementation was developed using GNU C++ and MPI.

2. Level 1 - Apply MCML on Partitions : Each MPI processor is assigned a

partition based on the process id, and MCML is applied locally on each proces-

sor. Interprocessor communications is allowed using message passing interface

across cross-partition edges. MCML is applied for higher value of the strength

parameter β ≥ 0.8, where 0 ≤ β ≤ 1 , such that all nodes are not assigned to a

community, but nodes with stronger affiliations are put in the same community.

After finding these strong communities in each of those partitions we collapse

each community into a single node such that, all the intra cluster edges will be

represented as a self-loop on that node. Note that we do not collapse nodes

residing in the partition on a different machine. This is the most crucial step

where we expect to reduce the size of each partition considerably.

3. Level 1 - Renumber Vertices and Merge Partitions : Next step is to

merge all the partitions together at the master MPI process. Since all the indi-

vidual vertices have local numbering, we are required to renumber all the vertices

across all partitions in a continuous fashion. We use the following method to

renumber vertices before the merging step. Using the all gather operation in

MPI, each process collects the total number of vertices every other process has.

Each MPI process pi, now has a list of total number of vertices in every other

partition {N0, .., Ni−1, Ni+1, .., NP−1} where, P is the total number of MPI pro-

cesses. It then renumbers its vertices in a way that the ones associated to its
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partitions start from nstarti which is based on the values of all processes pj with

j < i as follows :

nstarti =
i−1∑
0

Nj

Once the renumbering is performed, each MPI process sends its partitions to

the master MPI process where the merging takes place.

4. Level 2 - MCML : The merged network represents the level 2 of the orig-

inal network where the size of the network is reduced significantly. We then

apply MCML algorithm again on this level until all the vertices are assigned a

community. This step can be performed on a single machine i.e., master MPI

process, since the size of the graph is reduced significantly and can completely

loaded in to the memory.

4.5 Computational Results

In this section, we describe computational results of applying our hybrid al-

gorithms on synthetic datasets and also massive portions of two real world social

networks datasets (Twitter-2010 and UK-2007-05 (.uk web domain)). The perfor-

mance of our hybrid algorithm is evaluated by executing series of experiments on the

High Performance Neon Cluster at University of Iowa. We use 8 heterogeneous stan-

dard machines each having 64GB RAM and 16 Xeon Phi cores. All the experiments

were executed as a single batch command comprising of at most 8 compute machines

having 16 cores each. Each experiment is executed three times and average of the

results from these runs are reported to preserve accuracy and consistency.
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No. of vertices No. of edges

100,000 422,015

500,000 1,652,471

1,000,000 3,559,759

2,000,000 6,995,154

4,000,000 14,598,778

8,000,000 32,115,764

16,000,000 63,221,980

Table 4.1: Random graph datasets

4.5.1 Datasets

We generate random graphs for our empirical studies to have control over the

graph sizes and study the scalability of our algorithm over different graph sizes. We

generate these random undirected and unweighted graphs using the same benchmark-

ing package used by Fortunato in ([24]). Graph generation using this package also

offers fine control over the average and maximum degree distribution, etc. Many

similar studies use this package for their empirical studies ([93]). The properties of

the seven graphs we generated are shown in the Table 4.1

For our empirical studies we also use massive portions of two real world social

networks described in Table 4.2:

(a) Twitter-2010 : Twitter is a website, owned and operated by Twitter Inc.,
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Datasets (a) Twitter-2010 (b) UK-2007-05

No. of vertices 41, 652, 230 105, 896, 555

No. of edges 1, 468, 365, 182 3, 301, 876, 564

Edge-list file size 52.3 GB 110 GB

Average degree 35.253 35.7

Table 4.2: Real world social network datasets

which offers a social networking and microblogging service, enabling its users to

send and read messages called tweets. Tweets are text-based posts of up to 140

characters displayed on the user’s profile page. This is a crawl done in ([43]).

Every node represents a user and there is an edge from node x to node y if x is

a follower of y, i.e. edges follow the direction of tweet transmission. This dataset

is publicly available from http://law.di.unimi.it/datasets.php.

(b) UK-2007-05 : This web based graph is crawled by Boldi et.al. [11]. The

web-graphs of the 12 snapshots from each of the 12 months of .uk domain have

been merged into a single graph. Each node represents a URL and there is an

edge between URL x and URL y if the web page of URL x contains URL y. This

dataset is publicly available from http://law.di.unimi.it/datasets.php.

http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php
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4.5.2 Evaluation

Our empirical studies focuses mainly on analyzing the scalability of our hybrid

algorithm and the quality of the results obtained. We scale the problem by increasing

the graph size and the number of processor cores. We run the performance analysis

which includes the step 2, 3 and 4 of the hybrid algorithm described in Section 4.4.

In Figure 4.2, we see the variation in the total runtime while scaling up the

number of processor cores for different graph sizes. We can observe that our algorithm

exhibits high scalability for all possible permutations of graph size and processor cores.

The graph with 16M vertices could only be tested when 16 or more processor cores

are used, due to memory constraints of one machine. In Figure 4.3, we see that

our algorithm achieves ≈ 6X speedups for synthetic graphs upto 8M vertices. We

also see that speedups flatten and start declining for most of the graphs after scaling

them past 64 processor cores. This is mainly due to Amdahl’s law and increase in

communication overhead.

In Figure 4.4, we observe that the gap between runtime of parallel implemen-

tation with varying processor cores increases as the graph size increases. This shows

the high scalability of our hybrid algorithm for large graphs. But we see a decline in

this runtime improvement as we scale up to 64-128 processor cores. This is due to

the similar reason explained above.

Our hybrid algorithms main goal is to achieve high scalability along with

maintaining accuracy of the communities detected. In Figure 4.5, we observe the

percentage error using the difference in the modularity between sequential run and



80

Figure 4.2: Run-time while scaling up the number of processor cores over

varying graph sizes

Figure 4.3: Speedups compared to sequential hybrid algorithm while scal-

ing up the number of processor cores over varying graph sizes
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Figure 4.4: Run-time while scaling up the graph sizes over varying pro-

cessor cores

parallel run of our hybrid algorithm. This error is calculated using the formula:

%Error = abs
(modpar −modseq

modseq

)
× 100 (4.1)

Where modseq and modpar represents the final modularity obtained by sequen-

tial run and parallel run of our hybrid algorithm respectively. We observe that the

error percentage decreases as the size of graph increases.

This is an expected phenomenon, since PMETIS partitions the graph into

multiple subgraphs by minimizing the number of cross partitioning edges between

them i.e. minimum size edge cuts. For small graphs, PMETIS is constrained because

of the number of partitions and hence will have to partition the graph with higher

cross-partition edges. This leads to higher probability of partitioning the communities
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Figure 4.5: Change in error percentage of final modularity compared to

that achieved by sequential execution of hybrid algorithm

across multiple subgraphs. Whereas, for larger graphs this probability decreases since

PMETIS is not constrained as much by the number of partitions and can effectively

reduce the number of cross-partition edges between subgraphs. This phenomenon is

also observed in similar studies, like the one in ([93]). It is important to note that

our method does not ignore the cross partition edges completely, since labels are

allowed to transfer in the form of messages across cross-partition edges. But we do

not collapse the nodes on the boundary i.e. associated with these cross-partitioning

edges, which is done in step 2 of our hybrid algorithm.

We also test our hybrid algorithm on real world networks described in Sub-

section 4.5.2. In Figure 4.6, we see the variation in the total runtime while scaling
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Figure 4.6: Run-time while scaling up the number of processor cores

up the number of processor cores for different graph sizes. 16 processor core run

of our hybrid algorithm acts as the “base run” for our real world data sets due to

memory constraints of a single machine. We can observe that our algorithm scales

better than base run for both the datasets, as the number of processor core increases.

In Figure 4.7, we see that our algorithm achieves ≈ 1.8X speedup for 128 processor

cores, compared to the base run.

In Figure 4.8, we observe the percentage error using the difference in the

modularity between base run and higher processor cores hybrid algorithm. This error

is calculated using the formula mentioned in Equation 4.1. It is evident that we

maintain good quality of the results along with achieving high scalability for large

real world social networks, scaling up to hundreds of millions of vertices and billions

of edges.
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Figure 4.7: Speedups compared to base run of hybrid algorithm while

scaling up the number of processor cores up to 128

Figure 4.8: Change in error percentage of final modularity compared to

that achieved by base run of hybrid algorithm while scaling up the number

of processor cores up to 128
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4.6 Discussion

Detecting communities in large networks, while achieving a good balance be-

tween scalability and quality of the results is an important open problem, especially

due to the massive growth of social networks. This work combines our existing MCML

algorithm [64] as a subroutine in our hybrid community detection algorithm pre-

sented in this paper. We also combine an existing graph partitioning technique (i.e.

PMETIS) which minimizes cross-partition edges, as a preprocessing step to our al-

gorithm. Our simulation results on a MPI setup with 8 compute nodes having 16

cores each shows that, upto ≈ 6X speedup is achieved for synthetic graphs upto

8M vertices in detecting communities without compromising the quality of results.

Our hybrid algorithm can scale for large section of real world social networks like

Twitter-2010 and UK-2007-05 having ≈ 41M and ≈ 105M vertices respectively and

maintain good quality of the results when compared to other existing similar works.

Our research described in this chapter will appear in [85].

In all the previous chapters including this chapter, we designed algorithms to

process and analyze small to massive data which can be represented as networks i.e.

graph structured data. Now we want to move to other types of massive datasets

which cannot be represented in the form of a network and we would focus on LiDAR

data which lies in the spatial domain.
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CHAPTER 5
SPATIAL DOMAIN : DATA REDUCTION

5.1 Introduction

Airborne Light Detection and Ranging (LiDAR) is the most effective means

for high density and high accuracy terrain data acquisition. Three dimensional spa-

tial imaging with LiDAR technology is a powerful remote sensing methodology that

can be used to produce detailed maps of objects, surfaces, and terrains across widely

varying scales ([27]). Improved scanning technologies have made it easier to generate

massive high density LiDAR point clouds and therefore more accurate, compact ter-

rain models and other three dimensional representations ([87]). LiDAR topographic

data provide highly accurate digital terrain information, which is used in applica-

tions like updating and creating flood insurance rate maps, forest and tree studies,

coastal change mapping, soil and landscape classification, 3D urban modeling, river

bank management, agricultural crop studies, etc. However, the generation of such

improved models from high density, and enormous volume of data imposes great

challenges with respect to data storage, processing, and manipulation.

Over the last 15 years, LiDAR data for generating reliable and accurate Digital

Elevation Models (DEMs) is widely used in geospatial science communities ([31]).

The accuracy of the generated DEM is directly proportional to the density of the

sample terrain LiDAR data used. Hence, strategies to process large volumes of dense

LiDAR data without compromising the accuracy, are essential. In this chapter, we
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describe a novel algorithmic technique to reduce LiDAR data to achieve an optimal

equivalence between the density and volume of data, which facilitates accurate and

efficient generation of DEMs. Our data reduction technique reduces LiDAR points

based on the topography, mainly slope-map of the terrain under consideration. To the

best of our knowledge, this is the first ever landscape driven data reduction technique.

We also use parallel programming to exploit multi-core architecture of CPUs, thus

making our algorithm highly scalable and time-efficient.

The remainder of this chapter is organized as follows: In Section 5.2, we

describe the related work. We state our contributions in Section 5.3. In Section 5.4,

we describe our study area and LiDAR data reduction algorithm along with its parallel

implementation. In Section 5.5, we discuss and present our experimental results,

followed by some discussion in Section 5.6.

5.2 Related Work

The enhancement in data collection technologies has enabled generation of

massive amounts of data, which poses computing issues when disseminating, process-

ing, and storing data. Data is valuable only if it can convey valuable information.

All the points in the entire LiDAR point cloud do not provide equally valuable in-

formation about the terrain under consideration ([16]). In order for a DEM to be

useful, it should be of a desired size, so that it can be manipulated whenever required

within the technology used to render it. This is one of the main challenges in massive

geo-spatial data processing - reduce dataset to attain an optimal balance between
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size of the dataset required, and desired resolution. Anderson et al.([4]) described the

effects of LiDAR data density on generated DEMs for a range of resolutions. They

further showed that LiDAR data can be reduced substantially yet still be able to

generate accurate DEMs for elevation predictions. Liu et al. ([49]) explored effects of

LiDAR data density on accuracy of generated DEMs, and studied the extent to which

LiDAR data can be reduced and still achieve DEMs with required accuracy. Orys-

payev et al.([66]) introduced a method of vertex decimation i.e. selective removal of

points from the LiDAR point cloud that does not convey enough information. Hege-

man et al.([29]) proposed a method in which each point was considered for deletion

based on z-variance of the point cloud in the small local region. A variance threshold

was initially set up as an input parameter; local regions having z-variance less than

threshold, undergo removal of most of their central points. They concluded that,

for certain regimes this point decimation technique performs significantly better than

random decimation.

5.3 Contribution

We develop a novel landscape driven LiDAR data reduction algorithm, which

preserves optimal balance between the density and volume of data, to generate accu-

rate DEMs efficiently. We use parallel programming to exploit multi-core architecture

of CPU’s, thus achieving high scalability and efficiency. We detail various experiments

we conducted, to determine the quality and performance of our technique.
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Figure 5.1: (a) Imagery of the study area (b) 2-D LiDAR point cloud of

the study area which is colored based on variations in elevation

5.4 Data Reduction Algorithm

5.4.1 Preprocessing

The test LiDAR dataset we use for our experiments represents a 300× 380 sq.

m. tile, of a terrain in Iowa. The imagery of the study area is shown in Figure 5.1(a).

This LiDAR dataset is interesting because, it has a good mix of flat land, land with

moderate inclination and steep slopes. Thus it resembles a real-life terrain, rather

than computationally ideal terrains consisting of just flat land. The slope angle for the

entire terrain varies between 0.03° to 63.18°. This LiDAR dataset has been collected

using Airborne LiDAR by Aerial Services, Inc. (ASI). The dataset is comprised of

6.94 million points, with a point density of approximately 120 points per sq.m. In the

experiments, the input files were formatted in ASPRS LAS File Format, version 1.0.

The size of this dataset was 1.5 GB. Also, for visualization purposes, we converted the
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input data with extension .LAS to .xyz using LASTools. The LiDAR point cloud for

the above data is generated using ArcGIS, ArcMap v10.3 as shown in Figure 5.1(b).

The spatial resolution of the LiDAR data was estimated to be 1 inch vertically and

1 inch horizontally.

Figure 5.2: (a) Statistical analysis of elevation data for the terrain (b)

Slope-map consisting of four slope ranges

Initially, we make use the elevation data available for the study area to gen-

erate a slope-map. For this work, we generate this elevation data using LiDAR data

we collected for the entire region. Elevation data is also available freely in National

Elevation Dataset (NED) http://ned.usgs.gov/, which is the primary elevation

data product of the United States Geological Survey (USGS), and serves as the el-

evation layer of “The National Map”. The NED provides elevation information for

earth science studies and mapping applications in the United States. We conducted

http://ned.usgs.gov/
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a statistical analysis of the elevation data for our dataset, using the Natural Breaks

(Jenks) method in ArcGIS. This analysis showed that the slope angle for our terrain

ranges from 0.03° to 63.18°, with the mean value of 6.52°, and standard deviation

value of 5.73°. Based on this statistical analysis showed in Figure 5.2(a), the slope-

map having four regions, with different slope ranges were generated as shown in

Figure 5.2(b). The ranges were Slopegreen = [0.03°, 4°], Slopeyellow = [4.00°, 8.00°],

Slopeorange = [8.00°, 13.00°] and Slopered = [13.00°, 63.18°]. Slopegreen represent the

flattest regions in the terrain, whereas Slopered represent the the most uneven and

rough regions.

After the creation of the slope-map layer, we overlay the LiDAR points we

collected for the same terrain on it, while preserving spatial geo-referencing. Based

on which slope range the LiDAR point lies in, we append a new parameter i.e., Slope

for each LiDAR point. After processing, our LiDAR dataset contains x, y, z, and

Slope values, which we use as an input to our data reduction algorithm. This entire

process is done using ArcGIS and LASTools.

5.4.2 Algorithm

In our LiDAR data reduction algorithm, initially we overlay a grid of 1 sq.m.

cells on the LiDAR data, by preserving the spatial geo-referencing. Select the first

cell in the grid, and choose a LiDAR point randomly from all the LiDAR points that

lie in that grid cell. We keep on selecting different random LiDAR points from the

selected cell, until we get a LiDAR point that lies in Slopegreen region, or until all the
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Figure 5.3: Data reduction algorithm : Grid overlayed on processed Li-

DAR data

LiDAR points are checked. If we find a LiDAR point lying in Slopegreen region, we

check whether β% (user input) of the LiDAR points in that cell belongs to Slopegreen

region or not. If it does, then we remove all the points in that cell which belong to

Slopegreen region, except the chosen point (ex. cell (i) in Figure 5.3, with β = 90%).

If we do not find LiDAR point lying in Slopegreen region, we check for LiDAR point

lying on Slopeyellow region (ex. cell (ii) in Figure 5.3), and do the same as above. If

we do not find any LiDAR point lying in regions Slopegreen or Slopeyellow, or there is

no removal of points in the cell; (ex. there won’t be any data removal in cell (iii)),

we simply proceed to the next cell in the grid. We repeat the above steps until we

have processed all the cells in the grid, starting left-right, top-bottom fashion. The

motivation behind this LiDAR data reduction algorithm is the fact that, we do not

need too many LiDAR points to represent a flat terrain as compared to an irregular
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terrain.

Algorithm 5.1 : LiDAR data reduction algorithm

1: Input Grid of 1 sq.m. on geo-referenced LiDAR data

2: Return Reduced LiDAR data

3: Initialize: i = 0, cell[k], p = 0, β ;

4: while (cell[i]) do

5: Select point p ∈ cell[i] randomly

6: while (All points p ∈ cell[i] is checked) do

7: if (p ∈ Slopegreen and β% of total points in cell[i] ∈ Slopegreen) then

8: Remove all points lying in Slopegreen except p;

9: break;

10: else if (p ∈ Slopeyellow and β% of points in cell[i] ∈ Slopeyellow) then

11: Remove all points lying in Slopeyellow except p;

12: break;

13: end if

14: Select different p ∈ cell[i] randomly;

15: end while

16: i+ +;

17: end while

5.4.3 Parallel Implementation

Algorithm 5.1, when implemented sequentially, is extremely inefficient in terms

of running time. It takes approximately 6 hours to process a LiDAR point cloud of
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Figure 5.4: Parallel implementation of data reduction algorithm

6.94 million points sequentially. In this section, we present a parallel implementation

of the LiDAR data reduction algorithm, which is much faster than the sequential

version and also highly scalable. We distribute the LiDAR data over multiple cores

of the CPUs, and process them in parallel using both, block and cyclic assignments.

Consider m rows × n columns grid (m,n ∈ N), which is overlay on the LiDAR

data, shown in Figure 5.4 . For a k core processor (m ≥ k), we dedicate a master

core which slices the first k of m rows, and assign each one of them to each processor

individually (block assignment of slices). Each of these k slice has n cells, which are

processed one at a time by each core to which the corresponding slice is assigned

(cyclic assignment of cells). Once every cell in all the k slices are processed, the next

k of m rows are sliced (cyclic assignment of slices) and distributed to the CPU cores,

similarly as above. The results of the scalability tests using 1, 2, 4, 8 and 16 CPU
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cores and speed-ups are shown in Figure 5.6.

5.5 Computational Results

With the dense LiDAR data we have, consisting of 6.94 million points, a high-

accuracy (1 meter vertical and horizontal accuracy) and high-resolution DEM which

covers area 300 × 380 sq. m. of an irregular terrain in Iowa, was generated using

IDW interpolation method (shown in Figure 5.5). We test our algorithm for different

input values of β% in order to find the optimal balance between accuracy and density

of LiDAR data.

Figure 5.5: DEM generated for the original dataset having 6.94 million

LiDAR points
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In Figure 5.6(a), we have shown the speed-ups and scalability test of our

LiDAR data reduction algorithm for 1, 2, 4, 8 and 16 CPU cores. Using a 16 core

Xeon Phi processor we speed-up the running time of algorithm by 15.81 times i.e.

from ≈ 6 hours to ≈ 20 minutes, for the dataset under consideration. The scalability

we achieve is closer to a k fold improvement for a k core processor (k ≥ 1).

Figure 5.6: (a) Parallel speed-ups for LiDAR data reduction algorithm (b)

Data reduction and DEM accuracy

We observed that, compared to the DEM generated from the original complete

LiDAR dataset, there is no significant decrease in accuracy for the DEM generated

from the 52% reduced dataset obtained by applying our algorithm for β = 90%

to the original LiDAR dataset as input. The root mean square error (RMSE) and

standard deviation supporting the same is shown in Figure 5.6(b). In comparison to

the original DEM, the error introduced in the generated DEM, when β = 90%, is
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only 0.14 meters. In Figure 5.7(a), we have shown the 2-D and 3-D DEM generated

from 66% reduced dataset obtained by applying our algorithm for β = 80%, and in

Figure 5.7(b), DEM generated from 52% reduced dataset obtained for β = 90%. From

Figure 5.7(a) and Figure 5.6(b), we can see that, there is significant loss of accuracy

in the DEM generated from reduced dataset obtained for β = 80% and β ≤ 85%

respectively. For β = 80% the data density is reduced by 66%, but there is an error

of 0.29 meters which reduces the accuracy of the DEM considerably. Whereas for

values of β > 90% the percentage of data reduction is not significant.

The processing time for the DEM generation is directly proportional to the

size of the LiDAR data used for its generation ([50]). It takes half the time to generate

DEM from 52% reduced dataset for β = 90% compared to the original LiDAR dataset.

The smaller the value of β, the lower the density of the reduced LiDAR data, and

lesser is the accuracy of DEMs generated. We need to decide the value of β based

on the type of terrain for example, based on our study, β = 90% is optimal for

terrains having a good mix of flat land, land with moderate inclination, and steep

slopes. It reduces the data density to half the size of the original dataset, and also

preserves high accuracy of the DEMs generated. For terrains dominated by flat lands,

higher β values may lead to optimal reduction of LiDAR data, whereas for terrains

dominated by moderate, steep slopes, and rough regions, lower values of β may be

the correct choice. We thus demonstrate that our LiDAR data reduction algorithm

can significantly improve the processing time, and the file size of DEM generations.
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Figure 5.7: (a) β = 80%, reduced dataset comprising of 2.2 million points

(b) β = 90%, reduced dataset containing 3.1 million points

5.6 Discussion

It is observed that not all LiDAR data contribute effectively to the accurate

generation of DEMs. It is important to identify points representing the specific fea-

tures of the terrain which contain more significant information, compared to other

points ([49, 16]). While designing our LiDAR data reduction algorithm, we take fea-

tures like slope of the terrain into consideration, to remove less important points and

keep critical points. Of all the features of a terrain, we choose slope to be the most



99

important feature. Terrain slopes highlight changes in the terrain surfaces which

provides elevation information of a point, and they also showcase information about

their surroundings. Significant changes in slopes of the terrain indicates points with

more critical information, compared to other points ([47]). Thus using our LiDAR

data reduction algorithm, which includes slope of the terrain as the main data re-

moval factor, reduces the number of data points required for DEM generation, while

maintaining high accuracy. Results show that our parallel implementation of this

algorithm is highly scalable and efficient in terms of processing times. Our research

described in this chapter also appears in [86].

Many algorithms for DEM generation have been described in several studies,

but taking into account the specific characteristics of LiDAR data and the application,

it is important to select appropriate interpolation algorithms, modeling techniques,

and resolution of the DEM. One of our applications involve real-time mapping of

terrain on which the vehicle equipped with LiDAR sensor moves. Using traditional

sequential spatial interpolation algorithms along with our data reduction algorithm

is not sufficient to achieve the goals of real-time terrain mapping. So it makes it

essential to design a multi-core parallel spatial interpolation algorithm which can

be combined with our data reduction algorithm, to address the problem of real-time

terrain mapping. In the next chapter, we describe our multi-core spatial interpolation

algorithm to address this issue.
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CHAPTER 6
SPATIAL DOMAIN : INTERPOLATION

6.1 Introduction

Spatial data interpolation is a crucial technique in Geographical Information

System (GIS), which computes unknown terrain height values of points, based on

the known elevation values of points in the neighborhood ([47]). A natural terrain

surface is a continuous surface comprising of infinite points ([22]). We use point sam-

pling techniques to approximate the accuracy of the generated DEMs to the required

resolutions. The most commonly used DEMs are the grid DEM, the contour line

DEM, and triangular irregular network (TIN) DEM. A grid DEM can be represented

as a matrix, having related data points which capture information of the terrain’s

topography. Every grid cell has a value which denotes the elevation for the entire cell

([80]). Each of the grid cells get this elevation value by interpolating (approximation

procedure) adjacent sampling points. Burrough et al. ([14]) defined interpolation as,

a process of interpreting values at points found in unsampled regions, on the basis

of values at points within the confined area of study. Interpolation techniques in

grid DEMs is used to determine the terrain height value of a point based on the

known elevation values of points in the neighborhood ([47]). Spatial interpolation

methods are defined on the basis of geometric and geo-statistical properties. Spatial

interpolation can be classified in various classes like local, global, deterministic, prob-

abilistic, exact and approximate. Local interpolation techniques just process a part
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of the dataset as opposed to the global techniques, which processes the entire dataset.

Exact interpolation techniques like Kriging, (Inverse Distance Weighted) IDW and

some spline methods, generates DEMs which takes into consideration all the points in

the dataset. Probabilistic interpolation methods use geo-statistics to generate DEMs.

These methods include Kriging, and Fourier analysis. The quality of the generated

DEMs is evaluated based on the difference between the “true” and the interpolated

value at points in entire or selected locations ([12]).

Practically applying spatial interpolation is a computationally expensive task

and it requires powerful computing resources. Spatial interpolation is applied more

to massive data analysis, which requires more processing time. We develop parallel

shared memory spatial interpolation technique, which exploits multiple cores of CPUs.

We conduct comparative studies of the DEM generated by our algorithm, to the

ones generated by traditional sequential approaches, using validation technique, and

also evaluate the comparison using statistical approaches like Root Mean Square

Error (RMSE). We also conduct comparisons of our spatial interpolation with various

interpolation algorithms, and DEM resolutions, to check where our algorithm lies in

terms of performance and quality, in the comprehensive guidelines of this area.

The remainder of this chapter is organized as follows: In Section 6.2, we de-

scribe the related work. We state our contributions in Section 6.3. In Section 6.4, we

describe our LiDAR data interpolation algorithm along with its parallel implemen-

tation. In Section 6.5, we discuss and present our experimental results, followed by

some discussion in Section 6.6.
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6.2 Related Work

There are many spatial interpolation techniques to generate DEMs like, grid

DEM generation technique called Inverse Distance Weighted (IDW), Triangular Ir-

regular Networks (TIN), geo-statistical methods like Kriging, local polynomial, etc.

([22]) showed that generating DEMs using grid DEM techniques has more efficient

storage and manipulation scope. DEMs generated using grids introduces errors, since

the terrain is represented in a discrete fashion. The size of the grid used for gener-

ating DEM is directly proportional to the approximation ratio of the terrain surface

representation. Since LiDAR data is dense, such limitations of grid DEM method can

be eliminated. Kraus et al.([41]) studied complex models to generate DEMs resulting

from hybrid techniques. But in practice, all the DEMs generated from LiDAR are

done using grids techniques ([52]). Due to the availability of large variety of interpo-

lation techniques, questions on which is the most appropriate technique for different

terrains needs to be answered. The authors of ([22, 99, 51]), conducted empirical

studies to answer these questions, and evaluate the affects of various interpolation

techniques on DEM quality. There does not exist any one interpolation technique

which is optimal for all terrain surface data ([23]). IDW interpolation technique is

proved to exhibit better performance when the sampled data has high density. Since

LiDAR data has high density IDW is a preferred choice to generate DEMs ([68, 1]).

In this chapter, we describe our parallel algorithm for spatial interpolation, which

aims towards generating high quality DEMs in less computational time, compared to

traditional approaches.
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6.3 Contribution

We develop a modified IDW spatial interpolation technique, which generates

better or similar quality DEMs in less computational time, compared to traditional

IDW. We design a novel parallel implementation which exploits multi-core architec-

ture of the CPUs to achieve high scalability and efficiency.

6.4 Spatial Interpolation

Spatial data interpolation is a crucial technique in Geographical Information

System (GIS), which computes unknown terrain height values of points, based on

the known elevation values of points in the neighborhood ([47]). Processing massive

spatial data is a computationally expensive and complex process, and traditional

sequential algorithms cannot meet the demand for faster processing speeds along with

maintaining accuracy. In this section, we describe a parallel spatial interpolation

algorithm which is a modification to QuickGrid ([18]) and traditional IDW. The

modification takes place in the algorithm, as well as its implementation, where it

exploits the multi-cores of the CPU to increase the computational speed.

6.4.1 Algorithm

We initialize the algorithm by overlaying a grid of k sq.m. cells (k > 0)

on the LiDAR data, while preserving spatial geo-referencing. We used k = 0.0254

sq. m., for our simulations. Each LiDAR point has x, y and z coordinate, and we

want interpolate for z-values to be assigned to each grid cell. Steps for our spatial

interpolation algorithm are as follows:



104

Figure 6.1: (a) Grid of k sq.m. (k > 0) overlaid on the LiDAR data

(b) Selecting a cut-off radii and assigning weights to grid intersections (c)

Assigning weights to each grid cell

1. Parse through the intersection points of each cell in the grid (shown in Fig-

ure 6.1(a)) in left-right, top-bottom fashion.

2. For each intersection point, we compute and assign a weight as follows:

� Initially select a cut-off radius for the circle whose center is the intersection

point. (It is recommended to choose small cutoff radii for very dense

datasets, compared to less dense datasets.)

� Then divide the circle into eight equal sectors, and choose the closest Li-

DAR points in each sector, if there exist any (shown in Figure 6.1(b)). Set

the grid intersection point to the average of these chosen LiDAR points

weighted by 1/(distance from grid intersection)2.

3. After assigning weights to all the grid intersection points, we assign each grid

cell the average weight of its four surrounding grid intersection points (shown

in Figure 6.1(c)).
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6.4.2 Parallel Implementation

The sequential implementation of the algorithm described in Subsection 6.4.1

is highly inefficient in terms of processing time. Parsing over every grid cell and grid

intersection points individually, multiple times, can be computationally expensive and

time consuming task. In this subsection, we design a parallel implementation for the

above algorithm consisting of two phases: the split phase, where we distribute the

data over multiple cores of a CPU to process it simultaneously, and the merge phase,

where we merge the processed data back together.

Initially, in the split phase, we dedicate a master core which divides the grid

(along with the LiDAR data) into k equal parts, where k is the total number of CPU

cores available for processing. It distributes and assigns each of the k parts of the grid

to each core individually (block assignment), shown in Figure 6.2. Each core then

simultaneously execute the algorithm mentioned in Section 4, for the part of the grid

data that is assigned to it.

Once all the cores have finished their computations, the master core initializes

the merge phase, where the common grid intersection points between two grid parts

are averaged and merged (shown in Figure 6.2), so as to get the original grid with

all grid intersection points computed. Then the master core divides the grid into k

equal parts and assigns each of the k parts individually to each core, which computes

and assigns each grid cell the average weight of its surrounding four grid intersection

points. Scalability tests using 1,2,4,8 and 16 CPU cores and speed-ups are shown in

Section 4.3.
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Figure 6.2: Parallel split and merge phases of our spatial interpolation

algorithm

6.5 Computational Results

In this section, we test our spatial interpolation algorithm with fixed cut-off

1.5 meters, on two different test terrains shown in Figure 5.5, which is our ‘dataset

1’ and Figure 6.3, which is our ‘dataset 2’. Dataset 2 is 200× 500 meters, relatively

flatter with shallow valleys, and less rough with slope angle ranging from 0.07° to

43.8° when compared to dataset 1, which is a mix of deeper valleys, steep slopes and

few flat lands. dataset 2 contains 2.1 million LiDAR points. All the LiDAR data

density reduction is done using the algorithm described in Chapter 5, with β = 90%.
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Figure 6.3: (a) Imagery of study area for dataset 2 (b) Elevation map

of dataset 2 showing terrain with less roughness, shallow valleys and flat

regions

By applying our LiDAR data reduction algorithm to dataset 1, we reduce the data

density to 52%, and when applied to dataset 2 for β = 80% we reduce the data

density to 71%. We then generate DEMs with this reduced LiDAR data, as well as

complete LiDAR dataset using traditional IDW and modified IDW.

To obtain high accuracy in our statistical analysis, we compare the elevation

values of each of the LiDAR points to the corresponding elevation value of the DEMs

generated, rather than checking for few control points. This method is known as val-

idation. RMSEs were calculated (shown in Figure 6.4(b)), to study the performance
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Figure 6.4: (a) Parallel speed-ups for our spatial algorithm (b) RMSE for

IDW and modified IDW at different LiDAR density levels for two datasets

using validation method

of our spatial interpolation algorithm compared to traditional IDW algorithm, for

different LiDAR data density. From our empirical study shown in Figure 6.4(b), we

can conclude the following :

� RMSEs for both the interpolation algorithms increase with decrease in LiDAR

data density for both the datasets.

� RMSEs for the more complex terrain, i.e. dataset 1, is higher than dataset 2,

which is relatively flat and has shallow valleys and less roughness.

� Quality of results obtained by modified IDW is at least as good as traditional

IDW for reduced density, complex terrain (Ex. 52% reduced LiDAR dataset 1,

gives an RMSE of 0.22 meters for both the algorithms).

� Quality of results obtained by modified IDW is better than traditional IDW for
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dense, complex and relatively flatter terrains.

� Time to generate DEMs using modified IDW, is much less than that used by

sequential traditional IDW.

As shown in Figure 6.4(a), using a 16 core Xeon Phi processor we speed-up the running

time of algorithm by 13.5X i.e. 190 seconds using single core versus 14 seconds.

6.6 Discussion

In this chapter we present our modified IDW spatial interpolation algorithm

which achieves results which are at least as good as traditional IDW for reduced

density, complex terrain, and better than traditional IDW for dense, complex and

relatively flatter terrains. It also achieves good scalability, and takes much less time

to generate DEMs compared to traditional IDW. Our parallel IDW algorithm is inte-

grated with our data reduction algorithm and used as a core subroutine in streaming

based applications.
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CHAPTER 7
EXPERIMENTAL ENVIRONMENT

7.1 Chapter 1 : Biological Domain

We implemented the BLLP algorithm using C++ and graph libraries. All

the simulations are done on Processor-Intel Core i7 3770 3.4GHz and Turbo Boost

enabled Memory-16GB DDR3-1600 RAM 500G 3GB/s 7200 RPM; Linux machines.

All the plots are done using Gephi and Gnuplot.

7.2 Chapter 3 : Social Networks Domain - Shared Memory

We implemented the MCML algorithm using C++ and boost graph libraries.

The simulations for the benchmark datasets and the Facebook forum dataset are done

on Processor-Intel Core i73770, 3.4GHz and Turbo Boost enabled Memory-16GB

DDR3 − 1600 RAM; Linux machines. These machines have 4 cores with hyper-

threading enabled. The simulations for the Amazon dataset is done on a system

running on CentOS 6.3, a Linux operating system based on Red Hat Linux, with

512GB Nodes, 32 GB RAM, 2.9GHz, and 16 Xeon Phi cores. All the results obtained

are average of 5 runs. We use OpenMP directives for implementing parallel MCML

algorithm. All the plots are done using Gephi and Gnuplot.

7.3 Chapter 4 : Social Networks Domain - Distributed Memory

The performance of our hybrid algorithm is evaluated by executing series of

experiments on the High Performance Neon Cluster at University of Iowa. We im-
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plemented the hybrid algorithm using C++ and boost graph libraries. We also use

parallel implementation of PMETIS which was developed in GNU C++ MPI. We use

8 heterogeneous standard machines each having 64GB RAM, 16 Xeon Phi cores and

2.6 GHz processor. All the experiments were executed as a single batch command

comprising of at most 8 compute machines having 16 cores each. Each experiment is

executed 3 times and average of the results from these runs are reported to preserve

accuracy and consistency.

7.4 Chapter 5 & 6 : Spatial Domain - Data Reduction & Interpolation

We implemented the LiDAR data reduction algorithm and modified IDW using

C++. We use OpenMP/p-threads directives for implementing parallel versions of the

above algorithms. The simulations for the LiDAR dataset is done on a system running

on CentOS 6.3, a Linux operating system based on Red Hat Linux, with 512GB

Nodes, 32 GB RAM, 2.9GHz, and 16 Xeon Phi cores. The LiDAR point cloud,

slope-map and slope statistics are generated and visualized using ArcGIS, ArcMap

v10.3. IDW algorithm is used to generate DEMs for reduced LiDAR data (not our

new spatial interpolation algorithm). We use QuickGrid tool to visualize DEM’s

generated by our algorithms. All the plots are done using Gnuplot and LibreDraw.

All the results obtained are average of five runs.
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[71] Arnau Prat-Pérez, David Dominguez-Sal, and Josep-LLuis Larriba-Pey. High

quality, scalable and parallel community detection for large real graphs. In Pro-

ceedings of the 23rd international conference on World wide web, pages 225–236.

ACM, 2014.
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