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ABSTRACT

Robotic grasping of deformable objects is inherently different from that of rigid objects, and

is an under-researched area. Difficulties arise not only from expensive deformable modeling,

but also from the changing object geometry under grasping force.

This dissertation studies strategies of grasping deformable objects using two robotic fin-

gers. Discovering the inapplicability of the traditional force-centered grasping strategies for

rigid objects, I have designed an approach for grasping deformable objects that specifies finger

displacements. This not only ensures equilibrium under the elasticity theory, but also enhances

stability and simplifies finger control in the implementation.

Deformable modeling is carried out using the Finite Element Method (FEM), for which

our analysis establishes uniqueness of the shape of a grasped object given the finger displace-

ments. Meanwhile, preprocessing based on the Singular Value Decomposition greatly reduces

the complexity of computation. Grasping strategies have been investigated on a range of ob-

jects, including 2D hollow and solid, and 3D ones. With a hollow 2D object, the grasping

fingers make point contacts. The condition of a successful grasp is that the friction cones at

the two contacts must contain the line segment through them before and after the deformation,

indicating equilibrium throughout the grasping process. With a solid planar object, the fingers

make area contacts. Grasp computation is carried out by an event-driven algorithm, which has

been validated by our robot experiments. For 3D objects, a simple squeeze-and-test strategy

has been designed to lift them off the supporting table against gravity with a method that

predicts the squeeze amounts.

In reality, objects’ shapes are affected to various degrees by gravity, but such a effect has

been ignored in the FEM-based modeling. For accuracy, the gravity-free shape of an object is

sometimes needed. I have introduced an iterative algorithm that will converge to such shape

as a ”fixed point”.
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In the last part of my thesis, I study planning of the finger squeeze paths, not to limited

by straight movements. The objective is to not only enlarge the range of finger placements

for successful grasps, but also improve stability and energy efficiency. I have designed a path

planning algorithm based on the Rapidly-exploring Random Trees (RRT) that is able to achieve

certain optimalities.
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CHAPTER 1. INTRODUCTION

Grasping deformable objects is quite different from grasping rigid ones. Two types of

analysis have been developed for the latter. Form closure [37] means the object cannot move

given the fingers are fixed, while force closure [32] grasps resist any arbitrary wrench and keep

the object in equilibrium. However, deformable objects have infinite degrees of freedom, which

makes form closure impossible. On the other hand, the grasp wrench space changes as the

object deforms, which makes it impossible to conduct any conventional force closure analysis

as well.

Grasping deformable objects is an under-researched area, primarily due to the reasons from

both mechanics and computation. More complicated than rigid body grasping, deformable

object grasping must keep the grasped object in equilibrium at every grasping configuration

rather than just one scenario. The changing geometry of the object under grasp makes it nec-

essary to track the contact configuration. Physics-based deformation modeling usually depends

on FEM or BEM, which introduces big linear systems that usually takes cubic time to solve in

terms of the object’s resolution.

When the deformation is small, the stress-strain relationship of every node of the deformable

objects can be modeled using the linear elasticity theory, in which the applied force and the

displacement of the contact are strictly related and thus cannot be both specified at the same

time. In contrary to the tradition of specifying the grasping force, this dissertation chooses to

specify desired displacements of the fingers for the following reasons:

1. In practice, it is much easier to control the finger’s displacement than the force it exerted.

Controlling the robotic hands’ movement or locations is by far the most common, direct,

easy way of manipulation.
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2. The exact grasping force, especially that in deformation process, is not very much con-

cerned, as long as the object can be grasped.

3. Specifying the displacement gives rise to certain constraints that are sufficient for deter-

mining the deformation and corresponding force.

Computation of deformed shape based on linear elasticity comes down to solving either

a system of fourth order differential equations, which has no closed-form solution in general,

or practically, a large linear system using FEM or BEM. The latter takes subcubic time in

the number of discretization nodes, which is typically high for accurate modeling. A large

deformation can only be modeled by nonlinear elasticity and computed using the even more

expensive nonlinear FEM.

The lack of a closed form description of the deformed shape implies that (part of) the shape

needs to be computed repeatedly with hypothesized finger placements in order to compute a

single grasp. Computational efficiency has thus become a bottleneck, even more so for grasp

optimization and real-time implementation. Whether a finger placement with certain finger

displacement can form a grasp without slip depends on the local geometry of the contacts.

Therefore global deformation is not needed. The stiffness matrix of the object stays the same

for different grasp tests, although the boundary conditions may vary. An improvement in

computation is possible by preprocessing the stiffness matrix.

Grasping deformable 3D objects differs from the 2D version of the task in several aspects

beyond just adding one more dimension. Gravity can no longer be ignored given the volume

(and thus the weight) of a 3D object. Firstly, it directly affects the shape of the object as it rests

on the supporting surface. Secondly, when the object is being lifted, complex interactions take

place in the contact regions inside which every contact could slide in a continuum of directions.

Like our handling of the 2D grasping task, we sequence the entire operation into periods

within each of which the contact configuration under a finite element discretization does not

change. During a single period, the displacements of the contact nodes are either known or

estimable from the finger movements. From them we can uniquely determine the object’s

deformation, which in turn causes new change in the contact configuration for the next period.



3

The finite element method (FEM) [8] often constructs the stiffness matrix based on the

body’s shape, neglecting the fact that it is already deformed under gravity, and then applies

the matrix to deformable modeling with or without accounting for the gravitational force.

However, nonlinearity of the stiffness matrix in the body geometry suggests that accurate

modeling of the effect of gravity on deformation, more prominent over a 3D solid, needs to

resort to the stiffness matrix under zero gravity. A fixed point iteration method was used to

restore the gravity-free shape out of the observed shape, deformed under gravity.

When a human hand grasps an object, the movements of the fingers trace out trajectories,

which, more often than not, are curved rather than straight. This observation indicates that

curved grasping paths may be superior to straight ones, and planning such trajectories help

improve the grasping power. The problem of finding out such curves is solved in two steps.

Firstly, a goal finger displacement is calculated. Secondly, a piecewise straight path is planned

in a high dimensional configuration space from one point, indicating zero finger displacement,

to another, indicating the goal displacement. An algorithm using Rapidly-exploring Random

Trees (RRT) was introduced to plan such trajectories. Compared with performing straight

squeeze, the grasping fingers following the planned trajectories may not only achieve a grasp at

the places where straight squeezing cannot, but also grasp the object with certain optimalities.

1.1 Assumptions

In this dissertation, I deal with only objects that can be described by linear elasticity

theory with small deformations. The grasping process is treated as a quasi-static process and

no dynamics is considered. More specifically, we make the following assumptions.

(A1) The object to be grasped is isotropic and can be described by linear elasticity theory.

(A2) The deformation is small enough to be handled by linear elasticity theory.

(A3) The grasping process is quasi-static and no dynamics is considered.
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1.2 Dissertation Outline

This dissertation describes several deformable object grasping strategies. Chapter 2 reviews

the related research that has been done. Chapter 3 will briefly review linear elasticity and FEM

with derivations of some basic results to be used later. In Chapter 4, we will show that it is

possible to grasp a deformable object by squeezing it with two fingers moving toward each

other along a straight line, as long as the connection line of the two contacts stay inside the

contact friction cones before and after deformation. We will also show that actions other than

pure squeeze can also result in grasps if so does the corresponding pure squeeze. An O(n)

time algorithm for grasp testing is presented, where n is the number of vertices in FEM, after

obtaining the singular value decomposition (SVD) of the object’s stiffness matrix. The cost

of finding all grasps reduces to O(n2). It turns out that the pre-process using Singular Value

Decomposition (SVD), which takes O(n3) time, dominates the overall computation. Chapter 5

introduces the contact mode analysis and event driven algorithm to grasp the 2D solid objects.

Chapter 6 gives an algorithm to squeeze and lift 3D objects deformed under gravity. Chapter 7

studies the problem of obtaining the original shape from gravity-influenced shape observed for

precise modeling. Chapter 8 introduces algorithms that plans the grasping fingers’ trajectories

to enhance the grasping ability and efficiency. Discussion will follow in Chapter 9 to conclude

the dissertation.
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CHAPTER 2. REVIEW OF LITERATURE

Rigid body grasping is an extensively studied area rich with theoretical analyses, algorith-

mic syntheses, and implementations with robotic hands [2]. Form closure grasp eliminates

the degree of freedoms of the grasped objct [37]. The upper bounds of the sufficient num-

ber of contacts is given in [30] [26]. Algorithms were developed for computing form closure

grasps [4] [44].

Two-finger force-closure grasps of 2-D objects are well understood and efficiently computable

for polygons [32] and piecewise-smooth curved shapes [34]. Algorithms for 3D objects are given

in [35].

The task ellipsoid [22] notion formalized the idea that the choice of a grasp ought to be based

on its capacity to generate wrenches that were relevant to the task. Grasp quality measures for

robotic hands with multiple fingers considered selection of internal grasping forces that were

furthest from violating any closure, friction, or mechanical constraints [18], or were directly

derived from the grasp matrix which characterized the wrench space of a grasp [22]. Grasp

metrics for polygons and polyhedra often try to maximize the worst-case external force that

could be resisted by a unit grasping force [25] [28]. A summary was offered in [29] on various

grasp metrics, addressing the trade-offs among grasp goodness, object geometry, the number of

fingers, and the computational complexity for grasp synthesis. Some recent work [5] [3] focused

on minimizing the maximum magnitude of the applied force at any frictional contact of a grasp

in order to maintain equilibrium against a known adversary wrench, via employing semidefinite

programming techniques.

Much fewer work exists on grasping of deformable objects, which needs to deal with accurate

modeling of deformations caused by the grasping fingers. The concept of bounded force-closure

was proposed in [47]. Visual and tactile information was effective on controlling the motion of a
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grasped deformable object [14]. The deformation-space (D-space) approach [12] characterized

the optimal grasp of a deformable part as one where the potential energy needed to release the

part equals the amount needed to squeeze it to its elastic limit– hence the object could not

escape.

It has been a very active area on manipulation of flexible linear objects such as wires or

ropes. There are works on static modeling [46], knotting and unknotting [40], [27], [19], [45],

pickup [36], and path planning [31]. The operations, however, can be carried out without a

serious need for deformable modeling.

In [41], a model for deformable contact regions under a grasp was introduced to predict

normal and tangential contact forces with no concern of grasp computation or modeling of

global deformation. Simulation accuracy and efficiency could be improved based on derived

geometric properties at deformable contact [24]. Deformation modeling of shell-like objects

that have been grasped is studied in [43].

More thorough investigations were conducted by the mechanics community on the elastic

contact problem concerned with two deformable bodies under a known applied load. The grad-

ual nature of the physical process suggests iterative updates of the growing contact region(s).

Solutions based on FEM were given to objects with [33] or without [9] friction.

Robotic path planning is an extensively studied area. We refer to [6] for a survey on this

topic. Particularly the Rapidly-exploring Random Trees (RRT) [20] algorithm was introduced

to find a path between known origin and goal.

This dissertation includes parts or all of several published works including the author.

The grasping force, instead of finger displacements, was specified in [16]. Extra constraints,

which lead to unrealistic requirements, had to be imposed for computing the deformed shape.

The corresponding grasp space (i.e., the set of feasible finger placements) was 1-D, and the

synthesis algorithm was too inefficient to be applicable to solid 2-D objects. In [13], the idea

of displacement-based grasp was proposed and an event-based algorithm was introduced to

calculate the grasping of solid 2D objects. The extended version of this work is [15]. The

optimality of the grasping was studied based on an energy criteria [17]. The concept of stable

squeeze and pure squeeze were introduced.
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CHAPTER 3. FINITE ELEMENT METHOD

The first part of this chapter reviews the 2D linear elasticity. The displacement field which

does not generate strain energy is characterized. The second part describes the Finite Element

Method used to model the deformation. The null space of the stiffness matrix is shown. A

Singular Value Decomposition analysis is performed on the stiffness matrix in the third part.

The result will later be used in our design of a grasping strategy.

3.1 Linear Plane Elasticity

Consider a thin flat object as is shown in Figure 3.1, the thickness h of which is dominated

by the other two dimensions. The object is bounded by a generalized cylinder. Here we consider

the plane stress [10] parallel to the xy-plane, which assumes zero normal stress σz and shear

stresses τxz and τyz in the xz and yz planes.

Figure 3.1: Planar object

Under a displacement field (u(x, y), v(x, y)), every point of the object moves to (x+u, y+v).

The normal strains εx, εy and the shearing strain γxy within every cross section are given below:

εx =
∂u

∂x
,

εy =
∂v

∂y
, (3.1)
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γxy =
∂u

∂y
+
∂v

∂x
.

The strain energy can be derived as [7]:

U =
h

2

∫∫
S

(
E

1− v2
(ε2
x + 2vεxεy + ε2

y) +
E

2(1 + v)
γ2
xy) dxdy, (3.2)

where E and v are Young’s modulus and Poisson’s ratio of the material, resp., with E > 0

and −1 ≤ v ≤ 1
2 .

Theorem 1. Under linear elasticity, any displacement field (u(x, y), v(x, y)) that yields zero

strain energy is linearly spanned by three fields: (1, 0), (0, 1) and (−y, x).

Proof. Suppose U = 0 under a displacement field (u, v). From (3.2) we see that the strains εx, εy

and γxy must vanish everywhere. From (3.1),

u =

∫
εx dx+ f(y) =

∫
0 dx+ f(y) = f(y),

v =

∫
εy dy + g(x) =

∫
0 dy + g(x) = g(x),

where f and g are arbitrary single variable functions. Since γxy = 0, du/dy+ dv/dx = f ′(y) +

g′(x) = 0 for all (x, y) in the body. Given f and g do not share variable, f ′(y) = −g′(x) = c

for some constant c. Integration of the two derivatives gives

(u, v) = c(−y, x) + d(1, 0) + e(0, 1),

for some constants d and e.

Displacement fields that generate no strain energy are essentially rigid body transforma-

tions. The fields (1, 0) and (0, 1) represent translation in x- and y- directions resp. The

field (−y, x), which displays every point (x, y) in the direction orthogonal to (x, y), corresponds

to rotation around origin. Note that, as is shown in Figure 3.2, it approximates rotation well

only when the rotation is small enough. When it is not, such field also inflates the original shape.

When such field is large enough, the change of the orientation of the object approaches π/2.

Such deviation from the real rotation indicates certain limit of linear elasticity in modeling the

real world.
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(a)

(b) (c)

Figure 3.2: The rotation field under linear elasticity. The red shape is original shape, while the

blue one shows the shape under certain rotation field. Denote the original shape as S and the

rotation field as r, the blue shapes can be expressed as S + λr, where λ is a real number. The

figures (a),(b) and (c) show the resulting shape when λ is very small, certain value that is note

very small and approaching infinity, resp. (b) and (c) are shrunk to fit.

3.2 Stiffness Matrix

For the rest part of the chapter, all vectors are column vectors and all indices in a vector

or matrix start at 0.

Closed forms of the strain energy integrals do not exist for most objects. The Finite

Element Method (FEM) is widely used to compute it (and the deformation). The object’s cross

section is discretized into a finite number of elements(e.g. triangles) with vertices p0, · · · ,pn−1,

where pk = (pkx, pky)
T , for 0 ≤ k ≤ n− 1. Among these vertices, p0, · · · ,pm−1 where m ≤ n,

are on the boundary in counterclockwise order. One example is shown in Figure 3.3.

Let ∆ = (δT0 , · · · , δTn−1)T , where δk = (δkx, δky)
T , be the displacement of pk, for 0 ≤ k ≤

n − 1, the displacement of any interior point of an element can be linearly interpolated over

those of the vertices of the element. The displacement field and the deformed shape are thus

uniquely determined by ∆. We first obtain the strain energies of individual elements, and then
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Figure 3.3: Triangular mesh with 3,120 vertices, 156 of which are on the boundary.

assemble them into the total strain energy:

U =
1

2
∆TK∆, (3.3)

where K is the 2n × 2n stiffness matrix. The fact that K is quadratic form indicates the

symmetry of K, and the non-negativeness of strain energy ensures that K is positive semi-

definite.

The strain energy U is zero if and only if K∆ = 0, that is, ∆ is in the null space of K. Such

a vector ∆ gives the form of a rigid body displacement [11, pp. 48]. Meanwhile, by Theorem 1,

the displacement field generating zero strain energy is spanned by (−y, x), (0, 1) and (1, 0).

Under linear interpolation, it indicates that the null space of K, where lies ∆, is spanned by

the following three vectors:

vx =



1

0

...

1

0


, vy =



0

1

...

0

1


, vr =



−p0y

p0x

...

−pn−1,y

pn−1,x


. (3.4)

Here vx and vy translate all vertices by unit distance in the x- and y-directions, resp., while vr

rotates them about the origin. Note that vr is orthogonal to vx and vy if the geometric center

of the object is placed at origin.
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Theorem 2. The stiffness matrix K of an (unconstrained) object with n discretization vertices

has rank 2n− 3.

Following from Lemma 2, the matrix K has 2n − 3 positive eigenvalues λ0, · · · , λ2n−4.

Let u0, · · · ,u2n−4 be the corresponding unit eigenvectors, and

u2n−3 =
vx
||vx||

,

u2n−2 =
vy
||vy||

, (3.5)

u2n−1 =
z

||z|| .

where z = vr − (vr · u2n−3)u2n−3 − (vr · u2n−2)u2n−2, correspond to the zero eigenvalues. It

follows from the Spectral Theorem [42] that

K = UΛUT , (3.6)

where U = (u0, · · · ,u2n−1) is orthonormal, and Λ = diag(λ0, · · · , λ2n−4, 0, 0, 0).

Suppose the object is in equilibrium with the configuration (∆,F). Since only boundary

vertices take external force, F = (fT0 , · · · , fTm−1, 0, · · · , 0)T . According to Virtual Work Princi-

ple [11, pp. 136], the virtual work done by the equilibrium force F through a virtual displace-

ment1 is equal to the change of potential energy of the object under such virtual displacement,

which leads to

K∆ = F. (3.7)

In equation (3.7), we have 4n variables, 2n from ∆ and 2n from F, and we need half of them

to be known to solve for the other half. Note that since K is singular, if improper variables

are picked as known, for example, the 2n variables of F, we will get a space of the unknown

variables rather than a specific solution. In the next chapter, constraints generated by the

grasping strategy will be imposed so that the solution to the system is unique.

3.3 BEM Formulation

The Finite Element Method provides a way of formulating the problem by discretizing

the object. Such method can approach the true solution when the resolution is big enough.

1The virtual displacement is an admissible imaginary infinitesimal displacement that is superposed to the
equilibrium deformation.
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However, when dealing with solid objects, FEM creates a linear system with the size quadratic

to the resolution, which could be very big. In this section, another way of dealing with solid

objects, Boundary Element Method (BEM), is introduced. Such method introduces a linear

system only quadratic to the boundary resolution of the object, which greatly increased the

computational efficiency. However, such method may still be biased even with high resolution.

3.3.1 Navier’s Equations and Kelvin’s Foundamental Solution

Consider an infinite elastic thin 2D plate, which is only able to deform in x- and y- direction.

According to linear elasticity theory , when such deformed object achieves equilibrium, we may

get Navier’s equations of equilibrium: ∇
2u+ 1+ν

1−ν

(
∂2u
∂x2 + ∂2v

∂x∂y

)
+ 1

Gbx = 0,

∇2v + 1+ν
1−ν

(
∂2u
∂x∂y + ∂2v

∂y2

)
+ 1

Gby = 0,
(3.8)

where u, v are displacements in x, y directions respectively; ν is the Poisson ratio of the object;

Here G = E
2(1+ν) is shear modulus with E being Young’s Modulus; bi is the body force, or

exerted traction on the i− direction.

Consider a concentrated unit force F(Fξ, Fη) applied at pointQ(ξ, η) of the plane. According

to equation (3.8), the resulting displacement and traction at a field point P (x, y) are U∗ij(Q,P ) = 1
8π(1−ν)G [(4ν − 3)δij ln r + r,ir,j)] ,

T ∗ij(Q,P ) = −1
4π(1−ν)r{[(1− 2ν)δij + 2r,ir,j ]r,n − (1− 2ν)(r,inj − r,jni)},

(3.9)

where i, j = 1, 2; U∗ij(Q,P ), T ∗ij(Q,P ) denotes the displacement and traction resp. in j direction

at field point P , due to a unit load applied at the source point Q in the i direction; δij is the

Kronecker delta, with value 1 when i = j and 0 when i 6= j; with r = P − Q, r is |r| and r,k

denotes the kth component of r; r,n = r,xnx+r,yny expresses the derivative of r in the direction

of the outward normal to the curve (boundary) passing through the point Q.
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3.3.2 Integral Representation of the Problem

According to Betti’s reciprocal theorem of structural analysis, we have∫
Γ
tiw̄idΓ +

∫
Ω
Fiw̄idΩ =

∫
Γ
t̄iuidΓ +

∫
Ω
F̄iuidΩ, (3.10)

where Ω represents the 2D elastic region considered with Γ as its boundary curve; w̄i is an

arbitrary weighting function which can be viewed as displacement field; The corresponding

traction and body force fields are t̄i and F̄ . Substitute in the fundamental solution, we get the

Somigliana’s identity:∫
Γ
ti(P )U∗ij(Q,P )dΓ +

∫
Ω
Fi(P )U∗ij(Q,P )dΩ =

∫
Γ
ui(P )T ∗ij(Q,P )dΓ +

∫
Ω
ui(P )∆(Q,P )δijdΩ.

(3.11)

With body force being neglected, the second term vanishes. By some derivation on the last

term, equation (3.11) becomes

εδijui(Q) =

∫
Γ

[ui(P )T ∗ij(Q,P )− ti(P )U∗ij(Q,P )]dΓ(P ), (3.12)

where ε is associated with the location of point Q and smoothness of the boundary Γ. When Q is

on smooth boundary, ε = 0.5. equation (3.12) is the basic equation needed in BEM formulation.

3.3.3 Discretization and BEM Matrix

Discretize the boundary into N segments. Denote the position, displacement and traction

by pi, ui and ti resp. Interpolate the inner points using linear interpolation:

p(ξ) = N1(ξ)p1 +N2(ξ)p2,

u(ξ) = N1(ξ)u1 +N2(ξ)u2,

t(ξ) = N1(ξ)t1 +N2(ξ)t2,

(3.13)

where

N1(ξ) = 0.5(1− ξ),

N2(ξ) = 0.5(1 + ξ).
(3.14)
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After discretization, equation (3.12) can be written as sum of piecewise integration. Locate

the source point at point i, we have

1

2
{u}i +

N∑
j=1

∫
Γj

[Ĥ]ij [N ]dΓj{u}j =
N∑
j=1

∫
Γj

[G]ij [N ]dΓj{t}j , (3.15)

where {u}i = {ui vi ui+1 vi+1}T and {t}i = {tix tiy ti+1
x ti+1

y }T denote the displacement and

traction at the i-th and i+ 1-th nodes; and

[G]ij =

 U∗ξx(q, pi) U∗ηx(q, pi)

U∗ξy(q, pi) U∗ηy(q, pi)

 , (3.16)

[Ĥ]ij =

 T ∗ξx(q, pi) T ∗ηx(q, pi)

T ∗ξy(q, pi) T ∗ηy(q, pi)

 , (3.17)

[N ] =

 N1 0 N2 0

0 N1 0 N2

 . (3.18)

Let [Hi] = 1
2{u}i +

∑N
j=1

∫
Γj

[Ĥ]ij [N ]dΓj and [Gi] =
∑N

j=1 [G]ij [N ]dΓj , we have

[Hi]{u} = [Gi]{t}.

By placing the source point at every node of discretization, we get N such 2 × 2N sub-

matrices. Forming them into big matrices, we have

[H]{u} = [G]{t}. (3.19)

3.3.4 Singular Integration

Note that equation (3.15) contains 2 types of singularity. The singularity happens when

the source point lies on the segment under integration, either on the first nodal point or on the

second one of the segment. The one associated with G is Logarithmic singularity,

g1 =

∫
Γj

N1 ln r dsq =
lj
4

∫ 1

−1
(1− ξ) ln 0.5lj + (1− ξ) ln |ξJ − ξ| dξ, (3.20)

g2 =

∫
Γj

N2 ln r dsq =
lj
4

∫ 1

−1
(1 + ξ) ln 0.5lj + (1 + ξ) ln |ξJ − ξ| dξ, (3.21)
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where ξJ = ±1 denotes the position of the source point. Logarithmic singularity can still be

calculated in theory. Take g1 for example, when ξJ = −1,

g1 =
lj
2

ln
lj
2

+
lj
2

∫ 1

−1
(1− ξ) ln(1 + ξ) d(ξ + 1)

=
lj
2

ln
lj
2

+
lj
4

(1− ξ2) ln(1 + ξ)|1−1 −
lj
4

∫ 1

−1
(1 + ξ)(

1− ξ
ξ + 1

− ln(1 + ξ)) dξ

=
lj
2

ln
lj
2
− lj

4

∫ 1

−1
(1− ξ) dξ +

lj
4

∫ 1

−1
(1 + ξ) ln(1 + ξ) dξ

=
lj
2

ln
lj
2
− lj

2
+
lj
16

∫ 4

0
ln t dt, with t = (ξ + 1)2

=
lj
2

(ln lj − 1.5). (3.22)

Similarly, we get

g2 =
lj
2

(ln lj − 0.5). (3.23)

And when ξJ = 1,

g1 =
lj
2

(ln lj − 0.5)g2 =
lj
2

(ln lj − 1.5). (3.24)

The singularity associated with H is strong singularity,

h1 =

∫
Γj

N1

r
dsq =

1

2

∫ 1

−1

1− ξ
|ξJ − ξ|

dξ, (3.25)

h2 =

∫
Γj

N2

r
dsq =

1

2

∫ 1

−1

1 + ξ

|ξJ − ξ|
dξ. (3.26)

It is easy to see that

1. when ξJ = −1, h1 is singular while h2 = 1;

2. when ξJ = 1, h2 is singular while h1 = 1.

The result of this singularity is that the 2× 2 matrices on the diagonal of H can not be com-

puted. Luckily we can avoid direct evaluation using rigid body motion.

Consider equation (3.19). Let u be the vector of unit displacement vector along x-, y- axis

respectively. Such movement is rigid body motion and should not give rise to any traction on
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the boundary. So if we let {t} = 0. Then [H]{u} = 0. According to this, it is easy to obtain

the diagonal entries, h2i,2i h2i,2i+1

h2i+1,2i h2i+1,2i+1

 =

 −∑N
j 6=i h2i,2j −∑N

j 6=i h2i,2j+1

−∑N
j 6=i h2i+1,2j −

∑N
j 6=i h2i+1,2j+1

 . (3.27)

For the part where integration is not singular, a self-adjustable Gauss quadrature integration

scheme is employed.

3.3.5 Boundary Conditions

Generally, the boundary conditions can be classified into the following four types:

1. u, v on Γ1

2. u, ty on Γ2

3. tx, v on Γ3

4. tx, ty on Γ4

where Γ = Γ1 ∪Γ2 ∪Γ3 ∪Γ4. Of course any combination of the 4 types of boundary conditions

may be exerted on the object. In this case, we want to maintain the tangent no rotation

condition on both finger contacts. In a direct method as BEM, Lagrange multiplier as a way of

exerting boundary conditions is not desired. As a compromise, we manipulate the deformation

of the nodal points which define the segment where contact finger is located. With bottom and

top finger locating on segment b and t resp., let the boundary condition be:

(ub, vb) = (ub+1, vb+1) = 0, (3.28)

(ut, vt) = (ut+1, vt+1) = cd, (3.29)

txi = tyi = 0, (3.30)

where d is the unit vector from center of segment t to that of segment b; c is a constant; i is

the index of nodal points that are not associated with segment b or t.
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CHAPTER 4. DISPLACEMENT-BASED GRASPS

The following two Chapters 4 and 5 focus on how to grasp planar objects without concerning

any body force, e.g. gravity. The contacts between fingers and objects are frictional. So the

following assumptions are made.

(A1) The object to be grasped is either planar or thin 21
2D.

(A2) Gravity is ignored as the object lies in a horizontal supporting plane.

(A3) Two grasping fingers are in the same plane, and make point contacts with the object in

the presence of friction.

In this Chapter, I will focus on hollow objects with point contact with the fingers.

4.1 The Grasping Problem

Figure 4.1 shows a grasp achieved by squeezing an object. The action is equivalent to

keeping one finger still and stuck to its contact point, say, q, while translating the other finger

toward q without slip at its contact point p.

To grasp the deformable object in Figure 4.1, the finger placement G(p,q) should prevent

any Euclidean motion such that the only possible displacement is deformation. In presence

of friction, this requires the grasp to be force closure if the object were rigid. By Nguyen’s

result [32], the segment pq in Figure 4.1 must lie inside the friction cones at p and q on the

object’s original shape.

If no contact slips, the same finger placement exerting the same forces also needs to maintain

equilibrium over the deformed shape of the object. Suppose under the deformation the contact
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Figure 4.1: Squeeze grasp

points p and q have moved to p̃ and q̃, resp. The segment p̃q̃ must lie inside the friction cones

at p̃ and q̃ on the object’s post-deformation shape.

In rigid body grasping synthesis and analysis, people tend to specify the grasping force.

However, specifying force is no longer viable in grasping deformable objects. Not only does

such approach fail to constrain the object from free homogeneous transformations, but also

introduce instability in the grasp due to similarity to reverse perpendulum.

We choose to specify the displacement of the grasping fingers over the exerted force, based

on mainly, but not limit to, the following reasons:

1. in practice, it is much easier to command a robot finger to move to certain locations,

than to exert a certain amount of force;

2. the object is fully constrained under certain specified finger displacements, and hence the

grasping stability is guaranteed;

3. the object under grasp will alway be in equilibrium;

4. the magnitude of the grasping force is not much of our concern as long as the object is

grasped.

In this section, the idea of displacement based grasp will be illustrated. The first part

pictured the squeeze grasp of an object. The second part computes the deformation induced
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by the displacement of grasping fingers. The third part analyzes and defines the squeeze grasp.

The last part extended the squeeze grasp to be general two-finger displacement based grasp.

4.1.1 Scenario of Squeeze Grasp

In the 2D case, two fingers suffice grasping an object. The simplest finger displacements in

grasping objects is two fingers moving towards each other.

As shown in Figure 4.2, we place two fingers at p0 and pi. The finger at p0 is kept still,

while the other finger at pi squeezes the object for a grip. Without loss of generality, we

place p0 at the origin and align the positive y-axis with −−→p0pi. The remaining boundary points

are not in contact with anything, thus no forces are applied. So

fk = 0, (4.1)

for 1 ≤ k ≤ n− 1 with k 6= i. The force vector is now

F =



f0

0

...

0

fi

0

...

0



. (4.2)

Proposition 1. The forces exerted by the two fingers are opposite to each other, that is, f0+fi =

0.

Proof. Since vx and vy are in the null space of K, they are orthogonal to the eigenvectors

corresponding to non-zero eigenvalues. Substitute equation (3.6) into (3.7),

UΛUT∆ = F. (4.3)
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Figure 4.2: Translation of pi towards p0.

Left multiply vTx on both sides of the above equation and substitute equation (4.2) in, the left

side vanishes, yielding

0 = (1, 0, · · · , 1, 0)



f0

0

...

0

fi

0

...

0



,

or equivalently, (1, 0) · (f0 + fi) = 0. Similarly, multiplications of vTy on equation (4.3) lead

to (0, 1) · (f0 + fi) = 0. Thus we have f0 + fi = 0.

From now on, we will write f0 = −f and fi = f .

4.2 Deformation Due to Contact Displacement

It is not always possible to squeeze an object. Two necessary conditions for squeezing the

object are
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1) the two fingers can maintain its equilibrium before and after the deformation that would

result from such a squeeze, and

2) no slip happens at either finger contact.

Our strategy is to first look at how the object deforms under constraints that assume condi-

tion 2, and then verify the consistency between both conditions and the computed deformation

under them.

The stationary finger in contact with the object at p0 indicates

δ0 = 0. (4.4)

This eliminates vx and vy from the solution space of equation (3.7) because translations

are now prohibited. The vector, now with p0x = p0y = 0, represents a rotation about p0—the

only rigid body motion left. In equation (3.7), we eliminate the first two rows and columns

from K, and the first two elements each from ∆ and F, obtaining

K ′∆′ = F ′, (4.5)

where ∆′ = (δT1 , · · · , δTn−1) and F ′ = (0, · · · , 0, fT , 0, · · · , 0)T . The null space of K ′ is spanned

by the vector1

vr =



−p1y

p1x

...

−pn−1,y

pn−1,x


. (4.6)

The (2n− 2)× (2n− 2) matrix K ′ is symmetric and positive semi-definite, with rank 2n− 3,

and can be spectrum-decomposed as:

K ′ =
2n−3∑
i=0

λ′iu
′
iu
′T
i , (4.7)

where λ′i’s are eigenvalues of K ′ with λ′2n−3 = 0, and u′i’s are corresponding eigenvectors,

with u′2n−3 = v′r/||v′r||.
1Note that pix = 0 in the coordinate system in Figure 4.2.
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Proposition 2. The contact force f exerted at pi under constraint (4.4) is collinear with the

segment p0pi.

Proof. Like what we do in proving Proposition 1, we substitute equation (4.7) into (4.5), and

multiply both sides of the resulting equation with u
′T
2n−3, obtaining

0 = u
′T
2n−3F

′,

or equivalently, v
′T
r F′ = 0, which by equation (4.6) reduces to (−piy, pix)f = 0. Thus f and

p0pi are colinear.

Under Proposition 2, we conveniently represent the squeezing force exerted by the moving

finger as f = (0,−f)T with f being its magnitude. So

F′ =



0

...

0

−f

0

...

0



,

where the entry −f has index 2i− 1.

As an important part of our strategy, we specify the finger displacement. Such specification

gives us another boundary condition:

δi = d =

 dx

dy

 . (4.8)
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From the above notation, the displacement vector ∆′ can be re-written in the form of each

point’s displacement:

∆′ =



δ1

...

δi−1

d

δi+1

...

δn−1



. (4.9)

We are essentially solving a version of system (4.5) in 2n−3 variables: δT1 , · · · , δTi−1, δ
T
i+1, · · · , δTn−1,

each with two coordinates, and f .

Theorem 3. Given a displacement d = (dx, dy)
T of the moving finger, the displacement field ∆′

of the object and the squeezing force F′ are uniquely determined.2

Proof. Denote u′j = (u′0,j , · · · , u′2n−3,j)
T , for 0 ≤ j ≤ 2n − 3. Left multiply both sides of

equation (4.5), after substitution of equation (4.7), by u
′T
0 , · · · ,u

′T
2n−4 sequentially, utilizing the

orthogonality of these vectors:
λ′0u

′T
0

...

λ′2n−4u
′T
2n−4

∆′ = −f


u′2i−1,0

...

u′2i−1,2n−4

 .

With the above, we project ∆′ onto u
′T
0 , · · · ,u

′T
2n−3, denoting g = u

′T
2n−3∆′,

∆′ = −f
2n−4∑
j=0

1

λ′j
u′2i−1,ju

′
j + gu′2n−3. (4.10)

Since u′2n−3 = v′r/||v′r||, we have u′2i−1,2n−3 = pix = 0. Hence ||u′2i−1||2 =
∑2n−4

j=0 u′wi−1,j = 1.

Now, we look at the two equations in equation (4.10) that involve d:

dx = −f
2n−4∑
j=0

1

λ′j
u′2i−1,ju

′
2i−2,j + gu′2i−2,2n−3, (4.11)

2Theorem given and proven by Yan-Bin Jia.
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dy = −f
2n−4∑
j=0

1

λ′j
u
′2
2i−1,j . (4.12)

The sum in equation (4.12) is positive because λ′j > 0 for 0 ≤ j ≤ 2n−4, and some u′2i−1,j 6= 0.

We solve the above two equations:

f = −dy/(
2n−4∑
j=0

1

λ′j
u
′2
2i−1,j), (4.13)

g =
1

u′2i−2,2n−3

(dx − dy(
2n−4∑
j=0

1

λ′j
u′2i−1,ju

′
2i−2,j)/(

2n−4∑
j=0

1

λ′j
u
′2
2i−1,j)). (4.14)

Finally, plug f and g into equation (4.10) to obtain δT1 , · · · , δTi−1, δ
T
i+1, · · · , δTn−1.

Or equivalently, with the boundary conditions given by equation (4.1), (4.4) and (4.8), the

system (3.7) is uniquely solvable.

In the special case dy = 0, the finger in contact with pi moves in the x-direction. It

follows from equation (4.13) and (4.14) that f = 0 and g = dx/u
′
2i−2,2n−3. Plugging them

into equation (4.7), we can show that ∆ = (dx/u
′
wi−2,2n−3)u2n−3. Consequently, the object

undergoes a pure rotation with no deformation.

4.3 Squeeze Grasp

To squeeze the object, one finger moves towards the other, or in our scenario, dx = 0. We

refer to d = −dy > 0 as the squeezing distance.

Corollary 1. Under a squeeze grasp, the contact forces and displacements of all vertices scale

with the squeezing distance d.

Proof. This follows directly from substitutions of dx = 0 and dy = −d into equation (4.13)

and (4.14), and from subsequent substitutions of the obtained f and g into equation (4.10).

The next corollary states that a squeeze makes no difference in the resulting deformation if

the moving and still fingers switch their roles.

Corollary 2. Squeezing with pi fixed while p0 moving toward pi by a distance of d yields the

same shape except under a translation of (0, d)T .
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Proof. Suppose that the original squeeze with p0 fixed and pi moving by (0,−d)T under force F

results in a displacement field δ. System (3.7) is satisfied by F and δ under the constraints δ0 = 0

and δi = (0,−d)T . It must also be satisfied by F and a new displacement δ′ = δ+d ·vy since vy

is in the null space of K. A result analogous to Theorem 3 can be easily established to ensure

that F and δ′ are the unique solution under the new constraints δ′0 = (0, d)T and δ′i = 0. The

deformed shape is the same as the one constrained by δ0 = 0 and δi = (0,−d)T , except it is

translated by (0, d)T .

In a squeeze grasp, two finger contacts stay on the same line all the time. According to

Proposition 1 and 2, the equilibrium of the body is guaranteed. We yet have to see that whether

slip will happen or not. One simple fact is that, no slip happens between two contact objects

if the contact force stays inside the friction cone. If the force is right on the edge of the friction

cone, it depends on the initial state of the two objects. If they are relatively still in the initial

state, then still no slip happens. Since Proposition 2 says that the direction of the squeezing

force is parallel to pipj , then if pipj stays inside the friction cones all the time, no slip will

happen. It follows directly that no rotation about pj may happen either, because if it does,

slip must happen at pi.

The orientation of the friction cone can be represented by the orientation of the contact

tangent, which is decided by its neighbor vertices. For example, the tangent at pi is along the

direction of pi+1 − pi−1 before deformation and pi+1 − pi−1 + δi+1 − δi−1 after deformation.

According to Corollary 1, δi+1−δi−1 scales with d. Thus the orientation of the tangent changes

monotonically with d. So if no slip happens on original shape and the deformed shape with

squeezing distance d, then no slip may happen for any deformed shape with squeezing distance

that is less than d. This agrees with our experience that hard squeezes are more likely to cause

slips on soft objects.

The range of d is bounded by some factors. Since the squeezing force scales with d, it should

not be too small that the squeezing force fails requirements for certain tasks, for example,

picking the object up from the supporting plane, in which case, enough friction is necessary.

Meanwhile, d cannot be too large in order for the squeezing forces to stay in their respective
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contact friction cones, and for the resulting deformation to be small enough so that it is well

described by the linear elasticity.

How large can d be? Linear elasticity theory does not tell us. It depends on the material,

the global shape of the object, the contact locations, etc. For simplification, we introduce a

factor φ ∈ (0, 1) and consider all squeezing distances d = ρ||pi−pj ||, where ρ ∈ (0, φ], to cause

small deformations3. We call ρ the relative squeezing depth.

Definition 1. A finger placement G(p,q) on an object is a ρ-squeeze grasp if

1) the line segment pq is inside the friction cones at p and q, and

2) after deformation due to the displacement of p to p̃ = p + ρ(q−p), the line segment p̃q

lies inside the friction cones at p̃ and q of the deformed shape.

4.4 Generalized Squeeze Grasp

Now consider the case where dx 6= 0. p̃i is now off the line pipj . Although the total force

sum up to 0 according to Proposition 1, the two squeezing forces do not point to each other

according to Proposition 2, which means that there is a torque and equilibrium is broken.

Is a grasp only possible when the action is exactly squeeze? Of course not. The above illusion

is due to the limit of linear elasticity in modeling the real world, as shown in Figure 3.2.

Let us leave linear elasticity theory aside for the moment, and look at Figure 4.3. Shape 1

and Shape 2 are undeformed shapes only different by an angle α in orientation. Shape 3 are

deformed shape of shape 1 generated by displacing point a to point b, a pure squeeze. Shape 4

are deformed shape of shape 1 generated by displacing point a to point d, where |dq| = |bq|

and d is on cq. The four shapes share a point p. Now consider the deformed shape s of shape 2

generated by displacing point c to point d, which is a pure squeeze. Shape s is the same as

shape 4 because shape 1 and 2 are the same, and the corresponding points of them are fixed

at same locations. Now, since shape 3 and shape 4 are both deformed shape generated by a

pure squeeze of the same distance from the same shape, they are also the same, except for

a difference α in orientation. So the displacement
−→
ab and

−→
ad generates the same resulting

3We usually take φ to be less than 20%.
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shape. On the other hand, the force exerted at d is along
−→
dq since shape 4 can be generated

from shape 2 by the same pure squeezing. So both the deformed shape 3 and 4, and the

grasping forces exerted on them, are the same, except for an angle α in orientation. Thus if

displacement
−→
ab could result in a grasp, so could

−→
ad .

Figure 4.3: Generalized squeeze grasp. Shape 1 and Shape 2 are same undeformed shapes

different by α orientation. a and c are corresponding points. Shape 3 and Shape 4 are deformed

shapes generated from shape 1 by displacement ~ab and ~ad resp. All 4 shapes share point q.

a,b,q are collinear and c,d,q are also collinear. || ~ab|| = ||~cd||.

Proposition 3. If a finger placement G(p,q) can achieve a grasp by pure squeeze d of ρ-

depth, then any displacement d′ of the same squeeze depth can achieve a grasp. The set of all

displacement vectors can be grouped into equivalent classes according to their squeeze depth at

same finger placement.

With above Proposition, given any finger placement and the displacement vector, we can

test the grasp by testing the pure squeezing grasp at the same finger placement.

4.5 Grasp Computation

Algorithm 1 tests whether a general finger placement G(pi,pj), 0 ≤ i < j ≤ m − 1 is a ρ-

squeeze grasp. Step 4 of the algorithm is the most expensive one. A brute force method would

fix one contact, say at pi, and solve system (4.5), where K ′ is the (2n− 2)× (2n− 2) stiffness

matrix generated after removing the 2i-th and (2i+ 1)-st rows and columns from K. Inversion

of the matrix is necessary in order to check for different locations pj of the moving finger. This
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operation can be carried out in O(n2.807) time using Stassen’s algorithm, or in O(n2.376) time

using the Coppersmith-Winograd algorithm.4

Algorithm 1 Test of G(pi,pj) for a ρ-squeeze grasp

1: if pipj does not lie inside the friction cone at pi or pj then

2: return no

3: else

4: evaluate the tangents at pi and the displaced location p̃j , using p̃i−1, p̃i+1, p̃j−1 and

p̃j+1

5: if pip̃j does not lie inside the friction cone at pi or p̃j then

6: return no

7: else

8: return yes

9: end if

10: end if

Nevertheless, the matrix K ′ changes whenever pi does, that is, whenever the still finger is

relocated. Thus matrix inversion needs to be performed every time. The number of matrix

inversions equals m, the number of boundary vertices that are possible locations of pi. For a

brute force iteration, the running time is O(m2n2.807) or O(n3.807) since m = O(
√
n) for a solid

object.

This chapter describes fast grasp testing that works on the stiffness matrix K only. We

make use of its spectral decomposition (3.6), and obtain the matrices U and Λ via singular

value decomposition (SVD) in O(n3) time. Below we show that the placement G(pi,pj) can

be checked for a squeeze grasp in O(n) time.5

4.5.1 An Efficient Algorithm

We first perform the standard Singular Value Decomposition procedure to the symmetric

matrix K

K = UΣUT , (4.15)

where Σ = diag(ρ0, · · · , ρ2n−4, 0, 0, 0) with ρk’s being non-zero eigenvalues of K, and U =

(w0, · · · ,w2n−1)T is the orthonormal matrix consisting eigenvectors of K with wk’s being its

4The latter algorithm is mainly useful for proving theoretical time bounds.
5The efficient algorithm was mainly developed by Yan-Bin Jia
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row vectors written in column vector form. The sequence of the eigenvectors are corresponding

to that of the eigenvalues.

Now apply the coordinate transformation. We project ∆ on to the eigenvectors, and denote

the vector of projection to be y

y =


y0

...

y2n−1

 = UT∆. (4.16)

Since U is orthonormal, UT = U−1. Then

∆ = Uy. (4.17)

Substitute it into equation (3.7):

K∆ = UΣUTUy = UΣy = F,

Left multiply UT on both sides of the last equal sign, we get

(ρ0y0, · · · , ρ2n−4y2n−4, 0, 0, 0)T = UTF

= UT (0, · · · , 0, f2i, f2i+1, 0, · · · , 0, f2j , f2j+1, 0, · · · )T

= f2iw2i + f2i+1w2i+1 + f2jw2j + f2j+1w2j+1. (4.18)

Let r = (rx, ry)
T = (pj − pi)/||pj − pi||. According to Proposition 1 and 2,

f2i

f2i+1

f2j

f2j+1


= f

 r

−r

 ,

where f is the magnitude of the force. Let a = (rT ,−rT )T and W = (w2i,w2i+1,w2j ,w2j+1),

equation (4.18) becomes

(ρ0y0, · · · , ρ2n−4y2n−4, 0, 0, 0)T = fWa.
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Divide the i-th entry of both sides of the above equation by ρi, for 0 ≤ i ≤ 2n− 4, resp., and

denote the resulting vector of the right side as P , we get:

y0

...

y2n−4

0

0

0


= fP. (4.19)

Since ∆ = Uy,

(δTi , δ
T
j )T = W Ty

= W T





y0

...

y2n−4

0

0

0


+



0

...

0

y2n−3

y2n−2

y2n−1





= fW TP +W T
s3


y2n−3

y2n−2

y2n−1

 . (4.20)

where Ws3 is a 3× 4 submatrix of W taking its last 3 rows. Given (δTi , δ
T
j )T = (0, 0,dT )T , we

then have

(
W TP W T

s3

)


f

y2n−3

y2n−2

y2n−1


=


0

0

d

 . (4.21)

Once we solve the above 4 by 4 system, we can calculate y using equation (4.19). And

then ∆ is solved using equation (4.17).
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4.5.2 Algorithm Analysis

The preprocessing, SVD, takes O(n3) time. After the that, obtaining W TP takes O(n)

time, and obtaining W T
s3 takes constant time. Solving the system (4.21) takes constant time.

Obtaining y takes O(n) time. With y, we can evaluate any value of ∆ in O(n) time.

Get back to step 4 of Algorithm 1, evaluating p̃i−1, p̃i+1, p̃j−1 and p̃j+1, which takes O(n)

time, gives us the result of one grasp testing.

Theorem 4. After SVD of the stiffness matrix K, which takes O(n3) time, the grasp test on

a finger placement G(pi,pj) takes O(n) time.

To compute the global deformation resulted by one grasp, we need to evaluate ∆, which

takes O(n2) time, or, if we only need the contour of the shape, 2m−4 entries of ∆ are evaluated,

which takes O(n1.5) time. To find all grasps, we exhaustively test the
(
m
2

)
pairs of boundary

points, which can be done in O(m2n), or O(n2) time. The overall running time is dominated

by SVD.

Table 4.1 shows the running time of the naive algorithm and the efficient algorithm for

different tasks on solid and hollow objects. We can see that almost for every task, the efficient

algorithm reduces the time by order of 2.

Naive Efficient(after SVD O(n3))

Solid Hollow Solid Hollow

Single Grasp Test O(n3) O(n3) O(n) O(n)

Compute global deformed contour O(n3) O(n3) O(n1.5) O(n2)

Find 2nd finger location given 1st O(n3.5) O(n4) O(n1.5) O(n2)

Find all grasps O(n4) O(n5) O(n2) O(n3)

Table 4.1: Algorithm Comparison. Running time of naive and efficient algorithms on different

tasks and different types of object.

4.6 Experiment

Figure 4.4 shows the experimental setup in which grasping was carried out by two fingers of

a Barrett Hand. Every finger had a strain gauge sensor mounted at its lower joint to measure

contact force.
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Figure 4.4: Grasping with a Barrett Hand.

Table 4.2 shows an example of successful grasp using Barret Hand6 that agreed with the

prediction by the algorithm. Our algorithm took each shape as input and predicted finger

placements that would result in grasps. The Barrett Hand then execute grasps under some

placements randomly selected from the predictions.

Shape Simulation Experiment

Table 4.2: Grasping a ring-like object (column 1): simulation (column 2) and experimental

(column 3).

The hand initially grasped the hollow ellipse displayed in the first column of Table 4.2,

which was cut from a food container. The elliptic object was made of high-density polyethylene

6Although we could not keep one finger still and move the other towards it due to lack of degrees of freedom,
the relative movement of the fingers was still pure squeeze.
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(Young’s modulus E = 0.8GPa). The cross section had size 11mm × 0.6mm. The surfaces of

the objects were filed to increase friction with fingers. The coefficients of friction was measured

by determining the max slope of the phalange on which the objects could be placed without

slip. The values were 0.9. The second column of Table 4.2 shows the simulation results of

the grasp, and the third column shows the outcome of an experiment (which matched the

simulation results well), at 10%-squeeze depth.

The experiment was repeated on a variety of objects, including plastic and metal cookie

cutters, and cross sections of medicine and food bottles. The shape of each object was either

obtained from a scanner, or reconstructed from sampled points or a geometric specification. The

first row of Figure 4.5 shows five objects, each with two blue dots indicating a finger placement.

The second row displays the objects when grasped by two fingers of the Barrett Hand. Under

the finger placements in the first row, the third row shows simulation results of the grasps, with

contact friction cones indicated by gray triangles and forces by short purple lines. At every

contact, the friction was enough to keep the contact force pointing at the opposite contact, as

required for equilibrium. Each entry in the last row lists the relevant physical parameters of

the corresponding grasp: the objects’ Young’s Modulus (GPa), coefficient of friction, thickness

(mm), and the relative squeeze depth.

Figure 4.6 shows an example in which the same finger placement succeeded on a “rigid”

object but failed on a deformable one with the identical boundary and boundary material. The

“rigid” object was made from stuffing the deformable one with fairly stiff plastic foam. The

object was initially constrained by the fingers, since the line connecting two contacts was inside

their friction cones. As the squeeze went on, both friction cones rotated, until one edge of a

friction cone went pass the connection line of the two contacts. As the contact forces no longer

balance each other, the object escaped entirely from the grasp, releasing its stain energy.

Rotations of the two contact friction cones do not always lead to a grasp failure. On some

occasions, they rotate toward each other, so that the applied forces become more aligned with

the cone axes, resulting in a more stable grasp. Figure 4.7 shows two scenarios, one in which

the cones rotate toward each other, strengthening the grasp, and the other in which they rotate

away from each other, breaking the grasp.
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(2, 0.26, 5, 10%) (2, 0.26, 5, 11%) (2, 0.26, 5, 9%) (200, 0.12, 3, 15%) (3, 0.5, 3, 15%)

Figure 4.5: Successful grasps of five deformable objects (row 1) from experiment (row 2) and

simulation (row 3), given physical parameters (row 4).

(a) (b) (c)

Figure 4.6: Grasp failure due to deformation: (a) grasp of a “rigid” shape; (b) attempt at

a deformable shape with the same boundary at the same finger placement; (c) escape of the

object at 15% squeeze depth.
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(a) (b) (c)

Figure 4.7: Rotations of two contact friction cones toward each other can achieve a grasp in

(a) experiment and (b) corresponding simulation, and rotations away from each other can fail

one (c). The arrows indicate the rotation directions.

A finger placement can be represented by a point in the plane, when the boundary is

parameterized by arc length, which allows us to plot grasps as regions. Figure 4.8(a) shows

all pairs of finger locations on the shape in Figure 4.8(b) that can achieve grasps at the 15%

squeeze depth. Note that the regions are symmetric about the axis y = x.

The rectangle in Figure 4.8(a) corresponds to the pair of blue segments in Figure 4.8(b), on

which two fingers can be placed anywhere independently to form a grasp at 15% squeeze depth.

They are called independent graspable segments. Given a matrix M , where M(i, j) contains

the grasp test result of Gij , a dynamic program algorithm is developed to find the maximum

independent graspable region in O(n2) time, which is also the lower bound of such problem.

Figure 4.9 shows the graspable regions of 3 objects. The graspable regions grow significantly

with the friction coefficient. However, they decrease very little while w increases from 1%

to 10%. Note that the regions are symmetric about line y = x, as implied by Corollary 2.
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(a) (b)

Figure 4.8: (a) Set of finger placements that yield successful grasps, with the rectangular region

corresponding to two independent graspable segments shown in (b).

Figure 4.9: Graspable regions. Cell (i, j), i, j =1, 2, 3, shows the graspable regions on object i

with friction coefficient µj =0.3, 0.5, 0.7, resp. The blue regions are 10%-graspable and also

1%-graspable, and the red regions are only 1%-graspable.
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CHAPTER 5. GRASPING PLANAR OBJECTS WITH AREA

CONTACT

Two fingers F1 and F2, with identical semicircular tips of radius r and centers o1 and o2, are

placed on the object at boundary nodal points pi and pj , respectively. The finger orientations

are irrelevant assuming that only the tips will be in contact. Also, o1 and o2 must lie on the

object’s normal at pi and pj . The finger placement is thus fully specified.

p
(0)
j

F1

F2

o
(0)
2

y

xo

o
(0)
1

p
(0)
i

F1

F2

o
(0)
1

o2

friction
cone

pi

θj

fj

o

pj

(a) (b)

Figure 5.1: Object (a) before and (b) after a squeeze grasp.

As shown in Fig. 5.1(a), we place the origin at the center of the object, and let the y-axis

point toward pj . Finger F1 is motionless, while finger F2 translates in the direction pi − pj

by a distance d > 0, which is referred to as the squeeze depth. As the squeeze continues, some

boundary nodal points may come into contact with the fingers, as illustrated in Fig. 5.1(b),

while others may break contact with them. A node in contact may be sticking to a fingertip
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or sliding on it. The contact configuration at the squeeze depth d describes which nodal points

are in contact, and among them, which are sticking or sliding. We will incrementally track the

contact configuration as d increases.

5.1 Contact Configuration

The squeeze depth will be sequenced into d0 = 0 < d1 < · · · , such that at d = dl some

event happens to trigger a change in the contact configuration. For d > dl, we use the new

configuration and evaluate the changes in f and ∆ using the FEM, and predict dl+1. At dl,

we maintain two sets: T of nodes sticking with a finger, and P of nodes sliding on a finger.

Translate F2 down by a small extra distance ε > 0. Suppose T and P do not change as d varies

within [dl, dl + ε).

For each node pk ∈ T ∪ P , denote by θk its polar angle with respect to the center of the

contact fingertip. See Fig. 5.1(b) for an illustration on pj . Denote δk = δ
(l)
k and θk = θ

(l)
k

when d = dl. We can determine the displacement δk = δ
(l)
k + δ̊k when d = dl + ε as follows.

If pk is on F2,

δ̊k = −εŷ + r

 cos θk − cos θ
(l)
k

sin θk − sin θ
(l)
k

 , (5.1)

where ŷ =
(

0
1

)
. If pk is on F1, the term −εŷ in (5.1) vanishes.

A sticking contact at pk imposes a position constraint θk = θ
(l)
k on deformation. If pk slips,

the contact force fk = f
(l)
k + f̊k must stay on one edge of the friction cone at pk as the node

moves. Let φ = tan−1 µ, where µ is the coefficient of contact friction. This imposes a force

constraint: (
f

(l)
k + f̊k

)
×
(

cos(θk ± φ)

sin(θk ± φ)

)
= 0, (5.2)

where the sign ‘+’ or ‘−’ can be determined either from the previous step or using hypothesis-

and-test.

We can thus solve for f̊ and g̊. And consequently, we obtain δ̊l and thus δl, for 1 ≤ l ≤ n,

which are linear in terms of ε, cos θt, and sin θt, ∀pt ∈ P . Substitute the expression for f̊k

in (5.2). This yields an equation linear in ε and quadratic in cos θt and sin θt, for every pt ∈ P .



39

There are a total of |P | such equations that form a system S in the same number of variables θt.

Given a value of ε, we can solve for these θts. Since ε is small, Newton’s method converges fast

with the initial values θ
(l)
t . Hence ∆ and f are updated.

With θk known for every sliding contact pk, we can also determine the derivative dθk
dε , which

will be used for checking whether a node pk switches from slip to stick. Differentiate both sides

of every equation in the system S with respect to ε. This yields a new linear system of |P |

equations in |P | derivatives dθt
dε , pt ∈ P . Simply solve the system.

5.2 Contact Event Detection

Now we look at how to predict the value of ε such that the next event occurs at squeeze

distance d(l+1) = d(l) + ε to trigger a change in one or both of the contact sets T and P . There

are four types of events described as follows.

Event A — New Contact A boundary node pk comes into contact with one of the two

fingers. This happens when its distance to the center of the contacting fingertip reduces to r,

or equivalently, when the following condition holds (assuming the moving finger F2 to be in

contact):

||p̃k − õ2 +

(
0

ε

)
|| = r. (5.3)

Here we denote q̃ as the displaced position of a point q. For completeness, we ought to check

every boundary node that is currently not in contact with any finger. Often a new contact

node is adjacent to an outermost contact node.

To determine the mode of contact for pk, we first hypothesize that it sticks, apply a small

extra squeeze, and check if the resulting contact force fk stays inside the friction cone. If not,

the node slips. Add pk to T or P accordingly.

Event B — Contact Break

As ε increases, the force fk at a node pk varies inside or on one edge of the contact friction

cone. When its derivative is pointing inside the finger and its magnitude reduces to zero, it

is about to become a sticking force, which is unrealistic. This implies that the contact breaks

when ‖fk‖ = 0. Remove pk from P or T that contains it.
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Event C — Stick to Slip. When the contact force fk applied on a sticking node pk is

rotating out of the inward friction cone (cf. Fig. 5.1(b)) as d increases, the contact starts to

slip. The rotation of the force fk at the moment is indicated by its derivative with respect to ε.

We need to check the conditions:

fk ×
(

cos(θk ∓ φ)

sin(θk ∓ φ)

)
= 0 and ∓ dfk

dε
×
(

cos(θk ∓ φ)

sin(θk ∓ φ)

)
> 0 (5.4)

for reaching the left (sign ‘−’) or right (‘+’) edge, respectively. Remove pk from T and add it

to P .

Event D — Slip to Stick. As ε increases, the contact node pk slides, and its polar

angle θk with respect to the corresponding fingertip’s center varies. Slip changes to stick

when dθk/dε = 0. In this case, move pk from P to T .

5.3 The Squeeze Algorithm.

The algorithm starts at d = 0. At step l, it hypothesizes each of the four events for every

possible node, and computes the extra squeeze distance ε for the first hypothesized event to

happen. Let dl+1 = dl + ε. Event testing involves solving for ε and polar angles θt of all sliding

contacts pt from the event condition and the corresponding |P | equations. Analytical solution

is difficult if not impossible. We increment the squeeze depth d by a small step size h and use

Newton’s method in computing θt for pt ∈ P . Checking whether an event happens becomes

testing either an inequality or whether an expression changes sign. If no event happens for the

current increment h, the algorithm simply continues.

The algorithm terminates if the grasp succeeds when the specified d is reached, or if the

grasp fails when all contacts with some finger slip before d is reached.

5.4 Finger Kinematics

In reality, the robotic fingers may have to rotate while squeezing. Let the changes in

orientation of F1 and F2 be α1(d) and α2(d), respectively, according to hand kinematics. Some

of the above derivations need adaption. Redefine θk as pk’s polar angle with respect to the

center of the fingertip in the finger’s local frame. In equations (5.1) and (5.2), and the conditions
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for Event C and D, θk should be replaced by θk+αi if pk is on Fi. An analysis of the kinematics

of the fingers mounted with rounded fingertips can be found in Appenix C.

5.5 Experiment

A 0.1m×0.1m square made of rubber foam (thickness 0.0254m) was grasped by the Barrett

Hand. Figure 5.2 compares the actual grasp configuration with one from simulation by the

squeeze grasp algorithm. In the center, the deformed mesh from simulation is superposed

onto the real shape with an almost perfect alignment (average error is 1.3mm while the edge

length is 0.1m) after data matching. Such matching aims at minimizing the difference between

real experiment data and simulation data introduced by the choices of coordinate systems in

simulation and experiment. The details of such matching is described in Appendix A, and the

physical parameters are measured as described in Appendix B. Columns 1 and 3 give close-up

comparisons between the contact regions, from experiment and simulation, on the two fingers.

F1 superposition F2

Figure 5.2: Grasp configuration with contact regions: simulation vs. experiment.
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The contact forces evolve as the squeeze deepens, as shown in Figure 5.3. At different

relative squeeze depth d, the forces exerted by finger 1 (left column) and 2 (right column) were

decomposed to force density (upper row) and polar angle (lower row). The nodal values were

then interpolated with cubic splines. The magnitude of the contact force at each nodal point

calculated from simulation was transformed to the force density over curve length, while the

direction was represented as its polar angle. The density in the center of the contact is generally

bigger than that on the edge. Also, The force on each segment, and the total force, increases

with deeper squeeze. The directions of the contact forces show a general trend of decreasing

along curve length. As the squeeze continues, the curve spans over more nodes, indicating a

growing contact area.

Figure 5.3: Force profile.

Among the four types of events introduced in Section 5.2, Event A is easy to picture with

common sense. Event B was so rare that it was not observed in our experiment. Event C was
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widely observed in both simulation and experiment wherever friction is insufficient. Figure 5.4

shows some grasps in which Event C happened. Each of the yellow and red arrows in the

middle and lower rows emphasizes one point on the objects and fingertips respectively. Note

the changes in their relative positions when squeeze deepened, indicating an Event C.

Shape Sticking sliding

Figure 5.4: Event C.

Each contact point is in contact with one point on the cylindrical finger, and thus its position

can be described by the polar angle with respect to the center of the finger. In existence of event

three, its position changes with the squeeze depth. Figure 5.5 shows the evolution of sliding

contacts with the growing squeeze depth. The curves indicating contacts’ sliding distance

are also cubic splines interpolated from nodal displacements obtained from simulation. As d

increases, we can see that the sliding distance of the contacts increases.

The fourth event, i.e. sliding to sticking, happened a lot less than the previous one. In

Figure 5.6, (a) and (b) show simulation results that correspond to the experiment images in
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Figure 5.5: Sliding profile.

the entries (2, 3) and (3, 3) in Table 2. The blue arrows mark the same node on the object

that started out sticking in (a), transitioned into sliding in (b), and switched back to sticking

in (c). Shown in (d) is an experiment image that displays the distance of sliding (about five

degrees) on the fingertip by the same node identified with arrows in (a)(c) from the fingertip

contact location in (b), pointed at by the red arrow in (d), to the location of the new fingertip

contact in (c), pointed at by the yellow arrow in (d).



45

(a) (b) (c) (d)

Figure 5.6: Transitions of a contact from (a) stick to (b) slip to (c) slick. Here (a) and (b) are

the simulation results over the second object in Table 2 that correspond to its entries (2, 3)

and (3, 3), respectively. In (c), the contact has stopped sliding, which is also observed in the

experiment in (d).
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CHAPTER 6. GRASPING 3D OBJECTS

Having studied grasping the 2D objects, we move on to consider the task of using two

fingers to pick up a deformable 3D solid on a table, which is a(horizontal) plane P.

6.1 Stiffness Matrix

In a 3D body under a displacement field (u, v, w), the strain energy density is given as

U0 =
1

2
(σxεx + σyεy + σzεz + τxyγxy + τyzγyz + τzxγzx), (6.1)

where

εx = ∂u/∂x,

εy = ∂v/∂y,

εz = ∂w/∂z,

γxy = ∂u/∂y + ∂v/∂x,

γyz = ∂v/∂z + ∂w/∂y,

γzx = ∂w/∂x+ ∂u/∂z,

are strains, and

σx =
E

(1 + ν)(1− 2ν)
[(1− ν)εx + νεy + νεz], (6.2)

σy =
E

(1 + ν)(1− 2ν)
[νεx + (1− ν)εy + νεz], (6.3)

σz =
E

(1 + ν)(1− 2ν)
[νεx + νεy + (1− ν)εz], (6.4)

τxy =
E

2(1 + ν)
γxy, (6.5)

τyz =
E

2(1 + ν)
γyz, (6.6)
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τzx =
E

2(1 + ν)
γzx, (6.7)

are stresses, and E and v are Young’s Modulus and Poisson’s ratio.

Substitute equations (6.2) to (6.7) in equation (6.1),

U0 =
E

4(1 + ν)

[
2(1− ν)

1− 2ν
(ε2x + ε2y + ε2z) +

4ν

1− 2ν
(εxεy + εyεz + εzεx) + (γ2

xy + γ2
yz + γ2

zx)

]
.

(6.8)

Suppose Vi = (xi, yi, zi)
T , and di = (ui, vi, wi)

T , i = 1, 2, 3 and 4 are the position and

displacements of the vertices of a Tetrahedron respectively. Denote P the position, and d the

displacement of a point inside the tetrahedron. They can be interpolated using Barycentric

interpolation:

P =
4∑
i=1

ci(xi, yi, zi)
T , (6.9)

d =
4∑
i=1

ci(ui, vi, wi)
T . (6.10)

where ci’s are positive and
∑4

i=1 ci = 1. Substitute c4 = 1 − ∑3
i=1 ci in equations (6.9)

and (6.10):

P = (x, y, z)T = (x4, y4, z4)T +
3∑
i=1

ci(xi − x4, yi − y4, zi − z4)T , (6.11)

d = (u, v, w)T = (u4, v4, w4)T +
3∑
i=1

ci(ui − u4, vi − v4, wi − w4)T . (6.12)

Taking partial derivatives with respect to c1, c2 and c3, we get
∂x
∂c1

∂x
∂c2

∂x
∂c3

∂y
∂c1

∂y
∂c2

∂y
∂c3

∂z
∂c1

∂z
∂c2

∂z
∂c3

 =


x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4

 , (6.13)


∂u
∂c1

∂u
∂c2

∂u
∂c3

∂v
∂c1

∂v
∂c2

∂v
∂c3

∂w
∂c1

∂w
∂c2

∂w
∂c3

 =


u1 − u4 u2 − u4 u3 − u4

v1 − v4 v2 − v4 v3 − v4

w1 − w4 w2 − w4 w3 − w4

 . (6.14)

The absolute value of the determinant of the matrix in the right hand side of equation (6.13)

is 6 times the volume of the tetrahedron. Since the tetrahedrons have positive volume in this
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case, the matrix has to be fully ranked, and thus its inverse exists. From equation (6.13), we

obtain
∂c1
∂x

∂c1
∂y

∂c1
∂z

∂c2
∂x

∂c2
∂y

∂c2
∂z

∂c3
∂x

∂c3
∂y

∂c3
∂z

 =


∂x
∂c1

∂x
∂c2

∂x
∂c3

∂y
∂c1

∂y
∂c2

∂y
∂c3

∂z
∂c1

∂z
∂c2

∂z
∂c3


−1

=


x1 − x4 x2 − x4 x3 − x4

y1 − y4 y2 − y4 y3 − y4

z1 − z4 z2 − z4 z3 − z4


−1

. (6.15)

Let us go back to the strains,

εx =
∂u

∂x
=

3∑
i=1

∂u

∂ci

∂ci
∂x

=
3∑
i=1

∂ci
∂x

(ui − u4) =
3∑
i=1

∂ci
∂x

ui −
3∑
i=1

∂ci
∂x

u4. (6.16)

Now εx is represented by the displacements of the 4 vertices. Similarly, we represent all the

(parts of) strain terms by the displacements of vertices as


∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z

 =


∂c1
∂x

∂c2
∂x

∂c3
∂x −∑3

i=1
∂ci
∂x

∂c1
∂y

∂c2
∂y

∂c3
∂y −∑3

i=1
∂ci
∂y

∂c1
∂z

∂c2
∂z

∂c3
∂z −∑3

i=1
∂ci
∂z





u1 v1 w1

u2 v2 w2

u3 v3 w3

u4 v4 w4


. (6.17)

With equation (6.17), we can assemble the stiffness matrix.

Denote Q the first matrix on the right-hand side of (6.17), and Qij its entry in row i and

column j. Then

εx =
∂u

∂x
=

4∑
i=1

Q1iui, εy =
∂v

∂y
=

4∑
i=1

Q2ivi, and εz =
∂w

∂z
=

4∑
i=1

Q3iwi.

So

ε2x = (u1, u2, u3, u4)



Q2
11 Q11Q12 Q11Q13 Q11Q14

Q12Q11 Q2
12 Q12Q13 Q12Q14

Q13Q11 Q13Q12 Q2
13 Q13Q14

Q14Q11 Q14Q12 Q14Q13 Q2
14





u1

u2

u3

u4


, (6.18)

ε2y = (v1, v2, v3, v4)



Q2
21 Q21Q22 Q21Q23 Q21Q24

Q22Q21 Q2
22 Q22Q23 Q22Q24

Q23Q21 Q23Q22 Q2
23 Q23Q24

Q24Q21 Q24Q22 Q24Q23 Q2
24





v1

v2

v3

v4


, (6.19)
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ε2z = (w1, w2, w3, w4)



Q2
31 Q31Q32 Q31Q33 Q31Q34

Q32Q31 Q2
32 Q32Q33 Q32Q34

Q33Q31 Q33Q32 Q2
33 Q33Q34

Q34Q31 Q34Q32 Q34Q33 Q2
34





w1

w2

w3

w4


. (6.20)

On the other hand,

γxy =
∂u

∂y
+
∂v

∂x
=

4∑
i=1

(Q1ivi +Q2iui),

γyz =
∂v

∂z
+
∂w

∂y
=

4∑
i=1

(Q3ivi +Q2iwi),

γzx =
∂u

∂z
+
∂w

∂x
=

4∑
i=1

(Q3iui +Q1iwi).

Let dt = (u1, v1, w1, · · · , u4, v4, w4)T . Then,

γ2
xy = (

4∑
i=1

Q1ivi)
2 + (

4∑
i=1

Q2iui)
2 + 2(

4∑
i=1

Q1ivi ·
4∑
i=1

Q2iui)

= dTt



0 0 0 0 0 0 0 0 0 0 0 0

0 Q2
11 0 0 Q11Q12 0 0 Q11Q13 0 0 Q11Q14 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 Q12Q11 0 0 Q2
12 0 0 Q12Q13 0 0 Q12Q14 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 Q13Q11 0 0 Q13Q12 0 0 Q2
13 0 0 Q13Q14 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 Q14Q11 0 0 Q14Q12 0 0 Q14Q13 0 0 Q2
14 0

0 0 0 0 0 0 0 0 0 0 0 0



dt
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+ dTt



Q2
21 0 0 Q21Q22 0 0 Q21Q23 0 0 Q21Q24 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Q22Q21 0 0 Q2
22 0 0 Q22Q23 0 0 Q22Q24 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Q23Q21 0 0 Q23Q22 0 0 Q2
23 0 0 Q23Q24 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

Q24Q21 0 0 Q24Q22 0 0 Q24Q23 0 0 Q2
24 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0



dt

+ dTt

0 Q11Q21 0 0 Q12Q21 0 0 Q13Q21 0 0 Q14Q21 0

Q11Q21 0 0 Q11Q22 0 0 Q11Q23 0 0 Q11Q24 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 Q11Q22 0 0 Q12Q22 0 0 Q13Q22 0 0 Q14Q22 0

Q12Q21 0 0 Q12Q22 0 0 Q12Q23 0 0 Q12Q24 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 Q11Q21 0 0 Q12Q23 0 0 Q13Q23 0 0 Q14Q23 0

Q13Q21 0 0 Q13Q22 0 0 Q13Q23 0 0 Q13Q24 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 Q11Q23 0 0 Q12Q24 0 0 Q13Q24 0 0 Q14Q24 0

Q14Q21 0 0 Q14Q22 0 0 Q14Q23 0 0 Q14Q24 0 0

0 0 0 0 0 0 0 0 0 0 0 0


dt

= dTt
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Q2
21 Q11Q21 0 Q21Q22 Q12Q21 0 Q21Q23 Q13Q21 0 Q21Q24 Q14Q21 0

Q11Q21 Q2
11 0 Q11Q22 Q11Q12 0 Q11Q23 Q11Q13 0 Q11Q24 Q11Q14 0

0 0 0 0 0 0 0 0 0 0 0 0

Q22Q21 Q11Q22 0 Q2
22 Q12Q22 0 Q22Q23 Q13Q22 0 Q22Q24 Q14Q22 0

Q12Q21 Q12Q11 0 Q12Q22 Q2
12 0 Q12Q23 Q12Q13 0 Q12Q24 Q12Q14 0

0 0 0 0 0 0 0 0 0 0 0 0

Q23Q21 Q11Q21 0 Q23Q22 Q12Q23 0 Q2
23 Q13Q23 0 Q23Q24 Q14Q23 0

Q13Q21 Q13Q11 0 Q13Q22 Q13Q12 0 Q13Q23 Q2
13 0 Q13Q24 Q13Q14 0

0 0 0 0 0 0 0 0 0 0 0 0

Q24Q21 Q11Q23 0 Q24Q22 Q12Q24 0 Q24Q23 Q13Q24 0 Q2
24 Q14Q24 0

Q14Q21 Q14Q11 0 Q14Q22 Q14Q12 0 Q14Q23 Q14Q13 0 Q14Q24 Q2
14 0

0 0 0 0 0 0 0 0 0 0 0 0


dt.

Or in other format:

γ2
xy = dTt [(Q21, Q11, 0, Q22, Q12, 0, Q23, Q13, 0, Q24, Q14, 0)T

(Q21, Q11, 0, Q22, Q12, 0, Q23, Q13, 0, Q24, Q14, 0)]dt. (6.21)

Similarly,

γ2
yz = dTt [(0, Q31, Q21, 0, Q32, Q22, 0, Q33, Q23, 0, Q34, Q24)T

(0, Q31, Q21, 0, Q32, Q22, 0, Q33, Q23, 0, Q34, Q24)]dt, (6.22)

γ2
zx = dTt [(Q31, 0, Q11, Q32, 0, Q12, Q33, 0, Q13, Q34, 0, Q14)T

(Q31, 0, Q11, Q32, 0, Q12, Q33, 0, Q13, Q34, 0, Q14)]dt. (6.23)
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6.2 Null Space of Stiffness Matrix

Note that equation (6.8) can be written as

U0 =
E

2(1 + ν)(1− 2ν)

[
(1− 2ν)(ε2x + ε2y + ε2z) + ν(εx + εy + εz)

2 +
1− 2ν

2
(γ2
xy + γ2

yz + γ2
zx)

]
.

(6.24)

Since −1 < ν < 0.5, we will show that U0 = 0 implies that all the six terms are 0. When ν is

positive, it is obvious that U0 = 0 implies

ε2x + ε2y + ε2z = 0,

(εx + εy + εz)
2 = 0,

γ2
xy + γ2

yz + γ2
zx = 0,

and thus all the six terms must be 0.

In case −1 < ν ≤ 0. Since

(εx + εy + εz)
2 ≤ 3(ε2x + ε2y + ε2z),

then

(1− 2ν)(ε2x + ε2y + ε2z) + ν(εx + εy + εz)
2

≥ (1− 2ν)(ε2x + ε2y + ε2z) + 3ν(ε2x + ε2y + ε2z)

= (1 + ν)(ε2x + ε2y + ε2z).

The equality is achieved only when εx = εy = εz. So

U0 ≥
E

2(1 + ν)(1− 2ν)

[
(1 + ν)(ε2x + ε2y + ε2z) +

1− 2ν

2
(γ2
xy + γ2

yz + γ2
zx)

]
.

Then in this case, U0 = 0 indicates that the six terms are 0. So in summary, U0 = 0 implies all

the six terms must all be 0, for −1 < ν < 0.5.

From that

εx =
∂u

∂x
= 0,

εy =
∂v

∂y
= 0,
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εz =
∂w

∂z
= 0,

we see that u, v, w are independent of x, y, z respectively.

u = u(y, z),

v = v(x, z), ,

w = w(x, y).

From

γxy =
∂u(y, z)

∂y
+
∂v(x, z)

∂x
= 0,

we see that ∂u
∂y = − ∂v

∂x are functions of only one variable, namely z. Because otherwise, given

the independence of x and y, their sum can not always be 0. Denote

∂u

∂y
= −∂v

∂x
= F (z) + az +A, (6.25)

where F (z) is a function of only one variable z that has no first order and constant terms,

and a and A are constants. Similarly, we have

∂u

∂z
= −∂w

∂x
= G(y) + by +B, (6.26)

∂v

∂z
= −∂w

∂y
= H(x) + cx+ C, (6.27)

where G and H are single-variable functions without first order or constant terms, and b, B, c, C

are constants.

From equation (6.25) and (6.26), we know that u must be in the following form:

u = F (z) + azy +Ay + f1(z) + c1z + dx, (6.28)

= G(y) + byz +Bz + f2(y) + c2y + d′x, (6.29)

where f1 and f2 are single-variable functions that have no first order or constant terms.

And c1, c2, dx, d
′
x are constants. Due to the equality of equation (6.28) and (6.29), we see

the following facts:

F (z) = f1(z) = 0, (no second order term of z in (6.29)) (6.30)
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G(y) = f2(y) = 0, (no second order term of y in (6.28)) (6.31)

dx = d′x,

c2 = A,

c1 = B,

a = b.

So equation (6.28) and (6.29) can be written as

u = ayz +Ay +Bz + dx. (6.32)

Following similar logic, we have the following equations:

v = −axz −Ax+ Cz + dy,

a = −c,

w = −bxy −Bx− Cy + dz,

b = c,

where dy, dz are constants. Note that a = b = c = −a, so a = b = c = 0. So we obtain

u = dx +Ay +Bz,

v = dy −Ax + Cz,

w = dz −Bx− Cy, .

And from that, we see that U0 = 0 implies that
u

v

w

 = dx


1

0

0

+dy


0

1

0

+dz


0

0

1

+A


y

−x

0

+B


z

0

−x

+C


0

z

−y

 . (6.33)

So there are 6 dimensional null space in the stiffness matrix. The first three represent translation

in x-,y-,z-directions, and the latter three represent rotations about each of the 3 axis.

6.3 Constraining the Object

In this section, I will establish that at least 3 contacts, which are not co-linear, are needed

to constrain the 3D object.



55

Lemma 1. Let line l pass through the origin and point P1 = (x1, y1, z1). Then the vector

representing the object’s rotation about l is a linear combination of the three rotation vectors.

Proof. Let p1, p2 be two arbitrary points on an object, and their corresponding displace-

ment d1, d2 represent the rotation about an axis l = sa, where s ∈ R is a scaler and a =

(x1, y1, z1), then their angular velocity must be the same. Hence the following conditions must

be satisfied:

1) a · d1 = a · d2 = 0, i.e. d1 and d2 are perpendicular to l;

2) |d1|h2 = |d2|h1, where hi = p1 × a/|a|, i = 1, 2 is the distance from pi to l. This means

that the magnitude of the displacement is proportional to the distance;

3) (d1 × a) · (d2 × a) ≥ 0, i.e. any two points are rotating in the same clockwise or counter-

clockwise direction.

Thus the vector Rl representing the rotation of a point P = (x, y, z) about line l is collinear

with

R′l = (x1, y1, z1)× (x, y, z) = x1


0

−z

y

+ y1


z

0

−x

+ z1


−y

x

0

 , (6.34)

which is a linear combination of the three rotation vectors.

When l is not passing through the origin, Rl is a linear combination of all the six null

vectors instead of only three rotational null vectors.

From the equilibrium equation

K∆ = F, (6.35)

follows the SVD procedure as presented in [15], we have

M

 f̄

g

 =



δ̄

0

0

0


, (6.36)
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where the small matrix M with dimension (2m + 3)× (2m + 3), with m being the number of

points in contact, i.e. with specified displacement, is

M =

 A B

BT 0

 , (6.37)

Here f̄ is the force for contact points, g is the projection of the deformation onto the null space,

and δ̄ is the displacement for contact points.

Lemma 2. If m ≤ 2, M is singular.

Proof. Given M is a square matrix, (6.36) has at least one solution. Suppose (f̄T0 gT0 )T is a

solution to it. Then according to it, we can obtain unique ∆0 and F0 such that K∆0 = F0.

Without loosing generality, we place the origin at one of the contact(s). If m = 2, let l

be the line defined by the contacts, and if m = 1, let l be any line that passes through the

origin. Let Rl be the vector that represents the rotation of the object about l. Note that Rl is

a linear combination of the three rotational null vectors. So KRl = 0. Adding with K∆0 = F0,

we get K(hRl + ∆0) = F0, where h ∈ R is some scalor. Note that the displacement of

contacts is still δ̄. So equation (6.36) must have another solution (f̄T1 gT1 )T that corresponds

to ∆1 = ∆0 + hRl and F0. So M is singular.

Note that f̄1 = f̄0. In the solution, only g, the projection to the null space is different.

The fingers have identical hemispherical tips F1 and F2 for simplicity. Making contact with

the resting object at the nodes pi and pj in their current locations under gravity, the fingertips

first squeeze the object and later lift it via an upward translation, breaking its contact with

the plane.

6.4 An Algorithm for Picking up 3D Objects

The fingers are assumed to be translating during the squeeze in constant directions, denoted

by unit vectors d̂1 and d̂2, respectively. Without loss of generality, let F1 be the moving

fingertip. For every unit distance F1 translates in d̂1, F2 translates in d̂2 by s ≥ 0. Thus,

the squeeze action can be represented by ρ(d̂1, sd̂2), where ρ ≥ 0 is referred to as the squeeze

depth.
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Algorithm 2 Two-finger pickup of a 3D solid

Input: tetrahedral mesh, table contact 4pqprps, finger contacts pi,pj , squeeze

(d̂1, sd̂2)

1: Check if pi and pj form force closure with 4pqprps. If not, return failure.

2: Compute the object’s initial resting configuration.

3: Squeeze the object by translating F1 and F2.

4: During the squeeze, test if the object can be lifted.

5: If so, stop squeezing to lift the object. Return success.

6: If enough squeeze has been applied and the object still cannot be picked up, report failure.

Otherwise, go back to step 3.

As ρ increases, the contacts will grow from pi and pj into regions on the fingertips. The

contact region with the plane will also change and later shrink during the lift. Denote by I, J,K

the (varying) sets of the indices of the nodes that are in contact with F1,F2,P, respectively.

Their union C = I ∪ J ∪K consists of the indices of all contact nodes.

Algorithm 2 describes how to pick up the object. Step 1 uses a procedure from [21] to

check if pi, pj , and the center of 4pqprps would be force closure on a rigid body with the same

shape of the resting object.1 If no force closure, the object will not deform and the algorithm

will fail.

Below we will first describe step 2 on modeling of the object’s resting configuration (when

it is in contact with P only), then step 4 on testing whether the object can be lifted after some

squeeze (by considering its contacts with F1 and F2 only), and finally step 3 on squeezing the

object (when it has active contacts with all of F1, F2, and P).

6.5 Initial Resting Configuration

Before grasping the object, we need to estimate its resting configuration on the table.

The object’s initial resting configuration is determined from a surface triangle 4pqprps in

contact with P. The vertical projection of the object’s center of mass lies in the interior of

the triangle. The object deforms under gravity over the triangle, causing the contact region to

grow from 4pqprps.

1Since the triangle is small, the contact is approximated by its center.
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Clearly, I = J = ∅ and C = K since the object has not yet made contact with the fingertips.

We describe an iterative procedure that computes the initial resting configuration. At the start

of each iteration, a node pk, 1 ≤ k ≤ n, has been displaced to the location p̃k and receives force

fk if it is in contact with the plane. Let the set P collect the indices of sliding nodes. The follow-

ing steps are carried out in the iteration.

1: P← ∅.

2: Compute the change ∆′ from displacement vector ∆, and the change F̄′ from contact force

vector F̄.

3: ∆←∆ + ∆′ and F̄← F̄ + F̄′.

4: If no new contact node is found and, for every k ∈ K, fk is inside the friction cone, terminate

the algorithm.

5: Otherwise, handle new contact if any.

6: Identify sliding nodes and add their indices to P.

7: Recompute the displacements of all sliding nodes.

In step 2, we fix every contact node pk at p̃k, k ∈ C. by setting its change in displace-

ment δ′k ← 0. The change d̄′ in the contact displacement vector, which consists of all δ′k, k ∈ C,

is thus zero. The terms F̄′ and ∆′ can be evaluated by

∆ =
3n−6∑
k=1

1

λ
(v̄Tk F̄)vk + (v3n−5, · · · , v3n)b + D, (6.38)

where G is the gravity vector, vk is the k-th eigenvector of the stiffness matrix, the term b is

the vector that gathers the projections of ∆ on to the null vectors, and D =
∑3n−6

k=1
1
λ(vTk G)vk.

Here ā means the vector composed by the elements of vector a that are corresponding to the

contact nodes. The contact force

F̄ = C(∆̄− D̄)− mg√
n
, (6.39)

where C is the reduced stiffness matrix and . Set p̃k ← p̃k + δ′k, for 1 ≤ k ≤ n, as described in

step 3.

In step 4, a new contact exists if some node on the object would be displaced below the

plane. Among all such nodes, let pt be the one that is the furthermost below P. Step 5 adds pt

as the new contact; namely, C← C ∪ {t}, and scale down δ′t such that p̃t + δ′t lies in P.
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Step 6 determines if any existing contact pk, k ∈ C and k 6= t, has slid by checking if fk is

outside the friction cone. If the condition holds, add k to P. The sliding direction of a sliding

node is opposite to the projection of fk onto the plane. The extra displacement δ′k due to

sliding is thus determined by the sliding distance dk.

Step 7 evaluates F̄′ and ∆′ again as in step 2, this time from the updated δ′k for k ∈ P, δ′t,

and δ′l = 0 for l ∈ C \ (P ∪ {t}). Each updated fk, k ∈ P, is a linear function of dl for all l ∈ P.

That fk is on the boundary of the friction cone yields a system of quadratic equations:

(1 + µ2
P)(fk · ẑ)2 = fk · fk, for k ∈ P, (6.40)

where µP is the coefficient of friction between the object and the table. There are |P| equations

in |P| variables dk, k ∈ P. Solve the system using the homotopy continuation method2 [1].

Move on to the next iteration.

6.6 Squeezing and Lifting

The squeeze depth has to be large enough so that the friction between the object and the

two fingertips is enough to hold the object if it is picked up. We need to perform a quick lift

test in order to check if the object can be picked up. This corresponds to step 4 in Algorithm 2.

We first set C ← I ∪ J, as if the supporting plane P were suddenly removed. Then, the

contact force vector and the displacement field are recomputed by specifying the displacements

of only the nodes in contact with the fingertips. Finally, we identify the sliding nodes. If some

finger slides or the portion of the sliding nodes is beyond some threshold, we consider the test

as a failure.

Imagine we hypothetically increase the weight of the object from zero. Beyond certain

value w, one finger will slide on the object. We call w as liftable weight. Here we assume that w

increases continuously with the squeeze depth ρ. As the squeeze goes on and ρ increases, we

keep track of w(ρ). Initially, w(0) = 0. At each step l update w(ρl) based on the current contact

configuration and w(ρl−1). We iterate to test w(ρl−1) + h, w(ρl−1) + 2h, ..., until the object is

2This method solves a system P(x) = 0 by tracking the solutions of “nearby” systems starting with another
system Q(x) = 0 that has a known solution.
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no longer liftable at some w(ρl−1)+kh, where h is the step size. Set w(ρl) = w(ρl−1)+(k−1)h.

Once w reaches or exceeds the actual weight of the object, the lift test is passed. Otherwise,

more squeeze is needed. And the lift test fails.

In step 3 of Algorithm 2, the object is being squeezed by F1 and F2 with ρ increasing. The

squeeze continues until either at some instant the lift test is passed, or the amount of squeeze

becomes too large that the object is deemed impossible to pick up.

Sequence ρ into ρ0 = 0 < ρ1 < · · · such that at ρ = ρl some event happens to trigger a

change in the contact configuration. Within the interval [ρl, ρl+1) the changes F̄′ in the contact

forces and ∆′ in the displacement vector are updated.

The 4 types of events are considered as is described in Section 5.2. Between two events,

the movements of all sliding nodes need to be tracked. Their indices are collected in the set P.

If pk slides in the plane P, its sliding distance dk is a variable as described in Section 6.5.

The situation that pk slides on a fingertip is illustrated in Fig. 6.1. Let p̃k be the sliding

Figure 6.1: Sliding of a node on a hemispherical fingertip (with the entire sphere shown).

point, then the friction fk must lie on the edge of the friction cone,

(1 + µ2
F )(fk · n̂k)2 = fk · fk, (6.41)

where µF is the coefficient of friction and n̂k is the normal of the fingertip as p̃k. Also

c2
k + s2

k = 1. (6.42)
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where ck and sk are the cos and sin values of the angle p̃k slides on the fingertip respect to the

finger center.

With the updated δ′ks, whether pk slides in the plane or on a fingertip, the change d̄′ in the

contact displacement vector has been reset. We can obtain the changes ∆′ in the displacement

vector and F̄′ in the contact force with ∆′,F′, d̄′. They depend on all dk, k ∈ P ∩K, and all cl

and sl, l ∈ P ∩ (I ∪ J). We end up with a system of 2|P ∩ (I ∪ J)|+ |P ∩K| quadratic equations

in the forms of (6.40), (6.41), or (6.42) in the same number of variables. Solve the system to

update all contact slips using the homotopy continuation method.

We take small increments in the squeeze depth and check after each increment if any event

happens. Upon such an occurrence, Newton’s method is used to polish the corresponding

squeeze depth value. The contact index sets I, J,K,P are updated accordingly.

In step 5 of Algorithm 2, once the lift test is passed, the two fingers translate upward.

During the lift, the nodal contacts with the plane P will break gradually, and some contacts

with the fingertips could also break under gravity. Modeling, however, is no different from that

of squeezing. If all the contact nodes on one finger are sliding, the object slides on the finger

and the pickup fails. Otherwise, the pickup is a success when the object leaves the plane.
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CHAPTER 7. RESTORATION OF GRAVITY-FREE 3D SHAPES

In the previous FEM formulation, the stiffness matrix is constructed over the (observed)

shape of the object, which has already deformed under gravity. The entries of the matrix

encode the effects of gravity in a nonlinear manner. Treatment of the gravitational force still

as a body force in the constitutive equation is similar to taking into account the gravitational

effect the second time. On the other hand, simply excluding the gravitational force from the

equation will not resolve the issue, due to the nonlinearity of the encoding of geometry in the

stiffness matrix. Such influence posed by gravity can be large when the density-to-Young’s-

Modulus ratio is not negligible. Particularly, the local contact geometry of the object and the

supporting plane may be dramatically affected.

To address the gravity issue more precisely and to achieve higher accuracy in deformable

modeling with non-negligible gravitational effects, the idea is to restore the gravity-free shape

and stiffness matrix of the solid. The obtained matrix will not be correlated with any gravita-

tional effect. It will be readily applied to model deformation under all body forces and external

forces.

7.1 Gravity-Free Shape Restoration

When gravity is involved, the constitutive equation (3.7) becomes

K∆ = F +G, (7.1)

where G is the gravity force vector. Our task of restoring the gravity-free shape comes down

to determining ∆ from the known deformed shape P̃, so that P + ∆ = P̃. We introduce a

fixed-point iteration algorithm. At the beginning, we initialize p
(0)
i = p̃i, i = 1, . . . ,m. At

the lth iteration, we first construct the object’s stiffness matrix based on the current shape
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estimation P(l) = P̃ −∆(l), apply a negative gravity on the object, and then obtain the new

displacement estimate:

∆(l+1) = (1− r)∆(l) + rK−1(∆(l))G, (7.2)

where r with 0 < r ≤ 1 is a control parameter. This is essentially a fixed point iteration with

the iteration function given as

α(∆) = (1− r)∆ + rK−1(∆)G. (7.3)

We also let

β(∆) = K−1(∆)G. (7.4)

The vector β represents the displacement that would be caused by gravity based on the current

estimate P̃ −∆ of the free shape. Clearly, α = (1 − r)∆ + rβ, and β = α when r = 1. The

iteration function (7.4) could result in large changes in ∆ and eventually lead to divergence.

The iteration function (7.3) with a small r value avoids dramatic changes and reduces the

possibility of divergence.

Under the Contraction Mapping Theorem [38, pp. 237–242], iterations (7.2) converge if the

following two conditions hold:

1) α maps a convex set D ⊂ Rm onto itself;

2) the Jacobian Jα = ∂α/∂∆ of α satisfies ‖Jα‖ ≤ c < 1, for some c, over D.

Let us consider condition b) for convergence for a general solid. It follows from (7.3) that

the Jacobian of α takes the form Jα = (1− r)Im + rJβ, where Im is the m×m identity matrix

and Jβ is the Jacobian of β. We have that

‖Jα‖ ≤ (1− r)‖Im‖+ r‖Jβ‖

= (1− r) + r‖Jβ‖.

If ‖Jβ‖ ≤ c < 1, then ‖Jα‖ = 1− r + rc < 1.

Given that α is parametrized by r, we also denote it as α(r) with α(1) = β, and its Jacobian

as Jα(r). Using the ∞-norm, we can obtain a stronger result. It is intuitive that when r is
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smaller, more damping is involved, and it is easier to converge. In terms of the norm of the

Jacobian, we have the following theorem.

Theorem 5. Suppose 0 < r1 < r2 ≤ 1. If ‖Jα(r2)‖∞ < 1 then ‖Jα(r1)‖∞ < 1.

Proof. The ∞-norm of a matrix, say, Jβ = (bij), is its maximum absolute row sum, i.e.

max1≤i≤n
∑

1≤j≤n |bij |. For 1 ≤ i ≤ m let

si =
∑

1≤j≤m
j 6=i

|bij | and ti = ||1− r + rbii|+ rsi|.

Then, ‖Jα‖∞ = maxi ti. We have

ti =

 r(si + bii − 1) + 1, if bii ≥ 0 or (bii < 0 and 0 < r ≤ 1
1−bii );

r(si − bii + 1)− 1, otherwise.
(7.5)

Let us make an observation about the case bii < 0. From the above definition of ti, when 0 <

r ≤ 1/(1− bi) its value r(si + bii− 1) + 1 is no less than the alternative value r(si− bii + 1)− 1;

and when 1/(1− bii) < r ≤ 1 its value r(si− bii + 1)− 1 is always greater than the alternative.

The above observation allows us to first get the maximum of the values in the first form

in (7.5) for all i, and the maximum of the values in the second form for all j with bjj < 0; and

then simply compare these two maxima to obtain ‖Jα‖. More specifically, we introduce

c = max
1≤i≤n

(si + bii) and d = max
1≤i≤n
bii<0

(si − bii).

Then, ‖Jα‖∞ = max{r(c− 1) + 1, r(d+ 1)− 1}. There exist 3 cases based on c and d:

1) c ≥ 1. Clearly, ‖Jα‖∞ ≥ 1 for all 0 < r ≤ 1.

2) c < 1 and d ≤ c. Then ‖Jα‖∞ = r(c− 1) + 1 < 1.

3) c < 1 and d > c. There are two subcases:

(a) 0 < r ≤ 2
d−c+2 . ‖Jα‖∞ = r(c− 1) + 1 < 1 as in case 2).

(b) 2
d−c+2 ≤ r ≤ 1. ‖Jα‖∞ = r(d+ 1)− 1. We see that ‖Jα(r1)‖∞ < ‖Jα(r2)‖∞.

In all the above cases mentioned, the condition ‖Jα(r2)‖ < 1 implies ‖Jα(r1)‖ < 1. So the

theorem holds.
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Next, we take a closer look at the Jacobians Jα and Jβ to find out their physical meanings,

starting with Jβ. Rewriting (7.4) as Kβ = G and differentiating both sides, we obtain Jβ =

−K−1Q, where

Qx =


βT (∂k1/∂∆)x

...

βT (∂km/∂∆)x

 = (∆K)β,

where ∆K = (∆k1, . . . ,∆km). Let x be a small enough m-vector. For 1 ≤ j ≤ m denote ∆kj =

(∂kj/∂∆)x, which represents the first order change in the jth column of the stiffness matrix K

due to a change from the (predicted) shape P̃−∆ to the (predicted) shape P̃− (∆ + x). The

matrix ∆K can be approximated as

∆K ≈ K(∆ + x)−K(∆).

Subsequently, Qx ≈ (K(∆ + x)−K(∆))β and

Jβx = −K−1(∆)∆Kβ

≈ β −K−1(∆)K(∆ + x)β. (7.6)

The last expression above represents the opposite of the extra nodal displacement that would

be generated by the force to realize the displacement β for a shape change of −x from its

current estimate P̃−∆. The norms of Jβ and Jα are then approximated below, based on the

definition of the matrix norm:

‖Jβ‖ ≈ max
smallx

‖β −K−1K(∆ + x)β‖
‖x‖ , (7.7)

‖Jα‖ ≈ max
smallx

‖(1− r)x + r(β −K−1K(∆ + x)β)‖
‖x‖ . (7.8)

Given the complex form of the stiffness matrixK, accurate approximations of ‖Jα‖ and ‖Jβ‖

would require significant sampling of x, yielding very high computational cost. Instead, we

examine the ratios in (7.7) and (7.8) at only those x values that will occur in the iterations.

More specifically, consider the iteration function (7.4). We have

‖∆(l+1) −∆(l)‖ = ‖β(∆(l))− β(∆(l−1))‖

≈ ‖Jβ(∆(l−1))(∆(l) −∆(l−1))‖,
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by applying the Taylor series. For l = 1, . . ., evaluate the norm ‖Jβ(∆)x‖, with ∆ = ∆(l−1)

and x = ∆(l)−∆(l−1), according to (7.6). The obtained ratios ‖Jβx‖/‖x‖ could give us a good

idea about whether convergence happens.

We use the iteration function α with r = 0.5 and r = 1 (i.e., β for the second value)

separately in attempts to restore the zero-gravity shape of a sphere shown in Fig. 7.1 with

radius 0.05 and density 700. Its Young’s modulus is set to 2.5 × 105 and Poisson’s ratio

Figure 7.1: Sphere deformed by its gravity sitting on a table.

to 0.3. The mesh representing the sphere consists of 367 vertices (328 on the surface), 1144

tetrahedrons, and 2613 triangular facets. The sphere makes contact with the plane at one

triangular facet, whose three vertices are fixed. The computed ∆ has 2-norm 0.239769.

Fig. 7.2 plots, during the two executions (r = 1 and r = 0.5), the values of ‖Jαx‖/‖x‖,

where x = ∆(l)−∆(l−1) and Jαx evaluated at ∆(l−1) approximately according to (7.6). Note

that each curve describes iterations during a separate execution. The curves are lower bounds

respectively for the trajectories of the norm ‖Jα‖ with r = 0.5 and r = 1. The execution

with r = 0.5 succeeded while the one with r = 1 failed. In the figure we see that the plot

for r = 1 goes up dramatically, while that for r = 0.5 quickly approaches 0.
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Figure 7.2: Lower bounding curves for ‖Jα‖ during separate executions (r = 0.5, r = 1), where l

is the number of iterations.
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7.2 Experiment

Experiment was carried out to validate the use of the restored gravity-free shape and stiff-

ness matrix. A jelly with the brand name “Jell-O”, shown in Fig. 7.3(a), was used. Its

(a) (b) (c)

Figure 7.3: Jelly pudding: (a) image; (b) mesh output from a scanner; and (c) mesh under

zero gravity.

shape was roughly a frustum of a cone. The jelly was sitting on a platform, with its base (bot-

tom) making the contact. Its shape shown in (b) (deformed under gravity) was first acquired

by a 3D scanner from NextEngine, Inc., and then simplified using the open source project

MeshLab (http://meshlab.sourceforge.net/). Measurements of the shape are shown in

the second row of Table 7.1.

height top diam. bot. diam. volume

original 0.031 0.050 0.062 7.68× 10−5

original (gravity-free) 0.034 0.050 0.060 7.85× 10−5

flipped 0.031 0.057 0.056 7.6× 10−5

flipped (gravity) 0.028 0.062 0.051 7.4× 10−5

flipped (gravity-free) 0.030 0.060 0.050 7.5× 10−5

Table 7.1: Measurements of the height, top diameter, bottom diameter, and volume of the jelly

in its original, gravity-free, and flipped shapes, and the predictions of the flipped shape using

the gravity-influenced and gravity-free stiffness matrices.
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(a) (b)

Figure 7.4: Convergence during restoration of the gravity-free shape in Fig. 7.3(c). (a) Norm

of predicted nodal displacements from the gravity-free shape. (b) Logarithm of the norm of

the difference between two consecutive predictions.

The measured Young’s modulus was 3 × 103, Poisson’s ratio was 0.4,1, and density was

9.6 × 102 The mesh (b) was transformed using the code from the Computational Geometry

Algorithm Library (http://www.cgal.org/) into a tetrahedral mesh T with 1119 vertices,

1012 surface facets, and 5152 tetrahedra.2

Assuming all the vertices on the base were fixed, we restored the gravity-free shape of the

jelly. The parameter r in the iteration function α in (7.3) was set to be 1, so the iteration

function β in (7.4) was used. The termination condition ‖∆(k+1) −∆(k)‖ < 10−6 was met

after 8 iterations. The restored shape of the jelly is shown in Fig. 7.3(c). As seen in the third

row of Table 7.1, the jelly’s height and volume increased by 9.68% and 2.21%, respectively.

Note that the mesh T and the restored mesh in (c) have the same set of nodes at different

locations, and different stiffness matrices.

Fig. 7.4 (a) plots the 2-norm of ∆, the estimated node-wise difference between the observed

shape of the jelly from its gravity-free shape. It can be seen that the first iteration step

made the largest shape correction. Corrections in the following steps decreased monotonically

and fell within the preset tolerance of 10−6 at the 8th iteration step. Part (b) of the figure

1The measurement method for these two constants of elasticity was described in [13].
2The library code resampled the mesh (b) at a higher resolution.
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plots the logarithm curve of the 2-norm of the difference between the shape corrections in two

adjacent steps. The curve approximates a line with its slope indicating the exponential rate of

error reduction.

Next, we flipped the jelly upside down as shown in Fig. 7.5(a) alongside its scanned im-

age (b). When flipped over, the jelly’s height remained the same, its original top face grew

(a) (b) (c) (d)

Figure 7.5: Jelly pudding from Fig. 7.3. Flipped upside down: (a) image; (b) meshed output

from the scanner; (c) deformed shape predicted using the gravity-influenced mesh T ; and (d)

deformed shape predicted using the gravity-free mesh in Fig. 7.3(c).

due to contact, and its original bottom face shrunk. See the fourth row of Table 7.1. Again,

assuming all the vertices on the contact faces were fixed, we simulated the deformed shapes by

flipping over the mesh T and the gravity-free mesh in Fig. 7.3 (c), respectively. The results are

displayed in Fig. 7.5(c) and (d), respectively. We see that the deformation result (last row in

the table) computed using the gravity-free mesh and stiffness matrix are visibly closer to the

measurements of the real object (fourth row) except the bottom diameter.
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CHAPTER 8. GRASP PLANNING

This chapter describes a strategy to lift up a deformable 2D object resting on a supporting

plane. Inspired by human hands, the strategy plans grasping trajectories of two fingertips. The

problem can be formulated as a standard path planning problem once the goal is obtained, and

is solved using modified Rapidly-exploring Random Trees (RRT). Compared with a straight

squeeze, the resulting finger movement not only enlarges the graspable region, but also tries to

minimize the amount of finger work. The strategy also tries to reduce the control complexity

and increase robustness. The strategy is applicable to both hollow and solid 2D objects, and

is extendable to 3D ones.

It is usually an easy task for a human hand to pick up a deformable object sitting on a

table. Placed at certain positions on the object, the fingertips move along some trajectories in

coordination until the object is off the table. The fingertips usually squeeze the object first in

order to form a firm grip, and gradually turn upward. They may even apply a downward initial

squeeze, in order to form the firm grip that cannot be achieved otherwise. Such movements,

employed by human beings using visual and tactile information, as well as experience, are

often efficient and successful. However, such amount of sensor data, or grasping skills, are not

possessed by robots.

The degenerate case of a straight squeeze was studied in the previous work. While such a

strategy is simple, it has some drawbacks. Firstly, there are situations where straight squeez-

ing does not work well, while moving along a curved trajectory, may succeed. Secondly, no

optimality was considered. The work done in a straight squeeze may be more than necessary.

Inspired by human hand grasping, I introduce a strategy to grasp deformable objects by

specifying a trajectory for each fingertip. More precisely, given an object sitting on a table, and

two finger placements on it, we want to find out a set of curves, following which, the fingertips
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can grasp and lift the object off of the table against gravity. With such a strategy, we will not

only succeed at the locations where straight squeezes would fail, but also achieve several levels

of optimality. The most important optimization is to minimize the work done by the fingers.

Based on that, the control complexity is minimized. It is usually harder for a robotic finger to

follow an arbitrary curve, than a piecewise straight one. It is also more complex to follow a

curve with many turns, than one with less turns. In this chapter, the trajectories we planned

are piecewise straight lines. The grasp stability maximization is also under consideration.

The contact between the finger and the 2D hollow object is point contact. The displacement

of the fingers can be described by a point in a four dimensional space – the configuration space,

which is described by a set of fourth order four dimensional polynomial equations obtained from

physical constraints. Through manipulation of the stiffness matrix, the contact force, contact

local geometry, and the work done by the fingers are expressed by the finger displacement in

explicit form. The goal state, which is the finger displacement that lifts up the object and

results in the global minimum work, is then obtained. The problem is then reduced to be

a typical path planning problem with known starting and goal state in the four dimensional

space.

Later we extend the above strategy to solid objects. Due to Flamant effect [39], the contact

between fingertips and the object is area contact. Besides, the contact configuration changes

during the grasp [15]. Such difference introduced extra difficulty. For instance, there is no clear

polynomial relationship between the contact force and the finger displacement. We handle such

problem by approximating the contact configuration.

In the following part of this chapter, Section 8.1 introduces the background on deformable

computing given finger placement and gravity, Section 8.2 describes the path planning algorithm

on hollow objects, Section 8.3 extends the strategy to solid objects, Section 8.4 shows the

simulation results, and Section 8.5 concludes the work and discusses possible future works.

8.1 Deformed Shape under Contact and Gravity

This section will review linear elasticity, Finite Element Methods (FEM), and the formula-

tion of computing deformation under finger displacement and gravity.
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A ring-like object is swept out by a rectangular cross section along a closed two dimensional

curve γ(s) parameterized by arc length. Denote the displacement at γ(s) to be δ(s) = α(s)t +

β(s)n, where t is the curve’s unit tangent and n is its unit normal. The object’s strain energy

is

U =
1

2

∫ L

0

(
hε2 +

h3

12
ζ2

)
ds, (8.1)

where E is the object’s Young’s Modulus, w is the width, h is the thickness, L is the length of

the center curve, ε = dα/ds − κβ is the elongation, and ζ = −d2β/ds2 − αdκ/ds − κdα/ds is

the change in curvature, with κ being the curvature of γ.

When external force f(s) is applied on the object and caused deformation δ(s), the load

potential is

W = −
∫
L
δT (s)f(s)ds. (8.2)

The deformation at equilibrium is obtained by minimizing the total potential energy Π = U+W .

Generally without a close form solution, it is solved by Finite Element Method(FEM)[11].

The object is represented as a ring of small segments with n vertices p1, · · · ,pn, where pi =

(xi, yi)
T , for 1 ≤ i ≤ n. When the object is deformed, pi is deformed by δi to the loca-

tion p̃ = pi + δi. The displacement of any point can be interpolated by that of vertices.

Thus the deformed shape is uniquely described by ∆ = (δT1 , · · · , δTn )T , which is referred to as

displacement vector.

The strain energy of every segment can be written as a quadratic form in terms of the

displacements of its adjacent vertices. Assembling over all the segments gives the strain energy

of the object U = 1
2∆TK∆, where K is the stiffness matrix of the object. It is symmetric and

positive semi-definite with three null vectors representing the rigid body motion of translation

in x-, y-direction, and rotation. Let F = (fT1 , · · · , fTn )T be the force vector exerted to the object

through contact, and G = (gT1 , · · · ,gTn )T be the gravity force, the system’s total potential

energy is

Π =
1

2
∆TK∆−∆T (F + G).

Minimizing Π gives the equilibrium equation:

K∆ = F + G. (8.3)
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Similarly as in [23], we can construct the ∆ vector from projections, together with the force

projection on the null vectors

∆ =

2n−3∑
i=1

1

λi
(v̄Ti F̄)vi + (v2n−2,v2n−1,v2n)b + g, (8.4)

0 = vTi (F + G), i = 2n− 2, 2n− 1, 2n, (8.5)

where vi is the i-th eigenvector of K, b gathers the projections of ∆ on to the three null

vectors v2n−2,v2n−1,v2n, g =
∑2n−3

i=1
1
λ(vTi G)vi is a constant vector. The notation v̄ of a

vector v means the vector composed by elements of v that are corresponding to contact nodes.

For example, F̄ consists the entries of F that are corresponding to the nodes in contact.

Extracting the rows that correspond to nodes in contact from equation (8.4), together

with (8.5), a linear system for the unknown F̄ and b is built.

M

 F̄

b

 =

 ∆̄

0

−
 ḡ

(v2n−2,v2n−1,v2n)TG

 , (8.6)

where M is a constant symmetric matrix and is fully ranked if at least three terms of ∆ are

specified [15]. In other words, the size m of ∆̄ is at least 3. Let

M−1 =

 C E

ET H

 .

where C, a matrix of dimension m×m, is called reduced stiffness matrix. E and H are matrices

of dimensions m× 3 and 3× 3 respectively.Thus F̄

b

 =

 C

ET

 ∆̄

−M−1

 ḡ

(v2n−2,v2n−1,v2n)TG

 . (8.7)

With F̄ and b known, we can substitute them back into equation (8.4), and solve for any

unknowns.
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8.2 Grasp Planning for Hollow Objects

This section studies the grasp planning problem on a hollow object. We will first describe

the problem setup, then analyze the problem properties. Using the properties, we find out the

goal state of grasping that results in minimum amount of work. Finally we introduce Rapid

Reaching Tree to plan the path.

8.2.1 Problem Setup

Consider a hollow object sitting vertically on a smooth supporting plane with no friction.

We assume there are two points p1 and p2 in contact with the supporting plane. Without

losing generality we assume the plane is horizontal. Thus

p1y = p2y, p1x 6= p2x. (8.8)

Since the two points stay on the table, we have the constraint

δiy = 0, (8.9)

where δiy, i = 1, 2 are the displacement of p1 and p2 in the y direction. Since we assume the

supporting plane has no friction,

fix = 0, (8.10)

where fix, i = 1, 2 are contact force of p1 and p2 in the x direction.

Initially, every node pi of the object displaces δ′i under gravity G1. Let f ′1 = (0, f ′1)T

and f ′2 = (0, f ′2)T be the supporting force at p1 and p2.

Two robotic fingers then make point, frictional contact with the object at p3 and p4 re-

spectively. According to previous derivation,

 FT

FSy

 = C

 Ψ

∆Sy

+


0

f ′1

f ′2

 , (8.11)

1When computing the deformation due to gravity, we let δ1x = 0 in order to let the system solvable. Such
constraint is later removed and will not impact anything other than making δ′ unique.
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where FT = (f3x, f3y, f4x, f4y)
T is the force vector of finger contacts and FSy = (f1y, f2y)

T

is the y-directional force vector of supporting points. Ψ = (ψ3x, ψ3y, ψ4x, ψ4y)
T is the finger

displacement. We do not allow slip between object and fingers, so the displacement of p3

and p4, ∆T = (δT3 , δ
T
4 )T = Ψ + (δ

′T
3 , δ

′T
4 )T . ∆Sy = (δ1y, δ2y)

T = 0 is the y-displacement of

supporting nodes. The 6× 6 matrix C is the reduced stiffness matrix.

We define the object is lifted up at the moment of the supporting force becoming 0.

FSy = 0. (8.12)

The planning problem is to find a sequence of Ψ0, · · · ,Ψl, such that Ψ0 = 0, and Fsy(Ψl) = 0,

subject to some constraints. We will look into the necessary constraints later.

8.2.2 Reduced Stiffness Matrix

Before solving the problem, we need to analyze the property of C, the conclusion of which

will be used later.

Since C is independent from gravity, in this subsection, we set G = 0. Thus f ′i = δ′i = 0,

for i = 1, · · · , n. Thus ψi = δi for i = 3, 4,

The object’s strain energy

E =
1

2

 Ψ

∆Sy


T

C

 Ψ

∆Sy

 . (8.13)

Theorem 6. C is symmetric, positive semidefinite and rank(C) = null(C) = 3.

Proof. It is easy to see C is symmetric because M is. Given (8.13), it is also easy to see C is

positive semidefinite because the strain energy can never be negative.

Let

∆̄1 =

 Ψ

∆Sy

 = (1, 0, 1, 0, 0, 0)T , (8.14)

Note that ∆̄1 corresponds to the rigid body motion of translating the whole object in x-

direction. Let the two vectors of size 2n, ∆1 = (1, 0, · · · , 1, 0)T and F1 = 0, then ∆1 and F1

form an equilibrium configuration of the object satisfying the specification of ∆̄1. According
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to [15], since ∆̄1 specifies the displacements of at least two points, the configuration is the

unique configuration. Thus

F̄1 = C∆̄1 = 0. (8.15)

Similarly, let ∆̄2 = (0, 1, 0, 1, 1, 1)T and ∆̄3 = (−p3y,p3x,−p4y,p4x,p1x,p2x)T , which result

in ∆2 and ∆3 as global deformation respectively.

C∆̄2 = C∆̄3 = 0. (8.16)

Note ∆̄3 cannot be linearly combined by ∆̄1 and ∆̄2 because p1x 6= p2x given p1y = p2y.

So ∆̄1, ∆̄2 and ∆̄3 are linearly independent and span C’s 3 dimensional null space. Rank(C)≤3.

Suppose ∆̄4, perpendicular to ∆̄1, ∆̄2 and ∆̄3, is another null vector of C. Then its

corresponding global deformation vector ∆4 is linearly independent of ∆1, ∆2 and ∆3 since ∆̄i

is part of ∆i, i = 1, 2, 3, 4. Also ∆4 is a null vector of the global stiffness matrix K, which is a

contradiction to the known result that null(K) = 3.

Thus rank(C) = 3.

Since C is symmetric, we can write

C =

 C1, C
T
2

C2, C3

 , (8.17)

where C1, C2, C3 are 4 × 4, 2 × 4, and 2 × 2 submatrices of C, C1 and C3 are also symmetric

since they are on the diagonal positions of C.

Theorem 7. C1 is positive semi-definite, and rank(C1) = 3.

Proof. Let ∆̄ = (XT , 0)T , where X ∈ R4 is an arbitrary vector. So the strain energy of the

object E = 1
2X

TC1X ≥ 0. It indicates that C1 is positive semi-definite.

When X = (1, 0, 1, 0)T , ∆̄ lies in the null space of C. So the energy of the object E =

1
2X

TC1X = 1
2∆̄TC∆̄ = 0. Therefore (1, 0, 1, 0)T lies in the null space of C1 and rank(C1)≤ 3.

Suppose for contradiction that rank(C1)< 3. Then rank(null(C1)) ≥ 2. As a result, there

must be another null vector of C1, i.e. ∃X ′ ⊥ (1, 0, 1, 0)T , |X ′| 6= 0 such that C1X
′ = C∆̄′ = 0,
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where ∆̄′ = (X ′T , 0)T . Then ∆̄′ must also lie in C’s null space and be a linear combination of

C’s the other two null vectors:

 X

0

 = x1



0

1

0

1

1

1



+ x2



−p3y

p3x

−p4y

p4x

p1x

p2x



, (8.18)

where x1, x2 ∈ R and x2
1 + x2

2 6= 0. Take the last two equations out from (8.18) 1 p1x

1 p2x


 x1

x2

 =

 0

0

 . (8.19)

Given (8.8), p1x 6= p2x. Thus the coefficient matrix in (8.19) is fully ranked. Therefore x1 =

x2 = 0, which is a contradiction. Thus it implies rank(C1) = 3.

Theorem 8. Rank(C2) = 2.

Proof. It is obvious that rank(C2) ≤ 2 given its dimension. It is also obvious that rank(C2) > 0,

because otherwise ∀Ψ ∈ R4, when ∆Sy = 0, FS = C2Ψ = 0, which immediately violates

equilibrium condition and is impossible.

As an overview of the proof of rank(C2) = 2, we prove by contradiction that suppose

otherwise, then FT can be written as a linear combination of at most 2 constant vectors,

indicating that C1 has only rank 2, contradicting Theorem 7.

Suppose for contradiction that rank(C2) = 1. Then

C2 =

 a

b

vT , (8.20)
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where a2 + b2 6= 0, v ∈ R4, v 6= 0, a, b,v are constants determined by C. Ψ could be any

non-zero vector, and set ∆Sy = 0. According to (8.11)

 FT

FSy

 =

 C1Ψ

C2Ψ

 =


C1Ψ

ac

bc

 , (8.21)

where c = vTΨ. Denote f3 = (f3x, f3y)
T and f4 = (f4x, f4y)

T , so FT = (fT3 , f
T
4 )T . Since only

the 4 points in contact take non-zero force, the object must be in equilibrium under the contact

forces (which is also a direct result from that (F TT , F
T
Sy

)T must be perpendicular to the null

space of C since it is a linear combination of C’s columns),

4∑
i=3

fix = 0, (8.22)

4∑
i=1

fiy = 0, (8.23)

4∑
i=1

pi × fi = 0, (8.24)

where (8.22), (8.23) and (8.24) represent x- and y-directional force equilibrium, and torque

equilibrium, respectively. Let d = f3x, then (8.22) leads to

f3x = −f4x = d. (8.25)

Rewrite (8.24) as

p3xf3y + p4xf4y = d(p3y − p4y)− (ap1x + bp2x)c. (8.26)

The equations (8.23) and (8.26) contain the same variables. Let us write the linear system in

the matrix form, 1 1

p3x p4x


 f3y

f4y

 =

 0

p3y − p4y

 d−

 a+ b

ap1x + bp2x

 c. (8.27)

In case p3x 6= p4x, the coefficient matrix on the left side is fully ranked, so f3y

f4y

 =
c

p4x − p3x

 −(a+ b)p4x + (ap1x + bp2x)

(a+ b)p3x − (ap1x + bp2x)
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+
d(p4y − p3y)

p4x − p3x

 1

−1

 . (8.28)

Combine (8.25) and (8.28), we have

FT =
c

p4x − p3x



0

−(a+ b)p4x − (ap1x + bp2x)

0

(a+ b)p3x + (ap1x + bp2x)



+
d

p4x − p3x



p4x − p3x

p4y − p3y

p3x − ptxx

p3y − p4y


. (8.29)

In case p3x = p4x, the first row of the right hand side of (8.27) times p3x is equal to its second

row:

(ap1x + bp2x − (a+ b)p3x)c = (p4y − p3y)d. (8.30)

Take the first equation of (8.28),

f3y + f4y = −(a+ b)c. (8.31)

We can use only one linear equation to represent the results shown in equation (8.25),(8.30)

and (8.28),

FT =


o



1

0

−1

0


−



0

a+ b

0

0




c+



0

−1

0

1


e, (8.32)

for some e ∈ R, where

o =
ap1x + bp2x − (a+ b)p3x

p3y − p4y
,
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is a constant. Note p3y − p4y 6= 0 because otherwise p3 and p4 coincide with each other given

p3x = p4x.

Note that in both equation (8.29) and (8.32), all terms on the right hand side, other than c, d

and e on the right hand side, depend only on C and contact locations. In other words, they

are constant to Ψ. This means FT can always be linearly spanned by at most 2 vectors, which

implies that rank(C1) = 2 given Ψ is an arbitrary vector. Thus, we found a contradiction to

Theorem 7. So rank(C2) = 2.

8.2.3 Constraints

In the process of grasping, the object should be fully constraint by the fingers (together

with the supporting plane). So the contact force at f3 and f4 should always stay inside the

friction cone.

fi ·Ni

|fi|
≥ 1√

1 + (κµ)2
, (8.33)

where i = 3, 4, µ is the friction coefficient and κ ∈ (0, 1] is the safety parameter. Since there

is control and modeling errors, we hope the force has a certain margin with the friction cone.

The bigger κ is, the smaller the margin is, the less ”harsh” the constraint is, and the less safe it

is for the grasping. According to the FEM interpolation scheme, The inward normal Ni of pi

is given as

Ni =
ni + LiΨ

|ni + LiΨ|
, (8.34)

where the vector ni is the initial normal under gravity with i+ and i− being the index of pi’s

two neighbors,

ni =

 0 −1

1 0

 ((pi+ + δ′i+)− (pi− + δ′i−)),

and

Li =
∂(δTi+, δ

T
i−)T

∂Ψ

=

2n−3∑
j=1

(v̌jv̄
T
j C) + (v̌2n−2, v̌2n−1, v̌2n)ET ,
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where v̌j = (vj,2i+ ,vj,2i++1,vj,2i− ,vj,2i+−1), j = 1, · · · , 2n, is the influence matrix of Ψ on δi+

and δi− .

Write C1 = (RT3 , R
T
4 ), where R3 and R4 are both of dimension 2× 4. Then

fi = RiΨ, (8.35)

Substitute (8.34) and (8.35) to (8.33), we have the constraints for the set of possible Ψ:

ΨTRTi LiΨ + ΨTRTi ni ≥ 0, (8.36)

(LiΨ + ni)
T (RiΨ(RiΨ)T − (RiΨ)TRiΨ

1 + (κµ)2
I)(LiΨ + ni) ≥ 0, (8.37)

for i = 3, 4. In the four constraint equations, all parts other than Ψ are constant. So the

constraints are (up to) fourth order, four dimensional polynomials.

8.2.4 Goal State

The system under consideration is conservative. Thus the work done by the finger depends

only on the final value of Ψ.

W =
1

2
ΨTC1Ψ.

We naturally want to minimize the work at the final state.

Let J = (f1y, f2y)
T denote the supporting force vector under only gravity.

At the moment of lifting up the object,

FSy = C2Ψ + J = 0. (8.38)

Since C2 is fully ranked, the inverse of C2C
T
2 exists. Thus the general solution of the linear

system can be calculated:

Ψ = −CT2 (C2C
T
2 )−1J + αV1 + βV2,

where V1 = (1, 0, 1, 0)T and V2 ⊥ V1, which can be obtained through Gram-Schmidt proce-

dure, are two vectors that span the null space of C2, α, β ∈ R are projections of Ψ with V1

and V2 respectively. Since V1 is pure translation in the x-direction, and result in no change in

deformation, force or energy, we can choose to set α = 0. In that case

Ψ = Ψc + βV2. (8.39)
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where Ψc = −CT2 (C2C
T
2 )−1J . So substituting the above equation to the work of the fingers,

W is represented in terms of β:

W =
1

2
ΨTC1ΨT = a0 + a1β + a2β

2, (8.40)

where

a0 = ΨT
c C1Ψc,

a1 = 2ΨT
c C1V2,

a2 = V T
2 C1V2.

Note that a0, a2 > 0 given C1 is positive semi definite and neither V2 nor Ψc lies in C1’s null

space.

Substitute (8.39) into (8.36) and (8.37), we obtain the constraint for the target displacement:

ai1β
2 + ai2β + ai3 ≥ 0, (8.41)

ai4β
4 + ai5β

3 + ai6β
2 + ai7β + ai8 ≥ 0, (8.42)

where

ai1 = vT2 v1,

ai2 = vT2 v5 + vT1 v4,

ai3 = vT4 v5,

ai4 = (vT2 v1)2 − vT1 v1v
T
2 v2

1 + (κµ)2
,

ai5 = 2vT1 v2(vT2 v5 + vT1 v4)− 2
vT4 v2v

T
1 v1 + vT2 v2v

T
1 v5

1 + (κµ)2
,

ai6 = 2vT1 v2v
T
4 v5 + (vT2 v5 + vT1 v4)2,

− vT2 v2v
T
5 v5 + 4vT2 v4v

T
1 v5 + vT1 v1v

T
4 v4

1 + (κµ)2
,

ai7 = 2vT4 v5(vT5 v2 + vT4 v1)− 2
vT2 v4v

T
5 v5 + vT1 v5v

T
4 v4

1 + (κµ)2
,

ai8 = (vT4 v5)2 − vT4 v4v
T
5 v5

1 + (κµ)2
,

v1 = LiV2,

v2 = RiV2,
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v3 = LiΨc,

v4 = RiΨc,

v5 = ni + LiΨc.

Let β∗ minimizes (8.40) subject to (8.41) and (8.42), Ψ∗ given by (8.39) with β = β∗ is the

target state.

8.2.5 Planning

The grasp planning problem now is reduced to a classical path planning problem: start from

0, find a path to Ψ∗ in the four dimensional configuration space described by (8.36) and (8.37).

We use the Rapid Reaching Tree (RRT) algorithm[20] to solve the path planning problem.

In the RRT algorithm, we grow two Rapid Reaching Trees from both the start and the

target iteratively. At each iteration, a point α(i) is randomly generated in the configuration

space. The algorithm finds the nearest point from one of the existing tree qn to it. Connect

qnα(i) by a line segment. Such line segment may be interrupted by obstacles. In this case,

the algorithm finds qs, the point on the segment nearest to α(i) that is connected to qn. Add

qs and ¯qnqs to the tree. Then the algorithm tries to connect qs to the other tree as well. If

the second line segment is not interrupted, we have find a path and return the solution. We

iterate the above procedure for a given amount of times before returning failure. The algorithm

gives a sequence P of road points Ψ0,Ψ1, · · · ,Ψ∗, following which an object is lifted from the

supporting plane.

Note that, as stated earlier, the vector (1, 0, 1, 0)T is a null vector of C1, C2 and thus R1 and

R2. In other words, any component of Ψ in this direction will not affect the deformation, the

support and grasp force, or the energy. Thus eliminating such vector can simply the problem

to be three dimensional.

The RRT algorithm may generate more road points than necessary. In our scenario, every

road point on the path indicates a turn for the fingers. Thus the number of road points is an

indicator of the complexity of execution which we want to minimize. We perform an algorithm

on the path given by RRT to simplify it.
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Given a sequence P of road points Ψ1,Ψ2, · · · ,Ψm, where m ≥ 2, we sequentially check

whether a node Ψi, 2 ≤ i ≤ m− 1 can be omitted. That is, we check whether Ψi−1 and Ψi+1

can be connected by a collision free line. To check the segment ΨaΨb is collision-free, we

linearly interpolate the two points, such that any point Ψp on the line segment can be written

as Ψp = tΨa + (1 − t)Ψb for some t ∈ [0, 1]. Substituting it into (8.36) and (8.37) will give

us two, up to fourth order, polynomial constraints on t, which can be solved in constant time.

The line is collision free if and only if the solution interval contains the entire interval [0, 1].

We keep or remove such node according to the test result and move on to the next one, until

all nodes are tested. It is easy to see such algorithm takes time linear to the size of the path.

The algorithm works well in practice. The path given directly by RRT usually has about 10

points, while most of the processed path has only 3 points including starting and target point.

Given any point Ψ, the force and normal at each contact point form an angle

θi = arcsin
fi ×Ni

|fi|
,

for i = 1, 2. The half friction cone angle is

θm = arctanµ.

The ratio θi/θm is an indication of how much the force deviates from the normal of the contact,

and thus an indication of how unstable the grasp is at this contact. Therefore we can use the

tuple D = (θ1, θ2)/θm to indicate the vulnerableness of the grasp at the point ∆. To increase

the overall stability of the planned path, we control the generation of the random nodes. Instead

of generating ∆ uniformly at random, we do so in the way that D follows a truncated 2-variate

normal distribution. i.e.

g(D = (x, y)) =


f(x,σ1,e1)f(y,σ2,e2)

p , if (x, y) ∈ [0, 1]2,

0, otherwise,

(8.43)

where f(x, σ, e) is the normal probability density at x, taking σ as the standard deviation, and e

as the expectation, i = 1, 2. And p is the normalization coefficient. Usually the parameter is

chosen as σ1 = σ2 = 0.5 and e1 = e2 = 0.
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8.3 Grasp Planning for Solid Objects

After studying grasp planning on hollow object, we extend the same strategy to solid objects.

Such objects can be seen as a generalized cylinder which is swept out by translating a region

bounded by a 2D curve in the xy-plane along the z-direction by a short distance. The strain

energy is given as

U =
hE

4(1 + ν)

∫∫
S

(
2

1− ν (ε2x + 2νεxεy + ε2y) + γ2
xy)dxdy,

where εx and εy are elongation in x- and y-direction respectively, and γxy is shearing. When

applied FEM, such object is modeled by a triangular mesh. The displacement of any point

within a triangle is interpolated by that of the triangle’s vertices. The equations (8.3) to (8.7)

carry over.

A solid object deforms under gravity. Two round fingers are making frictional contact with

the object. Due to Flamant effect[39], the fingers make area contact once they squeeze the

object. As a result of changing contact configuration, the system is no longer linear. Thus, the

clean formulations in Section 8.2 do not hold. In stead, we will make estimations to solve the

problem.

8.3.1 Configuration Space

Suppose at the start of grasp, the fingers’ positions are q1 = (q1x, q1y)
T and q2 = (q2x, q2y)

T .

The 4D displacement vector of fingers Ψ can always be spanned by four basis vectors

t = (
√

2/2, 0,
√

2/2, 0)T ,

l = (0,
√

2/2, 0,
√

2/2)T ,

s =
(q2x − q1x, q2y − q1y, q1x − q2x, q1y − q2y)

T√
2[(q2x − q1x)2 + (q2y − q1y)2]

,

r =
(−q1y, q1x,−q2y, q2x)T√
q2

1x + q2
1y + q2

2x + q2
2y

,

which correspond to translation in x-direction, translation in y-direction (lifting), squeezing,

and rotation. As mentioned before, the translation in x-direction does not introduce any

deformation or contact force, and thus is irrelevant to the grasping. We also do not consider
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the rotation vector because of two reasons: 1. the linear elasticity model cannot handle large

rotations; 2. during the grasp process, the object should be kept in roughly the same orientation.

Thus we only consider Ψ from the two dimensional space spanned by l and s. Let Φ = (s, l)T

be a state in the space, then

Ψ = (s, l)Φ. (8.44)

Any state inside the state space should correspond to a configuration where the object is

constraint, that is, the object should not slip off of any fingers. Given any state Φ, we can

calculate the contact configuration at both fingers using the event driven algorithm described

in [13], with which in hand, we check if the force at every contact region is out of the friction

cone. Whether the forces are inside the friction cone determines whether Φ is in the state

space.

8.3.2 Goal State

At the moment the object is lifted up, the contact force between the lowest point of the

object and the supporting plane becomes 0. Let the contact set with the fingers be T and m =

|T |. Such a state can be interpreted from another perspective: if the object is only in contact

with the fingers with contact set T , then p̃low,y = 0, where p̃low is the location of the lowest

point of the object at the current deformation.

Suppose the contact set stays the same, the displaced location of the lowest point is linearly

determined by the contact points’ displacements

p̃low,y = D∆̄ + b+ plow,y, (8.45)

where ∆̄ is the displacement vector of the contact nodes, D = ∂δlow,y/∂∆̄ is a m dimensional

row vector, b is a constant value indicating the deformation due to gravity. D and b are

constant matrix and vector respectively, and can be obtained from equation (8.4). When

sliding is neglected, ∆̄ is linearly determined by Ψ, which in turn is linearly determined by Φ.

So denote

∆̄ = AΦ +B, (8.46)
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where A is a 2m×2 constant matrix, and B is a constant 2m dimensional column vector. From

equation (8.45) and (8.46), at lifting up

DAΦ +DB + b+ plow,y = 0.

Thus all Φ at lifting up satisfy

Φ = V0t− V1, (8.47)

where t ∈ R is a free variable, V0 =

 0 −1

1 0

DA and V1 =

 0

(DB + b+ plow,y)/b

.

The contact force is linear to the contact displacement

F̄ = C∆̄ + Fc, (8.48)

where C is the reduced stiffness matrix, and Fc is some constant due to gravity and compliance

to finger shape. Substitute equation (8.47) and (8.46) into (8.48),

F̄ = V2t+ V3, (8.49)

where V2 = CAV0 and V3 = CAV1+CB+Fc. Now every component of F̄ is linearly represented

by t. To estimate the range of t that prevent the fingers from slipping, we calculate

Fa =
∑
i∈Tj

RiFi,

where Tj , j = 1, 2 is the contact set for finger j. The rotation matrix Ri =

 Niy −Nix

Nix Niy


rotates the unit normal Ni at point i to (0, 1)T . Fa stays inside the friction cone if

|Fax| ≤ |Fay|,

Fay ≥ 0.

Write Fa = (fa1t+ fa2, fa3t+ fa4)T , the above constraint becomes

(f2
a1 − f2

a3)t2 + 2(fa1fa2 − fa3fa4)t+ f2
a2 − f2

a4 ≤ 0, (8.50)

fa3t+ fa4 ≥ 0, (8.51)
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Solving the constraint given by the above equations gives us a set of intervals of estimated

valid t value.

The work done by the fingers is the estimated as the change of potential energy. Since

before the grasp, the system’s potential energy is constant, we only need to look at the energy

at lifting up

E =
1

2
∆TK∆ + GT∆. (8.52)

Conveniently write

∆ = L∆̄ +Q, (8.53)

where L and Q are matrices that can be derived from equation (8.4) to (8.7). Substitute

equation (8.53) , (8.46) and (8.47) into (8.52)

E = e2t
2 + e1t+ e0,

where e2 = 1
2V

T
0 A

TLTKLAV0, e1 = V T
0 A

TLK(LB + Q − LAV1) + GTLALAV0 and e0 =

1
2(LB +Q−LAV1)2 −GTLAV1. We find the t∗ that minimizes E over the valid interval. And

the corresponding Φ∗ is the target state. With target state known, we can again apply RRT

to plan the path.

8.3.3 Planning Algorithm

In planning the grasp, we first estimate the contact region by squeezing the object to a

degree that it is liftable. Then using this contact region, we estimate the target location, and

perform RRT to navigate to the target from the starting position. If the contact region is

different from initial estimation, we replace the initial estimation with current one and iterate

the procedure again until the region stays the same between two estimates.

8.4 Simulation

In this section, some simulation results are presented. Unless otherwise stated, the metric

system is used. As is shown in Figure 8.1(a), an elliptical hollow object sit on the table with

two points supporting it. The ellipse’s long and short axis was 0.164 and 0.118 respectively. Its
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(a) (b) (c) (d) (e)

Figure 8.1: Grasping an ellipse: (a) the object is at its original shape; (b) it deforms under

gravity; (c) it is under grasp at intermediate state as in Figure 8.2(b); (d) it is lifted; (e) the

friction constraint is violated when the fingers travel straight to the goal state.

thickness was 1.8× 10−3, width 0.012, density 1.0× 103 and Young’s Modulus 5× 107. Under

gravity, it deformed to be Figure 8.1(b). Two fingers were then placed at the position with

triangles, which represent the friction cones.

We then ran the planning algorithm on the described shape. A path was planned by RRT

from (0, 0, 0, 0)T to (1.521, 1.162, 1.521, 1.164)T × 10−2. The path planned in the configuration

space was mapped to the 2D plane to display. The initial path planned by RRT is shown in

Figure 8.2(a), where the left (right) subplot corresponds to the trajectory of the left (right)

finger. The path was post-processed to reduce the number of road points, as is shown in Fig-

ure 8.2(b). Note only the third intermediate road point of the path in Figure 8.2(a) remained.

We execute the planned path in Figure 8.2(b). At the starting point (0, 0, 0, 0)T , the shape

of the object is shown in Figure 8.1(b). At the lowest point (−5.21,−1.84, 5.21,−2.23)T ×10−3,

the object’s shape is shown in Figure 8.1(c), where the pink short lines indicate the contact

force at that point. At the final goal point, the shape is shown in Figure 8.1(d).

In Figure 8.1(e), the fingers traveled towards the goal point straightly from the starting

point. At point (4.56, 3.49, 4.56, 3.49)T ×10−3, which is 0.3 multiplying the goal state, the force

was out of the friction cone, and thus result [13] in a failed grasp.
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(a) (b)

Figure 8.2: Planned paths: (a) planned by RRT, and (b) post-processed.

8.5 Discussion

In this chapter, a strategy to plan the trajectories of fingers to grasp deformable objects

was introduced. After finding the goal state which minimizes the work done by fingers, the

problem is reduced to a standard path planning problem, and can be solved using many path

planning methods including RRT. This idea can be generalized to both 2D solid objects and

3D objects.

The finger work minimization usually results in a goal state that has the grasping force

near or on the friction cone, and is thus a trade off with the stableness. The reduction of

the number of road points may also reduce stableness because certain piece of straight paths

may scrape the edge of configuration space with reduced flexibility. The idea of concentrate

generated random points to ”safer” area usually increases the number of random points needed

for a successful planning, because the points near to a crowded area are less useful in terms of

exploring unknown space.
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CHAPTER 9. CONCLUSION

This dissertation studies grasping deformable objects using two fingers. The key idea is

to specify desired finger displacements rather than forces, and to use them as constraints over

an object so that its deformed shape can be computed. Specification of finger displacements

over finger forces not only makes the strategy close to a real grasping scenario, but also helps

stabilize the grasp. If constant forces are specified, grasping would act like an inverted pendulum

and have no resistance to disturbance intended to cause rotation. If finger displacements are

specified, however, disturbances up to certain magnitude can be resisted by friction at two

contacts.

The strategy was applied on a variety of deformable objects, including hollow and solid 2D

objects, and 3D ones. Except 2D hollow objects, fingertips usually make area contact with the

object. With more than one point in contact, the contact configuration analysis is necessary.

We calculate the configuration by tracking four events: stick, slip, contact establish and contact

break. The configuration computation is mixed with deformation computation so that a grasp

is computed in an iterative way.

In order to eliminate the influence of gravity on the shape of an object, we devised an

algorithm to compute the original shape without gravity. The algorithm is an application

of the fixed-point iteration with the hypothesized deformation as the iteration variable. The

damping coefficient was introduced to widen the range of convergence.

The displacement-based strategy was generalized from involving only direct squeeze, to

that the trajectories of the fingertips are curves. Such generalization not only broadens the

graspable region since the initial frictional constraint is easier to be satisfied, but also allows

multiple optimalities to be achieved. For example, the work done by the fingers, the ease of

control, and the stability.
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For future work, grasping deformable objects using more than two fingers is interesting. It

is also interesting to try to predict the grasp without using precise modeling of the object. The

manipulation of deformable objects may require extensive coordination of fingers.
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APPENDIX A. MATCHING TWO POINTS CLOUDS WITH

ROTATION, SCALING, AND TRANSLATION

An object was first drawn on the computer screen, and based on a printout of the drawing

(with some enlargement), cut from a foam board. When we compared its deformations from

simulation and experiment1, the two sets of data points differed by scale, orientation, and

translation. A homogeneous transformation needed to be applied to one set.

More formally, given two sets of points P = {p1, · · · ,pn} and Q = {q1, · · · ,qn} in the

plane, where the point pi corresponds to the point qi, for i = 1, 2, · · · , n. We determine

the scale s, rotation θ, and translation (tx, ty)
T applied to Q that minimize the least-squares

difference between two sets of points:

e =
n∑
i

(pi −Mqi)
T (pi −Mqi), (A.1)

where M is the transformation matrix given by

M =


s cos θ −s sin θ tx

s sin θ s cos θ ty

0 0 1

 . (A.2)

Least-squares matching of two sets of 2D or 3D points with known correspondeces under

rigid motions was solved by Faugeras and Hebert (1986) and by Horn (1987) using quaternions,

and by Schwartz and Sharir (1987) using a matrix-based method. Matching a set of points

against a 3-D model up to rotation and translation (also with unknown point correspondences)

could be effectively conducted by the iterative closest point algorithm (Besl and Mckay, 1992).

1The shape data in the experiment was obtained through image information.
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In this algorithm, we also handle scaling since the data come in different metrics. We first

obtain the four partial derivatives of e:

∂E

∂θ
= 2s

n∑
i

(pi −Mqi)
T


sin θ − cos θ 0

cos θ − sin θ 0

0 0 0

qi,

∂E

∂s
= −2

n∑
i

(pi −Mqi)
T


cos θ − sin θ 0

sin θ cos θ 0

0 0 0

qi,

∂E

∂tx
= −2

n∑
i

(pix − s cos θqix + s sin θqiy − tx),

∂E

∂ty
= −2

n∑
i

(piy − s sin θqix − s cos θqiy − ty).

Write

(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10)T=
1

n

n∑
i

(pix,piy,qix,qiy,pixqix,pixqiy,piyqix,piyqiy,q
2
ix,q

2
iy)

T .

Vanishing of the above four partial derivatives of e yields the following equations:

c3s cos θ − c4s sin θ + tx − c1 = 0, (A.3)

c3s sin θ + c4s cos θ + ty − c2 = 0, (A.4)

c3tx sin θ + c4ty sin θ + c4tx cos θ − c3ty cos θ + (c7 − c6) cos θ − (c8 + c5) sin θ = 0, (A.5)

c4tx sin θ−c3ty sin θ−c3tx cos θ−c4ty cos θ+(c8+c5) cos θ+(c7−c6) sin θ−(c9+c10)s = 0. (A.6)

Assume c2
3 + c2

4 6= 0. Multiply c3 with (A.3) and c4 with (A.4), and add them together, yielding

s cos θ =
c1c3 + c2c4 − c3tx − c4ty

c2
3 + c2

4

.

We also have, from c3 × (A.4)− c4 × (A.3),

s sin θ =
c2c3 − c1c4 + c4tx − c3ty

c2
3 + c2

4

;

from cos θ × (A.5) + sin θ × (A.6),

s sin θ =
c4tx − c3ty + c7 − c6

c9 + c10
.
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and lastly, by multiplying sin θ on equation (A.5) and subtracting equation (A.6) multiplied by

cos θ, we get

s cos θ = −c3tx + c4ty − c8 − c5

c9 + c10
.

From the above four equations, we solve:

tx =
c4(c7 − c6)− c3(c8 + c5) + c1(c9 + c10)

c9 + c10 − (c2
3 + c2

4)
(A.7)

ty =
c2(c9 + c10)− c4(c8 + c5)− c3(c7 − c6)

c9 + c10 − (c2
3 + c2

4)
(A.8)

s =

√
[c1c3 + c2c4 − (c8 + c5)]2 + [c1c4 − c2c3 + (c7 − c6)]2

c9 + c10 − (c2
3 + c2

4)
(A.9)

θ = atan2(c7 − c6 + c1c4 − c2c3, c8 + c5 − (c1c3 + c2c4)). (A.10)

Note that c9 + c10 > c2
3 + c2

4 for n ≥ 2.

In the special case c = d = 0, by solving (A.3) - (A.6),we can see that solutions (A.7)

to (A.10) carries over, and is simplified to

tx = a

ty = b

s =

√
(g − f)2 + (h+ e)2

i+ j

θ = atan2(g − f, h+ e).
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APPENDIX B. MEASUREMENT OF THE PHYSICAL PARAMETERS

The Young’s Modulus and Poisson’s ratio of the rubber foam material are measured by

pressing several rectangular samples of the material, and measuring relative physical factors,

such as the pressing force and expanded width.

Multiple cuboids with the longest side between 5 to 10 cm were cut from the material. Its

side lengths were recorded as h, a and b respectively in decreasing order. Weight neglected,

each cuboid was placed on the surface of the finger phalange with the side h perpendicular to

the surface. The top end of the cuboid was pressed with equally distributed force. The exerted

force F was measured by the strain gauge sensor mounted in the joint of the finger tip. The

changes in three dimensions of the object were measured as ∆h, ∆a and ∆b respectively.

Assuming ∆a and ∆b are small compared with a and b, the Young’s Modulus

E =
Fh

ab∆h

Our results showed that E ≈ 5× 104Pa.

With respect to poisson’ ratio, let

p1 = − log1+ ∆h
h

(1− ∆a

a
)

p2 = − log1+ ∆h
h

(1− ∆b

b
).

For isotropic materials, p1 = p2 and either one serves as Poisson ratio. The rubber foam

material we used has Poisson’s ratio 0.3.



98

APPENDIX C. FINGER KINEMATICS WITH MOUNTED TIPS

The Barret Hand was mounted with rounded fingertips to form a round shape for grasping

the object. The kinematics is derived from the Barrett hand kinematics specified in the Barret

hand user manual(section 9.5, pp.68 - 72). With the finger tips mounted, the center of the

cylindrical tip is 62 mm away from the axis Zk3(Figure 30, pp. 70). So override A3 as 62 mm.

Let the distance between two centers of the tips be d, and let the direction of Xk3(also the

direction of the center line of the finger tip) be θ. When the hand’s “spread” is set to 1575

(set to 1610 if the hand is mounted vertically, in order to balance the offset introduced by its

own fingers’ weight; the get button on the barrett hand control can tell you what parameter

is really in effect), the F1 and F2 are in line with each other. Under such configuration, with

the kinematics shown in the manual, we have:

d = 2(Aw +A1 +A2 cos(Φ2 +
P

125
) +A3 cos(Φ2 + Φ3 +

4P

375
)) (C.1)

θ = Φ2 + Φ3 +
4P

375
. (C.2)

where, P is the parameter of the joint 1 and 2 motor, and

Aw = 25mm (C.3)

A1 = 70mm (C.4)

A2 = 70mm (C.5)

A3 = 62mm (C.6)

Φ2 = 2.46◦ (C.7)

Φ3 = 50◦ (C.8)

Usually, P ∈ (5000, 12000), the d − θ relationship is shown as in Fig. C.1. We can see

they are almost linear to each other. So given d, we can use newton’s method to look for θ.
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Figure C.1: distance - orientation relationship under normal range [5000, 12000]

However, if the d is given out of normal range, newton’s method may not converge as in general

the curve is highly non-linear.
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