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ABSTRACT 

Sexually transmitted diseases affect millions of lives every year. In order to most 

effectively use prevention resources epidemiologists deploy models to understand how the 

disease spreads through the population and which intervention methods will be most effective at 

reducing disease perpetuation. Increasingly agent-based models are being used to simulate 

population heterogeneity and fine-grain sociological effects that are difficult to capture with 

traditional compartmental and statistical models. A key challenge is using a sufficiently large 

number of agents to produce robust and reliable results while also running in a reasonable 

amount of time.  

In this thesis we show the effectiveness of agent-based modeling in planning coordinated 

responses to a sexually transmitted disease epidemic and present efficient algorithms for running 

these models in parallel and in a distributed setting. The model is able to account for population 

heterogeneity like age preference, concurrent partnership, and coital dilution, and the 

implementation scales well to large population sizes to produce robust results in a reasonable 

amount of time. The work helps epidemiologists and public health officials plan a targeted and 

well-informed response to a variety of epidemic scenarios. 
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PUBLIC ABSTRACT 

Sexually transmitted diseases affect millions of lives every year. In order to most 

effectively use prevention resources epidemiologists deploy models to understand how the 

disease spreads through the population and which intervention methods will be most effective at 

reducing disease perpetuation. Increasingly agent-based models are being used to simulate 

population heterogeneity and fine-grain sociological effects that are difficult to capture with 

traditional compartmental and statistical models. A key challenge is using a sufficiently large 

number of agents to produce robust and reliable results while also running in a reasonable 

amount of time.  

In this thesis we show the effectiveness of agent-based modeling in planning coordinated 

responses to a sexually transmitted disease epidemic and present efficient algorithms for running 

these models in parallel and in a distributed setting. The model is able to account for population 

heterogeneity like age preference, concurrent partnership, and coital dilution, and the 

implementation scales well to large population sizes to produce robust results in a reasonable 

amount of time. The work helps epidemiologists and public health officials plan a targeted and 

well-informed response to a variety of epidemic scenarios. 
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CHAPTER I INTRODUCTION 

When the World Health Organization announced the eradication of the infectious disease 

smallpox in 1977, there was a sense that humans would eventually win the war against the 

microscopic organisms that have plagued our existence. Public health efforts have now turned to 

other eradication plans of infectious disease. In particular, sexually transmitted diseases (STDs) 

are similar to smallpox in so far as they are both easily preventable—though through 

precautionary measures not vaccines. It is for this reason that hope for eradication of these types 

of diseases is fathomable, if not entirely possible within our generation.  

Reducing disease burden and eventually eradicating it will require developing tools for 

understanding the disease and the processes through which it is perpetuated. Mathematical and 

compartmental models have been used for the past 50 years with much success, but it is 

becoming increasingly clear that there are many fine-grain processes underling STD epidemics 

that these models have difficulty capturing. For this reason epidemiologists and public health 

officials are turning to agent-based models to understand how sexually transmitted diseases are 

diffusing through populations.   

Making population-based models of disease is difficult though, as we show in the 

preceding sections. Other sciences can conduct experiments in a highly controlled laboratory 

setting on a system governed by fundamental laws of nature. Here we are forced to gleam 

information through observation of a system that is governed by rules that are constantly 

changing and highly heterogeneous. Heterogeneity poses a formidable challenge: how an 

individual forms and dissolves relationships is specific to an individual and is nearly impossible 

to fully quantify (what is a person attracted to? How social is a person?). Agent-based models can 
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account for this heterogeneity by endowing agents with individual characteristics and qualities 

that reflect reality. 

However, even when fully accounted for in an agent-based model, so much heterogeneity 

can produce highly variable results. The number of stochastic interactions and outcomes is a 

chaotic system with outcomes that are probabilistically distributed rather than a single exact 

constant. Narrowing the distribution and producing robust output requires that we use a 

sufficiently large number of agents. This effectively creates multiple copies of a particular “kind” 

of individual, and the significance any one agent and its actions are diluted by the “law of large 

numbers”.  

Increasing the number of agents in your model isn’t always simple though: The nature of 

network simulations is that a linear increase in population size quadratically increases the amount 

of time required to run a simulation. This may be fine for extremely simple models – e.g., the 

number of agents needed for a model in which agents only form relationships based on potential 

partners sex won’t dictate an unreasonable amount of computation time – but for this low level of 

heterogeneity a simple compartmental model is perhaps better suited. This quadratic relationship 

can be unfortunately untenable for models with even modest amounts of heterogeneity in agents. 

In the next section we review the epidemiology of Syphilis and HIV, and present sources of 

heterogeneity. The rest of this chapter reviews previous modeling approaches for accounting for 

these effects.  

Chapter 2 describes a mathematical formulation for simulating a heterogeneous and 

dynamic sexual network. We show how the formulation can effectively simulate intra-host 

biological processes, many different age-mixing patterns, and reproduce demographic processes 

that have occurred over the past 30 years. The mathematical formulation is a basis for the agent-
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based models described in thesis and is presented to showcase the large amount of heterogeneity 

that such a formulation can model.  

Chapter 3 shows the usefulness of the mathematical formulation with a simplified version 

used to investigate combination HIV prevention. We present a simulation-based method that uses 

machine learning and search heuristics to efficiently allocate disease prevention resources and 

effectively reduce disease prevalence. The work helps governments on fixed budgets decide 

which intervention to implement (e.g. condom distribution, male circumcision campaign, 

increased access to anti-retroviral therapy), where to implement it, and how much to spend on it. 

The simulation results suggest that a combination of prevention methods implemented in a non-

trivial way can avert more infections and reduce prevalence more than any single intervention in 

isolation.  

In chapter 4 we return to investigating the quadratic relationship between heterogeneity 

and computational run time. The mathematical formulation indeed can handle simulating highly 

heterogeneous populations, but its initial implementation does not scale well to a large numbers 

of agents. For this reason in chapter 4 we present a parallelized algorithm for simulating dynamic 

sexual networks. We again use a simplified version of the mathematical formulation, but we 

show that large populations of highly heterogeneous populations can be efficiently simulated. 

Chapter 5 is a further parallelization of the simulation. We exploit the natural geographic 

partition of sexual networks to distribute the computation onto multiple nodes of a cluster. The 

partition allows us to simulate even larger population sizes and hence more heterogeneity, as well 

as enables modeling of geographic processes such as migration and mobility. 
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In all this we show that effectively and efficiently simulating sexual transmitted diseases 

is possible. While the nature of the system precludes these models from being scientifically 

validated we show that they can be close enough to reality to be useful. 

1.1 Syphilis and HIV Epidemiology 

The human immunodeficiency virus (HIV) epidemic in Africa has not been overstated: 

there are an estimated 33.3 million individuals living with what has become known as one of the 

worst infectious diseases affecting mankind [4, 5]. In 2010, there were 1.8 million AIDs related 

deaths—contrast this with seasonal influenza which kills on the order of hundreds of thousands 

[1]. South Africa represents less than 1% of the world population, but carries about 35% of the 

worlds’ HIV burden with the adult prevalence estimated at 29% [2]. Compare this prevalence to 

South Africa’s Northern African neighbors Kenya, Tanzania, and Uganda which have rates of 

6.3%, 5.6%, and 6.5% respectively as seen in [3]. Over the past three decades there have been 

many studies both implementing and analyzing specific interventions to combat HIV. Since each 

prevention method has a different financial cost of implementation, as well as varied community 

acceptance, the most effective intervention strategy likely requires a multi-level and multi-

component approach. That is to say that the most effective way to ultimately eradicate HIV is to 

implement interventions in combination such that the combination of interventions has the 

optimal effect. 
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 Figure 1: HIV prevalence is significantly higher in Southern Africa [8]. 

The global HIV/AIDS epidemic is a difficult problem to solve, but it is not impossible. 

The three difficulties faced are the problems of finding the right model for understanding disease 

diffusion, inferring parameters for the model, and computational limitations of finding an optimal 

allocation of resources. To find the best combination of prevention methods, we will consider the 

parameters of the disease and how it is spread; the sociological and political reasons for why 

things are the way they are; the geographic progression of the disease; and the societal 

determinants that may fall beyond the typical scope of disease eradication strategies. Due to the 

intricate interweaving of interventions and their interactions, a combination of methods is likely 

to be the most effective. Methods for finding this combination are discussed in future sections. 

Syphilis, another sexually transmitted disease, is common in most parts of the world; 

those who suffer from it are plagued with rash and boils. If left untreated the disease can 

eventually lead to death [4]. Its derivative, congenital syphilis, is the disease that is transmitted 

from a syphilis-infected mother to her child during pregnancy. Syphilitic pregnant women are 

likely to infect their unborn children with congenital syphilis who then have an increased 
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likelihood of stillbirth or becoming victim to major birth defects such enlarged liver and spleen, 

rash, fever, extreme blistering, rhinorrhea, and oedema of the face [5]. Though not as prevalent as 

HIV/AIDS, the sobering fact of syphilis is that it is curable with a single dose of penicillin and 

can be eradicated with the right plan of action. However, a significant gap exists between the 

medical ability to cure syphilis, and the geographic and behavioral information necessary to 

contain syphilis: though we know how to treat the disease, we do not know how to control its 

spread. Agent-based simulations that consider different disease transmission parameters may 

provide insight into how the disease is perpetuated. 

1.1.1 Disease Parameters 

STD intervention methods can be grouped based on the specific exogenous attribute of 

the disease that the intervention aims to interrupt: either the infectivity or connectivity of 

individuals. For example, condoms attempt to reduce infectivity by reducing the amount of 

bodily fluids that come in contact between sero-discordant sexual partners, thereby reducing the 

overall probability of transmission in a single sexual act. A mass media campaign that 

encourages sexually active individuals to limit their number of sexual partners reduces overall 

connectivity – decreasing the overall number of possible transmissions. Campaigns that 

encourage serosorting, individuals engaging in unprotected sex only with others of the same 

infection status, similarly decrease the number of possible transmissions. Understanding these 

two variables of disease spread help us understand health interventions, their limitations, and how 

they might work in conjunction for an optimal combination prevention strategy.  

Additionally, specific to HIV and of great importance, are the endogenous attributes of 

HIV that make typical “screen, treat, and release” methods implausible. These are attributes 

cannot be interrupted through public health interventions very easily. 
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1.1.1.1 Endogenous Factors 

HIV is surprisingly difficult to transmit. In studies of monogamous couples in which one 

partner was HIV-positive, the transmission rate of HIV was is about 0.001 per sexual act [6]. 

That is to say that, if an individual has unprotected sex with someone who is HIV positive, the 

probability of becoming infected him or herself is less than 1 in 100. It is perhaps shocking then 

how, in the 50 years since the first known case of HIV in world, the virus was able to spread to 

nearly every country and reach a point of 33.3 million infected individuals in the world [3]. The 

counter-intuitive worldwide epidemic can be attributed to a few factors that distinguish it from 

other opportunistic infections. These intrinsic disease characteristics provide insight into HIV’s 

global spread. 

The first characteristic of importance is the virus’s rapid rate of mutation: 1 in every 

10,000 duplications is a mutation. This is as compared to a typical cell in which 1 in every 

1,000,000,000 is a mutation [7]. This fast rate of change makes it difficult for scientists studying 

the disease to create a cure or even a vaccine because it quickly adapts to potential treatments and 

develops resistance. Additionally, the disease has a very high replication rate which means a 

typical HIV patient has a completely new viral load every two to three days [8].  

The second characteristic of importance is the slow rate at which the disease kills an 

infected individual; it might be as many as six years before symptoms begin to appear [7], and 

nine to ten years before death [9]. The long window without symptoms equates to more 

exposures and thus increased transmission. Before HIV was even fully understood and 

recognized as transmitted through exchange of bodily fluids, the disease had many years to 

spread via prostitution and truck routes throughout all of Africa and the world [10]. This makes 

ART a double edged sword such that it prolongs patients’ lives, but allows more opportunities for 
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infecting new persons. A “successful” pathogen balances host survival against transmission—this 

is why Ebola, which kills most infected individuals within a week, is not at pandemic levels [11]. 

The third important characteristic is its ability to hide. The virus reproduces itself by 

attacking healthy cells and using host cells’ replication abilities. This does not happen 

immediately however, as the virus may remain dormant within the host and only later begin 

reproduction [9]. This means that treatment like antiretroviral drugs may remove all HIV cells, 

but leave those that are dormant. Current efforts to cure the disease are aimed at finding methods 

for “waking up” these dormant cells so that they too may be attacked [12, 13]. 

Conversely, syphilis is transmitted between sexual partners in 30-50% cases of exposure 

[14]. It is, however, less of a public health threat than HIV for several reasons. First, unlike HIV, 

syphilis has not developed resistance to treatment through mutation; 50 years after first treating 

the disease with penicillin there is no evidence of penicillin resistant strains of syphilis [15]. 

Additionally, it does not “hide” as HIV does—a penicillin shot completely cures syphilis. 

Second, individuals are typically only infectious during the primary and secondary stages 

of the disease which shows infections with lesions. The primary stage usually occurs within the 

first 90 days of infection and is identified by a large lesion or chancre. The secondary stage is 

indicated by similar rashes and ulcer as well as flu-like symptoms. If left untreated, infected 

individuals enter the latent and tertiary stages of the disease which leave him or her 

asymptomatic and highly unlikely to transmit syphilis. Additionally while experiencing lesions or 

rashes indicative of the disease, individuals may self-select out of dangerous sex patterns perhaps 

out of self-preservation.  
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1.1.1.2 Infectivity 

There is a striking difference between prevalence rates of syphilis and HIV in sub-

Saharan Africa and the Western world. Environmental factors, also known as exogenous factors, 

are more nuanced and advance the disease in a dramatic, albeit subtle, way. To begin, the 

probability of transmission per sexual act (PTSA) mentioned earlier is not static number. It varies 

with the viral load of the infected, the mode of transmission (heterosexual, homosexual, injection 

drug user), the presence or absence of other sexually transmitted diseases, etc. The contrasting 

social and cultural attributes of countries affect the disease PTSA, be it positively or negatively, 

ultimately making the disease spread more or less likely.  

One of the most deterministic attributes about the infectivity of an HIV positive 

individual is his or her viral load [6, 16]. The viral load is a measure of the amount of the virus in 

an individual’s bloodstream. When viral load is high (measured in copies of the virus per 

milliliter of blood), the infected individual is significantly more infectious. Table 1 below 

illustrates the increased risk of infecting virus free sexual partners with increased viral load. Viral 

load is reduced by ART, but can be expensive for infected individuals living in Sub-Saharan 

Africa. 

Table 1: Risk of infection increases with viral load. 

Viral Load Unadjusted Relative Risk 95% Confidence Interval 

0–3,000 1 1 

3,000-14,500 3.56 (1.07–11.81) 

14,500–76,000 7.18 (2.30–22.38) 

>76,000 9.62 (3.00–30.84) 

In the early 1980’s when HIV was still not well understood, the widespread prevalence of 

HIV in the homosexual population led to the misconception that it was primarily a homosexual 

disease [7]. While it is now commonly accepted that both homosexual and heterosexual alike are 

susceptible to infection, the difference in its rapid spread through the homosexual community 



10 

 

 

may be attributable to the dissimilar mode of sex: while a vagina is biologically built for 

intercourse, the anus is not. Penile-anal sex, along with the common practice of fisting (inserting 

the entire hand / forearm into the partners rectum) very often leads to rectal tears and anal 

fissures. These openings increase the virus’ ability to enter the body and ultimately infect an 

individual [7]. Co-infection with other sexually transmitted diseases (STDs) can lead to increased 

infectivity of the virus in a similar ways. Lesions manifested with syphilis allow the HIV virus to 

more easily enter and infect a new individual [6, 17]. Other non-ulcerative STDs such as 

gonorrhea and chlamydia “increase HIV shedding in the genital tract, probably by recruiting HIV 

infected inflammatory cells as part of the normal host response” [17]. 

While not a sexually transmitted disease, Tuberculosis (TB) complicates HIV elimination 

plans with the large co-infection rate. TB is the most common opportunistic infection of HIV 

positive individuals, with about 73% of TB infected individuals testing positive for HIV in South 

Africa [18]. This significant correlation has seen a call for a more collaborative approach between 

HIV and TB care providers [19]. The “silo approach,” which is characterized by separate 

diagnoses, care, and treatment can be integrated through joint planning of surveillance and 

screening for other diseases at admission. Collaborative efforts in TB, HIV, and syphilis would 

lead to a significant decline in the overall mortality rates of these diseases [17]. 

While classified as a sexually transmitted disease, HIV is spread through exchange of 

bodily fluids and therefore does not necessarily require sexual contact. Thus, is not surprising that 

HIV has also had a marked impact on drug users that reuse non-sterile needles [7]. Additionally, 

in South Africa, mother-to-child transmission is second only to heterosexual sex as a mode of 

transmission [18]. It is estimated that 15-35% of HIV positive mothers will pass on the disease to 

their unborn child either during delivery or in utero [20]. 
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1.1.1.3 Connectivity 

While the probability of infection in a single sexual act is relatively low, the probability of 

ever getting the infection increases considerably when considering other variables. For example, 

a large number of sexual partners increase the likelihood of infection by increasing the 

probability of having sex with an HIV infected individual. Increased frequency of sexual 

intercourse also increases the likelihood by giving the HIV virus more opportunities for infection. 

Societies that are more accepting toward prostitution may see an increased prevalence rate due to 

the high number of sexual partners that sex workers have. This effectively creates “hubs” of 

infection.  

Post-apartheid South Africa is still struggling with socio-economic disparities despite 

having one of the most functioning economies in Africa. Poverty and low-quality education 

(particularly about HIV) are among the results of such economic disparities. The housing crisis 

causes low-income communities to live in very close proximity to each other which increases the 

disease ability to spread (as compared to communities that are geographically dispersed). 

1.1.1.4 Societal Determinants 

While poverty reduction is often thought of as falling under a different human rights 

umbrella, reducing the number of people in extreme poverty may have many health implications. 

In a world without poverty any individual that is diagnosed with HIV would be able to afford 

ARV treatment, either through health insurance or out-of-pocket. Though not necessarily the 

case, a world without poverty would likely be a more educated world in which all citizens were 

knowledgeable of the risks and consequences of unsafe sex. These effects would undoubtedly 

have a positive outcome in minimizing HIV incidence. However, there are other more subtle 

interactions going on between poverty and the disease that make a compelling case for poverty 

reduction as a means of HIV prevention and control.  
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The fact that HIV has been so much more severe in Africa is easily seen from the Figure 2 

below. Around 80% of the world’s population lives in the developing world, and 95% of those 

infected with HIV live in the developing world. Part of the increased severity may be due to 

widespread malnutrition and parasitosis, results of pervasive poverty [21]. These reduce an 

individual’s overall immunity, and consequently increase the likelihood of infection.  

 

Figure 2: HIV prevalence in the world. Africa holds a significant burden of the disease. 

As mentioned before, a lack of education leads to risky sexual behavior because of a 

misunderstanding about the disease. However, it also has the effect that the uneducated are less 

flexible in terms of working environments and conditions. In the case of South Africa, rural men 

migrate to the bigger cities in search of work. Many of them work long hours in the country’s 

coal, gold, diamond, platinum, and chromium (used for stainless steel) mines. The mine’s 

artificial environment weakens workers immune system and makes them more susceptible to 

HIV and TB infection [22, 23]. Additionally, the stressful work in the mining industry drives 

many men to alcohol, which is associated with less rational decisions and more risky sexual 

behaviors [24, 25]. 

Moreover, poor women, desperate for money, may turn to sex work as a means to feeding 

themselves. This unfortunate truth increases their risk of infection through the increased number 
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of sexual partners. Additionally, with the abundance of sex workers and limited regulation, there 

is a competitive incentive not to use condoms – there is likely another prostitute that will take 

away business because she is willing to “take the wrapper off the sweet” [26]. 

The fact that prostitution is culturally acceptable can be traced to the general consensus 

that young boys need an outlet for their sexual nature. However, young Muslim girls should save 

their virginity for their future husband, and so the concept of prostitution as a necessary evil 

develops [26]. 

Understanding societal determinants that may increase or sustain a high incidence rate of 

HIV is akin to understanding the weavings of a complex tapestry; there are many interacting 

layers, each exacerbating another and all contributing to the end result. The concept of poverty is 

itself a multi-faceted issue with many implications and many challenges to remedy; it is just one 

of many societal determinants adding to the problem. While eradicating poverty completely 

would surely not eliminate HIV transmission, it is not inconceivable that reducing poverty may 

have a substantial effect. Models that attempt to eradicate disease must then incorporate societal 

factors in some capacity.  

1.1.2 Determining Prevalence 

The syphilis epidemic has led to some research into the prevalence of the disease in 

specific areas [19], as well as surveillance by individual countries’ ministries of health [27]. From 

these different sources, an educated guess can be made as to the disease’s prevalence. There are 

an estimated 12 million new cases of syphilis in the world each year, a quarter of which occur in 

Africa [28]. Figure 3 below is a cartogram depicting the number of deaths due to syphilis in the 

world. As can easily be seen, a large portion of the deaths occur in Africa (approximately 30,000 

in 2004). Infection rates in major African cities of Zambia and Cameroon were reported at 10% 
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and 6% in both genders [28], and ongoing tests in Madagascar suggest an infection rate of 30% 

[32].  

 
Figure 3: Cartogram of deaths due to syphilis in the entire world. Each color represents a region of the world: red is Southeastern 

Africa, orange is Northern Africa, and yellow is greater India and Far East. Africa holds a staggering amount of the burden of 

deaths due to syphilis. Deaths due to syphilis are mainly concentrated in Africa and South Asia.  

Syphilis infection rates in pregnant women in Africa as a whole have been estimated to be 

between 3 and 15%. Of those, 30% of the untreated cases result in stillbirth and in another 30% 

the child will be born with congenital syphilis [27]. Half of infants born with congenital syphilis 

die within their first year of life. Though simply correlation, this may account for at least some of 

Africa’s high infant mortality rates: 175.90 deaths per 1,000 live births in Angola; 81.04 deaths in 

Malawi; 66.0 deaths in Zambia. Compare this to 6.06 in the United States and 2.78 in Japan [29]. 

In the US, the Center for Disease Control (CDC) regularly produces publically available 

maps of syphilis and other diseases. Though it is possible to draw rough estimates of prevalence 

from specific case studies, and despite the large amount of research in testing and treating the 

disease [30], there seem to be no maps of syphilis in Africa [31]. This is a significant handicap 
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for epidemiologists attempting to prevent the diffusion of syphilis. We are thus left with open-

ended questions and no channel through which to find answers: which geographic areas should 

be the focus of treatment and prevention, where to place treatment facilities, who are the most in 

need? Does geography play a larger role than demography? This frustrating lack of information 

can be attributed to logistical problems with screening tests, country-mandated data collection, as 

well as a lack of a unified aggregator.  

Many African countries attempt to control syphilis prevalence through screening 

programs implemented at antenatal care clinics in the country[27]. While this is obviously a well-

intentioned first step, it falls significantly short of a consistent source of data for many reasons. 

The two widely used tests for screening, Venereal Disease Research Laboratory (VDRL) and 

Rapid Plasma Reagin (RPR), have major flaws when used in developing nations. First, they 

require significant infrastructure to perform (necessitating a centrifuge, hot-water bath, and 

refrigeration, all of which require electricity which is unreliable in some areas) in addition to the 

training of individuals to interpret results [32]. Second, the time required to perform the 

complicated algorithm of testing can take 30-40 minutes, possibly resulting in a positive 

diagnosis for someone who has already left the clinic and may never return [32].  

These two obstacles together lead to a disappointingly small percentage of pregnant 

women being screened for syphilis [32], where unscreened women become untreated women. In 

addition to the possibility of further spread, one-third will pass the disease onto their child in the 

form of congenital syphilis [33]. Moreover, many women do not attend a clinic during pregnancy 

in the first place. Thus, despite being national policy, an optimistic estimate of the screening rate 

is 38% for pregnant women [27]. 
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The attractive alternative to VDRL and RPR are Rapid Syphilis Tests (RST), of which 

there are 20 commercially available versions. Though all differ slightly, their main benefits are 

that they are self-contained—there is no need for refrigeration or other machinery (let alone 

electricity) and require less training to administer, as well as producing results in 15 minutes—

enough time for women to be treated in the same visit. Though the benefits seem overwhelmingly 

positive, the political reasoning for government’s reluctance to implement their use is cost:  one 

RST costs as much as $1.00, where an RPR costs as little as $0.15 per unit [32]. Compare this to 

a shot of penicillin which can cost from $50-$100. However the true cost relative to disability-

adjusted life years depends mainly on how well equipped the country is. Antenatal clinics in 

Mwanza, Tanzania, for example, are much better equipped than most Tanzanian clinics, and so 

using RPRs may be more cost-effective in that community [34]. 

Though price is a major concern for Ministries of Health that are providing funding for 

screening, there are other difficulties with the tests. In the Gambia, approximately 75% of the 

population lives in rural areas [29]. Though the prevalence is significantly less than urban areas, 

syphilis infection in rural areas is estimated at 3% [30]. In a rural setting the procedures for the 

more complicated RPR tests become even more difficult; 100ᵒ+ F temperatures reduce the 

number of antibodies, dusty environments distort blood samples, and poor light make reading 

instruments challenging. Together they all decrease the reliability of a positive/ negative 

diagnosis of syphilis. The RST tests tend to be subjectively easier to perform and do not suffer 

from the same environmental pitfalls of RPR. All this being considered, both tests show 

disappointing sensitivity to the disease; RPR was able to correctly identify 77.5% of positive 

cases, and RST 75.0%. This means many false negatives, and consequently under treatment of 

syphilis for those who need it, and many false positives resulting in unnecessary and expensive 

treatments. This is attributed to the relatively low prevalence in the rural areas—when a villager 
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receives a positive test there is only a 32.6% or 40.0% chance of actually having syphilis for PRP 

and RST, respectively [30]. 

The World Health Organization (WHO) has made an attempt to collect prevalence data 

for syphilis by means of the human immunodeficiency virus (HIV) surveillance programs [33]. 

Unfortunately, this is inherently flawed by the number of hands through which the data must pass 

first. Since prevalence of HIV can be an indicator of a country’s developmental progress, there is 

a tendency for country officials to lie about numbers in order for their country to be perceived in 

a positive light [43]. Additionally, there may be economic incentive to underreport disease 

prevalence—money from tourism is good for the economy as a whole, and good for the 

government who receives a significant portion of the money through taxation [10]. 

Though it is difficult to create maps of diffusion of syphilis, it is possible to gain an 

understanding of its spread from the immense amount of literature on HIV. Since HIV attacks the 

immune system, those infected with it will be more susceptible to other diseases such as syphilis 

[35]. However the reverse is also true:  it is widely accepted that there is a larger risk of 

contracting HIV because of a syphilis infection [17]. Studies of homosexual and heterosexual 

individuals consistently find an estimated 2.3 to 8.6 increased likelihood in the risk of 

transmission [17]. For this reason it is possible to make the simplifying assumption that syphilis 

spreads similar to HIV geographically. Even so, it is important to note that high prevalence of 

HIV in a community does not automatically imply high prevalence of syphilis [19]. 

1.1.3 Geographic Spread 

The most notable cause of the spread of HIV is long distance truck drivers making 

shipments across national borders [36, 37]. This assertion is well-supported; 80% of bar girls 

working at truck stops along major highways are infected with HIV; various studies of truck 
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drivers show that anywhere from 30-80% are infected [10]. Most noteworthy is the trucking route 

from Djibouti, where HIV comes from many places via its heavily trafficked Red Sea port, 

toward southern Africa as can be seen in Figure 4. A docked sailor might visit one of the local 

prostitutes, who in turn is visited by a truck driver heading south to the Ethiopian capital of Addis 

Ababa. Perhaps not surprisingly, 50-60% of prostitutes in Djibouti are infected with HIV. Part of 

the reason for this continuing trend is the cultural acceptance of prostitution in their society, 

coupled with the Church’s condemnation of condoms [10].  

 

Figure 4: Minimal estimates of HIV infection rates in Africa in 1991. The higher incidence rate areas are correlated with traffic 

routes. 

From Addis Ababa, truck drivers move south to Kenya and West to Somalia. In Kenya’s 

capital, Nairobi, nearly 100% of prostitutes are infected with HIV [10]. Lake Victoria to the West 

of Nairobi exacerbates the diffusion as it is a commonly used mode of transportation to Uganda, 

Rwanda, and Tanzania. This war torn area is highlighted in Figure 4 with a large black spot near 

the middle of Africa. Civil unrest causes the movement of refugees and with them the HIV with 

which they are infected. Just as those that live near a major road are more likely to be infected 
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with HIV, those that live near the lake are more likely to be infected [38]. These details of spread 

lend themselves to identifying strategic places for epidemiological interventions where screening 

and treatment centers may be created.  

1.2 Compartmental Models 

In this section we present an overview of compartmental models for disease perpetuation 

and spread. For HIV we consider a standard SI epidemic process. We denote S(t) as the 

proportion of susceptible individuals at time t, and I(t) as the proportion of infected individuals at 

time t in a system of N individuals. The model holds that at every time step a fraction of 

individuals move from the susceptible compartment to the infected compartment. Additionally if 

we make the simplifying assumption that enter and exit rates are negligible (the number of births 

and deaths are equal), then we can use a constant replacement rate 𝛿 that models some fraction of 

infected individuals moving to the susceptible population. It is important to emphasize that this is 

aggregate behavior and so this is modeling the fact that some individuals within the infected 

group die and others are born into the susceptible population – not that some people are being 

cured of HIV. The infectivity of a disease with no interventions implemented is denoted 𝜆0. Also 

known as the sufficient contact rate, the infectivity is based on the connectivity of the population 

and transmission probability of the disease, and controls the number of new infections that occur 

within the system as seen visually in Figure 5 below. 
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Figure 5: An SI model represents aggregate number of individuals in each of the two compartments: susceptible (S) and infected 

(I). Each time step some fraction of the susceptible population becomes infected relative to the infectivity coefficient 𝝀, and some 

fraction of infected become susceptible relative to the recovery rate (enter/exit rate) 𝜹. 

The number of new infections at time t, known as the epidemic function, is given by the 

formula 

𝑓(𝑡, 𝜆) = 𝜆𝑁𝐼(𝑡)𝑆(𝑡). 

This comes from the fact that new infections occur based on the contact rate (the amount 

of mixing between the infected and susceptible individuals). Note that this formula assumes 

random mixing between compartments—every infected individual is equally likely to come in 

contact with a susceptible individual. Figure 6 shows epidemic curves for different values of 𝜆 

with 𝛿 = 0 . As would be expected, even with a relatively low probability of transmission 

(𝜆 = 0.1) the prevalence of the disease (the proportion of the population infected) is continually 

increasing. When the proportion of susceptible to infected individuals becomes low (as realized 

by the product (𝑡)𝑆(𝑡) ) the number of new cases in each time step declines.  

Figure 7 shows how an epidemic for different values of 𝛿 with 𝜆 = 0.5. Now the system 

moves gradually to a steady state in which the number of new infected at each time step is equal 

to the number that enter/exit (recover). When very few individuals move from the susceptible to 

infected (𝛿 = 0.1), the steady state is high with 0.8 of the population being infected at any given 

time. For a higher enter/exit rate (𝛿 = 0.4) the steady state of the system is much lower.  

S I 

𝛿  

𝜆  
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Figure 6: Epidemic growth over time for various values of infectivity. A highly infectious disease (𝜆 = 0.4) infects nearly the 

entire population by time step 20. A less infectious disease (𝜆 = 0.1) has only infected 0.2 of the population by timestep 35. Since 

the enter/exit rate is set to zero in this case, no infected individuals ever move back to the susceptible stage and the whole 

population gradually becomes infected no matter the value of 𝜆. 

 

Figure 7: Epidemic growth over time for various values of enter/exit (recovery) rates. A high recovery rate implies that many 

people are moving from infected back to susceptible. Over time the system enters a steady state in which the number of new 

infected individuals is equal to the number of new susceptible. 
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SI models can be extended so as to allow for transition to other possible compartments. 

For example, an SIR model allows for individuals to move from the infected (I) compartment to 

the recovered (R) compartment. This may reflect immunity that is acquired after infection—an 

individual is no longer infected, but also not susceptible to reinfection, and so becomes 

recovered. This is typical for many rhinoviruses or seasonal influenza. In the case of seasonal 

influenza, individuals can also move directly from susceptible to recovered by means of 

vaccination. 

The compartmental representation of an SIR model with vaccination is shown in Figure 8 

and the epidemic curve is seen in Figure 9. Initially when there are many susceptible and no 

recovered, the number of infected are able to grow. As time proceeds many of the susceptible 

become vaccinated and are no longer able to become infected (by definition) and hence the 

number of infected in each time step begins to decline. Eventually all susceptible and infected 

move to the recovered state.  

 

Figure 8: A graphical representation of an SIR model. This models individuals transitions from susceptible (S) to infected (I) to 

recovered (R). Additionally, individuals may move directly from susceptible to recovered via vaccination or natural immunity. 

 

𝛾  

𝛿  𝜆  



23 

 

 

 

Figure 9: Specific SIR epidemic curve for values 𝜆 = 0.5, 𝛿 = 0.1, 𝛾 = 0.1. Initially there are many susceptible, few infected, and 

no recovered individuals. The number of infected grows in the beginning as there are a large number of susceptible individuals. 

However, as time progresses and the number of susceptible decreases, either through infection or vaccination, less people become 

infected. Eventually the whole population is recovered and none are susceptible or infected.  

Additional complexity can be modeled with additional compartments. There are SEIR 

models (the E stands for exposed) which models diseases in which individuals experience a latent 

stage of infection like some strains of influenza [39]. This means that they are infectious and able 

to spread the disease, but do not show symptoms. This latent stage thus makes it difficult to 

perform interventions like social distancing (isolating infected individuals) or vaccination 

programs (a vaccine is ineffective if an individual is already sick).  

SIRD (the D stands for deceased) models are used for pandemic influenza that have 

relatively high mortality. The deceased compartment is similar to the recovered stated since 

individuals in these compartments are unable to cause further infections. However the additional 

compartment captures disease outcome of individuals in the population. The goal of these models 
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is to minimize the number of individuals that ultimately end up in the deceased compartment 

[40]. 

1.3 Intervening in Disease Diffusion 

After a model has been selected and parameters properly set, epidemiologists and public 

health officials want to investigate strategies for intervening and stopping the spread of disease. 

In this section we present some compartmental models which investigate strategies for reducing 

disease burden. 

1.3.1 Increasing Access to Anti-Retroviral Therapy 

We can expand the simple SI model so that instead of a single infected stage there are 

several corresponding to varying levels of disease progression. Figure 10 shows a model that uses 

CD4 count (a proxy for the stage of HIV infection) as infected compartments. Since the lower 

CD4 levels represent individuals that are more infectious, it is cost effective to start anti-

retroviral therapy (ART—a drug regime used to treat HIV) sooner since the cost incurred from 

treatment is outweighed by the cost of averted infections.  
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Figure 10: Another model that uses CD4 counts (a proxy for the stage of HIV infection) as infected compartments. Since the 

lower CD4 levels represent individuals that are more infectious, it is cost effective to start anti-retro viral treatment sooner since 

the cost incurred from treatment is outweighed by the cost of averted infections. 

However, a government does not want to treat just a random subset of the HIV infected 

population, they typically want to treat the very sickest. Until recently the South African 

government had the threshold of treating individuals with CD4 count of less than 200 cells / mL 

[3]. This is the threshold for being diagnosed with AIDS. Using a compartmental model that take 

into account differences in infectivity due to treatment, epidemiologists at the South Africa 

Centre for Epidemiological Modeling and Analysis (SACEMA) have shown that increasing the 

threshold from 200 cells / mL to 350 or 500 cells / mL and specific age targeting would amplify 

decreasing incidence rates of the disease [41]. While the decrease in incidence seems trivial, 

SACEMA showed that the extra cost incurred by treating individuals with higher CD4 count 

levels (less sick) would be less in the long run due to avoided infections. Depending on the 

lifetime cost of treating HIV, about $12,000 with ART and $3,800 without ART, this could 

amount to as much as $2.4 million in net savings over the next 20 years. 
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1.3.2 A Mathematical Model for Optimal Resource Allocation of HIV 

  Another method for modeling public health decisions considers interventions that aim to 

interrupt some parameter of disease spread, connectivity or infectivity, at either an individual or 

population level. We examine the model in [42] to model optimal resource allocation. To begin, 

let each intervention method i be associated with a certain monetary cost 𝑐𝑖  and some effect 

function 𝜆𝑖(𝑐𝑖)  on the disease incidence. The intervention works by either affecting another 

intervention or reducing overall infectivity of individuals or connectivity of a community.  

With this framework in place we can calculate the number of infections averted over a 

time T by integrating over the difference of the number of infections that would have occurred 

without interventions 𝑓(𝑡, 𝜆0) and with interventions i, 𝑓(𝑡, 𝜆𝑖). Additionally since the model 

time unit is 1 year, we need to take inflation of cost into account and so an annual discount rate r 

is used. Note that interventions may be getting cheaper as well and so r may be negative. This is 

generally taken to be 3% and does not have a large effect on the model.  

The function for the number of infections averted then is  

𝐼𝐴(𝑐𝑖) = ∫ 𝑓(𝑡, 𝜆0)𝑒
−𝑟𝑡 𝑑𝑡

𝑇

0
− ∫ 𝑓(𝑡, 𝜆𝑖(𝑐𝑖))𝑒

−𝑟𝑡 𝑑𝑡
𝑇

0
. 

We can use this equation for the number of infections averted to define the optimization 

problem. Knowing the benefit from each averted infection W, and the number of infections 

averted 𝐼𝐴(𝑐𝑖) from spending 𝑐𝑖 the optimal resource allocation problem is  

Maximize 𝑊 × 𝐼𝐴(𝑐𝑖) − 𝑐𝑖 

such that 𝑐𝑖 < 𝐵 

where B is the budget for spending. The parameter W, also known as the willingness to 

pay, is a measure of how much a single averted infection is worth to the intervening party (most 

often the government). This metric can be captured in a number of ways: Quality of Life Years 
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(QALYs), a measure of economic output for a typical individual, or the ratio between Disability 

Adjusted Life Years (DALYs) and per Capita GDP.  

Since there is only one variable 𝑐𝑖 (how much to spend on intervention i), we can solve 

this problem analytically. For example, consider a population of 10,000 injection drug users 

(IDUs) in which the prevalence of HIV is 40% and sufficient contact rate 𝜆0 = 0.0817 [53]. 

Additionally consider a needle exchange program ne that changes the sufficient contact rate of 

HIV by a multiplicative factor relative to the amount spent: 

𝜆𝑛𝑒(𝑐) = 𝜆0 [0.67 + 0.33𝑒−0.0089(
𝑐

𝑁
)]. 

 

Figure 11: The production function for different levels of investment. The function exhibits decreasing returns to scale—each 

additional dollar spent provides less benefit then the previous. If no money is spent (c = 0), then the infectivity (sufficient contact 

rate) is 0.08. If $120 per person is spend, then the infectivity is approximately 0.06.  

In Figure 11 it is easy to see that this particular intervention has a decreasing return to 

scales: each additional dollar yields less benefit. In the case of a needle exchange program, once 

an initial willing population has been located, additional willing participants may be difficult to 

find. With this production function we can use the epidemic function f (defined earlier) to 

generate the function IA.  
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Figure 12: Infections averted for different values of investment. Increasing the investment per individual will increase the number 

of infections averted, but with decreasing return to scales. Spending at $120/person will avert approximately 40 infections. 

 

Figure 13: The objective function for different values of willingness to pay. The objective function has a greater optimal 

investment for greater values of willingness to pay W. For W=$50,000 the optimal amount to spend is $120 per individual, which 

is $1.2 million in a population of 10,000 injective drug users. 

To find the optimal amount to spend we use the above IA(c) function in the objective 

function as seen in Figure 13. The objective function when W = 50,000 is maximized when the 

cost per person is $120. This is found exactly by taking the derivative of the objective function 

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400

In
fe

ct
io

n
s 

A
v
er

te
d

, 
IA

(c
) 

 

Net Present Value of the Investment ($/person) 

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400

O
b

je
ct

iv
e 

F
u

n
ct

io
n

 V
al

u
e 

x
 1

0
0

0
0

0
 

Net Present Value of Investment ($/person) 

100,000

50,000

25,000



29 

 

 

with respect to cost and solving the equation set to zero. In words this means that if an infection 

costs $50,000 to the intervening agency (either through lost productivity, increased health care 

costs, etc.) then the optimal amount to spend is $1.2 million ($120 times the 10,000 person 

population). If less than this amount is available, all of the budget should go towards the needle 

exchange program. If more than this is available, the program should be allocated $1.2 million 

and the rest be re-appropriated to another intervention method. 

Perhaps not surprisingly, when the benefit of an averted infection is more (W=$100,000), 

the optimal cost is higher. This makes sense as a greater benefit justifies the higher cost. 

Similarly, lower values for the sufficient contact rate yield lower optimal expenditures since the 

disease is less likely to be spreading. The same is true for lower prevalence: a population with a 

lower prevalence requires a lower optimal expenditure. 

This mathematical model is limited in its scope however: it does not consider the benefit 

of many interventions implemented in combination. While it is possible to find a combination of 

several interventions through individualized analysis, the solution is not guaranteed to be optimal, 

nor is it likely to be. This is because intervention methods often interact with each other through 

mixing of target populations and referral to other interventions. For example, in the absence of all 

other interventions, HIV counseling and testing may convey little or no protective effects for 

uninfected individuals. When utilized alongside a national male circumcision program, however, 

counseling and testing may become a point of referral and a catalyst for the male circumcision 

program. 

1.3.3 Optimal Resource Allocation for Multiple Intervention Methods 

In the case of multiple interventions the simple SI compartmental model needs to be 

expanded so that target populations of interventions are each modeled. Additionally, the 

interaction between interventions is modeled via transition parameters between the different 
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populations. Zaric and Brandeau consider several interventions targeted at IDUs, IDUs on 

Methadone maintenance (a drug regime that relieves heroin withdrawal symptoms), and non-

IDUs [43]. Note that Methadone maintenance has been shown to be very helpful in reducing 

heroin addiction (and consequently injection drug use) and so slots for the free drugs are most 

often full. Specifically they considered the effect of the following interventions: 

1. Needle exchange for all IDUs; 

2. Increasing the number of Methadone maintenance slots for all IDUs; 

3. Increasing the number of Methadone maintenance slots for IDUs with HIV; 

4. Increasing the number of Methadone maintenance slots for IDUs with AIDS; 

5. Condom distribution to IDUs 

6. Condom distribution to IDUs in Methadone maintenance 

7. Condom distribution to the entire population 

They model the three populations with a compartmental model where individuals 

progress through the disease stages non-infected, infected with HIV, infected with AIDs (Figure 

14).  

The transitions between compartments are based on the infectivity and size of the 

different compartments as in the previous model. Now however there are many infectivity 

constants for many different transitions and population interactions. Thus in addition to initial 

population size, the effects of each intervention need to be considered: whether through reducing 

infectivity (condom distribution, needle exchange), or reducing connectivity (methadone 

maintenance reducing IDU population). A detailed description of each intervention production 

function can be found in [43], but is omitted here for brevity.  
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Figure 14: In order to find the optimal resource allocation of a portfolio of intervention methods, each of the target populations are 

modeled with an SI model. In this case the three populations are IDUs not in methadone maintenance, IDUs in methadone 

maintenance. 

Once the compartmental model and the effect of different interventions on the model have 

been put into place we can generate the epidemic curve for specific allocation of resources (no 

spending resources being the base case). However, the nonlinear nature of the model makes a 

closed form solution unlikely, if not impossible. The resource allocation problem for multiple 

interventions then becomes a continuous knapsack problem which is known to be NP-hard [44]. 

Fortunately optimization theory and heuristic search allow us to find feasible, though not 

necessarily optimal, solutions to the problem. 

1.3.4 Optimal Resource Allocation for Influenza Outbreaks 

We can use influenza surveillance and intervention models as a catalyst for simulating 

and intervening in STD diffusion and perpetuation due to their similar nature: both are infectious 

diseases spread through contact (albeit a different mode of contact), and both are easily 
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preventable (influenza through vaccine and STDs through safe sex measures). In this way 

existing work may be applied to STD models of diffusion.  

It should be noted that the differences between the two types of diseases are more than 

nominal: new influenza strains occur annually and so appropriate vaccines must be created. 

Transmission from an influenza infected individual to a susceptible individual can occur through 

casual contact (i.e., in a crowded market, or closed-system airplane). Most dissimilar is that 

influenza models tend to emphasize the diffusion of the disease—how influenza may spread 

across a country [45, 46]—whereas models of STDs are more concerned with the perpetuation of 

the disease. That is to say, influenza epidemiologists typically aim to isolate new strands so they 

do not infect a large percentage of the population. For STDs like syphilis and HIV many people 

are already infected and so models aim to reduce the incidence rate, the number of new cases in 

the population. However, we maintain that influenza models offer themselves as a proxy for 

infectious disease spread. 

Ludkovski and Niemi considered the optimal resource allocation problem for disease 

interventions in a non-deterministic model [40]. Specifically, they consider the spread of flu 

within a boarding school of 763 students with two students initially infected. They simulate the 

epidemic with an SIR model using the Gillespie algorithm. This is a variation of the generic SIR 

model described earlier that uses continuous time steps instead of discrete, and non-

deterministically simulates events. At every step, a value for 𝜏  (exponential distributed) is 

sampled and one of two “events” occurs – an individual moves from susceptible to infected, or an 

individual moves from infected to recovered. The propensity of each event is relative to the 

infectivity, 𝜆0, and recovery rate, 𝛿. 
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For example, let 𝑋(𝑡) = (𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡))  be a triple that represents the number of 

susceptible, infected, and recovered in the system at time t respectively. The state of the epidemic 

is updated relative to 

𝑋(𝑡 + 𝜏) = 𝑋(𝑡) + {
(−1, 1, 0) with probability ∝

𝜆𝑆(𝑡) 𝐼(𝑡)

𝑁
 

(0, −1, 1) with probability ∝  𝛾𝐼(𝑡) 
 

for a population of N and 𝜏 ~ 𝐸𝑥𝑝 (
𝜆𝑆(𝑡) 𝐼(𝑡)

𝑁
+ 𝛾𝐼(𝑡) ). They note that for large N (>1000) the 

model is essentially deterministic through the law of large numbers.  

They assume that every day a decision can be made about what action to take: begin a 

vaccination campaign, isolate infected individuals (and incur some cost through lost 

productivity), or wait and see. The wait-and-see decision allows the policy maker to gather more 

information such as infectivity and recovery (and hence the basic reproductive number, 𝑅0). The 

epidemic simulated many times for each of the interventions and a range of coefficient values to 

find a policy map (Figure 15) that minimizes the expected cost.  
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Figure 15: The optimal intervention is based on the expected basic reproductive number and the number of infected. If the basic 

reproductive number and the number of infected is small than the optimal strategy is to wait-and-see. If the basic reproductive 

number and the number of infected are high the optimal strategy is to vaccinate.  

These policy maps show that the optimal resource allocation depends on the number of 

infected, the expected basic reproductive number, and the time of implementation. Ludkovski 

and Niemi take into account error in sampling methods that inform these values as well as 

perform sensitivity analysis. Their main contribution is this methods ability to evaluate and 

suggest an optimal allocation in real-time. This is necessary for real world influenza epidemics. 

1.4 Agent-Based Models 

Recently modeling efforts have shifted to agent-based simulations. These models simulate 

populations of individuals with agent-specific characteristics. The models allow agents to have 

interactions based on these characteristics and produce emergent behavior not typical captured by 

non-stochastic models. Agent-based models for sexually transmitted diseases simulate sexual 

relationships between agents, using the agent specific characteristics to create a dynamic sexual 

network. In this way, agent-based models are able to simulate how the disease diffuses through a 

network, and simulate possible actions to disrupt this process. 
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While it’s clear that large scale network modeling is necessary to obtain robust results, it 

is not immediately obvious why previously developed agent-based models, e.g. of influenza, 

cannot simply be translated to apply to sexually transmitted diseases. The first reason for this is 

that many agent-based influenza models assume the contact network is known a priori [46, 47]. 

In agent-based STD models, contacts are frequently changing and hence these models must 

simulate the dynamic sexual network at the same time as disease diffusion. The second reason is 

that the possibility of infection is unique to each agent since the sexual partners of an agent are 

particular to that agent. This is not the case in agent-based models of influenza: the possibility of 

infection is specific to the location where an infected agent is found. All agents that are in the 

same location as an infected agent share the possibility of infection: in this way large-scale 

influenza models are able to aggregate infection events to specific locations [48, 49]. Because 

sexual encounters are not based on repeated random selection of prospective partners at a given 

time and location, large-scale models of influenza do not lend themselves to be used for large-

scale models of sexually transmitted disease. 

The most well-known agent-based simulation of HIV is STDSIM [50]. This particular 

model has been used to evaluate interventions for mass treatment of STDs [51], behavior change 

campaigns [52], condom distribution [53], and male circumcision[54] to name just a few. Auvert 

et al. used the agent-based model SimuAIDS to examine the relative importance of sexual 

behavior and biological factors on the spread of HIV [55]. Sloot et al. created the model Complex 

Agent Network (CAN) [56]. This model applies the research area of complex networks and 

applies it to agent-based simulation. In their discrete time step model, they impose a distribution 

of relationship durations and a power-law degree distribution for desired number of partners. 

They track incidence and prevalence over the order of several years and validate their model 

versus incidence of men-who-have-sex-with-men in Amsterdam.  
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CHAPTER II AGENT-BASED MODELING OF STDS 

2.1 Introduction 

Diffusion dynamics of sexually transmitted diseases are been influenced by sociological 

effects as discussed in the previous chapter. While compartmental models are very good at 

describing general epidemic trends, they can have difficulty modelling complex social 

phenomena and the interactions among them. For this reason, agent-based models are used to 

simulate individual-level behaviors and to gain insight as to how they may be interacting to 

contribute to disease dynamics. 

In this chapter, we present a mathematical formulation for modeling HIV. Our goal is not 

to provide a fully validated model, but instead to show that this formulation can reasonably 

model many common disease-related sociological processes. We first we provide a non-

exhaustive background summary of important sociological effects contributing to the epidemic. 

In the second section, we describe the mathematical formulation for modelling these effects. In 

the third section we show through simulation output that this framework can reasonably model 

many sociological processes including complex age-mixing patterns; a heterogeneous population 

of female sex workers, men-who-have-sex-with-men (MSM), and heterosexual agents; and 

society level changes in condom use behavior. We conclude in the final section with a discussion 

of the significance of the work and directions for future research. 

Note that through-out the chapter we use the term “individual” and “agent” to distinguish 

between a real person in the world and a simulated person in our model respectively. 

2.2 Background 

One of the difficulties in HIV modeling is accounting for the multitude of behavioral 

changes at the societal level, and the myriad of changes to HIV response at the governmental 
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level. For example, evidence suggests that as knowledge about the existence of HIV proliferated 

through the country, individuals began to use condoms more frequently [9]. However, no there is 

little formal evidence and thus it’s difficult to know the extent to which condom use affected the 

epidemic.  

The high prevalence of age-disparate relationships among young women means that HIV 

is able to leap between generations with relative ease. Efforts have been made to discourage 

young women from forming high-risk relationships with older men, colloquially referred to as 

“sugar daddies”, but gains have been minor due to the practice having relatively high societal 

acceptance [57–59].  

The probability of transmitting HIV to a sexual partner changes over the course of 

infection, but is highest during the first three months. This fact has led to a debate in public health 

over the role which concurrency and partner turnover rates play in the epidemic [60, 61]. 

Poverty in general has socio-economic implications for HIV transmission. In addition to 

have decreased access to health care, poor individuals are more likely to have stressful jobs that 

are closely correlated with alcohol consumption and risky sexual behaviors. In some cases 

alcohol may even be used as currency for sex [24, 25]. Besides alcohol-for-sex and age-disparate 

relationships, women face a multitude of additional risks. Having less power in society, they are 

often unable to dictate the use of condoms in relationships, and are often the victims of rape [62]. 

Women typical are unable to end a relationship with an unfaithful partner, increasing prevalence 

of concurrent relationships in the sexual network and hence opportunities for HIV to spread.  

Many of these processes have been modelled independently to understand their effect on 

the epidemic. However, it is becoming increasingly clear that the best responses to the epidemic 

will need account for these processes simultaneously. 
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2.3 The Mathematical Formulation 

In this section we describe our mathematical formulation for a discrete-time, agent-based 

simulation. To explore the usefulness of this formulation, we implemented the model with the 

multi-agent simulation toolkit MASON[63]. We first describe the overall flow of the algorithm, 

and in subsequent sections describe how the model is flexible to additional levels of complexity 

to model complex sociological phenomena. 

The time step of the simulation is one week. Each week the model progresses with three 

steps: (i) relationship formations and dissolutions, (ii) infections occur, and (iii) agents are 

removed and added. In short, agents form relationships based on individual characteristics such 

as gender, age, and desired number of partners. Transmission of HIV is controlled by the 

Infection Operator, and the progression of time is controlled by the Time Operator (individuals 

age are incremented, relationship durations are decremented). 

The model initializes agents each with a sex, an age, and desired number of partners 

(DNP) according to a prior distribution. At each time step, we ask each agent two questions: 

would he or she like to form a relationship? If so, with whom? The heterogeneity of our model 

comes from the fact that each agent answers these question based on different criteria. For 

example, one agent may seek new relationships if their number of partners is less than their 

desired number of partners and he or she may want to form relationships with agents of the 

opposite sex (we will discuss other relationship forming rules in subsequent sections). The 

duration of a relationship is determined at formation as a random value taken from a prior 

distribution.  

After we allow each agent to form a relationship, the Infection Operator performs initial 

infections, increments the number of weeks infected (for infected individuals only), and performs 
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infections between sero-discordant couples in the simulation. The Time Operator next increments 

the agents’ ages, and decrements the duration of relationships in the network. If the duration of a 

relationship becomes negative (i.e., it has ended), the edge in the network is removed and the 

respective agent’s number of partners are decremented. On the next step the agents are allowed to 

try to find a new partner. Each week, a fraction of individuals are removed and some new agents 

are born to replace them. 

We repeat this process of first calling agents to form relations, second performing 

infections, and finally progressing time for the duration of the simulation. This process produces 

a dynamic sexual network and simulates the diffusion of HIV through a heterogeneous 

population. Figure 16 shows the pseudo-code for the algorithm. 

While the model as described above is straightforward, we will show that this framework 

can be expanded to include more sophisticated processes for forming relationships, controlling 

demographic processes, and modeling disease characteristics.  
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Figure 16: Pseudo-code for the SimpactBlu algorithm. At each step, three things happen: (1) agents with less than the desired 

number of partners form new relationships; (2) Time progresses such that agent’s ages are incremented and relationship durations 

are decremented by one week; (3) Infections occur in sero-discordant relationships. 

2.3.1 Probability of Relationship Formation 

We define a directional probability function 𝑃𝑖𝑗  as the probability that agent 𝑖 forms a 

relationship with an agent 𝑗. Note that 𝑃𝑖𝑗 is not necessarily equal to 𝑃𝑗𝑖 since j may have different 

partner preferences (e.g. he or she may be interested in relationships with a narrower age gap). 

Additionally this probability is only relevant if both partners are interested in forming a new 

relationship (i.e., each had less than their DNP).  

Consider a simple probability function applied to every agent which considers only the 

absolute age difference between two agents: 

𝑃𝑖𝑗 = 𝑒α⋅|Δ age| 

Algorithm SimulateHIV 

1: initialize_population() 

2: repeat 
3:      //agents form relations  

4:      for agent from 1 to N do 

5:           if agent.is_looking() then 

6:                for other_agent from 1 to N do 

7:                     if agent.is_looking_for( other_agent ) then 

8:                          form_relationship( agent , other_agent ) 

9:                end other_agent for 

10:      end agent for 

11:       
12:      //perform infections with operator 

13:      infection_operator.perform_infections() 

14:  
15:      //progress time with operator 

16:      time_operator.progress_time() 

17: until time > endTime 
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Where α is the probability multiplier. Even this simple probability function applied to every agent 

uniformly can yield the desirable result that the age difference in most relationships is relatively 

small. Figure 17 shows the probability of a relationship forming for different age differences and 

probability multipliers. 

Figure 18 shows the age mixing scatter for a probability multiplier of -0.1. Each dot 

represents a potential relationship. The dot’s x-value is the age of the male, and the y-value is the 

age of the female. The color of the dot is the probability the relationship forming with the above 

probability function and probability multiplier. 

 

Figure 17: Probability of relationships formation for different probability multipliers. Age-disparate relationships can be made 

more or less likely this way. 
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Figure 18: Age mixing scatter for a simple probability function and a probability multiplier of -0.1. Though simple, this 

probability function can produce age mixing patterns similar to those seen in the real world. 

We can begin to add layers of complexity to the model by adding other factors into the 

probability function. For example, in addition to wanting to form relationships with agents of a 

similar age, agents are less likely to form relationships in general as they get older. To model this 

this we add an additional term that scales the probability of relationship formation based on the 

candidate couple’s mean age. Hence, the probability function would be 

𝑃𝑖𝑗 = 𝑒𝛼1|Δ age|+ 𝛼2⋅mean_age and the resulting age-mixing scatter would be Figure 19. 
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Figure 19: The age mixing scatter for a probability function that decreases with the mean age of the candidate couple. This 

reflects the real-life situation in which younger individuals form more relationships than their older counterparts. 

These two simple examples have shown the usefulness of a generalized probability 

function: it offers flexibility as to which characteristics are significant in relationship formation, 

and by what amount. Figure 20 shows the age mixing graph for the probability  

𝑃𝑖𝑗 =  𝑒𝛼⋅(|Δ age −preferred_age_difference⋅mean_age|) 

Where α  is again the probability multiplier. Additionally the probability subtracts a 

preferred age difference from the actual age difference – this reflects that female agent may 

actually prefer an older male partner (perhaps for maturity or for economic security). The 

probability function multiplies the preferred age difference and the mean age of the couple to 

generate a larger preferred age difference for older couples. This reflects the fact that as men 

grow older, they increasingly prefer younger women. 
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Figure 20: The age mixing scatter for a more complex probability function. This probability function additional considers that 

there is a preferred age difference which grows with mean age (PM = -0.1, preferred age difference = -0.2, preferred age 

difference growth = 1.5). 

Let us finally consider the possibility that in addition to a preferred age difference that is 

larger for older couples, the preferred age difference becomes more dispersed for older couples. 

The following probability function models this idea: 

𝑃𝑖𝑗 = 𝑒
𝛼⋅(|Δ age−

preferred_age_difference⋅mean_age⋅𝛼growth

preferred_age_difference⋅mean_age⋅𝛼dispersion
|)

 

Note that this equation is of the same form as the other, except the preferred age 

difference now grows and becomes more dispersed as the mean age of the couple grows. Figure 

21 shows the resulting age mixing scatter plot. 
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Figure 21: How preferred age difference can change with dispersion and growth. Here the baseline preferred age difference is -

0.2, preferred age dispersion is -0.2, preferred age growth is 2.0, and the probability multiplier is -0.1. 

The above figures showed the theoretical probabilities of relationship formations. Figure 

22 is output from the model implementation and shows the flexibility of the model for simulating 

different age mixing patterns. We run each scenario for 1 year with a population of 1000 agents. 

For purposes of visualization duration of relationships was 10 weeks.  
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Figure 22: Age-mixing heat map and scatter for three different probability functions. Top: the simplest probability function that 

produces many relationships with agents of a similar age. Middle: a more complex probability function that produces 

relationships in which older men are paired with younger women. Bottom: the most complex probability function that produces 

relationships in which age matters less for older men. 

 

𝑃𝑖𝑗 =  𝑒((−0.2×|𝐴𝐷|)+(−0.01×𝑀𝐴)) 

𝑃𝑖𝑗 =  𝑒(−0.2×(|𝐴𝐷−(−0.1×5×𝑀𝐴)|)) 

𝑃𝑖𝑗 =  𝑒
 −0.1×

|𝐴𝐷−(−0.5×0.9×𝑀𝐴)|
0.9×𝑀𝐴×0.02
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We have shown a few different probability functions and the age-mixing patterns that 

these functions produce when applied to a whole population. In practice we create a 

heterogeneous population of agents, each with a probability function which governs the agent’s 

personal behavior. In the model the population is defined by the proportion of different types of 

agents.  

Note that some individuals form relationships independent of age. For example, men-

who-have-sex-with-men (MSM) are less discerning of large differences in age in potential 

partners [56]. Female sex workers are likely to have sexual relationships with a wide range of 

ages – their discerning factor is the potential partner’s ability to pay. 

Table 2: The different types of agents and their associated probability function. 

Agent Type Probability function Notes 

Basic 𝑃𝑖𝑗 = 1 

 

This agent forms relationships 

independent of age – relies solely on his 

or her desired number of partners. 

Cone 

𝑃𝑖𝑗 = 𝑒
𝛼⋅(|AD−

𝛼𝑃𝐴𝐷⋅MA⋅𝛼growth

𝛼𝑃𝐴𝐷 ⋅MA⋅𝛼dispersion
|)

 

 

𝛼  is the probability multiplier, 𝛼𝑃𝐴𝐷  is 

the preferred age difference, 𝛼𝑔𝑟𝑜𝑤𝑡ℎ  

and 𝛼𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛  are preferred age 

difference growth and dispersion 

respectively. AD and MA are age 

difference and mean age. 

Triangle 𝑃𝑖𝑗 = 𝑒𝛼⋅|𝐴𝐷−𝛼𝑃𝐴𝐷| Same as above 

MSM 𝑃𝑖𝑗 = 1 

 

Always male and only forms 

relationships with other MSM agents 

FSW 𝑃𝑖𝑗 = 1 

 

Has DNP of 16 and relationships only 

last 1 week 

 

Table 2 provides an overview of all the agents used in our simulations along with the 

probability function they use to form relationships. All agents seek new relationships if their 
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number of partners is less than their DNP. All agents have a DNP draw from a power distribution 

except FSW agents who have a default of 16 (the average number of clients a typical FSW will 

have in a week)[64]. Note that implicit to all agent’s probability functions is a variable indicating 

whether other agent is the correct sex for the agent’s sexual orientation. 

2.3.2 Operators 

Though how agents form relationships is of obvious significance in disease diffusion, 

there are additional processes that influence the epidemic. For example, it is unlikely that an 

agent will form relationships based on the time since he or she became infected with HIV. 

However, since viral load peaks during the first few months of infection, recently infected 

individuals are more likely to transmit to their partners. Here we describe the simulation 

operators that control the various processes beyond relationship formation. As we did for the 

probability function of relationship formation, we first describe a simple implementation of the 

two operators used in our model, the Infection Operator and the Time Operator, and then show 

how they can be expanded to model processes that are more complex. 

The main role of the Infection Operator is to propagate infection through network. At 

each time step, the Infection Operator iterates through the edges of the network and 

probabilistically transmits infection from HIV-positive agents to their HIV-negative partners. In 

the simple model, the probability of transmission is a constant value that does not change with 

time or individual. The Time Operator enforces the passage of time in the simulation by 

incrementing the age of all agents by one week. In order to maintain a constant size population 

the Time Operator removes agents from simulation when they are 65-years-old and adds a new 

15-year-old agent to the simulation to replace them. 
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In the following sub-sections we discuss modification to the operators so that our model 

can more accurately simulate real behaviors. 

As mentioned previously, the probability of HIV transmission varies with an individual’s 

viral load. We modify the Infection Operator so that the infectiousness of an agent varies 

depending on his or her stage of infection. During the first 12 weeks, called the primary stage, an 

agent infects his or her partner with probability 0.032. After this the agent enters the latent phase 

for 384 weeks (approximately 8 years) and an agent infects his or her partners with the lower 

probability 0.0035. After this the agent enters final phase and infects his or partners with 

probability 0.0152 [16].  

Additionally, the time until death for an individual infected with HIV, unless treated with 

ART, is about eight years, depending on the age of the individual. Therefore, a young agent 

infected in our model should not transmit to partners until she is removed at 65-years-old, but 

instead should be removed sooner. To model this, when an agent becomes infected, we assign a 

random number drawn from a Weibull distribution with scale 2.25 and a shape which is a 

function of age. This is consistent with data [65]. Figure 23 shows the distribution of time-until-

death for agents of different ages. 
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Figure 23: Time until death is drawn from a Weibull distribution with a scale of 2.25 and a shape that depends on age. Individuals 

that are younger at the time of infections are likely to live longer than their older counterparts are. 

Similarly, non-AIDS-mortality is not a constant 65 years old. Moreover, the size of the 

population is not constant, but instead is constantly growing. We modify the basic Time Operator 

so that every year it removes a fraction of agents and adds a non-constant number of 0-year-old 

agents. ASSA2003, a demographic model produced by the Actuarial Society of South Africa, 

determines the fraction of agents removed based on age and sex mortality tables. ASSA2003 also 

determines the number of new agents based on the female age fertility tables from ASSA2003. 

The new agents enters the population at age 0, and are assigned an agent type (e.g. basic, cone, 

etc.) based on the population’s type distribution (as discussed in the previous section). 

2.3.3 Behavior Change 

To account for the condom behavior change, our model includes gradual increasing 

condom use starting in the mid-1990s and peaking in the mid-2000s. Since exact values for the 

start date, end date, and maximum condom coverage are unknown, we use values that are 
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reasonable given the data [9]. Figure 24 shows our models assumption about the level of condom 

coverage: condom use begins at 0% in 1998, and reaches a peak of 15% in 2005. 

 

Figure 24: Individuals began using condoms as knowledge about HIV spread. Our simulation assumes a smooth increase in 

condom use from the mid-1990’s to a peak around 15% in the mid-2000’s. 

Condom coverage of X% implies that X% of the population has their infectivity reduced 

(if they are HIV-positive) by 80%. While correct and consistent condom use may reduce 

infectivity by virtually 100%, this more modest value reflects incorrect or inconsistent use [66, 

67]. 

In order to account for ART availability and the life-prolonging and infection reducing 

benefits, we modify our Infection Operator. When an agent becomes infected, in addition to 

being assigned a time of death, he or she is given a CD4 count at infection (Normal(1000, 250)), 

and a CD4 count at time of death (Normal(75, 25)) [3]. With these three pieces of information, 

we can interpolate an individual’s CD4 count anytime between time of infection and time of 

death (assuming a linear decline in CD4 count). 

We model the roll-out of ART with another operator. This operator proceeds in two steps 

every 4 weeks: (1) the operator tests a fraction of the population for HIV. If an agent is HIV-
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positive and her CD4 count is below the threshold for treatment she is placed into the treatment 

queue. (2) If slots for treatment are available, the operator fills the slot with a patient waiting in 

the treatment queue. This is akin to these very sick individuals coming in to a clinic in order to 

receive treatment. In order to model the slow evolution of the availability of ART, the number of 

slots available increases gradually and smoothly starting at 10 slots in 2002 until 300 slots in 

2013. 
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Table 3: Parameters used in the initial simulation model. 

Parameter  Value Unit Notes / Justification 

Simulation Constants 

 Number of Years 30 Years HIV was introduced to South Africa 

around 1985. We simulate until 2015. 

 Relationship durations Power( 52 , 4.2 ) Distribution   

 Desired number of partners Power( 8 , 10 ) Distribution   

 Sexual debut  15 Age The age at which individuals first are 

able to form sexual relationships. 

Population Constants 

 Initial ages Empirical Distribution  

 Initial population size 1000 Individuals Largest population we can run in a 

reasonable amount of time 

 Proportion of MSM agents 0.04 Proportion  

 Proportion of FSW agents 0.04 Proportion  

 Proportion of agent type 1* 0.368 Proportion   

 Sex Male     

 Type Cone   Form relationship based on age 

difference. 

 Preferred age difference* 0.9 Years   

 Probability multiplier* -0.1     

 Preferred age difference growth* 0.05     

 Age difference dispersion* 0.004     

 Proportion of agent type 2* 0.092 Proportion   

 Sex Male     

 Type Basic   Form relationships independent of age 

difference. 

 Proportion of agent type 3* 0.23 Proportion   

 Sex Female     
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Table 3 continued. 

 Type Triangle   Form relationship based on age 

difference. 

 Preferred age difference* 2.0     

 Probability multiplier* -0.9     

 Proportion of agent type 4* 0.23 Proportion   

 Sex Female     

 Type Triangle   Form relationship based on age 

difference. 

 Preferred age difference* 2.0     

 Probability multiplier* -0.5     

Infection Operator 

 Initial number of infected 2 Individuals   

 Time of seeded population* 4 Year The approximate year when HIV was 

introduced into South Africa.  

 Sex acts per week 2 Sex acts per week   

 Length of phase 1 12 Weeks  

 PTSA during phase 1 0.032 Probability  

 Length of phase 2 384 Weeks Approximately 8 years.  

 PTSA during phase 2 0.0035 Probability  

 Length of phase 3 Infinity Weeks Agents remain in this phase until death. 

 PTSA during phase 3 0.0152 Probability  

 CD4 count at infection Norm(1000, 250) Distribution Normal distribution defined by a mean 

and standard deviation. 

 CD4 count at death Norm(75,25) Distribution  
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Table 3 continued. 

Condom Use 

 Start year*  10 Year   

 End year*  14 Year   

 Maximum coverage*  35 Percentage   

Time Operator 

 Fertility Rate Empirical   Based on ASSA2008 model 

 Non-AIDS mortality Empirical   Based on ASSA2008 model 

 AIDS-mortality Weibull(1.2,scale) Distribution Scale is a function of age in years: 

13+((15-infected.age)/10) 

ART Treatment 

 Start year 17 Year Simulation time equivalent to 2002 

 End Year 25 Year Time when the number of ART treatment 

slots stopped growing. 

 Maximum Coverage 50 Slots One-third of HIV-positive individuals 

were on ART in 2012, this number 

reflects an approximation of that. 
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2.4 Simulation Output 

Here we show output produced by the implementation of our model. Where possible, 

data informs parameter values. Where not possible, we choose parameter values from within a 

reasonable range or fitted based on a manual comparison between simulation output and actual 

sexual network in townships near and around Cape Town. We note that our goal is not to provide 

a fully validated model that can correctly predict future trends, but to merely show that output 

from the model spans a feasible range that includes observed outcomes. 

Figure 25 and Figure 26 show a comparison between actual and simulated demographics 

and HIV prevalence respectively. The more complex Time Operator is able to produce 

demographic trends seen in real life. Similarly, the more complex Infection Operator is able to 

produce prevalence levels like those seen in South Africa. 

2.4.1 Non-Trivial Age-Mixing 

In addition to general epidemic trends the model is able to simulate complex age-mixing 

patterns seen in real-life. A sexual network survey of townships around Cape Town found that 

prevalence of age-disparate relationships was high for young women and continued to be high as 

they grew older. Young men on the other hand had more age-disparate relationships as they grew 

older. Figure 27 shows a comparison of age-mixing patterns between our simulated population 

and the actual population.  
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Figure 25: Demographic plots of the actual and simulated populations. 
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Figure 26: Comparison of simulated and actual HIV adult (15-49) prevalence in South Africa. The discrepancy implies that 

additional parameter inference is necessary. 
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Figure 27: Comparison of the simulated sexual network and the actual sexual network seen from survey data collected in three 

disadvantaged communities near Cape Town. Our heterogeneous population allows us to simulate an age-mixing pattern in 

which proportion of age-disparate relationships is around 0.4 for women in all age categories, but increases gradually from 0.1 to 

0.6 as men grow older. This is consistent with the sociological idea of “sugar daddies”, in which older men provide economic 

support for younger women.  

2.4.2 Relationship Durations 

The structure of sexual networks is known to be significant factors in the epidemiology of 

STDs. Here we analyzed associations between standard indicators of sexual networks and the 

cumulative incidence of HIV. We explored the parameter space of relationship formation and 
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dissolution which generated a data set of sexual networks. We calculated concurrency, 

population partner turnover rate, median lifetime sexual partners, median age difference of 

relationships, and relationship duration from these networks and performed a regression analysis 

of these characteristics on the cumulative number of infections.  

Our regression analysis suggests cumulative prevalence of concurrency, the median 

duration of relationships, and partner turnover rate are independent predictors of total number of 

infections, whereas median number of lifetime sex partners and median age difference of 

relationships are not. Additionally, the median duration of relationships seems to have a 

quadratic relationship with cumulative HIV incidence: if relationships in the system are short, 

HIV transmission is constrained by the limited number of sex acts; if relations are long, HIV is 

“trapped” in relationships.  

This is an important distinction since the duration of a relationship (and hence the 

beginning of an individual’s next relationship) will then determine the ability of the virus to 

diffuse through the network. The relationship between expected relationship duration in a 

simulation and the total number of infections is illustrated in Figure 28. 
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Figure 28: Simulation output showing the effect of relationship durations on total infections for different levels of network 

concurrency. Short relationships reduce the number of potential transmission events and thus reduce the total number of 

infections. Long relationships reduce the number of contacts an infected agent has and thus reduce the total number of infections 

as well. This parabolic relationship between mean relationship duration and mean total infections occurs independent of network 

concurrency (the proportion of agents with multiple partners).  

In summary, we found associations between characteristics of the sexual network and 

total number of HIV infections. A behavioral change campaign then that effectively increases 
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average duration of relationships may see reductions or increases in HIV transmissions, and the 

relative impact of the intervention would depend on the network level of concurrency.  

2.5 Discussion and Conclusion 

In this chapter we’ve presented a mathematical formulation for simulating HIV. The 

formulation is flexible such that it is able to model sociological phenomena such as complex age-

mixing patterns and behavioral changes in condom use. The model, parameterized correctly, can 

reproduce HIV prevalence trends and demographic shifts as seen in real world. While more work 

may be necessary to completely validate this particular implementation of the model, our goal 

was to instead show that the mathematical formulation was up to the challenge.  

The naïve implementation with Java and MASON described here does not scale well to 

large populations. This makes the use of this implementation prohibitively expensive in terms of 

time for any meaningful modeling studies. Chapter 4 describes a shared-memory parallelization 

of the algorithm that greatly improves the performance of the model. Chapter 5 further describes 

a distributed-memory parallelization which further improves performance. 
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CHAPTER III A SIMULATION-BASED METHOD FOR EFFICIENT 

RESOURCE ALLOCATION OF COMBINATION HIV PREVENTION 

3.1 Introduction 

Over the past three decades there has been a wealth of operational research into 

effectively and efficiently combating human immunodeficiency virus (HIV). These interventions 

have had varying results. Condoms, for example, have been shown to decrease the probability of 

transmission per sexual act (PTSA) by 95%, but they tend to be used inconsistently. Male 

circumcision has been shown to reduce the PTSA by 50%, but provides consistent partial 

protection by design. Antiretroviral therapy (ART) is a medical treatment that slows the 

reproduction of HIV. ART has been associated with 96% reduction in PTSA, and has been 

shown to prolong the life of an infected individual. However, it is difficult to determine how to 

optimally distribute limited HIV prevention resources to prevention methods due to each 

method's different financial costs, levels of uptake and efficiency, and potential unintuitive 

interactions.  

While the most intuitive solution is to spend at the point of maximal effect of each 

intervention, this is not possible in low-resource settings: in addition to the effectiveness of 

interventions, cost must be considered. In such settings the opportunity costs of allocating 

additional resources to one intervention over another might be great and so a greedy approach 

may not be appropriate. Differences in uptake, coverage, and consistency also support the notion 

that no single prevention method will be sufficient for disease eradication. Instead, a 

combination of interventions, known as combination prevention, is likely to be the most efficient 

use of public health funding [68]. 
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Although combination prevention seems to be an obvious solution, the means by which 

we arrive at an optimal combination of preventions is not. High levels of complexity and 

heterogeneity in the process of HIV transmission (age-disparity within relationships, concurrent 

sexual relations, and infectivity of individuals based on stage of infection and treatment status) 

make traditional compartmental and differential equation (DE) models overly simplistic [69]. For 

this reason stochastic individual-based models that consider more explicitly the dynamic nature 

of a population's sexual network are better suited to the modeling of HIV combination 

prevention interventions. However, stochasticity such as non-deterministic transmission, 

formation, and dissolution events, make a closed-form solution to the problem of combination 

prevention difficult. Additionally, the problem of optimal resource allocation becomes 

intractable when considering diminishing returns of scale of spending, and subtle interactions 

between interventions. 

In this chapter we present a method for finding a locally optimal combination of HIV 

prevention methods, and show that combination prevention performs better than any single 

intervention at reducing cumulative HIV incidence while working within a budget. Our research 

is novel in that we consider the objective of minimizing cumulative incidence in addition to 

respecting some given budget within an individual-based model. Our method uses artificial 

intelligence algorithms to find the best possible allocation of resources to prevention methods. 

Specifically we use simulated annealing, and a genetic crossover algorithm [44] to determine the 

best achievable intervention starting times and spending amount for condom distribution, male 

circumcision, and TasP programs.  

In the next section, we discuss the agent-based model we used, a simplified version of the 

model presented in the previous chapter. We present the intervention methods and their 
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implementation, and the cost and effect of each within the model. In Section 3 we analyze the 

results of our optimization algorithms for combination prevention and in Section 4 we conclude 

with a discussion of the implications for policy and the areas of future work. 

3.2 Methods 

Our model is an event-driven, agent-based model that uses the modified next reaction 

method (mNRM) algorithm [70], a derivative of the Gillespie Stochastic Simulation algorithm 

[71]. The algorithm schedules events to occur relative to a unit-less hazard of each event. The 

time until an event is the time required for the cumulative hazard of the event to reach a random 

number between one and infinity. Thus, events with lower hazard are more likely to occur 

further in the future. We keep track of the time until every event, and perform each event in 

order.  

The main purpose of the model is to simulate HIV transmission and the impact of HIV 

interventions. We conform to current recommendations for reporting of HIV modeling work 

[72], and  follow the standard protocol suggested by Grimm et al. [73] to describe our model. 

This protocol, known as ODD (Overview, Design concepts, and Details), forms the structure of 

our methods description.  

For purposes of reproducibility, we include a table of parameter, values, and justification 

in Table 4: Parameters used in the simulation. Parameter values are calibrated and validated in 

Section 3.2.8 Calibration and Validation. Values are loosely informed by behavioral and 

epidemiological surveillance from Cape Town, South Africa, but can be changed to explore 

other contexts.  
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Table 4: Parameters used in the simulation. 

Parameter Value Justification 

Population   

Population size  200 (100 male, 100 

female)   

This is the largest population we can run within a 

reasonable amount of time.  

Initial infection  0.15  The approximate prevalence of HIV/AIDS in 

South Africa [3].  

Age Distribution  70, 4   Scale, and shape parameters for Weibull [3].  

Partnering Values  0.5, 0.5   α,  β parameters for beta distribution. Set through 

experimental comparison to sexual behavior data 

[65]. 

Formation Event   

Baseline factor  2 See 3.2.8 Calibration and Validation 

Current relations 

factor  

0  

Mean age factor  -0.005  

Last change factor  0.014  

Age difference factor  0.1  

Mean age growth 0.4  

Mean age dispersion 0.154  

Preferred age 

difference factor  

-0.18  

Dissolution Event   

Baseline factor  2.6 See 3.2.8 Calibration and Validation 

Current relations 

factor 

-0.23  

Mean age factor  -0.057  

Last change factor  -0.015   

Age difference factor  0.08  

Mean age growth 1.917  

Mean age dispersion 0.476  

Preferred age 

difference factor  

-0.265  

HIV Transmission Event 

PTSA 0.032 [16] 

Sex acts per week 2 [65] 

Condom Distribution 

Risk reduction  0.8  This reduction incorporates inconsistent use [67] 

Condom cost  
𝑎𝑠 = 2 exp  

𝑐𝑑

20
− 2  

We experimented with different cost curves, but 

found little difference.  
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Table 4 continued. 

Male Circumcision   

Risk reduction  0.5  Reduction for males only  [74]. 

Circumcision cost  𝑐𝑝 =
𝑎𝑠

50
 

 [75] 

Antiretroviral Therapy 

Risk reduction  0.96  [16] 

ARV cost  𝑝𝑎 =
𝑎𝑠

500
 

 [76]  

 

3.2.1 Purpose 

The model was designed to explore the spread of HIV infections in complex and dynamic 

sexual networks. We built the model to address the question: which attributes contribute 

significantly to the diffusion of HIV, and what interventions are most effective in interrupting 

this diffusion? 

3.2.2 Entities, State Variables, and Scales 

The model considers two kinds of agents: males and females. Both kinds of agents have a 

notion of his or her: 

1. Birth time (hence age) 

2. Time since relationship change 

3. Number of current relationships 

4. Partnering value (described in 2.5 Initialization) 

5. Time since infection 

6. Exposure to a condom campaign 

7. ART status (whether he or she has started taking ART) 

8. Time of circumcision (males only) 
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3.2.3 Process Overview and Scheduling 

Events occur one at a time according to the modified next reaction method. The events 

are:  

1. Relation formation 

2. Relationship dissolution 

3. HIV transmission 

For purposes of simplicity, mortality and replacement is not considered in this model.  

As mentioned previously, events are scheduled to occur relative to the event specific 

hazard function (described in further detail in 3.2.6 Submodels). The order of events is 

significant since the firing of one event may enable or change another. The occurrence of some 

events affect the hazard of other events: the formation of a relationship between male i and 

female j may lower the hazard of formation of a relationship between male i and female k and 

thus the event will be scheduled to occur further into the future. 

Additionally we have the notion of interventions which aim to interrupt disease spread by 

reducing the HIV transmission probability. Interventions (described in more details in 3.2.6 

Submodels) are implemented at a specific starting time, and their coverage is relative to the 

amount of money spent.  

3.2.4 Design Concepts 

The model simulates the spread of HIV in complex sexual networks: events are specific 

to individuals (e.g. condom campaigns influence an individual's probability of HIV transmission, 

and relationships among individuals consider individual-level desirability of concurrency and 
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age-disparity), rather than to an aggregate sub-portion of the population. The individuality of 

events allows us to investigate the dynamics of an epidemic at a fine grain level.  

3.2.5 Initialization 

At initialization, 100 males and 100 females are introduced. The individuals are assigned 

ages from a Weibull distribution with scale 70 and shape 4 [77]. Each individual is assigned a 

random value from a beta distribution with 𝛼 = 0.5, 𝛽 = 0.5. These values allow heterogeneity 

within our population so that some individuals with higher values are more likely to form 

relationships, and individuals with lower values are less likely to form relationships. Figure 29 

shows the distribution of ages and partnering values at initialization.  

 

Figure 29: The distribution of ages (left) and partnering values (right) at initialization. Ages pulled from a Weibull distribution 

with scale 70, and shape 4, which is consistent with the age distribution of South Africa. Partnering values are pulled from a beta 

distribution with 𝛼 = 0.5 and 𝛽 = 0.5, which produced a heterogeneous population similar to our observed sexual network (see 

Section 2.8 Calibration and Validation). 
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Relationships are allowed to form and dissolve until relationship dynamics are in a 

steady-state (two years). HIV is then introduced into the system through infecting 30 (15% of the 

population) randomly selected individuals [3].  

3.2.6 Submodels 

Each submodel represents one of the events or interventions that can occur. Each event 

has a specific hazard function that determines the time until it occurs.  

3.2.6.1 Relationship formation 

The event of relationship formation between male i and female j is based on the hazard 

function 

ℎ𝑖𝑗 = exp (𝛼1𝑢 + 𝛼2𝑤 + 𝛼3(𝑥 − 15) + 𝛼4𝑦 +
𝛼5

𝑥⋅𝛼6⋅𝛼6
′′ |𝑚 − 𝑓 − 𝑥 ⋅ 𝛼6 ⋅ 𝛼6

′ |). 

Where u is the mean of the two individuals partnering values, w is the combined number 

of current relations, x is the mean age of the couple, y is the time since last change in relationship 

status (the last time either the male or female was an actor in a formation or dissolution event), m 

is male age and f is the female age. All others (i.e. all 𝛼𝑖) are constants with values set during 

calibration. For example, 𝛼5 is the age difference factor, and 𝛼6, 𝛼6′, 𝛼6
′′ determine the preferred 

age difference. While HIV in men who have sex with men (MSM) is of concern, homosexual 

relationships are not considered in our model for simplicity. Relationships are only formed 

between individuals older than 15 years. Figure 30 shows a graphical representation of some 

elements of the hazard function. 

This means that every relationship between every pair of individuals has a baseline of 

hazard of formation of 𝑒2 = 7.39. This hazard is decreased multiplicatively based on the above 
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attributes. For example, consider a 22-year-old male (currently in one relationship, last ended a 

relationship 6 months [0.5 years] ago, and last started a relationship 1.2 months [0.1 years] ago) 

with a partnering value of 0.8, and a 19-year-old female (currently in no relationships, last ended 

a relationship 3 months [0.25 years] ago, and last started a relationship 2.4 months [0.2 years] 

ago) with a partnering value of 0.9. The hazard of a relationship forming is given by 

exp ((2.0 × 0.8 × 0.9) + (0.1 × 1) + (−0.004 × (20.5 − 15)) + (0.01 × 0.1)

+ (−0.1
|22 − 19 − (20.5 × −0.181 × 0.154)|

20.5 × −0.1812 × 0.1544
) = 8.51 

For random numbers 0.1, 1, 10, and 100 the time until relationship formation is 0.05, 

0.43, 4.27, and 42.74 years respectively (random numbers are (0,∞) with expected value of 1). 

Note that even though the male is already in a relationship, there is a possibility of him forming 

another relationship with another female.  
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Figure 30: On the top, the baseline of a formation event is based on 𝜶𝟏 and the product of the two individuals partnering value. 

Individuals' with higher partnering values will have a higher baseline for forming a relationship. On the bottom, the hazard is 

decreased multiplicatively as two individuals' age difference moves further from the preferred age difference. 

3.2.6.2 Relationship dissolution 

Once a formation event occurs, the event of dissolving this relationship (breaking up) 

becomes possible. The hazard of a relationship between male i and female j dissolving is based 

on a hazard function of the same form as the formation hazard function, but with different 

constants (see Table 4). Our sexual network then emerges from a series of formation and 

dissolution events.  
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3.2.6.3 HIV transmission 

Infection can occur in serodiscordant relations, i.e., relations in which one partner is 

infected and the other is not. The event is scheduled to occur relative to the hazard −log ((1 −

𝑃𝑇𝑆𝐴)𝑆). Where S is the number of sexual acts per week, and PTSA is the probability of 

transmission per sexual act.  

3.2.6.4 Condom distribution 

Unlike the random events, interventions are scheduled to occur at specific times (e.g. five 

years into the simulation) and is therefore independent of a hazard. We consider different 

targeting schemes for condom distribution which lead to different individuals possessing 

condoms. The intervention targeting strategies we considered were 

1. Individuals currently in multiple concurrent relationships 

2. HIV positive individuals 

3. Younger individuals (males and females between 15 and 25) 

4. Individuals who have a high perceived risk (their partners are in more than one sexual 

relationship) 

5. Random individuals (no targeting). 

At the start time of an intervention, we find targeted individuals and mark them as 

influenced by the condom distribution campaign. One influenced individual consumes one 

distributed condom. Note that a “distributed condom” does not equate to using a single condom 

in a single sex act, but is instead analogous to a single individual being supplied with many 

condoms for one year.  
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We make the assumption that we find targeted individuals with 0.8 probability (we 

account for the fact that finding specific individuals is difficult). Individuals influenced by a 

condom distribution campaign have their infectivity reduced by 80% [67]. While condoms are 

known to decrease infectivity by a significant amount [78], this lower number reflects the 

possible effects of inconsistent use.  

We assumed a decreasing return to scale between individuals influenced and amount 

spent: 𝑎𝑠 = 2 exp (
𝑖𝑖

20
− 2) where as is the amount spent in thousands of USD and ii is the 

number of individual influenced by the campaign. This means that in order for a campaign to 

influence 60 individuals it would need to spend $42,000 per year.  

3.2.6.5 Male circumcision 

Male circumcision (MC) is similar to condom use in that it reduces the PTSA, but has the 

added advantage of being used consistently [76]. While condoms reduce PTSA by nearly 100%, 

male circumcision can reduce PTSA by about half as compared to without circumcision [74]. We 

implemented a single MC campaign which does not target any group; at the start time of the 

intervention random males were chosen to be circumcised. PTSA to males influenced by the MC 

campaign is reduced by 50%. Unfortunately, circumcision does not seem to hold any benefit to 

females other than that their partners are less likely to become infected [79]. 

We assumed a linear relationship between circumcisions performed and amount spent: 

𝑐𝑝 =
𝑎𝑠

50
, where as is the amount spent in thousands of USD and cp is the circumcisions 

performed. This comes from the fact that a single circumcision costs about $50 to perform [75]. 

This means that in order for a campaign to reach 60 males it would need spend $3,000.  
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3.2.6.6 Antiretroviral treatment 

TasP as an intervention method not only reduces HIV related deaths, but also has the 

ability to reduce the infectivity of an individual by means of decreasing his or her viral load [41]. 

Therefore, treating a significant portion of the population with ARV can decrease HIV incidence. 

Our implementation of TasP finds HIV infected individuals with probability 0.8 and reduces 

their infectivity by 96%.  

We assumed a linear relationship between patients on ARV and amount spend: 𝑝𝑎 =
𝑎𝑠

500
, 

where as is the amount spent in thousands of dollars and pa is the number of person years of 

ARV supplied. This comes from the fact that ARVs cost about $500 per person per year [76].  

3.2.7 Search Heuristics 

The optimization problem we aimed to solve had an objective of minimizing cumulative 

incidence with the constraint that the amount spent could not exceed the prescribed budget of 

$1,000,000 / year (about $150 per person per year). Therefore a solution is a set of starting times 

and amount of money to spend on each intervention. The quality of a solution depends on 

cumulative incidence averaged over 10 runs. The cost depends on the two parameters “starting 

time” and “spending amount”. The cost of a solution is determined by the number of years each 

campaign is implemented (calculated as the number of years between the start of the campaign 

and the end of the simulation) multiplied by the number of condoms distributed, or individuals 

on ARVs. Males circumcision does not incur a yearly cost – cost is calculated just once.  A 

feasible solution spends less than the budget. The optimal solution has the minimal cumulative 

incidence possible. 
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The simulated annealing algorithm is a walk through the parameter space. Our 

implementation always accepts improving moves, and accepts non-improving moves with 

probability 
exp(𝑒−𝑒𝑛𝑒𝑤)

𝑇
, where e is the quality of the current solution, 𝑒𝑛𝑒𝑤 is the quality of the 

new solution, and T is the temperature of the system. Temperature decreased relative to the 

current time step k at a rate of 𝑇(𝑘) = 0.96𝑘. Maximum number of steps was 100. 

The genetic algorithm produces 10 random solutions, assesses their quality, then 

produces a new set of 10 solutions by performing a crossover of the best 5 solutions. This 

procedure is repeated for 20 generations. These values were chosen through experimentation to 

minimize run time and maximize quality. Crossing over two solutions means taking the first p 

values of the first solution, and the last n-p values of the second solution, where n is the total 

number of start times and spending amounts,  and p is a uniform random [0, n]. 

We first applied the search heuristics to find the best combination of condom 

distributions, and then applied them to find the best combination of random condom distribution, 

male circumcision campaign, and a roll out of TasP. 

3.2.8 Calibration and Validation 

Inference of appropriate parameter values, or calibration, was done in three steps: (1) the 

simulation was run for a specific set of formation and dissolution parameters for 50 years (to 

ensure relationship equilibrium and to have a large number of individuals who became sexually 

mature within the simulation). (2) From the resulting sexual network we calculated the 

distribution of partner ages, age differences within relationships, total number of lifetime sexual 

partners, level of concurrency in the sexual network, and the duration of relationships of males in 

the simulations. (3) We then compared these summary statistics to the responses from males that 
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took part in the Cape Town Sexual Network survey [76]. We compare to only male data because 

of possible gender-related sampling bias. The study took place from July 2011 to February 2012 

and was located in three disadvantaged communities near Cape Town, South Africa. Table 5 

contains the actual values from the survey compared to simulated values from our model.  

Table 5: A comparison of summary statistics of data and a simulated network. 

Statistic Actual Data Simulated Data 

Age of partner median (IQR)   

     Median 26 27.8 

     lower quartile 21 21.3 

     upper quartile 39 34.9 

Age of partner breakdown (%)   

     <=24 years old 35.6 34.7 

     25-34 years old 24.9 38.7 

     35-44 years old 14.3 12.7 

     45+ years old 25.2 12.1 

Age difference median (IQR)   

     Median 3 4.2 

     lower quartile 0.5 1.7 

     upper quartile 6 8.6 

Age-disparate (%)   

     non age-disparate 65 49.5 

     age-disparate: 5-9 years 17.8 28.4 

     age-disparate: 10+ years 17.2 22.1 

Total lifetime sex partners (%)   

     1 8.7 14.5 

     2-5 42 62.4 

     6-14 22.1 22.4 

     15+ 27.2 0.7 

Concurrent relationship in past year (%)   

     Yes 41.5 12.4 

     No 58.5 87.6 
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Table 5 continued. 

Duration of relationships   

      Median 17 27.1 

      lower quartile 1 8.6 

      upper quartile 43 95.7 

Duration of relationships breakdown   

      1 week 26.6 8.0 

      2-39 weeks 48.5 52.1 

      40+ weeks 25.1 39.9 

3.3 Results and Discussion 

3.3.1 Condom Distributions 

Independent runs of the condom distribution strategies (Figure 31) show that all strategies 

have an effect on reducing cumulative incidence. The most effective strategy seems to be 

targeting HIV-positive individuals and individuals in concurrent relationships (high risk). 

Targeting the younger population seems to have less effect, likely because the number of 

targeted individuals is low. This results in unused condoms and higher cumulative incidence. We 

hypothesized that Specific age group targeting would have an effect through protecting a large 

cohort and averting infections to the younger population (<15 years) reaching relationship 

formation age. This did not seem to play out in the simulations however. 

The fact that some condoms go unused implies that a better scheme would be a 

combination of condom targeting strategies in which each intervention spends at their maximal 

level of effectiveness and allocates the saved funds to other strategies. That is to say that it may 

be worthwhile to delay the start time of a certain intervention (and consequentially save some of 

the budget) since these individuals may not be infected for many years into the future. For 
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example, it may be practical to delay the start of an intervention that targets individuals with a 

high perceived risk because they are unable to become infected until their risky partner becomes 

infected. This in turn reduces cost and allows more of the budget to be allocated to another 

condom distribution such as one that targets HIV positive individuals. 

 

Figure 31: The cumulative incidence for the five described targeting strategies for condom distribution and the “no interventions” 

strategy averaged over 50 runs. Thirty individuals were infected with HIV from simulation year 2.1 to 2.9. Interventions were set 

to begin at year five, and attempted to distributed 54 condoms. All interventions reduce the cumulative incidence relative to the 

“no interventions” scenario, although targeting HIV-positives and those with high risk seem to be the most effective. The other 

interventions reduce cumulative incidence from doing nothing, but not much difference can be seen between random, high 

perceived risk, or age-specific targeting. However, with the exception of random targeting, all of the interventions are wasteful as 

none use all the allocated condoms. The cost was the same for all interventions at $996,000 which is within our $1,000,000 

budget. 
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The optimization algorithms found a solution to the combination condom prevention 

problem for different prevention start times and amount spent as seen in Table 6. The total cost is 

$987,385 (about the same as the independent runs of condom interventions), but the cumulative 

incidence of combination prevention (Figure 32) is lower than targeting high risk individuals and 

much lower than no interventions.  

 

Figure 32: The cumulative incidence for no interventions, for targeting HIV-positive individuals, and for a combination of 

condom targeting strategies averaged over 50 runs. Forty individuals were infected with HIV from simulation year 0.3 to 1. 

Interventions were allowed to start at time 2. The figure shows the overall trend that condom combination prevention has a lower 

cumulative incidence than high risk targeting, which has a lower cumulative incidence than no intervention at all. The reason for 

this is that the condom combination prevention accounts for diminishing return and allows each intervention to be funded at the 

best level and is able to redirect unused resources to other interventions. 
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Table 6: The starting time and number of condoms to distribute for each intervention for our combination condom prevention 

strategy. The cost for this combination of condom distributions interventions is $987,385. 

Intervention Start Time Condoms 

Random 17 42 

High Risk 10 10 

HIV Positive 2 40 

Age Specific 12 1 

High Perceived Risk 4 42 

The combination prevention has a lower cumulative incidence because it is able to fund 

each intervention at its locally optimal cost-effect point and therefore distribute more condoms to 

more people with less waste. Additionally, the susceptible or infected population is not a single 

group but a combination of groups. Therefore the intervention that targets many different groups 

in combination is likely to be the most effective. This is perhaps why the random strategy 

performed well in independent runs: it was able to reach many different groups. However this 

intervention is not implemented until later in the combination prevention solution. This is likely 

because combination prevention allows us to target these groups specifically through the other 

interventions, diminishing the necessity of a random distribution campaign. 

3.3.2 Combination Prevention 

Figure 33 shows the cumulative incidence under scenarios for male circumcision, TasP, 

the random targeting condom distributions, and the combination of prevention strategies. Table 7 

shows the values of this combination prevention solution. 

The solution to combination prevention performs many male circumcisions, likely 

because each is relatively cheap. It also spends heavily on TasP, which is comparatively 

expensive, but also has the most dramatic effect on HIV cumulative incidence within our model. 

However, combination prevention achieves the best reduction in cumulative HIV incidence.  
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Table 7: The starting time and spend variable (condoms distributed, circumcisions performed, or patients on ARV respectively) 

on each intervention for our combination prevention strategy. All preventions start early, but have different levels of 

implementations as indicated by the spend variable. 

Intervention Start Time Spend Variable 

Condom Distribution 5 28 

Male Circumcision 5 100 

TasP 5 64 

 

 

Figure 33: The cumulative incidence for no interventions, random targeting condom distribution intervention, male circumcision, 

TasP, and combination prevention. Our combination spends heavily on TasP, but also relies on condom distributions and male 

circumcision to achieve an even lower cumulative incidence. This shows that funds may be better allocated to a combination of 

prevention methods instead of any single interventions. The total cost was $995,870 for the combination prevention scheme. 
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3.4 Conclusions and future work 

No current intervention is likely to be a silver bullet to the HIV epidemic, and none is 

likely to be found. Therefore a combination of prevention methods is likely the most effective 

solution. While the most intuitive strategy is to spend maximally on each intervention, this is not 

always possible due to limited resources. In this chapter, we have shown that combination of 

prevention can be more effective at minimizing cumulative HIV incidence than any single 

strategy, and described a method for finding the best possible combination prevention. 

Other metrics of the quality of interventions should also be considered: cumulative 

incidence only tells one story. Additional consideration should be given to more time sensitive 

outcomes like the number of AIDS orphans averted or number of orphan years averted. These 

other metrics may provide greater support for the life-prolonging ART treatment intervention 

and yield a different combination of prevention interventions. Future work will consider multi-

component objectives.   

Due to the precise nature of the algorithm large populations can take a significant amount 

of time, even when run on a cluster. In the next chapter we present our algorithm for 

parallelizing the mathematical formulation which allows the modeling of much larger 

populations.   
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CHAPTER IV A PARALELLIZED ALGORITHM FOR SIMULATING 

DYNAMIC SEXUAL NETWORKS 

4.1 Introduction 

Epidemiologists are increasingly using agent-based models to simulate complex and 

heterogeneous human behavior and its effect on the diffusion of sexually transmitted diseases 

[80]. This is due in part to the fact that agent-based models of a sexually transmitted disease 

(STD) epidemic can capture more fine-grained complexities that might otherwise be understated 

in statistical or compartmental models [81, 82]. One of the challenges however is the large 

computational cost: obtaining a distribution of model outcomes requires many simulation runs, 

and obtaining robust results that are free of small population effects requires that each run uses a 

sufficiently large population. 

In this chapter we present a parallel algorithm and implementation for simulating large-

scale dynamic sexual networks and STD transmission through them. First, we describe the 

algorithm and how it works. Second, we present the algorithm’s implementation in Python, and 

describe our method for calibrating parameter values. Next, we present a parameter exploration 

and show empirically that a model with higher levels of population heterogeneity requires a 

larger number of agents to obtain robust results. We conclude with a performance analysis to 

show that our model indeed scales well to large population sizes, enabling it to model highly 

heterogeneous populations.  

We use disease parameters informed by the HIV epidemic in Southern Africa, though our 

goal is not to create a fully validated model of HIV transmission to be used for predicting future 

epidemic trends. Rather our algorithm is meant to simulate a generic STD in an agent-based 
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environment that is flexible to a variety of epidemic scenarios and scales well to large population 

sizes. The model was developed according to principles of good epidemiology modeling [72]. 

The implementation is open-source and available through our GitHub repository 

(github.com/seanluciotolentino/SimpactPurple). 

4.2 Simulating Sexual Networks 

4.2.1 Process Overview 

The central components of an STD simulation are (i) relationship formation and 

dissolution, (ii) infection propagation, and (iii) demographic continuity (i.e., birth and death). In 

our model, each of these components is performed by an operator: the relationship operator, 

through a process described below, forms and dissolves relationships between agents; the 

infection operator considers all infected agents and probabilistically infects their partners in the 

network; and the time operator ensures demographic continuity by removing older agents from 

the system and inserting younger agents as needed. Each operator is applied in turn once per time 

step for as long as the simulation is allowed to proceed. 

The simulation is initialized by specifying a population size (the initial number of agents that are 

created). When an agent is created, it is assigned a sex (Bernoulli (0.5) – the approximate sex ratio in 

South Africa [2]), an age (Uniform (15, 65) – used in CAN model [56]), a desired number of partners 

(DNP, power distribution – used in CAN model [56] with parameter values set through calibration; see 

Implementation and Calibration), and a sexual behavior index (Uniform(1,5) – chosen for simplicity). The 

sexual behavior index models an agent’s preference for partners of a similar type. We note that due to a 

paucity of data, the sexual behavior index is used to create additional heterogeneity in a few 

circumstances and is only included in models where indicated – in all other models, agents form 

relationships solely on other characteristics. All agents in the base model are heterosexual. An agent is 
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considered to be looking for a partner if his or her number of partners (initially zero) is less than his or her 

DNP. In this way, the DNP can be thought of as the agent's target degree in the sexual network at any 

given point in time. 

4.2.2 Probability of a Relationship 

The probability of two agents i and j forming a relationship is based on the function 

𝑃𝑖𝑗 = exp (𝑀𝐴 × (|𝐴𝐷 − (𝑃𝐴𝐷 × 𝑃𝐴𝐷𝑔𝑟𝑜𝑤𝑡ℎ ×𝑀𝐴)|)) exp(𝑀𝑆𝐵 × 𝑆𝐵𝐷)  where 𝑀𝐴 < 0  is a 

probability scaling factor for the significance of age on relationship formation. 𝐴𝐷 is the age 

difference of the couple from the male perspective (a value of -5 means that the female is five 

years older than the male), 𝑃𝐴𝐷 is the preferred age difference, 𝑃𝐴𝐷𝑔𝑟𝑜𝑤𝑡ℎ is the preferred age 

difference growth, and 𝑀𝐴  is the mean age. 𝑀𝑆𝐵 < 0  is a probability scaling factor for the 

significant of sexual behavior, and 𝑆𝐵𝐷  is the difference in sexual behavior indices of the 

couple. Note that AD, MA, SBD are calculated based on the candidate couple, while 𝑀𝐴, PAD, 

𝑃𝐴𝐷𝑔𝑟𝑜𝑤𝑡ℎ, 𝑀𝑆𝐵 and are parameters of the simulation. 

A probability function of this form means that two agents with an age difference near the 

preferred age difference, and similar sexual behavior indices are more likely to form a 

relationship. The values for 𝑀𝐴 and 𝑀𝑆𝐵 scale the probability of a relationship forming such that 

age difference or sexual behavior index is more or less significant. The 𝑃𝐴𝐷𝑔𝑟𝑜𝑤𝑡ℎ parameter 

allows the preferred age difference to increase as men grow older. A visualization of the 

probability function is provided in Figure 34. 
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Figure 34: Left: the relative probability of relationships formation for different PM values and a preferred age difference of 0. 

Right: the relative probability of relationship formation for different combinations of male and female ages. Here 𝑀𝐴 is -0.1, 𝑀𝑆𝐵 

is 0, 𝑃𝐴𝐷 is -0.2, and 𝑃𝐴𝐷𝑔𝑟𝑜𝑤𝑡ℎ is 1.5. 

While this is a simple probability function that accounts for differences in age and the 

mean age of the couple, the probability function can easily be altered to incorporate many more 

characteristics including sexual orientation, race, socio-economic status, and geographic 

location. 

4.2.3 Relationship Operator 

The naïve method for forming relationships is to consider each agent with fewer partners 

than his or her DNP, and then iterate through all other agents to find a suitable partner.  This 

solution has the advantage of simplicity, but does not scale well due to its intrinsically quadratic 

run time. To create a more scalable solution, we limit the number of potential partners 

considered for each agent at any given time step, while allowing them to form relationships with 

agents across the age spectrum.  
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The model keeps track of agents looking for a relationship with queues, a list of objects 

that is ordered by some criteria. We create a grid of queues where the dimensions of the grid 

reflect the attributes that we want to use to inform relationship formation. The base model creates 

a 2x10 grid of queues (Figure 35) based on 2 sexes and 10 age categories (ages 15 to 65, grouped 

by 5). At initialization, agents are created based on age and sex distributions. Their age and sex 

in turn determine their respective queue, which represents their birth and sex cohort.  The agents 

are placed in their queues and ordered based on the time since they were last allowed to form a 

relationship (which is initially the same for every agent). 

The relationship formation procedure then takes place in two phases. In the first phase, a 

limited number of agents seeking new relationships are recruited from their queues (with agents 

who have been waiting the longest being recruited first) and used to populate another queue, 

called the main queue. The agents placed into the main queue are ordered based on their 

respective age and gender cohort. In the second phase, the relationship operator considers each 

agent in the main queue and attempts to match him or her to agents that are still in the queues. 

The matching of an agent in the main queue occurs in three steps. First, the relationship 

operator takes the top agent from the main queue, referred to as the suitor, and sends a message 

to each queue that the suitor is looking for a match (Figure 36). Second, each queue orders their 

agents (in parallel) based on each agent’s affinity to the suitor (Figure 37), a binary outcome of a 

random draw from that agent’s probability function relative to the suitor. 

In the third step, each queue responds with a match; the first agent in their ordering 

(Figure 38) or none, if no agent in the queue was willing to form a relationship with the suitor. 

From the returned possible matches, the suitor chooses a new partner based on his or her 
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probability function value towards each of them. The duration of the relationship is given by 

𝑑𝑖𝑗 = 𝑀𝐴 × 𝐷𝑠𝑐𝑎𝑙𝑒 ⋅ 𝐸𝑋𝑃(𝐷𝑠ℎ𝑎𝑝𝑒) where 𝑀𝐴 is again the mean age of the couple, 𝐷𝑠𝑐𝑎𝑙𝑒  is a 

constant scaling factor, and 𝐸𝑋𝑃(𝐷𝑠ℎ𝑎𝑝𝑒) is a random value from an exponential distribution 

[57]. Each agent that is forming the relationship is removed from his or her respective queue if 

he or she is no longer looking for partners (i.e. if their number of partners is equal to their desired 

number of partners). This way they won’t be recruited to be suitors and won’t be returned as 

matches in future time steps. 

The matching procedure for the relationship operator then proceeds by iterating through 

the main queue and making relationships for each suitor. Since suitors are ordered in the main 

queue based on the queue from which they came, the next suitor is often similar, in terms of age 

and sex, to the previous suitor. Consequently, queues do not need to reorder their agents since 

the probability relative to the agent of this particular age and sex has already been calculated. 

Queues can then return matches in constant time. The fact that previous probability calculations 

are recycled enables significant speed up as shown in Figure 41. 



90 

 

 

 

Figure 35: The simulation is made up of a grid of queues, which holds all the agents, and a main queue that holds agents waiting 

to be matched. We refer to the agent at the head of the main queue as the suitor. 

 

Figure 36: A message is sent to each queue, asking for a match for a particular suitor. Note that while the agents in our base 

model implementation are strictly heterosexual, the model supports homosexual matching. 
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Figure 37: Each queue considers a suitor in parallel by ordering their agents relative to each agent’s acceptance (A) or rejection 

(R) of a relationship with the suitor. The acceptance is randomly determined relative to an agent’s probability function. 

 

Figure 38: Queues return a possible match for the suitor. The suitor chooses a new partner from these matches randomly based on 

the probability function. 

To summarize, the relationship operator first recruits new suitors into the main queue and 

second matches suitors to candidates returned from the queues. This recruit-match strategy leads 

to significant speed improvements by reordering queues in parallel, and mandating that 

reordering only occurs when the next suitor in the main queue is from a different age-gender 

cohort than the previous suitor. 
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4.2.4 Infection and Time Operator 

After the initial population has been created, the infection operator seeds the STD by 

infecting a few agents chosen at random. At each time step the infection operator iterates through 

the list of infected agents and propagates infection to uninfected partners (Bernoulli(0.01) [83]). 

The time operator ensures the passage of time by ending relationships and removing and 

replacing agents that have reached the maximum age (65 years old in our model). When a 

relationship ends, the two agents return to their respective queues, which were assigned based on 

their age and sex at initialization. The oldest queue is queried for agents who have exceeded the 

maximum age: these are agents are removed and then replaced by a 15-year-old agent of random 

sex and random DNP. Thus the population size remains constant over time, and the 

demographics remain approximately similar throughout the simulation. Relationships for agents 

being removed are ended, and the surviving partners are allowed to form new relationships. As 

simulation time progresses, the relevant time window also changes and the time operator creates 

new queues as needed.  (A simulation with 5 year age bins will need to create a new queue every 

5 simulation years to hold the new 15-year-old agents). 

4.3 Implementation and Calibration 

The model described here was implemented in Python (version 2.7.5) using 

multiprocessing, numpy [84], networkx [85], and matplotlib [86] modules.  

Our goal is to simulate a large-scale network that approximates the behavior of a real-

world dynamic sexual network. Here, we attempt to infer reasonable parameters values 

(enumerated in Table 8) so that the output of our simulator, once all parameters are established, 

corresponds to values found in existing sexual behavior surveys. Unfortunately, collecting 

comprehensive and reliable data about these networks is both difficult and costly, and thus 
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generally data are quite sparse. So parameter values are informed by literature where possible. 

Where it is not possible, appropriate values are inferred empirically using approximate Bayesian 

computation (ABC) [87, 88]. The simulation parameters for the number of agents recruited into 

the main queue at each time step were set manually to achieve relationship equilibrium quickly. 

Here we briefly describe the ABC method used to infer parameter values. Given a set of 

parameters to be inferred 𝜃 = {𝜃𝑖  | 𝑖 = 1,2, … , 𝑛} , prior distributions for those parameters 

𝜋 = {𝜋𝑖 | 𝜋𝑖 is the distribution of 𝜃𝑖} , and a vector of existing data (summary statistics) to 

compare against, the ABC algorithm works by repeatedly performing 3 steps: 

1. Create parameter set 𝜃∗  by sampling from each parameter’s respective prior 

distribution.  

2. Run the simulation with the sampled parameters. 

3. Compare summary statistics from the simulation to those derived from existing 

data. If simulation output is within a pre-specified distance bound, accept the parameter 

set, otherwise reject it. 

After many samples we have a large set of accepted parameter sets to construct the 

parameters' posterior distributions and their resulting sexual networks. 
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Table 8: The parameter values used in the simulation. Parameters inferred using the ABC method are represented by θi. All other 

parameters are taken from literature.  

Parameter Value Description Justification 

Probability 

scaling factor for 

age difference 

(𝑀𝐴) 

𝜃1 Coefficient in the probability 

function that determines the 

baseline probability of a 

relationship forming for deviation 

away from the preferred age 

difference. 

 

Preferred age 

difference 
𝜃2 Coefficient in the probability 

function that determines the age 

difference for which the baseline 

probability of a relationship 

forming is highest. 

 

Preferred age 

difference growth 
𝜃3 Coefficient in the probability 

function that determines the 

amount that preferred age 

difference grows with mean age. 

 

DNP Distribution 𝜃4 ⋅ Power(𝜃5) The distribution of desired 

number partners; also known as 

the degree distribution. 

Distribution used in the 

CAN model [56]. 

Duration 

Distribution 
𝜃6 ⋅ Exp(𝜃7) When a relationship is formed, 

the duration of the relationship is 

pulled from this distribution. 

Duration of relationships 

are approximately 

exponential [57]. 
Probability 

scaling factor for 

sexual behavior 

difference (𝑀𝑆𝐵) 

0.0 Coefficient in the probability 

function that determines the 

relative significant of the sexual 

behavior indices of agents. 

Not used for calibration 

because not enough data is 

available (used for 

simulating increased 

heterogeneity in later 

sections).  

Age Distribution Uniform(15,65) The distribution of ages when 

agents are initially created. 
Arbitrary; A uniform 

distribution was chosen for 

simplicity. 
Sex Distribution Bernoulli(0.5) The distribution of sex when 

agents are initially created. 
The approximate sex ratio 

in South Africa [2]. 
Initial 

recruitment rate 
0.02 The initial proportion of agents 

recruited from queues to populate 

the main queue. 

Set experimentally to 

allow the simulation to 

quickly reach equilibrium. 
Warm-up period 20 The number of weeks that the 

simulation uses the value of 

initial recruitment rate. 

Set experimentally to 

allow enough time for the 

simulation to reach 

equilibrium. 
Recruitment rate 0.005 Proportion of population to be 

recruited for the main queue 

every week. 

Set experimentally so that 

the number of new 

relationships formed is 

similar to the number of 

relationships dissolved. 
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Table 8 continued. 

Probability of 

infection 
0.01 The probability that an infected 

agent will infect their partner in a 

given week. 

A reasonable value within 

the range of reported 

values [20]. 
Initial infected 0.01 The initial proportion of the 

population that is infected with 

the STD. 

Arbitrary; a small value 

was chosen to investigate 

diffusion through the 

network. 
Seed time 20 The time at which initially 

infected agents begin to transmit 

to their partners. 

Chosen through 

experimentation – this 

value represents the 

amount of time for 

relationship formation to 

reach equilibrium. 
Age of Removal 65 The age at which agents are 

removed from the simulation. 
Value used in the CAN 

model [56]. 
Age of 

Introduction 
15 The age of the agent being 

introduced into the simulation 

when replacing an outgoing 

agent. 

The approximate age of 

sexual debut [2]. 

 

The data used for comparison come from national population-based household surveys 

conducted in 2002, 2005, and 2008 [2]. The purpose of these surveys was to monitor sexual 

behavior in South Africa. Demographic, social, and behavioral information was obtained from 

23,369 individuals through personal interviews. We compare summary statistics of the data to 

simulation output: the prevalence of multiple sexual partners (defined by whether individuals 

have had multiple sexual partners in the past year) in each sex, and the prevalence of age-

disparate relationships among young individuals (defined by whether individuals less than 20-

years-old had a partner that was five or more years older) in each sex. These summary statistics 

are proportions and were chosen because they were determined in the report to be significant 

factors contributing to the HIV epidemic. While ideally we would compare the distributions 

(e.g., the distribution of age differences in relationships), the only data available are summary 

statistics (proportion and 95% confidence interval) about the population as a whole. 



96 

 

 

Distance is calculated as the sum of the absolute value of the difference between 

simulation summary statistics and survey summary statistics (note that these are proportions and 

hence normalized). There are a total of 26 summary statistics: 18 for multiple partners (3 age 

groups x 3 time points x 2 sexes), 4 for generational relationships (1 age group x 2 sexes x 2 time 

points), and 4 for age-disparate relationships (1 age group x 2 sexes x 2 time points). A total of 

10,000 30-year simulations were run with populations of 10,000 individuals. We used the 

arbitrary distance threshold of 250 resulting in 1561 accepted simulations. 

Figure 39 shows the simulation output compared to survey summary statistics for young 

individuals having an age-disparate relationship in the past year (additional graphs comparing 

simulation output for multiple partnerships are in the Appendix: APPENDIX A. FULL ABC 

CALIBRATION OUTPUT). The graph implies that our model is able to reproduce the age-

disparate relationship trends seen in the survey data. In particular, young women have more age-

disparate relationships than their male counterparts. 
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Figure 39: Age-disparate relationships in the past year among individuals 15-24 years old. Top graphs show data from 2005, and 

bottom graphs show data from 2008. Red dot and error bars show mean and standard deviations obtained from survey data, green 

dot and bars show the corresponding values from the 207 accepted simulations. Note that the confidence placement of the 

confidence intervals along the y-axis is arbitrary. The bar graph shows the distribution of output from accepted simulations. The 

figure shows that the simulation is able to produce trends like those seen in the real world. 

4.4 Reducing Variation in Model Output 

The calibration of the previous section shows that our model can reasonably reproduce a 

real-world sexual network with respect to summary statistics of the age-mixing pattern and 

degree distribution. In this section we investigate the effect that population size has on model 

output. To do this we model three scenarios with varying levels of heterogeneity: (1) agents form 

relationships based only on their sex – relations are independent of the agent’s age and sexual 

behavior index; (2) Agents form relationships based on age and sex, but not their sexual behavior 
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index; (3) Agents form relationships based on their age, sex, and sexual behavior index. For each 

scenario we use three population sizes: 10
2
, 10

3
, and 10

4
. For each scenario and population size 

we run the simulation 10 times to produce a distribution of model output.  

Figure 40 shows disease prevalence over time for each of the nine models (three 

heterogeneity scenarios with three population sizes each). For the simplest scenario in which 

agents only form relationships based on sex, 1000 agents may suffice to accurately describe 

epidemic trends. However, the two more complex scenarios, which include age and sexual 

behavior indices in the probability function, require as many as 10,000 agents to reduce 

variability substantially. Additionally, the figure suggests that using a smaller population and 

averaging over many simulation runs is not a satisfactory solution: robust results are obtained 

through large population sizes. The true sexual network seems to be global [89] and have a high 

degree of heterogeneity [90]. In order to get the same level of invariability in the model as what 

we believe is true in the real world simulations need to use large populations of agents. 
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Figure 40: Ten prevalence curves for each of three scenarios with three different population sizes. Average of the 10 runs is 

shown with black dotted line. Too few agents increases variation in model output and produces unmeaningful results. 

4.5 Performance Analysis 

The previous section showed that as heterogeneity in behavior agents increases, the number 

of agents in the simulation must also increase. Here we analyze the performance of our algorithm 

and show that it scales well to large population sizes. The model implementation was run for 

different population sizes over 30 years. Parameter values were determined by the ABC method 

and are shown in Table 8. 
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Figure 41 shows the amount of time required to run each population size. Simulations 

were run on a 12-core, 3.2 GHz computer with 16 GB of memory (the computer was 

oversubscribed with processes). Even though it exhibits quadratic runtime, the quadratic 

coefficient is sufficiently small that larger population sizes can be run in reasonable time. For 

example, a 30 year simulation with 150,000 agents can be run in about six hours. 

Increasing the number of queues (by decreasing the size of age-cohorts) increases the 

age-mixing precision, but at the cost of increased run time. For example, on the same computer a 

30-year simulation with 1,000 agents and the default 20 queues takes approximately 9 seconds to 

run. Using 50 queues causes the simulation to take 14 seconds, and using 100 queues takes 17 

seconds.  

In simulation runs where grid queues are forced to resort for every suitor (as opposed to 

saving accept/reject decisions for the next suitor) runtime increased substantially: 10,000 agents 

required 70 minutes. With resorting the same population size required only 4 minutes. 

Since the number of relationships grows quadratically with the number of agents in the 

simulation, memory consumption also exhibits quadratic behavior. Figure 42 shows the 

quadratic relationship between memory consumption and population size, and suggests that the 

size of the population is limited by computing capacity, not memory constraints. 
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Figure 41: Run times for simulation runs with varying population size. Simulations were run over 30 years on a 16 core 3.2 MHz 

computer. The elapsed time grows quadratically, but the quadratic coefficient is sufficiently small that larger populations are 

capable of being simulated. 

 

Figure 42: Memory consumption with varying population size. Since the number of relationships grows quadratically with the 

number of agents, so does the amount of memory consumed. 
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4.6 Discussion 

While agent-based models can generate more complex and detailed projections than deterministic 

models, the stochastic nature of the simulations can make small population sizes produce biased, unstable 

dynamics. Simulating larger populations reduces model variability, but can take a prohibitive amount of 

time to run. Here we’ve presented a parallel algorithm and implementation that can run multi-year 

simulations with large populations in a reasonable amount of time on commodity hardware. Other agent-

based models of STDs are not capable of simulating more than approximately 10,000 agents [91]. Note 

that direct comparison to other agent-based sexual network simulators is difficult since many, such as 

CAN [56], STDSIM [50], and EMOD [92], do not report the computational aspects of their 

implementations. McCormick et al. do report comparable runtimes of their model in supplementary 

material, but discussion of hardware and exact parameters is absent [93]. 

In our implementation speed up is obtained in two ways. First, the implementation minimizes the 

time spent simulating unlikely events (such as very age-disparate relationship) by partitioning agents 

based on their sex and age. This allows us to efficiently find matches for suitors in parallel. Second, the 

simulation avoids redundant calculations by caching and exploiting the accept/reject decision from the 

previous suitor.  

The model is capable of producing a broad range of networks with demonstrated similarity to 

those observed in the real world. We acknowledge though that several simplifying and limiting 

assumptions were made that preclude the model from making real world predictions in its current form: 

that the population size remains constant over time and maintains a uniform age distribution is 

inconsistent with demographic data for South Africa [54]; seeding initially infected individuals at random 

is inconsistent with high risk transmission clusters [3]; and a constant probability of transmission is 

inconsistent with strong evidence that HIV infection probability varies according to viral load and other 

factors [83]. These assumptions were made for simplicity, but do not detract from our goal of efficiently 

simulating dynamic sexual networks. We plan to address these limiting assumptions in future work.  
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In the next chapter we use geographic partitioning to divide the country into simulations 

of smaller communities and distribute them across multiple machines. In this way we scale the 

model implementation further and simulate migration between communities. 

4.7 Conclusions 

The model and implementation is a novel simulation algorithm for large-scale agent-

based modeling of sexually transmitted diseases. The model is flexible to many epidemic 

scenarios and able to simulate many complex social phenomena observed in real-world sexual 

networks. The implementation takes advantage of multiple processors and scales well to larger 

population sizes. Unlike ordinary differential equation models, the model can produce fine-grain 

cross-sectional distributions of the population (such as the percentage of agents that had more 

than two partners in the last year). And unlike standard agent-based modeling approaches, we do 

not simulate all agents as unique individuals. Through the use of queues we keep the individual-

level characteristics necessary for simulating fine-grain processes while also eliminating some of 

the computational overhead intrinsic to agent-based modeling. 
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CHAPTER V SIMULATING MIGRATION AND SEXUAL NETWORKS 

IN A DISTRIBUTED ENVIRONMENT 

5.1 Introduction 

We have shown that agent-based models of HIV transmission are well-suited to 

simulating individual level processes, like complex age-mixing patterns or heterogeneity of 

sexual behavior. Similarly important are the geographic location and migration patterns of 

individuals because they can determine the spatial distribution of a sexually transmitted disease 

[94]. How and where individuals migrate affects sexual network connectivity, bridging 

geographically disparate network components. The mobility of a population can indirectly 

determine epidemic persistence through seeding and reseeding infected communities and can 

undermine localized intervention attempts [94, 95]. Mobility and sexual risk also seem to be 

related: whether because of loneliness or less family contact, mobile individuals have an 

increased number of sexual partners and engage in more sexually risky behavior [96, 97]. The 

interaction of population mobility and increased sexual risk has had a large impact on the initial 

HIV epidemic in South Africa [22, 98–100]. Any attempt then to eradicate HIV must consider 

the impact that mobility and migration have in the perpetuation of the disease [23].  

Agent-based models are well suited to simulating a mobile population: Wood et. al 

developed an ABM for simulating migration in Burkina Faso which used the Theory of Planned 

Behavior as a basis [101]. Silveira et. al created an ABM which describes the economics of rural-

urban migration in an Ising-like model [102]. It is necessary to use a large population in their 

implementation though to avoid “small world” phenomena that can emerge purely from having 

too few agents in the model. However, increasing the number of agents in a model also increases 
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the amount of time required to run the model. In the previous chapter we presented a parallelized 

model and implementation that takes advantage of multiple processors on a single computer and 

significantly reduces the amount of time required for larger populations. This too has limits 

though which suggests that obtaining further speed improvements will necessitate distributing 

model computations onto a cluster of computers. 

In this chapter we present our multi-scale model of HIV transmission in a large dynamic 

sexual network. Our algorithm geographically partitions a model world so that dynamic sexual 

networks for different regions can be simulated in parallel on separate nodes of a cluster. The 

advantage of this approach is two-fold: large populations mean that additional heterogeneity can 

be modeled with less chance of introducing small-world effects; and geographic components of 

HIV transmission such migration and mobility can be modeled. The novelty of the model comes 

from the use of geographic partitioning which allows us to distribute the simulation on a cluster 

of computers and to simulate migration processes. In the next section we discuss our model, 

describing (1) the simulation of a small community as a single network, (2) larger communities 

as multiple small communities, and (3) a country as multiple large communities. In Section 3 we 

present a performance analysis of the model implementation, and perform an exploration of HIV 

prevalence and persistence in a range of migration scenarios. 

5.2 Methods 

 The model described in this chapter is an extension of the model described in the 

previous chapter that simulates a single closed community on a single compute node with 

multiple processing elements (cores). We extend the original model by first simulating large 

communities (i.e. >500,000 agents – too large for a single compute node) as multiple 

interconnected smaller communities, each on a separate compute node of the cluster; and second 
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simulating an entire country as a network of large communities connected via cyclically 

migrating agents. For completeness we briefly describe our previous model for simulating a 

dynamic sexual network on a single node, and then describe our methods for extending the 

model to multiple nodes and connecting them via migration.  

5.2.1 Small communities as single networks 

Our model uses the function 𝑃𝑖𝑗 = exp (𝑃𝑀 × (|𝐴𝐷 − (𝑃𝐴𝐷 × 𝑃𝐴𝐷𝑔𝑟𝑜𝑤𝑡ℎ ×𝑀𝐴)|)) to 

calculate the probability of a relationship forming between two agents i and j, where 𝑃𝑀 is a 

probability multiplier, 𝐴𝐷 is the age difference of the couple from the male perspective, 𝑃𝐴𝐷 is 

the preferred age difference defined from the male perspective, 𝑃𝐴𝐷𝑔𝑟𝑜𝑤𝑡ℎ is the preferred age 

difference growth, and 𝑀𝐴 is the mean age. Note that AD and MA are calculated based on the 

candidate couple, while PM, PAD, and 𝑃𝐴𝐷𝑔𝑟𝑜𝑤𝑡ℎ  are parameters of the simulation. This 

probability function allows relationship formation to be informed by the preferences of both 

agents, and by fine-grain details about the agents, like their age.  

The model keeps track of agents looking for a relationship with queues, a list of objects 

that is ordered by some criteria. The model creates a grid of queues where the dimensions of the 

grid reflect the attributes that we want to use to inform relationship formation. At initialization, 

agents are created based on age and sex distributions. Their age and sex in turn determine their 

respective queue, which represents their birth and sex cohort. The agents are placed in their 

queues and ordered based on the time since they were last allowed to form a relationship (which 

is initially the same for every agent). 

The relationship formation procedure then takes place in two phases. In the first phase, a 

limited number of agents seeking new relationships are recruited from their queues (with agents 
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who have been waiting the longest being recruited first) and used to populate another queue, 

called the main queue. The agents placed into the main queue are ordered based on their 

respective age and gender cohort. In the second phase, the relationship operator considers each 

agent in the main queue and attempts to match him or her to agents that are still in the queues. 

For each potential match, a random number is drawn from a uniform distribution and compared 

to the probability function described above. When two agents form a relationship a random value 

from an exponential distribution is drawn to determine the duration of the relationship. The 

matching procedure for the relationship operator then proceeds by iterating through the main 

queue and making relationships for each suitor. Figure 35 is a visual representation of the model.  

 

Figure 43: The simulation is made up of a grid of queues, which holds all the agents, and a main queue that holds agents waiting 

to be matched. We refer to the agent at the head of the main queue as the suitor. 

After the initial population has been created the infection operator seeds HIV by infecting 

a few agents chosen at random. At each time step the infection operator iterates through the list 

of infected agents and propagates infection to uninfected partners. While there is substantial 

evidence that the probability of HIV infection changes with the viral load and CD4 count of an 

HIV-positive individual, our model assumes a constant probability of infection for simplicity. 
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The time operator ensures the passage of time by ending relationships and removing and 

replacing agents that have reached the maximum age (65-years-old in our model). When a 

relationship ends the two agents return to their respective queues, which were assigned based on 

their age and sex at initialization. The oldest queue is queried for agents who have exceeded the 

maximum age and then replaced by a 15-year-old agent of random sex and random DNP. Thus 

the population size remains constant over time, and the demographics remain approximately 

similar throughout the simulation. Relationships for agents being removed are ended, and the 

surviving partners are allowed to form new relationships. As simulation time progresses, the 

relevant time window also changes and the time operator creates new queues as needed. 

The progression of these three operators simulates a dynamic sexual network with 

infection propagation: the relationship operator forms relationships based on a probability 

function; the infection operator propagates infection through the sexual network; the time 

operator dissolves relationships and removes and replaces older agents. The model’s 

implementation places each queue on a separate processor core parallelizing it to a single 

compute node. This enables us to simulate populations about to 700,000, at which point the 

amount of time required (approximately 20 hours on a 16-core 2.6GHz computer) is prohibitive. 

5.2.2 Large communities as multiple small communities 

In order to simulate larger communities (>500,000) we distribute the computation across 

multiple nodes of a cluster. We extend the original model by simulating a large community as a 

group of small communities. The group is composed of a single primary community and 

multiple auxiliary communities, each referred to as sub-communities. Each sub-community is 

placed on a separate node of the cluster. The primary node maintains the data structure for the 
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sexual network, and each sub-community works to build the network. This is to avoid time-

consuming update messages about the state of a distributed network. 

Each sub-community follows nearly the same process of relationship formation as before 

with two exceptions: (1) during the recruitment phase, instead of a recruited agent being placed 

into the sub-community’s main queue by default, the recruited agent is sent to the main queue of 

a sub-community randomly chosen from the group. Note that the recruited agent may still be 

placed in the main queue of the sub-community from which it originated. (2) After the recruiting 

phase, sub-communities similarly iterate through the main queue matching suitors and agents in 

the queues. However, auxiliary communities send relationship matches to the primary 

community to be added to the sexual network. The primary community adds the relationships to 

the network after checking that neither agent formed another relationship this round. This check 

is done to ensure that agents do not have more relationships that their respective DNP. 

After relationships are formed the primary community, the only sub-community in the 

group with knowledge of the sexual network, performs infection propagation and removes 

relationships that have ended. Each sub-community, in parallel, removes and replaces agents that 

are beyond the replacement age. The distributed version for simulating larger communities is 

represented visually in Figure 44. 
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Figure 44: A large community is simulated as a group of sub-communities. Each sub-community recruits agents from their grid 

of queues to populate one of the main queues in the group. Relationship matches made by auxiliary sub-communities are sent to 

the primary sub-community to be added to the sexual network. The primary sub-community performs the infection propagation 

and expired relationship removal steps. Each sub-community removes old agents from their respective queues in parallel.  

5.2.3 Multiple communities as multiple large communities 

 To simulate HIV propagation at a national level we consider different provinces as 

separate, but interconnected large communities. The communities are connected via cyclically 

migrating agents that travel between their home and work communities. A community 

determines which and to where agents migrate based on South Africa’s 2011 census [77]. The 

data indicates the number of individuals in each province that resided in another South African 

province during the previous census in 2001. We use this number as a proxy for the relative pull, 

or gravity, between the provinces. The gravity is normalized to determine the probability that an 

agent initialized in community i migrates to community j. The migration network is represented 

visually in Figure 45. 



111 

 

 

 

Figure 45: A visual representation of the migration network between provinces. Each province is connected to every other 

province through migration. Darker arrows represent more migration, while lighter arrows represent less migration. For 

readability self-looping arrows have been omitted.  

5.2.4 Calibration 

Our goal in this work is to develop a model that is capable of simulating sexual networks 

informed by age mixing and migration patterns that scales well to larger populations. Where 

possible, literature informed parameters values. Where no literature is available we used the 

approximate Bayesian computation (ABC) method[87, 88] to infer reasonable values that 

produced a sexual network that is approximately similar to real life. The parameter values are 

given in Table 8. Comparison to the real-world network can be found in APPENDIX A. FULL 

ABC CALIBRATION OUTPUT.  
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Table 9: The parameter values used in the simulation. Parameters are taken from literature or inferred using ABC.  

Parameter Value Description Justification 

Probability 

multiplier 
-0.2 Coefficient in the probability 

function that determines the 

baseline probability of a 

relationship forming for 

deviation away from the 

preferred age difference. 

ABC 

Preferred age 

difference 
-0.1 Coefficient in the probability 

function that determines the age 

difference for which the baseline 

probability of a relationship 

forming is highest. 

ABC 

Preferred age 

difference growth 
0.1 Coefficient in the probability 

function that determines the 

amount that preferred age 

difference grows with mean age. 

ABC 

DNP Distribution 1.2 ×Power(0.1

) 

The distribution of desired 

number partners; also known as 

the degree distribution. 

ABC; distribution used in 

the CAN model [56]. 

Duration 

Distribution 
30 × Exp(1) When a relationship is formed, 

the duration of the relationship is 

pulled from this distribution. 

ABC; duration of 

relationships are 

approximately exponential 

[57]. 
Age Distribution Uniform(15,65) The distribution of ages when 

agents are initially created. 
Arbitrary; A uniform 

distribution was chosen for 

simplicity. 
Sex Distribution Bernoulli(0.5) The distribution of sex when 

agents are initially created. 
The approximate sex ratio 

in South Africa [2]. 
Initial 

recruitment rate 
0.02 The initial proportion of agents 

recruited from queues to populate 

the main queue. 

Set experimentally to 

allow the simulation to 

quickly reach equilibrium. 
Warm-up period 20 The number of weeks that the 

simulation uses the value of 

initial recruitment rate. 

Set experimentally to 

allow enough time for the 

simulation to reach 

equilibrium. 
Recruitment rate 0.005 Proportion of population to be 

recruited for the main queue 

every week. 

Set experimentally so that 

the number of new 

relationships formed is 

similar to the number of 

relationships dissolved. 
Probability of 

infection 
0.01 The probability that an HIV-

positive person will infect their 

partner in a given week. 

A reasonable value within 

the range of reported 

values [20]. 
Initial infected 0.01 The proportion of the initial 

population that is infected with 

HIV. 

Arbitrary; a small value 

was chosen to investigate 

diffusion through the 

network. 
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Table 9 continued. 

Seed time 20 The time at which initially 

infected agents begin to transmit 

to their partners. 

Chosen through 

experimentation – this 

value represents the 

amount of time for 

relationship formation to 

reach equilibrium. 
Age of removal 40 The age at which agents are 

removed from the simulation. 
Largest value possible 

with 5 years age bins, 2 

sexes, and 16 cores per 

nodes.  
Age of 

introduction 
15 The age of the agent being 

introduced into the simulation 

when replacing an outgoing 

agent. 

The approximate age of 

sexual debut [2]. 

Number of years 30 The number of years simulated. The approximate time 

between South Africa’s 

first cases of HIV and the 

present.  
Time home 3 The amount of time that a 

migrant agent will spend at home 

community. 

Reasonable value based 

on previous models 

[98]. 
Time away 15 The amount of time that a 

migrant agent will spend at their 

away community. 

Reasonable value based 

on previous models 

[98]. 
Migration scale 1.0 The relative “pull” or “gravity” 

between communities.  
Values from the 2011 

South Africa census [77]. 

5.3 Performance Analysis 

Large community simulations were run with different population sizes and an increasing 

number of nodes. Each compute node has 64 GB of memory and 16 2.6 GHz cores. Each 

additional compute node, up to five total nodes, reduces the amount of time required to run a 

simulation as seen in Figure 46. Runtimes cease to improve after five nodes however, and each 

additional compute node exhibits a diminishing return on speed up.  
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Figure 46: Top: the amount of time required to run different population sizes with varying number of compute nodes in a cluster. 

Bottom: up to four additional compute nodes can reduce runtime, at which point additional parallelism does not seem to be 

beneficial.  

To assess the computational overhead of migration we ran two migration scenarios with 

increasing population sizes. Both scenarios simulated three inter-migrating communities. In the 

first scenario each community is on a single node (using a total of three nodes for the 

simulation), and in the second scenario each community across is distributed across two nodes 
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(using a total of six nodes for the simulation). Figure 47 shows the amount of time required to 

run each scenario for different population sizes. Note that the population size is the total number 

of agents in the simulation with agents evenly distributed among communities (e.g. for a 

simulation with 30,000 agents each community has 10,000 agents).  

 
Figure 47: Runtimes for a simulation with three inter-migrating communities. The first scenario uses three nodes, and the second 

uses six nodes. The runtimes for the two scenarios suggest that the computational overhead of migration is not very large. 

5.4 Parameter Exploration 

We explore the parameter space of the model by simulating various migration scenarios. 

In particular, we vary the relative probability of migration between provinces, the lengths of time 

that agents stay at their home and work location, and the spatial distribution of initial infections 

in a model with 3 large communities connected by migration. To explore the effect of each of 

these three parameters, we randomly select a value from a discrete range and fix all other 

parameters with default values (enumerated in Table 10). Each simulation then runs for 30 years 

with 124,000 agents – approximately 1/100
th

 of the actual population. We run 100 such 

simulations, and investigate their effect on HIV prevalence in the different communities. 

The relative probability of migration between communities is varied by scaling the matrix 

obtained from the South African 2011 census [77]. The value for migration indicates the power 

that the migration matrix is taken to: the value of 1.0 uses the matrix as it is obtained from the 
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census, while 0.1 uses the matrix raised to 0.1. Values less than 1.0 produce more migration than 

the census, while values greater than 1.0 produce less migration. 

Table 10: Ranges of the values used in parameter exploration.  

Parameter Values Default Description 

Migration 

scale 

[0.1, 0.5, 1.0, 

2.0] 

1.0 The power that the migration matrix is raised to in 

the simulation.  

Time scale [1, 3, 5, 7] 3.0 The amount of time that migrating agents spent in 

their home community. The amount of time that a 

migrating agent spends in their away community is 

5 times the amount of time spent in the home 

community.  

Spatial 

distribution 

of initial 

infections 

[isolated, 

geographically 

dispersed, 

population 

dispersed] 

Geographically 

dispersed 

The geographic dispersion of the initially infected 

agents: isolated indicates that all initially infected 

are in a single province, dispersed indicates that 

initially infected are selected from all provinces 

regardless of population density, population 

dispersed indicates initially infected are selected 

from all provinces relative to population density.  

 

The amount of time spent home and away appears not to have a large effect on disease 

prevalence (Figure 49), while the amount of migration does (Figure 48). More migration 

produces lower prevalence values in the seed community (Community 0 – left) because infection 

events are occurring in other communities instead of within. For the non-seed communities 

(Community 1, middle, and Community 2, right) the relationship between the amount of 

migration and 30 year prevalence is non-linear: too much migration (values of 0.1) results in the 

infection less diffusion, and too little migration (values of 2.0) results in the community not 

being seeded with infection at all.  
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Figure 48: The effect of migration on 30-year prevalence for a 3 community simulation.  

 

Figure 49: The effect of time spent home and away on 30-year prevalence for a 3 community simulation. The different values 

don’t seem to have a large impact on disease prevalence. 

We expanded the exploration of the migration parameter by using all 9 provinces in the 

simulation and fixing all other parameters. The number of agents used in the simulation was 

472,000. We again ran simulation 100 times in order to obtain a distribution of disease 

prevalence after 30 years. Figure 50 shows the distribution for each of the 9 provinces in 5 

different migration scenarios. Infection was initially seeded in the Gauteng province arbitrarily.  
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Figure 50: The distribution of disease prevalence after simulating for 30 years under 5 different migration scenarios for the 9 

provinces of South Africa.  

The role that migration plays in Gauteng, the seeded community, is readily apparent: 

more migration means that the infection is spread to other provinces and hence is not able to 

spread as extensively within as with less migration. The influence of migration on disease 

prevalence in the other provinces is less apparent, but it seems that the values for 0.75 and 1.0 

(which produces migration patterns most similar to real life) produce distributions that are higher 

on average. This implies that the real life patterns perhaps contributed greatly to the diseases 

diffusion and deviation in either direction (more migration or less) would have dampened the 

epidemic outcome.  

5.5 Discussion 

Agent-based models of sexually transmitted diseases are able to simulate fine-grain 

processes such as complex age mixing behavior and geographically specific migration that are 

known to contribute significantly to disease persistence. However, the large amount of 
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heterogeneity in agent behavior requires that agent-based models use large population sizes in 

order to avoid small-world effects. Our model uses multiple cores on a single node, and multiple 

nodes on a cluster to distribute the work of building a complex dynamic sexual network. When 

simulating a large community as multiple small communities, the model scales well with each 

additional compute node used. When additionally simulating migration between large 

communities, the model continues to scale well with larger population sizes.  

Our goal in this work was to create a model that was able to simulate complex age-

mixing patterns and geographically specific migration patterns. However, we admit that the 

model has not been vigorously validated and hence is not suitable for forecasting epidemic 

trends. Future work will focus on using more realistic parameters such as a non-uniform age 

distribution and a probability of infection that changes with time since infection.  

5.6 Conclusions 

In this paper we presented a parallel and distributed algorithm for simulating dynamic 

sexual networks. While agent-based models of migration and agent-based models of sexually 

transmitted diseases have been developed previously, to our knowledge this is the first agent-

based model that simulates disease propagation in a migrating sexual network. Additionally, 

because the simulation is distributed across several nodes of a cluster the model is able to scale 

well to larger population sizes and thus avoid small-world phenomenon. 
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CHAPTER VI CONCLUSIONS 

In this thesis we have shown how agent-based models can be used effectively and 

efficiently to simulate the diffusion of sexually transmitted diseases. The algorithms presented 

here are effective at simulating fine-grain processes difficult to capture in compartmental 

models, and they are efficient through the use of parallelism and distributed computing. In 

chapter 2 we presented the mathematical formulation for simulating dynamic sexual networks. 

We showed that the model and implementation were able to simulate important sociological 

processes such as age-mixing and concurrency. In chapter 3 we used a simplified version of the 

mathematical formulation and machine learning algorithms to find good combinations of HIV 

prevention strategies. In chapter 4 we presented a parallelized algorithm for the model and 

showed that the implementation scales well to larger population sizes. In chapter 5 we 

geographically partitioned the sexual network and simulated them in parallel on separate nodes 

of a cluster. We took advantage of the geographic partitioning to additionally simulate migration 

and movement of individuals. We conclude with a discussion of agent-based modelling, its uses 

for finding good combinations of prevention methods, and how we can scale it to large 

population sizes.  

6.1 Agent-Based Modelling 

Generally speaking, models try to explain and give understanding to processes or 

phenomena seen in the world. Agent-based models attempt to understand these processes by 

simulating individuals and the individuals’ behaviours from which the process emerges. This is 

in comparison with compartmental models that aggregate individuals into groups (or 

compartments) and use more coarse-grain view of a system to describe a process.  
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For example, an agent-based model might simulate the behaviour of 100 individual 

wolves and 10,000 individual sheep, each with unique location in the simulated world, to explain 

how a predator-prey system works. A compartmental model on the other hand might aggregate 

the wolves and sheep into two compartments and use the total number of animals in each to 

explain the same system. Choosing a model type then depends on the level of detail desired: if 

the starting location of the animals is thought to be important (e.g., if animals are so far apart that 

wolves have difficulty finding sheep) then an agent-based model is a good option. However, if 

location is not thought to be important (e.g., all animals are randomly intermixing) then the extra 

granularity gained by simulating the actions of individuals is likely unnecessary and a 

compartmental model might be a better choice. 

In this work, we chose to use agent-based models to simulate HIV transmission because 

we are interested in modelling fine-grain processes that may otherwise be lost in a 

compartmental model. For example, we are interested in simulating HIV transmission in a highly 

heterogeneous population – i.e., a population where all the individuals have characteristics and 

behaviours that are unique. To do this we simulate individuals in a given population with 

individual agents, and assign them characteristics, like gender, age and an intrinsic sexual 

activity drive. These agents move around in a simulated world and form and dissolve sexual 

relationships with other agents based on the assigned characteristics. In this way the agents 

produce a dynamic (i.e. changing over time) sexual network through which HIV is able to 

spread. In this way agent-based models are intuitively similar to how the real world operates: 

HIV diffusing through a population is the result of discrete events (like forming a relationship or 

becoming infected with HIV) happening to distinct individuals. These discrete events contain 

randomness, but are informed by individual characteristics – their individual sexual drive or a 
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preference for older partners. This means that, like in real life, different agents experience 

different events at different times. 

6.2 Combination HIV Prevention 

Each prevention method has a different financial cost of implementation, as well as 

varied community acceptance. The important question for a government on a fixed budget is 

which programs will be effective in a community, and in what combination and in what order 

should they be implemented?  

Our work on simulating combination HIV prevention investigated not only the overall 

effect on important variables, but also potential interactions among interventions. For example, 

in the absence of all other interventions, HIV counseling and testing conveys little or no 

protective effects for uninfected individuals. When utilized alongside a national male 

circumcision program, however, counseling and testing becomes a point of referral and a catalyst 

for the male circumcision program.  

The implication is that a better allocation of scarce public resources is possible through 

modeling and simulation. For each of the possible prevention methods there exists a point of 

diminishing return at which more money invested provides little pay off and is better allocated to 

other programs. For example, distributing 2 million condoms may reduce the total number of 

new infections significantly, but doubling the number of condoms distributed will not halve the 

number of new infections. When each prevention method is used optimally there are no lost 

opportunity costs for spending more on one method of prevention versus another. 
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6.3 Simulating large populations  

While an agent-based model is somewhat intuitive, a modeller faces many questions 

while developing the model. For example, how many agents are needed to adequately simulate 

the underlying processes of HIV propagation? A tempting solution is to simply use the largest 

population size possible. However, as the number of agents in the simulation increases so does 

the amount of time required to run the model – and a model that takes months or years to run is 

not very useful. Large population sizes are necessary though to avoid small population 

phenomena: processes that emerge purely from having unrealistically few agents being 

modelled. For example, consider a purely heterosexual agent-based model of HIV transmission. 

If we use a population with 4 agents whose sex is randomly assigned then our model will fail to 

see any transmission in approximately 12.5% of simulations. This is because in approximately an 

eighth of those simulations all the agents will be the same sex. It’s for this reason that larger 

population sizes are necessary to create robust and reliable results from simulations. 

In an attempt to simulate very large populations (millions of agents), we've developed 

parallel algorithms that distribute the model’s workload among multiple processors on a single 

computer and among multiple computers on a cluster of machines. Running the agent-based 

model in a high performance setting enables us to significantly speed up the simulation of large 

population sizes. With these new algorithms, simulations with large population sizes that used to 

take months now only take hours. 

All of these challenges are computational in nature. We can develop more efficient 

algorithms for simulating larger and more dynamic population. We can build more sophisticated 

models that more closely match sexual network and demographic data. However, these point to a 

larger challenge: how do we simulate a process that is governed by highly volatile rules that are 
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constantly changing? We can collect more data and build more models, but the reality is that 

effectively simulating sexual networks means effectively simulating human behaviour – and 

effectively simulating human behaviour is a hard problem. This does not mean that modelling 

should not be done – modelling efforts have already saved lives. It means that all assumptions 

made when developing a model should be carefully documented, and the implications of these 

should be thoroughly investigated.  

If we employ useful tools like sensitivity analysis and approximate Bayesian inference to 

explore the range of answers that models produce, given the data and additional assumptions; if 

we explicitly acknowledge the gaps in our knowledge and our suspicions of biased data; if we 

clearly state the intentions and limitations of our models; then the use of models will no longer 

be a straw man treasure hunt for the fountain of truth or unscientific attempt at predicting the 

future. Models can be what they are: a systematic exploration of plausible trends and phenomena 

in a stylized model world; a representation of a system that helps us to understand the findings of 

previous empirical studies; an aid in narrowing our focus for follow-up empirical experiments. 
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APPENDIX A. FULL ABC CALIBRATION OUTPUT 

In this section we provide the entire output from the approximate Bayesian computation 

(ABC) in CHAPTER IV A PARALELLIZED ALGORITHM FOR SIMULATING DYNAMIC 

SEXUAL NETWORKS, Section 4.3 Implementation and Calibration. The algorithm calibrates 

the model by finding sets of parameter values that produce the most desirable output. The 

algorithm repeatedly chooses values for parameters based on prior distributions and then runs the 

simulation for model output. After many iterations the parameter sets that produced the best 

model output defines the posterior distribution for parameters.  

The graphs below are the full output from the ABC method. We show the distribution of 

model outputs, posterior distributions for parameter values, and comparison of model output to 

data for each summary statistic. The method was run with a population of 10,000 agents, and 

10,000 parameter sets were run. We used an arbitrary acceptance quality threshold of 250, 

resulting in 1,561 accepted simulations (16% simulation runs).  
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Figure A1: Distribution of distances values for the 10,000 simulation runs. Accepted simulations were those with distance less 

than 250, resulting in 1561, or 16% of all, simulations. 
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Figure A2: The posterior distributions for each of the inferred parameters.  
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Figure A3: Age-disparate relationships in the past year among individuals 15-24 years old. Top graphs show data from 2005, and 

bottom graphs show data from 2008. Red dot and error bars show mean and standard deviations obtained from survey data, green 

dot and bars show the corresponding values from the 207 accepted simulations. Note that the confidence placement of the 

confidence intervals along the y-axis is arbitrary. The bar graph shows the distribution of output from accepted simulations. The 

figure shows that the simulation is able to produce trends like those seen in the real world. 
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Figure A4: The distribution of the values for non-age-disparate relationships in the accepted simulations (green bars) for different 

sexes and survey years. The green dot-and-bar chart represents the average and one standard deviation of the distribution, while 

the red dot-and-bar char represents the average and two standard deviations for the actual survey data. The values that the 

simulation produces are similar to those seen in the survey data.  
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Figure A5: The distribution of 15-24 year old agents that had multiple partners in the past year (green bars) for different sexes 

and survey years. While the simulation values for males do not seem to align with survey values, this is likely due to bias in the 

data – i.e. young male agents tend to overestimate the number of sexual partners that they have had.  
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Figure A6: The distribution of 25-49 year old agents that had multiple partners in the past year (green bars) for different sexes 

and survey years. 
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Figure A7: The distribution of  50+ year old agents that had multiple partners in the past year (green bars) for different sexes and 

survey years. 

In order to assess the usefulness of the distance metric we reran the analysis using a 

random subset of simulation runs (as opposed to selecting high quality simulations runs). The 

figures below (blue bar charts) indicate that using the distance function is useful in determining 

the posterior distribution of parameter values.  
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Figure A8: Posterior distribution for parameters if quality of simulation is not considered. As is expected the posterior 

distributions appear to be uniform between their bounds.  
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Figure A9: The distribution of 15-24 year old agents that had age-disparate and non-age-disparate relationships in the past year 

(blue bars) for different sexes and survey years. 
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Figure A10: The distribution of 15-24 year old agents that had non age-disparate relationships in the past year (blue bars) for 

different sexes and survey years. 
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Figure A11: The distribution of 15-24 year old agents that had multiple partners in the past year (blue bars) for different sexes 

and survey years using the random sample of simulation runs. 
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Figure A12: The distribution of 25-49 year old agents that had multiple partners in the past year (blue bars) for different sexes 

and survey years using the random sample of simulation runs. 
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Figure A13: The distribution of 50+ year old agents that had multiple partners in the past year (blue bars) for different sexes and 

survey years using the random sample of simulation runs. 
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APPENDIX B. VALIDATION 

Unfortunately, a model with a large population size is, by itself, insufficient to be a useful 

model. Once a model is “complete” (i.e. decisions have been made as to how many agents will 

be in the simulation, the events that can happen to the agents, the laws that govern these events, 

and the time horizon over which we want to simulate) we need to show that it is valid. This is 

done through a process that is aptly named validation. This can be hard because validation, in 

part, means showing that any change in the model world, and the consequences of those changes, 

would play out in the real world system that the model is supposed to represent. It is also the 

other way around where real-world changes should be seen in the model world. The conundrum 

is that the real world system is often too complex to test changes and their consequences – if it 

weren't too difficult we likely wouldn't spend time trying to model it! 

An additional challenging aspect of validation is that the real world and the data derived 

from the real world are the result of many components and their subcomponents, and all of their 

interactions. The result is a complex system with many dimensions and begs several questions: 

how many of these components and interactions must be represented in the model? How “true” 

are the data collected for all of these dimensions? How does one test and confirm that the model 

is in line with the data across all these dimensions? 

There are nonetheless a plethora of methods for validating models – and a large number 

of academic articles and books have been written describing how to do it. However, techniques 

like Cross Validation (the model is calibrated with a subset of the available data and the model is 

then tested on its ability to reproduce the remaining data) and Predictive Validity (the model 

makes a prediction about the future and is tested on whether the prediction comes to fruition) are 

often not applicable to complex long-term models like those studying HIV epidemiology. This 
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does not mean that models of HIV cannot be validated – it means that the stamp of validation 

will likely be more subjective and not involve a formal p-value from a goodness-of-fit test. 

Modellers must decide which dimensions are most likely driving the processes and determine the 

best way to show that their model captures those dimensions. For example, a model interested in 

the effect of age-mixing on HIV incidence will need to show that it is able to reasonably 

reproduce metrics like age-specific sexual activity and HIV prevalence. However, it would not 

be unreasonable to omit processes related to random biological variation in HIV infectiousness 

that is not associated with age or gender. This means that it’s important to clearly link research 

question, model design, and validity checks to achieve high quality, meaningful models. 

In our dynamic sexual network models we claim validity by showing that they can 

produce a sexual network that is approximately similar to the real-world sexual network: we 

compare prevalence of age-disparate relationships across different age groups and sexes; we 

compare the frequency with which individuals form multiple concurrent relationships; we 

compare the duration of relationships and the time between relationships. In short, we compare 

our simulated sexual network to a real world sexual network with statistics that are known to be 

important in the epidemiology of HIV. Hence our simulation is able to produce a facsimile of a 

real world sexual network.  
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APPENDIX C. RECRUITING STRATGIES SENSITIVITY ANALYSIS 

In order to understand the simulation’s sensitivity to different recruiting strategies we ran 

100 simulations of 4 different scenarios with default parameter values: (1) optimized recruiting 

which recruits those agents that have been waiting the longest, and has queues that do not resort 

when a similar suitor (from the same queue as the previous suitor) is being matched; (2) random 

agent recruiting, which pulls agents randomly from their queue (as opposed to pulling the agent 

that has been waiting the longest); (3) constant resorting, which resorts the queue for ever suitor 

(as opposed to caching a suitor and recycling accept/reject decisions; (4) queue length recruiting, 

which recruits from queues probabilistically based on their length. We compare summary 

statistics of the simulation runs to summary statistics from South Africa’s Sexual Behavioural 

Survey [2] in A12. The figure shows that none of the different recruiting strategies produces 

significantly different summary statistics about the underlying network. 
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Figure C1: A comparison of simulation output metrics to survey data under four different scenarios: (blue) the default optimized 

algorithm which does not resort if a suitor is similar to the previous suitor and recruits agents from queues with a first-in-first-out 

(FIFO) strategy; (red) modified algorithm which recruits agents randomly from queues instead of FIFO; (green) modified 

algorithm which resorts the queue with every suitor; (orange) modified algorithm in which queues with more agents are more 

likely to be recruited from. The simulation output is similar to the survey data for each of the algorithms, but the optimized 

version runs significantly faster than the others. 
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APPENDIX D. COMMUNICATION OVERHEAD ANALYSIS 

We investigated whether additional speed-up could be obtained by packing highly 

connected MPI processes (in terms of amount of communication) onto the same node. The 

experiment used four MPI processes with each sending out 100 messages (each message a 

random float) each time step to either an off-node partner or an on-node partner. The input 

variable ratio determined the probability of sending a single message to the off-node partner or 

on-node partner (for a ratio of 0, all messages are on-node; for a ratio of 1, all messages are off-

node). Simulation run for 1500 time steps (the approximate number of time steps in our 

simulations). We recorded the amount of time the simulations required for different ratio, with 

each ratio repeated 10 times for consistency. The simulations were run on both the Milano and 

Helium clusters. 

 

Figure D1: The set-up for an experiment to determine the necessity of packing highly communicative MPI processes on the same 

node. 
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Figure D2: The amount of time required to run the simulation with different ratio values for the Milano and Helium cluster. For 

Milano, as the amount of off-node communication increases (goes to 1) the amount of time required to run increases linearly. 

There is a significant amount of noise in these values however as there are many background processes running on Milano. The 

amount of time required to run simulations on Helium were consistently low for all values of ratio – communication between 

nodes is indistinguishable from communication on nodes.  
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