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ABSTRACT

Self-stabilizing system is a concept of fault-tolerance in distributed computing.

A distributed algorithm is self-stabilizing if, starting from an arbitrary state, it is

guaranteed to converge to a legal state in a finite number of states and remains in a

legal set of states thereafter. The property of self-stabilization enables a distributed

algorithm to recover from a transient fault regardless of its objective. Moreover, a

self-stabilizing algorithm does not have to be initialized as it eventually starts to

behave correctly.

In this thesis, we focus on extensions and refinements of self-stabilization by

studying two non-traditional aspects of self-stabilization.

In traditional self-stabilizing distributed systems [15], the inherent assumption

is that all processes run predefined programs mandated by an external agency which

is the owner or the administrator of the entire system. The model works fine for

solving problems when processes cooperate with one another, with a global goal. In

modern times it is quite common to have a distributed system spanning over multiple

administrative domains, and processes have selfish motives to optimize their own pay-

off. Maximizing individual payoffs under the umbrella of stabilization characterizes

the notion of selfish stabilization.

We investigate the impact of selfishness on the existence of stabilizing solutions

to specific problems in this thesis. Our model of selfishness centers on a graph where

the set of nodes is divided into subsets of distinct colors, each having their own
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unique perception of the edge costs. We study the problems of constructing a rooted

shortest path tree and a maximum flow tree on this model, and demonstrate that

when processes are selfish, there is no guarantee that a solution will exist. We prove

that the complexity of determining the existence of a stabilizing solution is NP-

complete, carefully characterize a fraction of such cases, and propose the construction

of stabilizing solutions wherever such solutions are feasible.

Fault containment and system availability are important issues in today’s dis-

tributed systems. In this thesis, we show how fault-containment can be added to

weakly stabilizing distributed systems. We present solutions using a randomized

scheduler, and illustrate techniques to bias the random schedules so that the sys-

tem recovers from all single faults in a time independent of the size of the system,

and the effect of the failure is contained within constant distance from the faulty

node with high probability (this probability can be controlled by a user defined tun-

ing parameter). Using this technique, we solve two problems: one is the persistent-bit

problem, and the other is the leader election problem.
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CHAPTER 1
INTRODUCTION

1.1 Preamble

A distributed system consists of a collection of autonomous computers, con-

nected through a network and distributed system software, which enables computers

to coordinate their activities and to share the resources of the system, so that users

perceive the system as a single, integrated computing facility. This is in contrast to

a network, where the user is aware that there are several machines whose locations,

storage replications, load balancing, and functionalities are not transparent. The soft-

ware enables computers to coordinate their activities and to share the resources of the

system hardware, software, and data. Airline reservation systems, banking networks,

peer-to-peer networks etc. are some typical examples of distributed systems. There

are lots of advantages of connecting remote users with remote resources in an open

and scalable way. Benefits of distributed systems include bridging geographic dis-

tances, tolerating failures and perturbations, improving performance and availability,

maintaining autonomy, reducing cost, and allowing for interaction.

To be truly reliable, a distributed system must have the following characteris-

tics:

1. Fault-Tolerant: The ability of a system or component to continue normal

operation despite the presence of hardware or software faults is termed as fault-

tolerance. Fault-tolerance is particularly sought-after in high-availability or
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life-critical systems. Failed components should be able to rejoin the system,

after the cause of failure has been repaired.

2. Highly Available: High availability is a system design protocol and its im-

plementation ensures a certain degree of operational continuity during a given

period. Users want their systems to be ready for providing service at all times.

Availability refers to the ability of the user community to access the system.

3. Scalable: Scalability is generally difficult to define and in any particular case,

it is necessary to define the specific requirements for scalability on those di-

mensions which are deemed important. Scalability can be measured in various

dimensions, such as load scalability (the ability for a distributed system to easily

expand and contract its resource pool to accommodate heavier or lighter loads.

Alternatively, the ease with which a system or component can be modified,

added, or removed, to accommodate changing load), geographic scalability (the

ability to maintain performance, usefulness, or usability regardless of expansion

from concentration in a local area to a more distributed geographic pattern.),

administrative scalability (the ability for an increasing number of organizations

to easily share a single distributed system.), etc.

4. Predictable Performance: A system’s predictability is defined as the ability

to provide desired responsiveness in a timely manner.

5. Secure: A secure system must have control of access to its resources and ser-

vices, especially of its data and operating system files.
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Achieving all of the above goals/characteristics is quite challenging. Probably

one of the most difficult challenges in a distributed system is the requirement of it

to be able to continue operating correctly even when failures occur in the system.

Failures or faults can be broadly divided into two categories: hardware and software.

Hardware faults were a dominant concern in system reliability until the late

80’s. Hardware reliability has improved enormously during the last two decades.

Decreased heat production and power consumption of smaller circuits, reduction of

off-chip connections and wiring, and high-quality manufacturing techniques have all

played a positive role in improving hardware reliability. Hardware faults are still a

major issue in the domain of VLSI fabrication.

Software faults are primarily of two types: a) Permanent design faults which

are almost deterministic in nature. Most of these can be identified and weeded out

during the testing and debugging phase (or early deployment phase) of the software

life cycle. b) Some software failures are temporary internal faults and are intermit-

tent. These are known as Heisenbugs. They are essentially permanent faults whose

conditions of activation occur rarely or are not easily reproducible. Hence these

faults result in transient failures, i.e., failures which may not recur if the software is

restarted. Some typical situations in which these types of faults might surface are

boundaries between various software components, improper or insufficient exception

handling, and interdependent timing of various events. Most recent studies on failure

data have reported that a large proportion of software failures are transient in nature,

caused by phenomena such as overloads or timing and exception errors.
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The distributed nature of the system can make it harder to diagnose and rectify

faults. It is therefore desirable that some means of fault tolerance be incorporated in

the system so that the system will behave in a desired manner even in the presence

of certain types of faults. One part of this thesis investigates the design of a class of

fault-tolerant distributed systems.

Informally, a fault-tolerant system specifies two things (i) a fault model to

describe the different types of faults and (ii) the type of tolerance. Faults can be

classified into various types by considering the behavior or the impact of the faulty

component. Some common types of faults in such a classification are:

1. Halting faults: A component simply stops and the change is irreversible.

There may be various reasons why such a failure occurs. In synchronous sys-

tems, halting failure can be detected using timeout within a bounded time,

since the faulty component either stops sending heartbeat messages or fails to

respond to requests within a specific time period. Computer freezing is a halting

failure.

2. Omission faults: Failure to send a scheduled message or receive messages

that have been sent due to transmission media problems, internal hardware or

software failures, or shortage of buffer space, results in a message being discarded

with no notification to either the sender or the receiver. For example, this can

happen when routers become overloaded.

3. Network faults: The functionality of a network can be impaired because
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of component malfunction or natural or human-caused disasters (like security

attacks), or by component mobility. Partial failures include degradation (and

graceful degradation). Due to loss of power or link, a network may also partition

into two or more disjoint sub-networks within which messages can be sent, but

between which messages cannot be exchanged.

4. Timing faults: Timing failure is a failure of a process, or a subsystem of a

synchronous real-time system to meet deadline limits set on execution time,

message delivery, or clock skew. Asynchronous distributed systems cannot be

said to have timing failures as guarantees are not provided for response times.

For example, lack of synchronization among clocks on different computers can

lead to a timing fault.

5. Transient Fault: Faults that are triggered by events of a transient nature are

termed as transient faults. For example, electromagnetic radiation, cosmic rays,

or other forms of electrical noise can alter the status of one or more processes

in processor chips, and can trigger transient faults.

6. Software Fault: The inability of a program to continue processing or produc-

ing correct outputs due to erroneous logic is called software failure. According

to Brocklehurst et al. [5], “a software failure occurs when the delivered service

no longer complies with the specifications, the latter being an agreed description

of the system’s expected function and/or service”.

7. Byzantine faults: It is an arbitrary fault that can occur during the execu-
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tion of a distributed systems algorithm.This captures every conceivable type of

faulty behaviors including data corruption or loss, failures caused by malicious

programs, etc.

With respect to a given set of faults, the type of tolerance exhibited by a fault-

tolerant system can be classified as masking or non-masking. Masking fault-tolerance

guarantees that programs continually satisfy their specification in the presence of

faults. By way of contrast, non-masking fault-tolerance allows the specifications to

be temporarily violated, but guarantees that after faults stop occurring, eventually

the program executions help the system converge to configurations from where the

system continually (re)satisfies their specification.

One approach to incorporate fault-tolerance in distributed systems is to design

distributed protocols that guarantee a pre-specified behavior in the presence of certain

types of faults. One part of this thesis focuses on a specific class of non-masking fault-

tolerance called self-stabilization.

1.2 Self-Stabilization

Self-stabilization is a particularly robust and appealing model of fault-tolerance

for distributed computation. The subset of desirable states to which the system

converges to is called the set of legal states. A state not belonging to the set of legal

states is called an illegal state. A system is self-stabilizing if and only if it satisfies two

properties: a) starting from any state, it is guaranteed that the system will eventually

reach a legal state (convergence), and b) given that the system is in a legal state, it is
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guaranteed to stay in a legal state, provided that no fault happens (closure) [1]. Thus,

a self-stabilizing system will spontaneously recover from one or more transient faults

(that take the system to some arbitrary configuration) without the need for manual

intervention, as long as no further faults occur. This also implies that self-stabilizing

systems do not need initialization, and can be spontaneously deployed.

E.W. Dijkstra in 1974 [15] presented the first self-stabilizing algorithm, in

which he coined the phrase and showed the feasibility of designing such protocols

in spite of distributed control. This brief paper went largely unnoticed until Leslie

Lamport’s invited talk at PODC (Principles of Distributed Computing) 1983 [36],

where he said: ”I regard this as Dijkstra’s most brilliant work — at least, his most

brilliant published paper ... a milestone in work on fault-tolerance ... I regard self-

stabilization to be a very important concept in fault-tolerance, and to be a very fertile

field for research.” The ability to recover without external intervention is very desir-

able in modern computer and telecommunications networks, since it would enable

them to eventually repair the effect of faults and return to normal operations on their

own. Self-stabilization research so far produced numerous theoretical results some

of which can be potentially used in practice. In the areas of sensor and peer-to-

peer networks, self-stabilizing protocols have been designed for a variety of problems

[43, 7, 31, 42, 4, 46, 29]. Topology update, clock synchronization, multiprocessor

synchronization, network flow control, graph algorithms, etc. are some of the areas

where the concepts of self-stabilization have been widely used. A survey of some of

the basic issues of self-stabilization and self-stabilizing protocols designed for various
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problems can be found in [27]. Dijkstra’s paper received the 2002 ACM PODC In-

fluential Paper Award, one of the highest achievements recognized by the distributed

computing community.

A variant of the classic self-stabilization problem is weak stabilization, intro-

duced by Gouda [22]. The solutions to some of the problems that we present in this

thesis are weakly stabilizing. Weak stabilization guarantees that starting from an

arbitrary configuration, there exists at least one computation that leads the system

to a legal configuration.

1.3 Limitations of Self-Stabilization

In spite of many desirable features, traditional self-stabilizing protocols suffer

from a few limitations. These limitations motivate the current research. The first

limitation is that a self-stabilizing protocol only guarantees eventual convergence to

some legal state but may behave arbitrarily during convergence to such a desired state.

This may not be acceptable for many applications where some minimum guarantee

on system behavior is required at any point of time for reasons of safety or availability

of the system. Some researchers have addressed such issues. Dolev and Herman [16]

suggested a superstabilizing protocol, where a passage predicate is satisfied by the

global states of the system during convergence from a topology change, and thus it

restricts the arbitrary behavior of the system during convergence. A superstabilizing

protocol is a protocol that (i) is self-stabilizing, meaning that it can recover from an

arbitrarily severe transient fault; and (ii) can recover from a local transient fault while
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satisfying a passage predicate during recovery. Gouda and Schneider [21] present a

self-stabilizing protocol for the construction and maintenance of a maximum flow tree

of a graph, which ensures that during convergence to a correct maximum flow tree

from specific initial states, a tree structure is maintained. However, the tree may not

be a maximum flow tree until a legal state is reached. Such examples are abundant

in self stabilizing distributed systems. A self-stabilizing protocol does not distinguish

between an arbitrary initial state and an initial state that is very close to a legal

state but not legal. By “close to a legal state” but not legal, we mean a state from

which a legal state can be reached by changing the local states of a small number

of processes of the system. Ideally the recovery should take place following a short

path in the state space to the nearest legal state. However, most of the current self-

stabilizing protocols may not follow the shortest path to recovery. In present day

distributed systems, the problem arising out of this limitation is highly important.

As a consequence, sometimes the recovery from even a single component failure in

the system may require a large amount of time, and can potentially contaminate the

entire network. This recovery time may be as large as the time to recover from the

failure of an arbitrarily large number of components, even though in a legal state such

single faults are clearly more likely than an arbitrary number of faults. The remedy to

this problem has been addressed in the research on fault-containment [18, 19, 17, 20].

Another limitation is that, current research on the design of self-stabilizing

(a.k.a. stabilizing) distributed systems assumes that all processes run predefined pro-

grams mandated by an external agency who is the owner or the administrator of



10

the entire system. The model is acceptable only when processes cooperate with one

another, and the goal is purely a global one. The model falls apart when the dis-

tributed system spans over multiple administrative domains or processes have private

goals too. On Internet-scale distributed systems, each process or each administrative

domain may have selfish motives to maximize its own payoff. In fact, payoffs or cost

functions have been the major driving force behind game theory, but individual pay-

offs never figured into the realm of stabilizing distributed systems. There are many

applications where individual payoffs are relevant, but the spirit of competition need

not conflict with the general spirit of cooperation that is the driving force behind

stabilizing algorithms. To clarify this issue, consider that a system of n processes for

which a legal configuration is any element of the set of configurations {L1, · · · , Lk},

but different processes have different preferences about their ideal legal configura-

tions. Attaining the individual goal may be possible via the use of asymmetric cost

functions that are statically defined, or by the use of specific strategies that may be

adopted at run time. Such strategies refine the basic move. For example, to execute

the step of choosing a neighbor, different processes may adopt different strategies for

choosing the neighbor. While the choice will impact the payoffs, it will not affect the

global goal, or the stabilization mechanism. As an example, consider the stabilizing

token circulation protocols [15] that have been widely studied by the stabilization

community. If there are several classes of processes with competing interests, then

in addition to the common goal of reducing the number of tokens to one, each class

may try to retain the token among themselves more often than their competitors.
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In this context, we introduce the notion of selfish stabilization, and address two spe-

cific problems in this domain. Maximizing individual payoffs under the umbrella of

stabilization characterizes the notion of selfish stabilization.

1.4 Selfish Stabilization

Selfish stabilization blends game theory with self-stabilization. There are some

strong similarities between the two paradigms, but there are significant differences

too. Considering the players in games to be equivalent to processes in a stabilizing

system, the equilibrium in games is comparable to the legal configuration of stabi-

lizing systems, in as much as both satisfy the condition of convergence and closure.

However, unlike stabilizing systems, games start from predefined initial configura-

tions, and largely ignore faulty moves or transient state corruptions. An exception is

the notion of bounded rationality [44] that suggests that economic agents sometimes

use heuristics to make decisions rather than a strict rigid rule of optimization in light

of the complexity of the situation. In the context of distributed systems, the anarchic

behavior of processes for meeting selfish goals can be viewed as a weaker version of

byzantine failure.

Stabilizing distributed systems expect all the component processes to run pre-

defined programs that are externally mandated. In Internet scale systems, this is

unrealistic, since each process may have selfish interests and motives related to maxi-

mizing its own payoff. In this thesis, we formulate the problem of selfish stabilization

that shows how competition blends with cooperation in a stabilizing environment.
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It is a well known principle of economics that when members of society do not

coordinate and instead act independently in a self-interested fashion, the resulting

outcome typically does not achieve the maximum possible total social welfare. In our

setting, self-interested nodes or simply called, selfish nodes, seek to maximize their

own private welfare by making choices available from their immediate neighborhood.

In a sense, these choices are greedy as we assume that a selfish node cannot predict

or foresee any other move that may eventually lead to a better payoff for it. It is

possible that minor restrictions or adjustments of a class of nodes’ algorithm may

lead to dramatically better outcomes, but in this thesis, we stick to the notion of our

above mentioned ’selfish’ property.

1.5 Fault Containment

Improved reliability of system components implies that in a well-designed sys-

tem, the possibility of a massive failure is nominal, and single transient failures are

much more likely to occur. The problem of containing the effect of minor failures is

becoming important not only because they are more likely to occur, but also due to

the dramatic growth of network sizes. Such limited transient faults are likely to give

rise to states that are almost legal, rather than states that are arbitrary. Hence it is

desirable that from such limited transient faults, the system should recover quickly.

To increase the efficiency of fault-tolerance, it is important to guarantee a much

faster recovery from all single failures, while also guaranteeing eventual recovery from

more major failures. Moreover, to ensure that non-faulty processes largely remain
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unaffected by such minor failures, it is important that only a small part of the net-

work around the faulty components make observable state changes that can affect the

operations in the application layer.

The tight containment of the effect of single failures depends on the context:

containment in time implies that all observable variables of the system recover to

their legal values in O(1) time, whereas containment in space means that the pro-

cesses at O(1) distance from the faulty process make observable changes. For optimal

performance, both of these properties should hold.

Fault-containment has so far largely been addressed in the context of clas-

sical self-stabilizing systems. In this thesis, we study fault-containment in weakly

stabilizing systems.

1.6 Related Work

Selfish stabilization shares many common properties with game theory as com-

petition and cooperation simultaneously exist in both. Game theory so far has been

a hotbed of activities in computational economics (like auctions) and algorithm de-

sign. It has also received attention in understanding the intricacies of interdomain

routing protocols like BGP. The stable path problem [24] is an abstraction of the basic

functionality of the Internet’s BGP routing protocol, and reflects the instabilities ob-

served in BGP. In the stable path problem, each process has to choose the best path

according to some local routing policy, and conflicts between local interests can lead

to unstable or oscillating behavior. Cobb et al. [9] proposed a stabilizing solution to
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the stable path problem. Halpern [26] presented a perspective game theory for dis-

tributed systems researchers. He considers issues in distributed computation relevant

to game theorists and in particular, focuses on (a) representing knowledge and un-

certainty, (b) dealing with failures, and (c) specification of mechanisms. Moscibroda,

Schmid, and Wattenhofer [38] studied the formation of the topology of a P2P network

by selfish peers, and presented a negative result that the topology construction may

not terminate due to selfish behavior, even if churns are absent. They established

the complexity of Nash equilibria in the game theoretic model of P2P networks, and

also analyzed [39] the impact of allowing some processes to be malicious or byzantine,

whereas others are selfish, and computed the price of malice. Keidar et al.’s Equicast

protocol [33] for multicast in a peer-to-peer network deals with freeloaders by treat-

ing the system as a non-cooperative game, where nodes are selfish but rational. Each

user chooses its own strategy regarding its level of cooperation to participate in the

multicast so as to minimize its own cost. The goal of each node is to receive all the

multicast packets while minimizing its sending rate. Mavronicolas [37] used a game-

theoretic view to model security in wireless sensor networks as a game between the

attackers and the defenders. Cao et al. [6] presented a variation of the pursuer-evader

games for asset protection using a large-scale sensor-actuator network. The last two

are only tangentially related to our work, since stabilization is not an issue.

In the area of fault-containment, for specific problems, self-stabilizing protocols

have been studied in the past. In [17], Ghosh et al. solved the leader election problem

on an oriented ring, and present a simple self-stabilizing leader election protocol that
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recovers in O(1) time from a state with a single transient fault on oriented rings.

Only the faulty node and its two neighbors change their states during convergence

to a stable state. Thus, the effect of a single fault is tightly contained around the

fault. In [18], Ghosh et al. presented a fault-containing self-stabilizing protocol

for constructing spanning tree in an arbitrary network. In [20], the same authors

demonstrated a fault-containing self-stabilizing protocol for BFS tree construction in

an arbitrary network. Kutten and Peleg [35] introduced a protocol for fault-mending

that corrects a system from minor failures, but provides no guarantee for stabilization.

This paper introduced the concept of fault-local algorithms, which are algorithms

whose cost depends only on the (unknown) number of faults. Ghosh et al. [18, 19]

and Gupta [25] demonstrated how containment can be combined with stabilization,

and analyzed the cost of it. Dolev and Herman introduced superstabilizing protocols

[16], that, in addition to being stabilizing, guarantee that during convergence from

configurations that arise from legal states by small-scale topology changes, certain

passage predicates are satisfied. Herman’s self-stabilizing protocol [28] for mutual

exclusion investigates the possibility of superstabilizing protocols for mutual exclusion

in a ring of processors, where a local fault consists of any transient fault at a single

processor, and the passage predicate for mutual exclusion specifies that there be at

most one token in the ring, with the single exception of a spurious token co-located

with the transient fault. Kutten and Patt-Shamir [34] proposed an asynchronous

stabilizing algorithm for the persistent-bit problem. Their solution leads to recovery

in O(k) time from any k-faulty configuration. A similar protocol for the problem
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of token passing can be found in [3], where Beauquier et al. studied the scenario

where up to k faults hit nodes in a reactive asynchronous distributed system by

corrupting their state undetectably. In [2] Beauquier et al. investigated k-strong self-

stabilizing systems, which satisfy the properties of strong confinement and of k-linear

time adaptivity. Strong confinement means that a non faulty processor has the same

behavior with or without the presence of faults elsewhere in the system. k-linear time

adaptivity means that after k or less faults hitting the system in a correct state, the

recovery takes a number of rounds linear in k.

In [22], Gouda introduced weak stabilization. Although this property is strictly

weaker than the well-known property of stabilization, weak stabilization is superior to

stabilization in several respects and plays an important role in the solutions we provide

in this thesis. In [14], Devismes et al. investigated the relative power of weak, self,

and probabilistic stabilization, and provided a deterministic weak-stabilizing leader

election algorithm on a tree network using a strongly fair scheduler.

1.7 Contributions

This thesis addresses two different problems in the domain of self-stabilization.

In the first, we study the problem of selfish stabilization, and investigate the

impact of selfishness on the existence of stabilizing solutions to specific problems.

Our model of selfishness centers on a graph G = (V, E) where the set of nodes V

is divided into subsets of distinct colors, each having their own unique perception

of the edge costs. One of these nodes is the root node. We study the problems of
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constructing a rooted shortest path tree and a maximum flow tree on this model, and

demonstrate that when processes are selfish, there is no guarantee that a stabilizing

solution will exist. We demonstrate that the complexity of determining the existence

of a stabilizing solution is NP-complete. We carefully characterize a fraction of such

cases, and propose the construction stabilizing solutions wherever such solutions are

feasible [10, 11].

In the second problem, we show how fault-containment can be added to weakly

stabilizing distributed systems. We present solutions using a randomized scheduler,

and illustrate techniques to bias the random schedules so that the system recovers

from all single faults in a time independent of the size n = |V | of the system, and the

effect of the failure is contained within O(1) distance from the faulty node with high

probability (this probability can be controlled by a user defined tuning parameter).

Using this technique, we solve two problems: one is the persistent-bit problem, and

the other is a leader election problem on a line topology. Our solutions exhibit a low

fault-gap and guarantee high system availability, where once the output variables of

the system recover to a legal configuration, it is immediately ready to handle the next

single fault with the same degree of efficiency [12, 13].

1.8 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 describes the models

and notations of selfish stabilization and fault-containment. It also contains some

important definitions. In Chapter 3 and Chapter 4, we study the problem of selfish
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stabilization. In Chapter 3, we study the problem of constructing a rooted shortest

path tree, whereas in Chapter 4, we study the problem of rooted maximum flow tree

formation in the context of selfish stabilization. In the subsequent two chapters, we

add fault-containment to weakly stabilizing distributed systems. In Chapter 5, we

show a fault-containing solution on the persistent-bit problem, whereas in Chapter

6, we demonstrate a solution on the leader election problem. Finally, Chapter 7

summarizes the results of the thesis and discusses the scope for further work in the

area.
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CHAPTER 2
MODEL AND NOTATIONS

2.1 Introduction

In the previous chapter, we presented an informal description of the selfish

stabilization and fault-containment problems. In this chapter, we present a more

formal description of the these problems, and introduce the model, notations and

definitions. Let G = (V, E) denote the topology of a distributed system, where V

represents the set of processes {0, 1, · · · , n− 1} , and each edge (i, j) ∈ E represents

a bidirectional link between processes i and j. We use the notation N(i) to represent

the neighbors of i: thus (i, j) ∈ E ⇔ j ∈ N(i). Processes communicate with their

immediate neighbors (also called the distance-1 neighbors) using the shared memory

model. The execution of the protocols is organized in steps. In each step, a process i

executes a program that consists of one or more guarded actions g → A, where g is a

predicate involving the variables of i and N(i), and A is an action that updates one or

more variables of i. The global state or configuration of the system is a tuple consisting

of the local states of all the processes. Unless otherwise stated, a deterministic central

scheduler (also called a central demon) serializes all guarded actions. In some cases,

we assume a randomized scheduler, where the central demon randomly chooses an

action with an enabled guard with uniform probability. A computation of the system

is a finite or infinite sequence of global states that satisfies two properties: (a) if s

and s′ are two consecutive states in the sequence, then there exists a process i such
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that i has an enabled guard in s and execution of the corresponding action results in

the state s′, and (b) if the sequence is finite, then in the last state of the sequence,

no process has an enabled guard.

Definition 1 (Weak Stabilization). Weak stabilization [22] guarantees that starting

from an arbitrary configuration, there exists at least one computation that leads the

system to a legal configuration.

2.2 Selfish Stabilization

Given a graph G = (V, E), assume that there are p (p > 1) different sub-

sets (or classes or colors) of nodes. We divide V into p disjoint subsets of nodes

V1, V2, V3, . . . , Vp, such that V = ∪p
i=1Vi. For each subset or color, there is a separate

cost function that maps the set of edges to the set of positive integers. Starting from

an arbitrary initial configuration, the different classes of nodes cooperate with one

another to form a rooted tree, and at the same time compete against each other to

minimize their cost of communication (individual payoff) with the root node. So, the

private goal for every node v is to optimize its cost function, i.e., cost(v).

The goal configuration corresponds to an equilibrium configuration such that

no process has an eligible action that can unilaterally decrease its own cost. We define

the following two terms first to define an equilibrium in the system.

Definition 2 (Stable node). Let G = (V, E) be a graph and r a node of V . Let P be

a partition of V with p elements V = ∪p
i=1Vi. Let w be a function on E → Np. Let

T be a tree of G rooted at r. The node v ∈ Vi is stable in T for metric w if and only
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if it satisfies the following condition:

∀z ∈ N(v),
∑

e∈Tv→r

wi(e) ≤ wi((v, z)) +
∑

e∈Tz→r

wi(e)

In other word,

∀z ∈ N(v), wi(Tv→r) ≤ wi((v, z)) + wi(Tz→r)

Similarly, a tree T is stable if every node in T is stable.

Definition 3 (Stable tree). Let G = (V, E) be a graph and r a node of V . Let P be

a partition of V with p elements V = ∪p
i=1Vi. Let w be a function on E → Np. Let T

be a tree of G rooted at r. The tree T is stable for metric w if and only if for every

node v ∈ V , v is stable in T for metric w.

Definition 4 (Equilibrium). Let G = (V, E) be a graph and r a node of V . If

there exists a stable tree T in G rooted at r, then we say that the graph G has a

rooted equilibrium (in general, we call it an equilibrium unless otherwise stated). A

non-rooted equilibrium consists of a subset of nodes in G and it does not involve r.

When a rooted tree T exists in G, this tree defines a unique path Tv→u between

any two nodes v and u of V . A node v is stable in a tree T if it has no incentive to

chose another neighbor z ∈ N(v), i.e. choosing z would not lower its cost.

We allow processes to choose different algorithms, or switch algorithms from a

set Σ = {P1, P1, · · · , Pk} (each Pi reflects a distinct algorithm) in order to meet their

private goals. This is unlike traditional stabilization algorithms where all processes

execute the same algorithm. Thus, each state transition (Si, Si+1) is caused by an

action of some algorithm Pj ∈ Σ. We will call Σ the strategy space.
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To devise a stabilizing mechanism for the construction of a stable tree w.r.t.

a particular metric, the computation should lead to a tree configuration so that the

conflicting private goals of local cost optimization do not interfere with the common

goal of tree formation.

2.3 Fault-Containment

A stabilizing system converges to a legal configuration LC that is traditionally

defined in terms of the observable or primary variables. However, in most cases,

fault-containment requires the use of auxiliary or secondary variables too. We define

the local state of each process i as an ordered pair 〈pi, si〉, where pi denotes the

primary variables, and si denotes the secondary variables. Correspondingly, we write

the global state as an ordered pair 〈p, s〉, where p is the collection of all primary

variables and s is the collection of all secondary variables. For any global state 〈p, s〉,

〈p, s〉 ∈ LC ⇒ p ∈ LCp and s ∈ LCs. The following are some important definitions

relevant to the fault-containment problem-

Definition 5 (Stabilization Time). The stabilization time is the maximum time

needed to establish LC from an arbitrary initial configuration.

Though LC ⇒ p ∈ LCp and s ∈ LCs, in most cases, it is adequate to establish

LCp only, since the application is not affected.

Definition 6 (Fault-Containment in Time). The containment time means that start-

ing from any single-fault configuration, LCp is restored in O(1).

This definition may appear strict in some cases. So we define the notion of
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weak fault-containment.

Definition 7 (Weak Fault-Containment). A system is said to be weakly fault con-

taining if the containment time of the system is independent of n, i.e., the size of the

network.

Note that, for weak fault-containment LCp does not necessarily have to be

restored in O(1) time.

Definition 8 (Fault-Containment in Space). Containment in space means that start-

ing from a single fault configuration, the primary variables of the processes at O(1)

distance from the faulty process make observable changes.

Ideally attempt must be made to restrict the effect of the fault within the

immediate neighborhood of the original faulty node, which is the notion of tight

containment. This way apart from the faulty region, the rest of the system can still

perform its normal operation. The fault should not contaminate a large portion of

the network.

Definition 9 (Contamination Number). The contamination number is the maximum

number of processes that change the primary part of their local states during recovery

from any single-fault configuration.

Ideally the contamination number should be as small as possible.

Definition 10 (fault-gap). The fault-gap is the worst case time, starting from any

single-fault state, to reach a state in LC.
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fault-gap determines the availability of the fault-free system, and a low fault-

gap is desirable as it reflects better availability. Scale-free fault-gap is an important

design goal. If the next failure hits the system sooner than the time duration of the

fault-gap, then the guarantee of constant time recovery does not hold anymore. In

our solutions, after the primary variables stabilize, the application can resume its

normal operation (even if the secondary variables have not stabilized yet) and the

system is ready to handle the next fault. So, for our proposed solutions, the fault-gap

is the worst case time, starting from any single-fault state, to reach a state in LCp.

2.4 Discussions

Selfishness is not the only challenge in today’s distributed systems. Often,

modern systems have to cope with malicious Byzantine adversaries who seek to de-

grade the utility of the entire system independently of their own cost. Especially in

the area of security and distributed computing, researchers have devised solutions to

defend against such possible attacks [39].

One important metric in this context is the “Price of Malice” of selfish systems

[41]. The “Price of Malice” is a ratio that expresses how much the presence of mali-

cious players deteriorates the social welfare of a system consisting of selfish players.

Formally, the “price of Malice” is the ratio between the social welfare or performance

achieved by a selfish system containing a number of Byzantine players, and the social

welfare achieved by an entirely selfish system.
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CHAPTER 3
SELFISH STABILIZATION IN SHORTEST PATH TREE

3.1 Introduction

In traditional self-stabilizing distributed systems [15], the inherent assumption

is that all processes run predefined programs mandated by an external agency which

is the owner or the administrator of the entire system. The model is widely acceptable

in the stabilization community and works fine for solving problems when processes

cooperate with one another, with a goal that is purely a global one. But what if the

processes have some private goals besides the common global goal? It is quite realistic

and common in modern times to have a distributed system spanning over multiple

administrative domains or processes in the system having private goals. On Internet-

scale distributed systems, each process or each administrative domain may have selfish

motives to optimize its own payoff, but this spirit of competition need not conflict

with the general spirit of cooperation that is the driving force behind stabilizing

algorithms. This chapter formulates the problem of selfish stabilization, studies the

impact of selfishness on the stabilization mechanism, and provides examples to explore

how competition blends with cooperation in a stabilizing environment.

Given a graph G = (V, E), assume that there are p (p > 1) different subsets (or

classes or colors) of nodes. For each subset or color, there is a separate cost function

that maps the set of edges to the set of positive integers. Starting from an arbitrary

initial configuration, the different classes of nodes cooperate with one another to
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form a shortest path tree rooted at a designated node, and at the same time compete

against each other to minimize their cost of communication with the root node. The

communication cost may depend on various factors: for example, ownership of the

routers may be a factor in determining the cost of routing traffic for any class of nodes.

The processes are free to choose a strategy (an algorithm for reaching their goal) from

a given set of strategies, and even switch strategy to satisfy their individual needs.

We examine strategies under which, starting from an arbitrary initial configuration,

these classes of processes can stabilize to an equilibrium configuration after which no

process can unilaterally decrease its communication cost to the root.

3.2 Contributions

We show the strong result that even with two different classes of nodes, no equi-

librium configuration may exist. We also prove that determining whether a particular

setting admits an equilibrium is NP-complete. In case it is known that a solution to

the problem exists, we present a (weakly) stabilizing distributed algorithm to con-

struct a rooted shortest path tree. Alternative strategies for participating nodes are

also discussed.

3.3 Model and Notation

We follow the general model of selfish stabilization we introduced in Chapter

2. In addition to that, for the shortest path tree problem, we consider the following

specific notations:

All nodes in V have a common goal: starting from an arbitrary initial con-
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figuration, they collaborate with one another to form a shortest path tree with a

given node designated as the root. We divide V into p disjoint subsets of nodes

V1, V2, . . . , Vp, such that V = ∪p
i=1Vi

For the ease of description, we associate a distinct color with each subset. In

addition to the common goal, these subsets have their own agenda: we call them

private goals. The private goals of the p different subsets may be conflicting - for

example, these subsets of nodes may want to split a common resource. To illustrate

such private goals, we convert G into a multi-weighted graph by defining a cost

function w of E → Np, where N is the set of (strictly) positive integers. For every

i ∈ [1 . . . p], the function wi : E → N denotes the cost of using edge e,

∀e ∈ E, w(e) = (w1(e), w2(e), w3(e), . . . , wp(e))

When a shortest path tree T exists in G, this tree defines a unique path Tv→u

between any two nodes v and u of V . The cost of this path for a node belonging to

a particular subset Vi is

wi(Tv→u) =
∑

e∈Tv→u

wi(e)

In this chapter, we study the cost of reaching the root r of a shortest path tree T

from a node v belonging to Vi. This cost is equal to cost(v) = wi(Tv→r).

The private goal for every node v is to minimize cost(v). A node v is stable

in a tree T if it has no incentive to chose another neighbor z ∈ N(v), i.e. choosing z

would not lower its cost.
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3.4 Non-existence of Equilibrium: An Example

The roadmap. Among the set of all such problems, there are cases where no equi-

librium exists, regardless of the strategy chosen by the processes. This is tantamount

to presenting instances of metrics for which no stable tree exists. Fig 3.1 shows one

such example with a 2-partition of the nodes of a graph of 5 nodes (called graph

Z). The set of nodes V is split into V1 (the white nodes) and V2 (the black nodes):

V1 = {r, a, b}, V2 = {x, y}. The metric w is described in Fig 3.1. Let us show that

there exists no stable tree here: assume there exists a stable tree T . Now, if edge

(x, r) is in T , this implies that edge (x, a) is also in T (otherwise T would not be

stable because the shortest path between a and r for metric w1 is (a, x, r)). Edge

(a, y) is in T because path (y, a, x, r) is a shortest path between node y and r for

metric w2. Now consider node b. Edges (b, x) and (b, y) cannot be in T . Thus, edge

(b, r) must be in T . So this contradicts the stable property of T because at node

x, we would have
∑

e∈Tx→r
w2(e) = 3 ≥ w2((x, b)) +

∑
e∈Tb→r

wi(e) = 2. The same

argument can be repeated for edges (a, r), (b, r), and (y, r) by assuming one of them

is in T . So there exists no stable tree for this instance of w. Of course, this example

can be generalized to an arbitrary p ≥ 2.

Clearly, there is no point in searching for a stabilizing solution, because no

such solution can be found. We now demonstrate that deciding whether there exists

an equilibrium is an NP-complete problem.
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Figure 3.1: The graph Z with 5 nodes

3.5 The Decision Problem: Does Equilibrium Exist?

In this section, we discuss the existence of an equilibrium (i.e. a stable tree T

for a particular metric w) in relation to the number of conflicting interests (i.e. the

number p in the partition of nodes of V into p sets V1, V2, . . . , Vp). Recall that the

special case of p = 1 is the usual problem of the shortest path tree with non zero edge

costs, so an equilibrium always exists. We first prove that when p ≥ 2, determining

whether there exists an equilibrium for a particular metric w is an NP-complete

problem.

Theorem 1. Let G = (V, E) be a graph and r a node of V . Let P be a partition of

V with p ≥ 2 elements V = ∪p
i=1Vi. Let w be a function on E → Np. The problem of

deciding the existence of a stable shortest path tree T for metric w is NP-complete.1

1This theorem was proved with help from Johanne Cohen and Sébastien Tixeuil
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Proof. It is easy to show that this problem is in NP. Indeed, given a particular tree T ,

checking whether T is stable for metric w can be done in polynomial time by checking

if every node is stable in T for metric w.

Then, we construct a polynomial transformation (almost similar to transfor-

mation described in [24]) with the NP-complete problem 3-SAT defined as follows:

Instance: Collection C = {c1, c2, . . . cm} of clauses on a finite set U of variables such

that |ci| = 3 for 1 ≤ i ≤ m.

Question: Is there a truth assignment for U that satisfies all the clauses in C?

We now present the transformation R : (C, U)→ (G, r,P, w):

1. V1 ← {r}; V2 ← ∅; E ← ∅ ;

2. for each variable v ∈ U do:

(a) V ← V ∪ {v, v};V1 ← V1 ∪ {v};V2 ← V2 ∪ {v};

(b) E ← E ∪ {(v, r), (v, r), (v, v)};

(c) w(v, r)← (3, 1); w(v, r)← (1, 3); w(v, v)← (1, 1);

3. for each element c ∈ C do:

(a) V1 ← V1 ∪ {c1}; V2 ← V2 ∪ {c2}

(b) for each literal s ∈ c

i. if s corresponds to a negation of a variable (x) then E ← E∪{(c1, s)};

w(c1, s)← (1, 10);
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ii. else E ← E ∪ {(c2, s)}; w(c2, s)← (10, 1);

(c) a copy of graphZ drawn in Fig. 3.1 whose nodes are named {c.a, c.b, c.x, c.y, c.r}

is a subgraph of G.

(d) E ← E ∪ {(c1, c.a), (c2, c.x)}; w(c1, c.a)← (1, 1); w(c2, c.x)← (1, 1);

(e) E ← E ∪ {(c.r, r)};

(f) w(c.r, r)← (2, 2);

4. V ← V1 ∪ V2; P ← (V1, V2)

5. Return (G, r,P, w):

Figure 3.2: Example of the transformation with a clause c = (v1, v4, v8)
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Fig 3.2 presents a partial example of this transformation. It is straightforward

to verify that this transformation can be done in polynomial time in the size of the

instance. We now prove that there exists a particular assignment t that satisfies all

clauses of C if and only if there exists a stable tree T in G for metric w.

First, assume that there exists an assignment t that satisfies all clauses of C.

We construct from t a tree T that is stable in G for metric w. For each variable v ∈ U ,

(v, v) ∈ T . If t(v) = true, then (r, v) ∈ T else (t(v) = false), (r, v) ∈ T . Nodes v

and v are stable in T for w (since all other paths from v (or v) to r are of weight

strictly greater than 4). Moreover, for every c ∈ C, there exists at least one of those

three literals v such that t(v) = true. Without loss of generality, we assume that v is

the negation of a variable. T is constructed such that (v, c2) ∈ T and (c2, c.x) ∈ T .

Then, (c.r, r) ∈ T , (c.r, c.y) ∈ T (c.b, c.y) ∈ T , (c.a, c.r) ∈ T . Moreover, (c1, c.a) is in

T if c1 has only one vertex in G and otherwise (t, c1) is in T where t is a literal in c.

Thus, T is a stable tree in V for metric w.

Second, assume that there exists a stable tree T in G for metric w. From this

stable tree T , we construct an assignment t that satisfies all clauses of C. We consider

an element c = (v, v′, v′′) ∈ C.

Let us first notice that the shortest path according to w1 in G from c.r to r is

(c.r, r). This permits to deduce that for every c ∈ C, (c.r, r) ∈ T . Assume now that

the two paths from c.a to r and from c.x to r in T contain only nodes c.x, c.y, c.b,

or c.a. Then, by construction of G, to cover nodes c.a, c.b, c.x, c.y, c.r, the shortest

path tree T must use a subset of the edges of the complete graph induced by the set
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of nodes {c.a, c.b, c.x, c.y, c.r}. This brings us back to the case of Fig 3.1 where there

exists no stable shortest path tree. This contradicts the fact that the two paths from

c.a to r and from c.x to r in T contain only nodes c.x, c.y, c.b, or c.a.

Thus, this implies that there exists a literal v′ of clause c

1. such that the path from c.a to r is in {c.a, c1, v, r} if v is a negation of a variable

z (v = z).

2. or such that the path from c.x to r is in {c.x, c2, v, r} otherwise.

Without loss of generality, assume the path from c.x to r in T includes v.

This path does not include v (otherwise, {c.x, c1, v, v, r} would have a weight of 6

whereas {c.x, c.r, r} would have a weight of 5). In this configuration, node c.x is

not stable in T . Thus, (v, r) ∈ T and (v, v) ∈ T . We now present the assignment

t : U → {true, false}, such that for each variable v ∈ U , t(v) = true if and only if

(v, u) ∈ T . From the previous remark, we deduce that t satisfies all clauses in C.

We discuss the sufficient condition for detecting equilibrium for maximum flow

tree in Chapter 4. The same condition holds for shortest path tree. We present a

(weakly) stabilizing distributed algorithm to construct a rooted shortest path tree if

a solution to the problem exists.

3.6 A Preliminary Attempt

Algorithms for constructing stabilizing rooted shortest path trees for only one

class of processes are already known [8, 30]. We first demonstrate that a trivial
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extension of it (such as each process selfishly picking an edge whose cost is minimal

for its own color) for multiple classes of processes may fail to produce a stable tree.

Each process i maintains two variables: π(i) and λ(i) (commonly called the

parent and the level or distance variables respectively). By definition, for the root

node r, π(r) is non-existent. Every other node picks a neighboring node as its parent

(i.e. the domain of the π(i) variable is N(i)). The level for each node i is λ(i) that

denotes its distance from the root. Clearly, λ(r) = 0. Also define

levelOK(i) ≡ λ(i) = λ(π(i)) + w(i, π(i))

A stabilizing solution for shortest path tree for a single class of processes is

shown in Algorithm 3.1.

Algorithm 3.1 A stabilizing algorithm for rooted shortest path tree construction for
a single class of processes.

• Fix level: ¬ levelOK(i) −→ λ(i) := λ(π(i)) + w(i, π(i))

• Fix parent: levelOK(i) ∧ λ(π(i)) + w(i, π(i)) 6= min{λ(j) + w(i, j) : j ∈ N(i)}

−→ select π(i): λ(π(i)) + w(i, π(i)) = min{λ(j) + w(i, j) : j ∈ N(i)}

Unfortunately, extensions of this approach to multiple classes of processes can

be problematic. For example, assume that each process somehow figures out the

shortest path route to the route for itself, and chooses its neighbor along its shortest

path route as its parent. This may not lead to a shortest path tree as illustrated in
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Figure 3.4. In Figure 3.4 there are two classes of processes: black and white. Each

edge is labeled as (w, b) where w is the cost of that edge for a white node, and b is

the cost of the same edge for a black node (w = w1(e), b = w2(e)). Note that for each

process, the minimum cost route to the designated root r now consists of two hops,

the first hop leading to the non-root neighbor as parent. As a result, the first-hop

links form a cycle instead of a tree, never connecting to the root. It is easy to see

that a naive pure selfish strategy like that in Figure 3.3 also results in a cycle.

2,2

2,2

2,2

2,2

1,2

1,2

2,12,1 r

2,2

2,2

2,2

2,2

1,2

1,2

2,12,1 r

Figure 3.3: Pure selfish strategies may not yield a tree. Each edge is labeled as (w, b)
where w is the cost of that edge for a white node, and b is the cost of the same edge
for a black node (w = w1(e), b = w2(e)). If each node picks its clockwise neighbor as
its parent, then it results in a cycle.

The problem is non-trivial even if processes stick to a fixed strategy known to

all. Strategy switch adds another level of complexity to it.

3.7 A Sufficient Condition for the Existence of a Stable Tree

This section summarizes our main results about selfish stabilization.

Lemma 1. Let G = (V, E) be a graph and r a node of V . Let P be a partition of V
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Figure 3.4: Pure selfish strategies may not yield a tree. Each edge is labeled as (w, b)
where w is the cost of that edge for a white node, and b is the cost of the same edge
for a black node (w = w1(e), b = w2(e)). Based on this cost, the minimal cost route
for each black or white node to the root node r consists of two hops as shown by the
broken lines.

with 2 elements V1 and V2. Let w be a function on E → N2. Let v be a node of Vi

(with i ∈ {1, 2}) such that there exists a shortest path between v and r using metric wi

that only contains nodes in Vi, then every stable tree T in G with metric wi contains

the shortest path between v and r.

Proof. Let pcc = {r, v1, . . . , vℓ} be a shortest path between v and r in metric wi,

solely composed of nodes of Vi. We prove this lemma by induction on parameter ℓ.

• If ℓ = 1, then wi(pcc) = wi(r, v1). Let T be a stable tree such that (r, v1) /∈ T .

As v1 is stable in T , we have:

∀z ∈ NG(v1), wi(Tv1→r) ≤ wi((v1, z)) + wi(Tz→r)

As r ∈ NG(v1), replacing z by r in the above inequality, we have:

wi(Tv1→r) ≤ wi(r, v1) + wi(Tr→r)

now, wi(Tr→r) is 0, so we have:
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wi(Tv1→r) ≤ wi(pcc)

(1)

Again,

wi(Tv1→r) > wi(pcc)

(2)

This is because Tv1→r is not the shortest path from v1 to r according to our

assumption. So (1) and (2) give a contradiction. So the assumption (r, v1) is

not part of the stable tree was wrong.

if (r, v1) is part of the stable tree, then T connects r to v1 using the shortest path

according to metric wi. Here shortest path and direct edge are synonymous for

the base case ℓ = 1 as r is a neighbor of v1, so we know there is a direct edge

between them.

Thus, T connects r to v1 using a shortest path according to metric wi.

• Suppose now that the lemma is true for any j such that 0 < i < ℓ. Let T

be a stable tree for metric wi. By induction hypothesis, T connects u to vℓ−1

through a shortest path according to metric wi. As vℓ is stable in T , we have:

∀z ∈ NG(vℓ), wi(Tvℓ→r) ≤ wi((vℓ, z)) + wi(Tz→r)

As vℓ−1 ∈ NG(vℓ), we have

wi(Tvℓ→r) ≤ wi((vℓ−1, vℓ)) + wi(Tvℓ−1→r)
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Thus, T connects r to vℓ through a shortest path according to metric wi.

Theorem 2. Let G = (V, E) be a graph and r a node of V . Let P be a partition of

V with 2 elements V1 and V2, and such that V1 contains exactly one node x. Let w be

a function on E → N2. There always exists a stable tree T in G for metric w.2

Proof. If x = r, we fall back in the known case of the construction of a shortest path

spanning tree with metric w2. In the sequel, we assume that x 6= r. The theorem is

proved by induction on the degree d of x.

• If d = 1, every shortest path tree using metric w2 is a stable tree since x has

exactly one incident edge.

• Suppose now that the theorem is true for any graph where the degree of x

is (strictly) lower than d. Let z1, . . . , zd be the neighbors of x. Let pcci be

a shortest path between x and r including zi according to metric w2. For

simplicity, we assume neighbors are sorted by increasing values of w2(pcci). Let

us now consider the graph G1 that is constructed in the following way:

– V (G1) = V (G) and E(G1) = E(G) \ {(x, z1)}

– ∀e ∈ E(G1), w′(e) = w(e)

By induction hypothesis, there exists a stable tree T 1 in G1 according to metric

w′. Suppose that T 1 is not stable in G according to metric w. By definition of

2This theorem was proved with help from Johanne Cohen and Sébastien Tixeuil
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w′ and G1, only x may not be stable. Thus, we have:

w1((x, z1)) + w1(T
1
z1→r) ≤ w1(T

1
x→r) (3.1)

Consider T that is a copy of T 1 except that the parent of x is z1. Now, x is

stable in T . We now prove that T is stable in G according to metric w. Let

Y = V ∩ {y : x ∈ T 1
y→r}. First, every node in V \Y are stable. Now consider

a node y ∈ V2 ∩ Y . Let t be the neighbor of y that belongs to the path T 1
y→r.

Now, y is stable in G1 for metric w′ (since x 6= y), so we get:

∀s ∈ N(y)\{t}, w2(T
1
y→r) ≤ w2(T

1
s→r) + w2((s, y)) (3.2)

By definition, we have:

w2(Ty→r) = w2(T
1
y→x) + w2((x, z1)) + w2(T

1
z1→r) (3.3)

The path T 1
z1→r connecting r to z1 and belonging to T 1 is a shortest path

according to metric w2 since there exists a shortest path from r to w1 according

to metric w2 whose nodes all belong to V2 (see Lemma 1). Then, by definition

of pcc1 which is a shortest path from x to r through z1, we have:

w2(T
1
z1→r) + w2((x, z1)) = w2(pcc1) (3.4)

Combining Equations 3.3 and 3.4, we obtain:

w2(Tw→r) = w2(T
1
w→x) + w2(pcc1) (3.5)
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By definition, ∀zi ∈ NG(x), we have w2(pcci) ≥ w2(pcc1). Combining the

previous remark and Equation 3.5 gives:

w2(Ty→r) = w2(T
1
y→x) + w2(pcc1) ≤ w2(T

1
y→x) + w2(pcci) (3.6)

w2(Ty→r) ≤ w2(T
1
y→x) + w2(T

1
x→r) (3.7)

w2(Ty→r) ≤ w2(T
1
y→r) (3.8)

Combining Equations 3.2 and 3.8, we deduce that y is stable in tree T for metric

w. Thus, T is stable in G for metric w. This concludes the proof.

Definition 11. A dispute wheel [23] of size k correspond to:

• a graph G having a distinct subset U(G) = {u0, u1 . . . , uk−1} of vertices such

that there exist a unique path Qj between uj and u, and a unique path Rj between

uj and uj+1,

• a weighted function w and a partition of vertices such that, for any j, 0 ≤ j ≤

k − 1:

1. uj and uj+1 do not belong to the same element of partition,

2. if j > 0, and if uj ∈ Vi

wi(Qj) < min(wi(Rj), wi(Qj+1))

3. if j = 0,

min(w2(R0), wi(Q1)) < w2(Q0)

w2(Q0) < min(w2(R0), wi(R1 ·Q2))



41

with u0 ∈ V2.

Note that all subscripts must be interpreted modulo k.

Theorem 3. Let G = (V, E) be a graph and r a node of V not containing a dispute

wheel. Let P be a partition of V with two elements V1 and V2, and such that V1

contains two nodes x1 and x2. Let w be a function on E → N2. There always exists

a stable shortest path tree T in G for metric w.

Theorem 4. If G contains no dispute wheel, there exists a stable shortest path tree.

The proofs of these two theorems are in the same line as that of Theorem 11

and Theorem 12 in Chapter 4, which are proven for maximum flow tree.

Observation 1. Stabilization may not be feasible if at the same time, more than one

process make moves i.e., a distributed synchronous demon can play the role of an

adversary and the configurations can repeat infinitely (Figure 3.5)

Observation 2. More than one equilibrium are possible with the same setting (Fig-

ure 3.7).

Observation 3. For a central demon, the processes can repeat the same sequence of

configurations and stabilization may never be achieved (Figure 3.6).

Observation 4. For a randomized demon, the processes can not repeat the same

sequence of configurations and stabilization is eventually achieved (Figure 3.8).
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Figure 3.5: Example execution with the distributed synchronous demon. Configura-
tion (a) and (c) are the same, so the system does not stabilize.

3.8 Stabilizing Algorithm

Our goal in this section is to design distributed algorithms that construct a

stable tree T for a particular metric w. Since the system is distributed, nodes are

only aware of their neighborhood.

We assume that each node i is aware of N(i), the set of its neighbors (excluding

i itself). Similarly, each node i is aware of the cost of each of its adjacent edges

e = (i, j) : j ∈ N(i). The cost of an edge e is a vector

w(e) = (w1(e), w2(e), w3(e), . . . , wp(e))

where wk(e) denotes the cost of the edge e for a node of color k.

Also, i maintains two variables: π(i) and λ(i) (commonly called the parent

and the level or distance variables). By definition, for the root node r, π(r) is non-
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Figure 3.6: Example execution with the sequential (central) demon. Configurations
(a) and (e) are symmetric, so repeating the sequence of four moves as shown leads to
Configuration (a) everytime and the system will not stabilize.

Figure 3.7: More than one equilibrium are possible with the same setting.
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Figure 3.8: We start with Figure 3.6. The processes marked with diamonds make
moves by changing their parent. Correspondingly the node costs are also adjusted.
The diagram shows if we don’t allow a sequence of processes to make moves repeatedly,
i.e., a randomized scheduler can prevent repetition occurrence and stabilization can
be achieved. The last configuration is stable and no node has any move, so the
algorithm terminates with equilibrium being achieved.

existent. Every other node picks a neighboring node as its parent (i.e. the domain of

the π(i) variable is N(i). The level for each node is a vector

λ(i) = (λ1(i), λ2(i), λ3(i), . . . , λp(i))

where λk(i) denotes the distance for a node of the kth color from node i to the root.

By definition, λ(r) = (0, 0, . . . , 0).

In networks with selfish peers, the costs influencing decision-making are often

of commercial nature, and are thus kept private to the participating nodes. To ac-

commodate this feature in our framework, we assume that for each node, the value

of each component of λ and the weights of the edges incident on it w will be stored

in an encrypted form. All the same color nodes share a common secret key. Thus,
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no node can access the component of the costs of a different color from a neighboring

node or link to decide its course of action. However every node can securely extract

the component of the variables corresponding to its own color. This authentication

mechanism preserves fairness of the game and prevents possible foul play by deliber-

ately tampering the variables of the nodes of opposing color. We will designate the

encrypted version of a variable x by x̂. For the sake of simplicity, we assume that 3

x̂ + ŷ = x̂ + y

We first propose a greedy algorithm for systems that contain nodes of two

different colors 1 and 2 (i.e. p = 2): each node i of color k will select a parent π(i)

that minimizes λk(i), regardless of what happens to λj(i) (j 6= k).

The proposed algorithm (algorithm 3.2, denoted afterward as Algorithm Greedy)

has a two guarded actions. The root r does not execute any action. The other nodes

execute local adjustment of their levels (to make it consistent with their parent’s) and

of their parent (in order to locally minimize the cost of the metric for the node color).

Also, the level adjustment action has higher priority than the parent adjustment

action.

3.9 Proof of Correctness

Theorem 5. Let G = (V, E) be a graph containing no dispute wheel and r a node

of V . Let P be a partition of V with p elements. Let w be a function on E → Np.

If no node has enabled rules, the structure induced by the π variables of each node

3Homomorphic encryptions like Paillier’s scheme [40] satisfy this property.
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Algorithm 3.2 A stabilizing algorithm for shortest path rooted tree construction for
multiple classes of processes.

• Variable: λ(i) ∈ Np, π(i) ∈ N(i)

• Macro: levelOK(i) ≡ λ̂(i) = λ̂(π(i)) + ̂w(i, π(i))

ParentOK(i)i∈Vk
≡ λk(π(i)) + wk(i, p(i)) = min{λk(j) + wk(i, j) : j ∈ N(i)}

Fixlevel(i) ≡ λ̂(i) := λ̂(π(i)) + ̂w(i, π(i))

FixParent(i)i∈Vk
≡ select π(i): λk(π(i)) + wk(i, π(i)) = min{λk(j) + wk(i, j) :

j ∈ N(i)}

• Actions: i 6= r

– Fix level: ¬ levelOK(i) −→ Fixlevel(i);

– Fix parent: levelOK(i) ∧ ¬ ParentOK(i) −→ FixParent(i).
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executing Algorithm Greedy induces a stable tree T rooted at r for metric w.

Proof. Let us first prove that the induced structure is a tree. Due to the fact that

the π variables are always pointing to a neighbor (for every node except r), the

structure is either a tree or a tree with disconnected circuits. Assume for the purpose

of contradiction that there exists at least one circuit. As w only has costs in N , all

edge costs are (strictly) positive. As no level fixing rule is enabled, this implies that

all levels are OK, and thus each level is strictly greater as the level of the parent. Due

to the well founded property of the “lower than” relation on (positive) integers, the

existence of such a circuit is impossible. Hence, the induced structure is a tree.

Now, we prove that the obtained tree T is stable for metric w. As no level

fixing rules are enabled, this means that the λ variables are all properly computed

from the local metric information w, that can not be corrupted. By induction on the

distance (in number of hops) to the root r, this means that the λ variables contain

the correct values for the cost of every path towards to root according to metric w

(that is known from the w to every node). Now, the parent changing rules are also

not enabled. This implies that the π variables are actually selecting the best neighbor

according to the color k of node i ∈ Vk. This best neighbor being selected according

to the metric w, we conclude that the tree T that is induced by the π variables is a

stable tree for metric w.

When there exists a single class of nodes in the system, the problem reduces

to the problem of constructing a shortest path tree to a particular node r. There

exist several self-stabilizing solutions to this problem (e.g.,[8]) that can be reused in
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that particular case.

In the case there are exactly two classes of nodes, what we guarantee for Al-

gorithm Greedy is weak stabilization [22]. Weak stabilization guarantees that starting

from an arbitrary configuration, there exists at least one computation that leads the

system to an equilibrium configuration.

Lemma 2. Let G = (V, E) be a graph containing no dispute wheel and r a node of

V . Let P be a partition of V with 2 elements V1 and V2, and such that V1 contains α

nodes x1, x2, . . . xα. Let w be a function on E → N2. Starting from a configuration

where the π variables induce a single shortest path tree rooted at r, there exists an

execution of algorithm Greedy that reaches a terminal configuration.

Proof. Assume we start from a configuration where the π variables of all nodes induce

a single shortest path tree. By the hypothesis that p = 2, we know there exists at

least one stable tree T . Now consider the execution in which all nodes that have their

level fixing rule enabled execute it, and that nodes that have their parent fixing rule

don’t execute it. Since the π variables induce a tree, only a fixed number of level

fixing rules can be executed. If in this configuration, no node has a rule to execute,

the configuration is terminal. Otherwise, this means that there exists at least one

node that is willing to change its parent. When one node changes its parent, there

exists an execution in which all nodes in its subtree update their level and no other

parent fixing rule is executed. Using this scheme, we always guarantee that a single

tree rooted at r induced by the π variables exists in the system.

Now we mimic the construction of the stable tree T in the proofs of Theorem 2
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and 3, reasoning by induction on the number of nodes in V1, and then by induction

on the degree of each node in V1. Anytime an edge is removed then replaced to move

toward a stable tree, this correspond to a parent adjustment at some node in our

algorithm. Since all level adjustments are made between any two parent adjustments,

we conclude that the system eventually reaches a stable tree T considering the π

variables. Now, when the tree induced by the π variables is stable, we consider the

execution in which all levels are fixed. By the acyclic nature of the tree, there is a

finite number of such moves.

Lemma 3. Let G = (V, E) be a graph containing no dispute wheel and r a node of

V . Let P be a partition of V with 2 elements V1 and V2, and such that V1 contains α

nodes x1, x2, . . . xα. Let w be a function on E → N2. Starting from an arbitrary con-

figuration, there exists an execution of Algorithm Greedy that reaches a configuration

where the π variables induce a single shortest path tree rooted at r.

Proof. In an arbitrary initial configuration, the π variables may induce either a tree,

or a tree and a set of circuits. We consider the following execution: first all levels of

nodes that are in the tree component and that need to be fixed are fixed by executing

the level adjustment rule. Then, for every circuit, there exists at least one node that

can adjust its level (due to the well boundedness of the “less than” relation on positive

integers). Then, it turns out that for every cycle, there exists an execution that makes

the level grow unbounded. We consider the execution that reaches a configuration

where every node in a circuit has a level so high that it is greater than the highest

level of any node in the tree component plus the weight of the edge for the node
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color according to metric w. Also, there is at least one such circuit such that at

least one node of the circuit is also a neighbor of one node in the tree component.

Now, consider one node i that is a neighbor of a node in the tree component; this

node may have to execute its level adjustment rule (in case it is needed), then it

may execute (immediately after) its parent change rule. In this execution, after the

FixParent move, all nodes belonging to the circuit containing i execute the Fixlevel

move if needed. This execution leads to a configuration where the number of circuits

is reduced by 1. The process can be repeated, and by induction on the number of

initial circuits, the result is obtained.

Theorem 6 (Weak Stabilization). Let G = (V, E) be a graph containing no dispute

wheel and r a node of V . Let P be a partition of V with 2 elements V1 and V2,

and such that V1 contains α nodes x1, x2, . . . xα. Let w be a function on E → N2.

Algorithm Greedy is weakly stabilizing for the stable tree rooted at r construction

problem according to metric w.

Proof. Starting from an arbitrary initial configuration, there exists an execution that

reaches a configuration where a tree is induced by the π variables (Lemma 3). From

such a configuration, there exists an execution that reaches a terminal configuration

(Lemma 2). Every terminal configuration denotes a stable tree according to metric

w.

Of course, our (weakly) stabilizing solution does not preclude the existence of

(strongly) stabilizing solutions, but proving the existence of such solution is an open
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question.

3.10 Alternative Strategies

If there exists a set of strategies (synonymous with algorithms) with the prop-

erty that no process can lower its cost by changing its strategy while the other pro-

cesses keep their strategies unchanged, then that set of strategies and the correspond-

ing costs constitute the Nash Equilibrium.

To prove that the stable configuration reflects a Nash equilibrium, we need to

consider various strategies that can be adopted by the processes to lower their costs.

The Greedy algorithm we proposed uses a greedy strategy, (call it Strategy A) but it

is, by no means, the only possible strategy. Let us examine a second strategy for cost

minimization by the individual processes. It is an altruistic strategy : each node picks

a parent that lowers the communication cost of the nodes of the opposite color (call

it Strategy B). As a result, processes in V1 will help lower the cost of the processes in

V2, and vice versa. To implement Strategy B, we modify the definition of ParentOK

and FixParent as follows (considering λ(i) denotes the level for the other color than

i, and that w(i, k) denotes the weight for the other color than i) 4:

Once these are appropriately defined, the main algorithm remains unchanged.

Using the same line of arguments, we can show that this algorithm also stabilizes the

system, but to a different configuration. This leads to the following observation:

4This apparently weakens the encryption mechanism since it requires x > y ⇒ x̂ >

ŷ. However, using the altruistic protocol, processes in V1 lower their cost by helping the
processes in V2 and vice versa, and this is more conducive to building a trust relationship.
So we will disregard the encryption symbol.
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Algorithm 3.3 Alternative algorithm

• Variables: λ(i) ∈ Np, π(i) ∈ N(i)

• Macro: ParentOK(i) ≡ π(i) = j : λ(j) + w(i, j) = min{λ(k) + w(i, k) : k ∈

N(i)}

FixParent(i)≡ select π(i) := j : λ(j)+w(i, j) = min{λ(k)+w(i, k) : k ∈ N(i)}

levelOK(i) ≡ λ(i) = λ(π(i)) + w(i, π(i))

Fixlevel(i) ≡ λ(i) := λ(π(i)) + w(i, π(i))

• Actions: i 6= r

– Fix level: ¬ levelOK(i) −→ Fixlevel(i);

– Fix parent: levelOK(i) ∧ ¬ ParentOK(i) −→ FixParent(i).

Observation 5. Using Strategy B, the system of processes (weakly) stabilizes to an

equilibrium configuration, and the edges connecting the processes with their parents

form a shortest path tree.

The observation trivially follows from Theorem 6 if we swap the costs of the

nodes in V1 and V2 for each edge.

The Cost of Equilibrium. A natural component of such an exercise is to analyze

the quality of the equilibrium configuration: How bad is the cost of this configuration

in comparison with the “optimal” configuration? For the nodes of a given color, define

the cost of a configuration as the sum of weights of all the tree edges for that color.

Define the optimal cost as the cost of the tree when all nodes are of the same color.
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The issue is: By what extent will it increase if some of the nodes belong to a different

color? Here is an upper bound. Let emax = max{w(e), w(e) : e ∈ E} and emin =

min{w(e), w(e) : e ∈ E}. Then the following theorem holds.

Theorem 7. For any set of processes of a given color, the ratio of the cost of the

equilibrium configuration to the cost of the optimal configuration is bounded from above

by emax

emin
.

Proof. A tree with N nodes has (N−1) edges, so the cost of the optimal configuration

has a lower bound of (N−1).emin. To determine the maximum possible weight of the

tree in an equilibrium configuration under any of the algorithms A or B (or a mix of

the two), think of an adversary that can switch the color of zero or more processes

so that each node chooses the edge with largest weight as its link to its parent node.

The cost of the resulting configuration is bounded from above by (N − 1).emax. The

ratio of the two costs will not exceed emax

emin

This is a loose upper bound. In general, when the number of processes in V1 is

much larger than the number of processes in V2, Strategy A will lead to a lower cost

for the processes in V1, and Strategy B will lead to a lower cost for the processes in

V2. This is quite intuitive, since in Strategy A, each step by the majority (i.e. in V1)

processes helps lower their own cost at the expense of the competitors’ cost, whereas

in Strategy B, each step by the majority processes lowers the cost of the competitors

at the expense of their own cost.

Observation 6. The cost of the processes in V1 (resp. V2) will be minimum when
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they use Strategy A while the processes in V2 (resp. V1) use strategy B.

Viewed from the perspective of the processes in V1, the validity of the above

observation is based on the fact that that every node picks the best edge for the

processes in V1, so the algorithm reduces to the classical stabilizing shortest path

algorithm (e.g., [8]) for the nodes in V1.

Theorem 8. For a given graph G = (V, E) with a given composition of the processes

in V , and the set of strategies (A, B) the equilibrium configuration is unique, and it

reflects the Nash equilibrium.

Proof. Assume that using whatever strategy the processes choose, the system of pro-

cesses stabilizes to some configuration that determines the payoffs for the processes

in the V1 and V2 sets. Now consider three different cases:

1. Assume that all processes use Strategy B. Observe that one or more processes

of a certain group will switch to Strategy A, since this will lower their cost

(Theorem 3). However the other group might apprehend this, they will also

switch from Strategy B to Strategy A.

2. Assume that the processes in V1 use Strategy B, while the processes in V2 use

Strategy A. However, altruism does not pay off unless everyone is altruistic.

Since the processes in V1 do not know what strategy the processes in V2 are

using, they will switch to Strategy A, and their cost will go down.

3. Assume that all processes use Strategy A. Now no process will be motivated

to switch to Strategy B, since such a switch will imply lowering the cost of the
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other group even if it increases the cost of its own group. Thus this is a stable

configuration.

Thus, regardless of the initial strategies chosen by the processes in V1 and V2,

all processes will eventually switch to Strategy A, and regardless of the initial values

of L and p, the system will stabilize in a bounded number of steps. Furthermore,

since no process can unilaterally lower its cost by switching to a different strategy,

the stable configuration will reflect a Nash equilibrium.

Note. Both strategies (A and B) can be further optimized as follows. Consider A

first. There may be cases in which a node i ∈ V1 finds multiple neighbors j satisfying

the condition of being a “best parent”. Instead of arbitrarily choosing one such node,

i will choose a π(i) = j for which the cost of the opposite color component of λ(i)

is the lowest. A similar step can be taken by the nodes in V2 too. The interesting

aspect of this exercise is that not only does the network state stabilize to a desirable

configuration, but the strategies stabilize too, in as much as regardless of the starting

strategies, all processes end up using the same final strategy. This does not rule out

the invention of new strategies beyond what has been considered for this exercise.

3.11 Discussions

In [24, 23], Griffin et al. considered the stable path problem, where every

individual node has preferences on every path toward the destination. In [24], the

authors showed that the problem of deciding upon the existence of routing equilib-

rium is NP-complete or NP-hard depending on the problem statement. In [23], the
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same authors presented a sufficient condition (dispute wheels) on path preferences

so that the equilibrium exists. In our case, we also find the sufficient condition for

the existence of a stable tree, although the problem is strictly weaker, as ”groups”

have preferences on edges toward a destination. This could have led to complexity

weakenings, but in [10], we showed that it is not the case, as bad networks from [24]

could be translated to our constraints.
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CHAPTER 4
SELFISH STABILIZATION IN MAXIMUM FLOW TREE

4.1 Introduction

This chapter formulates the problem of finding a maximum flow tree in the

selfish stabilization environment and proposes possible solutions provided equilibrium

exists in the system. Given a graph G = (V, E), assume that there are p disjoint

subsets (or colors) of nodes V1, V2,. . . ,Vp, so that V = ∪p
i=1Vi. We convert G into a

multi-weighted graph by defining a cost function w of E → Np, where N is the set of

positive integers. For every i ∈ 1 . . . p, the function wi : E → N denotes set Vi’s cost

of using edge e (the capacity value). Starting from an arbitrary initial configuration,

the p different colors of nodes cooperate with one another to form a flow tree at a

designated node (called the root), and at the same time compete against each other

to maximize their flow value to the root, which acts as a sink.

The motivation of our problem is drawn from the real world scenario of band-

width allocation [21]. In a practical scenario, different processes sometimes compete

among themselves to utilize the bandwidth of an available channel. Here we try to

model that as a variation of the maximum flow problem. Like traditional maximum

flow problem, each edge is assigned a capacity value, but because of the presence of

different subsets of processes, the capacity of each edge (channel) is shared among

the different subsets (based on some payment scheme, nodes may buy part or whole

of the capacity).
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Flow of each vertex in a flow tree is computed by applying the min function to

the flow of its parent in the tree and the capacity of the edge to its parent in the tree.

In a maximum flow tree, for every vertex, its path along the tree has the maximum

possible flow to the root [21], regardless of the color of the vertices. Note that such

configurations may not be unique, or convergence to such a configuration may not be

feasible. Nevertheless, each process will try to construct such a tree so that it can

push as much flow as possible to the root using the available path. The formulation

in [21] does not allow a flow to fork into multiple paths and then join later, since that

will violate the underlying tree topology. We stick to these assumptions.

4.2 Contributions

We present examples of the existence of non-equilibrium configuration, where

no matter how the scheduler chooses its sequence of actions, the system does not

stabilize and analyze the sufficient condition for the existence of a stable tree, i.e.,

an equilibrium, in the system. We also consider the role of both central scheduler

and synchronous scheduler in the context of selfish stabilization. We examine condi-

tions under which, starting from an arbitrary initial configuration, different classes

of processes can stabilize to an equilibrium configuration after which no process can

unilaterally increase its flow value to the root.

4.3 Model and Notation

We follow the general model of selfish stabilization we introduced in Chapter

2. In addition to that, for the maximum flow tree problem, we consider the following
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specific notations:

For the maximum flow tree problem, the cost of this path for a node belonging

to a particular subset Vi is given by

wi(Tv→u) = mine∈Tv→u
wi(e)

where the min function returns the minimum cost (capacity) edge belonging

to the path from u to v. The flow of each vertex in a flow tree is computed by

applying the min function to the flow of its parent in the tree and the capacity of

the edge to its parent in the tree. In a maximum flow tree, for every vertex, its path

along the tree has the maximum possible flow of any path to the root.

In this chapter, we study the problem of constructing a tree T so that for

each node v belonging to vi, the flow that can be pushed from v to the root r (called

cost(v)) is maximized. This cost is equal to cost(v) = wi(Tv→r).

This is the private goal for every node v. A node v is stable in a tree T if it

has no incentive to chose another neighbor z ∈ NG(v).

Stable Node Let G = (V, E) be a graph and r a node of V . Let P be a partition of

V with p elements V = ∪p
i=1Vi. Let w be a function on E → Np. Let T be a tree of

G. The node v ∈ Vi is stable in T for metric w if and only if it satisfies the following

condition for the maximum flow tree:

∀z ∈ NG(v),

mine∈Tv→r
wi(e) ≥ min(wi((v, z)), mine∈Tz→r

wi(e))

In other words,

∀z ∈ NG(v), wi(Tv→r) ≥ min(wi((v, z)), wi(Tz→r))
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Similarly, a tree T is stable if every node in T is stable.

Stable Tree Let G = (V, E) be a graph and r a node of V . Let P be a partition of

V with p elements V = ∪p
i=1Vi. Let w be a function on E → Np. Let T be a tree of

G. The tree T is stable for metric w if and only if for every node v ∈ V , v is stable

in T for metric w.

Our goal is to devise a stabilizing mechanism for the construction of a stable

tree given a particular metric – the computation should lead to a tree configuration

so that the conflicting private goals of cost optimization do not interfere with the

common goal of tree formation.

4.4 Non-existence of Equilibrium: An Example

We show an example of non-equilibrium for the maximum flow tree problem

when processes are selfish. Fig 4.1 shows an example where there exists no stable

tree for the maximal flow path, i.e., there exists no equilibrium with a 2-partition

of the nodes of a graph with 5 nodes (called graph Z). The set of nodes V is split

into white nodes and black nodes: white = {r, v1, v3}, black = {v2, v4}. The metric

w is described in Fig 4.1. By contradiction it is easy to verify that there exists no

stable tree here: assume there exists a stable tree T . Now, if edge (v2, r) is in T ,

then edge (v3, v2) should also be in T (otherwise T would not be stable because the

maximum flow path between v3 and r for metric w1 is (v3, v2, r)). Now edge (v4, v3)

is in T because path (v4, v3, v2, r) is a maximum flow path between node v4 and r for

metric w2. Now consider node v1. Edges (v1, v2) and (v1, v4) cannot be in T . So, edge
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(v1, r) must be in T . This contradicts the stable property of T because at node v2,

we would have mine∈Tv2→r
w2(e) = 7 ≤ min(w2((v2, v1)), mine∈Tv1→r

wi(e) = 9. The

same argument can be applied for edges (v3, r), (v1, r), and (v4, r) by assuming one

of them is in T . So there exists no stable tree for this instance of w. Of course, this

example can be generalized to an arbitrary p ≥ 2.

v1

v2 v3

v4

r

7, 9

9, 7 7, 0

9, 1

6, 9

9, 7

6, 7

9, 0

Figure 4.1: The graph Z with 5 nodes. This is an example with two colors where
there does not exist an equilibrium in the system. Each edge is weighted (white color,
black color). By contradiction, one can show that there is no stable tree Z

Clearly, there is no point in searching for a stabilizing solution, because no

such solution can be found.

4.5 The Decision Problem: Does Equilibrium Exist?

We now discuss the existence of an equilibrium (i.e. a stable maximum flow

tree T for a particular metric w) in relation to the number of conflicting interests (i.e.

the number p in the partition of nodes of V into p sets V1, V2, . . . , Vp). The special

case of p = 1 is the usual problem of the maximum flow tree with non zero edge costs,

so an equilibrium always exists. We first prove that when p ≥ 2, determining whether
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there exists an equilibrium for a particular metric w is an NP-complete problem.

Theorem 9. Let G = (V, E) be a graph and r a node of V . Let P be a partition of

V with p ≥ 2 elements V = ∪p
i=1Vi. Let w be a function on E → Np. The problem of

deciding the existence of a stable maximum flow tree T for metric w is NP-complete.1

Proof. It is easy to show that this problem is in NP. Indeed, given a particular tree T ,

checking whether T is stable for metric w can be done in polynomial time by checking

if every node is stable in T for metric w.

Then, we construct a polynomial transformation (almost similar to transfor-

mation described in [24]) with the NP-complete problem 3-SAT defined as follows:

Instance: Collection C = {c1, c2, . . . cm} of clauses on a finite set U of variables such

that |ci| = 3 for 1 ≤ i ≤ m.

Question: Is there a truth assignment for U that satisfies all the clauses in C?

We now present the transformation R : (C, U)→ (G, r,P, w):

1. V1 ← {r}; V2 ← ∅; E ← ∅ ;

2. for each variable z ∈ U do:

(a) V ← V ∪ {z, z};V1 ← V1 ∪ {z};V2 ← V2 ∪ {z};

(b) E ← E ∪ {(z, r), (z, r), (z, z)};

(c) w(z, r)← (6, 11); w(z, r)← (11, 6); w(z, z)← (11, 11);

1This theorem was proved with help from Johanne Cohen and Sébastien Tixeuil
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3. for each element c ∈ C do:

(a) a copy of graphZ drawn in Fig. 4.1 whose nodes are named {c.v1, c.v2, c.v3, c.v4, c.r}

is a subgraph of G.

(b) w(c.r, r)← (20, 20);

(c) for each literal s ∈ c

i. if s corresponds to a negation of a variable (x) then E ← E∪{(c.v1, s)};

w(c.v1, s)← (10, 0);

ii. else E ← E ∪ {(c.v2, s)}; w(c.v2, s)← (0, 10);

(d) E ← E ∪ {(c.r, r)};

4. V ← V1 ∪ V2; P ← (V1, V2)

5. Return (G, r,P, w):

It is straightforward to verify that this transformation can be done in poly-

nomial time in the size of the instance. We now prove that there exists a particular

assignment t that satisfies all clauses of C if and only if there exists a stable maximum

flow tree T in G for metric w.

First, assume that there exists an assignment t that satisfies all clauses of C.

We construct from t a tree T that is stable in G for metric w. For each variable z ∈ U ,

(z, v) ∈ T . If t(z) = true, then (r, z) ∈ T else (t(z) = false), (r, z) ∈ T . Nodes z and

z are stable in T for w (since all other paths from z (or z) to r contain at most one

edge having weight 0). Moreover, for every c ∈ C, there exists at least one of those
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Figure 4.2: Example of the transformation with a clause c = (v1, v4, v8)

three literals s such that t(s) = true. Without loss of generality, we assume that s is

the negation of a variable. T is constructed such that

• (c.r, r) ∈ T , (since all other paths from c.r to r contain at most one edge having

weight less than 20)

• (c.v1, s) ∈ T (because the cost of path Tc.v1→r is 10 and all other paths from

c.v1 to r contain at most one edge having weight less than 10)

Moreover, if c contains an positive literal s′ such that t(s′) = true, then (c.v2, s
′) ∈ T
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using the same argument for the fact that (c.v1, s) ∈ T . We can deduce that

(c.v3, c.v2) /∈ T and (c.v4, c.v1) /∈ T (because paths {c.v4, c.v1, s, r} and {c.v3, c.v2, s
′, r}

contain an edge having weight less than 0). So (c.v4, c.r) ∈ T and (c.v3, c.r) ∈ T .

Otherwise, (if c does not contain an positive literal s′ such that t(s′) = true),

(c.v2, c.r) ∈ T so that c.v2 is stable. So (c.v3, c.v2) ∈ T and (c.v3, c.v4) ∈ T .

Second, assume that there exists a stable tree T in G for metric w. From this

stable tree T , we construct an assignment t that satisfies all clauses of C. We consider

an element c = (s, s′, s′′) ∈ C.

Let us first notice that the maximun flow path according to w1 in G from c.r

to r is (c.r, r). This permits to deduce that for every c ∈ C, (c.r, r) ∈ T . Assume now

that the two paths from c.v1 to r and from c.v2 to r in T contain only nodes c.v1,

c.v2, c.v3, or c.v4. Then, by construction of G, to cover nodes c.v1, c.v2, c.v3, c.v4, c.r,

the spanning tree T must use a subset of the edges of the complete graph induced by

the set of nodes {c.v1, c.v2, c.v3, c.v4, c.r}. This brings us back to the case of Fig 4.1

where there exists no stable spanning tree. This contradicts the fact that the two

paths from c.v1 to r and from c.v2 to r in T contain only nodes c.v1, c.v2, c.v3, or c.v4.

Thus, this implies that there exists a literal s of clause c

1. such that the path from c.v1 to r is in {c.v1, s, r} if s is a negation of a variable

z (s = z).

2. or such that the path from c.v2 to r is in {c.v2, s, r} otherwise.

Without loss of generality, assume the path from c.v1 to r in T includes s. This
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path does not include s (otherwise, {c.v1, s, s, r} would have a weight of 6 whereas

{c.v1, c.r, r} would have a weight of 7). In this configuration, node c.v1 is not stable

in T . Thus, (s, r) ∈ T and (s, s) ∈ T . We now present the assignment t : U →

{true, false}, such that for each variable s ∈ U , t(s) = true if and only if (s, r) ∈ T .

From the previous remark, we deduce that t satisfies all clauses in C.

4.6 A Sufficient Condition for Stable Tree

Theorem 10. Let G = (V, E) be a graph and r be a node of V . Let P be a partition

of V with 2 elements V1 and V2, and such that V1 contains exactly one node x. Let w

be a function on E → N2. There always exists a stable tree T in G for metric w.

Proof. If x = r, we fall back to the known case of the construction of a maximum

flow spanning tree with metric w2. In the sequel, we assume that x 6= r. The theorem

is proved by induction on the degree d of x.

If d = 1, every maximum flow tree using metric w2 is a stable tree since x has

exactly one incident edge.

Suppose now that the theorem is true for any graph where the degree of x is

(strictly) lower than d. Let z1, . . . , zd be the neighbors of x. Let pcci be a maximum

flow path between x and r including zi according to metric w2. For simplicity, we

assume neighbors are sorted by decreasing values of w2(pcci). Let us now consider

the graph G1 that is constructed in the following way:

• V (G1) = V (G), E(G1) = E(G) \ {(x, z1)}

• ∀e ∈ E(G1), w′(e) = w(e)
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By induction hypothesis, there exists a stable tree T 1 in G1 according to metric

w′. Suppose that T 1 is not stable in G according to metric w. By definition of w′

and G1, only x may not be stable. Thus, we have:

min(w1((x, z1)), w1(T
1
z1→r)) > w1(T

1
x→r)

Consider T that is a copy of T 1 except that the parent of x is z1. Now, x

is stable in T . We now prove that T is stable in G according to metric w. Let

Y = V ∩ {y : x ∈ T 1
y→r}. First, every node in V \Y is stable. Now consider a node

y ∈ V2 ∩ Y . Let t be the neighbor of y that belongs to the path T 1
y→r. Now, y is

stable in G1 for metric w′ (since x 6= y), so we get:

∀s ∈ Γ(y)\{t}, w2(T
1
y→r) ≥ min(w2(T

1
s→r), w2((s, y))) (4.1)

By definition, we have:

w2(Ty→r) = min(w2(T
1
y→x), w2((x, z1)), w2(T

1
z1→r)) (4.2)

The path T 1
z1→r connecting r to z1 and belonging to T 1 is a maximal flow path

according to metric w2 since there exists a maximal flow path from r to w1 according

to metric w2 whose nodes all belong to V2. Then, by definition of pcc1 which is a

maximal flow path from x to r through z1, we have:

min(w2(T
1
z1→r), w2((x, z1))) = w2(pcc1) (4.3)

Combining Equations 4.2 and 4.3, we obtain:

w2(Tw→r) = min(w2(T
1
w→x), w2(pcc1)) (4.4)
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By definition, ∀zi ∈ ΓG(x), we have w2(pcci) ≤ w2(pcc1). Combining the

previous remark and Equation 4.4 gives:

w2(Ty→r) ≥ min(w2(T
1
y→x), w2(pcci)) (4.5)

w2(Ty→r) ≥ min(w2(T
1
y→x), w2(T

1
x→r)) (4.6)

w2(Ty→r) ≥ w2(T
1
y→r) (4.7)

Combining Equations 4.1 and 4.7, we deduce that y is stable in tree T for

metric w. Thus, T is stable in G for metric w. This concludes the proof.

Theorem 11. Let G = (V, E) be a graph and r a node of V not containing a dispute

wheel. Let P be a partition of V with two elements V1 and V2, and such that V1

contains two nodes x1 and x2. Let w be a function on E → N2. There always exists

a stable maximum flow spanning tree T in G for metric w.2

Proof. Without loss of generality, we assume that r ∈ V2. We prove the theorem by

constructing a sequence of spanning trees. First, we introduce some notations :

• br(z, T ) = maxx∈ΓG(z)(min(wi(x, z), wi(Tx→r))).

• BR(z, T ) = argmaxx∈ΓG(z)min(wi(x, z), wi(Tx→r)).

where z is a vertex belonging to Vi and T is a spanning tree of G.

Node x1 has d neighbors in G denoted by z1
1 , . . . , z

1
d. We prove by induction

on d that there exists a stable tree T in G for metric w.

2This theorem was proved with help from Johanne Cohen and Sébastien Tixeuil
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If d = 1, it is sufficient to compute the stable tree T in G ⊂ {x1} using metric

w (there exists such a tree by Theorem 10). Then, the edge incident to x1 is added

to T . Such a tree is stable in G for metric w.

Suppose now that the theorem is true for any graph where x1 has degree

(strictly) less than d. Let z1
1 , . . . , z

1
d be the neighbors of x1. Consider now the graph

G1 that is constructed in the following way:

• V (G1) = V (G) and E(G1) = E(G) \ {(x1, z
1
1)},

• ∀e ∈ E(G1), w′(e) = w(e)

By induction hypothesis, there exists a stable tree T (1) in G1 according to metric w′.

We prove the induction step by contradiction : all spanning trees T are not

stable in G according to metric w. So by assumption, T (1) is not stable in G according

to metric w. So we get:

min(w1((x1, z
1
1)), w1(T

(1)

z1
1→r

)) ≥ w1(T
(1)
x1→r) (4.8)

Consider T
′

, that is a copy of T (1) except that the parent of x1 is z1
1 . Now, x1

is stable in T
′

.

min(w1(T
(1)
z→r), w1(z, x1)) > w1(T

(1)
x1→r) (4.9)

Since vertices x1 and x2 belong to V1, x2 is also stable. By hypothesis, since

no tree is stable, some vertices in V2 are not stable: only neighbors of x1 may be not

stable in T
′

. And, vertex y in V2 which is not stable in T
′

is such that x1 ∈ T
(1)
y→r and

hence x1 ∈ T
′

y→r.
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We transform tree T
′

into tree T (2) such that

• all vertices in V2 will be stable,

• x2 has the same parent in T (2) as in T
′

Let U ⊆ ΓG(x1) be a set of unstable vertices in T
′

. We consider a vertex v such

that ∀y ∈ U , br(v, T
′

) ≥ br(y, T
′

). Tree T
′

is modified so that a vertex of BR(v, T
′

)

is a father of v. In this new tree, only neighbors of x1 or of v belonging to V2 can not

be stable. This modification can be performed with an other vertex not stable, and

so one until all vertices in V2 are stable.

By hypothesis, tree T (2) is not stable, hence the following properties are satis-

fied:

1 only x2 is not stable,

2 T
′

x1→r = T
(2)
x1→r (because all vertices in V2 are stable in T

(1)
x1→r.

The fact that x2 is not stable in tree T (2) is due to the following observations:

Case 1: w2(T
′

x1→r) > w2(T
(1)
x1→r). So it implies that there exists vertex y1 in

V2 such that T
(2)
y→r 6= T

′

y→r and such that there exists z ∈ BR(x2, T
(2)) with

y1 ∈ T
(2)
z→r.

Case 2: w2(T
′

x1→r) < w2(T
(1)
x1→r). So it implies there exists vertex y1 in V2 such

that T
(2)
y1→r 6= T

′

y1→r and such that y1 ∈ T
′

x2→r.

Case 1: Assume that y1 ∈ V2 is such that T
(2)
y1→r 6= T

(′)
y1→r and such that there exists

z ∈ BR(x2, T
(2)) with y1 ∈ T

(2)
z→r.
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From Property (2) of tree T (2) and from the definition of y1, we get

min(w2(T
(1)
y1→x1

), w2(T
(1)
x1→r)) ≥ w2(T

(2)
y1→r) (4.10)

min(w1(T
(2)
x2→z), w1(T

(2)
z→r)) ≥ w1(T

(2)
x2→r) (4.11)

We now build a tree T
′′

from T (2) such that x2 is stable : tree T
′′

is a copy of

T (2) except that the parent of x2 is z. Vertex x2 is stable in T (2).

Note that we build a sub-graph of G corresponding to a dispute wheel such

that y1 (resp. x2) is uj (resp. uj+1) with j 6= 0. Now, it remains to find which vertex

corresponds to vertex u0.

By definition T
′′

is not stable and x1 and x2 are stable. Tree T
′′

can be

transformed into tree T (3) so that all vertices in V2 were stable. We transform this

tree using the same way as we transform tree T
′

into T (2). So, for any vertex y in V2

unstable in T
′′

, we have

w2(T
(3)
y→r) > w2(T

′′

y→r) (4.12)

Using the same arguments as previously, only x1 is not stable in T (3). We will consider

two cases:

Case 1.1: w2(T
′′

x2→r) < w2(T
(2)
x2→r)

Case 1.2: w2(T
′′

x2→r) > w2(T
(2)
x2→r)

Note that the case where w2(T
′′

x2→r) = w2(T
(2)
x2→r) is impossible. If it is the

case, T
′′

would be stable. So there is a contradiction with the fact that all trees are

not stable.
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Case 1.1: Assume that w2(T
′′

x2→r) < w2(T
(2)
x2→r). By definition, all unstable vertex y

in T
′′

are V2 such that x2 ∈ T
′′

y→r and hence x2 ∈ T
(2)
y→r. So we can deduce that for

any unstable vertex y in T (2),

min(w2(T
(2)
y→x2

), w2(T
(2)
x2→y1

), w2(T
(2)
y1→r)) >

min(w2(T
′′

y→x2
), w2(T

′′

x2→r))

Hence, we get:

w2(T
(3)
y1→r) > min(w2(T

′′

y→x2
), w2(T

′′

x2→r))

Since x1 is not stable in T (3), there is y2 ∈ (T
′′

x1→r) such that y2 is not stable in

T
′′

. In other words, there is z ∈ BR(x1, T
(3)) such that min(w1(T

(3)
x1→z), w1(T

(3)
z→r)) >

min(w1(T
(3)
x1→y1), w1(T

(3)
y1→r)). By definition of stable node in T (1) in graph G1, we have

w1(T
(1)
x1→r) = min(w1(T

(3)
x1→z), w1(T

(3)
z→r))

In fact, G contains a dispute wheel where y2 corresponds to u0 of size 4. This

fact contradicts with the fact that G does not contains a dispute wheel. We can

conclude that this case is impossible.

Case 1.2: Assume that w2(T
(2)
x2→r) < w2(T

′′

x2→r).

Since x2 is not stable in T (2), we have:

min(w1(T
(′′)
x2→y1

), w1(T
(2)
y1→x1

), w1(T
(2)
x1→r))

> w1(T
(2)
x2→r)

Since x2 is stable in T (1), we get:

w1(T
(2)
x2→r) > min(w1(T

(′′)
x2→y1

), w1(T
(1)
y1→r))
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In fact, G contains a dispute wheel where x2 corresponds to u0 of size 4. This

fact contradicts with the fact G does not contains a dispute wheel. We can conclude

that this case is impossible.

Case 2: These cases are also impossible. This fact can be shown by applying the

same arguments as previously. So, all cases are impossible. So there is a contradiction

with the fact that all spanning trees are not stable for metric w in G.

Theorem 12. If G contains no dispute wheel, there exists a stable maximum flow

tree.

Proof. The theorem is proved by induction on the cardinality α of V1. The case when

α = 2 corresponds to Theorem 11 and for the inductive step can be shown using the

same method in the proof of Theorem 11.

4.7 Different Types of Equilibria in the System

Note that there is a difference between the existence of an equilibrium and

the prospect of stabilization. In some settings, equilibrium may exist but the sched-

uler may choose actions to prevent the system from stabilizing, as we demonstrate

in subsequent sections. Obviously only configurations that enable the existence of

equilibria are relevant for executing algorithms whose purpose is to find them. We

categorize the diffrent equilibria scenario below:

1. No equilibrium: Figure 4.1 is an example where there exists no equilibrium

in the system.
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2. Single rooted equilibrium: Figure 4.7 is an example where there exists ex-

actly one rooted equilibrium in the system.

3. Single non-rooted equilibrium: Figure 4.5 is an example where there exists

exactly one non-rooted equilibrium in the system, comprising of all the nodes

except the root and the outer edges of the graph.

4. More than one rooted equilibrium: Multiple equilibria are also feasible in

a system. Figure 4.3 shows an example where cleverly chosen weight configu-

rations lead to multiple equilibria.

5. Rooted and non-rooted equilibria: There can be two equilibria in a system,

one with the root and another without the root. Figure 4.4 shows an example.

The four nodes except the root can constitute an equilibrium when their parent

pointers do not point to the root but point to the next outer node and thus

form a cycle, whereas if all the nodes except the root choose the root as their

parent, then the system stabilizes to a rooted equilibrium.

4.8 Weak Stabilizing Algorithm for Maximum Flow Tree

All nodes in V have a common goal and a private goal. The common goal

is as follows: starting from an arbitrary initial configuration, they collaborate with

one another to form a maximum flow tree with a given node designated as the root.

The private goal of each node is to maximize its flow value without violating the

flow constraints i.e., a node cannot push an amount of flow that is greater than its



75

v1

v2 v3

v4

r

5, 2

5, 3

5, 3

5, 2

5, 3

3, 5 5, 3

3, 5

3, 5

5, 2

3, 5

5, 2
v1

v2 v3

v4

r

3, 5

3, 5

3, 5

3, 5
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3, 5 5, 3
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3, 5

5, 2
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5, 2

Figure 4.3: The two graphs are the same as their edge costs are the same. But it is
to be noted that the equilibria in the two cases are different as the flow values of the
nodes are different. So multiple equilibria are possible with the same setting.

parent’s flow value or the capacity value of the edge that joins it to its parent.

We assume that each node i is aware of N(i), the set of its neighbors (excluding

i itself). Similarly, each node i is aware of the cost of each of its adjacent edges

e = (i, j) : j ∈ N(i). The cost of an edge e is a vector

w(e) = (w1(e), w2(e), w3(e), . . . , wp(e))

where wk(e) denotes the cost of the edge e for a node of color k (1 ≥ k ≥ p).

Also, i maintains two variables: π(i) and flow(i). The variable π(i) denotes

the parent of i in the maximum flow tree. By definition, for the root node r, π(r)

is non-existent. Every other node picks a neighboring node as its parent (i.e. the

domain of the π(i) variable is NG(i)). The variable flow(i) denotes the vector

flow(i) = (flow1(i), f low2(i), f low3(i), . . . , f lowp(i))

where flowk(i) denotes the flow for a node of the kth color from node i to the root.

By definition, flow(r) = maximum capacity values for each color.
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Figure 4.4: Two equilibria - one with the root, the other without the root
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Figure 4.5: Single non-rooted equilibrium
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The algorithm has three rules, executed by all the nodes except root r, when

the guard of a node becomes true. These combined rules are able to find an equilib-

rium from configurations where there exists at least one equilibrium. Note that an

equilibrium configuration may exist without the root node (See Figure 4.4).

Our flow algorithm is weakly stabilizing in the sense, in configurations described

above for multiple equilibria, it may happen that the algorithm terminates without

finding the rooted maximum flow tree equilibrium, which is the desired solution.

Rather the algorithm may get stuck to the other equilibrium configuration which is

the non-rooted equilibrium. But weak stabilization implies that there exists at least

one computation that leads the system to the rooted maximum flow tree equilibrium

configuration. So even though some action sequences will fail to find the desired

solution, there is at least one action sequence which will be able to find the rooted

maximum flow tree equilibrium.

The algorithm has three rules, for every node i 6= r. When the guard of node

i of color k is true, it applies the following three rules in order:

R1 i of color k chooses a parent j from a set of nodes in its neighborhood such

that i can push the maximum flow, provided i is not the parent of j. This

parent-check condition is necessary to break short two-edge cycles where two

neighboring nodes think each is other’s parent.

R2 If i has only one neighbor j, then j becomes i’s parent. This ensures the

algorithm includes every node in the final maximum flow tree.
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Algorithm 4.1 The Maximum Flow Tree Algorithm

R1 fix parent(ik) ≡ π(ik) = j ∈ NG(ik) ∧ ik 6= π(j) ∧ NG(ik) >

1: {min [capk(i, j), f lowk(j)]}, k ∈ C

R2 fix parent(ik) ≡ π(ik) = j ∈ NG(ik) ∧ ik 6= π(j) ∧ NG(ik) =

1: {min [capk(i, j), f lowk(j)]}, k ∈ C

R3 fix flowk(i) ≡ flowk(i) = min (flowk(π(i), capk(i, π(i))) , k ∈ C

R3 R3 means i adjusts its flow value after choosing its parent.

Fig 4.6 is the redrawing of Fig 4.1 to show how in case where there exists no

equilibrium in the system; the algorithm, as expected, continues forever. The fact

that one can always apply one of the last three rules at one or more nodes of Z after

the first two rules makes the system oscillate forever.

The three set of numbers against each node denotes the flow values of that

node for white and black colors respectively. It is to be noted that if we start with

arbitrary initial values of the nodes (we chose 9, 9 for convenience, but it could be any

value), and let the scheduler choose any node whose guard is true, then the parent

pointer for each node continually keeps changing. As a result, the flow values of each

node also oscillates forever. In the above example, we choose the repetitive pattern of

execution sequence v2, v3, v4, v1, v2, v3, v4, v1 ... to illustrate this. The x sign against

an edge denotes at some point of the execution, it was (and again will be in the

future) the parent and the last two flow values of each node denote the perpetual flow
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v1

v2 v3

v4
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×

9, 1

×

6, 9 ×

9, 7

6, 7

9, 0

×

Figure 4.6: The graph Z with 5 nodes. Every node’s initial flow value is (9,9).
After rule 1) and 2) are applied, the repetitive pattern of execution sequence
v2, v3, v4, v1, v2, v3, v4, v1 ... makes the system oscillate forever. There is no equi-
librium for the above system no matter how the scheduler chooses the sequence of
actions.

values of that particular node. For example, when v2 chooses r as its parent, its flow

value is given by 9, 7 but when it chooses v1 as its parent, its flow value is 6, 9. This

is true for the other nodes too except the root.

Fig 4.7 shows an instance of equilibrium applying the algorithm in a different

system where equilibrium exists.

4.9 Proof of Correctness

Theorem 13 (Partial Correctness). Let G = (V, E) be a graph and r a node of V .

Let P be a partition of V with p elements. Let w be a function on E → Np. If no

node has enabled rules and there is a single rooted equilibrium, the structure induced

by the parent variables of each node induces a stable tree T rooted at r for metric w.

Proof. It is easy to show that the induced structure is a tree. Due to the fact that
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v2 v3

v4

r

3, 4
5, 1
4, 6

2, 2
5, 3

2, 5
6, 3

6, 9
2, 3

6, 96, 1

4, 6 3, 3

6, 3

5, 1 ×

2, 1

5, 4

2, 9

Figure 4.7: Example of the algorithm finding the equilibrium in a system. In the
above graph, the execution sequence is v3, v4, v2, v1, v2. After five moves, stabilization
is achieved. We chose some arbitrary initial flow values for the nodes to begin with
(which are (6, 9); (3, 4); (2, 2); (2, 5) respectively for v1, v2, v3, v4). The x against an
edge between v2 and v1 indicates that v2 initially chose v1 as its parent but later
changed its parent. The updated flow values of the nodes are written against each
node.

the parent variables always point to a neighbor (except r), the structure consists of

either a tree or a connected component consisting of a tree and a set of circuits.

Assume for the purpose of contradiction that there exists at least one such circuit.

As w only has costs in N , all flow values of nodes are strictly positive. As no rule is

enabled, this implies that all flow values are OK, and thus each flow value is either

equal or less than the flow value of the parent. Due to the well founded property of

the“lower than” relation on (positive) integers, such a circuit is impossible. Hence,

by contradiction we infer that the induced structure is a tree.

Now, we prove that the obtained tree T is stable for metric w. As no rules are

enabled, this means that the flow variables are all properly computed from the local

metric information. By induction on the flow path to the root r, this means that the
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flow variables contain the correct values for the cost of every path towards the root

according to metric w. Now, the parent changing rules are also not enabled. This

implies that the parent variables are actually selecting the best neighbor according to

the color k of node i ∈ Vk. This best neighbor being selected according to the metric

w, we conclude that the tree T that is induced by the parent variables is a stable tree

for metric w.

Theorem 14. Let G = (V, E) be a graph and r a node of V . Let P be a partition of

V with p elements. Let w be a function on E → Np. If there exists a configuration

where the parent variables induce at least a single maximum flow tree to the root, then

there exists an execution of the flow algorithm that leads to the maximum flow tree

configuration with a central demon.

Proof. Let us consider the execution of different rules of the algorithm. R3 does flow

adjustment, so nothing in terms of parent selection alters for applying this rule.

Now let us assume all nodes that have their fix flow (R3) rule enabled execute

it, and that nodes that have their parent fixing rule don’t execute it. Since the π

variables induce a tree to the root, only a fixed number of fix flow can be executed.

If in this configuration, no node has a rule to execute, the configuration is terminal.

Otherwise, this means that there exists at least one node that is willing to change

its parent. When one node changes its parent, there exists an execution in which

all nodes in its subtree update their flow value and no other parent fixing rule is

executed. By the acyclic nature of the tree, there is a finite number of such moves.

The only configuration where repetition can persist in the system is where there
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are equilibria in the system without a tree configuration. Then the acyclic property

will not hold anymore and R1 can lead the system to a non-rooted equilibrium which

involves dispute wheels. Otherwise, following the argument above, we can conclude

that R1 always finds the rooted maximum flow tree if there exists at least one such

tree in the system.

It is to be noted that R2 does not anyway conflict with finding the rooted tree

equilibrium configuration. If there is a node whose only neighbor is the root, then

the root is selected as the parent. Otherwise the node in question is a leaf node and

applying R2 just ensures that all nodes are included in the final maximum flow tree.

Hence there exists a configuration where the π variables induce at least a

single maximum flow tree to the root implies that there exists an execution of the

flow algorithm that that leads to the maximum flow tree configuration with a central

demon.

Theorem 15 (Weak Stabilization). Let G = (V, E) be a graph containing no dispute

wheel and r a node of V . Let P be a partition of V with p elements. Let w be a

function on E → Np. The flow algorithm is weakly self-stabilizing for the stable tree

construction problem according to metric w.

Combining the results from Theorem 13 and Theorem 14, we get the result

of the above theorem. Weak stabilization is in contrast with traditional stabilization

(call it strong stabilization) that allows the demon to pick an arbitrary process with

an enabled guard, and schedules its action. Strong stabilization requires that all

computations starting from an arbitrary configuration lead the system to an equilib-
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Figure 4.8: An example to show that a synchronous demon can play the role of an
adversary and the configurations can repeat forever. If all the four nodes simultane-
ously make moves, then the two configurations alternately repeat. It is to be noted
there is an equilibrium in the above system though, which is reachable using a central
demon from the first configuration, with the execution sequence v3, v4, v1, v2.

rium configuration. Of course, our (weakly) self-stabilizing solution does not exclude

the existence of (strongly) self-stabilizing solutions, but proving the existence of such

solution is an open question.

Observation 7. Stabilization may not be feasible if at the same time, more than one

process make moves i.e., a synchronous demon can play the role of an adversary and

the configurations can repeat infinitely (see Fig 4.8).

4.10 Discussions

The paradigm of selfish stabilization can easily be extended in several ways.

First, it can easily be extended to systems involving more than two competing groups,

in the extreme case, each process caring for itself and no one else. Second, the metrics

used here - simple additive metric and strictly monotonic metric could be replaced

by some suitable other metric.
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CHAPTER 5
PROBABILISTIC FAULT-CONTAINMENT

5.1 Introduction

Research on fine tuning stabilization properties has received attention for more

than a decade. This chapter addresses the problem of fault-containment, and presents

a probabilistic algorithm for the persistent-bit protocol. The algorithm confines the

effect of any single fault to the immediate neighborhood of the faulty process, with

an expected recovery time of O(∆3), where ∆ is the maximum degree in the network

- while guaranteeing eventual recovery from arbitrary initial configurations.

We follow the general computational model for fault-containment described in

chapter 2. A basic problem for state-corrupting faults is the persistent-bit problem:

how to maintain the value of a single bit across a network of processes, when state

corruption occurs. Formally, the problem is defined as follows: each node i maintains

an externally observable output bit v(i). In a legal configuration LC ≡ ∀i, j : v(i) =

v(j). Failures can corrupt the value of v, but a stabilizing system must guarantee

that a legal configuration is eventually restored.

5.2 Contributions

Our solution to the persistent-bit protocol is weakly fault containing with a

randomized scheduler. Weak fault-containment means that from all single failures,

the expected recovery time of the transformed version is dependent only on the degree

of the nodes, and independent of the network size. Furthermore, observable changes
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are confined to only the immediate neighbors of the faulty processes with a high

probability. In addition to the weak fault-containment property, the system recovers

from all k-faulty (k > 1) configurations in an expected number of O(k.n) steps for an

array of n processes.

Why should anyone care about an algorithm that allows the neighbors to be

contaminated, when better solutions are available [25]? The answer lies in the small

fault-gap. Once a fault-containing system recovers from a single failure in constant

time, the fault-gap means how much time will elapse before the system becomes ready

to recover from the next single failure with the same efficiency. The dramatic growth

of the network size raises the probability of failures, and many solutions to fault-

containment that we know of achieve a fault-gap of O(n) or worse. As a result, when

two single faults occur relatively quickly, the system fails to provide the guarantee of

efficient recovery, and in fact the second single failure may require O(n) (or higher)

time for recovery depending on the problem to be solved. This seriously undermines

the availability of the fault-free system. Our solution guarantees that the fault-gap

depends only on the degree of the nodes, and is independent of the size of the network.

This will significantly increase the availability of the fault-free system. In fact, our

solution handles the recovery from simultaneous failures at nodes that are distance-3

or more apart with the same efficiency, as long as such failures occur at intervals of

O(∆3) or higher.
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5.3 Persistent-bit Protocol

For the sake of exposition, we consider the case of persistent-bit protocol, in

which a set of processes maintains the value of a replicated bit v ∈ {0, 1} across a

connected network. There are two distinct legal configurations: all 0’s or all 1’s. The

following protocol is weakly stabilizing:

Algorithm 5.1 Persistent-bit protocol: Program for process i

A1 do ∃j ∈ N(i) : v(j) 6= v(i) → v(i) := v(j) od

Note. With a deterministic demon, it is easy to verify that the protocol is not

stabilizing. With a weakly fair scheduler and a randomized demon, the protocol

stabilizes to a legal configuration with probability 1, but it is not fault containing.

Therefore in the next section, we present a probabilistic approach to make the protocol

fault containing.

Lemma 4. The persistent-bit protocol is not fault-containing with a randomized de-

mon.

Proof. Consider a linear array of processes numbered 0, 1, . . . , n−1 from left to right,

and assume that initially ∀i : v(i) = 1 holds. Let a failure of process 0 change v(0) to 0.

With this as the starting state, the computation can be reduced to a run of gambler’s

ruin1: whenever a process with v = 0 executes an action, the boundary between the

1The original study is by Coolidge[32] in 1909, where he showed that if two gamblers
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dissimilar values of v shifts to the left, and whenever a process with v = 1 executes an

action, the boundary moves to the right. The game is over when the system reaches

LC, and per [32] the expected number of moves needed is (1 × n − 1), i.e. O(n).

Thus, the protocol is not fault-containing.

5.4 Probabilistic Algorithm for Fault-Containment

To make the protocol fault-containing, we add to each process i a secondary

variable x(i) whose domain is the set of non-negative integers. In a way, x(i) will

reflect the priority of process i in executing an action to update v(i). Process i will

update v(i), when the following three conditions hold:

1. The randomized scheduler chooses i,

2. ∃j ∈ N(i) : v(j) 6= v(i), and

3. ∀j ∈ N(i) : x(i) ≥ x(j).

After updating v(i), process i will increase x(i) to max {x(j) : j ∈ Ni} + m,

where m > 0. In case only the first two conditions hold, but not the third, process i

will increment the value of x(i) by 1, and leave v(i) unchanged. Algorithm 5.2 shows

the modified protocol:

Observe that once a process i updates v(i), it becomes difficult for its neighbors

to change their v-values, since their x-values will lag behind that of i. The larger is

start with capitals of x and N −x, and each fair coin toss transfers a dollar from one to the
other depending on the outcome of the toss, then the expected number of steps to finish
the game is x.(N − x).
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Algorithm 5.2 Probabilistic fault-containing algorithm: Program for process i

A1 ∃j ∈ N(i) : v(j) 6= v(i) ∧ ∀k ∈ N(i) : x(i) ≥ x(k) → v(i) := v(j); x(i) :=

max{x(k) : k ∈ N(i)} + m

A2 ∃j ∈ N(i) : v(j) 6= v(i) ∧ ∃ k ∈ N(i) : x(i) < x(k) → x(i) := x(i) + 1

A3 ∀j ∈ N(i) : v(j) 6= v(i) → v(i) := v(j)

the value of m, the greater is the difficulty. A neighbor j of i will be able to update

v(j) only if it is chosen by the random scheduler m times, without choosing i even

once. On the other hand, it becomes easier for i to update v(i) again in the near

future.

Failures can not only corrupt v, but also corrupt x. Assume that LC ≡ ∀j :

v(j) = 1, a single failure at process i changes v(i) to 0, and x(i) to some unknown

value. If ∀j ∈ N(i) : x(i) > x(j) then process i is likely to change its v(i) soon again.

As a result, the fault is contained in a small number of steps, and the contamination

number is one. However, a smart adversary injecting the failure at process i is likely

to set x(i) to the smallest value (i.e. 0). This makes the neighbors of process i better

candidates for changing their v, before process i executes a move to complete the

recovery. However, it also raises the x-values of these neighbors of i above those of

their neighbors. In order that the fault percolates to a node at distance-2 from the

faulty process i, such a distance-2 node has to be chosen by the scheduler at least

m times, without choosing its neighboring distance-1 node even once. With a large
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value of m, the probability of such an event is very low. This explains the mechanism

of containment. In the mean time, the condition ∀j ∈ N(i) : v(j) = 1 is likely to hold

several times. If on one such occasion the faulty process is chosen by the random

scheduler (the third action, note that its guard does not depend on x) then v(i) will

change to 1, and the recovery will be complete.

5.5 Results

We begin with an analysis of the spatial containment. Assume that all nodes

have a degree ∆. Then the following theorem holds:

Theorem 16. As m → ∞, the effect of a single failure is restricted to only the

immediate neighbors of the faulty process.

Proof. Suppose the faulty process has n1 neighbors and the contaminated process has

n2 neighbors that are distance-2 neighbors of the faulty process. The probability that

a distance-2 neighbor is contaminated is largest, when only one distance-1 process is

contaminated, then only one neighbor of that contaminated distance-1 process (which

is a distance-2 neighbor of the faulty process) is contaminated. The probability of

one distance-1 neighbor being contaminated is n1

n1+1
. To contaminate a distance-2

neighbor, the scheduler must select the specific process m times. So the probability

of one distance-2 neighbor being contaminated is 1
(n1+n2+1)m . Therefore, after a node

becomes faulty, the probability that some distance-2 neighbor of the faulty process

becomes contaminated is n1

n1+1
×n2×

1
(n1+n2+1)m . By choosing a large value of m, this

probability can be made as small as possible.
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Figure 5.1: Each node is a state corresponding to the size of the faulty region, and the
label on each edge represents the probability of the corresponding state transition.

Theorem 17. If ∆ << m then the expected number of steps needed to contain a

single fault is O(∆3).

Proof. Assume m (or M for the bounded solution presented later) is very large, so

the error is unlikely to propagate to the distance-2 neighbors of the faulty process.

In such a scenario, it is sufficient to consider the case when the error propagates to

the immediate neighbors of the 1-faulty process. The state transfer diagram showing

the transitions among various faulty configurations is shown in Figure 5.1.

As the error will propagate at most to the immediate neighbors, the system

can have at most ∆+1 errors. We use pi,j to denote the probability that the number
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of the errors changes from i to j. So the probabilities are listed below:

p1,0 =
1

∆ + 1
(5.1)

p2,1 =
1

2∆
(5.2)

p2,2 =
∆

2∆
(5.3)

p1,2 =
1

∆ + 1
(5.4)

and for 3 ≤ i ≤ ∆− 1

pi,i+1 =
i

(∆ + 1) + i(∆− 1)
(5.5)

pi+1,i+1 =
1 + i(∆− 1)

(∆ + 1) + i(∆− 1)
(5.6)

pi+1,i+2 =
∆− 1

(∆ + 1) + i(∆− 1)
(5.7)

and

p∆+1,∆ =
∆− 1

(∆ + 1) + ∆(∆− 1)
(5.8)

p∆+1,∆+1 =
1 + ∆(∆− 1)

(∆ + 1) + ∆(∆− 1)
(5.9)

We use P [X] to denote the probability that the system recovers using x moves. The

expected number of moves needed is

E = 1× P [1] + 2× P [2] + 3× P [3] + · · ·

=

∞∑

x=1

XP [X].

We can calculate P [X] as following using (5.1), (5.4), (5.2):

P [1] = p1,0 =
1

∆ + 1
(5.10)
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P [2] = 0 (5.11)

P [3] = p1,2p2,1p1,0 =
1

∆ + 1

1

2∆

1

∆ + 1
=

1

2∆(∆ + 1)2
(5.12)

P [4] = p1,2p2,2p2,1p1,0 =
1

∆ + 1

∆

2∆

1

2∆

1

∆ + 1
(5.13)

and for n ≥ 1, we get the following recursive function of P [2n + 2] using P [2n + 1]:

P [2n + 2] = 2
m∑

j=2

pj,jP [2n + 1] (5.14)

If n + 1 < ∆ + 1 then m=n. If n + 1 > ∆ + 1 then m = ∆ + 1. This is because

if n + 1 < ∆ + 1, using 2n + 2 steps, the system can reach at most the n + 1-th

state. So the repeated moves can happen in any state within the n-th state. But if

n + 1 > ∆ + 1, the system can move through all the states, so the repeated moves

can happen anywhere within the ∆ + 1 states.

We can also write P [2n + 3] using P [2n + 1] as:

P [2n + 3] = 2

m∑

j=2

m∑

i=2

pj,jpi,iP [2n + 1] + 2

m′∑

k=2

pi,i+1pi+1,iP [2n + 1] (5.15)

The values of m and m′ are the same as in (5.14). The system can have either two

additional moves that do not change the current state, or the system can first reach a

state in one step and come back in the next step. So we substitute P [1], P [2], P [3], P [4]

using (5.10), (5.11), (5.12), (5.13), (5.14), (5.15) in (5.10) and let pmax =
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max{pi,j , ∀i, ∀j}:

E = 1× P [1] + 2× P [2] + 3× P [3] + 4× P [4]

+

∞∑

n=2

{(2n + 1)P [2n + 1] + (2n + 2)P [2n + 2] + (2n + 3)P [2n + 3]}

= 1×
1

∆ + 1
+ 2× 0 + 3×

1

2∆(∆ + 1)2
+ 4×

1

4∆(∆ + 1)2

+
∞∑

n=2

{(2n + 1) + 2(2n + 2)
m∑

j=2

m∑

i=2

pi,ipj,j + (2n + 3)(2
m′∑

i=2

pi,i+1pi+1,i

+ 2
m′′∑

j=2

m′′∑

i=2

pi,ipj,j)} × P [2n + 1]

< O(
1

∆2
) +

∞∑

n=2

{(2n + 1)p2n+1
max + 2(2n + 2)∆2p2n+2

max + (2n + 3)(2∆ + 2∆2)p2n+3
max }

=
∞∑

n=2

(2n + 1)p2n+1
max + 2∆2

∞∑

n=2

(2n + 2)p2n+2
max + (2∆ + 2∆2)

∞∑

n=2

(2n + 3)p2n+3
max + O(

1

∆2
).

Let T1 =
∑∞

n=2(2n + 1)p2n+1
max , T2 = 2∆2

∑∞

n=2(2n + 2)p2n+2
max , T3 = (2∆ +

2∆2)
∑∞

n=2(2n + 3)p2n+3
max . As T3’s order is the same as T2 and larger than T1, we

just need to calculate T3.

T3 = (2∆ + 2∆2)
∞∑

n=2

(2n + 3)p2n+3
max

= (2∆ + 2∆2)(2p3
max

∞∑

n=2

np2n
max + 3pmax

∞∑

n=2

p2n
max)

= (2∆ + 2∆2)[2p3
max(

2p4
max

1− p2
max

+ p6
max) + 3p3

max

1

1− p2
max

]

= (2∆ + 2∆2)
4p7

max + 2p3
maxp

6
max(1− p2

max) + 3p3
max

1− p2
max

.
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Let pmax = a
∆+a

, a = 1 + ∆(∆− 1):

T3 = (2∆ + 2∆2)
4a7(∆ + a)2 + 2a9 + 3a3(∆ + a)6

(∆2 + 2∆a)(∆ + a7)

= O(∆2)×
O(a9)

O(∆3)O(a7)

=
O(a2)

O(∆)

= O(∆3).

So we get

E = O(
1

∆2
) + O(∆3) = O(∆3) (5.16)

When the graph is dense, i.e. ∆ = O(n), the containment time is not inde-

pendent of the size of the network anymore. However, spatial containment property

still holds. The more dense the graph is, the smaller is the contamination number.

As m → ∞, contamination number tends to 1. Below, we separately analyze the

extreme case of a dense topology: a completely connected graph.

Theorem 18. For a completely connected graph, then the contamination number is

1 as m→∞.

Proof. At least one neighbor j of the faulty process i is likely to update v(j), and

raise x(j) at least m steps above the x-values of the rest. To prevent a second

neighbor k from updating v(k), the system must recover to L before the scheduler

chooses the neighbor k at least m times, without choosing j even once. We use

P{n0, n1, n2, . . . , ni, ni+1, . . . , n∆−1} to denote the probability that ∀i, 1 ≤ i ≤ ∆,
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node i is chosen ni times. So the probability of node k being chosen m times before

j being chosen even once is:

P{n0, n1, n2, . . . , nj−1, nj = 0, nj+1, . . . , nk = m, . . . , n∆−1} (5.17)

∀i, 0 ≤ i ≤ ∆− 1 ∧ i 6= j, ni ≤ m.

With increasing ni, 1 ≤ i ≤ ∆ ∧ i 6= j (5.17) is decreasing (see (Lemma 5 for the

proof). So the above probability is maximum when node k is consecutively chosen m

times, and other nodes are never chosen. The maximum probability is:

P{0, 0, . . . , 0, m, 0, . . . , 0, 0} =
1

∆m
(5.18)

Since ni, 0 ≤ i ≤ ∆ − 1 ∧ i 6= j can be any value between 0 and m, and there are

totally m∆−2 possible situations, we apply the maximum estimate to each such case.

As a result, the probability of the system having two contaminated processes is no

larger than m∆−2

∆m , which approaches 0 as m approaches ∞.

Theorem 19. For a completely connected graph, the containment time is O(n3),

where n is the number of nodes in the graph.

Proof. Following the same notation as in the previous theorem, We calculate the

probabilities on a complete graph.

The expectation formula is then given by the following:

E(X) =
∞∑

X=1

X × P (X)

= 1× P (1) + 2× P (2) + · · ·+ (i + 1)× P (i + 1) + · · ·
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Now we know:

P (1) =
1

n

P (2) = 0

P (3) =
1

n
×

n− 1

n
×

1

n

P (4) =
n− 1

n
×

n− 1

n
×

1

n
×

1

n

P (5) = (
n− 1

n
×

1

n
)2 ×

1

n
+

n− 1

n
× (

n− 1

n
)2 ×

1

n
×

1

n

We calculate the two general terms P (i + 2) and P (i + 3) in terms of P (i + 1):

P (i + 2) = (i− 2)×
n− 1

n
× P (i + 1)

P (i + 3) = [C2
i+1 + C1

i+1]× (
n− 1

n
)2 × P (i + 1)

Note that the combinatorial terms appear because of the fact, when we try to insert

two steps, it may occur in two ways: n−1
n
× 1

n
accounts for one case, and (n−1

n
)2

accounts for the other. As (n−1
n

)2 is the worst case scenario, we need to consider only

that.

From term P (6) onwards, we can proceed using the general terms P (i + 1), P (i + 2),

P (i + 2):

∞∑

i=5

[P (i + 1) + P (i + 2) + P (i + 3)]

=
∑∞

i=5 P (i + 1){1 + (i− 2)× n−1
n

+ [C2
i+1 + C1

i+1]× (n−1
n

)2}

Using the inequality

P (i + 1) ≤ (
n− 1

n
)i+1 (5.19)
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We get:

∞∑

i=5

[P (i + 1) + P (i + 2) + P (i + 3)]

≤
∞∑

i=5

{1 + (i− 2)×
n− 1

n
+ [C2

i+1 + C1
i+1]× (

n− 1

n
)2} × (

n− 1

n
)i+1

Let q = n−1
n

and m = i− 2 and

z =

∞∑

i=5

{1 + (i− 2)×
n− 1

n
+ [C2

i+1 + C1
i+1]× (

n− 1

n
)2} × (

n− 1

n
)i+1

So,

z =
∞∑

m=3

qm+3 +
∞∑

m=3

m× qm+4 +
∞∑

m=3

(m + 3)× (m + 2)

2
× qm+5 +

∞∑

m=3

(m + 3)× qm+5

(5.20)

Simplifying, we get the first term is O(n), the second term is O(n2), and the third

and fourth terms combined are O(n3). So, for a completely connected graph, the

containment time is O(n3), where n is the number of nodes in the graph.

Lemma 5. The probability that node k is chosen m times before node j is chosen

once is maximum when node k is consecutively chosen m times and other nodes are

never chosen.
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Proof. The probability that node k is chosen m times before node j is chosen once is:

P{nk = m, nj = 0} =

∆∑

i=1∧i6=j∧i6=k

m∑

ni=0

P{n1, n2, . . . , nj = 0, . . . , nk = m, . . . , n∆}

=




∑∆
i=1 ni

n1







∑∆
i=2 ni

n2


 . . .




∑∆
i=j ni

0


 . . .

×




∑∆
i=k ni

m


 . . .




∑∆
i=∆ ni

n∆




(
1

∆

)P∆
i=1 ni

= l ×

(
1

∆

)q

.

If we increase any ni, 1 ≤ i ≤ ∆ ∧ i 6= j ∧ i 6= k to ni + 1, we can see this selection

process as follows: first do the selection in the same way as before we increase ni,

then choose any one of the eligible process. There are in all ∆− 1 processes that can

be chosen for the last step, and the probability of choosing any one of them is 1
∆

, so

the probability will be l× (∆− 1)×
(

1
∆

)q+1
and this is smaller than l×

(
1
∆

)q
. So the

probability that node k is chosen m times before choosing node j chosen once will

decrease as ni increases.

The mechanism will reveal that a high clustering coefficient limits the prob-

ability of contamination to only a small fraction of the distance-1 neighbors. The

completely connected graph exhibits an extreme form of this property.

5.5.1 Computing the Availability

An interesting aspect of the proposed algorithm is that LCs = true, thus there

is no overhead for stabilizing the secondary variables. So, LC holds as soon as LCp



99

holds. This leads to the following theorem:

Theorem 20. For single failures, the fault-gap equals the containment time.

As a consequence of this, within an expected time of O(∆3) after each single

failure, the system is ready to withstand the next single failure with the same effi-

ciency. Furthermore, since only the distance-1 neighbors are contaminated with high

probability, the proposed algorithm enables the system to recover from all concurrent

failures of nodes that are distance-3 or more apart with the same efficiency. This

significantly increases the availability of the system compared to existing solutions

that we know of.

5.6 A Bounded Solution

A drawback of the proposed solution is that the x-variables grow in an un-

bounded manner, and it affects the implementability of the protocol. To address this,

we will now transform the solution into one that relies on bounded variables only.

In Algorithm 5.2, when a process i executes action 1, it raises the value of

x(i) so that ∀j ∈ N(i) : x(j) < x(i) holds. This makes process i a local leader, and

when the local leader is chosen by the scheduler, it immediately executes its action to

update v(i). Let us set an upper bound M − 1 for x, where M is an odd integer and

M > 1 Furthermore, we let actions 1 and 3 increment x mod M . To make x(j) “less

than” x(i), we have to define the less than operation ≺ appropriately. We define it

as follows:

if x(j) ∈ {x(i) + 1 mod M , x(i) + 2 mod M , . . ., x(i) + M−1
2

mod M}
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Figure 5.2: The bounded solution: (a) Identifying the ports of a node, (b) With
M = 9, there is no local leader here.

then x(i) ≺ x(j) else x(j) ≺ x(i)

Clearly, ≺ is not transitive. In order that the condition ∀j ∈ N(i) : x(j) ≺ x(i)

holds, we will treat each x as a vector (and denote it henceforth by X) with ∆ elements

0, 1, . . . , ∆ − 1. Let the kth port of process i be connected to the lth port of process

j (Fig. 2(a)). We denote this by ((i, k), (j, l)) ∈ E. A process i will execute action 1

when

∃j ∈ N(i) : v(j) 6= v(i), ∧

∀k ∈ N(i) : ((i, u), (k, w)) ∈ E, X(k, w) ≺ X(i, u).

We also modify the last part of action 1 as:

∀k ∈ N(i) : ((i, u), (j, w)) ∈ E, X(i, u) := X(j, w) + M−1
2

mod M

The above modification explicitly forces the condition X(k, w) ≺ X(i, u) across each
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edge (i, k) of node i connecting to a neighbor, and establishes process i as a local

leader, by setting the components of X at a maximum distance “above” those of its

neighbors. Algorithm 5.3 shows the bounded version of Algorithm 5.2. The purpose

of the second action is to let the non-leaders gradually “catch up” with a neighboring

local leader, and is an adaptation of action 2 in Algorithm 5.2.

Algorithm 5.3 The bounded solution: Program for process i

A1 ∃j ∈ N(i) : v(j) 6= v(i) ∧ ∀k ∈ N(i) : ((i, u), (k, w)) ∈ E, X(k, w) ≺ X(i, u) →

v(i) := v(j); ∀k ∈ N(i) : ((i, u), (j, w)) ∈ E, X(i, u) := X(j, w) + M−1
2

mod M

A2 ∃j ∈ N(i) : v(j) 6= v(i) ∧ ∃k ∈ N(i) : ((i, u), (k, w)) ∈ E ∧ X(i, u) ≺ X(k, w)

→ X(i, u) := X(i, u) + 1 mod M

A3 ∀j ∈ N(i) : v(j) 6= v(i) → v(i) := v(j)

Using the modified interpretation of the “less than” relation ≺, and by re-

placing m by M−1
2

, Algorithm 5.3 becomes semantically equivalent to Algorithm 5.2.

However, by converting x into a vector X, there is no guarantee that there will be

always be a local leader (Figure 5.2) ready to execute action 1. If the initial config-

uration is 1-faulty, and the scheduler chooses the faulty process, then this is not a

concern, since action 3 does not rely on the x values at all. However, this may be an

issue when the system starts from a k-faulty configuration and k > 1 We close our

arguments by discussing the impossibility of deadlock in Algorithm 5.3.
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Theorem 21. Algorithm 5.3 guarantees that starting from any initial configuration,

eventually some node is elected as a local leader.

Proof. Assume that the system starts with a configuration where there is no local

leader eligible to execute action 1. The possibility of some non-leader becoming a

local leader requires that the scheduler chooses it M−1
2

times without choosing a

neighbor even once. The probability of this event is 2−
M−1

2 .

Once a local leader is elected, there always exists at least one local leader until

the recovery is complete. Thus the time 2
M−1

2 is an additional start-up cost that

needs to be added to the stabilization time.

Theorem 22. On an array of processes, the expected number of moves needed to

stabilize from a failure of k contiguous nodes is O(k.n).

Proof. On an array of processes numbered 0 through n− 1 from left to right, assume

that initially ∀i : v(i) = 1 holds. Let a failure change the values of v(0) through

v(k − 1) (1 < k < n) to 0. Whenever the node to the left of the boundary (between

0 and 1) executes move to update its v, the boundary moves one place to the left.

Similarly, when the node to the right of the boundary makes a move to update its

v, the boundary moves to the right. The system will stabilize when all v become

identical.

The probability of the boundary moving to the right (or to the left) is 2−
M−1

2 ,

and the balance reflects the probability of the boundary remaining unchanged. We

reduce this computation to a version of gambler’s ruin where to win or lose a dollar
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(call it a step), not one, but M−1
2

consecutive heads or tails of a fair coin will be

necessary2. It follows from [32] that, the expected number of steps needed to finish

the game is k×(n−k). Since each step here costs an expected number of 2
M−1

2 moves,

the expected number of moves needed to finish the game is 2
M−1

2 .k.(n− k).

To validate this result on a general topology, we need to analyze gambler’s ruin

in multiple dimensions. We have not done it, but leave this as a conjecture. Based

on the fact that a legal configuration is reachable from any initial configuration, the

following theorem holds.

Theorem 23. Algorithm 5.2 is weakly stabilizing.

5.7 Experimental Results

We ran simulation experiments to study the convergence property for graphs

with various degrees and with different values of m. For our experiments, we used

random graphs with 1000 nodes. For the first set of experiments presented in Figure

5.3, we set the edge probability value (denoted by p in the graphs) of the random

graphs to 0.5.

In the first set of experiments, we varied the value of m in powers of 2. The

initial values of x were randomly set. After a single fault was injected, the fraction of

cases where the fault was successfully contained was plotted. Because of the proba-

bilistic nature of our algorithm, there were instances when the system of nodes did not

2One extra step will be needed whenever the fortune changes from one player to the
other, but with large M , we ignore the impact of this, and map the computation to a
Markov process.
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converge. We set an upper bound (10, 000 moves) for the number of moves it required

for the system to converge. If convergence had not occurred within this bound, then

those instances were treated as failed cases of non-convergence. For each value of

m, we ran the experiments 1000 times and plotted the number of moves required for

convergence (X-axis) against fraction of converged instances (Y-axis). The empirical

distribution function is shown in Figure 5.3.

The larger the value of m, the greater is the difficulty for the fault to con-

taminate beyond its immediate neighborhood. With increasing m, the containment

in space is tighter, but stabilization from arbitrary initial configurations slows down.

A lower value of m allows faster recovery from single failures at the expense of an

increase in the contamination number. This is consistent with the analysis – the

value of m represents the effectiveness of the “fence” around the faulty zone. Also,

the stabilization time increases for smaller values of m, since the fault contaminates a

small number of nodes beyond the distance-1 neighbors, and recovery from multiple

failures is inefficient. These properties are evident from our graph.

It is to be noted that for m = 2 and for m = 32, the two extreme m values we

had chosen in our experiments, the system exhibits the expected behavior. But for

middle values of m, some anomaly can be observed. For example, m = 16, rises over

m = 8 and m = 4. This shows the potential for using m as the tuning parameter

in our experiments. There is a threshold value of m, beyond which the system may

be in a “stuttering mode” since neither the fault propagates beyond the distance-1

neighbors, nor the recovery is complete. In our case, between m = 4 and m = 8, this
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phenomenon was observed. Therefore fraction of converged instances for those values

lag behind.

In the second set of experiments, we set m = 2. Again the initial values of

x were randomly set. After a single fault was injected, the fraction of cases where

the fault was successfully contained was plotted. Because of the probabilistic nature

of our algorithm, there were instances when the system of nodes did not converge.

We set an upper bound (10, 000 moves) for the number of moves it required for the

system to converge. If convergence had not occurred within this bound, then those

instances were treated as failed cases of non-convergence. This time we varied p,

which denotes the edge probability for the random graph. For each value of p, we ran

the experiments 1000 times and plotted the number of moves required for convergence

(X-axis) against fraction of converged instances (Y-axis). The empirical distribution

function is shown in Figure 5.4.

Our second experiment captures the fact how node degrees can influence the

convergence of the system. For a ∆-ary tree, this is equivalent to varying the value of

∆ while keeping m fixed. As we used random graphs for our experiments, we could not

directly vary ∆. Rather we chose different values of p to control the sparseness/density

of the graphs. As expected, for dense graphs (e.g., p = 0.8), the fraction of converged

instances was low.
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Figure 5.3: Simulation results for various values of m with p as a parameter, where p
is the edge probability of the random graph.
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5.8 Discussions

The proposed algorithms allow the immediate neighbors of the faulty process

to be contaminated. However as m increases, it becomes increasingly difficult for the

failure to propagate to the distance-2 neighbors and beyond. However, a high value of

m increases the stabilization time. One can use m (or M for the bounded version of

the solution) as a tuning parameter to tune the performance of the protocol. A lower

value of m allows faster recovery at the expense of an increase in the contamination

number, and the recovery time from multiple failures also improves.

The major advantages of the proposed technique is that the fault-gap is inde-

pendent of the network size. This increases the availability of the system by restoring

the system’s readiness to efficiently tolerate the next single fault within a short time.

This is where our algorithm is different from other algorithms, where the fault-gap is

O(n) or worse.

As the degree of the nodes increases, the containment time increases fairly

rapidly. Therefore the algorithm is suitable for sparse topologies. When the topology

is dense or the clustering coefficient is large, although the containment time increases,

a smaller fraction of the distance-1 neighbors is contaminated.

The solution to the persistent-bit problem can be utilized to find fault-containing

algorithms for more general problems, one of them is presented in the next chapter.
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CHAPTER 6
FAULT-CONTAINMENT IN WEAKLY-STABILIZING SYSTEMS

6.1 Introduction

Chapter 5 introduced a new technique for adding fault-containment to a sta-

bilizing system by biasing the impact of the random scheduler. In this chapter, we

extend the approach by solving a non-trivial problem in stabilization: the problem

of leader election. The purpose is to establish that the proposed technique is indeed

useful enough to solve a wider class of problems in distributed systems.

We start from the leader election algorithm proposed by Devismes et al. in

[14]. The algorithm works on a tree of anonymous processes, and is weakly stabilizing.

Failures, however minor they are, put the system in an illegal configuration, from

which there is no guarantee for recovery under a deterministic scheduler. Even with

a randomized scheduler, the expected recovery time will depend on the size of the

network. In this chapter, we transform the algorithm in [14] for an array of anonymous

processes, and add fault-containment to it. The end result is that the containment

time is O(1), and the contamination number is 4 w.h.p, the bound is attained by

setting m to infinity, where m is a user defined tuning parameter.

We follow the general computational model introduced in Chapter 2. In ad-

dition, we introduce two additional variables P and x for each process. Each process

i has a primary variable P (i) ∈ N(i)U⊥. If j = P (i), then j is called the parent of
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v0 v1 v2 v3 v4 v5 v6

Figure 6.1: A legal configuration with v4 as the leader.

node i. In addition to P 1, there is a secondary variable x ∈ Z+ that will used for

containing the effect of a single failure. The system is in a legal configuration, when

the following two conditions hold:

1. For exactly one process i: P (i) = ⊥

2. for all j 6= i, P (i) = j implies P (j) 6= i

Here, we use the proceed ids for the sake of identification only. Being an

anonymous system, these ids are not used for any kind of decision-making. Figure 6.1

shows a system of processes in its legal configuration, where an arrow from i to j

implies that j is the parent of i and a node without a parent pointer implies that

its parent is ⊥. As in Chapter 5, the secondary variable x will reflect the priority of

process i in executing some of its actions to update its parent P (i).

Arbitrary configurations may be caused by transient failures that can corrupt

the system state. Due to the weakening of the stabilization property, it is not possi-

ble to bound the stabilization time under a deterministic scheduler, and randomized

scheduling becomes necessary to guarantee that the system recovers to a legal con-

figuration with probability 1.

1we use P (i) to denote the parent of node i in fault-containment whereas in selfish
stabilization π(i) denoted the parent of i
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6.2 Contributions

Using a randomized scheduler, we present a solution for the leader election

problem on a line topology that is both weakly stabilizing and fault-containing. Our

algorithm confines the effect of any single fault to the constant-distance neighborhood

of the faulty process with high probability (w.h.p.2). More specifically, our algorithm

restricts the contamination number to 4 w.h.p., thus the algorithm is spatially fault-

containing. The expected recovery time from a single fault is independent of the array

size, i.e., the solution is fault-containing in time too.

6.3 Probabilistic Algorithm for Fault-Containment

Our starting point is the weakly stabilizing leader election algorithm on a

tree network presented in [14]. For implementing it on an array, we make minor

modifications for the stabilization rules. An array is a special case of a tree where

each node except the end nodes has a degree of 2. Therefore we replace the notations

of ∆ from [14], and just consider the two neighbors (or the only neighbor if it is an

end node) of a particular process. For the fault-containment part though, we need to

add new rules. The basic idea is the same as presented in Chapter 5. To make the

protocol fault-containing, we add to each process i a secondary variable x(i) whose

domain is the set of non-negative integers. In a way, x(i) will reflect the priority

of process i in executing an action to update P (i). Process i will update P (i) and

2An event e happens with high probability (w.h.p) if limm→∞ Pr (e) = 1, where m is a
user defined parameter. This is slightly different from the traditional definition of w.h.p.
[45] in randomized algorithms, but used in the same spirit.
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increase its x(i) value with respect to its neighbors when the following conditions

hold:

1. The randomized scheduler chooses i,

2. {(∃j ∈ N(i) : P (i) = j)},

3. {(∃k ∈ N(i) : P (k) = l 6= i)},

4. {x(i) ≥ x(k)}.

After updating P (i), process i will increase its x(i) value accordingly: {x(i)←

maxq∈N(i) x(q) + m}, m ∈ Z+ (m is a user defined parameter).

If the first three conditions hold, but not the fourth one, process i increases

its x(i) value by 1, but leaves P (i) unchanged. The same thing happens when the

first two conditions hold, but not the fourth, and the third condition is modified to

∃k ∈ N(i) : P (k) = ⊥.

Observe that once a process i updates x(i), it becomes difficult for its neighbors

to change their P -values, since their x-values will lag behind that of i. The larger

is the value of m, the greater is the difficulty. A neighbor j of i will be able to

update P (j) if it is chosen by the random scheduler m times, without choosing i even

once (except case R5 of Algorithm 1, where the update happens immediately when

recovery is in sight within a single future move). On the other hand, after making a

move, it becomes easier for i to update P (i) again in the near future. With a large

value of m, the probability of j being able to change its parent pointer compared to
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i is very low. This explains the mechanism of containment. The complete algorithm

is described below for a process i:

1. R1 describes the situation when a process i has a parent, but all its neigh-

bors consider i as their parent. So i sets its parent pointer to null and start

considering itself as the leader.

2. R2 describes the situation when a process i has no parent and one of its neigh-

bors q does not satisfy the condition P (q) = i. Note that for a single-fault

scenario it cannot happen that both of i’s neighbors do not satisfy the same

condition. This means i is not unanimously selected as the leader by its neigh-

bors. As a consequence, i stops considering itself as a leader by setting its

parent pointer to q, i.e., P (i) = q.

3. R3 a) describes the situation when parent of i is j, and i has a neighbor k whose

parent is a node l. Node l is at distance-2 from i. Now if x(i) ≥ x(k), then i sets

k as its new parent and increases its x(i) value with respect to its neighbors.

4. R3 b) describes the the situation when parent of i is j, j has a parent, and i

has a neighbor k whose parent is a node l. Node l is at distance-2 from i. Now

if x(i) < x(k), then i does not alter its parent pointer but it just increments its

x value by 1.

5. R4 a) describes the situation when parent of i is j, and i has a neighbor k whose

parent pointer is set to null. Now if x(i) ≥ x(k), then i sets k as its new parent.
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Algorithm 6.1 containment: Program for process i

• Variable: P (i) ∈ N(i) ∪ {⊥}.

• Macro: C(i) = {q ∈ N(i)|P (q) = i}

• Predicates: Leader(i) ≡ (P (i) = ⊥) ∧ (∀j ∈ N(i) : P (j) = i)

• Actions:

R1 (P (i) 6= ⊥) ∧ (|C(i)| = |N(i)|) −→ P (i)← ⊥

R2 (P (i) = ⊥) ∧ (|C(i)| < |N(i)|) −→ P (i)← (N(i) \ C(i))

R3 a) (∃j ∈ N(i) : P (i) = j) ∧ (P (j) 6= ⊥) ∧

(∃k ∈ N(i) : P (k) = l 6= i or ⊥) ∧ (x(i) ≥ x(k)) −→ (P (i)← k) ∧

(
x(i)← maxq∈N(i) x(q) + m

)
, m ∈ N

b) (∃j ∈ N(i) : P (i) = j) ∧ (P (j) 6= ⊥) ∧ (∃k ∈ N(i) : P (k) = l 6= i) ∧

(x(i) < x(k)) −→ x(i)← x(i) + 1

R4 a) (∃j ∈ N(i) : P (i) = j) ∧ (∃k ∈ N(i) : P (k) = ⊥) ∧ (x(i) ≥ x(k)) −→

P (i)← k

b) (∃j ∈ N(i) : P (i) = j) ∧ (∃k ∈ N(i) : P (k) = ⊥) ∧ (x(i) < x(k)) −→

x(i)← x(i) + 1

R5 (∃j ∈ N(i) : P (i) = j)∧(P (j) = ⊥) ∧(∃k ∈ N(i) : P (k) = l 6= i or ⊥) −→

P (i)← k
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6. R4 b) describes the situation when parent of i is j, and i has a neighbor k whose

parent is set to null. Now if x(i) < x(k), then i does not alter its parent pointer

but it just increments its x value by 1.

7. R5 is necessary for recovery. The intuition is if a node finds out that its change

of parent will help the system to recover in a single future move, then it makes

the move. When parent of i is j, and j has no parent, and there is a neighbor k

of i such that k whose parent is a node l. Node l is at distance-2 from i. Now

regardless of the value of x(i) i sets k as its new parent.

6.4 Recovery

In this section, we describe the different cases of single-fault configuration and

the recovery steps. It is to be noted that we have to consider cases up to distance-4

from the leader, as beyond distance-4, all cases of recovery are similar to each other

for single-fault configuration. For convenience, we consider an array of length n and

denote process i on the array as vi where i = 0, · · · , n − 1. In each figure; the gray

node denotes the original leader in the system, the node with a square is the node hit

by the single fault, and the nodes with a ⋆ above are the nodes whose guards are true

after the single fault hits the system. If there is an arrow from i to j, that indicates

P (i) = j.

6.4.1 Fault at the leader

In Fig. 6.2, v4 is the leader where the fault hits, and v3 becomes the parent of

v4. In this case, the system recovers trivially in a single step. If the scheduler chooses
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⋆

v4

⋆

v5 v6

Figure 6.2: Fault at leader v4. Due to the fault v3 becomes v4’s parent.

v0 v1 v2 v3

⋆

v4

⋆

v5 v6

Figure 6.3: Fault at distance-1 neighbor from the leader. v3’s parent pointer becomes
null due to the fault.

either of v3 or v4, R1 can be applied at v3 or v4. Note that, if v4 makes the move, the

system goes back to the initial legal configuration, whereas if v3 makes the move, v3

becomes the new leader of the system after recovery.

6.4.2 Fault at distance-1 neighbor from the leader

a) The parent pointer of distance-1 neighbor from the leader becomes null. The fault

hits v3 (Fig 6.3). If v3’s parent pointer becomes null, again the recovery happens

trivially in a single step. If the scheduler chooses either of v3 or v4, R2 can be applied

at v3 or v4 and a legal configuration can be reached in a single step. Note that, if v3

makes the move, the system goes back to the initial legal configuration, whereas if v4

v0 v1 v2

⋆

v3

⋆

v4

⋆

v5 v6

Figure 6.4: Fault at distance-1 neighbor from the leader. Due to the fault v2 becomes
v3’s new parent.
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v0 v1 v2

⋆

v3

⋆

v4 v5 v6

Figure 6.5: Fault at distance-2 from the leader. v2’s parent pointer becomes null due
to the fault.

makes the move, v3 becomes the new leader.

b) A new node becomes the parent of the distance-1 faulty node. In Fig 6.4, if

P (v3) = v2, then v2, v3, and v4’s guards are true. If v3 is selected first, and if

x(v3) ≥ x(v4), the system trivially recovers in a single step (by R4a at v3). Otherwise,

v3 would not make a parent change. If the scheduler chooses v4, then the recovery

happens in two steps. First, v4 applies R2 and after that either v2 or v3 makes a

move (R1). Note that if v3 makes the move, the leader shifts one place compared to

the original legal configuration, whereas if v2 makes the move, the leader shifts two

places.

If v2 makes the first move, R1 can be applied at v2. After that if the scheduler chooses

v4, recovery is immediate as R2 can be applied at v4. But if the scheduler chooses

v3 repeatedly and x(v3) ≥ x(v4) and x(v3) ≥ x(v2), oscillations can occur in the

system for some period of time due to the fact that R4a is applicable at v3. v2 and

v4 alternately becomes v3’s parent. But whenever v2 or v4 is chosen by the scheduler

next, the system recovers (R2). In the case, x(v3) < x(v2) or x(v3) < x(v4), recovery

is complete when the scheduler next chooses v2 or v4 respectively.
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v4 v5 v6

Figure 6.6: Fault at distance-2 from the leader. v1 becomes the new parent of the v2

due to the fault.

6.4.3 Fault at distance-2 from the leader

a) The parent pointer of distance-2 neighbor from the leader becomes null. Consider

Fig 6.5. The fault hits the system at v2. If the scheduler chooses v2, the system

trivially recovers in a single step (R2). If v3 is chosen by the scheduler, the system

has a potential for oscillations, i.e., v4 or v2 alternately may become v3’s parent,

depending on the x values of v2, v3, v4. The system recovers by applying R2 at v2 or

v4 respectively when either of them is chosen next by the scheduler.

b) A new node becomes the parent of the distance-2 faulty node. Consider Fig 6.6.

If v1 becomes the new parent of v2, then either v1, v2 or v3 can make a move. If v2 is

selected first, the situation is like the one described in 4.2b), except that R3 a) can

be applied now at v2 as v3 has a parent if x(v2) ≥ x(v3). If v3 is selected first, v3

can select v2 as its new parent if x(v3) ≥ x(v2). The recovery is complete following

v2, v1’s (or v1, v2’s) moves (R1) followed by v4’s move (R2) or vice versa. If both v3

and v2 are unable to change their parents due to smaller x values, then recovery is

complete by v1’s move first (R1), followed by v3’s move (now R5 can be applied at

v3) and v4’s move (R2).
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Figure 6.7: Fault at distance-3 from the leader. v1’s parent pointer becomes null due
to the fault.

v0

⋆

v1

⋆

v2

⋆

v3 v4 v5 v6

Figure 6.8: Fault at distance-3 from the leader. v0 becomes the new parent of v1.

6.4.4 Fault at distance-3 neighbor from the leader

a) The parent pointer of distance-3 neighbor from the leader becomes null.

Consider Fig 6.7. If the scheduler chooses v1, recovery trivially happens in a single

step (R2). If v2 is chosen first, then it can alternately choose v1 or v3 as its parent

for a while, if its x value is greater than that of both v1 and v3. Recovery completes

when v1 is selected (R2). Note that, because of higher x value of v2, v3 is unlikely to

change its parent. If it does, then recovery happens by applying R5 at v3 followed by

R2 at v4.

b) A new node becomes the parent of the distance-3 faulty node. Consider Fig 6.8. If

v0 becomes the new parent of v1, then v0, v1, and v2’s guards are true. If v1 is selected

first, then the situation is the same as described above in 4.3b). If v0 is chosen by

the scheduler first, R1 can be applied at v0. The system recovers when v1 chooses

v2 as its parent afterwards (using R3a if applicable) and v0 makes a move next (R2

can be applied at v0 possibly after some oscillations of v1). If v2 is selected to make a
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⋆
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Figure 6.9: Fault at distance-4 from the leader. v1’s parent pointer becomes null.

v0

⋆

v1

⋆

v2

⋆

v3 v4 v5 v6

Figure 6.10: Fault at distance-4 from the leader. v0 becomes the new parent of v1.

move and if x(v2) ≥ x(v1), then v2 chooses v1 as its parent and increases its x value

(R3a). Now v3 is still able to change its parent to v2 regardless of the value of x at v2

(R5) provided v0 had made a prior move. Recovery is completed by v4’s move (R2).

Otherwise, if v0 had not made a move prior to v3, the higher x value of v2 will prevent

v3 to change its parent. Then the recovery is completed by v1’s move (R5) followed

by v0’s move (R2). Note that even if v0 is not an end node, this still applies.

6.4.5 Fault at distance-4 neighbor or beyond from the leader

a) The parent pointer of distance-4 neighbor from the leader becomes null.

Consider Fig 6.9. If v1 is selected by the scheduler, recovery occurs immediately by

R2 or after some oscillations at v2. Otherwise, if x(v2) ≥ x(v1), then v1 becomes v2’s

new parent (R4a). Similarly v2 may become v3’s new parent, but this time v3 sets its

x value higher (R3a). Recovery is completed by v4’s move (R5) followed by v5’s move

(R2). Note that for fault occurring at distance-4 and beyond from the leader, R5

will no more applicable at the distance-1 neighbor from the leader (v4 in this case).
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Therefore, we do not consider hereafter the cases beyond fault at distance-4 beyond

the leader.

b) A new node becomes the parent of the distance-4 faulty node. Consider Fig 6.10.

If v0 becomes the new parent of v1, then v0, v1, and v2’s guards are true. If v1 is

selected to make a move first, then the situation is the same as described above in

4.4b). If v0 is chosen by the scheduler first, R1 can be applied at v0. The system

recovers when v1 chooses v2 as its parent afterwards (R3a if applicable) and v0 makes

a move next (R2 can be applied at v0 possibly after some oscillations of v1). If v2

is selected to make a move and if x(v2) ≥ x(v1) , then v2 chooses v1 as its parent

and increases its x value (R3a). Now v3 cannot apply R5 anymore and it is unlikely

that the fault will propagate beyond v2. The recovery proceeds through the following

steps - v0 makes a move (R1), after some oscillations at v2, v1 chooses v2 as its parent

(R5), and finally v0 selects v1 as its parent (R2). Note that even if v0 is not an end

node, this still applies.

Note that all cases of single-fault configuration beyond distance-4 from the leader will

not involve any different recovery steps that are already not covered in the previous

scenarios. This is because even if we shift the original place of the fault further away

from the leader, its neighborhood that is going to be affected by subsequent recovery

steps will remain unchanged. In the recovery mechanism, R3b) and R4b) are not

shown as we only highlighted the moves where the change of parent pointers occurs

leading to the recovery of the system.
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6.5 Results

6.5.1 Fault-containment in space

Theorem 24. As m→∞, the effect of a single failure is restricted within distance-4

of the faulty process on an array, and the contamination number is 4, i.e., algorithm

containment is spatially fault-containing.

To prove the result of spatial containment, we need to find out how far the

observable variables change from the faulty node w.h.p. We consider all the subcases

of the recovery mechanism.

1. Fault at leader: The fault propagates to at most distance-1.

2. Fault at distance-1 neighbor from the leader:

(a) Parent pointer of the distance-1 neighbor becomes null: The fault prop-

agates to at most distance-1.

(b) A new node becomes the parent of the distance-1 faulty node: In the

recovery steps, we showed that in Fig 6.4, at most v2 or v4’s parent might

change. Thus, the fault propagates to at most distance-1.

3. Fault at distance-2 neighbor from the leader:

(a) The parent pointer of the distance-2 neighbor becomes null: Consider

Fig 6.5. If v2 is selected the system recovers immediately. Another possible

recovery is through the sequence of moves of v3 followed by v4. In the latter
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case the contamination happens up to distance-2 of the original faulty

node.

(b) A new node becomes the parent of the distance-2 faulty node: Consider

Fig 6.6. The worst case scenario happens when v3 makes a move and after

that v4 completes the recovery. Contamination happens up to distance-2

of the original faulty node in this case.

4. Fault at distance-3 neighbor from the leader:

(a) The parent pointer of the distance-3 neighbor becomes null: Consider

Fig 6.7. The worst case scenario happens when v4 has to change its parent.

The fault propagates to at most distance-3.

(b) A new node becomes the parent of the distance-3 faulty node: Consider

Fig 6.8. The worst case scenario happens when v4 has to change its parent.

The fault propagates to at most distance-3.

5. Fault at distance-4 from the leader:

(a) The parent pointer of the distance-4 neighbor becomes null: This is the

scenario where the highest spatial contamination occurs. Consider Fig 6.9.

In the worst case, a distance-4 node from the faulty node might have to

change its parent pointer. In Fig 6.9, v5 is this node.

(b) A new node becomes the parent of the distance-4 faulty node: Consider

Fig 6.10. The fault propagates up to distance-1 w.h.p. The probability
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of the fault contaminating beyond distance-1 is (1 − 1/2m) × 1/2m and

limm→∞(1− 1/2m)× 1/2m = 0.

Note that for fault occurring at distance-4 and beyond from the leader, R5 will no

more be applicable to the distance-1 neighbor from the leader. Hence algorithm

containment is spatially fault-containing and the highest contamination number is 4

w.h.p.

6.5.2 Fault-containment in time

Theorem 25. The expected number of steps needed to contain a single fault is inde-

pendent of n, i.e., the number of nodes in the array. Hence algorithm containment is

fault-containing in time.

Proof. To prove that algorithm containment is fault-containing in time, we again

consider each individual subcase of fault. We show that each subcase can be bounded

and each of them is independent of n, i.e., the size of the array. For each individual

case, we calculate the expected number of moves required for recovery. Essentially

that means we are considering the probabilities of the system recovering in a single

move, in two moves, in three moves etc. We denote the number of moves (which is

a random variable) as X, and Pr (X = x) denotes the probability that the system

recovers using x moves.

1. Fault at leader: Consider Fig. 6.2. This is a trivial case. In this scenario, both v4

and v3 have their guards true. Each of them has an equal probability to execute,

given a chance. The system recovers in a single move if either of them executes.
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So the expected number of moves required for recovery is 1×1/2+1×1/2 = 1.

2. Fault at distance-1 from the leader:

(a) The parent pointer of the faulty node becomes null: Consider Fig. 6.3.

This is again a trivial case. The system recovers in a single move if either

v4 or v3 executes. The expected number of moves for recovery is the same

as before, i.e., 1× 1/2 + 1× 1/2 = 1.

(b) A new node becomes parent of the faulty node: The system can recover

following different sequences:

• v4, v2 or v4, v3.

• v3, · · · , v3 (x(4)− x(3) times)

• v3, · · · , v3 (x(4)− x(3)− 1 times) followed by v4, v2 or v4, v3

• v2, v4

• v2, v3, · · · , v3 followed by v2 or v4.

The length of recovery sequences of the first four situations is finite and

independent of n, and only the last sequence may be arbitrarily long. We

show that its expectation is finite. After v2 makes a move applying R2,

both of v3’s neighbor consider themselves as the leader. Hence depending

on the parent of v3, each time there are at most two enabled nodes: v2 and

v3 or v3 and v4. Therefore, the probability that the scheduler chooses v3 is

1/2 before recovery completes. Hence, the probability of v3 being selected

consecutively n times is 1/2n. Therefore, if v2 is selected by the scheduler
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first, the expected length of the recovery sequence is 2 +
∑∞

n=1 n/2n = 4.

3. Fault at distance-2 from the leader

(a) The parent pointer of the faulty node becomes null: Regardless of the

values of x(2), x(3) and x(4), no matter which node the scheduler chooses,

there is always 1/2 probability that the system recovers after the selected

node makes a move. Hence, the expected recovery time is
∑∞

n=1 n/2n = 2.

(b) A new node becomes parent of the faulty node: In our proof so far, we

assumed the value of x to be different. Proceeding in the same manner, the

rest of the expectation calculation can be done. However, for subsequent

cases, the computation will be more complex. The constant factors in the

result will still hold, since the time complexity calculation for each subcase

will involve products of several terms like (1 − 1/2m) and 1/2m. For the

sake of simplicity, we assume the value of x to be identical for the rest of

the proof.

Following the above assumption, the expected number of moves for recov-

ery will be:

E(X) = 1×
1

3
+ 3

(
1

3
×

1

2
×

1

2
+

1

3
×

1

2
×

1

2
+

1

3
×

1

4
×

1

2
+

1

3
×

1

4
×

1

2

)

+
2

3

∞∑

n=2

2n + 1

22n

=
151

108

4. Fault at distance-3 from the leader:
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(a) Parent pointer of the faulty node becomes null: In this case, the expected

number of moves for recovery will be

E(X) = 1×
1

2
+ 3×

(
1

23
+

1

23

)
+ 5×

(
4×

1

25

)
+ · · ·

=
1

2
+

∞∑

n=1

(2n + 1)× 2n
1

22n+1
=

131

54

(b) A new node becomes parent of the faulty node: In this case, the expected

number of moves for recovery will be:

E(X) = 1×
1

3
+ 2× 0 + 4×

(
1

3

1

2

(
1−

1

2m

)
1

2m

1

2

)
+ 3×

(
1

3

1

2

1

2

)
+ 5×

(
1

3

1

24

)
+ · · ·

≤
1

3
+

25

9
+ 4×

1

3

1

2

1

4

1

2
=

115

36

(The term
(
1− 1

2m

)
1

2m is bounded by 1/4).

5. Fault at distance-4 from the leader:

(a) The parent pointer becomes null: In this case, the expected number of

moves for recovery will be: E(X) = 1
2

+
∑∞

n=1(2n + 1) 1
22n+1 = 10/9.

(b) A new node becomes parent of the faulty node: In this case, the expected

number of moves for recovery will be: E(X) = 1× 1
3
+ 2× 0+ 3×

(
1
3

1
2

1
2

)
+

4× 1
3

1
4

1
2

1
2

+ 5× 1
3

1
24 + 7× 1

3
1
26 + · · · = 29/27

6. Fault beyond distance-4 from the leader:

(a) The parent pointer becomes null: In this case, the expected number of

moves for recovery will be: E(X) = 1
2
+3×

(
1
2

+ 1
2

+ 1
2

)
+5×

(
4× 1

25

)
= 33

32
.
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(b) A new node becomes parent of the faulty node: In this case, the expected

number of moves for recovery will be:

E(X) = 1×
1

3
+ 2× 0 + 4×
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1

3

1

2

(
1−

1

2m

)
1

2m

1

2

)
+ 3×

(
1

3

1

2

1

2

)
+ 5×

(
1

3

1

24

)
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≤
1

3
+

25

9
+ 4×

1

3

1

2

1

4

1

2
=

115

36

In all individual subcases, the calculation shows that the recovery happens in a finite

number of moves and it is independent of n, where n is the size of the array. The

maximum expected number of moves required for recovery is 115/36, when a fault

occurs at distance-3 from the leader and a new node becomes parent of the faulty

node, or when a fault occurs at more than distance-4 from the leader and a new

node becomes parent of the faulty node . Therefore algorithm containment is fault

containing in time.

6.6 Computing The Availability

An interesting aspect of the proposed algorithm is that there is no overhead

for stabilizing the secondary variables. LCs = true as long as x(i) ∈ Z+. So, LC

holds as soon as LCp holds. This leads to the following theorem:

Theorem 26. For single failures, the fault-gap equals the containment time.

6.6.1 Convergence

We use martingale convergence theorem to prove the convergence of algorithm

containment. We first give the definition of martingales, and then we provide the

statement of martingale convergence theorem with a corollary derived by the martin-

gale convergence theorem [45]. Finally we show that the corollary can be applied in
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our problem.

Definition 12. Let Fn be an increasing sequence of σ-fields, and let Xn ∈ Fn for all

n. X is said to be a martingale with respect to Fn if the following conditions hold:

1. E(|Xn|) <∞,

2. Xn is adapted to Fn,

3. E(Xn+1|Fn) = Xn for all n

If = in the last condition is replaced by ≤ or ≥, then Xn is said to be a supermartingale

or submartingale, respectively.

Theorem 27 (The martingale convergence theorem). If Xn is a submartingale with

sup E(X+
n ) <∞ then as n→∞, Xn converges almost surely (i.e. the probability that

Xn converges is 1) to a limit X with E(|X|) <∞.

Corollary 1. If Xn ≥ 0 is a supermartingale then as n→∞, Xn → X almost surely

and E(X) ≤ E(X0).

Theorem 28. Algorithm containment is weakly-stabilizing.

Proof. We denote the number of nodes whose guards are true at step i by Xi. Let

Fi = σ < X0, X1, · · · , Xi >, we first prove that the sequence of Xi is a supmartingale

with respect to Fi: (a) E(Xi) <∞ is trivially true as there are n nodes in the system,

so E(Xi) ≤ n. (b) Xi ∈ Fi by the definition of Fi; (c) We show that E(Xi+1|Xi) ≤ Xi

by enumerating all possible values of Xi. Xi can only be 0, 2 or 3. Note that Xi’s
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value cannot be 1. There is no single-fault configuration for which only one node’s

guard can be true in the system.

1. When Xi = 0, Xi+1 = 0 as the system has reached the non-faulty configuration.

2. When Xi = 2, E(Xi+1|Xi) = 1/2× 0 + 1/2× 2 = 1 ≤ 2.

3. When Xi = 3, E(Xi+1|Xi) = 1/3× 0 + 1/3× 2 + 1/3× 4 = 2 ≤ 3.

As the number of nodes whose guards are true are nonnegative, we apply

corollary 1 and thus Xn → X, i.e., the number of nodes whose guards are true

converge.

6.7 Discussions

The proposed algorithm allows up to distance-4 neighbors of the faulty process

to be contaminated by a single failure. With high probability, the failure does not

propagate beyond that. The major advantage of the proposed technique is that the

fault-gap is independent of the array size. The expected number of moves required

for recovery is constant. This increases the availability of the system by restoring the

system’s readiness to efficiently tolerate the next single fault within a short time.
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CHAPTER 7
CONCLUSION AND FUTURE WORK

7.1 Summary

7.1.1 Selfish Stabilization

Selfish stabilization reduces to classical stabilization when the private goals

of the constituent processes do not conflict. The following issues are relevant to the

approach taken in this dissertation:

The first is the separation of cooperation and competition. Assume that pro-

cesses first cooperate to form a tree, then try to optimize it to improve their individual

payoffs. In presence of arbitrary initializations, failures, and selfish motives, such seg-

regation of actions is difficult to implement.

The uniqueness of the equilibrium point is another significant issue. When the

system of processes has a unique equilibrium point, it reflects the Nash equilibrium.

However, in several cases, multiple equilibria configurations are possible, and final

configuration will depend on the schedule of actions. If the costs of these configura-

tions are distinct, then it leaves open the possibility that after reaching an inferior

equilibrium configuration, an unhappy (or ambitious) process can deliberately in-

troduce a perturbation (by corrupting a local variable) to possibly reach a different

equilibrium configuration with a better payoff. This underscores the importance of

identifying cases where a single equilibrium exists.
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7.1.2 Fault-Containment

Historically fault-containment has been studied for (strongly) stabilizing sys-

tems, but little attention has been paid to adding fault-containment to weakly stabi-

lizing systems. Our work fills this gap. Randomized scheduling guarantees that the

system reaches a legal configuration with probability 1, so the choice of randomized

scheduler is automatic in the context of containment.

The proposed algorithm of Chapter 5 allows the immediate neighbors of the

faulty process to be contaminated. However, with high probability, the failure does

not propagate to the distance-2 neighbors and beyond. One can use m (or M for the

bounded version of the solution) as a tuning parameter to tune the performance of

the protocol. A lower value of m allows faster recovery at the expense of an increase

in the contamination number. A larger value of m, on the other hand, decreases the

contamination number, but this comes with an increase in the recovery time from

multiple failures. It is up to the user to choose an appropriate value of m in a given

scenario.

In the solution of Chapter 6, the unbounded variable x(i) can be bounded using

the method described in Chapter 5.The proposed algorithm allows up to distance-4

neighbors of the faulty process to be contaminated. With high probability, the failure

does not propagate beyond that. The expected number of moves required for recovery

is independent of the size of the network.

The major advantages of the two proposed techniques is that the fault-gap

is independent of the network size. This increases the availability of the system by
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restoring the system’s readiness to efficiently tolerate the next single fault within a

short time. This is where our algorithms are different from other algorithms, where

in some cases, the fault-gap is O(n) or worse.

For the persistent bit problem solution, as the degree of the nodes increases,

the stabilization time increases fairly rapidly. Therefore the algorithm is suitable

for sparse topologies. When the topology is dense or the clustering coefficient is

large, although the stabilization time increases, a smaller fraction of the distance-1

neighbors is contaminated.

7.2 Future work

7.2.1 Selfish Stabilization

The stabilizing algorithms of Chapters 3 and 4 are weakly stabilizing solu-

tions. Weak stabilization is strictly weaker than (strong) self-stabilization and it is a

good approximation of (strong) self-stabilization. But whether there exists a strongly

stabilizing solution of these problems remains an open question.

While the problems of shortest path tree and maximum flow tree investigated

here are essentially global in nature, many self-stabilizing protocols exist where the

legal configurations are defined by local predicates, such as maximal independent set

or maximal matching, and one can come up with selfish versions of them. It is worth

investigating whether the results presented in this thesis still hold for those problems,

or pose new challenges.

In the context of “inferior” or “superior” equilibria, it is worth exploring how
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good our solution is compared with the best solution. it is to be noted that non-

compliance to global mandates can have an overall negative impact on the payoffs

when the Nash equilibrium corresponds to an inferior equilibrium. There are different

approaches to handle this problem. Development of a payment scheme to reward com-

pliance is one possible approach, while another approach involves detecting cheaters

and appropriately penalizing them to force compliance. Quantification of these issues

in the current setting is an open problem, and is a topic of future research. In certain

cases, our methods may allow situations where the system does not converge to an

equilibrium configuration despite the fact there exists at least one such equilibrium

in the system. This is different from the case where there exists no equilibrium in the

system. The system may exhibit oscillatory behavior forever as described in Chapter

3. Penalties or rewards can be used in such cases too to force cooperation. The

selfishness property for each individual class of nodes is partially sacrificed when co-

operation is employed, and from the context of individual payoff of each class, the

solution may not be optimal anymore, yet the global goal is accomplished, and the

system stabilizes.

Selfishness is not the only challenge in todays distributed systems. Often,

modern systems have to cope with malicious adversaries who seek to degrade the

utility of the system independently of their own cost. Design of algorithms in the

presence of malicious nodes is a challenging issue.
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7.2.2 Fault Containment

The algorithm for array in Chapter 6 can easily be extended for tree networks.

An array is a special case of a tree network. In case of a general tree topology, one

will have to consider all the neighbors of a process i when executing the rules of the

algorithm, instead of considering at most two neighbors for an array. The analysis

will involve ∆, the maximum degree of a node, and instead of expected recovery time

being constant, it will involve an expression in terms of ∆. Note that this result

will satisfy the definition of weak fault-containment described in Chapter 2. How to

extend our fault-containing leader election algorithm for general graphs remains an

open problem.

For the two problems we addressed, in both cases we handcrafted the solutions

for adding fault-containment by biasing the schedule of the random scheduler in

different ways. Whether a general transformer can be built for the purpose remains

an open problem.
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tion. In Stabilization, Safety, and Security of Distributed Systems, volume
4280/2006 of Lecture Notes in Computer Science, pages 231–243. Springer
Berlin/Heidelberg, 2006.

[12] Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao. Probabilistic fault-
containment. In Stabilization, Safety, and Security of Distributed Systems, vol-
ume 4838/2007 of Lecture Notes in Computer Science, pages 189–203. Springer
Berlin/Heidelberg, 2007.

[13] Anurag Dasgupta, Sukumar Ghosh, and Xin Xiao. Fault-containment in weakly-
stabilizing systems. In Stabilization, Safety, and Security of Distributed Sys-
tems, volume 5873/2009 of Lecture Notes in Computer Science, pages 209–223.
Springer Berlin/Heidelberg, 2009.
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