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ABSTRACT

Traditional disease surveillance systems are instrumental in guiding policy-

makers’ decisions and understanding disease dynamics. The first study in this dis-

sertation looks at sentinel surveillance network design. We consider three location-

allocation models: two based on the maximal coverage model (MCM) and one based

on the K-median model. The MCM selects sites that maximize the total number of

people within a specified distance to the site. The K-median model minimizes the

sum of the distances from each individual to the individual’s nearest site. Using a

ground truth dataset consisting of two million de-identified Medicaid billing records

representing eight complete influenza seasons and an evaluation function based on the

Huff spatial interaction model, we empirically compare networks against the existing

volunteer-based Iowa Department of Public Health influenza-like illness network by

simulating the spread of influenza across the state of Iowa. We compare networks

on two metrics: outbreak intensity (i.e., disease burden) and outbreak timing (i.e.,

the start, peak, and end of the epidemic). We show that it is possible to design

a network that achieves outbreak intensity performance identical to the status quo

network using two fewer sites. We also show that if outbreak timing detection is of

primary interest, it is actually possible to create a network that matches the existing

network’s performance using 42% fewer sites. Finally, in an effort to demonstrate

the generic usefulness of these location-allocation models, we examine primary stroke

center selection. We describe the ineffectiveness of the current self-initiated approach
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and argue for a more organized primary stroke center system.

While these traditional disease surveillance systems are important, they have

several downsides. First, due to a complex reporting hierarchy, there is generally a

reporting lag; for example, most diseases in the United States experience a reporting

lag of approximately 1–2 weeks. Second, many regions of the world lack trustworthy

or reliable data. As a result, there has been a surge of research looking at using

publicly available data on the internet for disease surveillance purposes. The second

and third studies in this dissertation analyze Wikipedia’s viability in this sphere.

The first of these two studies looks at Wikipedia access logs. Hourly access logs

dating back to December 2007 are available for anyone to download completely free of

charge. These logs contain, among other things, the total number of accesses for every

article in Wikipedia. Using a linear model and a simple article selection procedure,

we show that it is possible to nowcast and, in some cases, forecast up to the 28 days

tested in 8 of the 14 disease-location contexts considered. We also demonstrate that

it may be possible in some cases to train a model in one context and use the same

model to nowcast or forecast in another context with poor surveillance data.

The second of the Wikipedia studies looked at disease-relevant data found

in the article content. A number of disease outbreaks are meticulously tracked on

Wikipedia. Case counts, death counts, and hospitalization counts are often provided

in the article narrative. Using a dataset created from 14 Wikipedia articles, we

trained a named-entity recognizer (NER) to recognize and tag these phrases. The

NER achieved an F1 score of 0.753. In addition to these counts in the narrative,
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we tested the accuracy of tabular data using the 2014 West African Ebola virus

disease epidemic. This article, like a number of other disease articles on Wikipedia,

contains granular case counts and deaths counts per country affected by the disease.

By computing the root-mean-square error between the Wikipedia time series and a

ground truth time series, we show that the Wikipedia time series are both timely and

accurate.
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PUBLIC ABSTRACT

This dissertation presents three studies that aim to improve the current state

of disease surveillance.

The first study looks at designing traditional sentinel surveillance systems,

which are instrumental in guiding policy-makers’ decisions and understanding disease

dynamics. We use several popular location-allocation models to algorithmically design

surveillance networks of varying sizes. By simulating the spread of influenza across

the state of Iowa, we demonstrate that we are capable of generating smaller networks

capable of performance at least as good as the volunteer-based influenza surveillance

network used by the Iowa Department of Public Health. We also apply these network

design methods to primary stroke center placement.

The second and third studies recognize that while these traditional surveillance

systems are important, they have drawbacks, such as reporting lags and untrustwor-

thy, unreliable, or unavailable data in some instances. To help solve these problems,

we introduce a novel data source: Wikipedia.

The second study displays how a linear model using time series of article

accesses can nowcast and forecast a variety of diseases in a variety of locations.

Finally, the third study demonstrates how disease-related data can be elicited

from Wikipedia article content. We show how a named-entity recognizer can be

trained to tag case, death, and hospitalization counts in the article narrative. We

also analyze tabular time series data and show that they are accurate and timely.
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CHAPTER 1
INTRODUCTION

Disease surveillance is a crucial aspect of public health. It guides policy-

makers’ decisions and allows scientists to better understand disease dynamics [119,

173]. Modern disease surveillance efforts have many uses. For example, vaccine

allocation decisions (e.g., where and how many doses) can be made based on disease

burden levels across the country [126]. Public-health-awareness programs (e.g., hand

hygiene awareness campaigns) can also be directed towards specific populations or

regions. Scientists use these data to tune simulations (e.g., [55, 80, 133, 151]), which

can in turn be used to further aid public health officials’ decision making.

Stephen B. Thacker provides a thorough overview of the history of public

health and disease surveillance in [173]. Current public health surveillance concepts

date back to the Middle Ages. Western European governments sought health protec-

tion and health care for their people. In the 17th and 18th centuries, basic disease

surveillance data analysis began; Gottfried Wilhelm von Leibniz advocated numeri-

cal analysis of mortality data, and John Graunt developed some of the fundamental

principles of public health surveillance, including disease-specific death counts, death

rates, and the concept of disease patterns. In the mid-19th century, Lemuel Shattuck

recommended a decennial census as well as health data collected by age, gender, oc-

cupation, socioeconomic status, and locality. Around the same time, William Farr

urged the collection of vital statistics as well as reports on these data that would be

made available to health authorities and the public.
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Thacker then describes the evolution of disease surveillance in the United

States (U.S.). In 1850, mortality statistics based on death registration and the de-

cennial census became the first surveillance-related data published by the U.S. fed-

eral government. Weekly reporting of prevalent diseases first began in 1874 in Mas-

sachusetts. In 1878, Congress authorized the forerunner of the Public Health Service

to collect morbidity data related to pestilential diseases such as cholera, smallpox,

plague, and yellow fever. Following the 1918-1919 influenza pandemic, 1925 marked

the year in which all states in the U.S. participated in national morbidity reporting.

In 1952, mortality data were added to the forerunner of the Morbidity and Mortality

Weekly Report (MMWR). The Communicable Disease Center, now the Centers for

Disease Control and Prevention (CDC), took over responsibility for the MMWR in

1961.

Finally, Thacker demonstrated the importance of a nationwide surveillance

program. After the Francis Field Trial of the poliomyelitis vaccine concluded in 1955,

a nationwide vaccination program began. Within two weeks of the start of the vaccina-

tion program, six cases of paralytic poliomyelitis were reported through the notifiable

disease program. An epidemiological study commenced, and 141 more vaccine-related

cases were discovered. Investigations showed that a single manufacturer had produced

the vaccines used in each case. The manufacturer had produced a single lot of the

vaccine that was contaminated with live poliovirus. Were it not for the nationwide

surveillance system that subsequently discovered the source contamination, the polio

vaccine may have been blamed for the cases.
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Traditional disease surveillance systems take the form of a reporting hierar-

chy [25]. The World Health Organization (WHO) coordinates global health initia-

tives within the United Nations (UN) system [146]. With little exception, almost

every country in the world maintains its own public health department that tracks

local disease spread. For example, the CDC coordinates efforts in the U.S. In each

country, there are often many smaller public health departments; these exist at the

state/province and county/city levels.

In practice, data representing the number of relevant cases of any one of many

reportable diseases are prepared at selected primary care facilities (e.g., doctors’ of-

fices, clinics, and hospitals) and laboratories. Those data are sent to the local city,

county, or state health department. At each level of the hierarchy, data may be ag-

gregated to some level so that patient privacy is preserved. In the U.S., the CDC’s

National Notifiable Diseases Surveillance System collects data from each state in or-

der to aid nation-wide policy decisions [62]. Members of the UN, such as the U.S.,

then collaborate with the WHO to combat disease at the global level.

In the U.S., a number of diseases are considered reportable diseases, or diseases

that, by law, must be reported to state and local health departments, and optionally

the CDC, through the appropriate channels because regular, frequent, and timely

information regarding individual cases is necessary for the control and prevention

of the disease [3]. Examples of reportable diseases include anthrax, cholera, Ebola,

smallpox, and rabies. Some non-reportable, but still important, diseases are part of

voluntary reporting programs. For example, the CDC coordinates efforts to surveil



4

foodborne illnesses [60] and influenza [63] in more depth than the mandatory reports

allow.

As a result of its infectiousness, economic impact, and seasonality, special

attention is drawn to influenza by public health departments all over the world.

Influenza infects approximately 5–20% of the U.S. population each year, causing, on

average, over 200,000 hospitalizations [64]. It is highly infectious due in part to the

fact that the disease can be spread 1 day before symptoms appear and up to 5–7 days

after becoming sick [61]. Additionally, the virus can be spread through asymptomatic

infections. In 1948, the WHO began its Influenza Surveillance Network [168]. It

has largely contributed to the influenza vaccine formulation as well as our current

understanding of influenza epidemiology. In 2001, the WHO issued a call for proposals

to develop a Global Agenda on Influenza Surveillance and Control. In 2002, after

consulting with a variety of experts, The Global Agenda was adopted by consensus.

The Agenda focuses on a) increased virological and epidemiological surveillance,

b) increased understanding of burden (e.g., economic and health) caused by influenza,

c) antiviral and vaccine use and effectiveness, and d) pandemic preparedness plans.

The CDC’s influenza surveillance system relies on five components, which

support the WHO’s Agenda [63]:

Virological surveillance data Approximately 85 U.S. WHO Collaborating Lab-

oratories and 60 National Respiratory and Enteric Virus Surveillance System

laboratories located throughout the U.S. participate in virologic surveillance for

influenza.
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Outpatient surveillance data Information on patient visits to health care providers

for influenza-like illness is collected through the U.S. Outpatient Influenza-like

Illness Surveillance Network (ILINet). ILINet consists of more than 2,700 out-

patient healthcare providers in all 50 states, the District of Columbia, and the

U.S. Virgin Islands reporting more than 30 million patient visits each year.

Mortality surveillance data 122 cities across the U.S. report the total number of

death certificates and the number for which pneumonia or influenza was listed

as the underlying or contributing cause of death. Additionally, all influenza-

associated deaths in children (age < 18) are reported.

Hospitalization surveillance data Laboratory confirmed influenza-associated hos-

pitalizations in children and adults are monitored through the Influenza Hospi-

talization Surveillance Network.

Geographic summary surveillance data State health departments report the es-

timated level of geographic spread of influenza activity in their states each week

through the State and Territorial Epidemiologists Reports.

While these efforts have largely been successful, there are still areas where

improvements can be made. For example, the local and national outpatient surveil-

lance systems, which support the WHO’s Agenda by furthering the understanding

of disease burden, are, in many cases, networks of convenience; that is, they are

comprised of volunteers rather than selected based on some rigorous criteria. We

argue how refinement of sentinel surveillance systems can improve our understanding

of disease burden. Specifically, we offer methods for designing sentinel surveillance
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networks that can improve outbreak intensity and timing detection. We then extend

the methods used for sentinel surveillance network design by exploring the location

of primary stroke centers in order to maximize the number of people that have access

to such facilities.

Although the reporting hierarchy used in traditional surveillance systems can

produce data that are generally considered accurate and trustworthy, this process re-

quires careful coordination among many different agencies, which often introduces a

reporting lag of at least 1–2 weeks [97]. Furthermore, each agency may have slightly

different reporting standards, and data reliability may not be uniform. The hier-

archy also removes much of the fine-grained details. For example, while the base

data at the provider level are very granular (e.g., patient addresses are known), data

that become publicly available are generally aggregated to the state or region level.

This aggregation, while important for protecting patient privacy, makes fine-grained

analysis and simulation difficult. To solve these problems, we study how traditional

surveillance systems can be augmented with internet-based data in order to discover

what is happening now (i.e., remove the reporting lag) as well as potentially improve

the resolution of available data, thereby aiding in the WHO’s disease burden and

pandemic preparedness plan Global Agenda items.

We introduce a novel data source, Wikipedia, that can be used for a variety of

disease surveillance applications. Although a number of internet-based data sources

have been suggested for disease surveillance purposes (e.g., news articles, Twitter,

search engines queries), no truly open data source has been studied. Our analysis of
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Wikipedia’s viability for disease surveillance purposes is motivated primarily due to

its openness; one of the core tenets of Wikipedia is open and free content [71].

The first of our Wikipedia studies looks at publicly available article access logs.

We demonstrate how a simple linear model can be used to nowcast and forecast a

variety of diseases in a variety of locations. The second Wikipedia study looks at the

article content. We show how a named-entity recognizer can be trained to recognize

certain “important” phrases related to disease. We also show the viability of granular

tabular data.
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CHAPTER 2
HOW MANY SUFFICE? A COMPUTATIONAL METHOD FOR

SIZING SENTINEL SURVEILLANCE NETWORKS

Abstract

Background

Data from surveillance networks help epidemiologists and public health officials

detect emerging diseases, conduct outbreak investigations, manage epidemics, and

better understand the mechanics of a particular disease. Surveillance networks are

used to determine outbreak intensity (i.e., disease burden) and outbreak timing (i.e.,

the start, peak, and end of the epidemic), as well as outbreak location. Networks

can be tuned to preferentially perform these tasks. Given that resources are limited,

careful site selection can save costs while minimizing performance loss.

Methods

We study three different site placement algorithms: two algorithms based on

the maximal coverage model and one based on the K-median model. The maxi-

mal coverage model chooses sites that maximize the total number of people within

a specified distance of a site. The K-median model minimizes the sum of the dis-

tances from each individual to the individual’s nearest site. Using a ground truth

dataset consisting of two million de-identified Medicaid billing records representing

eight complete influenza seasons and an evaluation function based on the Huff spatial

interaction model, we empirically compare networks against the existing Iowa De-
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partment of Public Health influenza-like illness network by simulating the spread of

influenza across the state of Iowa.

Results

We show that it is possible to design a network that achieves outbreak intensity

performance identical to the status quo network using two fewer sites. We also show

that if outbreak timing detection is of primary interest, it is actually possible to create

a network that matches the existing network’s performance using 42% fewer sites.

Conclusions

By simulating the spread of influenza across the state of Iowa, we show that

the networks our tool designs perform better than the status quo in terms of both

outbreak intensity and timing. Additionally, our results suggest that network size

may only play a minimal role in outbreak timing detection. Finally, we show that

it may be possible to reduce the size of a surveillance system without affecting the

quality of surveillance information produced.

2.1 Background

Although facilities location algorithms were originally used to help firms decide

where to build new retail outlets or distribution centers [43], these algorithms have

also been used for decades to help allocate healthcare resources. In the United States

(U.S.), for example, the Emergency Medical Services (EMS) Act of 1973 required that

95% of service requests had to be served within 30 minutes in a rural area and within
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10 minutes in an urban area [48]. More recently, investigators have studied how to

locate EMS facilities to aid in large-scale emergencies such as earthquakes or terrorist

attacks [98]. In addition to improving responses to healthcare problems, facilities

location algorithms have been used to place preventive healthcare services [182] and

also to design healthcare systems in developing countries [159]. In previous work, we

have shown how to apply facilities location algorithms to design disease surveillance

networks [157] and primary stroke center networks [112].

We focus on outpatient influenza surveillance in this paper. The Centers for

Disease Control and Prevention (CDC) currently collects different types of influenza-

related information [63]. Although these different systems (see Table 2.1) are in some

sense complementary, they were not originally developed to optimize detection of

influenza cases in any systematic way (i.e., using an explicit optimization criterion,

such as maximizing population coverage or minimizing average distance to population

elements). Indeed, these systems were in many cases “networks of convenience”.
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Table 2.1: The five categories of ILI surveillance used by the CDC.

Category Description
Viral Surveillance Approximately 85 U.S. WHO Collaborating Laboratories

and 60 National Respiratory and Enteric Virus Surveil-
lance System laboratories located throughout the U.S.
participate in virologic surveillance for influenza.

Outpatient Illness
Surveillance

Information on patient visits to health care providers for
influenza-like illness is collected through the U.S. Outpa-
tient Influenza-like Illness Surveillance Network (ILINet).
ILINet consists of more than 2,700 outpatient healthcare
providers in all 50 states, the District of Columbia, and
the U.S. Virgin Islands reporting more than 30 million
patient visits each year.

Mortality Surveil-
lance

122 cities across the U.S. report the total number of death
certificates and the number for which pneumonia or in-
fluenza was listed as the underlying or contributing cause
of death. Additionally, all influenza-associated deaths in
children (age < 18) are reported.

Hospitalization
Surveillance

Laboratory confirmed influenza-associated hospitaliza-
tions in children and adults are monitored through the
Influenza Hospitalization Surveillance Network.

Summary of the Geo-
graphic Spread of In-
fluenza

State health departments report the estimated level of
geographic spread of influenza activity in their states each
week through the State and Territorial Epidemiologists
Reports.

Surveillance network design has recently been improved using a data-driven

approach, incorporating weekly statewide data, hospitalization data, and Google Flu

Trends data [163]. Although such methods may provide for better networks in certain

instances, many large and populous regions of the world in critical need of surveil-

lance lack the requisite data for such analysis (e.g., poor/untrustworthy records, lack

of reasonable influenza activity estimates, lack of Google Flu Trends data in India,

China, and all of Africa). Additionally, Google Flu Trends does not track influenza

activity perfectly and can differ dramatically from CDC data [26]. Thus, more tradi-
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tional approaches based on facilities location algorithms that require only population

data are still the method of choice for surveillance network design in many regions of

the world.

Surveillance networks are used to determine not just outbreak location, but also

outbreak intensity (i.e., disease burden) and outbreak timing (i.e., the start, peak, and

end of the epidemic). Using networks to detect these factors of disease spread is not

new; however, to our knowledge, no other study has examined the implications of

designing networks that are tuned to preferentially perform one of these three tasks.

Clearly, if one were primarily interested in outbreak intensity or fine-grained outbreak

location information, one would want to incorporate as many sites as possible. But

given that resources are inevitably limited, careful site selection can save costs while

minimizing performance loss; knowing which detection task is of primary interest is

an important first step in designing more efficient and/or effective networks.

In this paper, we examine site placement for an influenza-like illness (ILI) sen-

tinel surveillance network in the state of Iowa. Iowa is a state in the U.S., roughly 310

miles by 199 miles (500 kilometers by 320 kilometers) in area, populated by approxi-

mately three million people. In Iowa, ILI is the major form of outpatient surveillance

for influenza activity. ILI is a collection of symptoms that indicate a possible influenza

infection (e.g., cough, fever, sore throat). Only laboratory tests can confirm actual

influenza. The Iowa Department of Public Health (IDPH) maintained 19 ILI sentinel

sites in 2007, comprised of primary care facilities and test laboratories selected strictly

on a volunteer basis. We analyze and compare several algorithmic surveillance site
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placement techniques using Iowa as a test environment, specifically in terms of de-

tecting outbreak intensity and outbreak timing. We examine the proportion of cases

detected by the different placement methods under explicit probabilistic detection

assumptions. We compare these results against the number of cases that would have

been detected by the 2007 IDPH network under identical assumptions. We then use

statistical correlation as a means to study outbreak timing. We demonstrate how we

can dramatically reduce the size of the surveillance network while still successfully

detecting the start, peak, and end of the outbreak.

2.2 Methods

2.2.1 Online tool

We have developed a web-based calculator that provides a simple user interface

for public health officials to determine the best site placement for every state in the

U.S.1 This web application takes as input a list of possible candidate site locations (by

ZIP code — there are 935 in Iowa) and, if the user is extending an existing network, a

list of any preselected site locations. The user chooses an algorithm and provides any

additional parameters specific to the algorithm as well as the total number of sites

required. The application then selects a set of sites and overlays the results on a map.

Population coverage statistics are also shown. The calculator is capable of designing

networks in every state in the U.S. and currently uses 2010 U.S. Census population

data. Iowa population distribution by ZIP code is presented in Figure 2.1.

1http://compepi.cs.uiowa.edu/~gcfairch/siteplacement/

http://compepi.cs.uiowa.edu/~gcfairch/siteplacement/
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Figure 2.1: Map showing population distribution in Iowa by ZIP code. All 935 ZIP
codes in Iowa are shaded by population. Darker colors indicate larger population
while lighter colors indicate smaller populations.

The methods in this paper operate at the ZIP code level; each surveillance

site is abstracted to the ZIP code in which it resides. Because the ZIP code is an

integral part of a site’s address, we can determine the location (i.e., latitude and

longitude), and also population, without geocoding the address; we simply consult a

look-up table. More fine-grained population data may certainly be used (e.g., block-

or tract-level), but addresses must be geocoded in those cases to determine location

and population. Our abstraction does not preclude network design in the case where

multiple sites are located in the same ZIP code.
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2.2.2 Algorithms

The web-based calculator supports three different network design algorithms:

two algorithms based on the maximal coverage model and one based on the K-median

facilities location model.

2.2.2.1 Maximal coverage model

The maximal coverage model (MCM) considers each site as having a fixed

coverage radius. For example, given that surveillance sites are typically primary care

facilities, it may be reasonable to assume that a site may serve patients who live

within a 30-minute driving radius of the site (indeed, this is the radius of coverage

we use in our simulations). The resulting optimization problem can be stated infor-

mally as follows: given a geographic population distribution and a radius of coverage

for each site, we wish to choose the sites that maximize the total number of people

within the specified distance of a site [38]. Because the problem is non-deterministic

polynomial-time hard (NP-hard) to solve exactly (i.e., it is typically infeasible to com-

pute the optimal solution), we instead implement a greedy approximation algorithm

that provides a (1− 1
e
)-approximation of the optimal solution [44]. This approxima-

tion algorithm guarantees a rapid solution that is “close enough” to optimal for use

in practice.

Note that the standard MCM formulation places no restrictions on the num-

ber of cases a site can serve (or in this case, detect). In the real world, however,

surveillance sites cannot detect an infinite number of cases, as each site will have
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some established natural limit, for example, in terms of the number of patients it

can serve. Such site capacity constraints are explicitly modeled in the capacitated

MCM formulation where each site is endowed with some intrinsic integer capacity.

Each person inside the radius of a site Si is then uniquely counted against that site’s

capacity. Once a site’s capacity is exhausted, it may become appropriate to place an-

other site Sj near Si notwithstanding overlapping site radii. For example, using the

standard non-capacitated MCM formulation, sites are preferentially placed in very

dense urban areas, often with several hundred thousand people within a single site’s

coverage radius. The capacitated model would instead deploy multiple surveillance

sites to high density locations in order to account for each site’s intrinsically limited

surveillance capacity.

Figure 2.2 shows how 19 sites chosen using the non-capacitated MCM compare

against the 19 sites used by the IDPH.
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Figure 2.2: Map comparing 19 existing sites against 19 sites chosen using MCM-NC.
The 19 existing sites (blue circles) and 19 sites calculated using the MCM-NC (red
circles) are shown together. Circles around each marker indicate the average driving
distance between patient homes and provider location in the Medicaid dataset. The
large red circle around Iowa City represents the University of Iowa Hospitals and
Clinics; the average driving distance is 45.47 miles (73.18 kilometers). The MCM-
NC tends to choose sites in the more densely populated regions in Iowa. These sites
often contain more reputable hospitals and clinics, and as a result, many people are
willing to drive further distances to be seen at these locations. The existing network
neglects certain populous regions of Iowa (such as Council Bluffs near Omaha) while
potentially over-covering other regions (such as Des Moines). Although the Medicaid
dataset is used to display average driving distances in this figure, recall that only
population data are used to select sites for a network.

2.2.2.2 K-median model

The K-median model (sometimes also referred to as the P-median model, as

in [50]) minimizes the sum of the distances from each individual to their nearest site
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(a more formal specification is found in [37]). Like the maximal coverage problem,

the K-median problem is also NP-hard [102], so an approximation algorithm is once

again in order. Here, we use a simple greedy algorithm, although there are more

complicated approximation algorithms that can generate slightly better solutions (see,

e.g., [172, 50]).

Note that there is a fundamental difference between the maximal coverage

model and the K-median model: the K-median model has no explicit notion of popu-

lation coverage; hence no radius of coverage is involved. By definition, every person in

the selected geography is “covered”, although the “quality” of his or her coverage (in

terms of travel distance) will vary (for this reason, our web-based calculator always

claims 100% coverage when sites are placed using the K-median model).

2.2.3 Validation

We can evaluate these different methods empirically by simulating the spread

of influenza across the state of Iowa and calculating the probability of each case being

detected by any surveillance site. Because our simulations are based on a historical

record of actual influenza-related cases, we can make meaningful comparisons between

the performance of algorithmically-derived surveillance networks and the existing

IDPH network.

2.2.3.1 Medicaid dataset

We use a dataset consisting of two million de-identified Medicaid billing records

representing eight complete influenza seasons from July 2000 to June 2008. Medicaid
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is a U.S. federal health insurance program for people and families with low incomes.

These records comprise all of the Iowa Medicaid records from this time period that

contain any one of 30 pre-specified ICD-9 codes that have been previously associated

with influenza [124]. Note that we use ICD-9-coded data as a proxy measure for in-

fluenza activity because laboratory-based influenza were not available for the state of

Iowa. A look at a seven-day moving average graph of the dataset in Figure 2.3 clearly

shows the well-established seasonal influenza peak that occurs each winter [117].
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Figure 2.3: Seven-day moving average graph showing the number of cases present in
the Medicaid dataset over time. The top line aggregates cases for all 30 ICD-9 codes
while the bottom line aggregates cases for three influenza-specific ICD-9 codes (i.e.,
487.x). Note that, when using all 30 ICD-9 codes, the case count never goes to zero.

Each record consists of an anonymous unique patient identifier, the ICD-9

diagnosis billing code, the date the case was recorded, the claim type (I=inpatient,

O=outpatient, M=medical), the patient ZIP code, age, gender, and provider ZIP

code (see Table 2.2). The dataset is very complete; of the two million total entries,

only 2500 entries are dropped due to an erroneous or missing field (e.g., a patient

ZIP code of 99999). A second influenza-specific subset of the original data can be
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defined by selecting only three of the original 30 ICD-9 codes that diagnose laboratory-

verified influenza (i.e., 487 — influenza, 487.1 — influenza with other respiratory

manifestations, and 487.8 — influenza with other manifestations); these three ICD-9

codes constitute approximately 30,000 entries, or about 4,000 per year. When all 30

ICD-9 codes are considered, the disease seems to never disappear (Figure 2.3); even

during the summer, there are several thousand cases. This might be attributed to

the fact that many of the 30 ICD-9 codes present in our expanded dataset include

codes that represent diseases and symptoms seen year-round (e.g., cough and acute

nasopharyngitis).

Table 2.2: Ten sample entries in the Medicaid billing dataset.

id ICD-9 date claimtype patient zip age gender provider zip
2421392 466 12/5/2005 O 50315 43 F 50314
2421392 465.9 1/23/2006 O 50315 43 F 50314
2421392 465.9 2/2/2006 O 50315 43 F 50314
2421392 465.9 3/9/2006 O 50315 43 F 50314
2421392 465.9 11/7/2006 O 50315 44 F 50314
1406011 780.6 11/30/2000 O 50316 37 F 50316
1979061 462 5/16/2001 M 50309 59 F 50315
425531 466 2/2/2004 M 50317 32 F 50316
425531 466 2/12/2004 M 50317 32 F 50313
425531 465.9 8/11/2004 M 50317 32 F 50313

The current diagnosis billing code standard is ICD-10, which provides for more

diagnostic granularity than ICD-9. Although our data do not use this new standard,

no significant changes would need to be made to the methods used in this paper for

validation; only careful selection of ICD-10 codes that correspond to cases of interest
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is required.

2.2.3.2 Simulation

We treat the Medicaid dataset as a proxy of the record of all ILI cases that

occurred in Iowa between 2000 and 2008. The probability of case detection is deter-

mined by the Huff model, a probabilistic model often used in geography literature

to analyze and understand aggregate consumer behavior [92]; here, we use the Huff

model to determine where people might seek care based on distance to the provider

and the provider’s perceived “attractiveness”. More formally, the probability Hij that

case i is detected by surveillance site j is given by

Hij =
AαjD

−β
ij∑n

j=1A
α
jD
−β
ij

, (2.1)

where Aj is the attractiveness of site j, Dij is the distance from case i to site j, α is

the attractiveness enhancement parameter, β is the distance decay parameter, and n

is the total number of surveillance sites.

We use the Huff model because it gives us a way of balancing the “attrac-

tiveness” of a site against the distance a patient may be from the site. Although we

could use the great-circle distance formula (i.e., geodesic distance on the surface of

a sphere) to approximate road distance [19], we instead created a driving distance

matrix using Microsoft’s Bing Maps API so that our measurements of travel time are

as accurate as possible. Dij is measured as driving distance in miles.

The challenge of properly setting appropriate values for the attractiveness,

attractiveness enhancement parameter, and distance decay parameter remains. One
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solution, and the one adopted in this work, is to estimate the attractiveness of a

site from the number of cases seen at that site in the Medicaid dataset. Since we

have a comprehensive set of Medicaid cases on which we use the Huff model, we can

fit appropriate values of α and β from the dataset. Although a number of parame-

ter estimation methods have been proposed (e.g., [16, 86, 90, 87, 138]), we present

a method that uses a metaheuristic global optimization algorithm called harmony

search (HS) [78] to determine the two parameters. HS has been applied to a variety

of problems, including other parameter estimation problems, and it often outperforms

other commonly used search algorithms, such as simulated annealing, tabu search,

and evolutionary algorithms (e.g., [74, 122, 145, 104, 181, 75, 77, 76]). We treat our

parameter estimation problem as a maximization problem, where the goal is to se-

lect values of α and β that produce the maximal average number of Medicaid cases

“correctly” located using the Huff model; a case is “correctly” located if a number

selected at random in the range [0, 1) is less than the Huff probability, Hij. Case

count is averaged over 50 replicates.

We use an open source Python implementation of HS called pyHarmony-

Search.2 α and β are both allowed to vary in the range (0, 20]. We set max imp

to 100, hms to 20, hmcr to 0.75, par to 0.5, and mpap to 0.25. We ran a total of 20 HS

iterations. For the full dataset, the best solution gave us a fitness of 1,032,762.2 cases

correctly detected (out of two million total cases) with α = 17.998 and β = 19.769.

For the influenza-specific dataset, the best solution had a fitness of 15,141.14 cases

2https://github.com/gfairchild/pyHarmonySearch

https://github.com/gfairchild/pyHarmonySearch
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(out of 30,000 total cases) with α = 19.114 and β = 19.479.

2.3 Results

We simulate influenza spread considering both the entire dataset and the

influenza-specific dataset. Because our simulations are stochastic, results are pro-

duced by averaging over 50 replicates. Placement algorithms design networks by

selecting sites from an IDPH-provided set of 117 candidate sites spread across the

state of Iowa. In addition to the MCM and K-median location-allocation models,

our analysis considers surveillance networks designed by selecting sites uniformly at

random. Results are reported for each network size by averaging over 50 randomly

generated networks.

2.3.1 Outbreak intensity

One way of comparing the quality of two different surveillance networks is

to compare the accuracy of their respective measures of outbreak intensity, here the

percentage of cases correctly detected by each network using the Huff model. In each

graph, the performance of the existing IDPH-selected sites is shown as a single data

point at n = 19. As seen in Figures 2.4 and 2.5, sites generated by the capacitated

and non-capacitated MCM (MCM-C and MCM-NC, respectively) tend to perform

best, followed closely by the K-median model. Performance improves as network size

grows. Unsurprisingly, selecting sites uniformly at random results in worse outbreak

intensity detection than preferentially selecting sites.
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Figure 2.4: Outbreak intensity as a function of network size for all ICD-9 codes.
Outbreak intensity is shown for the existing sites (shown as a single data point at
n = 19) as well as for sites generated using the two MCM variants, K-median model,
and randomly selected sites considering all 30 ICD-9 codes. MCM-C is capacitated
MCM, and MCM-NC is non-capacitated MCM. Random results at each network size
were computed by selecting 50 networks uniformly at random. In all cases, because
our simulations are stochastic, results were computed using 50 replicates. Graphs
show average results as well as minimum/maximum error bars. In general, the two
MCM variants perform best, with the K-median model trailing closely. The two MCM
models outperform the existing sites. The existing sites detect approximately 24.2%
(±0.02%) of all cases, while it takes only 17 sites for the MCM-NC to accomplish
the same level of outbreak intensity detection. At n = 19, MCM-NC detects 28.5%
(±0.02%) of all cases. As the number of sites grows beyond 20 sites, the capacitated
MCM better detects outbreak intensity.
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Figure 2.5: Outbreak intensity as a function of network size for the influenza-specific
dataset. Outbreak intensity is shown for the existing sites (shown as a single data
point at n = 19) as well as for sites generated using the two MCM variants, K-median
model, and randomly selected sites for the three influenza-specific ICD-9 codes. Here,
all three algorithmic variants outperform the existing sites. The existing sites detect
approximately 21.2% (±0.1%) of all cases. It takes only 12 sites for the K-median
to accomplish the same level of outbreak intensity detection. At n = 19, MCM-NC
detects 27.9% (±0.2%) of all cases.

It seems particularly appropriate to consider the performance of networks of

size 19, since this is the number of surveillance sites in the existing IDPH network.

At n = 19 for the full dataset, we see that all methods, except K-median and random

selection, outperform the existing network. As seen in Figure 2.4, the existing IDPH
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network detects approximately 24.2% (±0.02%) of all cases using the full dataset. At

n = 19, MCM-C detects approximately 27.4% (±0.02%) of cases, MCM-NC detects

approximately 28.5% (±0.02%), K-median detects approximately 22.2% (±0.01%),

while a random network detects 13.7% of cases on average (5.2% lower bound, 28.9%

upper bound). MCM-NC is capable of more efficient detection than the existing

network with only 17 sites. For the influenza-specific dataset, as seen in Figure 2.5,

all three algorithmic site placement methods outperform the existing sites. Here, it

only takes 12 sites selected using the K-median model to match the outbreak intensity

detection of the existing sites. In other words, in the state of Iowa, a network can

be designed that detects outbreak intensity as well as the existing network with two

fewer sites when considering the full gamut of possible influenza-related ICD-9 codes.

However, if we only consider direct diagnoses of influenza, the network can consist

of 37% fewer sites. This practically significant result indicates that preferentially

selecting sites can yield more efficient surveillance networks with less overhead cost.

2.3.2 Outbreak timing

In addition to outbreak intensity, a sentinel surveillance network should be

able to detect outbreak timing, or the temporal start, peak, and end of a disease

season. Intuitively, when attempting to maximize outbreak intensity detection (as

well as outbreak location detection), increasing the number of surveillance sites will

improve the quality of detection. However, it is not clear that there is an inherent

benefit of having more sites when looking at outbreak timing. We would like to
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explore just how few sites are necessary in order to still accurately detect the timing

of a disease season.

A surveillance network will necessarily detect fewer cases than actually oc-

curred among a population; yet, if the surveillance network detects cases temporally

in sync with this ground truth, then the disease curve should increase and decrease in

proportion with it. We use the Pearson product-moment correlation coefficient (often

abbreviated Pearson’s r) to correlate each detected time series with the ground truth

dataset in order to quantify outbreak timing detection quality [153]. Correlation coef-

ficients range from −1 to 1. Values above 0.5 and below −0.5 are often interpreted to

indicate strong positive and negative correlation, respectively, although these limits

are not hard and greatly depend on the context [40]. This method for measuring

outbreak timing does not require that we explicitly define the start, peak, or end of

a disease season; we simply correlate the simulated disease curves with the ground

truth disease curves.

Figures 2.6 and 2.7 compare the outbreak timing detection capabilities of

the algorithmic placement methods and the existing sites using the full dataset and

influenza-specific dataset, respectively. In Figure 2.6, at n = 19, we see similar out-

break timing performance among all placement methods, with all networks achieving

correlation coefficients of at least 0.98 (indicating very strong positive correlation

with ground truth). It only takes 11 algorithmically-placed sites in order to detect

outbreak timing at least as well as the existing network, while a network containing

only two well-placed sites is capable of achieving a 0.9 correlation coefficient. Even
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networks with as few as one site are able to achieve correlations of at least 0.67. When

the set of ICD-9 codes is restricted to the influenza-specific dataset, as in Figure 2.7,

outbreak timing quality is only slightly reduced. It takes 14 sites to match the per-

formance of the existing network, but it only takes six sites to achieve correlation of

at least 0.9. These practically significant findings suggest that it may be possible to

drastically reduce the size of a network if the metric of primary interest is outbreak

timing detection.
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Figure 2.6: Outbreak timing as a function of network size for all ICD-9 codes. Pear-
son’s r for the existing sites as well as for sites generated using the two MCM variants,
K-median model, and randomly selected sites for all 30 ICD-9 codes. Recall that Pear-
son’s r is used to quantify the quality of outbreak timing detection for a surveillance
network. At n = 19, the average Pearson’s r for the existing sites is 0.98 (±0.0002),
while it is 0.99 (±0.0002) for MCM-C, MCM-NC, and K-median, respectively, and
0.97 (±0.02) for random. All algorithmic methods offer site placements that perform
extremely well, achieving at least 0.67 correlation for networks with as few as one site.
It only requires two sites selected using either MCM variant to achieve correlation of
at least 0.9, and only 11 sites are needed to match the performance of the existing
network.
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Figure 2.7: Outbreak timing as a function of network size for the influenza-specific
dataset. Pearson’s r for the existing sites as well as for sites generated using the two
MCM variants, K-median model, and randomly selected sites for the three influenza-
specific ICD-9 codes. At n = 19, the average Pearson’s r for the existing sites is
0.96 (±0.01), while it is 0.97 (±0.001) for all three algorithmic placement methods
and 0.91 (±0.06) for randomly placed sites. Compared to Figure 2.6, there is a very
small reduction in outbreak timing detection capabilities when the ICD-9 codes are
restricted. Both MCM variants are capable of 0.9 correlation with as few as six sites,
and only 14 sites are required to match the performance of the existing network.

2.4 Conclusions

Disease surveillance is critical in epidemiological studies and in the realm of

public health policy. Using a publicly available web-based surveillance site placement



32

calculator and three different algorithmic surveillance site placement methods, we

compared the performance of networks generated by the calculator with the volunteer-

based network maintained by the IDPH.

The major contribution of this paper is the exploration of two metrics on which

a surveillance network can be optimized: outbreak intensity and outbreak timing.

Sites chosen using either MCM variant consistently outperform the baseline IDPH

network both in terms of outbreak intensity and timing. Furthermore, we found

that preferential selection of sites can yield networks capable of achieving outbreak

intensity and timing performance in line with the current IDPH network, requiring,

in some cases, only a fraction of the number of sites. We found that, at least in the

state of Iowa, the number of sites chosen seems not to matter for outbreak timing

detection. This implies that using just a few strategically placed surveillance sites

(e.g., Des Moines, Cedar Rapids, Davenport, Sioux City, and Iowa City – the five

most populous cities in Iowa) may suffice to reliably and accurately determine the

onset, peak, and end of the influenza season in Iowa.

It is important to recognize that although we analyze and compare networks

using a dataset of confirmed Medicaid influenza-related cases, network design is ac-

complished only considering population data. This means that our surveillance net-

work design methods can be used in any location in the world where population data

are available.

In practice, surveillance site recruitment, especially in locations where such

involvement is voluntary, may prove difficult. This realization opens a new dimension
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for optimization: cost. Each site brings some inherent cost to the system; the cost

may be a monetary value (e.g., incentives), man-hours required for reporting, or

some other measure. That is, the real-world optimization problem may actually

need to be multi-dimensional. For example, the maximal coverage model may need

to be minimal cost, maximal coverage in practice. This direction for future work

requires careful consideration when deriving site costs. Additionally, in areas where

surveillance site participation is voluntary, a site selected by the methods presented

in this paper may decline or hesitate to join the network. The greedy algorithms used

here allow for public health officials to rank site importance since, by definition, the

most important sites are selected first. This can allow for an adjustment in resource

allocation to incentivize important, but unwilling, sites.

In the future, we will look more closely at the problem of selecting the ICD-9

codes worth considering for validation. Here, we only consider two sets of ICD-9 codes:

the entire set of all 30 influenza-related ICD-9 codes provided in our Medicaid dataset

and an influenza-specific ICD-9 code subset containing only direct diagnoses of in-

fluenza (i.e., 487.x ICD-9 codes). One possible approach is to apply machine learning

techniques typically used for feature selection to the problem of finding which ICD-9

codes should be used for validation. We will also examine other states exhibiting dif-

ferent population density and geographic characteristics from Iowa, and, eventually,

nationwide and worldwide surveillance networks. Ultimately, our goal is to use com-

putational methods to reliably advise public health officials how many surveillance

sites suffice and where to place them in order to meet their specific needs.
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There are several limitations of our work. First, this work focuses on the state

of Iowa in the U.S., which is a relatively simple state geographically and geologically.

A more geographically or geologically diverse state such as Colorado with its natural

east-west divide in the form of the Rocky Mountains may provide different obsta-

cles in site placement. Second, our placement models ignore demographics, so it is

possible the resulting networks are sampling some demographics more than others

or possibly missing some demographics altogether. All surveillance networks have

difficulty making conclusions about uncovered areas. Third, the Medicaid data used

in our simulations represent a particular demographic of Iowa: people and families

with low incomes (these data, however, are complete with respect to that particular

demographic). Furthermore, all calculations consider the population of a ZIP code to

be concentrated at the centroid of that ZIP code. In reality, populations are usually

distributed in some fashion across the entire ZIP code region. Additionally, while our

simplifying site-as-ZIP code abstraction may be reasonable for less densely populated

regions, such as Iowa, it may prove to be problematic in more densely populated

regions. A final limitation to our work is that we use administrative data (ICD-9

codes) as a proxy for influenza activity. We would rather use actual ILI data or

laboratory-based data, but these data sources were not available across the state.

Our web-based tool can aid public health officials in designing an effective

disease surveillance system. We studied two metrics by which a surveillance network

may be evaluated: outbreak intensity and outbreak timing. By simulating the spread

of influenza across the state of Iowa, we show that the sites our tool selects perform
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better than the status quo in terms of both metrics. Additionally, we offer new

insights that suggest that network size may only play a minimal role in outbreak

timing detection. Finally, we show that it may be possible to reduce the size of

a surveillance system without affecting the quality of surveillance information the

system is able to produce.

2.5 Extension: Primary stroke center placement

The site placement methods described so far have only been used for influenza

sentinel surveillance networks. The methods are generic, though, and can be applied

to a variety of health-related facilities location problems. This section demonstrates

how the maximal coverage model can be used to place primary stroke centers.

2.5.1 Introduction

Outcomes in ischemic stroke depend on both the timely delivery of throm-

bolytic therapy [111] and the quality of the ancillary care provided [169]. A hospital

that can provide adequate stabilization and treatment with rtPA, with or without

a dedicated stroke unit, may be certified as a primary stroke center (PSC). This

certification is a bottom-up voluntary process initiated by interested hospitals. Un-

fortunately, this self-initiated approach results in insufficient access to PSCs for a

large segment of the American population [8]. This is particularly dramatic for non-

urban areas [13]. Clearly, additional PSCs are needed to expand the timely access to

emergent stroke care for a more reasonable fraction of the population [154]. However,

before this shortage can be addressed, it is important to recognize the magnitude
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of the associated societal cost and any possible approaches that can be made to

minimize the cost. Should the process of further PSC certification continue in this

bottom-up self-initiated manner, or should an overseeing entity promote and/or direct

the placement of additional PSCs? A top-down directed process could be justified if

the number of additional centers required is large, or if the directed process signif-

icantly increases coverage over the self-initiated process. In this section, we aim to

address this question by comparing present and projected PSC population coverage in

a traditionally rural state with dispersed population and resources using geographic

location-allocation modeling techniques.

2.5.2 Methods

We first identified all the current PSCs in the state of Iowa. Using the 2009

American Hospital Association’s Annual Service Database, we determined all the

possible additional PSC locations by identifying hospitals meeting the minimum re-

quirements: the availability of a radiology department with staff available to perform

head CT, and laboratory services that were available 24 hours a day [7, 114]. We

then used the same web-based location-allocation calculator described earlier to place

PSCs in Iowa.

We aimed to maximize the number of residents in the state that are within a

fixed pre-specified time-distance of at least one of the possible PSC sites. Using our

Bing driving distance matrix, which also contains driving time in seconds between

ZCTAs, the calculator was used to estimate the current PSC population coverage
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in the state of Iowa with three different maximum time-distance thresholds (15, 30,

and 45 minutes). We then used the calculator to estimate what the hypothetical

coverage would be if a MCM had been used to establish the best location for the

current number of centers. We also plotted the number of additional PSCs that

would be needed to improve the population coverage to a pre-specified threshold.

We compared the future improvement in coverage between four different approaches:

1) a random selection approach (i.e., new PSC sites selected uniformly at random),

2) a weighted-random selection approach that mimics the current tendency of PSCs

that favor larger hospitals (i.e., sites are selected randomly where the probability of

selection is weighted by the population contained within time-distance units of a site

independent of the presence of other PSCs), 3) a MCM that builds on the existing

12 PSCs, and 4) a hypothetical MCM that was started de novo (i.e., without the

existing PSCs).

2.5.3 Results

Of the 126 hospitals in Iowa, 120 reported having the minimum resources

required to become a PSC and were included in the analysis. Of those 120 hospitals,

12 (10%) are already PSCs certified through the self-initiation process. The 12 current

PSCs, which are located in the largest cities within the state, serve 37.2% of the Iowa

population, assuming a time-distance radius of 30 minutes (these same 12 sites cover

21.3% and 60.0% of the population for time-distance radii of 15 and 45 minutes,

respectively). The amount of effort that would be required to significantly expand
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the current coverage of PSCs in Iowa using the MCM is illustrated in Figure 2.8.

31 additional MCM-placed PSCs (dark gray) would be required to augment the 12

existing PSCs (green) in order to cover 75% of the population of Iowa with an assumed

30 minute time-distance radius of coverage. Figures 2.9a, 2.9b, and 2.9c show the

relationship between the number of additional MCM-placed PSCs needed and the

fraction of the population that would be covered for three different time-distance radii

of coverage (15, 30, and 45 minutes, respectively). In these three graphs, calculations

were plotted for the four different approaches discussed above. To generate curves for

the two random approaches, we averaged the results from 500 replicates.
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Figure 2.8: Results of a maximum coverage algorithm showing the location of the
additional 31 PSCs (dark gray circles) that would be required to cover 75% of the
population of Iowa with an assumed 30-minute time-distance radius. The existing 12
PSCs are shown in green circles. Circles with 20-mile radii are shown around each
PSC for visualization purposes.
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(a) 15 minute radius
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(b) 30 minute radius
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(c) 45 minute radius

Figure 2.9: Projected population coverage as new PSCs are added to the 12 existing
PSCs. The random selection model selects sites uniformly at random. The weighted
random selection model simulates the current self-initiation approach by randomly
selecting PSCs with probability proportional to the population contained in each
site’s radius of coverage. Results garnered from both random selection models were
averaged from 500 replicates. The MCM line represents a maximal coverage model
(MCM) that builds on the existing 12 PSCs. The MCM de novo line represents a
hypothetical MCM that was started de novo (i.e., without the existing PSCs). Results
are shown for 3 different time-distance radii (15, 30, and 45 minutes).

The lack of efficiency of the current self-initiated approach is clearly evidenced

by showing that 47.5% of the population could be covered presently within a 30
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minute radius had a MCM been used to place the first 12 PSCs. Furthermore, future

prediction of coverage using the weighted random selection model to simulate self-

initiation in denser population regions shows that 54 additional PSCs would be needed

to cover 75% of the population with a 30 minute radius of coverage while only an

additional 31 MCM-placed PSCs would be needed to achieve the same degree of

population coverage (Figures 2.8 and 2.9b).

2.5.4 Conclusions

The initiative to certify hospitals as PSC by the Joint Commission or by state

health departments is an important step in improving stroke care for Americans [4].

Unfortunately, the current system of self-initiation by willing hospitals results in

sparse coverage for large areas of the population, particularly in rural states. We

have confirmed that the overall percentage of the state population adequately covered

by PSCs is minimal, which highlights the critical need to increase the numbers of

available centers. While reasonable coverage exists in urban centers of Iowa, the

majority of the state’s less-densely populated areas have insufficient availability. This

reflects the national tendency for larger urban hospitals, typically with an attached

stroke unit, to seek PSC certification from the Joint Commission3. This trend is

at odds with the initial intentions of the PSC initiative to certify hospitals that are

able to adequately stabilize and initially treat stroke patients similar to the trauma

model [7]. It might also reflect a tendency for PSCs to cluster in a single location

3http://www.jointcommission.org/certification/primary_stroke_centers.aspx

http://www.jointcommission.org/certification/primary_stroke_centers.aspx
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due to local competition, a phenomenon described for other critical facilities such as

ICUs [88]. The geographic disparity in access to stroke care for a large proportion

of the U.S. population can only increase the existing disparity of stroke care between

rural and urban areas [113]. Unfortunately, it is clear that the number of PSCs needed

to improve the coverage to acceptable levels is quite large.

We recognize that our findings may, at first glance, give the impression of a self-

fulfilling prophecy. After all, it should not be a surprise that a MCM produces better

results than random selection. But the importance of these findings lies in quantifying

the benefit over the current self-initiated approach. We were surprised to learn how

inefficient the current self-initiation model of PSCs is to provide population coverage.

We realize that in practice, the process of self-initiation is not entirely random. Larger

hospitals providing care to denser areas of populations are more likely to seek PSC

certification, so our weighted-random approach was designed to test this real-case

scenario. Still, the difference with a MCM is significant. The existing PSCs in the

state of Iowa are not in the most efficient locations to best serve the population. Since

this certification has already been accomplished (and we are by no means advocating

the removal of the PSC status for any existing center), we present these findings to

improve PSC growth in the future. The ratio between minimal coverage and expenses

required should be established based on the available resources. But is clear that no

matter what the parameters are determined to be, a MCM would result in fewer

required PSCs, and, as a result, lower societal investment. In other words, as in any

other resource-limited situation, it is crucial to maximize coverage while minimizing
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the resources required.

These results raise the ethical and political question of whether the location of

future PSCs should be regulated given the important health implications of receiving

timely acute stroke care. We believe these findings will be useful to both government-

run health care systems and private hospital systems. Governmental operations could

stratify their resources to mandate the establishment of PSCs in hospitals located in

the most efficient sites. But this would also be true for privately-owned hospital

networks that seek to find the ideal location for a PSC within their system based on

population distribution. We recognize that a MCM approach would be more difficult

to enforce in the private market of small autonomous institutions. In those cases,

rather than mandating a location, a MCM could be used by a state institution to

decide how many additional centers are needed and in which hospitals they should

concentrate educational efforts and incentives to promote PSC certification [143]. A

MCM would be the basis for a rational justification by location that can be used to

incentivize the process in smaller institutions. This approach might also be useful

for other acute stroke care applications such as to find the best locations for remote

centers for telemedicine networks by identifying rtPA-ready hospitals as key steps in

the regionalization process [129], or identifying the best centers for a spoke-and-hub

comprehensive stroke center network [45]. Geographic computerized methods that

find the best location to improve access have been proposed for other services such

as nephrology services [15] or flu surveillance [157, 163, 57].

We recognize that there might be resistance to further increase in the num-
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ber of PSCs. Barriers to this process have already been identified [150]. Because

of initial self-selection by larger hospitals, any further expansion of the number of

PSCs in rural states becomes the burden of the remaining smaller hospitals. Being

a small hospital is not per se an impediment for a PSC designation [167]. In fact,

most small rural hospitals have adequate resources to become PSCs, suggesting that

such certification could be achieved with adequate administrative and financial sup-

port [114]. However, it might be difficult to interest additional smaller hospitals in

pursuing PSC certification, particularly when they did not volunteer for the process

in the years since the PSC initiative has been available. We recognize that becoming

a PSC is an expensive and onerous process for small hospitals. For that reason, we

propose a central planning incentive to subsidize these costs for critical locations.

Alternatively, in cases where optimal locations prove to be infeasible for financial or

other reasons, the same methodology can be used to identify second-best locations

and the cost incurred in selecting the second best. We hypothesize that institutions

in critical uncovered geographical locations might respond to statewide or national

incentives to become a PSC.

There are limitations to this research. We recognize that the choice of using

PSCs might underestimate the state stroke treatment capabilities because there are

hospitals that can give rtPA without being certified as a PSC. We used the cur-

rent PSC certification to test the optimization model since it is a rigorous initiative

widely accepted by the stroke community nationwide as a standard of acute stroke

care. Also, there could be uncertainty about what constitutes a “state-wide signifi-
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cant” difference in population coverage. This is analogous to the dilemma between

statistical significance and clinical significance. Currently, 10% of the population of

the State of Iowa (3,046,355 according to the U.S. Census Bureau 2010) represents

304,635 persons. That means that, if the current PSCs had been placed using a MCM,

an additional 300 thousand individuals would have adequate PSC coverage. Again,

that is without any additional societal investment, only by locating the PSCs at the

most efficient locations. We judge this number to be significant and meaningful for

stroke care at a state-wide level. Another limitation is the predictive nature of the

model. We have minimized that uncertainty by testing a weighted-random approach

that approximates the current process to become a PSC.

There are also operational and implementation limitations to this research. Be-

cause ZCTA boundaries are not ZIP code boundaries, we assume that the population

is concentrated at the center of the ZCTA. However, although this limitation could

affect the magnitude of the effect, is does not affect the outcomes of this model nor

the conclusions. We also recognize that there are potential limitations to generalize

these results to other states that may have different patterns of population density

and resource dispersion; we have used for this research a state that is a moderate

example of dispersion for a rural population within the United States.

In summary, the process of becoming a PSC has been one driven by self-

initiation. But this approach is in sharp contrast to the systematic planning that

normally occurs for other important societal services and has resulted in insufficient

access to stroke centers for large segments of the U.S. population. Expanding the
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number of PSCs is clearly necessary, and such an expansion will likely benefit from

the efficiency of directed optimization models. Lastly, and more importantly, such

methods would result in minimization of societal investment while assuring some

measure of maximal utility.

2.6 Publications

This chapter is derived from two publications:

• G. Fairchild, P. M. Polgreen, E. Foster, G. Rushton, and A. M. Segre, “How

many suffice? A computational framework for sizing sentinel surveillance net-

works,” Int. J. Health Geogr., vol. 12, no. 1, p. 56, Dec. 2013.

• E. C. Leira, G. Fairchild, A. M. Segre, G. Rushton, M. T. Froehler, and P. M.

Polgreen, “Primary Stroke Centers Should Be Located Using Maximal Coverage

Models for Optimal Access,” Stroke, vol. 43, no. 9, pp. 2417–2422, 2012.
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CHAPTER 3
GLOBAL DISEASE MONITORING AND FORECASTING WITH

WIKIPEDIA

Abstract

Infectious disease is a leading threat to public health, economic stability, and

other key social structures. Efforts to mitigate these impacts depend on accurate

and timely monitoring to measure the risk and progress of disease. Traditional,

biologically-focused monitoring techniques are accurate but costly and slow; in re-

sponse, new techniques based on social internet data such as social media and search

queries are emerging. These efforts are promising, but important challenges in the ar-

eas of scientific peer review, breadth of diseases and countries, and forecasting hamper

their operational usefulness.

We examine a freely available, open data source for this use: access logs from

the online encyclopedia Wikipedia. Using linear models, language as a proxy for lo-

cation, and a systematic yet simple article selection procedure, we tested 14 location-

disease combinations and demonstrate that these data feasibly support an approach

that overcomes these challenges. Specifically, our proof-of-concept yields models with

r2 up to 0.92, forecasting value up to the 28 days tested, and several pairs of mod-

els similar enough to suggest that transferring models from one location to another

without re-training is feasible.

Based on these preliminary results, we close with a research agenda designed

to overcome these challenges and produce a disease monitoring and forecasting sys-
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tem that is significantly more effective, robust, and globally comprehensive than the

current state of the art.

3.1 Introduction

3.1.1 Motivation and Overview

Infectious disease remains extremely costly in both human and economic terms.

For example, the majority of global child mortality is due to conditions such as acute

respiratory infection, measles, diarrhea, malaria, and HIV/AIDS [118]. Even in de-

veloped countries, infectious disease has great impact; for example, each influenza

season costs the United States between 3,000 and 49,000 lives [176] and an average

of $87 billion in reduced economic output [136].

Effective and timely disease surveillance — that is, detecting, characterizing,

and quantifying the incidence of disease — is a critical component of prevention and

mitigation strategies that can save lives, reduce suffering, and minimize impact. Tra-

ditionally, such monitoring takes the form of patient interviews and/or laboratory

tests followed by a bureaucratic reporting chain; while generally considered accu-

rate, this process is costly and introduces a significant lag between observation and

reporting.

These problems have motivated new surveillance techniques based upon in-

ternet data sources such as search queries and social media posts. Essentially, these

methods use large-scale data mining techniques to identify health-related activity

traces within the data streams, extract them, and transform them into some use-
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ful metric. The basic approach is to train a statistical estimation model against

ground truth data, such as ministry of health disease incidence records, and then

apply the model to generate estimates when the true data are not available, e.g.,

when forecasting or when the true data have not yet been published. This has

proven effective and has spawned operational systems such as Google Flu Trends

(http://www.google.org/flutrends/). However, four key challenges remain before

internet-based disease surveillance models can be reliably integrated into an decision-

making toolkit:

1. Models should afford review, replication, improvement, and deployment by third

parties. This guarantees a high-quality scientific basis, continuity of operations,

and broad applicability. These requirements imply that model algorithms — in

the form of source code, not research papers — must be generally available, and

they also imply that complete input data must be available. The latter is the

key obstacle, as terms are dictated by the data owner rather than the data user;

this motivated our exploration of Wikipedia access logs. To our knowledge, no

models exist that use both open data and open algorithms.

2. Dozens of diseases in hundreds of countries have sufficient impact to merit

surveillance; however, adapting a model from one disease-location context to

another can be costly, and resources are often, if not usually, unavailable to do

so. Thus, models should be cheaply adaptable, ideally by simply entering new

incidence data for training. While most published models afford this flexibility

in principle, few have been expressly tested for this purpose.

http://www.google.org/flutrends/
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3. Many contexts have insufficient reliable incidence data to train a model (for ex-

ample, the relevant ministry of health might not track the disease of interest),

and in fact these are the contexts where new approaches are of the greatest

urgency. Thus, trained models should be translatable to new contexts using

alternate, non-incidence data such as a bilingual dictionary or census demo-

graphics. To our knowledge, no such models exist.

4. Effective disease response depends not only on the current state of an outbreak

but also its future course. That is, models should provide not only estimates

of the current state of the world — nowcasts — but also forecasts of its future

state.

While recent work in disease forecasting has made significant strides in ac-

curacy, forecasting the future of an outbreak is still a complex affair that is

sharply limited in contexts with insufficient data or insufficient understanding

of the biological processes and parameters underpinning the outbreak. In these

contexts, a simpler statistical approach based on leading indicators in inter-

net data streams may improve forecast availability, quality, and time horizon.

Prior evaluations of such approaches have yielded conflicting results and to our

knowledge have not been performed at time granularity finer than one week.

In order to address these challenges, we propose a new approach based on

freely available Wikipedia article access logs. In the current proof of concept, we use

language as a proxy for location, but we hope that access data explicitly aggregated

by geography will become available in the future. (Our implementation is available
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as open source software: http://github.com/reidpr/quac.) To demonstrate the

feasibility of techniques built upon this data stream, we built linear models mapping

daily access counts of encyclopedia articles to case counts for 7 diseases in 9 countries,

for a total of 14 contexts. Even a simple article selection method was successful in

8 of the 14 contexts, yielding models with r2 up to 0.89 in nowcasting and 0.92 in

forecasting, with most of the successful contexts having forecast value up to the tested

limit of 28 days. Specifically, we argue that approaches based on this data source can

overcome the four challenges as follows:

C1. Anyone with relatively modest computing resources can download the complete

Wikipedia dataset and keep it up to date. The data can also be freely shared

with others.

C2. In cases where estimation is practical, our approach can be adapted to a new

context by simply supplying a reliable incidence time series and selecting input

articles. We demonstrate this by computing effective models for several different

contexts even with a simple article selection procedure. Future, more powerful

article selection procedures will increase the adaptability of the approach.

C3. In several instances, our models for the same disease in different locations are

very similar; i.e., correlations between different language versions of the same

article and the corresponding local disease incidence are similar. This suggests

that simple techniques based on inter-language article mappings or other readily

available data can be used to translate models from one context to another

without re-training.

http://github.com/reidpr/quac
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C4. Even our simple models show usefully high r2 when forecasting a few days or

weeks into the future. This suggests that the general approach can be used to

build short-term forecasts with reasonably tight confidence intervals.

In short, this paper offers two key arguments. First, we evaluate the potential

of an emerging data source, Wikipedia access logs, for global disease surveillance and

forecasting in more detail than is previously available, and we argue that the openness

and other properties of these data have important scientific and operational benefits.

Second, using simple proof-of-concept experiments, we demonstrate that statistical

techniques effective for estimating disease incidence using previous internet data are

likely to also be effective using Wikipedia access logs.

We turn next to a more thorough discussion of prior work, both to set the

stage for the current work as well as outline in greater detail the state of the art’s

relationship to the challenges above. Following that, we cover our methods and data

sources, results, and a discussion of implications and future work.

3.1.2 Related Work

Our paper draws upon prior scholarly and practical work in three areas: tradi-

tional patient- and laboratory-based disease surveillance, Wikipedia-based measure-

ment of the real world, and internet-based disease surveillance.

3.1.2.1 Traditional Disease Surveillance

Traditional forms of disease surveillance are based upon direct patient contact

or biological tests taking place in clinics, hospitals, and laboratories. The majority of
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current systems rely on syndromic surveillance data (i.e., about symptoms) including

clinical diagnoses, chief complaints, school and work absenteeism, illness-related 911

calls, and emergency room admissions [105].

For example, a well-established measure for influenza surveillance is the frac-

tion of patients with influenza-like illness, abbreviated simply ILI. A network of out-

patient providers report the total number of patients seen and the number who present

with symptoms consistent with influenza that have no other identifiable cause [30].

Similarly, other electronic resources have emerged, such as the Electronic Surveillance

System for the Early Notification of Community Based Epidemics (ESSENCE), based

on real-time data from the Department of Defense Military Health System [20] and

BioSense, based on data from the Department of Veterans Affairs, the Department of

Defense, retail pharmacies, and Laboratory Corporation of America [18]. These sys-

tems are designed to facilitate early detection of disease outbreaks as well as response

to harmful health effects, exposure to disease, or related hazardous conditions.

Clinical labs play a critical role in surveillance of infectious diseases. For

example, the Laboratory Response Network (LRN), consisting of over 120 biological

laboratories, provides active surveillance of a number of disease agents in humans

ranging from mild (e.g., non-pathogenic E. coli and Staphylococcus aureus) to severe

(e.g., Ebola and Marburg), based on clinical or environmental samples [105]. Other

systems monitor non-traditional public health indicators such as school absenteeism

rates, over-the-counter medication sales, 911 calls, veterinary data, and ambulance

run data. For example, the Early Aberration Reporting System (EARS) provides
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national, state, and local health departments alternative detection approaches for

syndromic surveillance [96].

The main value of these systems is their accuracy. However, they have a

number of disadvantages, notably cost and timeliness: for example, each ILI datum

requires a practitioner visit, and ILI data are published only after a delay of 1–2

weeks [30].

3.1.2.2 Wikipedia

Wikipedia is an online encyclopedia that has, since its founding in 2001, grown

to contain approximately 30 million articles in 287 languages [185]. In recent years,

it has consistently ranked as a top-10 website; as of this writing, it is the 6th most

visited website in the world and the most visited site that is not a search engine or

social network [9], serving roughly 850 million article requests per day [184]. For

numerous search engine queries, a Wikipedia article is the top result.

Wikipedia contrasts with traditional encyclopedias on two key dimensions: it is

free of charge to read, and anyone can make changes that are published immediately

— review is performed by the community after publication. (This is true for the

vast majority of articles. Particularly controversial articles, such as “George W.

Bush” or “Abortion”, have varying levels of edit protection.) While this surprising

inversion of the traditional review-publish cycle would seem to invite all manner

of abuse and misinformation, Wikipedia has developed effective measures to deal

with these problems and is of similar accuracy to traditional encyclopedias such as
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Britannica [81].

Wikipedia article access logs have been used for a modest variety of research.

The most common application is detection and measurement of popular news topics

or events [5, 39, 91, 149, 10]. The data have also been used to study the dynamics

of Wikipedia itself [158, 174, 180]. Social applications include evaluating toponym

importance in order to make type size decisions for maps [23], measuring the flow

of concepts across the world [177], and estimating the popularity of politicians and

political parties [193]. Finally, economic applications include attempts to forecast

movie ticket sales [128] and stock prices [135]. The latter two applications are of

particular interest because they include a forecasting component, as the present work

does.

In the context of health information, the most prominent research direction

focuses on assessing the quality of Wikipedia as a health information source for the

public, e.g., with respect to cancer [115, 160], carpal tunnel syndrome [120], drug

information [106], and kidney conditions [175]. To our knowledge, only four health

studies exist that make use of Wikipedia access logs. Tausczik et al. examined pub-

lic “anxiety and information seeking” during the 2009 H1N1 pandemic, in part by

measuring traffic to H1N1-related Wikipedia articles [171]. Laurent and Vickers eval-

uated Wikipedia article traffic for disease-related seasonality and in relation to news

coverage of health issues, finding significant effects in both cases [110]. Aitken et al.

found a correlation between drug sales and Wikipedia traffic for a selection of approx-

imately 5,000 health-related articles [6]. None of these propose a time-series model
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mapping article traffic to disease metrics.

The fourth study is a recent article by McIver and Brownstein, which uses sta-

tistical techniques to estimate the influenza rate in the United States from Wikipedia

access logs [125]. In the next section, we compare and contrast this article with the

present work in the context of a broader discussion of such techniques.

In summary, use of Wikipedia access logs to measure real-world quantities is

beginning to emerge, as is interest in Wikipedia for health purposes. However, to our

knowledge, use of the encyclopedia for quantitative disease surveillance remains at

the earliest stages.

3.1.2.3 Internet-based Disease Surveillance

Recently, new forms of surveillance based upon the social internet have emerged;

these data streams are appealing in large part because of their real-time nature and

the low cost of information extraction, properties complementary to traditional meth-

ods. The basic insight is that people leave traces of their online activity related to

health observations, and these traces can be captured and used to derive actionable

information. Two main classes of trace exist: sharing such as social media mentions

of face mask use [134] and health-seeking behavior such as Web searches for health-

related topics [82]. (In fact, there is evidence that the volume of internet-based

health-seeking behavior dwarfs traditional avenues [161, 72].)

In this section, we focus on the surveillance work most closely related to our

efforts, specifically, that which uses existing single-source internet data feeds to es-
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timate some scalar disease-related metric. For example, we exclude from detailed

analysis work that provides only alerts [41, 198], measures public perception of a

disease [162], includes disease dynamics in its model [165], evaluates a third-party

method [144], uses non-single-source data feeds [41, 73], or crowd-sources health-

related data (“participatory disease surveillance”) [34, 36]. We also focus on work

that estimates biologically-rooted metrics. For example, we exclude metrics based on

seasonality [14, 164] and over-the-counter drug sales volume, itself a proxy [116].

These activity traces are embedded in search queries [11, 21, 27, 31, 33, 42,

51, 53, 54, 56, 82, 85, 94, 95, 93, 99, 101, 142, 155, 156, 183, 187, 191, 190, 192, 194,

196, 197], social media messages [1, 2, 12, 22, 35, 47, 52, 83, 89, 103, 107, 109, 108,

137, 152, 166], and web server access logs [100, 125, 190]. At a basic level, traces are

extracted by counting query strings, words or phrases, or web page URLs that are

related to the metric of interest, forming a time series of occurrences for each item.

A statistical model is then created that maps these input time series to a time series

estimating the metric’s changing value. This model is trained on time period(s) when

both the internet data and the true metric values are available and then applied to

estimate the metric value over time period(s) when it is not available, i.e., forecasting

the future, nowcasting the present, and anti-forecasting the past (the latter two being

useful in cases where true metric availability lags real time).

Typically, this model is linear, e.g.:

M =
J∑
j=1

αjxj (3.1)

where xj is the count of some item, J is the total number of possible items (i.e.,
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vocabulary size), M is the estimated metric value, and αj are selected by linear

regression or similar methods. When appropriately trained, these methods can be

quite accurate; for example, many of the cited models can produce near real-time

estimates of case counts with correlations upwards of r = 0.95.

The collection of disease surveillance work cited above has estimated incidence

for a wide variety of infectious and non-infectious conditions: avian influenza [27],

cancer [42], chicken pox [155], cholera [35], dengue [11, 31, 83], dysentery [197], gas-

troenteritis [51, 94, 155], gonorrhea [99], hand foot and mouth disease (HFMD) [190],

HIV/AIDS [196, 197], influenza [1, 2, 12, 22, 33, 47, 52, 53, 56, 82, 89, 95, 93, 100, 101,

103, 107, 109, 108, 125, 137, 155, 152, 156, 166, 191, 194], kidney stones [21], listerio-

sis [187], malaria [142], methicillin-resistant Staphylococcus aureus (MRSA) [54], per-

tussis [137], pneumonia [156], respiratory syncytial virus (RSV) [27], scarlet fever [197],

stroke [183], suicide [85, 192], tuberculosis [197], and West Nile virus [27].

Closely related to the present work is an independent, simultaneous effort by

McIver & Brownstein to measure influenza in the United States using Wikipedia

access logs [125]. This study used Poisson models fitted with LASSO regression to

estimate ILI over a 5-year period. The results, Pearson’s r of 0.94 to 0.99 against

official data, depending on model variation, compare quite favorably to prior work

that tries to replicate official data. More generally, this article’s statistical methods

are more sophisticated than those employed in the present study. However, we offer

several key improvements:

• We evaluate 14 location-disease contexts around the globe, rather than just one.
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In doing so, we test the use of language as a location proxy, which was noted

briefly as future work in McIver & Brownstein. (However, as we detail below,

we suspect this is not a reliable geo-location method for the long term.)

• We test our models for forecasting value, which was again mentioned briefly as

future work in McIver & Brownstein.

• We evaluate models for translatability from one location to another.

• We present negative results and use these to begin exploring when internet-

based disease surveillance methods might and might not work.

• We offer a systematic, well-specified, and simple procedure to select articles for

model inclusion.

• We normalize article traffic by total language traffic rather than using a few

specific articles as a proxy for it.

• Our software is open source and has only freely available dependencies, while

the McIver & Brownstein code is not available and depends on proprietary

components (Stata).

Finally, the goals of the two studies differ. McIver & Brownstein wanted to

“develop a statistical model to provide near-time estimates of ILI activity in the US

using freely available data gathered from the online encyclopedia Wikipedia” [125,

p. 2]. Our goals are to assess the applicability of these data to global disease surveil-

lance for operational public health purposes and to lay out a research agenda for

achieving this end.

These methods are the basis for at least one deployed, widely used surveil-
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lance system. Based upon search query data, Google Flu Trends offers near-real-

time estimates of influenza activity in 29 countries across the world (15 at the

province level); another facet of the same system, Google Dengue Trends (http:

//www.google.org/denguetrends/) estimates dengue activity in 9 countries (2 at

the province level) in Asia and Latin America.

Having laid out the space of quantitative internet disease surveillance as it

exists to the best of our knowledge, we now consider this prior work in the context

of our four challenges:

C1. Openness. Deep access to search queries from Baidu, a Chinese-language

search engine serving mostly the Chinese market (http://www.baidu.com) [99,

194, 197]; Google [11, 21, 27, 31, 33, 51, 53, 54, 56, 82, 85, 101, 142, 155,

183, 187, 192, 191, 190, 196]; Yahoo [42, 156]; and Yandex, a search engine

serving mostly Russia and Slavic countries in Russian (http://www.yandex.

ru), English (http://www.yandex.com), and Turkish (http://www.yandex.

com.tr) [196], as well as purpose-built health website search queries [94, 95,

93] and access logs [100, 190] are available only to those within the organi-

zations, upon payment of an often-substantial fee, or by some other special

arrangement. While tools such as Baidu Index (http://index.baidu.com),

Google Trends (http://www.google.com/trends/), Google Correlate (http:

//www.google.com/trends/correlate/), and Yandex’s WordStat (http://

wordstat.yandex.com) provide a limited view into specific search queries and/or

time periods, as do occasional lower-level data dumps offered for research, nei-

http://www.google.org/denguetrends/
http://www.google.org/denguetrends/
http://www.baidu.com
http://www.yandex.ru
http://www.yandex.ru
http://www.yandex.com
http://www.yandex.com.tr
http://www.yandex.com.tr
http://index.baidu.com
http://www.google.com/trends/
http://www.google.com/trends/correlate/
http://www.google.com/trends/correlate/
http://wordstat.yandex.com
http://wordstat.yandex.com
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ther affords the large-scale, broad data analysis that drives the most effective

models.

The situation is only somewhat better for surveillance efforts based upon Twit-

ter [1, 2, 12, 22, 35, 47, 52, 83, 89, 103, 107, 109, 108, 137, 152, 166]. While a

small portion of the real-time message stream (1%, or 10% for certain grandfa-

thered users) is available outside the company without substantial fees, terms of

use prohibit sharing historical data needed for calibration between researchers.

Access rules are similar or significantly more restrictive for alternative social

media platforms such as Sina Weibo, the leading Chinese microblogging site

(http://weibo.com), and Facebook. Consistent with this, we were able to find

no research meeting our inclusion criteria based on either of these extremely

popular systems.

We identified only one prior effort making use of open data, McIver & Brown-

stein with Wikipedia access logs [125]. Open algorithms in this field of inquiry

are also very limited. Of the works cited above, again only one, Althouse

et al. [11], claims general availability of their algorithms in the form of open

source code.

Finally, we highlight the quite successful Google Flu and Dengue Trends as a

case study in the problems of closed data and algorithms. First, because their

data and algorithms are proprietary, there is little opportunity for the wider

community of expertise to offer peer review or improvements (for example, the

list of search terms used by Dengue Trends has never been published, even in

http://weibo.com
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summary form); the importance of these opportunities is highlighted by the sys-

tem’s well-publicized estimation failures during the 2012–2013 flu season [26] as

well as more comprehensive scholarly criticisms [144]. Second, only Google can

choose the level of resources to spend on Trends; no one else, regardless of their

available resources, can add new contexts or take on operational responsibility

should Google choose to discontinue the project.

C2. Breadth. While in principle these surveillance approaches are highly general-

izable, nearly all extant efforts address a small set of diseases in a small set of

countries, without testing specific methods to expand these sets.

The key exception is Paul & Dredze [152], which proposes a content-based

method, ailment topic aspect model (ATAM), to automatically discover a the-

oretically unbounded set of medical conditions mentioned in Twitter messages.

This unsupervised machine learning algorithm, similarly to latent Dirichlet al-

location (LDA) [17], accumulates co-occurring words into probabilistic topics.

Lists of health-related lay keywords, as well as the text of health articles written

for a lay audience, are used to ensure that the algorithm builds topics related

to medical issues. A test of the method discovered 15 coherent condition top-

ics including infectious diseases such as influenza, non-infectious diseases such

as cancer, and non-specific conditions such as aches and pains. The influenza

topic’s time series correlated very well with ILI data in the United States.

However, we identify three drawbacks of this approach. First, significant curated

text input data in the target language are required; second, output topics require
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expert interpretation; and third, the ATAM algorithm has several parameters

that require expert tuning. That is, in order to adapt the algorithm to a new

location and/or language, expertise in both machine learning as well as the

target language are required.

In summary, to our knowledge, no disease measurement algorithms have been

proposed that are extensible to new disease-location contexts solely by adding

examples of desired output. We propose a path to such algorithms.

C3. Transferability. To our knowledge, no prior work offers trained models that

can be translated from one context to another. We propose using the inter-

language article links provided in Wikipedia to accomplish this translation.

C4. Forecasting. A substantial minority of the efforts in this space test some kind

of forecasting method. (Note that many papers use the term predict, and some

even misuse forecast, to indicate nowcasting.) In addition to forecasting models

that incorporate disease dynamics (recall that these are out of scope for the

current paper), two basic classes of forecasting exist: lag analysis, where the

internet data are simply time-shifted in order to capture leading signals, and

statistical forecast models such as linear regression.

Lag analysis has shown mixed results in prior work. Johnson et al. [100],

Pelat et al. [155], and Jia-xing et al. [99] identified no reliable leading signals.

On the other hand, Polgreen et al. [156] used lag analysis with a shift granular-

ity of one week to forecast positive influenza cultures as well as influenza and

pneumonia mortality with a horizon of 5 weeks or more (though these indica-
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tors may trail the onset of symptoms significantly). Similarly, Xu et al. [190]

reported evidence that lag analysis may be able to forecast HFMD by up to two

months, and Yang et al. [192] used lag analysis with a granularity of one month

to identify search queries that lead suicide incidence by up to two months.

The more complex method of statistical forecast models appears potentially

fruitful as well. Dugas et al. tested several statistical methods using positive in-

fluenza tests and Google Flu Trends to make 1-week forecasts [53], and Kim et al.

used linear regression to forecast influenza on a horizon of 1 month [103].

In summary, while forecasts based upon models that include disease dynam-

ics are clearly useful, sometimes this is not possible because important disease

parameters are insufficiently known. Therefore, it is still important to pursue

simple methods. The simplest is lag analysis; our contribution is to evaluate

leading information more quantitatively than previously attempted. Specifi-

cally, we are unaware of previous analysis with shift granularity less than one

week; in contrast, our analysis tests daily shifting even if official data are less

granular, and each shift is an independently computed model; thus, our ±28-day

evaluation results in 57 separate models for each context.

In summary, significant gaps remain with respect to the challenges blocking a

path to an open, deployable, quantitative internet-based disease surveillance system.

In this paper, we propose a path to overcoming these challenges and offer evidence

demonstrating that this path is plausible.
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3.2 Methods

We used two data sources, Wikipedia article access logs and official disease

incidence reports, and built linear models to analyze approximately 3 years of data

for each of 14 disease-location contexts. This section details the nature, acquisition,

and processing of these data as well as how we computed the estimation models and

evaluated their output.

3.2.1 Wikipedia Article Access Logs

Access logs for all Wikipedia articles are available in summary form to anyone

who wishes to use them. We used the complete logs available at http://dumps.

wikimedia.org/other/pagecounts-raw/. Web interfaces offering a limited view

into the logs, such as http://stats.grok.se, are also available. These data are

referred to using a variety of terms, including article views, article visits, pagecount

files, page views, pageviews, page view logs, and request logs.

These summary files contain, for each hour from December 9, 2007 to present

and updated in real time, a compressed text file listing the number of requests for

every article in every language, except that articles with no requests are omitted.

(This request count differs from the true number of human views due to automated

requests, proxies, pre-fetching, people not reading the article they loaded, and other

factors. However, this commonly used proxy for human views is the best available.)

We analyzed data from March 7, 2010 through February 1, 2014 inclusive, a total

of 1,428 days. This dataset contains roughly 34,000 data files totaling 2.7TB. 266

http://dumps.wikimedia.org/other/pagecounts-raw/
http://dumps.wikimedia.org/other/pagecounts-raw/
http://stats.grok.se
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hours or 0.8% of the data are missing, with the largest gap being 85 hours. These

missing data were treated as zero; because they were few, this has minimal effect on

our analyses.

We normalized these request counts by language. This yielded, for each article,

a time series containing the number of requests for that article during each hour,

expressed as a fraction of the hour’s total requests for articles in the language. This

normalization also compensates for periods of request undercounting, when up to

20% fewer requests were counted than served [195]. Finally, we transposed the data

using Map-Reduce [49] to produce files from which the request count time series of

any article can be retrieved efficiently.

3.2.2 Disease Incidence Data

Our goal was to evaluate a broad selection of diseases in a variety of countries

across the world, in order to test the global applicability and disease agnosticism

of our proposed technique. For example, we sought diseases with diverse modes of

transmission (e.g., airborne droplet, vector, sexual, and fecal-oral), biology (virus,

bacteria, protozoa), types of symptoms, length of incubation period, seasonality, and

prevalence. Similarly, we sought locations in both the developed and developing world

in various climates. Finally, we wanted to test each disease in multiple countries, to

provide an opportunity for comparison.

These comprehensive desiderata were tempered by the realities of data avail-

ability. First, we needed reliable data establishing incidence ground truth for specific



67

diseases in specific countries and at high temporal granularity; such official data are

frequently not available for locations and diseases of interest. We used official epi-

demiological reports available on websites of government public health agencies as

well as the World Health Organization (WHO).

Second, we needed article access counts for specific countries. This information

is not present in the Wikipedia article access logs (i.e., request counts are global

totals). However, a proxy is sometimes available in that certain languages are mostly

limited to one country of interest; for example, a strong majority of Thai speakers

are in Thailand, and the only English-speaking country where plague appears is the

United States. In contrast, Spanish is spoken all over the world and thus largely

unsuitable for this purpose.

Third, the language edition needs to have articles related to the disease of

interest that are mature enough to evaluate and generate sufficient traffic to provide

a reasonable signal.

With these constraints in mind, we used our professional judgement to select

diseases and countries. The resulting list of 14 disease-location contexts, which is

designed to be informative rather than comprehensive, is enumerated in Table 3.1.
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Table 3.1: Diseases-location contexts analyzed, with data sources.

Disease Country Language Start End Resolution Sources
Cholera Haiti French 2010-12-05 2013-12-05 daily [130]
Dengue Brazil Portuguese 2010-03-07 2013-03-16 weekly [132]

Thailand Thai 2011-01-01 2014-01-31 monthly [24]
Ebola Uganda/DRC English 2011-01-01 2013-12-31 daily [188, 189, 131]
HIV/AIDS China (PRC) Chinese 2011-01-01 2013-12-31 monthly [32]

Japan Japanese 2010-10-09 2013-10-18 weekly [139]
Influenza Japan Japanese 2010-06-26 2013-07-05 weekly [139]

Poland Polish 2010-10-17 2013-10-23 weekly [140]
Thailand Thai 2011-01-23 2014-02-01 weekly [24]
United States English 2011-01-01 2014-01-10 weekly [28]

Plague United States English 2011-01-22 2014-01-31 weekly [29]
Tuberculosis China (PRC) Chinese 2010-12-01 2013-12-31 monthly [32]

Norway Norwegian 2010-12-01 2013-12-31 monthly [127]
Thailand Thai 2010-12-01 2013-12-31 monthly [24]

This table lists the 7 diseases in 9 locations analyzed, for a total of 14
disease-location contexts. For each context, we list the language used as a location
proxy, the inclusive start and end dates of analysis, the resolution of the disease
incidence data, and one or more citations for those data.

These incidence data take two basic forms: (a) tabular files such as spread-

sheets mapping days, weeks, or months to new case counts or the total number of in-

fected persons or (b) graphs presenting the same mapping. In the latter case, we used

plot digitizing software (Plot Digitizer, http://plotdigitizer.sourceforge.net)

to extract a tabular form. We then translated these diverse tabular forms to a con-

sistent spreadsheet format, yielding for each disease-location context a time series of

disease incidence.

3.2.3 Article Selection

The goal of our models is to create a linear mapping from the access counts of

some set of Wikipedia articles to a scalar disease incidence for some disease-location

http://plotdigitizer.sourceforge.net
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context. To do so, a procedure for selecting these articles is needed; for the current

proof-of-concept work, we used the following:

1. Examine the English-language Wikipedia article for the disease and enumerate

the linked articles. Select for analysis the disease article itself along with linked

articles on relevant symptoms, syndromes, pathogens, conditions, treatments,

biological processes, and epidemiology. For example, the articles selected for

influenza include “Influenza”, “Amantadine”, and “Swine influenza”, but not

“2009 flu pandemic”.

2. Identify the corresponding article in each target language by following the inter-

language wiki link; these appear at the lower left of Wikipedia articles under

the heading “Languages”. For example, the Polish articles selected for influenza

include “Grypa”, “Amantadyna”, and “Świńska grypa”, but not “Pandemia

grypy A/H1N1 w latach 2009-2010”, respectively.

3. Translate each article title into the form that appears in the logs. Specifi-

cally, encode the article’s Unicode title using UTF-8, percent-encode the result,

and replace spaces with underscores. For example, the Polish article “Choroby

zakaźne” becomes Choroby_zaka%C5%BAne. This procedure is accomplished by

simply copying the article’s URL from the web browser address bar.

This procedure has two potential complications. First, an article may not exist

in the target language; in this case, we simply omit it. Second, Wikipedia contains

null articles called redirects that merely point to another article, called the target

of the redirect. These are created to catch synonyms or common misspellings of an

Choroby_zaka%C5%BAne
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article. For example, in English, the article “Flu” is a redirect to “Influenza”. When

a user visits http://en.wikipedia.org/wiki/Flu, the content served by Wikipedia

is actually that of the “Influenza” article; the server does not issue an HTTP 301

response nor require the reader to manually click through to the redirect target.

This complicates our analysis because this arrangement causes the redirect

itself (“Flu”), not the target (“Influenza”), to appear in the access log. While in

principle we could sum redirect requests into the target article’s total, reliably map-

ping redirects to targets is a non-trivial problem because this mapping changes over

time, and in fact Wikipedia’s history for redirect changes is not complete [186]. There-

fore, we have elected to leave this issue for future work; this choice is supported by

our observation below that when target and redirect are reversed, traffic to “Dengue

fever” in Thai follows the target.

If we encounter a redirect during the above procedure, we use the target article.

3.2.4 Building and Evaluating Each Model

Our goal was to understand how well traffic for a simple selection of articles can

nowcast and forecast disease incidence. Accordingly, we implemented the following

procedure in Python to build and evaluate a model for each disease-location context.

1. Align the hourly article access counts with the daily, weekly, or monthly disease

incidence data by summing the hourly counts for each day, week, or month

in the incidence time series. This yields article and disease time series with

the same frequency, making them comparable. (We ignore time zone in this

http://en.wikipedia.org/wiki/Flu
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procedure. Because Wikipedia data are in UTC and incidence data are in

unspecified, likely local time zones, this leads to a temporal offset error of up

to 23 hours, a relatively small error at the scale of our analysis. Therefore, we

ignore this issue for simplicity.)

2. For each candidate article in the target language, compute Pearson’s correlation

r against the disease incidence time series for the target country.

3. Order the candidates by decreasing |r| and select the best 10 articles.

4. Use ordinary least squares to build a linear multiple regression model mapping

accesses to these 10 articles to the disease time series. No other variables were

incorporated into the model. Below, we report r2 for the multi-article models

as well as a qualitative evaluation of success or failure.

In order to test forecasting potential, we repeat the above with the article time

series time-shifted from 28 days forward to 28 days backward in 1-day increments.

For example, to build a 4-day forecasting model — that is, a model that estimates

disease incidence 4 days in the future — we would shift the article time series later

by 4 days so that article request counts for a given day are matched against disease

incidence 4 days in the future. The choice of ±28 days for lag analysis is based upon

our a priori hypothesis that these statistical models are likely effective for a few weeks

of forecasting.

We refer to models that estimate current (i.e., same-day) disease incidence as

nowcasting models and those that estimate past disease incidence as anti-forecasting

models; for example, a model that estimates disease incidence 7 days ago is a 7-day
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anti-forecasting model. (While useless at first glance, effective anti-forecasting models

that give results sooner than official data can still reduce the lead time for action.

Also, it is valuable for understanding the mechanism of internet-based models to know

the temporal location of predictive information.) We report r2 for each time-shifted

multi-article model.

Finally, to evaluate whether translating models from one location to another is

feasible, we compute a metric rt for each pair of locations tested on the same disease.

This meta-correlation is simply the Pearson’s r computed between the correlation

scores r of each article found in both languages; the intent is to give a gross notion of

similarity between models computed for the same disease in two different languages. A

value of 1 means that the two models are identical, 0 means they have no relationship,

and −1 means they are opposite. We ignore articles found in only one language

because the goal is to obtain a sense of feasibility: given favorable conditions, could

one train a model in one location and apply it to another? Table 3.2 illustrates an

example.
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Table 3.2: Transferability rt example.

Article Japanese Thai
Fever 0.23 0.21
Chills 0.59
Headache −0.10 0.15
Influenza 0.85 0.77

This table shows simplified models for influenza in two locations: Japan, where
Japanese is spoken, and Thailand, where Thai is spoken. The Japanese model
yielded correlations for Japanese versions of the articles “Fever”, “Chills”,
“Headache”, and “Influenza” of 0.23, 0.59, −0.10, and 0.85, respectively. The Thai
model yielded correlations of 0.21, 0.15, and 0.77 for “Fever”, “Headache”, and
“Influenza”, respectively. Note that the article “Chills” is not currently present in
the Thai Wikipedia. Therefore, the correlation vectors are {0.23,−0.10, 0.85} and
{0.21, 0.15, 0.77} for the two languages. The meta-correlation, rt, for these two
vectors, which provides a gross estimate of how similar the models are, is 0.97.
Extending this computation to the full models yields rt = 0.81, as noted below in
Table 3.4.

3.3 Results

Among the 14 disease-location contexts we analyzed, we found three broad

classes of results. In 8 cases, the model succeeded, i.e., there was a usefully close

match between the model’s estimate and the official data. In 3 cases, the model

failed, apparently because patterns in the official data were too subtle to capture, and

in a further 3, the model failed apparently because the signal-to-noise ratio (SNR)

in the Wikipedia data was too subtle to capture. Recall that this success/failure

classification is based on subjective judgement; that is, in our exploration, we dis-

covered that r2 is insufficient to completely evaluate a model’s goodness of fit, and a

complementary qualitative evaluation was necessary.

Below, we discuss the successful and failed nowcasting models, followed by
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a summary and evaluation of transferability. (No models failed at nowcasting but

succeeded at forecasting, so we omit a detailed forecasting discussion for brevity.)

3.3.1 Successful Nowcasting

Model and official data time series for selected successful contexts are illus-

trated in Figure 3.1. The method’s good performance on dengue and influenza is

consistent with voluminous prior work on these diseases; this offers evidence for the

feasibility of Wikipedia access as a data source.
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Figure 3.1: Selected successful model nowcasts. These graphs show official epidemi-
ological data and nowcast model estimate (left Y axis) with traffic to the five most-
correlated Wikipedia articles (right Y axis) over the 3 year study periods. The Wiki-
pedia time series are individually self-normalized.

Success in the United States is somewhat surprising. Given the widespread
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use of English across the globe, we expected that language would be a poor location

proxy for the United States. We speculate that the good influenza model performance

is due to the high levels of internet use in United States, perhaps coupled with similar

flu seasons in other Northern Hemisphere countries. Similarly, in addition to Brazil,

Portuguese is spoken in Portugal and several other former colonies, yet problems

again failed to arise. In this case, we suspect a different explanation: the simple

absence of dengue from other Portuguese-speaking countries.

The case of dengue in Brazil is further interesting because it highlights the

noise inherent in social data, a property shared by many other internet data sources.

That is, noise in the input articles is carried forward into the model’s estimate. We

speculate that this problem could be mitigated by building a model on a larger, more

carefully selected set of articles rather than just 10.

Finally, we highlight tuberculosis in China as an example of a marginally suc-

cessful model. Despite the apparently low r2 of 0.66, we judged this model successful

because it captured the high baseline disease level excellently and the three modest

peaks well. However, it is not clear that the model provides useful information at

the time scale analyzed. This result suggests that additional quantitative evaluation

metrics may be needed, such as root mean squared error (RMSE) or a more complex

analysis considering peaks, valleys, slope changes, and related properties.

Forecasting and anti-forecasting performance of the four selected contexts is

illustrated in Figure 3.2. In the case of dengue and influenza, the models contain

significant forecast value through the limit of our 28-day analysis, often with the
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maximally effective lag comprising a forecast. We offer three possible reasons for this.

First, both diseases are seasonal, so readers may simply be interested in the syndrome

for this reason; however, the fact that models were able to correctly estimate seasons

of widely varying severity provides counterevidence for this theory. Second, readers

may be interested due to indirect reasons such as news coverage. Prior work disagrees

on the impact of such influences; for example, Dukic et al. found that adding news

coverage to their methicillin-resistant Staphylococcus aureus (MRSA) model had a

limited effect [54], but recent Google Flu Trends failures appear to be caused in part

by media activity [26]. Finally, both diseases have a relatively short incubation period

(influenza at 1–4 days and dengue at 3–14); soon-to-be-ill readers may be observing

the illness of their infectors or those who are a small number of degrees removed. It is

the third hypothesis that is most interesting for forecasting purposes, and evidence to

distinguish among them might be obtained from studies using simulated media and

internet data, as suggested by Culotta [47].
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Figure 3.2: Forecasting effectiveness for selected successful models. This figure shows
model r2 compared to temporal offset in days: positive offsets are forecasting, zero is
nowcasting (marked with a dotted line), and negative offsets are anti-forecasting.

Tuberculosis in China is another story. In this case, the model’s effectiveness is

poorer as the forecast interval increases; we speculate that this is because seasonality

is absent and the incubation period of 2–12 weeks is longer, diluting the effect of the

above two mechanisms.

3.3.2 Failed Nowcasting

Figure 3.3 illustrates the three contexts where the model was not effective

because, we suspect, it was not able to discern meaningful patterns in the official

data. These suggest a few patterns that models might have difficulty with:
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1. Noise. True patterns in data may be obscured by noise. For example, in the

case of HIV/AIDS in China, the official data vary by a factor of 2 or more

throughout the graph, and the model captures this fairly well, but the pattern

seems epidemiologically strange and thus we suspect it may be merely noise.

The other two contexts appear to also contain significant noise.

(Note that we distinguish noisy official data from an unfavorable signal-to-noise

ratio, which is discussed below.)

2. Too slow. Disease incidence may be changing too slowly to be evident in the

chosen analysis period. In all three contexts shown in Figure 3.3, the trend of

the official data is essentially flat, with HIV/AIDS in Japan especially so. The

models have captured this flat trend fairly well, but even doing so excellently

provides little actionable value over traditional surveillance.

Both HIV/AIDS and tuberculosis infections progress quite slowly. A period of

analysis longer than three years might reveal meaningful patterns that could

be captured by this class of models. However, the social internet is young and

turbulent; for example, even 3 years consumes most of the active life of some

languages of Wikipedia. This complicates longitudinal analyses.

3. Too fast. Finally, incidence may be changing too quickly for the model to

capture. We did not identify this case in the contexts we tested; however, it is

clearly plausible. For example, quarterly influenza data would be hard to model

meaningfully using these techniques.
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Figure 3.3: Nowcast attempts where the model was unable to capture a meaningful
pattern in official data.

In all three patterns, improvements such as non-linear models or better regres-

sion techniques could lead to better results, suggesting that this is a useful direction

for future work. In particular, noise suppression techniques as well as models tuned

for the expected variation in a particular disease may prove fruitful.

Figure 3.4 illustrates the three contexts where we suspect the model failed due

to a signal-to-noise ratio (SNR) in the Wikipedia data that was too low. That is, the
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number of Wikipedia accesses due to actual observations of infection is drowned out

by accesses due to other causes.
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Figure 3.4: Nowcast attempts with poor performance due to unfavorable signal-to-
noise ratio.

In the case of Ebola, there are relatively few direct observations (a major out-

break has tens of cases), and the path to these observations becoming internet traces

is hampered by poor connectivity in the sub-Saharan countries where the disease is
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active. On the other hand, the disease is one of general ongoing interest; in fact, one

can observe on the graph a pattern of weekly variation (higher in midweek, lower

on the weekend), which is common in online activity. In combination, these yield a

completely useless model.

The United States has good internet connectivity, but plague has even lower

incidence (the peak on the graph is three cases) and this disease is also popularly

interesting, resulting in essentially the same effect. The cholera outbreak in Haiti

differs in that the number of cases is quite large (the peak of the graph is 4,200 cases

in one day). However, internet connectivity in Haiti was already poor even before the

earthquake, and the outbreak was a major world news story, increasing noise, so the

signal was again lost.

3.3.3 Performance Summary

Table 3.3 summarizes the performance of our models in the 14 disease-location

contexts tested. Of these, we classified 8 as successful, producing useful estimates for

both nowcasting and forecasting, and 6 as unsuccessful. Performance roughly broke

down along disease lines: all influenza and dengue models were successful, while two

of the three tuberculosis models were, and cholera, ebola, HIV/AIDS, and plague

proved unsuccessful. Given the relatively simple model building technique used, this

suggests that our Wikipedia-based approach is sufficiently promising to explore in

more detail. (Another hypothesis is that model performance is related to popularity

of the corresponding Wikipedia language edition. However, we found no relationship
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between r2 and either a language’s total number of articles or total traffic.)

Table 3.3: Model performance summary.

r2 at forecast Best forec.
Disease Location Result 0 7 14 28 Days r2

Cholera Haiti Failure (SNR) 0.45 0.39 0.41 0.48 26 0.50
Dengue Brazil Success 0.85 0.81 0.77 0.65 -3 0.86

Thailand Success 0.55 0.54 0.57 0.74 28 0.74
Ebola Uganda/DRC Failure (SNR) 0.02 0.01 0.02 0.02 5 0.14
HIV/AIDS China (PRC) Failure (Official data) 0.62 0.48 0.34 0.31 -1 0.63

Japan Failure (Official data) 0.15 0.19 0.15 0.05 9 0.22
Influenza Japan Success 0.82 0.92 0.86 0.52 8 0.92

Poland Success 0.81 0.86 0.88 0.72 12 0.89
Thailand Success 0.79 0.76 0.67 0.48 -2 0.80
United States Success 0.89 0.90 0.85 0.66 5 0.91

Plague United States Failure (SNR) 0.23 0.03 0.05 0.07 0 0.23
Tuberculosis China (PRC) Success 0.66 0.66 0.52 0.25 -9 0.78

Norway Failure (Official data) 0.31 0.41 0.40 0.42 20 0.48
Thailand Success 0.68 0.68 0.69 0.69 9 0.69

This table summarizes the performance of our estimation models. For each disease
and location, we list the subjective success/failure classification as well as model r2

at nowcasting (0-day forecast) and 7-, 14-, and 28-day forecasts. We also list the
temporal offset in days of the best model (again, a positive offset indicates
forecasting) along with that model’s r2.

At a higher level, we posit that a successful estimation model based on Wiki-

pedia access logs or other social internet data requires two key elements. First, it must

be sensitive enough to capture the true variation in disease incidence data. Second, it

must be sensitive enough to distinguish between activity traces due to health-related

observations and those due to other causes. In both cases, further research on mod-

eling techniques is likely to yield sensitivity improvements. In particular, a broader

article selection procedure — for example, using big data methods to test all non-

trivial article time series for correlation, as Ginsberg et al. did for search queries [82]
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— is likely to prove fruitful, as might a non-linear statistical mapping.

3.3.4 Transferability

Table 3.4 lists the transferability scores rt for each pair of countries tested

on the same disease. Because this paper is concerned with establishing feasibility,

we focus on the highest scores. These are encouraging: in the case of influenza,

both Japan/Thailand and Thailand/United States are promising. That is, it seems

plausible that careful source model selection and training techniques may yield useful

models in contexts where no training data are available (e.g., official data are unavail-

able or unreliable). These early results suggest that research to quantitatively test

methods for translating models from one disease-location context to another should

be pursued.

Table 3.4: Transferability scores rt for paired models.

Disease Location 1 Location 2 rt
Dengue Brazil Thailand 0.39
HIV/AIDS China (PRC) Japan -0.06
Influenza Japan Poland 0.45

Japan Thailand 0.81
Japan United States 0.62
Poland Thailand 0.48
Poland United States 0.44
Thailand United States 0.76

Tuberculosis China (PRC) Norway 0.19
China (PRC) Thailand -0.20
Norway Thailand n/a

This table lists the transferability scores rt for each tested pair of countries within a
disease. Countries that did not share enough articles to compute a meaningful rt are
indicated with n/a.
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3.4 Discussion

Human activity on the internet leaves voluminous traces that contain real

and useful evidence of disease dynamics. Above, we pose four challenges currently

preventing these traces from informing operational disease surveillance activities, and

we argue that Wikipedia data are one of the few social internet data sources that can

meet all four challenges. Specifically:

C1. Openness. Open data and algorithms are required, in order to offer reliable

science as well as a flexible and robust operational capability. Wikipedia access

logs are freely available to anyone.

C2. Breadth. Thousands of disease-location contexts, not dozens, are needed to

fully understand the global disease threat. We tested simple disease estimation

models on 14 contexts around the world; in 8 of these, the models were successful

with r2 up to 0.92, suggesting that Wikipedia data are useful in this regard.

C3. Transferability. The greatest promise of novel disease surveillance methods

is the possibility of use in contexts where traditional surveillance is poor or

nonexistent. Our analysis uncovered pairs of same-disease, different-location

models with similarity up to 0.81, suggesting that translation of trained models

using Wikipedia’s mappings of one language to another may be possible.

C4. Forecasting. Effective response to disease depends on knowing not only what

is happening now but also what will happen in the future. Traditional mech-

anistic forecasting models often cannot be applied due to missing parameters,

motivating the use of simpler statistical models. We show that such statistical
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models based on Wikipedia data have forecasting value through our maximum

tested horizon of 28 days.

This preliminary study has several important limitations. These comprise an

agenda for future research work:

1. The methods need to be tested in many more contexts in order to draw lessons

about when and why this class of methods is likely to work.

2. A better article selection procedure is needed. In the current paper, we tried a

simple manual process yielding at most a few dozen candidate articles in order

to establish feasibility. However, real techniques should use a comprehensive

process that evaluates thousands, millions, or all plausible articles for inclusion

in the model. This will also facilitate content analysis studies that evaluate

which types of articles are predictive of disease incidence.

3. Better geo-location is needed. While language as a location proxy works well

in some cases, as we have demonstrated, it is inherently weak. In particular, it

is implausible for use at a finer scale than country-level. What is needed is a

hierarchical geographic aggregation of article traffic. The Wikimedia Founda-

tion, operators of Wikipedia and several related projects, could do this using

IP addresses to infer location before the aggregated data are released to the

public. For most epidemiologically-useful granularities, this will still preserve

reader privacy.

4. Statistical estimation maps from article traffic to disease incidence should be
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more sophisticated. Here, we tried simple linear models mapping a single inter-

val’s Wikipedia traffic to a single interval’s disease incidence. Future directions

include testing non-linear and multi-interval models.

5. Wikipedia data have a variety of instabilities that need to be understood and

compensated for. For example, Wikipedia shares many of the problems of

other internet data, such as highly variable interest-driven traffic caused by

news reporting and other sources.

Wikipedia has its own data peculiarities that can also cause difficulty. For

example, during preliminary exploration for this paper in spring 2013, we used

the inter-language link on the English article “Dengue fever” to locate the Thai

version, “ไข้เลือดออกเด็งก”ี (roughly, “dengue hemorrhagic fever”); article access

logs indicated several hundred accesses per day for this article in the month

of June 2013. When we repeated the same process in March 2014, the inter-

language link led to a page with the same content, but a different title, “ไข้เด็งกี”

(roughly, “dengue fever”). As none of the authors are Thai speakers, and Google

Translate renders both versions as “dengue fever”, we did not notice that the

title of the Thai article had changed and were alarmed to discover that the

article’s traffic in June 2013 was essentially zero.

The explanation is that before July 23, 2013, “ไข้เด็งกี” was a redirect to

“ไข้เลือดออกเด็งก”ี; on that day, the direction of the redirect was reversed, and

almost all accesses moved over to the new redirect target over a period of a few

days. That is, the article was the same all along, but the URL under which its
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accesses were recorded changed.

Possible techniques for compensation include article selection procedures that

exclude such articles or maintaining a time-aware redirect graph so that different

aliases of the same article can be merged. Indeed, when we tried the latter

approach by manually summing the two URLs’ time series, it improved nowcast

r2 from 0.55 to 0.65. However, the first technique is likely to discard useful

information, and the second may not be reliable because complete history for

this type of article transformation is not available [186].

In general, ongoing, time-aware re-training of models will likely be helpful, and

limitations of the compensation techniques can be evaluated with simulation

studies that inject data problems.

6. We have not explored the full richness of the Wikipedia data. For example,

complete histories of each language edition are available, which include edit-

ing metadata (timestamps, editor identity, and comments), the text of each

version, and conversations about the articles; these would facilitate analysis of

edit activity as well as the articles’ changing text. Also, health-related articles

are often mapped to existing ontologies such as the International Statistical

Classification of Diseases and Related Health Problems (ICD-9 or ICD-10).

7. Transferability of models should be tested using more realistic techniques, such

as simply building a model in one context and testing its performance in another.

Finally, it is important to recognize the biases inherent in Wikipedia and

other social internet data sources. Most importantly, the data strongly over-represent
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people and places with good internet access and technology skills; demographic biases

such as age, gender, and education also play a role. These biases are sometimes

quantified (e.g., with survey results) and sometimes completely unknown. As noted

above, simulation studies using synthetic internet data can quantify the impact and

limitations of these biases.

Despite these limitations, we have established the utility of Wikipedia access

logs for global disease monitoring and forecasting, and we have outlined a plausible

path to a reliable, scientifically sound, operational disease surveillance system. We

look forward to collaborating with the scientific and technical community to make

this vision a reality.

3.5 Publications

This chapter is derived from one publication:

• N. Generous, G. Fairchild, A. Deshpande, S. Y. Del Valle, and R. Priedhorsky,

“Global Disease Monitoring and Forecasting with Wikipedia,” PLOS Comput.

Biol., vol. 10, no. 11, p. e1003892, Nov. 2014.
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CHAPTER 4
ELICITING DISEASE DATA FROM WIKIPEDIA ARTICLES

Abstract

Traditional disease surveillance systems suffer from several disadvantages, in-

cluding reporting lags and antiquated systems, that have caused a movement towards

internet-based disease surveillance systems. Internet systems are particularly attrac-

tive for disease outbreaks because they can provide data in near real-time and can

be verified by individuals around the globe. However, most existing systems have

focused on disease monitoring and do not provide a data repository for policy makers

or researchers. In order to fill this gap, we analyzed Wikipedia article content.

We demonstrate how a named-entity recognizer can be trained to tag case

counts, death counts, and hospitalization counts in the article narrative that achieves

an F1 score of 0.753. We also show, using the the 2014 West African Ebola virus

disease epidemic article, that there are detailed time series data that are consistently

updated and closely align with ground truth data.

We argue that Wikipedia can be used to create the first community-driven

open-source emerging disease detection, monitoring, and repository system.

4.1 Introduction

Most traditional disease surveillance systems rely on data from patient visits or

lab records [119, 25, 3]. These systems, while generally recognized to contain accurate

information, rely on a hierarchy of public health systems that causes reporting lags of
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up to 1–2 weeks in many cases [25]. Additionally, many regions of the world lack the

infrastructure necessary for these systems to produce reliable and trustworthy data.

Recently, in an effort to overcome these issues, timely global approaches to disease

surveillance have been devised using internet-based data. Data sources such as search

engine queries (e.g., [156, 82]), Twitter (e.g., [46, 166]), and Wikipedia access logs

(e.g., [125, 79]) have been shown to be effective in this arena.

A notably different internet-based disease surveillance tool is HealthMap [73].

HealthMap analyzes, in real-time, data from a variety of sources (e.g., ProMED-

mail [121], Google News, the World Health Organization) in order to allow simple

querying, filtering, and visualization of outbreaks past and present. During emerging

outbreaks, HealthMap is often used to understand the current state (e.g., incidence

and death counts, outbreak locations). For example, HealthMap was able to detect

the 2014 Ebola epidemic nine days before the World Health Organization (WHO)

officially announced it [84].

While HealthMap has certainly been influential in the digital disease detection

sphere, it has some drawbacks. First and foremost, it runs on source code that is not

open and relies on certain data sources that are not freely available in their entirety

(e.g., Moreover Newsdesk1). Generous et al. argue that there is a genuine need for

open source code and open data in order to validate, replicate, and improve existing

systems [79]. They argue that while certain closed source services, such as HealthMap

and Google Flu Trends [82], are popular and useful to the public, there is no way

1http://www.moreover.com/

http://www.moreover.com/
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for the public to contribute to the service or continue the service, should the owners

decide to shut it down. For example, Google offers a companion site to Google Flu

Trends, Google Dengue Trends2. However, since Google’s source code and data are

closed, it is not possible for anyone outside of Google to create similar systems for

other diseases, e.g., Google Ebola Trends. Additionally, it is not possible for anyone

outside of the HealthMap development team to add new features or data sources to

HealthMap. For these reasons, Generous et al. argue for the use of Wikipedia access

logs coupled with open source code for digital disease surveillance.

Much richer Wikipedia data are available, however, than just access logs. The

entire Wikipedia article content and edit histories are available, complete with edit

history metadata (e.g., timestamps of edits and IP addresses of anonymous editors).

A plethora of open media—audio, images, and video—are also available. This study

presents a novel use of Wikipedia article content and edit history in which disease data

are elicited in a timely fashion. Using standard natural language processing (NLP)

techniques, we demonstrate our methods by capturing case counts, death counts, and

hospitalization counts. We also show there are valuable data present in the tables

found in certain disease articles. We argue that Wikipedia data can not only be used

for monitoring and forecasting diseases but also as a centralized repository system for

collecting disease-related data in near real-time.

2http://www.google.org/denguetrends/

http://www.google.org/denguetrends/
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4.2 Methods

Disease-related information can be found in a number of places on Wikipedia.

We demonstrate how two aspects of Wikipedia article content, historical changes to

article text and tabular content, can be harvested for disease surveillance purposes.

We first show how a named-entity recognizer can be trained to elicit “important”

phrases from outbreak articles, and we then study the accuracy of tabular time series

data found in certain articles using the 2014 West African Ebola epidemic as a case

study.

4.2.1 Wikipedia data

Wikipedia is an open collaborative encyclopedia consisting of approximately

30 million articles across 287 languages [185]. The English edition of Wikipedia is by

far the largest and most active edition; it alone contains approximately 4.7 million

articles, while the next largest Wikipedia edition (Swedish) contains only 1.9 million

articles [69]. The textual content of the current revision of each English Wikipedia

article totals approximately 10 gigabytes [67].

One of Wikipedia’s primary attractions to researchers is its openness. All

of the historical article content, dating back to Wikipedia’s inception in 2001, is

available to anyone free of charge. Wikipedia content can be acquired through two

means: a) Wikipedia’s official web API3 or b) downloadable database dumps4. Al-

3http://www.mediawiki.org/wiki/API:Main_page

4http://dumps.wikimedia.org/enwiki/latest/

http://www.mediawiki.org/wiki/API:Main_page
http://dumps.wikimedia.org/enwiki/latest/
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though the analysis in this study could have been done offline using the downloadable

database dumps, this option is in practice difficult, as the database dumps containing

all historical English article revisions are very large (multiple terabytes when uncom-

pressed) [70]. We therefore decided to use Wikipedia’s web API, caching content

when appropriate.

Wikipedia contains a plethora of articles on specific disease outbreaks and

epidemics (e.g., the 2014 West Africa Ebola epidemic5 and the 2012 Middle Eastern

Respiratory Syndrome Coronavirus (MERS-CoV) outbreak6). We identified two key

aspects of Wikipedia disease outbreak articles that can aid disease surveillance efforts:

a) key phrases in the article text and b) tabular content. Most outbreak articles we

surveyed contained: dates, locations, case counts, death counts, case fatality rates,

demographics, and hospitalization counts in the text. These data are, in general,

swiftly updated as new data become available. Perhaps most importantly, sources

are often provided so that external review can occur. The following two excerpts

came from the articles on the 2012 MERS-CoV outbreak and 2014 Ebola epidemic,

respectively:

On 16 April 2014, Malaysia reported its first MERS-COV related death.[34]

The person was a 54 year-old man who had traveled to Jeddah, Saudi

Arabia, together with pilgrimage group composed of 18 people, from 15–

5http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa

6http://en.wikipedia.org/wiki/2012_Middle_East_respiratory_syndrome_

coronavirus_outbreak

http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa
http://en.wikipedia.org/wiki/2012_Middle_East_respiratory_syndrome_coronavirus_outbreak
http://en.wikipedia.org/wiki/2012_Middle_East_respiratory_syndrome_coronavirus_outbreak
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28 March 2014. He became ill by 4 April, and sought remedy at a clinic

in Johor on 7 April. He was hospitalized by 9 April and died on 13

April.[35] [65]

On 31 March, the U.S. Centers for Disease Control and Prevention (CDC)

sent a five-person team to assist Guinea’s Ministry of Health and the

WHO to lead an international response to the Ebola outbreak. On that

date, the WHO reported 112 suspected and confirmed cases including

70 deaths. Two cases were reported from Liberia of people who had

recently traveled to Guinea, and suspected cases in Liberia and Sierra

Leone were being investigated.[24] On 30 April, Guinea’s Ministry of Health

reported 221 suspected and confirmed cases including 146 deaths. The

cases included 25 health care workers with 16 deaths. By late May, the

outbreak had spread to Conakry, Guinea’s capital, a city of about two

million inhabitants.[24] On 28 May, the total cases reported had reached

281 with 186 deaths.[24] [66]

Although most outbreak articles contain content similar to the above examples,

not all outbreak articles on Wikipedia contain tabular data. The tabular data that

do exist, though, are often consistently updated and easily parseable. For example,

Figure 4.1 presents a screenshot of a table taken from the 2014 Ebola epidemic article.

This table contains case counts and death counts for all regions of the world affected

by the epidemic, complete with references for the source data. The time granularity

is irregular, but updated counts are consistently provided every 2–5 days.
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Figure 4.1: Table containing updated worldwide Ebola case counts and death counts.
This is a screenshot taken directly from the 2014 Ebola epidemic Wikipedia arti-
cle [66]. Time granularity is irregular but is in general every 2–5 days. References are
also provided for all data points.

While there are certainly other aspects of Wikipedia article content that can

be leveraged for disease surveillance purposes, these are the two we focus on in this

study. The following sections detail the data extraction methods we use.

4.2.2 Named-entity recognition

In order to recognize certain key phrases in the Wikipedia article narrative,

we trained a named-entity recognizer (NER). Named-entity recognition is a task com-

monly used in natural language processing (NLP) to identify and categorize certain
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key phrases in text (e.g., names, locations, dates, organizations). NERs are sequence

labelers ; that is, they label sequences of words. Consider the following example [68]:

Jim bought 300 shares of Acme Corp. in 2006.

Entities in this example could be named as follows:

[Jim]PERSON bought 300 shares of [Acme Corp.]ORGANIZATION in [2006]TIME.

This study specifically uses Stanford’s NER [58]7. The Stanford NER is an

implementation of a conditional random field (CRF) model [170]. CRFs are proba-

bilistic statistical models that are the discriminative analog of hidden Markov models

(HMMs). Generative models, such as HMMs, learn the joint probability p(x, y), while

discriminative models, such as CRFs, learn the conditional probability p(y | x). In

practice, this means that generative models like HMMs classify by modeling the actual

distribution of each class, while discriminative models like CRFs classify by model-

ing the boundaries between classes. In most cases, discriminative models outperform

generative models [141].

While Stanford’s NER includes models capable of recognizing common named

entities, such as PERSON, ORGANIZATION, and LOCATION, it also provides the capability

for us to train our own model so that we can capture new types of named entities we

are interested in. For this specific task, we were interested in automatically identifying

three entity types: a) DEATHS b) INFECTIONS, and c) HOSPITALIZATIONS. Our trained

7http://nlp.stanford.edu/software/CRF-NER.shtml

http://nlp.stanford.edu/software/CRF-NER.shtml
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model should therefore be able to automatically tag phrases that correspond to these

three entities in the text documents it receives as input.

A number of steps were required to prepare the data for annotation so that

the NER could be trained:

1. We first queried Wikipedia’s API in order to get the complete revision history

for the articles used in our training set.

2. We cleaned each revision by stripping all MediaWiki markup from the text, as

well as removing tables.

3. We computed the diff between successive pairs of articles. This provided lines

deleted and added between the two article revisions. We retained a list of all

the line additions across all article revisions.

4. Many lines in this resulting list were similar to one another (e.g., “There are

45 new cases.” → “There are 56 new cases.”). For the purposes of training the

NER, it is not necessary to retain highly similar or identical lines. We therefore

split each line into sentences and removed similar sentences by computing the

Jaccard similarity between each sentence using trigrams as the constituent parts

in the Jaccard equation. The Jaccard similarity equation for measuring the

similarity between two sets A and B, defined as J(A,B) = |A∩B|
|A∪B| , is commonly

used for near-duplicate detection [123]. We only kept sentences for which the

similarity with all the distinct sentences retained so far was no greater than

0.75.

5. We split each line into tokens in order to create a tab-separated value file that
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is compatible with Stanford’s NER.

6. Finally, we used Stanford’s part-of-speech (POS) tagger [179]8 to add a POS

feature to each token.

In order to train the NER, we annotated a dataset derived from the following

14 Wikipedia articles generated according to the above methodology: a) Ebola virus

epidemic in West Africa9, b) Haiti cholera outbreak10, c) 2012 Middle East respiratory

syndrome coronavirus outbreak11, d) New England Compounding Center meningitis

outbreak12, e) Influenza A virus subtype H7N913, f) 2013–14 chikungunya outbreak14,

g) Chikungunya outbreaks15, h) Dengue fever outbreaks16, i) 2013 dengue outbreak in

Singapore17, j) 2011 dengue outbreak in Pakistan18, k) 2009–10 West African menin-

8http://nlp.stanford.edu/software/tagger.shtml

9http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa

10http://en.wikipedia.org/wiki/Haiti_cholera_outbreak

11http://en.wikipedia.org/wiki/2012_Middle_East_respiratory_syndrome_

coronavirus_outbreak

12http://en.wikipedia.org/wiki/New_England_Compounding_Center_meningitis_

outbreak

13http://en.wikipedia.org/wiki/Influenza_A_virus_subtype_H7N9

14http://en.wikipedia.org/wiki/2013%E2%80%9314_chikungunya_outbreak

15http://en.wikipedia.org/wiki/Chikungunya_outbreaks

16http://en.wikipedia.org/wiki/Dengue_fever_outbreaks

17http://en.wikipedia.org/wiki/2013_dengue_outbreak_in_Singapore

18http://en.wikipedia.org/wiki/2011_dengue_outbreak_in_Pakistan

http://nlp.stanford.edu/software/tagger.shtml
http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa
http://en.wikipedia.org/wiki/Haiti_cholera_outbreak
http://en.wikipedia.org/wiki/2012_Middle_East_respiratory_syndrome_coronavirus_outbreak
http://en.wikipedia.org/wiki/2012_Middle_East_respiratory_syndrome_coronavirus_outbreak
http://en.wikipedia.org/wiki/New_England_Compounding_Center_meningitis_outbreak
http://en.wikipedia.org/wiki/New_England_Compounding_Center_meningitis_outbreak
http://en.wikipedia.org/wiki/Influenza_A_virus_subtype_H7N9
http://en.wikipedia.org/wiki/2013%E2%80%9314_chikungunya_outbreak
http://en.wikipedia.org/wiki/Chikungunya_outbreaks
http://en.wikipedia.org/wiki/Dengue_fever_outbreaks
http://en.wikipedia.org/wiki/2013_dengue_outbreak_in_Singapore
http://en.wikipedia.org/wiki/2011_dengue_outbreak_in_Pakistan
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gitis outbreak19, l) Mumps outbreaks in the 21st century20, m) Zimbabwean cholera

outbreak21, and n) 2006 dengue outbreak in India22. The entire cleaned and annotated

dataset contained approximately 55,000 tokens. The inside-outside-beginning (IOB)

scheme, popularized in part by the CoNLL-2003 shared task on language-independent

named-entity recognition [178], was used to tag each token. The IOB scheme offers

the ability to tie together sequences of tokens that make up an entity.

The annotation task was split between two annotators. In order to tune inter-

annotator agreement, the annotators each annotated three sets of 5,000 tokens. After

each set of annotations, differences were identified, and clarifications to the annotation

rules were made. The third set resulted in a Cohen’s kappa coefficient of 0.937,

indicating high agreement between the annotators.

4.2.3 Tabular data

To understand the viability of tabular data in Wikipedia, we concentrate on

the Ebola virus epidemic in West Africa article23. As seen in Figure 4.1, this article

contains detailed tables of case counts and death counts by country. The article is

regularly updated by the Wikipedia community (see Figure 4.2); over the 165-day

period analyzed, the article averaged approximately 31 revisions per day.

19http://en.wikipedia.org/wiki/2009%E2%80%9310_West_African_meningitis_

outbreak

20http://en.wikipedia.org/wiki/Mumps_outbreaks_in_the_21st_century

21http://en.wikipedia.org/wiki/Zimbabwean_cholera_outbreak

22http://en.wikipedia.org/wiki/2006_dengue_outbreak_in_India

23http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa

http://en.wikipedia.org/wiki/2009%E2%80%9310_West_African_meningitis_outbreak
http://en.wikipedia.org/wiki/2009%E2%80%9310_West_African_meningitis_outbreak
http://en.wikipedia.org/wiki/Mumps_outbreaks_in_the_21st_century
http://en.wikipedia.org/wiki/Zimbabwean_cholera_outbreak
http://en.wikipedia.org/wiki/2006_dengue_outbreak_in_India
http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa
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Figure 4.2: The number of revisions made each day to the 2014 Ebola virus epidemic
in West Africa Wikipedia article (http://en.wikipedia.org/wiki/Ebola_virus_
epidemic_in_West_Africa). A total of 5,137 revisions were made over the 165-day
period analyzed.

Ebola is a rare but deadly virus that first appeared in 1976 simultaneously

in two different remote villages in Africa. Outbreaks of Ebola virus disease (EVD),

previously known as Ebola hemorrhagic fever (EHF), are sporadic and generally short-

lived. The average case fatality rate is 50%, but it has varied between 25% and 90%

in previous outbreaks. EVD is transmitted to humans from animals (most commonly,

bats, apes, and monkeys) and also from other humans through direct contact with

blood and body fluids. Signs and symptoms appear within 2–21 days of exposure (av-

http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa
http://en.wikipedia.org/wiki/Ebola_virus_epidemic_in_West_Africa
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erage 8–10 days) and include fever, severe headache, muscle pain, weakness, diarrhea,

vomiting, abdominal pain, and unexplained bleeding or bruising. Although there is

currently no known cure, treatment in the form of aggressive rehydration seems to

improve survival rates [147, 59].

The West African EVD epidemic was officially announced by the WHO in

March 2014 [148]. The disease spread rapidly and has proven difficult to contain in

several regions of Africa. At the time of this writing, it has spread to 7 different

countries (including two outside of Africa): Guinea, Liberia, Sierra Leone, Nigeria,

Senegal, United States, and Spain.

We parsed the Ebola article’s tables in several steps:

1. We first queried Wikipedia’s API to get the complete revision history for the

West African EVD epidemic article. Our initial dataset contained 5,137 revi-

sions from March 29, 2014 to October 14, 2014.

2. We then parsed each revision to pull out case count and death count time series

for each revision. To parse the tables, we first used pandoc24 to convert the

MediaWiki markup to consistently-formatted HTML and then used Beautiful-

Soup25 to parse the HTML. Because the Wikipedia time series contain a number

of missing data points prior to June 30, 2014, we use this date for the beginning

of our analysis; time series data prior to June 30, 2014 are not used in this

study. This resulting dataset contained 3,803 time series.

24http://johnmacfarlane.net/pandoc/

25http://www.crummy.com/software/BeautifulSoup/

http://johnmacfarlane.net/pandoc/
http://www.crummy.com/software/BeautifulSoup/
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3. As Figure 4.1 shows, there are non-regular gaps in the Wikipedia time series;

these gaps range from 2–5 days. We linearly interpolated to fill in missing data

points where necessary so that we have daily time series. Daily time series data

simplify comparisons with ground truth data (described later).

4. Recognizing that the tables will not necessarily change between article revisions

(i.e., an article revision might contain edits to only the text of the article, not to

a table in the article), we then removed identical time series. This final dataset

contained 39 time series.

4.3 Results

4.3.1 Named-entity recognition

To test the classifier’s performance, we averaged precision, recall, and F1 score

results from 10-fold cross-validation. Table 4.1 demonstrates a typical confusion ma-

trix used to bin cross-validation results, which are then used to compute precision,

recall, and the F1 score. Precision asks, “Out of all the examples the classifier la-

beled, what fraction were correct?” and is computed as TP
TP+FP

. Recall asks, “Out of

all labeled examples, what fraction did the classifier recognize?” and is computed as

TP
TP+FN

. The F1 score is the harmonic mean of precision and recall: 2 · precision·recall
precision+recall

.

All 3 scores range from 0 to 1, where 0 is the worst score possible and 1 is the best

score possible.
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Table 4.1: Typical classifier confusion matrix.

Ground truth positive Ground truth negative
Test positive True positive (TP) False positive (FP)
Test negative False negative (FN) True negative (TN)

Table 4.2 shows these results as we varied the maxNGramLeng option (Stanford’s

default value is 6). The maxNGramLeng option determines sequence length when

training. We were somewhat surprised to discover that larger maxNGramLeng values

did not improve the performance of the classifier, indicating that more training data

are likely necessary to further improve the classifier. Furthermore, roughly maximal

performance is achieved with maxNGramLeng = 4; there is no tangible benefit to larger

sequences (despite this, we concentrate on the maxNGramLeng = 6 case since it is the

default). Our 14-article training set achieved precision of 0.812 and recall of 0.710,

giving us an F1 score of 0.753 for maxNGramLeng = 6.
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Table 4.2: Classifier performance determined from 10-fold cross-validation.

maxNGramLeng Precision Recall F1 score
1 0.820 0.693 0.747
2 0.810 0.690 0.740
3 0.815 0.702 0.750
4 0.814 0.709 0.753
5 0.813 0.709 0.753
6 0.812 0.710 0.753
7 0.812 0.706 0.751
8 0.814 0.708 0.753
9 0.815 0.707 0.753
10 0.815 0.708 0.753
11 0.813 0.708 0.753
12 0.811 0.709 0.752

For maxNGramLeng = 6, Table 4.3 shows the average precision, recall, and

F1 scores for each of the named entities we annotated (DEATHS, INFECTIONS, and

HOSPITALIZATIONS). There were a total of 264 DEATHS, 633 INFECTIONS, and 16

HOSPITALIZATIONS entities annotated across the entire training dataset. Recall that

we used the IOB scheme for annotating sequences; this is reflected in Table 4.3,

with B-* indicating the beginning of a sequence and I-* indicating the inside of a

sequence. It is generally the case that identifying the beginning of a sequence is easier

than identifying all of the inside words of a sequence; the only exception to this is

HOSPITALIZATIONS, but we speculate that the identical beginning and inside results

for this entity are due to the relatively small sample size.
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Table 4.3: Classifier performance for each of the entities we used in our annotations.

Named entity Precision Recall F1 score
B-Deaths 0.888 0.744 0.802
I-Deaths 0.821 0.730 0.764
B-Infections 0.812 0.719 0.756
I-Infections 0.762 0.714 0.730
B-Hospitalizations 0.933 0.833 0.853
I-Hospitalizations 0.933 0.833 0.853

4.3.2 Tabular data

To compute the accuracy of the Wikipedia West African EVD epidemic time

series, we used Caitlin Rivers’ crowdsourced Ebola data26. Her country-level data

come from official WHO data and reports. As with the Wikipedia time series, we

linearly interpolated to fill in missing data where necessary so that the ground truth

data are specified daily; this ensured that the Wikipedia and ground truth time series

were specified at the same granularity. Note that time granularity of the WHO-based

ground truth dataset is generally finer than the Wikipedia data; the gaps in the

ground truth time series were not the same as those in the Wikipedia time series. In

many cases, the ground truth data were updated every 1–2 days.

We compared the 39 Wikipedia epidemic time series to the ground truth data

by computing the root-mean-square error (RMSE). We use the RMSE rather than

the mean-square error (MSE) because the testing and ground truth time series both

have the same units (cases or deaths); when they have the same units, the computed

26https://github.com/cmrivers/ebola

https://github.com/cmrivers/ebola
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RMSE also has the same unit, which makes it easily interpretable. The RMSE,

RMSE =

√√√√ 1

n
·

n∑
i=1

(Ŷi − Yi)2, (4.1)

computes the average number of cases or deaths difference between a Wikipedia

epidemic time series (Ŷ ) and the ground truth time series (Y ). Figure 4.3 shows how

the case time series and death time series RMSE changes with each table revision for

each country. Of particular interest is the large spike in Figure 4.3a on July 8, 2014

in Liberia and Sierra Leone. Shortly after the 6:27pm spike, an edit from a different

user at 8:16pm the same day with edit summary “correct numbers in wrong country

columns” corrected the error.
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Figure 4.3: Root-mean-square error (RMSE) values for the cases and deaths time
series are shown for each revision where the tables changed. The RMSE spikes on
July 8, 2014 (Liberia and Sierra Leone) and August 20, 2014 (Liberia) in 4.3a were
due to Wikipedia contributor errors and were fixed shortly after they were made.
Most RMSE spikes are quickly followed by a decrease; this is due to updated WHO
data or contributor error detection.
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The average RMSE values for each country’s time series are listed in Table 4.4.

Even in the worst case, the average deviation between the Wikipedia time series and

the ground truth is approximately 19 cases and 12 deaths. Considering the magnitude

of the number of cases (e.g., approximately 1,500 in Liberia and 3,500 in Sierra Leone

during the time period considered) and deaths (e.g., approximately 850 in Liberia

and 1,200 in Sierra Leone), the Wikipedia time series are generally within 1–2% of

the ground truth data.

Table 4.4: Average cases and deaths RMSE across all table revisions.

Country Mean Cases RMSE Mean Deaths RMSE
Guinea 3.790 2.701
Liberia 18.168 11.983
Nigeria 0.310 0.189
Senegal 0.403 0.008
Sierra Leone 18.847 12.015
Spain 18.243 0.050
United States 0.174 0.000

4.4 Conclusions

Internet data are becoming increasingly important for disease surveillance. In-

ternet data can be used to overcome the reporting lags inherent in traditional disease

surveillance data, and they can also be used to detect and monitor emerging diseases.

Additionally, internet data can simplify global disease data collection. Collecting

global disease data is a formidable task that often requires browsing websites written
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in an unfamiliar language, and data are specified in a number of formats ranging

from well-formed spreadsheets to unparseable PDF files containing low resolution

images of tables. Although several popular internet-based systems exist to help over-

come some of these traditional disease surveillance system weaknesses, most notably

HealthMap [73] and Google Flu Trends [82], no such system exists that relies solely

on open data and runs using 100% open source code.

Previous work explored Wikipedia access logs to tackle some of the disadvan-

tages traditional disease surveillance systems face [125, 79]. This study explores a new

facet of Wikipedia: the content of disease-related articles. We present methods on

how to elicit data that can potentially be used for near-real-time disease surveillance

purposes. We argue that in some instances, Wikipedia may be viewed as a centralized

crowdsourced data repository.

First, we demonstrate using a named-entity recognizer (NER) how case counts,

death counts, and hospitalization counts can be tagged in the article narrative.

Our NER, trained on a dataset derived from 14 Wikipedia articles on disease out-

breaks/epidemics, achieved an F1 score of 0.753, evidence that this method is fully

capable of recognizing these entities in text. Second, we analyzed the quality of tabu-

lar data available in the 2014 West Africa Ebola virus disease article. By computing

the root-mean-square error (RMSE), we show that the Wikipedia time series very

closely align with WHO-based ground truth data.

There are many future directions for this work. First and foremost, more

training data are necessary for an operational system in order to improve precision
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and recall. There are many more disease- and outbreak-related Wikipedia articles

that can be annotated. Additionally, other open data sources, such as ProMED-mail,

might be used to enhance the model. Second, a thorough analysis of the quality

and correctness of the entities tagged by the NER is needed. This study presents

the methods by which disease-related named entities can be recognized, but we have

not throughly studied the correctness and timeliness of the data. Third, our analysis

of tabular data consisted of a single article. A more rigorous study looking at the

quality of tabular data in more articles is necessary. Finally, the work presented

here considers only the English Wikipedia. NERs are capable of tagging entities in

a variety of other languages; more work is needed to understand the quality of data

available in the 286 non-English Wikipedias.

There are several limitations to this work. First, the ground truth time series

we used to compute RMSEs is static, while the Wikipedia time series vary over time.

Because the relatively recent static ground truth time series may contain corrections

for reporting errors made earlier in the epidemic, the RMSE values may be artificially

inflated in some instances. Second, we are ignoring the user-provided edit summary.

This edit summary provides information about why the edit was made. The edit

summary identifies article vandalism (and subsequent vandalism reversion) as well

as content corrections and updates. Taking these edit summaries into account can

further improve model performance (e.g., processing edit summaries would allow us

to disregard the erroneous edit that caused the July 8, 2014 spike in Figure 4.3a).

Ultimately, we envision this work being incorporated into a community-driven
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open-source emerging disease detection and monitoring system. Wikipedia access

log time series gauge public interest and, in many cases, correlate very well with

disease incidence. Demonstrated in this study, Wikipedia article content can be used

to dynamically understand the global state of an outbreak. ProMED-mail could be

incorporated as well in order to inform the system which disease articles should be

monitored. These three data sources could provide the backbone of a truly open

internet-based disease surveillance system. A community-driven effort to improve

global disease surveillance data is imminent, and Wikipedia can play a crucial role in

realizing this need.
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CHAPTER 5
CONCLUSIONS

Traditional disease surveillance systems are instrumental in guiding policy-

makers’ decisions and understanding disease dynamics. These systems generally rely

on data gathered from primary care physicians or laboratory reports. The first study

in this dissertation analyzed sentinel surveillance network design. Many sentinel

surveillance networks in the U.S. are “networks of convenience”; that is, the primary

care facilities and laboratories that make up the networks were not chosen in any sort

of systematic way that would methodically optimize disease detection. We recognize

that surveillance networks are used to determine outbreak location, outbreak intensity,

and outbreak timing. We explored how network size and design affects the quality of

outbreak intensity and outbreak timing data the network is capable of measuring.

We studied three facilities location models for placing sites: two based on a

maximal coverage model (MCM) and one based on a K-median model. The MCM

selects sites that maximize the total number of people within a specified distance to

the site. Recognizing that sites can only realistically see a limited number of patients

during any given time period, we introduced a capacitated MCM, where each site has

some intrinsic integer capacity. In practice, the capacitated MCM allows for multiple

sites in the same general area with overlapping radii of coverage. The K-median

model minimizes the sum of the distances from each individual to the individual’s

nearest site (i.e., it minimizes the average “travel” distance for a population).

To measure performance, we simulated the spread of influenza across the state
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of Iowa using the Huff spatial interaction model and a dataset consisting of two million

de-identified Medicaid billing records representing eight complete influenza seasons.

We compared hypothetical surveillance networks constructed using the MCM and

K-median models against the existing Iowa Department of Public Health (IDPH)

influenza-like illness surveillance network (consisting of 19 sites). We showed that

both MCM models were capable generating networks that can better detect out-

break intensity than the IDPH network. Furthermore, we showed that it is possible

to algorithmically create a smaller network capable of the same outbreak intensity

performance as the existing IDPH network. We then analyzed outbreak timing by

computing Pearson’s product-moment correlation coefficient (Pearson’s r). All algo-

rithmic placement schemes are capable of generating networks that outperform the

IDPH’s network. Perhaps most importantly, though, we discovered that it may be

possible to create drastically smaller networks (n = 2) that are capable of very good

outbreak timing detection (r ≥ 0.9).

We then demonstrated that the location-allocation models used for influenza

surveillance site placement are general and can be used for other purposes. We showed

how primary stroke centers can be algorithmically selected. We also demonstrated

the ineffectiveness of the current self-initiated approach to primary stroke center cer-

tification and argue that a more systematic approach would be preferable.

While these traditional disease surveillance systems are important, they have

several disadvantages. First, due to a complex reporting hierarchy, there is a report-

ing lag for most diseases in the U.S. of around 1–2 weeks. Second, many regions of
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the world lack trustworthy and reliable data. As a result, there has been a surge of

research looking at using publicly available data on the internet for disease surveil-

lance purposes. The second and third studies in this dissertation analyze Wikipedia’s

viability in this sphere.

The first of these two studies analyzed Wikipedia access logs. Hourly access

logs dating back to December 2007 are available for anyone to download completely

free of charge. These logs contain, among other things, the total number of accesses

for every article in Wikipedia. Using a linear model and a simple article selection

procedure, we were able to correctly nowcast and, in some cases, forecast up to the 28

days tested in 8 of the 14 disease-location contexts considered. We also demonstrated

that it may be possible in some cases to train a model in one context and use the

same model to nowcast or forecast in another context with poor surveillance data.

The second of the Wikipedia studies analyzed disease-relevant data found in

the article content. A number of disease outbreaks are meticulously tracked on Wiki-

pedia. Case counts, death counts, and hospitalization counts are often provided in

the article narrative. Using a dataset created from 14 Wikipedia articles, we trained

a named-entity recognizer (NER) to recognize and tag these phrases. The NER

achieved an F1 score of 0.753. In addition to these counts in the narrative, we tested

the accuracy of tabular data using the 2014 West African Ebola virus disease outbreak.

This article, like a number of other outbreak articles on Wikipedia, contains granular

case counts and deaths counts per country affected by the disease. By computing the

root-mean-square error between the Wikipedia time series and a ground truth time
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series, we show that the Wikipedia time series are both timely and accurate.

Ultimately, we envision the Wikipedia work presented here being incorporated

into the first community-driven open-source emerging disease detection and monitor-

ing system. The primary draw to Wikipedia for us is its openness; a fundamental

tenet of the Wikimedia Foundation is free and open knowledge. We feel that it is

this dedication to openness that can direct the next generation internet-based disease

surveillance systems.
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[83] Janáına Gomide, Adriano Veloso, Wagner Meira Jr, Virǵılio Almeida, Fabŕıcio
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