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ABSTRACT

Hand hygiene is an important part of preventing disease transmission in the hospi-

tal. Due to this importance, electronic systems have been proposed for automatically

monitoring healthcare worker adherence to hand hygiene guidelines. However, these

systems can miss certain hand hygiene events and do not include quality metrics

such as duration or technique. We propose that hand hygiene duration and tech-

nique can be automatically inferred using the motion of the wrist. This work presents

a system utilizing wrist-based 3-dimensional accelerometers and orientation sensors,

signal processing (including novel features), and machine learning to detect health-

care worker hand hygiene and report quality metrics such as duration and whether

the healthcare worker used recommended rubbing technique. We validated the sys-

tem using several different types of data sets with up to 116 healthcare workers and

activities ranging from synthetically generated hand hygiene movements to observa-

tion of healthcare worker hand hygiene on the hospital floor. In these experiments our

system detects up to 98.4% of hand hygiene events, detects hand hygiene technique

with up to 92.1% accuracy, and accurately estimates hand hygiene duration.
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PUBLIC ABSTRACT

Hand hygiene is an important part of preventing disease transmission in the hos-

pital. Due to this importance, electronic systems have been proposed for monitoring

whether hospital healthcare workers are cleaning their hands when they are supposed

to according to the World Health Organization. However, how hand hygiene is per-

formed is just as important as when hand hygiene is performed. Current systems

do not examine how hand hygiene is performed and do not include quality metrics

such as duration or technique. We propose that hand hygiene duration and tech-

nique can be automatically inferred using the motion of the wrist. In this work we

monitor healthcare workers with two sensor-equipped wristbands, one on each wrist.

We use machine learning to detect healthcare worker hand hygiene and report qual-

ity metrics such as duration and whether the healthcare worker used recommended

rubbing technique. We validate the system using several different types of data sets

with up to 116 healthcare workers and activities ranging from healthcare workers per-

forming hand hygiene and non-hand hygiene movements on command to observation

of healthcare worker hand hygiene on the hospital floor. In these experiments our

system detects up to 98.4% of hand hygiene events, detects hand hygiene technique

with up to 92.1% accuracy, and accurately estimates hand hygiene duration.
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CHAPTER 1:

HAND HYGIENE MONITORING SYSTEMS

Hospital healthcare worker hand hygiene is a first line of defense against the trans-

mission of pathogens in the hospital [3]. Due to its importance, best practice guide-

lines have been created by multiple agencies. These guidelines inform both how and

when hand hygiene is practiced by healthcare workers in the hospital. In addition

to providing direction for best practice of hand hygiene, it is also recommended that

hospitals monitor hand hygiene in order to reinforce its importance and direct inter-

ventions (e.g., placing posters reminding health care workers about hand hygiene,

talking with healthcare workers, installing different hand sanitizer pumps or chang-

ing their locations). The metric that is generally monitored is the hand hygiene rate,

defined as the ratio of hand hygiene events (defined as a session of hand hygiene con-

sisting of cleaning the hand with either alcohol-based hand rub or soap and water) to

total hand hygiene opportunities.

Hand hygiene opportunities are defined differently by different agencies. The World

Health Organization has produced a guideline called the “Five Moments of Hand Hy-

giene” as shown in Figure 1.1. This guideline outlines five different scenarios in which

a healthcare worker has a hand hygiene opportunity– before patient contact, before an

aseptic task, after a body fluid exposure risk, after patient contact, and after contact

with patient surroundings. However these opportunities are often difficult to observe

as they occur within the patient room. A more common method is known as “Wash In,

Wash Out” hand hygiene, wherein a healthcare worker has an opportunity to perform

hand hygiene before entering and after leaving a patient room [4]. This metric is more

commonly used in hospitals as it is easier to observe once alcohol-based hand rub

dispensers have been placed outside of rooms.

Hand hygiene rates have traditionally been recorded by human observers. Another

traditional approach is to measure the amount of hand rub used on the hospital floor

as a proxy for hand hygiene activity [5]. Both of these approaches have their draw-

backs. The human observer approach has proved to be problematic as the observers

can affect the behavior of healthcare workers, causing observed hand hygiene rates

to be much higher than they should be [6, 7, 8]. The hand rub volume approach is a
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Figure 1.1: Five Moments of Hand Hygiene. From [1].
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noisy metric for hand hygiene rates among healthcare workers as the hand rub dis-

pensers can be accessed by anyone on the hospital floor, including visitors, and the

metric itself may be affected by the type of dispenser or hand rub product used.

Various types of electronic systems have been proposed for assisting with monitor-

ing of hand hygiene rates in hospitals. Several approaches use cameras to observe

hand hygiene. One system, Arrowsight, combines cameras that are focused on hand

rub dispensers and sinks with motion sensors to capture video of potential hand hy-

giene opportunities. These opportunities were viewed by remote auditors who marked

whether the workers performed hand hygiene [9].

While monitoring the rate of hand hygiene is important, the duration of and tech-

nique used during a hand hygiene events are important components of the efficacy

of hand hygiene [10]. The World Health Organization’s recommendations for effective

hand hygiene using alcohol-based hand rub can be seen in Figure 1.2. Various mo-

tions are recommended in order to ensure that alcohol-based hand rub is distributed

evenly throughout the hand, particularly in the nail beds which are often the dirtiest

[11]. In addition the World Health Organization recommends that hand hygiene be

performed for a certain amount of time, since hand hygiene of longer duration has

been shown to be more effective. The previously listed systems only provide rates of

hand hygiene compliance without information on duration or technique.

Electronic Hand Hygiene Technique Recognition

Many have considered the question of automatically tracking the number of hand

hygiene attempts ([12, 13, 14, 15] are just a few commercial systems that offer this

functionality), but few have tackled the automatic recognition of hand hygiene tech-

nique. Predominant approaches to this problem have utilized vision-based recogni-

tion. SureWash is a commercial system which uses vision-based recognition as part

of a training system for healthcare workers and visitors [16]. However, this system is

not meant to perform recognition of hand hygiene technique in situ. A vision-based

system which could be mounted over a sink for technique recognition in situ is pro-

posed in [17]. They report detection rates between 65.99% and 97.81% for various

hand hygiene movements.

The major drawback of vision-based hand hygiene technique recognition is that

they require that the observed hand washing occur in a certain small area because

the hands must stay clearly in view of the camera. SureWash enforces this by showing

video of the hands to the user so they can make sure to stay in frame, and in [17] they
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Figure 1.2: WHO-recommended Alcohol-Based Hand Rub scrubbing motions. From
[2].
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ensure that the user is in frame by having them wash using soap and water at a sink.

These assumptions are quickly violated if we attempt to extend vision-based methods

to hand hygiene techniques using alcohol-based hand rub because users may place

themselves arbitrarily in relation to the pump and may move away from the pump

while they wash, removing themselves from frame. In addition vision-based methods

suffer under poor lighting conditions which makes it difficult to extend their use in a

general hospital setting.

While current approaches are insufficient for use in a general hospital setting,

improvements in technology have given rise to smaller processors, batteries, and sen-

sors. It is now possible to place wristbands on the wrists of healthcare workers and

monitor them continually on the hospital floor, avoiding the restrictions of vision-

based methods.
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CHAPTER 2:

ACTIVITY RECOGNITION

Activity recognition is a field in the crossroads of sensor networks and machine

learning. In this field subjects of interest are instrumented with sensors and machine

learning methods are used on the sensor data to determine which activities are tak-

ing place. This chapter provides some background on machine learning metrics and

techniques and also reviews special applications in activity recognition and gesture

detection related to recognition of hand hygiene technique using wrist-based sensors.

Supervised Machine Learning Methods and Metrics

Before discussing the various results in the field of activity recognition it is useful to

have an understanding of the methods and metrics we will discuss. This section gives

a general overview of supervised machine learning and introduces several metrics that

will be used later in the thesis. In addition common trade-offs are discussed.

It is first necessary to explain the general concept of a supervised machine learning

problem. In machine learning a data set is considered to be embedded in a feature

space. As an example consider Figure 2.1. In this figure we have a data set consisting

of snowy days in Chicago, IL. This data set has been embedded in a two-dimensional

feature space–one feature being the low temperature of the day and the other being the

date. The number of features determines the dimensionality of the feature space–so

for instance, if Figure 2.1 also included the humidity that would be a third dimension

in the feature space. Each point in Figure 2.1 represents an instance in the data set.

In this example the instances are days, but an instance could be a participant or (in

this thesis) a half-second of data.

In Figure 2.1 each point also has a color which reflects whether the day was snowy

or not. In general this can be thought of as a class label. Figure 2.1 shows a problem

with two possible classes, but there can be many more. Machine learning methods

find ways to divide the feature space to create a classifier that can predict the class

label of an unknown instance. An example of a naive classifier that predicts that the

day will be snowy if the low temperature is below 1.1 degrees C is depicted in Figure

2.1. In general the division of space does not have to be linear and can take on many
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Figure 2.1: Example Data Set Embedding: Snowy Days in Chicago. Snowy days are
indicated with yellow points. A naive classifier divides the space with the red line.
The classifier would guess that the day would be snowy if the low temperature was
below 1.1 degrees C. Data is weather at Chicago O’hare International Airport from
January 1, 2012 through December 31, 2014 as provided by the National Centers for
Environmental Information.
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different forms depending on the method used.

A good classifier will correctly predict the class label of an unknown instance. In

order to form an idea of how a given classification method will work in a deployment

the data set is split into two sets: a training set and test set. The training set is the

set of instances that the machine uses to create the division in space–to train the

classifier. The test set is the set of instances that the machine will treat as unknown

and predict class labels for. Since the test set consists of instances where the true

class is known we can then compare the classifier’s prediction to the truth. However,

this approach is vulnerable to variation depending on the choice of training and test

set. Using the example in Figure 2.1 imagine that the training set contained only

snowy days in December–the class dividing line could look very different and then

we could think that a linear classifier performs poorly when in fact the training set

was chosen poorly. In order to avoid this problem results are generally reported using

10-fold cross validation. In 10-fold cross validation the data set is split into 10 parts

(or folds). One part is held out as a test set and the rest used for training. Each part

has its turn as the test set. In the end results are averaged over all 10 folds to create

a metric that better reflects the average performance of the classification method on

this problem.

The basis for the calculation of most metrics is the confusion matrix. A confusion

matrix provides an organized way to examine the errors made by a classifier. Table

2.1 illustrates a standardized confusion matrix for a binary classification test. In this

example we can see that the classifier is detecting a positive and negative class. The

positive class could represent anything that we want to detect with the system–for

example, the presence of hand hygiene (in our system). As we can see in Table 2.1

we can have two types of errors: a false positive or a false negative. A false positive

can be seen as a false alarm or a type I error in statistics. A false negative can be

seen as a miss or a type II error. When a confusion matrix is created from an example

classification the cells will be filled in based on the number of instances that apply to

each case. An example of a two class confusion matrix can be seen later in Table 4.5.

Various metrics can be calculated using a confusion matrix. A metric commonly

used in the medical field is sensitivity and specificity. Sensitivity (also known as

hit rate, recall, or true positive rate) is defined as TP/(TP + FN). It is the ratio of

correctly detected positive instances to the total number of positive instances. In

our application we can think of this as representing how frequently hand hygiene

was correctly detected. Specificity (also known as true negative rate) is defined as
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Table 2.1: A standardized confusion ma-
trix.

Metric Equation
Sensitivity, recall, hit rate, true positive rate TP/(TP + FN)
Specificity, true negative rate TN/(TN + FP )
Positive predictive value, precision TP/(TP + FP )
Accuracy Total Correct/All Instances

Table 2.2: Machine Learning Metrics Used in this Thesis. Bold terms indi-
cate those in thesis.

TN/(TN + FP ). It is the ratio of correctly detected negative instances to the total

number of negative instances. In our application we can think of this as representing

how frequently non-hand hygiene was correctly detected.

Sensitivity and specificity are good for a binary classification problem, but speci-

ficity cannot be calculated for a classification problem with more than two classes

because the number of true negatives is unclear. We can see a confusion matrix for

one such classification problem with ten classes in Table 4.6. As an example, con-

sider calculating the number of true negatives using that confusion matrix when the

positive class is PR (Palm Rub). Do we simply sum the number of correctly classified

instances that are not PR? That ignores the fact that some of the incorrect classifi-

cations in those other classes were not classified as PR. Do the instances that were

truly LTS (Left Thumb Scrub) and were incorrectly classified as RTS (Right Thumb

Scrub) count as true negatives because they were correctly not classified as PR or are

they false negatives because they were incorrectly classified? Because of these diffi-

culties the metrics of positive predictive value and accuracy are used for classification

problems with more than two classes.

Accuracy is defined as Total Correct/All Instances. This can be thought of as an av-

erage of the sensitivity of each class, weighted by the prevalence of that class. Positive

predictive value (also known as precision) is defined as TP/(TP +FP ). In our applica-

tion we can think of this as how often our system was correct when it detected hand

hygiene. This is different from specificity, which represented how often our system
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was correct when it did not detect hand hygiene.

Accuracy and positive predictive value are the metrics used in this thesis because

many of the classification problems consist of more than two classes.

In a detection task like the one discussed in this thesis there are two competing

goals: 1) the machine should detect when the class of interest (i.e., hand hygiene) is

present and 2) when the machine detects that the class of interest is present it should

be correct. In most cases there is a trade-off between goals 1 and 2. As a trivial

example, imagine that we only cared about goal 1, detecting when hand hygiene is

present. In that case we could easily fulfill that goal by constantly guessing that hand

hygiene is present–we would perform perfectly on goal 1 but not on goal 2 because we

would be frequently wrong. In reality one can think of goals 1 and 2 as being opposing

points on a spectrum. Most machine learning methods try for a happy medium, but

have various parameters that can change in order to accommodate moving toward

one goal or the other depending on preference.

In order to examine the trade-off one can use a Receiver Operating Characteristic

(ROC) curve. This plots the true positive rate (increase this to meet goal 1) for a given

class against the false positive rate (decrease this to meet goal 2) for the same class.

An example ROC curve can be seen later in Figure 5.8. In it we can see that as the

true positive rate increases the false positive rate also increases, as expected. Given a

curve like this one could choose a certain point with the trade-off desired for a given

application.

Activity Detection Using Wrist-Based Accelerometers

Wrist-based accelerometers have been used as components in many activity detec-

tion systems. Not all of them are closely applicable to the problem of hand hygiene

recognition. For instance, gait detection, a research area with a large body of work

containing many systems which incorporate wrist-based accelerometers, is mostly

concerned with large changes in the frequency of an action (e.g. the change from sit-

ting to standing to walking). However, these large differences in frequency do not exist

between different types of hand hygiene technique. In this section a few selected ex-

amples where wrist-based accelerometers were used to detect everyday activities are

reviewed in order to facilitate understanding of results presented later in this thesis.

One class of activity recognition applications that has made use of wrist-based

accelerometers involves recognizing exercise activities (e.g., calisthenics, weight train-

ing). Most of these systems have made use of multiple sensors throughout the body
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and observe movements that are simpler than hand hygiene. In [18] a wrist-based

accelerometer is combined with sensors on the upper arm and hip to detect exer-

cise motions such as dumbbell curls or push ups. Cheng et al. work on recognizing

classes that have no examples in the training set and report recall from 45.6% to

95.9% on a data set consisting of 20 subjects performing 10 motions. In [19] the

duration and number of repetitions of an exercise are detected using a wrist worn

sensor that collected accelerometer and gyroscope values from 94 participants for an

average of 38 minutes each. Morris et al. report recall of above 85.6% for the duration

of exercise and 98.2% for the number of repetitions using a dataset consisting of 14

different exercises (e.g., push ups and squats). In [20], Velloso et al. distinguish be-

tween the dumbbell curl and four common incorrect variations of the dumbbell curl

using a wristband, belt, and glove equipped with an accelerometer, gyroscope, and

magnetometer. They report precision from 84.9% to 98.2% and recall from 85% to

98.2% using a data set containing 6 subjects.

Another class of activity recognition applications that has made use of wrist-based

accelerometers involves recognizing activities of daily living (e.g., brushing teeth, mak-

ing coffee). All of these systems made use of multiple sensors placed throughout the

body. In [18] Cheng et al. use a public dataset of 34 daily life activities collected

using an accelerometer worn on the wrist and the hip from one subject over seven

days. They report a mean precision of 52.3% and recall of 73.4%. In [21] Hong et

al. use accelerometers on the thigh, waist, and wrist and an RFID reader equipped

glove to classify daily activity from 16 hand activities (e.g. shaking hands) and 5 body

states (e.g. sitting). They report recall of 56.35% to 94.57% using only the accelerom-

eter values and 94.38% to 98.34% when the RFID data is included using a data set

containing 15 subjects.

Gesture Recognition

Since the introduction of the Nintendo Wii (an accelerometer equipped gaming control)

and increased availability of accelerometers on smartphones, accelerometers have

been frequently utilized in gesture recognition. In this section examples of gesture

recognition using wrist-based accelerometers are reviewed as a basis for understand-

ing the work presented in this thesis.

A few papers have explored the use of wrist-based accelerometers for gesture de-

tection. In [22] a wrist-based accelerometer is used to detect the motions associated

with smoking. Parate et al. report precision and recall of 72% and 85% when using
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random forests and 91% and 81% when using a conditional random field. In [23] a

wrist-based accelerometer is used to count the number of bites in a meal as part of a

calorie counter. Ramos et al. report an accuracy of 71.7% with a K-Nearest Neighbors

classifier and 84.3% with a Hidden Markov Model that took into account the ordering

of activities within a meal. These examples are notable for their use of wrist-based

sensors to detect movements of the hand, the motions that they detect are quite large

scale. Small scale motions are more difficult to detect with a wrist-based accelerome-

ter, so others have introduced extra sensors in order to obtain good results. In [24] Li

et al. use both a wrist-based accelerometer and an surface electromyographic (EMG)

sensor which detects muscle activation. Using this system they were able to recognize

a vocabulary of 120 signs from Chinese sign language with an accuracy of 96.5%.

A more substantial body of work exists in the realm of identifying gestures using

handheld accelerometers. Most of the gesture sets in the literature consist of very

simple motions made on a plane ([25, 26, 27, 28] are only a few examples of handheld

accelerometer based gesture recognition using extremely simple motions like circles or

swiping motions) but some have considered larger and more complex sets of gestures.

In [29] an accelerometer equipped pen is used to recognize a set of gestures and

digits. Wang et al. use a probabilistic neural network and report recognition rates

of up to 98% in the case of digit recognition and up to 98.75% in the case of simple

gesture recognition. In [30] Agrawal et al. seek to recognize English characters using

a mobile phone to “write in air”. In order to make this problem tractable they had to

ask users to use one corner of the phone to write with (since using the accelerometer

alone it is impossible to differentiate between a rotation of the phone and a linear

movement that would have resulted in the same acceleration values) and to pause

slightly between strokes in a character (to enable them to take a quick snapshot of

the accelerometer values and infer the phone rotation from the force of gravity). They

decompose every character into a series of common simple strokes and treat this as

a grammar. Agrawal et al. report character recognition rates of 91.9% for trained

users and 78.2% for novice users (human readers had 83% and 85.4% recognition).

Classification accuracy improved when writing was on a table instead of in the air,

presumably because this reduced variability in at least one plane of motion. An in-

teresting facet of this paper was their studies in the hospital with impaired patients

(e.g. someone suffering partial paralysis from a stroke). On a doctor’s advice they

attempted to simulate performance on a patient that was only slightly impaired by

having a small set of participants write with their non-dominant hand. On this set
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they report accuracy of 81.73%.

This literature can provide good insights into possible avenues of inquiry, but it

is important to remember that there are differences between gesture recognition and

hand hygiene recognition. Perhaps the largest difference is the location of the ac-

celerometer. In the case of a pen or joystick the system can detect motions made with

the hand with high accuracy because it is aligned with the hand, not just the wrist.

By contrast approaches which use wrist-based accelerometers confine themselves to

predicting simple gestures like those associated with smoking or eating. Inferring

more intricate hand movements solely from wrist accelerometery is more difficult.
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CHAPTER 3:

SYSTEMS USED FOR DATA COLLECTION

The quality of hand hygiene recognition is affected by the system chosen for data

collection. In this thesis various systems were used to collect data sets consisting of

hand hygiene motions in an attempt to explore the utility of different sensing modes

and other system considerations. The sensors evaluated consist of accelerometers and

MEMS-factor gyroscopes. One of the platforms is a custom platform constructed for

these experiments. We also evaluate a “fitness wristband” which can be programmed

to record accelerometer data to flash memory.

3.1 Custom System

The remainder of this section describes our custom platform. Our platform design

aims to satisfy some general constraints: the device should be small and relatively

unobtrusive so that healthcare workers will tolerate wearing it; and the device needs

to be low-cost, have some signal processing and storage capabilities, wireless con-

nectivity, and adequate power for at least eight hours of deployment (before replac-

ing/recharging battery). We constructed a small circuit board hosting a CC2531 SoC

[31], an MMA7455L accelerometer [32], two LEDs, and a PCB antenna. The board’s

size, 50mm x 32mm, includes some extra conveniences: an on/off switch, one mini-

USB port, one micro-USB port (used for programming), and a recharging chip/circuit

for a lithium-polymer battery, recharged via USB-supplied power. It is possible to

trim these extra conveniences, leaving a working dimension of 36mm x 16mm, small

enough to fit in some commercial watch cases. Our experiments used the larger form

factor fit into a 3d-printed ABS plastic case fitted with a cloth and velcro wristband.

The CC2531 has the equivalent of a CC2520 radio, which supports IEEE 802.15.4

messaging. We chose the CC2531 due to its low cost, power-conserving sleep mode,

and radio compatibility existing devices. A disadvantage of the CC2531’s MCU is the

8KB RAM, which limits flexibility for our applications; newer ARM-based SoC’s would

offer better signal-processing and memory at somewhat higher cost. To avoid some

timing complications, experiments in this thesis first record sensor values into a 6KB
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buffer, and in a second step offload the buffered values in a burst of messages. Be-

cause both wrists carry such devices, we used two radio frequencies, one for each

wrist, so that offloading proceeded in parallel. Recording values from the accelerome-

ter at 125 Hz is driven by a timer in the accelerometer, which interrupts the MCU to

yield each (x,y,z) reading.

Another component of the experimental system is a gateway board that forwards

802.15.4 messages to a PC via a serial to USB converter (we used two of these, one

for each programmed radio frequency). The final device in the setup is an alcohol-

rub dispenser modified to trigger a microswitch on each dispensing event, and an

attached board and battery that transmits 802.15.4 messages. The scenario of an

experiment is thus: (i) a user dispenses from the bottle, which transmits messages

received by both wrists (both frequencies) and a basestation PC; (ii) the user performs

some hand washing activity for around sixteen seconds (also known by LED flashes

on the wrists), which fills the 6KB buffers with sensor values; (iii) sensor data then

streams to the PC in a sequence of messages.

Later experiments on the custom platform attached another small sensor board

to the wrist device, a “motion processing unit” similar to the Invensense family of

MPU chips [33]. We used a board with a signal processing API that fuses and filters

sensed values from an accelerometer, gyroscope and compass [34]. This API simplified

obtaining Euler angles (orientation) from the gyroscope. The custom sensor board

functioned as an Inertial Measurement Unit (IMU) and the resulting Euler angles

represent pitch, roll, and yaw of the wrist.The driver on the CC2531 converted floats

into 8-bit integers representing the angles, so that the same message format could be

used as in earlier experiments.

3.2 Geneactiv Wristband

The Geneactiv Wristband [35] is equipped with a 3-axis accelerometer, photometer,

and thermometer. This device records data to flash memory, for up to one week,

at 100 Hz sampling rate including timestamps. We found that wristband time can

drift from initial synchronization to a reference clock by up to 1-2 seconds after five

hours, so we limited some experiments to several hours within clock synchronization.

Programming the wristbands and offloading data is done by USB connection to a

workstation.
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3.3 Observer Marking Systems

In addition to collecting measurements from the wristbands, it was frequently neces-

sary in our experiments to record marking signals sent by operators. In initial pilot

studies this marking was done using a simple script which recorded when a key was

pressed on a computer. In later experiments more mobility was necessary and a sim-

ple iPhone app was developed to take recordings.

This iPhone app consisted of three buttons which the operator could press, one to

indicate the start of a hand hygiene event, one to indicate the end of a hand hygiene

event, and a third small button to indicate an event with an unknown start or end

point (e.g., if the healthcare worker began a hand hygiene event but then turned in

such a way that the end of the hand hygiene event could not be observed).

Time synchronization between the wristbands and marking systems was obtained

by utilizing a shared time server. The time server was used by the iPhone for times-

tamping observer markings. The time server was also used by the laptop used to

program the Geneactiv wristbands. In this way observer markings and wristband

measurements were synchronized within 1-2 seconds of each other as long as obser-

vations were taken within a few hours of wristband programming.
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Figure 3.1: First custom-built wristband. Takes 3D-accelerometer measurements at
125 Hz for approximately 16 seconds, then sends data to base station.
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Figure 3.2: Second custom-built wristband. Takes 3D-accelerometer and orienta-
tion measurements at 125 Hz for approximately 8 seconds, then sends data to base
station.
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Figure 3.3: Geneactiv wristband system. Records 3D-accelerometer measurements at
up to 100 Hz for up to one week. Does not have wireless capabilities.
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CHAPTER 4:

RECOGNIZING HAND HYGIENE DURATION AND

TECHNIQUE: PILOT STUDIES

4.1 Data Sets

This section introduces the vocabulary of specific hand hygiene motions and explains

the operational protocol used to direct subjects in our studies, which range from ten

subjects up to over one hundred subjects for one experiment. For smaller studies, we

found volunteers (chiefly students); the largest experiment was in a working hospital

and included 116 health-care workers.

4.1.1 Hand Hygiene Technique

Different hand hygiene protocols vary in the use of cleaning or disinfecting agents; pre-

surgery scrubbing is more intense than typical scrubbing before entry and after exit

from a patient area. Currently there is no monolithic technique for hand hygiene and

different organizations may specify different protocols. In this thesis, we concentrate

on a World Health Organization (WHO) recommendations for alcohol-based hand rub.

The WHO recommended protocol contains six (or ten, counting symmetric actions)

hand motions [36], reproduced in Figure 1.2. In addition to such diagrams, there

are training videos demonstrating proper technique[37]. The various motions aim at

cleansing different areas of each hand.

While health-care workers are trained in proper technique, the full WHO protocol

is rarely used in practice. The true measure of effectiveness of hand hygiene is the

amount of the hand covered with alcohol-based hand rub. It is conjectured that

normal or “in the wild” hand scrubbing reasonably covers hands with AHBR, though

some crucial areas, such as the beds of fingernails, may not be sufficiently scrubbed.

The area of the hand covered by alcohol-based hand rub is difficult to measure in

the field, but two measurements are considered to be proxies for coverage: duration

of hand hygiene and adherence to WHO technique. These are difficult for a human

observer to measure in practice as they would need to be quite close to the healthcare

worker, so observation of duration or technique by an automated system is of interest.

20



Accelerometer 116 HCW Geneactiv
& Orientation Data set Data set

Data set
Number of 10 116 30
Participants
Palm Rub X
Fingertip Scrub (R) X X
Fingertip Scrub (L) X X
Interlocking Fingers X
Thumb Scrub (R) X
Thumb Scrub (L) X
Knuckle Twist (R) X
Knuckle Twist (L) X
Back of Hand (R) X
Back of Hand (L) X
Wrist Rub (R) X
Wrist Rub (L) X
Wild X X
Walking X
Confounders X

Table 4.1: Motion Types and Presence in Pilot Data
Sets: (R) or (L) indicates that the right or left hand is
the one being cleaned or the one on top of the other.

4.1.2 Data Collection

The platforms described in Chapter 3 provide different sensor data formats at different

sampling rates. Because some of our research questions compare platform outputs,

we generally reduce data to eight-bit samples per {x, y, z} channel, coupled with a

sequence number to detect dropped samples due to lost messages and other transfer

errors. Sampling rate is either 125 Hz or is scaled/interpolated to 125 Hz if needed.

Following trials with subjects, scripts or operational procedures verified that complete

payloads (using sequence numbers and CRC fields) were received, either discarding

imperfect runs or requesting that subjects repeat experiments.

For both custom platform and Geneactiv wristbands, subjects wore the sensors

on both wrists. Typical experiments with Geneactiv units, which do not have radio,

are preceded by clock synchronization via vendor-provided PC software; we tested

the synchronization and found drift to be sub-second for a few hours. The Geneactiv

experiments were synthetic: subjects were asked to engage in requested hand mo-

tion activities at marked times for some specified duration while an observer marked

the time and duration of activities. The experiments with our custom platform were

also synthetic: subjects were instructed on various scrubbing techniques, taken from

Figure 1.2, then performed the requested motion for approximately sixteen seconds,

after which the data downloaded wirelessly from the wrists.
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The data sets collected by these procedures vary in the known motions and raw

data formats. Table 4.1 shows which motions are present in various data sets. The

largest of our trials, with 116 healthcare workers, was collected using the first version

of the custom-built platform and included three motions: hand-washing “in the wild”

(labeled as Wild HH in later sections of the thesis), the WHO recommended fingertip

scrub, shown as panel 7 of Figure 1.2, engaged as separate motions once for each

hand, and walking without any scrubbing, which represents the typical behavior of a

health care worker after a hand hygiene event. In addition to samples consisting of

only these motions, a fourth sample was taken in which each participant performed

Wild HH and walked after finishing, with an observer marking when the participant

finished washing their hands. This experiment was designed to be collected within

five minutes (because healthcare workers were volunteers, we limited this larger trial’s

scope to a few motions, so as to minimize interference with job duties).

Another data set on small trials of 10 subjects used ten motions taken from Fig-

ure 1.2; the figure shows only six scrubbing motions, but four of these should be

performed with both left- and right-handed orientation. These were collected using

the second version of the custom-built platform which sensed orientation (3.2). Two

smaller trials using the same motions were also collected. A trial of 5 subjects was col-

lected using the first generation of the custom-built system, and a trial of 7 subjects

was collected using the second generation of the system using only the orientation

readings and no accelerometer readings. These trials took approximately 20 minutes

for each subject; participants were not healthcare worker volunteers.

Data from the Geneactiv trials consists of various durations of hand hygiene (from

ten seconds to one minute) and confounder motions designed to engage the hands

in quick, correlated motions: opening a jar containing candy, opening and eating

the candy; tying shoes; and applying bandages. Such motions were collected from

30 healthcare workers. This was designed to be collected within seven minutes per

participant.

4.2 Feature Set Choice

For each type of sensor, accelerometer or angle, the software samples eight bit values

on each of the {x, y, z} channels. Figure 4.1 shows “raw” data for a hand hygiene

motion. Several typical aspects are observable in the plots. The large swings in ac-

celerometer readings are due to clipping: the underlying signed accelerometer values
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are ten bits but are saved as eight bit values when the platform records them into

a buffer for later transmission. This clipping effect can be removed by filtering. An-

other phenomenon within small sample windows is periodic behavior typically with

most energy along one or two axes (consider the case where hands rub flatly, almost

entirely on the z-axis, with little movement on other axes). Initially, we suspected that

transforming signals to frequency domain could produce a useful feature for classi-

fying different motions. It turned out that different people have different rhythms of

scrubbing, change speed during washing, and rotate arms or hand angles while wash-

ing. Thus periodicity varies and signal energies project onto different axes over the

course of one scrubbing episode and we were unable to exploit the frequency domain

transform.

In order to train the classifier the raw data must be transformed into a set of

features S. We define the raw data as R = (Rrx, Rry, Rrz, Rlx, Rly, Rlz), where rx, ry, rz

are the x, y, z axes on the right wrist and lx, ly, lz are the x, y, z axes on the left wrist.

We define the set of axes as A = rx, ry, rz, lx, ly, lz. Each axis in R consists of readings

from time 0 to time t. Ra
i is the raw reading on axis a at time i, 0 ≤ i ≤ t. Ra

i,j is the set

of readings on axis a from time i to time i+ j, 0 ≤ i < i+ j ≤ t.

In all cases, the raw data was resampled if it was not collected at the target sam-

pling rate. To do this the signal was estimated by interpolation and then resampled

at the target sampling rate. The default setting was a target sampling rate of 125 Hz.

The resampled raw data was then split into windows of length w. These windows were

not overlapping. The default window length of the system was .5 seconds.

Once the windows of data had been collected, each window of raw data was trans-

formed into a vector of features. Two types of novel features are introduced in our

system. The first is the crossing rate, which can be intuitively thought of as a change

in the dominating axis of movement. This feature was originally derived from the

well known zero-crossing rate [38], except that the reading on another axis is used in

place of zero. The crossing rate of an axis is the sum of the crossings between that

axis and all other axes in A. A crossing is detected between two axes aa and ab at time

i according to the following equation:

c(Raa
i , ab) =


1, if (Raa

i > Rab
i ∧Raa

i+1 < Rab
i+1)

∨(Raa
i < Rab

i ∧Raa
i+1 > Rab

i+1)

0, otherwise

(4.1)
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Figure 4.1: Example Raw Data From Accelerometer and Orientation Sensors. Eight
bit values were converted into units of G for accelerometer and degrees for orientation.
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The second is a peak, which determines if the rate of change of the axis has

changed beyond the norm. Originally this feature was a simple threshold metric

which was later refined to self-adjust to the current characteristics of the signal by

using the mean of the recent readings from the signal. A peak is detected in an axis a

at time i according to the following equation:

p(Ra, i) =


1, if Ra

i −Ra
i−1 > P ∗ x(Ra

i,i−M )

0, otherwise

(4.2)

where x is the mean of the indicated data. Two types of peaks were detected: peaks

and soft peaks. Soft peaks were only counted if the reading in question was not a

peak. For peaks the value of P was set to 1.5, for soft peaks the value of P was set to

.25. The value of M was set to 12. All of these settings were experimentally determined.

The features used in the system were as follows: the mean of each axis, the stan-

dard deviation of each axis, the crossing rate for each axis, the total number of peaks

across all axes, the total number of soft peaks across all axes, the sum of all axis

crossing rates, the sum of all data in the window, and the standard deviation of all

axes.

When the features from the accelerometer dataset were naively applied to the ori-

entation data results were not as good as we had expected. Some features had to be

transformed to account for the Euler angles being a circular quantity which require

special handling to improve results. A simple approach was used which implemented

a changed distance function for finding the distance between two points,

d(a, b) = min(a− b, 360− (a− b)) (4.3)

which was used to update the mean, standard deviation, and peak functions. For

the mean both the arithmetic mean and the angle directly opposite were obtained.

The value that was the smallest distance from the input angles was returned as the

mean. For standard deviation the distance function replaced the standard subtraction

from the mean. For the peak the distance function replaced the previous difference

calculation.

A similar process of feature selection was performed for the orientation feature

set. In addition to the standard features the maximum and minimum values of the

axis were found to positively affect classification so they were added to the orientation

feature set.
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Feature Abbreviation
All Time-based Features T

Maximum MAX
Minimum MIN

Mean x̄
Standard Deviation σ
Cross Correlation CC

Zero Crossing Rate Z

All Frequency-based Features F

Discrete Fourier Transform (DFT) DFT
Mean of DFT x̄DFT

Cross Correlation of DFT CCDFT

Table 4.2: Features Explored for Initial Fea-
ture Set. Results of this exploration can be
seen in Figure 4.2.

4.3 Results

The default sampling rate in these results is 125 Hz and the default window length is

.5 seconds.

The data was classified using a multiclass k-nearest neighbors classifier [39],

which labels an instance by the majority label of the k nearest instances in the fea-

ture space, with k=3. Unless labeled otherwise, all results were obtained using disjoint

windows of data. Unless marked otherwise, the metrics reported consist of the clas-

sification accuracy obtained using 10-fold cross validation. Classification accuracy

is the number of correctly classified windows of data divided by the total number of

windows of data.
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Figure 4.2: Pilot Studies: Classification Accuracy Using Different Feature Sets. Time-
based features worked better than frequency-based features on average. In addi-
tion time-based features produced good classification results for all classes while
frequency-based features worked well at discriminating walking from hand hygiene
motions, but did not discriminate well between different hand hygiene motions. While
the frequency-based features consistently outperformed time-based features when de-
tecting walking, the final feature set which consists of time-based features that have
been further refined classifies walking better than any of the preliminary frequency-
based feature sets.
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4.3.1 Feature Choice

The choice of feature set is key to the proper function of any classification method.

A good feature set is one which transforms readings from the raw data space into a

feature space where the various classes are easily separable. The selection of such a

set is non-trivial and can make the difference between the success and failure of any

classification scheme.

Features can be divided into two general categories: time-based and frequency-

based. Time-based features are calculated using the signal as it is in the time domain

while frequency based features are calculated using the signal after it has been trans-

formed into the frequency domain, (e.g through a Fourier transform). As a preliminary

step we determined which features were useful by examining a sample set of common

time and frequency-based features listed in Table 4.2.

Figure 4.2 shows that the time-based features consistently outperform the frequency-

based features. The average performance is similar for all feature sets, but the fre-

quency based features’ accuracy is inflated by accurate classification of walking while

other classes are poorly classified. By comparison, the time-based feature set clas-

sifies all classes with similar accuracy. This suggests that the time-based features

provide more generalizable results than the frequency-based features. We added more

time-based features to the set used in 4.2, including features already known in the do-

main and features created after manual examination of the signal (e.g., axis crossing

rate). These time-based features were further refined using Correlation-based Feature

Subset Selection [40] to produce our final feature set discussed in Section 4.3.1.

The main difference between the frequency-based and time-based feature sets was

that frequency-based features performed better when classifying the walking motion.

After refinement the final feature set, composed entirely of time-based features, clas-

sifies walking better than any of the frequency-based sets.

The final feature set includes two custom features, peaks and crossings. In Fig-

ure 4.3 we can see that each feature type chosen for the final feature set improves

classifier performance.

4.3.2 Classifier Choice

It is also worthwhile to show why a k-nearest neighbors classifier was used. The

machine learning software Weka [41] was used to evaluate several different classifiers.

Table 4.3 lists the performance and training time of various classifiers that could have
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116 HCW Data Set
Classifier Accuracy Time (s)

K-Nearest Neighbors 90.2% 0.03
Decision Tree 86.7% 3.44

Neural Network 88.7% 118.03
Naive Bayes 78.1% 0.22

Geneactiv Data Set
K-Nearest Neighbors 93.2% 0.01

Decision Tree 92.4% 3.39
Neural Network 93.5% 152.17

Naive Bayes 90.0% .17
10 Motion Data Set

K-Nearest Neighbors 89.5% 0
Decision Tree 83.2% .55

Neural Network 92.1% 78.3
Naive Bayes 70.0% .04

Table 4.3: The Accuracy and Training Time
of Various Classifiers on Pilot Data Sets. Ac-
curacy was similar across different classi-
fiers. A K-Nearest Neighbors approach was
selected to produce the results in this section
because of its short training time.

been used. Observe that the performance of k-nearest neighbors is comparable to the

performance of other classifiers, while at the same time taking the least time to train.

The speed of training the k-nearest neighbors method made it the best choice.

While k-nearest neighbors was the best choice, a decision tree or neural network

would also be good choices, and once trained have representations simple enough for

classification to occur on the sensor platform.

4.3.3 Sampling Rate

A sampling rate of 125Hz is high enough to correctly record the hand hygiene signal,

but correct classification can be performed using a lower sampling rate. Reducing the

sampling rate is desirable because it uses less memory and enables data processing

between samples, making feature extraction and data compression possible on the

sensor. Literature on the minimum sampling rate for accurate recognition of hand

motions is sparse. Figure 4.4 shows classification performance after data sets were

resampled at lower sampling rates.

The quality of classification declines with the sampling rate, but it is not until the

sampling rate falls below 60 Hz that the classification accuracy is too low for effective

prediction. This drop off occurs in all data sets, although it is more severe in the

Accelerometer and Orientation data set than it is in the other sets, probably due to
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the greater number of closely related classes in this set.

The sampling rate could be adjusted to improve classification accuracy for different

tasks. For instance, if a system first determined whether hand hygiene was occurring

(i.e., Geneactiv data set) and then assessed whether the proper technique was being

used (i.e., Accelerometer and Orientation data set) the sampling rate could be set

around 60 Hz for the first task and 100 Hz for the second in order to provide results

with at least 80% accuracy.

4.3.4 Window Length

The length of the window of data used to calculate the features has an effect on system

accuracy and responsiveness. Balancing these two goals is crucial when identifying

hand hygiene technique, as each individual hand hygiene motion will only be per-

formed for a short time during a hand hygiene session. Figure 4.5 shows classification

accuracy using different window lengths across all data sets.

The classification behavior is different depending upon the data set. For the 116

HCW and Geneactiv data sets, performance improves with window length but quickly

levels off after the windows reach .5 seconds in length. In comparison increasing the

window length reduces the classification accuracy in the Accelerometer and Orienta-

tion data set. As the window length increases above one second performance on the

Accelerometer and Orientation data set drops noticeably.

There are many possible reasons for this difference. One could be that the motions

are more complex and therefore more difficult to classify. Another could be differences

between the two systems. For instance, only 8 seconds of data on the motion could be

recorded in the Accelerometer and Orientation data set because both accelerometer

and orientation readings were being recorded in limited memory. Another possibility

is that the readings were coming from a different sensor, as both the accelerometer

and orientation values were sampled from the orientation sensor board.

To explore this more, we examine two other data sets that had been collected

as a baseline–one using the original system that had been used for the 116 HCW

data set collection (Original Accelerometer), and the other using only the orientation

values (Original Orientation). During data collection participants first performed all

10 motions with the original system and then performed them with the new system

with the added sensor board. In these two datasets the sensor can be sampled for the

full 16 seconds as only one value was being recorded.

Figure 4.6 compares the Accelerometer and Orientation data set with these other
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data sets. The lines do not all deteriorate similarly–as we would expect if the difference

were due to using 10 motions instead of the small number in the 116 HCW or Gene-

activ data sets. The Original Orientation Data Set deteriorates in a similar manner to

the other data sets collected using the same sensor board, so the difference cannot be

due to the shorter sampling time. The behavior of the Original Accelerometer Dataset

is similar to the behavior of the 116 HCW data set in Figure 4.5.

A limitation of this paper is that the cause of this difference could not be completely

narrowed down using the existing data. There remain several possibilities, including

differences in the system and differences in collection methods/motions as the Orig-

inal Accelerometer data set collection preceded collection of the Accelerometer and

Orientation data set samples, so participants could have changed their motions due

to fatigue.

Determination of whether hand hygiene is occurring (i.e., Geneactiv data set) can

be done using a longer window of 2 seconds. This opens up the possibility of additional

data compression by calculating features from 2 second windows of data when the

task is determining whether hand hygiene is occurring.

4.3.5 Unknown Subject

In a deployment, this system would need to recognize hand hygiene duration and

technique in previously unseen subjects. In order to simulate a deployment scenario

the machine was trained using all subjects except for one who was held out. Sliding

windows were used in order to train the machine on all possible shifts of the training

set. Then the held out subject was used as the test subject. Figure 4.7 shows a

Cumulative Distribution Function (CDF) of the results on the 116 HCW set.

Figure 4.7 shows that most of the error is due to a small number of subjects. 91.3%

of subjects have a classification error lower than 27%. No subject had a classification

error greater than 60%, which is still better than chance. This suggests that our

model generalizes to correctly classify unknown subjects.

4.3.6 One Wrist vs. Both Wrists

The current system requires the healthcare worker to wear the sensor devices on each

wrist. This is different from commercial systems [15] which monitor only one wrist.

To explore whether monitoring both wrists increases our classification accuracy, the

data sets were resampled, this time creating three data sets: one containing only

data gathered on the left wrist, a second containing only data gathered on the right
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wrist, and a third containing data from both the left and right wrists. The results of

classification on these data sets can be seen in Figure 4.9.

Figure 4.9 shows that in all data sets using data from both wrists is better than

using only one wrist. This is consistent with results from other papers [42, 43] which

suggest that using multiple sensing locations improves classification results. This

difference becomes more pronounced as the classification tasks become more difficult.

In particular performance on the 10 Motion Orientation data set drops precipitously,

changing from 86.7% when using both wrists to 75.2% and 68.7% using the left and

right wrists respectively.

It is interesting to note that classification accuracy using the right wrist is consis-

tently lower than classification accuracy using the left wrist. However, the motions

used in this study were theoretically symmetric for both hands. This difference may

be due to hand dominance causing difference in the performance of hand hygiene

between the two hands. Unfortunately efforts to confirm this were inconclusive since

performance on left handed and right handed participants could not be compared

due to the small numbers of left handed participants (e.g., only 7 participants were

left handed in the 116 HCW data set). An open question is whether there is a trans-

formation which would make readings from left handed subjects like those from right

handed subjects, which would remove the need to create a special classifier for left

handed people.

4.3.7 Sensor Fusion

In all previous experiments the combination of the accelerometer and orientation sen-

sor produces better accuracy than only using the accelerometer or orientation sensor

alone. Recall from Figure 4.2 that overall performance alone may not tell the entire

story. In this experiment we compare using just the accelerometer, just the orienta-

tion sensor, and using both under the default parameters of the system. Figure 4.10

shows the resulting classification accuracy for each motion.

Figure 4.10 shows that the increase in accuracy is not due to increasing the clas-

sification accuracy of one class at the expense of all others. In fact using both the

accelerometer and orientation sensor is better for all motions except for the left and

right fingertip scrubs, where using only the orientation sensor is better, and the palm

rub, where using only the accelerometer is better. This is to be expected as these

motions in particular play to those sensor’s strengths. The fingertip scrub motions

consist of one wrist twisting around 180 degrees while the other remains stationary–
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Classified As
Wild R & L True
HH FS Walking Class
86 12 2 Wild HH
10 89 1 R & L FS
2 2 96 Walking

Table 4.4: Confusion Matrix of 116
HCW Data Set. Results shown are
obtained using a K-Nearest Neigh-
bors classifier with K=3. Sampling
rate is 125 Hz. Windows are .5 sec-
onds long. Numbers given as per-
centage of true class. Overall accu-
racy is 90.1%.

Classified As
Wild True
HH Non-HH Class
93 7 Wild HH
7 93 Non-HH

Table 4.5: Confusion Ma-
trix of Geneactiv Data Set.
Results shown are obtained
using a K-Nearest Neighbors
classifier with K=3. Sam-
pling rate is 125 Hz. Win-
dows are .5 seconds long.
Numbers given as percent-
age of true class. Overall ac-
curacy is 93.2%.

something which the orientation sensor excels at detecting so it is unlikely that adding

the accelerometer measurement will increase performance. Similarly the palm rub is

detected almost solely by the accelerometer, since the orientation of the wrists is simi-

lar to that of many other movements and does not change throughout, so it is unlikely

that adding the orientation measurements will improve performance.

4.3.8 Duration Estimation

A goal of this experiment was to accurately estimate the duration of healthcare worker

hand hygiene. In order to test this, the 116 HCW data set was used. In this exper-

iment the training set consisted of the wild wash and the walking movements. The

test set consisted of the mixed wild and walking movement. To determine duration

of hand hygiene the test movement was split up into windows of .5 seconds and each

window was classified as either wild washing or walking. When two windows in a
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row had been classified as walking the hand hygiene event was marked as finished at

the start of the first walking window. Samples where there was no observer marking

(the hand hygiene duration was longer than the 16 second sampling period, account-

ing for a large number of samples) or an observer marking and no machine marking

(usually when hand hygiene ends close to the end of the sampling period) were elim-

inated, leaving 38 samples with both machine and observer markings. The machine

detected duration of hand hygiene was compared to the observer marked duration of

hand hygiene, and a difference calculated in seconds. A histogram of those differ-

ences appears in Figure 4.11. While the classifier does not accurately classify every

window of data, the misclassified windows are infrequent enough that duration can

be accurately obtained.

In Figure 4.11 we can see that the differences between the machine prediction and

the observer’s prediction are normally distributed about a mean of -.78 seconds. This

is consistent with a delay due to human reaction time. Overall the duration estimates

provided by the system are close to those provided by the observer, being between -2.1

and 1.1 seconds from the observer’s marking.

The system estimated duration of hand hygiene ranged from 3.3 to 16 seconds,

with a mean of 9.7 seconds; the observer estimated duration of hand hygiene ranged

from 4.1 to 16.8 seconds, with a mean of 11.1 seconds. Recall that the WHO recom-

mends scrubbing with alcohol-based hand rub for 20-30 seconds, and that duration

is a proxy for coverage of the hand with alcohol-based hand rub. These results show

that many of the healthcare workers in the data set did not reach the minimum rec-

ommended duration even when an observer was standing next to them recording the

duration of their scrubbing, a factor which would normally increase compliance. Ev-

ery single one of these hand hygiene events would be judged equally as being “in

compliance” using the normal hospital hand hygiene monitoring metric of compliance

rates. These results show the importance of monitoring the duration of hand hygiene.

4.3.9 Technique Classification

While the overall classification accuracy is a helpful metric it is important to also ex-

amine the performance on individual motions. Table 4.6 contains a confusion matrix

that shows how each motion in the Accelerometer and Orientation data set was clas-

sified by the system. No single motion was classified poorly, with the lowest accuracy

being 84% in the Fingertip Scrub motions.

In Table 4.6 we can see that in fact most errors are caused by confusion between
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Classified As
L R L R L R R L True

PR TS TS KT KT FS FS BH BH IF Class
93 0 0 0 0 0 1 0 1 5 PR
0 87 8 0 0 0 1 1 4 0 LTS
1 7 88 0 0 0 1 1 2 0 RTS
0 2 1 93 0 1 0 1 3 0 LKT
0 0 0 0 98 0 1 0 1 0 RKT
2 2 1 2 0 84 4 3 2 0 LFS
2 1 1 0 3 5 84 1 3 0 RFS
1 0 0 0 0 1 0 91 7 0 RBH
1 5 1 1 0 1 1 6 84 0 LBH
4 0 0 0 0 1 0 0 1 94 IF

Table 4.6: Confusion Matrix of Ten Motion
Data Set. Results shown are obtained using
a K-Nearest Neighbors classifier with K=3.
Sampling rate is 125 Hz. Windows are .5
seconds long. Numbers given as percent-
age of true class. Overall accuracy is 89.6%.
Percentages may not sum to 100 due to
rounding error. Motions are abbreviated us-
ing the first letters of the motion name to
conserve space. R or L indicates that the
right or left hand is the one being cleaned or
the one on top of the other. See Table 4.1 for
the full list of motions.

the left and right handed versions of the same motion. For example, 7% of Right

Thumb Scrub samples were classified as Left Thumb Scrub samples. Some excep-

tions occur when the movements produce similar wrist motions. For example, the In-

terlocking Fingers and Palm Rub motions are confused with each other because they

have the same wrist movement if the participant does not coordinate both hands with

each other in the Interlocking Fingers motion or the participant moves both hands in

the same direction at the same time during the Palm Rub.

4.4 Conclusion

Hand hygiene duration and technique can be accurately recognized using data from

wrist-worn commodity sensors and machine learning techniques. Reported classifica-

tion accuracies range from 89.6% for a data set consisting of 10 students performing

10 motions from the WHO hand hygiene guidelines to 90.1% for a data set consisting

of 116 health care workers to 93.2% for a data set consisting of 30 health care workers

performing hand hygiene and confounder motions. These accuracies are consistent

despite changes in motion type classified, sensors used, and variation in technique

across subjects.
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Experimental results were also presented which reinforce the importance of choos-

ing sampling rate and window size carefully. In many cases reducing the sampling

rate or window size may be possible without seriously impacting the overall quality

of classification. Time-based features were found to be more useful than frequency

based features for this application due to the natural differences in scrubbing fre-

quencies between participants and rotation involved during washing. The effects of

sensor fusion from multiple sensor locations (one wrist vs. both) and multiple sen-

sor modes (accelerometer vs. gyroscope) was experimentally determined, and in both

cases adding more sensors/sensing modes improved results.
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Figure 4.3: Classification Accuracy Using Subsets of Final Feature Set. When any
feature is removed from the feature set classification performance declines. Every
feature in the final set is useful.
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Figure 4.4: Classification Accuracy on Pilot Data Sets Using Different Sampling Rates.
Results shown are obtained using a K-Nearest Neighbors classifier with K=3. Window
size is .5 seconds, and windows do not overlap. Increasing the sampling rate improves
classification accuracy, but shows diminishing returns as the sampling rate grows
faster.
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Figure 4.5: Classification Accuracy on Pilot Data Sets Using Different Window Sizes.
Results shown are obtained using a K-Nearest Neighbors classifier with K=3. Sam-
pling rate is 125 Hz. Windows do not overlap. As the window size increases the
performance of the classifiers initially improves, then levels off or declines (depending
on the data set).
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Figure 4.6: Classification Accuracy on Pilot Data Sets Using Different Window
Lengths: Comparing sensor types. Results shown are obtained using a K-Nearest
Neighbors classifier with K=3. Sampling rate is 125 Hz. Windows do not overlap. The
classification performance on all systems does not deteriorate similarly. This could
be due to many causes, including differences in the system and differences in collec-
tion methods. The cause of this difference could not be completely determined using
existing data.
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Figure 4.7: Cumulative Distribution Function of Classification Errors Using an Un-
known Subject in the 116 HCW Data Set. Results shown are obtained using a K-
Nearest Neighbors classifier with K=3. Sampling rate is 125 Hz. Sliding windows were
used in the training set. The machine was trained on all subjects but one and tested
on the held out subject. Error is 1-Accuracy. Most errors occur in a small number of
subjects.
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Figure 4.8: Accuracy Using an Unknown Subject in the Pilot Geneactiv Data Set. Re-
sults shown are obtained using a K-Nearest Neighbors classifier with K=3. Sampling
rate is 125 Hz. Windows are .5 seconds long. Sliding windows were used in the train-
ing set. The machine was trained on all subjects but one and tested on the held out
subject. Most errors occur in a small number of subjects.

42



Figure 4.9: Classification Accuracy on Pilot Data Sets Using Different Hands. Results
shown are obtained using a K-Nearest Neighbors classifier with K=3. Sampling rate is
125 Hz. Windows are .5 seconds long. ”BOTH” contains results using data from both
wrists, while ”LEFT” and ”RIGHT” use the same features calculated using only data
from one wrist. Using data from both wrists outperforms using data from only one
wrist every time
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Figure 4.10: Classification Accuracy Using Different Sensor Types. Results shown are
obtained using a K-Nearest Neighbors classifier with K=3. Sampling rate is 125 Hz.
Windows are .5 seconds long. The fusion of both sensor types outperforms using only
one sensor for most motions. Those motions which favor one sensor over the fusion
of sensors (e.g., Palm Rub or Fingertip Scrub) are either strongly rotational (favoring
the orientation sensor–Fingertip Scrub) or consist of movement of the wrist along one
plane (favoring the accelerometer–Palm Rub).
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Figure 4.11: Difference Between Machine and Observer Hand Hygiene Durations in
116 HCW Data Set. Results shown are obtained using a K-Nearest Neighbors classifier
with K=3. Sampling rate is 125 Hz. Windows are .5 seconds long. Hand hygiene was
considered complete when two consecutive windows were classified as walking.
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CHAPTER 5:

HAND HYGIENE RECOGNITION ON THE HOSPITAL

FLOOR

Work on the pilot data sets showed promise, but movements in the pilot data

sets were largely synthetically obtained. These movements were designed to mimic

confounding motions that could occur during a healthcare worker’s day, but it is

unknown whether other motions occur in the hospital that would cause the system

to perform poorly. In addition the amount of time spent performing hand hygiene

is unknown, making it difficult to correctly construct an artificial test data set. In

order to resolve these issues, it is essential to collect data consisting of an ordinary

healthcare worker’s routine on the hospital floor and note hand hygiene events when

they occur.

5.1 Geneactiv Shadowing Data Set

For the ”Geneactiv Shadowing” data set, data was collected from 22 healthcare work-

ers using the Geneactiv wristbands described in Chapter 3. Healthcare workers at

the University of Iowa Hospitals and Clinics wore the wristbands on each wrist for

approximately an hour during their work day. During that hour they were shadowed

by observers who marked when the instrumented healthcare worker performed hand

hygiene using the iPhone app described in Section 3.3.

Two separate observers were involved in collecting this data set. In order to ensure

that both observers were marking events similarly some participants were followed by

both observers who marked events at the same time.

For clarity in this section we will refer to the previous, synthetically generated

Geneactiv data set as ”Geneactiv Pilot Data Set”.

Observers made their best effort to observe the health care worker at all times, but

close observation was not always possible due to many factors in the busy hospital

environment (e.g., if a team of doctors was in the patient room the room may be too

crowded and observation would have to occur outside the door). Due to those factors

we may not be as sure of the accuracy of the designation of periods of time as hand
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hygiene or non-hand hygiene in comparison to earlier, synthetically generated data

sets.

5.2 Methods

The data set was processed and marked according to the data provided by the ob-

servers. In the case where a participant was followed by two observers, the reading

in question was marked as containing hand hygiene as long as at least one observer

marked it as a hand hygiene event.

Every second of data was marked with one of three possible observer markings:

hand hygiene, non hand hygiene, or unknown (in the case that the observer was

unable to observe the healthcare worker).

Three different training sets were used. In the first, data from the portion of the

Geneactiv Shadowing data set where participants were followed by both observers was

used as the training set. A second training set which balanced the prevalence of hand

hygiene and non-hand hygiene was created from this first training set by resampling

with replacement, a technique where the created data set consists of instances ran-

domly sampled from the original data set with a bias for uniform class and without

eliminating an instance from the sampling pool when it is sampled. In the second,

data from the Geneactiv Pilot data set was used to train the system. The test set in

both cases consisted of data from the participants in the Geneactiv Shadowing data

set that were not followed by both observers.

Hand hygiene events consist of k seconds and therefore 2k different classifications.

These classifications can indicate that a period of time belongs to a hand hygiene

event even if the classifier has erroneously marked it as non-hand hygiene. To reflect

this, a second stage of processing was done on the classification outputs to produce

the final set of duration results. In this stage, consecutive hand hygiene detections

were considered to be part of the same hand hygiene event if they were less than 10

seconds apart. Hand hygiene event detections of fewer than 3 seconds in duration

were discarded. Hand hygiene event detections of greater than 60 seconds were cut

off at 60 seconds.

In the results section, an observed hand hygiene event was considered as a match-

ing candidate for a machine hand hygiene event detection if they occurred within one

minute of each other. Once all candidates were found, the closest matching hand

hygiene event candidate was considered the ”match” to the hand hygiene detection.

47



5.3 Results

5.3.1 Characteristics of the Data Set

One of the goals of collecting the Geneactiv Shadowing data set was to better under-

stand the characteristics of hand hygiene on the hospital floor. The data set revealed

some interesting aspects of hand hygiene that were not previously known.

Inter-rater Agreement

Data from the participants that both observers observed was examined and an inter-

rater agreement of 95% was obtained.

Observation Time

Effort was made to observe each healthcare worker for an hour, but it was not possible

to observe every healthcare worker for the same amount of time due to constraints

imposed by the clinical setting. For example, a patient may request that the observer

leave the room or the healthcare worker may need to leave the observer’s field of view

(e.g., when using the bathroom). In such cases, while an hour of time was allotted for

observation there may not be an hour of data.

In Figure 5.1 we can see the distribution of time spent observing each subject.

Most subjects were observed for approximately an hour, with a low of observation for

28 minutes and a high of observation for an hour and 20 minutes.

Prevalence of Hand Hygiene

Overall, hand hygiene makes up approximately 3.5% of the data set. This equates to

healthcare workers washing their hands for 2.1 minutes for every hour. However, this

is a mean value.

In order to better understand the range of hand hygiene prevalence between health

care workers, an estimate of hourly hand hygiene rate was computed by calculating

hand hygiene as a percent of all observations. This percentage was then multiplied

by an hour to determine how many minutes of hand hygiene each healthcare worker

might perform. Figure 5.2 shows that different healthcare workers can have very

different rates of hand hygiene, ranging between 5.4 seconds for the healthcare worker

who performed the least hand hygiene in the observed hour to 4.5 minutes for the

healthcare worker who performed the most hand hygiene in the observed hour.
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Distribution of Observer Marked Duration

One might theorize that healthcare workers who perform hand hygiene frequently

would have greater consistency in technique due to their more frequent practice. In

Figure 5.3 we can see that this is not true of all healthcare workers. Subjects who

performed hand hygiene more frequently were not more likely to wash with more

consistent duration. Instead it appears that generally there is a trend of hand hygiene

of less than 20 seconds in duration, with a few outliers of longer hand hygiene. This

is a concern because the World Health Organization recommends that hand hygiene

using an alcohol-based hand rub be 20-30 seconds in duration, and most healthcare

workers were not washing for that long in our observations.

Separation of Hand Hygiene Events

The World Health Organization has issued a hand hygiene recommendation known

as the “Five Moments of Hand Hygiene” [1], shown in Figure 1.1. If healthcare work-

ers perform hand hygiene according to these guidelines, we should expect that many

hand hygiene events would occur within close proximity of each other. As an example

scenario, imagine a healthcare worker who enters a patient room in order to physically

interact with the patient in some way (e.g., take a temperature, perform an examina-

tion, or even just chat with them and shake their hand). That healthcare worker

would perform hand hygiene four separate times–once before entering the room, once

before touching the patient, once after touching the patient, and once after leaving

the room. That healthcare worker would perform hand hygiene again before entering

the room of another patient.

In Figure 5.4 we can see the amount of time that passed between consecutive hand

hygiene events. Most events occurred within five minutes of a previous event, showing

that hand hygiene events do occur within close proximity of one another as the World

Health Organization guidelines would suggest.

While the World Health Organization guidelines are the recommended way to per-

form hand hygiene, they are difficult to enforce because they would require monitoring

of healthcare workers in patient rooms. This has led to most hospitals monitoring only

moments one and five–when the healthcare worker enters or leaves the patient room–

because they can be monitored from the hallway. After examining Figure 5.4 more

closely, note two smaller peaks in hand hygiene frequency, one at around 10 minutes

and another at around 15. These suggest hand hygiene events that occurred before

and after entering a patient room.
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We can not know for sure where hand hygiene events occurred, but an effort was

made to estimate which hand hygiene events were due to “Wash In, Wash Out” hand

hygiene. A “Wash In, Wash Out” hand hygiene pattern was considered to be one that

is consistent with a healthcare worker leaving patient room A, entering patient room B

for some time, and then leaving again for patient room C. This would be characterized

by two closely spaced hand hygiene events (one when leaving room A, and another

when entering room B) followed by a long time between hand hygiene events (due to

dwell time in room B) subsequently followed by another closely spaced pair of hand

hygiene events (one when leaving room B and another when entering room C). In our

analysis, two hand hygiene events are defined as being closely spaced when they are

less than 5 minutes apart, and a long time is defined as being longer than 10 minutes.

The results can be seen in Figure 5.5.

This method for finding events due to “Wash In, Wash Out” hand hygiene is very

crude. For instance, it would not correctly categorize an event where a healthcare

worker only saw one patient since there would only be one pair of hand hygiene events

separated by a long time. It would also not correctly categorize a healthcare worker

who only scrubs out or scrubs in, which would be characterized by continually having

hand hygiene events with long time separation. In addition to those two common

scenarios that would cause undercounting of “Wash In, Wash Out” events, there are

some scenarios that would cause overcounting. For instance it could miscategorize

an event as “Wash In, Wash Out” if the long time separation was due to some other

factor such as spending time at the nurse’s station or on the computer. A hand

hygiene event could also be miscategorized if the healthcare worker needed to do a

lengthy non-aseptic task on the patient that involved touching the patient but no risk

of exposure to bodily fluids (then a healthcare worker in compliance with the WHO’s

five moments of hand hygiene would perform hand hygiene upon entering the patient

room, before touching the patient, perform the procedure for over 10 minutes, and

then perform hand hygiene after touching the patient and after leaving the patient

room). Overall the risk of undercounting hand hygiene events is greater than the risk

of overcounting hand hygiene events using this method, so the red bars seen in Figure

5.5 can be understood as a conservative estimate of the amount of hand hygiene due

to “Wash In, Wash Out” hand hygiene adherence.

In Figure 5.5 we can see that hand hygiene events due to “Wash In, Wash Out”

hand hygiene patterns explain a large portion ( 80%) of the bump at 15 minutes that

was seen in 5.4. In addition these patterns explain approximately 15% of the hand
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hygiene events that are less than five minutes apart. Overall these patterns account

for 19.5% of hand hygiene events in the hospital. This “Wash In, Wash Out” behavior

is not in compliance with the WHO guidelines for hand hygiene, so this percentage is

not simply a reflection of the prevalence of moments 1 and 5 in comparison to other

WHO moments. This shows that solely employing “Wash In, Wash Out” hand hygiene

monitoring incentivizes “Wash In, Wash Out” hand hygiene and that healthcare work-

ers will therefore neglect other, unmonitored hand hygiene moments that are also

important to preventing the spread of disease in the hospital.

5.3.2 Detection Accuracy

Detection Accuracy Using Different Training Data and Classification Methods

Figure 5.6 shows the classification accuracy using different training sets and classi-

fiers. All combinations of training set and classifier seem to produce high accuracy.

The results using a training set generated from the Geneactiv Shadowing data set

using replacement to obtain an equal mix of hand hygiene and non-hand hygiene

motions performs the worst. This is probably due to a mix of two factors, the first

being the low prevalence of hand hygiene in the data set and the second being a low

certainty in the existence of hand hygiene as compared to the synthetically generated

Geneactiv Pilot data set.

The general accuracy of the methods seems good, but it is worthwhile to remember

that only 3% of the data set consists of hand hygiene, and therefore guessing the

majority class of non-hand hygiene should produce an accuracy of 97%. As we are

interested in our ability to find hand hygiene instances, it is useful to examine the

positive predictive value as well. In Figure 5.7 we can see the positive predictive value

for hand hygiene.

These figures are for classification done on .5 seconds of data, and do not include

the second processing step which will be discussed in the next section.

Hand Hygiene Event Detection

Classification accuracy is helpful, but it does not tell us whether hand hygiene events

are correctly detected. In Figure 5.9 we can see how many hand hygiene events are

detected by each classification method. While all methods detect almost all hand

hygiene events, they do this at the expense of a low positive predictive value. In

Figure 5.10 we can see that the extra processing step produces gains in the positive
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Average Undetected Average Detected
Classifier Event Duration (s) Event Duration (s)

Naive Bayes 10.8 18.2
K-Nearest Neighbors 10.4 17.9

Neural Network 10.11 18.5
Decision Tree 10.55 18.16

Table 5.1: Hand Hygiene Event Duration: Effect on Detection
Probability. Longer hand hygiene events are more likely to be
correctly detected. The World Health Organization recommends
rubbing for 20-30 seconds, so the undetected events that average
13 seconds or less in length would all be under the recommended
duration of hand hygiene.

Detections Missed HHE False Detections Duration Error(s)
Classifier Before After Before After Before After Before After

Naive Bayes 452 131 3 11 226 36 14.4 11.7
KNN 713 216 2 7 456 108 14.0 11.1

Neural Network 533 150 3 13 305 57 14.8 10.6
Decision Tree 586 164 0 10 337 66 15.3 10.2

Table 5.2: Number of Detections Before and After Processing. The processing step brings
down the number of hand hygiene event detections considerably. There are 85 hand
hygiene events in the data set. The duration error is the average of the absolute value of
the difference between the duration predicted by the machine and the observed duration
of the matching hand hygiene event.

predictive value at the expense of detecting fewer hand hygiene events.

These figures are based on all hand hygiene events in the data set. However, many

of those events are very short. If the hand hygiene events are restricted to those that

are compliant with the World Health Organization recommended duration of longer

than 20 seconds then 100% of hand hygiene events are detected with every method.

As shown in Table 5.1, hand hygiene events with longer duration are more likely to be

detected, and a large difference can be seen between the average duration of detected

vs. undetected hand hygiene events. At this point it may seem that based on the trade-

off between the number of hand hygiene events detected and the positive predictive

value results there is no clear benefit to including the processing step. However, those

numbers can be misleading due to the small number of hand hygiene events. To better

understand the effects of the second processing step, see Table 5.2. As we can see

in this table, many false detections are eliminated in the processing approach. Some

detections of true hand hygiene events are also eliminated, (generally because the

events are of short duration and therefore resemble false detections). After examining

Table 5.2 one can understand why a drop in the number of detected hand hygiene

events can be well worth a rise in the positive predictive value of the test.
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Before Processing After Processing
Classifier Mean Error(s) Median Error(s) Mean Error(s) Median Error(s)

Naive Bayes 14.4 10.0 11.7 7.5
KNN 14.0 9.5 11.1 8

Neural Network 14.8 10.3 10.6 7.0
Decision Tree 15.3 10.5 10.2 6.0

Table 5.3: Mean and Median Duration Error. The duration error is the average of the
absolute value of the difference between the duration predicted by the machine and the
observed duration of the matching hand hygiene event. The processing step reduces
the duration error in all cases.

The processing step also improves the estimate of duration, as shown in Table

5.2. In the unprocessed form it is common to have many separate detections during

each hand hygiene event, so there is a large error between the duration reported by the

detection and the duration of the associated event. Combining the separate detections

which are all associated with the same hand hygiene event creates a better estimate

of the hand hygiene event duration.

5.3.3 Duration Estimation Accuracy

In Table 5.2 we observe that the mean duration error is approximately 10-11 seconds.

However, means can be influenced by outliers. In fact, the median duration error

ranges between 6 and 7 seconds, as shown in Table 5.3 In Figure 5.11 we can see

the distribution of the difference between the machine estimate of duration and the

observed duration. Most estimates of duration are close to the observed duration of

the event, but there are several outliers which can be different from the observed

duration by as much as a minute.

In Figure 5.12 we can see the difference between the machine estimate of the

start of the hand hygiene and the true starting point of the associated event. Again

most detections place the starting point close to the true starting point. There are

some notable exceptions, some missing the true start point by well over a minute.

Figure 5.13 exhibits similar trends. One difference is that the peak near 0 is not

as pronounced, so it is more likely to err when predicting the end of hand hygiene

compared to predicting the start of hand hygiene. Multiple factors could drive this

difference, but one possibility is that it is easier for an observer to be sure about the

start of a hand hygiene event (since a dispenser is being activated) than it is to be

sure about the end of a hand hygiene event, as one must be sure that the healthcare

worker is done washing and not simply pausing. Healthcare workers may also engage

in various confounding activities at the end of a hand hygiene event–as an example,
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some healthcare workers do not wash until their hands are dry. In that case they may

wave their hands in the air to dry them, which could cause confusion in the system.

Another possibility is that hand hygiene changes as the hands become drier toward

the end of the hand hygiene event, and therefore the motion becomes more difficult to

recognize correctly.

5.4 Conclusion

The system performs well on data taken in the field on the hospital floor. In addition

to correctly detecting 100% of World Health Organization-compliant hand hygiene

events, the duration of events is also accurately calculated.
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Figure 5.1: Amount of Time Each Healthcare Worker was Observed in Geneactiv Shad-
owing Data Set.
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Figure 5.2: Minutes Each Healthcare Worker Spent per Hour on Hand Hygiene in
Geneactiv Field Data Set.
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Figure 5.3: Distribution of Hand Hygiene Duration by Subject in Geneactiv Shadowing
Data Set. Subjects are ordered by the number of observed hand hygiene events in the
data set. The mean duration and standard deviation are shown by the red points and
error bars. Healthcare workers who wash more frequently do not necessarily develop
a routine and wash for the same amount of time every time.
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Figure 5.4: Separation of Consecutive Hand Hygiene Events in Geneactiv Shadowing
Data Set. Bins are one minute in size. Note the small rises in frequency at roughly
10 and 15 minutes, which possibly suggest hand hygiene events upon entering and
leaving patient rooms (the times hand hygiene is normally monitored).
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Figure 5.5: Hand Hygiene Events Due to “Wash In, Wash Out” Monitoring in Geneactiv
Shadowing Data Set. Bins are one minute in size. The red portion of the bar indicates
hand hygiene events which are possibly caused by healthcare workers performing
hand hygiene upon patient room entry and exit. These events are a large portion of
the “bump” observed at 15 minutes in Figure 5.4.
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Figure 5.6: Different Training Sets and Classifier Performance on Geneactiv Shadow-
ing Dataset. These results are from the classifications before the second processing
step. The classifiers have better accuracy when trained using the Geneactiv Pilot data
set and Geneactiv Shadowing (Replacement) data set.
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Figure 5.7: Different Training Sets and Classifier Effect on Positive Predictive Value
for Hand Hygiene on Geneactiv Shadowing Dataset. These results are from the clas-
sifications before the second processing step. The classifiers have the best positive
predictive value when trained using the Geneactiv Pilot data set. Because of these re-
sults and results from Figure 5.6 all future results are presented using the Geneactiv
Pilot data set for training.
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Figure 5.8: ROC Curve for Geneactiv Shadowing Dataset. This is the curve generated
by the naive bayes classifier. These results are from the classifications before the
second processing step. The x axis represents the false positive rate (the ratio of false
positives to negative detections) and the y axis represents the true positive rate (a.k.a.
sensitivity or recall). As the true positive rate increases the number of false positives
also increases.
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Figure 5.9: Multiple Classifiers Machine vs. Observer Detections Before Extra Pro-
cessing. Most hand hygiene events are correctly detected. The positive predictive
value is low because there are many spurious detections.
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Figure 5.10: Multiple Classifiers Machine vs. Observer Detections After Extra Pro-
cessing. The positive predictive value is higher than that seen in Figure 5.9 after the
processing step as the number of spurious detections is decreased. This increase
in positive predictive value is paired with a decrease in the percent of hand hygiene
events detected as correct detections of hand hygiene events of short duration closely
resemble spurious detections. Recall that the shortest hand hygiene event in the data
set is only three seconds long, so it can be difficult to differentiate between true and
false detections in hand hygiene events of such short duration.
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Figure 5.11: Difference Between Machine and Observer Duration. Results using pre-
dictions from Naive Bayes classifier. Red line indicates mean. The duration estimates
provided by both the machine and the observer match closely, with a small tendency
for machine estimates to be slightly shorter than observer estimates.
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Figure 5.12: Difference Between Start of Machine and Human Observed Hand Hygiene
Events. Results using predictions from Naive Bayes classifier. Red line indicates
mean. The machine and observer marking of the start of a hand hygiene event match
closely.
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Figure 5.13: Difference Between End of Machine and Human Observed Hand Hygiene
Events. Results using predictions from Naive Bayes classifier. Red line indicates
mean. The machine and observer marking of the start of a hand hygiene event match
closely.
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CHAPTER 6:

HIERARCHICAL RECOGNITION FOR HAND HYGIENE ON

THE HOSPITAL FLOOR

The system described in Chapter 5 works well, but there is little effort to improve

the initial classification results before the final processing step. In addition the system

relies on knowledge of the readings from both wrists. In a true deployment scenario

it would be desirable to limit wireless communication by devices, and communicating

all accelerometer readings from a wrist, either to a base station or to the paired wrist,

would be power intensive and may be unnecessary.

This chapter describes a system which would instead do most classification on the

wrists. The wrists would only need to communicate their most recent classification

result. A second classifier is then run on those classification values to determine

whether hand hygiene is occurring.

This system would both save power and possibly provide more accurate classifica-

tions for the final processing step.

6.1 Methods

For these results all training was done using data from the first Geneactiv data set

and testing was done on the second Geneactiv data set (described in Section 5.1).

Classification is first performed on each wrist. The classification method is the

same as described in Chapter 4, the only difference being that the features have been

modified to be calculated using only the information available on the wrist. As an

example, the axis crossing rate was calculated using only the three axes on the wrist,

not all six axes on both wrists.

Every .25 seconds classification is performed on each wrist. The results are then

used as inputs to a second classification scheme. This classifier uses the last five

seconds of classifications on the left and right hand as input to predict whether hand

hygiene is currently occurring.

The results from this second phase of classification were then processed in the

same manner described in 5.2.
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Tier 1 Tier 2 PPV(%) HHE Detected(%) Avg Duration Difference(s)
Naive Bayes Naive Bayes 66.7 93.7 1.5
Naive Bayes KNN 56.9 87.3 0.8
Naive Bayes NN 66.0 76.7 -0.3
Naive Bayes Decision Tree 64.6 94.7 2.1

KNN Naive Bayes 72.5 90.5 0.6
KNN KNN 48.1 96.8 4.0
KNN NN 73.7 68.8 -2.1
KNN Decision Tree 56.2 95.8 5.5
NN Naive Bayes 67.1 90.5 2.3
NN KNN 40.3 98.4 7.6
NN NN 59.7 81.5 0.3
NN Decision Tree 44.7 98.4 13.3

Decision Tree Naive Bayes 61.9 93.7 2.6
Decision Tree KNN 43.7 97.9 8.0
Decision Tree NN 61.5 83.1 0.2
Decision Tree Decision Tree 48.5 97.4 9.4

Table 6.1: Accuracy of Hierarchical Approach Using Different Classifiers.

6.2 Results

6.2.1 Detection Accuracy

In Figure 6.1 we can see that in the first phase accuracy is high while positive predic-

tive value is low. Results obtained using only one wrist worth of data are also not as

good as those obtained using both wrists (shown in Figure 5.9). Figure 6.2 shows that

after the second phase of classification both accuracy and positive predictive value

improve, becoming comparable with those obtained using both wrists.

In Table 6.1 we can see the performance after the final processing step. Overall

the accuracy is quite high, in many cases beating the performance of the previous

method as shown in Figure 5.10. The duration estimates are accurate as well, with

many falling within a second of the observed duration.

6.2.2 Duration Accuracy

It is useful to look at the distribution of duration estimate error in order to determine

whether the average is a good representation of classifier performance. Figure 6.4

shows the distribution of duration estimation error. Most estimates are within a few

seconds of the true duration, however there are outliers, and even a few duration

estimates that were more than 40 seconds different than the true duration.

Figure 6.5 shows the difference between the estimated start of a hand hygiene

event and the true start of a hand hygiene event. Again most estimates are very close
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to the actual starting time. In Figure 6.6 we can see that the end point estimation

performs similarly.

Overall the estimation of duration is very accurate, and in addition both start and

end points are accurately located.

6.3 Conclusion

It is possible to classify hand hygiene events accurately without knowing the ac-

celerometer readings from each wrist and instead knowing only the classification re-

sults from each wrist. Not only were hand hygiene events detected, but their duration

is accurately estimated. The hierarchical approach explored performed better than

the simpler, single-tiered classification approach explored in Chapter 5, recognizing

more hand hygiene events while at the same time producing a higher positive predic-

tive value.
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Figure 6.1: Hierarchical Approach: Phase 1 Accuracy. The labels in the figure indicate
the phase 1 classifier used. The accuracy and positive predictive value is lower than
that obtained when using data from both hands as shown in Figure 5.9.
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Figure 6.2: Hierarchical Approach: Phase 2 Accuracy. The labels on the x-axis rep-
resent the second phase classifier used while the labels on regions in the figure note
the first phase classifier used. After the second tier of classification accuracy and
positive predictive value is much higher, in many cases beating the performance of
the previous method (Figure 5.10) that had access to both wrists of data.
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Figure 6.3: ROC Curve for Hierarchical Approach. This is the curve generated by using
the naive bayes classifier in both tiers. These results are from the classifications before
the second processing step. The x axis represents the false positive rate (the ratio of
false positives to negative detections) and the y axis represents the true positive rate
(a.k.a. sensitivity or recall). As the true positive rate increases the number of false
positives also increases.
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Figure 6.4: Hierarchical Approach: Duration Estimate Difference. Graph uses dura-
tion estimates from using a Naive Bayes classifier in both the first and second phases.
The red line indicates the mean duration estimate difference. The observer and ma-
chine estimates of duration were frequently quite close, with the average difference in
duration being 1.5 seconds.
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Figure 6.5: Hierarchical Approach: Start Estimate Difference. Graph uses duration
estimates from using a Naive Bayes classifier in both the first and second phases.
The red line indicates the mean start estimate difference. The observer and machine
estimates of start time were frequently quite close.
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Figure 6.6: Hierarchical Approach: End Estimate Difference. Graph uses duration
estimates from using a Naive Bayes classifier in both the first and second phases.
The red line indicates the mean end estimate difference. The observer and machine
estimates of end time were frequently quite close.
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CHAPTER 7:

CONCLUSION

Electronic recognition of hand hygiene using only inexpensive, accelerometer-equipped

wristbands is both accurate and feasible over large populations of subjects in the hos-

pital. With hand hygiene event detection accuracies of over 90% in most cases, it

is possible to detect hand hygiene events in the hospital without instrumented dis-

pensers or location beacons. The system is accurate even over small windows of time,

so the duration of an event can be closely estimated, in many cases to within a second

of the observed duration.

The system has been tested extensively, from synthetic data sets consisting of 116

healthcare workers to data sets consisting of hours of healthcare workers observed

on the hospital floor. Not only is the system accurate, but it is robust to changes in

motion type and setting.

7.1 Open Questions

Every effort has been made to test this system extensively, but there are several open

questions remaining. One is whether handedness has an effect on classifier perfor-

mance. This was investigated but could not be answered due to the small numbers

of left-handed individuals. A future trial consisting of left-handed subjects could help

reveal whether handedness has an effect and possible ways to address it.

Another open question is whether frequency-based features could be made more

effective.

It is possible that utilizing the proximity/existence of a triggered pump as another

feature would increase the accuracy of a system that included instrumented pumps.

This was not able to be explored using the current data because it would require a

full-scale deployment in the hospital. In future a data set consisting of such measure-

ments combined with wrist-based accelerometer readings could be used to determine

whether pump triggering events can help in correctly identifying hand hygiene events.

A limitation of this system is that there is no microbiological confirmation of the

quality of hand hygiene. The quality of hand hygiene is assumed to be good if it is
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of sufficient duration or follows the correct technique. In reality the quality of hand

hygiene is good if the hands have been cleansed of bacteria, and the duration or

technique are only proxy measurements of this.
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