
 The Islamic University of Gaza الجامعة الإســلامية بغزة

 Deanship of Post Graduated Studies عمادة الدراســـات العليا

 Faculty of Engineering كُليـة الهندســـــــــــــــة

الهندسة الكهربائيةقسم Electrical Engineering Department

Modeling and High Precision Motion Control

of 3 DOF Parallel Delta Robot Manipulator

By

Eng. Hamdallah A. H. Alashqar

354/2007

Advisor

Prof. Dr. Mohammed T. Hussein

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master in
Electrical Engineering

Gaza-Palestine

1434-2013

2

Thesis approval

3

بِّ زِدْنيِ عِلْمًا وَقلُ رَّ
[111]طه:

i

Dedication

To the teacher of the world, leader of the nation and mercy of Allah to mankind,

Prophet Muhammad peace be upon him

To my lovely parents who are honor by this moment

To my Wife and my sweet daughter Lian

ii

Acknowledgements

First and forever, all praise and thanks for Allah, who gave me the strength,

and patience to carry out this work in this good manner. I would like to

deeply thank my supervisor Prof. Dr. Mohammed Hussein for his assistance,

guidance, support, patience, and encouragement. I would like to deeply thank

my discussion committee members Dr. Hatem Elaydi and Dr. Iyad Abu-

hadrous for their assistance and encouragement. I would like to thank the

Islamic University of Gaza providing me a good academic environment. In

addition, I would like to acknowledge the Academic staff of Electrical

Engineering, who supports me to carry out this work. Finally, great thanks

go to my beloved family for their endless praying and continuous support.

iii

ABSTRACT

This Master thesis describes the CAD- Modeling of the Parallel DELTA robot,

designed by Autodesk Inventor® software program. DELTA Robot is a Multi-

Input Multi Output Nonlinear System (MIMO), so, PID controller and Model

Predictive Controller (MPC) are implemented to improve the performance of

Robot .but due to the variations in the dynamic models of each system, it is

nearly impossible to conclusively determine the most appropriate controller

to design. Therefore, this thesis compares the simulation results of two

controllers, namely the PID and MPC respectively; on a 3 DOF Parallel

DELTA robot in order to determine which controller would yield the best

control performance.

By comparing the simulation results for the joint angles error and the end

effector trajectory error plots for the PID and MPC controllers, MPC

controller gave the best results than PID controller. Then, a great

contribution added at the response of DELTA robot. Because of Robot arms

are highly geared; this reason let the robot to be more robust. MPC controller

held the Potential to be the most likely candidate controllers to implement on

the physical structure of the 3-DOF Parallel DELTA robot. But PID

controller is easier in software implementation inside embedded systems as

microcontrollers.

iv

 ملخص:

 التمثيل الرياضي و التحكم عالي الدقة بالروبوت المتوازي "دلتا" ثلاثي الأبعاد

للروبوت عن طريق التصميم ثلاثي الأبعاد باستخدام برنامجاقترحت في هذه الرسالة التمثيل الرياضي

 (Autodesk Inventor)المخارج غير خطي , لذلك ومتعدد المداخل دعد.الروبوت عبارة عن نظام مت

(لتحسين مستوي الدقة والأداء للروبوت. كل نظام له MBC(أو) PIDفهو بحاجة الي نظام تحكم)

ذلك يصعب تحديد نوع المتحكم لكل نظام بدقة . لذلك هذه الرسالة تقارن نتائج نموذج ديناميكي خاص به , ل

(علي الروبوت المتوازي دلتا ثلاثي الأبعاد واختيار MBC(و)PIDتطبيق نوعين من المتحكمات)

 المتحكم الذي يضمن للروبوت الأداء الأفضل.

(, اثبتت النتائج MBC(ونظام التحكم)PIDل ومقارنة النتائج المتوقعة من كلا نظامي التحكم)يبعد تمث

أعطي (MBC)لكن المتحكم حسينا ً كبيرا ً علي حركة الروبوتحكمين أضافا تتالمالإفتراضية بأن كلا

(أفضل في التمثيل والتنفيذ PIDلكن بالرغم من هذا فإن نظام التحكم) . (PID)نتائج أفضل من المتحكم

 لسهولة برمجته علي انضمة التحكم الدقيق) المايكروكنترولر(.عمليا علي الروبوت دلتا وذلك

v

Table of Contents:

Dedication I

Acknowledgments II

Abstract III

List of Figures VIII

List of Tables X

List of Abbreviations XI

1 Introduction …………………………………………………..

1

1.1 Backgrounds………………………………………………………….. 1

1.1 Motivation…………………………………………………………..... 4

1.3 Objectives and Methodology ………………………………………. 4

1.4 Problem Statement………………………………………………….. 5

1.5 Thesis Contribution…………………………………………………. 6

1.6 Literature Review……………………………………………………. 6

1.7 Thesis Overview……………………………………………………... 7

2 Kinematics and Dynamics…………………………………

8

2.1 DELTA Type Parallel Robot……………………………………….. 8

2.2 Inverse Kinematics………………………………………………….. 9

2.3 Forward Kinematics…………………………………………………. 15

2.4 Velocity Kinematics…………………………………………………. 22

2.5 Forward and Inverse Singularity analysis 26

2.6 Dynamic Equations………………………………………………….. 26

 2.6.1 Virtual Work Dynamics…………………………………….. 28

 2.6.2 No-Rigid Body Effects………………………………………. 31

2.7 Actuator Dynamics…………………………………………………... 33

3 Controller Design

35

3.1 Controller Techniques ……………………………………………. 35

3.2 Open and Closed-Loop Control………………………………….. 35

vi

 3.2.1 Robot Control Algorithms………………………………………... 37

3.3 Computed Torque Control………………………………………... 39

3.4 PID Outer-Loop Designs………………………………………….. 40

3.5 PD-Plus-Gravity Controller………………………………………. 41

3.6 Optimal PD Controller Design…………………………………… 42

3.7 Model Predictive Control (MPC)………………………............... 45

4 Path Planning

48

4.1 Introduction………………………………………………….... 48

4.2 Cubic Polynomials……………………………………………. 49

 4.2.1 Cubic Polynomials for a path with via points…………. 51

5 Simulations and Results

53

5.1 Introduction………………………………………………………… 53

5.2 Modeling Multi-body Systems…………………………………... 53

5.3 DELTA Robot CAD Modelling………………………………….. 54

5.4 Dynamic Model of Delta Robot………………………………….. 55

5.5 Model Linearization………………………………………………. 57
 5.5.1 Trimming and Linearizing Through Inverse Dynamics…... 59
 5.5.2 Linearizing at an Operating Point……………………………. 59

5.6 Closed Loop Step Response……………………………………… 61

5.7 Classical PID Controller…………………………………………. 63

 5.7.1 Joint Angles…………………………………………………….. 64

 5.7.2 Controller Output – Torque………………………………….. 65

5.8 Actuator Simulation………………………………………………. 66

5.9 Actuated DELTA Robot Simulation……………………………. 69

 5.9.1 Joint Angles…………………………………………………….. 69

5.10 Trajectory Generation……………………………………………. 70

5.11 End Effector Trajectory…………………………………………... 71

5.12 Model Predictive Controller (MPC) Simulation……………… 75
 5.12.1 Joint Angles…………………………………………………….. 76
5.13 Recommended Controller………………………………………… 78
5.14 Simulation Discussion ……………………………………………. 80

vii

6 Conclusion and Future Work 81
6.1 Conclusion……………………………………………………….... 82

6.2 Future Work…………………………………………………………. 82

References 83

viii

List of Figures

1.1 DELTA Robot Control System…………………………………………… 3

1.2 (a) Hexapod Parallel Robot, (b) CODIAN Robotics Parallel robot… 3

1.3 SCARA-type serial-architecture robot…………………………………. 5

2.1 Delta Parallel Robot Flex Picker of ABB………………………………. 8

2.2
My Thesis Delta Parallel Robot side View Designed on Autodesk

Inventor………………………………………………………………………
10

2.3 One link side view of DELTA Parallel Robot………………………….. 10

2.4 First kinematics chain, XZ plane projection………………………….. 11

2.5 Two possible configurations of the kinematics chain due to θ1…….. 14

2.6 Configuration chosen for direct kinematics analysis………………… 15

2.7
Two spheres intersect in a circle and a third sphere intersect the

circle at two places……………………………………………………….....
16

2.8 Projection of link i on xi zi plane, (b) end on view……………………… 22

2.9 DC motor model………………………………………………………….. 33

3.1 Illustration of feedback control algorithm……………………………… 37

3.2 Block diagram of computed torque control……………………………... 41

3.3 Basic Structure of MPC Controller………………………………………. 45

3.4 Model Used For Optimization…………………………………………..... 46

4.1 Several possible path shapes for a single joint……………………….. 49

4.2 Via points with desired velocities indicated by tangents…………..... 51

5.1 CAD model of DELTA Robot……………………………………………… 54

5.2 Dynamic Model of Delta Robot………………………………………….. 56

5.3 Single Arm Dynamic Model………………………………………………. 57

5.4 Inverse Dynamics DELTA Robot Model………………………………… 59

5.5 Linearization Simulink Model……………………………………………. 60

5.6 Simulink Model with No Controller…………………………………… 62

5.7 phase’s response at Joints q1, q2 and q3……………………………...... 62

5.8 Delta Robot Model with PID controller…………………………………. 63

5.9 Joint Angle error for PID controller…………………………………...... 64

5.10 q1 Joint Angle for PD controller in Table 5.3………………………… 65

5.11 Torque output for PID controller for q1 Joint………………………….. 66

5.12 DC motor with simple gear Model……………………………………..... 66

5.13 Rotor’s shaft speed V.S gear’s shaft speed for DC Motor…………… 68

ix

5.14 Rotor’s shaft torque V.S gear’s shaft torque for DC motor…………… 68

5.15 Linearized Delta Robot model with DC motor Actuators………… 69

5.16 Voltage pulse train Response for joint qi…………………………… 70

5.17 Circle path trajectory model…………………………………………….. 71

5.18 Output circle for model in Fig.5.16………………………………… 71

5.19 Circle Path Trajectory for DELTA Robot…………………………… 72

5.20 End Effector Trajectory for PID Controller……………………… 73

5.21 End Effector Trajectory error on x-axis for PID Controller……… 73

5.22 End Effector Trajectory error on y-axis for PID Controller…… 74

5.23 End Effector Trajectory error on z-axis for PID Controller……… 74

5.24 MPC Controller based – DELTA Robot Simulink Model……… 75

5.25 Joint q1 Trajectory error for MPC Controller……………………… 76

5.26 Joint q2 Trajectory error for MPC Controller……………………… 76

5.27 Joint q3 Trajectory error for MPC Controller……………………… 77

5.28 Linearized Delta Robot Model with PID and MPC Controllers……. 78

5.29 q1 Joint Responses with PID and MPC Controllers…………………. 79

x

List of Tables

5.1 Delta Robot Mechanical Parts properties…………………………… 55

5.2 Delta Robot 3-D dimensions…………………………………………… 55

5.3 PID Controller Parameters…………………………………………….. 64

5.4 DC motor electrical and mechanical Parameterization…………… 67

5.5 PID controller parameters…………………………………………….. 70

5.6 PID controller parameters…………………………………………….. 78

5.7 Comparison table between PID and MPC controller responses….. 79

xi

List of Abbreviations

TCP Tool Center Point

DOF Degree of Freedom

{R} Reference frame at the base plate.

PID Proportional Integral Derivative Control

MPC Model Predictive Control

Jx Jacobian matrix in Cartesian space

Jθ Jacobian matrix in joint space

PC Personal Computer

1

Chapter 1

Introduction

1.1 Background

There are essentially two types of robot manipulators: serial and parallel.

Serial manipulators consist of a number of links connected in series to one

another to form a kinematic chain. Each joint of the kinematic chain is

usually actuated. This type of structure is known as an open chained

mechanism. Parallel manipulators, on the other hand, consist of a number of

kinematic chains connected in parallel to one another. The kinematic chains

work in unison to move a common point. This common point usually consists

of a manipulator that performs a certain task. For the purpose of the three

degrees of freedom (3 DOF) parallel DELTA robot system described in this

thesis, the common point will also be referred to as the end effector. Since the

kinematic chains are eventually connected to a common point, a parallel

manipulator is considered a closed chained mechanism. The actuators in

parallel manipulators are usually located at the base or close to the base of

the system, which is in stark contrast to serial manipulators which have

actuators at every joint. The advantages of this type of configuration include

the fact that it could achieve a higher load capacity due to the decrease in the

mass of the overall system, it can produce high accelerations at the end

effector and it has a high mechanical stiffness to weight ratio [1].

The disadvantages of this type of configuration include the fact that the

dynamic model is quite complex in nature and there are many instances of

singularities that must be mapped out and avoided in order to maintain

control of the system. Parallel robots come in a wide variety of designs and

applications ranging from the Stewart platform or Hexapod Parallel Robot

shown in Fig. 1.1.a, which is used in aircraft motion simulators to the Delta

robot, which is used in packaging plants. This endows the fact that there

cannot be a conclusive result as to which controller best suits the

functionality of all parallel robots. Therefore, it is logical to experiment with

various control techniques to observe upon which controller would garner the

most satisfactory results based on a specific mechanical system.

This thesis presents the reader with the simulation results obtained from the

implementation of PID control and Model Predictive Control (MPC) on 3 DOF

2

Parallel DELTA robots. The parameters of the dynamic model of this system

are derived in detail followed by the derivation of the inverse kinematics of

the mechanical model. The non-singular region is then defined based on the

results obtained in the inverse kinematics. It is important to map out the

non-singular region since it is the only location in which the parallel robot is

able to operate under stable conditions. If the parallel robot were to enter a

singular region, it would render the controller ineffective and cause the entire

system to become unstable. It is impossible to adequately design any

controllers for the parallel robot without a clear understanding of the

dynamic model and the inverse kinematics of the mechanical model.

In recent years the number of studies and applications of parallel robots have

increased. One of the most popular applications is in industry packaging. The

above is due to their ease of construction, the lightness of their structure and

the high accelerations obtained by these devices.

Unlike the serial-type robot manipulators, which only have an open-loop

kinematic chain, parallel configuration allows for a distribution of payload

among their two, or more closed-loop, kinematic chains. To illustrate this

point consider Fig.1.1.a shows a parallel-architecture robot, used for object

loading and unloading. Fig.1.2 shows a SCARA-type serial-architecture robot.

By comparing the images it is easy to appreciate the difference between the

two types of architecture. In the case of the serial manipulator greater

robustness is required, as each link carries not only the weight of the

successive links but also the motors and payload. This creates a cantilever

effect in each link and, as a result, a greater deformation overall. In contrast,

in the parallel architecture the actuators are fixed to the base of the

manipulator so that the weight of the motors is not supported by the

kinematic chains. In addition, the payload is distributed among the

kinematic chains that con-form the manipulator. This results in thinner and

lighter kinematic chains, which in turn results in an increased payload

capacity of the manipulator, relative to its total mass.

3

 (A) (B)

Figure 1.1: (a) Hexapod Parallel Robot, (b) CODIAN Robotics Parallel robot

Figure1.2: SCARA-type serial-architecture robot

4

A disadvantage of parallel robots is their typically low cost effectiveness,

based on complex kinematics and rather expensive control units, as well as

the poor workspace to robot-dimension ratio [1].

On the other hand, the advantages of parallel robots stated before indicate

that their capabilities can be optimally oriented if their specifications are

task-adapted to the desired application. To facilitate flexibility and to enlarge

the field of application, it is reasonable to use a reconfigurable robot design.

This will also help to overcome the typical challenges of parallel robots, such

as high costs and undersized workspaces.

1.2 Motivation

Modeling and Digital control of Dynamic system was my target of my thesis;

Autodesk Inventor Software has a power capability in modeling of

mechanical systems. No need to extract the dynamic equations of robot.

Simulink tool of Matlab can simulate the body of the robot as built in

Autodesk Inventor software program.

 This Master Thesis treats the modeling of the Parallel DELTA robot

actuated with Servo DC motors and drive units. Also the kinematics for a

Delta-3 robot is implemented to be able to see where the traveling plate has

for position for different arm angle configurations.

1.3 Objectives and Methodology

Objectives of this thesis can be summarized as follows:

Design and Building three legs Delta Parallel Robot: therefor, Delta Robot

was designed via Autodesk Inventor software program.

Forward and inverse kinematics analysis: Both forward and inverse

kinematic algorithms have been developed, which are essential for the motion

planning and control of a parallel robot.

Workspace analysis: It is necessary to ensure that delta parallel robot has a

reasonable workspace volume. Workspace analysis is also required in the

design of the parallel robot. Hence, a workspace visualization scheme has

been developed for the modular parallel robot system. PID and MPC

5

controllers are used to improve the end effector path tracking for the DELTA

robot.

1.4 Problem Statement

The optimal control problem can be stated as: find a closed loop optimal

controller that minimizes error between the measured phase and actual

phase wanted to track specified path. Optical encoder is attached in the end

of each Servo motor shaft, measuring the actual phase of the link and from

that; we can calculate radius speed and acceleration.

Controlling of Delta Parallel robot wants true modeling for its dynamics, so,

by using Autodesk Inventor program, we can model the robot easily and test

its motion in Simulink Matlab tool.

Figure 1.3: DELTA Robot Control System.

The three Drivers control one motor each to actuate the three arms at the

Delta-3 robot. From Fig.1.3, Controller unit calculates inverse kinematics of

reference position x,y,z of moving platform in delta robot , actuators drive

servo motors under the effect of PID controller leading the end effector to the

target point in minimum time and no error as possible .

6

1.5 Thesis Contribution

In this thesis, a new mechanical model of Delta parallel Robot was

introduced, and a digital Controller system based on microcontroller chips

are interfaced directly to PC computer via serial communication. Simulink

Matlab tool can communicate by hardware Controller unit, which compute

the kinematics of delta robot in place of Microcontroller. This model opens a

new road to master students to use other control systems and contribute the

motion precision of the moving platform.

1.6 Literature Review

Modeling and control of a Closed Chain Parallel DELTA Robot is very

difficult especially, when using traditional methods in modeling.

 YangminLi, Qingsong Xu [3] proposed the simplified dynamic

equations derived via the virtual work principle on 3-TRC translational

parallel kinematic machine.

 André Olsson [4] describes the virtual work principle mathematical

modeling of a Delta-3 robot actuated by motors and drive units.

Experiments with comparison between the Simulink model and the

real robot are done.

 Angelo Liadis[5] proposed Lagrangian principle for modeling 2 DOF

parallel robot, and introduced eight controllers , fuzzy and non-fuzzy

controllers. Experiments with comparison between the Simulink model

and the real robot are done.

 Mohsen, Mahdi, Mersad [9] describes the Dynamics modeling and

trajectory tracking control of a new structure of spatial parallel robots

from Delta robots family. This paper compared implementation of

computed torque (C-T) method using adaptive Neuro-fuzzy controller

and conventional PD controller.

 Yangmin Li and Qingsong Xu [12] performed inverse dynamic modeling

based upon the principle of virtual work for medical Delta Robot. The

dynamic control uses computed torque method.

7

1.7 Thesis Overview

The purpose of this thesis is to determine the most appropriate controller to

implement on a 3 DOF DELTA parallel robot apparatus. Chapter 2 will

discuss and derive the equations for the modelling of the parallel robot using

the dynamic equations of the constrained system and the inverse kinematics

of the mechanical structure. Chapter 3 will consist of the derivations of PID

and Model Predictive Controllers (MPC). Chapter 4 describes the path

planning which the robot must follow to travel from point to another point in

Cartesian space. Chapter 5 will compare and analyze the simulation results

of each controller utilizing MATLAB. The plots of the joint angles and end

effector trajectory along with their respective errors and torque will be

compared between all the controllers and a generalized conclusion of these

simulation results will be garnered. Chapter 6 will entail the overall

recommendation of the candidate controller which best suits the needs of the

parallel robot system. A description of the improvements or additions that

can be executed in future research endeavors will be investigated to conclude

this thesis.

8

Chapter 2

Kinematics and Dynamics

As mentioned in the previous chapter, I introduced the advantages and

disadvantages of parallel robot and compared their performance with serial

type robots. In this chapter, I will study the kinematics of 3 DOF Parallel

DELTA robot.

2.1 DELTA Type Parallel Robot

The well-known Delta robot structure was proposed by R. Clavel in [2]. Fig.

2.1 shows the main components of this robot, which consists of three or four

closed-loop kinematic chains. The robot has three degrees of freedom.

The parallelograms ensure the constant orientation between the fixed and

the mobile platform, allowing only translation movements of the latter. The

end effector of the manipulator is located on the mobile platform [3].

Parallel Robot can move products in a three dimensional Cartesian

coordinate system.

Figure 2.1: Parallel DELTA Robot Components

9

The combination of the constrained motion of the three arms connecting the

traveling plate to the base plate ensues in a resulting 3 translator degrees of

freedom (DOF). As an option, with a rotating axis at the Tool Center Point

(TCP), four DOF are possible.

The Robot consists of, consider Fig.2.1:

1) Three Actuators.

2) Base plate.

3) Upper robot arm.

4) Lower robot arm (Forearm).

5) Rotation arm (optional, 4-DOF).

6) Travelling plate, TCP.

The upper robot arms are mounted direct to the actuators to guarantee high

stability. And the Three actuators are rigidly mounted on the base plate with

120° in between. Each of the three Lower robot arms consists of two parallel

bars, which connects the upper arm with the travelling Plate via ball joints.

Lower frictional forces result from this. The wear reduces respectively as a

result. To measure each motor shaft angle a Quadrature Optical encoder is

used. A fourth bar, rotational axes, is available for the robot mechanics as an

option. The actuator for this axis is then mounted on the upper side of the

robot base plate. The bar is connected directly to the tool and ensures for an

additional rotation motion [4].

2.2 Inverse Kinematics

The purpose of determining the inverse kinematics of this parallel robot is to

accurately model the angle produced at each joint at a specific location of the

e effector. This is advantageous for two main reasons; the first being that it is

relatively simple to define any reasonable trajectory for the end effector to

traverse and secondly, it can track different trajectories in a non-singular

region [5].

The constrained three degrees of freedom system shown in Fig. 2.3 will also

be applicable in this section. It should be noted that the parameters of the

overall system are known, which include: the range of the desired angles for

θ1, θ2 and θ3 respectively, the overall length of each upper link La and the

overall length of each lower link Lb. the desired location of the end effector in

10

the x and y axis respectively and the horizon distance between the two motor

shafts (c).

The problem of the Inverse kinematics solution is to find the actuators states

θ1, θ2, θ3, known the end-effector position (x, y, z). To find the inverse

kinematics solution let us refer to Fig. 2.3 Also, let consider the origin of the

reference system fixed on the platform and the axes such as depicted in Fig.

2.3 Note that the parallelogram has been considered as a single link (lb).

`

Figure 2.2: Delta Parallel Robot side View Designed on Autodesk Inventor.

Figure 2.3: one link side view of DELTA Parallel Robot.

11

Figure 2.4: First kinematics chain, XZ plane projection.

The analysis begins considering each kinematics chain separately, for the

first kinematics chain; shown in Fig.2.3, we make a projection to the X-Z

plane, which yields a vector closed loop as shown in Fig.2.4.

From Fig. 2.4, we have:

2 2 '2

1 2 bd d l 
 (2.1)

Where,

'2 2 2

b bl l y 
 (2.2)

In addition we have that:

1 1cos()aOA l x DC d    

Solving for d1, yields:

L’b

f

e

(x,y,z)

12

1 1cos()ad T l  
 (2.3)

Where,

T OA x DC  

Also, from the geometry of Fig. 2.5 we have,

2 1sin()ad z l  
 (2.4)

Substituting (2.2), (2.3) and (2.4) in (2.1) and simplifying, we obtain:

1 1 12 cos() 2 sin()a aTl zl K  
 (2.5)

 With,

2 2 2 2 2

0K a bl l x z T    

Substituting in (2.5) the trigonometric identities,

2

1
1 12 2

1 2
cos() , sin()= , where, t=tan()

1 1 2

t t

t t


 




 

We obtain:

2

1 2 3e 0t e t e  
 (2.6)

Where:

1

2

3

2

4

2

a

a

a

e Tl K

e zl

e Tl K

 

 

  

Solving (2.6) for t yields,

13

2 42 2 1 312 tan1 2 1

e e e e

e


  


 (2.7)

From the previous equations, we can conclude that,

1 (, ,)f x y z 
 (2.8)

Following the same procedure, the others two kinematics chains

configurations can be solved. We can take advantage of the symmetry of

Delta Robot and consider the fact that each kinematics chain is rotated 120

degree relative to each other. We could take the base the first kinematics

chain and multiply it by the rotation matrix (120
O

for θ2 and 240
O
 for θ3) and then

apply the process used to solve the first kinematics chain. Once followed the

procedure described previously, the values of θ2 and θ3 can be found. In

general, there are a total of eight possible robot postures corresponding to a

given end-effector location [6].

x cos(a) -sin(a) 0 x

y = sin(a) cos(a) 0 y

z 0 0 1 z

    
    
    
        

 (2.9)

Where,

cos(). sin().

sin(). cos().y

x x y

y x

z z

 

 

 

 

 (2.10)

Where is the angle of rotation about z axis, From Eq. (2.10) yields:

2,3 (, ,)f x y z    (2.11)

Hence, there are generally two solutions of θ1 and therefore two configuration

of the kinematics chain Fig. 2.5 corresponding to each end-effector location.

When Eq. 2.7 yields a double root, the two links of the kinematics chain are

in a fully stretched-out or folded-back configuration named singular

14

configuration. When Eq. 2.7 yields no real solution, the specified end-effector

location is not reachable. Despite of the two possible solutions, only the

negative root have to be taken because the positive one could cause

interference between the elements of the robot as depicted in Fig 2.5.

Figure 2.5: Two possible configurations of the kinematics chain due to θ1.

The inverse kinematics solution is tested for special cases by examining Eq.

2.7: If, 2

2 1 34 0e e e  then the circle swept by vector AB intersects the sphere

swept by vector BC in two locations. If, 2

2 1 34 0e e e  , then the circle and sphere

are tangent, and the manipulator is in a singular position. If, 2

2 1 34 0e e e  , then

the circle and the sphere do not intersects and there are no real solutions. If

e1=e2 =e3=0, then the circle lies on the sphere, and there are infinite number

of solutions [1].

15

2.3 Forward Kinematics

The forward kinematics also called the direct kinematics of a parallel

manipulator determines the (x, y, and z) position of the travel plate in base-

frame, given the configuration of each angle θi of the actuated revolute joints,

see Fig.2.6.

Figure 2.6: Configuration chosen for direct kinematics analysis

Consider three spheres each with the center at the elbow Bi of each robot arm

chain, and with the forearms lengths lb as radius. The forward kinematic

model for a Parallel Delta Robot can then be calculated with help of the

intersection between these three spheres. When visualizing these three

spheres they will intersect at two places.

One intersection point where z is positive and one intersection point where z

coordinate is negative. Based on the base frame {R} where z -axis is positive

J'
2

J'
1

C1
C2

C'

Ci’

16

upwards the TCP will be the intersection point when z is negative. Fig. 2.7

shows the intersection between three spheres. Where two spheres intersects

in a circle and then the third sphere intersects this circle at two places.

Figure 2.7: two spheres intersect in a circle and a third sphere intersect the

circle at two places

Based on the model assumptions made, the vector Bi that describes the elbow

coordinates for each of the three arms as

 [cos() 0 sin()]T

i a i a iB f l l   (2.12)

To calculate the direct kinematics we move the center of the spheres to inside

from points to the points
 for i=1, 2 and 3 respectively. After this

transition the three spheres will intersect in the TCP point.

' [() cos() 0 sin(]T

i a i a iB f e l l    (2.13)

Where e = ' ' '

1 1 2 2 3 3B B B B B B  is the length of shifted distance, clearly described

in Fig.2.6.

To achieve a matrix that describes all of the three points in the base frame

{O} one has to multiply Bi with the rotational matrix
 :

B1 B2

B3

17

0

cos() sin() 0

sin() cos() 0

0 0 1

z

 

 

 
 


 
  

R
 (2.14)

The result is the matrix '
B ,

' 0 '

cos() sin() 0

 sin() cos() 0 [() cos() 0 sin(]

0 0 1

T

z i a i a if e l l

 

   

 
 

   
 
  

B R B

'

, ,

' '

, ,y

'

,z ,z

cos() cos()[() cos()]

sin() sin()[() cos()]

 sin()

i x a i i x

i x a i i

i a i i

B f e l s

B f e l s

B l s

  

  



     
    

        
        

B
 (2.15)

Then can three spheres be created with the forearms lengths lb as radius, and

their centers in iB respectively. The general equation for a sphere is

2 2 2 2

, ,y ,z() () ()i x i ix s y s z s r      (2.16)

This gives the three equations for three links i =1,2 and 3 respectively. For

link (1) the upper arm is parallel to x- axis and perpendicular to y-axis, so the

rotation angle  =0, but the other two links have a rotation angles  = 120 for

link (2) and  = -120 for link (3).

2 2 2 2

1 1 1 1 1

2 2 2 2

2 2 2 2 2

2

3 3 3

(cos()[() cos()]) (sin()[() cos()]) (sin())

(cos()[() cos()]) (sin()[() cos()]) (sin())

(cos()[() cos()]) (sin()[(

a a a b

a a a b

a

x f e l y f e l z l l

x f e l y f e l z l l

x f e l y f

    

    

  

         

         

      2 2 2

3 3) cos()]) (sin())a a be l z l l    

(2.17)

18

After substitution the values 1 =0, 2 = 120, and 3 =-120 in Eq. 13, we get the

three sphere equations,

2 2 2 2

1 1

2 2 2 2

2 2 2

2 2 2 2

3 3 3

([() cos()]) () (sin())

1 3
([() cos()]) ([() cos()]) (sin())

2 2

1 3
([() cos()]) ([() cos()]) (sin())

2 2

a a b

a a a b

a a a b

x f e l y z l l

x f e l y f e l z l l

x f e l y f e l z l l

 

  

  

      

         

         

 (2.18)

Rearrange Eq. 2.18 we obtain,

2 2 2 2

11 12 13

2 2 2 2

21 22 23

2 2 2 2

31 32 33

() () (z)

() () ()

() () ()

b

b

b

x k y k k l

x k y k z k l

x k y k z k l

     

     

     

 (2.19)

Where,

11 1

12

13 1

() cos()

0

sin()

a

a

k f e l

k

k l





  



 

21 2

22 2

23 2

1
[() cos()]

2

3
[() cos()]

2

sin()

a

a

a

k f e l

k f e l

k l







  

   

 

31 3

32 3

33 3

1
[() cos()]

2

3
[() cos()]

2

sin()

a

a

a

k f e l

k f e l

k l







  

  

 

After expanding Eq. 2.19 we obtain,

19

2 2 2 2 2 2 2

1 2 3 1 2 32 2 y 2 z () , i=1,2,3i i i b i i ix y z k x k k l k k k         (2.20)

Subtract Eq.2.20 with i=2 from Eq. 2.20 with i=1, we obtain,

2 2 2 2 2 2

11 21 12 22 13 23 21 22 23 11 12 132() 2() y 2()z () ()k k x k k k k k k k k k k           (2.21)

Subtract Eq.2.20 with i=3 from Eq. 2.20 with i=1, we obtain,

2 2 2 2 2 2

11 31 12 32 13 33 31 32 33 11 12 132() 2() y 2()z () ()k k x k k k k k k k k k k           (2.22)

Simplifying Eq.2.21 and Eq.2.22 we obtain,

1 1 1 1

2 2 2 2

a x b y c z d

a x b y c z d

  

  
 (2.23)

Where,

1 11 21

1 12 22

1 13 23

2()

2()

2()

a k k

b k k

c k k

 

 

 

2 11 31

2 12 32

2 13 33

2()

2()

2()

a k k

b k k

c k k

 

 

 

And,
2 2 2 2 2 2

1 21 22 23 11 12 13

2 2 2 2 2 2

2 31 32 33 11 12 13

() ()

() ()

d k k k k k k

d k k k k k k

     

     

Arranging Eq.2.23 in a matrix form, we obtain,

20

1 1 1 1

2 2 2 2

a b d c zx

a b d c zy

    
    

    
 (2.24)

Define 1 2 2 1a b a b   , then for case 0 ,

1 1 2 2 2 1

2 1 1 2 1 2 2 1

2 2 2 1 1 1

1 2 2 1 2 1 1 2

() ()

 () () z

() ()

 () () z

x d c z b d c z b

b d b d b c b c

y d c z a d c z a

a d a d a c a c

    

   

    

   

2 1 1 2 1 2 2 1

1 2 2 1 2 1 1 2

b d b d b c b cx
x z

a d a d a c a cy
y z

 
  
  

 
  
  

 (2.25)

Consider,

2 1 1 2 1 2 2 1
1 2

1 2 2 1 2 1 1 2

 ,

 , x y

b d b d b c b c
f f

b c b c a c a c
f f

 
 

 

 
 

 

Then,

1

2

x

y

x f f z

y f f z

 

  (2.26)

Substituting Eq. 2.26 in Eq.2.19 for i=3; we obtain,

2 2 2 2 2 2 2

1 31 2 32 33 11 22 33(1)z 2([] []) 0x y x x y y bf f f f f k f f f k k z f f k l            (2.27)

21

Let,
2 2

1 31 2 32 33

2 2 2 2

11 22 33

(1)

2([] [])

x y

x x y y

b

A f f

B f f f k f f f k k

C f f k l

  

    

   

Where,

11 1 31

22 2 32

f f k

f f k

 

 

The solution of Equation 2 0Az Bz C   is well known as

2 4

2

B B AC
z

A

  
 (2.28)

From Eq.2.28, we can Evaluates Eq.2.26.

Mathematically neither forward nor inverse kinematics gives single solution.

Forward kinematics usually has two solutions, because the passive joint

angles formed between upper arm and lower arm are not determined by

kinematic equations. Then the solution that is within the robots work area

must be chosen. With the base frame {O} in this case, it will lead to the

solution with negative z coordinate.

The output solution has Four cases are possible:

1) Generic solution. The two solutions are realized at the intersection of a

circle and a sphere.

2) Singular solution. Once sphere is tangent to the circle of intersection of

the other two spheres, hence there is only one solution possible.

3) Singular solution. The center of any two spheres coincides, resulting in

an infinite number of solutions. This is an unlikely configuration for

most practical embodiments of the manipulator, except for the situation

when θ1 = θ2 = θ3 = π/2.

4) No solution. The three spheres do not intersect at a common point.

22

2.4 Velocity Kinematics

The most relevant loop should be picked up for the intended Jacobian

analysis. Let θ be the vector made up of actuated joint variables and P is the

position vector of the moving platform. Then

Figure 2.8: (a) Projection of link i on xi zi plane, (b) end on view

11

1 12

13

,i

x

y

z



 



   
   

  
   
      

θ P
 (2.29)

The Jacobian matrix will be derived by differentiating the appropriate loop

closure equation and rearranging the result in the following form

23

11

11

11

x x

y y

z z

P v

P v

P v







   
   

    
     

θ PJ J
 (2.30)

where vx, vy, and vz are the x, y, and z components of the velocity of the point

P on the moving platform in the xyz frame. In order to arrive at the above

form of the equation, we look at the loop OAiBiCiP. The corresponding

closure equation in the xiyizi frame is

i i i i i i
OP + PC = OA + A B + B C (2.31)

In the matrix form we can write it as

1 3 2 1

3

1 3 2 1

cos cos cos sin cos()

sin cos 0 0 0 sin

0 0 sin sin cos()

x i y i i i i i

x i y i a b i

z i i i i

P P f e

P P l l

P

     

  

   

          
         

    
         
                  

(2.32)

Time differentiation of this equation leads to the desired Jacobian equation.

The loop closure equation Eq.2.31 can be re-written as

i i(P +e) = f +a +b (2.33)

Where
ia and

ib represents vectors
i iA B and

i i
B C respectively.

Differentiating Eq.2.33 with respect to time and using the fact that f is a

vector characterizing the fixed platform, and e is a vector characterizing the

moving platform

i iP = v = a + b (2.34)

The linear velocities on the right hand side of Eq.2.34 can be readily

converted into the angular velocities by using the well-known identities.

24

Thus

ai i bi iv = w ×a + w ×b (2.35)

aiw and
bi

w is the angular velocity of the link i. To eliminate
bi

w , it is

necessary to dot-multiply both sides of Eq. 2.35 and bi. Therefore

i ai i ib .v = w . (a ×b) (2.36)

Rewriting the vectors of Eq.2.36 in the xiyizi coordinate frame leads to

1 3 2 1

3

1 3 2 1

1

cos sin cos()

0 , sin

sin sin cos()

0 cos cos

, sin cos

0

i i i i

i a i b i

i i i i

x i y i

i i x i y i

z

a l b l

v v

w v v v

v

   



   

 

  

   
   

 
   
      

   
   

   
   
      

Substituting the values of ai, bi,vi and v in Eq.2.36 leads to

2 3 1sin sinix x iy y iz z a i i ij v j v j v l      (2.37)

Where,

1 2 3 3

1 2 3 3

1 2 3

cos()sin cos cos sin

cos()sin sin cos cos

sin()sin

ix i i i i i i

iy i i i i i i

iz i i i

j

j

j

     

     

  

  

  

 

Expanding Eq.2.37 for i = 1, 2 and 3 yields three scalar equations which can

be assembled into a matrix form as

x qj v = j q (2.38)

25

Where,

1 1 1

2 2 2

3 3 3

21 31

22 32

23 33

sin sin 0 0

0 sin sin 0

0 0 sin sin

x y z

x y z

x y z

a

j j j

j j j

j j j

l

 

 

 

 
 

  
 
 

 
 


 
  

x

q

j

j

 11 12 31

T

     q

After algebraic manipulations, it is possible to write

v = Jq (2.39)

Where,

1 2 3

1 2 3

1 2 3

x y z

x y z

x y z

  

  

  

   
 
   
   

  
   
   
 
   

-1

x qJ = j j
 (2.40)

26

2.5 Forward and Inverse Singularity analysis

From Eq.2.38 it can be observed that singularity occurs:

1. when det(Jq) = 0. This means that either 2i = 0 or , 3i =0 or for i=1,2,3.

2. when det(Jx) = 0. This means that 1 2i i  =0 or or 3i =0 or for i=1,2,3.

3. when det(Jq)=0 and det(Jx) =0. This situation occurs when 3i =0 or for

i=1,2 and 3.

In summary, singularity of the parallel manipulator occurs:

1. When all three pairs of the follower rods are parallel. Therefore, the

moving platform has three degrees of freedom and moves along a

spherical surface and rotates about the axis perpendicular to the

moving platform

2. When two pairs of the follower rods are parallel. The moving platform

has one degree of freedom; i.e. the moving platform moves in one

direction only.

3. When two pairs of the follower rods are in the same plane or two

parallel planes. The moving platform has one degree of freedom; i.e. the

moving platform rotates about the horizontal axis only.

2.6 Dynamic Equations

Dynamics is the science of motion. It describes why and how a motion occurs

when forces and moments are applied on massive bodies. The motion can be

considered as evolution of the position, orientation, and their time

derivatives. In robotics, the dynamic equation of motion for manipulators is

utilized to set up the fundamental equations for control. The links and arms

in a robotic system are modeled as rigid bodies.

 Therefore, the dynamic properties of the rigid body take a central place in

robot dynamics. Since the arms of a robot may rotate or translate with

27

respect to each other, translational and rotational equations of motion must

be developed and described in body-attached coordinate frames B1, B2, B3 …

or in the global reference frame G.

There are basically two problems in robot dynamics.

Problem1. We want the links of a robot to move in a specified manner. What

forces and moments are required to achieve the motion?

The first Problem is called direct dynamics and is easier to solve when the

equations of motion are in hand because it needs differentiating of kinematics

equations. The first problem includes robots statics because the specified

motion can be the rest of a robot. In this condition, the problem reduces

finding forces such that no motion takes place when they act. However, there

are many meaningful problems of the first type that involve robot motion

rather than rest. An important example is that of finding the required forces

that must act on a robot such that its end-effector moves on a given path and

with a prescribed time history from the start configuration to the final

configuration.

Problem2. The applied forces and moments on a robot are completely

specified. How will the robot move?

The second problem is called inverse dynamics and is more difficult to solve

since it needs integration of equations of motion. However, the variety of the

applied problems of the second type is interesting. Problem 2 is essentially a

prediction since we wish to find the robot motion for all future times when

the initial state of each link is given.

In this section, we will perform the inverse dynamic modeling of the parallel

manipulator based upon the principle of virtual work. The inverse dynamics

problem is to find the actuator torques and/or forces required to generate a

desired trajectory of the manipulator.[theory of applied robotics boo]

It is often convenient to express the dynamic equations of a manipulator in a

single equation that hides some of the details, but shows some of the

structure of the equations. The state-space equation When the Newton—

Euler equations are evaluated symbolically for any manipulator, they yield a

dynamic equation that can be written in the form

() (,) ()       τ M V G (2.41)

28

where ()M is n x n mass matrix of the manipulator, (,) V is a n x 1

vector of centrifugal and Coriolis terms, and ()G is an n x 1 vector of gravity

terms. We use the term state-space equation because the term (,)V   has both

position and velocity dependence. Each element of ()M and ()G is a

complex function that depends on θ, the position of all the joints of the

manipulator. Each element of (,) V is a complex function of both  and .

We may separate the various types of terms appearing in the dynamic

equations and form the mass matrix of the manipulator, the centrifugal and

Coriolis vector, and the gravity vector [1].

2.6.1 Virtual Work Dynamics

In this section, we will perform the inverse dynamic modeling of the parallel

manipulator based upon the principle of virtual work. The inverse dynamics

problem is to find the actuator torques and/or forces required to generate a

desired trajectory of the manipulator [9].

Without losing generality of model, we can simplify the dynamic problem by

the following hypotheses:

The connecting rods of lower links can be built with light materials such as

the aluminum alloy, so

 The lower links rotational inertias are neglected.

 the mass of each lower links, is divided evenly and concentrated at

 The two endpoints of the parallelogram.

Also it is supposed that:

• The friction forces in joints are neglected.

• No external forces suffered.

We consider that 1 2 3[, ,]    and 1 2 3[, ,]    are the vector of

actuator torques and vector of corresponding virtual angular displacements.

Furthermore, [, ,]p x y z    represents the virtual linear displacements

vector of the mobile platform. We can derive the following equations by

applying the virtual work principle.

29

0T T T T T

Ga Gp a pM F p M F p          (2.42)

Where,

1 2 3

1
().g .I.[cos() cos() cos()]
2

T

Ga a b aM m m l     (2.43)

is the upper links gravity torques vector ma and mb are mass of upper link

and each connecting rod of lower link, respectively. Here g denotes the

gravity acceleration, and I represent the 3x3 identity matrix.

[0 0 (3)g)]T

Gp tcp bF m m   (2.44)

Denotes the mobile platform gravity force vector, and mtcp is mass of the

mobile platform.

1 2 3[]T

a aaM II     (2.45)

Where,

2 21
().I
3

a a a b aI m l m l 

Represents the upper links inertia torques vector and denotes the upper links

inertial matrix with respect to the fixed frame O{x, y, z}, and,

(3).I.[x y z]T

P P tcp bF M P m m   (2.46)

Denote the mobile platform inertial forces vector. Eq.2.39 in section 2.4 can

be rewritten to,

P = Jθ (2.47)

30

Consequently,

P J  (2.48)

Substituting Eq. 2.48 into Eq. 2.42 results,

() 0T T T T T

Ga Gp a pM F J M F J      (2.49)

Eq. 2.49 holds for any virtual displacements , so we have

T T

a p Ga GpM J F M J F     (2.50)

Substitute Eqs.2.44 and 2.45 into Eq. 2.50, allows the generation of

T T

a p Ga GpI J M P M J F     (2.51)

Differentiating Eq. 2.47 with respect to time, yields

P J J   (2.52)

Substituting Eq. 2.52 into Eq. 2.51, we can derive that

() (,) ()M V G       

The previous equation described in Eq. 2.41 represents the dynamic model of

parallel manipulator in joint space. Here,
3R  is the controlled variables,

and

() T

a pM I J M J   (2.53)

Denotes a symmetric positive definite inertial matrix, that
3 3() xM R  .

31

(,) T

pV J M J   (2.54)

Where
3 3(,) xV R   is the centrifugal and Coriolis forces matrix, and

() M T

Ga GpG J F    (2.55)

Represents the vector of gravity forces, and
3()G R  .

2.6.2 Non-Rigid Body Effects

It is important to realize that the dynamic equations we have derived do not

encompass all the effects acting on a manipulator. They include only those

forces which arise from rigid body mechanics. The most important source of

forces that are not included is friction. All mechanisms are, of course, affected

by frictional forces. In present-day manipulators, in which significant gearing

is typical, the forces due to friction can actually be quite large - perhaps

equaling 25% of the torque required to move the manipulator in typical

situations. In order to make dynamic equations reflect the reality of the

physical device, it is important to model (at least approximately) these forces

of friction. A very simple model for friction is viscous friction, in which the

torque due to friction is proportional to the velocity of joint motion. Thus, we

have

friction v  (2.56)

where v is a viscous-friction constant. Another possible simple model for

friction, Coulomb friction, is sometimes used. Coulomb friction is constant

except for a sign dependence on the joint velocity and is given by

sgn()friction c  (2.57)

where c is a Coulomb-friction constant. The value of c is often taken at one

value when 0  the static coefficient, but at a lower value, the dynamic

32

coefficient, when 0  , whether a joint of a particular manipulator exhibits

viscous or Coulomb friction is a complicated issue of lubrication and other

effects. A reasonable model is to include both, because both effects are likely:

sgn()friction v c    (2.58)

It turns out that, in many manipulator joints, friction also displays a

dependence on the joint position. A major cause of this effect might be gears

that are not perfectly round-their eccentricity would cause friction to change

according to joint position. So a fairly complex friction model would have the

form

(,)friction f   (2.59)

These friction models are then added to the other dynamic terms derived

from the rigid-body model, yielding the more complete model

 () (,) () (,)M V G F            (2.60)

There are also other effects, which are neglected in this model. For example,

the assumption of rigid body links means that we have failed to include

bending effects (which give rise to resonances) in our equations of motion.

However, these effects are extremely difficult to model and are beyond the

scope of this thesis [1].

33

2.7 Actuator Dynamics

The leg system is basically composed of dc motor, precision revolute bearing

and coupling elements. Dc motor model is given below

Figure 2.9: DC motor model

The symbols represent the following variables here m is the motor position

(radian), m is the produced torque by the motor (Nm), 1 is the load torque, av

is the armature voltage (V), La is the armature inductance (H), Ra is the

armature resistance (Ω), Em is the reverse EMF (V), Ia is the armature current

(A), Kb is the reverse EMF constant, Km is the torque constant [10].

2

1 2

a
a a a a m

m
m b

m m a

m
m m

di
L R i V E

dt

d
E K

dt

K i

d
j

dt






 

  





 

 (2.53)

On the assumption of a rigid transmission and with no backlash the

relationship between the input forces (velocities) and the output forces

(velocities) are purely proportional. This gives,

m r lK 
 (2.54)

34

Where, constant Kr is a parameter which describes the gear reduction ratio. l

is the load torque at the robot axis and m is the torque produced by the

actuator at the shaft axis. In view of Eq. 2.54 one can write

l
m

rK


 

 (2.55)

To simulate the motion of a manipulator, we must make use of a model of the

dynamics such as the one we have just developed. Given the dynamics

written in closed form as in (2.52), simulation requires solving the dynamic

equation for acceleration:

1()[(,) () (,)]M V G F           (2.56)

We can then apply any of several known numerical integration techniques to

integrate the acceleration to compute future positions and velocities. Given

initial conditions on the motion of the manipulator, usually in the form

(0)

(0) 0

 






 (2.57)

35

Chapter 3

Controller Design

3.1 Controller Techniques

Using inverse kinematics, we can calculate the joint kinematics for a desired

geometric path of the end-effector of a robot. Substitution of the joint

kinematics in equations of motion provides the actuator commands. Applying

the commands will move the end-effector of the robot on the desired path

ideally. However, because of perturbations and non-modeled phenomena, the

robot will not follow the desired path. The techniques that minimize or

remove the difference are called the control techniques [11].

3.2 Open and Closed-Loop Control

A robot is a mechanism with an actuator at each joint i to apply a force or

torque to derive the link (i). The robot is instrumented with position,

velocity, and possibly acceleration sensors to measure the joint variables’

kinematics. The measured values are usually kinematics information of the

frame iB , attached to the link i . Relative to the frame 1iB  or 0B . To cause each

joint of the robot to follow a desired motion, we must provide the required

torque command. Assume that the desired path of joint variables, ()d q tq  are

given as functions of time. Then, the required torques that causes the robot to

follow the desired motion is calculated by the equations of motion and is

equal to

,()))((
d d d d dc

q q q q q Q D H G (3.1)

Where the subscripts d and c stands for desired and controlled, respectively. in

an ideal world, the variables can be measured exactly and the robot can

36

perfectly work based on the equations of motion (3.1). Then, the actuators’

control command Qc can cause the desired path qd to happen. This is an open-

loop control algorithm, that the control commands are calculated based on a

known desired path and the equations of motion. Then, the control

commands are fed to the system to generate the desired path. Therefore, in

an open-loop control algorithm, we expect the robot to follow the designed

path, however, there is no mechanism to compensate any possible error.

Now assume that we are watching the robot during its motion by measuring

the joints’ kinematics. At any instant there can be a difference between the

actual joint variables and the desired values. The difference is called error

and is measured by

d

d

e q q

e q q








 (3.2)

Let’s define a control law and calculate a new control command vector by

 =
c d p

K K Q Q e e (3.3)

where kP and kd are constant control gains. The control law compares the

actual joint variables (,)q q with the desired values (,)
d d

q q , and generates a

command proportionally. Applying the new control command changes the

dynamic equations of the robot to produce the actual joint variables q .

,() () ()d d d d dc d p
q q q q qK K     H GQ e e D (3.4)

37

Figure 3.1 Illustration of feedback control algorithm

Fig. 3.1 illustrates the idea of this control method in a block diagram. This is

a closed-loop control algorithm, in which the control commands are calculated

based on the difference between actual and desired variables. Reading the

actual variables and comparing with the desired values is called feedback, and

because of that, the closed-loop control algorithm is also called a feedback
control algorithm.

 The controller provides a signal proportional to the error and its time rate.

This signal is added to the predicted command Qc to compensate the error.

 The principle of feedback control can be expressed as: Increase the control
command when the actual variable is smaller than the desired value and decrease
the control command when the actual variable is larger than the desired value.

3.2.1 Robot Control Algorithms

Robots are nonlinear dynamical systems, and there is no general method for

designing a nonlinear controller to be suitable for every robot in every

mission. However, there are a variety of alternative and complementary

methods, each best applicable to particular class of robots in a particular

mission. The most important control methods are as follows:

 Feedback Linearization or Computed Torque Control Technique.

In feedback linearization technique, we define a control law to obtain a linear

differential equation for error command, and then use the linear control

38

design techniques. The feedback linearization technique can be applied to

robots successfully; however, it does not guarantee robustness according to

parameter uncertainty or disturbances. This technique is a model-based

control method, because the control law is designed based on a nominal

model of the robot.

 Linear Control Technique

 The simplest technique for controlling robots is to design a linear controller

based on the linearization of the equations of motion about an operating

point. The linearization technique locally determines the stability of the

robot. Proportional, integral, and derivative, or any combination of them, are

the most practical linear control techniques.

 Adaptive Control Technique

 Adaptive control is a technique for controlling uncertain or time-varying

robots. Adaptive control technique is more effective for low DOF robots.

 Robust and Adaptive Control Technique.

In the robust control method, the controller is designed based on the nominal

model plus some uncertainty. Uncertainty can be in any parameter, such as

the load carrying by the end-effector. For example, we develop a control

technique to be effective for loads in a range of 1 - 10 kg.

 Gain-Scheduling Control Technique.

Gain-scheduling is a technique that tries to apply the linear control

techniques to the nonlinear dynamics of robots. In gain-scheduling, we select

a number of control points to cover the range of robot operation. Then at each

control point, we make a linear time-varying approximation to the robot

dynamics and design a linear controller. The parameters of the controller are

then interpolated or scheduled between control points.

39

3.3 Computed Torque Control

Dynamics of a robot can be expressed in the form

,() () ()
d

q q q q q    H GQ D (3.5)

Where q is the vector of joint variables, and Q is the torques applied at joints,

And is
d
 a disturbance .Assume a desired path in joint space is given by a

twice differentiable function 2() d t Cq q  . Hence, the desired time history of

joints’ position, velocity, and acceleration are known [12].

We can re-write Eq. 3.5 to:

,() ()
d

q q q q  Q D N (3.6)

If this equation includes motor actuator dynamics, then Q is an input voltage.

 Define an output or tracking error as:

 de q q  (3.7)

And so,

d

d

e q q

e q q

 

 
 (3.8)

Solving now for q in Eq.3.6 and substituting into Eq. 3.7 yields,

1)(Nd d
e q D      (3.9)

And the disturbance function

1

d
w D 

 (3.10)

40

we may define a state x(t) by

e
x

e

 
 
 
 

 (3.11)

Write the tracking error dynamics as,

0 0 0

0 0

e

e

I e
u w

e I I

 
 
 
 

      
        
      

 (3.12)

It is driven by the control input u(t) and the disturbance w(t). Note that this

derivation is a special case of the general feedback linearization procedure.

The feedback linearizing transformation may be inverted to yield

(u) N
d

D q    (3.13)

We call this the computed-torque control law. Substituting Eq. 3.13 into

Eq.3.5 yields

,)()() (u N
d d

q q q q q   D DN (3.14)

or

1
d

e u D   (3.15)

3.4 PID Outer-Loop Designs

One way to select the auxiliary control signal u(t) is as the proportional-plus

derivative (PD) feedback,

v b i
u k e k e k    (3.16)

41

Then the overall robot arm input becomes

,()()()
v b i

q q q qk e k e k    D N (3.17)

The closed loop error dynamics

v b i
e k e k e k w    (3.18)

The next diagram, represent the PD – Computed Torque controller

3.5 PD-Plus-Gravity Controller

A useful controller in the computed-torque family is the PD-plus-gravity

controller that results when D=I, N=G(q)-qd, with G(q) the gravity term of the

manipulator dynamics. Then, selecting PD feedback for u(t) yields,

 ()
c v b

k e k e G q    (3.19)

 ∑ ∑

Robot

Figure 3.2. Block diagram of computed torque control.

 ∑

 ∑

42

When the arm is at rest, the only nonzero terms in the dynamics Eq.3.5 are

the gravity G (q), the disturbance d , and possibly the control torque .

The PD-gravity controller c , includes G (q), so that we should expect good

Performance for set-point tracking, that is, when a constant qd is given so

that qd = 0.

3.6 Optimal PD Controller Design

The goal of implementing any type of controller is to observe the output

response it would generate based on the inputted conditions. In order to

achieve this, it is necessary to solve for the control input (u) of the system.

Each controller has a different method pertaining to how this equation is

obtained, but the initial steps to reach this point are all similar.

 The end effector of the three degrees of freedom parallel robot will follow a

predefined trajectory; hence for tracking control it is appropriate to set the

error and change in error as:

1 1 1

2 2 2

3 3 3

4 1 1

5 2 2

6 3 3

,

,

,

,

,

,

d

d

d

d

d

d

x

x

x

x

x

x

 

 

 

 

 

 

 

 

 

 

 

 

Where: 1d , 2d and 3d are the desired angles; 1 , 2 and 3 are the actual

angles; 1d , 2d and 3d are the desired angular velocities, 1 , 2 and 3 are the

actual angular velocities; 1d , 2d and 3d the desired angular accelerations.

The following system is in lower triangular form, which can be produced by

differentiating 1 2 3 4 5 6, , , , x x x x x and x .

1 4x x

43

2 5x x

3 6x x (3.20)

4 1 1

1

5 2 2

6 3 3

() (,) ()

d

d

d

x

x D u C G

x

 

     

 



     
     

         
           

 (3.21)

One aspect that constantly appears when implementing the appropriate

controller is the feed forward term ud. This term represents the desired

control input required in the overall system operation. In theory, the actual

and desired control input should be identical, but due to system disturbances

and the force of gravity, this is known not to be the case. By adding ud into

the specified controller, improved control performance can be achieved. It is

defined as:

() (,) ()d d d d d d du D C G        (3.22)

That is, a Lyapunov function is necessary in order to achieve the desired

results. Let this function candidate be:

   
1 1 4

1 2 3 2 2 4 5 6 5

3 3 6

0 0

0.5 0 0 0.5 ()

0 0

kp x x

V x x x kp x x x x D x

kp x x



     
     

 
     
          

(3.23)

It should be noted that KP1 , KP2 and KP3 represent the proportional gains of

motors one , two and three respectively. The derivative of V with respect to

time becomes:

44

   

 

1 4 4

1 2 3 2 5 4 5 6 5

3 6 6

4

4 5 6 5

6

0 0

 0 0 0.5 ()

0 0

 + ()

kp x x

V x x x kp x x x x D x

kp x x

x

x x x D x

x





     
     

 
     
          

 
 
 
  

(3.24)

As previously stated, () 2 (,)D C   is skew symmetric; hence:

   
4 4

4 5 6 5 4 5 6 5

6 6

0.5 () (,)

x x

x x x D x x x x C x

x x

  

   
   


   
      

 (3.25)

Therefore, by substituting equations (3.3) and (3.25) into equation (3.24), it is

possible to achieve:

   
1 4 1 1 1

1 2 3 2 5 4 5 6 2 2 2

3 6 3 3 3

0 0

 0 0 () (,)) ()

0 0

d d

d d

d d

kp x u

V x x x kp x x x x D C G u

kp x u

 

     

 

         
         

             
                  

(3.26)

With all the appropriate data defined, it is now possible to determine the

equation for the controller. The control effort must satisfy the condition of

convergence and it must ensure that the output response is stable. The

following controller was chosen to accomplish these requirements:

45

 
1 1 1 1 1 1

2 2 2 2 4 5 6 2 2

3 3 3 3 3 3

0 0 0 0

0 0 0 0 () (,) ()

0 0 0 0

d d

d d

d d

u kp x kd

u u kp x kd x x x D C G

u kp x kd

 

     

 

           
           

                
                       

(3.27)

It should be noted that Kd1 , Kd2 and Kd3 represent the derivative gains of motors one,

two and three, respectively.

3.7 Model Predictive Control (MPC)

Model Predictive Control (MPC) is an optimal control strategy based on

numerical optimization. Future control inputs and future plant responses are

predicted using a system model and optimized at regular intervals with

respect to a performance index. From its origins as a computational

technique for improving control performance in applications within the

process and petrochemical industries, predictive control has become arguably

the most widespread advanced control methodology currently in use in

industry. MPC now has a sound theoretical basis and its stability, optimality,

and robustness properties are well understood.

The basic structure of MPC to implement is shown in Fig.3.3. A model is used

to predict the future plant outputs, based on past and current values and on

proposed future control actions.

Figure 3.3: Basic Structure of MPC Controller.

These actions are calculated by optimizer taking into account the cost

function as well as con- strains. The optimizer is another fundamental part of

+

-

46

the strategy as it provides the control action. The goal is to apply the linear

model predictive control to the input-output linearized system to account for

the constraints. Since the linear model predictive is more naturally

formulated in discrete time, the linear subsystem is discretized with a

sampling period T to yield,

(k 1) A (k) B (k)

y(k) H (k)

d d

d

V 



  

 (3.28)

The model consists of:

 A model of the plant to be controlled, whose inputs are the manipulated

variables, the measured disturbances, and the unmeasured

disturbances

 A model generating the unmeasured disturbances

Figure 3.4: Model Used For Optimization

The model of the plant is a linear time-invariant system described by the

equations

x(k 1) Ax(k) B u(k) B (k) B (k)

y(k) C (k) D (k) D (k)

u v d

x v d

v d

x v d

    

   (3.29)

The unmeasured disturbance d(k) is modeled as the output of the linear time

invariant system:

47

x (k 1) Ax (k) Bn (k)

d(k) Cx () (k)

d d d

d dk Dn

  

  (3.30)

The system described by the above equations is driven by the random

Gaussian noise nd(k), having zero mean and unit covariance matrix.

48

Chapter 4

Path Planning

4.1 Introduction

In this chapter, we concern ourselves with methods of computing a trajectory

that describes the desired motion of a manipulator in multidimensional

space. Here, trajectory refers to a time history of position, velocity, and

acceleration for each degree of freedom.

This problem includes the human-interface problem of how we wish to specify

a trajectory or path through space. In order to make the description of

manipulator motion easy for a human user of a robot system, the user should

not be required to write down complicated functions of space and time to

specify the task. Rather, we must allow the capability of specifying

trajectories with simple descriptions of the desired motion, and let the system

figure out the details. For example, the user might want to be able to specify

nothing more than the desired goal position and orientation of the end-

effector and leave it to the system to decide on the exact shape of the path to

get there, the duration, the velocity profile, and other details.

We also are concerned with how trajectories are represented in the computer

after they have been planned. Finally, there is the problem of actually

computing the trajectory from the internal representation—or generating the

trajectory.

Generation occurs at run time; in the most general case, position, velocity,

and acceleration are computed. These trajectories are computed on digital

computers, so the trajectory points are computed at a certain rate, called the

path-update rate. In typical manipulator systems, this rate lies between 60

and 2000 Hz [1].

49

4.2 Cubic polynomials

Consider the problem of moving the tool from its initial position to a goal

position in a certain amount of time. Inverse kinematics allows the set of

joint angles that correspond to the goal position and orientation to be

calculated

Figure 4.1: Several possible path shapes for a single joint.

The initial position of the manipulator is also known in the form of a set of

joint angles. What is required is a function for each joint whose value at t0 is

the initial position of the joint and whose value at tf is the desired goal

position of that joint. As shown in Fig. 4.1, there are many smooth functions,
()t , that might be used to interpolate the joint value. Several possible path

shapes for a single joint. In making a single smooth motion, at least four

constraints on ()t are evident. Two constraints on the function's value come

from the selection of initial and final values:

(0)

()f ft

 

 




 (4.1)

An additional two constraints are that the function be continuous in velocity,

which in this case means that the initial and final velocities are zero:

50

(0) 0

() 0ft







 (4.2)

These four constraints can be satisfied by a polynomial of at least third

degree. These constraints uniquely specify a particular cubic. A cubic has the

form

2 3

1 2 3()t a a t a t a t     (4.3)

So, the joint velocity and acceleration along this path are clearly

2

1 2 3

2 3

() 2 3

() 2 6

t a a t a t

t a a t





  

 
 (4.4)

Solving these equations for the ia we obtain

0 0

1

2 02

3 3

0

3
()

3
(

f

f

f

a

a

a
t

a
t



 







 



 (4.5)

Using Eq. 4.5, we can calculate the cubic polynomial that connects any initial

joint angle position with any desired final position. This solution is for the

case when the joint starts and finishes at zero velocity.

51

4.2.1 Cubic polynomials for a path with via points

So far, we have considered motions described by a desired duration and a

final goal point. In general, we wish to allow paths to be specified that

include intermediate via points. If the manipulator is to come to rest at each

via point, then we can use the cubic solution of Eq. 4.3.

Figure 4.2: Via points with desired velocities at the points indicated by

tangents.

If desired velocities of the joints at the via points are known, then we can

construct cubic polynomials as before; now, however, the velocity constraints

at each end are not zero, but rather, some known velocity

(0)

()f ft

 

 



 (4.6)

Solving these equations for ia then we obtain

52

0 0

1 0

,

,

a

a









2 0 02

3 0 03 2

3 2 1
() ,

3 1
() ()

f f

f f f

f f

f f

a
t t t

a
t t

   

   

   

   
 (4.7)

53

Chapter 5

Simulations and Results

5.1 Introduction

Each controller discussed in this chapter will contain the simulation results

for: the error between the desired and actual actuated joint angles, the

location of the desired and actual end effector trajectory in Cartesian space

along with their respective positional output error and the overall system

torque required to achieve the actual results. A preliminary conclusion will

then be drawn based on the pros and cons of each control technique.

5.2 Modeling Multi-body Systems

SimMechanics tool enables you to create libraries of components that can be

reused in many different designs. You define bodies in terms of their mass,

inertia, and connection points. To create complex shapes, you assemble sets

of simple geometries, such as spheres, cylinders, and extrusions defined in

MATLAB, and SimMechanics calculates the resulting mass and inertia

automatically. The diagram that defines the body clearly indicates all

connections to the body, making it easy to see your system’s topology.

Parameters such as length and mass can be calculated using MATLAB

scripts and assigned using MATLAB variables.

 You connect bodies using joints and constraints. These define the degrees

of freedom permitted between the bodies in your system, which dictate how

your system can move. You can define and connect actuators to these joints to

enable your system to move. Actuating these joints with electrical, hydraulic,

pneumatic, or other physical systems modeled using Simscape tool enables

you to model your entire multi-domain physical system within the Simulink

environment [13].

 You can import a CAD assembly into SimMechanics using SimMechanics

Link. The mass and inertia of each part in the assembly are imported as rigid

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simscape/
http://www.mathworks.com/products/simulink/

54

bodies in SimMechanics. Geometry from the CAD assembly is saved to

geometry files and associated with the proper body in SimMechanics. The

mate definitions in the CAD assembly are imported as joints in the

SimMechanics model.

For SolidWorks, Pro/ENGINEER, and Autodesk Inventor models, you install

a plug-in that lets you save the CAD assembly as an XML file that can be

imported into SimMechanics. For other CAD systems, SimMechanics Link

provides an API that you can connect to the API of your CAD system.

The SimMechanics Import XML Schema enables you to import models into

SimMechanics from any CAD system or modeling environment that exports

an XML file that follows this schema.

5.3 DELTA Robot CAD Modelling

As mentioned in the last section, delta robot designed in Autodesk Inventor.

Table 5.1 summarizes the lengths, inertias and masses of the links and

moving platform.

Figure5.1: CAD model of Delta Robot

55

With the help of Autodesk Inventor program, the following tables were

utilized.Table 5.1, describes the Mechanical Properties of Robot parts. Masses

and inertia depends on the material type, so, for more flexibility and robot

speed, I chose little weight materials in building the Robot architecture.

Table 5.1: Delta Robot Mechanical Parts properties

Mechanical Part Material Mass(kg)

Upper Arm Aluminum 1.58957

Forearm Aluminum 0.0408236

Moving Platform Echelon 0.110875

Table5.2. summarizes the mechanical part lengths and offset translation

between frame {Oc} and frame {Or} as described in Fig. 5.2.

Table 5.2: Delta Robot 3-D dimensions

D-Robot

Dimensions
Length(mm) Description

Lf 185.032 Offset length from Frame {Oc} to Joint Ji.

La
334.058

Length of the upper arm links.

Lb 684.083 Length of the Lower arm links.

Le 44 Offset length from joint Ci to point D.

Lr 281.8
Offset length from Frame {Oc} to frame {Or}

in z- direction.

 Ltcp 30
Offset length in z-direction from D point to

Center of Gravity of the moving platform.

5.4 Dynamic Model of Delta Robot

After exporting the *.XML file generated from Autodesk Inventor Program,

Matlab Simulink tool converted the exported *.XML file to Simulink model as

illustrated in Fig.5.2.

56

Figure5.2: Dynamic Model of Delta Robot

From the above Fig. 5.2 , the Simulink model represents the three arms of

the robot, each arm is forced with torque at each private joint, speed and

position measurements is calculated from each joint via joint sensors.

The next figure illustrates the Simulink block diagram of single arm which is

composed of Upper Arm, Forearms, and its actuated joint and passive joint.

57

From the single arm dynamic model figure, Fig. 5.3 , the upper tip of the

upper arm is actuated by Joint actuator which is placed in place of DC motor

model, where the recent one do the same job.

Figure5.3: Single Arm Dynamic Model

5.5 Model Linearization

Linear analysis tool embedded in Matlab Simulink, can deliver the linearized

model of the nonlinear MIMO Delta Robot system dynamics. For

linearization process, this block diagram shown in Fig.5.4 is connected. The

output linearized model is arranged as

58

X Ax Bu

Y Cx Du

 

 
 (5.1)

Where A, B, C and D are the state space matrices.

And where,
1

[,] [,]
2 1 1

x x q q , [,] [,]
3 4 2 2

x x q q , and [,] [,]
5 6 3 3

x x q q . Where

,
i i

q q are the joint phase and joint angular speed respectively

 (5.2)

1

2
1

3
23 6 3 3

4
3

5

6

[C] []
X X

x

x

x
D

x

x

x

Y







 
 
   
   

   
     
 
  

 (5.3)

1 1

2 2
1

3 3
26 6 6 3

4 4
3

5 5

6 6

[A] [B]
X X

x x

x x

x x

x x

x x

x x

X







   
   
     
           
         
   
      



59

5.5.1 Trimming and Linearizing Through Inverse

Dynamics

Trimming is determination of the forces/torques necessary to produce the

specified motion. These motion states constitute a trim or operating point.

Trimming problems can have one solution, more than one, or none.

Figure 5.4: Inverse Dynamics DELTA Robot Model.

Each DELTA Robot leg outputs the computed leg force needed to maintain

the motion specified by the motion actuation. After simulating the previous

model Fig. 5.4, the steady states Torques keeping the platform sill is,

1
[] [2.128 2.128 2.128]

2 3
, ,   

5.5.2 Linearizing at an Operating Point

Analysis tab in Matlab Simulink, linear analysis tool, introduces a simplified

method for non-linear systems linearization. The state space result of

60

linearization at the operating point [2.128, 2.128, and 2.128] is stated in

Eq.5.2 to Eq.5.5.

Figure 5.5: Simulink Model for Linearization

From Fig. 5.5, Linearization was according to position vector feedback. The

output state spaces linear matrices A, B, C and D are,

0 1 0 0 0 0

 0.6618 0 -4.6386 0 10.5497 0

0 0 0 1 0 0

0.1717 0 2.4943 0 0.8218 0

0 0 0 0 0 1

3.0516 0 4.9436 0 9.1532 0

A

 
 
 
 

  
 

 
 

  

 (5.2)

61

0 0 0

0.8109 15.5792 0.8109

0 0 0

3.6961 3.2042 6.9002

0 0 0

8.6789 4.5069 4.0151

B

 
 
 
 
 

  
 
 
 
   

 (5.3)

30.9897 0 40.9965 0 88.2854 0

57.2958 0 0 0 0 0

10.0065 0 100.6680 0 47.2894 0

C

  
 


 
   

 (5.4)

0 0 0

0 0 0

0 0 0

D

 
 


 
  

 (5.5)

5.6 Closed Loop Step Response

In this Simulink model, is tested and the response of the robot tracking

without adding of a controller to the system, the model and results are shown

below in the next two figures, Fig 5.6 and Fig.5.7

62

Figure 5.6: Simulink Model with No Controller

Figure 5.7: phase’s response at Joints q1, q2 and q3.

63

From the above figure , a concolusion was drawn that the MIMO Delta Robot

Dynamics can not reach the desired trajectory without help of suitable

controller. In the next sectin , the examines of a calssical PID controller

shown and illustrated in Fig.5.8.

5.7 Classical PID Controller

From Simulink library, a PID block is added to the Simulink model of my

project. This block linearize the plat seen by PID controller and check the

step response of the linearized plant. Fig.5.7 shows the Simulink model with

PID controller. You must pay attention that PID controller block cannot

linearize MIMO systems, therefore, one robot link was chosen for

linearization and Control. After that, the result of the controller parameters

was copied to the other two link controllers of Delta robot for actuation.

Figure 5.8: Delta Robot Model with PID controller.

64

5.7.1 Joint Angles

The following figures depict the error between the desired and actual joint

angles of q1, q2, and q3 respectively. These are the only three angles directly

controllable by the actuators of the parallel robot.

Figure 5.9: Joint Angle error for PID controller.

It is crucial that the difference between the desired angles and the actual

angles of q1, q2, and q3 be as small as possible, in order for the end effector

error to be minimized. Fig. 5.9 displays a clearly overshoot, approximately

15%. This value of overshoot is not desired in robotics in general. So, more

tuned parameters are got to reach the minimum overshoot. The next table 5.3

lists the values of PID parameters, KP, KI, KD, and N, which guarantee the

closed loop stability, and ensures the lowest value for overshoot and error.

Table 5.3: PID Controller Parameters

Controller Parameters Tuned Values

Kp 50

ki 0

Kd 3

N 1000

The step response of the moving platform where, (q1,q2,q3) = (-20, -20,-20).

65

Figure 5.10: q1 Joint Angle for PD controller in Table 5.3.

The constraint that ensured unbiased results was the fact that the motors

utilized in the physical model of the parallel robot could output a maximum

torque of 5 Newton meters. This will be confirmed in the subsequent torque

plots.

5.7.2 Controller Output - Torque

The next figure illustrates the torque generated by the controller which will

move the links to their actual position. The next figure, Fig.5.11, displays the

output of PID controller during two seconds with PID parameters listed in

Table 5.3.you must note that no actuator is considered in the previous

Simulink model. Torque is already delivered by controller, in practical, this

situation is not true. The next Simulink models will consider the servo motor

actuators.

66

Figure 5.11: Torque output for PID controller for q1 Joint.

5.8 Actuator Simulation

For Delta robot mechanics, each joint is actuated with a highly geared DC

servo Motors, their mechanical and electrical parameters are listed in table

5.4. I got the help of SimDrive tool embedded in Matlab. The following Figure

illustrates the Simulink model of DC motor with 31:1 gear ratio.

Figure 5.12: DC motor with simple gear Model.

67

The following table, table 5.4, summarizes the expected DC motor

parameters.

Table 5.4: DC motor electrical and mechanical Parameterization

Electrical Parameterization

Armature Inductance (L) 1600e-6

No-load Speed (rpm) 1200

Rated Speed at rated Load (rpm) 100

Rated Load (Mechanical Power/Watt) 75

Rated DC Supply Voltage(V) 24

Rotor Damping Parameterization

No-Load Current (I) 0.2

DC Supply Voltage When Measuring

No-Load Current (V)
1.5

Mechanical Parameterization

Rotor Inertia (kg*m^2) 2.5e-5

Gear Ratio 31:1

Gear Inertia (kg*m^2) 0.05

For testing the behavior of the actuator dynamics, the next figures, Fig.5.13

and Fig. 5.14, illustrates the voltage step response for speed and torque, with

no load. Fig.5.13 illustrates the voltage step response of the geared DC motor,

with gear ratio 10:1. The dashed curve in Fig.5.13 shows the rotor speed. And

the other curve shows the gear’s shaft speed.

68

Figure 5.13: rotor’s shaft speed V.S gear’s shaft speed for DC Motor

Figure 5.14: rotor’s shaft torque V.S gear’s shaft torque for DC motor.

From Fig. 5.13 and Fig. 5.14, we notice that,

1
f B

f B

w r w

r 





 (5.6)

69

Where WF, TF is the gear’s follower angular speed and torque respectively,

and WB, TB is the gear’s base angular speed and torque respectively. And r is

the gear ratio.

5.9 Actuated DELTA Robot Simulation

In the previous Simulink models, that torque generation is considered to be

the duty of the controller, but, in practical, the controller generates PWM

voltage varies from 0 volt to + 5 volt, which are the Microcontroller voltages.

H-bridge circuit amplifies the input PWM voltage and actuates the DC motor

directly. Each link is energized with highly geared servo DC motor. Fig.5.15,

illustrates the PWM voltage-based Simulink model.

Figure 5.15: Linearized Delta Robot model with DC motor Actuators.

You can see from Fig. 5.14 that the motor block gets the voltage as an input

and generates mechanical torque.

5.9.1 Joint Angles

Addition of a DC motor models in the simulink model , pushed me to re-tune

PID parameters to get the optimal one approximately. As shown in the next

table.

70

Table 5.5: PID controller parameters

Controller Parameters Tuned Values

Kp 90

ki 35

Kd 2

N 1000

Figure 5.16: voltage pulse train Response for joint qi.

The other two joints have the same response, because the step input is in the

z direction.

5.10 Trajectory Generation

The end effector of the three degrees of freedom parallel robot was simulated

to follow a circular trajectory based on the implementation of the desired

controller. The tracking speed utilized is defined by the angular velocity

formula: ω = 2πf, where f is the tracking frequency of the end effector. The

origin of the circle based on the Cartesian coordinate system in millimeters is

defined as (0, 0,z0), where the distance of travelling in z- direction .the radius

71

of the circular trajectory is 100 millimeters and the frequency implemented is

0.5 Hertz. It should be noted that the trajectory defined in this report never

impedes or approaches any singular point.

The next Simulink model generates a circular path trajectory in the x-y

plane.

Figure 5.17: Circle path trajectory model.

Figure 5.18: output circle for model in Fig.5.17

5.11 End Effector Trajectory

The next set of figures portrays the trajectory tracking of the end effector

along with its respective error between its desired and actual position. In

order to determine the actual location of the end effector, equations (2.7) and

(2.10) were employed to solve for q1, q2 and q3 respectively. The Inverse

kinematics equations were then applied based on all the available data to

72

definitively determine the actual location of the end effector in Cartesian

coordinates. The results from the joint angles of q1, q2 and q3 play a crucial

role in the determination of the actual location of the end effector, since a

small angular error would not cause a large deviation when compared to the

desired trajectory. The plots of the end effector error in the x-axis and y-axis

are shown in order to easily identify the severity of the absolute accuracy.

The next Simulink Model illustrates the End effector tracking for a circle lies

on X- Y plane with radius r= 100 mm.

Figure 5.19: Circle Path Trajectory for DELTA Robot.

The next figures display the End Effector error on x-axis, y-axis and z-axis

and display the End Effector trajectory.

73

Figure 5.20: End Effector Trajectory for PID Controller.

Figure 5.21: End Effector Trajectory error on x-axis for PID Controller.

74

Figure 5.22: End Effector Trajectory error on y-axis for PID Controller.

Figure 5.23: End Effector Trajectory error on z-axis for PID Controller.

75

5.12 Model Predictive Controller (MPC)

 Simulation

Model Predictive Control Toolbox™ provides tools for systematically

analyzing, designing, and tuning model predictive controllers. You can design

and simulate model predictive controllers using functions in MATLAB® or

blocks in Simulink®. You can set and modify the predictive model, control

and prediction horizons, input and output constraints, and weights. The

toolbox enables you to diagnose issues that could lead to run-time failures

and provides advice on changing weights and constraints to improve

performance and robustness. By running different scenarios in linear and

nonlinear simulations, you can evaluate controller performance. You can

adjust controller performance as it runs by tuning weights and varying

constraints.

In the next Simulink Model, I will test the MPC controller on a linearized

model for DELTA robot and comparing the output results with the previous

PID controller outputs.

Figure 5.24: MPC Controller based – DELTA Robot Simulink Model

76

5.12.1 Joint Angles

The following figures depict the error between the desired and actual joint

angles of q1, q2, and q3 respectively using MPC Controller.

Figure 5.25: Joint q1 Trajectory error for MPC Controller.

Figure 5.26: Joint q2 Trajectory error for MPC Controller.

77

Figure 5.27: Joint q3 Trajectory error for MPC Controller.

We can notice that MPC controller gave the same results of PID controller

approximately. Then, a great contribution added at the response of DELTA

robot. Robot arms are highly geared; this reason let the robot to be more

robust.

78

5.13 Recommended Controller

The true decision for choosing the suitable controller between PID and MPC

controllers which satisfy the desired criteria is taken after running the next

Simulink model, as shown in Fig 5.28

Figure 5.28: Linearized Delta Robot Model with PID and MPC Controllers.

The values of PID parameters which are choose in the previous Simulink

model, listed in the following table 5.6.

Table 5.6: PID controller parameters

Controller Parameters Tuned Values

Kp 15

ki 90

Kd .5

N 2000

79

Fig.5.29, illustrates the result of q1 joint response with input angle value

equal 10 degrees.

Figure 5.29: q1 Joint Responses with PID and MPC Controllers.

The following table, compare the output results for q1 joint responses with

PID and MPC Controllers.

Table 5.7: Comparison table between PID and MPC controller responses

Response

Characteristic
PID Controller MPC Controller

Overshoot (%) 5.3% 0%

steady state error 0 0

Settling Time (sec.) 0.1 0.12

We can conclude that the joint response has no overshoot value with MPC

controller comparing with PID controller as illustrated in Table 5.7.

80

5.14 Simulation Discussion

The final purpose of Simulink simulation is to test path tracking response of

DELTA robot. Building the Nonlinear Dynamic Model using Autodesk

Inventor program was the easiest solution to model the robot. Real and not

approximated parameters were introduced via CAD dynamic Modeling which

is one of the advantages of CAD modeling, but in the other side, the

simulation speed is low. The simulation speed of Mathematical dynamic

Model is more rapid than CAD dynamic model. Low simulation speed is

annoying problem.

SimMechanics tool introduced an easy way to actuate robot joints by joint

actuator block. Sensing computed torque, angle, angular speed, and

acceleration was by joint sensor. Sensing of Cartesian coordinates of the

moving platform was by Body sensor, which facilitated the process of

simulation.

DELTA robot needed a high precision controller to control it, PID and MPC

controllers were added. At the output of these two controllers, the output

torque command was limited, because that Servo DC motors attached at each

actuated joint generate a limited torque. PID parameters in Table 5.6 were

optimally tuned by desired response block in Matlab Simulink. Fig. 5.28

shows that, with PID Controller and at an input angle of 10 degrees, DELTA

robot upper arm can rotates with no steady state error and no overshoot

when MPC controller is applied. But the value of an overshoot reached to

5.3% when PID controller was applied. Each of PID and MPC controllers

guaranteed no steady state error as shown is Fig. 5.29.

81

Chapter 6

Conclusion and Future Work

8.1 Conclusion

The purpose of this thesis was to compare the simulation results of the non-

adaptive PID and MPC controllers; MPC is the most suitable control

technique to employ on the 3DOF Parallel DELTA structure. A summary of

the differences between serial and parallel robot structures introduced the

background of robotics, while the literature review provided a detailed

account of the beginning of robotics.

 The 3DOF Parallel DELTA robot was introduced and modeled using

SimMechanics Matlab Tool, inverse kinematics and non-singular region in

order to adequately define the parameters of the non-linear system. The

derivations of the two controllers were solved to ensure stability of the closed

loop system. This led to the simulation of the PID and MPC controllers in

MATLAB to analyze whether the actual circular trajectory could

satisfactorily track the desired circular trajectory. Once this task was

completed, the electrical and mechanical design of the physical parallel robot

structure was discussed in detail. The two controllers attained accurate end

effector tracking results without compromising the amount of computation

time and control effort usually found in more complex control techniques. It is

highly recommended that the PID controller be utilized in various parallel

robot structures to determine if similar results can be achieved, moreover,

PID controller is easy to implement in Microcontrollers, familiar with us.

 Finally, the proposed model in this thesis will open the road to master

students who wish to continue their graduate study in the field of motion

precision of the moving platforms of control systems.

82

8.2 Future Work

Each of PID and MPC controllers has proved the stability of the DELTA

Robot, but the design was under the assumption that Mechanical parameters

are certain, uncertainty is not considered in this thesis. The performance of

the MPC and PID controllers can be improved if we designed adaptive

controllers.

I started in building of DELTA robot structure, Experimental results and

path trajectory tracking tests will be applied at real DELTA robot for

validating these results with simulation results.

83

References

[1] John J. Craig, “Introduction to robotics, Mechanics and Control, Third

Edition, 2005.

[2] Clavel, R., Delta, a Fast Robot with Parallel Geometry. 18th

International Symposium on Industrial Robot, pp. 91-100, April 1988.

[3] YangminLi, Qingsong Xu,” Dynamic modeling and robust control of a 3

PRC translational parallel kinematic machine”, Robotics and

Computer-Integrated Manufacturing journal, Science Direct, 2009.

[4] André Olsson, Modeling and control of a Delta-3 robot, master thesis,

Department of Automatic Control, Lund University, 2009.

[5] Angelo Liadis, fuzzy logic control of a two degree of freedom parallel

robot, Master thesis, Department of Electrical Engineering, Lakehead

University, 2010.

[6] Manuel Napoleon Cardona Gutierrez, “Kinematics Analysis of a Delta

Parallel Robot”, IEEE, University of Sonsonate, Salvador,2010.

[7] P.J. Zsombor Murray,” An Improved Approach to the Kinematics of

Clavel’s DELTA Robot”, Center for Intelligent Machines, McGill

University, 2009.

[8] Xia Wu, Jun Lin and Zhencai Zhu,” Inverse Kinematics and

Singularity Analysis for a 3-DOF Hybrid-driven Cable-suspended

Parallel Robot”, International Journal of Advanced Robotic Systems,

INTECH, 2012.

[9] Mohsen, Mahdi, Mersad,” Dynamics and Control of a Novel 3-DoF

Spatial Parallel Robot”, International Conference on Robotics and

Mechatronics,2013.

84

[10] Serdar Kucuk and Zafer Bingul,”Robot Kinematics: Forward and

Inverse Kinematics, Industrial Robotics: Theory, Modelling and

Control”, Sam Cubero (Ed.), ISBN: 3-86611-285-8, InTech,2006.

[11]

Reza N. Jazar,” Theory of Applied Robotics, Kinematics, Dynamics and

control”, second edition, Springer, RMIT university,2010.

[12] Yangmin Li and Qingsong Xu ,”Dynamic Analysis of a Modified

DELTA Parallel Robot for Cardiopulmonary Resuscitation”,

Department of Electromechanical Engineering, Faculty of Science and

Technology University of Macau, 2004.

[13] Modeling Multi-body Systems, www.mathwork.com.

