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ABSTRACT 

 

 

This Master thesis describes the CAD- Modeling of the Parallel DELTA robot, 

designed by Autodesk Inventor® software program. DELTA Robot is a Multi-

Input Multi Output Nonlinear System (MIMO), so, PID controller and Model 

Predictive Controller (MPC) are implemented to improve the performance of 

Robot .but due to the variations in the dynamic models of each system, it is 

nearly impossible to conclusively determine the most appropriate controller 

to design. Therefore, this thesis compares the simulation results of two 

controllers, namely the PID and MPC respectively; on a 3 DOF Parallel 

DELTA robot in order to determine which controller would yield the best 

control performance.  

By comparing the simulation results for the joint angles error and the end 

effector trajectory error plots for the PID and MPC controllers, MPC 

controller gave the best results than PID controller. Then, a great 

contribution added at the response of DELTA robot. Because of Robot arms 

are highly geared; this reason let the robot to be more robust. MPC controller 

held the Potential to be the most likely candidate controllers to implement on 

the physical structure of the 3-DOF Parallel DELTA robot. But PID 

controller is easier in software implementation inside embedded systems as 

microcontrollers.  
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 ملخص: 

  التمثيل الرياضي و التحكم عالي الدقة بالروبوت المتوازي "دلتا"  ثلاثي الأبعاد  

للروبوت عن طريق التصميم ثلاثي الأبعاد باستخدام برنامجاقترحت في هذه الرسالة التمثيل الرياضي   

 (Autodesk Inventor)المخارج غير خطي , لذلك  ومتعدد المداخل دعد.الروبوت عبارة عن نظام مت

( لتحسين مستوي الدقة والأداء للروبوت. كل نظام له  MBC( أو )  PIDفهو بحاجة الي نظام تحكم  )

ذلك يصعب تحديد نوع المتحكم لكل نظام بدقة . لذلك هذه الرسالة تقارن نتائج نموذج ديناميكي خاص به , ل

( علي الروبوت المتوازي دلتا ثلاثي الأبعاد واختيار MBC( و )PIDتطبيق نوعين من المتحكمات )

 المتحكم الذي يضمن للروبوت الأداء الأفضل.

( , اثبتت النتائج MBC( ونظام التحكم )PIDل ومقارنة النتائج المتوقعة من كلا نظامي التحكم )يبعد تمث

أعطي  (MBC)لكن المتحكم  حسينا ً كبيرا ً علي حركة الروبوتحكمين أضافا تتالمالإفتراضية بأن كلا 

( أفضل في التمثيل والتنفيذ PIDلكن بالرغم من هذا فإن نظام التحكم ) . (PID)نتائج أفضل من المتحكم 

 لسهولة برمجته علي انضمة التحكم الدقيق ) المايكروكنترولر(.عمليا علي الروبوت دلتا وذلك 
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Chapter 1 
 

Introduction 

 
1.1    Background 

There are essentially two types of robot manipulators: serial and parallel. 

Serial manipulators consist of a number of links connected in series to one 

another to form a kinematic chain. Each joint of the kinematic chain is 

usually actuated. This type of structure is known as an open chained 

mechanism. Parallel manipulators, on the other hand, consist of a number of 

kinematic chains connected in parallel to one another. The kinematic chains 

work in unison to move a common point. This common point usually consists 

of a manipulator that performs a certain task. For the purpose of the three 

degrees of freedom (3 DOF) parallel DELTA robot system described in this 

thesis, the common point will also be referred to as the end effector. Since the 

kinematic chains are eventually connected to a common point, a parallel 

manipulator is considered a closed chained mechanism. The actuators in 

parallel manipulators are usually located at the base or close to the base of 

the system, which is in stark contrast to serial manipulators which have 

actuators at every joint. The advantages of this type of configuration include 

the fact that it could achieve a higher load capacity due to the decrease in the 

mass of the overall system, it can produce high accelerations at the end 

effector and it has a high mechanical stiffness to weight ratio [1].  

The disadvantages of this type of configuration include the fact that the 

dynamic model is quite complex in nature and there are many instances of 

singularities that must be mapped out and avoided in order to maintain 

control of the system. Parallel robots come in a wide variety of designs and 

applications ranging from the Stewart platform or Hexapod Parallel Robot 

shown in Fig. 1.1.a, which is used in aircraft motion simulators to the Delta 

robot, which is used in packaging plants. This endows the fact that there 

cannot be a conclusive result as to which controller best suits the 

functionality of all parallel robots. Therefore, it is logical to experiment with 

various control techniques to observe upon which controller would garner the 

most satisfactory results based on a specific mechanical system. 

This thesis presents the reader with the simulation results obtained from the 

implementation of PID control and Model Predictive Control (MPC) on 3 DOF 
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Parallel DELTA robots. The parameters of the dynamic model of this system 

are derived in detail followed by the derivation of the inverse kinematics of 

the mechanical model. The non-singular region is then defined based on the 

results obtained in the inverse kinematics. It is important to map out the 

non-singular region since it is the only location in which the parallel robot is 

able to operate under stable conditions. If the parallel robot were to enter a 

singular region, it would render the controller ineffective and cause the entire 

system to become unstable. It is impossible to adequately design any 

controllers for the parallel robot without a clear understanding of the 

dynamic model and the inverse kinematics of the mechanical model. 

In recent years the number of studies and applications of parallel robots have 

increased. One of the most popular applications is in industry packaging. The 

above is due to their ease of construction, the lightness of their structure and 

the high accelerations obtained by these devices. 

Unlike the serial-type robot manipulators, which only have an open-loop 

kinematic chain, parallel configuration allows for a distribution of payload 

among their two, or more closed-loop, kinematic chains. To illustrate this 

point consider Fig.1.1.a shows a parallel-architecture robot, used for object 

loading and unloading. Fig.1.2 shows a SCARA-type serial-architecture robot. 

By comparing the images it is easy to appreciate the difference between the 

two types of architecture. In the case of the serial manipulator greater 

robustness is required, as each link carries not only the weight of the 

successive links but also the motors and payload. This creates a cantilever 

effect in each link and, as a result, a greater deformation overall. In contrast, 

in the parallel architecture the actuators are fixed to the base of the 

manipulator so that the weight of the motors is not supported by the 

kinematic chains. In addition, the payload is distributed among the 

kinematic chains that con-form the manipulator. This results in thinner and 

lighter kinematic chains, which in turn results in an increased payload 

capacity of the manipulator, relative to its total mass. 
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Figure 1.1: (a) Hexapod Parallel Robot, (b) CODIAN Robotics Parallel robot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure1.2: SCARA-type serial-architecture robot 
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A disadvantage of parallel robots is their typically low cost effectiveness, 

based on complex kinematics and rather expensive control units, as well as 

the poor workspace to robot-dimension ratio [1]. 
 

On the other hand, the advantages of parallel robots stated before indicate 

that their capabilities can be optimally oriented if their specifications are 

task-adapted to the desired application. To facilitate flexibility and to enlarge 

the field of application, it is reasonable to use a reconfigurable robot design. 

This will also help to overcome the typical challenges of parallel robots, such 

as high costs and undersized workspaces. 

 
 

1.2 Motivation  
 
Modeling and Digital control of Dynamic system was my target of my thesis; 

Autodesk Inventor Software has a power capability in modeling of 

mechanical systems. No need to extract the dynamic equations of robot. 

Simulink tool of Matlab can simulate the body of the robot as built in 

Autodesk Inventor software program. 

   This Master Thesis treats the modeling of the Parallel DELTA robot 

actuated with Servo DC motors and drive units. Also the kinematics for a 

Delta-3 robot is implemented to be able to see where the traveling plate has 

for position for different arm angle configurations. 

 
 
 

1.3    Objectives and Methodology 
 
Objectives of this thesis can be summarized as follows: 

 

Design and Building three legs Delta Parallel Robot: therefor, Delta Robot 

was designed via Autodesk Inventor software program.  

Forward and inverse kinematics analysis: Both forward and inverse 

kinematic algorithms have been developed, which are essential for the motion 

planning and control of a parallel robot. 

Workspace analysis: It is necessary to ensure that delta parallel robot has a 

reasonable workspace volume. Workspace analysis is also required in the 

design of the parallel robot. Hence, a workspace visualization scheme has 

been developed for the modular parallel robot system. PID and MPC 
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controllers are used to improve the end effector path tracking for the DELTA 

robot.  

    

 

1.4   Problem Statement 
 

The optimal control problem can be stated as: find a closed loop optimal 

controller that minimizes error between the measured phase and actual 

phase wanted to track specified path. Optical encoder is attached in the end 

of each Servo motor shaft, measuring the actual phase of the link and from 

that; we can calculate radius speed and acceleration. 

Controlling of Delta Parallel robot wants true modeling for its dynamics, so, 

by using Autodesk Inventor program, we can model the robot easily and test 

its motion in Simulink Matlab tool. 

 

 

Figure 1.3: DELTA Robot Control System.  

 

The three Drivers control one motor each to actuate the three arms at the 

Delta-3 robot. From Fig.1.3, Controller unit calculates inverse kinematics of 

reference position x,y,z of moving platform in delta robot , actuators drive 

servo motors under the effect of PID controller leading the end effector to the 

target point in minimum time and no error as possible . 
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1.5 Thesis Contribution 
 

In this thesis, a new mechanical model of Delta parallel Robot was 

introduced, and a digital Controller system based on microcontroller chips 

are interfaced directly to PC computer via serial communication. Simulink 

Matlab tool can communicate by hardware Controller unit, which compute 

the kinematics of delta robot in place of Microcontroller. This model opens a 

new road to master students to use other control systems and contribute the 

motion precision of the moving platform. 

 
 

1.6   Literature Review  

 
Modeling and control of a Closed Chain Parallel DELTA Robot is very 

difficult especially, when using traditional methods in modeling. 

 

 YangminLi, Qingsong Xu [3] proposed the simplified dynamic 

equations derived via the virtual work principle on 3-TRC translational 

parallel kinematic machine. 

 

 André Olsson [4] describes the virtual work principle mathematical 

modeling of a Delta-3 robot actuated by motors and drive units. 

Experiments with comparison between the Simulink model and the 

real robot are done. 

 

 Angelo Liadis[5] proposed Lagrangian principle for modeling 2 DOF 

parallel robot, and introduced eight controllers , fuzzy and non-fuzzy 

controllers. Experiments with comparison between the Simulink model 

and the real robot are done. 

 

 

 Mohsen, Mahdi, Mersad [9] describes the Dynamics modeling and 

trajectory tracking control of a new structure of spatial parallel robots 

from Delta robots family. This paper compared implementation of 

computed torque (C-T) method using adaptive Neuro-fuzzy controller 

and conventional PD controller. 

 

 Yangmin Li and Qingsong Xu [12] performed inverse dynamic modeling 

based upon the principle of virtual work for medical Delta Robot. The 

dynamic control uses computed torque method. 
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1.7   Thesis Overview 
 

 

The purpose of this thesis is to determine the most appropriate controller to 

implement on a 3 DOF DELTA parallel robot apparatus. Chapter 2 will 

discuss and derive the equations for the modelling of the parallel robot using 

the dynamic equations of the constrained system and the inverse kinematics 

of the mechanical structure. Chapter 3 will consist of the derivations of PID 

and Model Predictive Controllers (MPC). Chapter 4 describes the path 

planning which the robot must follow to travel from point to another point in 

Cartesian space. Chapter 5 will compare and analyze the simulation results 

of each controller utilizing MATLAB. The plots of the joint angles and end 

effector trajectory along with their respective errors and torque will be 

compared between all the controllers and a generalized conclusion of these 

simulation results will be garnered. Chapter 6 will entail the overall 

recommendation of the candidate controller which best suits the needs of the 

parallel robot system. A description of the improvements or additions that 

can be executed in future research endeavors will be investigated to conclude 

this thesis. 
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Chapter 2 
 

Kinematics and Dynamics 
 
As mentioned in the previous chapter, I introduced the advantages and 

disadvantages of parallel robot and compared their performance with serial 

type robots. In this chapter, I will study the kinematics of 3 DOF Parallel 

DELTA robot. 
 

 

2.1 DELTA Type Parallel Robot 
 

The well-known Delta robot structure was proposed by R. Clavel in [2]. Fig. 

2.1 shows the main components of this robot, which consists of three or four 

closed-loop kinematic chains. The robot has three degrees of freedom.  

 

The parallelograms ensure the constant orientation between the fixed and 

the mobile platform, allowing only translation movements of the latter. The 

end effector of the manipulator is located on the mobile platform [3].  

Parallel Robot can move products in a three dimensional Cartesian 

coordinate system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Parallel DELTA Robot Components 
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The combination of the constrained motion of the three arms connecting the 

traveling plate to the base plate ensues in a resulting 3 translator degrees of 

freedom (DOF). As an option, with a rotating axis at the Tool Center Point 

(TCP), four DOF are possible. 

 

The Robot consists of, consider Fig.2.1: 

 

1) Three Actuators. 

2) Base plate. 

3) Upper robot arm. 

4) Lower robot arm (Forearm). 

5) Rotation arm (optional, 4-DOF). 

6) Travelling plate, TCP. 

 

The upper robot arms are mounted direct to the actuators to guarantee high 

stability. And the Three actuators are rigidly mounted on the base plate with 

120° in between. Each of the three Lower robot arms consists of two parallel 

bars, which connects the upper arm with the travelling Plate via ball joints. 

Lower frictional forces result from this. The wear reduces respectively as a 

result. To measure each motor shaft angle a Quadrature Optical encoder is 

used. A fourth bar, rotational axes, is available for the robot mechanics as an 

option. The actuator for this axis is then mounted on the upper side of the 

robot base plate. The bar is connected directly to the tool and ensures for an 

additional rotation motion [4].  

 
 

 

2.2 Inverse Kinematics 
 

The purpose of determining the inverse kinematics of this parallel robot is to 

accurately model the angle produced at each joint at a specific location of the 

e effector. This is advantageous for two main reasons; the first being that it is 

relatively simple to define any reasonable trajectory for the end effector to 

traverse and secondly, it can track different trajectories in a non-singular 

region [5].  

 

The constrained three degrees of freedom system shown in Fig. 2.3 will also 

be applicable in this section. It should be noted that the parameters of the 

overall system are known, which include: the range of the desired angles for 

θ1, θ2 and θ3 respectively, the overall length of each upper link La and the 

overall length of each lower link Lb. the desired location of the end effector in 
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the x and y axis respectively and the horizon distance between the two motor 

shafts (c). 

  

The problem of the Inverse kinematics solution is to find the actuators states 

θ1, θ2, θ3, known the end-effector position (x, y, z). To find the inverse 

kinematics solution let us refer to Fig. 2.3 Also, let consider the origin of the 

reference system fixed on the platform and the axes such as depicted in Fig. 

2.3 Note that the parallelogram has been considered as a single link (lb). 
 

 
` 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Delta Parallel Robot side View Designed on Autodesk Inventor. 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: one link side view of DELTA Parallel Robot. 
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Figure 2.4: First kinematics chain, XZ plane projection. 

 

The analysis begins considering each kinematics chain separately, for the 

first kinematics chain; shown in Fig.2.3, we make a projection to the X-Z 

plane, which yields a vector closed loop as shown in Fig.2.4. 

 

From Fig. 2.4, we have: 

 
2 2 '2

1 2 bd d l 
                                          (2.1)                                               

Where, 

'2 2 2

b bl l y 
                                           (2.2) 

 

In addition we have that: 

1 1cos( )aOA l x DC d    
 

Solving for d1, yields: 

L’b 

f 

e 

(x,y,z) 
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1 1cos( )ad T l  
                                           (2.3) 

Where, 

T OA x DC    

Also, from the geometry of Fig. 2.5 we have, 

2 1sin( )ad z l  
                                            (2.4) 

Substituting (2.2), (2.3) and (2.4) in (2.1) and simplifying, we obtain: 

 

1 1 12 cos( ) 2 sin( )a aTl zl K  
                                   (2.5) 

                 With, 

2 2 2 2 2

0K a bl l x z T    
     

Substituting in (2.5) the trigonometric identities, 

2

1
1 12 2

1 2
cos( )  ,  sin( )=  , where, t=tan( )

1 1 2

t t

t t


 




     

We obtain: 

2

1 2 3e 0t e t e  
                                         (2.6) 

Where: 

1

2

3

2

4

2

a

a

a

e Tl K

e zl

e Tl K

 

 

  

      

 

 

Solving (2.6) for t yields, 



13 
 

2 42 2 1 312 tan1 2 1

e e e e

e


  


                                        (2.7) 

From the previous equations, we can conclude that, 
 

1 ( , , )f x y z 
                                                          (2.8) 

Following the same procedure, the others two kinematics chains 

configurations can be solved. We can take advantage of the symmetry of 

Delta Robot and consider the fact that each kinematics chain is rotated 120 

degree relative to each other. We could take the base the first kinematics 

chain and multiply it by the rotation matrix (120
O 

for θ2 and 240
O
 for θ3) and then 

apply the process used to solve the first kinematics chain. Once followed the 

procedure described previously, the values of θ2 and θ3 can be found. In 

general, there are a total of eight possible robot postures corresponding to a 

given end-effector location [6]. 
 

 

x cos(a) -sin(a) 0 x

y = sin(a) cos(a) 0 y

z 0 0 1 z

    
    
    
        

                                 (2.9) 

 

Where, 

cos( ). sin( ).

sin( ). cos( ).y

x x y

y x

z z

 

 

 

 

                                     (2.10) 
 

Where is the angle of rotation about z axis, From Eq. (2.10) yields: 
 

2,3 ( , , )f x y z                                                        (2.11) 

 

 

Hence, there are generally two solutions of θ1 and therefore two configuration 

of the kinematics chain Fig. 2.5 corresponding to each end-effector location. 

When Eq. 2.7 yields a double root, the two links of the kinematics chain are 

in a fully stretched-out or folded-back configuration named singular 
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configuration. When Eq. 2.7 yields no real solution, the specified end-effector 

location is not reachable. Despite of the two possible solutions, only the 

negative root have to be taken because the positive one could cause 

interference between the elements of the robot as depicted in Fig 2.5. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2.5: Two possible configurations of the kinematics chain due to θ1. 
 

The inverse kinematics solution is tested for special cases by examining Eq. 

2.7: If, 2

2 1 34 0e e e   then the circle swept by vector AB intersects the sphere 

swept by vector BC in two locations. If, 2

2 1 34 0e e e  , then the circle and sphere 

are tangent, and the manipulator is in a singular position. If, 2

2 1 34 0e e e  , then 

the circle and the sphere do not intersects and there are no real solutions. If 

e1=e2 =e3=0, then the circle lies on the sphere, and there are infinite number 

of solutions [1]. 
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2.3   Forward Kinematics 

 

The forward kinematics also called the direct kinematics of a parallel 

manipulator determines the (x, y, and z) position of the travel plate in base-

frame, given the configuration of each angle θi of the actuated revolute joints, 

see Fig.2.6. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Configuration chosen for direct kinematics analysis 

 

Consider three spheres each with the center at the elbow Bi of each robot arm 

chain, and with the forearms lengths lb as radius. The forward kinematic 

model for a Parallel Delta Robot can then be calculated with help of the 

intersection between these three spheres. When visualizing these three 

spheres they will intersect at two places.  

 

 

One intersection point where z is positive and one intersection point where z 

coordinate is negative. Based on the base frame {R} where z -axis is positive 

J'
2 

J'
1 

C1 
C2 

C'
 

Ci’ 
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upwards the TCP will be the intersection point when z is negative. Fig. 2.7 

shows the intersection between three spheres. Where two spheres intersects 

in a circle and then the third sphere intersects this circle at two places. 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: two spheres intersect in a circle and a third sphere intersect the 

circle at two places 

 

Based on the model assumptions made, the vector Bi that describes the elbow 

coordinates for each of the three arms as 

 

 [ cos( )    0     sin( )]T

i a i a iB f l l                           (2.12) 

 

To calculate the direct kinematics we move the center of the spheres to inside 

from points      to the points    
  for i=1, 2 and 3 respectively. After this 

transition the three spheres will intersect in the TCP point. 

 
' [( ) cos( )    0     sin( ]T

i a i a iB f e l l                             (2.13) 

 

Where e = ' ' '

1 1 2 2 3 3B B B B B B   is the length of shifted distance, clearly described 

in Fig.2.6. 
 

To achieve a matrix that describes all of the three points in the base frame 

{O} one has to multiply Bi with the rotational matrix   
 : 

B1 B2 

B3 
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0

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

z

 

 

 
 


 
  

R
                                           (2.14) 

The result is the matrix '
B , 

 

' 0 '

cos( ) sin( ) 0

 sin( ) cos( ) 0  [( ) cos( )    0     sin( ]

0 0 1

T

z i a i a if e l l

 

   

 
 

   
 
  

B R B
 

 

'

, ,

' '

, ,y

'

,z ,z

cos( ) cos( )[( ) cos( )]

sin( ) sin( )[( ) cos( )]

 sin( )

i x a i i x

i x a i i

i a i i

B f e l s

B f e l s

B l s

  

  



     
    

        
        

B
           (2.15)       

 

Then can three spheres be created with the forearms lengths lb as radius, and 

their centers in iB respectively. The general equation for a sphere is 

 

2 2 2 2

, ,y ,z( ) ( ) ( )i x i ix s y s z s r                              (2.16) 

 

This gives the three equations for three links i =1,2 and 3 respectively. For 

link (1) the upper arm is parallel to x- axis and perpendicular to y-axis, so the 

rotation angle  =0, but the other two links have a rotation angles  = 120 for 

link (2) and  = -120 for link (3). 
 

 
2 2 2 2

1 1 1 1 1

2 2 2 2

2 2 2 2 2

2

3 3 3

( cos( )[( ) cos( )]) ( sin( )[( ) cos( )]) ( sin( ))

( cos( )[( ) cos( )]) ( sin( )[( ) cos( )]) ( sin( ))

( cos( )[( ) cos( )]) ( sin( )[(

a a a b

a a a b

a

x f e l y f e l z l l

x f e l y f e l z l l

x f e l y f

    

    

  

         

         

      2 2 2

3 3) cos( )]) ( sin( ))a a be l z l l    

(2.17) 
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After substitution the values 1 =0, 2 = 120, and 3 =-120 in Eq. 13, we get the 

three sphere equations, 
 

 
2 2 2 2

1 1

2 2 2 2

2 2 2

2 2 2 2

3 3 3

( [( ) cos( )]) ( ) ( sin( ))

1 3
( [( ) cos( )]) ( [( ) cos( )]) ( sin( ))

2 2

1 3
( [( ) cos( )]) ( [( ) cos( )]) ( sin( ))

2 2

a a b

a a a b

a a a b

x f e l y z l l

x f e l y f e l z l l

x f e l y f e l z l l

 

  

  

      

         

         

       (2.18) 

 

 

Rearrange Eq. 2.18 we obtain, 

 
2 2 2 2

11 12 13

2 2 2 2

21 22 23

2 2 2 2

31 32 33

( ) ( ) (z )

( ) ( ) ( )

( ) ( ) ( )

b

b

b

x k y k k l

x k y k z k l

x k y k z k l

     

     

     

                             (2.19) 

 

Where,  

 

11 1

12

13 1

( ) cos( )

0

sin( )

a

a

k f e l

k

k l





  



 

 

21 2

22 2

23 2

1
[( ) cos( )]

2

3
[( ) cos( )]

2

sin( )

a

a

a

k f e l

k f e l

k l







  

   

 

 

31 3

32 3

33 3

1
[( ) cos( )]

2

3
[( ) cos( )]

2

sin( )

a

a

a

k f e l

k f e l

k l







  

  

 

 

 

 

After expanding Eq. 2.19 we obtain, 
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2 2 2 2 2 2 2

1 2 3 1 2 32 2 y 2 z ( ) , i=1,2,3i i i b i i ix y z k x k k l k k k                (2.20) 

 

Subtract Eq.2.20 with i=2 from Eq. 2.20 with i=1, we obtain, 

 
2 2 2 2 2 2

11 21 12 22 13 23 21 22 23 11 12 132( ) 2( ) y 2( )z ( ) ( )k k x k k k k k k k k k k             (2.21)        

 

Subtract Eq.2.20 with i=3 from Eq. 2.20 with i=1, we obtain, 

 

 
2 2 2 2 2 2

11 31 12 32 13 33 31 32 33 11 12 132( ) 2( ) y 2( )z ( ) ( )k k x k k k k k k k k k k               (2.22) 

 

 

Simplifying Eq.2.21 and Eq.2.22 we obtain, 

 

 

1 1 1 1

2 2 2 2

a x b y c z d

a x b y c z d

  

  
                                     (2.23) 

 

Where, 

 

1 11 21

1 12 22

1 13 23

2( )

2( )

2( )

a k k

b k k

c k k

 

 

 

 

2 11 31

2 12 32

2 13 33

2( )

2( )

2( )

a k k

b k k

c k k

 

 

 

 

 

And, 
2 2 2 2 2 2

1 21 22 23 11 12 13

2 2 2 2 2 2

2 31 32 33 11 12 13

( ) ( )

( ) ( )

d k k k k k k

d k k k k k k

     

     
 

 

Arranging Eq.2.23 in a matrix form, we obtain, 
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1 1 1 1

2 2 2 2

a b d c zx

a b d c zy

    
    

    
                                  (2.24) 

 

Define 1 2 2 1a b a b   , then for case 0 ,  

 

1 1 2 2 2 1

2 1 1 2 1 2 2 1

2 2 2 1 1 1

1 2 2 1 2 1 1 2

( ) ( )

    ( ) ( ) z

( ) ( )

    ( ) ( ) z

x d c z b d c z b

b d b d b c b c

y d c z a d c z a

a d a d a c a c

    

   

    

   

 

 

2 1 1 2 1 2 2 1

1 2 2 1 2 1 1 2

b d b d b c b cx
x z

a d a d a c a cy
y z

 
  
  

 
  
  

                             (2.25) 

 

 

Consider, 

2 1 1 2 1 2 2 1
1 2

1 2 2 1 2 1 1 2

 ,  

 ,   x y

b d b d b c b c
f f

b c b c a c a c
f f

 
 

 

 
 

 

 

Then, 

 

1

2

x

y

x f f z

y f f z

 

                                                (2.26) 

 

Substituting Eq. 2.26 in Eq.2.19 for i=3; we obtain, 

 

 
2 2 2 2 2 2 2

1 31 2 32 33 11 22 33(1 )z 2([ ] [ ] ) 0x y x x y y bf f f f f k f f f k k z f f k l                (2.27) 
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Let,  
2 2

1 31 2 32 33

2 2 2 2

11 22 33

(1 )

2([ ] [ ] )

x y

x x y y

b

A f f

B f f f k f f f k k

C f f k l

  

    

   

 

Where, 

11 1 31

22 2 32

f f k

f f k

 

 
 

 

The solution of Equation 2 0Az Bz C   is well known as  

 
2 4

2

B B AC
z

A

  
                                        (2.28) 

 

From Eq.2.28, we can Evaluates Eq.2.26.  

 

Mathematically neither forward nor inverse kinematics gives single solution. 

Forward kinematics usually has two solutions, because the passive joint 

angles formed between upper arm and lower arm are not determined by 

kinematic equations. Then the solution that is within the robots work area 

must be chosen. With the base frame {O} in this case, it will lead to the 

solution with negative z coordinate. 

 

The output solution has Four cases are possible: 

 

1) Generic solution. The two solutions are realized at the intersection of a 

circle and a sphere. 

2) Singular solution. Once sphere is tangent to the circle of intersection of 

the other two spheres, hence there is only one solution possible. 

3) Singular solution. The center of any two spheres coincides, resulting in 

an infinite number of solutions. This is an unlikely configuration for 

most practical embodiments of the manipulator, except for the situation 

when θ1 = θ2 = θ3 = π/2. 

4) No solution. The three spheres do not intersect at a common point. 
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2.4   Velocity Kinematics  

 

The most relevant loop should be picked up for the intended Jacobian 

analysis. Let θ  be the vector made up of actuated joint variables and P is the 

position vector of the moving platform. Then 
 

 

 

 
 

Figure 2.8: (a) Projection of link i on xi zi plane, (b) end on view 

 

 

 

11

1 12

13

,i

x

y

z



 



   
   

  
   
      

θ P
                                       (2.29) 

 

The Jacobian matrix will be derived by differentiating the appropriate loop 

closure equation and rearranging the result in the following form 
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11

11

11

x x

y y

z z

P v

P v

P v







   
   

    
     

θ PJ J
                                      (2.30) 

 

where vx, vy, and vz are the x, y, and z components of the velocity of the point 

P on the moving platform in the xyz frame. In order to arrive at the above 

form of the equation, we look at the loop OAiBiCiP. The corresponding 

closure equation in the xiyizi frame is 

 

 

i i i i i i
OP + PC = OA + A B + B C                                (2.31) 

 

In the matrix form we can write it as 
 

1 3 2 1

3

1 3 2 1

cos cos cos sin cos( )

sin cos 0 0 0 sin

0 0 sin sin cos( )

x i y i i i i i

x i y i a b i

z i i i i

P P f e

P P l l

P

     

  

   

          
         

    
         
                  

(2.32) 
 

 

Time differentiation of this equation leads to the desired Jacobian equation. 

The loop closure equation Eq.2.31 can be re-written as 

 

i i(P +e) = f +a +b                                       (2.33) 

 

Where 
ia and 

ib  represents vectors 
i iA B and 

i i
B C  respectively. 

 

Differentiating Eq.2.33 with respect to time and using the fact that f  is a 

vector characterizing the fixed platform, and e  is a vector characterizing the 

moving platform 

 

i iP = v = a + b                                          (2.34) 

 

The linear velocities on the right hand side of Eq.2.34 can be readily 

converted into the angular velocities by using the well-known identities. 



24 
 

Thus 

 

ai i bi iv = w ×a + w ×b                                       (2.35) 

 

aiw  and
bi

w is the angular velocity of the link i. To eliminate
bi

w , it is 

necessary to dot-multiply both sides of Eq. 2.35 and bi. Therefore 

 

i ai i ib .v = w . (a ×b )                                           (2.36) 

 

Rewriting the vectors of Eq.2.36 in the xiyizi coordinate frame leads to 

 

1 3 2 1

3

1 3 2 1

1

cos sin cos( )

0 ,  sin

sin sin cos( )

0 cos cos

,   sin cos

0

i i i i

i a i b i

i i i i

x i y i

i i x i y i

z

a l b l

v v

w v v v

v

   



   

 

  

   
   

 
   
      

   
   

   
   
      

 

 

Substituting the values of ai, bi,vi and v in Eq.2.36 leads to 

 

 

2 3 1sin sinix x iy y iz z a i i ij v j v j v l                             (2.37) 

 

 

Where, 

1 2 3 3

1 2 3 3

1 2 3

cos( )sin cos cos sin

cos( )sin sin cos cos

sin( )sin

ix i i i i i i

iy i i i i i i

iz i i i

j

j

j

     

     

  

  

  

 

 

 

Expanding Eq.2.37 for i = 1, 2 and 3 yields three scalar equations which can 

be assembled into a matrix form as 

 

x qj v = j q                                                   (2.38) 
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Where, 

 

1 1 1

2 2 2

3 3 3

21 31

22 32

23 33

sin sin 0 0

0 sin sin 0

0 0 sin sin

x y z

x y z

x y z

a

j j j

j j j

j j j

l

 

 

 

 
 

  
 
 

 
 


 
  

x

q

j

j

 

                  

                11 12 31

T

     q   

 

 

After algebraic manipulations, it is possible to write 

 

v = Jq                                                    (2.39) 

 

Where, 

 

1 2 3

1 2 3

1 2 3

x y z

x y z

x y z

  

  

  

   
 
   
   

  
   
   
 
   

-1

x qJ = j j
                                                    (2.40) 
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2.5 Forward and Inverse Singularity analysis 

 

From Eq.2.38 it can be observed that singularity occurs: 

 

1. when det(Jq) = 0. This means that either 2i = 0 or  , 3i =0 or   for i=1,2,3. 

2. when det(Jx) = 0. This means that 1 2i i  =0 or   or 3i =0 or   for i=1,2,3. 

3. when det(Jq)=0 and det(Jx) =0. This situation occurs when 3i =0 or   for 

i=1,2 and 3. 

 

 

In summary, singularity of the parallel manipulator occurs: 

 

1. When all three pairs of the follower rods are parallel. Therefore, the  

moving platform has three degrees of freedom and moves along a 

spherical surface and rotates about the axis perpendicular to the 

moving platform 

 

 

2. When two pairs of the follower rods are parallel. The moving platform 

has one degree of freedom; i.e. the moving platform moves in one 

direction only.  

 

3. When two pairs of the follower rods are in the same plane or two 

parallel planes. The moving platform has one degree of freedom; i.e. the 

moving platform rotates about the horizontal axis only. 

 

 

 
2.6   Dynamic Equations 
 

Dynamics is the science of motion. It describes why and how a motion occurs 

when forces and moments are applied on massive bodies. The motion can be 

considered as evolution of the position, orientation, and their time 

derivatives. In robotics, the dynamic equation of motion for manipulators is 

utilized to set up the fundamental equations for control. The links and arms 

in a robotic system are modeled as rigid bodies. 

    Therefore, the dynamic properties of the rigid body take a central place in 

robot dynamics. Since the arms of a robot may rotate or translate with 
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respect to each other, translational and rotational equations of motion must 

be developed and described in body-attached coordinate frames B1, B2, B3 … 

or in the global reference frame G. 
 

There are basically two problems in robot dynamics. 

 

Problem1.  We want the links of a robot to move in a specified manner. What 

forces and moments are required to achieve the motion? 

The first Problem is called direct dynamics and is easier to solve when the 

equations of motion are in hand because it needs differentiating of kinematics 

equations. The first problem includes robots statics because the specified 

motion can be the rest of a robot. In this condition, the problem reduces 

finding forces such that no motion takes place when they act. However, there 

are many meaningful problems of the first type that involve robot motion 

rather than rest. An important example is that of finding the required forces 

that must act on a robot such that its end-effector moves on a given path and 

with a prescribed time history from the start configuration to the final 

configuration. 
 

Problem2. The applied forces and moments on a robot are completely 

specified. How will the robot move? 

The second problem is called inverse dynamics and is more difficult to solve 

since it needs integration of equations of motion. However, the variety of the 

applied problems of the second type is interesting. Problem 2 is essentially a 

prediction since we wish to find the robot motion for all future times when 

the initial state of each link is given.  

 

In this section, we will perform the inverse dynamic modeling of the parallel 

manipulator based upon the principle of virtual work. The inverse dynamics 

problem is to find the actuator torques and/or forces required to generate a 

desired trajectory of the manipulator.[theory of applied robotics boo] 

 

It is often convenient to express the dynamic equations of a manipulator in a 

single equation that hides some of the details, but shows some of the 

structure of the equations. The state-space equation When the Newton—

Euler equations are evaluated symbolically for any manipulator, they yield a 

dynamic equation that can be written in the form 

 
                                               

( ) ( , ) ( )       τ M V G                             (2.41) 
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where ( )M  is  n x n mass matrix of the manipulator, ( , ) V  is a n x 1 

vector of centrifugal and Coriolis terms, and ( )G  is an  n x 1 vector of gravity 

terms. We use the term state-space equation because the term ( , )V    has both 

position and velocity dependence. Each element of ( )M  and ( )G  is a 

complex function that depends on θ, the position of all the joints of the 

manipulator. Each element of  ( , ) V  is a complex function of both   and . 

We may separate the various types of terms appearing in the dynamic 

equations and form the mass matrix of the manipulator, the centrifugal and 

Coriolis vector, and the gravity vector [1]. 
 

 

 

2.6.1 Virtual Work Dynamics 
  

In this section, we will perform the inverse dynamic modeling of the parallel 

manipulator based upon the principle of virtual work. The inverse dynamics 

problem is to find the actuator torques and/or forces required to generate a 

desired trajectory of the manipulator [9]. 

 

Without losing generality of model, we can simplify the dynamic problem by 

the following hypotheses:  

 

The connecting rods of lower links can be built with light materials such as 

the aluminum alloy, so 

 

 The lower links rotational inertias are neglected. 

 the mass of each lower links, is divided evenly and concentrated at  

 The two endpoints of the parallelogram. 

 

Also it is supposed that: 

 

• The friction forces in joints are neglected. 

• No external forces suffered. 

 

We consider that 1 2 3[ , , ]     and 1 2 3[ , , ]     are the vector of 

actuator torques and vector of corresponding virtual angular displacements. 

Furthermore, [ , , ]p x y z    represents the virtual linear displacements 

vector of the mobile platform. We can derive the following equations by 

applying the virtual work principle. 
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0T T T T T

Ga Gp a pM F p M F p                            (2.42) 

 

Where, 

1 2 3

1
( ).g .I.[cos( )  cos( )   cos( )]
2

T

Ga a b aM m m l                (2.43) 

is the upper links gravity torques vector ma and mb are mass of upper link 

and each connecting rod of lower link, respectively. Here g denotes the 

gravity acceleration, and I represent the 3x3 identity matrix. 

 

[0   0  ( 3 )g)]T

Gp tcp bF m m                                    (2.44) 

 

Denotes the mobile platform gravity force vector, and mtcp is mass of the 

mobile platform. 

 

 

1 2 3[       ]T

a aaM II                                                 (2.45) 

 

Where,                                         

2 21
( ).I
3

a a a b aI m l m l   

Represents the upper links inertia torques vector and denotes the upper links 

inertial matrix with respect to the fixed frame O{x, y, z}, and, 
 

 

( 3 ).I.[x    y   z]T

P P tcp bF M P m m                           (2.46) 

 

Denote the mobile platform inertial forces vector. Eq.2.39 in section 2.4 can 

be rewritten to,  

 

P = Jθ                                                            (2.47) 
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Consequently,  

P J                                              (2.48) 

 

Substituting Eq. 2.48 into Eq. 2.42 results, 
 

( ) 0T T T T T

Ga Gp a pM F J M F J                               (2.49) 

 

Eq. 2.49 holds for any virtual displacements , so we have 
 

 
T T

a p Ga GpM J F M J F                                       (2.50) 

 
 

Substitute Eqs.2.44 and 2.45 into Eq. 2.50, allows the generation of 

 
T T

a p Ga GpI J M P M J F                                   (2.51) 

 

Differentiating Eq. 2.47 with respect to time, yields 

P J J                                                                 (2.52) 

Substituting Eq. 2.52 into Eq. 2.51, we can derive that 

( ) ( , ) ( )M V G       
           

The previous equation described in Eq. 2.41 represents the dynamic model of 

parallel manipulator in joint space. Here, 
3R   is the controlled variables, 

and 

( ) T

a pM I J M J                                           (2.53) 

Denotes a symmetric positive definite inertial matrix, that
3 3( ) xM R  . 
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( , ) T

pV J M J                                              (2.54) 

Where 
3 3( , ) xV R    is the centrifugal and Coriolis forces matrix, and 

 

( ) M T

Ga GpG J F                                           (2.55) 

 

Represents the vector of gravity forces, and
3( )G R  . 

 

 

 

2.6.2   Non-Rigid Body Effects 

It is important to realize that the dynamic equations we have derived do not 

encompass all the effects acting on a manipulator. They include only those 

forces which arise from rigid body mechanics. The most important source of 

forces that are not included is friction. All mechanisms are, of course, affected 

by frictional forces. In present-day manipulators, in which significant gearing 

is typical, the forces due to friction can actually be quite large - perhaps 

equaling 25% of the torque required to move the manipulator in typical 

situations. In order to make dynamic equations reflect the reality of the 

physical device, it is important to model (at least approximately) these forces 

of friction. A very simple model for friction is viscous friction, in which the 

torque due to friction is proportional to the velocity of joint motion. Thus, we 

have 

friction v                                                        (2.56) 

 

where v is a viscous-friction constant. Another possible simple model for 

friction, Coulomb friction, is sometimes used. Coulomb friction is constant 

except for a sign dependence on the joint velocity and is given by 

 

sgn( )friction c                                                  (2.57) 

 

where c is a Coulomb-friction constant. The value of c is often taken at one 

value when 0   the static coefficient, but at a lower value, the dynamic 
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coefficient, when 0  , whether a joint of a particular manipulator exhibits 

viscous or Coulomb friction is a complicated issue of lubrication and other 

effects. A reasonable model is to include both, because both effects are likely: 
 

sgn( )friction v c                                               (2.58) 

 

It turns out that, in many manipulator joints, friction also displays a 

dependence on the joint position. A major cause of this effect might be gears 

that are not perfectly round-their eccentricity would cause friction to change 

according to joint position. So a fairly complex friction model would have the 

form 

( , )friction f                                                    (2.59) 

 

These friction models are then added to the other dynamic terms derived 

from the rigid-body model, yielding the more complete model 

 
  

 ( ) ( , ) ( ) ( , )M V G F                                        (2.60) 
 

 

There are also other effects, which are neglected in this model. For example, 

the assumption of rigid body links means that we have failed to include 

bending effects (which give rise to resonances) in our equations of motion. 

However, these effects are extremely difficult to model and are beyond the 

scope of this thesis [1]. 
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2.7   Actuator Dynamics 
 
 

The leg system is basically composed of dc motor, precision revolute bearing 

and coupling elements. Dc motor model is given below 

 

 

 

 

 

 

 

 

 

 
 

Figure 2.9: DC motor model 

 
 

The symbols represent the following variables here m is the motor position 

(radian), m  is the produced torque by the motor (Nm), 1  is the load torque, av  

is the armature voltage (V), La is the armature inductance (H), Ra is the 

armature resistance (Ω), Em is the reverse EMF (V), Ia is the armature current 

(A), Kb is the reverse EMF constant, Km is the torque constant [10]. 
 

2

1 2

a
a a a a m

m
m b

m m a

m
m m

di
L R i V E

dt

d
E K

dt

K i

d
j

dt






 

  





 

                                          (2.53) 

 

On the assumption of a rigid transmission and with no backlash the 

relationship between the input forces (velocities) and the output forces 

(velocities) are purely proportional. This gives, 
 

m r lK 
                                                         (2.54) 
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Where, constant Kr is a parameter which describes the gear reduction ratio. l  

is the load torque at the robot axis and m  is the torque produced by the 

actuator at the shaft axis. In view of Eq. 2.54 one can write 

 

l
m

rK


 

                                                          (2.55) 

 

To simulate the motion of a manipulator, we must make use of a model of the 

dynamics such as the one we have just developed. Given the dynamics 

written in closed form as in (2.52), simulation requires solving the dynamic 

equation for acceleration: 
 
 

1( )[ ( , ) ( ) ( , )]M V G F                                    (2.56) 

 

We can then apply any of several known numerical integration techniques to 

integrate the acceleration to compute future positions and velocities. Given 

initial conditions on the motion of the manipulator, usually in the form 
 

(0)

(0) 0

 






                                                        (2.57) 
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Chapter 3 

Controller Design 

 

3.1 Controller Techniques 

Using inverse kinematics, we can calculate the joint kinematics for a desired 

geometric path of the end-effector of a robot. Substitution of the joint 

kinematics in equations of motion provides the actuator commands. Applying 

the commands will move the end-effector of the robot on the desired path 

ideally. However, because of perturbations and non-modeled phenomena, the 

robot will not follow the desired path. The techniques that minimize or 

remove the difference are called the control techniques [11]. 

 

 

3.2 Open and Closed-Loop Control 

A robot is a mechanism with an actuator at each joint i  to apply a force or 

torque to derive the link ( i ). The robot is instrumented with position, 

velocity, and possibly acceleration sensors to measure the joint variables’ 

kinematics. The measured values are usually kinematics information of the 

frame iB  , attached to the link i . Relative to the frame 1iB  or 0B . To cause each 

joint of the robot to follow a desired motion, we must provide the required 

torque command. Assume that the desired path of joint variables, ( )d q tq   are 

given as functions of time. Then, the required torques that causes the robot to 

follow the desired motion is calculated by the equations of motion and is 

equal to 
 

,( ) ) )( (
d d d d dc

q q q q q Q D H G                                  (3.1) 

 

Where the subscripts d and c stands for desired and controlled, respectively. in 

an ideal world, the variables can be measured exactly and the robot can 



36 
 

perfectly work based on the equations of motion (3.1). Then, the actuators’ 

control command Qc can cause the desired path qd to happen. This is an open-

loop control algorithm, that the control commands are calculated based on a 

known desired path and the equations of motion. Then, the control 

commands are fed to the system to generate the desired path. Therefore, in 

an open-loop control algorithm, we expect the robot to follow the designed 

path, however, there is no mechanism to compensate any possible error. 

   

Now assume that we are watching the robot during its motion by measuring 

the joints’ kinematics. At any instant there can be a difference between the 

actual joint variables and the desired values. The difference is called error 

and is measured by 

 

 

  

  

 
 

d

d

e q q

e q q








                                               (3.2) 

 

Let’s define a control law and calculate a new control command vector by 

 

 = 
c d p

K K Q Q e e                                       (3.3) 

where kP and kd are constant control gains. The control law compares the 

actual joint variables ( , )q q  with the desired values ( , )
d d

q q , and generates a 

command proportionally. Applying the new control command changes the 

dynamic equations of the robot to produce the actual joint variables q . 

,( ) ( )  ( )d d d d dc d p
q q q q qK K     H GQ e e D                     (3.4) 
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Figure 3.1 Illustration of feedback control algorithm 

 

 

Fig. 3.1 illustrates the idea of this control method in a block diagram. This is 

a closed-loop control algorithm, in which the control commands are calculated 

based on the difference between actual and desired variables. Reading the 

actual variables and comparing with the desired values is called feedback, and 

because of that, the closed-loop control algorithm is also called a feedback 
control algorithm. 

   The controller provides a signal proportional to the error and its time rate. 

This signal is added to the predicted command Qc to compensate the error.  

   The principle of feedback control can be expressed as: Increase the control 
command when the actual variable is smaller than the desired value and decrease 
the control command when the actual variable is larger than the desired value. 
 
 
 

3.2.1 Robot Control Algorithms 

 
Robots are nonlinear dynamical systems, and there is no general method for 

designing a nonlinear controller to be suitable for every robot in every 

mission. However, there are a variety of alternative and complementary 

methods, each best applicable to particular class of robots in a particular 

mission. The most important control methods are as follows: 

 

 Feedback Linearization or Computed Torque Control Technique. 
 

In feedback linearization technique, we define a control law to obtain a linear 

differential equation for error command, and then use the linear control 
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design techniques. The feedback linearization technique can be applied to 

robots successfully; however, it does not guarantee robustness according to 

parameter uncertainty or disturbances. This technique is a model-based 

control method, because the control law is designed based on a nominal 

model of the robot. 

 

 Linear Control Technique 
 

 The simplest technique for controlling robots is to design a linear controller 

based on the linearization of the equations of motion about an operating 

point. The linearization technique locally determines the stability of the 

robot. Proportional, integral, and derivative, or any combination of them, are 

the most practical linear control techniques. 

 

 Adaptive Control Technique 
 

 Adaptive control is a technique for controlling uncertain or time-varying 

robots. Adaptive control technique is more effective for low DOF robots.  

 

 Robust and Adaptive Control Technique. 
  

In the robust control method, the controller is designed based on the nominal 

model plus some uncertainty. Uncertainty can be in any parameter, such as 

the load carrying by the end-effector. For example, we develop a control 

technique to be effective for loads in a range of 1 - 10 kg. 

 

 Gain-Scheduling Control Technique.  
 

Gain-scheduling is a technique that tries to apply the linear control 

techniques to the nonlinear dynamics of robots. In gain-scheduling, we select 

a number of control points to cover the range of robot operation. Then at each 

control point, we make a linear time-varying approximation to the robot 

dynamics and design a linear controller. The parameters of the controller are 

then interpolated or scheduled between control points. 
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3.3 Computed Torque Control 

 
Dynamics of a robot can be expressed in the form 

 

,( ) ( )  ( )
d

q q q q q    H GQ D                                 (3.5) 

 

Where q is the vector of joint variables, and Q is the torques applied at joints, 

And is 
d
  a disturbance .Assume a desired path in joint space is given by a 

twice differentiable function 2( )  d t Cq q  . Hence, the desired time history of 

joints’ position, velocity, and acceleration are known [12]. 

 

We can re-write Eq. 3.5 to: 

 

,( )  ( )
d

q q q q  Q D N                                      (3.6) 

 

 

If this equation includes motor actuator dynamics, then Q is an input voltage. 

    Define an output or tracking error as: 

 

    de q q                                                    (3.7) 

And so,  

d

d

e q q

e q q

 

 
                                                  (3.8) 

Solving now for q  in Eq.3.6 and substituting into Eq. 3.7 yields, 

 

1 )(Nd d
e q D                                            (3.9) 

And the disturbance function 

 

1

d
w D 

                                              (3.10) 
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we may define a state x(t) by 

e
x

e

 
 
 
 

                                                  (3.11) 

Write the tracking error dynamics as, 

 

0 0 0

0 0

e

e

I e
u w

e I I

 
 
 
 

      
        
      

                             (3.12) 

 

It is driven by the control input u(t) and the disturbance w(t). Note that this 

derivation is a special case of the general feedback linearization procedure. 

The feedback linearizing transformation may be inverted to yield 

 

( u) N
d

D q                                            (3.13) 

 

We call this the computed-torque control law. Substituting Eq. 3.13 into 

Eq.3.5 yields 

, )( )( ) ( u N
d d

q q q q q   D DN                          (3.14) 

or 

1
d

e u D                                            (3.15) 

 

3.4 PID Outer-Loop Designs 

 
One way to select the auxiliary control signal u(t) is as the proportional-plus 

derivative (PD) feedback, 

 

v b i
u k e k e k                                            (3.16) 
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Then the overall robot arm input becomes 

,( )( )( )
v b i

q q q qk e k e k    D N                           (3.17) 

The closed loop error dynamics  

v b i
e k e k e k w                                            (3.18) 

The next diagram, represent the PD – Computed Torque controller  

 

 

 

 

 

 

 

 

 

 

 

3.5 PD-Plus-Gravity Controller 

 
A useful controller in the computed-torque family is the PD-plus-gravity 

controller that results when D=I, N=G(q)-qd, with G(q) the gravity term of the 

manipulator dynamics. Then, selecting PD feedback for u(t) yields, 

 

 

 ( )
c v b

k e k e G q                                             (3.19) 

 

 

  

 

 

 

  ∑  ∑ 

 

 

Robot 

Figure 3.2. Block diagram of computed torque control. 

 ∑ 

 ∑ 
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When the arm is at rest, the only nonzero terms in the dynamics Eq.3.5 are 

the gravity G (q), the disturbance d  , and possibly the control torque . 

The PD-gravity controller c  , includes G (q), so that we should expect good 

Performance for set-point tracking, that is, when a constant qd is given so 

that qd = 0. 

 
3.6   Optimal PD Controller Design 
 
The goal of implementing any type of controller is to observe the output 

response it would generate based on the inputted conditions. In order to 

achieve this, it is necessary to solve for the control input (u) of the system. 

Each controller has a different method pertaining to how this equation is 

obtained, but the initial steps to reach this point are all similar.  

  The end effector of the three degrees of freedom parallel robot will follow a 

predefined trajectory; hence for tracking control it is appropriate to set the 

error and change in error as: 
 

 

1 1 1

2 2 2

3 3 3

4 1 1

5 2 2

6 3 3

,  

, 

,

,

,

,

 

d

d

d

d

d

d

x

x

x

x

x

x

 

 

 

 

 

 

 

 

 

 

 

 

 

Where: 1d , 2d  and 3d  are the desired angles; 1 , 2  and 3  are the actual 

angles; 1d , 2d  and 3d  are the desired angular velocities, 1 , 2  and 3 are the 

actual angular velocities; 1d , 2d and 3d the desired angular accelerations. 

The following system is in lower triangular form, which can be produced by 

differentiating 1 2 3 4 5 6, , , ,   x x x x x and x . 

 

1 4x x
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2 5x x
  
 

 
3 6x x                                 (3.20)                                 

4 1 1

1

5 2 2

6 3 3

( ) ( , ) ( )

d

d

d

x

x D u C G

x

 

     

 



     
     

         
           

            (3.21)                               

 
One aspect that constantly appears when implementing the appropriate 

controller is the feed forward term ud. This term represents the desired 

control input required in the overall system operation. In theory, the actual 

and desired control input should be identical, but due to system disturbances 

and the force of gravity, this is known not to be the case. By adding ud into 

the specified controller, improved control performance can be achieved. It is 

defined as: 
 

( ) ( , ) ( )d d d d d d du D C G                                   (3.22) 

 
 
That is, a Lyapunov function is necessary in order to achieve the desired 

results. Let this function candidate be: 
 

 

   
1 1 4

1 2 3 2 2 4 5 6 5

3 3 6

0 0

0.5  0 0  0.5 ( )

0 0

kp x x

V x x x kp x x x x D x

kp x x



     
     

 
     
          

               

(3.23) 
 

 

It should be noted that KP1 , KP2 and KP3 represent the proportional gains of 

motors one , two and three respectively. The derivative of V with respect to 

time becomes: 
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   

 

1 4 4

1 2 3 2 5 4 5 6 5

3 6 6

4

4 5 6 5

6

0 0

 0 0  0.5 ( )

0 0

     + ( )

kp x x

V x x x kp x x x x D x

kp x x

x

x x x D x

x





     
     

 
     
          

 
 
 
  

                  

(3.24) 

 
As previously stated, ( ) 2 ( , )D C    is skew symmetric; hence: 
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0.5 ( ) ( , )

x x

x x x D x x x x C x

x x
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   


   
      

             (3.25) 

 
Therefore, by substituting equations (3.3) and (3.25) into equation (3.24), it is 

possible to achieve: 
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1 2 3 2 5 4 5 6 2 2 2
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d d
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kp x u

V x x x kp x x x x D C G u

kp x u

 

     

 

         
         

             
                  

(3.26) 
 

 

With all the appropriate data defined, it is now possible to determine the 

equation for the controller. The control effort must satisfy the condition of 

convergence and it must ensure that the output response is stable. The 

following controller was chosen to accomplish these requirements: 
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(3.27) 

It should be noted that Kd1 , Kd2 and Kd3  represent the derivative gains of motors one, 

two and three, respectively. 

 

 

 

3.7   Model Predictive Control (MPC) 

 
Model Predictive Control (MPC) is an optimal control strategy based on 

numerical optimization. Future control inputs and future plant responses are 

predicted using a system model and optimized at regular intervals with 

respect to a performance index. From its origins as a computational 

technique for improving control performance in applications within the 

process and petrochemical industries, predictive control has become arguably 

the most widespread advanced control methodology currently in use in 

industry. MPC now has a sound theoretical basis and its stability, optimality, 

and robustness properties are well understood. 
 

The basic structure of MPC to implement is shown in Fig.3.3. A model is used 

to predict the future plant outputs, based on past and current values and on 

proposed future control actions.  

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Basic Structure of MPC Controller. 

 

These actions are calculated by optimizer taking into account the cost 

function as well as con- strains. The optimizer is another fundamental part of 

+ 

-
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the strategy as it provides the control action.  The goal is to apply the linear 

model predictive control to the input-output linearized system to account for 

the constraints. Since the linear model predictive is more naturally 

formulated in discrete time, the linear subsystem is discretized with a 

sampling period T to yield, 

 

(k 1) A (k) B (k)

y(k) H (k)

d d

d

V 



  

                          (3.28) 

 
The model consists of: 
 

 A model of the plant to be controlled, whose inputs are the manipulated 

variables, the measured disturbances, and the unmeasured 

disturbances 

 A model generating the unmeasured disturbances 
 

 

Figure 3.4: Model Used For Optimization 

 
The model of the plant is a linear time-invariant system described by the 

equations 

 
 

x(k 1) Ax(k) B u(k) B (k) B (k)

y(k) C (k) D (k) D (k)

u v d

x v d

v d

x v d

    

           (3.29) 
 

The unmeasured disturbance d(k) is modeled as the output of the linear time 

invariant system: 
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x (k 1) Ax (k) Bn (k)

d(k) Cx ( ) (k)

d d d

d dk Dn

  

                                   (3.30) 

 

The system described by the above equations is driven by the random 

Gaussian noise nd(k), having zero mean and unit covariance matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

Chapter 4 
 

 

Path Planning 
 

 

 

4.1 Introduction 
 

In this chapter, we concern ourselves with methods of computing a trajectory 

that describes the desired motion of a manipulator in multidimensional 

space. Here, trajectory refers to a time history of position, velocity, and 

acceleration for each degree of freedom. 

This problem includes the human-interface problem of how we wish to specify 

a trajectory or path through space. In order to make the description of 

manipulator motion easy for a human user of a robot system, the user should 

not be required to write down complicated functions of space and time to 

specify the task. Rather, we must allow the capability of specifying 

trajectories with simple descriptions of the desired motion, and let the system 

figure out the details. For example, the user might want to be able to specify 

nothing more than the desired goal position and orientation of the end-

effector and leave it to the system to decide on the exact shape of the path to 

get there, the duration, the velocity profile, and other details. 

We also are concerned with how trajectories are represented in the computer 

after they have been planned. Finally, there is the problem of actually 

computing the trajectory from the internal representation—or generating the 

trajectory. 

Generation occurs at run time; in the most general case, position, velocity, 

and acceleration are computed. These trajectories are computed on digital 

computers, so the trajectory points are computed at a certain rate, called the 

path-update rate. In typical manipulator systems, this rate lies between 60 

and 2000 Hz [1]. 
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4.2 Cubic polynomials 
 

Consider the problem of moving the tool from its initial position to a goal 

position in a certain amount of time. Inverse kinematics allows the set of 

joint angles that correspond to the goal position and orientation to be 

calculated 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Several possible path shapes for a single joint. 

 

 

The initial position of the manipulator is also known in the form of a set of 

joint angles. What is required is a function for each joint whose value at t0 is 

the initial position of the joint and whose value at tf is the desired goal 

position of that joint. As shown in Fig. 4.1, there are many smooth functions,
( )t , that might be used to interpolate the joint value. Several possible path 

shapes for a single joint. In making a single smooth motion, at least four 

constraints on ( )t are evident. Two constraints on the function's value come 

from the selection of initial and final values: 
 

 

(0)

( )f ft

 

 




                                                (4.1) 

 

 

An additional two constraints are that the function be continuous in velocity, 

which in this case means that the initial and final velocities are zero: 
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(0) 0

( ) 0ft







                                                              (4.2) 

 

These four constraints can be satisfied by a polynomial of at least third 

degree. These constraints uniquely specify a particular cubic. A cubic has the 

form 
 

 

2 3

1 2 3( )t a a t a t a t                                           (4.3) 

 

 

So, the joint velocity and acceleration along this path are clearly 
 

 

2

1 2 3

2 3

( ) 2 3

( ) 2 6

t a a t a t

t a a t





  

 
                                             (4.4) 

Solving these equations for the ia we obtain 
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

 



                                                    (4.5) 

Using Eq. 4.5, we can calculate the cubic polynomial that connects any initial 

joint angle position with any desired final position. This solution is for the 

case when the joint starts and finishes at zero velocity. 
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4.2.1   Cubic polynomials for a path with via points 
 
So far, we have considered motions described by a desired duration and a 

final goal point. In general, we wish to allow paths to be specified that 

include intermediate via points. If the manipulator is to come to rest at each 

via point, then we can use the cubic solution of Eq. 4.3. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Via points with desired velocities at the points indicated by 

tangents. 
 

 

If desired velocities of the joints at the via points are known, then we can 

construct cubic polynomials as before; now, however, the velocity constraints 

at each end are not zero, but rather, some known velocity 

 

(0)

( )f ft

 

 



                                                           (4.6) 

 

Solving these equations for ia  then we obtain  
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Chapter 5 

 

Simulations and Results 
 

5.1 Introduction 

Each controller discussed in this chapter will contain the simulation results 

for: the error between the desired and actual actuated joint angles, the 

location of the desired and actual end effector trajectory in Cartesian space 

along with their respective positional output error and the overall system 

torque required to achieve the actual results. A preliminary conclusion will 

then be drawn based on the pros and cons of each control technique. 

 

 

 

5.2 Modeling Multi-body Systems 

SimMechanics tool enables you to create libraries of components that can be 

reused in many different designs. You define bodies in terms of their mass, 

inertia, and connection points. To create complex shapes, you assemble sets 

of simple geometries, such as spheres, cylinders, and extrusions defined in 

MATLAB, and SimMechanics calculates the resulting mass and inertia 

automatically. The diagram that defines the body clearly indicates all 

connections to the body, making it easy to see your system’s topology. 

Parameters such as length and mass can be calculated using MATLAB 

scripts and assigned using MATLAB variables. 

    You connect bodies using joints and constraints. These define the degrees 

of freedom permitted between the bodies in your system, which dictate how 

your system can move. You can define and connect actuators to these joints to 

enable your system to move. Actuating these joints with electrical, hydraulic, 

pneumatic, or other physical systems modeled using Simscape tool enables 

you to model your entire multi-domain physical system within the Simulink 

environment [13]. 

    You can import a CAD assembly into SimMechanics using SimMechanics 

Link. The mass and inertia of each part in the assembly are imported as rigid 

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/simscape/
http://www.mathworks.com/products/simulink/
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bodies in SimMechanics. Geometry from the CAD assembly is saved to 

geometry files and associated with the proper body in SimMechanics. The 

mate definitions in the CAD assembly are imported as joints in the 

SimMechanics model. 

For SolidWorks, Pro/ENGINEER, and Autodesk Inventor models, you install 

a plug-in that lets you save the CAD assembly as an XML file that can be 

imported into SimMechanics. For other CAD systems, SimMechanics Link 

provides an API that you can connect to the API of your CAD system.  

The SimMechanics Import XML Schema enables you to import models into 

SimMechanics from any CAD system or modeling environment that exports 

an XML file that follows this schema.  

 

 

 

5.3 DELTA Robot CAD Modelling 

As mentioned in the last section, delta robot designed in Autodesk Inventor. 

Table 5.1 summarizes the lengths, inertias and masses of the links and 

moving platform.  

 

 

Figure5.1: CAD model of Delta Robot 
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With the help of Autodesk Inventor program, the following tables were 

utilized.Table 5.1, describes the Mechanical Properties of Robot parts. Masses 

and inertia depends on the material type, so, for more flexibility and robot 

speed, I chose little weight materials in building the Robot architecture. 

 

Table 5.1: Delta Robot Mechanical Parts properties 

Mechanical Part Material Mass(kg) 

Upper Arm  Aluminum 1.58957 

Forearm Aluminum 0.0408236 

Moving Platform Echelon 0.110875 

 

Table5.2. summarizes the mechanical part lengths and offset translation 

between frame {Oc} and frame {Or} as described in Fig. 5.2. 

 

Table 5.2: Delta Robot 3-D dimensions 

D-Robot 

Dimensions 
Length(mm) Description 

Lf 185.032 Offset length from Frame {Oc} to Joint Ji. 

La 
334.058 

 

Length of the upper arm links. 

Lb 684.083 Length of the Lower arm links. 

Le 44 Offset length from joint Ci to point D. 

Lr 281.8 
Offset length from Frame {Oc} to frame {Or} 

in z- direction. 

  Ltcp 30 
Offset length in z-direction from D point to 

Center of Gravity of the moving platform. 
 

5.4 Dynamic Model of Delta Robot 

After exporting the *.XML file generated from Autodesk Inventor Program, 

Matlab Simulink tool converted the exported *.XML file to Simulink model as 

illustrated in Fig.5.2. 
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Figure5.2: Dynamic Model of Delta Robot 

 

From the above Fig. 5.2 , the Simulink model represents the three arms of 

the robot, each arm is forced with torque at each private joint, speed and 

position measurements  is calculated from each joint via joint sensors. 

The next figure illustrates the Simulink block diagram of single arm which is 

composed of Upper Arm, Forearms, and its actuated joint and passive joint. 
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From the single arm dynamic model figure, Fig. 5.3 , the upper tip of the 

upper arm is actuated by Joint actuator which is placed in place of DC motor 

model, where the recent one do the same job.  

 

  

 

 

 

 

 

 

 

Figure5.3: Single Arm Dynamic Model  

 

 

5.5   Model Linearization  

Linear analysis tool embedded in Matlab Simulink, can deliver the linearized 

model of the nonlinear MIMO Delta Robot system dynamics. For 

linearization process, this block diagram shown in Fig.5.4 is connected. The 

output linearized model is arranged as  
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X Ax Bu

Y Cx Du

 

 
                                               (5.1) 

Where A, B, C and D are the state space matrices.  

And where,
1

[ , ] [ , ]
2 1 1

x x q q , [ , ] [ , ]
3 4 2 2

x x q q , and [ , ] [ , ]
5 6 3 3

x x q q . Where 

,
i i

q q are the joint phase and joint angular speed respectively 
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5.5.1 Trimming and Linearizing Through Inverse 

Dynamics 

Trimming is determination of the forces/torques necessary to produce the 

specified motion. These motion states constitute a trim or operating point. 

Trimming problems can have one solution, more than one, or none. 

 

 

 

 

 

 

 

 

Figure 5.4: Inverse Dynamics DELTA Robot Model. 

 

Each DELTA Robot leg outputs the computed leg force needed to maintain 

the motion specified by the motion actuation. After simulating the previous 

model Fig. 5.4, the steady states Torques keeping the platform sill is, 

 

1
[ ] [2.128  2.128  2.128]

2 3
, ,     

 

5.5.2 Linearizing at an Operating Point 

Analysis tab in Matlab Simulink, linear analysis tool, introduces a simplified 

method for non-linear systems linearization. The state space result of 
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linearization at the operating point [2.128, 2.128, and 2.128] is stated in 

Eq.5.2 to Eq.5.5. 

 

Figure 5.5: Simulink Model for Linearization 

 

From Fig. 5.5, Linearization was according to position vector feedback. The 

output state spaces linear matrices A, B, C and D are, 

 

          

  

0 1 0 0 0 0

  0.6618 0 -4.6386 0 10.5497 0

0 0 0 1 0 0

0.1717 0 2.4943 0 0.8218 0

0 0 0 0 0 1

3.0516 0 4.9436 0 9.1532 0

A

 
 
 
 

  
 

 
 

  

          (5.2) 
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0 0 0

0.8109 15.5792 0.8109

0 0 0

3.6961 3.2042 6.9002

0 0 0

8.6789 4.5069 4.0151

B

 
 
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 
 

  
 
 
 
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                    (5.3)               

30.9897 0 40.9965 0 88.2854 0

57.2958 0 0 0 0 0

10.0065 0 100.6680 0 47.2894 0

C

  
 


 
   

           (5.4) 

0 0 0

0 0 0

0 0 0

D

 
 


 
  

                                  (5.5) 

 

 

5.6 Closed Loop Step Response 

In this Simulink model, is tested and the response of the robot tracking 

without adding of a controller to the system, the model and results are shown 

below in the next two figures, Fig 5.6 and Fig.5.7 
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Figure 5.6: Simulink Model with No Controller 

Figure 5.7: phase’s response at Joints q1, q2 and q3. 
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From the above figure , a concolusion was drawn that the MIMO Delta Robot 

Dynamics can not reach the desired trajectory without help of suitable 

controller. In the next sectin , the examines of  a calssical PID controller 

shown and illustrated in Fig.5.8.  

 

5.7 Classical PID Controller 

From Simulink library, a PID block is added to the Simulink model of my 

project. This block linearize the plat seen by PID controller and check the 

step response of the linearized plant. Fig.5.7 shows the Simulink model with 

PID controller. You must pay attention that PID controller block cannot 

linearize MIMO systems, therefore, one robot link was chosen for 

linearization and Control. After that, the result of the controller parameters 

was copied to the other two link controllers of Delta robot for actuation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Delta Robot Model with PID controller. 
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5.7.1 Joint Angles 

 
The following figures depict the error between the desired and actual joint 

angles of q1, q2, and q3 respectively. These are the only three angles directly 

controllable by the actuators of the parallel robot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: Joint Angle error for PID controller. 

It is crucial that the difference between the desired angles and the actual 

angles of q1, q2, and q3 be as small as possible, in order for the end effector 

error to be minimized. Fig. 5.9 displays a clearly overshoot, approximately 

15%. This value of overshoot is not desired in robotics in general. So, more 

tuned parameters are got to reach the minimum overshoot. The next table 5.3 

lists the values of PID parameters, KP, KI, KD, and N, which guarantee the 

closed loop stability, and ensures the lowest value for overshoot and error. 

 

Table 5.3: PID Controller Parameters 

Controller Parameters Tuned Values 

Kp 50 

ki 0 

Kd 3 

N 1000 

 

The step response of the moving platform where, (q1,q2,q3) = (-20, -20,-20). 
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Figure 5.10:  q1 Joint Angle for PD controller in Table 5.3. 

 

The constraint that ensured unbiased results was the fact that the motors 

utilized in the physical model of the parallel robot could output a maximum 

torque of 5 Newton meters. This will be confirmed in the subsequent torque 

plots. 

 

5.7.2 Controller Output - Torque    

The next figure illustrates the torque generated by the controller which will 

move the links to their actual position. The next figure, Fig.5.11, displays the 

output of PID controller during two seconds with PID parameters listed in 

Table 5.3.you must note that no actuator is considered in the previous 

Simulink model. Torque is already delivered by controller, in practical, this 

situation is not true. The next Simulink models will consider the servo motor 

actuators. 



66 
 

 

Figure 5.11: Torque output for PID controller for q1 Joint. 

 

5.8   Actuator Simulation 

For Delta robot mechanics, each joint is actuated with a highly geared DC 

servo Motors, their mechanical and electrical parameters are listed in table 

5.4. I got the help of SimDrive tool embedded in Matlab. The following Figure 

illustrates the Simulink model of DC motor with 31:1 gear ratio. 

 

 

Figure 5.12: DC motor with simple gear Model. 
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The following table, table 5.4, summarizes the expected DC motor 

parameters. 

Table 5.4: DC motor electrical and mechanical Parameterization 

Electrical Parameterization 

Armature Inductance (L) 1600e-6 

No-load Speed (rpm) 1200 

Rated Speed at rated Load (rpm) 100 

Rated Load (Mechanical Power/Watt) 75 

Rated DC Supply Voltage(V) 24 

Rotor Damping Parameterization 

No-Load Current (I) 0.2 

DC Supply Voltage When Measuring 

No-Load Current (V) 
1.5 

Mechanical Parameterization 

Rotor Inertia (kg*m^2) 2.5e-5 

Gear Ratio  31:1 

Gear Inertia (kg*m^2) 0.05 

 

For testing the behavior of the actuator dynamics, the next figures, Fig.5.13 

and Fig. 5.14, illustrates the voltage step response for speed and torque, with 

no load. Fig.5.13 illustrates the voltage step response of the geared DC motor, 

with gear ratio 10:1. The dashed curve in Fig.5.13 shows the rotor speed. And 

the other curve shows the gear’s shaft speed.  
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Figure 5.13: rotor’s shaft speed V.S gear’s shaft speed for DC Motor 

 

 

 

Figure 5.14: rotor’s shaft torque V.S gear’s shaft torque for DC motor.  

From Fig. 5.13 and Fig. 5.14, we notice that, 

1
f B

f B

w r w

r 





                                                    (5.6) 
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Where WF, TF is the gear’s follower angular speed and torque respectively, 

and WB, TB  is the gear’s base angular speed and torque respectively. And r is 

the gear ratio. 

 

5.9 Actuated DELTA Robot Simulation 

In the previous Simulink models, that torque generation is considered to be 

the duty of the controller, but, in practical, the controller generates PWM 

voltage varies from 0 volt to + 5 volt, which are the Microcontroller voltages. 

H-bridge circuit amplifies the input PWM voltage and actuates the DC motor 

directly. Each link is energized with highly geared servo DC motor. Fig.5.15, 

illustrates the PWM voltage-based Simulink model. 

Figure 5.15: Linearized Delta Robot model with DC motor Actuators. 

 

You can see from Fig. 5.14 that the motor block gets the voltage as an input 

and generates mechanical torque. 

 

5.9.1 Joint Angles 

Addition of a DC motor models in the simulink model , pushed me to re-tune 

PID parameters to get the optimal one approximately. As shown in the next 

table. 
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Table 5.5: PID controller parameters 

Controller Parameters Tuned Values 

Kp 90 

ki 35 

Kd 2 

N 1000 

 

Figure 5.16: voltage pulse train Response for joint qi. 

 

The other two joints have the same response, because the step input is in the 

z direction.  

 

5.10   Trajectory Generation 

The end effector of the three degrees of freedom parallel robot was simulated 

to follow a circular trajectory based on the implementation of the desired 

controller. The tracking speed utilized is defined by the angular velocity 

formula: ω = 2πf, where f is the tracking frequency of the end effector. The 

origin of the circle based on the Cartesian coordinate system in millimeters is 

defined as (0, 0,z0), where the distance of travelling in z- direction .the radius 
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of the circular trajectory is 100 millimeters and the frequency implemented is 

0.5 Hertz. It should be noted that the trajectory defined in this report never 

impedes or approaches any singular point. 

    

The next Simulink model generates a circular path trajectory in the x-y 

plane. 

Figure 5.17: Circle path trajectory model. 

 

 

 

 

 

  

 

Figure 5.18: output circle for model in Fig.5.17 

 

5.11   End Effector Trajectory 

The next set of figures portrays the trajectory tracking of the end effector 

along with its respective error between its desired and actual position. In 

order to determine the actual location of the end effector, equations (2.7) and 

(2.10) were employed to solve for q1, q2 and q3 respectively. The Inverse 

kinematics equations were then applied based on all the available data to 
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definitively determine the actual location of the end effector in Cartesian 

coordinates. The results from the joint angles of q1, q2 and q3 play a crucial 

role in the determination of the actual location of the end effector, since a 

small angular error would not cause a large deviation when compared to the 

desired trajectory. The plots of the end effector error in the x-axis and y-axis 

are shown in order to easily identify the severity of the absolute accuracy. 

 

The next Simulink Model illustrates the End effector tracking for a circle lies 

on X- Y plane with radius r= 100 mm. 

 

 

Figure 5.19: Circle Path Trajectory for DELTA Robot. 

 

 

The next figures display the End Effector error on x-axis, y-axis and z-axis 

and display the End Effector trajectory. 
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Figure 5.20: End Effector Trajectory for PID Controller. 

 

 

 

 

 

 

 

 

Figure 5.21: End Effector Trajectory error on x-axis for PID Controller. 
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Figure 5.22: End Effector Trajectory error on y-axis for PID Controller. 

 

Figure 5.23: End Effector Trajectory error on z-axis for PID Controller. 
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5.12    Model Predictive Controller (MPC) 

           Simulation 

 

Model Predictive Control Toolbox™ provides tools for systematically 

analyzing, designing, and tuning model predictive controllers. You can design 

and simulate model predictive controllers using functions in MATLAB® or 

blocks in Simulink®. You can set and modify the predictive model, control 

and prediction horizons, input and output constraints, and weights. The 

toolbox enables you to diagnose issues that could lead to run-time failures 

and provides advice on changing weights and constraints to improve 

performance and robustness. By running different scenarios in linear and 

nonlinear simulations, you can evaluate controller performance. You can 

adjust controller performance as it runs by tuning weights and varying 

constraints. 

In the next Simulink Model, I will test the MPC controller on a linearized 

model for DELTA robot and comparing the output results with the previous 

PID controller outputs. 

Figure 5.24: MPC Controller based – DELTA Robot Simulink Model 
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5.12.1 Joint Angles 

The following figures depict the error between the desired and actual joint 

angles of q1, q2, and q3 respectively using MPC Controller.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25: Joint q1 Trajectory error for MPC Controller. 

 

 

 

 

 

 

 

 

 

Figure 5.26: Joint q2 Trajectory error for MPC Controller. 
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Figure 5.27: Joint q3 Trajectory error for MPC Controller. 

 

 

We can notice that MPC controller gave the same results of PID controller 

approximately. Then, a great contribution added at the response of DELTA 

robot. Robot arms are highly geared; this reason let the robot to be more 

robust. 
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5.13 Recommended Controller 

 
The true decision for choosing the suitable controller between PID and MPC 

controllers which satisfy the desired criteria is taken after running the next 

Simulink model, as shown in Fig 5.28 

 

 

 

 
 

Figure 5.28: Linearized Delta Robot Model with PID and MPC Controllers. 

 

 

The values of PID parameters which are choose in the previous Simulink 

model, listed in the following table 5.6. 

 

 

Table 5.6: PID controller parameters 

Controller Parameters Tuned Values 

Kp 15 

ki 90 

Kd .5 

N 2000 
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Fig.5.29, illustrates the result of q1  joint response with input angle value 

equal 10 degrees.  

 
Figure 5.29: q1 Joint Responses with PID and MPC Controllers. 

 

 

The following table, compare the output results for q1 joint responses with 

PID and MPC Controllers. 

 

 

Table 5.7: Comparison table between PID and MPC controller responses 

Response 

Characteristic 
PID Controller MPC Controller 

Overshoot (%) 5.3% 0% 

steady state error 0 0 

Settling Time (sec.) 0.1 0.12 

 

 

We can conclude that the joint response has no overshoot value with MPC 

controller comparing with PID controller as illustrated in Table 5.7. 
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5.14 Simulation Discussion 

 
The final purpose of Simulink simulation is to test path tracking response of 

DELTA robot. Building the Nonlinear Dynamic Model using Autodesk 

Inventor program was the easiest solution to model the robot. Real and not 

approximated parameters were introduced via CAD dynamic Modeling which 

is one of the advantages of CAD modeling, but in the other side, the 

simulation speed is low. The simulation speed of Mathematical dynamic 

Model is more rapid than CAD dynamic model. Low simulation speed is 

annoying problem. 

SimMechanics tool introduced an easy way to actuate robot joints by joint 

actuator block. Sensing computed torque, angle, angular speed, and 

acceleration was by joint sensor. Sensing of Cartesian coordinates of the 

moving platform was by Body sensor, which facilitated the process of 

simulation. 

DELTA robot needed a high precision controller to control it, PID and MPC 

controllers were added. At the output of these two controllers, the output 

torque command was limited, because that Servo DC motors attached at each 

actuated joint generate a limited torque. PID parameters in Table 5.6 were 

optimally tuned by desired response block in Matlab Simulink. Fig. 5.28 

shows that, with PID Controller and at an input angle of 10 degrees, DELTA 

robot upper arm can rotates with no steady state error and no overshoot 

when MPC controller is applied. But the value of an overshoot reached to 

5.3% when PID controller was applied. Each of PID and MPC controllers 

guaranteed no steady state error as shown is Fig. 5.29. 
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Chapter 6 

 

Conclusion and Future Work 

  
8.1 Conclusion 
 
The purpose of this thesis was to compare the simulation results of the non-

adaptive PID and MPC controllers; MPC is the most suitable control 

technique to employ on the 3DOF Parallel DELTA structure. A summary of 

the differences between serial and parallel robot structures introduced the 

background of robotics, while the literature review provided a detailed 

account of the beginning of robotics. 

  The 3DOF Parallel DELTA robot was introduced and modeled using 

SimMechanics Matlab Tool, inverse kinematics and non-singular region in 

order to adequately define the parameters of the non-linear system. The 

derivations of the two controllers were solved to ensure stability of the closed 

loop system. This led to the simulation of the PID and MPC controllers in 

MATLAB to analyze whether the actual circular trajectory could 

satisfactorily track the desired circular trajectory. Once this task was 

completed, the electrical and mechanical design of the physical parallel robot 

structure was discussed in detail.  The two controllers attained accurate end 

effector tracking results without compromising the amount of computation 

time and control effort usually found in more complex control techniques. It is 

highly recommended that the PID controller be utilized in various parallel 

robot structures to determine if similar results can be achieved, moreover, 

PID controller is easy to implement in Microcontrollers, familiar with us. 

  Finally, the proposed model in this thesis will open the road to master 

students who wish to continue their graduate study in the field of motion 

precision of the moving platforms of control systems. 
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8.2 Future Work 
 
Each of PID and MPC controllers has proved the stability of the DELTA 

Robot, but the design was under the assumption that Mechanical parameters 

are certain, uncertainty is not considered in this thesis. The performance of 

the MPC and PID controllers can be improved if we designed adaptive 

controllers. 

I started in building of DELTA robot structure, Experimental results and 

path trajectory tracking tests will be applied at real DELTA robot for 

validating these results with simulation results. 
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