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The same experiment which at first glance seemed to show one thing, when more carefully
examined, assures us of the contrary.

Galileo Galilei

Discourses and Mathematical Demonstrations Relating to Two New Sciences (1638)
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ABSTRACT

Healthcare associated infections are a considerable burden to the health care system.

The affected patients have their prognosis worsened and demand more resources from hospi-

tals. Furthermore, the bacteria causing these infections are becoming increasingly resistant

to antibiotics while also becoming more deadly and contagious. Contributing with knowl-

edge for stopping these infections is, therefore, important.

This thesis reports on two projects centered on data collected at the University of Iowa

Hospital and Clinics. The first project consisted in analyzing data collected by sensors that

reported the location and hand washing behavior of health care workers. After extracting

meaning from these radio signals, I studied two socially and epidemiologically relevant tasks:

the inference of contact networks, which can be used to study the spread of infections in the

hospital, and the study of associations between social pressure and hand washing, learning

that effectively workers in proximity to others wash their hands more, but also that not all

workers are as influential.

In the second project, I developed a data mining method for analyzing medical records

aimed at tackling the problems of class imbalance and high dimensionality, and applied it

to predicting Clostridium Difficile infection. The learnt models performed better than the

state of the art and even improved prediction as the onset of symptoms approached. The

main contribution, however, was in the information discovered: certain events in certain

orders increased the risk of developing the infection, suggesting that reversing these orders

could improve prognosis.
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PUBLIC ABSTRACT

Every day, patients get admitted to hospitals for medical attention, but sometimes they

get something else: a bacterial infection. As a result, the affected patients become less

healthy and require more resources from the hospital. Furthermore, the bacteria causing

these infections are becoming increasingly resistant to antibiotics while also becoming dead-

lier, more contagious, and increasingly harder to kill, making most prevention efforts fall

short.

I analyzed data collected at the University of Iowa Hospital and Clinics to discover

knowledge that can help health care workers understand and contain these infections. More

precisely, I used computational methods for discovering information that would be difficult

to elucidate otherwise.

I report two projects in this thesis. In the first, I analyzed data collected through a

network of wireless sensors on movement and hygienic habits of workers in a hospital unit.

I learned information for building "contact networks", which can help study the spread of

infections, and found evidence that workers wash their hands more when coworkers are

nearby.

In the second project, I developed a method for analyzing medical records for predicting

whether patients will develop the infection caused by the Clostridium Difficile bacterium,

while also learning which clinical events (for example, operations, prescriptions) put patients

at risk. I discovered that some events increase risk if they occur in a specific order, and

that high risk patients can be identified on admission.
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CHAPTER 1

INTRODUCTION

HAIs represent a significant burden to healthcare provision. In the US alone, about

2,000,000 patients acquire HAIs every year, resulting in nearly 100,000 deaths per year.

Since several of these infections are contagious, researchers have been studying how epi-

demic outbreaks occur within healthcare facilities, and how to prevent or stop them. With

the increasing availability of interaction data and means to analyze it, researchers have

turned to contact network epidemiology. Contact network epidemiology, or simply net-

work epidemiology, consists in the study of epidemics in populations represented as graphs

or networks. It came as a novelty with respect to the previous methods (compartmental

models, e.g., the SIR model) because it allowed for the integration of complex interactions,

a better understanding of the progression of epidemics, and the possibility of evaluating

the effectiveness of targeted vaccination [56, 78], which were impossible with the previ-

ous epidemiological models. Also, network epidemiology received great attention from the

larger community of complex networks, as epidemic processes are analog to percolation and

connected component formation, and vaccination is highly related to network resilience [88].

In this thesis, I reported on two projects centered on data collected at the University of

Iowa Hospital and Clinics. The first project consisted in analyzing data collected by sensors

that reported the location and hand washing behavior of health care workers, an effort taken

by previous members of the compepi group [101, 115, 48]. I analyzed the recorded radio

signals to determine location information of healthcare workers and hand washing, a task

that involved a great amount of data preprocessing [82]. After making sense of this data,

I studied two epidemiologically relevant tasks associated to human behavior. In the first, I

studied the problem of link prediction for the inference of contact networks, with the aim of

predicting when a working will come in contact (close proximity) to others based on whom

they are usually in contact with [81]. This information can be used to build and simulate

contact networks, which can be used to study the spread of infections in the hospital, a

body of research known as contact network epidemiology. This work also served to validate
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previous research carried in the compepi group by Curtis et al [16].

Having contact network data is essential for proper network epidemiology. Random

graph models, which often offer close-form solutions to epidemiological questions, only ac-

count for simplistic interactions. For more general networks, however, there are not simple,

general solutions; as a fact, finding the probability that an individual gets infected during

a SIR outbreak, and related questions, such as estimating the epidemic size, are NP-hard

[107]. This enhances the importance of having real data to study custom situations. His-

torically, however, there has been little data of intra-hospital contact networks. Due to the

unavailability of data, early studies used synthetic network models to study the spread of

infection [79, 56, 78]. In spite that contact network epidemiology was proposed more than

30 years ago [45], it has been only in the recent years (mostly since 2011) that research

groups started measuring detailed contact network data to study the transmission of in-

fection [118, 50, 5, 74, 59, 4, 75, 120, 36, 19, 60], an effort joined by the compepi group

[18, 17, 102, 81, 48, 82, 16, 83].

The other problem I addressed with this data was the study of associations between

social pressure and hand washing. By doing so, I found that workers in proximity to others

wash their hands more, but also that not all workers were as influential [83]. Hopefully, the

results of this research will inform the design of new guidelines to increase hand hygiene

adherence.

In the second project I cover in this thesis, I address the problem of using data collected

by the hospital (electronic medical records) to measure the risk of developing Clostrid-

ium Difficile infection (CDI). CDI occurs when Clostridium Difficile, an antibiotic resistant

bacterium, colonizes the intestines of a patient, leading to severe diarrhea and intestinal

damage due to the toxins released by the bacterium. In the worst cases, CDI may turn

into toxic megacolon (the colon enlarges dramatically due to inflaction), which may require

surgery, and even death. For this project, I extended an existing database which contained

clinical, architectural, and computer usage data, that was initiated by previous members of

the compepi group [18, 17, 102, 16].
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For the problem of predicting CDI, I developed a data mining method aimed at tack-

ling the problems of class imbalance and high dimensionality, and applied it to predicting

CDI. The developed method consisted in building an ensemble of logistic regression models

that, far different from existing developments, perform feature selection at the individual

classifier level as opposed to the ensemble level. The models resulting from this methodol-

ogy performed better than the state of the art models. They also improved prediction as

the onset of symptoms approached, i.e., produced dynamically changing risk curves of the

development of CDI. The main contribution, however, was in the information discovered:

certain events in certain orders increased the risk of developing the infection, suggesting

that reversing these orders could improve prognosis.

The overall line connecting my work has been the application of computational meth-

ods to epidemiological problems (i.e., computational epidemiology). So far, the most related

discipline is biostatistics, which is concerned on analyzing data medical and public health

data. So, there is room for the use of computational methods for analyzing such data,

especially if they involve data that does not follow the usual statistical assumptions, such

as radio signals, that follow the usual representations, such as dynamic networks and tem-

porarily organized events (and partial orders), or falls in the big size or high dimensionality

domain. Thus, perhaps, there is need for more research in computational epidemiology for

the improvement of the quality of healthcare provision.

I left out of my dissertation the early research on syphilis in the US [84] and results

regarding to my previous research [80], because they are outside the theme of my current

work.
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CHAPTER 2

THE MICU SENSOR NETWORK DEPLOYMENT

2.1. Introduction

To measure both the interactions between healthcare workers and hand hygiene adher-

ence (tightly related to in-hospital epidemics), the compepi group deployed a wireless sensor

network in the 20-bed Medical Intensive Care Unit (MICU) of the UIHC from June 1 to

June 10, 2011 [81, 82]. We continuously measured healthcare worker location information

as well as their proximity with respect to each other, and recorded alcohol dispenser usage.

The collected data tells a story of contact patterns within the MICU, interactions between

healthcare workers and patients, hand hygiene adherence, and how the proximity to other

workers affected this adherence. The experiment was a follow-up to a previous, similar

deployment by the compepi group in the same unit during 2010 [48].

To keep in mind, by hand hygiene adherence we mean the likelihood healthcare workers

washed their hands at the specific moments they should do so. Guidelines for hand hygiene

state that workers must comply with these rules to prevent the spread of infection. The

moments at which the worker must wash their hands are called opportunities in the liter-

ature. The opportunities we are concerned with are the moment before entering a patient

room, and the moment right after exiting that room. These two opportunities, which we

call at entry and at exit, are the opportunities mentioned in the guidelines of the CDC.

In this chapter, I recount my work related to processing the signals recorded in the

2011 deployment. This work has lead to several publications [81, 82, 83]. Still, some of the

developments presented here have not taken part in publications.

2.1.1. The MICU sensor network deployment

(Adapted from [83].) We deployed a wireless sensor network to measure interactions be-

tween HCWs (e.g., close proximity contacts), their individual location (e.g., “inside patient

room”, “in hallway”, “at nurses’ station”, etc.) and hand-hygiene activity (i.e., alcohol dis-

penser usage) in the Medical Intensive Care Unit (MICU) of the University of Iowa Hospital
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and Clinics (UIHC) for 10 consecutive days. This sensor network consisted of small pager-

sized wireless sensors or motes. These programmable, battery-powered devices consist of

a small processor with flash memory and an IEEE 802.15.4-compliant wireless radio. We

programmed the motes to broadcast a brief message every 7 to 12 seconds. When received

by other motes within range, these messages encode the unique identifier of the sender

mote, the received signal strength index (RSSI) associated with the message (a proxy for

distance, as RSSI increases with proximity), and the time the message was received. These

data were recorded in the flash memory of the receiving mote for later analysis. The motes’

radios communicated through an unused portion of the Wi-Fi spectrum to avoid interfering

with medical equipment.

Our wireless sensor network consisted of stationary sensors or beacons, and wearable

sensors or badges. Beacons were placed inside all 20 patient bedrooms as well as outside

rooms (e.g., in hallways, at nurses’ stations) throughout the unit, as depicted in Fig. 2.1.

This spatial grid of sensors served to locate workers in the unit from the collected data.

Beacons also included instrumented alcohol dispensers that broadcast messages whenever

their pumps were used. We only instrumented and considered alcohol dispensers located

immediately outside every room, ignoring the dispensers sporadically located within patient

rooms.

Badges were worn by HCWs and were collected from and distributed to workers at the

beginning of each shift. HCWs were divided into three different job types:

1. Doctors: staff physicians, fellows and residents;

2. Nurses: MICU nurses, nurse assistants and nurse managers; and

3. Critical-care support: clerks, pharmacists and respiratory therapists.

Badges were assigned randomly to workers within each job type, ensuring that individual

workers could not be identified, and workers could not be tracked across different shifts.

The different types of sensors nodes used are depicted in Fig. 2.2.
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Figure 2.1: Placement of all the sensors in the MICU, June 2011. Symbols: trian-
gles represent pyramids, circles represent alcohol dispensers, and squares represent
door minders. Darker symbols represent in-room sensors. Floor patterns: patient
bedrooms are chess-tiled, worker spaces (nurse stations and physician workrooms)
are diagonal-stripped, corridors are white, and unmeasured areas are dark shaded.

Since the deployment was part of a process-improvement project and no patient infor-

mation was collected, it was ruled non-human-subjects research by the University of Iowa’s

Institutional Review Board.

2.1.2. Completed research

My work on processing and analyzing the sensor data consists in three well separated

parts. First, I gave considerable attention to preprocessing the data, so any analysis done

on it is meaningful. The data collected from the sensors suffered from strong variability,

noticeable biases, and absence of tagged ground truth dataset.

The second part consisted in the problem of predicting, using room entry information,

whether healthcare workers were in contact (close proximity). This work came to validate

previous work done in the compepi group.

And the third part consisted in the study of the presence of peer effects with respect to

hand hygiene in the unit, i.e., whether proximity to other healthcare workers had any effect

on the proneness to wash hands. And we found evidence of such effects.
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Figure 2.2: Sensors used in the deployment: (a) Crossbow’s Telos-B mote, (b)
badges in 3 different angles, (c) the color of the badge’s label indicates job type,
(d) listener mote, (e) pyramid (beacon), (f) soap/alcohol dispenser (beacon).

2.2. Similar experiences

Few works have used contact networks generated from sensor network data in healthcare

settings. The SocioPatterns research group has done extensive work on this. They have

collected network data from: 1 week in a pedriatic ward [50, 75, 36], 4 days in a geriatric

unit [120], and 3 months of 50 rooms in two hospitals [74]. The other deployments were

the ones performed by the compepi group in the MICU of the UIHC, first in 2010 [48] and

later in 2011 [81, 82, 83].

There is little literature on experiences in processing data from such deployments.

Kazandjieva et al reported difficulties associated to sensor malfunction due to human fac-

tors, and ordered the recorded data by time using reference orders instead of clock syn-

chronization [55]. Cattuto et al deployed a network of sensors that could not transmit
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further than 1-1.5 meters, which limited and simplified data processing [50, 120]. Friggery

et al deployed a sensor network more similar to ours, but used a simplified visit detection

algorithm [32, 74].

2.3. Processing the data

2.3.1. Main challenges raised by the data

One of the salient features of the RSSI values collected was their high variability. Using

moving averages seemed unsuitable given that the sample rate was 8 seconds, time much

larger than the one needed by a normal person to move enough to completely change the

RSSI values.

Secondly, the RSSI values in reciprocal communication (from A to B and from B to

A) seemed to suffer from consistent biases, as shown in Fig. 2.3. This ultimately meant

that the RSSI values were in different scales, in other words, that the relation of RSSI and

distance was different across different motes.

The final challenge, and the most important one, was the unavailability of experimental

data on RSSI values at different distances that would allow a characterization of RSSI

values, variability and all, changing with distance (especially at short range). Indeed, such

data was missing, which also implied the need to calibrate the RSSI values using the main

experiment’s data. Still, we had data on RSSI values from the bedmotes for when the

badges were inside a room.

I first address the problem of calibration, then move to the variability issue (designing a

filter), and finally address the problems associated to RSSI and distance (detecting contacts,

when a worker visited a room, etc.).

2.3.2. Calibration (normalization) algorithm

(Adapted from [82].) The RSSI calibration procedure starts from the simple model

xAAB(t) ≈ sAxAB(t),

where xAAB are the RSSI read by A and sent from B, xAB are the ideal RSSI values (unbiased
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Unbiased

Biased

Figure 2.3: RSSI in reciprocal communication. The three plots a the top depict
nearly symmetrical readings while the three plots at the bottom depict asymmetri-
cal readings. The dotted red lines illustrate the bias (inclination) of the reciprocal
readings and the dotted purple lines illustrate the identity line (in the biased plots).

and, thus, symmetric, i.e., xAB(t) = xBA(t)), and sA is the scaling bias of badge A. This

model states that the RSSI values read by a badge are biased by a multiplicative factor.

The model is inspired by the data (see Fig. 2.3).

If the model is approximately correct, then we can estimate sA/sB by computing the ra-

tio αAB =
〈
xAAB(t)

〉
/
〈
xBAB(t)

〉
(〈◦〉 denotes average) and we can estimate sA/sC indirectly

as
sA
sC

= sA
sB

sB
sC
⇒ αAC ≈ αABαBC ,

an estimation which can be improved by taking the average over all intermediate badges

α̃AC = 1
n

∑
B

αABαBC ,
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where n is the number of intermediate badges.

Estimating the ratios αAB through α̃AB allows us to estimate the ratios that we cannot

compute directly from the data. Our calibration procedure requires knowing all the ratios

αAB. Thus, the quality of the estimation α̃AB is relevant, and we assessed it through

experimentation.

The following calibration algorithm is an immediate consequence of this empirical prop-

erty. First, we compute all ratios αAB =
〈
xAAB(t)

〉
/
〈
xBAB(t)

〉
. Then, for all pairs A,B

such that αAB is missing, we estimate αAB through α̃AB. Once every αAB is computed,

we proceed to compute constants αA = 1
n

∑
B αAB, n being the number of badges. Then,

replace the RSSI values xAAB(t) by xAAB(t)/αA. All the RSSI will be in the same scale.

The rationale behind the above is very simple. If αAB = sA/sB, then αA = 1
nsA

∑
B s
−1
B .

Thus, αA = αsA, αB = αsB, etc., for α = 1
n

∑
A s
−1
A . Then, we have that xAAB(t)/sA =

xAB(t)/α. Since all readings become proportional to the ideal readings through the same

scaling factor α−1, all the readings are in the same scale.

2.3.3. RSSI smoothing

(Adapted from [82].) The objective of applying filters to proximity-related RSSI values

is two-fold: to produce continuous estimates of RSSI values and to reduce their variability.

Signal strength attenuates with both distance and obstacles such as the human body.

We would like to reduce the effect of obstacles as much as possible. So far, we can only

identify when communication was blocked when a very low RSSI value or missing reading

was preceded and followed by large RSSI. For example, RSSI = 40 (−60 dBm) surrounding

a missing reading represent walking 40 to 60 meters in 16 seconds, unless communication

was blocked. In general, we would like to ignore quick reductions in signal strength. At the

same time, high RSSI values are more reliable than the rest, because they can only occur

in close proximity.

Our approach consists in estimating xAB(t) through a weighted moving average of RSSI

observations. We consider observations within a time window of 60 seconds around time t,

i.e. in the interval [t − 30, t + 30]. We prioritize observations according to their proximity
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in time to t and according to their relative magnitude with respect to the surrounding

observations.

Let xτ be an observation (RSSI) taken at time τ and let S(t) = {xτ : t−30 ≤ τ ≤ t+30}

be the set of observations associated to the time window [t− 30, t+ 30]. Now, let us define

the temporal weights ωT (∆t) as:

ωT (∆t) = 1
a+ ∆t2 ,

where a is a tuning constant. From this definition, we proceed to define the moving average

filter A(t) as:

A(t) =
∑
xτ∈S(t) xτωT (t− τ)∑
xτ∈S(t) ωT (t− τ) .

Filter A(t) defines the local magnitude of the set of observations S(t).

The temporal weights ωT (∆t) configures how much an observation weights when it is ∆t

time away from time t. We chose a so that an observation 15 seconds away from t weights

50% of an observation at time t; thus, we chose a = 152.

Having defined the local magnitude, we define the relative magnitude of xτ as the

difference between xτ and A(t): ∆xτ (t) = xτ − A(t). This definition depends on both τ

and t, so an observation xτ has a diferent relative magnitude according to the different time

window in which it is used.

Now, let us give priority to observations according to their difference with respect to

the local magnitude. Let us define the magnitude weight ωM (x, t) as:

ωM (x, t) = b+ max(0, x−A(t)).

An observation below the local magnitude A(t) will receive a minimum weight b. We have

chosen b = 42 because filter A(t) is very local, and any deviation from it appears significative.

We now introduce the full formula of our priority filter P(t). For this filter, we use both

the temporal and magnitude weights, and replace observations below the local magnitude
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A(t) with the local magnitude. We define P(t) as:

P(t) =
∑
xτ∈S(t) max(xτ ,A(t))ωT (t− τ)ωM (xτ , t)∑

xτ∈S(t) ωT (t− τ)ωM (xτ , t)
.

Note that, if constant b of ωM is adjusted accordingly, this filter is commutative with

increasing linear transformation applications on xτ . Thus, our calibration methods work

both before or after application of this filter.

This filter has a strong weakness: it fails to provide reasonable estimation in the presence

of strong packet loss. This can be fixed, however, by introducing false zero observations to

set S(t). Using the modified S′(t) = S(t) ∪ {x̂t−30 = 10, x̂t+30 = 10} instead of S(t) should

suffice. This way, the false observations will have an effect when there are few readings in

the interval [t− 30, t+ 30].

2.3.4. Detection of hand washing

(Adapted from [82].) Alcohol dispensers sent three signals in a row whenever someone

pressed their pump. Also, it was normal for several healthcare workers to be around a

dispenser when an activation occurred. All this led to redundant replication of dispenser

signals in the data.

A simple solution to this problem consisted in matching received signals to dispensers,

and considering all signals occurring in succession to come from the same activation. Given

the slight differences in clock synchronization among the badges, a window of 10 seconds

was chosen. The activation event was then assigned to the badge that read the highest

RSSI.

Still, some activations were associated to very low RSSI values. These activation very

are unlikely to have been caused by healthcare workers carrying badges. We had to choose

a threshold RHMIN below which we would ignore these signals. The fact that there were

activations caused by people not participating in the experiment meant that we would have

to deal with false activations that we could not get rid of. Fortunately, the distribution of

detected dispenser events by RHMIN suffered a distortion in the range [36, 40] (it is a bell

that grew a second, small mode), so our a priori choice is RHMIN = 38.
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(a)

(b)

Figure 2.4: Key insets from the technical specifications of the CC2420 radio. Inset
(a) shows that RSSIs are internally shifted from signal strength (dBm) using an
additive constant that varies by device (but is around 45), and inset (b) shows the
output power of the antenna for different configurations.

2.3.5. The RSSI-contact threshold

(This subsection contains unpublished work, but it informed [83].) I wanted to detect

whether two healthcare workers were in close proximity to each other, but there was no

reference to RSSI and distance in the experiments. So, I went through some published

experiments to determine a threshold: RSSI = 35 roughly means a distance of 4 meters.

The Telos-B mote uses a CC2420 radio [100]. The CC2420’s technical specifications

state that the RSSI values received from the antenna are the signal strength plus an additive

constant (Fig. 2.4-(a)) and that the output power is customizable (Fig. 2.4-(b)) [3].

The TinyOS code written for the motes sets the RSSI offset to −30 (signal strength

was subtracted 30). It also states that the saved RSSI values were added 60 to make them
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positive and that the power level was 15 (output of −7 dBm). Combined, the first two

facts state that our RSSI can be transformed to dBm just by subtracting 100. The third

fact states that, after transforming our RSSI values to dBm, we still need to add 7 dBm to

them to make them comparable to the figures in literature (as they are normally reported

with an output power of 0 dBm).

It has been reported that at a separation of 4 meters (13 feet) between the antennas,

signal strengths range between -50 to -55 dBm [100] and between -47 to -61 dBm [9] for an

output power of 0 dBm. The intervals are [38, 43] and [32, 46] in our scale. In light of this,

a value of 35 dBm seems relaxed enough to pick most interactions at around 4 meters.

2.3.6. The RSSI-room threshold

(This is unpublished work.) Before the sensor network measured the interactions in the

MICU, a researcher (Phil) walked around the unit carrying three badges, entering into each

room with a bedmote for a few (2 to 5) minutes. We could then use this data to find the

RSSI value at which we can determine when a worker was inside a room.

I used the following procedure to determine the threshold at which a worker is definitely

inside a room. To ease the presentation, let us suppose that we are working only with one

badge and one bedmote. My idea was to determine the interval of time the badge was

inside the room by testing when RSSI ≥ RIN (a threshold). If the duration of the interval

is consistent with the few minutes reference, then the threshold RIN determines when a

badge is inside a room.

Given the variability of the readings, I am interested in the first and last time RSSI ≥

RIN to define an interval. Let us call rt to an RSSI value obtained from a signal received

at time t. Then, let us define functions

left(x) = min{t : rt ≥ x}

and

right(x) = max{t : rt ≥ x}.
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These functions characterize the interval obtained using thresholds. Let us define the

duration function then:

duration(x) =


0, max{rt} < x

right(x)− left(x) + 8, ∼

This function returns the estimated duration of the interval when using the RSSI ≥ RIN

method. The +8 term is added because the sample rate is 8 seconds; if a value greater or

equal to, say, 60 was received only once, then left(x) = right(x) would make duration(x) =

0.

To measure how likely is such a threshold to accept RSSI when the badge is inside a

room, let us define the following functions:

histogram(x) = |{rt : rt = x}|,

which counts the frequency of RSSI values received, stratified by value, and

tail(x) =
∑
y≥x

histogram(x),

which counts how many RSSI were received above a value (tail distribution).

Fig. 2.5-(a) shows the duration function (interval bound) plotted against the tail and

histogram curves, which were multiplied by 8 to make them comparable, for bedmote 185.

For this plot, RIN = 74..52 reproduce the time inside the room. Ranges were also frequent

with other bedmotes, but they were slightly different. Values around 50 and 51 consistently

discovered the proper duration. By comparing the curves, we note that RSSI ≥ RIN only

1/4 to 1/5 of the time. This was also consistent with other bedmotes.

As stated previously, the RSSI from the bedmotes were comparable to each other. Fig.

2.5-(b) shows an experiment proving this; for each pair of bedmotes, I took all the readings

received from both of them in intervals of 8 seconds (e.g., (30, 45)), left the smallest RSSI
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Figure 2.5: RSSI and room thresholds. The plot compares the interval duration
with the number of RSSI received above the threshold (tail distribution and his-
togram curves).

(e.g., (30, 45)→ 30), and took the maximum of all those readings. For that pair of bedmotes,

a value of 30 means that there was a place both bedmotes sent RSSI of 30 or more at the

same time. Finally, I removed all the pairs of bedmotes with values smaller than 45. This

left the graph shown in Fig. 2.5-(b), which shows the adjacent bedrooms in MICU, granted

their bedmotes were working. This shows that their RSSI are comparable and that 45 is

too small to guarantee that a badge is inside a room.

2.3.7. Detection of room visits

(Adapted from [82].) We can guarantee that a badge is inside a room whenRSSI ≥ RIN .

However, a badge can still be inside if this condition is not met, because communication

can be easily blocked. Therefore, we needed a robust method for identifying a visit to a

room.

The solution I proposed uses three RSSI thresholds: one to determine a visit with

certainty (RIN ), another to determine when a worker was outside the room (ROUT ), and

the last one to determine when a worker was probably entering the room (RDOOR). There
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is also a threshold for the minimum amount of time (tMIN ) for a candidate visit so that it

can be considered as a real one.

The detection of a visit ocurred like this. Let us suppose that we are dealing with a

single badge and a single room, first. Let us suppose the badge is classified as out-of-room.

If RSSI ≥ RDOOR, then we badge may have entered the room (or be at the door), so

we remember the time this condition was met and transition to maybe-room state. Next,

if RSSI < RDOOR, then the state becomes out-of-room again. However, if eventually

RSSI ≥ RIN , then we say that the badge IS inside the room, so it enters the in-room state.

A visit ends when RSSI < ROUT . But the time set for when the visit ends is analogous

to the time the visit starts: it is the last time RSSI ≥ RDOOR was met. Naturally, we

also added the condition that a badge can only be inside the closest room. If the RSSI of

another bedmote was higher, then the visit had to end.

The thresholds chosen, in principle, were ROUT = 43, RDOOR = 49, RIN = 52.5,

tMIN = 16. However, we changed these values later, as the next subsection explains.

2.3.8. Hand hygiene adherence

(Adapted from [83].) We define a hand-hygiene opportunity as the event corresponding

to a healthcare worker entering or leaving a patient room. We associated an opportunity to

an alcohol-dispenser activation if the two events occurred within 30 seconds of each other

and were associated with the same badge (i.e., the same HCW). This informs our measure

of observed adherence, central to our work, which we define as the fraction of opportunities

associated with alcohol-dispenser activations, where both the opportunity and the activation

correspond to the same individual.

2.3.9. Consistency maximization

(This work was briefly mentioned in [83] without any reference to the details presented

here.) One can still have doubts regarding whether the visits are properly detected. Us-

ing different RSSI thresholds can easily lead to the splitting and destruction of the visits

detected, as well as changes in their duration. In fact, initially, there was a great mis-

match between opportunities and dispenser usage, leaving many activations unrelated to
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opportunities, and most opportunities were left unsatisfied.

These discrepancies lead to a multiobjective optimization problem. The solution space

consists in the parameters that serve to identify events: the parameters for visits (ROUT ,

RDOOR, RIN , tMIN ) and dispenser activations (RHMIN ). After detecting events in the

data, we get three numbers: nOPP for opportunities, nHH for activations, and nMATCH for

matched opportunities (similar to the number of matched activations). We are interested

in maximizing the fractions fOPP = nMATCH/nOPP and fHH = nMATCH/nHH . Then,

a solution σ is worse (Paretto inferior) than a solution σ′ iff fOPP (σ) ≤ fOPP (σ′) and

fHH(σ) ≤ fHH(σ′), and at least one of the inequalities is strict. The set of all the solutions

that are not worse than any other (Paretto front) is a 2-D curve in the space of fOPP and

fHH . Of this curve, I picked the solution that had RHMIN and RIN closest to the values

from ground truth.

If evaluating a single combination of parameters takes a couple of hours, then trying each

parameter combination would take an enormous time. So, I proceeded like this. First, I

computed the set of all alcohol dispenser activation events, associating them to the winning

RSSI. Getting the activations with RSSI ≥ RHMIN then reduced to parsing this set.

Second, I reduced the readings from the bedmotes to a list {..., (t, RSSIt, bedmotet), (t +

1, RSSIt+1, bedmotet+1), ...} per badge, where RSSIt was the highest RSSI read from a

bedmote at time t, and bedmotet is that bedmote. Then, for each value of RDOOR, I

parsed the previous list creating a list of intervals. The interval where RSSIt ≥ RDOOR

and bedmotet remained the same was summarized as (t0, tf ,max{RSSIt∈[t0,tf ]}, bedmote).

Conversely, the interval where RSSIt < RDOOR and bedmotet remained the same was

summarized as (t0, tf ,min{RSSIt∈[t0,tf ]}, bedmote). Then, for each value of RMIN , a new

list was created, merging all the adjacent intervals with RSSI ≥ RMIN and associated to

the same bedmote; the resulting intervals are associated to the maximum RSSI. Finally,

for each value of RIN , a new list ignoring the intervals with RSSI < RIN is created.

Then it came the filtering according to tMIN , and matching the activations to the resulting

opportunities.
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The parameters explored satisfied 40 ≤ ROUT ≤ RDOOR ≤ RIN ≤ 52, 8 ≤ tMIN ≤

24, and 30 ≤ RHMIN ≤ 45. I also ranged the parameters for the RSSI interpolator P

independently. A very smooth filter privileges very high ROUT while a very weak filter

privileges low ROUT . In the end, the best solution came from a very weak filter (b = 22).

Two main solutions can be derived from the data. One comes from using the whole

dataset. The second one comes from using only the night shift data, which is arguably

the best choice. During day shifts, you have dispenser activations explained by people not

wearing badges: relatives of the patients, religious figures, physicians from other units, etc.

In contrast, in-unit physicians almost exclusively used the alcohol dispensers during the

night.

2.3.10. Sanity checks

I cannot say that the processing of the data has been properly validated. We do not have

a reference dataset with tagged events (dispenser activations, contacts, and room entries

and exits) to use as a gold standard for validation. Therefore, we resorted to a few, simple

sanity checks, to see that our processing made sense.

The first sanity check, published in [82], consisted in inferring the rooms that did not

have patients. We have ground truth for this: at the beginning and end of each shift, a

researcher walked around the MICU annotating the rooms that hosted patients. This allows

for informed guesses: that rooms that were occupied at the beginning and end of the shift

were probably continuously occupied, that rooms that were empty at the beginning and end

of the shift were probably empty throughout the shift, and that rooms that started empty

but ended occupied were occupied at some time during the shift. We call these categories

occupied, c.empty, and nc. empty, respectively. We plotted the frequency these rooms were

visited throughout the day in Fig. 2.6-(a). As expected, c.empty rooms received scant

visits, nc. empty rooms received more visits as the day progressed, and occupied rooms

received visits regardless of the time of the day.

The second sanity check consisted in evaluating whether the RSSI from the bedmotes

related to distance similarly. I tested this by plotting a room-adjacency graph shown in
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(a)

(b)

Figure 2.6: Plots depicting the sanity checks: (a) frequency of visits according to
room occupancy status, and (b) graph of adjacent bedmotes. Both are in accord
to expectations.

Fig. 2.6-(b), which matches which rooms had doors at close distance, for the bedmotes that

were working during the walkthrough to get RSSIIN (a few bedmotes were off). For each

pair of bedmotes A,B, I defined their RSSI-proximity rAB as follows. Let xA(t) denote the

RSSI received from bedmote A at time t. Then, rAB is defined as

rAB = max{r : (∃t)r = xA(t) = xB(t)},

i.e., the maximum RSSI to either bedmote over all equidistant points. Then, I created the

adjacency graph by taking the bedmotes as vertices and the edges as the pairs of bedmotes

A,B with rAB ≥ 45.
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2.4. Predicting interactions from room visits

One of the questions we wanted to answer was whether knowing when workers visit

rooms can be enough to predict their interactions (i.e., close proximity contacts). In a

sense, this work was meant to validate previous work done in the compepi group in which

contacts between healthcare workers were estimated by the spatial and temporal proximity

of their respective computer logins, creating login networks [18, 17, 16]. We confirmed this

hypothesis by being effectively able to predict contacts from visits to rooms. This work

resulted in a publication in SocialCom 2012 [81].

2.4.1. Link prediction methodology

The purpose of the experiment was to predict the interactions between healthcare work-

ers by knowing when they visited patient rooms. To do so, we used the following method-

ology:

1. For each shift, create a labeled graph GL of healthcare workers, where each vertex

has a label (badge and job type) and each edge has a weight determined as follows:

for a pair of workers, identify their room entries, and count the entries followed by an

entry of another worker within t time and d architectural hops (the minimum number

of room-changes necessary to go from one room to another).

2. For each shift, create a labelled graph GC of healthcare workers, where each vertex

has a label (badge and job type) and each edge has a weight telling the amount of

time the workers were in contact.

3. Train classifiers that predict GC by using GL. Each classifier f is trained using only

one link prediction score at a time (see Table 2.1). Training is done using day and

night shifts independently. Since the vertices are unique but identifiable if GL and

GC belong to the same shift, f predicts edge (u, v) ∈ GC if (u, v) ∈ GL, and using

weight wuv as well. Every possible pair of job types used a different classifier f .

4. Testing follows a cross validation scheme naturally suggested by the deployment: use
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Name Acronym Formula
Common neighbors CN CNα(u, v) =

∑
z∈Γ(u)∩Γ(v) (wL(u, z)α + wL(z, v)α)

Common neighbors extended CN+ Same as CN , but using Γ+ instead of Γ
Adamic-Adar AA AAα(u, v) =

∑
z∈Γ(u)∩Γ(v)

wL(u,z)α+wL(v,z)α
log(1+sα(z))

Adamic-Adar extended AA+ Same as AA, but using Γ+ instead of Γ
Jaccard’s index JI JIα(u, v) = CNα(u,v)

sα(u)+sα(v)
Jaccard’s index extended JI+ Same as JI, but using Γ+ instead of Γ

Login hypothesis LH LH(u, v) =
{

1, {u, v} ∈ EL
0, ∼

Login hypothesis improved LH? LH?(u, v) = wL(u, v)

Table 2.1: Similarity scores used to compare the topological similarity of two
vertices. The formulas are defined for graph GL = (V,EL), and vertices u, v ∈ V .
The neighborhood function Γ is defined as Γ(v) = {u ∈ V : {u, v} ∈ EL}, and
Γ+(v) = Γ(v) ∪ {v}. Weights wL are such that wL(u, v) = 0 when {u, v} 6∈ E.

one shift as a hold-out and train using the rest. This led to 10-fold cross validation

during the day and 9-fold cross validation during the night.

The link prediction scores are graph theoretical scores that assess the similarity of two

vertices by using their shared neighborhood [73]. For example, the common neighbors score

counts the number of common neighbors between two vertices. In weighted graphs, it is

possible to sum the weights of the edges towards the common neighbors instead of counting

them. An approach that interpolates between both possibilities is to apply an α-power on

the weights, to account for the relative importance of weak ties [72]. If α = 0, then the

score is equivalent to counting the common neighbors. If α = 1, then the score is equivalent

to summing the weights. The scores used in this work (Table 2.1) include weights and the

weak ties α-power in their definitions.

A couple of special scores are the login hypothesis and login hypothesis improved, which

are intended to prove the adequacy of the login networks as proxy of actual contact networks.

The login networks were generated much in the style of GL, except that using computer

logins instead of room entries.

To simplify classification, we applied thresholds to the edges of the GC graphs, hence

removing their weights. An edge (u, v) ∈ GC was left if wu,v ≥ θ, where θ ∈ {0.01, 0.02, 0.03}

(meaning being in contact 1%, 2% and 3% of the time). Such seemingly small thresholds
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were chosen so that the graphs generated were not sparse.

The classifiers f used the scores and only allowed two types of classification by threshold:

homophily and heterophily. In homophily, an edge is predicted if the similarity between the

vertices exceeds a threshold (attraction by similarity). Heterophily works conversely.

2.4.2. Experiment results

Table 2.2 shows the results of the classifiers after cross validation. The Common Neigh-

bors (CN ) and Adamic Adar (AA) scores were the ones which gave consistently better

performance. Otherwise, most classifiers performed nearly as well. Classification was heav-

ily dominated by homophily. Heterophily was mainly present in Jaccard’s index scores JI

and JI+, normally in criticalcare-doctor relations, together with negative α. The login

hypothesis scores performed similarly and just slightly worse than the rest, except when

predicting day GC , with interaction at least 1% of the time. Note that LH either predicts:

{u, v} ∈ EC , {u, v} 6∈ EC , {u, v} ∈ EL ⇔ {u, v} ∈ EC , and {u, v} ∈ EL ⇔ {u, v} 6∈ EC ,

but the latter possibility never happened in practice. The results basically demonstrate

that room entries positively relate to contacts. (We may have achieved better accuracy by

combining the scores in a more complex classifier, but this would have made it difficult to

provide direct evidence that login networks approximate actual contact networks.)

2.5. Peer effects in the MICU

I now explain the main findings associated with the objective of the experiment: to

unveil the existence of peer effects in the dynamics of hand hygiene adherence. One of

hypotheses behind the deployment was that a healthcare worker was more likely to comply

with hand hygiene when others were around (if no one watched them, they could get away

with not washing their hands) and, when workers were not alone, some were more influential

in making others wash their hands, directly or indirectly.

The data verified these hypotheses: workers were more prone to adhere with hand

hygiene when they were accompanied, and some workers were more influential than others,

by job type. This work resulted in an article accepted and under revision in ICHE [83].
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(a) Day GC with wC ≥ 0.01 (b) Night GC with wC ≥ 0.01
Score Accuracy GL t d Score Accuracy GL t d
AA 0.653 30 2 AA 0.832 30 4
AA+ 0.653 30 2 AA+ 0.831 15 4
CN 0.635 30 2 CN 0.827 30 4
CN+ 0.642 10 2 CN+ 0.829 30 4
JI 0.611 30 4 JI 0.816 30 4
JI+ 0.611 30 4 JI+ 0.815 30 4
LH 0.680 15 2 LH 0.696 15 0
LH? 0.552 30 4 LH? 0.749 30 2

(c) Day GC with wC ≥ 0.02 (d) Night GC with wC ≥ 0.02
Score Accuracy GL t d Score Accuracy GL t d
AA 0.723 30 2 AA 0.893 30 4
AA+ 0.733 30 2 AA+ 0.888 30 4
CN 0.734 10 2 CN 0.887 15 4
CN+ 0.734 10 2 CN+ 0.888 30 4
JI 0.731 30 4 JI 0.877 30 4
JI+ 0.731 30 4 JI+ 0.877 30 4
LH 0.700 30 0 LH 0.715 10 0
LH? 0.624 30 2 LH? 0.812 30 0

(e) Day GC with wC ≥ 0.03 (f) Night GC with wC ≥ 0.03
Score Accuracy GL t d Score Accuracy GL t d
AA 0.764 10 2 AA 0.873 30 4
AA+ 0.792 10 2 AA+ 0.869 30 4
CN 0.795 10 2 CN 0.866 30 4
CN+ 0.795 10 2 CN+ 0.871 30 4
JI 0.740 15 4 JI 0.871 30 4
JI+ 0.783 30 4 JI+ 0.874 30 4
LH 0.737 10 0 LH 0.664 30 0
LH? 0.779 30 0 LH? 0.759 30 2

Table 2.2: Accuracy of link prediction scores in day shifts (insets (a), (c), (e)) and
night shifts (insets (b), (d), (f)), obtained through cross validation.

2.5.1. Observed adherence

Our analysis is limited to observed adherence, which we define as the fraction of oppor-

tunities satisfied using alcohol dispensers outside rooms. Therefore, we ignored the alcohol

dispensers placed inside the rooms. Figure 2.7 shows the map with the beacons considered

in the analysis.
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Figure 2.7: Placement of the sensors in the MICU, deployment of June 2011,
relevant to the peer effects paper.

2.5.2. Measuring social proximity

We defined scores to characterize the social context of HCWs:

1. Coworkers encountered within one minute (W1M). This measure represents the num-

ber of different coworkers encountered within an interval of one minute centered on

each hand-hygiene opportunity. An encounter is considered to occur within a distance

of approximately 4 meters, distance at which a worker might be aware of coworkers.

Measures alike have been used in other works [32, 120].

2. Sum of RSSI (SRSSI). The RSSI of a message serves as a measure of spatial proximity

between the communicating radios. For a worker’s badge, we can use the sum of the

RSSIs (decibel-milliwatts) of messages received from other badges as a measure of

the crowdedness of his/her social space at the time of each hand-hygiene opportunity.

SRSSI increases as the worker gets closer to fellow coworkers, and it also increases

when other badged coworkers enter the sensing range. This is a novel measure.
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Figure 2.8: W1M and SRSSI compared in three different situations. Values of the
variables in the insets: (a) W1M = 2, SRSSI = 3s, (b) W1M = 2, SRSSI = 2s,
and (c) W1M = 1, SRSSI = 2s. W1M is the same only in insets (a) and (b),
while SRSSI is the same only in insets (b) and (c). Besides differing in their nature
(W1M is discrete and SRSSI is continuous), both variables also differ in the aspect
of local crowding they measure.

While W1M provides a clear distinction between being alone (W1M = 0) and being accom-

panied (W1M > 0), SRSSI offers a smoother measure for the effect of the social context on

adherence (Fig. 2.8).

2.5.3. Results

First, we found that when a worker was alone (W1M = 0), observed adherence was

20.85% (95%-confidence interval: [19.78%, 21.92%]). In contrast, we found that when other

healthcare workers were present (W1M > 0), observed adherence was 27.90% (95%-CI:

[27.48%, 28.33%]). This absolute increase of 7 percentage points is statistically significant,

with an associated p-value P<0.001 (two-tailed t-test).

Second, we found that the observed adherence increased mainly with W1M, as shown

in Fig. 2.9, with diminishing marginal returns. And when controlling for confounding

factors, increases in W1M and SRSSI are independently associated to increases in observed

adherence. The plots in Fig. 2.9 can be (are) biased by the presence of confounders that have

an effect on adherence but are not associated to the social variables. For example, a patient

with a contagious disease but demands little care is likely to receive more isolated healthcare

workers who are very likely to wash their hands. Also, different workers may have different
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Figure 2.9: Associations between adherence and the social variables, for day and
night shifts. Each diamond box represent an adherence rate, with its correspond-
ing 95% confidence interval. Each red line represents the weighted linear regression
model that associates adherence to the logarithm of the corresponding social vari-
able. The width of the confidence intervals were used as weights. Adequacy of the
regression model can be interpreted as diminishing marginal returns.

inclinations towards hand hygiene adherence. To remove their effects, I used case control

and controlled for patients (represented by a shift number and the bedmote of the room)

and workers (shift number and badge) independently (to create enough comparable groups),

and found that increases in W1M and SRSSI were statistically significantly associated to

increases in adherence (Wilcoxon’s clustered-pairs signed rank test, P � 0.001).

And third, as Table 2.3 shows, not all job types seemed to exert the same effect on

coworkers. Overall, if any worker was accompanied by a critical care worker, their adherence

would increase. Doctors and nurses were equally influential, but nurses were more likely

to adhere with hand hygiene. However, these observations are limited in that healthcare

workers may attend patients by forming groups, and adherence may be tied to the specific
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Worker Coworker Adherence 95%-CI radius Opportunities
Any None 20.85% 1.07% 5521

Any 24.30% 0.89% 8880
CCare 29.43% 3.82% 547
Doctor 24.03% 3.43% 595
Nurse 23.96% 0.95% 7738

CCare None 18.07% 4.78% 249
Any 22.89% 3.57% 533
CCare 13.04%? 13.76%? 23?
Doctor 31.25%? 16.06%? 32?
Nurse 22.80% 3.76% 478

Doctor None 12.38% 6.30% 105
Any 20.13% 4.52% 303
CCare 42.86%? 25.92%? 14?
Doctor 15.22%? 10.38%? 46?
Nurse 19.75% 5.01% 243

Nurse None 21.15% 1.11% 5167
Any 24.55% 0.94% 8044
CCare 29.80% 3.97% 510
Doctor 24.37% 3.70% 517
Nurse 24.18% 1.00% 7017

?Infrequent pairs of job types led to unreliable rates and wide 95%-CIs.

Table 2.3: Observed adherence by job type, when the workers were alone (W1M =
0) or accompanied by another one (W1M = 1).

function each individual served in the group.
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CHAPTER 3

CLOSTRIDIUM DIFFICILE RISK MEASUREMENT

3.1. Introduction

Clostridium difficile (c.diff) is a contagious health-care associated infection (HAI) that is

resistant to antibiotics and is the main cause of antibiotic-associated diarrhea (AAD). It is a

significant concern in health-care provision world-wide, since it affects delicate patients and

increases hospital occupancy. In the United States alone, CDI affects an increasing number

of patients, from 139,000 to 336,600 in 2000 to 2009, with an increasing mortality that

disproportionately rose from 3,000 deaths/year (1999-2000) to 14,000 deaths/year (2006-

2007) [11].

C.diff is an antibiotic resistant bacteria that naturally lives in the human intestines of

many individuals [11, 2]. It is normally constrained by the intestinal bacterial flora. In

the situation of antibiotic exposure, the bacteria that constrain c.diff disappear, allowing it

to grow without constraints and causing harm because of the toxins it generates, situation

known as Clostridium difficile infection (CDI). The diarrhea caused by the infection allows

living c.diff cells and its spores to be expelled to the environment. While c.diff survives in

the environment for a few hours, the spores can last for several months. The spores can be

carried around in the health-care workers’ garments and can reach other patients, who can

become colonized through the oral route; the living bacteria can survive in a stomach with

reduced acidity, and the spores can tolerate the normal stomach acidity. This colonized

patient, if exposed to antibiotics, can then develop CDI, and the process repeats. This is

how the spread of c.diff normally occurs in health-care settings.

But recent results have put into question the scientific knowledge with respect to c.diff

[31, 39, 121, 27, 28, 99, 54, 103, 63, 41, 119]. Methodological changes in the laboratory

test of c.diff have demonstrated that the diagnosis of CDI is and has been considerably

inaccurate [98, 39, 97, 99, 54]. As already stated, rates of CDI cases increased substantially

(~2.5 times) and became considerably deadlier (~5 times) from 2000 to 2009, but these cases
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were diagnosed using the enzyme immunoassay (EIA) test, which is not very specific (misses

cases of CDI, i.e., true positives) but is insensitive (very low false negative ratio). The

introduction of the polymerase chain-reaction (PCR) test, which has increased specificity

(high true positive ratio) but is more sensitive than EIA (introduces more false positives),

doubled the number of diagnoses of CDI, introducing concerns in the medical community

[31, 39, 97, 99, 54]. This disagreement has a serious implication: that the diagnosis of CDI is

or was inaccurate (likely both) [97, 53, 113, 99, 54], and that the statistics and conclusions

presented in the literature are not reliable [91]. Furthermore, recent experiments have

questioned the belief that c.diff is highly contagious [121, 27]. In these works, researchers

examined the genome sequences of the c.diff bacteria collected from diagnosed CDI cases,

encountering abundant strains and finding that most cases (~2/3) of CDI were unrelated.

In spite of the fact that CDI cases were diagnosed using EIA, these works give relevance to

the role of community-acquired c.diff, i.e., due to contagion that occurred outside hospitals

or clinics, and asymptomatic carriers, i.e., those patients who carry c.diff but do not express

symptoms [27, 28]. Asymptomatic carriers are known to represent a risk to other patients

in long-term care facilities [103, 63], however, if they are more prevalent than previously

believed, they can pose a considerable risk to other patients in hospitals by transmitting

the disease to them.

And while the accuracy of the knowledge about c.diff has been put into question recently,

analytical research with respect to CDI has been historically underdeveloped [92, 91, 119].

In fact, c.diff transmission has seldom been modeled, in spite of the need to assist health-

care provision and policy design [91, 119]. Similarly, the problem of accurately predicting

whether a patient will develop CDI has received little attention; the most elaborate models

have been developed by Dubberke et al [25] and Wiens et al [124, 125], which contrast with

the simplicity of the dominant scorecard methods that consider only a limited number of

variables [33, 1]. In particular, Wiens et al have been the only ones to study dynamically

changing risk scores [124, 125].

In this chapter, I review some relevant, computational research on CDI and describe a
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data base built using anonymized electronic medical records data (without including clinical

notes, however) from the hospital that will be used for research on CDI in the next chapter.

3.2. Relevant research on CDI

There is considerable research around c.diff. As of 5 May 2014, searching for “clostridium

difficile” in Google Scholar returns about 93,900 publications (preserving quotations and

excluding patents and citations), with about 9,320 of them dated after 2013. Most of

these works narrate medical and laboratory work, and also many are about guidelines and

implementation practices. Still, several are of computational interest or relevance. I classify

them as:

• Risk measurement. These works are concerned with developing measures that better

identify patients at risk. Computationally, this is a soft classification1 task.

• Risk factors. These works are concerned with better identifying which characteristics

define patients at risk.

• Modeling. These works are concerned with dynamical system models of c.diff.

• Detection. These works are concerned with improving the identification of patients

who later develop CDI.

In what follows, I briefly summarize some recent work falling in the categories mentioned

above. Any research ideas, and their feasibility, are discussed in the following sections.

3.2.1. Risk measurement

Several risk measurement scores to identify patients at risk have been developed, with

methods with ranging levels of sophistication, applicability and generalizability. The simpler

methods are easily accessible to a healthcare worker without the need to use a computer;

just paper and pencil are enough. Also, they can be easily shared across institutions and

can be included in guidelines. More sophisticated methods require the use of software, and
1In hard classification, an instance is classified into a single class. In soft classification, the instance is

given a score for each class, stating that .
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Variable name Type
Age integer
CDI colonization pressure1 decimal
Modified Acute Physiological Score2 decimal
Days on high risk antibiotics3 integer
Admitted once in the last 60 days binary
Admitted twice or more in the last 60 days binary
Admission to ICU binary
Received laxatives binary
Received gastric acid suppressor binary
Received antimotility drug binary
Albumin less than 3.5 g/L on admission binary
1 Average number of CDI patients in the units visited [24].
2 Physical wellness score unavailable to us.
3 Cephalosporins, clindamycin, and amoxicillin.

Table 3.4: Independent variables of the logistic regression model by Dubberke et
al.

the more data they use, the more customized they become to an institution, and sharing

them becomes more difficult. But they can do better in terms of predicting which patients

are going to develop CDI.

Let us classify these works into three categories: logistic regression (Dubberke et al

[25]), dynamic risk metrics (Wiens et al [124, 125]), and simple, rule-of-thumb metrics

[33, 1]. In terms of accuracy, the former two represent the state of the art. The approach

of Dubberke et al [25] consists of a logistic regression model whose features were chosen

through feature selection (PCA, DCA, cluster analysis, forward selection) and then were

non-linearly transformed (polynomials, max/min). The logistic regression model used 14

features coming from the variables listed in Table 3.4. Their model had an AUC statistic

close to 0.88, which is considered good and close to excellent [90].

Wiens, Guttag and Horvitz published a couple of papers on improving the risk measure-

ment of CDI, first by creating an evolving “risk process” (a time series of risk) [124], and

then by reducing this series to a static metric and comparing its performance to the state

of the art [125]. For their first paper, they used the internal structure of the static SVM

classifier of patients (that classifies them into developing CDI or not), and then used the
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Figure 3.10: The extension to the SVM by Wiens et al that produces continuous
output. A point at distance d to the class boundary and in class σ ∈ {−1,+1}
receives a score σ · d/D, where D is a normalizing factor.

distance to the boundary between the classes to convert the binary {-1,+1} classification

(the default positive and negative class prediction by SVMs) into a continuous [-1,+1] clas-

sification which also uses time-specific data, as shown in Fig. 3.10. Wiens et al compare

their results to the state of the art classifier, i.e., the logistic regression model developed by

Dubberke et al [25], finding that they improved the AUC2 statistic significantly (from 0.69

to 0.79 in their dataset).

And the third group consists of the simple risk analysis scores. These simple risk scores

are for in-situ use by nurses. They normally consider few risk factors (normally ranging

from 3 to 6 in number), and serve to assess the risk of acquisition, complications, reincidence

and mortality associated with CDI [33, 1]. Some of the risk factors used rely on specific

laboratory test data unavailable to us (e.g., white cell count > 20 · 109/[L]), but they could

still be estimated using the diagnosis data.

Other works use ideas from survival analysis [108]. Survival analysis is a statistical

methodology that studies the time a disease (or risk) onsets (materializes).

3.2.2. Risk factors

Antibiotic prescription is one of the main risk factors in acquiring c.diff. It has been
2Area under the ROC curve, also known as C-statistic.
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found that not all antibiotics are as dangerous, however. For example, metronidazole and

vancomycin have been cited as antibiotics for combating c.diff [104, 61], even though other

studies have not found significant differences in efficacy between antibiotics (fidaxomicin,

vancomycin, metronidazole, usidic acid, nitazoxanide, rifaximin, teicoplanin) [87, 23]. Levy

et al found two antibiotics as highly associated with CDI: cephalexin and cefixime [64].

Still, Dubberke et al found that adding the effect of antibiotics together was convenient as

a feature in their risk model [25]; the antibiotics left in their model were: cephalosporins,

clindamycin, and amoxicillin or ampicillin. Loss of protection has also been associated

with consumption of gastric acid suppressors, i.e., antacids, proton pump inhibitors, and

histamine H2 receptor antagonists [52].

Space and interactions are key elements of the c.diff epidemic. It has been found that

physical proximity to a patient and antibiotic exposure are two strong independent pre-

dictors of CDI [13]. CDI pressure, defined as the daily average number of patients with

CDI in a unit (or hospital) to whom a patient is exposed, is a significant risk factor for

acquiring CDI [24]. It has also been found that using a room whose previous occupant was

infected, significantly increases the risk of CDI and is more predictive than antibiotic use

[108]. Patients with roommates with CDI were more likely to develop CDI as well [43].

However, the contagious nature of c.diff has been called into question; when comparing the

genome sequences of the bacteria, it has been found that c.diff cases are mostly unrelated

[121, 27]. Counter arguments refer to the use of low-sensitivity tests and ignoring asymp-

tomatic carriers, but both effects have limited impact on the findings [28]. Still, the general

critique of these works has been the excessive reliance on laboratory data, for the practical

diagnosis of CDI does not rely exclusively on test results but other criteria as well.

Sanitization has limited effect in containing the spread of c.diff. In a study of heathcare

workers treating CDI patients in a French university hospital, it was found that, after hand

sanitization, CDI persisted in the gloves of workers 24% of the time [58]. Regarding sani-

tization of rooms used by patients with CDI, Manian et al showed that better sanitization

practices reduced the rate of CDI from 0.088% to 0.055% [77].
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An important couple of findings regarding the transmission of c.diff are, first, that

patients expell ten times more vegetative cells than spores, and, second, that vegetative

cells survive in moist surfaces for up to six hours [52]. Since an ingested cell is likely to keep

producing more spores after swallowed, this suggests that more immediate contacts imply

a considerably larger risk of developing CDI.

3.2.3. Modeling

Literature on mathematical models of CDI has been called scant [91], minor when

compared to other HAIs such as MRSA and VRE [119], and in need to cover more situations

[92]. This is consistent with the actual uncertainty with respect to the epidemic dynamics

of c.diff, in which even basic parameters such as the transmissibility rate and incubation

periods remain unknown, largely due to the always changing nature of c.diff [27, 91]. The

small family of CDI models consist of compartmental models which are then simulated

stochastically. These models evolved from considering simple exposure [110], to loss of

immunity and complex environmental exposure [111], colonization and subsequent loss of

immunity [61], and the possibility of recovering immunity [128]. Fig. 3.11 summarizes the

last two models.

3.2.4. Detection

Some works have considered the risk associated with patients who carry c.diff but do

not exhibit symptoms of c.diff. These asymptomatic carriers have been hypothesized to

represent a potential risk to other patients, as it has been found that they are spreaders

in long-term care settings [103]. It has been argued that their role as spreaders is of less

importance than symptomatic carriers, since they are less contagious (release less spores)

[63, 41].

Recent studies have also evaluated the differences in PCR and toxin detection, and

have showed that PCR-positive but toxin-negative are misdiagnosed asymptomatic carriers

[99, 54]. This comes to complement the findings of previous works expressing concerns with

the increased sensitivity of PCR, which doubled the apparent cases of CDI [31, 39, 53, 113].
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(a) (b)

Figure 3.11: Two epidemiological models of CDI, by (a) Lanzas et al, and by (b)
Yakob et al. In (b), Ab stands for antibiotic intake.

3.3. Building a data base of medical records

I spent the beginning of 2014 organizing and de-identifying data to be added to the

uihc data base at the compepi server. This data I was working with was collected by

the UIHC hospital, for internal use and for reporting. It basically consisted in patient

data, containing diagnoses, prescriptions, procedures, physicians, etc., associated with each

patient from October 2006 to December 2011.

The existing uihc data base at the compepi server contained architectural informa-

tion from the hospital, logins of healthcare workers in the computer system, and patient

admission-discharge-transfer (ADT) data, which accounted for the rooms visited by patients

from 2005 to 2009.

The integration of the new data with the existing data base created a rich dataset that

enables the exploration of medical data in a variety of ways.

3.3.1. Data sources merged into the UIHC data base

The new version of the UIHC data base in the compepi server combines information

from the following datasets:
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1. Hospital architecture. Room locations, aliases and distances, as derived from the

hospital’s architectural plans, and represented as a graph. The nodes represent small

spatial units, like office rooms. If a room or corridor is too big, it is split into several

nodes. We still know when several nodes represent a room or corridor. The edges of

the graph represent adjacent an directly accessible nodes. For example, two adjecent

offices that share a corridor but do not share a door, do not have an edge associated.

But they share edges with the corridor. Finally, all the shortest distances between

any two nodes have also been stored in the data base. The distance metrics include

graph distance (hops, edges), physical distance, and a heuristic metric that penalizes

going to upper floors through stairs more than going to lower floors.

2. AHRQ “Quality” data. This is a summary of the data submitted by the UIHC

to the federal government (to the AHRQ agency, see http://www.ahrq.gov). The

information collected in the dumps (last quarter of 2006 to 2011) contains details of

each in-patient’s visit, containing:

(a) Patient demographics: age, ethnicity, zip code, etc.

(b) Condition at the time of admission: the first diagnosis (ICD-9 code), the severity

of the condition (how intense it is) and the risk of mortality, as estimated by the

APR-DRG software (3M’s All Patient Refined Diagnosis Related Groups soft-

ware, as used by the AHRQ), and whether a condition was present at admission.

(c) Complications: number of complication types and types of complications, ma-

jor and minor surgery complications, healthcare-associated conditions (HACs,

generalizing HAIs), etc.

(d) Diagnoses: the condition diagnosed (ICD-9), its order (primary, secondary, etc.),

whether it was present on admission, whether it is a HAC3.

(e) Procedures: the procedure performed, when it was performed, and the physician

performing it (id).
3HACs are interesting because they represent avoidable healthcare costs.
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(f) Physicians associated with the patient: the physicians who performed procedures

on the patient (as mentioned right above) as well as the physician discharging the

patient and other physicians involved in the care of the patient. We may regard

this as patient-physician interaction data for social network analysis. This data

may be incomplete–quite incomplete actually. In some units, it is said that, to

save work, physicians only register the id of their lead physician instead of the

team. The EMR login data (see later) can be used to more completely estimate

all or most of the physicians who truly worked with the patient.

(g) Prescription or “Pharmacy” data: all the medications prescribed to the patient,

when they were prescribed, the cost of the medications, whether they were used

to palliate the side-effects of other medications, the routes (oral, injection, etc.)

used to administer them, their form (tablet, solution, etc.), their dosage, their

recommended dosage, and whether they are categorized as “high impact”. Medi-

cations are described through a detailed hierarchical structure consisting of four

levels, allowing for queries of variable selectivity (e.g., we could search for anti-

fungals or lotions of aloe vera with coconut).

3. Admission-discharge-transfer “ADT” data. The ADT data contains precise informa-

tion about each in-patient’s visit (since it comes from the UIHC data base), from

2003, yet complete since 2005, until 2011, specifically about:

(a) Precise visit information: exact admission and discharge dates, where the patient

was admitted (the room), the route of admission (e.g., UIHC clinic, emergency

room, transfer from another hospital, court, etc.), the priority of admission (e.g.,

routine, emergency, urgent, etc.), the main service category in charge of the

patient (e.g., dermatology), where the patient was discharged to, the type of care

after discharge (with a nurse, to an intensive care facility, etc.), the condition at

admission, etc.

(b) Room transfers: when (day and time) a patient was transferred from one room
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(a) (b)

Figure 3.12: Histograms of (a) length of stay and (b) room transfers. The plots
are in log-log scale, depicting almost power-law distributions.

to the next, the rooms involved in the transfer, the units hosting the rooms,

whether the transfer was urgent or critical, etc. Location data can be linked to

hospital architectural data.

4. “CDI” laboratory order data. For each patient tested and diagnosed with clostridium

difficile, we know the exact day the laboratory test was ordered, the unit where it was

ordered from, and the type of test performed, from 2005 to 2011. We do not have

data on negative results.

5. EMR login or “keyboard” data. This data consists of all the computer logins per-

formed by healthcare workers, telling who logged into which computer (its location)

and when (day and time). We have data from 1 August 2006 to 21 June 2008.

Table 3.5 reports general statistics (counts) of the loaded data and Table 3.6 reports the

average statistics per patient visit.

3.3.2. Profile of the arriving patients

Admitted patients stay for an average of 5.8269 days, standard deviation of 9.6653,

minimum of 1 and maximum of 462 days. Patients change rooms 2.04 times in average,

with a minimum of 0 (likely missing data) and a maximum of 102 times. Details on the

distribution of length of stay and room transfers are depicted in Fig. 3.12.
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Item Subitem N
Admissions all 208,902

per year 29,783
Patients 126,265
Zip codes 3,106
Diagnoses 5,361
Prescriptions 7,788,703
Medications all (known) 2,491

prescribed 935
high impact 765
mid impact 1,045
low impact 681

Physicians all 25,065
EMR logins 14,596
Quality 11,455
Procedures (Quality) 1,449
Discharge (Quality) 851
Other (Quality) 10,764

EMR data logins 19,800,874
computers 17,520
rooms 4,379

Transfers 426,155
Rooms all 19,559

bedroom 561
observation 17

Units 186

Table 3.5: Miscellaneous statistics of the collected data: number of entries by data
type.

The source of admission tells us whether there is a risk a patient came with a HAI

or with a depressed immune system, for instance. For each source, Table 3.7 displays the

number of patients, average length of stay, and the first and last times the source type was

used. But sources change over time. For example, emergency room was removed4 as an

admission source after 1 July 2010, and transfer from another unit began being used by 27

December 2007. Similarly, several sources stopped being used during 2008.

The type of admission also describes the overall condition of the admitted patient. Table

3.8 shows the statistics associated with the five admission types in the data base. Many

are associated with the emergency type, which demands urgent care for life threatening
4Not physically, just as an entry for admission source.
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Item Avg Range
Age (years) 43.27 0–105
Length of stay (days) 5.83 1–462
Room transfers 2.04 0–102
Diagnoses 7.41 0–40

present on admission† 4.13 0–35
acquired during visit† 0.64 0–19

Prescriptions 37.28 0–5513
unique medications 9.51 0–107

Procedures 2.78 0–26
unique procedures 2.73 0–18

Physicians 2.94 1–15

Table 3.6: Miscellaneous statistics of the collected data: statistics of the data linked
to a visit. Most of the zeroes in the table are explained by incomplete (missing)
data.

conditions. The urgent type is for other priority admissions that are not life threatening.

One in five patients (41,825, 20% of the admissions) were associated with conditions (di-

agnoses) that were not present on admission. These patients had 3.2030 such conditions on

average, standard deviation of 2.91, minimum of 1 and maximum of 19. On complications,

only 10,751 patients (5.15%) were associated with them. These patients had an average of

1.3619 types of complications, standard deviation 0.711, minimum 1, maximum 7.

Regarding HAIs, several patients were diagnosed with drug resistant organisms: 1,654

were diagnosed with CDI (however, from laboratory data, we know that 1,851 had CDI);

1,001 had methicillin-resistant staphylococcus aureus (MRSA) and 395 were suspected of

having it; 482 had vancomycin-resistant enterococci (VRE); and 873 were infected with

other drug resistant microorganisms.

3.3.3. Network data

The main type of interaction recorded in the data are patient-physician relations, where

a patient specifies a patient but still distinguishes between different admissions. There are

614,079 such relations in the data base (putting together the physicians who performed

procedures, discharged, or were involved in any direct way with the patient). Patients were

associated with a an average of 2.9396 physicians, with standard deviation of 3.0395, a max-

imum of 15 physicians, and a minimum of 1 physician (of course). A more detailed depiction
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Average LOS First use Last use
Admission source N (days) (yyyy-mm-dd) (yyyy-mm-dd)
UIHC clinic 53963 0.4080 2004-01-29 2011-12-30
To acute hospital 51628 1.7509 2004-04-05 2011-12-31
Non healthcare facility 35247 0.5241 2005-04-01 2011-12-31
UIHC emergency room 34297 0.4538 2003-12-13 2010-07-01
Born in UIHC 7919 3.5981 2007-05-18 2011-12-29
Court order 2919 0.0277 2004-10-05 2011-12-01
Other healthcare facility 1427 0.8381 2004-12-25 2011-12-30
Unit transfer (UIHC) 1372 0.1130 2007-12-27 2011-12-27
Skilled care facility 1156 1.0164 2004-12-06 2011-12-26
Prison, jail, halfway house 744 0.5242 2005-01-08 2011-12-24

Table 3.7: Top 10 most common sources of admission (that were still in use by
2009). LOS stands for length of stay.

Average LOS First use Last use
Admission type N (days) (yyyy-mm-dd) (yyyy-mm-dd)
Emergency 75329 4.6419 2003-12-13 2011-12-31
Urgent 58769 5.7096 2004-01-29 2011-12-30
Elective or routine 57414 3.3986 2004-09-17 2011-12-31
Newborn 12680 7.7865 2004-08-08 2011-12-29
Trauma center 4710 6.2146 2005-01-24 2011-12-30

Table 3.8: The five admission types, and their statistics. LOS stands for length of
stay.

of the number of physicians associated with an inpatient is depicted in Fig. 3.13, which

shows that patients are not associated with too many physicians (inset a), but physicians

are associated with many more patients, in a heavy tailed distribution (inset b, quasi-linear

distribution in log-log scale, i.e., power-law).

As argued in the introduction, few works have used contact networks to study epidemics

in healthcare settings. Such networks are expensive to generate. The cheapest solution is

to use medical record data (as in the uihc data base). Two studies used contact networks

generated from records data to study the spread MRSA in a neonatal intensive care unit

[37] and, through simulations, in a whole hospital [19], the latter even including ADT data.

And not in the intention of studying epidemics but studying contact patterns, Barnett and

Landon et al constructed large scale patient-sharing networks, i.e., physicians who worked

with the same patients, with data from 51 hospitals and using survey and medical records
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[5, 59, 4, 60].

3.4. CDI at the UIHC hospital

3.4.1. CDI diagnosis at the UIHC

The testing methodology for CDI at the UIHC has changed over the years. Until 2009

(inclusive), tests consisted in the detection of toxins A and B, with results coming out in

24 hours, using an EIA test (VIDAS’ Toxin A & B Detection) [21]. This changed during

December 2009, when PCR started being used in the detection of CDI, reducing the result

time to within 2 hours and the added specificity of the test [20]. But restrictions were

introduced in 2012, limiting testing of a patient to once every 7 days, and to 10 days if the

previous result was positive, since the PCR test (Xpert C.difficile) would detect c.diff even

after cessation of symptoms [22]. This is in line with testing recommendations to reduce

the rate of false positives, especially because of the high prevalence of colonized but not

infected carriers [98].

We have 2,103 positive tests results (both tests) from 2005 to 2011 (inclusive), spanning

1,851 visits, but only totalling 1,651 diagnoses (0.79% of the admissions). Redundant testing

(less than 10 days between positive results) occurred 84 times, spanning 76 visits. The cases

roughly doubled after the introduction of the PCR test, from an average of 0.6076 to 1.2268

cases per day, as shown in Fig. 3.14.

3.4.2. Who is diagnosed with CDI

As it is well known, CDI cases tend to be more frequent for the elderly [11, 2]. Fig.

3.15 shows the rate of CDI in patients by age group, in bins of 5 years. However, our data

suggests that children between ages 1 and 10 are also at increased risk of developing CDI,

and that the risk grows continuously with age.

Community-acquired c.diff infection, i.e., CDI present on admission to the hospital,

totals 486 cases (26.25% of visits associated with CDI). These cases can be disagreggated

by direct admission at the UIHC (287 admissions, 59.05% of community-acquired CDI),

referral from UIHC clinics (150, 30.86%), and transfers from other healthcare facilities (49,
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Condition/diagnosis (ICD9-CM) Frequency
Acute kidney failure, unspecified† 245
Acidosis† 178
Unspecified septicemia 155
Acute respiratory failure 121
Pneumonia, organism unspecified 120
Unspecified pleural effusion 113
Septic shock 99
Congestive heart failure, unspecified 91
Unspecified protein-calorie malnutrition† 88
Hyposmolality and/or hyponatremia† 71
† Associated with diarrhea and intestinal failure, consistent with CDI [89].

Table 3.9: The 10 most frequent conditions diagnosed to patients diagnosed with
CDI, listed before the diagnosis of CDI.

10.8%), which include long-term care (nursing homes). The fact that CDI at admission

corresponds roughly to 1/5 of the cases, suggests that other cases of CDI may be caused by

acquisition of c.diff outside the hospital.

Regarding the characteristics of the medical treatment experienced by the patients who

developed CDI, Tables 3.9, 3.10, and 3.11 show the most common comorbidities, antibi-

otics prescribed and procedures performed on patients diagnosed with CDI. The conditions

presented in Table 3.9 are both associated with CDI and general acute condition. Items 1,

2, 9, and 10 are associated with diarrhea and intestinal failure, which are very consistent

with CDI [89]. The rest of the items depict a scenario of acute condition; items 4 to 6

are associated with respiratory problems, and items 3 and 6 are associated with sepsis (an

infection taking over the host). These conditions, however, are known to co-occur with CDI

[109].

The treatment of patients who develop CDI is mostly consistent with those in acute

condition. But the presence of CDI introduces changes in their care. Antibiotic prescrip-

tion increases roughly 2.7 times after the development of CDI. Table 3.10 shows the most

common antibiotics prescribed to patients who develop CDI, both before and after the

diagnosis. Metronidazole and vancomycin are associated with the largest increases in pre-

scription rates after the diagnosis of CDI. These two antibiotics are known to target c.diff
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Frequency
Antibiotic name Before CDI After CDI
Metronidazole (systemic) 668 5879
Vancomycin 1120 4354
Piperacillin/tazobactam 777 1254
Ciprofloxacin (systemic) 641 1113
Cefepime 555 1018

Table 3.10: The 5 most frequent antibiotics prescribed to patients after being di-
agnosed with CDI, since 2010, ranked by increase of use after CDI and overall fre-
quency of use. Coincidentally, these antibiotics are the most commonly prescribed
before and after the onset the disease, independently. The first two antibiotics,
metronidazole and vancomycin, are used for treating CDI.

Frequency
Procedure name Before CDI After CDI
Injection of antibiotic† 228 134
Transfusion of packed cells 110 97
Computerized axial tomography of abdomen† 22 53
Parenteral infusion of nutritional substances† 42 45
Transfusion of platelets 48 44
† Procedures consistent with occurrence of CDI.

Table 3.11: The 5 most frequent procedures performed on patients after being
diagnosed with CDI, since 2010. The first, third and fourth items are consistent
with the condition of CDI.

[87, 64]. With respects to procedures, items 1, 3 and 4 of Table 3.11 are consistent with

CDI; items 3 and 4, in particular, can be explained by intestinal problems. Note that the

frequency of antibiotic injections decreases after CDI develops, which is consistent with the

switch to the oral route for the treatment of CDI.

3.4.3. Example of a case

Fig. 3.16 provides a simplified description of a real case of CDI in the hospital. A

child is admitted to the hospital for a surgery intended to repair the aorta. Shortly upon

admission, the child is sent to the surgery waiting room, given blood medications, anesthesia,

and Cephalosporin antibiotics. The child undergoes surgery, and is sent to the pediatric

ICU with a catheter and oxygen. The next day, the child starts a regimen of histamine2

antagonists and diuretics, medications which can treat nausea and dehydration symptoms.

Day 6 arrives, the laboratory confirms CDI, and the child is treated with Metronidazole.
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This treatment appears to be successful as the child leaves the pediatric ICU the following

day and is discharged one day later (day 8).

3.4.4. Ubiquity of the cases

We may wonder whether there is a relation between occupancy rate and cases of CDI in

a unit. In an attempt to explore this question visually, we plotted Fig. 3.17, in which we see

the number of cases of CDI in four different units over time, plotted againts the occupancy

of the unit (just the number of patients who were there), by month. The units chosen

correspond to those with the highest rates of CDI, and all of them provide acute care (they

treat weakened patients). However, the low counts, together with the nonlinear dynamics

of CDI, do not visually demonstrate associations between the series, except, perhaps, in the

MICU (Fig. 3.17-(c)).

3.5. Conclusions

In this chapter, I reviewed the threat that c.diff poses to healthcare provision, some

of the extensive literature about this superbug, and described a data base of anonymized

medical records that I will use to study CDI in the hospital.

I am interested in the problem of identifying the patients who are at risk of c.diff in-

fection. By knowing how c.diff spreads and develops, healthcare workers and officials are

able to design prevention practices and containment strategies. In particular, knowing which

patients are at greater risk of developing CDI enables healthcare workers to provide individ-

ualized care. This sets the importance of identifying the patients at risk of developing CDI,

which corresponds to the computational problem of classification. Classification variants

allow for different use-cases. Binary, hard classification (traditional classification) identifies

the patients with the highest likelihood of developing CDI; this is the task for which we

have ground truth in the data (the actual cases of CDI). Soft classification, the translation

of classification into soft membership or ranging probabilities (calibration), informs about

the actual exposure and susceptibility, and it is informed by the hard classification task.

This is the task of risk estimation. Dynamic risk estimation (updating, contingent soft clas-

46



sification) allows for the timely identification of patients in need of preventive care, while

it also provides a deeper understanding of the changing susceptibility to CDI and the ever

changing exposure (contamination). Every classification variant is associated with use cases

valuable in the context of CDI care.

In the next chapter, I present and validate a method for analyzing these medical records

data for predictive cases of CDI, alongside with discovering useful information about risk

factors of the disease. The classifiers I develop, which are ensembles of logistic regression

models, effectively perform hard and soft classification, and are able to produce dynamically

changing curves of risk of developing CDI.
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(a) (b)

(c)

Figure 3.13: Patient-physician associations. Insets: (a) histogram of number of
physicians associated with a patient, (b) histogram of the number of patients as-
sociated with a physician (log-log; shows a power-law), and (c) the network of
patient-physician procedures during the first 7 days of 2007.
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Figure 3.14: Daily rates of CDI by testing methodology in the UIHC. The number
of cases is normalized to daily averages instead of the total number of cases per
month, because of the inherent differences between months (30-31 days, or 28-29
for February) and because some tests were not performed during the entire month,
such as December 2009, where the switch from toxin detection to PCR occurred.
With the introduction of the PCR test, cases rose from an average of 0.6076 to
1.2268 cases per day.

Figure 3.15: Rate of CDI cases by age in the UIHC. Each bar depicts the proportion
of patients admitted that developed CDI within that age group.
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Figure 3.16: A case of CDI in the hospital. A child is admitted to the hospital for
a scheduled cardiac surgery and develops CDI while in care.
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(a) 4 Roy Carver East (4RCE, Heart and Vascular Center)

(b) 6 Roy Carver East (6RCE, Cardiac Rehabilitation)

(c) Medical Intensive Care Unit (MICU, 5 Roy Carver East)

(d) Operating Room (OR, 5 John Colloton)

Figure 3.17: Normalized cases of CDI/quarter in the UIHC, in four different units:
(a) 4 Roy Carver East (Heart and Vascular Center), (b) 6 Roy Carver East (Cardiac
Rehabilitation), (c) the Medical Intensive Care Unit (5 Roy Carver East), (d) the
Operating Room (5 John Colloton). The plots have been normalized to make the
occupancy and CDI rate curves comparable. However, there is no clear association
betweeen these curves.
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CHAPTER 4

PREDICTING CDI THROUGH ORDERED PAIRS OF EVENTS

4.1. Introduction

As mentioned in the previous chapter, c.diff (Clostridium Difficile) is a bacterium that

causes its carriers to undergo severe colitis when their intestinal flora and overall immunity

is compromised, a situation referred to as CDI (Clostridium difficile infection). On top of

that, c.diff is contagious through physical contact and its spores can last on surfaces for

several months. So far, it can be effectively erradicated only through proper hygiene and

the usage of bleach or UV rays; soap and alcohol are not effective means of killing the

spores. Considering all these facts, preventing the occurrence of CDI and the spread of the

bacterium is a desirable goal in health care provision.

Predicting which patients will develop CDI could help to confirm cases more quickly

and perhaps prevent outbreaks by helping to determine when to isolate infected patients.

Several researchers have developed models for predicting CDI cases using medical records.

Dubberke et al introduced a model for predicting CDI for any patient admitted to the

hospital [25]. Garey et al developed a CDI-prediction model, but only for patients receiving

broad-spectrum antibiotics [35]. Wiens et al. have built models that compute evolving risk

scores for patients [124, 125], and another model that only uses data that were available

within 24 hours of a patient’s admission to the hospital [123]. In addition, there are

simplified risk scores that can be calculated using only 4-5 features [33].

Predicting outcomes from medical records is difficult for a number of reasons. Med-

ical records consist a variety of data types [51], and medical records often contain inac-

curacies, biases and censoring [95]. In addition, medical records evolve over time. Some

researchers have mined frequent events or common patterns of clinical events using par-

tial orders [93, 94], sequences [114], and temporal abstractions [62], but these approaches

have shortcomings as well, including inflexible representations of time and poor interaction

between the classifier and the patterns discovered [67, 47].
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In this chapter, we propose a method for predicting patient-level CDI by mining clinical

events that occur during the hospital stay as well as information that is known at the time

of admission. Our classifier consists of an ensemble of logistic regression models, as in

[68], fitted with regularization, as in [30]. The novelty of our approach, however, lies in

the description of the visit using co-ocurring and chronologically ordered pairs of events,

a simplification of the partial order patterns used in [93, 94]. The contributions of our

work to the literature are multiple. First, our method performs better at predicting CDI

than alternative methods. Second, we were able to produce moving risk curves for CDI,

meaning that the risk predicted by our classifiers increases if the patient is going to develop

CDI in the following days. Third, by representing patient visits as pairs of events, our

classifier returns human-interpretable data. Fourth, we showed how to successfully make

use of hierarchical relations among the features to produce more informative models. And

fifth, we contribute with a method for building classifiers for the situation of class imbalance

and high dimensionality.

4.2. Related work

Several works have focused on developing CDI risk estimators for in-patients using

medical records data. Garey et al developed a model for predicting CDI in patients receiving

broad-spectrum antibiotics [35], which they validated through out-of-sample testing. Later,

Dubberke et al introduced a model for predicting CDI for any patient admitted to the

hospital [25]. Two successive works of Wiens et al focused on building evolving risk scores for

patients, and proved that their model outperformed the model of Dubberke et al [124, 125].

Finally, a new model by Wiens et al focused on building a logistic regression model trained

on extensive medical records data, but limiting only to knowledge within the 24 hours of

admission, outperforming all previous estimators [123]. (By structure, [123] generalized

[35].) Also, besides the previous works, many have developed simplistic, rule-of-thumb risk

scores for clinical use, most of which consider only 4 to 5 features [33].

Mining medical records to predict risk of undesirable outcomes is not new; Li et al was
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mining risk patterns in medical data and warning of weaknesses of some mining approaches

back in 2005 [67]. Jensen et al comment on the challenges and opportunities of mining

medical records, including mining varied types of data [51]. Paxton et al discusses challenges

of mining medical records, including the presence of inaccuracies, biases, confounders and

censoring (incompleteness) [95]. Tran et al developed a system that mines patient visits

by converting events (e.g., diagnoses, medications) to time series, and then supplying these

series to a classifier [117]. Lin et al developed a system that predicts rheumatoid arthritis by

performing classification on features derived from clinical texts (with the added difficulty of

natural language processing) [69] and using laboratory values (continuous data) [70]. Lim

et al used an ensemble of logistic regression models to evaluate the outcome of treatment

for acute myeloid leukemia using gene expression data [68]. (The ensemble was used to

classify under the restriction that the dimension of the data has to be smaller than the

number of instances in it, not for feature selection, as we review at the end of this section.)

Halpern et al developed a system to estimate the state of the patient by looking at anchor

variables [42]. Several of the works mentioned reduce the dynamic, temporal data to a

static expression suitable for traditional machine learning, describing visits as features with

a fixed dimension (Fig. 4.18).

Several works concerned with mining medical records use, adapt, and extend techniques

and ideas from pattern mining. Pattern mining is the task of mining frequent patterns from

data, where a pattern describes a portion of the data. For example, if our data consisted of

items bought together in the same sale, then the patterns would be subsets of those sales5.

But medical records contain temporal data, in particular, events. Medical events patterns

have been mined as event sequences [114] and, more generally, as partial orders [93, 94].

Besides events, clinical data also considers vital signs and other continuous information.

Several works have address this problem by discretizing these multivariate time series and

mining time-intervals through temporal abstractions [7, 8, 86, 85]. Temporal abstractions

have also been used to mine medical events [62]. However, some have argued that this
5This is actually called frequent itemset mining, because items bougth together are called itemsets.
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Figure 4.18: From temporal/event data to its static equivalent.

approach is inherently limited and have called for a better treatment of time [47]. Other

approaches have also been considered, including convex optimization [38], dynamic time

warping [125], and supervised mining using visualization [40].

Very related to pattern mining, association rule mining is about finding patterns that are

associated to outcomes, even though these outcomes might not be predictive. For example,

there is work on predicting prescriptions for patients based on their prescription history

[14, 126] and ordering diagnostic tests [6]. Since association rules can be described as event

sequences, sequence mining has also been used to discover associations [114], including

antibiotic prescription and development of resistance [112], identifying subjects that meet

the criteria for inclusion in further classification [66], or even treating different visits as

events and mining associations between the diagnoses associated to those visits [44]. Other

work has focused on the harder problem of extracting rules from clinical texts, which also

has to address the problem of natural language processing [127]. However, it has been

recognized early that pattern mining and classification do not necessarily work well together

[67], which is consistent with the idea that an association might appear relevant by itself

but, when considered together with other rules, it might lose its relevance.
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Association rule mining also addresses the more general task of identifying salient or

relevant features, which are often called risk factors in the medical literature or biomarkers if

they are related to laboratory data (e.g., genes, vital signs), for diagnostics or early detection

of undesirable outcomes. Traditionally, the association between a feature and an outcome

has been measured with simple, pair-wise statistics (e.g., correlations, t-tests, χ2 scores),

so naturally several works have been devoted to improving these inexpensive measures by

developing better measures and removing redundant features [12, 116, 132, 131]. Peng et

al developed a system that iteratively discards irrelevant features (using simple pair-wise

statistics) and then filters the best features through support vector machines and ROC

curves [96]. (ROC curves can be used to compare and rank classifiers, and are indifferent

to class imbalance [29].) Chen and Wasikowski developed a method that combines nearest

neighbors and ROC curves for filtering features [15]. Related to ROC curves, there are

works concerned on measuring the contribution of features to learning tasks as well [57, 76].

Zhou et al developed a regularization-based method (FeaFiner) for identifying biomarkers

through feature selection and generalization, a challenging task due to the vast richness of

medical data and the natural semantic association between medical data (e.g., hierarchies)

[133].

The most seemingly challenging problem of finding relevant risk factors or biomarkers

has been the high dimensionality of the data, a problem that lately has been addressed

through ensemble methods. Several methods based on ensembles of logistic regression have

been proposed, most of them feeding each model with a randomly chosen subset of features

[122, 130], some even using the ensembles for feature selection while addressing class imbal-

ance [129] or combining other methods for filtering features [10, 49], and there are methods

that use other regression techniques as well [106]. Non regression-based methods have also

been used [105], which serves as a reminder that Random Forests is a particular case of an

ensemble classifier where each (unprunned) decision tree is fed a randomly chosen subset

of features. These ensembles can be classified as bagging of classifiers, since all classifiers

within them are treated equally [34].
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4.3. Visit data

We use a particular subset of the UIHC database: the data describing the care associated

with a patient admitted to the hospital, which we call visit data. (Visits are also known as

encounters, even though the latter term is more general for it can include out-patient visits.)

Visits consist of two types of data: (i) general visit data, and (ii) clinical event data. General

visit data include patient demographics, visit information, service information, attending

healthcare workers, and diagnoses. Patient demographics include information such as age,

gender, ethnicity, and the zip code where the patient resided at the time of admission.

Clinical event data represent what occurred during the visit. We consider four types of

event data: prescriptions, procedures, transfers, and positive CDI laboratory tests.

Diagnoses, procedures, and prescriptions are associated with hierarchies, as illustrated

by Fig. 4.19. Diagnoses and procedures are categorized into ICD-9 and CCS codes. We

prefer CCS codes [26], which group ICD-9 codes by similarity. CCS codes are grouped

by chapters, providing a natural ontology. Prescriptions are also associated with hierar-

chies. Each prescription is associated with a medication, which in turn belongs in a three

level-hierarchy comprised of: major class, minor class, and subminor class. We describe

medications through the subminor class, because we deemed the medication id to be un-

necessarily specific.

4.4. Feature engineering

4.4.1. Overview of the classification approach

Our approach to classification consists in converting the original data, which mostly

consists of temporal, event data, into a static equivalent that can be described in tabular

format, as shown in Fig. 4.18, as has been previously reported [7, 8, 86, 85, 114, 93, 94, 62,

124, 125, 123]. Our instances consist of days in a visit, not of whole visits. After describing

the visits in tabular format, we pass these data to the classifier. Our classifier, described

in Sec. , consists of an ensemble of logistic regression models. The model produced by the
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Figure 4.19: Partial view of the hierarchies associated with diagnoses, procedures,
and prescriptions.

classifier consists of the collection of individual logistic regression models. The risk estimate

of CDI is, then, computed from the probabilities generated by the logistic regression models.

4.4.2. Bare events and pairs of events

We now formally define how we describe events, visits, and translate them into features.

Definition 4.1. We define a visit V as a set of events corresponding to a patient’s visit. Each

event (t, e) ∈ V is comprised of a time t and an event action e.

Example 4.2. The first visit shown in Fig. 4.18 is described as Vex = {(1, A), (1, B), (2, A),

(3, C), (3, D)}.

An event (t, e) states that event action e occurred at time t. An event action represents

the action associated with the event. For example, injection of antibiotics (procedure) and

transfer to ICU (transfer) are event actions. Time represents days, where t = 1 means the

first day of that patient’s visit.

We described a visit as entirely consisting of events. Admission data can be converted to

events if we assign them to time t = 0 and convert them to event actions such as @Age = 10,

@Diag = 135 (diagnosis is CCS code 135), @Severity = Major, etc. We use the @ symbol

for admission data.
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Definition 4.3. We define the partial visit of visit V at time t as V (t) = {(t′, e) ∈ V : t′ ≤ t},

i.e., of events until day t.

Example 4.4. Partial visits from Vex include Vex(0) = ∅, Vex(1) = {(1, A), (1, B)} and

Vex(2) = {(1, A), (1, B), (2, A)}. Note that, Vex(t) = Vex for any t ≥ 3.

We need the notion of a partial visit because we want to be able to predict the risk of

acquiring CDI at any point during a patient’s visit.

Definition 4.5. We define the bare events description of [partial] visit V as BE(V ) = {e :

∃t, (e, t) ∈ V }, i.e., as the set of the event actions in the events of V .

Example 4.6. For the whole visit Vex, BE(Vex) = {A,B,C,D}. For partial visit Vex(2),

BE(Vex(2)) = {A,B}.

The bare events description, or just bare events, corresponds to the basic representation

of visits in previous research [35, 25, 123]. Feature received laxatives in Dubberke et al

is an example of this [25]. Our proposal, however, consists in combining event actions in

temporal order for representing visits.

Definition 4.7. We define the ordered pairs of events description of [partial] visit V as

PE(V ) = {(e1, e2) : ∃t1, t2, t1 ≤ t2 ∧ (e1, t1) ∈ V ∧ (e2, t2) ∈ V ∧ e1 6= e2}.

Example 4.8. For the whole visit Vex, PE(Vex) = {(A,B), (A,C), (A,D), (B,A), (B,C),

(B,D), (C,D), (D,C)}. For partial visit Vex(2), PE(Vex(2)) = {(A,B), (B,A)}.

The ordered pairs of events description, or just pairs of events, couples event actions of

events that succeed each other temporally or occur during the same day. Note that a pair

of events is a simpler version of a partial order [93, 94]. Also note that this interpretation

changes with admission data; in pair (e1, e2), if e1 and e2 represent admission data, then the

pair represents an And operation over admission data, but if only e1 represents admission

data, then the pair represents event action e2 occurring in a visit with admission data

including e1.

We now proceed to describe the role of hierarchies in our method.
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Definition 4.9. The relation ≺ stands for the hierarchy relation (e ≺ e′ means e is more

specific than e′) and ≺? is the transitive closure of ≺.

Example 4.10. As shown in Fig. 4.19, we have that Cephalosporins ≺ antibiotics but

Cephalosporins ≺? anti-infectives as well as Cephalosporins ≺? antibiotics.

To allow our classifier to make use of these hierarchies, we let the classifier decide on the

level of granularity it needs to describe the data. For example, if all antibiotics increased

the risk of CDI equally, the classifier could then assign the risk to the antibiotics category

rather than to each individual antibiotic. The idea is to let the classifier decide on a small

number of features (feature selection) and make use of the aggregating power embedded in

the hierarchies. Hence, we introduce redundant event actions in the visits, as we describe

below.

Remark 4.11. Let event action e belong in category e′, i.e., e ≺? e′. Then, e′ is an event

action and, for every pair (t, e) ∈ V , also (t, e′) ∈ V , for all visits V .

Definition 4.12. We define the hierarchically aware pairs of events description of visit V as

PEH(V ) = PE(V )− {(e, e′) : e ≺? e′ ∨ e′ ≺? e}.

Example 4.13. Let us suppose that C ≺ D. Then, we have that PEH(Vex) = {(A,B),

(A,C), (A,D), (B,A), (B,C), (B,D)}.

The definition of PEH removes redundant information from PE. If event actions e and

e′ are related through a hierarchy, then we are not interested in knowing that e′ generalizes

e; this is not visit specific information, and therefore it does not help in classification.

For each visit (or partial visit), the application of functions like BE and PEH defines

a sparse description of the instance. For a data set, such descriptions induce the more

standard tabular description of the data.

Definition 4.14. Let D be a collection of tuples such that for every (V, c) ∈ D, V is a

[partial] visit and c is a class (i.e., CDI or non-CDI ), and let F be a function that takes a

[partial] visit and returns a set. Then, the tabular description of D induced by F is defined

as follows:
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1. The totality of the features of the data set are T = ∪(v,c)∈DF (v).

2. The headers H = (h1, ..., hm) introduce an ordering on T , i.e., m = |T |, (∀1 ≤ i ≤ m)

hi ∈ T , and (∀1 ≤ i, j ≤ m) hi 6= hj if i 6= j.

3. Each (V, c) ∈ D defines an instance (x, c), where x is an m-dimensional binary vector

defined as

(∀1 ≤ i ≤ m) xi =


1, if hi ∈ F (V ),

0, otherwise.

Using F ∈ {BE,PEH , BE ∪ PEH} induce different tabular descriptions of a data set of

visits. Classification is done on these descriptions, although we take advantage of the sparse

description of visits internally in our code.

4.4.3. Additional features

In addition to the admission information and clinical events that naturally describe a

visit, we hand-crafted a small number of additional features that are known be risk factors

for CDI. We introduced features describing whether the patient was readmitted once or

twice in the last 60 and 90 days, whether the patient had CDI within one year of admission,

the diagnoses from the previous admission (if any), and the CDI testing method in place.

We also computed the CDI Colonization Pressure [124, 125, 25, 123], which measures how

many patients who had CDI stayed in the same unit as the patient. We use the daily

version of the colonization pressure, describing it as event actions Pressure=LOW, Pres-

sure=MODERATE, and Pressure=HIGH, and their generalization, Pressure. A pressure of

zero means no event is introduced.

4.4.4. Dimensionality growth

The introduction of pairs of events drastically increases the feature space from around

3,000 bare events to around 300,000 pairs of events. Such high dimensionality threatens the

purpose of yielding a human-interpretable prediction model, which would benefit from few

but relevant features. Moreover, such high dimensionality threatens classification, especially

considering that the minority class consists of just 950 visits (out of 200,000), and also
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because of the increased computational complexity of the classification algorithm, because

of the enlargement of the data set. For these reasons, we split the training set into smaller

chunks, feed them to an ensemble classifier, and perform extensive feature selection. The

method is presented in the next section.

4.5. Classification

4.5.1. Addressing class imbalance through ensembles

Our approach to classification consists of building an ensemble of logistic regression

classifiers to estimate risk. Using ensembles allows us to reduce training on a large data set

to training on several smaller data sets, as well as address class imbalance by constructing

subsets of the data that are balanced, as done by Lim et al [68]. As shown in Fig. 4.20,

we train the classifiers on subsets of the data that contain the whole minority class and

a random subset of the majority class, so that both classes are balanced. This results in

a collection of classifiers that are agnostic to class imbalance, a property inherited by the

ensemble. We do not need to oversample the minority class, introduce perturbations, etc.,

as is often done in other research [46].

Formally, if n is the number of visits in the minority (CDI) class (n = 950), we pick

n random visits from the majority class. Then, for each visit, we pick R days sampled at

random (R = 3) and represent them using the method described in Section , producing

training sets of nR instances for each class. Each training set will be used by one logistic

regression classifier. For the CDI class, we do not sample days later than 3 days before CDI

was detected. (The guidelines recommend testing patients that have had diarrhea or other

symptoms of CDI for at least 3 days.)

4.5.2. Feature selection

Our objective is to reduce the number of features to a reasonably low number, to facil-

itate interpretability of the model. Some researchers address high dimensionality through

ensembles, by randomly selecting features in the classifiers [10, 49, 106, 122, 129, 130].

Instead, we perform feature selection inside each classifier. This produces an ensemble clas-
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Figure 4.20: The ensemble approach to class imbalance.

sifier that considers substantially fewer features, aimed to facilitate interpretability. Dimen-

sionality reduction approaches, such as Johnson-Lindenstrauss and PCA, do not necessarily

result in using few features (one dimension might span too many features) and non experts

in dimensionality reduction often interpret the produced dimensions incorrectly [65].

We filter features in two stages. In the first stage, we pass over the feature space, quickly

discarding the least relevant features. We do so by using Algorithm 1, which processes a

tabular description of the data (Def. 4.14) and returns the m “most likely” predictive

features, with m = 10006. This algorithm is also explained in Fig. 4.21.

In the second stage, we use L1 regularization to further reduce the number of features.
6Passing too much data to a classifier can worsen its runtime and memory consumption. A value of m

that is too large can make classification infeasible. Smaller values of m can increase the overall speed of
classification at the expense of model quality (compensated with a larger ensemble). A value m that is too
small can lead to ignoring potentially relevant features.
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Input: m: bucket size, H: features, S: rows of the data set
1: Randomly partition H into sets B1, ..., Bk, so that |Bi| = m for every i such that

1 ≤ i ≤ k − 1.
2: Let C = B1.
3: for i = 2 to k do
4: Fit logistic regression model to S projected on C ∪Bi
5: For h ∈ C ∪Bi, define s(h) as the number of classification errors introduced when βh is set

to 0 (βh is the coefficient of the logistic regression model for feature h).
6: Update C to be the m features in C ∪Bi with the highest s(h).
7: end for
8: return C

Algorithm 1: Greedy randomized embedded feature filter

The L1-regularized cost function for fitting logistic regression is

L(α, β;λ) = λ|β|1 +
∑

(x,y)∈S
ln
(
1 + exp(−y(α+ βTx))

)
, (4.5.1)

where α and β describe the logistic regression model, λ is the penalty on |β|1, S is the set

of instances of the tabular description of the data (Def. 4.14), and in (x, y) ∈ S, x is the

instance vector and y ∈ {−1,+1} is the class. (When λ = 0, we have traditional logistic

regression.) Ideally, λ is chosen through cross validation. Since this can be expensive, we

follow Fan and Tal [30], choosing λ by minimizing the Bayesian Information Criterion (BIC)

of L, which applied to our problem is

BIC = −2L+ (1 + |β|0) ln |S|. (4.5.2)

Using L1-regularization for feature selection has theoretical backing. The L0−L1 equivalence

[71] result states that, in sparse data, L1-regularization can effectively approximate the ideal

L0-regularization, a notorious NP-hard problem, in polynomial time. However, using BIC

instead of cross validation should reduce the quality of the approximation slightly.

4.5.3. Estimation

We predict CDI by converting each visit into a feature description (Def. 4.14), and

supplying this description to each logistic regression model in the ensemble. Then, the
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Figure 4.21: First pass of feature selection.

ensemble counts the number of times CDI is predicted; if above 50%, the ensemble predicts

CDI. This approach gives the same results as averaging the probabilities produced by the

models.

4.6. Experiments

4.6.1. Experiments outline

Our first experiment compares our method to the state of the art: the work of Wiens

et al [123]. The experimental setting lies between their setting and ours, in that we predict

using 1-2 days worth of data only, but we perform 10-fold cross validation rather than using

one year to predict the next. The second experiment further compares bare events and pairs

65



of events, and shows that the classifiers generate evolving risk curves. The third experiment

compares using only information known at admission time versus using only clinical events.

Using only information known at admission time produces fairly predictive results, while

using only clinical events produces less predictive results.

The general settings for our classifiers consist of ensembles of 30 logistic models each,

sampling each visit into three partial visits (randomly), and filtering 1000 features in stage

1 of feature selection. For each classifier, we report its area under the curve (AUC), which

we use as the main parameter for comparison. We also report the sensitivity (true positive

rate) and specificity (true negative rate) for completeness. Additionally, we report the

number of active features (the ones included in the classifier, i.e., with βi 6= 0) and the

inactive features (with βi = 0). A feature is inactive if discarded through feature selection

or deemed irrelevant during regression.

4.6.2. Improvement over baseline

In the first experiment, we compare three classifiers: the pairs of events classifier (PEC),

the bare events classifier (BEC), and the state of the art classifier (SAC). PEC consists of

the method presented in this paper, with features produced by both BE and PEH . BEC is

identical to PEC, except that features are only described through BE. SAC is an adaptation

of the work of Wiens et al [123]. Table 4.12 summarizes the characteristics of PEC, BEC,

and SAC. We compare the classifiers using 10-fold cross validation and data limited to 1 or

2 days after admission, for fair comparison against Wiens et al. Note that SAC does not

fully follow their research. They used L2-regularized logistic regression to predict cases of

CDI using data known at admission time (e.g., demographics, initial diagnoses) as well as

clinical events (e.g., procedures, prescriptions) and laboratory values (e.g., blood pressure,

temperature) until 24 hours after admission. We cannot use such data, because we do not

have laboratory values and our discrete notion of time does not permit us to cut visits

exactly 24 hours after admission. We compensate for the latter by considering visits up to

day 1 or 2. Wiens et al also used data from one year to predict the next, which overcomes

the problem of changes in the testing of CDI. Since we introduce a feature indicating the
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PEC BEC SAC
Pairs of events (PEH)

√

Bare events (BE)
√ √ √

Ensemble of logistic regression
√ √

Feature selection
√ √

Compensation for class imbalance
√ √

Table 4.12: Characteristics of the three classifiers.

Classifier AUC Sensitivity Specificity Active fs Inactive fs
SAC 80.57% 17.19% 99.32% 1999.0 713.2
BEC 83.94% 76.32% 76.06% 461.7 2250.5
PEC 85.19% 78.04% 75.86% 3263.4 150740.8

Table 4.13: Performance predicting CDI cases using data known at 1 or 2 days
after admission. For each classifier, we report its AUC, sensitivity, specificity, and
number of active and inactive features. The values are averaged over the 10-fold
cross validation tests.

CDI testing method being used at the time of admission, we do not consider it necessary

to train on one year to predict the next, thus training SAC identically to PEC and BEC.

Table 4.13 summarizes general statistics of the different classifiers in the task of pre-

dicting whether patients will develop CDI using data known at 1 or 2 days after admission.

The best performing classifier was PEC, followed closely by BEC. A more detailed visual

description of the performance of the classifiers in this task is shown in the ROC curves of

Fig. 4.22. Note that the AUC of SAC is similar to the one shown in Wiens et al [123].

The low sensitivity and high specificity of SAC come from the fact that class imbalance was

not addressed. With respect to the number of active features, BEC considered much fewer

features than SAC, which is consistent with the use of feature selection. Furthermore, BEC

performed better than SAC. On the other hand, PEC considered more features than BEC,

but taken from a much larger pool of more than 150,000 features.

4.6.3. Up-to-date risk estimation

In this experiment, we compare PEC and BEC for the task of predicting whether the

patient will develop CDI during a visit. We consider two alternative training sets: any

day and later days. The any day training set consists of patient visits cut off at days

sampled uniformly at random. The later days training set cuts patients’ visits with linearly
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Figure 4.22: ROC curves of the classifiers in the task of predicting CDI, using 1
or 2 days of a visit. The ROC curves are averaged over the 10-fold cross validation
tests. The Random curve stands for the uninformed classifier.

increasing probability, making later days more likely to be sampled than earlier days. The

idea behind later days is that interesting [pairs of] events might occur later during the visit.

For both training sets, the CDI class can be sampled until 3 days before diagnosis. The

non-CDI class can be sampled until the very end of the visit under any day, but only up to

until 2 weeks under later days, to reduce the effect of extremely long visits (months, years)

on classification. (As Table 3.6 shows, most visits last only a few days.)

Table 4.14 shows the performance of PEC and BEC when trained under the any day

and later days data sets. The BEC classifiers lag slightly behind the PEC classifiers under

both training sets, but their difference in AUC is small. Figure 4.23 shows that the PEC

classifiers perform nearly identically, while the BEC classifiers lag closely behind. The

effect of the training set appears irrelevant. Note that the AUCs of PEC and BEC in this

experiment are similar to the previous one (Table 4.13). This hints that data on admission

and early events may be good predictors of the outcome of the patient.

A side-result of the classifiers trained is that they are more likely to predict CDI when

the onset of symptoms approaches. Fig. 4.24 shows the sensitivity of the PEC and BEC

classifiers as the onset of CDI approaches. The classifiers were trained on any day and later

days, as well as in 1-2 days, which represents the setting from the previous experiment. As
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Classifier AUC Sensitivity Specificity Active fs Inactive fs
Any day
BEC 85.26% 78.04% 76.44% 539.8 2201.2
PEC 86.61% 82.21% 74.82% 3729.7 262222.0

Later days
BEC 85.21% 77.12% 76.76% 576.4 2135.8
PEC 86.53% 82.25% 74.26% 4132.1 269594.2

Table 4.14: Performance predicting CDI at any day of a patient’s visit. For each
classifier, we report its AUC, sensitivity, specificity, and number of active and
inactive features. The values are averaged over the 10-fold cross validation tests.

Figure 4.23: ROC curves of the classifiers in the task of predicting CDI, using
any day of a visit. The ROC curves are averaged over the 10-fold cross validation
tests. The Random curve stands for the uninformed classifier.

expected, training on admission and early events only (BEC and PEC on 1-2 days) does

not produce risk curves. Training on any day and later days produces risk curves, without

much difference between them; PEC outperforms BEC for this task.

Table 4.15 shows that BIC minimization contributed slightly to improve out-of-sample

performance while noticeably reducing the number of active features in the ensembles.

The use of BIC minimization signified a reduction in at least 19.6% of the features. The

average in-sample accuracy of each regression model in the BEC classifiers is 83.2%. For

PEC regression models, accuracy is 93% on average. This suggests that the ensembles help

compensate for underfit and overfit regression models.

69



Figure 4.24: BEC and PEC classifiers as the time to CDI approaches. The bars
represent the sensitivity of the classifiers from 7 days to the day before the onset
of symptoms.

AUC Active features
Classifier With Without With Without
1-2 days

BEC 85.07% 84.10% 461.7 1567.2
PEC 86.20% 83.97% 3263.4 5143.6

Any day
BEC 85.26% 84.25% 539.8 1629.6
PEC 86.61% 84.49% 3729.7 5191.8

Later days
BEC 85.21% 84.10% 576.4 1630.8
PEC 86.53% 84.34% 4132.1 5264.8

Table 4.15: Impact of L1-regularization with BIC minimization on the classifiers.
For each classifier, the AUC on the any day, later days and 1-2 days testing sets
are presented, as well as the number of features, for the cases with and without
regularization. The values are averaged over the 10 fold cross validation tests.

4.6.4. Admission data versus clinical events

As using only data available prior to day 2 seem to suffice for predicting whether the

patient will develop CDI during the visit, we considered the question of prediction accuracy

using either admission data or clinical events data. In this experiment, we compare PEC

and BEC when trained on either admission data only or clinical events only. Table 4.16

shows the performance of BEC and PEC classifiers trained using either admission data or

clinical events while Fig. 4.25 compares their ROC. Classifiers using admission data clearly

outperform classifiers using clinical events, which confirms that information available at

admission time can indeed be used to predict whether a patient will develop CDI during

the visit.
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Classifier AUC Sensitivity Specificity Active fs Inactive fs
Admission data
BEC 82.02% 72.63% 77.07% 73.6 1696.3
PEC 83.13% 68.00% 80.54% 280.0 58331.4

Clinical events data
BEC 77.58% 64.34% 75.43% 272.2 485.0
PEC 78.83% 69.62% 72.11% 3180.0 117536.3

Table 4.16: Performance predicting CDI using either admission data or clinical
events data. For each classifier, we report its AUC, sensitivity, specificity, and
number of active and inactive features. The values are averaged over the 10-fold
cross validation tests.

Figure 4.25: ROC curves of the classifiers in the task of predicting CDI, using
admission data only (admit) or clinical events only (events). The ROC curves are
averaged over the 10-fold cross validation tests. The Random curve stands for the
uninformed classifier.

4.6.5. Features selected in PEC

In the PEC, any day classifier, the most influential features are dominated by bare

events and admission data. To us, the influence of a feature is its absolute log-odds ratio,

i.e., |βi| for feature i. Table 4.17 shows the 20 most influential features in the classifier.

Features of the form [x < y] represent pairs of events. Most of the features in Table 4.17

involve bare events and/or admission data, which explains the previous results, showing that

using admission data alone could lead to good prediction. If we extend the analysis to the

100 most influential features, we see a similar picture. 36 features correspond to bare events,

with 33 being about admission data, while 64 features correspond to pairs of events, with
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Feature name Log odds (βi)
@Diag=135 5.2718
@Severity=Major 2.7682
@Severity=Extreme 2.4677
@Severity=Moderate 1.8935
@AdmSrc=NEWBORN PREMATURE BIRTH 1.7402
[@Severity=Minor < @AdmType=ELECTIVE/ROUTINE] 1.4477
@SvcCat=INTERNAL MEDICINE 1.1968
@Diag=203 -1.1257
@AGE=20 -1.1054
[To=PORR < To=OR] -1.0547
@PCR_period -0.9199
[@PCR_period < @Diag=152] 0.8856
[@SvcCat=INTERNAL MEDICINE < @AdmType=ELECTIVE/ROUTINE]0.8567
@SvcCat=FAMILY MEDICINE -0.8476
[@SvcCat=PSYCHIATRY < @AdmType=EMERGENCY] -0.8273
@AGE=30 -0.7447
[@AdmType=URGENT < @AGE=20] -0.7261
@AdmSrc=UIHC CLINIC -0.7136
@Diag=52 0.6986
@Readm_90D 0.6706

Table 4.17: Top 20 most influential features in PEC, any day.

62 involving admission data. Moreover, 59 pairs of events are strictly about admission data,

i.e., they do not involve clinical events. The 5 features that do not involve admission data

are: [To=PORR < To=OR], which states that visiting the PORR (post-OR) before the OR

(operating room) reduces the risk of CDI; Proc=231, which states that undergoing another

therapeutic or diagnostic procedure increases risk; [To=OR < Proc=Diag/Therap], which

states that visiting the OR to undergo any diagnostic or therapeutic procedure increases

risk; Proc=223, which states that enteral or parenteral nutrition increases risk; and To=4JPW,

which states that visiting a specific unit (4JPW) decreases risk. To be noted, these features

cannot just be interpreted in isolation; they co-occur with many events, because medical

events are associated with the patient’s condition. This explains the two most influential

pairs that partially involve admission data: [@AdmType=NEWBORN < Proc=Cardiovasc] and

[@SvcCat=PEDIATRICS < Proc=Cardiovasc]. Both state that either a newborn or a child

that undergoes a cardiovascular procedure is more likely to develop CDI.
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Extending to the top 1000, which make up for the dominating features of the classifier,

we see that only 154 do not involve admission data, 134 are pairs of events. Of these pairs,

prescriptions occur in 108 (54 are exclusively pairs of prescriptions), procedures occur in

72, and transfers are the least frequent, occurring in 12 pairs.

Diagnoses participate in 50 features of the top 100 and in 578 of the top 1000. The most

influential diagnoses, several present in Table 4.17, include intestinal infection (@Diag=135),

osteoarthritis (203), pancreatic disorders except diabetes (152), nutritional deficiencies (52),

abdominal hernia (143), and other lower respiratory disease (133).

4.6.6. Role of time

For the most part, temporal ordering played a small, but significant role in classification

as evidenced by the fact that PEC performed consistently better than BEC.

Table 4.18 shows the top pairs of events where order matters the most, i.e., those

with the highest difference β[x<y] − β[y<x]. Observe that the log-odds in some of them

even change signs. Some of these orders are consistent with the literature of risk factors

of CDI; for example, that receiving antibiotics after some other event signaling exposure

(e.g., repiratory intubation) increases the risk of CDI. In other cases, pairs of events can

be seen as markers of the progression of the infection, as in the case when parenteral

nutrition was needed ([Proc=223 < Proc=231]) and when nutritional agents were given

before medication for vertigo-nausea ([RxMaj=40 < RxSmin=562210]).

Antibiotics were present in several of the pairs shown in Table 4.18. Overall, pairs

of events involving systemic antibiotics represent 6.16% of all the features, almost always

participating in pairs of events rather than bare events. Most of the time, the whole

category of antibiotics is mentioned. Otherwise, first and fourth generation Cephalosporins,

Penicillins and Aminopenicillins are the antibiotics mentioned. Antibiotics seem to increase

risk when the patient has received metabolic agents, and when receiving anticoagulants

and anticonvulsants. The last two seem to suggest that such patients underwent severe

dehydration and nausea, which are common symptoms of CDI. Systemic antifungals seem

to also increase the risk of CDI.
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Feature name β[x<y] β[y<x]
[To=OR < To=PORR] -0.1831 -1.0547
transferred to OR no later than transferred to PORR
[To=OR < Proc=Diag/Therap] 0.3556 -0.0004
transferred to OR no later than underwent miscellaneous diagnostic-therapeutic procedure
[Proc=223 < Proc=231] 0.1982 -0.0019
underwent ’enteral and parenteral nutrition’ no later than underwent ’other therapeutic procedures’
[Proc=231 < RxMin=812] -0.014 -0.2062
underwent ’other therapeutic procedures’ no later than prescribed ’antibiotics systemic’
[Proc=Diag/Therap < RxSmin=81206] 0.1781 0.0144
underwent miscellaneous diagnostic-therapeutic procedure no later than prescribed
’fourth generation cephalosporins’
[RxMaj=40 < RxSmin=562210] 0.1362 0.0079
prescribed ’nutrients/nutritional agents’ no later than prescribed ’5ht3 receptor antagonists’
[Proc=216 < RxSmin=81219] 0.0042 -0.1182
underwent ’respiratory intubation and mechanical ventilation’ no later than prescribed
’extended-spectrum penicillins’

[To=6RCE < Proc=Diag/Therap] -0.0055 -0.112
transferred to 6RCE no later than underwent miscellaneous diagnostic-therapeutic procedure
[RxSmin=280892 < RxSmin=81203] 0.1132 0.0096
prescribed ’misc analgesics systemic’ no later than prescribed ’first generation cephalosporins’
[Proc=177 < RxSmin=280808] -0.0161 -0.1191
underwent ’computerized axial tomography (ct) scan head’ no later than prescribed ’opiate agonists’

Table 4.18: Top 10 ordered events where the order is relevant. For each ordered
event, we include a human readable description of it as well as two log-odds: the
individual log-odds of the ordered pairs β[x<y], and its converse β[x<y].

4.6.7. C.difficile exposure

In much of the literature, it has been argued that c.diff is highly contagious. Hence,

one might expect features in our classification to demonstrate this. For example, one might

expect to see pairs of events of the type "high colonization pressure, then exposed to an-

tibiotics" would increase the risk of developing CDI. But this was not the case. In fact, the

Pressure events were, for the most part, ignored by our classifiers. Furthermore, the good

performance of the classifiers on only 1-2 days worth of visit data seems to downplay the

role of exposure in the development of CDI. This may suggest that c.diff exposure plays a

lesser role in CDI, as suggested in recent research [121, 27].

However, here we need to emphasize the limitations of using our classifier output to

estimate the "importance" of features. Note that our classifier aims to produce a simple,
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minimally redundant explanation of risk. For example, if two features (bare or pairs of

events) have a similar explanatory power, the classifier will choose only one most of the

time. Since clinical management of the patient is highly dependent on the patient’s condi-

tion, we can easily explain many procedures, medications, and locations associated with a

patient-visit just by knowing the patient’s status on admission. Moreover, many procedures

are associated with particular locations in the hospital, because of the medical speciality as-

sociated with the operation performed. Thus, it is likely that pressure-related features (that

have an important spatial component) were subsumed by other features that collectively

provided a minimally redundant explanation.

4.7. Conclusion

We addressed the problem of predicting CDI using temporal information from medical

records. We described the temporal information (events) that occurred during a patient’s

visit as ordered pairs of events (pairs of events). A pair of events (x, y) or [x < y] states

that event x took place the day before or the same day as event y. We crafted an ensemble

of logistic regression models, where each classifier of the ensemble was trained on a balanced

subset of the data and performed extensive feature selection, addressing the problems of

class imbalance and high dimensionality, respectively. Our method slightly outperforms

baseline classifiers in the task of predicting CDI. However, our most salient contribution is

that of a classifier that produces interpretable information which could later inform medical

decision making.

The method introduced is subject to several limitations. First, by describing visits as

ordered pairs of events, we are missing the opportunity of learning what happens when

orders are longer, e.g., with ordered triples of events. Second, we have not introduced a

method for recommending the parameters of the classifier (ensemble size, visit resamples,

bucket size in feature selection, etc.). Third, even though the models produced by our

method are readable, the narrative they produce is simple but incomplete. Groups of

co-occurring clinical events are likely to be ignored, except for one or two. This implies

75



that meaningful associations can be hidden. For example, causal relation a → b could be

descrided by pair (c, d) if c co-occurs with a and d co-occurs with b, even though c and d are

causally unrelated. Furthermore, even though the ensembles reduce the number of features

to use, the least predictive features are less likely to be consistently chosen among logistic

regression models, hence increasing the total number of features chosen in the ensemble,

which is detrimental to classification. These limitations, especially the last one, are the

subject of future work.

There are other limitations that have more to do with the data itself: conclusions

obtained from the UIHC may not hold well with the reality of other hospitals. Since

different hospitals are culturally and architecturally different, we could expect that the

relative importance of the risk factors might be different between hospitals as well. It could

be possible that the CDI colonization pressure is predictive in other hospitals. Also, the

purpose of cross validating the trained models, then, cannot be interpreted as proof of

predictive power outside of the UIHC. Cross validation serves mostly to assert that the

trained models are not overfit. We still note, however, that the statistics regarding CDI

cases are consistent with those of other hospitals (Chapter 3).

Despite our limitations, we describe how novel approaches to using existing medical

records can help anticipate an important healthcare-associated infection. However, our

approach may also have applications for other hospital-associated infections and adverse

events, which together contribute to significant hospital-associated morbidity and mortality.
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CHAPTER 5

CONCLUSIONS

Healthcare associated infections are a considerable burden to the patients and to the

health care system. The affected patients have their prognosis worsened and demand more

resources from hospitals, with extended stays and requiring especial precautions, so they do

not put other patients at risk. As the bacteria causing these infections are becoming increas-

ingly resistant to antibiotics while also becoming more deadly and contagious, contributing

with knowledge for stopping these infections is, therefore, important.

In this thesis, I reported on two projects centered on data collected at the University of

Iowa Hospital and Clinics. The first project consisted in analyzing data collected by sensors

that reported the location and hand washing behavior of health care workers. In this

project, I analyzed radio signals to extract meaning from them; in particular, to determine

location information of healthcare workers and determining when they washed their hands.

After making sense of this data, I studied two epidemiologically relevant tasks associated

to human behavior. In the first, I studied the problem of link prediction for the inference

of contact networks, with the aim of predicting when a working will come in contact (close

proximity) to others based on whom they are usually in contact with. This information can

be used to build and simulate contact networks, whcih can be used to study the spread of

infections in the hospital. In fact, there is a whole body of research called contact network

epidemiology, which consists in studying epidemics in networks, including how to stop them.

The other problem I addressed with this data was the study of associations between social

pressure and hand washing. By doing so, I found that workers in proximity to others wash

their hands more, but also that not all workers are as influential. Both of these findings are,

perhaps, somewhat intuitive or expected, but they have implications for design of guidelines

focused on preventing the spread of diseases.

In the second project, I developed a data mining method for analyzing medical records

aimed at tackling the problems of class imbalance and high dimensionality, and applied

it to predicting Clostridium Difficile infection (CDI). The developed method consisted in
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building an ensemble of logistic regression models that, far different from existing develop-

ments, perform feature selection at the individual classifier level as opposed to the ensemble

level. The models resulting from this methodology performed better than the state of the

art models. They also improved prediction as the onset of symptoms approached, i.e.,

produced dynamically changing risk curves of the development of CDI. The main contribu-

tion, however, was in the information discovered: certain events in certain orders increased

the risk of developing the infection, suggesting that reversing these orders could improve

prognosis.

The overall line connecting my work has been the application of computational meth-

ods to epidemiological problems (i.e., computational epidemiology). So far, the most related

discipline is biostatistics, which is concerned on analyzing data medical and public health

data. So, there is room for the use of computational methods for analyzing such data,

especially if they involve data that does not follow the usual statistical assumptions, such

as radio signals, that follow the usual representations, such as dynamic networks and tem-

porarily organized events (and partial orders), or falls in the big size or high dimensionality

domain. Thus, perhaps, there is need for more research in computational epidemiology for

the improvement of the quality of healthcare provision.
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