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ABSTRACT

Hearing loss can significantly hinder an individual’s ability to engage socially

and, when left untreated, can lead to anxiety, depression, and even dementia. The most

common type of hearing loss is sensor-neural hearing loss that is treated using hearing

aids (HAs). However, a significant fraction of individuals that may benefit from using

HA do not use them and, the satisfaction of those that do, is only between 60–65%.

Today, we have only a limited understanding regarding the factors that contribute to the

low adoption and satisfaction rates. This is a limitation of existing laboratory-based

assessment methods that cannot accurately predict the performance of HAs in the real-

world as they do not fully reproduce the complexities of real-world environments.

There four core contributions of my PhD thesis: i) the development new computer-

based methods for assessing HAs in the real-world. Our approach is based on the in-

sight that HA performance is intrinsically dependent on the context in which a HA is

used. A context includes characteristics of the listening activity, social context, and

acoustic environment. To evaluate this hypothesis, we have developed AudioSense, a

system that uses mobile phones to jointly characterize the context of users and the per-

formance of HAs. ii) We provide the first instance of characterization of the auditory

lifestyle of hearing aid users, and the relationships that exist between the context and

hearing aid outcomes. iii) We utilize the subjective data collected using AudioSense to

build novel models that can predict the success of hearing aid prescriptions for new and

experienced users. We also quantitatively prove the importance of collecting contextual

vi



information for evaluating hearing aids. iv) We use the objective audio data collected

with AudioSense to predict contextual information like acoustic activity and noise level.

This provides us a way to intelligently infer contextual information automatically and

reduce the burden on the study participants.
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PUBLIC ABSTRACT

Hearing loss can significantly hinder an individual’s ability to engage socially

and, when left untreated, can lead to anxiety, depression, and even dementia. The most

common type of hearing loss is sensor-neural hearing loss that is treated using hearing

aids (HAs). However, a significant fraction of individuals that may benefit from using

HA do not use them and, the satisfaction of those that do, is only between 60–65%.

Today, we have only a limited understanding regarding the factors that contribute to the

low adoption and satisfaction rates. This is a limitation of existing laboratory-based

assessment methods that cannot accurately predict the performance of HAs in the real-

world as they do not fully reproduce the complexities of real-world environments.

There four core contributions of my PhD thesis: i) the development new computer-

based methods for assessing HAs in the real-world. Our approach is based on the in-

sight that HA performance is intrinsically dependent on the context in which a HA is

used. A context includes characteristics of the listening activity, social context, and

acoustic environment. To evaluate this hypothesis, we have developed AudioSense, a

system that uses mobile phones to jointly characterize the context of users and the per-

formance of HAs. ii) We provide the first instance of characterization of the auditory

lifestyle of hearing aid users, and the relationships that exist between the context and

hearing aid outcomes. iii) We utilize the subjective data collected using AudioSense to

build novel models that can predict the success of hearing aid prescriptions for new and
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experienced users. We also quantitatively prove the importance of collecting contextual

information for evaluating hearing aids. iv) We use the objective audio data collected

with AudioSense to predict contextual information like acoustic activity and noise level.

This provides us a way to intelligently infer contextual information automatically and

reduce the burden on the study participants.
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CHAPTER 1

INTRODUCTION

Hearing is an integral part of our being that allows us to interact and experience

our environment in a comprehensive way. A decline or loss of this sense can lead to

significant changes in a person’s lifestyle ranging from minor difficulty in interactions

to complete social isolation [9, 41, 61]. The World Health Organization estimates that

untreated hearing loss costs $750 billion annually [5]. A common way of treating hear-

ing loss is with the use of hearing aids. Although improvements in performance and

benefit have been achieved in with new hearing aids, there still exist issues that need to

be addressed. A key issue in this regard is the low adoption rate (approximately 1 in 4),

and dissatisfaction with hearing aids [8]. Gaining insights about the underlying reasons

for the dissatisfaction requires evaluating the performance of hearing aids. These per-

formance evaluations have typically been conducted in laboratory based settings and

sometimes have been augmented by interviews. There are two major drawbacks with

such methodologies viz. the inability of the laboratory setting to reproduce real-world

acoustic contexts, and the introduction of noise in the performance data due to memory

bias. The goal of this dissertation is to develop modern tools using mobile technolo-

gies for evaluating hearing aids to overcome the aforementioned problems and utilizing

the collected data to offer insights into areas of auditory lifestyle, hearing aid prescrip-

tion success, and identifying contextual information that could potentially lead to the



2

development of next-generation tools for evaluating and tuning hearing aids.

1.1 Limitations of Traditional Hearing Aid Methodologies

The traditional hearing aid evaluation methodologies have limited to labora-

tory settings where a hearing impaired individual is exposed to numerous standardized

tests such as the Speech-In-Noise (SIN), Hearing In Noise Test (HINT) to evaluate

their hearing loss. Tests like the SIN and HINT require the individual to be in a special

sound treated room, known as the sound booth. In the booth clean speech signals mixed

with different levels of noise to achieve specific Signal-to-Noise Ratios (SNRs) are pre-

sented and the individual is asked to perform certain tasks like recall the contents of the

presented speech, or doing a secondary task etc. Based on the person’s performance on

these tests at different SNRs and frequency inputs the hearing loss patterns are recog-

nized and hearing aids are prescribed. Sometimes, these tests are also augmented with

interviews about auditory lifestyle where the individual is asked to remember specific

details like noise level, source of speech, location etc. which might be helpful in tuning

the hearing aid for the person. The two major drawbacks with this methodology are:

1. Non-representative testing: The testing conditions presented in the standardized

tests create synthetic environments with clean speech signal mixed with synthetic

noise like babble, pink noise etc. These synthetic environments might be repre-

sentative of some real-world scenarios but are incapable of representing a number

of auditory contexts that the person might encounter in their daily life. Hence,

the results obtained from these tests might not be representative of what the per-
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son being tested experiences and hence do not translate well into their daily life

through hearing aid prescriptions.

2. Memory Bias: Sometimes the standardized tests are augmented with interviews

regarding the auditory lifestyle to overcome the non-representation problem. Once

hearing aids are fitted based on the laboratory tests, the individuals are asked to

come back and report their experience after a few weeks or months. When the

user returns, interviews are conducted. The purpose of these interviews is to gain

a better understanding of the individual’s acoustic lifestyle and use these insights

in conjunction with testing results to tune the hearing aid. During these inter-

views the individual is asked to remember details of events that happened long

ago. For example, if the individual reports that they were at a social gathering,

the follow-up questions can be related to describing the crowd size, location of

noise, reverberation etc. Since a significant amount of time has passed since the

event being reported occurred, the individual might not be able to remember ex-

act details and would introduce noise within their responses leading to incorrect

tuning of the hearing aids. This phenomenon of misremembering details about

events that happened in the past is known as memory bias.

1.2 Mobile Ecological Momentary Assessment

An alternative methodology that can be used to evaluate the hearing aids is

Ecological Momentary Assessment (EMA). EMA involves the repeated sampling of
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the subject’s current state and experience in real-time [60]. Specifically, EMA has two

important properties associated with the data collection:

• Ecology: The data is collected within the ecology of the subject i.e. in their daily

life and hence is representative of their real-world experiences.

• Momentary: The assessment is delivered in-the-moment to capture the data in-

situ. This reduces the error caused by memory bias.

EMA, even though a novel idea, had limited effectiveness within the traditional study

design. The data collection involving pen-and-paper diary methods were, like tradi-

tional studies, difficult to scale and execute precisely. In addition to this, the issue

of latency, data being acquired by the researchers only during lab visits of the par-

ticipants, remains unresolved. However, if we combine the EMA with mobile phone

(smartphone) driven sensing, we potentially open new doors for clinical research in

the form of mobile EMA. The ubiquitous nature of mobile phones allows the studies

to be viable while the presence of embedded sensors helps in enriching the collected

contextual data. Scaling the study to many users also becomes a trivially solvable issue.

The overall design of mobile EMA (mEMA) studies are fairly straightforward:

when the study participant is in the relevant context, an alarm is delivered using the

mobile device. While the participant provides their input (usually in the form of filling

out a survey), the device also captures sensor data that enriches the survey based con-

textual data. Once the data collection has ended, the data is uploaded to a remote server
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at the earliest opportunity.

In this thesis we create a new mEMA system called AudioSense for evaluat-

ing hearing aids. The EMA methodology helps us overcome the limitations associated

with traditional methodologies and the mobile phone allows us to collect data at un-

precedented levels from the perspective of hearing aid research. This system combines

the collection of contextual and hearing aid performance data in the form of electronic

surveys with objective sensor data like in-situ audio and location. Using this system

we have conducted, to the best of our knowledge, the largest academic study on evalu-

ating hearing aids with mEMA. Based on the real-time and in-situ data collected with

AudioSense were able to make several contributions, details of which are mentioned in

the following section. We also present the next-generation of AudioSense capable of

streaming objective information from many more sources, and providing greater flexi-

bility for subjective measurements.

1.3 Research Contributions

This thesis makes the following research contributions:

1. Create a comprehensive data collection platform: In Chapter 2 we describe

our mEMA system called AudioSense. This system is capable of collecting hear-

ing aid performance data and contextual information in the form of adaptive elec-

tronic surveys in conjunction with recording the acoustic and location informa-

tion in-situ and in real-time. We show that AudioSense, in contrast with existing

mEMA systems for hearing aid evaluations, collects much more data due to a
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flexible timer and user initiated data collections scheme.

2. Characterize the auditory lifestyle of hearing aid users: Chapter 3 describes

using the in-situ contextual data to characterize the auditory lifestyle of hearing

aid users for the first time. We established that hearing aid users spent most

of their time in socially engaging contexts and attached higher importance to

listening well in unfamiliar contexts.

3. Predict the success of hearing aid prescriptions: In Chapter 4 we utilize the

subjective assessments to predict the success of a hearing aid prescription with

high accuracy for new and experience hearing aid users. In addition to this we

quantitatively prove the importance of collecting contextual information for eval-

uating hearing aids.

4. Utilize in-situ audio data to identify subjective responses: In Chapter 5 we use

the objective audio data collected during our study to predict contextual informa-

tion reported by the study participants viz. the activity context and noise level.

We further utilize these predictions to test whether they can predict hearing aid

outcomes accurately.

5. AudioSense+, next generation mEMA for HA evaluations: In Chapter 6 we

highlight the limitations of the AudioSense system and present AudioSense+

which is the next-generation mEMA platform. We highlight how AudioSense+

is capable of capturing a wider variety of data from multiple sources that were
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not available previously.
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CHAPTER 2

AUDIOSENSE: A MOBILE ECOLOGICAL MOMENTARY ASSESSMENT
APPLICATION FOR REAL-TIME HEARING AID EVALUATION

A 2008 MarkeTrak survey estimates that 11.3% of Americans (approximately

34.25 million) suffer from hearing loss [57]. Hearing loss often leads to social isolation

that has significant deleterious effects on one’s health. For example, hearing loss in

older adults has been associated not only with communication difficulties, but also

with decreased health and reduced engagement in physical activities [14]. The primary

intervention for sensorineural hearing loss and related psychosocial consequences is

hearing aid amplification. However, in spite of significant advancements in hearing

aid technology during the past decade, hearing aids use is not prevalent among people

with hearing loss [40, 57] and only half of those using hearing aids are satisfied with

their performance in noise [36]. Moreover, several recent clinical studies indicate that

laboratory assessments of hearing aid performance are not predictive of their real world

performance [12, 55, 68, 69]. Therefore, in order to improve hearing aids, there is a

critical need to develop assessment techniques that allow engineers and clinicians to

understand the factors that affect hearing aid performance in the real world.

Measuring the performance of hearing aids in the real world poses significant

challenges as it depends on the patient’s listening context which includes characteristics

of listening partners, listening activities, location of conversation partners, and environ-

ment. Audiologists currently measure hearing aid performance either through self-
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reporting methods or speech-in-noise tests. Self-reports are commonly used to assess

the auditory handicap and patient satisfaction with hearing aid performance. Unfortu-

nately, self-reports are plagued by memory biases, as patients are required to remember

the circumstances in which hearing aids performed poorly long after they occurred.

Speech-in-noise laboratory tests are used to assess the benefits of hearing aids, config-

ure parameters of amplification algorithms, and compare different hearing aid technolo-

gies. During a test, a patient placed in a sound booth is presented segments of speech

under different noise conditions. As these tests are usually focusing on showcasing the

various aspects of hearing aid technology (e.g., use of omnidirectional vs. directional

microphones) they fail to be representative of the listening contexts that patients en-

counter during their daily life. Accordingly, neither self-reporting nor speech-in-noise

tests are effective in describing the listening contexts observed by patients in the real

world.

In this chapter, we present AudioSense, a novel system for evaluating hearing

aid performance in the real world that integrates mobile phones and web technology.

The novelty of AudioSense is that it combines subjective and objective measures of

hearing aid performance and listening contexts. AudioSense uses Ecological Momen-

tary Assessment (EMA) methods. EMA involves the repeated sampling of the subject’s

current state and experiences in real-time [60]. We make use of EMA with electronic

surveys to evaluate both the perceived hearing aid performance as well as to character-

ize the listening environment (e.g., listening activity, room size, and location of speak-
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ers). This is accomplished by delivering electronic surveys either at randomized inter-

vals or when triggered by patients. Compared to other forms self-reporting, EMA has

the advantage of reducing memory bias since patients report on their recent experiences

(in the previous 5 - 10 minutes). Concurrently with the delivery of surveys, AudioSense

further characterizes a patient’s listening context by recording their GPS location and

sound samples. Standard sound analysis techniques (e.g., computing SNRs) are used to

analyze the sound samples after upload to a web server. GPS locations could be used to

determine whether the subject is indoors or outdoors. By creating a time-synchronized

record of listening performance and listening contexts, AudioSense opens significant

opportunities to understand the relationship between listening contexts and hearing aid

performance.

The implementation of AudioSense has been evaluated across three dimensions:

reliability, energy consumption, and errors in SNR estimation. Experimental results in-

dicate that 100% of the surveys were successfully collected in spite of intermittent

network connectivity. Moreover, AudioSense can deliver surveys at 1.5 hours intervals

for two days without requiring the mobile phone to be recharged. Finally, we have eval-

uated the ability of estimating SNR from sound files when various levels of Gaussian

noise were added. Preliminary results indicate that the average SNR estimation error

was 0.62 dB.

The remainder of the chapter is organized as follows: in Section 2.1 we provide

the related work comparing AudioSense with the current methods used for hearing aid
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evaluation. Section 2.2 describes the software architecture of the AudioSense system.

In Section 2.3 we test the performance of AudioSense from energy consumption and

data reliability perspectives. The concluding remarks are made in Section 2.4.

2.1 Related Work

EMA has been proposed as an alternative to retrospective self-reporting meth-

ods that suffer from memory bias. A PubMed literature search indicates that only

two audiology studies have used computer-based EMA to date. Henry et al. [26] used

EMA to evaluate the impact of chronic tinnitus1 on the day-to-day activities of patients.

Galvez [19] used EMA to evaluate patient satisfaction with hearing aid performance. In

contrast to the tools used in these studies, AudioSense can track of patient compliance

in real-time using a web portal. Galvez reports a compliance rate of 77% in his study.

We expect that by tracking patient compliance in real-time, AudioSense may achieve

higher compliance rates. More importantly, neither study collects any sensor data to

characterize the patient’s context.

While audiologists continue to use relatively simple versions of EMA, computer

scientists have proposed to combine experience sampling and collection of sensor data

to capture contextual information [18, 30]. However, clinicians have not adopted these

techniques since they do not include domain-specific measures of contextual informa-

tion that are necessary to assess their medical relevance. AudioSense addresses this

limitation by providing an extensible environment for using algorithms for characteriz-

1Tinnitus is the perception of sound in the ear and may interfere with hearing.
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(a) Home screen (b) MCQ (c) Scale rating ques-
tion

(d) Settings screen

Figure 2.1. EMA component: Screen shots of (a) the first screen seen by the user, (b)
example of the multiple choice questions, (c) example of a continuous scale question,
(d) settings screen used by clinicians.

ing the listening context.

Speech-in-noise tests are widely used to assess the benefits of hearing aid noise

reduction technologies. Such tests including QuickSIN and Hearing in Noise Test

(HINT) present speech and noise at different SNRs. Among the contextual factors

that would affect hearing aid users’ speech understanding, SNR is probably the most

important one. AudioSense already includes algorithms to characterize the SNR of col-

lected speech. In the future, we plan to integrate AudioSense with other algorithms to

further classify and characterize listening contexts. We will leverage on the significant

body of work on sound classification (e.g., [39]); many of such algorithms are already

implemented in MATLAB allowing for a simple integration with AudioSense.
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2.2 AudioSense System

AudioSense is designed to collect objective measures of hearing aid perfor-

mance and listening contexts in the real world. The design of AudioSense must address

four key requirements:

1. must facilitate compliance with data collection protocols over multi-week de-

ployments,

2. must ensure the reliability of data collection,

3. must provide an extensible software architecture to enable signal processing and

audio analysis on collected sensor measurements, and

4. support concurrent data collection from multiple users.

In the following, we present the system architecture and software components of Au-

dioSense, focusing on how the system addresses these requirements.

2.2.1 System Architecture

AudioSense is a two-tier system that is composed of mobile phones and a back-

end server. The mobile phones are carried by patients and are used to deliver surveys

and collect sensor measurements. The server backend includes three components: a

web server, a database, and a speech analysis component. The web server stores the

data uploaded by clients in a database. The web server provides a standard web por-

tal interface to visualize the collected data and monitor patient compliance with data
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collection regiment. The speech analysis component allows the uploaded data to be

automatically processed in the MATLAB environment. We opted to integrate with

MATLAB to provide a flexible and extensible environment for signal processing and

speech analysis. This choice is motivated by the availability of several speech analysis

algorithms as open-source components implemented in MATLAB (e.g., VoiceBox).

The communication between mobile phones and the web server is accomplished

using HTTP over Wi-Fi or a cellular network. As patients in our studies are mobile and

may live in rural parts of Iowa, wireless connectivity may be intermittent. AudioSense

is designed to tolerate intermittent network connectivity by having each mobile phone

cache the collected data aggressively. Periodically, the mobile phone attempts to estab-

lish connections to the web server and, when successful, it uploads the collected data.

Note that the storage space available on modern mobile phones is sufficient to store all

the data that we collect even in a multi-week deployment.

2.2.2 Software Components

The client-side of AudioSense running on mobile phones is implemented on

top of Android OS. Android OS is available on numerous mobile phones and tablet

computers. AudioSense can be deployed on any Android device. The backend server

is portable and can be deployed on Mac OS, Linux, and Windows. The web portal

is implemented using the Django web framework. SQLite is used to store data and

manage metadata associated with the collected sensor readings and surveys. MATLAB

is used as a computing environment for analyzing collected sensors measurements.
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Next, we describe each software component.

2.2.2.1 EMA Component

The EMA component runs on mobile phones and is responsible for managing

activities associated with the delivery of electronic surveys. The EMA component ad-

dresses the needs of both software developers and patients.

A software developer can create new surveys using a simple API. A survey

is modeled as a set of questions. To keep track of the patients’ choices at run-time,

we associated with each question a variable to which we assign a value based on the

response of the patient to each question. A patient may navigate through the survey

both forwards and backwards. They may revise their answers as necessary. The next

question presented to the patient depends on his previous answers, thus allowing for

adaptive surveys.

While the EMA component has an extensible architecture, we currently support

two types of questions: multiple-choice questions (MCQ) and scale rating. Multiple-

choice questions are rendered as a sequence of buttons whose text can be specified by

the programmer (see Figure 2.1(b)). The patient is allowed to select a single option

out of those presented. Scale rating questions are rendered using seekbars and the

programmer can provide labels to be rendered for the middle and ends of the bar (see

Figure 2.1(c)).

The delivery of electronic surveys may be alarm triggered or patient-initiated.

The EMA component supports the delivery of surveys using either fixed or a random-
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ized schedules. If a survey was just delivered, the time offset until the next survey

will be delivered is computed by adding a constant time offset Toffset and a random

number picked uniformly from the time interval [0, Trand]. This method allows for the

generation of both fixed schedules (i.e., by setting Trand = 0) as well as randomized

schedules. Typically, our audiology surveys are delivered on average every 1.5 hours

and consecutive surveys are separated by at least 1 hour (i.e., Toffset = 1 hr and Trand =

1 hr). Moreover, in order to minimize the interruption burden to patients, clinicians can

select the time interval during a day when surveys can be delivered. An alarm outside

the delivery interval will be postponed until the next day.

Appropriate user interface (UI) design can have a significant impact on the com-

pliance of patients with the data collection protocols. This is particularly problematic

given that patients with hearing loss also tend to be older. Accordingly, they do not

only suffer from hearing loss but also may have impaired vision and potential loss of

fine motor control. These considerations influenced our UI designing choices. We re-

fined our initial user design based on patient feedback. Accordingly, we opted for large

font sizes and a color scheme that has colors, which are easy to distinguish. Similarly,

we opted for a large buttons and overrode the default seekbar provided by Android OS

with one that provides a larger area that is sensitive to touch. The most consequential

decisions in the user interface are related to the delivery of alarms – notifications that

the user should complete a survey. After several iterations and feedback from patients,

we decided to deliver survey alarms by vibrating the phone, playing loud ringtones,
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and turn on/off the flash of the camera. An alarm sounds for 30 seconds. Our choice

for an alarm that can be quite intrusive and irritating is balanced by the ability to easily

dismiss it: the patient may press the power button to stop the alarm. Moreover, we have

added a Snooze option that allows the patient to postpone completing the survey by 30

minutes.

2.2.2.2 Sensor Data Collection

While surveys are administered, AudioSense records audio at 16 KHz and GPS

locations at 0.1 Hz. The data collection is triggered either by an alarm or when the user

opens the application. The data collection is stopped after a timeout configured by the

developer.

Unlike the EMA component that utilizes only a fraction of the phone’s re-

sources, the design of sensor data collection must minimize resource utilization. To this

end, AudioSense implements a simple but effective pipeline abstraction: in a pipeline,

the data flows from the source to the sink and is transformed by the intermediary com-

ponents. Each pipeline is executed in a different thread in order to isolate the data

collection from different sources. An additional concern is the need to minimize the

number of times the garbage collector is invoked on Dalvik Virtual Machine (DVM).

Each time when the garbage collector identifies objects that are no longer used by an

application it reclaims the allocated memory. The garbage data collection operation

interrupts the execution of the application between 10 – 100 ms depending on the num-

ber of objects freed. While most applications would not be affected by this delay, when
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high rate audio is recorded, such delay may lead them to drop audio frames. We ensure

that the objects used in data collection never need to be garbage collected using the

following approach. Each pipeline sources manages a shared buffer pool that contains

a number of frames preallocated when the application starts. When a source has data

to write, it retrieves a frame from the buffer pool and writes the data into the frame.

Frames are pushed down the pipeline through each intermediary component, which re-

ceives a reference to that frame. Upon reaching a sink, the frame is put back into the

buffer pool of its source. This mechanism of cycling the frames between sources and

sinks prevents the frames from being garbage collected since they are always in use.

AudioSense includes three pipelines: audio processing, GPS processing, and

file upload. The audio and GPS pipelines have a similar behavior: they collect data

from their respective sensor source and save it to a file. Upon the completion of the

data collection, the names of files containing the sensor data are passed to the file upload

pipeline. The file upload pipeline maintains a queue of the files that are to be uploaded.

The content of the queue is saved to disk in order recover from application crashes

without losing information according to the following policy. When a new file is added

to the queue, the content of the queue is saved immediately to disk to avoid data loss

in case of an application crash. In contrast, when a file is removed from the queue, this

operation does not result in an immediate write to disk as in the worst case this would

lead to a file being uploaded twice. The file upload pipeline dequeues the names of the

files and creates HTTP POST request to be sent to the server that includes the file and
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additional metadata. The metadata includes a patient identifier, a phone identifier, a

session identifier, and the time when the data was collected. Upon a successful upload,

the uploaded file is removed from the queue.

AudioSense uses the power-lock interface provided by Android OS to manage

its power usage. The EMA component acquires a lock that maintains an active screen

at the start of a survey. If the EMA component does not receive any user input for

one minute, the survey component is stopped and the screen power lock released. This

indicates to the OS that it may turn off the screen if no other application has acquired

a power lock on the screen. AudioSense maintains a CPU lock during the collection

of sensor data. During the delivery of alarms AudioSense also turns on the camera to

access the flash, but it turns it off after the 30 seconds alarm is delivered. In a typical

deployment, AudioSense is, on average, active for 10 minutes every 1.5 hours resulting

in an 11.11% duty cycle.

2.2.2.3 Web Server Backend

The AudioSense web application is implemented using the Django web frame-

work. Django provides basic facilities for secure website login and user management.

The AudioSense web application takes advantage of these capabilities to provide a sim-

ple user portal. The primary goal of the user portal is to provide clinicians access to

real-time data for monitoring patient compliance.

The web application is responsible for handling the HTTP POST requests from

clients. Each HTTP request includes identifiers for the patient and phone from where
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the data is uploaded along with the actual data. The metadata is stored in a database

for easy querying while the files are stored on the local hard drive. For security pur-

poses, the local hard drive is encrypted. A request also results in a new processing job

being added to speech analysis component. The web server may serve multiple clients

concurrently.

The speech analysis component integrates with MATLAB environment on the

server. This allows AudioSense to be an extensible environment in which many back-

end algorithms can be implemented. Currently, we have implemented a number of

algorithms for estimating the SNR from collected speech segments. Our focus on SNR

is justified by the fact that it is a good indicator listening context.
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2.3 Performance Evaluation

The key to successfully deploying AudioSense is to ensure reliable and energy

efficient data collection. Accordingly, this section measures the reliability and power

consumption of AudioSense under a realistic deployment scenario. These results are

complemented by preliminary results from actual field deployments. Additionally, we

also evaluated AudioSense’s capability of estimating SNR using the MATLAB back-

end.

We configured AudioSense to deliver surveys every five minutes. AudioSense
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operated as follows: during the first three minutes of each data collection round, Au-

dioSense recorded sound samples and GPS locations. One minute within each data

collection round, AudioSense triggered an alarm for the user to complete the surveys.

During the experiments, AudioSense recorded sound and GPS locations at 16 KHz and

0.1 Hz, respectively. Under these settings, for a data collection round, approximately

5.46 MB have been recorded and uploaded to a web server.

2.3.1 Reliability

For evaluating data collection reliability, we collected data for 70 minutes dur-

ing which a total of 15 surveys were delivered. The evaluation was performed inside a

home using a Wi-Fi connection to upload the data. Multiple walls attenuated the Wi-Fi

connection, which is realistic setup for what we expect in patient homes. Additionally,

to evaluate the tolerance of AudioSense to network disconnections, we turned off the

wireless adapter on the phone at the 48 minute mark for approximately 12 minutes.

Figure 2.3 captures the reliability of the system during the 70-minute evalua-

tion. The short red bars indicate when the data collection was initiated. As expected,

consecutive bars are separated by 5 minutes, which is consistent with the experimental

setup. The tall blue bars indicate the time when the data was successfully uploaded on

the server. The overall reliability was 100% – all files containing the sound and GPS

data have been successfully uploaded to the server.

During the first 48 minutes of the experiment, the phone had connectivity to

the server. During this time interval, the average of the time from when data collec-
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tion started until it was successfully uploaded was 184.48 seconds. In Figure 2.3, this

interval is captured as the distance between consecutive short and long lines. Two fac-

tors contribute to the observed delay: a total of 180 seconds were spent collecting the

data (per our setup) and the remainder of 4.48 seconds was spent upload the data. On

average, the phone uploaded data at a rate of 9.756 Mbit/s.

The phone’s wireless interface was turned off during the interval [48, 61] min-

utes.Without network connectivity, AudioSense cached data from 3 data collection

rounds.Upon turning the network interface back on at minute 61, AudioSense pro-

ceeded to upload the cached files. The number on top of bar indicates the number of

audio files created/uploaded within a 60 second interval. Accordingly, the number 3 on

top of the penultimate tall bar indicates that the three sound files that were cached, have

been uploaded within a minute.

2.3.2 Power consumption

The power consumption was tracked using the Power Tutor [72]. Figure 2.4

plots the CPU and LCD power consumption that can be attributed to AudioSense. Au-

dioSense records data for 3 minutes during each 5 minute data collection round. This

pattern is clearly visible in the figure for both the energy consumed by CPU and LCD:

periods of high-energy consumption alternate with periods of no energy consumption.

The LCD is used for a shorter period of time than the CPU since AudioSense starts

collecting data one minute prior to delivering an alarm and turning on the LCD. During

the interval [48, 61] minutes, additional energy is spent by the CPU trying to reestablish
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connectivity to the server. Under the considered experimental setup, the AudioSense

operates at a duty cycle of 60% and the phone does not need to be recharged for at least

a day.
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Figure 2.4. Power Consumption: This figure shows the power consumed by Au-
dioSense during testing. The blue dots represent the power consumed by the CPU
(responsible for Audio and GPS recording) while the red dots represent the power con-
sumed by the LCD screen (responsible for the survey).

2.3.3 Deployment

AudioSense is being used as a clinical trial that aims at evaluating the effective-

ness of hearing aid technology. Currently, AudioSense has been deployed as part of
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three weeklong data collection sessions with 5 subjects. In contrast to the experimental

setup discussed above, during the field deployment, AudioSense uploads data over the

cellular network. Moreover, AudioSense operates at an 11.1% duty cycles being active

(on average) for 10 minutes every 1.5 hours. Under this lower duty cycle, AudioSense

operates without recharging in excess of three days.
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Figure 2.5. Inferring SNR: The figure on the top shows the instantaneous composite
signal power in red while the noise floor power is represented in green. The bottom
figure shows the SNR calculated from the instantaneous powers.
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Actual (dB) Predicted (dB)
11.52 11.59
10.56 9.76
9.54 9.76
8.56 8.54
7.56 7.750
6.59 7.17
5.57 6.01
4.56 5.11
3.60 5.17
2.56 4.29

Table 2.1. SNR Estimation Accuracy: The left column indicates the actual SNR and
the right column indicates the predicted SNR from the captured audio.

2.3.4 Computing SNR

A key factor that determines the difficulty of the listening task is the SNR. We

evaluated the ability of AudioSense to compute the global SNR for noisy sound files.

The noisy files were generated from a clean sound file to which Additive Gaussian

Noise was added.

The SNR was estimated using the signal level and the noise floor from the power

spectrum. Figure 2.5 plots the power of the signal and noise levels (red and green curve)

for a file where the SNR was 10 db. The instantaneous SNR (computed of 0.65 ms

segments) is plotted in the lower part of the graph. Figure 2.1 compares the actual and

the estimated SNR values. On average, the SNR error was 0.62 dB but there is a clear

trend of increasing error for smaller SNR values. This is expected since for low SNR

values it is difficult to distinguish between signal and noise.
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2.4 Conclusions

This chapter presented AudioSense a novel system for evaluating the perfor-

mance of hearing aids in the real world. AudioSense combines EMA techniques with

the collection of sensor data to characterize a patient’s listening context of the user.

To this end, AudioSense integrates mobile phone technology with web applications.

AudioSense is capable of delivering customized surveys at fixed or randomized time

intervals. User feedback was integrated to refine the design of elements of user inter-

faces and alarms. Empirical studies show that AudioSense provided 100% reliability,

supported the delivery of surveys 1.5 two hours without requiring recharging the mobile

phone for two days, and provide facilities to integrate sound analysis techniques. As

part of the future work, we plan to infer the listening context automatically in real-time

from the audio signals and the GPS locations collected. This would help in making the

electronic surveys more intuitive and shorter for the subjects.
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CHAPTER 3

EVALUATING AUDITORY CONTEXTS AND THEIR IMPACTS ON
HEARING AID OUTCOMES

The auditory lifestyle of hearing aid (HA) users and the corresponding perfor-

mance of their devices can provide the clinicians with useful insights that can guide the

fitting process. Traditionally hearing aid performance has been evaluated in laboratory

settings and in some cases has been augmented by interviews or diary methods. The

success of these methodologies is severely limited by two factors viz. the inability of

laboratory tests to accurately present the hearing aid user with real-world scenarios,

and the unreliability introduced due to memory bias in the collected data using diary

methods. Laboratory tests typically present the hearing aid user with signals consisting

speech mixed with different levels of noise. Such tests might be able to partially repro-

duce certain types of real-world situations within the laboratory such as conversations.

It is, however, difficult to introduce a sense of realism within these due to the lack of

secondary cues such as lip movement, or the user’s familiarity with the surrounds and

the people. Hence, it becomes extremely difficult to comprehensively recreate an im-

mersive environment within the confines of a laboratory that is representative of the

real-world. Audiologists sometimes augment these tests with interviews and question-

naires to measure real-world HA outcomes. The interviews are generally conducted

once in several weeks and are negatively affected by memory bias as users are asked to

recall circumstances in which their HAs performed poorly. Accordingly, neither self-
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reporting nor laboratory-based tests are effective in describing the auditory contexts

observed by patients in the real world.

In the previous chapter, we developed AudioSense [25], a novel system for

evaluating HA outcomes in the real world using mobile phones. AudioSense includes

a mobile phone application that delivers Ecological Momentary Assessments (EMAs).

EMA involves the repeated sampling of a subject’s current state and experiences in real-

time [60]. This is accomplished by delivering electronic surveys either at randomized

intervals or when triggered by patients. Compared to other self-reporting methods,

EMA has the advantage of reducing memory bias since patients report on their recent

experiences (in the previous 5 - 10 minutes). The delivered surveys capture information

both the auditory context and the associated HA outcomes.

In this chapter, we make the following contributions:

1. We present one of the first empirical studies that use mobile phones to assess the

auditory contexts and their impact on HA outcome. We analysed a total of 3437

surveys from nineteen subjects using AudioSense to create a detailed record of

the auditory contexts that HA users encounter during their daily lives.

2. Using these subjective assessments, we characterize the common properties of

auditory contexts and the importance subjects associate with hearing well in a

given context.

3. Audiologists evaluate HA outcomes using correlated measures. We propose a
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technique to combine these measures into a single score in order to reduce the

measurement error associated with each independent measure.

4. More importantly, we show that it is possible to discriminate between poor and

good HA outcomes with an accuracy of 78% solely based on the auditory con-

texts and HA features.

This highlights the central role that auditory contexts play in understanding HA out-

comes in-situ.

The chapter is organized as follows: Section 3.1 introduces the background

literature and compares them with AudioSense. This is followed by Section 3.2 that

describes the basic setup of the field study from which AudioSense collects the data.

3.1 Related Work

Several recent clinical studies indicate that the benefit of HA technology (i.e.,

HA outcome) measured in the lab does not translate to the real world [12,55,68,69]. As

a result, there is an increased interest in measuring the prevalence of auditory contexts

and HA outcomes in the real world [19, 26, 68, 69]. Most in-situ studies of HA use

paper-based surveys methods. Unfortunately, these methods limit both the accuracy

of the collected data and the scale of the studies significantly. Ecological Momen-

tary Assessment (EMA) [60] is an established alternative to retrospective self-reporting

methods that reduces the problem of memory-bias by collecting data in the moment.

More importantly, EMA techniques can be implemented using computer technology to
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also alleviate the scalability concerns to date. Audiologists have conducted only two

computer based EMA studies to date [19, 26]. In [26], the authors evaluate the impact

of tinnitus1 on daily lives of people using EMA, while in [19] the authors use EMA to

assess patient satisfaction with hearing aids. This chapter describes utilizes approxi-

mately 3400 surveys, exceeding the scale of the previous computer-based EMA studies

in Audiology.

Computer scientists have developed a number of EMA systems [18, 27, 49].

These systems provide a framework that allows for real-time collection of survey and

sensor data. However, most often these systems are not deployed as part of clinical

or field studies. AudioSense provides similar capabilities to existing EMA systems

but emphasizes the collection of data relevant to audiologists such as audio, GPS, and

survey data on mobile phones. AudioSense may also replace noise dosimeters (as those

used in [70]), which have a larger form-factor to less obtrusive measurement of noise

levels in the real world. AudioSense provides the audiologists with a web portal for

tracking patient compliance in real-time. The main contribution of this chapter is the

empirical analysis of the collected data. For the first time, we show that it is feasible to

predict HA outcomes based on the characteristics of auditory contexts and HA features.

In a wider context, our work contributes to the growing body of literature establishing

computer-based EMA as a reliable method for assessing HA technology.

1Tinnitus is the perception of sound in your ear and may interfere with your hearing.
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Variable Statistics
Gender Male 35%

Female 65%
Age(years) Median: 70.5, Range: 65 – 87
Hearing loss onset(years) Median:12, Range: 1– 54
Employment Full-time 1

Part-time 1
Retired 18

Duration of HA use (years) Median: 8.5, Range : 0 - 40

Table 3.1. Demographic information of subjects. All participants within our study are
older adults from the state of Iowa. All of them have mild-to-moderate hearing loss.

3.2 Field Study

For this chapter we considered nineteen participants. The participants are hear-

ing impaired, native English speakers, and at least 65 years old. The participants have

adult-onset, bilateral, symmetric (within 15 dB), sensorineural hearing loss with thresh-

olds averaged across 0.5-4.0 kHz between 25 and 60 dB HL. This represents a mild-to-

moderate level of hearing loss. Both new and experienced HA users are included. The

participants are recruited in two ways:

1. The Department of Communication Sciences maintains a subject pool from which

people who matched the inclusion criteria are invited to participate in the study.

2. The remaining study participants are recruited through word of mouth from other

study participants or through hearing screenings in the community.

The sample population is representative of the patients commonly seen in audiology

clinics. The detailed demographics are included in Table 3.1.
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Condition HA use DM/DNR usage
0 Unaided –
1 Entry level Off
2 Entry level On
3 Premium Off
4 Premium On
5 Reliability measure

99 Training

Table 3.2. Different types of hearing aids used in our study. We used two hearing aids
each of which had Directional Microphones and Digital Noise Reduction modes which
could be turned on/off. Condition 99 represents the practice sessions to familiarize the
subject to the data collection procedure.

Each subject is enrolled in six sessions, each session lasting for a week. The

sessions differ in the types of HA devices used and what features are enabled (see Table

3.2). This is a single-blind study: participants are not aware of what type or features

of the HA are active in a given session (but the research team is). To understand the

impact of HA technology, we select the following hearing aids: (1) a low-cost, entry-

level model with a low-end adaptive directional microphone (DM) and digital noise

reduction (DNR) and (2) a premium level hearing aid with advanced DM and DNR

features. The devices are used with both the DM/DNR features enabled and disabled.

HA outcomes depend on both HA capabilities and the auditory contexts in

which HAs are used. AudioSense is used to simultaneously characterize the auditory

context and measure the HA outcomes associated with that context. The impact of

HA features is evaluated by comparing the results obtained in different sessions. The

surveys evaluate the auditory contexts and HA outcomes across multiple dimensions



34

Context Variable Question
Activity
context

Activity type What were you listening to?
Location Where were you?

Acoustic
context

Noise level How noisy was it?
Noise location Where was the noise coming

from?
Talker location Where was the talker?
Room size How larger was the room?
Carpeting Was there carpeting?

Social
context

Visual cues Could you see the talker’s face?
Familiarity Are you familiar with the

talker(s)?

Perception Speech
perception (SP)

How much speech did you un-
derstand?

Listening effort (LE) How much effort was required
to listen?

HA satisfaction (ST) How satisfied were your with
the hearing aid?

Sound localization (LCL) Could you tell where sounds
were coming from?

Loudness (LD2) Were you satisfied with the
loudness?

Activity participation (AP) How your hearing affected
what you wanted to do?

Importance Importance How important was it to hear
well?

Table 3.3. Contextual and outcome measures captured in the AudioSense subjective
assessments.
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(see Table 3.3). We leverage on AudioSense’s capability to dynamically determine the

next question in the survey based on prior answers in order to reduce the number of

questions asked. A typical survey includes a median of 22 questions (range: 12 – 26

questions).

The auditory contexts are evaluated across three dimensions: (1) The activity

context captures the type of listening activities (e.g., conversing vs. music listening) and

the location of these activities (indoor vs. outdoor). (2) The acoustic context focuses

on describing the elements that affect noise level, location, and degree of reverberation

(as determined by room size and presence of carpeting). (3) The social context evalu-

ates the interactions between speakers including visual cues and familiarity. Empirical

evidence exists in audiology literature to support that each of these factors may have an

impact on HA outcomes. However, as discussed in related work, most of these experi-

ments were not performed using computerized EMA. The HA outcomes are evaluated

across multiple dimensions including: listening effort, speech understanding, satisfac-

tion with HAs, the ability to localize sounds, level of loudness, and impact on activity

participation.

The first patient was enrolled in the study in February 2013 and the trial is

ongoing. By the end of the trial, we will collect data from 50 subjects. The results

presented in this chapter are based on 3437 surveys collected from the 19 subjects.

This showcases the feasibility of mobile phones as a data collection platform in field

and clinical studies.
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3.3 Results

In this section, we characterize the interplay between auditory contexts, HA

features, and HA outcomes based on real world data. Specifically, our analysis focuses

on following questions:

• What are the typical auditory contexts subjects encounter in the real world and

what is the relative importance they assigned to hearing well in that context?

• Are the HA outcome measures correlated and, if they are, can they be combined

into a single HA outcome score?

• Can the HA outcomes be predicted based on auditory contexts and HA features?

Answering these questions will provide a sound basis for understanding some of

the factors that affect HA outcomes. This information is valuable to both audiologists

that are interested in measurements of HA outcomes in the real world and to computer

scientists that are interested in improving EMA systems.

3.3.1 Properties of Auditory Contexts

We analyzed the distribution of auditory contexts both per subject and over the

entire sample, as we are interested in characterizing both the average likelihood of a

context and its variation between subjects. The prevalence of a context per subject is

the fraction of surveys that the subject indicated to be in that context. The prevalence of

a context over the entire sample was computed by averaging the context prevalence over
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Figure 3.1. Distribution of activity types for a subset of study participants. The first bar
indicates the trend across all participants.

all subjects. Due to space limitations, we focus on listening activities, their locations,

and noise level as they have a significant impact on HA outcomes. The subjects rated

the importance of hearing well in a given context on a 1 – 100 scale. The analysis

presented in this section uses data from all sessions as the HA features have no bearing

on context prevalence.

Figure 3.1 plots the activity type for a representative subset of seven patients

and for the entire sample (labeled All in figures). Subjects spent about 19.2% of the

time listening passively. The most common activities are conversations (32.7%) and lis-
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Figure 3.2. Distribution of locations for a subset of study participants. The first bar
indicates the trend across all participants.

tening to media (30.7%), accounting for total of 63.4% of the time. The remaining time

(17.3%) is spent talking on the phone (6.8%) and listening to live presentations (2.8%)

or non-speech sounds (7.1%). Approximately 80% of the conversations involve at most

three participants (Conv. (-3)), only 20% involving more than three participants

(Conv (3+)). We observe a significant variability across patients. For example, pa-

tient 1 spends 42.1% of his time compared to just 17.2% for patient 2 in conversations.

A similar trend may be observed for other activities.

Figure 3.2 shows that subjects spend 16.9% of their time outdoors and 83.1%
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Figure 3.3. Distribution of noise level for a subset of study participants. The first bar
indicates the trend across all participants.

indoors. About half of the time spent outdoors was spent driving a car (Outdoor

(Traffic)). Most of the time spent indoors is at home, in the presence of fewer

than 10 people (Home (-10)). Our subjects spent a significant fraction of time

(17.65%) engaging in social activities either outside (Not home (-10)) the house

or in crowds (Crowd (10+)). Similar to the activity type, we observe a significant

variation in the distribution of locations across patients. Figure 3.3 plots the noise level

reported by subjects. Most of the time subjects report low levels of noise: Quiet

(50.1%) or Bit noisy (39.9%). The low levels of noise can be partly justified by
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subjects being at home where they can adjust the noisiness of their environment. The

propensity of low noise levels is common across all patients.

Result: Most frequent listening activities were conversations and listening to

media, commonly occurring at home, in predominantly quiet environments. Results in-

dicate significant variability between subjects in both listening activities and locations.

The importance of activity type and location are plotted in Figures 3.4 and 3.5,

respectively. The plots show that passive listening or listening to non-speech sounds are

associated with low importance ratings. Listening to media is associated with higher
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Figure 3.5. Importance of listening well in different locations. Unfamiliar locations are
relatively more important.

importance ratings. In contrast, conversations and listening to live presentations are

associated with the highest importance ratings. These insights are corroborated by

importance ratings assigned to locations. Most important locations are Not home and

Crowd where the patient is more likely to be socially engaged.

Result: The importance assigned to hearing well in a context is strongly related

to subject’s level of social engagement in that context.
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3.3.2 HA Outcomes Measures

HA outcomes are typically assessed across multiple domains to better under-

stand what factors have a negative impact on the subject’s assessment of the HA. Our

surveys targeted the following HA outcome dimensions: speech perception, listening

effort, loudness, sound localization, HA satisfaction, and activity participation (see Ta-

ble 3.3 for details). It is of interest, therefore, to understand the relationships between

outcome dimensions. Moreover, if outcomes are correlated, a single aggregated score

could be created that would potentially reduce the inherent noise of each dimension.

For the analysis presented in this and the following section, we focus on surveys in

which subjects reported using a HA and engaging in conversations.

Figure 3.6 plots the distribution of HA outcome scores using box plots. All

scores are continuous variables in the range 1 — 100; a higher score indicates improved

HA outcomes. The median scores were in the range 71 – 86 across all dimensions.

The high scores indicate that the subjects were overall satisfied with their hearing aids.

However, the score variability and presence of outliers indicate that there are contexts

in which HA outcomes can be improved.

Table 3.4 shows the Spearman’s rank correlation coefficient for the outcome

measures. The correlations were computed over the entire dataset (without averaging

across patients). Spearman’s correlation is used instead of standard Pearson’s corre-

lation coefficient, as it does not require variables to have a linear dependence and is

less susceptible to outliers. Correlations vary in the range 0.34 – 0.65 indicating low-
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SP LE ST LCL LD2 AP
SP 1.0000 0.6178 0.6562 0.5847 0.4785 0.5126
LE 0.6178 1.0000 0.5963 0.5029 0.4732 0.6431
ST 0.6562 0.5963 1.0000 0.5477 0.5429 0.5693

LCL 0.5847 0.5029 0.5477 1.0000 0.3451 0.4030
LD2 0.4785 0.4732 0.5429 0.3451 1.0000 0.4989
AP 0.5126 0.6431 0.5693 0.4030 0.4989 1.0000

Table 3.4. Spearman’s rank correlation between HA outcome measures. The bolded
variables are used to compute a combined HA outcome score.
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Figure 3.7. f1 : LCL 7→ LE, mapping the ability to localize the sound to listening
effort.

medium to medium-high correlations between outcome measures. This suggests that

dimensions measure different underlying aspects of HA outcomes but they are suffi-

ciently well correlated to derive an aggregated score. We created an aggregated HA

outcome score from the four most correlated features: SP, LE, ST, and LCL. The

first step in creating a combined score is to compute the following three mappings:

f1 : LCL 7→ LE, f2 : SP 7→ LE, and f3 : ST 7→ LE. We map LCL, SP, and ST onto

LE because it has the widest score distribution (as shown in Figure 3.6), which allows

for better discrimination between HA outcomes. The combined score is computed by
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Figure 3.8. f2 : SP 7→ LE, mapping the speech perception to listening effort.

taking the average of the LE score and f1(LCL), f2(SP), and f3(ST). Figures 3.7, 3.8,

3.9 show the three mappings that we constructed. Each circle represents the LE value

corresponding to the input (LCL,SP, and ST) in a survey. A key challenge to building

such a mapping is to handle the large variability in test scores.

The large variability is clear in Figures 3.7, 3.8, 3.9. The mappings were con-

structed by first dividing the scores into bins over the domain 1 – 100. For each bin,

the median LE score was determined as indicated by the green squares in the figure. A

third degree polynomial was fitted to go through the (x, y) coordinates of the middle
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Figure 3.9. f3 : ST 7→ LE, , mapping satisfaction with the HA to listening effort.

of each bin and median LE scores (the green squares). The degree of the polynomial

was selected to improve the accuracy of predicting the combined score given auditory

contexts and HA features.

Result: HA outcome measures are moderately correlated allowing for the com-

putation of a combined HA outcome score.

3.3.3 Predicting HA outcomes

In this section, we consider the problem of predicting HA outcomes based on

auditory contexts and HA features. An accurate model would highlight the importance
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of auditory contexts to understanding HA outcomes. Moreover, there are other factors

that affect HA outcomes that are not measured in our study (e.g., the comfort of wearing

a HA) or not included as part of the model (e.g., level of education). Factors that are

not modeled affect the error rates in our model. Therefore, the accuracy of the HA

outcomes also quantifies the degree to which the auditory context is characterized well

by the selected variables.

The accurate prediction of HA outcomes faces several challenges: (1) The

model should incorporate data from all subjects. This is only feasible if we are able

to account for individual differences among subjects, some of whom may consistently

have more negative evaluations than others. (2) The model must account for the inter-

play between HA features and auditory contexts. However, the model must be parsi-

monious to avoid overfitting.

The HA outcome (Y ) is evaluated using the combined score introduced in the

previous section. All independent variables are nominal. The auditory context is rep-

resented by ten nominal variables. The HA features are represented by the nominal

variable session whose values are given in Table 3.2. All nominal variables are en-

coded using dummy coding. The variable D is used to denote the set of dependent

variables. We start by modeling the problem as a regression problem where the HA

outcome is a continuous variable. Later, we discretize the HA outcome to evaluate the

ability of the model to discriminate between poor and good HA outcomes.

The collected data set can be analyzed in the framework of linear model mod-
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els. A model that models the entire dependence between subjects, sessions, and the

variables characterizing the auditory context may be easily defined:

Y = β + subject · session ·
∑
x∈D

x (3.1)

where β is the intercept term. However, this model introduces a high number of vari-

ables to model the Cartesian product of subjects, sessions, and auditory contexts. As a

result a significant number of surveys would be necessary to fit the model. Motivated

by this insight, we opted for a more parsimonious model:

Y = β + subject ·
∑
x∈D

x+ session ·
∑
x∈D

x (3.2)

The term subject ·
∑

x∈D x accounts for variations in auditory contexts among patients.

Similarly, the term session ·
∑

x∈D x accounts for variations between HA features.

The model described in Equation 3.2 was further refined using a stepwise proce-

dure to remove terms that are not statistically significant. The procedure removes terms

in a greedy manner until the sum of squared errors cannot be further improved. In each

iteration, the procedures considers each term in the model and uses an F-statistic test

to test the model with or without a term. The null hypothesis is that the term has a

zero coefficient. If there is insufficient evidence to reject the null hypothesis, the term

is removed.

Figures 3.10, 3.11 plot the results on the final model obtained from using the

stepwise procedure. Figure 3.10 plots the actual versus the predicted combined scores.

The line of best fit (plotted in black) clearly indicates a linear relationship between the
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Figure 3.10. Predictions using linear mixed model. The top figure plots how well the
regression fits the data. The bottom figure indicates the corresponding errors.

actual and predicted scores. The highR2 value supports the goodness of fit of the model

to the data. The plot of absolute error against observed combined HA outcome does

not indicate any additional unaccounted associations. The cumulative distribution of

errors is shown in Figure 3.11. The graph indicates that an absolute error of less than 5

and 10 is achieved 65% and 85% of the time, respectively. This is a positive result as

measurements are on a scale 1 – 100. We have also investigated the use of non-linear

models include support vector machines and neuronal networks. In both cases, the

same features as the ones in the linear model were used. The non-linear models did not
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Figure 3.11. CDF of the absolute errors in predicting the combined score. Approxi-
mately 85% of the predictions have an error less than 10 points.

yield improvements in accuracy. The validity of the model was further evaluated using

10-fold cross validation. The average and standard deviation of the median absolute

error across the 10 folds is 6.2 and 1.0882, respectively.

To further underline the model’s goodness, we considered the problem of dis-

criminating poor versus good hearing outcomes. To this end, we discretized the com-

bined HA score into two classes: good outcomes and bad outcomes. The classes were

determined by comparing each score with the median value. Using 10-fold cross val-
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idation, linear models were able to discriminate between classes with an accuracy of

78%. Achieving an accuracy of 78% (well above chance) suggest that HA features are

indeed essential to accurately predicting HA outcomes. However, it also indicates that

there is the potential room for improvement by incorporating other factors in the model.

Result: The auditory contexts and HA features are essential to understanding

HA outcomes. A linear model based on auditory contexts and HA features can predict

HA outcomes with an accuracy of 78%.

3.4 Conclusion

Hearing aid outcomes depend on both auditory contexts and hearing aid fea-

tures. Evaluating this relationship in the real world has been tremendously difficult due

to the limitations of traditional survey methods. In this chapter we used data from the

first ten months through AudioSense – a novel hearing-aid evaluation tool – to collect

3437 surveys from nineteen patients. AudioSense uses EMA to characterize auditory

contexts and hearing aid outcomes given a hearing aid configuration. The primary con-

tribution of this chapter is the empirical analysis of the collected dataset.

Our analysis indicates that most frequent listening activities were conversations

and listening to media. These activities commonly occurred at home in a predominantly

quiet environment. The results indicate a significant variation in listening activities

and locations among subjects. More importantly, subjects associate different levels of

importance to hearing well to contexts. We showed that the degree of social engagement

given a context determines the importance a subject associates with hearing well in that
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context. Hearing outcomes are measured across multiple dimensions to understand

what factors affect a subject’s assessment of HA performance. Our analysis indicates

that these measures are moderately correlated. We propose a method that creates a

combined outcome score by creating mappings between dimensions using polynomial

fitting. The method is designed to tolerate the significant noise observed in real outcome

measures. Finally, we show that it is feasible to predict the HA outcomes (measured by

the combined scores) based on the auditory context and HA features. A linear model

discriminates between good and poor HA outcomes with an accuracy of 78%.
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CHAPTER 4

IN-SITU MEASUREMENT AND PREDICTION OF HEARING AID
OUTCOMES USING MOBILE PHONES

Hearing aids (HAs) are the primary method for treating the 11.3% of Americans

[57] who suffer from sensorineural hearing loss. Regular use of HAs has been shown

to improve communication and avoid the negative effects of hearing loss that include

anxiety, isolation, paranoia, and depression [63, 64]. Patients that are candidates for

amplification intervention, however, experience different levels of satisfaction with the

use of HA in daily life. Patients who are dissatisfied tend to use HAs less frequently

limiting their effectiveness [11]. A recent survey indicates that only 59% of HA users

are satisfied and regularly use their HAs [36].

Providing audiologists with the ability to identify patients at risk of having poor

HA outcomes would help improve the low satisfaction rates of HA users. In the best

case, HA outcomes should be predicted from standard measures that are already col-

lected during the battery of tests a patient undergoes to determine his/her candidacy

for hearing amplification. Such an approach would be reasonable if a strong relation

between measures of auditory ability and HA outcomes existed. Unfortunately, this

remains an elusive goal as most of the existing literature points towards the existence

of only a weak relationship between auditory ability and HA outcomes [29].

Measuring HA outcomes in the real world is particularly challenging since aside

from a patient’s auditory abilities other factors contribute to a successful HA outcome.
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HA outcomes are known to depend on auditory contexts, which include the type of lis-

tening activity, social context, acoustic environment, and HA configuration. Unfortu-

nately, a majority of existing studies do not capture the auditory contexts in which HAs

are used since it would be impractical to do so using retrospective self-reports. A key

novelty of this work is the improved methodology that we use to assess HA outcomes.

We used a mobile phone application called AudioSense to collect data in-situ [25]. Au-

dioSense periodically prompts a patient to describe the auditory context in which he/she

is and the perceived performance of the HA in that context. For this chapter, we use

5671 surveys completed by 34 patients using four HA configurations collected over the

first two years of AudioSense’s deployment. Additionally, the auditory abilities of each

study participant are evaluated using two standard hearing assessments —Pure Tone

Audiometry (PTA) and QuickSIN — at the time of enrolling in the study. To the best

of our knowledge, this is the first study that predicts HA outcomes based on EMA data

that includes auditory context information.

Using the collected data, we analyze the accuracy of predicting HA outcomes

based on a patient’s auditory abilities, HA configuration, and auditory contexts. We

show that a successful HA outcome for a new patient cannot be predicted with odds

better than chance based on the results of the PTA and QuickSIN tests. Incorporating

information about auditory contexts, however, increases prediction accuracy to 68%.

Collecting a small number of surveys from the patient further improves the predic-

tion accuracy to 90%. Additionally, we have also considered the scenario of a patient
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switching hearing aids. Specifically, we are interested in predicting the HA outcome

for the new HA when data from the previous HA is available. In this case, a successful

outcome for the new HA can be predicted with an accuracy of 86%.

The above results highlight the importance of collecting patient information

in-situ to predict HA outcomes. More importantly, this points to the feasibility of pre-

scribing a mobile phone application along with the HA. Such an application would al-

low audiologists to accurately predict the likelihood of a patient becoming a successful

and satisfied HA user. Based on the feedback from our application, an audiologist may

take some remedial actions to improve the likelihood of success including spending ad-

ditional time to council patients, suggesting HA that include more advanced features to

improve HA benefit, or encouraging participation in aural rehabilitation/training pro-

grams. We note that the efficacy of these interventions has not been studied in literature

as methods for assessing the patient’s likelihood of becoming a HA successful user are

still in their infancy.

4.1 Data Utilized

For this chapter we analyzed only the conditions when the HA were used, ex-

cluding data from the training and the unaided conditions. Additionally, as part of every

survey (including those delivered during aided conditions) the patient is asked to con-

firm that they are using their HAs. The surveys in which participants indicated that

they did not use a HA are excluded from the analysis. Two participants out of 36 were

excluded due to low response rates. The resulting dataset includes 34 participants using
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Variable Statistics
Gender Male 50%

Female 50%
Age(years) Median: 73, Range: 65 – 88
Hearing loss onset(years) Median:8, Range: 1 – 54
Duration of HA use (years) Median: 7, Range : 0 - 40

Table 4.1. Demographic information of subjects included in Chapter 4. All participants
within our study are older adults from the state of Iowa. All of them have mild-to-
moderate hearing loss.

four different hearing configurations for a total of 136 conditions. The dataset includes

a total of 5671 surveys, each condition including 41.7 surveys on average (range: 7 -

121). The details of the participants are given in Table 4.1.

4.2 Related Work

Historically, studies of HA performance have been either performed exclusively

in the laboratory or combined laboratory tests with survey methods. However, several

recent clinical studies indicate that the benefit of HA technology (i.e., HA outcome)

measured in the lab does not translate to the real world [12, 55, 68, 69]. A potential

explanation for the observed differences is that the benefit of HA technology is highly

contextual. For example, the presence or absence of visual queues during a conversation

can significantly affect the perceived benefit of HAs [68]. Since it is impractical to

capture such details accurately using traditional survey methods, some audiologists are

increasingly interested in Ecological Momentary Assessment (EMA) [60]. EMA is an

established alternative to retrospective self-reporting methods that reduces the problem
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of memory-bias by collecting data in the moment. Computer scientists have developed

a number of EMA systems [18, 27, 49]. In a previous chapter, we have developed

AudioSense [25] – a system that provides similar capabilities to existing EMA systems

but emphasizes collecting data relevant to audiologists such as descriptions of auditory

environments and sensor data (e.g., audio, GPS). The use of computerized EMA in

Audiology is in its infancy – aside from our prior work, only three other studies have

used computer-based EMA methods. Henry et al. [26] and Wilson et al. [66] evaluated

the impact of tinnitus on daily lives of people and Galvez et al. [19] assessed patient

satisfaction with hearing aids.

Audiologists have evaluated the associations between a number of HA perfor-

mance indices and HA outcomes. A primary focus has been on evaluating the asso-

ciation between measures that audiologists collect as part of standard practice (e.g.,

PTA, QuickSin, or Acceptable Noise Level (ANL)) and patient satisfaction. Recent

studies show that there is no or weak correlation between auditory ability and HA out-

comes [29, 65].

In [65] it was shown that PTA had virtually no correlation with the measured

HA outcomes and while a statistically significant correlation existed between outcomes

and QuickSIN, it was likely attributed to participant age. Additionally, while ANL

has been shown by some studies to be an indicator of real world HA success [17, 62],

others have found no link [29]. Our analysis further validates that HA outcomes cannot

be predicted accurately based on PTA and QuickSIN test scores.



58

In the previous chapter, we characterized the auditory contexts patients en-

counter in the real-world and made a preliminary analysis of the relationship between

contexts and HA outcomes [24]. Since the focus of the prior work was to show the

importance of auditory contexts, the models we considered included patient and HA

identifiers as features. As a result, these prior models are not applicable to the impor-

tant clinical scenarios considered in this chapter (when one or both of the identifiers are

not available). In this chapter, we consider for the first time the use of auditory contexts

to predict the HA outcomes of novel patients, novel hearing aids, and novel conditions.

Moreover, we show that it is possible to achieve prediction accuracies as high as 90%

when a small amount of data in-situ is used. In the broader context, our work points

to the feasibility of incorporating computer-based EMA as part of standard practice to

improve the successful use of HA.

4.3 Results

In this section, we characterize the accuracy of predicting HA outcomes based

on laboratory test scores, HA configurations, and information about auditory contexts.

We are interested in assessing both the performance of different machine learning algo-

rithms and understanding what are the features that are necessary for making accurate

predictions. We consider the following clinically relevant scenarios that differ in the

information available for training and predicting HA outcomes:

• Novel patient: A new patient is considered for hearing amplification and her/his
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likelihood of becoming a successful HA user is assessed using data from other

patients that use the same or a different HA.

• Novel HA: A patient is prescribed a new HA and his/her HA outcome is predicted

using the data collected while using the old device. We consider the cases when

there are and when there are no other patients that have used the newly prescribed

HA.

• Novel auditory context: The momentary HA outcome in a novel auditory con-

text is predicted when there is information about the patient’s use of her HA.

This may help clinicians identify the auditory contexts in which a patient has a

difficulty hearing.

The remainder of the section is organized as follows. In Section 4.3.1, we con-

sider the problem of creating a single combined score from multiple HA performance

measures. The score is then used to determine whether a patient will become successful

a HA user or not. The different models used for predicting HA outcomes are described

in Section 4.3.2. The results of applying the models in the context of the above scenar-

ios are presented and discussed in Section 4.3.3.

4.3.1 Measuring HA Outcomes

HA outcomes are typically assessed across multiple domains to better under-

stand what factors have a negative impact on the subject’s assessment of the HA. Our

surveys measure HA outcomes along six dimensions: speech perception, listening ef-
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Figure 4.1. Per patient distributions of the combined score scores. The figure only
shows the score for Condition 1.

fort, loudness, sound localization, HA satisfaction, and activity participation (see Table

3.3). The correlations between performance domains are included in Table 4.2. Most

performance domains have moderate correlation indicating that they may be combined

to create a single momentary HA outcome score. An advantage of this approach is that

by combining scores the inherent noise associated with measuring each dimension is

reduced.

In prior work [25], we have proposed a method for creating a combined score

(CB). CB is computed in two steps using the most correlated measures: SP, LE, ST,

and AP. The first step in creating a combined score is to construct the following three
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Figure 4.2. Distribution of the combined score across participants. The black line
indicates the median score.

mappings: f1 : SP 7→ LE, f2 : ST 7→ LE, and f3 : AP 7→ LE. We map SP, ST,

and AP onto LE because it has the widest score distribution, which allows for better

discrimination between HA outcomes. The combined score (CB) is computed by taking

the average of the LE score and f1(SP), f2(ST), and f3(AP). The functions f1, f2, and

f3 are third degree polynomials whose coefficients are determined using robust fitting.

Audiologists do not have an objective standard for differentiating between suc-

cessful and unsuccessful HA users. Different methods have been used in the field such

as defining a minimum HA usage period per day [28, 47] or using a threshold over an

aggregate score [29]. CB is a measure of the momentary HA outcome of a patient,
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SP LE ST AP LCL CB
SP 1.00 0.62 0.57 0.47 0.47 0.77
LE 0.62 1.00 0.61 0.64 0.51 0.89
ST 0.57 0.61 1.00 0.64 0.40 0.84
AP 0.47 0.64 0.64 1.00 0.32 0.83
LCL 0.47 0.51 0.40 0.32 1.00 0.48
CB 0.77 0.89 0.84 0.83 0.48 1.00

Table 4.2. Spearman’s rank correlation between different domains of HA performance
for 34 participants. The outcome measures in bold were the most correlated scores and
were used for constructing the combined score.

wearing a HA, in a specific auditory context. We consider a condition (i.e., a patient

using a given HA configuration) to be successful if the mean CB scores of that condi-

tion is higher than a threshold that is determined such that the top-half of conditions are

successful while the bottom-half unsuccessful. We will use the notation CB to denote

the mean CB score of a condition.

A key challenge to accurately predicting the HA outcome is the high variability

of CB scores. Figure 4.1 plots the distribution of CB scores per patient for condition

1. The boxplots clearly indicate that the distribution of CB scores varies significantly

between patients, many patients having a wide distribution of scores. The significant

variability in HA outcome scores may be partially explained by the differences in the

auditory context. Figure 4.2 plots the distribution of CB scores (mean 73.2, standard

deviation 12.3). The distribution suggests that it might be easy to discriminate the

outcome of conditions at opposite ends of the scale, but this task would be particularly

challenging close to the threshold CB ≈ 76 (indicated in the Figure 4.2 as a black



63

vertical bar) that separates successful and unsuccessful conditions.

4.3.2 Models and Algorithms

We have evaluated the use of linear models, mixed models, and bagged trees

to predict HA outcomes. The choice of model is motivated by our desire to explore

models of different complexity and modeling assumptions.

The linear models that we use have the general form:

CBi = β0 +
∑
f∈F

βfI[f ] + εi

where i is the index of observation, F represents the set of features included in the

model, and I is the indicator function. The residuals εi are normally distributed with

zero mean and variance σ2 (εi ∼ N (0, σ2)). The fitting process determines the β

parameters. A key challenge to fitting the linear model is to determine what features to

include in the model. The set of features F is determined through step-wise regression

by incrementally adding features to the model until no further improvement is possible.

The quality of the models is evaluated using t-tests.

Mixed models have been successfully applied to characterize multi-level data.

We may view the dataset as having two levels that cluster data within patients and

patients within conditions. Mixed effect models allow us to construct models that reflect

the dependencies of the data associated within the same statistical unit. The model has

the general form:

CBi,p,h =
∑
f∈F

βfI[f ] +
∑
p∈P

apΠp +
∑

(p,h)∈C

bp,hΓp,h + εi
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where i is the observation index and indices p and h represent the patient and HA con-

figuration of the ith observation. The sets P and C include the patients and conditions

of the study, respectively. In addition to the fixed effects coefficients βf that are fitted

similarly to the linear regression, a mixed model also includes random effects. The

matrix Π represents the patients and matrix Γ the conditions that have patient p nested

in HA configuration h. The fitting procedure determines the random effect coefficients

ap and bp,h. The procedure constrains the parameter vectors ap and bp,h to be normally

distributed such that ap ∼ N (0, σ2
p) and bp,c ∼ N (0, σ2

p,c). A similar procedure to the

one described for linear models is used to select the features that will be included in

the model. Specifically, new features are added to F as long as the model is improved

while the random structure of the model is fixed. For a review of linear mixed models,

we refer the reader to [20].

The last learning algorithm considered is bagged ensemble of regression trees.

An advantage of bagged regression trees is that unlike the linear models they have

built-in feature selection. The bagging algorithm improves the overall performance

of regression trees by repeatedly sampling the training data and constructing multiple

regression trees. We iteratively add more trees to the model until the improvement of

out-of-bag error falls below 1%. The out-of-bag error has been shown to be a good

indicator of the generalization error of the algorithm.

The three algorithms predict the CB score as a continuous response variable.

To simplify the interpretation of results, in the case of novel patients and HA, the con-
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tinuous predictions are discretized. This is accomplished by computing the mean of

all predictions associated with a condition (i.e., the predicted CB). The condition is

predicted to be successful if the predicted CB ≥ 76; otherwise the condition is unsuc-

cessful. The reader may refer to Section 4.3.1 for the methodology used to determine

the threshold value.

Each model is fit using different information to assess which features must be

included to achieve high accuracy. Laboratory tests include the results from the PTA

and QuickSIN tests. The contextual information includes all the survey information

collected using AudioSense (see Table 3.3). We note that both the laboratory tests

and the auditory contexts include 6 continuous variables and 40 dummy variables that

encode contextual information, respectively. Additionally, some models include statis-

tically relevant interaction terms to capture the interaction between pairs of features.

Models are labeled using the convention model=features, where the model may

be linear L, mixed model M, or bagged regression tree T. The features may include

laboratory tests (d), auditory context features (x), or both. Baseline models may also

include the patient (p) and condition (c) identifiers when predicting novel context.

4.3.3 Empirical Results

In the following, we present the results of applying the models to the three

previously discussed scenarios.
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4.3.3.1 Novel patient

The most common scenario is that of predicting the HA outcome of a novel

patient based on historical information collected from other patients. We evaluate the

performance of the machine learning algorithms and models using leave-one-patient-

out cross-validation. Accordingly, we consider a patient p and train the model on all

the data that does not involve patient p. Using the constructed model, we predict the

aggregate HA outcome of patient p using the four HA configurations available in the

dataset. This process is repeated for all patients in the dataset. During training, there

are N − 1 patients having information for each of the conditions. We note that the

models cannot include features that depend on patient identifiers since directly estimat-

ing these features for the novel patient is impossible (as none of its data is included in

the training set). Figure 4.3 plots the accuracy of predicting the outcome of patients

for the different models. The worst performing models are T=d and L=d that achieve

prediction accuracies of 46.3% and 53.7%, respectively. These models include only

the results of PTA and QuickSIN tests along with potential interactions between these

variables. For these two models, we can predict with odds close to chance whether or

not a condition is successful. This result shows that measures of auditory abilities are

not predictive of real-world outcome measures of HA success adding to the growing

body of evidence that support this conclusion.

Including information about the different contexts a patient experiences during

her/his daily routine significantly improves the prediction accuracy. The prediction ac-
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Figure 4.3. Classification accuracy for different models in the novel patient domain.
The naming is Model = features, with the models being (T)rees, (L)inear Models, and
(M)ixed Effect Models. The features are laboratory tests (d), and contextual informa-
tion (x).

curacy of models T=X, L=X, and M=X is in the range 61% – 66%. A slight increase in

prediction accuracy of 1 – 3% may be achieved by combining lab results and context

information. These results highlight that HA outcomes cannot be evaluated without

understanding the auditory context in which they are measured. Accordingly, audiol-

ogists must transition from retrospective surveys measurements to using computerized

EMA to capture such information. Furthermore, from a clinical perspective, there is

a significant benefit to collect data from a patient in-situ to accurately predict her HA

outcome.
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Figure 4.4. Accuracy improvements when some novel patient surveys are used for train-
ing. As more information about the participant’s lifestyle is introduced in the training,
higher accuracies are achieved. Holdout fraction of 1 is equivalent to 4.3.

To understand the importance of collecting data from a patient, we allowed a

small fraction of the patient’s data to be used for training the models. The results are

shown in Figure 4.4. The amount of data withheld for testing varies from 50 – 100%;

when the holdout fraction is 100%, the results are the same as the ones discussed above

and are shown in Figure 4.3. The graph clearly indicates that even a small fraction of

patient information can have a significant impact on increasing performance. By mov-

ing from including no patient data to including a mere 5% of the data for that patient,

the best prediction accuracy jumps from 68.4% to 85%. 5% of the data translates to
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an average of 2 surveys (range: 1 – 6) that must be completed by the patient. This

highlights the importance of collecting personalized information.

The models that perform best in the case when no patient information is avail-

able are the simple linear regression models. However, the performance of these models

remains relatively flat as more patient information is used for training. This is because

the linear models compute global parameters that ignore grouping the data per patient

or per condition. The linear mixed models perform the same as linear mixed models

when making predictions for groups that have no data included in the training set. This

explains the similar performance of linear and mixed models when the all data of a

patient withheld. However, as additional information about patients becomes available,

mixed models may incorporate this information to make increasingly accurate predic-

tions. Similarly, bagged tree models can increase the number of trees used in the model

to achieve slightly worse performance than mixed models.

4.3.3.2 Novel HA

Another important clinical case is what happens when a patient changes their

HA device. We consider both the case when there is and when there is no information

associated with the new HA device in the training set. The case when no information

is available is evaluated through leave-one-HA-out cross-validation. Accordingly, the

data associated with a HA configuration is retained for testing while the remaining data

is used for testing.

Figure 4.5 plots the accuracy of predicting HA outcomes when no patient infor-



70

T=d
T=x

T=x,d

L=d
L=x

L=x,d

M
=x

M
=d,x

A
c
c
u

ra
c
y
 (

%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

6
4
.7

% 7
2
.1

%

8
8
.2

%

6
6
.9

%

7
0
.6

%

7
5
.7

% 8
5
.3

%

8
6
.0

%

Figure 4.5. Accuracy of the different models for the Novel Hearing Aid domain without
any information from other patients who used the Hearing Aid under consideration. The
best performance is achieved by the Trees modelled using the laboratory and contextual
data.

mation is available for that patient. We note that this case differs from the novel patient

scenario in that the training set includes some data for the considered patient (i.e., when

they used the other conditions). As previously observed, the worst performance is that

of models that rely solely on laboratory test information. Their best accuracy is 66.8%.

Models that include auditory context information perform overall better with a best ac-

curacy of 85.3%. Including the both contextual and demographic information results

in increases in accuracy for all three models. However, this increase can be significant:

the trees models have an increase of 16.1% to achieve the best accuracy of 88.2%. The
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Figure 4.6. Accuracy of the different models for the Novel Hearing Aid domain with
information from other patients who used the Hearing Aid under consideration. The
best performance is achieved by the Trees modelled using the laboratory and contextual
data.

higher accuracy in predicting novel HA than novel patients may be attributed to the

fact the training set includes patient information that characterizes the auditory style of

the patient irrespective of the HA they use. An alternative explanation is that the better

accuracy is the result of lower variability induced by different hearing aids compared

to the variability induced by different patients.

Figure 4.6 plots the accuracy of predicting the outcomes for a patient and HA

combination. In each experiment, a patient and HA pair is withheld for testing while

the remaining data is used for training. Somewhat surprising, the differences in the
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performance of the models between Figures 4.5 and 4.6 are very small. This suggests

that in our study there is little that can be gained by considering the scores of other

patients that have used the same HA. This result further bolsters the theme that there

are significant differences between patients.

4.3.3.3 Novel Contexts

The previous two sections focused on predicting the aggregated HA outcomes

(CB) for a condition for novel patients or conditions. In this section we turn our atten-

tion to the problem of predicting the momentary rating (CB) that a patient would give

to a HA used in an auditory context. For this learning task, it is not sufficient to accu-
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rately predict the mean CB score but instead to explain the variability across different

auditory contexts. We evaluate the performance of different models and algorithms by

using 5-fold cross validation. Each fold is constructed to ensure that data from 4/5 of

data of each condition is used for training while the remaining 1/5 is used for testing.

Figure 4.7 plots the root mean squared error (RMS) for different models. The

results indicate that the models that include just information about the patient and con-

dition performs the worst. This is because these models can only predict accurately

the average CB scores and are included in the graph as baselines. The models that

include only the results of laboratory tests have similar performance to the baselines

since they do not characterize the contexts in which HAs were assessed. The models

that include contextual information overall achieve better performance showing that it

essential to include contextual information if we want to accurately predict momentary

HA outcomes. The models that combine both laboratory tests and auditory context in-

formation achieve the lowest RMS error. To get a better understanding of the size of

the errors observed for a given patient and condition, we standardize the errors with the

respect to the mean and standard deviation of the samples associated with that patient

and condition. This is necessary to allow us to aggregate the results across different

patients and conditions since these distributions differ significantly in their means and

standard deviations. Figure 4.8 plots the distribution of z-scores for each mixed ef-

fect model. Consistent with the RMS errors, the worst performance is observed when

only demographic information is included. In this case, the median z-score error is 1
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indicating that on average the model makes an error equal to one standard deviation.

In contrast, the best performing model that includes information from both lab tests

and auditory contexts reduces almost in half. This highlights the need to integrate both

features from lab tests and contextual information to achieve high performance.

4.4 Conclusion

This chapter considers the problem of measuring and predicting HA outcomes

in the real-world in order to provide audiologists a new method to improve the low sat-

isfaction rates of HA users. Measuring HA outcomes in the real-world is particularly

challenging as it is affected by multiple factors including a patient’s auditory capabil-
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ities, HA configuration, and auditory context. This is the first audiology dataset that

jointly measures the auditory context and the associated HA outcomes. Computerized

EMA enables us collect fine-grained information about auditory contexts including the

type of listening activity, characteristics of the acoustic environment, and their social

context. The collected dataset includes 5671 surveys collected from 34 patients using

four different HA configurations. The surveys are complemented by laboratory assess-

ments of hearing loss for each patient.

We have analyzed the ability to predict HA outcomes in three clinically relevant

scenarios: novel patient, novel HA, and novel contexts. In order to identify the features

that are important to achieve high prediction accuracy, we built models with different

features and fit them using linear models, mixed models, and bagged trees. Our analysis

indicates that we cannot predict the HA outcome of a novel patient with likelihood

better than chance using only laboratory measurements of hearing loss. In contrast,

incorporating information about the auditory contexts that characterize the auditory

lifestyle of the patient increase prediction accuracy to 68.4%. It is possible, however,

to achieve accuracy rates as high as 90% when some information about a patient is

collected in-situ. We can predict the HA outcome of a patient using a novel HA with

an accuracy of 85% leveraging information about her auditory lifestyle collected using

the previous HA. We also provide results for predicting the momentary HA outcome

after collecting some data from the user. Our best model can predict the combined HA

score with a median error of a half a standard deviation from the condition’s mean.



76

The presented results demonstrate the feasibility of predicting HA outcomes

with high accuracy. However, this requires that patients collect in-situ information

about their auditory lifestyle (i.e., the auditory contexts) and the associated HA perfor-

mance. This suggests that a mobile phone application should be prescribed to HA users

to determine whether they will become successful HA users. AudioSense is designed

for research and, as a result, it introduces a significant data collection burden that can-

not be justified outside this setting. In the future, we will explore methods of reducing

the data collection burden to enable the development of an application that clinicians

may use.
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CHAPTER 5

ASSESSING THE PERFORMANCE OF HEARING AIDS USING SURVEYS
AND AUDIO DATA COLLECTED IN SITU

Twenty percent of Americans will be 65 years or older by 2030 [31] out of

which between 35% and 50% will report having presbycusis [13], an age-related hear-

ing impairment that is primarily treated with hearing aids (HA). Regular use of HAs

has been shown to improve communication and avoid the negative effects of hearing

loss that include an increased risk of social isolation, depression, and even demen-

tia [6, 63, 64]. Unfortunately, many subjects that would benefit from HAs do not use

them regularly [7, 8], as they are often unsatisfied with the performance that their HA

provides in the real world. Therefore, there is a critical need to develop clinical tools

that can effectively assess the satisfaction of subjects with the performance of HAs in

situ to improve the HA technology.

Measuring the performance of HAs poses significant challenges since it de-

pends on the subject’s auditory context. The auditory context includes characteristics

of the listening activity, listening partners, and acoustic environment. Laboratory as-

sessments such as speech recognition tests have been used extensively to evaluate the

performance of HAs. During a speech recognition test, a subject is placed in a sound

booth and presented segments of speech under different noise conditions. As it is dif-

ficult to recreate real world listening conditions in the sound booth, laboratory-based

assessments usually fail to be representative of the listening contexts that subjects en-
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counter during their daily life. An alternative to using laboratory experiments is to rely

on interviews and questionnaires to assess the performance of HAs. Unfortunately,

the accuracy of data collected using survey methods is negatively affected by memory

biases as subjects are asked to remember the circumstances in which HAs performed

poorly long after they occurred. Thus, neither laboratory-based tests nor self-reports

are effective in describing the auditory contexts observed by subjects in the real world

as clearly demonstrated in several recent studies [12, 55, 68].

An alternative methodology is Ecological Momentary Assessment (EMA) that

can jointly characterize the auditory context as well as the HA performance in that con-

text. EMA has the advantage of reducing recall bias and capturing a rich description

of auditory contexts that includes the type of listening activity, social context, or the

acoustic features of the environment. We have developed a novel mobile phone appli-

cation called AudioSense that allows audiologists to evaluate the performance of HAs

in the real-world [25]. Two hypotheses guided the design of AudioSense: (1) The sat-

isfaction of subjects with their HAs in the real world is best quantified by measuring

it repeatedly, in the moment, and in situ. (2) The real-world performance of HAs is

intrinsically linked to the auditory context in which the HA is used. An AudioSense

assessment combines subjective that that characterizes a subject’s perception of the au-

ditory context and HA performance as well as objective audio data.

The goal of this chapter is to explore how the audio the data gathered by Au-

dioSense may be used. We are interested in this problem for two reasons. First, collect-
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ing data using AudioSense introduces a significant burden on study participants. Part

of this burden may be alleviated by having the application automatically infer char-

acteristics of the auditory context without requiring user input. Specifically, we are

interested in whether it is possible to predict the noise level and listening activity re-

ported by subjects. Second, audiologists are interested in understanding the impact that

the acoustic environment has on the subject’s performance for a given HA. We will

focus on exploring the impact that the noise level and listening activity have on the

self-reported listening effort. Audiologists have extensively studied this relationship

in laboratory conditions. Laboratory experiments clearly show that the listening effort

required to understand speech sharply increase with a reduction in SNR [22, 32, 58].

However, little is known about the relationship between listening effort and SNR in the

real-world.

We start by considering the problem of predicting the perceived noise level

poses. This poses unique challenges since the noise level reported by a subject does not

only depend on the acoustic environment but also on the HA used and their subjective

perception. Our results indicate that classification algorithms that use only signal-to-

noise ratio (SNR) estimates achieve low accuracy. When the SNR features are aug-

mented with other audio features, the classification accuracy increased to 68%. Simi-

larly, the listening activity may be predicted with an accuracy of 70%.

Next, we will evaluate the impact that noise level and listening activity have on

the listening effort reported by subjects. Our results show that when we use the subjec-
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tive noise level and listening activity, we achieve an 18% reduction in the mean squared

error (MSE) compared to a baseline model that do not include this information. It is

possible to build a model for predicting the listening effort from objective audio data

using a hierarchical model. The low-level of the model uses the previously developed

classifiers to predict the noise level and listening activity from audio data. The pre-

dictions of the higher-level classifier are then used to train a classifier the predicts the

listening effort. Our results show that using this approach we achieve a reduction of

4.8% in MSE compared to the baseline model. In other words, using the audio data, we

can recover about 21.9% of the information contained in the subjective reports.

5.1 Data Utilized

For this chapter we analyzed only the conditions when the HA were used, ex-

cluding data from the training and the unaided conditions. The dataset that we consider

includes data from 58 subjects within 4 conditions. From this initial dataset, we have

removed all the subject-condition pairs that did not include at least 20 surveys. Addi-

tionally, as part of every survey (including those delivered during aided conditions) the

patient is asked to confirm that they are using their HAs. The surveys in which partic-

ipants indicated that they did not use a HA are excluded from the analysis. The details

of the participants are given in Table 5.1.

5.2 Related Work

Hearing loss is typically evaluated with laboratory tests like Pure Tone Aver-

age (PTA), Quick Speech-In-Noise (QuickSIN), and Acceptable Noise Level (ANL)
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Variable Statistics
Gender Male 49%

Female 51%
Age(years) Median: 72.5, Range: 64 – 88
Hearing loss onset(years) Median:8, Range: 1 – 54
Duration of HA use (years) Median: 6, Range : 0 - 40

Table 5.1. Demographic information of subjects included in Chapter 5. All participants
within our study are older adults from the state of Iowa. All of them have mild-to-
moderate hearing loss.

[34, 47]. However, studies have shown that HA performance measured in the lab is

a poor predictor of the real-world HA performance. [68, 69]. More recently, Eco-

logical Momentary Assessment (EMA) [60] has been proposed as a methodology for

assessing HAs. EMA is an attractive alternative to the memory-bias prone retrospec-

tive self-report based evaluations. Computer scientists have developed several EMA

systems which make use of embedded sensors in mobile devices to collect data in real-

time [10,18,27,53]. The use of computer-based EMA in Audiology is still in its infancy

with a few studies evaluating HAs [19, 25] and tinnitus [26, 54, 66]. The AudioSense

system [25] is more customizable than the existing systems in terms of delivery sched-

ules, adaptive assessments, and collecting multiple dimensions of objective data like

audio and GPS. We have shown that using data gathered by AudioSense it is possi-

ble to characterize the auditory lifestyle of HA users and predict whether they will be

successful users of HA technology [23, 24].

Despite these advances, to the best of our knowledge, no work exists that uti-
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lizes audio data to predict a subject’s perception of noise level and listening effort.

Individual works do exist that use acoustic signals to predict individual activities [42]

and background environmental information such as signal-to-noise ratio [35]. The use

of audio data to automatically characterize the properties of the auditory context and

linking the auditory context to subjective assessment of HA performance has several

potential benefits: (1) it can potentially reduce the burden of evaluation on study partic-

ipants by reducing the number of questions that they are asked and (2) it is possible to

construct intelligent sampling policies in contexts that may be of interest to audiologists

(e.g., low SNR, when conversation is present).

5.3 Empirical Study and Analysis

The goal of the study is to evaluate whether it is possible to use audio data to

predict information about the auditory context and the performance of the HA. Specif-

ically, we will answer the following questions:

• Can the noise level be predicted from audio features?

• Can the listening activity be predicted from audio features?

• Can the listening effort be predicted from audio features?

Our approach to answering the three questions involves the following steps.

First, we will empirically characterize the distribution of noise levels and speech activi-

ties in the collected dataset. We will highlight the challenges associated with construct-

ing predictors for these subjective measures. Next, we will construct models that will
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be used to predict these features. We have experimented with a number of classifiers

including support vector machines, decision trees, random forests, and extremely ran-

domized trees. The classifiers provided similar performance and we report the results

obtained using extremely randomized trees [21]. Extremely randomized trees are an

ensemble method that has been successfully applied to both classification and regres-

sion problems. The hyper-parameters of the classifiers are optimized over a manually

refined using grid search.

The dataset that we consider includes data from 55 subjects within 4 condi-

tions. From this initial dataset, we have removed all the subject-condition pairs that did

not include at least 20 surveys. The results that are reported are obtained using 8-fold

cross validation. The folds are generated such that an approximatively equal number of

samples for each subject-condition are included in each fold. Due to the significant im-

balance in the dataset (some subjects provided significantly more reports than others),

we weighted as sample such that each subject-condition pair has an equal weight.

5.3.1 Predicting the Noise Level

New algorithms and technologies for HAs are primarily evaluated in the lab-

oratory using carefully controlled experiments. A common setup is to present speech

under different SNR conditions. Laboratory experiments show that the SNR is corre-

lated with the listening effort required for correctly understanding speech. In our study,

the subjects report the noise level as a proxy for SNR. It is important to realize the

noise level does not depend only on the actual noise level in the environment (which
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can be assessed using audio data) but also on the behavior of the HA and the subjective

preferences of the subject.

Figure 5.1 plots the number of reports pertaining to each noise level as reported

by a subject. A few trends are clear: (1) The subjects spend most of their time in quiet or

somewhat quiet conditions. (2) There is a significant variation between subjects when

they are exposed to different noise levels. These trends make the problem of classifying

the perceived noise level particularly difficult due to the imbalance between classes and

the high variation between subjects.
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Figure 5.1. Distribution of noise level per participant. The figure shows only a subset
of all the participant in the study. The rightmost bar indicates the overall trend.
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The starting point for predicting the noise level is to use off-the-shelf algorithms

that have been designed for assessing the SNR. NIST SNR evaluates the SNR by com-

puting the RMS power histogram of the audio signal. The method estimates the noise

power by fitting a raised cosine to the histogram. The noise power is then subtracted

from the composite signal power histogram to obtain the clean signal power. WADA

SNR [35] estimates the clean signal by modeling it as a Gamma distribution. The

Gamma distribution has been shown to be a good approximation of amplitude distribu-

tion of speech [50,56]. The noise is assumed to be Gaussian. VAD SNR [4] applies the

same SNR estimation only to those segments where the presence of speech is detected.

Figure 5.2 plots the distribution of estimated SNR for of the noise levels. All three es-

timators show a similar trend: as the noise level increases the median and interquartile

range of the estimated SNRs decreases. However, it may be hard to discriminate the

noise level when the estimated value is in the range 10 – 20 because of the significant

overlap between the estimated SNR distributions for different noise levels.

We have built two classifiers that address the challenge of the imbalanced data

by reducing the levels of the noise variable in different ways. The NZ3 classifier has

three classes: quiet, somewhat quiet, and merged class including somewhat noisy and

noisy. Similarly, the NZ2 classifier has two classes: quiet and non-quiet which includes

the remainder of the data. We have fit the model using only the data from the SNR

estimators and the SNR estimators in conjunction with the other audio features. Figure

5.4 plots the accuracy and F1-score for the NZ2 and NZ3 estimators when using SNR
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Figure 5.2. Distribution of the SNR calculated by automated algorithms in different
reported noise levels. Higher noise levels have lower SNRs with less variability.

and audio features. The figure indicates that NZ2 has higher accuracy and F1-score than

NZ3. This indicates that is relatively easy to identify quiet conditions with accuracy

as high as 78%. The figure also indicates that including audio features increase the

accuracy by about 10% for both classifiers over the case when only the SNR features

are used.

5.3.2 Predicting the Listening Activity

The degree to which an HA benefits a subject may also depend on the type of

listening activity in which they engage. Figure 5.5 plots the distribution of activities in

which the subjects engage in. Subjects spent about 18% of the time listening passively.
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Figure 5.3. Accuracy of the machine learning model for predicting the noise levels (3
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Figure 5.4. F-1 Score of the predictions made by the machine learning model for noise
levels (3 level = NZ3, 2 level = NZ2) based on SNR and audio data.
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The most prevalent activities were listening to media (35%) and speaking to fewer than

three people (25%). The figure also highlights a wide range of variations between sub-

jects. A challenge to building a classifier is that several activities have similar auditory

characteristics. For example, the two conversation classes (Conv <= 3 and Conv >

3) and Phone involve people talking. Accordingly, to simplify and improve the ac-

curacy of the classification, we collapse these listening activities in a single class. The

classifier is trained using the audio and SNR features.
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Figure 5.5. Distribution of listening activities across different participants. The figure
shows only a small subset of all participants in the study. The rightmost bar indicates
the overall trend.

Figure 5.6 shows the confusion matrix for the classifier. Overall, the classifier is
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Figure 5.6. Confusion matrix for listening activity. It can been seen that all classes can
be discriminated quite well save for Non-speech activity. This can be because of the
wide latitude that the label non-speech provides the user.

reasonably accurate having mean accuracy and F1-score of 70% and 0.71, respectively.

The most common misclassification is between speech and media. This is expected

since speech is usually present when subjects are watching TV or listening to media.

5.3.3 Predicting the Listening Effort

Listening effort is a sensitive measure of the performance of the HA, particu-

larly in speech. Figure 5.7 plots the relationship between the noise level and listening

effort. In order to account for the differences in how subjects may rate and the impact of

HAs, we group samples according to their subject and condition. For each one of those
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samples, we subtract the mean of the group. This scaling allows us to interpret positive

values as requiring more effort than the average. Conversely, negative values indicate

they require less effort than the average. In quiet, the subjects require a less listening

effort to hear well. This is clear from the slightly below zero median and the narrow

interquartile range in quiet. In contrast, the lower quartile of the listening effort is about

zero in somewhat noisy environments. This indicates that subjects require significantly

higher listening effort to cope with higher noise. Our results are consistent with survey

results that show that a significant fraction of subjects are unsatisfied with the perfor-

mance of their HAs in noise. Figure 5.8 plots the relationship between the listening

activity and listening effort. A subject requires higher effort to listen to speech than

media or non-speech sounds. This seems to point towards these conditions being less

demanding for HA technology. However, unlike with the noise levels, the difference in

the listening effort scores between various listening activities is less pronounced.

The open research question that we consider here is whether audio measures are

predictive of their listening effort. While such a relationship has been studied before in

the laboratory, this is the first time it is evaluated using a large-scale dataset collected

in situ. In order to evaluate this question, we will build a hierarchical classifier. The

bottom-level consists of the classifiers that we have described in the previous sections

to predict the noise level and the listening activity from audio features. The top-level

consists of a classifier that combines the predicted noise level and listening activity with

information about the identity of the subject and the HA they are using to predict their
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Figure 5.7. Impact of the level of noise reported by the user on the effort invested by
the user in listening well. As the noise level increases, the effort also increases. The
listening effort has been normalized across users by subtracting the mean.

satisfaction. The baseline is a classifier that uses the subjective values of the noise level

and listening activity as reported by the user.

Figure 5.9 plot the predictions of listening effort based on different subsets of

features: subject identifier p, condition identifier c, the subjective noise level and ac-

tivity (nz and ac) and their objective counterparts (onz and oac). The results ob-

tained using subjective and objective data are colored in red and blue, respectively. The

baseline performance is the classifier that uses only the subject and condition identi-

fiers. This classifier essentially predicts the mean listening effort of each subject for

the considered HA. The performance of the classifiers may be improved by considering
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Figure 5.8. Impact of the listening activity reported by the user on the effort invested
by the user in listening well. The listening effort has been normalized across users by
subtracting the mean.

additional subjective measures. For example, the MSE is reduced from 493 when only

subject and condition are available to 385 when all the subjective features are used. This

is a reduction of 21.9% in MSE. Using objective data is not as effective in improving

the prediction accuracy. The classifier that uses a combination of predicted noise level

and activity type performs the best achieving an MSE of 518. This is an improvement

of 4.8% over the baseline.

5.4 Conclusion

Effective tools for assessing the performance of HAs are essential to developing

novel HA algorithms and technology. A key challenge to building such tools is the need

to reduce the data collection burden on the subject. In this chapter, we make an initial
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Figure 5.9. Performance of the 2-level model in predicting the outcome scores (LE)
using the reported information (ac, nz), and the inferred information (oac, onz).

attempt at evaluating the potential of reducing the burden of data collection on the user.

Our results show that audio features may be used to predict the perceived noise level

with an accuracy of 78%. This is remarkable given that the noise level reported by a

subject depends on both the subject’s hearing abilities and the performance of the HA.

Additionally, we also show that it is possible to predict the listening activity with an

accuracy of 70%. This suggests that some aspects of the auditory context could be

automatically inferred from audio data without involving the user. More importantly,

we show that the listening effort depends on both noise level and listening activity.
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Using subjective information regarding the noise level and the listening activity, the

predicted MSE can be reduced by as much as 20% over a baseline model that includes

information about the subject and HA. In contrast, a hierarchical classifier to predict

the listening effort from audio data can reduce the MSE by a mere 4%. The significant

gap between the prediction made using audio data, and those made using the subject’s

self-reports suggests that there may be significant room for developing novel machine

learning models to tackle this problem.
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CHAPTER 6

AUDIOSENSE+: NEXT-GENERATION MOBILE-EMA FOR HEARING AID
EVALUATIONS

In previous chapters we saw the creation of AudioSense which utilized ideas of

mEMA to sample data in real-time and characterize the performance of the HAs jointly

with the auditory context experienced by the HA user. Through the various stages of

data collection, analysis, and insight generation we found a number of avenues for ex-

panding AudioSense and found instance where AudioSense lacked the capability of

fully capturing the auditory context. Some of these issues relate to the design of the

survey with inability of a user to report more than one listening activity, or the wording

of the options which leads to confusion. In addition to this, from the data source per-

spective, we only concerned ourselves with contextual data, and HA outcomes. A key

piece of data that was missing was information coming from the HAs themselves. This

is a very important piece of information because it serves as a link that allows us to

understand how contextual information relates to the HA performance in a much more

comprehensive manner. In this chapter we shall first describe the limitations associated

with AudioSense in detail and then present the next generation of the system called Au-

dioSense+ and show how it overcomes those issues while retaining the flexible nature

of the preceding system.
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6.1 Limitations of AudioSense

AudioSense has been highly successful in collecting real-world data related to

HA performance. However we discovered several domains where extensions can be

made to refine the process of the data collection, and increase the capability of Au-

dioSense. We shall focus on the following three domains:

1. Survey design

2. Objective data sources

3. Assessment delivery and data collection system

6.1.1 Survey Design

The current AudioSense survey design asks the user to report the details of

the acoustic activity that occurred most of the time. Such a methodology can lead

greater noise within the data because study participants experiencing multiple listening

activities will not be able to fully report the details of their context. Additionally, it is

very difficult to delineate the details of individual contexts while experiencing multiple

ones.

Figure 5.6 shows the confusion matrix of the activity classifier. The misclassifi-

cation between Speech and Media classes stems from two reasons: (i) media recordings

contain speech, and (ii) in a number of samples study participants were engaged in con-

versations with the media device playing in the background. Due to the limited nature

of the current study design the participants were unable to report instances of the latter
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Ecological/Contextual Data

HA Processing

HA Outcome

Human Perception

Figure 6.1. The process of generating HA outcomes from the human perspective. The
environmental data is captured by the HA and is processed. The processed data is
then fed to the human ear for processing which in turn leads to the development of the
perception of performance in the form of HA outcomes

.

kind and this led to increased misclassification within the model.

The HA outcomes are captured on a 0–100 scale. The disadvantage of using a

wide scale is the variation that creeps in when the participants are reporting events of the

similar intensity. For example, if a participants puts in a significant effort into listening

well and they report the LE to be, say, 75, the next time they experience something

very similar they might report their effort to be 79. The difference does not necessarily

mean that the participants put in more effort, but could very well be an effect of the

high resolution of the scale.
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6.1.2 Objective Data Sources

Currently AudioSense only collects location and acoustic data in terms of ob-

jective data streams. The performance of the HA or HA outcome is the perception that

the user generates over the processed input from the HA as shown in Figure 6.1. In the

current version of AudioSense we do not capture the HA processing step at all which is

critical in the development of perception. Finding a method of capturing such outputs

can not only give us the ability to understand the HA outcomes better, but also help us

understand which factors within the DSP of the HA affect the perceived performance

of HAs.

6.1.3 Assessment Delivery and Data Collection System

A major draw back of the data collection scheme within AudioSense is the lack

of data between the delivery of assessments. Outside of research domains it is not

be possible to carry LENA like devices capable of capturing data continuously and

streaming continuously on the phone is not energy efficient. We need to develop a way

to address this issue and decrease our reliance on additional hardware while minimally

affecting the quality of the data collected.

6.2 AudioSense+: A Comprehensive Mobile EMA System for HA Evaluations

We developed the AudioSense+ system with the aim of providing a solution

to the issues raised in Section 6.1 and extending the existing capabilities of the Au-

dioSense system. The high-level architecture of the system is shown in Figure 6.2.
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Figure 6.2. High level architecture of the AudioSense+ system. The objective data is
collected in the form of motion (acceleration), location (GPS), and HA parameters. The
subjective data is collected in the form of surveys. All the data collection is controlled
by the timing and control system. The collected data is stored in interpretable format
by the Storage system. The complete system is confined within the mobile phone.

6.2.1 Survey System

The survey system has been entirely redesigned to incorporate greater flexibility

in defining the types of questions that could be asked. The system now supports mul-

tiple selections for allowing users to report multiple listening activities (Figure 6.3(a)).

In addition to this we have reduced the outcome score responses from a 101 point scale

to a 5 point Likert scale response (Figure 6.3(b). This should allow us to eliminate the

variance within the responses that represent the same intensity.

6.2.2 Objective Data Collection

The AudioSense+ system is very versatile in terms of the types of objective

data it collects (see Figure 6.2. In addition to collecting the location and audio data, the
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(a) Multiple Selections (b) 5 point outcomes

Figure 6.3. Redesigned survey system capable of capturing data in multiple ways.
The current system is capable of presenting questions where multiple options can be
selected, and we have also redesigned the outcome score questions by making them 5
point Likert scale responses.
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system also collects motion data in the form of acceleration readings along the X, Y,

and Z axes of the phone and also streams the HA’s DSP parameters computer internally

by the HA. The acceleration is extracted from the onboard accelerometer on the phone.

The connection with the HAs is maintained via Bluetooth Low Energy (BLE) and data

is streamed at a frequency of approximately 5Hz. The collection of HA parameters

allows us to fill the gap of HA processing that was present in the previous system (see

Figure 6.1).

6.2.3 Timing System

The timing system of AudioSense+ retains all aspects of AudioSense (see Sec-

tion 2.2.2.1). In addition to the timer-initiated assessment delivery, we also collect short

snippets of objective data between the assessments, the duration can be configured by

the clinicians. This allows us to have a more contiguous stream of objective data while

not overwhelming the disk space on the mobile phone. The major advantage of using

such a scheme is that we can reduce our reliance on other hardware, like LENA, in

future studies.

6.2.4 Privacy

A key new feature within AudioSense+ is the introduction of privacy settings.

The study participant can define which objective measure they do not want the re-

searchers to record at the beginning of the study. This feature has been implemented

with the hopes of increasing the real-world adoption of our platform.



102

6.3 Conclusion

In this chapter we touched on the limitations of the current AudioSense system,

specifically the lack of flexibility in the survey for selecting multiple activities and

the high variance in outcome scores due to continuous 101 point scales, the lack of

any data from the HA, and the absence of data between the delivery of assessments

on the phone. We addressed these challenges by building the AudioSense+ system, a

comprehensive mobile EMA platform capable of handling the aforementioned issues

and capturing much more data at a higher frequency. We plan to deploy this system

in the next few months (mid 2017) as a part of a multi-site study aimed at evaluating

HAs and understanding the effects of various factors like contextual information and

HA processing data on HA performance.
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CHAPTER 7

CONCLUSION & FUTURE WORK

7.1 Concluding Remarks

This thesis reported the development of AudioSense, a mEMA system, for col-

lecting real-time and in-situ hearing aid evaluation data.

In Chapter 2 we began by providing the limitations associated with the tra-

ditional methodologies of hearing aid evaluation and then presented AudioSense for

overcoming the problems of non-representative data collection and memory bias. The

key contribution of the system as a whole is the flexibility in the assessment delivery

scheme which was unavailable in previous mEMA systems for hearing aid evaluations.

We also showed that AudioSense performs with a 100% reliability and demonstrated

the low power consumption that is built into it.

Chapter 3 used the data collected using AudioSense to characterize the auditory

lifestyle of hearing aid users and extract the relationship between the reported context

and hearing aid outcomes. We found that, based on the reported data, study partic-

ipants spent most of their time in conversations or watching television in low noise

environments. We also found that participants reported higher importance of listening

well in socially unfamiliar environments like crowds. We also proposed a unique out-

come metric (CB) for measuring hearing aid performance based on a combination of

the individual outcome measures like satisfaction, listening effort, speech perception

etc. Using this metric we showed that we can discriminate between good and bad out-
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comes based on contextual information with an accuracy of 78% thereby indicating that

contextual information is helpful in predicting outcome scores. This idea was further

explored in Chapter 4. Using the idea of successful hearing aid users, as defined by tra-

ditional methodologies, we created models to predict hearing aid prescription success

for new and experienced users. We built several models using the laboratory scores,

the contextual information, and a combination of both and found that the introduction

of contextual information greatly aids the prediction with accuracies around 70%. This

quantitatively proved the importance of collecting contextual information in addition to

laboratory measures for hearing aid evaluations. We also observed that if we introduce

some data about the user’s context into the training of the models it can help in boosting

the prediction accuracy to 90%.

Chapter 5 explored the use of objective data for inferring some of the subjective

contextual information for reducing the burden of response on the participant. We ex-

periment with using off-the-shelf Signal-to-Noise Ratio (SNR) algorithms and custom

spectral and time-domain features for predicting activity types and noise level. We are

able to achieve accuracies as high as 78% for discriminating between noise levels, and

70% for discriminating between activity types. We further build a hierarchical model

to predict the outcome scores and establish a relationship between the acoustic data and

the performance of the hearing aids. We do not see a significant improvement against

the baseline predictor while using our predicted objective data. These results, however,

provide the first steps towards building a context-sensitive sampling schemes.
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Finally, in Chapter 6 we explored the limitations with the current design of the

AudioSense system in terms of survey design, data collection sources, and timings.

We introduced the next-generation mEMA platform AudioSense+ which is designed

to overcome the limitations and extend the capabilities by streaming novel objective

information like HA parameters.

7.2 Future Work

I believe that this thesis lays the groundwork for very high-impact future re-

search. There are four directions that I believe can be explored based on my work:

7.2.1 Context sensitive sampling

A common issue with using a semi-randomized data collection protocol in

mEMA systems is the misfiring of alarms i.e. delivering assessments in non-informative

contexts. Using the results of Chapter 5 we can build machine learning models to iden-

tify activities and suppress assessments in situations where it is well established that

information, in the context of hearing aid evalutaion, does not exist. Using GPS data

can also be helpful in identifying new locations where the study participant has not

been before. This information can then be utilized to deliver assessments for capturing

a much wider range of environments than would be possible with a semi-randomized

approach. There have been preliminary studies in the area of Context-Sensitive EMA

(CS-EMA) [30, 45, 51] exploring the domain but no comprehensive real-world study

has been conducted so far that utilizes CS-EMA at its core to evaluate hearing aids. A

secondary gain from pursuing this direction would be increasing the cost-effectiveness
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of clinical studies employing mEMA. Study designs often include incentive schemes

that depend on the number of assessments responded to by the study participants. By

improving the effectiveness of the assessments by delivering them in relevant contexts

the costs associated can either be reduced or the quantity of the relevant data collected

can be increased while keeping costs level. With these new developments, new chal-

lenges are certain to arise. In my opinion the key challenge in this regard would be

privacy awareness within the system. For example, rather than storing raw audio the

device should store processed features. Providing the study participants with the option

of choosing the level of privacy granularity can help in increased adoption.

7.2.2 Exploring the relationship between physiological measures and hearing aid
outcomes

The presence of variability within the hearing aid outcomes in the same acoustic

context, given the current design of evaluation studies like AudioSense, is non-trivial

to explain. The variability in outcome scores might be caused due to variability in the

physiological state that is not being captured by the subjective assessments. With the

explosion of wearable technology capable of measuring physiological factors like skin

conductance, pupil dilation, heart-rate, blood-oxygen levels etc. this is no longer an

infeasible task. Recent studies have shown that some physiological measures like skin

conductance, heart rate variability, and pupil dilation have relationships with outcomes

like listening effort [33, 37, 43, 44]. Capturing these signals in real-time in addition

to the subjective assessment using wearable devices like the the Empatica E4 [1] can
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potentially help bridge the gap that exists within the current study settings.

7.2.3 Bringing the hearing aid into the research loop

So far the hearing aid evaluation studies, including AudioSense, have used the

hearing aids as black boxes where the clinicians configure them and their effects are

evaluated in the field. The next-generation hearing aids like Starkey’s Halo series are

capable of communicating with other devices over Bluetooth Low Energy (BLE), and

open source research tools like the Open Speech Platform [3] allow researchers to in-

vestigate custom algorithms. This opens a completely new area of research where,

potentially, researchers can gain access to the internal parameters of the device thereby

bringing it into the research loop and adding more diversity to the collected data. Such

parameters can also help validate the efficacy of the objective audio signals that are be-

ing captured on the mobile phones. This is of particular importance because the current

study designs do not factor in the effects of the hearing aid’s internal functioning (or

only include abstract representations) on the hearing aid outcome. This information in

addition to physiological measures mentioned in Section 7.2.2 can improve the overall

understanding of outcomes.

7.2.4 Cloud based hearing aid tuning

We can further utilize the connectivity of hearing aids with mobile phones, as

mentioned in Section 7.2.3, to improve the user experience via crowd based learning.

This system would consist of two stages. The first stage would consist of collect-

ing acoustic information of the surroundings, corresponding hearing aid parameters,
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the user’s preferences, and hearing loss information in real-time from multiple users

should allow researchers to build a comprehensive cloud-based knowledge base. Using

this dataset we can build generic machine learning models that can learn the optimal

hearing aid configuration for different acoustic environments similar to Auditeur [48].

The second stage would involve implementing these models on the mobile devices and

issuing local updates via active learning while also reporting the changes to the back-

end for updating the global models. Two major challenges that, I can foresee, with

building such systems would be inferring the amount of data needed to make a reliable

prediction and the choice of machine learning models such that they are easy to update

on limited resource devices like mobile phones. The aim of such an endeavour would

be two-fold: i) to improve the quality of life of hearing aid users by automatically in-

ferring the optimal hearing aid configuration, and ii) to increase the synergy between

the hearing aid, the cloud, and the user.
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APPENDIX A

AUDIOSENSE SUBJECTIVE ASSESSMENT FLOW

The AudioSense system captured the acoustic context details and hearing aid

performance by delivering electronic surveys. The survey captured details of the acous-

tic context by asking the user to report details of their activity context, noise level, level

of familiarity with the talker, presence of visual cues etc. Additionally, the survey

also asked the user to report their perception of the performance of their hearing aids

across several dimensions like Speech Perception (SP), Listening Effort (LE), Satisfac-

tion with their device (ST) etc. Each report was associated with a measure of impor-

tance which represented how important was listening well in the reported context for

the user. The following tables represent the questions that are asked in our AudioSense

survey.

1. Table A.1: The assessment begins with instructing the user to report the listening

event that was happening around them in the past 5 – 10 minutes. If the assess-

ment was user initiated, the survey asks the user to report the time around which

the event being reported occured.

2. Table A.2, A.3, A.4, A.5, A.6: Once the instructions have been acknowledged

by the user, the survey delivers questions asking about the i) activity, ii) location,

iii) presence of visual cues, iv) details about the location of the talker, v) noise

level, vi) noise location, vii) room size and carpeting for estimating reverbera-
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Q. No. Conditions Question Text Options

I1 When did the event end?
1) Less than 1 hour ago
2) More than 1 hour ago

I2
Choose the activity and condition
that occurred most of the time in the
event.

Table A.1. Initiation of the survey and instructions.

Q. No. Conditions Question Text Options

AC1 Were you listening to speech?
1) Yes
2) No

AC2 AC1 = 1 What were you listening to?

1) Conversation, 3 or fewer
2) Conversation, 4 or more
3) Speech listening, live
4) Speech listening, media
5) Conversation, phone

AC2 AC1 = 2 What were you listening to?
6) Non-speech sound listening
7) Not actively listening

Table A.2. Survey questions about acoustic activity of HA user.

tion. Questions within this group depend on how previous questions have been

answered.

3. Table A.7: Depending on what responses were given to the previous question

group, the survey delivers questions about the performance of the HA. All of the

responses are recorded on a 100 point scale to capture the perception.
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Q. No. Conditions Question text Options

LC1 Where were you?
1) Outdoor/Traffic
2) Indoors

LC2 LC1 = 1 Please be more specific
1) Outdoor, moving traffic
2) Outdoor, other than traffic

LC2 LC1 = 2 Please be more specific

3) Home, 10 or fewer people
4) Other than home, 10 or
fewer people
5) Crowd of people, >10

Table A.3. Survey questions about location of HA user.

Q. No. Conditions Question Text Options

TF AC2 = 1 - 5
Where you familiar with the
talker?

1) Unfamiliar
2) Somewhat unfamiliar
3) Somewhat familiar
4) Familiar

VC AC2 = 1 - 5 Could you se the talker’s face?
1) No
2) Yes, but only sometimes
3) Almost always

TL AC2 = 1 - 5
Where was the talker most of the
time?

1) Front
2) Side
3) Back

Table A.4. Survey questions about details of talker and visual cue availability.

Q. No. Conditions Question Text Options

NZ1
How noisy was it during the listening
event?

1) Quiet
2) Somewhat noisy
3) Noisy
4) Very noisy

NZ2 NZ1 = 2 - 4 Where was the noise most of the time?

1) Front
2) Side
3) Back
4) All around

Table A.5. Survey questions about details of noise level and location.
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Q. No. Conditions Question Text Options

RS1 LC1 = 2
Compared to an average living room, how
large was the room?

1) Smaller
2) About average
3) Larger

RS2 LC1 = 2 Was there carpeting?
1) Yes
2) No

Table A.6. Survey questions about details of room size and carpeting for estimating
reverberation.

Q. No. Conditions Question Text Options

SP AC2 = 1 - 5
How much speech did you
understand?

0 = 0%
100 = 100%

LE AC2 = 1 - 6
How much effort was required
to listen effectively?

0 = Very easy
100 = Very effortful

LD1
How would you judge the level
of loudness of the sound?

0 = Very soft
50 = Comfortable
100 = Uncomfortably
loud

LD2
Were you satisfied with the
loudness?

0 = Not good at all
100 = Just right

LCL
Could you tell where the sounds
were coming from right away?

0 = Not at all
100 = Perfectly

ST
Were you satisfied with your
hearing aids?

0 = Not al all
100 = Very satisfied

AP

With your hearing aids, how
much have your hearing
difficulties affected what you
wanted to do during the listening
event?

0 = Not at all
100 = Very much

QoL
Were you happy during the listening
event?

0 = Not at all
100 = Very much

IM
How important was it for you to hear
well during the listening event?

0 = Not at all
100 = Very much

Table A.7. Survey questions to capture the user’s perception of their device’s perfor-
mance. All the answers are on a 100 point scale.
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APPENDIX B

ON THE COLLECTED DATA

Using AudioSense we collected subjective and objective data. The subjective

data was collected in the form of electronic surveys with a dynamic structure, as de-

scribed in Appendix A. The objective data was collected in the form of contextual audio

on the phone and LENA, and as GPS coordinates on the phone. This appendix gives

details about:

1. The amount of data collected

2. The format in which the various data streams were stored

3. Data anomalies and how they were handled

B.1 Amount of data collected

We collected real-world data from two primary sources viz. the mobile phone

and the LENA device. The mobile phone sampled data using either:

• User-Initiated Protocol: The study participant initiated the assessment which led

to the recording of responses from the electronic surveys, audio, and GPS infor-

mation from the time the assessment was initiated.

• Timer-Initiated Protocol: The internal timer of the AudioSense app delivered

assessments that the participant could respond to or ignore. If the participant

did not respond to the delivered alarm the phone only collected audio and GPS
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Source Data Type Data Points Collected

Phone
Survey 14946
Audio 20409
GPS 17150

LENA Audio 1718

Table B.1. Amount of data collected from the phone and LENA device

data. In case of a response from the participant the phone also collected survey

responses.

In addition to this, the study participants had the option of wearing the LENA device

around their neck everyday. The device recording audio continuously from the time it

was switched on until it was switched off. The participants were given one device for

each day they were part of the study.

With this setup, to the best of our knowledge, we collected the largest dataset of

its kind for evaluating HAs using mEMA. The details of the amount are given in Table

B.1. The amount of audio and GPS data is more than the number of surveys because

the participants had the option of not responding to the assessments, or pressing the

Snooze button. Sometimes the phone was unable to get a GPS lock and hence was

unable to collect GPS coordinates. In terms of the audio recorded on LENA devices,

some participants (i) declined to wear the LENA devices, (ii) forgot to wear them, or

(iii) their devices malfunctioned resulting in less than the maximum possible number

(approximately 2300) of recordings from LENA.
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B.2 Data Format

Each data stream is stored in a specific format balancing two criteria viz. data

has to be interpretable, and consume less disk space since lack of network connectivity

can lead to data being cached on the phone.

B.2.1 Phone
B.2.1.1 Survey

The responses to the survey questions were stored as a plain text CSV with

timestamps associated with each response. The CSV was formatted as < Response

Type, Response >. The Response Type were keywords representing each ques-

tion asked (refer to Appendix A for details) and the responses were the option number

that was selected or the value selected on the 0–100 scale for outcome scores.

B.2.1.2 Audio

The audio data was streamed at 16000 Hz on the phone since it covers most of

the human sounds, which tend to lie within the [0, 8000] Hz range. Since a signifi-

cant amount of data is generated per-second from the microphone (16000 samples) we

extracted it as 16-bit PCM and stored it as raw short data type in the little-endian

format.

B.2.1.3 GPS

The GPS location is stored as a CSV in the format < Latitude, Longitude,

Accuracy >. We sample the location once every 10s i.e. at 0.1 Hz. The low sam-

pling rate of the GPS sensor is motivated by the high power consumption of the sensor
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which requires acquiring a satellite lock for identifying location. The noise within the

GPS coordinates varies depending on the location of the device i.e. whether it is indoors

or outdoors, in a dense building environment with skyscrapers or open fields etc. Dense

environments like urban skyscraper settings, or being indoors generally have poor GPS

location resolution, to account for this we also stored the accuracy of the location (in

meters) that android determines based on the lock.

B.2.2 LENA

The LENA device is worn around the neck and records data continuously for

the duration it is switched on (8-10 hours). The data was streamed at 16000 Hz and

stored as a .wav file. In addition to the audio, the LENA also annotated the data

with conversations, speaker identification etc. which were stored as an XML with the

extension .trs. During the post-processing and analysis of the dataset we only utilized

the audio file completely. The transcriber files were used to align the timings of the

audio recordings from the phone with the continuous LENA recordings.

B.3 Anomalies within subjective data

During the early stages of data collection, on analysis of the outcome scores, we

noticed that a significant fraction of the outcome scores possessed the value 50 (Figure

B.1). We believed that this was due to the following reasons:

1. All outcome score based questions within the electronic survey were presented

with an already selected value of 50.
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Figure B.1. Distribution of individual outcome scores. The x-axis represents the value
of the outcome score and the y-axis represents the fraction of samples containing that
value. SP is the speech-perception, LE is listening effort, LD2 is satisfaction with
loudness, LCL is localization ability, ST is satisfaction with HA, AP is effect of HA on
activity participation. The anomaly is the spike in data at the value 50.
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Figure B.2. Distribution of individual outcome scores after the software patch was
issued. The x and y axes represent the same values as Figure B.1. The lack of the spike
in data at the value 50 indicates that it was an effect of the flaw in the survey design.

2. The user could move to the next question without moving the slider.

We corrected this issue by not showing the slider at the default value and making it nec-

essary for the study participants to move the slider for proceeding to the next question.

The outcome scores collected after the issuing of the software patch indicated that the

spike was indeed an effect of the flaw in the user-interaction process. The distribution

of data collected after the patch is shown in Figure B.2. For all the analysis reported in
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this thesis we exclude all samples where a 50 value was present in any outcome score

before the issuing of the software patch to maintain consistency within the data and

remove potential bias.
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APPENDIX C

ACOUSTIC FEATURE EXTRACTION

We extracted both time and frequency domain features from the audio data.

C.1 Frame-Level Features

We divided the data into frames of 128ms without any overlap. Each of the

features mentioned below were extracted over every frame.

C.1.1 Zero Crossing Rate

The Zero-Crossing Rate (ZCR) is calculated in the time domain and is defined

as the number of times the signal changes its sign (or crosses the zero) per frame. The

ZCR has been shown to be a good discriminator between speech and music by having

high and low values respectively [59]. The ZCR is calculated as follows:

ZCR =

∑i=n
i=0 abs(sign(xi)− sign(xi−1))

2
(C.1)

Where xi, xi−1 are signal amplitudes, n is the size of the frame, sign() returns +1 for

positive values, and −1 for negative values.

C.1.2 Root Mean Squared Amplitude

The Root Mean Square of the amplitude is calculated as a proxy for the signal

energy. Since speech contains periods of quiet the RMS value is lower than those

signals where quiet periods occur with lower frequency like music. This has been

shown to be helpful in discriminating between speech and music signals [16].
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C.1.3 Pitch

We calculate the pitch as an input for the estimation of number of speakers using

the Crowd++ algorithm [71]. The pitch is calculated using YIN [15] which is simpler,

and more robust to noise than competing algorithms like Wu [67] and SAcC [38].

C.1.4 Mel-Frequency Cepstral Coefficients

The Mel-Frequency Cepstral Coefficients (MFCCs) are designed to imitate hu-

man hearing by modulating the filter bank width as the frequency under considera-

tion increases. They are calculated in the frequency domain, specifically on the mel-

scale which is a logarithmic scale and have been shown to very powerful in auditory

scene recognition [52]. We calculated 26 MFCCs per-frame for our context-recognition

pipeline.

C.1.5 Spectral Entropy

In order to compute the spectral entropy the probability mass function (PMF) is

computed for each frame using Equation C.2.

pi =
Xi∑N
i=1Xi

(C.2)

Here Xi is the energy of the ith frequency component. We use the PMF to compute the

spectral entropy using Equation C.3 [46].

H = −
N∑
i=1

pi · log2pi (C.3)
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A peaky spectrum will have a lower entropy and might be representative of voice or

music signals while a relatively flat spectrum will have high entropy representing a

noisy signal.

C.1.6 Spectral Rolloff

Spectral Rolloff is defined as the frequency bin below which X% of the dis-

tribution is concentrated. We used X to be 93 as used in [39, 42]. This measure can

be helpful in identifying music as musical signals generally have a greater number of

higher frequency components and hence have a greater spectral rolloff.

C.1.7 Sub-band Energy & Entropy

The spectrum for each frame is further sub-divided into frequency bands of

1000Hz to extract fine-grained spectral nuances. For each of these bands the energy

and entropy are computed. Sub-band features like energy and entropy have been shown

to be informative discriminating between various acoustic activities in areas like speech

recognition [46].

C.2 High-Level Features

Once the computation of frame-level features is complete, we are left with mul-

tiple vectors of representing frame level details. We reduce the granularity of the fea-

tures from frame level to the file level by computing a variety of summary statistics

over each of the features. This reduces the frame level matrix for a given audio file to a

feature vector. In order to capture a comprehensive picture of the variations within the



123

individual features we compute the following statistics over them:

• Extremes: Minimum, Maximum

• Aggregate: Mean

• Variation: Standard Deviation, Skewness, Kurtosis

• Percentile: 1st Quartile, 3rd Quartile, Median

C.3 Signal to Noise Ratio

We computed the signal to noise ratio using off-the-shelf algorithms like the

NIST SNR [2], WADA SNR [35], and the VAD SNR [4].

C.3.1 NIST SNR

The NIST SNR evaluates the SNR by computing the RMS power histogram of

the audio signal. The method estimates the noise power by fitting a raised cosine to

the histogram. The noise power is then subtracted from the composite signal power

histogram to obtain the clean signal power.

C.3.2 WADA SNR

The WADA (Waveform Amplitude Distribution Analysis) SNR estimates the

clean signal by modeling it as a Gamma distribution. The noise is assumed to be Gaus-

sian.
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C.3.3 VAD SNR

The VAD (Voice Activity Detection) SNR identified the portions of the input

signals where speech activity is present to calculate the SNR.

We encourage the reader to explore the details of these SNRs in their original

publications.
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