
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2014

Automated reasoning over string constraints
Tianyi Liang
University of Iowa

Copyright 2014 Tianyi Liang

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/1478

Follow this and additional works at: https://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Liang, Tianyi. "Automated reasoning over string constraints." PhD (Doctor of Philosophy) thesis, University of Iowa, 2014.
https://ir.uiowa.edu/etd/1478.

https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F1478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1478&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1478&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F1478&utm_medium=PDF&utm_campaign=PDFCoverPages

AUTOMATED REASONING OVER STRING CONSTRAINTS

by

Tianyi Liang

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

December 2014

Thesis Supervisor: Professor Cesare Tinelli

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Tianyi Liang

has been approved by the Examining Committee for the thesis
requirement for the Doctor of Philosophy degree in Computer
Science at the December 2014 graduation.

Thesis Committee:

Cesare Tinelli, Thesis Supervisor

Aaron Stump

Hantao Zhang

Octav Chipara

Clark Barrett

To Shihui Liang, Ji’er Chen, and Xue Mei

ii

ACKNOWLEDGEMENTS

First and foremost I offer my sincerest gratitude to my advisor, Prof. Cesare

Tinelli, for his continuous support throughout my entire PhD life and for his patience

and knowledge. Without his guidance and inspiration, I would have never made it

this far. I would like to thank him for leading me to the field of automated reasoning,

for offering help whenever I needed it, and for all his sharp insight and passion.

Next, I would like to thank the other members of my dissertation committee

for their advice and support. Prof. Aaron Stump is one of the kindest and most intel-

ligent people I have ever met. He invited me to participate in his projects and taught

me how to think deeply. His classes helped me understand sophisticated terminolo-

gies. Prof. Hantao Zhang has been generous and hospitable. He helped me to settle

down in Iowa City, invited me to meet his family and advised me about academics

and daily life. Prof. Octav Chipara is full of energy and always passionate about

research. Exchanging ideas with him has inspired me, and more importantly his op-

timistic personality has pushed me forward. Prof. Clark Barrett is always fascinated

with new ideas, especially for cvc4. This is a reason why cvc4 is the leading tool

in the field. I really enjoy the good working atmosphere he maintains around him. I

would like to thank him for inviting me to become part of this big cvc4 family.

Special thanks go to Dr. Andrew Reynolds (EPFL), Dr. Nestan Tsiskaridze,

and Dr. Morgan Deters (NYU). We held regular meetings to discuss all issues in this

work. This work would not have been possible without them. Dr. Reynolds helped

iii

me with the initial implementation by extending his work on cvc4 equality engine.

He deciphered the cvc4 architecture, shared his new ideas, as well as discussed algo-

rithms. Dr. Tsiskaridze and I held intensive meetings for technical discussions. We

went over every piece of proofs in this thesis, and she sent me her comments and cor-

rections. I very much appreciate her insightful comments. Dr. Deters helped me with

understanding cvc4 and running experiments on the clusters. When I encounter a

problem, he is always ready to lend me a hand, whether it is lunch time or 2AM in the

morning. Working with them has been an honor. I really value their contributions.

I would like to thank all the other members of the Computational Logic Cen-

ter at the University of Iowa: John Bodeen, Adrien Champion, Harley Eades, Peng

Fu, Pierre-Löıc Garoche, Temesghen Kahsai, Garrin Kimmell, Baoluo Meng, Ryan

McCleeary, Duckki Oe, Md Hasib Shakur, Christoph Sticksel, and Ruoyu Zhang.

I would also like to thank all the other members of cvc4: Kshitij Bansal (NYU),

François Bobot (CEA), Chris Conway (Google), Liana Hadarean (NYU), Dejan Jo-

vanovic̀ (SRI), and Tim King (NYU). I have learned a lot from each one of them.

Most importantly, I would like to thank my parents, Shihui Liang and Ji’er

Chen, for their complete selflessness and support as I have pursued my degree in the

United States. As my parents tell me, they are my most reliable harbor, I can always

sail myself there.

Finally, I would like to express my gratitude to my lovely wife, Xue Mei. I

am very grateful for every encouragement and for every moment of happiness she has

brought to me. Hand in hand, step by step, we will make ourselves a better life.

iv

ABSTRACT

More and more applications in verification and security rely on automatic

solvers, which can check the satisfiability of constraints over a rich set of data types,

including character strings. Unfortunately, most string solvers today are standalone

tools that can reason only about some fragment of the theory of strings and reg-

ular expressions, sometimes with strong restrictions on the expressiveness of their

input language (such as, length bounds on all string variables). These specialized

solvers reduce string problems to satisfiability problems over specific data types, such

as bit vectors, or to automata decision problems. On the other hand, despite their

power and success as back-end reasoning engines, general-purpose Satisfiability Mod-

ulo Theories (SMT) solvers so far have provided minimal or no native support for

string reasoning.

This thesis presents a deductive calculus describing a new algebraic approach

that allows solving constraints over the theory of unbounded strings and regular

expressions natively, without reduction to other problems. We provide proofs of refu-

tation soundness and solution soundness of our calculus, and solution completeness

under a fair proof strategy. Moreover, we show that our calculus is a decision proce-

dure for solving regular membership and length constraints.

We have implemented our calculus as a string solver for the theory of un-

bounded strings with concatenation, length, and membership in regular languages,

and incorporated it into the SMT solver cvc4 to expand its already large set of built-

v

in theories. This work makes cvc4 the first SMT solver that is able to accept and

process a rich set of mixed constraints over strings, integers, reals, arrays, and other

data types. In addition, our initial experimental results show that, over string prob-

lems, cvc4 is highly competitive with specialized string solvers with a comparable

input language. We believe that the approach we described in this thesis provides a

new idea for string-based formal methods.

vi

PUBLIC ABSTRACT

Privacy violation, or even impersonation, is one of the major concerns about

online services, such as email systems or online shopping services. Techniques for

vulnerability detection in such web-based applications provide a more secure environ-

ment for Internet services. A common approach for vulnerability detection formally

describes a potential risk as a mathematical formula and reasons about this formula

automatically. However, traditional mathematical methods focus more on numbers

than strings, while the latter is considered as the main information carrier in web-

based communication. This problem has been intensively studied, yet there is no

existing method that can fully handle it.

We present a novel procedure for finding a solution to a formula containing

strings, and prove correctness of our procedure. We have identified some patterns of

formulas for which our procedure is guaranteed to terminate with a correct answer.

In addition, our approach interacts with other procedures in a common framework,

which allows it to find a solution to formulas containing not only strings but also

multiple data structures.

We have implemented our approach in our solver cvc4 as an internal proce-

dure, which makes it even more competitive as a general-purpose solver for formulas

generated by vulnerability detection tools. We give a comparison with the state-

of-the-art string solvers over benchmarks from real applications. Initial experimental

results indicate that our approach is superior in terms of correctness and performance.

vii

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Challenges and Motivation . 3
1.2 Satisfiability Modulo Theories 5
1.3 Contributions . 6
1.4 Overview . 10

2 BACKGROUND AND PRELIMINARIES 11

2.1 Monoids . 12
2.2 Strings . 14
2.3 Languages . 18
2.4 Many-Sorted First-order Logic 22
2.5 DPLL(T) Procedure . 24

2.5.1 The DPLL Procedure . 25
2.5.2 The Nelson-Oppen Combination 27
2.5.3 The DPLL(T) Architecture 29

2.6 Existential Theories over Strings 31

3 SOLVING STRING AND LENGTH CONSTRAINTS 42

3.1 Calculus for TSL . 43
3.1.1 Derivation Rules . 49
3.1.2 Proof Procedure . 53
3.1.3 Soundness . 58
3.1.4 Solution Completeness . 71
3.1.5 Decision Procedure for Constraints in an Acyclic Form . . 82
3.1.6 Implementation in DPLL(T) 95

3.2 Constant Splitting Refinement 98
3.3 String Manipulating Function Extension 100

3.3.1 Extended Calculus for String Manipulating Functions . . 103
3.3.2 Handling the new components G and Q 106
3.3.3 Correctness . 107

3.4 Experimental Results . 112

viii

3.5 Summary . 118

4 SOLVING MEMBERSHIP AND LENGTH CONSTRAINTS 120

4.1 Calculus for TRL . 121
4.1.1 Preprocessing . 122
4.1.2 Normalization . 123
4.1.3 Auxiliary Functions . 125
4.1.4 Derivation Rules . 148
4.1.5 Correctness . 154
4.1.6 Decision Procedure . 159

4.2 Extensions . 162
4.2.1 Symbolic Language Extension 162
4.2.2 Negative Membership Extension 168

4.3 Summary . 170

5 RELATED WORK . 172

6 CONCLUSION . 178

REFERENCES . 181

ix

LIST OF TABLES

Table

3.1 Definitions for string manipulating functions. 102

3.2 Comparative results with cvc4, z3-str and Kaluza. 115

x

LIST OF FIGURES

Figure

1.1 A vulnerable code, its verification code, and one sample attack. 4

2.1 A general DPLL(T) architecture. 29

3.1 String term rewriting rules. 46

3.2 Rules for theory combination, arithmetic and membership constraints. . 50

3.3 Basic string derivation rules. 51

3.4 Normalization derivation rules. 53

3.5 Equality reduction rules. 54

3.6 Disequality reduction rules. 55

3.7 Abstracted core proof procedure for strings. 56

3.8 Rules for the fair strategy. 81

3.9 Dependency graph for con(x, y, a)
1
≈ con(z, b, w), x

2
≈ y and z

3
≈ w. 87

3.10 Constant splitting rule. 99

3.11 Rules for handling the substring functions. 103

3.12 Rules for handling the contains function. 105

3.13 Reduction flows for string manipulating functions. 105

3.14 Rules for handling additional string manipulating functions. 106

3.15 Rules for handling the int to str type conversion function. 107

3.16 Rules for handling the str to int type conversion function. 108

3.17 Rules for handling the quantifier-free formula set G. 109

xi

3.18 Rules for handling the quantified formula set Q. 109

3.19 Runtime comparison of cvc4, z3-str and the amended Kaluza. 118

4.1 Membership term preprocessing rules. 123

4.2 Regular expression rewriting rules. 125

4.3 Membership term rewriting rules. 126

4.4 Delta function for concrete regular expressions. 127

4.5 Testing function for concrete regular expressions. 128

4.6 Derivative function for concrete regular expression. 130

4.7 First characters function for concrete regular expressions. 134

4.8 Beta function for concrete regular expressions. 142

4.9 Concrete regular expression length rules. 145

4.10 Rules for interactions. 149

4.11 Rules for handling the intersection of two concrete regular expressions. . 150

4.12 Concrete membership derivation rules. 153

4.13 Unit membership reduction rules. 154

4.14 Regular membership length rule. 154

4.15 Delta function for symbolic regular expressions. 163

4.16 Derivative function for symbolic regular expressions. 164

4.17 Symbolic membership derivation rules. 167

4.18 Negative membership reduction rules. 169

xii

1

CHAPTER 1

INTRODUCTION

This dissertation focuses on automated reasoning over string constraints. In

particular, we present a set of algebraic approaches for solving constraints over the

theory of unbounded strings and (extended) regular expressions natively, without

reduction to other problems. With the integration into the DPLL(T) architecture,

these approaches enable a general, multi-theory Satisfiability Modulo Theory (SMT)

solver to reason about constraints combining strings, regular expressions, and other

data types.

Ever since the invention of the first computer, software stability and reliability

have been two key issues in the protection of privacy and security. As the desire

for new functionalities in computer systems grows, the size of software application is

exploding. It is obvious that one can either understand a small portion in a fairly

large modern software system in detail or have a relatively abstract view of the whole

system. The difficulty of fully understanding software in detail introduces more barri-

ers in manual analysis, and thus puts the software robustness in danger. Meanwhile,

the number of software vulnerabilities increases steadily. They bring inconvenience to

users, cause billions of dollars in financial loss1, and furthermore compromise national

security.

1Hurricane Andrew (the most expensive natural disaster in the history of US) caused
$25 billion dollars of damage, while the cost of the Love Bug virus was estimated to be
between $3 billion to $15 billion [94].

2

With the migration from local applications to web-based applications, the

amount of information sharing and service clouding is increased via networking. As

a result, both industry and academia are paying more and more attention to the se-

curity of web applications. For example, the Open Web Application Security Project

(OWASP) is defining standards for web application security. In particular, they have

been updating their reports on major web application risks since 2004. In their 2013

report [67], the top five threats of web-based applications are: Injection, Broken

Authentication, Cross-Site Scripting (XSS), Insecure Direct Object References, and

Misconfiguration. Analysis of software will reduce the cost for the security issues.

In the last few years, a number of techniques originally developed for verifica-

tion purposes have been adapted to support software security analyses as well. These

techniques benefit from the rise of powerful specialized reasoning engines such as Sat-

isfiability Module Theories (SMT) solvers. Security analyses frequently require the

ability to reason about string values. One reason is that program inputs, especially

in web-based applications, are often provided as strings which are then processed

using operations such as matching against regular expressions, concatenation, and

substring extraction or replacement. In general, both safety and security analyses

could benefit from solvers that can check the satisfiability of constraints over a rich

set of data types that includes character strings. Despite their power and success as

back-end reasoning engines, however, general multi-theory SMT solvers so far have

provided minimal or no native support for reasoning over strings.

3

1.1 Challenges and Motivation

A major difficulty of reasoning over strings is that the satisfiability problem of

any reasonably comprehensive theory of character strings is undecidable [17]. How-

ever, the existential problem of several more restricted, but still quite useful, theories

of strings is decidable. These include any theories of fixed-length strings, which are

trivially decidable for having a finite domain, but also some fragments over unbounded

strings (e.g., word equations [60]). Recent research on the string theory has focused

on identifying decidable fragments suitable for program analysis [1] and, more cru-

cially, on developing efficient solvers for them [89]. Unfortunately, most string solvers

today are standalone tools that can reason only about (some fragment of) the theory

of strings and regular expressions, sometimes with strong restrictions on the expres-

siveness of their input language such as, for instance, the imposition of exact length

bounds on all string variables. These solvers are based on reductions to satisfiability

problems over other data types, such as bit vectors, or to decision problems over

automata.

Motivating Example

One successful security analysis method (symbolic execution) is to reduce some

security problems to constraint satisfaction problems in some formal logic. In Fig-

ure 1.1, on the left side is a typical sample source code from a web application with

several vulnerabilities, e.g., XSS 2 and buffer-overflow attacks. The middle code

shows the corresponding constraints in SMT-LIB [13] format to verify whether the

2Users can execute a code from an outside website.

4

array a=explode (' | ' , p) ;
s t r i n g b=a [0] ;
i n t c=s t r 2 i n t (a [1]) ;
s t r i n g y=c<s t r l e n (b) ?←↩

s t rncpy (y , b+c , s t r l e n (b)←↩
−c) : ”” ;

output=”<input type=' t ex t ' ←↩
value ='” + y + ” '>” ;

(assert (= p (str.++ a0 ”|” a1)))
(assert (= b a0))
(assert (= c (str.to.int a1)))
(assert (= y

(ite (< c (str.len b))
(str.substr b c (− (str.len b) c))
””)))

(assert (str .contains y ”http://”))

”'>< s c r i p t>document←↩
. l o c a t i o n ='http←↩
: // a t ta cke r /? '+←↩
document . cookie←↩
</s c r i p t >< '|0”

Figure 1.1. A vulnerable code, its verification code, and one sample attack.

source code contains an XSS attack 3. If the constraints are unsatisfiable, the source

code is free of an XSS exploit; otherwise, there is an assignment (of variables in the

constraints) that satisfies these constraints and defines a possible XSS attack.

The web-based application (on the left side of Figure 1.1) uses untrusted data,

and then constructs an HTML form. One possible attack can use an input string

(illustrated on the right side of Figure 1.1) to steal user authentication information,

e.g., session ID. This information can be further used for unauthorized activities, e.g.,

impersonation. For example, many email systems keep users’ geographic location in-

formation. Using a code similar to the example, an attacker may obtain a user session

ID, and then use this information to locate the victim physically. The presence of this

vulnerability can be detected by solving the constraints in the middle of Figure 1.1.

The success of exploiting vulnerabilities depends largely on the efficiency of

constraint solving. In recent years, constraint solvers are extensively used in static [19,

20, 25] and dynamic analysis [31, 39] for vulnerability detection. However, traditional

analysis tools use their own built-in constraint solvers. They require developers to

3For simplicity, the SMT-LIB constraints reflect only the XSS attack and do not include
buffer-overflow check, as well as, variable definitions.

5

have a full knowledge of automated reasoning over all relevant logic [82]. Another

choice is to encode a security analysis problem into a Satisfiability Modulo Theories

(SMT) problem [13]. This method allows the analysis to directly use a pre-existing

SMT solver, which combines a SAT solver with multiple specialized theory solvers.

Especially with the advent of DPLL(T) framework [66] in recent years, the perfor-

mance of SMT solvers has been dramatically improved. Thus, an SMT solver becomes

a natural choice as the underlying constraint solver for a security tool.

1.2 Satisfiability Modulo Theories

The Satisfiability Modulo Theories (SMT) problem is about deciding the sat-

isfiability of a formula in (decidable fragments of) first-order logic with respect to

some background theories. A background theory fixes the interpretation of certain

predicates and function symbols [12] so that the semantics of expressions is restricted

to a set of models that belong to the theory.

Example 1 Consider the string function symbols con and len, the regular expression

symbol star, the arithmetic function symbol +, the predicates < and in, the string

variables x, y, z, the constants a, b, and the expression x = con(y, z)∧ (in(y, star(a))∨

in(z, star(b))) ∧ len(y) < len(z) under the standard semantics. �

To find a solution for Example 1 by axiomatizing into first-order formulas may

lead to the exponential growth of clause size, and thus become unsolvable in practice.

In addition, it is hard to guarantee that every theory can be axiomatized. Meanwhile,

a dedicated string solver cannot easily handle logical structure, e.g., disjunctions.

6

To overcome these difficulties, most state-of-the-art SMT solvers borrow some

techniques from solving Boolean Satisfiability (SAT) problems. These SMT solvers

incorporate an off-the-shelf SAT solver for handling logical structure and many dedi-

cated solvers for handling background theories. The performance of this architecture,

in practice, increases dramatically, especially when a formula contains some symbols

from a theory whose complexity is extremely high.

Many tools use SMT solvers as their underlying engines. SMT solvers were

first proposed for solving formulas generated by verification tools, and therefore many

verification tools depend on them, e.g., Kind [40]. Boogie [9] uses an SMT solver,

called z3 [28]. Furthermore, there are many verification tools, e.g., Dafny [54] and

Vcc [26], translating their original languages into the Boogie language. Other

applications include: Interactive Theorem Proving (e.g., PVS [69]), Predicate Ab-

straction [48], Test Case Generation (e.g., Microsoft USB Test Tool [28]), and so

on.

1.3 Contributions

Existing string solvers (see Chapter 5) are good at solving constraints over

some particular fragments, e.g., fixed-length string constraints (i.e., every string vari-

able has a fixed constant length). However, they are either unsound, e.g., Kaluza [82]

and z3-str [98, 89] (see Section 3.4), or lack of expressiveness, e.g., Rex [91] and

Hampi [51].

Our work devises an algebraic approach for solving constraints over a theory

of unbounded strings with length and symbolic regular expressions natively. This

7

approach can be used to add capacity to DPLL(T)-based general, multi-theory SMT

solvers to reason about string constraints. Indeed, we have integrated a standard

DPLL(T) string theory solver to cvc4 [10].

More specifically, our contribution to automated reasoning over string con-

straints can be summarized into the following points:

Expressive Language. Constraints from security applications contain not only

string constraints but also the ones from other theories, e.g., arithmetic and uninter-

preted functions. Even if a constraint is from the theory of strings, it may contain

membership and other string manipulating functions, e.g., extraction of substrings.

To the best of our knowledge, existing string solvers can only handle a small fragment

of such constraints. We have devised a new algorithm that solves quantifier-free con-

straints over a theory of unbounded strings with length, membership, and common

string manipulating functions. Indeed, we introduce symbolic regular expressions in

our language which allow us to reason about membership constraints over a non-

regular language. In addition, our approach integrates a specialized string theory

solver for such constraints within the DPLL(T) framework. It allows our string solver

to accept an even richer language over extended theories. Furthermore, our tool is an

underlying string constraint solver for many security vulnerability detection projects,

e.g., the Artemis project 4.

Proved Soundness. A string solver is usually used as the underlying constraint

4Artemis is a tool that performs automated, feedback-directed testing of JavaScript
applications, available at https://github.com/cs-au-dk/Artemis.

https://github.com/cs-au-dk/Artemis

8

solver in security checking tools, and thus is essential for a security checking tool.

Furthermore, a string solver usually provides a certificate, for its front-end tools,

either to prove the functional correctness or to disprove the correctness by generating

a counter-example. If a string solver is questionable, its related tools are doomed

to be unreliable. With respect to our theoretical contribution, we provide detailed

proofs for the soundness of the calculus we developed to formalize our approach. To

be more specific, our soundness proofs include

� refutation soundness : given a set of constraints, if our calculus produces a closed

derivation, the constraints are unsatisfiable;

� solution soundness : given a set of constraints, if our calculus produces a satu-

rated derivation, the constraints are satisfiable and the induced model is indeed

a model for the constraints.

Solution Completeness. The satisfiability of word equations is related to the

Hilbert’s tenth problem [62]. It was proved to be decidable by Makanin [60], and

was later refined to be a PSPACE problem by Plandowski [72]. Combined with

length constraints, the decidability is still an open question [36]. With the extension

of string manipulating functions, e.g., replacement and substring, the problem has

been shown to be undecidable [17]. Due to these theoretical difficulties, we have not

proved the refutation completeness of our algorithm over the whole theory. Instead,

our contribution to completeness is that we have proved the solution completeness of

our calculus under a fair derivation strategy, i.e., if the problem is satisfiable, with

9

this strategy any derivation produced is guaranteed to be saturated.

Decision Procedure. A decision procedure is important for automated reasoning.

It guarantees the termination of a procedure on any problem over a theory. Our

contributions in this direction include the following:

� we have identified a non-trivial fragment in the theory of unbounded strings with

length constraints, based on a certain acyclic condition on the input problem.

We provide a description of this fragment, as well as the proof that shows our

derivation is guaranteed to provide a correct answer on any problem in this

fragment;

� we also provide a proof that our procedure is a decision procedure for member-

ship and length constraints.

High Performance. The crucial part in finding a vulnerability in a program is to

reason about string constraints from symbolic execution. The efficiency of solving

string constraints determines the success of a vulnerability detection. Therefore,

performance is an important assessment for an automated reasoning tool. Recent

studies [46] show that most existing procedures are not efficient enough, when a

problem becomes big. We have implemented a highly efficient string solver, and our

initial results demonstrate that our approach outperforms the other string solvers in

terms of correctness, precision, and run time.

10

1.4 Overview

This dissertation is organized as follows: In Chapter 2, we provide the tech-

nical background of this thesis. We introduce the terminologies for monoids, strings

and languages, and discuss the DPLL procedure, the Nelson-Oppen combination, the

DPLL(T) procedure and the existential theories over string constraints. In Chap-

ter 3, we introduce the satisfiability problem of string constraints and our calculus for

solving this problem. We also discuss the correctness, solution completeness and the

experimental results with respect to the calculus. In addition to [56], we introduce our

new refinements and the extension to string manipulating functions. In Chapter 4,

we introduce our decision procedure for solving membership with length constraints.

We also provide the soundness and completeness proof. In addition, we discuss an

extension to solve the symbolic membership constraints. In Chapter 5, related work

is discussed. Finally, a summary and some potential directions for future research in

this topic are presented in Chapter 6.

11

CHAPTER 2

BACKGROUND AND PRELIMINARIES

In this chapter, we introduce several formal concepts of the theory of monoids,

strings and formal languages. We also establish some general notation for later chap-

ters.

We use B,N,Z,S to represent Boolean values, Natural Numbers, Integers and

Strings, respectively. A language is a set of strings that can be constructed from a set

of symbols by a grammar. Here, we use L to denote the class of Languages we consider

throughout the dissertation. It can be partitioned into two sub-classes: the class of

Symbolic Regular Languages LV and the class of Concrete Regular Language LC, i.e.,

L = LV ∪ LC and LV ∩ LC = ∅. The difference between these two classes is whether

a string variable is allowed in a language, i.e., L ∈ LC iff V(L) = ∅ and L ∈ LV iff

V(L) 6= ∅, where the function V takes a language and returns a set containing all free

variables in that language.

Organization. In Section 2.1, we review the properties of monoids. In Sections 2.2

and 2.3, we discuss the properties of strings and languages, respectively. In Sec-

tion 2.4, we introduce the many-sorted first-order logic. In Section 2.5, we provide

the background for the DPLL procedure, the Nelson-Oppen combination and the

DPLL(T) procedure. In the last section, we discuss the background for existential

theories over string constraints.

12

2.1 Monoids

In abstract algebra, a semigroup, denoted as 〈S, o〉, is a set of elements S and

an associative binary operation o that is built upon this set. A semigroup is closed

under its operation o, i.e., o/2 : S × S → S 1. The operator o is associative, i.e.,

o(a, o(b, c)) = o(o(a, b), c), where a, b, c ∈ S.

The cardinality of a set S is the number of elements in S, denoted as |S|. In

general, the cardinality can be infinite. In the context of the theory of strings, the set

(of a monoid) is often referred to an alphabet, and we only consider an alphabet that

is arbitrary large but finitely many. Thus, the cardinality of an alphabet is always a

natural number. In the context of the theory of languages, we override the function

symbol for the language sort. Since the cardinality of a language may be infinite, we

use a constrained formula that represents the cardinality of the language.

Given two semigroups G1 = 〈S1, o1〉 and G2 = 〈S2, o2〉, a semigroup morphism

is a total (unary) function f/1 : G1 → G2. This function also preserves the semigroup

structure, i.e., f(o1(a, b)) = o2(f(a), f(b)), where a, b ∈ G1.

A semigroup 〈S1, o1〉 is a sub-semigroup of 〈S2, o2〉, if S1 ⊆ S2, o1 = o2, and

the semigroup 〈S1, o1〉 is closed.

An identity element εS,o (with respect to a set S and an operator o) is a special

element in S, such that this element is always absorbed by any other element under

the operation o, i.e., ∀a ∈ S. o(a, εS,o) = o(εS,o, a) = a. Normally [75], this element is

also called two-sided identity element. Throughout this dissertation, we always refer

1o/2 indicates that the arity of the function o is 2.

13

an identity as a two-sided identity element. Moreover, when the context is clear, we

omit the superscript of an identity.

A monoid M is a semigroup 〈S, o〉 with an identity ε in S. Similar to semi-

group, a sub-monoid of M is a monoid where the element set is a subset of the

elements of M and it is closed under the same operation o. By this definition, a

sub-monoid always keeps the same identity as the one in M .

Given two monoids M1,M2, a monoid morphism f/1 : M1 → M2, is a total

function that preserves the monoid structure. In addition, this function maps the

identity in M1 to the identity in M2. A bijective monoid homomorphism is called

isomorphism. Two monoids M1 and M2 are called isomorphic if there is a monoid

isomorphism between them.

Example 2 The pair 〈S, ·〉 is a monoid, where S is the set of strings, · is the concate-

nation operator, and the empty string is the identity. 〈N,+〉 is a monoid, where N

is the set of natural numbers, + is the standard plus operator, and 0 is the identity.

The length function | |, which maps a string to its length, is a monoid morphism. �

Given a set S and an associative operator o (S does not contain an identity

with respect to o), a unique set U can be generated by the following two rules:

� s ∈ U , if s ∈ S;

� o(s, t) ∈ U , if s, t ∈ U .

The generated set together with the operator 〈U, o〉 is called a free semigroup on the

set S, and it is denoted as S+. 〈U ∪ {ε}, o〉 is called a free monoid on the set S, and

14

it is denoted as S∗. The set S is called the generating set of U .

Proposition 1 (Universal Property) Given a homomorphism φ that maps a set

S to a monoid M , there exists a unique monoid morphism ψ that maps S∗ to M . �

The proof is given in [27]. As a consequence, we have the following alternative

definition of free monoids. Notice that not all monoids are free.

Corollary 1 A monoid M is free if it has a generating set S and an isomorphism

between S∗ and M . �

The product of the two sets S1 and S2 with respect to an operator o, is defined

as a set: S1 ·o S2 = {o(s, t) | s ∈ S1, t ∈ S2}. If the context is clear, we omit the

subscript of the product.

Proposition 2 (Minimal Generating Set) Given a monoid M = 〈S, o〉, a unique

set T can be generated by T = S\{ε}\((S\{ε}) ·o (S\{ε})) 2. This set T is called

the minimal generating set of M . �

It is obvious that the set T can generate the monoid M and any proper subset

set of T cannot be a generating set of M .

2.2 Strings

An alphabet A is any non-empty finite set. Each element in A is called a

character. Unless explicitly stated, we do not distinguish a character from a string.

We refer a character to be a string of length one. We use SA or A∗ to denote the

2The operator \ is for the set difference by standard semantics.

15

set of all string with respect to the alphabet A. For simplicity, if the context (of the

alphabet) is clear, we use S for the set.

A string s over A is a finite sequence of characters over A, i.e.,

sA = cA0 c
A
1 · · · cAn−1.

We use ε to denote the empty string, where the length of the sequence is zero. Since

we only consider string operations over the same alphabet in this dissertation, we

omit the alphabet symbol for string terms. We use s[i] to denote the character at the

position i in s, e.g., s[1] = c1 if s = c0c1 · · · cn−1
3.

The operation concatenation, ·/2 : S × S → S, takes two strings s, t, and

returns a new string which starts with the sequence of characters in s, followed by the

sequence of characters in t, i.e., s ·t = c0c1 · · · cn−1d0d1 · · · dn−1, where s = c0c1 · · · cn−1

and t = d0d1 · · · dn−1
4. String concatenation is an associative operation, but non-

commutative. The empty string is the identity over the concatenation operation.

Strings together with the concatenation operation is a monoid, which satisfies

the following three properties:

� Closure: ∀s, t ∈ S. s · t ∈ S,

� Associativity : ∀s, t, r ∈ S. (s · t) · r = s · (t · r), and

� Identity : ∀s ∈ S. ε · s = s · ε = s.

3Index starts from 0.

4Technically speaking, it is not formal enough and an inductive proof is needed. Since
this proof is well-known, we omit the proof for simplicity.

16

Because of the associativity, we can always write s1 ·s2 ·s3 for either s1 ·(s2 ·s3)

or (s1 · s2) · s3.

A string s is always associated with a natural number, a.k.a. the length, which

indicates the number of characters in s, i.e., |s| = n iff s = c0c1 · · · cn−1. The length

function (| |/1 : S→ N) is a monoid morphism between 〈S, ·〉 and 〈N,+〉:

� |ε| = 0, and

� |s · t| = |s|+ |t|, for any strings s and t,

where + is the standard addition operation over the natural numbers.

Two strings are identical, iff they have the same length and all characters (at

same positions) are identical, i.e., s = t iff |s| = |t| and ∀0 ≤ i < |s|. s[i] = t[i].

The symbol An denotes all strings over the alphabet A of length n, e.g.,

A0 = {ε}, A1 = A, and A2 = {aa, ab, ba, bb}, assuming A = {a, b}. Therefore, the

set of all strings, denoted as A∗ or S, is
⋃
i∈NAi, and the set of all non-empty strings,

denoted as A+, is
⋃
i∈N\{0}Ai.

Similarly, sn denotes the concatenation of the string s for n times, e.g., s3 =

s · s · s. When n = 0, s0 is the empty string.

Given a free sub-monoid 〈S, ·〉 and its minimal generating set T , if any string

in S has a unique representation over T (i.e., if a0a1 · · · an−1 = b0b1 · · · bm−1 and

ai, bj ∈ T , then m = n and ∀i. ai = bi), the set T is called a code of S.

A string s is a substring of t if there exist two strings u and v, such that

t = u · s · v. If s 6= t, we call s is a proper substring of t. A string s is a prefix of t if

17

there exists a string v, such that t = s · v. If s 6= t, we call s is a proper prefix of t. A

string s is a suffix of t if there exists a string u, such that t = u · s. If s 6= t, we call s

is a proper suffix of t.

Proposition 3 (Fine and Wilf Theorem) Given two strings u and v, d is the

greatest common divisor of |u| and |v|, if up and vq have a common prefix of length

of at least |u|+ |v| − d, u and v are the power of the same string of length d. �

This theorem is proved in [34], and a more general extension is given in [61].

The reverse of string c0c1 · · · cn−2cn−1 is the string cn−1cn−2 · · · c1c0. A string

s is called a palindrome if the string s is identical to its reverse.

Proposition 4 (Levi’s Lemma) Given four strings u, s, v, t, if u · s = v · t, then

there exists another string k, such that either u = v · k or v = u · k. �

This lemma is also called the equidivisibility theorem. It provides a basis for

some rules of our calculus in later chapters while we are solving word equations.

A non-empty string s is primitive if it is not a power of any of another string,

i.e., s = t ∨ s 6∈ {tn | n ≥ 0}, ∀t ∈ S.

Proposition 5 Given two strings s and t, if sp = tq, p > 0, q > 0, there exists a

unique primitive string k, such that s, t ∈ {kn | n ≥ 0}. �

Two strings s and t are conjugate, if there exist u, v ∈ S, such that s = u · v

and t = v · u.

18

Proposition 6 If two strings s and t are conjugate, there exists a string k ∈ S, such

that s · k = k · t. �

Given an ordering ≺ on an alphabet, the lexicographic order ≺lex on strings

is defined as follows: a string s is less then a string t in the lexicographic order iff

� s is a proper prefix of t, or

� s = u · a · v and t = u · b · v′, where a and b are two characters, such that a ≺ b.

2.3 Languages

A formal language is a set of strings that can be expressed by a set of rules. In

this dissertation, we focus on the class of concrete regular languages and its extension,

the class of symbolic regular languages.

A concrete regular language is a set of strings denoted by a regular expression

R, i.e., L(R). A regular expression consists of a set of string singletons and a set of

set operators.

In the base cases, given an alphabet A, the following sets can be a regular

expression:

� ∅R : an empty set that does not accept any string, i.e., L(∅R) = ∅;

� sR : a singleton set that contains only s, i.e., L(sR) = {s}, where s ∈ S.

If R1 and R2 are regular expressions, the following expressions are also regular

expressions:

� Concatenation : R1 ·R2 = {s · t | s ∈ L(R1), t ∈ L(R2)},

19

� Alternation : R1 ∪R2 = {s | s ∈ L(R1) ∪ L(R2)},

� Intersection : R1 ∩R2 = {s | s ∈ L(R1) ∩ L(R2)}, and

� Kleene Star : R∗1 =
⋃
i∈N L(Ri

1).

Furthermore, if R1 and R2 are regular expressions and �lex is a total ordering

on the alphabet A, the following additional expressions are also regular expressions:

� Option : R?
1 = {ε} ∪ L(R1),

� Range : [a− b] = {c | a �lex c �lex b, c ∈ S}, where a, b are two characters 5,

� Loop : Rn,m
1 =

⋃
n≤i≤m L(Ri

1),

� Plus : R+
1 =

⋃
i∈Z+ L(Ri

1), and

� Complement : Rc
1 = {s | s 6∈ L(R1)}.

A regular expression is recognized by a finite automaton, if every string in the

language of the regular expression is accepted by the finite automaton.

A finite automaton (FA) can be described as a tuple 〈Q,A, δ, q0, F 〉, where

� Q is a finite set of states,

� A is the alphabet,

� δ is called the transition function,

� q0 : is a start state, and q0 ∈ Q, and

5A character is a string of length 1.

20

� F : is a set of accept states, and F ⊆ Q.

If the transition function δ is a total function that maps a state and a character

to another state, i.e., δ : Q×A → Q, the finite automaton is called the Deterministic

Finite Automaton (DFA). If the transition function δ maps to a power-set of states,

i.e., δ : Q × A → P(Q), the finite automaton is called the Nondeterministic Finite

Automaton (NFA).

A concrete regular language is a set of strings recognized by a concrete regular

expression. A symbolic regular language is a set of strings recognized by a symbolic

regular expression R. The difference between a concrete regular expression and a

symbolic regular expression is that the symbolic one allows string variables in its

singleton set. A string is in a symbolic regular language if it is in one instance of the

symbolic regular language. However, by allowing string variables in a language, the

language accepted by a symbolic regular expression is not regular.

Example 3 The language of the symbolic regular expression (x·a·x)∗ is not context-

free, where a is a character, x is a string variable, and the cardinality of alphabet is

greater than 1. It can be shown by the pumping lemma. �

Proposition 7 (Equivalent Expressiveness) DFA and NFA have the equivalent

expressiveness, i.e., any language that is recognized by a NFA can also be recognized

by a DFA, and vise versa. �

Although the expressiveness of DFA and NFA is the same by Proposition 7,

it is important to notice the following facts:

21

� it is easier to construct an NFA, and to recognize a same language, an NFA is

usually smaller than a DFA;

� it is more efficient to execute a DFA;

� conversion from an NFA to a DFA causes an exponential growth of state size.

Proposition 8 (Kleene’s Theorem) A language is regular iff there exists a finite

automaton that recognizes it. �

A regular language is defined by its corresponding regular expression. As a

corollary to the Kleene’s theorem, we can construct a regular expression from a FA,

and vice versa.

Proposition 9 (Closure Properties) The class of concrete regular languages are

closed under Union, Intersection, Difference, Concatenation, Kleene Closure, Com-

plementation, Reversal, Homomorphism, Inverse Homomorphism operations. �

A reader can find that the closure properties are proved by automaton con-

struction in [47].

The derivative of a regular expression R with respect to a character c returns

a language that contains all suffixes where the prefix of those original strings is c, i.e.,

∂cR = {u | c · u ∈ L(R)}.

Proposition 10 The language returned by the derivative is still regular. �

This derivative function can be extended to a string as its argument, instead

of a single character, i.e., ∂sR = {u | s · u ∈ L(R)}.

22

Corollary 2 A string s is accepted by a regular expression R iff the empty string is

in the language of ∂sR. �

2.4 Many-Sorted First-order Logic

We work in the context of many-sorted first-order logic with equality [12]. A

many-sorted signature Σ contains a set of sort symbols and a set of sorted function

symbols. A sorted function symbol is f/n : S0 × S1 × · · ·Sn−1 → Sn, where Sis are

sorts in Σ and n is the arity of the function symbol f . A constant symbol is a special

function symbol where the arity is 0. We use f instead of f() to represent a constant.

Given a signature Σ, a Σ-term is either a variable or an expression in a form

of f(t0, t1, · · · , tn−1), where f is an n-ary function symbol in Σ and ti’s are Σ-terms.

A term is well-sorted with respect to a sort S if it is :

� a variable of the sort S, or

� a function term: f(t0, t1, · · · , tn−1), where f/n : S0 × S1 × · · ·Sn−1 → S for

∀0 ≤ i ≤ n− 1. And ti is a well-sorted term with respect to the sort Si.

A Σ-equality is an equality t0 ≈ t1 where both t0 and t1 are well-formed terms

with respect to the same sort. A Σ-atom is either a Σ-equality, or a well-formed

term with respect to the sort Bool. A Σ-literal is either a Σ-atom or its negation.

A Σ-clause is a disjunction of Σ-literals. A Σ-formula is an expression that is built

from a set of Σ-literals and logical connectives, such as ∧,∨,¬.

A ground term is a Σ-term without any variables. This terminology is also

extended to literals, clauses and formulas. A variable in a formula is a free variable

23

if it is not bounded by a quantifier; otherwise, we call it a quantified variable. We

use V(φ) to denote all free variables in the formula φ. If all variables in a formula

are free, we call this formula a quantifier-free formula. Unless it is explicitly stated,

a Σ-formula in this dissertation refers to a quantifier-free formula.

A Σ-interpretation M is a non-empty domain (denoted as M) and a mapping

that associates:

� each variable x with an element xM of M,

� each function symbol f/n ∈ Σ with a function fM/n : Mn → M, and

� each predicate symbol p/n ∈ Σ with a relation pM ⊆ Mn.

Given a Σ-interpretation M and a Σ-term t, the semantics of the term t,

denoted as M[[t]], is defined recursively as follows:

� if t is a variable x, M[[x]] := xM (the assignment for x in M)

� if t is in a form of f(t0, t1, · · · , tn−1),

M[[f(t0, t1, · · · , tn−1)]] := fM(M[[t0]],M[[t1]], · · · ,M[[tn−1]]).

Given a Σ-interpretation M and a Σ-formula φ, the formula φ is satisfiable

with respect to M, denoted as M |= φ, if it is one of the followings:

� M |= p(t0, · · · , tn−1) iff 〈M[[t0]], · · · ,M[[tn−1]]〉 ∈ pM

� M |= t1 ≈ t2 iff M[[t1]] =M[[t2]]

� M |= φ ∧ ψ iff M |= φ and M |= ψ

24

� M |= φ ∨ ψ iff M |= φ or M |= ψ

� M |= ¬φ iff M 6|= φ

A theory is a pair T = (Σ, I) where Σ is a signature and I is a class of

Σ-interpretations. Σ-interpretations are also called the models of T . The class of

Σ-interpretations I, is closed under variable reassignment.

A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by some

(resp., no) interpretation in I. A set Γ of formulas entails in T a Σ-formula ϕ, written

as Γ |=T ϕ, if every interpretation in I that satisfies all formulas in Γ satisfies ϕ as

well. The set Γ is satisfiable in T if Γ 6|=T ⊥ where ⊥ is the universally false atom.

We will write Γ |= ϕ to denote that Γ entails ϕ in the class of all Σ-interpretations.

We write s 6≈ t as an abbreviation of ¬ s ≈ t. If e is a term or a formula, we

denote by V(e) the set of e’s free variables, extending the notation to tuples and sets

of terms/formulas as expected.

Two Σ-formulas are equisatisfiable in T if for every model I of T that satisfies

one formula, there is a model of T that satisfies the other one, and the differences of

those two models from I are, at most, over the free variables that are not shared by

the two formulas.

2.5 DPLL(T) Procedure

Modern SMT solvers use the DPLL(T) [66] architecture that delegates de-

cisions about the satisfiability of formulas in a specific theory to dedicated theory

solvers. State-of-the-art SMT solvers include z3 [28] and cvc4 [10]

25

2.5.1 The DPLL Procedure

In propositional logic, a formula is constructed from a set of Boolean variables

using a set of logical connectives, such as ∧,∨,¬. Boolean variables can be assigned

a (truth) value that is either true or false. Given a Boolean formula, the Boolean

satisfiability (SAT) problem is to answer whether we can find an assignment for those

variables, such that the formula is evaluated to be true under the assignment.

The SAT problem is a classical NP-complete problem. There are many decision

procedures to solve this problem (e.g., Binary Decision Diagram [29]). Among them,

the DPLL 6 procedure [65] is the most frequently used in most modern SAT solvers.

The DPLL procedure takes a set of clauses 7 as input. It returns sat if a

logically consistent assignment 8 can be found; otherwise, it returns unsat. During

its computation, the procedure maintains an internal stack of literals (possibly with

decision marks) to represent a partial assignment. The stack contains two sorts of

elements:

� Decision literal : a variable assignment introduced by guess 9,

� Propagation literal : a variable assignment introduced by logical deduction.

Whenever every clause is evaluated to be true under the current assignment, the pro-

6DPLL is named after its authors: Davis, Putman, Logemann and Loveland.

7A clause is a disjunction of Boolean variables.

8An assignment is consistent with the clause set if all clauses are evaluated to be true
under this assignment.

9If a decision literal is the nearest to the bottom, we call it the first decision literal.

26

cedure stops and returns sat. During a standard processing loop, the DPLL procedure

processes the clause set in three steps:

1. It first checks whether the current partial assignment is consistent with the

clause set by evaluation. If one of the clauses is evaluated to false and the stack

contains at least one decision literal, the procedure pops out all literals in the

stack till the nearest decision literal, then flips the sign of that decision literal

and turns it into a propagation literal. This step is often referred to Backtrack.

If one of the clauses is evaluated to false and the stack does not contain one

decision literal, the procedure stops and returns unsat.

2. After the inconsistent check, the procedure tries to push new propagation literals

into the stack by logical deduction, e.g., Unit Propagation [97].

3. If there are still unassigned variables, the procedure picks one heuristically,

guesses its sign 10, and pushes it into the stack as a decision literal.

The procedure continues until all variables are assigned.

The DPLL procedure can be further extended to the Conflict-Driven Clause

Learning (CDCL) procedure by

� replacing the naive backtracking with backjumping 11,

� introducing lemma learning, and

10the polarity of a literal

11a more efficient algorithm that allows the procedure backtracks more than one level
when a conflict occurs

27

� adding modern engineering techniques, e.g., two watched literals.

2.5.2 The Nelson-Oppen Combination

In the above paragraphs, we discussed the satisfiability of Boolean logic for-

mulas. In Boolean formulas, the signature only contains propositional variables and

logical connectives; whereas in SMT formulas, the signature is extended to a set

of predicate symbols, a set of function symbols and a set of non-Boolean variables.

Those extended symbols can be interpreted in some background theories. An SMT

formula is satisfiable if there exists a model that satisfies both the logical formula and

the background theories.

Reasoning about an SMT formula usually involves several reasoning over sev-

eral theories. We refer the procedure to reason over a theory T as a T -solver. Note

that a T -solver can only handle conjunctions of literals. Given a formula over several

theories where each theory has a T -solver, the Nelson-Oppen combination provides a

procedure to reason about this constraint.

Before discussing the Nelson-Oppen theory, we introduce two more definitions.

A Σ-theory T is stably infinite iff every T -satisfiable quantifier-free Σ-formula has a

T -interpretation whose domain is infinite.

Given a sub-signature Σ0 ⊆ Σ, a Σ-theory T is convex iff whenever T |=∧n
i=1 ai =⇒

∨m
j=1 bj, there exists k ∈ {1, · · · ,m} such that T |=

∧n
i=1 ai =⇒ bk,

where ai’s are Σ-atoms and bj’s are Σ0-atoms.

Proposition 11 (Deterministic Nelson-Oppen) Given a set of stably-infinite and

convex theories, the satisfiability of a constraint over these theories can be checked

28

by the deterministic Nelson-Oppen combination. �

Without loss the generality, we describe the deterministic Nelson-Oppen com-

bination with two stably-infinite and convex theories T1 and T2. We use S1 and S2 to

denote the literals for T1-solver and T2-solver, respectively. Initially, constraints are

partitioned into S1 and S2 based on their signature. Whenever S1 is T1-unsatisfiable

or S2 is T2-unsatisfiable, the original problem is unsatisfiable. If T1-solver derives

a new T2-equality from S1 but not in S2 yet, the new constraint will be put in S2;

similarly, if T2-solver derives a new T1-equality from S2 but not in S1 yet, the new

constraint will be put in S1. If no new equality can be derived from either T -solver

and both S1 and S2 are T -satisfiable, the original problem is satisfiable.

Note that not every theory is convex. For example, integer linear arithmetics

is not convex with respect to inequality. If a theory combines with a non-convex

theory, the deterministic Nelson-Oppen combination will not work. However, the

non-deterministic Nelson-Oppen algorithm is for non-convex theory combination.

Let C be a set of constants. An arrangement A over C is a set of (dis-

)equalities, such that for every pair of elements in C, either an equality or a disequality

(between two) is in A.

Let T1 and T2 be two stably-infinite theories, the non-deterministic Nelson-

Oppen algorithm work as follows: initially, constraints are partitioned into S1 and S2

based on their signature; for every arrangement A over the shared constants, if both

S1 ∪ A and S2 ∪ A is T -satisfiable, the original problem is satisfiable; otherwise, it is

unsatisfiable.

29

DPLL(X) engine

T-solvers

String T-solver

Arithmetic T-solver

…

SATUNSAT

T-consistent

T-inconsistent
F-unsat

F-sat

Figure 2.1. A general DPLL(T) architecture.

Therefore, the Nelson-Oppen combination procedure [63] is a decision proce-

dure for combined theories, when those theories are stably infinite. Note that when a

combined theory consists of a non-stably infinite theory, a generalized Nelson-Oppen

combination method is provided in [88]. With respect to the word problems, the

stably infiniteness is discussed in [7].

2.5.3 The DPLL(T) Architecture

The DPLL(T) approach is a lazy approach to solve the satisfiability of a SMT

formula. It uses the Nelson-Oppen theory as its basis. The DPLL(T) architecture

can be divided into two parts, as shown in Figure 2.1 : the logic solving part and the

theory solving part.

In the logic solving part, it usually refers to the DPLL(X) procedure. A

DPLL(X) engine is a modified CDCL-based SAT solver. Similar to a CDCL-based

solver, a DPLL(X) engine maintains a partial model M and the current formula

30

F 12. The major difference between a DPLL(X) engine and a generic DPLL-based

SAT solver is that a DPLL(X) engine

� requires the mechanism for incremental clause assertions 13), and

� disables some engineering optimizations (e.g., pure literals [65]).

The theory solving part usually contains several dedicated solvers for back-

ground theories, called T -solvers. Compared to a generic theory solver, a T -solver

requires the mechanisms for incrementality and backtracking. A T -solver maintains

a set of T -related literals. This set is a subset of the partial assignment M .

Initially, the DPLL(X) engine gets the formula F from the input. It tries

to find a model for the literals. If failed, it returns unsat; otherwise, it distributes

each literal in M to a corresponding T -solver according to some T -signature-based

heuristics.

When a T -solver gets a set of literals, it first checks whether these literals are

consistent with the theory. If it is T -consistent, the T -solver does nothing but reports

consistent back to the main engine. If it is T -inconsistent, it either returns a conflict

(in a form of literal conjunction) 14, or propagates a new literal with an explanation

(in a form of implication) 15.

12F may be changed during computation.

13Most CDCL-based SAT solvers have the incremental mechanism because of clause learn-
ing (e.g., Minisat.

14It is called T -unsatisfiable.

15It is called T -entail.

31

If all T -solvers report T -consistent, the procedure stops and answers sat with

the model M ; otherwise, the DPLL(X) engine collects all clauses returned by T -

solvers, and asserts them into the formula F . Then, it tries to build a model from

this new formula.

2.6 Existential Theories over Strings

A first-order formula is in prenex form if all quantifiers appear in the front of

a quantifier-free formula, i.e.,

∀X1. ∃X2. · · · . φ[X1, X2, · · ·], (2.1)

where φ is a quantifier-free formula. Any (first-order) formula can be converted to a

prenex form in linear time. Without loss of generality, we always refer a formula to a

prenex form. If a formula (in the prenex form) contains only existential quantifiers,

we call it an existentially quantified formula, or a constraint over an existential theory.

If an existentially quantified formula contains no free variable, the formula is valid

in T iff there exists a model M in T and the corresponding quantifier-free formula

is evaluated to be true in M . For this reason, we do not distinguish satisfiability

problems with existential theories.

We use String, Lan and Int to denote the String sort, the Language sort and the

Integer sort, respectively. We use ΣSRL to denote the signature over string constraints,

where the subscript S is for symbols over the (pure) String sort, R for symbols over

the Language sort, and L for the Length symbol. We use TX to denote the existential

theory over the signature ΣX, where X is any combination of S, R and L. In particular,

TS refers to the existential theory over word equations, TSL refers to the existential

32

theory over word equations and additional length constraints, TRL refers to the ex-

istential theory over membership constraints and additional length constraints, and

TSRL refers to the full existential theory over strings. Throughout the whole thesis,

unless explicitly stated, we focus on solving quantifier-free constraints.

The interpretations of TX differ only on the variables. They all interpret Int as

the set of integer numbers Z, String as the set of all strings S over some fixed finite

alphabet A of characters, and Lan as the power set of A∗.

The common symbols (e.g., +,−,≤) of linear integer arithmetic are inter-

preted as usual. The signature of the sort String (over word equations with length

constraints) consists the following symbols:

� a constant symbol, or string literal, interpreted as the corresponding string in

S;

� a variadic function symbol con : String × . . . × String → String, interpreted as

the string concatenation function · : S× . . .× S→ S;

� a function symbol len : String → Int, interpreted as the string length function

| | : S→ N.

The signature of the sort Lan consists the following symbols:

� a function symbol set : String → Lan, is interpreted as the function mapping a

string s ∈ S to the language {s};

� a constant symbol rempty : Lan, interpreted as the empty set ∅;

33

� a constant symbol allchars : Lan, interpreted as the set Σ;

� a variadic function symbol rcon : Lan × . . . × Lan → Lan, interpreted as the

language concatenation function · : L× . . .× L→ L;

� a variadic function symbol inter : Lan× . . .× Lan→ Lan, interpreted as the set

intersection function ∩ : L× . . .× L→ L;

� a variadic function symbol union : Lan× . . .× Lan→ Lan, interpreted as the set

union function ∪ : L× . . .× L→ L;

� a function symbol star : Lan→ Lan, interpreted as the Kleene closure operator

∗ : L→ L;

� a predicate symbol in : String×Lan, interpreted as the set membership predicate

∈: S× L→ B;

� a function symbol opt : Lan→ Lan, interpreted as the language option operator

? : L→ L;

� a function symbol range : String × String → Lan, interpreted as the language

range operator [,] : S× S→ L;

� a function symbol loop : Lan× Int× Int→ Lan, interpreted as the language loop

operator , : L× N× N→ L;

� a function symbol plus : Lan → Lan, interpreted as the language plus operator

+ : L→ L;

34

� a function symbol comp : Lan → Lan, interpreted as the language complement

operator c : L→ L.

We call: string term any term of sort String or of the form len(s); arithmetic

term any term of sort Int all of whose occurrences of len are applied to a variable;

regular expression any term of sort Lan (possibly with variables). A string constraint

is, a constraint containing at least one term of sort String. An arithmetic constraint

is a (dis)equality (¬)s ≈ t or an inequality s > t where s and t are arithmetic terms.

Note that if x and y are string variables, lenx is both a string and an arithmetic term

and (¬)lenx ≈ len y is both a string and an arithmetic constraint. A membership

constraint is a literal of the form (¬)in(s, r) where s is a string term and r is a regular

expression. A SRL-constraint is a string, arithmetic or membership constraint. We

will denote entailment in TSRL simply as |=SRL.

Let A be a finite set of characters (a.k.a. alphabet). An atomic string term is

either a string literal or a string variable. We say a string term over the alphabet A is

flattened, if it is either an atomic string term or a non-atomic flattened string term. A

non-atomic flattened string term is a concatenation of at least two non-empty atomic

string terms, i.e.,

con(u0, u1, · · · , un−1), (2.2)

where n > 1 and ui’s are either a non-empty string literal or a string variable, ∀0 ≤

i < n. A flattened string does not contain nested concatenations.

When a string contains nested concatenations, we call it a non-flattened string.

An arbitrary non-flattened string term can be converted to a flattened string term via

35

rewrite rules, as given in Figure 3.1 16. For simplicity, when a concatenation contains

single atomic string, we remove the top-level concatenation symbol, i.e., con(a)→ a,

where a is an atomic string term.

A word equality is an equality between two string terms. Since any string

term can be flattened due to the associativity of concatenation, a word equality can

be rewritten to an equality between two flattened string terms, i.e.,

con(u0, u1, · · · , un−1) ≈ con(v0, v1, · · · , vm−1), (2.3)

where ui’s and vj’s are either a string constant or a string variable , ∀0 ≤ i < n,

∀0 ≤ j < m 17. A word equation is either a word equality or its negation (disequality).

We use φ
·
≈ ψ to denote a word equation, where

·
≈ is either an equality or a disequality.

We use TS to denote the existential theory of word equations.

A string substitution is a mapping from variables to terms of sort String. An

assignment is a substitution that maps variables to string constants. Given a word

equation φ
·
≈ ψ, we call an assignment a satisfying assignment of the equation, if the

assignment σ maps each variable (in both φ and ψ) to some string constant, and both

sides are equal in TS, i.e.,

σ |=TS φ
·
≈ ψ iff TS |= σ(φ)

·
≈ σ(ψ), (2.4)

where the symbol TS refers to the theory of word equations.

16Further discussion is in Section 3.1.

17Note that an atomic string term u can also be considered as con(u) (if u is non-empty),
or as con() (if u is the empty string).

36

Given a set of word equations, the satisfiability problem (in TS) is to determine

whether there exists a model for this set of word equations: a model evaluates every

equation to be true.

The satisfiability problem in string constraints has been attracting interest

from both mathematicians and computer scientists for over a century [64]. There

have been done extensive theoretic works on solving constraints over the theory of

unbounded strings with length and membership constraints. In [36], an overview of

decidable fragments is given. Detailed algorithms for word combinatorics are pre-

sented in [57, 58].

One major breakthrough was made by Markov, where he reduced the satis-

fiability problem of word equations to the Hilbert’s tenth problem (the satisfiability

of a Diophantine problem) [2]. However, the Diophantine problem was proved to be

unsolvable by Matiyasevich [62].

A few years later, Makanin proved that a set of word equations can be reduced

to a word equality and the satisfiability of word equations is decidable [60]. However,

Makanin’s algorithm, is highly impractical due to the equation size explosion at the

very first step, where the procedure reduces a word disequality to a set of word

equalities even although this procedure is still widely used in the latest work (e.g., [72,

73, 1]).

When a disequality appears, say s 6≈ t, the Makanin’s algorithm converts

the disequality to a disjunction of conjunctions of word equalities to represent all

37

possibilities, i.e.,

s 6≈ t ⇐⇒
∨
a∈A

s ≈ con(t, a, u) ∨ t ≈ con(s, a, u) ∨∨
a,b∈A,a 6=b

s ≈ con(w, a, u) ∧ t ≈ con(w, b, v), (2.5)

where w, u, v are fresh variables and A is the alphabet.

Example 4 Assume the alphabet is {a, b, c}. Every disequality in the constraint set

will introduce 3 fresh variables and a formula with 12 equalities. �

Note that if a constraint comes from a real application, the alphabet usu-

ally refers to the ASCII set where the cardinality is 256, not to mention Unicode.

Introducing thousands of constraints at the first step is not an ideal choice.

Proposition 12 Let S = {s1 ≈ t1, · · · , sn ≈ tn} be a set of equalities, a and b be

two distinct characters, and E be a single equality

con(s1, a, · · · , sn, a, s1, b, · · · , sn, b) ≈ con(t1, a, · · · , tn, a, t1, b, · · · , tn, b). (2.6)

S is satisfiable iff E is satisfiable. �

Although the proposition is used to reduce a set of equalities to a single one,

it is more useful to apply in the opposite way, i.e., to split an equality to a set of

equalities. In addition, disjunctions can be removed from a system by the algorithm

in [49].

Proposition 13 Let S be a disjunction s ≈ t1 ∨ s ≈ t2, a and b be two distinct

characters. We can construct a term k to be con(t1, t2, s, a, t1, t2, s, b). We denote E

38

to be a single equality

con(k2, t1, k
2, t2, k

2) ≈ con(x, k2, s, k2, y), (2.7)

where x and y are two fresh variable of sort String. S and E are equisatisfiable. �

Note that the term k is primitive in A ∪ X , where A is the alphabet and X

is the set of variables. Because of the above propositions, the input of Makanin’s

algorithm is one single word equality.

In order to solve word equations, the algorithm introduces the system of bound-

ary equations. A boundary equation is a tuple that describes the property of a variable

and its reverse within the system. The algorithm reduces a word equality to a system

of boundary equations and claims that a word equality has a solution iff its boundary

equations has a solution. In [60], Makanin also proves that it is decidable whether

a system of boundary equations has a solution. In addition, it is shown that the

smallest space requirement for a full implementation of Makanin’s algorithm does not

exceed EXPSPACE.

Even since Makanin showed that a pure word equation is decidable [60], al-

though the original algorithm is incomputable, various improvements have been pre-

sented. Those improvements are collected in the Handbook of Formal Languages [79,

80, 81] and two volumes of lecture notes that are dedicated to word equations and

related topics [83, 3].

Among them, Plandowski devised a new method for solving the satisfiability of

a word equation based on data compression, which can be considered as an indepen-

dent work from Makanin. Plandowski’s approach can be divided into several stages.

39

In [71], he showed the satisfiability problem is NEXPTIME if equation is compressed

by the Lempel-Ziv encoding [99] 18. In this algorithm, the procedure first guesses

the length of a minimal encoded solution, and then finds the solution based on this

length. This result is based on the conjecture that the length of a minimal encoded

solution is at most exponential to the number of symbols in the word equation. Later,

he improved that the satisfiability problem of a word equality is PSPACE in [72]. The

main contribution of this work is to show that the complexity of Makanin’s algorithm

can be further lowered down by data compression.

Moreover, the existential theory of word equations can be extended by allowing

linear arithmetic constraints over string length terms, namely the existential theory

of word equations with length constraints. We use TSL to denote this theory. Many

security checking applications can be encoded as formulas in this theory, e.g., [82].

We call these formulas TSL-constraints.

As shown in Example 2, strings with the concatenation forms a monoid, in-

tegers with the addition forms another monoid, and the length function is a monoid

morphism. Even though the satisfiability of linear arithmetic constraints over N is

NP-complete and the satisfiability of word equations is PSPACE, the decidability of

the satisfiability over word equations and length constraints is still an open prob-

lem [36].

On the side of the language, it is well-known that two regular languages

are closed under common operations (e.g., concatenation, union, intersection, com-

18This compression algorithm is widely used in file compression and in GIF image format.

40

plementation); however, the complexity of performing most of these operations is

high. For example, the intersection operation of two regular expressions is PSPACE-

complete [53]. In [42], Hooimeijer showed that the satisfiability problem of regular

membership constraints is decidable. When regular membership constraints are com-

bined with length constraints, to the best of our knowledge, our approach is the first

decision procedure for this full theory. Note that our regular expression length rules

relate to the Parikh images [70], where a semi-linear set of constraints can be gen-

erated. With respect to the Parikh images of a regular expression, [8] described a

similar Parikh image as the one we used in part of our length reduction, although we

noticed their contribution after we made it by ourselves.

The idea of symbolic regular expression is somehow inspired by the works of

symbolic automata [91], where Veanes combined SMT with automata by labeling a

transition with a formula instead of a single character. However, since the conversion

operation from a regular expression to an automaton (and vice versa) is normally

very expensive, and under the context of verification and security applications most

problems are more natural to be described via regular expressions, it would be better

if an algorithm can directly work on regular expressions. Our work fits the demand of

such algorithm. Our approach avoids the computation of these expensive conversions

and solves symbolic membership constraints directly. Moreover, with the help of

the DPLL(T) architecture, our approach can reason about symbolic membership

constraints together with other theories.

Proposition 14 The satisfiability of word equations with membership constraints

41

becomes undecidable if the language is context-free. �

This proposition is given by [57]. Note that our symbolic regular expression

can denote a context-sensitive language. This proposition indicates that our full

existential theory over strings may not be decidable.

42

CHAPTER 3

SOLVING STRING AND LENGTH CONSTRAINTS

In this chapter, we present an approach based on algebraic techniques for

solving (quantifier-free) constraints natively over a theory of unbounded strings with

length. Our techniques can be used to construct string solvers that can be integrated

into general, multi-theory SMT solvers based on the DPLL(T) architecture [66]. We

have implemented these techniques in our SMT solver cvc4. As a result and to the

best of our knowledge, cvc4 is the first solver able to reason about a language of

mixed constraints that includes strings together with integers, reals, arrays, and alge-

braic datatypes. Furthermore, our experimental results show that cvc4 has superior

performance and reliability over specialized string solvers that can reason about the

same fragment of the theory of strings.

We have published some results about our calculus in [56]. In addition, we

provide proofs for the correctness and solution completeness for this calculus. We

also extend our calculus for handling common string manipulating functions, such as

substr, contains.

Organization. In Section 3.1, we present our calculus for solving unbounded string

constraints and additional length constraints. In addition, we describe how we im-

plement our calculus in cvc4. We provide proofs for refutation soundness, solution

soundness and solution completeness of our calculus. We also prove that our cal-

culus gives a decision procedure for constraints in, what we call, acyclic forms. In

43

Sections 3.2 and 3.3, we discuss the refinements and extensions of our calculus respec-

tively. In Section 3.4, we present an experimental evaluation of our implementation

in cvc4 and compare it against other tools specializing in string constraints. We

conclude in Section 3.5.

3.1 Calculus for TSL

In Section 2.6, we introduced the satisfiability problem in string constraints,

and we described different existential theories over strings. In this chapter, we are

interested in checking the TSL satisfiability of a finite set of TSL-constraints. We are not

aware of any positive results on the decidability of this problem. One complication is

that the property that two strings have the same length is not existentially definable

by word equations [22, 58]. In fact, the decidability of TSL, is classified as an open

question by other authors (e.g., [36]).

In this work we focus on practical solvers for TSL that, although incomplete in

general (due to non-termination), can be used to efficiently solve string constraints

arising from real-life verification and security applications. In addition to the effi-

ciency, we also focus on correctness. We have developed a solver that is both refu-

tation sound : if our solver classifies a problem as unsatisfiable, it is indeed so; and

solution sound : any variable assignment that the solver claims to be a model to the

input constraints does indeed satisfy the input constraints.

Our solver is based on the modular combination 1 of an off-the-shelf solver for

1More details are described in Section 2.5

44

linear integer arithmetic and a novel solver for string and membership 2 constraints.

The string solver is obtained as a modular extension of a congruence-closure-based

solver for EUF, the theory of equality with uninterpreted functions. The extension

is obtained by means of theory-specific derivation rules that assert additional string

constraints, length constraints and membership constraints to the congruence closure

module (which treats all function symbols as uninterpreted). The combination be-

tween the string solver and the arithmetic solver is achieved, in Nelson-Oppen style,

by exchanging (dis-)equalities over shared terms. These shared terms, however, are

not variables, as in traditional combination procedures [63], but are terms of the form

(lenx) where x is a variable.3

In the following, we describe the essence of our combined solver for TSL ab-

stractly and declaratively, as a tableaux-style calculus. Because of the computational

complexity of solving word equations alone, this calculus is non-deterministic and al-

lows many possible proof strategies. Our solver can be understood as a specific proof

procedure for the calculus. In our description of our proof procedure below, we focus

on the derivation rules that deal with string and arithmetic constraints only. Note

that although our procedure works on problems without membership constraints, it

will introduce membership constraints by some rules. In this chapter we mainly focus

on solving word equations with length constraints and membership constraints can be

2A decision procedure for regular membership constraints with length constraints is
described in Chapter 4.

3 This difference is not substantial if the arithmetic solver treats (lenx) like an integer
variable.

45

processed in a fairly naive way . In particular, the Kleene star operator is processed

by unrolling (lazily): in(s, star(R)) is reduced to

� s = ε or to

� s ≈ con(x, y) ∧ in(x,R) ∧ in(y, star(R))

where x and y are fresh variables, and R is a regular expression. Such unrolling

in general may make the solver non-terminating over the membership constraints

like Kleene star. A more sophisticated processing of membership constraints will be

presented in Chapter 4. There, we mainly focus on a decision procedure for regular

membership constraints with length constraints.

Definition 1 Let S be a set of string constraints and let T (S) be the set of all terms

(and subterms) occurring in S. The congruence closure of S is the set:

K(S) = {s ≈ t | s, t ∈ T (S), S |= s ≈ t} ∪

{l1 6≈ l2 | l1, l2 distinct string const.} ∪

{s 6≈ t | s, t ∈ T (S), s′ 6≈ t′ ∈ S, S |= s ≈ s′ ∧ t ≈ t′ for some s′, t′} (3.1)

�

The set K(S) induces an equivalence relation ES over T (S) where two terms

s, t are equivalent iff s ≈ t ∈ K(S) (or, equivalently, iff S |= s ≈ t). For all t ∈ T (S),

we denote its equivalence class in ES by [t]S or just [t] when S is clear.

As in Chapter 2, we will denote characters (i.e., elements of the alphabet A) by

letter c and string constants by letter l or the juxtaposition c1 · · · cn of their individual

46

con(s, c1 · · · ci, ci+1 · · · cn,u)→ con(s, c1 · · · cn,u) (3.2)

len(con(s1, . . . , sn))→ len s1 + · · ·+ len sn (3.3)

con(s, con(t),u)→ con(s, t,u) (3.4)

con(s, ε,u)→ con(s,u) (3.5)

len(c1 · · · cn)→ n (3.6)

con(s)→ s (3.7)

con()→ ε (3.8)

Figure 3.1. String term rewriting rules.

characters Notice that c1 · · · cn denote the empty string ε when n = 0. We will use

x, y, z to denote string variables and s, t, u, v, w to denote terms in general.

We will consider term tuples (s1, . . . , sn), with n ≥ 0, and denote them by

letters in bold font, with comma denoting tuple concatenation. For example, if s =

(s1, s2) and t = (t1, t2, t3) we will write (s, t) to denote the tuple (s1, s2, t1, t2, t3).

Similarly, if u is a term, then (s, u, t) denotes the tuple (s1, s2, u, t1, t2, t3).

Definition 2 Our calculus operates over configurations consisting of the distinguished

configuration unsat and of tuples of the form 〈S,A,R,F,N,C,B〉 where

� S, A, R are respectively a set of string, arithmetic, and membership constraints;

� F is a set of pairs s 7→ a where s ∈ T (S) and a is a tuple of atomic string terms;

� N is a set of pairs e 7→ a where e is an equivalence class of ES, the equivalence

relation induced by the constraints in S, and a is a tuple of atomic string terms;

47

� C is a set of terms of sort String;

� B is a set of buckets where each bucket is a set of equivalence classes of ES.

�

Informally, the sets S, A, R initially store the input problem and grow with

additional constraints derived by the calculus; N stores a normal form for each equiv-

alence class in ES; F maps selected input terms to an intermediate form, which we

call a flat form, used to compute the normal forms in N; C stores terms whose flat

form should not be computed, to prevent loops in the computation of their equiv-

alence class’ normal form; B eventually becomes a partition of ES used to generate

a satisfying assignment that assigns string constants of different lengths to variables

in different buckets, and different string constants of the same length to different

variables in the same bucket.

Definition 3 The calculus is defined by the derivation rules described below. A

derivation tree for the calculus is a tree where each node is a configuration and each

non-root node is obtained by applying one of the derivation rules to its parent node.

We call the root of a derivation tree an initial configuration. A branch of a derivation

tree is closed if it ends with unsat. A derivation tree is closed if all of its branches are

closed. �

An initial configuration encodes a satisfiability problem by storing it in the

components S, A and R. By distributing constraints based on their signatures, one

48

can convert any finite set of TSL-constraints into an equisatisfiable 4 set S ∪ A ∪ R

where S is a set of string constraints, A is a set of arithmetic constraints, and R is a

set of membership constraints.

Assumption 1 We consider only initial configurations where the other components

in the tuple are empty. For convenience, we assume that the S component of the

initial configuration contains an equation x ≈ t for each non-variable term t ∈ T (S),

where x is a fresh string variable.5 We also assume that all terms in any configuration

are reduced with respect to the rewrite rules in Figure 3.1, which can be shown to be

terminating and confluent modulo the axioms of arithmetic. �

Definition 4 We say that a configuration is derivable if it occurs in a derivation tree

whose initial configuration satisfies Assumption 1. �

We denote by t ↓ the normal form of a term t with respect to the rewrite

rules in Figure 3.1. It is not difficult to see that if t is of sort String, then t ↓

is either an atomic string term or has the form con(a1, . . . , an) where n > 1 and

a1, . . . , an are atomic; if t is of integer sort, then t ↓ is an arithmetic term. In a

similar vein, we consider normalized tuples a↓ of atomic terms obtained from an

atomic term tuple a by dropping its empty string components and replacing adjacent

string constants by the constant corresponding to their concatenation. For example,

(x, ε, c1, c2c3, y)↓ = (x, c1c2c3, y).

4By equisatisfiability, we mean TSL-constraints are satisfiable iff S ∪A∪R is satisfiable.

5 Such equations can always be added as needed using fresh variables without changing
the satisfiability of the original problem.

49

Invariant 1 We are interested in proof procedures that maintain these invariants on

the derivable configurations of the form 〈S,A,R,F,N,C,B〉:

1. All terms are reduced with respect to the rewrite system in Figure 3.1.

2. F is a partial map from T (S) to normalized tuples of atomic terms.

3. N is a partial map from ES to normalized tuples of atomic terms.

4. For all terms s where [s] 7→ (a1, . . . , an) ∈ N or s 7→ (a1, . . . , an) ∈ F, we have

(i) S |=SL s ≈ con(a1, . . . , an) and (ii) S |= ai 6≈ ε for i = 1, . . . , n.

5. For all B1, B2 ∈ B, [s] ∈ B1 and [t] ∈ B2, S |= len s ≈ len t iff B1 = B2.

6. C contains only reduced terms of the form con(a).

�

Definition 5 We denote by D(N) the domain of the partial map N, i.e., the set

{e | e 7→ a ∈ N for some a}. (3.9)

�

For all e ∈ D(N), we write N e to denote the (unique) tuple associated to e by

N. We will use a similar notation for F.

3.1.1 Derivation Rules

The rules of the calculus are provided in Figures 3.2 through 3.6 in guarded

assignment form. A derivation rule applies to a configuration c if all of the rule’s

50

A-Conflict
A |=LIA ⊥

unsat

A-Prop
S |= lenx ≈ len y

A := A, lenx ≈ len y

S-Prop
A |=LIA lenx ≈ len y

S := S, lenx ≈ len y

Len
x ≈ t ∈ K(S) x ∈ V(S)

A := A, lenx ≈ (len t)↓

Len-Split
x ∈ V(S ∪ A) x : String

S := S, x ≈ ε ‖ A := A, lenx > 0

R-Star
in(s, star(set(t))) ∈ R s 6≈ ε ∈ K(S)

S := S, (s)↓≈ con(t, z)↓ R := R, in(z, star(set(t)))

Figure 3.2. Rules for theory combination, arithmetic and membership constraints.
The letter z denotes a fresh Skolem variable.

premises hold for c. A rule’s conclusion describes how each component of c is changed,

if at all. We write S, t as an abbreviation for S ∪ {t}. Rules with two conclusions,

separated by the symbol ‖, are non-deterministic branching rules.

In the rules of the calculus, we treat a string constant l in a tuple of terms

indifferently as term or a tuple l1, . . . , ln of string constants whose concatenation

equals l. For example, a tuple (x, c1c2c3, y) with the three-character constant c1c2c3

will be seen also as the tuple (x, c1, c2c3, y), (x, c1c2, c3, y), or (x, c1, c2, c3, y).

All equalities and disequalities in the rules are treated modulo symmetry of

≈. We assume the availability of a procedure for checking entailment in the theory

of linear integer arithmetic (|=LIA) and one for computing congruence closures and

checking entailment in EUF (|=).

51

Reset
F := ∅ N := ∅ B := ∅

S-Conflict
s ≈ t ∈ K(S) s 6≈ t ∈ K(S)

unsat

S-Split
x, y ∈ V(S) x ≈ y, x 6≈ y /∈ K(S)

S := S, x ≈ y ‖ S := S, x 6≈ y

S-Cycle

t = con(t1, . . . , ti, . . . , tn) t ∈ T (S) \ C
tk ≈ ε ∈ K(S) for all k ∈ {1, . . . , n} \ {i}

S := S, t ≈ ti C := (C, t) \ {ti}

L-Split
x, y ∈ V(S) x, y : String S 6|= lenx ≈ len y S 6|= lenx 6≈ len y

S := S, lenx ≈ len y ‖ S := S, lenx 6≈ len y

Figure 3.3. Basic string derivation rules.

When reading the rules it helps to keep in mind that every non-variable string

term in a configuration is equated to a variable in the S component. We divide

the rules is several groups here to facilitate their description. The first four rules in

Figure 3.2 describe the interaction between arithmetic reasoning and string reasoning,

achieved via the propagation of entailed constraints in the shared language. Rule A-

Conflict derives unsat if the arithmetic part of the problems unsatisfiable. R-Star is

the only rule for handling membership constraints that we provide here. We chose it

because the rule F-Loop in Figure 3.5 can generate the constraints matching premises

of R-Star, even when the initial configuration contains no membership constraints.

Note that in this chapter, we focus on solving word equations with length constraints,

we assume there is no additional membership constraints in an initial configuration.

If a membership constraint is added to R, it comes from the application of F-Loop,

52

and it is in the form of in(x, star(set(t))), where t is a term of String. Thus, the rule

R-Star is enough for handling such constraints. A set of additional rules to handle

more sophisticated membership constraints are introduced in Chapter 4. The basic

rules for string constraints are shown in Figure 3.3. The functionality and rationale of

S-Conflict, S-Split and L-Split should be straightforward. S-Conflict derives unsat

if K(S) contains both equality and disequality between the same pair of strings. S-

Split tries to guess whether two strings are equal or not, while L-Split tries to guess

whether two string variables have the same length.

Reset is meant to be applied right after the set S changes, since in that case

normal and flat forms may need updating. S-Cycle shrinks a concatenation term to

one sub-term when the remaining ones are all equivalent to ε.

The bulk of the work is done by the rules in Figures 3.4 and 3.5. Those in

Figure 3.4 compute a flat form (consisting of a sequence of atomic terms) for each

non-variable term that is not in the set C. Flat forms are used in turn to compute

normal forms as follows: when all terms of an equivalence class e, except for variables

and terms in C, have the same flat form, that form is chosen by N-Form1 as the

normal form of e. When an equivalence class e consists only of variables and terms

in C, one of them is chosen by N-Form2 as the normal form of e. The first two rules

of Figure 3.5 use flat forms to add new equations (to S) that are entailed by S in the

theory of strings. F-Loop is used to recognize and break certain occurrences of loops

that lead to infinite paths in a derivation tree.

The rules in Figure 3.6 are used to put equivalence classes of terms of sort

53

F-Form1

t = con(t1, . . . , tn) t ∈ T (S) \ (D(F) ∪ C)
N [t1] = s1 · · · N [tn] = sn

F := F, t 7→ (s1, . . . , sn)↓

F-Form2
l ∈ T (S) \ D(F)

F := F, l 7→ (l)

N-Form1

[x] /∈ D(N) s ∈ [x] \ (C ∪ V(S))
F t = F s for all t ∈ [x] \ (C ∪ V(S))

N := N, [x] 7→ F s

N-Form2
[x] /∈ D(N) [x] ⊆ C ∪ V(S)

N := N, [x] 7→ (x)

Figure 3.4. Normalization derivation rules. The letter l denotes a string constant.

String into buckets based on the expected length of the value they will be given

eventually by a satisfying assignment. The main idea is that different equivalence

classes go into different buckets (using D-Base) unless they have the same length.

In the latter case, they go into the same bucket only if we can tell they cannot have

the same value (using D-Add). D-Split is used to reduce the problem to one of the

two previous cases. The goal is that, on saturation, each bucket B can be assigned

a unique length nB, and each equivalence class in B can evaluate to a unique string

constant of that length. Card makes sure that nB is big enough to have enough string

constants over the alphabet A of length nB.

3.1.2 Proof Procedure

We describe a proof procedure that is a highly abstracted version of the one we

have implemented. The main procedure is based on the repeated application of the

calculus rules according to the seven steps defined below (also as shown in Figure 3.7).

54

F-Unify
F s = (w, u,u1) F t = (w, v,v1) s ≈ t ∈ K(S) S |= lenu ≈ len v

S := S, u ≈ v

F-Split

F s = (w, u,u1) F t = (w, v,v1) s ≈ t ∈ K(S) S |= lenu 6≈ len v
u /∈ V(v1) v /∈ V(u1)

S := S, u ≈ con(v, z) ‖ S := S, v ≈ con(u, z)

F-Loop
F s = (w, x,u1) F t = (w, v,v1, x,v2) s ≈ t ∈ K(S) x /∈ V(v,v1)

S := S, x ≈ con(z2, z), con(v,v1)↓≈ con(z2, z1), con(u1)↓≈ con(z1, z2,v2)
R := R, in(z, star(set con(z1, z2))) C := C, t

Figure 3.5. Equality reduction rules. The letters z, z1, z2 denote fresh Skolem vari-
ables.

When applying a branching rule the procedure tries the left-branch configuration first.

It interrupts the current step and restarts as soon as a constraint is added to S. The

procedure loops through the steps until it derives a saturated configuration or the

unsat one. In the latter case, it continues with another configuration in the derivation

tree, if any.

Step 0: Reset: Apply Reset to reset buckets, and flat and normal forms.

Step 1: Check for conflicts: Apply S-Conflict or A-Conflict if the configura-

tion is unsatisfiable due to the current string or arithmetic constraints.

Step 2: Propagate: Propagate entailed equalities between S and A using S-

Prop and A-Prop.

Step 3: Add length constraints: For each non-variable t ∈ T (S), apply Len

to add the equality len(x) ≈ len(t)↓ to A. For each variable x in V(S ∪ A), apply

Len-Split, and then first exploring the case where x ≈ ε.

Step 4: Compute Normal Forms for Equivalence Classes. Apply S-Cycle to

55

Card
B ∈ B |B| > 1

A := A, lenB > blog|A| (|B| − 1)c

D-Base

s ∈ T (S) s : String
S |= len s ≈ lenB for no B ∈ B

B := B, {[s]}

D-Add

s ∈ T (S) s : String B = B′, B S |= len s ≈ lenB [s] 6∈ B
for all e ∈ B there are w, u,u1, v,v1 such that

(N [s] = (w, u,u1), N e = (w, v,v1), S |= lenu ≈ len v, u 6≈ v ∈ K(S))

B := B′, (B ∪ {[s]})

D-Split

s ∈ T (S) s : String B ∈ B S |= len s ≈ lenB [s] 6∈ B e ∈ B
N [s] = (w, u,u1) N e = (w, v,v1) S |= lenu 6≈ len v

S := S, u ≈ con(z1, z2), len z1 ≈ len v ‖ S := S, v ≈ con(z1, z2), len z1 ≈ lenu

Figure 3.6. Disequality reduction rules, where letters z1, z2 denote fresh Skolem vari-
ables. For each bucket B ∈ B, lenB denotes a unique term (lenx) where [x] ∈ B. | |
denotes the cardinality operator.

completion and then the rules in Figure 3.4 to completion. If this does not produce a

total map N, there must be some s ≈ t ∈ K(S) such that F s and F t have respectively

the form (w, u,u1) and (w, v,v1) with u and v distinct terms. Let x, y be variables

with x ∈ [u] and y ∈ [v]. If S entails neither lenx ≈ len y nor lenx ≈ len y, apply L-

Split to them; otherwise, apply any applicable rule from Figure 3.5, giving preference

to F-Unify.

Step 5: Partition equivalence classes into buckets. First apply D-Base and

D-Add to completion. If this does not make B a partition of ES, there must be

an equivalence class [x] contained in no bucket but such that S |= lenx ≈ lenB for

some bucket B (otherwise D-Base would apply). If there is a [y] ∈ B such that

x 6≈ y /∈ K(S), split on x ≈ y and x 6≈ y using S-Split. Otherwise, let [y] ∈ B

56

DPLL(X)
engine

Propagate
Split by
Length

NormalizePartition
Check

Cardinality

Conflict?

St
ri

n
g

so
lv

er

T-unsatisfiable

T-entail

T-entail

M
LI

A
 s

o
lv

er
EU

F
so

lv
er

C

Figure 3.7. Abstracted core proof procedure for strings.

be an equivalence class, such that x 6≈ y ∈ K(S). It must be that N [x] and N [y]

share a prefix followed by two distinct terms u and v. Let xu, xv be variables with

xu ∈ [u] and xv ∈ [v]. If S |= lenxu 6≈ lenxv, apply the rule D-Split to u and v.

If S |= lenxu ≈ lenxv, since it is also the case that neither xu ≈ xv nor xu 6≈ xv

is in K(S), apply S-Split to xu and xv. If S entails neither lenxu ≈ lenxv nor

lenxu 6≈ lenxv, split on them using L-Split.

Step 6: Add length constraint for cardinality. Apply the rule Card for all buck-

ets B in B, which adds an arithmetic constraint corresponding to the minimal length

of terms in B based on the number of equivalence classes in B and the cardinality

|A| of our alphabet.

We prove in Lemma 2 that all derivation trees generated with this proof pro-

cedure satisfy Invariant 1. We illustrate the procedure’s workings with a couple of

examples.

57

Example 5 Suppose we have the input constraints: A = ∅ and S = {len(x) ≈

len(y), x 6≈ ε, z 6≈ ε, con(x, l1, z) ≈ con(y, l2, z)}, where l1, l2 are distinct constants of

the same length.

After a failure of applying S-Conflict and A-Conflict for a possible conflict,

the proof procedure applies Len and Len-Split to completion. All resulting derivation

tree branches except one can be closed with S-Conflict. In the leaf of the non-closed

branch every string variable is in a disequality with ε. In that configuration, the string

equivalence classes are {x}, {y}, {z}, {l1}, {l2}, {ε}, and {con(x, l1, z), con(y, l2, z)}.

The normal form for the first three classes is computed with N-Form2; the normal

form for the other three with F-Form2 and N-Form1. For the last equivalence class,

the procedure uses F-Form1 to construct the flat forms F con(x, l1, z) = (x, l1, z)

and F con(y, l2, z) = (y, l2, z). Then F-Unify is applied to add the equality x ≈ y

to S. After this, the procedure restarts but now with the string equivalence classes

{x, y}, {z}, {l1}, {l2}, {ε}, and {con(x, l1, z), con(y, l2, z)}. After similar steps as

before, the terms in the last equivalence class get the flat forms (x, l1, z) and (x, l2, z)

respectively (assuming, without loss of generality, x is chosen as the representative

term for {x, y}). Using F-Unify again, the procedure adds the equality l1 ≈ l2 to S

and then derives unsat with S-Conflict. This closes the derivation tree, showing that

the input constraints are unsatisfiable. �

Example 6 Suppose now the input constraints are A = ∅ and S = {lenx ≈ len y, x 6≈

ε, z 6≈ ε, con(x, l1, z) 6≈ con(y, l2, z)} with l1, l2 are distinct constants of the same

length.

58

After similar steps as in Example 5, the procedure can derive a configuration

where the string equivalence classes are {x}, {y}, {z}, {l1}, {l2}, {ε}, {con(x, l1, z)},

and {con(y, l2, z)}. After computing normal forms for these classes, it attempts to

construct a partition B of them into buckets. However, notice that if it adds {[x]},

say, to B using D-Base, then neither D-Base (since S |= lenx ≈ len y) nor D-Add

(since x 6≈ y 6∈ K(S)) is applicable to [y]. So it applies S-Split to x and y. In

the branch where x ≈ y, the procedure subsequently restarts, and computes normal

forms as usual. At that point it succeeds in making B a partition of the string equiv-

alence classes, by placing [con(x, l1, z)] and [con(y, l2, z)] into the same bucket using

D-Add, which applies because their corresponding normal forms are (x, l1, z) and

(x, l2, z) respectively. Any further rule applications lead to branches with a saturated

configuration, each of which indicates that the input constraints are satisfiable. �

Example 7 Suppose now the input constraints are A = ∅ and S = {con(x, a) ≈

con(b, x)} where a, b are distinct constants of length 1.

After applying the rule F-Loop, two fresh variables y and z are introduced,

and the constraints a ≈ con(y, z) and b ≈ con(z, y) are asserted to S. These two

constraints already generate a conflict in S. �

3.1.3 Soundness

We now formalize the main correctness properties of our calculus. Since our

solver can be seen as a specific proof procedure, it immediately inherits those prop-

erties (refutation soundness and solution soundness). This means in particular that

when our solver terminates with a sat or unsat output, that output is correct. The

59

correctness arguments in this section are for word equations combined with length

constraints. We start with the following lemmas.

Lemma 1 For all terms t of the sort String, |=SL t ≈ t↓.

Proof: Immediate consequence of the fact that in each of the rewrite rules of Fig-

ure 3.1, the left-hand side is equivalent in TSL to the right hand side. �

Lemma 2 Invariant 1 holds for all derivable configurations.

Proof: First, Invariant 1 trivially holds for any initial configuration by Assumption 1.

Thus, we show that parts 1 through 5 of Invariant 1 are preserved for each rule

application in a derivation tree.

Part 1 is preserved since all rules only introduce new terms that are normalized

with respect to Figure 3.1.

Parts 2 and 3 are only related to rules F-Form1, F-Form2, N-Form1 and

N-Form2. Parts 2 and 3 are preserved since the premises in Figure 3.4 ensure that

mappings can be added to F only for terms from T (S) not in the domain of F, and

similarly for N.

Now we show the rules in Figure 3.4 preserve part 4 by cases. Parts 4 is

related to rules F-Form1, F-Form2, N-Form1 and N-Form2. It is preserved for

F-Form1, since by assumption of part 4 of the invariant on the premises we have

that S |=SL t1 ≈ con(s1) ∧ . . .∧ tn ≈ con(sn), also con is associative and due to

Lemma 1, we have S |=SL t ≈ con(s1, . . . , sn)↓. It is preserved for F-Form2, since

S |=SL l ≈ con(l)↓ for any l, and (l)↓ is either the empty tuple or a tuple containing a

60

non-empty string constant. It is preserved for N-Form1, since by assumption of the

invariant on the premises we have S |=SL s ≈ con(Fs), also x ≈ s ∈ K(S), and thus

S |=SL x ≈ con(Fs). Finally, it is preserved for N-Form2, since S |=SL x ≈ con(x) and

S 6|= x ≈ ε (as if this was the case, then [x] would contain the term ε, which is not in

C ∪ V(S) by assumption of part 6 of the invariant).

Part 5 is related to rules D-Base and D-Add. Part 5 is preserved by the

rule D-Base, which creates a new bucket containing equivalence class [s] only when

S 6|= len s ≈ lenB for any B ∈ B. It is also preserved by D-Add, which only adds

equivalence classes [s] to buckets B when len s is equal to lenB, by assumption of

Invariant 1 part 5 on all other [t] ∈ B and transitivity of equality, we have that

S |= len s ≈ len t.

Finally, part 6 is preserved by S-Cycle. Part 6 is related to rules S-Cycle and

F-Loop. Applying F-Loop also preserves part 6, since F t contains a variable x, and

thus must have been constructed from an application of F-Form1, implying that t is

a term of the form con(t1, . . . , tn). �

Lemma 3 For all string constants l, l1, l2 such that l · l2 = l1 · l, l1 6= ε, and l2 6= ε,

there exist string constants k, k1, k2 such that l1 = k2 · k1, l2 = k1 · k2, l = k2 · k, and

k ∈ (k1 · k2)∗.

Proof: Assume without loss of generality that l1 = k2 · k1 for some constants k1, k2

where |k2| = |l| mod |l1|. Since |k2| < |l1|, such k1 and k2 always exist. This means

|k2| = |l| − n× |l1| for some integer n ≥ 0, and thus we have |l| = n× |l1|+ |k2|. We

prove the lemma holds for all l such that l · l2 = k2 · k1 · l, by induction on n.

61

If n = 0, we have that |l| = |k2|, and thus l = k2 ·ε, l2 = k1 ·k2, and ε ∈ (k1 ·k2)∗.

For n > 0, let l = l′ · l′′, where |l′| = |l1| and |l′′| = (n− 1)× |l1|+ |k2|.

By expanding our assumption, we have that l′ · l′′ · l2 = k2 · k1 · l′ · l′′. Since

|l′| = |l1|, we have that l′ = k2 ·k1, and l′′ ·l2 = k2 ·k1 ·l′′. Since |l′′| = (n−1)×|l1|+|k2|,

by the induction hypothesis we have that l2 = k1 · k2, l′′ = k2 · k, and k ∈ (k1 · k2)∗

for some k. Due to the length of l′′, we have that l′′ = k2 · (k1 · k2)(n−1).

Thus, we have l = k2 · k1 · k2, (k1 · k2)(n−1) = k2 · k′, where k′ = (k1 · k2)n and

it is in (k1 · k2)∗. �

Lemma 4 If 〈S′,A,R′,F,N,C′,B〉 is the result of the application of F-Loop to the

configuration 〈S,A,R,F,N,C,B〉, then S′ ∪ A ∪ R′ is equisatisfiable modulo TSL to

S ∪ A ∪ R.

Proof: Let s, t be terms, u, v be atomic terms, u1,u
′
1,v1,v2 be vectors of atomic

terms, as in the rule F-Loop. It is enough to show that the conclusion of F-Loop is

entailed by S.

Since s ≈ t ∈ K(S) and due to part 4 of Invariant 1, we have that S |=SL

con(x,u1) ≈ con(v,v1, x,v2). Thus, S |=SL con(u1) ≈ con(u′1,v2), and S |=SL

con(x,u′1) ≈ con(v,v1, x) for some u′1.

Due to part 4 of Invariant 1, we have that S |=SL con(v,v1) 6≈ ε. Due to

Lemma 3, we have that for every model of S, there exist k, k1, k2, such that the follow-

ing constraints are true in the model: con(v,v1) ≈ con(k2, k1), con(u′1) ≈ con(k1, k2),

x ≈ con(k2, k), and an additional membership constraint in(k, star(set(con(k1, k2)))).

62

Thus, we have that S entails con(v,v1) ≈ con(k2, k1), con(u1) ≈ con(k1, k2,v2),

x ≈ con(k2, k), and k ∈ star(con(set k1, set k2)) for fresh variables k, k1, k2. Thus, the

lemma holds. �

Now we show that our calculus is both refutation sound and solution sound.

Theorem 1 (Refutation Soundness for TSL) For any closed derivation tree

rooted by an initial configuration 〈S0, A0, R0, ∅, ∅, ∅, ∅〉, the set S0 ∪A0 ∪R0 is unsat-

isfiable in TSL.

Proof: Assume that c0 = 〈S0, A0, R0, ∅, ∅, ∅, ∅〉 has a closed derivation tree D. We

show the theorem by induction on the depth of the derivation tree for all nodes

c = 〈S,A,R,F,N,C,B〉 in D.

Base Case: if the derivation tree is of depth 1, it has to be an application of

S-Conflict or A-Conflict, then S0 ∪ A0 ∪R0 is unsatisfiable in TSL.

Induction Hypothesis: for every closed derivation tree of depth n (or less), if it

starts with a configuration 〈S,A,R,F,N,C,B〉, then S ∪ A ∪ R is unsatisfiable in TSL.

Step Case: Assume a closed derivation tree is of depth n + 1, we show the

refutation soundness by analyzing cases when a rule is applied to a root configuration

c0.

Note that the children of c0, are closed trees. Without loss of generality,

say a child closed tree is with the root configuration 〈S′,A′,R′,F′,N′,C′,B′〉. By the

induction hypothesis, since 〈S′,A′,R′,F′,N′,C′,B′〉 is the root of a closed derivation

tree, S′∪A′∪R′ is unsatisfiable in TSL. Thus, to show that S0∪A0∪R0 is unsatisfiable

63

in TSL, it is enough to show that every rule application preserves the models of the

premise configuration.

If the children of c0 are obtained by an application of Len-Split, S-Split, or

L-Split (rules that partition search space by the polarity of a literal), then each child

is the root of a closed derivation tree. If we consider the new constraints introduced

by each of these rules, they are tautologies. Thus, all models are preserved.

If the children of c0 are obtained by an application of Reset, N-Form1, N-

Form2, F-Form1, F-Form2, D-Base or D-Add (rules that do not modify S, A, or R),

the property holds trivially.

If the child of c0 is an application of Card, we consider two cases:

� if |B| is less than or equal to |A|lenB , all models are preserved, since the new

constraint will not generate any conflict.

� if |B| is greater than |A|lenB , it immediately conflicts with the theory of strings.

Thus, we have that S0 ∪ A0 ∪R0 is unsatisfiable in TSL.

If the child of c0 is an application of Len, R-Star, A-Prop, S-Prop, S-Cycle,

F-Unify or F-Loop, then it is a configuration of the form 〈S′,A′,R′,F′,N′,C′,B′〉 where

S′∪A′∪R′ is equisatisfiable modulo TSL to S0∪A0∪R0. For Len, all satisfying models

are preserved because of TSL. For A-Prop, and S-Prop, this is immediate. For R-

Star, this holds since s is not empty and s is in star(set(t)), and thus s must be

the concatenation of one or more copies of t. For S-Cycle, notice that S0 |=SL t ≈

con(ε, . . . , ti, . . . , ε), and hence S0 |=SL t ≈ ti. For F-Unify, we have that by part 4 of

64

Invariant 1 for s and t, S0 |=SL s ≈ con(F s) ∧ t ≈ con(F t), and since s ≈ t ∈ K(S0),

we have that S0 |=SL con(F s) ≈ con(F t). Thus, since S0 |= lenu ≈ len v, we have

that S0 |=SL u ≈ v. For F-Loop, we refer to Lemma 4.

If the children of c0 are obtained by an application of F-Split, then each child

is the root of a closed derivation tree. By part 4 of Invariant 1 for s and t, we have

that s and t are non-empty strings. Since the lengths of u and v are entailed to be

disequal by S, in all models of the original configuration, we have that either u is a

prefix of v or vice versa. Given two string variables with different length, all models

containing those two variables must fall in one of the branch. This is also proved by

Proposition 4.

In addition, we can prove the equisatisfiability between the original configura-

tion and the disjunction of children configuration. If there is a modelM of S∪A∪R

where u is a prefix of v, say M[[u]] = l1 and M[[v]] = l1l2 (for some l1, l2), we can

construct an extension of this model M′ such that M′[[k]] = l2, and M′[[x]] =M[[x]]

for all other variables x. We have thatM′ is a model for S∪{u ≈ con(v, k)}∪A∪R.

A similar construction can be done if there is a model where v is a prefix of u.

If the children of c0 are obtained by an application of D-Split, then each child

node is a root of a closed derivation tree. Since the lengths of u and v are entailed

to be disequal, in all models of S0 ∪ A0 ∪ R0, either u is longer than v or vice versa.

Using similar reasoning as for F-Split, by the induction hypothesis on the left branch,

we have that there are no models of S0 ∪ A0 ∪R0 where u is longer than v.

65

Therefore, every rule application preserves the models of the premise configu-

ration, and the calculus is refutation sound. �

Definition 6 We say a configuration c is saturated with respect to a rule R if either R

does not apply to it, or all applications of R to c leave it unchanged modulo renaming

of Skolem variables. �

A configuration c1 is called unchanged modulo renaming of Skolem variables if

adding a new constraint (by applying a rule R) with a set of new free constants V1,

there exists another set of free constants V2 such that V1 is a variant of V2. In other

words, for each free constant k1 in V1, there exists a free constant k2 in V2 such that

those two free constants can be bijectively renamed.

Definition 7 A derivable configuration 〈S,A,R,F,N,C,B〉 is saturated, if

� N is a total map over ES,

� B is a partition of ES, and

� it is saturated with respect to all rules other than Reset.

�

Theorem 2 (Solution Soundness for TSL) If a derivation tree with initial config-

uration 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉 contains a saturated configuration then the set S0 ∪A0 is

satisfiable in TSL. The saturated configuration induces a satisfying assignment for the

set S0 ∪ A0 in TSL.

66

Proof: Assume there exists a derivation tree with root node 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉

containing a saturated configuration 〈Sn, An, Rn, Fn, Nn, Cn, Bn〉. We will show that

we can build a modelM of TSRL that satisfies Sn∪An∪Rn (which is by construction

a superset of S0 ∪ A0). Since all models of TSRL interpret its function and predicate

symbols in the same way, to buildM we only need to define its interpretation of the

variables in Sn ∪ An ∪Rn.

Before assigning values to variables of type String, we know that the configu-

ration is saturated. Thus, there is a model for An, say I. We take this model from

An, and extend it with the rest of constraints. Since the configuration is saturated,

we can assume these values satisfy the following conditions:

1. I[[t]] ./ I[[s]] for all t ./ s ∈ An, where ./ is one of ≈, > and t, s are some terms

of sort Int;

2. I[[lenx]] = I[[len y]] if and only if lenx ≈ len y ∈ K(Sn).

For every variable x of type Int in V(An), we build M[[x]] = I[[x]].

Due to our selection of these assignments, and part 5 of Invariant 1, we have

that I[[lenB1]] 6= I[[lenB2]] for all pairs of distinct buckets B1, B2 ∈ Bn.

We sort all buckets in Bn to obtain the list Bi1 , . . . , Bik such that I[[lenBi1
]] <

. . . < I[[lenBik
]]. For i = i1, . . . , ik starting from i1, we assign values to all variables

occurring in the equivalence classes of Bi as followings: model generation is done

incrementally with respect to the length of string variables. We say a string constant

l is unused in M if we have not assigned M[[x]] = l for any variable x.

67

Invariant 2 During model generation, we maintain the invariant:

M[[lenx]] = I[[lenx]], for all variables x ∈ V(Sn). (3.10)

�

First, consider equivalence classes [x] ∈ Bi such that Nn [x] is a tuple of the

form (a1, . . . , an), where [x] 7→ (a1, . . . , am) was added to Nn by an application of

N-Form1, say for Fn s = (a1, . . . , an) for some term s ∈ [x]. Since our configuration

is saturated, it is saturated with respect to the rule Len as well. Also, since x ≈ s ∈

K(Sn), we have that I[[aj1]]+ . . .+I[[ajm]]+k = I[[lenBi
]], where {aj1 , . . . , ajm} are the

variables in {a1, . . . , an}, k is the sum of the lengths of the constants in {a1, . . . , an}.

Due to our construction of I, part 4(ii) of Invariant 1, and since our configuration is

saturated with respect to Len-Split as well, we have that I[[aji]] > 0,∀i ∈ [1,m]. As a

result, we have already assigned the value of M[[con(Nn [x])]] (denoted as l) because:

� if m = 0, then l is the empty string;

� otherwise, if m > 1, each of ai is either a string constant or a variable such that

I[[len ai]] < I[[lenBi
]], in either case ai has been assigned a value in M due to

the order in which buckets are processed.

Thus, we say M[[y]] = l for each variable y ∈ [x]. By Invariant 2, for each of

aj1 , . . . , ajm , we have that Formula 3.10 is satisfied for y as well. Since our configu-

ration is saturated with respect to the rule Card too, either |Bi| = 1, or the value

of I[[lenBi
]] is at least blog|A| (|Bi| − 1)c + 1. In either case, there exist at least |Bi|

68

string constants of length I[[lenBi
]]. Thus, for all other equivalence classes in Bi (the

equivalence classes whose normal form is a variable, say x and thus we denote the

corresponding equivalence class as [x]), we may choose a string constant l that is

unused in M, and say M[[y]] = l for each variable y ∈ [x], which clearly satisfies

Formula 3.10 as well.

We now argue that M satisfies Sn ∪ An ∪ Rn. Due to Formula 3.10 and by

construction ofM for variables of sort Int in V(A), we have thatM[[s]] = I[[s]] for all

terms s ∈ D(I). Thus, due to condition 1 of our construction of I, we have that M

satisfies An. Furthermore, since our configuration is saturated with respect to the rule

S-Prop, M satisfies all equalities between terms of sort Int in Sn. Due to condition

2 of our construction of I and since neither S-Conflict nor A-Conflict applies, M

satisfies all disequalities between terms of sort Int in Sn as well.

Since our configuration is saturated with respect to the rule R-Star, we have

that s ≈ ε ∈ K(Sn) for all constraints of the form in(s, star(set(t))) ∈ Rn. Moreover,

all constraints in Rn (those introduced by applications of F-Loop) are of the form

in(s, star(set(t))) for some strings s and t. Since in(ε, star(set(t))) is valid in TSRL for

any t, we have that M satisfies Rn.

To show that M satisfies the equalities between string terms in Sn, we begin

with an intermediate proposition.

Proposition 15 M[[t]] =M[[Nn [t]]] for all terms t of sort String in T (Sn).

Proof: We prove this property by induction on the length of t. The base case holds

trivially. We have our induction hypothesis that the lemma holds for all s where

69

M[[len s]] < M[[len t]], and thus M satisfies all equalities in K(Sn) between terms

whose lengths in M are strictly less than M[[len t]]. Now we show it also holds for t

case by case.

If t is a variable, the statement holds by our construction of M.

If t is not a variable, then by the premises of N-Form1 and N-Form2, either

Fn t = Nn t, or t ∈ Cn.

When Fn t = Nn t and t is a string constant l, then Nn t = (l)↓, and the

statement is immediate.

When Fn t = Nn t and t is a term of the form con(t1, . . . , tm) for m > 1, then

Fn t = (s1, . . . , sm), where Nn ti = si, ∀i ∈ [1,m]. Since m > 1, our configuration

is saturated with respect to the rule Len, and part 4(ii) of Invariant 1, we have

that M[[len ti]] < M[[len t]], ∀i ∈ [1,m]. Thus, by our hypothesis M[[ti]] = M[[si]],

∀i ∈ [1,m]. Thus, M[[t]] = M[[con(M[[s1]], . . . ,M[[sm]]]] = M[[Nn [t]]]. We have thus

shown the lemma holds for each term t 6∈ Cn.

To show the lemma holds for each term t ∈ Cn, we first identify a parent term

s distinct from t such that t ≈ s ∈ K(Sn), and M[[t]] = M[[s]]. We will construct

a (partial) function parent from terms to terms, where parent(t) denotes the parent

term of t.

If t ∈ Cn, and t was added by an application of S-Cycle, then t is the con-

catenation of t1, · · · , tn and since constraints are never removed from S, we have that

tk ≈ ε ∈ K(Sn) for each k ∈ {1, . . . , n} \ {i}. We have that either M[[len t]] = 0, or

by our hypothesis M satisfies each of tk ≈ ε. In each of these cases, we have that

70

M[[t]] =M[[ti]], and since t ≈ ti ∈ K(Sn), we say parent(t) = ti.

If t ∈ Cn, and t was added by an application of F-Loop, then due to part

4(ii) of Invariant 1, we have that M[[lenx]] < M[[len t]], M[[lenu1]] < M[[len s]] =

M[[len t]], as well as M[[lenv1]] < M[[len t]]. By our hypothesis, we have M[[s]] =

M[[con(w, k2, k, k1, k2,v2)]], and M[[t]] =M[[con(w, k2, k1, k2, k,v2)]]. Since M satis-

fies Rn, we have thatM[[k]] is of the form (M[[k1]] ·M[[k2]])m. For all such m, we have

that M[[t]] =M[[s]], and since t ≈ s ∈ K(Sn), we say parent(t) = s.

Consider the path from the initial configuration to our saturated configuration.

For all t where parent(t) is defined, parent(t) was added to Sn after t. Indeed, notice

that S-Cycle removes ti = parent(t) from C, and F-Loop guarantees that s = parent(t)

is not in C since it has a flat form. Thus, we have that parentm(t) 6= t for all

terms t, m > 0, where parentm(t) (the m-fold application of parent) is defined. For

each t ∈ Cn, consider the largest m such that parentm(t) is defined, where by the

previous observation have that n is finite. We have that M[[t]] = M[[parent(t)]] =

. . . = M[[parentm(t)]], which, since parentm(t) 6∈ Cn, is equal to M[[Nn [parentm(t)]]].

Additionally, we have that t ≈ parent(t), . . ., parentm−1(t) ≈ parentm(t) ∈ K(Sn), and

thus [t] = [parentn(t)]. Putting these together, we have M[[t]] =M[[Nn [t]]]. �

Due to this proposition, and since Nn is a total map,M satisfies all equalities

between terms of type String in Sn. To showM also satisfies the disequalities between

string terms in Sn, we show the following proposition.

Proposition 16 M[[con(Nn [x])]] 6=M[[con(Nn [y])]] for each pair of distinct equiva-

lence classes [x], [y] in any bucket B.

71

Proof: We may assume that the proposition holds for all bucketsB′ whereM[[lenB′]] <

M[[lenB]]. Since [x] and [y] occur in the same bucket, due to our premises in the

rule D-Add, Nn [x] and Nn [y] must be of the form (w, u,u1) and (w, v,v1) respec-

tively, where Sn |= lenu ≈ len v and u 6≈ v ∈ K(Sn). Since each of u and v is

either a variable or a string constant, if w,u1,v1 are empty tuples, then the lemma

holds by our construction of M. Otherwise, we have that M[[lenu]] <M[[lenB]] and

M[[len v]] < M[[lenB]], and moreover since u and v have the same length, then [u]

and [v] occur in the same bucket B′. Due to our assumption for bucket B′, we have

that M[[con(Nn [u])]] 6= M[[con(Nn [v])]] and thus M[[con(Nn [x])]] 6= M[[con(Nn [y])]]

as well. �

Due to part 5 of Invariant 1 and by our construction of M, we have that

M[[lenNn [x]]] = M[[lenNn [y]]] if and only if [x] and [y] occur in the same bucket.

Thus, by Propositions 15and 16, we have thatM[[s]] 6=M[[t]] for all pair of terms s, t

where s and t reside in distinct equivalence classes of K(Sn). Since S-Conflict does

not apply, we have thatM satisfies all the disequalities between terms of type String

in Sn as well. This concludes the proof of Theorem 2. �

3.1.4 Solution Completeness

According to [36], the decidability problem in TSL is still an open question.

We do not have a proof that our calculus is refutation complete in TSL. Here, we

give a proof for solution completeness, i.e., if a set of constraints is satisfiable, our

calculus is able to find a solution. Since our calculus is solution complete but not

necessarily refutation complete, it is not guaranteed to terminate if a set of constraints

72

is unsatisfiable. Note that refutation completeness does not require the termination

on satisfiable problems.

In this subsection, we first prove the termination for our calculus on constraints

with an upper bound over the length of all input string variables, then we introduce

a new fair strategy, and finally, we will give a proof for solution completeness under

this strategy.

Definition 8 Let S be a set of string constraints. S is called a set of bounded string

constraints, if it entails a constraint that defines an upper bound for the sum of all

input string variables in TSL, i.e.,

Σx∈V(S)len(x) ≤ n, (3.11)

where n is a non-negative integer constant. �

Proposition 17 Let S be a set of bounded string constraints. S entails an upper

bound constraint c = Σx∈V(S)len(x) ≤ n, for some natural number n. Then, S and

S ∪ {c} are equisatisfiable. �

Given a configuration cn that is derived from an initial configuration c0 where

S0 is the set bounded string constraints in c0, we build a partial function p that maps

an equivalence class to a natural number that represent a maximum possible length

of the equivalence class.

Since S0 is the set of bounded string constraints, S0 entails Σx∈V(S)|x| ≤ n, for

some natural number n. Initially, every input variable has a normal form of itself,

and we define p([x]) = n,∀x ∈ V(S0).

73

Note that if cn is derivable form c0, there is a unique path p from the node

c0 to the node cn in the derivation tree. Consider each node along the path p from

c0 in order. When a fresh variable is introduced in a configuration, the maximum

possible length of each old equivalence class containing only variables is defined. In

our calculus for TSL (without F-Loop), if a fresh variable, say k, is added to Si in

ci along the path p, this variable must be introduced by F-Split, and thus a new

constraint in the form of u ≈ con(v, k) is added to Si, where Ni−1 [u] = (u) and

Ni−1 [v] = (v), and u and v are non-empty. Since p([u]) is defined and k is newly

added, we define p([k]) = p([u])− 1.

We also define another function P that maps a configuration to a multi-set

containing maximum possible lengths of variables whose equivalence class contains

only variables in a configuration, i.e., P (c) = {p([x]) | [x] contains only variables},

where c is a configuration. The relation ≺s between two multi-sets follows the stan-

dard definition of an ordered multi-set ordering (over natural numbers), i.e., for two

ordered multi-sets 6 s1 and s2, we have s1 ≺s s2 if

∃0 ≤ i < max(|s1|, |s2|). (∀0 ≤ j < i. s1[j] = s2[j]) ∧ s1[i] < s2[i]. (3.12)

Notice that the minimal multi-set over this relation is the empty set, and this relation

is well-founded.

We define a function Q that maps a configuration c = 〈S,A,R, F,N,C,B〉 to

the number of pairs of equivalence classes that are neither equal nor disequal, i.e.,

Q(c) = |SQ(c)|, where SQ(c) = {([s], [t]) | S 6|= s ≈ t ∧ S 6|= s 6≈ t}.

6Elements are in descending order.

74

We define a binary relation≺c between two configurations c1 = 〈S1, A1, R1, F1,

N1, C1, B1〉 and c2 = 〈S2, A2, R2, F2, N2, C2, B2〉, such that c1 ≺c c2 if :

1. P (S1) ≺s P (S2), or

2. P (S1) = P (S2) and Q(S1) < Q(S2).

In the following, we prove a sequence of lemmas that lead us to the proof of

termination for the bounded case.

Lemma 5 Given a configuration 〈S,A,R,F,N,C,B〉, the number of equalities (con-

taining variables) in K(S) is finite.

Proof: According to Formula 3.1, we are only interested in the equalities in S.

Assume that the number of equalities in S is n and the maximum symbols of a term

in T (S) is k. We know that the number of terms in T (S) is at most 2n · k(k − 1)/2

(≤ n · k2). Therefore, the number of equalities in K(S) is no more then n2 · k4 (the

square of the number of terms in T (S)). �

Lemma 6 Given a configuration c = 〈S,A,R,F,N,C,B〉, in any derivation tree rooted

by c, the normalization rules (F-Form1, F-Form2, N-Form1 and N-Form2) can only

be applied for finitely many times before a reset (or equivalently a change in S).

Proof: Notice that Reset is applied immediately after S is changed. By Lemma 5,

we know that the number of terms in T (S) is finite. The normalization rules (in

Figure 3.4) only work on terms in T (S) and produce no equations, so they will not

trigger the Reset rule. Notice that at any step, applying any of these rules on the

75

same terms will not generate any not new terms in either N or F. Therefore, F and

N will be saturated by the normalization rules in finite steps. �

Lemma 7 Given a configuration c = 〈S,A,R,F,N,C,B〉, in any derivation tree rooted

by c, the B-modifying rules (D-Base and D-Add) can only be applied for finitely many

times before a reset (or equivalently a change in S).

Proof: By Lemma 5, we know that the number of equalities in T (S) is finite, and

thus, the number of equivalent classes is finite. Also, at any step, applying any of

these rules on the same terms will not generate any not new terms in B. Therefore,

the result is immediate. �

Lemma 8 Given a configuration 〈S,A,R,F,N,C,B〉, in any derivation tree rooted by

c, the A-modifying rules (A-Prop, S-Prop, Len, Len-Split, L-Split and Card) can

only be applied for finitely many times before a reset (or equivalently a change in S).

Proof: By Lemma 5, we know that the number of equalities in T (S) is finite, and

thus, the number of equivalent classes is finite. Also, we assume that the number

of arithmetic equalities in A is finite. At any step, applying any of these rules on

the same terms will not generate any not new terms in A. Therefore, the result is

immediate. �

Definition 9 A derivation tree is finite iff

� it is closed (i.e., all leaves contain a closed configuration), or

� it is saturated (i.e., it contains a saturated configuration in one leave).

76

�

Strategy 1 The original proof strategy (see Section 3.1). In addition, we add the

following requirements to show that a derivation tree is finite:

� we consider the derivation without F-Loop 7,

� if a derivation tree is neither closed nor saturated, a rule is guaranteed to be

applied,

� Reset only applied each time when S is changed, and

� the derivation stops immediately after a derivation tree is saturated.

�

Theorem 3 (Bounded Termination) With Strategy 1, for any derivation tree with

an initial configuration 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉, if S0 ∪A0 entails an upper bound for the

sum of all input string variables (i.e., Σx∈V(S0)lenx ≤ n, for some natural number n),

the derivation tree is finite.

Proof: By Proposition 17, it is equivalent to consider the configuration where the set

of arithmetic constraints contains the upper bound constraint. To show the derivation

tree is finite, it is enough to show that there is no infinite path in the derivation tree.

Note that we can group our rules into the following categories:

� conflicting rules: A-Conflict and S-Conflict

7Since F-Loop is not applicable, R-Star will not be applied.

77

� A-modifying rules: A-Prop, S-Prop, Len, Len-Split 8, L-Split and Card

� normalization rules: F-Form1, F-Form2, N-Form1 and N-Form2

� S-modifying rules: S-Split, S-Cycle, R-Star, F-Unify, F-Split and D-Split

� B-modifying rules: D-Base and D-Add

� reset rule: Reset.

If any conflicting rule is applied, the derivation is closed.

Notice that our measure of a configuration before applying Reset and the mea-

sure of configurations before applying any S-modifying rules are identical with respect

to the relation ≺c. By Lemmas 8, 6, 7, the number of configurations in-between two

resets is finite. We will show that the measure of a configuration decreases after any

S-modifying rule with respect to the relation ≺c, we show the termination.

Let’s consider each of the S-modifying rule. For each S-modifying rule, we

show that either our well-founded measure (with respect to the relation ≺c) decreases

after application, or our measure stays the same but there are only finitely many

applications.

If a configuration is an immediate result of applying S-Split, the number of

pairs of equivalence classes that are neither equal nor disequal is decreased. Thus,

the measure of the child configuration is strictly smaller the order of the parent

configuration.

8Although Len-Split does add an equality (in the form of x ≈ ε) to S, the main effect is
in A, so we classifies it as an A-modifying rule.

78

If a configuration is an immediate result of applying S-Cycle, the order of new

configuration is not changed; however, we can only apply this rule for finitely many

times, at most the number of symbols in each equality.

If a configuration is an immediate result of applying F-Unify, by Invariant 1,

u and v are two terms in different equivalence classes. If [u] and [v] are disequal

by K(S), adding this equality will immediate lead to S-Conflict and thus the proce-

dure terminates; otherwise, adding this equality will decrease the number of pairs of

equivalence classes that are neither equal nor disequal.

If a configuration is an immediate result of applying F-Split, by Invariant 1, u

and v are two non-empty atomic terms. Without losing the generality, we can assume

they are either a single character or a variable. If they are distinct string constants,

it will lead to S-Conflict in the next iteration and thus the procedure terminates. If

one is a variable x and the other is a character c 9, since the variable is non-empty

and the length is not equal to 1, the branch with c ≈ con(x, k) will be closed by a

conflict in the arithmetic constraints. In the other branch, an equality x ≈ con(c, k)

(where k is a fresh variable) will be added. By adding this equality, the maximum

possible length of k is strictly smaller than x, and the normal form of x is not (x)

any more (because the concatenation is also in the equivalence class of x), and thus

the measure is decreased. If both are variables, in either branch, a fresh variable

with strictly less maximum possible length is introduced and one old variable will be

9Although the rule can consider a constant string of arbitrary length, it is enough to
consider only a character by Levi’s theorem.

79

removed from the multi-set as it will not have the normal form of itself, and thus the

measure decreases.

If a configuration is an immediate result of applying D-Split, following the

similar argument for F-Split, in either branch, two fresh variables with less maximum

possible lengths are introduced and one old variable will be removed from the multi-set

as it will not be the normal form of itself. Thus, the measure of the child configuration

is smaller than the measure of the parent configuration.

Therefore, the measure of configuration is decreasing after apply any of S-

modifying rules, or the measure stays the same but there are only finitely many

applications of a rule. The derivation tree is finite. �

Corollary 3 (One-Sided Termination) Given a set of equations: t1 ≈ l1, · · · , tk ≈

lk, where ti’s are string terms, li’s are string constants, the derivation tree is finite.

Proof: The proof is straight forward: the constraints entail that Σx∈V(t1)∪···∪V(tk)len(x)

is less or equal to Σk
i=1len(li). By Theorem 3, the deduction is terminating. �

We expand our configuration with one more extra component b, such that b is

a natural number, initially assigned to 0. We add two new rules (shown in Figure 3.8)

to our calculus. We use J to denote the term : Σx∈V(S0)lenx.

Strategy 2 (Fairness) In addition to Strategy 1, our fair strategy is adjusted as

follows:

� the proof procedure always starts with applying the rule J-Start, and J-Start

only applies once;

80

� when a J-rule is applied, rules will be applied to the left subtree first;

� J-Split is applied in a subtree iff its counterpart (with respect to the application

of a J-rule) is closed.

�

Theorem 4 (Solution Completeness for TSL with Fairness) With Strategy 2,

for any derivation tree with an initial configuration 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉, if the set

S0 ∪ A0 is satisfiable in TSL, the derivation tree will be saturated.

Proof: By the definition of J-Start and the assumption, the derivation starts with

the upper bound (of J) equal to 0 on the left branch. By Theorem 3, if an upper bound

for the sum of the lengths of all input variables is given, the subtree of the derivation

is either closed or saturated. If the subtree is saturated, the whole derivation tree

is saturation; otherwise, the left subtree is closed which triggers the rule J-Split by

Strategy 2.

Note that in the root configuration of the right subtree, J > b is asserted to

A by J-Start. Because the left branch is closed, the J-Split is applied with a strictly

larger larger bound n for J (which is at least b). By Strategy 2, rules will be applied

to the left subtree first with a new upper bound J ≤ n + 1 and updates b to n + 1

accordingly. Note that after each application of J-Split, the upper bound is strictly

increasing. The left subtree of derivation after applying J-Split is always finite by

Theorem 3.

Since S0 ∪ A0 is satisfiable in TSL, there exists a model M that assigns each

81

J-Start
A := A, J ≤ 0 ‖ A := A, J > 0

J-Split
A |= J > n, n ≥ b

A := A, J ≤ n+ 1 b := n+ 1 ‖ A := A, J > n+ 1

Figure 3.8. Rules for the fair strategy, where J denotes the term : Σx∈V(S0)lenx, S0

is the initial set of equations, and n is a non-negative integer constant.

variable to a string constant. Let m be the sum of lengths of all these string constants

in M. Because of the refutation soundness in Theorem 1, A 6|= J > m initially.

Assume that there exists a natural number k, such that k > m and J > k+1 is

added to A in some configuration. Then, in its counterpart configuration c, J ≤ k+ 1

will be added to A. By Theorem 3, the subtree of derivation rooted by c is finite.

Due to Theorem 1, the subtree is saturated, and thus, the whole derivation tree is

saturated.

By Theorem 2, if a derivation tree is saturated, the saturated configuration

contains a model. �

Corollary 4 (Minimal Model) When a derivation terminates with a model in the

fair strategy, the model is minimal with respect to the sum of lengths of the input

variables.

Proof: We can prove this property by contradiction. Assume the sum of lengths of

the input variables in the returned model is n, the sum of lengths of input variables

in the minimal model is m, and n > m. There must be an assertion introduced by

J-Split (in the right branch), saying J > k, such that k ≥ m. When this happens,

82

we know the left branch is closed, which also means that there is no model for which

A |= J ≤ k. It contradicts the assumption. �

3.1.5 Decision Procedure for Constraints in an Acyclic Form

One of the complications in word equations with length constraints is that

some variables may occur more than once in an equation. For example, if a variable

occurs on the both side of an equality, the rule F-Loop may be applied. This rule may

introduce a membership constraint with a symbolic expression denoting a context-

sensitive language, and thus it is hard to prove the refutation completeness when such

a language happens. Therefore, we want to avoid this situation.

One way to avoid this situation is to limit input constraints to an acyclic form.

The original acyclic form was introduced by [1]. The rationale of the introduction of

this form is to recognize a class of constraints without the following situations:

� a variable appears on both sides of an equality, i.e.,

con(u1, x,u2) ≈ con(v1, x,v2),

where x is a variable, and u1,u2,v1,v2 are vectors of atomic terms;

� a variable appears more than once on one side of an equality, i.e.,

con(u1, x,u2, x,u3) ≈ con(v),

where x is a variable, and u1,u2,u3,v are vectors of atomic terms;

� a constraint in the previous two forms will not be added during a derivation.

83

Assumption 2 During the preprocessing of constraints, our procedure replaces every

disequality, say s 6≈ t, with the following constraint:

s ≈ con(t, k1) ∨ t ≈ con(s, k1) ∨

(s ≈ con(k1, x, k2) ∧ t ≈ con(k1, x
′, k3) ∧

len x ≈ len x′ ∧ len x′ ≈ 1 ∧ x 6≈ x′), (3.13)

where k1, k2, k3, x, x
′ are fresh string variables. �

By Assumption 2, the rule D-Split will not be applied.

First, we introduce our definition for a dependency graph. This definition is

associated with our definition of acyclicity.

Definition 10 A dependency graph is an undirected multigraph G = 〈N,E〉, where

� V is a set of nodes, and

� E is a multiset of unordered pairs of nodes, called edges.

Each node in N is labeled with a variable and associated with a color of either white

or black, and each edge in E is labeled with a number and associated with a color of

either red or blue.

Every configuration is associated with a dependency graph. Now, we describe

how we construct a dependency graph from the set of string constraints S in a con-

figuration. Given a configuration where Sn is the set of string constraints, we use Vn

to denote the set of all variables occurred in the string set Sn. Since our calculus

never removes any equation from S, we can always partition the current string set

84

into two disjoint set S0 and S ′n, where S0 is the initial string set and S ′n contains all

equalities introduced by our calculus. Note that only F-Unify and F-Split introduce

new constraints to S. Since the introduced constraints are either of the form u ≈ v

or or the form u ≈ con(v, k), for each equality in S ′n, we can always pick a side which

is a string variable. Note that u and v cannot be string constants at the same time.

We use Un to denote the set of the picked variables in S ′n. For each variable x in Un,

we add a black node with the label x in the graph; for each variable y in Vn \ Un, we

add a white node with the label y. Therefore, each variable represents a unique node

colored with either white or black. For simplicity, we refer x to be the node x in the

dependency graph if context is clear. Initially, all nodes are white.

We provide every equality (in S) with a unique number, called index. If two

variables, say x and y, appear on the different sides of an equality with the index

i, we add a red edge with the label i, denoted as the label {red, i} in graph; if two

variables, say z and w, appear on the same side of an equality with index j, we add

a blue edge with label j, denoted as the label {blue, j} in graph. In this definition, we

allow self-loops, as well as multi edges between two nodes but with different labels.

Example 8 Let {x
1
≈ con(y, z)} be the string constraint set in the initial configu-

ration (with indexes on top of the symbol ≈). The dependency graph of the initial

configuration is G = 〈N,E〉, where N contains three white nodes labeled x, y and z,

and E contains two red edges with the index 1 (one is between the node x and the

node y and the other is between the node x and the node z) and one blue edge with

the index 1 between the node y and the node z. �

85

We now define the notation compression over paths in a dependency graph,

which will be used for properties.

Definition 11 A path in a dependency graph is called a compressed path iff

� the path only contains red edges, and

� all indexes (labeled in edges) are distinct.

�

Definition 12 A configuration is in the cyclic form, iff there exists a looping path

in its dependency graph where

� the path contains at most one blue edge,

� all indexes (labeled in edges) are distinct, and

� it contains only white nodes.

We call this looping path a cycle. If a configuration is not in the cyclic form, we call

it an acyclic configuration. �

Example 9 Given a set of word equalities (with indexes on top of the symbol ≈):

� con(x, y, a)
1
≈ con(z, b, w),

� x
2
≈ y,

� z
3
≈ w,

86

the dependency graph is shown in Figure 3.9. Since there is a cycle between the white

nodes x and y, the configuration is in the cyclic form. �

An equality is called linear if no variable appears more than once in the equal-

ity. We now prove that given a set of equalities in an initial configuration, if there is

a non-linear equality, the configuration is cyclic.

Lemma 9 If an initial configuration contains a non-linear equality, the configuration

is cyclic.

Proof: Note that every node is colored with white, initially. We only need to consider

two situations: repetitions on one side or on different sides of an equality.

If it contains an equality where a variable appears more than once on the same

side of the equality, say con(s1, x, s2, x, s3) ≈ t, there must be a blue self-loop on the

white node x.

If it contains an equality where a variable appears more than once on different

sides of the equality, say con(s1, x, s2) ≈ con(t1, x, t2), there must be a red self-loop

on the white node x.

In either case, the configuration is cyclic. �

Note that the acyclicity definition is an under-approximation of the whole de-

cidable fragment for our calculus. Our calculus can find an assignment (or a conflict)

when a given problem is in the cyclic form, e.g., the conflict in Example 9.

In our calculus, no constraints are removed from the string set S, and only

F-Split and F-Unify append S. If F-Split detects a pair of splittable variables, say u

87

x

z

y

w

{blue, 1}

{blue, 1}

{red, 1}{red, 1}

{red, 2}

{red, 3}

Figure 3.9. Dependency graph for con(x, y, a)
1
≈ con(z, b, w), x

2
≈ y and z

3
≈ w.

and v, it introduces an equality of the form u ≈ con(v, k). Similarly, when F-Unify

detects a pair of variables, say u and v, it introduces an equality of the form u ≈ v.

Note that in the definition of either rule, u and v are atomic terms. When one of

them is a string constant, the other term must be a string variable, and it will be

colored as black after the application of either rule, as described in the construction of

a dependency graph. In other word, a black node will not be used in later derivation.

Therefore, we focus on the situation when both are string variables.

Definition 13 Let c be a configuration, u and v be two variables as declared in rules

F-Unify and F-Split. Both the node u and the node v are white in the dependency

graph of c. We call that u and v are splittable in configuration c. �

Lemma 10 Let c be an initial configuration in the acyclic form. If two variables u

and v are splittable, then there exists a compressed path between the node u and the

node v in the dependency graph of c.

88

Proof: Since it is an initial configuration, all nodes are white. If u and v are splittable

variables with respect to either F-Split or F-Unify rule, there exist two terms s and t

such that s and t are in the same equivalence class. Thus, the node for any variable in

s has a compressed path to the node for any variable in t. Note that in our definition

of a normal form, the normal form of an equivalence class that contains a string

constant is always the (normalized) string constant.

Because both s and t have flat forms, u and v are variables and F s = (w, u,u1)

and F t = (w, v,v1), there must exist a variable (say x) in s and a variable (say y)

in t such that the normal form of [x] contains u and the normal form of [y] contains

v. Thus, there is a compressed path p2 between the node x and the node y. The

way normalization rules are defined guarantees that there are a compressed path p1

between the node x and the node u, and a compressed path p3 between the node x

and the node v.

Note that if the configuration is acyclic, a node x along with an edge (labeled

with index i) connected to it defines the term that is on one side of the equality i

and contains x. The compressed path from the node x to the node u describes how

we built the normal form of [x].

Now, we need to show that there is a compressed path between the node u

and the node v. We prove that it is impossible to have edges labeled with the same

index in p1 and p2. Proof is by contradiction. Assume that the index i is the shared

index between p1 and p2. Then, there exist nodes u1 and u2 along the compressed

path p1, and nodes y1 and y2 along the compressed path p2, such that the node x has

89

a compressed path to the node u1, the node u1 has a red edge with index i to the node

u2, the node u2 has a compressed path to the node u, the node x has a compressed

path to the node y1, the node y1 has a red edge with index i to the node y2, and

the node y2 has a compressed path to the node y. Note that if u1 = x = y1, neither

F-Unify nor F-Split is applicable. Indeed, the term defined by the node x and the

edge labeled i connected to it along the path p1, which illustrates the construction of

the normal form of [x], is the term x. The term defined by the node x and the edge

labeled i connected to it along the path p2 should be the same term x, as they come

from the same equality indexed i. However, latter term defines the term s in the

premise of F-Unify or F-Split. Thus, the terms x, s and t are in the same equivalence

class. Then, since there exists a normal form of [x], F s = F t, and neither F-Unify

nor F-Split is applicable. So if there are several choices of index i, we can always pick

the one for which the node u1 has a compressed path to the node y1.

Note that either u1 6= x or y1 6= x. Without loss of generality, we can assume

that u1 6= x, then there must be a blue edge with label i either between u1 and y1

or between u1 and y2. Thus, there is a cycle containing the nodes u1 and y1, but the

configuration is acyclic in this lemma. We get the contradiction. Therefore, there is

a compressed path between u and y. Similarly, we prove that there is a compressed

path between x and v.

If there is a shared label between p1 and p3, there must be a cycle using a

similar argument.

Therefore, there is a compressed path between u and v. �

90

Lemma 11 Let c be a configuration in the acyclic form. If u and v are splittable,

there is no direct blue edge between the node u and the node v in the dependency

graph of c.

Proof: We prove the property by contradiction. Assume that there is a direct blue

edge with the index j between the node u and the node v in the dependency graph

of c. By Lemma 10, there is a compressed path p between u and v.

If the index j does not appear in the path p, by Definition 12, there is a cycle,

which contradicts the assumption.

If the index j appears in the path p, we assume that in the path p there are

two nodes, say z1 and z2, such that there is a compressed path between u and z1

(without the index j), there is a compressed path between v and z2 (without the

index j), and there is a red edge between z1 and z2 with the index j. Thus, there is

a direct edge (either blue or red) with the index j between u and z1 if u is not equal

to z1; otherwise, there is a direct edge (either blue or red) with the index j between

v and z2. In either case, there is a cycle.

Therefore, there is no direct blue edge between u and v.

Lemma 12 (Acyclicity Preservation) Given an initial configuration in an acyclic

form, after applying any rule in our calculus, the new configuration is still in an acyclic

form.

Proof: By Lemma 9, all word equalities are linear, and thus, F-Loop is not applica-

ble.

91

By Definition 12, the initial dependency graph does not contain a cycle. Since

our calculus does not remove any word equalities from S and F-Unify and F-Split

are the only rules that add new word equalities to S: it is enough to show that

acyclicity is preserved after the application of F-Unify and F-Split. By Lemma 10

and Lemma 11, if two variables are splittable, there is a compressed path but no

direct blue edge between the variables.

If a new configuration is the result of the application of F-Split, in the left

branch, we add u ≈ con(v, k) to S, as declared in the rule. In addition, we mark the

node u as a black node. By Definition 12, any path containing the node u will not

become a cycle in the dependency graph. Note that the fresh variable k, as declared

in the rule F-Split, has only two edges: one red edge to the node u and one blue edge

to the node v with a fresh index. If there is a new potential cycle, it is due to the new

red edges and it must involve the node u, which is black, the acyclicity is preserved.

Similarly, we have the preservation for the right branch.

If a new configuration is the result of the application of F-Unify, we mark the

node u as a black node and add a new red edge between u and v with a fresh index.

If there is a new potential cycle, it is due to this new red edge, thus, must contain

the black node u.

Therefore, the acyclicity is preserved. �

Definition 14 Let c be an acyclic configuration and x be a variable (x ∈ V(S)),

where S is the set of string constraints in c. The candidate splitting set for x with

respect to c, denoted as Zc
x, is a subset of V(S), such that a node y is in Zc

x if

92

� the node y is a white node,

� there is a compressed path between the node x and the node y, and

� the node x and the node y has no direct blue edge between them. �

Note that the definition of Zc
x is an over-approximation of the actual set of the

variables that may be splittable with x.

Definition 15 Let c be an acyclic configuration and S be the set of string constraints

in c. We define a measure of the configuration c, denoted as µc, as a descending

ordered multi-set:

µc := { |Zc
x| | the node x is a white node, [x] contains only variables}, (3.14)

where |Zc
x| is the cardinality of the set Zc

x. �

Definition 16 We define the partial order on µ, denoted as ≺µ, as the standard

definition of the multi-set order. �

Lemma 13 Let c be a configuration that is not saturated by either F-Unify or F-

Split. Let c′ be an immediate configuration after the application of either F-Unify or

F-Split on c. Then, µc′ ≺µ µc.

Proof: Assume c′ is an immediate configuration after the application of F-Unify on

c, and u, v are the atomic terms as declared in F-Unify. After asserting u ≈ v to

S, either u or v is marked as black, and thus when building µc′ either |Zc′
u | or |Zc′

v |

should be removed from the measure. Assume that u is colored as black. For all node

93

x, if u is in Zc
x, Z

c′
x is equal to Zc

x − {u} by the construction of a dependency graph.

Since no new node is added to the graph and |Zc
u| is removed from the multi-set µc′ ,

µc′ ≺µ µc.

Assume c′ is an immediate configuration after the application of F-Split on c,

and u, v, k are the atomic terms as declared in F-Split. After asserting u ≈ con(v, k),

u is marked as black, and thus |Zc′
u | is not in the measure µc′ . Since the node k has

only one red edge (with a fresh index) which is connected to the node u, any node

which has a compressed path from the node u, also has a compressed path from the

node k. No other node is connected to the node k. At the same time, since the node

v is now directly connected to the node k with a blue edge, Zc′

k is equal to Zc
u − {v}

and |Zc′

k | < |Zc
u|. Similarly, Zc′

v is equal to Zc
v − {u} and |Zc′

v | < |Zc
v|. For all other

nodes x such that u ∈ Zc
x, we have Zc′

x is equal to Zc
x − {u} + {k}, and thus |Zc

x|

is identical to |Zc′
x |. The rest of the components in the measure remain unchanged.

Thus, µc′ ≺µ µc. �

Strategy 3 The original proof strategy (see Section 3.1). In addition, we add the

following requirements for derivation on constraints in the acyclic form:

� the derivation is under Assumption 2,

� we consider the derivation without S-Cycle,

� if a derivation tree is neither closed nor saturated, a rule is guaranteed to be

applied,

� Reset only applied each time when S is changed, and

94

� the derivation stops immediately after a derivation tree is saturated.

�

Lemma 14 (Termination in Acyclicity) Let t be a derivation tree rooted by an

initial configuration 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉, where S0 is in the acyclic form. With Strat-

egy 3, the derivation tree is finite.

Proof: The exchanged equalities between S and A are finite (by Lemma 5) between

two resets.

By Lemmas 6, 7 and 8, all rules that do not modify S can only be applied for

finitely many times between two resets.

By Strategy 3, we have no application of D-Split nor S-Cycle.

Because the configuration is acyclic, F-Loop will not be applied. Consequently,

R-Star is not applicable.

By Lemma 13, the application of either F-Unify or F-Split decreases the mea-

sure. Thus, there is no infinite path in the derivation tree.

Therefore, the derivation tree is finite. �

Theorem 5 (Decision Procedure on Acyclicity) Let t be a derivation tree rooted

by an initial configuration 〈S0, A0, ∅, ∅, ∅, ∅, ∅〉, where S0 is in the acyclic form. The

derivation uses Strategy 3. If S0 ∪ A0 is satisfiable, the derivation tree is saturated;

otherwise, the derivation tree is closed.

Proof: The exchanges between S and A are finite (by Lemma 5) and contain only

95

equalities (modeled by A-Prop and S-Prop). It follows the requirement of the Nelson-

Oppen combination.

Because our calculus is refutation sound (by Theorem 1), it is solution sound

(by Theorem 2) and it terminates on every acyclic configuration (by Theorem 14), it

is a decision procedure for constraints in the acyclic form.

3.1.6 Implementation in DPLL(T)

Theory solvers based on the calculus we have described can be integrated into

the DPLL(T) framework used by modern SMT solvers, which combines a SAT solver

with multiple specialized theory solvers for conjunctions of constraints in a certain

theory [14]. These SMT solvers maintain an evolving set F of quantifier-free clauses

and a set M of literals representing a (partial) Boolean assignment for F . Periodically,

a theory solver is asked whether M is satisfiable in its theory.

In terms of our calculus, we assume that the literals of an assignment M are

partitioned into string constraints (corresponding to the set S), arithmetic constraints

(the set A) and membership constraints (the set R). These sets are subsequently given

to three independent solvers, which we will call the string solver, the arithmetic solver,

and the membership solver, respectively. The rules A-Prop and S-Prop model the

standard mechanism for Nelson-Oppen theory combination, where entailed equalities

are communicated between these solvers [66]. The satisfiability check performed by

the arithmetic solver is modeled by the rule A-Conflict. Note that there is no ad-

ditional requirement on the arithmetic solver, and thus a standard DPLL(T) theory

solver for linear integer arithmetic can be used. The behavior of the membership

96

solver is described by the rule R-Star. The remaining rules model the behavior of the

string solver.

The case splitting done by the string solver (with rules S-Split and L-Split) is

achieved by means of the splitting on demand paradigm [11], in which a solver may

add theory lemmas to F consisting of clauses possibly with literals not occurring in

M . The case splitting in rules F-Split and D-Split can be implemented by adding a

lemma of the form ψ ⇒ (l1 ∨ l2) to F , where l1 and l2 are new literals. For instance,

in the case of F-Split, we add the lemma ψ ⇒ (u ≈ con(v, z) ∨ v ≈ con(u, z)), where

ψ is a conjunction of literals in M entailing s ≈ t∧ s ≈ F s∧ t ≈ F t∧ lenu 6≈ len v in

the overall theory.

The rules Len, Len-Split, and Card involve adding constraints to A. This is

done by the string solver by adding lemmas to F containing arithmetic constraints.

For instance, if x ≈ con(y, z) ∈ K(S), the solver may add a lemma of the form

ψ ⇒ lenx ≈ len y + len z to F , where ψ is a conjunction of literals from M entailing

x ≈ con(y, z), after which the conclusion of this lemma is added to M (and hence to

A).

In DPLL(T), when a theory solver determines that M is unsatisfiable (in the

solver’s theory) it generates a conflict clause, the negation of an unsatisfiable subset

of M . The string solver maintains a compact representation of K(S) at all times.

To construct conflict clauses, the string solver also maintains an explanation

ψs,t for each equality s ≈ t, when the equality is added to S by applying S-Cycle,

F-Unify or standard congruence closure rules. The explanation ψs,t is a conjunction

97

of string constraints in M such that ψs,t |=SL s ≈ t. For F-Unify, the string solver

maintains an explanation ψ for the flat form of each term t ∈ D(F) where ψ |=SL

t ≈ con(F t). When a configuration is determined to be unsatisfiable by S-Conflict,

that is, when s ≈ t, s 6≈ t ∈ K(S) for some s, t, it replaces the occurrence of s ≈ t

with its corresponding explanation ψ, and then replaces the equalities in ψ with their

corresponding explanation, and so on, until ψ contains only equalities from M . Then

it reports as a conflict clause (the clause form of) ψ ⇒ s ≈ t.

All other rules (such as those that modify N, F and B) model the internal

behavior of the string solver.

Now, we describe how to integrate the fair strategy into the DPLL(T) frame-

work. The idea is similar to Finite Model Finding strategy discussed in [77]. We use

J to denote the term for the sum of lengths of all input variables, i.e., Σx∈V(S0)len(x),

where S0 is the set of input constraints. Facilitated by split-on-demand in DPLL(T) [11],

we mark a new literal J ≤ 0 as the first decision literal 10 in the DPLL(X) engine,

initially.

Each time, when the string solver gets a set of literals from the DPLL(X)

engine, it first checks the polarity of the literal J ≤ n (where n is a non-negative

integer constant). If the polarity is positive, the string engine continues with the

normal procedure; otherwise, it tries to mark a new literal J ≤ n + 1 as the first

decision literal in the DPLL(X) engine.

10see definition in Section 1.2

98

3.2 Constant Splitting Refinement

In Figure 3.5, we described the F-Split rule. The F-Split generally explains

how our calculus splits an atomic term into two: it branches the search space into two,

and on each branch one atomic term is transformed into a concatenation containing

a fresh variable.

In F-Split, both u and v are atomic terms, i.e., either a constant or a vari-

able. When one is a constant and the other is a variable, we can apply a heuristic

that performs extensive propagation instead of splitting. First, we introduce some

definitions.

Definition 17 Let la and lb be two string constants. We say lb defines a cut string

over la, denoted as lc, if la = con(la′ , lc) and, either (i) lb = con(lc, lb′) or (ii) lc =

con(lb, lc′), where lc, la′ , lb′ , lc′ are string constants, not necessarily non-empty. �

Case (i) in the definition represents the case when la and lb share common

suffix and prefix respectively, i.e., lc is a suffix of la and a prefix of lb at the same

time.

Case (ii) represents the case when lb is a substring of la. In this case, lc′

is a suffix of la that follows an occurrence of lb in la, i.e., la = con(l′a, lb, lc′) and

lc = con(lb, lc′).

Definition 18 For an arbitrary pair of string constants la and lb, in general lb may

define a set of the cut strings over la. Among the elements of this set, we define the

maximal cut string (produced by lb over la) to be the one with the longest length,

99

H-C-Split

s ≈ t ∈ K(S) F s = (w, la,u) F t = (w, x, lb,v)
x 6∈ V(u) x 6≈ ε la ≈ con(la′ , lmc)

S := S, x ≈ con(la′ , k)

Figure 3.10. Constant splitting rule, where s, t are terms of String, x is a string vari-
able, w,u,v are vectors of String terms, and lmc is the maximal cut string produced
by lb over la.

denoted as lmc. �

We use maximal cut strings to prompt propagation in certain cases. This idea

is presented as a constant splitting rule, given in Figure 3.10.

Correctness

This rule can be considered as a special case of F-Split where one atomic term

is a constant and the other atomic term is a variable followed by a constant.

Generally speaking, to prove the soundness of a rule, we need to show that any

model satisfying the premises, satisfies the conclusion. In another word, no model is

missing during a derivation.

With respect to the rule F-Split, noticing that la′ is a prefix of la and the

conclusion introduces a new constraint for x, we want to show that for every model

of x, it must have the prefix la′ .

Theorem 6 (Correctness for Constant Splitting) The H-C-Split rule is sound.

Proof: We prove this property by contradiction. Assume x has a potential model l′

whose prefix is not la′ , where lmc is the maximal cut string produced by lb over la and

la = con(la′ , lmc).

100

If len(l′) ≥ len(la′), since con(w, la,u) = con(w, x, lb,v) and la = con(la′ , lmc),

la′ has to be the prefix of l′, and thus l′ = con(la′ , l
′′) which contradicts the assumption.

If len(l′) < len(la′), because la = con(la′ , lmc), we have la′ = con(l′, l′′), where

l′′ is not empty. By applying the substitution x 7→ l′ and dropping the common

prefix, we have con(l′′, lmc,u) ≈ con(lb,v). Notice three facts: lmc is the maximal cut

string produced by lb over la l
′′ is non-empty and lb is non-empty. If con(l′′, lmc,u) ≈

con(lb,v) is satisfiable and l′ is a model of x, l′′ and lb must share a common prefix. In

another word, con(l′′, lmc) is a cut string produced by lb over la. Clearly, con(l′′, lmc) is

longer than lmc, which contradicts the assumption that lmc is the maximal cut string.

Therefore, the rule is sound. �

3.3 String Manipulating Function Extension

One goal of this project is to devise a language-independent string solver to

solve string constraints generated by tools for security analysis. This goal requires us

to consider the following two aspects:

� Expressiveness : wide coverage of string functions in programming languages,

and

� Accuracy : precise modeling (similar to the proposed evaluation by [50]), i.e.,

the cost of conversion from a string function (in a programming language) to

the one in our language should be as low as possible, and string functions should

as less approximation as possible.

101

To achieve the expressiveness, we adopt the core SMT-LIB language [13]

(which defines a language for automated reasoning) and extend the language based on

a proposal for the theory of sequences [16]. Note that the theory of strings is mainly

a special case of the theory of sequences, where a string is a sequence of characters.

However, the theory of sequences does not cover all signatures from the theory of

strings. For example, type conversion is one of the most frequently used functions

in the security analysis; whereas in the sequence theory, the underlying character

sort does not require to have an ordering and thus there is no type conversion defi-

nition. To compensate the signature shortage proposed for the theory of sequences

(but useful for strings), we have consulted [42, 55, 33] to extend our language.

To achieve the accuracy, our deduction does not rely on any kind of approxima-

tion. Note that solving constraints containing a common string manipulating function

is more like model checking (e.g., inductive checking may help our reasoning), and

certain abstraction may be involved for performance, e.g., [96]. Generally speaking,

if an over-approximation (of a string function behavior) occurs in a constraint solver,

the model may not satisfy the constraints, and thus the solver is not solution com-

plete; whereas if an under-approximation occurs, the solver may report unsat even

thought there is a satisfying model, and this leads to unsoundness. Since using ap-

proximations conflicts with the purpose of an automated reasoning over strings, our

rules strictly follow the theory of strings.

The list of extended string manipulating functions, together with informal

specification, are given in Table 3.1. Our rules and proofs rely on these definitions.

102

Function Specification
char at(s, i) ≈ t t is the character of s at the position i, if i is non-negative

term and smaller than the length of s; otherwise, it is
undefined.

substr(s, i, j) ≈ t t is the substring of s of length j starting position i, if i, j
are non-negative terms and the sum of i and j is smaller
than the length of s; otherwise, it is undefined.

contains(s, t) ≈ b b is true iff t is a substring of s.

index of(s, t, i) ≈ j j is the position of the first occurrence of t in s after the
index i; j ≈ −1 if t does not occur in s. t is non-empty, the
value of i is a non-negative.

replace(s, t1, t2) ≈ t t is a string by replacing the first occurrence of t1 in s with
t2 if s contains t1; t is s, otherwise.

prefix of(s, t) ≈ b b is true iff s is a prefix of t.

suffix of(s, t) ≈ b b is true iff s is a suffix of t.

str to int(s) ≈ i i is the corresponding natural number of s in decimal nota-
tion if s contains only digits; i ≈ −1, otherwise.

int to str(i) ≈ t t is the corresponding string if the value of i is non-negative;
t is the empty string, otherwise.

Table 3.1. Definitions for string manipulating functions, where s, t, t1, t2 are terms
of String, b is a term of Bool, and i, j are terms of Int. The index is starting from 0.
The function char at and substr are partial functions. t1 is non-empty.

In addition, we require the alphabet contains all digital characters (“0”, . . . , “9”).

To handle these functions, we extend our calculus with a set of new rules. To

support those rules, we extend our configuration with two new components G and Q.

The set G is a set of ground formulas over the extended signature. The set Q is a set

of quantified formulas over the extended signature. Initially, all input constraints are

distributed into these two sets according to their structure.

103

E-CharAt
char at(s, i) ≈ t ∈ S

S := S, substr(s, i, 1) ≈ t

E-Substr
substr(s, i, j) ≈ t ∈ S

S := S, s ≈ con(k1, t, k2) A := A, len(k1) ≈ i, len(t) ≈ j,
0 ≤ i, 0 < j, i+ j < len(s) ‖

A := A, 0 > i ‖ A := A, 0 ≥ j ‖ A := A, i+ j ≥ len(s)

Figure 3.11. Rules for handling the substring functions, where s, t are terms of String,
i, j are terms of Int, and ki’s are fresh terms of String.

3.3.1 Extended Calculus for String Manipulating Functions

In Figure 3.11, we describe a set of rules that handles char at and substr func-

tions. The semantics follow the standard definitions of these functions in program-

ming languages, as in Table 3.1. The index always starts with 0.

E-CharAt reduces the function char at to substr. E-Substr reduces the function

substr to concatenation. Notice that the function substr is a partial function in SMT-

LIB. If an input to substr is not in the domain, the behavior is undefined.

In Figure 3.12, we describe a set of rules that handles string function contains.

E-Contains-P deals with positive contains predicates by converting them into concate-

nations. E-Contains-N converts negative contains predicates into quantified formulas.

The philosophy behind this rule is that: when a string s is not a substring of a string

t, then for each substring of t with the same length as s, there exists at least one

position where s has a different character of the substring of t.

Notice that in case of E-Contains-N rule, the resulting quantified formula is

of a special type: quantified variables are bounded by a particular range (although

the ranges may be symbolic). This allows an SMT solver to utilize a corresponding

104

strategy, which we call bounded integer quantification. Bounded integer quantifica-

tion is a special extension of the fair strategy. It is refutation sound and model

complete [76]. Since the modeling procedure is precise without any approximation,

these string functions are also refutation sound and model complete, i.e., if the con-

straints are satisfiable, the produce can find a model if fairness is applied. By fairness,

we mean the procedure will not stick to one certain branch without exploring other

branches.

Rules in Figure 3.11 and Figure 3.12 form the core rules for handling extended

string functions. Other string functions are reduced to substr, contains, concatenation

and bounded integer quantification in this calculus. A general function reduction flow

is shown in Figure 3.13. Notice that solving word equations with length constraints

is essential for these string manipulating functions. Also, substr is a core function in

this set of rules because most of these functions can be reduced to substr. Although

we reduce substr into word equations, it might be more effective if we can treat it

directly as a primitive data structure in the theory of strings. contains is the only

function that is reduced to quantified formulas, although both index of and replace

depend on this reduction.

In Figure 3.14, we describe a set of rules that convert additional string ma-

nipulating functions to quantifier-free word equations and the function contains. The

conversion follows the semantics of these functions. Notice that if the negative contains

functions together with length constraints are decidable, these functions are decidable

too, although it has been proved that replace is undecidable [89].

105

E-Contains-P
contains(s, t) ∈ G

S := S, s ≈ con(k1, t, k2)

E-Contains-N
¬contains(s, t) ∈ G

Q := Q,∀i : Int.∃j : Int. implies(0 ≤ i ≤ len(s)− len(t),
0 ≤ j ≤ len(t) ∧ char at(s, i+ j) 6≈ char at(t, j))

Figure 3.12. Rules for handling the contains function, where s, t are terms of String,
and ki’s are fresh terms of String.

substrchar_at contains

Word
Equations

Bounded
Integers

index_of replace

prefix_of
suffix_of

str_to_int int_to_str

Figure 3.13. Reduction flows for string manipulating functions.

Figures 3.15 and 3.16 present the rules for handling type conversion functions.

The function is digit is a shorthand for a disjunction of equalities for testing

whether a string term is a digital character, i.e.,

is digit(s) ≡ s ≈ “0” ∨ s ≈ “1” ∨ · · · ∨ s ≈ “9”. (3.15)

The function char to int is another shorthand for the ite term that converts

a single digital character s to corresponding digit, i.e.,

char to int(s) ≡ ite(s ≈ “0”, 0, ite(s ≈ “1”, 1, · · · , 9) · · ·). (3.16)

106

E-IndexOf
index of(s, p, i) ≈ j ∈ S

S := S, s ≈ con(k1, k2, p, k3) A := A, len(k1) ≈ i, j ≈ i+ len(k2)
G := G,¬contains(con(k2, substr(p, 0, len(p)− 1)), p)

‖
A := A, j ≈ −1 G := G,¬contains(substr(s, i), p)

E-Replace
replace(s, p, q) ≈ t ∈ S

S := S, s ≈ con(k1, p, k2), t ≈ con(k1, q, k2)
G := G,¬contains(con(k1, substr(p, 0, len(p)− 1)), p), contains(s, p)

‖
S := S, s ≈ t G := G,¬contains(s, p)

E-PrefixOf
prefix of(s, t) ∈ G

S := S, t ≈ con(s, k)

E-SuffixOf
suffix of(s, t) ∈ G

S := S, t ≈ con(k, s)

Figure 3.14. Rules for handling additional string manipulating functions, where
s, t, p, q are terms of String, ki’s are fresh terms of String, and i, j are terms of Int.

Type conversion rules convey a similar idea as the fair strategy. Thus, appli-

cation of these rules requires a fair strategy to be solution complete.

3.3.2 Handling the new components G and Q

In Figure 3.17, G-Conj, G-Disj and G-Ite handle various logical structures in

a formula. They are designed to dissemble a formula into literals.

G-Str distributes (dis-)equalities to S. Notice that the congruence closure is

constructed only for S. G-Lia and G-Rex distribute linear arithmetic formulas and

membership constraints to A and R, respectively.

These rules are applied at the very beginning and right after the rule Reset.

Notice that string predicates remain in G, e.g., contains, prefix of and suffix of. They

remain in G only. At a highly abstract level, these G-rules mimic how the DPLL(X)

107

E-Int2Str-1
int to str(n) ≈ s ∈ S A |= n < 0

S := S, s ≈ ε

E-Int2Str-2
int to str(n) ≈ s ∈ S A |= 0 ≤ n < 10

S := S, n ≈ char to int(s), len(s) ≈ 1

E-Int2Str-3
int to str(n) ≈ s ∈ S A |= n ≥ 10

S := S, s ≈ con(s1, s2), len(s1) ≥ 1, len(s2) = 1
A := A, n1 > 0, n2 ≥ 0, n ≈ n1 × 10 + n2,

int to str(n1) ≈ s1, int to str(n2) ≈ s2

Figure 3.15. Rules for handling the int to str type conversion function, where s is a
term of String, s1, s2 are fresh terms of String, n is a term of Int, and n1, n2 are fresh
terms of Int.

engine distributes partial models to its plug-in theory engines.

Note that initially Q is empty and only the rule E-Contains-N introduces new

formulas to Q. The formula introduced by the rule are of the special form. Since this

thesis does not focus on how to solve quantified formulas, we use a fairly simple rule

Q-Inst in Figure 3.18 to mimic the approach for handling quantified formulas. The

actual approach is more sophisticated and discussed in [76].

3.3.3 Correctness

In this subsection, we prove the correctness of the rules modeling string ma-

nipulating functions.

Lemma 15 E-Substr is sound.

Proof: Assume that s ≈ c0 · · · ci · · · ci+j · · · cn−1. Notice that 0 ≤ i, i + j ≤ n − 1 <

n = len(s). By definition of substr, t ≈ ci · · · ci+j, which is a substring of s. In

the conclusion of E-Substr, we have s ≈ con(k1, t, k2), len(k1) ≈ i, len(t) ≈ j. So,

108

E-Str2Int-1
str to int(s) ≈ n ∈ S

A := A, n ≈ −1 ‖ A := A, n ≥ 0

E-Str2Int-2
str to int(s) ≈ n ∈ S S |= s ≈ ε

A := A, n ≈ −1

E-Str2Int-3
str to int(s) ≈ n ∈ S A |= n ≥ 0

S := S, len(s) ≈ 1 ‖ S := S, len(s) ≥ 1

E-Str2Int-4
str to int(s) ≈ n ∈ S S |= len(s) ≈ 1, n ≥ 0

A := A, n ≈ char to int(s) G := G, is digit(s)

E-Str2Int-5
str to int(s) ≈ n ∈ S S |= len(s) ≈ 1, n ≈ −1

G := G,¬is digit(s)

E-Str2Int-6
str to int(s) ≈ n ∈ S A |= len(s) > 1, n ≥ 0

S := S, s ≈ con(s1, s2), str to int(s1) ≈ n1, str to int(s2) ≈ n2

A := A, len(s2) ≈ 1, n ≈ n1 × 10 + n2, n1 > 0, 0 ≤ n2 < 10

E-Str2Int-7
str to int(s) ≈ n ∈ S A |= len(s) > 1, n ≈ −1

S := S, s ≈ con(s1, s2), str to int(s1) ≈ n1, str to int(s2) ≈ n2

(A := A, len(s2) ≈ 1, n1 ≈ −1 ‖ A := A, len(s2) ≈ 1, n2 ≈ −1)

Figure 3.16. Rules for handling the str to int type conversion function, where s is a
term of String, s1, s2 are fresh terms of String, n is a term of Int, and n1, n2 are fresh
terms of Int.

k1 ≈ c0 · · · ci−1, t ≈ ci · · · ci+j and thus t ≈ ci · · · ci+j. �

Lemma 16 E-CharAt is sound.

Proof: Assume that s ≈ c0 · · · ci · · · cn−1. Notice that 0 ≤ i ≤ n − 1 < n = len(s).

By definition of char at, ift ≈ ci, then it is substr(s, i, 1). �

Lemma 17 E-Contains-P and E-Contains-N are sound.

Proof: If contains(s, t) is true, t is a substring of s. In another word, ∃k1, k2.s ≈

con(k1, t, k2). Thus, E-Contains-P is sound.

109

G-Conj
G = G′, φ1 ∧ φ2

G := G′, φ1, φ2

G-Disj
G = G′, φ1 ∨ φ2

G := G′, φ1 ‖ G := G′, φ2

G-Ite
G = G′, ite(φ1, φ2, φ3)

G := G′, φ1, φ2 ‖ G := G′,¬φ1, φ3

G-Str
G = G′, (¬)s ≈ t

G := G′, S := S, (¬)s ≈ t

G-Lia
G = G′, a

G := G′,A := A, a

G-Rex
G = G′, (¬)in(s, R)

G := G′,R := R, (¬)in(s, R)

Figure 3.17. Rules for handling the quantifier-free formula set G, where s, t are string
terms and a is an arithmetic literal

Q-Inst
∀i : Int.∃j : Int. implies(A[i], B[i, j]) ∈ Q n is a ground term of type Int

G := G, A[n], B[n,m] ‖ G := G,¬A[n]

Figure 3.18. Rules for handling the quantified formula set Q, where m is a fresh
integer constant.

If contains(s, t) is false, t is not a substring of s. In other words, ∀k.contains(s, k)

implies k 6≈ t. If two strings have different length, they are definitely different. This

formula can be further optimized by only checking all these substrings of s have the

same length as t. If two strings of the same length are different, then there must be

110

a position at which the two strings have distinct characters. Therefore, we have:

contains(s, t)⇐⇒

(∀i. 0 ≤ i ≤ len(s)− len(t) =⇒

∃j.0 ≤ j ≤ len(t) ∧ char at(s, i+ j) 6≈ char at(t, j))
(3.17)

�

Lemma 18 E-IndexOf is sound.

Proof: Assume that s ≈ c0 · · · ci−1ci · · · · · · cn−1. Let p be a string that does not

occur in ci · · · · · · cn−1, by definition, the function returns −1. This is reflected in the

right branch of the rule.

Assume that p ≈ cj · · · cj+m−1 and s ≈ c0 · · · ci−1ci · · · cj · · · cj+m−1 · · · cn−1. By

definition, the function returns j, which is the first occurrence after the position i.

Thus, s is in the form of con(k1, k2, p, k3), where len(k1) ≈ i, j ≈ i + len(k2) and

¬contains(con(k2, substr(p, 0, len(p)− 1)), p) (first occurrence by definition). �

Lemma 19 E-Replace is sound.

Proof: By definition, if s does not contain p, the function returns p, shown in the

right branch of the rule.

If s contains p, s is in the form of con(k1, p, k2). By definition, p has to be the

first occurrence, so this is equivalent to ¬contains(con(k1, substr(p, 0, len(p) − 1)), p)

and t ≈ con(k1, q, k2). �

Lemma 20 E-PrefixOf is sound.

111

Proof: If s is a prefix of t, t must be able to be partitioned into two substrings,

where the first part is s. �

Lemma 21 E-SuffixOf is sound.

Proof: If s is a suffix of t, we must be able to partition t into two substrings, where

the second part is s. �

Lemma 22 Rules for handling int to str are sound.

Proof: If s is the result of int to str(n), we splits n by its value, namely:

� if n < 0, by definition, s is the empty string;

� if 0 ≤ n < 10, by definition, s is a single character corresponding to n;

� if 10 ≤ n, the resulting string s must be at least of length 2. We divide n into

two numbers, n1 and n2, such that n = n1× 10 +n2. Also, we divide s into two

substrings s1 and s2, where the suffix s2 is of length 1. We know that s1 is the

result value of int to str(n1) and s2 is the result value of int to str(n2).

�

Lemma 23 Rules for handling str to int in Figure 3.16 are sound.

Proof: The rules for handling str to int adopt a similar idea as the fair strategy. We

require the procedure to explore the left branch first, as usual; if it fails to find a

model, then proceeds to the right branch.

112

By definition, the str to int function returns −1 if s is invalid (i.e., either s

is the empty string or s contains non-digit characters); otherwise, it returns a non-

negative number. Thus, E-Str2Int-1 is sound. Another base case is when s is an

empty string, the function returns −1. E-Str2Int-2 is sound.

If s is valid, we try to get the length of s by E-Str2Int-3. Notice that we

always try the left branch first by assumption. After applying this rule, we know that

the length of s is at least one.

If s is a valid input and its length is 1, then s must be a digit character, and

we can convert s to its corresponding number. If s is invalid and its length is 1, s

must not be a digit character. This concludes the correctness of E-Str2Int-4 and

E-Str2Int-5.

If the length of s is greater than 1, we try to break the string into two sub-

strings, where the second one is of length 1. If s is invalid, one of the substrings must

be invalid (by E-Str2Int-7); otherwise, we know that the converted number should

satisfy: n = n1 × 10 + n2 and 0 ≤ n2 < 10 (by E-Str2Int-6).

It concludes the soundness proof for the str to int rules. �

3.4 Experimental Results

We have implemented a theory solver based on the calculus and the proof

procedure described in the previous section within the latest version of our SMT solver

cvc4. The string alphabet A for this implementation is the set of all 256 extended

ASCII characters. To evaluate our solver we did an experimental comparison with

two of the string solvers mentioned in Chapter 5: z3-str (version 20140120) and

113

Kaluza (latest version from its website). These solvers, which have been widely

used in security analysis, were chosen because they are publicly available and have

an input language that largely intersects with that of our solver. All results in this

section were collected on a 2.53 GHz Intel Xeon E5540 with 8 MB cache and 12 GB

main memory.11

We do not collect enough benchmarks over our extended language from the

industry (by the time of this thesis submission) to produce substantial results, and

thus the benchmarks we used in the experiments focus on word equations and length

constraints. The original benchmarks are from the Kaluza project 12. We translated

these into SMT-LIB format with cvc4-style string constraints. Finally, these SMT-

LIB versions were turned into Z3-str’s format (same as SMT-LIB but the String

constraints are slightly different, see below). Each version contains 47,284 bench-

marks.

Modulo superficial differences in the concrete input syntax, all three tools

accept as input a set of TSL constraints and report on its satisfiability with a sat,

unsat or unknown answer. In the first case, cvc4 and z3-str can also provide a

solution, i.e., a satisfying assignment for the variables in the input set. Kaluza can

do that for at most one query variable which must be specified before-hand in the

input file.

An initial series of regression tests on all three tools revealed several usability

11 Detailed results and binaries can be found at http://cvc4.cs.nyu.edu/papers/

CAV2014-strings/.

12Available at: http://webblaze.cs.berkeley.edu/2010/kaluza/.

http://cvc4.cs.nyu.edu/papers/CAV2014-strings/
http://cvc4.cs.nyu.edu/papers/CAV2014-strings/
http://webblaze.cs.berkeley.edu/2010/kaluza/

114

and correctness issues with Kaluza and a few with z3-str. In Kaluza, they were

caused by bugs in its top level script which communicates with different tools (e.g.,

the solvers Yices and Hampi) via the file system. They range from failure to clean

up temporary files to an incorrect use of the Unix grep tool to extract information

from the output of those tools. Since Kaluza is not in active development anymore,

we made an earnest, best effort attempt to fix these bugs ourselves. However, there

seem to be more serious flaws in Kaluza’s interface or algorithm. Specifically, of-

ten Kaluza incorrectly reports unsat for problems that are satisfiable only if some

of their input variables are assigned the empty string. Moreover, in several cases,

Kaluza’s sat/unsat answer for the same input problem changes depending on the

query variable chosen. Because of this arbitrariness, in our experiments we removed

all query variables in Kaluza’s input.

We found that in several cases z3-str returns spurious solutions, assignments

to the input variables that do not in fact satisfy the input problem. Also, it classifies

some satisfiable problems as unsat. Prompted by our inquiries, the z3-str developers

have produced a new version of z3-str that fixes the spurious solutions problem.

Unfortunately, that version was not ready in time for us to redo the experiments. As

for z3-str’s unsoundness, it looks like it is caused by an internal restriction that,

for efficiency but without loss of generality, limits the possible values of “free” string

variables to a fixed finite set of string constants. The authors define a variable as

free in an input problem if its values are completely unconstrained by the problem.

For instance, in the constraint set {x ≈ con(y, z)} variables y and z would be free

115

CVC4 Z3-str Kaluza Kaluza-orig
Result × X × X × X

unsat 11,625 317 11,769 7,154 13,435 27,450 805
sat 33,271 1,583 31,372 n/a 25,468 n/a 3

unknown 0 0 3 0
timeout 2,388 2,123 84 84
error 0 120 1,140 18,942

Table 3.2. Comparative results with cvc4, z3-str and Kaluza,
over Kudzu benchmarks.

according to this definition, while x would not. It appears that the criterion used by

z3-str to recognize free variables sometimes misclassifies a variable as free when in

fact it is not, causing the system to miss solutions that are outside the finite domain

imposed on free variables.

In contrast, on our full set of benchmarks, we did not find any evidence of

erroneous behavior in cvc4 when compared with the other two solvers. Every solution

produced by cvc4 was confirmed by both cvc4 and z3-str by adding the solution as

a set of constraints to the input problem and checking that the strengthened problem

was satisfiable. Furthermore, no unsat answers from cvc4 were contradicted by a

confirmed solution from z3-str.

For our comparative evaluation we selected 47,284 benchmark problems from

a set of about 50K benchmarks generated by Kudzu, a symbolic execution framework

for Javascript, and available on the Kaluza website [82]. The discarded problems

either had syntax errors or included a macro function (CapturedBrack) whose meaning

is not fully documented. We translated those benchmarks into cvc4’s extension of

116

the SMT-LIB 2 format to the language of TSL
13 and into the z3-str format. Some

benchmarks contain regular membership constraints in(s, r), which z3-str does not

support. However, in all of these constraints the regular language denoted by r is

finite and small, so we were able to translate them into equivalent string constraints.

We ran cvc4, z3-str and two versions of Kaluza, the original one and the

one with our debugged main script, on each benchmark with a 20-second CPU time

limit. The results are summarized in Table 3.2. There, the column Kaluza-orig refers to

the original version of Kaluza while the error line counts the total number of runtime

errors. The results for z3-str and the two versions of Kaluza are separated in two

columns: the × column contains the number of provably incorrect answers while the

X column contains the rest. By provably incorrect here we mean an unsat answer for a

problem that has a verified solution or a sat answer but with a spurious solution. Note

that the figures for the two versions of Kaluza are unfairly skewed in their favor

because neither version returns solutions, which means that their sat answers are

unverifiable unless one of the other solvers produces a solution for the same problem.

For a more detailed discussion, we look at the benchmark problem set broken down

by the cvc4 results. For brevity we discuss only our amended version of Kaluza

below.

None of the 11,625 unsat answers provided by cvc4 were provably incorrect.

z3-str also answered sat on 11,568 of them and returned an error for the remaining

57; Kaluza agreed on 11,394 and returned an error for the rest. All of cvc4’s 33,271

13 cvc4’s string extension is documented at http://cvc4.cs.nyu.edu/wiki/Strings.

http://cvc4.cs.nyu.edu/wiki/Strings

117

sat answers were corroborated by a confirmed solution. z3-str agreed on 31,616 of

those problems although it returned a spurious solution for 244 of them. Also, it

incorrectly found 317 problems unsatisfiable and produced an error on 29 problems,

timing out on the remaining 1,304. Kaluza agreed on 25,468 problems (unverifiable

because of the absence of solutions), erroneously classified 7,154 as unsatisfiable,

reported unknown for 3, produced an error for 562, and timed out on 84.

cvc4 timed out on 2,388 problems, but produced no errors and no unknown

answers. For the problems that cvc4 timed out on, z3-str classified 201 as unsatis-

fiable, returned an error for 34 and produced solutions for the remaining 1,339, all of

which were spurious. Kaluza classified 2,041 as unsatisfiable and returned an error

on the rest.

These results provide strong evidence that cvc4’s string solver is sound. They

also provide evidence that unsat answers from z3-str and Kaluza for problems on

which cvc4 times out cannot be trusted. They also show that cvc4’s string solver

answers sat more often than both z3-str and Kaluza, providing a correct solution

in each case. Thus, it is overall the best tool for both satisfiable and unsatisfiable

problems.

Moving to run time performance, a comparison with Kaluza is not very

meaningful because of its high unreliability and the unverifiability of its sat answers.

In principle, the same could be said of z3-str due to its refutation unsoundness.14

14 z3-str could be faster and time out less often simply because it unduly prunes search
space.

118

�

��

���

�����

������

�������

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��

��

��
��
��
��

	
������
�����

	
	�

�����

�������

Figure 3.19. Runtime comparison of cvc4, z3-str and the amended Kaluza. Times
are in seconds.

However, an analysis of our detailed results shows that cvc4 has nonetheless better

runtime performance overall. This can be easily seen from the cactus plot in Fig-

ure 3.19, which shows for each of the three systems how many non-provably incorrect

benchmarks it cumulatively solves within a certain amount of time.

3.5 Summary

In this chapter, we discussed our calculus for handling word equations with

length constraints. Our novel approach solves problems from this theory directly,

without reduction to other problems (e.g., automata or bit-vectors in a conventional

way). We have implemented this calculus in a state-of-the-art SMT solver cvc4. By

utilizing the DPLL(T) architecture, as well as other off-the-shelf background theory

engines (e.g cvc4), our string solver can solve string constraints together with other

theories. Furthermore, our initial results indicate that our approach outperforms the

other existing string solvers in terms of correctness, precision and performance.

Besides the calculus, we provided proofs for refutation soundness and solution

soundness of our calculus. Together with the fair strategy, we showed the solution

119

completeness for the theory of unbounded strings with length constraints. Moreover,

if the input is in the acyclic form, we showed that our calculus is a decision procedure

for this fragment.

In addition, we discussed our refinements when propagation is applied in the

case of string constant splitting. Also, we provide our extension for other string

manipulating functions, which are frequently used in security vulnerability detection.

120

CHAPTER 4

SOLVING MEMBERSHIP AND LENGTH CONSTRAINTS

In this chapter, we present algebraic techniques for solving membership and

length constraints. They follow a more general approach than the one we discussed

in Chapter 3 for handling membership constraints. The major difference is that we

replace the procedure of unrolling the Kleene stars (which has no guarantee to be

terminating when the problem is unsatisfiable) with a more sophisticated approach.

In the new approach, we break a regular expression into sub-expressions with-

out introducing additional fresh variables. Besides expression splitting, we associate

a regular expression with a set of linear arithmetic constraints that represent all pos-

sible lengths of strings in the language of the regular expression. On inputs with

only concrete regular membership and length constraints, this approach completes

our model search algorithm. Indeed, it is a decision procedure for this fragment.

In addition, we extend our procedure for handling symbolic membership con-

straints. With the extension of symbolic expressions, the termination depends on the

success of solving non-linear arithmetic constraints over a particular fragment.

Organization. In Section 4.1, we present our calculus for solving concrete regu-

lar membership constraints with additional length constraints, and prove that our

approach is a decision procedure for this fragment. In Section 4.2, we extend our

calculus for handling symbolic regular membership constrains, and for solving neg-

ative membership constraints lazily. Finally, a summary of this chapter is given in

121

Section 4.3.

4.1 Calculus for TRL

Before discussing our calculus, we briefly introduce the satisfiability prob-

lem for constraints containing membership constraints, which is an extension of Sec-

tion 3.1. A membership is a predicate which takes two arguments: a string and an

expression denoting a language. In this section, an expression refers to a concrete reg-

ular expression as defined in Section 2.6. In Section 4.2.1, we extend of our calculus

for handling constraints over symbolic regular expressions. Throughout this chapter,

we consider derivations without the rule R-Star.

As described in Section 2.3, a concrete regular expression contains string con-

stants only. The core regular expressions are well-sorted terms built upon singletons

(set), the empty set (rempty), and the all character set (allchars), as well as four

regular expression operations: concatenation (rcon), alternation (union), intersection

(inter), and Kleene star (star).

Assumption 3 In this section, we assume that the polarity of membership con-

straints are all positive. If a negative membership constraint appears in the set of

membership constraints R in a configuration c, we always rewrite it to a positive one

by some standard algorithm (e.g., [37]) during the preprocessing, i.e.,

¬in(s, R)→ in(s, Rc), (4.1)

where Rc is the complement of R. �

Although it is known that regular languages are closed under the complemen-

122

tation (see Proposition 9 in Chapter 2), the complexity of computing the complement

of a regular expression is very high [37]. Therefore, in Section 4.2.1, we will introduce

a new lazy approach to handle negative membership constraints without applying the

complement operation.

Assumption 4 We assume that the component R in a configuration only contains

regular expressions from the core language. �

We overload the function L() that takes a term of Lan and returns a set of

strings throughout this section.

4.1.1 Preprocessing

We define those rewriting rules in Figure 4.1, so one could apply them to

remove the additional symbols. We use Rn to represent n replications (of a regular

expression R) connected by concatenation 1. The preprocessing happens at the very

beginning, and only once. Also, all other regular expression rules in our calculus do

not introduce any of the regular expression operations form Figure 4.1.

In the following, we describe these rules in detail. The Formula 4.2 reflects the

semantics of the regular expression option operation: in(s, opt(R)) is true iff either

the string term s is the empty string or its instance is in L(R).

The rule Formula 4.3 reflects the semantics of the regular expression plus

operation: if L(R) does not contain the empty string, then the string cannot be the

empty string; otherwise, it is equivalent to L(star(R)).

1The symbol Rn is a shorthand for rcon(R,R, · · · , R︸ ︷︷ ︸
n copies

).

123

in(s, opt(R))→ s ≈ ε ∨ in(s, R) (4.2)

in(s, plus(R))→ in(s, star(R)) ∧ δ(R)⇒ s 6≈ ε (4.3)

in(s, range(c1, c2))→ s ≈ c1 ∨ · · · ∨ s ≈ c2 (4.4)

in(s, range(c1, c3))→ false (4.5)

in(s, loop(R, n,m))→ in(s, Rn) ∨ · · · ∨ in(s, Rm) (4.6)

in(s, loop(R, n))→ in(s, rcon(Rn, star(R))) (4.7)

Figure 4.1. Membership term preprocessing rules, where n,m are natural numbers
(n ≤ m), c1, c2, c3 are characters (c1 �lex c2 and c3 ≺lex c1), R is a concrete regular
expression, and δ is the delta function described later.

The Formula 4.4 reflects the semantics of the regular expression range op-

eration: for any model M, M[[s]] must be a character between c1 and c2 in the

lexicographic order; otherwise, Formula 4.5 will be applied.

The rule Formula 4.6 reflects the semantics of the regular expression loop

operation: the string s must be in the language of Ri (n ≤ i ≤ m). Similarly,

Formula 4.7 indicates that the string must be in the language of Ri (n ≤ i).

4.1.2 Normalization

Similarly to Figure 3.1, we introduce a set of regular expression term rewriting

rules in Figure 4.2.

Assumption 5 We also assume that every term in the initial configuration is reduced

with respect to the rewrite rules in both Figure 3.1 and Figure 4.2. �

124

The rewriting with respect to the rewriting rules in both Figure 3.1 and Fig-

ure 4.2 can be shown to be terminating and confluent modulo the axioms of arithmetic

by measuring the decrease of total symbols in a regular expression after each rewrit-

ing. Since the left hand side is equivalent to the right hand side of each rule, it is

easy to show the correctness of these rules.

Note that an arbitrary non-flattened 2 regular expression can be converted

to a flattened regular expression by the rules in Figure 4.2. For simplicity, when a

concatenation (similarly an alternation, or an intersection) contains only one atomic

regular expression, we remove the top-level symbol, i.e., rcon(R)→ R, union(R)→ R

and inter(R)→ R, where R is an atomic regular expression.

Besides the term-level rewrite rules (in Figure 4.2) for regular expressions, we

have another set of rules (in Figure 4.3) which rewrite membership constraints. We

can consider them as literal-level rewrite rules. Note that in this section, all regular

expressions contain no variable.

Lemma 24 Rules in Figure 4.3 preserve the equivalence in the theory.

Proof: in(s, allchars) is equivalent to len(s) ≈ 1 because allchars represents all strings

of length 1. in(s, star(allchars)) is equivalent to true because star(allchars) represents

all strings. in(s, set(t)) is equivalent to s ≈ t by the definition. �

Assumption 6 We assume that the procedure applies all these rewriting rules from

both Figure 4.2 and Figure 4.3 (to all membership constraints) to completion before

2A non-flattened regular expression is the one with nested concatenations (or alternations
or intersections) as defined in Chapter 2.

125

rcon(r1, rcon(r2), r3)→ rcon(r1, r2, r3) (4.8)

rcon(r1, set(ε), r3)→ rcon(r1, r3) (4.9)

rcon(r1, rempty, r3)→ rempty (4.10)

rcon(r1, set(s1), set(s2), r3)→ rcon(r1, set(con(s1, s2)), r3) (4.11)

rcon(r)→ r (4.12)

rcon()→ rempty (4.13)

union(r1, union(r2), r3)→ union(r1, r2, r3) (4.14)

union(r1, rempty, r3)→ union(r1, r3) (4.15)

inter(r1, inter(r2), r3)→ inter(r1, r2, r3) (4.16)

inter(r1, rempty, r3)→ rempty (4.17)

star(star(r))→ star(r) (4.18)

star(rempty)→ set(ε) (4.19)

Figure 4.2. Regular expression rewriting rules, where s1, s2 are terms of String, r is
a term of Lan, and r1, r2, r3 are vectors of Lan terms.

applying any other reduction rule.

The word equations generated by in(s, set(t))→ s ≈ t belong to One-Sided equality.

By Corollary 3, our derivation is guaranteed to terminate.

4.1.3 Auxiliary Functions

The rules in our calculus rely on some condition that some expressions are

computed by a set of auxiliary functions. We will introduce these functions first.

In addition, we prove the termination and correctness of each function.

126

in(s, allchars)→ len(s) ≈ 1 (4.20)

in(s, star(allchars))→ true (4.21)

in(s, rempty)→ false (4.22)

in(s, set(t))→ s ≈ t (4.23)

in(l, R)→ ζ(l, R) (4.24)

Figure 4.3. Membership term rewriting rules, where s, t are string terms and l is a
string constant.

Concrete Delta Function

Similar to [21, 68, 24], we define our reduction function δ as follows: it takes a

term of type Lan R, and returns either true or false, where L(R) ∈ LC. The function δ

returns true iff the language represented by the regular expression contains the empty

string. This function is defined inductively in Figure 4.4.

Lemma 25 For any concrete term R of sort Lan, the function of computing δ(R),

with respect to the rules in Figure 4.4, terminates.

Proof: The termination of the δ function computation for an arbitrary regular ex-

pression follows measuring the fact that the total number of symbols in this regular

expression decreases. �

Lemma 26 For any concrete term R of sort Lan, δ(R) = true iff ε ∈ L(R).

Proof: By Lemma 25, the function terminates on any concrete term. Now, we argue

the correctness by cases.

127

δ(allchars) = false (4.25)

δ(rempty) = false (4.26)

δ(set(ε)) = true (4.27)

δ(set(l)) = false if l 6≈ ε (4.28)

δ(rcon(R1, · · · , Rn)) is true iff ∀i ∈ [1 . . . n].δ(Ri) = true (4.29)

δ(union(R1, · · · , Rn)) is true iff ∃i ∈ [1 . . . n].δ(Ri) = true (4.30)

δ(inter(R1, · · · , Rn)) is true iff ∀i ∈ [1 . . . n].δ(Ri) = true (4.31)

δ(star(R)) = true (4.32)

Figure 4.4. Delta function for concrete regular expressions, where l is a string literal,
and Ri’s are concrete regular expressions.

For Formulas 4.25— 4.28, the result is immediate by the definition of regular

expressions. For Formula 4.29, if rcon(R1, · · · , Rn) contains the empty string, then

each must contain the empty string. For Formula 4.30, if union(R1, · · · , Rn) contains

the empty string, then one of them must contain the empty string. For Formula 4.31,

if inter(R1, · · · , Rn) contains the empty string, then each must contain the empty

string. For Formula 4.32, by definition, star(R) contains the empty string. �

Concrete Testing Function

We define a function ζ that takes a string literal l and a term of Lan R, and

returns either true or false, where L(R) ∈ LC. This function is used to check whether

a string constant l is in the language generated by the concrete regular expressions R.

The ζ function returns true if the string constant is in the regular language; otherwise,

128

ζ(l, rempty) = false (4.33)

ζ(l, set(l)) = true (4.34)

ζ(l1, set(l2)) = false if l1 6≈ l2 (4.35)

ζ(con(c1, c2), rcon(R1, R2)) = true iff

δ(R1) = true and ζ(con(c1, c2), R2) = true, or

ζ(c1, R1) = true and ζ(con(c2), R2) = true, or

ζ(con(c1, c2), R1) = true and δ(R2)) = true (4.36)

ζ(l, union(R1, R2)) = true iff either ζ(l, R1) = true or ζ(l, R2) = true (4.37)

ζ(l, inter(R1, R2)) = true iff both ζ(l, R1) = true and ζ(l, R2) = true (4.38)

ζ(con(c1, c2), star(R)) = true iff

ζ(c1, R) = true and ζ(con(c2), star(R)) = true, or

ζ(con(c1, c2), R) = true (4.39)

ζ(ε, star(R)) = true (4.40)

Figure 4.5. Testing function for concrete regular expressions, where l, l1, l2 are string
literals, R,R1, R2 are regular expressions, c1 is a character, and c2 is a vector of
characters.

it returns false. The ζ function is shown in Figure 4.5.

The ζ function applies recursively and at each step it consumes one or more

symbols.

Lemma 27 For any concrete term R of sort Lan, the function of computing ζ(R),

with respect to the rules in Figure 4.5, terminates.

Proof: The termination of the function ζ always follows the fact that the total

number of symbols of the arguments in both the string and the regular expression

129

decreases after each step. �

Lemma 28 For any concrete term R of sort Lan, and for any string literal l, s.t.

ζ(l, R) = true iff l ∈ L(R).

Proof: By Lemma 27, the function terminates on any concrete term. Now, we show

the correctness of this function.

This function maintains the semantics of regular expression. For Formu-

las 4.33— 4.35, the proof is immediate by the definition. For Formula 4.36, if a

string constant is in the language of a regular expression with top symbol rcon,

then this string can be divided into two substrings and each of them is in the

language of a partitioned expression. Note that a regular expression R is par-

titioned into two regular expression R1 and R2 with respect to concatenation if

L(R) = {s · t | s ∈ L(R1), t ∈ L(R2)}. For Formulas 4.37— 4.38, the proof fol-

lows the definition. For Formula 4.39, if a string constant is in the language of a

regular expression with the top symbol star (e.g., star(R)), then this string can be

divided into two substrings so that the first substring is in the language of R and the

second one is in the language of star(R). The empty string is always in the language

of star(R), which is reflected in Formula 4.40. �

Concrete Derivative Function

We use {∂c}c∈Σ to denote the family of the concrete derivative functions. The

definition of derivatives is based on Brzozowski’s work [21, 68, 24]. Further extension

to symbolic expressions will be presented in Section 4.2.1.

130

∂c(rempty) = rempty (4.41)

∂c(set(ε)) = rempty (4.42)

∂c(set(con(c, s))) = set(s) (4.43)

∂c(set(con(c′, s))) = rempty,where c 6= c′ (4.44)

∂c(rcon(R1, R2)) = rcon(∂c(R1), R2) if δ(R1) = false (4.45)

∂c(rcon(R1, R2)) = union(rcon(∂c(R1), R2), ∂c(R2)) if δ(R1) = true (4.46)

∂c(union(R1, R2)) = union(∂c(R1), ∂c(R2)) (4.47)

∂c(inter(R1, R2)) = inter(∂c(R1), ∂c(R2)) (4.48)

∂c(star(R)) = rcon(∂c(R), star(R)) (4.49)

Figure 4.6. Derivative function for concrete regular expression, where c, c′ are char-
acters, s is a string term, and R,R1, R2 are regular expressions.

Let c be a character in Σ. We define the function ∂c : Lan→ Lan as the rules

in Figure 4.6. The function ∂c takes a concrete regular expression R1, and returns

a new regular expression R2 where for every string in the language of R1 beginning

with the character c, the first character is consumed. In other words, the regular

expression R2 represents the language {u | c · u ∈ L(R1)}.

The derivative function gives us a way to handle regular expression operations

without reduction to automata, as the conventional method of processing regular

expressions suggests. In other words, the function ∂ gives us a basis to build algebra-

based rules. The derivative function is shown in Figure 4.6.

Lemma 29 For any concrete term R of Lan, and for any character c in Σ, s.t. the

131

function of computing L(∂cR), with respect to the rules in Figure 4.6, terminates.

Proof: Since for each step the algorithm consumes some symbols in the regular

expression, and there are finitely many symbols in a regular expression, the algorithm

will terminate on any regular expression. �

Theorem 7 For any concrete regular term R of Lan, and for any character c in Σ,

s.t. L(∂cR) = {s | c · s ∈ L(R)}.

Proof: By Lemma 29, the function L(∂cR) on any regular expression, for any char-

acter. Now, we show that L(∂cR) = {s | c · s ∈ L(R)}.

Let R be an arbitrary concrete regular expression, and c be an arbitrary char-

acter in Σ. We prove by induction, following Formulas 4.41— 4.49 for finding a

regular expression with respect to a single character.

Prove by induction on the structure of regular expressions. The base cases,

Formulas 4.41— 4.44 hold trivially by the definition of a regular expression. Now, we

show it holds for step cases.

For Formula 4.45, since δ(R1) = false, we have :

L(rcon(∂c(R1), R2)) = {s | c · s ∈ L(R1)} · L(R2)

= {s · t | c · s ∈ L(R1), t ∈ L(R2)}

= {s | c · s ∈ L(rcon(R1, R2))}

= L(∂c(rcon(R1, R2))).

132

For Formula 4.46, since δ(R1) = true, we have :

L(union(rcon(∂c(R1), R2), ∂c(R2))) = L(rcon(∂c(R1), R2)) ∪ L(∂c(R2))

= {s | c · s ∈ L(R1)} · L(R2) ∪ L(∂c(R2))

= {s · t | c · s ∈ L(R1), t ∈ L(R2)} ∪ L(∂c(R2))

= {s | c · s ∈ L(rcon(R1, R2))}

= L(∂c(rcon(R1, R2))).

For Formula 4.47, we have :

L(union(∂c(R1), ∂c(R2))) = {s | c · s ∈ L(R1)} ∪ {s | c · s ∈ L(R2)}

= {s | c · s ∈ L(R1) ∪ L(R2)}

= {s | c · s ∈ L(union(R1, R2))}

= L(∂c(union(R1, R2))).

Similar to the proof of Formula 4.48.

For Formula 4.49, we have :

L(rcon(∂c(R), star(R))) = ∅ ∪ {s | c · s ∈ L(rcon(R, star(R)))}

= {s | c · s ≈ ε} ∪ {s | c · s ∈ L(rcon(R, star(R)))}

= {s | c · s ∈ L(union(set(ε), R,R2, · · ·))}

= L(∂c(star(R))).

Since all symbols belong to the theory of regular expressions, the returned

expression is also a regular expression. �

133

The derivative function can be extended to accept a sequence of characters.

Given a string constant l = c0 · · · cn−1 and a regular expression R, the string derivative

function is defined as follows:

∂lR = ∂cn−1 · · · ∂c0R. (4.50)

Corollary 5 For any concrete term R of Lan, and for any non-empty string literal l,

s.t. l ∈ L(R) iff ε ∈ L(∂lR).

Proof: We prove by induction on the structure of a regular expression. The base

case can be proved by Theorem 7, that is, if a character c is in a regular expression

R, then L(∂cR) must contains the empty string. We assume that Formula 4.50

holds for smaller regular expressions. We now show that when l = c0 · · · cn, the

formula still holds. c0 · · · cn ∈ L(R) iff c1 · · · cn ∈ L(∂c0R). By hypothesis, we have

c1 · · · cn ∈ L(∂c0R) iff ε ∈ L(∂c1···cnR). Therefore, we can conclude that l ∈ L(R) iff

the empty string is in L(∂lR). �

First Characters Function

Now we define the first characters function α. It takes a term of Lan R and

returns a set of characters where any string in the language of R must begin with

one of the characters in the set, i.e., α(R) = {c | c · l ∈ L(R), for some l}. The first

characters function is shown in Figure 4.7.

This function is used for the intersection algorithm. It is an optional function,

but it helps reducing unnecessary computation.

134

α(rempty) = ∅ (4.51)

α(set(ε)) = ∅ (4.52)

α(set(con(c, s))) = {c} (4.53)

α(allchars) = Σ (4.54)

α(rcon(R1, · · · , Rn)) = α(R1) ∪ · · · ∪ α(Rn) (4.55)

α(union(R1, · · · , Rn)) = α(R1) ∪ · · · ∪ α(Rn) (4.56)

α(inter(R1, · · · , Rn)) = α(R1) ∩ · · · ∩ α(Rn) (4.57)

α(star(R)) = α(R) (4.58)

Figure 4.7. First characters function for concrete regular expressions, where c is a
character, and R, Ri’s are regular expressions.

Lemma 30 The function α, with respect to the rules in Figure 4.7, terminates on

any regular expression R. We have α(R) = {c | c · l ∈ L(R), for some l}.

Proof: The correctness proof of this function follows the definition of regular expres-

sions. �

Intersection of Concrete Regular Expressions

In our calculus, we use a derivative-based algorithm to compute the intersec-

tion of two concrete regular expressions. To start with the intersection algorithm used

in our calculus, we first introduce several lemmas which follow the step of Theorem 7.

Lemma 31 Let R be an arbitrary regular expression. R can be normalized to the

135

form:

union(ite(δ(R), set(ε), rempty),⋃
c∈Σ

(rcon(set(c), ∂cR))).

Proof: Any regular expression may or may not contain the empty string, and the

first part ite(δ(R), set(ε), rempty) takes care of it.

For any non-empty strings in the language of R, it must begin with a character

(from Σ), say c. By the definition of the derivative function (in Theorem 7) L(∂cR) =

{s | c · s ∈ L(R)}, we know that all suffixes of the strings (in the language of R)

beginning with c, can be represented as rcon(set(c), ∂cR). By Theorem 7, if a regular

language does not contain a string beginning with c, ∂cR returns rempty. Thus, the

non-empty strings in L(R) can be taken care of by
⋃
c∈Σ(rcon(set(c), ∂cR)).

Therefore, any regular expression can be normalized to the above form. �

Note that there is a unique normal form for every regular expression obtained

by applying the derivative algorithm. Therefore, Lemma 31 have our näıve version

of the intersection algorithm.

Lemma 32 (Näıve Intersection) Let R1 and R2 be two arbitrary regular expres-

sions. The intersection of R1 and R2, inter(R1, R2), can be denoted as

union(ite(δ(R1) ∧ δ(R2), set(ε), rempty),⋃
c∈Σ

(rcon(set(c), inter(∂cR1, ∂cR2)))).

Proof: The proof is immediate by converting these two regular expressions R1 and

136

R2 into their normal forms (shown in Lemma 31), and then converting the intersection

operations into conjunctions. �

The formula in Lemma 32 can be used as an algorithm for computing the

intersection of two regular expressions. However, this näıve version of intersection al-

gorithm is not terminating in general. For instance, ∂a(inter(star(set(a)), star(set(a))))

is equal to inter(star(set(a)), star(set(a))), which leads to an unproductive computa-

tion. To counter this, we introduce more properties.

Note that if the languages of two regular expressions are equal, we say these two

regular expressions recognize the same language. Two regular expressions recognizing

the same language, may not have the same syntactic form.

Example 10 The regular expression rcon(set(aa), star(set(aa))) and the regular ex-

pression rcon(star(set(aa)), set(aa)) denote the same language. �

Let R be a regular expression. By Theorem 7, we have ∂sR is a regular

expression, for any arbitrary string s. We use ∂R to denote a set of languages that

∂sR can generate (for all string s), i.e., L(∂R) = {L(∂sR) | s ∈ A∗}. We call this set

the derivative set of R. We now show the cardinality of this set (denoted as |∂R|) is

finite.

Lemma 33 Let R be an arbitrary regular expression, the cardinality of the derivative

set of R is finite.

Proof: We show by induction on the number of regular expression operators in the

regular expression R.

137

Base Case: If there is no operator in R, we have three cases.

� If R = rempty, we have ∂crempty = rempty,∀c ∈ Σ. We say |∂rempty| = 1.

� If R = set(ε), we have ∂cset(ε) = rempty,∀c ∈ Σ. We say |∂set(ε)| = 1.

� If R = set(s), s 6= ε, we have ∂aset(set(con(a, t))) = set(t) and ∂cset(set(s)) =

rempty,∀c ∈ Σ/{a}. We say |∂set(s)| = 2.

Induction Hypothesis: Given a regular expression R and there are N operators

in R, then |∂R| is finite.

Step Case: Assume a regular expression R contains N + 1 operators. We show

the property hold by proving the following four cases. Note that we only need to

show that only finitely many languages are generated by applying derivative function

to one character. The induction hypothesis will take place after that.

� AssumeR = rcon(R1, R2). If δ(R1) = false, by definition, we have ∂crcon(R1, R2)

is equal to rcon(∂cR1, R2). Thus, |∂rcon(R1, R2)| = |∂R1|. By Induction Hy-

pothesis, this number is finite.

If δ(R1) = true, by definition, we have ∂crcon(R1, R2) is equal to the union of

rcon(∂cR1, R2) and ∂cR2. Thus, |∂rcon(R1, R2)| ≤ |∂R1| × |∂R2|. By Induction

Hypothesis, this number is finite.

� Assume R = union(R1, R2). By definition, we have ∂cunion(R1, R2) is equal

to union(∂cR1, ∂cR2). Thus, |∂union(R1, R2)| ≤ |∂R1| × |∂R2|. By Induction

Hypothesis, this number is finite.

138

� Assume R = inter(R1, R2). By definition, we have ∂cinter(R1, R2) is equal to

inter(∂cR1, ∂cR2). Thus, |∂inter(R1, R2)| ≤ |∂R1| × |∂R2|. By Induction Hy-

pothesis, this number is finite.

� Assume R = star(R1). By definition, we have ∂cstar(R1) is equal to the con-

catenation of ∂cR1 and star(R1). Thus, |∂star(R1)| = |∂R1|. By Induction

Hypothesis, this number is finite.

It concludes that |∂R| is finite, for any R. �

Based on Lemmas 32 and 33, we provide another intersection algorithm. This

algorithm was originally described in [84, 85] and we made some modifications accord-

ing to our needs. Notice that deciding whether a language is equal to the intersection

of two other languages is of NON-ELEMENTARY complexity [4]. Moreover, scan-

ning over all characters over larger alphabet is impractical (e.g., UTF-8 contains over

one million characters). Because of the expensive complexity in computing an inter-

section, most algorithms use an approximation for such computation (e.g., [15, 78]).

Although our algorithm does not use approximation, due to the theoretical complex-

ity, we cannot avoid exponential growth in general.

Any regular expression R can be expressed by a pair 〈R1, R2〉, namely co-RE,

where the first regular expression is for the repeating part and the second one is for the

residue, i.e., R = rcon(star(R1), R2). The function rcov : 〈Lan, Lan〉 → Lan converts a

co-RE (a pair of regular expressions) to its corresponding regular expression.

A regular expression is called elementary if it is either rempty or set(ε). When

computing an intersection of two non-elementary regular expressions (e.g., R1 and

139

R2 where neither is elementary), a temporary placeholder VR1,R2 may be used to

represent the actual value of the intersection.

The function covp : Lan→ 〈Lan, Lan〉 converts a regular expression to a co-RE,

based on the placeholder p. This function is defined as follows:

� covp(rempty) = 〈rempty, rempty〉

� covp(p) = 〈set(ε), rempty〉

� covp(R) = 〈set(ε), R〉 if p does not occur in R

� covp(rcon(R1, R2)) = 〈rcon(R1, R3), R4〉 if p occurs in R2 but not in R1, where

covp(R2) = 〈R3, R4〉

� covp(union(R1, R2)) = 〈union(R3, R5), union(R4, R6)〉, where covp(R1) = 〈R3, R4〉

and covp(R2) = 〈R5, R6〉

The function π′C : 〈Lan, Lan〉 → Lan computes the intersection with the cache

C, where C is a set of placeholders.

� π′C(R1, R2) = rempty if either R1 or R2 is rempty

� π′C(R,R) = R

� π′C(R1, set(ε)) = set(ε), where δ(R1) = true

� π′C(R1, set(ε)) = rempty, where δ(R1) = false

� π′C(set(ε), R2) = set(ε), where δ(R2) = true

140

� π′C(set(ε), R2) = rempty, where δ(R2) = false

� π′C(R1, R2) = VR1,R2 if VR1,R2 ∈ C

� π′C(R1, R2) = rcov(covVR1,R2
(union(set(ε),⋃

c∈α(R1)∩α(R2) rcon(set(c), π′C∪{VR1,R2
}(∂c(R1), ∂c(R2)))))

if VR1,R2 6∈ C and δ(R1) = true and δ(R2) = true

� π′C(R1, R2) = rcov(covVR1,R2
(⋃

c∈α(R1)∩α(R2) rcon(set(c), π′C∪{VR1,R2
}(∂c(R1), ∂c(R2))))

if VR1,R2 6∈ C and either δ(R1) = false or δ(R2) = false

Therefore, the intersection π(R1, R2) = π′∅(R1, R2).

Theorem 8 Given two arbitrary regular expressions, the intersection function ter-

minates and correctly returns a regular expression whose language is the intersection

of the two.

Proof: The correctness is given by Lemma 32. The termination proof is a conse-

quence of Lemma 33. More detailed proof is provided in [59, 6]. �

Splitting Function

Given a membership constraint in(t, R), where t is a concatenation of two

string terms t ≈ con(s1, s2), one intuitive way for finding a model for the concatenated

strings is to break the regular expression into two regular expressions, so that the first

string is in the language of the first sub-expression and the second string is in the

language of the second sub-expression.

141

This idea has some similarities with the normalization idea in Chapter 3. Solv-

ing a membership constraint using this approach requires consideration of all possible

splits. In other words, if a membership constraint in(con(s1, s2), R) is unsatisfiable,

it is unsatisfiable for all splits. If it is satisfiable, then it is satisfiable for at least one

split. Formally, we have the following equation:

in(con(s1, s2), R)⇐⇒

∃r1, r2 : Lan. R ≈ rcon(r1, r2) ∧ in(s1, r1) ∧ in(s2, r2). (4.59)

One approach for utilizing this idea is to represent R as an automaton and

split the automaton [1]. Obviously, every regular expression can be associated with

an automaton by Kleene’s Theorem in Section 2.3. Also, we can always break a

Finite-state Automaton (FA) into two pieces. The general algorithm for splitting an

FA can be described as follows:

Let ls, lt be two string literals, R be a concrete regular expression, A =

〈Q,A, δ, q0, F 〉 be a DFA that recognizes L(R), then we have :

ls · lt ∈ L(R) iff
∨
q∈Q

ls ∈ L(Rl
q) ∧ lt ∈ L(Rr

q), (4.60)

where Rl
q is a regular expression whose language is recognized by 〈Q,A, δ, q0, q〉 and

Rr
q is a regular expression whose language is recognized by 〈Q,A, δ, q, F 〉.

Because the number of states in a DFA is finite, the number of literals in the

disjunction is finite. Formula 4.60 provides a theoretical basis for regular expression

splitting. However, the computation is very expensive because :

� conversion from a regular expression to a DFA is expensive, and

142

� conversion from a DFA to a regular expression is also expensive.

Therefore, a novel idea for splitting any regular expression without consulting to a

DFA is of a high interest.

We define our splitting function β that maps a regular expression to a set of

regular expression pairs in Figure 4.8.

β(rempty) =∅ (4.61)

β(set(c0 · · · cn−1))) ={ 〈set(ε), set(c0 · · · cn−1)〉,
〈set(c0), set(c1 · · · cn−1)〉,
...

〈set(c0 · · · cn−1), set(ε)〉 } (4.62)

β(rcon(R1, · · · , Rn)) ={ 〈rcon(R1, · · · , Ri−1, r1), rcon(r2, Ri+1, · · · , Rn)〉
| 〈r1, r2〉 ∈ β(Ri),∀i ∈ [1, n] } (4.63)

β(union(R1, · · · , Rn)) =β(R1) ∪ · · · ∪ β(Rn) (4.64)

β(inter(R1, · · · , Rn)) =β(π(R1, · · · , Rn)) (4.65)

β(star(R)) ={ 〈set(ε), set(ε)〉 } ∪
{ 〈rcon(star(R), r1), rcon(r2, star(R))〉 | 〈r1, r2〉 ∈ β(R) }

(4.66)

Figure 4.8. Beta function for concrete regular expressions, where ci’s are characters,
and Ri’s are regular expressions.

The splitting function correctly partitions a regular language with all possible

cases, as shown in Lemma 34.

143

Lemma 34 For any string literals ls and lt, and for any concrete term R of sort Lan,

if ls · lt in the language of R, then there exists a pair 〈R1, R2〉 in β(R), s.t. ls ∈ L(R1)

and lt ∈ L(R2).

Proof: We prove by induction on the structure of a regular expression, following

Formulas 4.61— 4.66 of the function β in Figure 4.8 for splitting a regular expression.

Note that because the number of symbols in a regular expression is finite and the

function β never introduces new symbols, it always terminates.

Base cases are Formulas 4.61— 4.62. By the definition, Formulas 4.61— 4.62

hold trivially.

For Formula 4.63, we prove by induction on the size of concatenation N

(the number of regular expressions in the concatenation). The base case (N = 0

and N = 1) holds trivially. Now assume for all regular expressions with up to

N concatenated expressions, the lemma holds. And assume we have N + 1 regu-

lar expressions. We pick one sub-regular expression in R, say Ri. By assumption,

β(Ri) splits Ri correctly and generates all possible pairs. Also, rcon(R1, · · · , Rn) ≈

rcon(rcon(R1, · · · , Ri−1, r1), rcon(r2, Ri+1, · · · , Rn)), for all r1, r2 pairs. Because for

each pair of r1 and r2, Ri ≈ rcon(r1, r2) and those are all splits for Ri by IH, the

algorithm will return all possible splits.

Formula 4.64 holds because of the semantics of the operation union. For-

mula 4.65 holds because of Theorem 8. Formula 4.66 holds since star(R) is equal to

union(set(ε), rcon(R, star(R))) and by a similar reason for Formula 4.63. �

144

Concrete Length Function

We now extend the signature of the theory of regular expressions with one

extra symbol rep : Lan × Int → Lan. rep is an operation that takes two terms: a

term of sort Lan and a term of sort Int. The meaning of rep(R, i) is to represent

i-replications of R in a concatenation, i.e., for any model M, s.t.

M[[rep(R, i)]]⇐⇒M[[rcon(R,R, · · · , R︸ ︷︷ ︸
M[[i]] copies

)]]. (4.67)

Note that for an arbitrary application of the star operation, for an arbitrary

string in L(star(R)), there exists a non-negative number n, s.t. this string is also in

L(rep(R, n)). As a consequence, in(s, star(R)) is equivalent to ∃i : Int.in(s, rep(R, i))

and i ≥ 0 in the extended theory.

We call a regular expression is an extended regular expression if it contains

symbols from the core signature as well as the symbol rep. If R is an extended regular

expression and S is a set of linear arithmetic constraints, we use ||R, S|| to denote a

function that returns a length term and a set of linear arithmetic constraints, s.t. a

length term (together with the set) that represents lengths of all strings that are in

the language of R (if S is the empty set).

Our algorithm is described by the rules in Figure 4.9. It works from top down.

Initially, we have a regular expression with the empty length condition: ||R, S||, where

S is a set of linear constraints over lengths and initially, it is the empty set.

Now we show that terms generated by the rules in Figure 4.9 are linear.

Lemma 35 For any regular expression R, if ||R, ∅|| = 〈k, S〉, both k and S contain

145

||set(s), S|| = 〈len(s), S〉 (4.68)

||rcon(R1, R2), S|| = 〈k, S1 ∪ S2 ∪ {k ≈ k1 + k2}〉
if ||R1, S|| = 〈k1, S1〉 and ||R2, S|| = 〈k2, S2〉 (4.69)

||star(R), S|| = ||rep(R, x), S ∪ {x ≥ 0}|| (4.70)

||rep(set(s), x), S|| = 〈(x× len(s)), S〉 (4.71)

||rep(rcon(R1, R2), x), S|| = 〈k, S1 ∪ S2 ∪ {k ≈ k1 + k2}〉
if ||rep(R1, x), S|| = 〈k1, S1〉 and ||rep(R2, x), S|| = 〈k2, S2〉

(4.72)

||rep(union(R1, R2), x), S|| = 〈k, S1 ∪ S2 ∪ {k ≈ k1 + k2, x ≈ x1 + x2, x1 ≥ 0, x2 ≥ 0}〉
if ||rep(R1, x1), S|| = 〈k1, S1〉 and ||rep(R2, x2), S|| = 〈k2, S2〉

(4.73)

||rep(star(R), x1), S|| = ||rep(R, x2), S ∪ {x1 ≈ 0⇒ x2 ≈ 0, x2 ≥ 0}|| (4.74)

Figure 4.9. Concrete regular expression length rules, where s is a term of sort String,
and ki’s, xi’s are non-negative terms of sort Int.

only linear arithmetic terms.

Proof: The only multiplication term is generated by Formula 4.71. Other formulas

do not generate non-linearity. Because there is no variable in regular expressions,

len(s) will return a natural number, and then x× len(s) is still a linear term.

Thus, the property holds. �

Lemma 36 For any regular expression R, the function for computing ||R, ∅||, with

respect to the rules in Figure 4.9, terminates.

Proof: Our termination measure is a lexicographic combination of :

146

1. the number of star operators,

2. the number of other regular expression operators.

If Formula 4.70 is applied, the first number decreases. In all other cases, the

second number decreases.

Thus, the algorithm is terminating. �

To simplify our proofs, we say a length n can be produced by a regular expres-

sion if there exists a string (in the language of that regular expression) whose length

is n.

Lemma 37 For any string literal s, and for any regular expression R, s.t. s ∈ L(R)

iff M |= len(s) ≈ k, S, for some model M, where ||R, ∅|| = 〈k, S〉.

Proof: Let R be an arbitrary regular expression. We show that ||R, ∅|| returns a

linear term (together with the set of current constraints) that represents all possible

lengths of the strings that are in the language of R.

The proof is by induction on the number of steps to the termination, which

also refers the final linear arithmetic term.

Base Case: If it is one step to the final length term, the regular expression has

to be either set(s) or rep(set(s), x), since Formula 4.68 and 4.71 are the only ones

generating linear arithmetic terms. If it is set(s), by Formula 4.68, the length term

is len(s) and it is the only length that this regular expression can produce. If it is

rep(set(s), x), by definition, we know that the length term is x× len(s), which reflects

Formula 4.71.

147

Induction Hypothesis: If ||R||.∅ is n (or less) steps to a final term, the final term

(together with the constraint set) represents all possible lengths that R can generate.

Step Case: Assume ||R||.∅ is n+ 1 steps to a final term. We consider all cases

for R.

If R is of the form rcon(R1, R2), then Formula 4.69 is applicable. By definition

of regular expressions, L(rcon(R1, R2)) = {s · t | s ∈ L(R1), t ∈ L(R2)}. If k1

represents an arbitrary length that R1 can produce k2 represents an arbitrary lengths

that R2 can produce, k represents a length that rcon(R1, R2) can produce, then k is

k1 + k2.

Formula 4.70 is correct by definition of the extended symbol rep.

If R is of the form rep(rcon(R1, R2), x), then Formula 4.72 is applicable. By

definition of regular expressions, the length L(rep(rcon(R1, R2), x)) = {(s · t)x | s ∈

L(R1), t ∈ L(R2)}. With respect to length only, this set is equal to {sx · tx | s ∈

L(R1), t ∈ L(R2)}, or L(rep(R1, x))∪L(rep(R2, x)) If k1 represents an arbitrary length

that L(rep(R1, x)) can produce, k2 represents an arbitrary length that L(rep(R2, x))

can produce, k represents a length that rep(rcon(R1, R2), x) can produce, then k is

k1 + k2.

If R is of the form rep(union(R1, R2), x), then Formula 4.73 is applicable. By

definition of regular expressions, an arbitrary length of L(rep(union(R1, R2), x)) can

be represented by a length of L(rep(R1, x1)) plus a length of L(rep(R2, x2)), where

x1 and x2 are non-negative integers and x = x1 + x2. Intuitively, if a string is in the

language of x-fold of union(R1, R2), there exists two non-negative integer x1 and x2

148

and x = x1 + x2, and some part of the string must be in the language of x1-fold of

R1 while the rest must be in the language of x2-fold of R2. Thus, if k1 represents an

arbitrary length that L(rep(R1, x1)) can produce, k2 represents an arbitrary length

that L(rep(R2, x2)) can produce, k represents a length that rep(rcon(R1, R2), x) can

produce, then k is k1 + k2.

If R is of the form rep(star(R), x1), then Formula 4.74 is applicable. We con-

sider two cases: either x1 = 0 or x1 > 0.

� Case x1 = 0: It is clear that the language is a singleton set which only contains

ε. Thus, it is equivalent to rep(R, 0). By Formula 4.71 in the next step, the

only length produced by the regular expression is 0.

� Case x1 > 0: If x1 is not equal to 0, for an arbitrary string in the language of

rep(star(R), x1), there exists another non-negative integer x2 s.t. the string is

also in the language of rep(star(R), x2).

Therefore, the algorithm preserves all possible lengths that a regular expression

can generate. �

4.1.4 Derivation Rules

In this subsection, we introduce our derivation rules for handling concrete

membership constraints. These rules can be classified into the following groups:

interaction, intersection, main and length reduction. These rules may depend on the

functions in the previous subsection. We will show that our proof procedure is a

decision procedure for concrete membership and length constraints.

149

R-A-Prop
len(s) ≈ 1 ∈ R

A := A, len(s)↓≈ 1

R-S-Prop
s ≈ t ∈ R

S := S, s ≈ t

R-Conflict
false ∈ R

unsat

Figure 4.10. Rules for interactions, where s and t are terms of String.

Interaction Rules

The rules in Figure 4.10 model the interactions among R, S, and A. By the

normalization rules, some membership constraints will be normalized to the form

len(s) ≈ 1. This equality will be passed to A by the rule R-A-Prop. Similarly, if

a membership constraint is normalized to s ≈ t, where one of the two terms is a

string literal, this equality will be passed to S by the rule R-S-Prop. If a membership

constraint is normalized to false, the derivation is closed by the rule R-Conflict.

Intersection Rules

We introduce two intersection rules in Figure 4.11. In R-C-Inter-1, the pro-

cedure gets a concrete regular expression whose top symbol is inter. The procedure

tries to replace the intersection with a new regular expression by the intersection

algorithm. Similarly, when the same string is in two separate languages (recognized

by different regular expressions), we try to merge these two regular expressions by

the intersection algorithm in R-C-Inter-2.

Notice that the correctness is proved by Lemma 32. After applying either

R-C-Inter-1 or R-C-Inter-2, either the number of unprocessed regular membership

150

R-C-Inter-1
in(s, inter(R1, R2)) ∈ R V(R1) = V(R2) = ∅

R := R, in(s, π(R1, R2))↓

R-C-Inter-2
in(s, R1), in(t, R2) ∈ R N[s] = N[t] V(R1) = V(R2) = ∅

R := R, in(s, π(R1, R2))↓

Figure 4.11. Rules for handling the intersection of two concrete regular expressions,
where s and t are terms of String, and R1, R2 are regular expressions.

constraints or the number of intersections decreases. Since those numbers are finite

at the beginning, the number of applications of these two rules is finite.

Main Derivation Rules

Now, we introduce our main deduction rules in Figure 4.12. Note that regular

expressions contain no string variables, and after rewriting strings on the left hand

side of membership constrains are either a variable or a concatenation of atomic

strings.

If a string is a concatenation, it has to be begun with either a character or

a variable. If a string starts with a character, the rule R-Consume can be applied

and it consumes this character; If a string starts with a variable, the rule R-Split can

be applied and in each branch we get two more membership constraints, where one

restricts the variable and the other restricts the rest of the string.

Lemma 38 If a closed derivation tree with an initial configuration 〈S0, A0, R0, ∅, ∅, ∅,

∅〉 and the derivation involves applications of all rules in Chapter 3 as well as R-

Consume and R-Split, then S0 ∪ A0 ∪R0 is unsatisfiable.

Proof: This lemma can be viewed as an extension of Theorem 1, where additional

151

term rewriting rules and R-Consume and R-Split are added to the calculus. Because

of Lemmas 28, 8 and 24, we only need to focus on the correctness of R-Consume and

R-Split. In other words, it is enough to show that the premises are equivalent to the

conclusion in either rule.

For R-Consume, in(con(c, s), R) is equal to in(s, ∂c(R)) by Theorem 7. For

R-Split, in(con(x, s), R) is equal to
⋃
〈r1,r2〉∈β(R)(in(x, r1) ∧ in(s, r2)) by Lemma 34.

Thus, the property holds. �

Note that applying the same rule to the same membership constraint will

not generate new constraints. We call a membership constraint processed if either

R-Consume or R-Split has applied to that constraint to completion; otherwise, it is

unprocessed. Also, R-Consume and R-Split cannot apply simultaneously to the same

constraint because the premises of these two rules are disjoint.

Because the number of symbols in the left hand side of a membership constraint

is finite and every time when either R-Consume or R-Split that number decreases, the

derivation will terminate either being closing or being saturated by either R-Consume

or R-Split.

Lemma 39 If a derivation tree with an initial configuration 〈S0, A0, R0, ∅, ∅, ∅, ∅〉

is saturated with configuration 〈Sn, An, Rn, Fn, Nn, Cn, Bn〉 (by all rules up to now

expect R-Star), then either all constraints in Rn are processed or unprocessed con-

straints in Rn are in the form of in(xi, Ri), where each xi appears exactly once in the

unprocessed set.

Proof: For an arbitrary membership constraint in(s, R), the string term s must be

152

in one of the forms: (i) a string constant (e.g., l), (ii) a variable of sort String (e.g.,

x), (iii) a string term starting with a character (e.g., con(c, t)), or (iv) a string term

starting with a variable (e.g., con(x, t)).

Because the derivation tree is saturated by all rules up to now expect R-Star,

� An unprocessed constraint cannot be in the form (i); otherwise, a rewriting rule

can be applied.

� An unprocessed constraint cannot be in the form (iii); otherwise, the rule R-

Consume can be applied.

� An unprocessed constraint cannot be in the form (iv); otherwise, the rule R-

Split can be applied.

Thus, the only unprocessed ones are in the form (ii).

If a configuration is saturated by all rules (up to now) expect R-Star, we will

not have two unprocessed constraints in the form (ii) with the same string variable.

Assume that we are left with two unprocessed constraints in the form (ii) with the

same string variable (i.e., in(x,R1) and in(x,R2)), the rule R-C-Inter will be applied.

Therefore, after saturation by all rules (up to now) expect R-Star, either we

have no unprocessed constraints in Rn, or constraints in the unprocessed set in Rn

are in(x1, R1), · · · , in(xm, Rm), where all xi’s are distinct. �

By Lemma 39, now we only need to consider solving constraints of the form

in(x,R) and length constraints.

153

R-Consume
in(t, R) ∈ R N [t] = (c,u)

R := R, in(con(u), ∂c(R))↓

R-Split
in(t, R) ∈ R N [t] = (x,u)

‖〈R1,R2〉∈β(R) R := R, in(x,R1)↓, in(con(u), R2)↓

Figure 4.12. Concrete membership derivation rules, where t is a term of String, and
R,R1, R2 are regular expressions.

A length constraint of a regular expression provides all possible lengths of

strings that are in the language of this regular expression.

Length Rules

One way to solve this problem is to add length constraints for such membership

constraints. However, the näıve method may introduce some non-linear constraints

which may not be solved.

Our approach is to generate, for the regular expression in each unprocessed

constraint, a set of linear arithmetic constraints that represents all possible lengths

of strings in the language of this regular expression. Then, we send linear arithmetic

constraints to the LIA solver.

Before discussing our algorithm, we introduce one more set of reduction rules

for simplifying unit membership constraints in Figure 4.13. Correctness follows the

definition of regular expressions. After applying these rules, the unprocessed con-

straints are in the form of in(x, star(R)).

Now we introduce our regular expression rule for generating length constraints

over membership constraints in Figure 4.14. Note that k is a linear term of sort Int

and S is a set of additional linear constraints. They are computed by the algorithm

154

R-S-Concat
in(x, rcon(R1, R2)) ∈ R N [x] = (x)

R := R, in(k1, R1)↓, in(k2, R2)↓ S := S, x ≈ con(k1, k2)

R-S-Union
in(x, union(R1, R2)) ∈ R N [x] = (x)

R := R, in(x,R1)↓ ‖ R := R, in(x,R2)↓

Figure 4.13. Unit membership reduction rules, where x is a term of String, and R1, R2

are regular expressions.

R-Len
in(x,R) ∈ R ||R, ∅|| = 〈k, S〉

A := A, len(x) ≈ k↓, S↓

Figure 4.14. Regular membership length rule, where k is a term of Int, and S is a set
of linear arithmetic constraints.

described in Figure 4.9.

Linear arithmetic constraints generated by R-Len will be sent to the LIA

engine. Note that before applying this rule, we only have membership constraints

of the form in(x,R) in R. In other words, if we assign any string in R to x, R will

be satisfied. If there is no additional arithmetic constraint from the input, those

membership constraints can be trivially satisfied (e.g., simply by assigning the first

enumerated string in the language of R). If there are some additional arithmetic

constraints from the input, the LIA engine will check the consistence with the ones

added by R-Len. If the LIA engine finds a conflict, then this branch will be closed;

otherwise, the derivation tree is saturated.

4.1.5 Correctness

We now show that our calculus for handling regular membership constraints

together with word equations and length constraints is Refutation Soundness and

155

Solution Soundness. We use TSRL to denote the theory of unbounded strings, regular

membership and length constraints.

Theorem 9 (Refutation Soundness for constraints over TSRL) For any closed

derivation tree rooted by an initial configuration 〈S0, A0, R0, ∅, ∅, ∅, ∅〉, the set S0 ∪

A0 ∪R0 is unsatisfiable in TSRL.

Proof: The proof is as an extension of Lemma 38, which is an extension of Theorem 1.

Our hypothesis is that for all closed derivation trees with depth of at most n and an

initial configuration 〈S,A,R, F,N,C,B〉, the set S ∪ A ∪ R is unsatisfiable in TSRL.

Thus, we only need to show refutation soundness in the induction step when R-Len

is applied.

Let c0 = 〈S0, A0, R0, ∅, ∅, ∅, ∅〉 be the configuration of the root of a closed

derivation tree of depth n+ 1, the rule R-Len is applied at the first step, we want to

show that the set S0 ∪ A0 ∪R0 is unsatisfiable in TSRL.

Assume c1 = 〈S1, A1, R1, · · · 〉 is the configuration of the child node after ap-

plying R-Len to some membership constraint in(x,R), and ||R, ∅|| = 〈k, S〉. By

hypothesis, we know that S1 ∪ A1 ∪ R1 is unsatisfiable. By Lemma 37, we have

in(x,R) |=TSRL len(x) ≈ k, S ′, where ||R, ∅|| = 〈k, S ′〉. By R-Len, we know S0 = S1,

R0 = R1 and A1 = A0 ∪{len(x) ≈ k}∪S ′, where ||R, ∅|| = 〈k, S ′〉. Thus, S0 ∪A0 ∪R0

is unsatisfiable.

This concludes our proof. �

156

To prove the solution soundness, we introduce some more definitions. An

extended regular expression is called flattened if it is in the form of

rcon(R1, · · · , Rn), (4.75)

where Ri is either an atomic regular expression (i.e., rempty or set(s)) or a rep term

of an atomic regular expression (e.g., rep(set(s), n)).

Let R be an arbitrary regular expression. Consider rules in Figure 4.14 expect

Formulas 4.68 and 4.71 and ignore the set S. If we apply the length function to R to

completion, we will eventually get a new regular expression, which is one step to the

final arithmetic term if we apply all these rules. We call this regular expression the

flattened form of R. The flattened form of R is a flattened regular expression.

Lemma 40 Let in(t, R) be an arbitrary membership constraint, rcon(rep(set(s1), x1),

· · · , rep(set(sm), xm)) be the flattened form of R (generated by rules in Figure 4.14

expect Formulas 4.68 and 4.71), where xi’s are natural numbers. Then, sx11 · · · sxmm is

a string in L(R).

Proof: We show the proof by induction of the number of steps that we use to build

the flatten form of a regular expression based on the rules in Figure 4.9.

Base Case: If a regular expression is in the form of either set(s) or rep(set(s), x),

the flatten form is itself. s is the only string in the language of set(s); sx is the only

string in the language of rep(set(s), x), where n ≥ 0.

Induction Hypothesis (IH): If a regular expression R need n steps (or less) to

build its flatten form (rcon(rep(set(s1), x1), · · · , rep(set(sm), xm))) based on the rules

157

in Figure 4.9, then sx11 · · · sxmm is a string in L(R).

Step Case: Assume a regular expression R need n+1 steps. We show all cases.

If a regular expression is in the form of rcon(R1, R2), by IH, we have r1 is the

flattened form of R1 and r2 is the flattened form of R2. By definition, we know for

any string s in L(r1) is in L(R1) and any string t in L(r2) is in L(R2), s · t is in

L(rcon(R1, R2)).

If a regular expression is in the form of star(R), by IH we have r is the flattened

form of rep(R, n). By definition, we know for any string s in L(r) is in L(rep(R, n)).

s is also in L(star(R)).

If a regular expression is in the form of rep(rcon(R1, R2), x), by IH we have

r1 is the flattened form of rep(R1, x) and r2 is the flattened form of rep(R2, x). By

definition, we know for any string s in L(r1) is in L(rep(R1, x)) and any string t in

L(r2) is in L(rep(R2, x)), con(s, t) is in L(rep(rcon(R1, R2), x)).

If a regular expression is in the form of rep(union(R1, R2), x), by IH we have

r1 is the flattened form of rep(R1, x1) and r2 is the flattened form of rep(R2, x2). By

definition, we know for any string s in L(r1) is in L(rep(R1, x1)), and any string t in

L(r2) is in L(rep(R2, x2)). s · t is in L(rep(union(R1, R2), x)).

If a regular expression is in the form of rep(star(R), x1), by IH we have r is

the flattened form of rep(R, x2). By definition, we know for any string s in L(r) is in

L(rep(R, x2)), s is also in L(rep(star(R), x1)).

Therefore, the property holds.

158

By Lemma 40, if we have in(x,R), we can build a model for x from the flattened

form of R.

Example 11 The flattened form of star(rcon(star(set(aa)), set(bbb), star(set(aaa))))

is rcon(rep(set(aa), x1), rep(set(bbb), x2), rep(set(aaa), x3)). Assume we have a mem-

bership constraint in(x, star(rcon(star(set(aa)), set(bbb), star(set(aaa))))). We add the

regular expression length constraints for x, if the arithmetic engine finds a model for

x1, x2, x3, say x1 7→ 1, x2 7→ 2, x3 7→ 3, we can build a model for x based on the

arithmetic model, which is x 7→ aabbbbbbaaaaaaaaa. �

Lemma 41 Let in(x,R) be the only unprocessed membership constraint in R. If its

length constraints are added by R-Len and a LIA engine finds a model, we can always

build a model for x.

Proof: Note that we always process membership constraints after processing word

equations. Because of rules in Figure 4.13, the regular expression is in the form of

star(R1). If there is no additional length constraint, any string in the language of

star(R1) is a model for x, thus, we can simply assign x to the empty string. If there

are some length constraints on x, we need to find a string (in the language of star(R1))

that satisfies length constraints.

By Lemma 37, we know that the added length term represents all possible

lengths that the regular expression can generate. If there is no conflict in LIA, we

know that we can find a length for x that is compliant with both regular expression

and length constraints.

159

By Lemma 40, we can construct a model for x based on the models of coeffi-

cients in the flattened form of R. �

Theorem 10 (Solution Soundness for constraints over TSRL) If a derivation

tree with an initial configuration 〈S0, A0, R0, ∅, ∅, ∅, ∅〉 contains a saturated configu-

ration, then the set S0 ∪ A0 ∪ R0 is satisfiable in TSRL. The saturated configuration

induces a satisfying assignment for the set S0 ∪ A0 ∪R0 in TSRL.

Proof: The proof is an extension of Theorem 2. We need to focus on how to build

a model for variables: (i) their normal forms are themselves, and (ii) they are in the

membership constraints of the form in(x,R).

Note that because the derivation tree is saturated, we have the length for x

and also all the assignments for coefficients of the flattened form of R. By Lemma 41,

we can construct a model for x, and also the model of x is indeed a model.

Therefore, our calculus is solution sound. �

4.1.6 Decision Procedure

In this subsection, we provide the proofs of both refutation completeness and

solution completeness for our calculus over membership and length constraints. In

addition, we prove that our approach is a decision procedure for TRL.

Theorem 11 (Termination for constraints over TRL) For any derivation tree

rooted by an initial configuration 〈∅, A0, R0, ∅, ∅, ∅, ∅〉, the derivation tree is finite.

Proof: By Lemma 39, we know that given an initial configuration 〈∅, A0, R0, ∅, ∅, ∅, ∅〉,

it terminates either with an unsat result, or with a saturated configuration 〈Si, Ai, Ri,

160

Fi, Ni, Ci, Bi〉 (without regular expression length rules). The only unprocessed con-

straints in Ri are in the form of in(xi, Ri). Moreover, because of rules in Figure 4.13,

all Ri are in the form of star(R′i). In the first case where the derivation is closed, the

termination is obvious. Thus, we only need to show the termination for the second

case where the derivation tree is saturated without the rule R-Len.

Assume an arbitrary derivation subtree with a configuration 〈S0, A0, R0, F0,

N0, C0, B0〉, where constraints in R0 are in the form of in(xi, ri), N0 [xi] = (xi),∀xi,

and xi’s are distinct.

Note that the only possibly applicable rule is R-Len. By Lemma 37, all added

constraints are entailed by R0 in TRL. There is no change for S or R. All constraints (in

A) are linear arithmetic constraints from R-Len. By assumption of the LIA behavior,

the LIA engine will terminate. Since S will not be changed after the termination of

the LIA engine, the procedure terminates.

Therefore, the termination property holds. �

Theorem 12 (Solution Completeness for constraints over TRL) For any deriva-

tion tree rooted by an initial configuration 〈∅, A0, R0, ∅, ∅, ∅, ∅〉, where the set A0 ∪R0

is satisfiable in TRL, the derivation tree is saturated.

Proof: By Theorem 11, for any arbitrary configuration, the derivation terminates.

if the set A0 ∪ R0 is satisfiable in TRL, the derivation trees will be terminating. It

terminates either with a closed derivation tree or with a saturated derivation tree.

By Theorem 9, if it terminates with a closed derivation tree, A0 ∪R0 is unsat-

isfiable. By Theorem 10, if it terminates with a saturated derivation tree, A0 ∪R0 is

161

satisfiable.

In other words, if A0 ∪ R0 is satisfiable, and the derivation tree is closed,

Theorem 9 would be violated.

Therefore, our calculus is solution complete. �

Theorem 13 (Refutation Completeness for constraints over TRL) For any

derivation tree rooted by an initial configuration 〈∅, A0, R0, ∅, ∅, ∅, ∅〉, where the set

A0 ∪R0 is unsatisfiable in TRL, the derivation tree is closed.

Proof: Because our calculus is solution complete by Theorem 12, it is also refuta-

tion sound by Theorem 9, and the derivation terminates for every configuration by

Theorem 11, it is refutation complete. �

Theorem 14 (Decision Procedure for constraints over TRL) Let t be a deriva-

tion tree with an initial configuration 〈∅, A0, R0, ∅, ∅, ∅, ∅〉. If A0 ∪R0 is satisfiable in

TRL, the derivation tree is saturated; otherwise, it is closed.

Proof: Since our calculus is refutation complete (by Theorem 13), to prove our

calculus is a decision procedure, it is enough to show that for all satisfiable problems,

the derivation trees will be saturated, and for all unsatisfiable problems, the derivation

trees will be closed.

Since our calculus is refutation complete by Theorem 13, refutation sound by

Theorem 9 and terminating by Theorem 11, it is a decision procedure for TRL. �

162

4.2 Extensions

In this section, we will discuss two extensions of our calculus with respect to

membership constraints. We introduce additional rules for solving symbolic member-

ship constraints and for handling negative membership constraints lazily.

4.2.1 Symbolic Language Extension

Rules for handling symbolic membership constraints are extension to our cal-

culus. Since rules in Figure 4.12 are the main rules in our calculus, these rules depend

on the derivative function and the beta function. We expand the definition of these

functions first.

Note that if the language is denoted by concrete regular expression, we refer

to the rules in the previous section.

Symbolic Delta Function

The expanded symbolic delta function δ, takes a symbolic regular expression

as an input and returns a logical formula. The logical formula is evaluated to be true

iff the symbolic regular expression contains the empty string. The rules are shown in

Figure 4.15. Compared to rules for the constant delta function (shown in Figure 4.4),

the major differences are

� The result of constant delta function is a Boolean value, while the result of

symbolic delta function is a logical formula.

� Formulas 4.27 and 4.28 are replaced by Formula 4.77. Note that s in For-

mula 4.77 may contain variables of sort String.

163

δ(rempty) = false (4.76)

δ(set(s)) = s ≈ ε (4.77)

δ(rcon(R1, · · · , Rn)) = δ(R1) ∧ · · · ∧ δ(Rn) (4.78)

δ(union(R1, · · · , Rn)) = δ(R1) ∨ · · · ∨ δ(Rn) (4.79)

δ(inter(R1, · · · , Rn)) = δ(R1) ∧ · · · ∧ δ(Rn) (4.80)

δ(star(R)) = true (4.81)

Figure 4.15. Delta function for symbolic regular expressions, where s is a term of
String, and R1 and R2 are regular expressions.

� Formulas 4.29— 4.31 are applied eagerly, while Formulas 4.78— 4.80 are applied

lazily due to the possibility of variable existence.

Except for the above differences, the behavior is identical to its counterpart.

Therefore, when context is clear, we override the function symbol.

Symbolic Derivative Function

We extend the derivative function for concrete regular expression in Figure 4.6.

Because of the existence of string variables in a regular expression, it is hard to eagerly

compute a regular expression that fits the definition of derivative. Thus, we introduce

a new function æc,t which mimics the behavior of the derivative in constant cases. It

splits the regular expression lazily.

The function æc,t is always associated with a single constant character c and

a string term t, where c has a similar meaning as the one in the constant derivative

164

æc,t(rempty) = false (4.82)

æc,t(set(s)) = s ≈ con(c, t) (4.83)

æc,t(rcon(R1, R2)) = (δ(R1) ∧ æc,t(R2)) ∨
(t ≈ con(k1, k2) ∧ æc,k1(R1) ∧ in(k2, R2)) (4.84)

æc,t(union(R1, R2)) = æc,t(R1) ∨ æc,t(R2) (4.85)

æc,t(inter(R1, R2)) = æc,t(R1) ∧ æc,t(R2) (4.86)

æc,t(star(R)) = t ≈ con(k1, k2) ∧ æc,k1(R) ∧ in(k2, star(R)) (4.87)

Figure 4.16. Derivative function for symbolic regular expressions, where s and t are
terms of String, c is a character, and R,R1, R2 are regular expressions. k1, k2 are fresh
variables of String.

function, t is a term of sort String that refers to a suffix of the string in a membership

constraint (e.g., if we have in(con(c, t), R), the rule R-Consume is applied, and it

adds æc,tR to G). This function takes a symbolic regular language R and returns a

formula F , s.t. in(con(c, t), R) is evaluated to be true iff F is evaluated to be true.

Extended Proof Procedure

We describe our proof procedure as an expansion of the one in Section 3.1.

Our procedure depends on the procedure of solving word equations. This procedure

happens after the procedure for solving word equations. Note that if a derivation is

saturated with respect to all rules described in Section 3.1, all string variables have

their normal forms.

Definition 19 Let c = 〈S,A,R,F,N,C,B〉 be a configuration, and R is a regular

165

expression in some membership constraint in R. We call R′ is a semi-normal form of

a regular expression if R′ is obtained by replacing each variable in R with its normal

form, i.e., R′ = R[xi 7→ N [xi]], ∀xi ∈ V(R). �

We override the normalization function symbol for this operation: we use R′ = NR

to denote that R′ is a semi-normal form of R based on the configuration c.

The main procedure is based on the repeated application of the calculus rules

according to the following stages:

Stage 1: Normalize string variables in word equations. In this stage, we apply all

rules of Chapter 3 to completion. If it returns unsat, the input constraints

are unsat regardless of membership constraints; otherwise, it is saturated

by rules for word equations.

Stage 2: Compute semi-normal form for each regular expression. Because the

derivation tree is saturated by rules for word equations, we know that

for every variable of sort String, we have its normal form in N. Thus, we

can replace each regular expression by its semi-normal form. The rationale

of this stage is that after semi-normalization we have a chance to neutral-

ize some symbolic regular expressions (by converting them into concrete

regular expression). Thus, we have some regular membership constraints

and length constraints. Based on Theorem 14, we know that our calcu-

lus is a decision procedure for the theory of concrete regular membership

and length constraints, and our procedure will terminate. Note that in

166

general, if we have symbolic membership constraints, our procedure is not

guaranteed to be terminating.

Stage 3: Apply rules for (symbolic) regular expressions. After semi-normalization

in the previous stage, if we still have the unprocessed membership con-

straints in R, we pick one unprocessed constraint. If the regular expression

of the constraint is constant, we process it and we know that our calculus is

a decision procedure for this theory; otherwise, we try to apply additional

rules in Figure 4.17.

Note that the language of symbolic regular expressions can be a context-

sensitive language.

Example 12 Consider the symbolic regular expression rcon(set(x), set(y), set(z)),

where in(x, star(set(a))), in(y, star(set(b))), in(z, star(set(c))) and len(x) ≈ len(y) ≈

len(z) 6≈ 0.

By pumping lemma, we can show that this language is not context-free. �

Although it is known that the emptiness problem for context-sensitive lan-

guages is undecidable [47], the decidability for the satisfiability problem of a symbolic

regular language still remains open. Since the satisfiability problem is harder than

the constant membership problem in general, it is unclear whether our calculus for a

general symbolic regular language will terminate for every problem (mainly because

of the rule R-S-Star).

The rule R-Consume is not applicable for symbolic membership constraints

167

R-S-Consume
in(t, R) ∈ R N[t] = (c,u) NR = R′ V(R′) 6= ∅

G := G, ∂c,t(R
′)

R-S-Split
in(t, R) ∈ R N[t] = (x,u) NR = star(R′) V(R′) 6= ∅

G := G, x ≈ con(k1, k2), con(u)↓≈ con(k3, k4),
in(k1, star(R′)), in(k4, rstar(R

′)), in(con(k2, k3), R′)

R-S-Star

in(con(x, s), R) ∈ R NR = star(R′)
V(R)′ 6= ∅ K(S) |= con(x, s) 6≈ ε

G := G, con(x, s) ≈ k1k2, in(k1, R
′), in(k2, star(R′))

Figure 4.17. Symbolic membership derivation rules, where s, t are terms of String, x
is a string variable, c is a character, u is a vector of string terms, and k1, k2, k3, k4 are
fresh string variables.

because the original derivative function only works on constant membership con-

straints. Thus, we introduce the rule R-S-Consume. Note that R-S-Consume works

with our extended symbolic derivative function (shown in Figure 4.16). The major

difference is that the symbolic derivative function generates a formula (instead of a

regular expression). This allows us to split the string variable t lazily.

The rule R-Split is not also applicable for symbolic membership constraints

because Formula 4.62 requires splitting a string constant. Instead, we introduce

another rule (R-S-Split) which mimics the behavior of the rule R-Split for splitting

symbolic regular expressions. Note that due to the rules in Figure 4.13, we always

get membership constraints in the form of in(x, star(R)), and since R′ is a symbolic

regular expression, the termination is not guaranteed.

In addition, we do not apply the rule R-Len because the constraints generated

by ||R|| are not linear in general. For instance, if we have in(x, star(set(y))), one

possible new length constraint is len(x) ≈ len(y) × k, where k is a fresh variable of

168

sort Int. In general, non-linear arithmetic is undecidable. Unless we have a proper

way to handle this sort of non-linear constraints, we have non-termination in general.

When we cannot apply the rule R-Len and as a workaround, we introduce

the rule R-S-Star. This rule is similar to the rule R-Star (which is disabled in this

chapter); however, we limit its application only to symbolic membership constraints

which have no other applicable rules in our calculus. This is also a reason why our

calculus is not guaranteed to be terminating for all symbolic membership constraints.

4.2.2 Negative Membership Extension

Another extension is with respect to negative membership constraints. Al-

though it is known that regular languages are closed under complementation, the

complexity of complementation computation is extremely high.

A classical method to compute the complement of a regular expression takes

the following steps:

1. it first computes an NFA which recognizes the language of the regular expres-

sion;

2. then, it converts the NFA to a DFA (in general the number of states in DFA

grows exponentially);

3. it computes a new NFA that recognizes the complement of the language which is

recognized by the old DFA (by flipping all accept states to intermediate states,

and vice versa);

169

4. finally, it converts the NFA back into a regular expression.

Therefore, we need to avoid this sort of expensive operations as much as pos-

sible. One idea is to solve negative membership constraints without applying the

complementation operation. We adopt the idea of finite model finding in solving

quantified formulas [76]. We reduce negative membership constraints to quantified

formulas over bounded integers. The algorithm is shown in Figure 4.18.

R-N-Empty
R = R′,¬in(s, rempty)

R = R′

R-N-Sigma
R = R′,¬in(s, allchars)

R = R′ A := A, len(s) 6≈ 1

R-N-Const
R = R′,¬in(s, set(t))

R = R′ S := S, s 6≈ t

R-N-Concat
R = R′,¬in(s, rcon(R1, R2))

R := R′ Q := Q,∀i : Int. 0 ≤ i ≤ len(s) =⇒
(substr(s, 0, i) 6∈ R1 ∨ substr(s, i, len(s)− i) 6∈ R2)

R-N-Union
R = R′,¬in(s, union(R1, · · · , Rn))

R = R′, s 6∈ R1, · · · , s 6∈ Rn

R-N-Inter
R = R′,¬in(s, inter(R1, · · · , Rn))

R := R′, s 6∈ R1 ‖ · · · ‖ R := R′, s 6∈ Rn

R-N-Star
R = R′,¬in(s, star(R)) S |= s 6≈ ε

R := R′ Q := Q,∀i : Int. 1 ≤ i ≤ len(s) =⇒
(substr(s, 0, i) 6∈ R ∨ substr(s, i, len(s)− i) 6∈ star(R))

Figure 4.18. Negative membership reduction rules, where s, t are terms of String, and
Ri’s are regular expressions.

The correctness of the rules R-N-Empty, R-N-Sigma and R-Concat follows

170

from the definition of regular expressions. rempty is a regular language that recognizes

the empty language. If a string is not in the set of all characters, its length must be

different from 1. Similarly, if a string s is not in a singleton set of t, then s is not

equal to t.

The correctness of the rules R-N-Union and R-N-Inter follows from the defi-

nition of regular expressions and logical expressions. If a string is not in the union of

languages, it is not in the any of these languages. If a string is not in the intersection

of languages, it is at least not in one of them.

If a string is not in the concatenation of two languages, then for every split

of the string, either the prefix is not in the first language, or the suffix is not in the

second language. Since strings are encoded as a finite sequence of characters, we can

split a string by enumerating all possible positions in the string and use substring

operations to represent both prefixes and suffixes (see Section 3.3). This is reflected

by the rule R-N-Concat.

Similarly, if a string is not in the Kleene star of a language (e.g., L(star(R))),

then the string is not the empty string and it is not in L(rcon(R, star(R))). We can

use the same argument for the correctness of the rule R-N-Concat. Thus, the rule

R-N-Star is correct.

4.3 Summary

In this chapter, we present our work for handling membership constraints.

This work can be considered as an extension of the work in Chapter 3.

Solving arbitrary word equations with length constraints may lead to introduc-

171

tion of membership constraints, in Chapter 3 we described a relatively näıve method

for handling these constraints (by unrolling the Kleene stars via the rule R-Star).

This is also the main reason why our calculus is refutation incomplete in general.

In this chapter, we replaced this rule by a set of more complicated rules. With the

help of these new rules, we know that our calculus is a decision procedure for regular

membership and length constraints.

The set of rules in this chapter can be divided into three groups: (i) rules for

consuming a character in a regular expression via the derivative function, (ii) rules

for splitting regular expressions via the beta function, and (iii) rules for computing

all possible lengths that are recognized by a regular expression. We also proved that

our calculus is a decision procedure when the input only consists of concrete regular

membership constraints and length constraints.

In addition, we discussed two extensions of our calculus for: (i) solving sym-

bolic membership constraints (note that our rules for word equations will generate

this sort of constraints), and (ii) handling negative membership constraints lazily.

172

CHAPTER 5

RELATED WORK

A popular approach for solving string constraints, especially if they involve

regular expressions, is to encode them into automata problems. For example, [44]

presents an automata-based solver, DPrle, for matching problems of the form e ⊆

R where, in essence, R is a regular expression over a given alphabet and e is a

concatenation of alphabet symbols and string variables. This solver has been used

to check programs against SQL injection vulnerabilities. This approach has been

improved in later work by generating automata lazily from the input problem without

requiring a priori length bounds [45]. A comprehensive set of algorithms and data

structures for performing fast automata operations to support constraint solving over

strings is described in [43]. Generally speaking, there are two sorts of automaton-

based approaches:

� singleton-based (e.g., [35, 95]) where each transition in the automaton represents

a single character, and

� set-based (e.g., [91, 92, 45]) where each transition represents a set of characters.

Most of the tools based on these approaches offer very limited support to reason

about constraints mixing strings and other data types. Also, automata refinement

may act as a kind of bottleneck, even though it is very useful in solving membership

173

constraints. Further discussion can be found in [38, 55].

A different class of solvers is based on reducing string constraints to constraints

in other theories, such as bit-vectors. A successful representative of this approach is

the Hampi solver [51], which is used in a variety of static analysis systems. Hampi

works exclusively with string constraints over fixed-size string variables, and member-

ship constraints from fixed-size context-free languages but with one string variable.

Input problems are reduced first to bit-vector problems and then to SAT problems.

Hampi is reimplemented and extended to SHampi for translating high-level symbolic

computations into SMT queries [90].

An alternative approach (developed to support Pex [87] which is a white-box

test generation tool for .NET) targets path feasibility problems for programs using

the .NET string library [17]. In this approach, string constraints over a large set

of string operators, but with no language membership predicates, are abstracted to

linear integer arithmetic constraints and then sent to an SMT solver. Each satisfying

solution, if any, induces a fixed-length version of the original string problem which is

then solved using finite domain constraint satisfaction techniques.

Yet another related solver, Kaluza [82], lifts some restrictions of Hampi, and

supports unbounded strings and restricted regular expressions. The main algorithm,

similar to [17], first uses Yices [30], another SMT solver, for finding a model for the

lengths of all string variables, then using the model, sends the string constraints with

the additional fixed length constraints to Hampi. Note that it is possible for Yices to

return a model which may fail in Hampi (see [55] for more detailed discussion). This

174

communication happens recursively, i.e., when Hampi returns unsat, Kaluza needs

to ask Yices for another model. Kaluza answers unsat only when Yices returns

unsat. This approach has some similarities with our finite model finding approach.

Thus, it may not terminate in general [82].

The Java String Analyzer (JSA) [25] works on the language of Java string

constraints. It first translates Java string constraints into a flow graph, then analyzes

this flow graph by converting it into a context-free language. This language is approx-

imated to a regular one with the Mohri-Nederhof algorithm which is then encoded as

a multi-level automaton (MLFA). Compared to our work, JSA focuses exclusively on

Java string analysis, approximation and automaton conversion, while our approach

does not depend on any particular language, and solves string constraints primitively

without approximation.

Another idea utilized in [23] is to reduce the theory of strings to the the-

ory of bounded arrays, so that string manipulating functions can be supported.

Namely, a constraint logic programming (CLP)-based approach instantiates mod-

els over bounded-array-encoded strings. This approach is integrated into the solver

EMFtoCSP for solving string constraints. Pass [55] combines ideas from automata

and SMT. Similarly to JSA, it handles almost all of Java string operations, reg-

ular expressions, and string-number conversions. However, it represents strings as

parameterized arrays with symbolic length. This requires solving quantified array

constraints. Although the authors provide an algorithm for the quantifier elimination

over arrays , the satisfiability of parameterized arrays is undecidable unless it falls

175

in some particular fragment [18]. Moreover, neither binary code nor source code (of

JSA or Pass) is publicly available.

Mona [41] is a string solver supporting monadic second-order logic. Although

Mona is an automaton-based approach, it uses Multi Terminal BDDs to represent

an automaton. This kind of implementation requires sophisticated engineering tech-

niques (see [52]) which may prevent adding additional theory engines into Mona,

and thus prevent solving hybrid constraints. Similarly, Pisa [86] is another string

solver supporting monadic second-order logic. However, the language of Pisa is also

restricted, e.g., no binary operations between two variables.

Rex [92, 91] is another automaton-based string solver. Unlike the lazy tech-

nique [45] where the transition represents an integer interval, Rex encodes strings as

symbolic finite automata (SFA) first. The transition of SFA uses a logic predicate to

represent a set of candidates. Therefore, the SFA can be further encoded as SMT

constraints. In the next round, those SMT constraints are asserted to an SMT solver

for a model. This approach provides an efficient encoding for solving membership

constraints, although the Rex tool currently is not supporting hybrid constraints

from other theories.

The work most closely related to our word equation part is the study on z3-

str [98], a recent string solver developed as an extension of the z3 SMT solver [28]

through its user plug-in interface (the work is further extended by accepting a richer

language in S3 [89]). z3-str considers unbounded strings with concatenation, sub-

string, replace and length functions and accepts equational constraints over strings as

176

well as linear integer arithmetic constraints. Its main idea is to have z3 treat string

function and predicate symbols as uninterpreted but monitor the inferences of z3’s

equality solver and generate and pass to z3 selected string theory lemmas as needed.

These lemmas, roughly speaking, are used to force the identification of equivalent

string terms (e.g., the lemma s · ε ≈ s where · is the concatenation operator and ε is

the empty string), or the dis-identification of terms that z3 has wrongly guessed to be

equal (e.g., |t| > 0 =⇒ s 6≈ s · t). The approach is refutation incomplete because it

does not always generate enough axioms to recognize an unsatisfiable problem. At a

very high level, our approach is similar, and similarly incomplete, except that it uses

a different and more comprehensive set of rules to generate suitable axioms, and so

is able to recognize more unsatisfiable cases. Another big difference is that we have

devised our solver with the goal of implementing it in an internal, fully integrated

theory solver for CVC4, as opposed to an external plug-in, which allows us to leverage

several features of the DPLL(T) architecture.

The success of most approaches relies on whether there is an upper bound

on the length of each string variable, e.g., [74, 51]. We refer them as the theory of

bounded strings. However, there is a real demand for a string solver for the theory

of unbounded strings. For example, as addressed in [5], a bounded string solver can

only be used for the validation but not for the verification of a general policy. There

are several proposed approaches for the theory of unbounded strings, e.g., [32, 93].

However, they cannot handle the length constraints, not to mention mixing with other

theories. This limits the use of these approaches.

177

In [50], the authors proposed two criteria for string solvers: modeling cost and

accuracy. In addition, they compared four string solvers with their own extensions

for modeling some string operations (such as global replacement) in JAVA. Their

experiments showed that there is no best solver with respect to their criteria, but the

choice of string solvers highly depends on the properties of benchmarks. With respect

to cvc4, our modeling cost for a string function is small and our accuracy is high.

178

CHAPTER 6

CONCLUSION

We have devised an algebra-based calculus for reasoning over a theory of un-

bounded strings and language memberships with length constraints. Our approach

considers strings and regular expressions as primitive data structures and solves con-

straints without reduction to other theories (e.g., bit-vectors and automata). It is

efficient for solving many classes of problems that are dedicated for the applications

of formal verification and security vulnerability detection.

Moreover, our proof procedure models the interactions between theory en-

gines, so our string reasoning procedure can be integrated into general multi-theory

SMT solvers based on the DPLL(T) architecture. Indeed, we have implemented our

algorithm as a built-in theory engine in cvc4. Our initial experimental results in-

dicate that for problems over word equations and length constraints, our approach

outperforms the other existing specialized string solvers (with a comparable input

language) in terms of correctness, precision and run time. Hence, it also makes cvc4

highly competitive as an underlying constraint solver for verification and security

vulnerability detection tools.

Furthermore, we extended the scope of our string solver to support a richer

language of string constraints (e.g., contains, replace, index of) that occur often in

real life applications, especially in security vulnerability detection. In the preliminary

179

implementation work in cvc4, we reduced these commonly used string manipulating

functions to our core language in an efficient manner.

At the theoretical level, we have proved the refutation soundness and the

solution soundness for our calculus. By utilizing a fair strategy (e.g., the finite model

finding), we have proved the solution completeness, that is, our fair procedure is

guaranteed to eventually produce a solution for every satisfiable input. In addition,

we have proved the termination and the refutation completeness for our calculus over

a theory of regular membership with length constraints. Thus, to the best of our

knowledge, our procedure is the first decision procedure for this theory.

In our ongoing work, from a theoretical point of view, we plan to identify more

fragments where our approach is refutation complete. Note that although the decid-

ability of the full theory is classified as an open problem, it is highly possible that it

is undecidable. At the practical level, we are working on the performance optimiza-

tion based on real applications, which requires us to collaborate with verification and

security experts more closely. Currently, our tool is used in several security related

projects. With the help of the benchmarks provided by these tools, we may classify

the problems, and thus identify the bottleneck in our approach. In addition, we plan

to generalize our calculus to the theory of sequences, where a character is a value of

some generic sort.

We believe that the approach described in this thesis provides a new idea

for string-based formal methods. Notice that most traditional formal method tech-

niques handle string constraints either by ignoring their existence or by abstracting

180

to some numeric theories. However, given the Von Neumann architecture (which

describes how most computers are designed), we believe verification is more appro-

priately based on reasoning over strings directly, especially when verifying a policy

between databases or web-based applications where strings are the only carrier of

information.

181

REFERENCES

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukas Holik, Ahmed
Rezine, Philipp Rummer, and Jari Stenman. String constraints for verification. In
Armin Biere and Roderick Bloem, editors, Proceedings of the 26th International
Conference on Computer Aided Verification, volume 8559 of Lecture Notes in
Computer Science. Springer, 2014.

[2] Habib Abdulrab and Jean-Pierre Pecuchet. Solving word equations. Journal of
Symbolic Computation, 8(5):499–521, 1989.

[3] Habib Abdulrab and Jean-Pierre Pecuchet, editors. Word Equations and Related
Topics. Springer-Verlag New York, Inc., New York, NY, USA, 1991.

[4] Alfred Aho and John Hopcroft. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edition, 1974.

[5] Muath Alkhalaf, Tevfik Bultan, and Jose L. Gallegos. Verifying client-side input
validation functions using string analysis. In Proceedings of the 34th International
Conference on Software Engineering, ICSE ’12, pages 947–957, Piscataway, NJ,
USA, 2012. IEEE Press.

[6] Valentin Antimirov. Partial derivatives of regular expressions and finite automa-
ton constructions. Theor. Comput. Sci., 155(2):291–319, March 1996.

[7] Franz Baader and Cesare Tinelli. A new approach for combining decision proce-
dures for the word problem, and its connection to the Nelson-Oppen combination
method. In W. McCune, editor, Proceedings of the 14th International Conference
on Automated Deduction (Townsville, Australia), volume 1249 of Lecture Notes
in Artificial Intelligence, pages 19–33. Springer-Verlag, 1997.

[8] Bahareh Badban and Mohammad Torabi Dashti. Semi-linear parikh images
of regular expressions via reduction. In Proceedings of the 35th International
Conference on Mathematical Foundations of Computer Science, MFCS’10, pages
653–664, Berlin, Heidelberg, 2010. Springer-Verlag.

[9] Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rus-
tan M. Leino. Boogie: A Modular Reusable Verifier for Object-oriented Pro-
grams. In Proceedings of the 4th International Conference on Formal Methods
for Components and Objects, FMCO’05, pages 364–387, Berlin, Heidelberg, 2006.
Springer-Verlag.

182

[10] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Pro-
ceedings of the 23rd International Conference on Computer Aided Verification,
CAV’11, pages 171–177, Berlin, Heidelberg, 2011. Springer-Verlag.

[11] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Splitting
on demand in SAT modulo theories. In Proceedings of LPAR’06, volume 4246 of
LNCS, pages 512–526. Springer, 2006.

[12] Clark Barrett, Roberto Sebastiani, Sanjit Seshia, and Cesare Tinelli. Satisfiabil-
ity modulo theories. In Armin Biere, Marijn J. H. Heule, Hans van Maaren, and
Toby Walsh, editors, Handbook of Satisfiability, volume 185, chapter 26, pages
825–885. IOS Press, February 2009.

[13] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Ver-
sion 2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th Interna-
tional Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

[14] Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Edmund
Clarke, Tom Henzinger, and Helmut Veith, editors, Handbook of Model Checking.
Springer, 2014. (to appear).

[15] Gerard Berry and Ravi Sethi. From regular expressions to deterministic au-
tomata. Theor. Comput. Sci., 48(1):117–126, December 1986.

[16] Nikolaj Bjørner, Vijay Ganesh, R. Michel, and Margus Veanes. An SMT-LIB
Format for Sequences and Regular Expressions. In In SMT workshop 2012, 2012.

[17] Nikolaj Bjørner, Nikolai Tillmann, and Andrei Voronkov. Path feasibility anal-
ysis for string-manipulating programs. In Proceedings of the 15th International
Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems: Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2009,, pages 307–321. Springer-Verlag, 2009.

[18] Aaron Bradley, Zohar Manna, and Henny Sipma. What’s decidable about ar-
rays? In E.Allen Emerson and KedarS. Namjoshi, editors, Verification, Model
Checking, and Abstract Interpretation, volume 3855 of Lecture Notes in Com-
puter Science, pages 427–442. Springer Berlin Heidelberg, 2006.

[19] David Brumley, Juan Caballero, Zhenkai Liang, and James Newsome. Towards
automatic discovery of deviations in binary implementations with applications
to error detection and fingerprint generation. In Proceedings of the 16th USENIX
Security Symposium, Boston, MA, USA, August 6-10, 2007, 2007.

183

[20] David Brumley, Hao Wang, Somesh Jha, and Dawn Xiaodong Song. Creating
vulnerability signatures using weakest preconditions. In 20th IEEE Computer
Security Foundations Symposium, CSF 2007, 6-8 July 2007, Venice, Italy, pages
311–325, 2007.

[21] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–
494, October 1964.

[22] J. Richard Büchi and Steven Senger. Coding in the existential theory of concate-
nation. In Saunders Mac Lane and Dirk Siefkes, editors, The Collected Works
of J. Richard Buchi, pages 665–670. Springer New York, 1990.

[23] Fabian Büttner and Jordi Cabot. Lightweight string reasoning in model finding.
Software and Systems Modeling, pages 1–15, 2013.

[24] Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. Partial derivatives
of an extended regular expression. In Proceedings of the 5th International Con-
ference on Language and Automata Theory and Applications, LATA’11, pages
179–191, Berlin, Heidelberg, 2011. Springer-Verlag.

[25] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. In Proceedings of the 10th International Confer-
ence on Static Analysis, SAS’03, pages 1–18, Berlin, Heidelberg, 2003. Springer-
Verlag.

[26] Ernie Cohen, Markus Dahlweid, Mark Hillebrand, Dirk Leinenbach, Micha l
Moskal, Thomas Santen, Wolfram Schulte, and Stephan Tobies. VCC: A practi-
cal system for verifying concurrent C. In Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics, TPHOLs ’09, pages
23–42, Berlin, Heidelberg, 2009. Springer-Verlag.

[27] Roy Crole. Categories for Types. Cambridge Mathematical Textbooks. Cam-
bridge University Press, 1993.

[28] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In
Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[29] Rolf Drechsler and Bernd Becker. Binary Decision Diagrams: Theory and Im-
plementation. Springer, 1998.

[30] Bruno Dutertre and Leonardo De Moura. The YICES SMT solver. Technical
report, SRI International, 2006.

184

[31] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song.
Dynamic spyware analysis. In 2007 USENIX Annual Technical Conference on
Proceedings of the USENIX Annual Technical Conference, ATC’07, pages 18:1–
18:14, Berkeley, CA, USA, 2007. USENIX Association.

[32] Michael Emmi, Rupak Majumdar, and Koushik Sen. Dynamic test input gener-
ation for database applications. In Proceedings of the 2007 International Sym-
posium on Software Testing and Analysis, ISSTA ’07, pages 151–162, New York,
NY, USA, 2007. ACM.

[33] Asger Feldthaus and Anders Møller. Checking correctness of TypeScript inter-
faces for JavaScript libraries. In Proc. ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA), Oc-
tober 2014.

[34] N.J. Fine and H.S. Wilf. Uniqueness theorem for periodic functions. In Proceed-
ings of the American Mathematical Society, volume 16, pages 109–114, 1965.

[35] Xiang Fu and Chung chih Li. A string constraint solver for detecting web ap-
plication vulnerability. In Proceedings of the 22nd International Conference on
Software Engineering and Knowledge Engineering, SEKE’2010. Knowledge Sys-
tems Institute Graduate School, 2010.

[36] Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin Rinard. Word
equations with length constraints: What’s decidable? In Proceedings of the 8th
International Conference on Hardware and Software: Verification and Testing,
HVC’12, pages 209–226, Berlin, Heidelberg, 2013. Springer-Verlag.

[37] Wouter Gelade. Succinctness of regular expressions with interleaving, intersec-
tion and counting. Theoretical Computer Science, 411:2987 – 2998, 2010.

[38] Indradeep Ghosh, Nastaran Shafiei, Guodong Li, and Wei-Fan Chiang. Jst: An
automatic test generation tool for industrial java applications with strings. In
Proceedings of the 2013 International Conference on Software Engineering, ICSE
’13, pages 992–1001, Piscataway, NJ, USA, 2013. IEEE Press.

[39] Patrice Godefroid, Michael Y. Levin, and David Molnar. SAGE: Whitebox
fuzzing for security testing. Queue, 10(1):20:20–20:27, January 2012.

[40] George Hagen and Cesare Tinelli. Scaling up the formal verification of Lustre
programs with SMT-based techniques. In A. Cimatti and R. Jones, editors,
Proceedings of the 8th International Conference on Formal Methods in Computer-
Aided Design (Portland, Oregon), pages 109–117. IEEE, 2008.

185

[41] Jesper G. Henriksen, Jakob L. Jensen, Michael E. Jørgensen, Nils Klarlund,
Robert Paige, Theis Rauhe, and Anders Sandholm. Mona: Monadic second-
order logic in practice. In Proceedings of the First International Workshop on
Tools and Algorithms for Construction and Analysis of Systems, TACAS ’95,
pages 89–110, London, UK, UK, 1995. Springer-Verlag.

[42] Pieter Hooimeijer. Decision procedures for string constraints. PhD thesis, Uni-
versity of Virginia, 2012.

[43] Pieter Hooimeijer and Margus Veanes. An evaluation of automata algorithms
for string analysis. In Proceedings of the 12th international conference on Ver-
ification, model checking, and abstract interpretation, pages 248–262. Springer-
Verlag, 2011.

[44] Pieter Hooimeijer and Westley Weimer. A decision procedure for subset con-
straints over regular languages. In Proceedings of the 2009 ACM SIGPLAN con-
ference on Programming language design and implementation, pages 188–198.
ACM, 2009.

[45] Pieter Hooimeijer and Westley Weimer. Solving string constraints lazily. In
Proceedings of the IEEE/ACM international conference on Automated software
engineering, pages 377–386. ACM, 2010.

[46] Pieter Hooimeijer and Westley Weimer. StrSolve: solving string constraints
lazily. Automated Software Engineering, 19(4):531–559, 2012.

[47] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to
Automata Theory, Languages, and Computation (3rd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2006.

[48] Ranjit Jhala and Kenneth L McMillan. A practical and complete approach to
predicate refinement. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 459–473. Springer, 2006.

[49] Juhani Karhumäki, Filippo Mignosi, and Wojciech Plandowski. The expressibil-
ity of languages and relations by word equations. J. ACM, 47(3):483–505, May
2000.

[50] Scott Kausler and Elena Sherman. Evaluation of string constraint solvers in the
context of symbolic execution. In Proceedings of the 29th ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE ’14, pages 259–270,
New York, NY, USA, 2014. ACM.

186

[51] Adam Kiezun, Vijay Ganesh, Philip J. Guo, Pieter Hooimeijer, and Michael D.
Ernst. HAMPI: a solver for string constraints. In Proceedings of the eighteenth
international symposium on Software testing and analysis, pages 105–116. ACM,
2009.

[52] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. Mona implemen-
tation secrets. In Revised Papers from the 5th International Conference on Im-
plementation and Application of Automata, CIAA ’00, pages 182–194, London,
UK, UK, 2001. Springer-Verlag.

[53] Dexter Kozen. Lower bounds for natural proof systems. In FOCS, pages 254–266.
IEEE Computer Society, 1977.

[54] K. Rustan M. Leino. Developing verified programs with dafny. Ada Lett., 32(3):9–
10, December 2012.

[55] Guodong Li and Indradeep Ghosh. Pass: String solving with parameterized
array and interval automaton. In Valeria Bertacco and Axel Legay, editors,
Hardware and Software: Verification and Testing, volume 8244 of Lecture Notes
in Computer Science, pages 15–31. Springer International Publishing, 2013.

[56] Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan De-
ters. A DPLL(T) theory solver for a theory of strings and regular expressions. In
Armin Biere and Roderick Bloem, editors, Proceedings of the 26th International
Conference on Computer Aided Verification, volume 8559 of Lecture Notes in
Computer Science. Springer, 2014.

[57] M. Lothaire. Combinatorics on Words. Cambridge University Press, Cambridge,
United Kingdom, 2002.

[58] M. Lothaire. Applied Combinatorics on Words (Encyclopedia of Mathematics
and Its Applications). Cambridge University Press, Cambridge, United Kingdom,
2005.

[59] Kenny Zhuo Ming Lu. XHaskell - Adding Regular Expression Type to Haskell.
PhD thesis, National University of Singapore, 2009.

[60] G. S. Makanin. The problem of solvability of equations in a free semigroup.
English transl. in Math USSR Sbornik, 32:147–236, 1977.

[61] Florin Manea, Robert Mercaş, and Dirk Nowotka. Fine and wilf’s theorem and
pseudo-repetitions. In Proceedings of the 37th International Conference on Math-
ematical Foundations of Computer Science, MFCS’12, pages 668–680, Berlin,
Heidelberg, 2012. Springer-Verlag.

187

[62] Yuri Matiyasevich. Hilbert’s tenth problem and paradigms of computation. In
Proceedings of the First International Conference on Computability in Europe:
New Computational Paradigms, CiE’05, pages 310–321. Springer-Verlag, Berlin,
Heidelberg, 2005.

[63] Greg Nelson and Derek C. Oppen. Simplification by cooperating decision pro-
cedures. ACM Trans. on Programming Languages and Systems, 1(2):245–257,
October 1979.

[64] J. Nielsen. Die isomorphismen der allgemeinen, unendlichen gruppe mit zwei
erzeugenden. Mathematische Annalen, 78(1):385–397, 1917.

[65] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Abstract DPLL and
abstract DPLL modulo theories. In F. Baader and A. Voronkov, editors, Proceed-
ings of the 11th International Conference on Logic for Programming, Artificial
Intelligence and Reasoning (LPAR’04), Montevideo, Uruguay, volume 3452 of
Lecture Notes in Computer Science, pages 36–50. Springer, 2005.

[66] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
Modulo Theories: from an abstract Davis-Putnam-Logemann-Loveland Proce-
dure to DPLL(T). Journal of the ACM, 53(6):937–977, November 2006.

[67] OWASP. OWASP Top 10 2013 project. Technical report, The Open Web
Application Security Project (OWASP), June 2013. (Available at http://

owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf).

[68] Scott Owens, John Reppy, and Aaron Turon. Regular-expression derivatives
re-examined. J. Funct. Program., 19(2):173–190, March 2009.

[69] Sam Owre and Natarajan Shankar. A brief overview of pvs. In Proceedings of
the 21st International Conference on Theorem Proving in Higher Order Logics,
TPHOLs ’08, pages 22–27, Berlin, Heidelberg, 2008. Springer-Verlag.

[70] Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, October
1966.

[71] Wojciech Plandowski. Satisfiability of word equations with constants is in nex-
ptime. In Proceedings of the Thirty-first Annual ACM Symposium on Theory of
Computing, STOC ’99, pages 721–725, New York, NY, USA, 1999. ACM.

[72] Wojciech Plandowski. Satisfiability of word equations with constants is in pspace.
J. ACM, 51(3):483–496, May 2004.

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf

188

[73] Wojciech Plandowski. An efficient algorithm for solving word equations. In Pro-
ceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing,
STOC ’06, pages 467–476, New York, NY, USA, 2006. ACM.

[74] Gideon Redelinghuys, Willem Visser, and Jaco Geldenhuys. Symbolic execution
of programs with strings. In Proceedings of the South African Institute for Com-
puter Scientists and Information Technologists Conference, SAICSIT ’12, pages
139–148, New York, NY, USA, 2012. ACM.

[75] James Renshaw. Monoids, acts and categories: With applications to wreath
products and graphs: A handbook for students and researchers. Semigroup
Forum, 66(3):489–490, 2003.

[76] Andrew Reynolds. Finite Model Finding in Satisfiability Modulo Theories. PhD
thesis, The University of Iowa, December 2013.

[77] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstić. Finite model
finding in SMT. In N. Sharygina and H. Veith, editors, Proceedings of the 25th
International Conference on Computer Aided Verification (St Petersburg, Rus-
sia), volume 8044 of Lecture Notes in Computer Science, pages 640–655. Springer,
2013.

[78] Grigore Rosu and Mahesh Viswanathan. Testing extended regular language
membership incrementally by rewriting. In Robert Nieuwenhuis, editor, Rewrit-
ing Techniques and Applications, volume 2706 of Lecture Notes in Computer
Science, pages 499–514. Springer Berlin Heidelberg, 2003.

[79] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,
Vol. 1: Word, Language, Grammar. Springer-Verlag New York, Inc., New York,
NY, USA, 1997.

[80] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,
Vol. 2: Linear Modeling: Background and Application. Springer-Verlag New
York, Inc., New York, NY, USA, 1997.

[81] Grzegorz Rozenberg and Arto Salomaa, editors. Handbook of Formal Languages,
Vol. 3: Beyond Words. Springer-Verlag New York, Inc., New York, NY, USA,
1997.

[82] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCa-
mant, and Dawn Song. A symbolic execution framework for javascript. In Pro-
ceedings of the 2010 IEEE Symposium on Security and Privacy, pages 513–528.
IEEE Computer Society, 2010.

189

[83] K.U. Schulz, editor. Word Equations and Related Topics. Springer-Verlag New
York, Inc., New York, NY, USA, 1990.

[84] Martin Sulzmann. Playing with regular expressions: Intersection. Technical
report, IT University of Copenhagen, 2008.

[85] Martin Sulzmann and Kenny Zhuo Ming Lu. POSIX regular expression parsing
with derivatives. In Functional and Logic Programming - 12th International
Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings, pages
203–220, 2014.

[86] Takaaki Tateishi, Marco Pistoia, and Omer Tripp. Path- and index-sensitive
string analysis based on monadic second-order logic. ACM Trans. Softw. Eng.
Methodol., 22(4):33:1–33:33, October 2013.

[87] Nikolai Tillmann and Jonathan Halleux. Pex - white box test generation for
.net. In Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, vol-
ume 4966 of Lecture Notes in Computer Science, pages 134–153. Springer Berlin
Heidelberg, 2008.

[88] Cesare Tinelli and Calogero Zarba. Combining non-stably infinite theories. In
I. Dahn and L. Vigneron, editors, Proceedings of the 4th International Workshop
on First Order Theorem Proving, FTP’03 (Valencia, Spain), volume 86.1 of
Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
2003.

[89] Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. S3: A symbolic string solver
for vulnerability detection in web applications. In Moti Yung and Ninghui Li,
editors, Proceedings of the 21st ACM Conference on Computer and Communi-
cations Security, 2014.

[90] Richard Uhler and Nirav Dave. Smten: Automatic translation of high-level
symbolic computations into smt queries. In Natasha Sharygina and Helmut
Veith, editors, Computer Aided Verification, volume 8044 of Lecture Notes in
Computer Science, pages 678–683. Springer Berlin Heidelberg, 2013.

[91] Margus Veanes. Applications of symbolic finite automata. In Proceedings of the
18th International Conference on Implementation and Application of Automata,
CIAA’13, pages 16–23, Berlin, Heidelberg, 2013. Springer-Verlag.

[92] Margus Veanes, Nikolaj Bjørner, and Leonardo De Moura. Symbolic automata
constraint solving. In Proceedings of the 17th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning, LPAR’10, pages 640–
654, Berlin, Heidelberg, 2010. Springer-Verlag.

190

[93] Gary Wassermann and Zhendong Su. Static detection of cross-site scripting
vulnerabilities. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 171–180, New York, NY, USA, 2008. ACM.

[94] Clay Wilson. Computer attack and cyberterrorism: Vulnerabilities and policy
issues for congress. Technical report, Congressional Research Service, The Li-
brary of Congress, Congressional Research Service, The Library of Congress,
April 2005. Order Code RL32114.

[95] Fang Yu, Muath Alkhalaf, and Tevfik Bultan. Stranger: An automata-based
string analysis tool for php. In Javier Esparza and Rupak Majumdar, editors,
Tools and Algorithms for the Construction and Analysis of Systems, volume 6015
of Lecture Notes in Computer Science, pages 154–157. Springer Berlin Heidel-
berg, 2010.

[96] Fang Yu, Tevfik Bultan, and Ben Hardekopf. String abstractions for string veri-
fication. In Alex Groce and Madanlal Musuvathi, editors, Model Checking Soft-
ware, volume 6823 of Lecture Notes in Computer Science, pages 20–37. Springer
Berlin Heidelberg, 2011.

[97] Hantao Zhang and Mark E. Stickel. An efficient algorithm for unit propagation.
In In Proceedings of the Fourth International Symposium on Artificial Intelli-
gence and Mathematics (AI-MATH96), Fort Lauderdale (Florida USA), pages
166–169, 1996.

[98] Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. Z3-str: A z3-based string
solver for web application analysis. In Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2013, pages 114–124, New
York, NY, USA, 2013. ACM.

[99] Jacob Ziv and Abraham Lempel. Compression of individual sequences via
variable-rate coding. Information Theory, IEEE Transactions on, 24(5):530–
536, Sep 1978.

	University of Iowa
	Iowa Research Online
	Fall 2014

	Automated reasoning over string constraints
	Tianyi Liang
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER
	Introduction
	Challenges and Motivation
	Satisfiability Modulo Theories
	Contributions
	Overview

	Background and Preliminaries
	Monoids
	Strings
	Languages
	Many-Sorted First-order Logic
	DPLL(T) Procedure
	The DPLL Procedure
	The Nelson-Oppen Combination
	The DPLL(T) Architecture

	Existential Theories over Strings

	Solving String and Length Constraints
	Calculus for TSL
	Derivation Rules
	Proof Procedure
	Soundness
	Solution Completeness
	Decision Procedure for Constraints in an Acyclic Form
	Implementation in DPLL(T)

	Constant Splitting Refinement
	String Manipulating Function Extension
	Extended Calculus for String Manipulating Functions
	Handling the new components G and Q
	Correctness

	Experimental Results
	Summary

	Solving Membership and Length Constraints
	Calculus for TRL
	Preprocessing
	Normalization
	Auxiliary Functions
	Derivation Rules
	Correctness
	Decision Procedure

	Extensions
	Symbolic Language Extension
	Negative Membership Extension

	Summary

	Related Work
	Conclusion
	REFERENCES

