

The Islamic University of Gaza

 غزة –الجبمعت الإسلاميت

Scientific Research& Graduate Studies Affairs الدراسبث العليب شئىن البحث العلمي و

Faculty of Engineering كليت الهندست

Electrical Engineering Depart. سم الهندست الكهرببئيتق

Trajectory Tracking Control of

A 2-DOF Robot Arm Using Neural

Networks

Mahmoud M. Al Ashi

Advisors

Dr. Hatem Elaydi

Dr. Iyad Abu Hadrous

A thesis submitted in partial fulfillment of the

requirements for the degree of Master of Science in

Electrical Engineering

February 2014

ii

ABSTRACT

This thesis investigated several control strategies to handle the trajectory tracking

problem for a two degree-of-freedom (2-DOF) robotic arm using artificial neural

networks (ANNs). Feed-forward two layer neural networks were designed and utilized

in both model-based and non-model based control structures to conduct online

learning and identification of the inverse dynamics of the robotic manipulator and to

compensate for both structured and unstructured uncertainties.

The simulation results obtained proved the superiority of the proposed neural network

controllers to dramatically reduce the error between the desired and actual position

trajectories even in the presence of uncertainties unlike other conventional methods

such as the PD-computed torque method. The neural network-based controllers

proposed in this thesis provide solutions to the trajectory tracking problem of robotic

manipulators with or without a mathematical model which would make them effective

controllers for both planned and unplanned trajectory tracking problems for any degree

of freedom robotic manipulator.

The development of the mathematical models for the 2-DOF robotic arm and its joints

driving motors as well as their simulation experiments were carried out under the

Dynamic Modeling Laboratory (Dymola) environment which uses the Modelica

object-oriented multi-domain system modeling language. The simulation results

obtained in the thesis were accompanied by three dimensional (3D) figures in order to

visualize the results and to help establish a deeper analysis and understanding of these

results.

iii

ACKNOWLEDGEMENT

I would like to dedicate the first page of the thesis to express my warmest greetings

and gratitude to those without whom this thesis would not have seen the light:

First, All my thanks and gratitude go to our god and the god of all worlds ALLAH

whose sincere guidance was being felt through every single step of preparing and

writing up this thesis.

The second "thank you" goes to my parents, Moneer and Taghreed, who never

hesitated to provide me with all the psychological and materialistic helps in order to

achieve success in my life.

A big big "thank you" is presented to the loves of my life, my wife Sarah, and my son

Zain who walked me safely through the road of sacrifice and patience until my

graduation and the successful submission of this thesis.

Finally, I would like to deeply thank my supervisors Dr. Iyad Abu Hadrous and Dr.

Hatem El-Aydi for their patience and sincere support, guidance, and advices without

which this thesis would not have been submitted in the present manner.

iv

CONTENTS

ABSTRACT .. ii
ACKNOWLEDGEMENT …………………………..……………………………… iii

TABLE OF CONTENTS …………………………………………………………… iv

LIST OF FIGURES …………………………………………………………………..vi

LIST OF TABLES …………………………………………………………………..viii

NOMENCLATURE ……………………………………………………………….…ix

ABBREVIATIONS ...xi

CHAPTER 1 Introduction ………………………………………………………. 1

1.1 Research motivation …………………………………………………………..1

1.2 Statement of the problem ……………………………………………………..1

1.3 Thesis contribution …………………………………………………………....2

1.4 Research methodologies ………………………………………………………2

1.5 Literature review ……………………………………………………………...4

1.6 Thesis organization ……………………………………………………………7

 CHAPTER 2 Two Degree-Of-Freedom Robotic Manipulator9

2.1 Geometrical structure ……………………………………………………….…9

2.2 Kinematics …………………………………………………………………....10

 2.2.1 Forward kinematics ……………………………...…………………....10

 2.2.2 Inverse kinematics …………………………………………………….13

 2.2.3 Singular configuration ………………………………………………...14

2.3 Dynamics ……………………………………………………………………..16

2.4 Modeling of the 2-DOF robotic arm on Dymola ……………………………..25

2.5 Permanent-Magnet DC- Motor …………………………………………….....27

2.6 Dymola Modeling and simulation of the DC-motor …………………………29

 CHAPTER 3 PD-Computed Torque Control …………………………………...35

 3.1 PD Control ………………………………………………………………….....35

3.2 PD-computed torque control …………………………………………………. 41

 CHAPTER 4 Artificial Neural Network (ANN) Control ………………………..53

4.1 Biological neuron ……………………………………………………………...53

4.2 Neuron mathematical model …………………………………………………..54

4.3 Neural network learning …………………………………………………….....58

 4.4 Neural network-based control …………………………………………………62

 4.4.1 Model-based neural network control

 (Online Torque Compensator (OTC)) …………………………………. 62

 4.4.2 Non-model based neural network control

 Feedback Error Learning (FEL) structure ………………………………69

 CHAPTER 5 Conclusion and Future Work ……………………………………...73

v

REFERENCES ………………………………………………………………………..74

APPENDIX A: Derivation of the Open Loop Transfer Function for the

 DC-Motor …………………………………………………………….77

APPENDIX B: PD Controller Design Using the Root Locus Method ……………...79

APPENDIX C: Modelica Models Used in the Computed Torque-based

 Controller Design …………………………………………………….82

APPENDIX D: Modelica Models Used in the Design of ANN Controllers ……….84

vi

LIST OF FIGURES

Figure 2.1: A schematic diagram of a 2-DOF robotic arm ……………………………………..

Figure 2.2: Frame assignment for the 2-DOF robotic arm

Figure 2.3: Geometrical approach for inverse kinematics derivation

Figure 2.4: A schematic diagram of the first link of the 2-DOF robotic arm

Figure 2.5: Dymola model for the 2-DOF robotic arm

Figure 2.6: A circuit diagram for armature-controlled DC motor

Figure 2.7: Mechanical part of the DC-motor system

Figure 2.8: Dymola model for the DC-motor system

Figure 2.9: Step response of the DC motor angular position

Figure 2.10: Step response of the DC motor angular velocity

Figure 2.11: Step response of the DC motor armature current

Figure 2.12: Step response of the negative of DC motor torque

Figure 2.13: Step response of uncontrolled shoulder joint angular position

Figure 2.14: Step response of uncontrolled elbow joint angular position

Figure 2.15: Step response of uncontrolled shoulder joint torque

Figure 2.16: Step response of uncontrolled elbow joint torque

Figure 2.17: 3D visualization of the trajectory of the uncontrolled arm

Figure 3.1: Root locus of the open-loop transfer function (S+273.14) L(S)

Figure 3.2: Block diagram of PD-controlled DC-motor system

Figure 3.3: Step response of PD-controlled DC-motor

Figure 3.4: Block diagram for the robotic arm driven by PD-controlled DC-motors

Figure 3.5: Angular positions of the DC-motors with PD-control

Figure 3.6: 3D visualization of the trajectory of PD-controlled arm

Figure 3.7: Block diagram for the robotic system with computed torque controller

Figure 3.8: Angular positions of motors with computed torque controller

Figure 3.9: 3D visualization of the arm trajectory with computed torque controller

Figure 3.10: Block diagram of control system with feed-forward path

Figure 3.11: Dymola model of the feed-forward controller (FFC)

Figure 3.12: Dymola model for the robotic system with computed torque disturbance rejection and

feed-forward control (FFC)

Figure 3.13: Angular positions of the motors with computed torque and feed-forward control

(FFC)`

Figure 3.14: Effects of the structured uncertainties on motor angular positions

Figure 3.15: Trajectory of the arm with structured uncertainties

Figure 3.16: Effects of the unstructured uncertainty on motor angular positions

Figure 3.17 Trajectory of the arm with unstructured uncertainties

Figure 4.1: A sketch of a biological neuron

Figure 4.2: A graphical notation of an R-input neuron

Figure 4.3: Different types of neuronal activation function

Figure 4.4-a: A single layer perceptron of neurons

Figure 4.4-b: An Abbreviated notation of a single layer perceptron of neurons

Figure 4.5: A multiple layer perceptron of three single layer perceptrons

Figure 4.6: Flow chart of the SDA algorithm

Figure 4.7: Dymola model of the robotic arm with neural network (OTC) controller

Figure 4.8: Structure of the designed two-layer perceptron neural network

Figure 4.9: Angular positions of the motors with OTC controller

Figure 4.10: Total disturbance torques applied on motors without OTC controller

vii

Figure 4.11: Total disturbance torques applied on motors with (OTC) controller

Figure 4.12: Sum of the outputs of PD and FFC controllers without (OTC) controller

Figure 4.13: Sum of the outputs of PD and FFC controllers with (OTC) controller

Figure 4.14: Trajectory of the arm with the (OTC) controller

Figure 4.15: Dymola model of the robotic arm with (FEL) controller

Figure 4.16: Angular positions of motors with FEL controller

Figure 4.17: Outputs of PD controllers with the (FEL) controller

viii

LIST OF TABLES

Table 2.1: Link parameters of the 2-DOF robotic arm

Table 3.1: Accurate and inaccurate parameter values for the driving motors and the

robotic arm

ix

NOMENCLATURE

 , , , Denavit-Hartenberg (DH) parameters

 Homogeneous transformation matrix from frame to frame

 Cartesian coordinates of the manipulator end-effector

 Angular position of revolute joint

 ̇ Angular velocity of revolute joint

 Total linear velocity at the manipulator end-effector

 Total angular velocity at the manipulator end-effector

 Jacobian matrix of the end-effector linear velocity

 Jacobian matrices of the end-effector angular velocity

 Origin of frame
 Lagrangian of the robotic manipulator

 Total kinetic energy

 Total potential energy

 Torque or force applied on the joint.

 Joint variable

 Mass concentrated at the center of link
 Linear velocity at the center of mass of link
 Angular velocity at the center of mass of link
 Inertia tensor matrix at the center of mass of link
 Component of the linear velocity due to the angular velocity of

joint
 Inertia tensor matrix of link with respect to its center frame

 Principal moments of inertia intertia tensor matrix of link

 Link mass density

 Rotational matrix of the center frame of link with respect to the

inertial frame

 Gravity vector expressed in the inertial frame

 Kinetic energy of link
 Potential energy of link
 Position vector of the center of mass of link with respect to the

inertial frame

 Armature resistance

 Input voltage signal

 Armature current

 DC-Motor torque

 DC-Motor angular position

 Back electromotive force

 DC- Motor constants

 Gear reduction ratio

 DC-motor inertia

 DC-motor damping coefficient

 Load torque

 Angular position of the DC-motor driving the joint
 Open-loop transfer function

 Closed-loop transfer function

 Settling time

x

 Peak overshoot

 Natural undamped frequency

 Damping ratio

 Design closed loop system pole

 Proportional gain

 Derivative gain

 Inertia matrix of the robotic manipulator

 ̇ Vector of centrifugal and coriolis forces

 Vector of gravitational forces

 ̇ Vector of centrifugal, coriolis, and gravitational forces

 ̂ Estimated inertia matrix of the robotic manipulator

 ̂ ̇ Vector of estimated centrifugal, coriolis, and gravitational forces

 Element of the inertia matrix of the robotic manipulator

 The element of the vector ̇
 Controller transfer function

 Laplace transform of the reference input signal

 Plant transfer function

 Transfer function of the feed-forward controller

 Laplace transform of the error signal

 Disturbance torque applied on joint
 Neuron's output

 Weight matrix of neural network

 Bias vector of neural network

 Neuron's net input

 Input vector of neural network

 Neuron activation function

 Matrix of activation functions

 Output vector of neural network

 Weight matrix of the layer of neural network

 Output vector of the layer of neural network

 Bias vector of the layer of neural network

 Error performance index function

 Value of error performance index function at iteration

 Output error vector of neural network at iteration

 Desired output vector of neural network at iteration

 The element of the weight matrix of the layer at iteration

 Learning rate

 The element of the net input vector of the layer

 Sensitivity vector associated with the layer

 Sensitivity vector associated with the output layer

 ̇ Derivative matrix of the activation functions of the layer with

respect to their net inputs

xi

ABBREVIATIONS

DOF Degree of Freedom

ANN Artificial Neural Network

PD Proportional Derivative

Dymola Dynamic Modeling Laboratory

PID Proportional Integral Derivative

CAD Computer Aided Design

DC Direct Current

RNNC Recurrent Neural Network Controller

NFC Neuro Fuzzy Controller

CMAC Cerebellar Model Articulation Controller

SCARA Self Compliant Articulated Robotic Arm

DH Denavit Hartenberg

CTC Computed Torque Control

FFC Feed Forward Controller

ADALINE Adaptive Linear

LM Levenberg Marquardt

SDA Steepest Descent Algorithm

OTC Online Torque Compensator

FEL Feedback Error Learning

3D Three Dimensional

1

CHAPTER 1

Introduction

1.1 Research motivation

Robotic Manipulators are widely used in different fields of industry. They are used for

the purpose of saving time, effort, and sometimes life. This made robot manipulators

play key roles in fields like car manufacturing, space exploration, search and rescues,

waste treatment in nuclear plants, in addition to their different applications in medical

surgery. For these reasons and due to the vast applications of robotic manipulators, the

design of controllers to optimize the tracking and speed performance of robots has

become a necessity and an important research area.

In order to design a controller to control the motion of a manipulator, an accurate

mathematical model for the robot must be first developed. This requires accurate

determination of the manipulator parameters such as masses, inertias, and geometrical

properties of the links, and the friction between the gearboxes of the robot joints. The

masses and inertias of the links are usually determined from Computer Aided Design

(CAD) models, but the friction between the gearboxes depend on the positions and

velocities of the joints and this cannot be determined without experimentation which

would be very difficult in high speed operation [1]. After developing a mathematical

model for the robot, the inverse kinematics and dynamics problems must be solved in

order to determine the desired position, velocity, and acceleration of each robot joint,

as well as the necessary torques and forces to be applied to enforce these joints to

follow their desired positions and velocities. These quantities are important to generate

the right control signal for each robot joint.

1.2 Statement of the problem

When designing a controller to control the trajectory tracking performance of a

manipulator, some of the problems encountered during the controller design process

are as follows:

1- The inverse kinematics and dynamics problems require the solution of complicated

highly nonlinear equations which would take much time and processing power

when solved offline using a computer software. Moreover, the complexity of such

equations increases with the number of Degree of Freedom (DOF) of the

manipulator.

2- Due to the structured and unstructured uncertainties in the values of the link and

joint parameters, there is always a difference between the conventional

2

mathematical model used for the manipulator and the real robot which would

generate a considerable error between the desired and actual trajectories. Therefore,

a conventional model-based controller is ineffective in controlling the robot in real

time. This problem can be alleviated using adaptive control approaches to

compensate for the modeling errors. One commonly-used adaptive control

approach is the computed torque method [1-2]. However, the design of a

conventional adaptive controller for a manipulator trajectory tracking application

requires the solution of highly nonlinear equations that describe the dynamic

behavior of the manipulator which is a time consuming task especially for

manipulators with a high DOF. In addition, if an adaptive controller works to

compensate for the structured uncertainties such as the joint friction, it might not

necessarily be capable of compensating for the unstructured uncertainties whose

dynamics are not considered in the conventional model.

3- The control methodologies which depend on controlling each joint of the

manipulator independently, such as the PID-based control of each joint, are not

effective. This is because such methodologies do not count for the coupled

interaction between the joints which result in the generation of coupling

disturbance torques between the different joints of the manipulator [2].

1.3 Thesis contribution

This thesis aims to investigate the possibility of designing neural network-based

controllers to enhance the trajectory tracking performance of a robotic manipulator of

unknown dynamics. This idea was motivated by the learning capabilities of neural

networks to approximate and identify nonlinear systems [3]. The controller is capable

of generating the required torques to enforce the manipulator joints to follow their

desired position trajectories with an acceptable precision. The main contribution in this

thesis is that the proposed controller is able to emulate the manipulator dynamic

behavior without the need to have a complex nonlinear mathematical model for the

robot. In addition, the proposed neural network controller is able to conduct online

updating of its weights to compensate for any structured and unstructured uncertainties

in the model such as joint friction forces or sudden changes in the load.

1.4 Research methodologies

In order to explore the capabilities of neural network-based controllers in effectively

controlling the trajectory tracking performance of a 2-DOF robotic manipulator and to

show their superiority over other conventional control techniques, the following tasks

are achieved throughout the thesis:

1- In the beginning of the research, a comprehensive review is established of the

literature and state-of-the-art related to the theory and applications of neural

3

networks in the design of manipulator trajectory tracking controllers. Such a

review provides a detailed exposure to the modern adaptive control approaches,

different neural network architectures, as well as the commonly-used learning

algorithms for training neural networks. The literature review also allows for

determining the disadvantages of the different neural network control schemes

proposed so far which enables the development of novel neural control strategies.

2- In order to design a controller for a specific system, a model for the system must be

first developed. Therefore, a detailed description of the manipulator structure and

its parameters must be determined in order to facilitate the derivation of the

kinematics and inverse dynamics equations of the manipulator. The kinematics

equations are necessary for the determination of the desired angular positions of

the joints from a planned trajectory given in the Cartesian space, whereas the

dynamics equations are necessary to develop model-based trajectory tracking

control strategies.

3- Since the joints of a robotic manipulator are driven by motors, the use of

permanent magnet DC motors is investigated in driving the two joints of the

robotic arm. This requires the development of a mathematical model of the

permanent magnet DC motor and then connecting such a model with the model of

the robotic arm derived in step 2.

4- One of the important steps in the process of designing a manipulator trajectory

tracking controller is the design of a linear PD controller in order to achieve the

stability of the motors angular positions before using them to drive the manipulator

joints.

5- When connecting a PD-controlled motor to each joint of the robotic arm through a

gear reducer, the disturbance torques generated due to the nonlinear dynamics of

the manipulator will dramatically affect the time response of the motor system

which reflects the poor performance of the PD controller alone to reject such

disturbances. This requires adding another adaptive controller in order to remove

the effect of such disturbance torques. One of the adaptive controllers used in the

literature to handle the disturbance rejection problem is the computed torque

method. This method primarily depends on the availability of a mathematical

model to estimate the inverse dynamics of the robotic manipulator. Therefore, it is

considered to be a highly complicated approach for a high DOF manipulator. In

addition, later simulation results show its poor efficiency to compensate for un-

modeled dynamics such as joint friction forces. However, for the reasons of later

comparison with the adaptive neural network-based control techniques, the

computed torque method is adopted and applied as a disturbance torque rejection

method for the 2-DOF robotic arm.

4

6- In order to avoid the complexity of the computed torque-based controller design

and to handle its poor performance in compensating for un-modeled dynamics,

intelligent control mechanisms must be adopted. There are various intelligent

control techniques available in the literature such as Fuzzy logic-based PID control

[4], genetic algorithm-based PID control [5], and neuro-fuzzy control [6]. One of

the intelligent adaptive controllers used in manipulator trajectory tracking

applications is neural network-based controllers [7]. The universal approximation

capabilities of neural networks which make them effective candidates for

approximating any complex nonlinear function with a very simple structure have

attracted researchers to employ them for identifying the highly nonlinear inverse

dynamics of robotic manipulators [8]. In this thesis, model-based and non-model

based neural network controllers are designed and utilized to improve the trajectory

tracking performance of the robotic arm with and without a mathematical model.

7- As mentioned in step 6, a model-based neural network controller must be used in

the presence of a computed torque disturbance rejection controller. Despite the fact

that the model-based neural network would have to learn only the unknown factors

of the system such as parameter inaccuracies and un-modeled dynamics, this

model-based control strategy would be highly complicated and time-consuming for

controlling a manipulator of higher DOF. In order to solve this problem, a non-

model-based neural network training algorithm must be used so that the neural

network can work both as an online identifier of the manipulator inverse dynamics

and as a compensator for structured and unstructured uncertainties.

1.5 Literature review

Neural networks are considered one of the modern intelligent tools that are being

utilized in position trajectory tracking applications of robotic manipulators. This is due

to their simple structure and model as well as their universal complex function

approximation capabilities gained through simple training algorithms. Neural networks

used for manipulator trajectory tracking applications have been designed and used in

different control configurations some of which are listed as follows:

Tomochika et al. [8] provided a Neural Network-based control strategy based on the

idea of the computed torque method. The designed controller consisted of two separate

three-layered neural networks, one of which was used to compute an estimated

manipulator mass matrix, and the other network was trained to compute an estimated

centrifugal and coriolis torque vector. The simulation results obtained by the authors

proved the capability of the proposed controller to learn the nonlinear dynamics of a 2-

DOF manipulator and it was able to enforce the end-effector to follow its desired

position trajectory in the XY-plane. However, the speed of the model learning process

of the controller cannot be considered to be fast since it took about 600 seconds to

follow the specified trajectory of a small circle on the XY plane with an acceptable

5

precision. This means that the proposed controller would be inefficient in more

complex and larger trajectory tracking tasks. In addition, the presence of a

mathematical model for the controlled manipulator is still necessary to generate the

training data set for each of the two neural networks. In order to speed up the model

learning process of the proposed controller, a huge amount of training data sets must

be provided and they should be uniformly distributed over the entire work space of the

manipulator which would be hardly achievable and time consuming for wider

workspaces especially with a manipulator with a larger number of DOF.

Refaat et al. [7] proposed a robot trajectory tracking controller design which consisted

of feed-forward and PD feedback components. The feed-forward control was

performed by a three-layered Neural Network learned by a modified backpropagation

algorithm to emulate the inverse dynamics equations of the manipulator. The proposed

trained network was required to provide the necessary torque for each joint according

to a given set of desired positions, velocities, and accelerations. The PD feedback

component was used as an online learning signal to adjust the weights of the network

in order to minimize the error in the generated torque due to any variations in the

manipulator parameters or external disturbances. Despite the good performance shown

by the proposed Neural Network-based controller to follow the desired joint position

and speed trajectories with an acceptable error even in disturbance conditions, the

structure of the network which contained a large number of neurons in the hidden layer

(35 neurons) makes the training and weight adjustment process take a long time to

reach the optimal weight matrices for generating the minimum output error. This large

structure of the network even increases with the DOF of the controlled manipulator.

Kuo et. al. [11] introduced an online learning control method in which a feed-forward

compensator is proposed to learn and compensate for the unknown dynamic torques of

the manipulator joints. The proposed feed-forward compensator is composed of a PD

controller and a cerebellar model articulation controller (CMAC). The proposed

CMAC controller was designed using a feed-forward single-layer neural network

whose output is the sum of selected vectors of its weight matrix unlike the

conventional law of a traditional neural perceptron which involves all the vectors of

the weight matrix. The CMAC controller selects the weight vectors based on an

associative memory index vector corresponding to a given input state. Despite the

approved capability of the proposed controller in effectively learning the unknown

dynamics and hence dominating the control of the 2-DOF robotic arm, the number of

its neurons is proportional to the number of samples taken from the input space which

would complicate the network structure for larger workspaces despite the fact that only

a few number of these neurons would be active for a given input reference state. The

other majority of the inactive neurons can be a useless overhead on the system.

In [12], Zhao proposed a new hybrid non-model based trajectory tracking control

strategy using a linear feedback controller in parallel with a feed-forward multiple-

layer neural network controller. The linear feedback controller was used to regulate the

6

joint position error and to generate actuating torques to help the joints to track their

dynamic desired trajectories during the initial stage of the learning process of the

neural controller. An error backpropagation algorithm was used to train the neural

network controller online to learn and compensate for the uncertain inverse dynamics

of the manipulator joints. The proposed hybrid controller was used to control the

trajectory tracking performance of a SCARA AdeptOne XL industrial manipulator.

Both simulation and experimental results proved the ability of the neural network to

effectively learn and compensate for the unknown dynamics of the manipulator. The

results also indicated that the neural controller was able to dominate the full control of

the trajectory tracking of the manipulator as approved by the very small control inputs

supplied by the linear feedback controller.

Kamel et al. [10] applied the idea of the Generalized Linear Prediction control to

design a nonlinear predictive controller for the tracking performance of a 2-DOF

manipulator using a neuronal model of the nonlinear system. The proposed controller

was designed to predict the future values of the manipulator joint velocities over a

finite time horizon. Those predicted values of the joint velocities were used to compute

the future errors which enabled the generation of incremental changes in the torque

control signal. The simulation results showed that the designed neuronal-model was

effective in predicting the manipulator joint velocities but the prediction error never

reached an acceptable steady value even after a high number of training samples.

Moreover, the second joint velocity prediction error showed large values of about 10

rad/sec difference at the 800
th

 sample which is an unacceptable value. Such a velocity

prediction error caused the occurrence of a continuously changing error in the tracking

of the desired velocity of the second joint. In addition, no simulation experiments were

done to test the effectiveness of the predictive neuro controller in the presence of

structured and unstructured uncertainties and disturbances.

Jafar et al. [6] proposed a Neuro-Fuzzy strategy for manipulator trajectory control by

utilizing the advantages of both fuzzy logic based control and the learning capabilities

of neural networks. The proposed controller incorporated a neural network which was

trained offline to optimize the tuning of the parameters of the input and output

membership functions of a designed fuzzy logic controller. The main contribution of

this paper is that the rule base of the fuzzy controller inference system was determined

by the used neural network. The neural network was trained using a hybrid learning

algorithm which consisted of both the least squares method and the back-propagation

method. The network training data set was obtained from the inputs and outputs of PID

controllers. The simulation results obtained by the author showed the capability of the

proposed NFC to track the desired position trajectories of a 2 DOF elbow manipulator

even in the presence of uncertain frictional forces on each joint. The author claimed

that the proposed NFC is effective to compensate for unstructured uncertainties and

external disturbances but no simulation or experimental methods were used to verify

their claim.

7

Joel et al. [9] used a new manipulator trajectory tracking control methodology using a

recurrent neural network. Unlike the other used neural network-based controllers

which required the presence of a large data set for the training of the used networks,

the recurrent neural network-based controller (RNNC) proposed in this paper was

trained online to minimize the error between the desired and actual trajectories of the

manipulator. This means that no mathematical model of the controlled manipulator

was necessary to be obtained. Despite the proved capability of the proposed RNNC to

ensure the stability and trajectory tracking accuracy of a 2 DOF elbow manipulator, no

simulation experiments were done to test the learning speed of network (e.g. the

number of weight adjustment iterations the network took for the manipulator output to

converge to an acceptable error was not shown). In addition, no experiments or

simulations were done to test the effectiveness of the proposed RNNC to compensate

unstructured uncertainties and external disturbances such as joint friction forces and

payload changes.

1.6 Thesis Organization

This thesis is composed of five chapters organized in the following manner:

- Chapter 2 explains the detailed process of deriving a mathematical model for the 2-

DOF robotic arm based on given structural and geometrical characteristics. This

model constitutes the kinematics and inverse dynamics equations associated with

the arm. A Dymola model based on Modelica language is developed in this chapter

for the 2-DOF robotic arm using the built-in multi-body library contained in

Dymola software. In the same chapter, mathematical and Dymola models are

developed for the permanent magnet DC motor consisting of an armature circuit

driving a mechanical load. The developed model is validated through carrying out

simulations of the motor angular position with and without connecting a

mechanical load.

- Chapter 3 explains the process of designing a PD controller for the permanent

magnet DC motor system using the root locus method to achieve specified time

response requirements. The performance of the designed PD controller is tested

through simulating the step response of the motor angular position with and

without connecting it to the manipulator joints. The chapter also explains how to

handle the poor performance of the PD controller to compensate for the

disturbance torques generated due to the inverse dynamics of the arm by using a

computed-torque disturbance rejection controller.

- In chapter 4, a model-based intelligent controller is designed using a feed-forward

two-layer neural network which is trained online using the steepest descent error

back propagation algorithm to learn the uncertain parameters of both the robotic

arm and the joint driving motors. The neural controller is used as an online torque

compensator along with the computed-torque disturbance rejection controller

8

developed in chapter 3 in order to remove the effect of the joint disturbance torques

the driving motor angular positions. In addition, the neural controller is designed to

conduct online training to adapt its weights in order to compensate for any

structured and unstructured uncertainties. Chapter 4 also introduces a non-model

based neural network controller which is used in the absence of a mathematical

model for the robotic arm. The performance of both model-based and non-model

based neural controllers are simulated and tested on Dymola.

- The thesis ends with a brief conclusion and future work plans in chapter 5.

9

CHAPTER 2

Two Degree-Of-Freedom Robotic Manipulator

In this chapter, the structure of a two degree-of-freedom robotic arm will be fully

described together with the parameters of its links including the mass, inertia tensor,

as well as the geometrical dimensions of each link. The main goal of describing the

structure of the robotic manipulator is to enable the derivation of the kinematics and

dynamics equations that will be used later in the design process of the controllers.

2.1 Geometrical structure

A two degree of freedom elbow manipulator consists primarily of two links

which can take the form of a cylinder or a bar. The two links are connected

together serially with a revolute joint called "elbow". The other revolute joint

called the "shoulder" is used to connect the first link with the fixed part of the

manipulator. A schematic diagram illustrating an upper view of the robotic

manipulator is shown in Figure (2.1).

Table (2.1) lists the values of the parameters related to the links of the manipulator

such as the mass, inertia tensor, and geometrical dimensions of each link.

Figure 2.1: A schematic diagram of a 2-DOF robotic arm

Table 2.1: Link parameters of the 2-DOF robotic arm

Quantity 1
st
 Link 2

nd
 Link

Length 0.25 m 0.15 m

Mass 1.95 Kg 0.93 Kg

The element I33 of the

inertia tensor matrix

0.0980 Kg.m2 0.980 Kg.m2

11

2.2 Kinematics

The kinematics of a robotic manipulator refer to the mathematical equations that

describe the forward and inverse relationships between the joint variables

(angular positions of the revolute joints) and the Cartesian position coordinates of

the manipulator end-effector [2]. The kinematics equations are very important

tools in the process of mapping the manipulator desired trajectories from the

Cartesian space to the joint space and vice versa. Such a mapping process will be

considered when we come to the point of designing trajectory tracking

controllers for the manipulator in Chapter 5.

The kinematics of a robotic manipulator can be divided into forward and inverse

kinematics. The forward kinematics describe the Cartesian position coordinates

of the end-effector as functions of the joint angular positions. Whereas, the

inverse kinematics describe the joint angular positions as functions of the end-

effector Cartesian coordinates. The following steps describe a general analytical

procedure of deriving the forward and inverse kinematics of a robotic

manipulator and will apply such a procedure for deriving the kinematics of the 2-

DOF robotic arm shown in Figure (2.1).

2.2.1 Forward kinematics

In order to derive the forward kinematics of a robotic manipulator, the

following steps must be followed:

a) Frame assignment

Attaching a frame rigidly with each link of a robotic manipulator enables

to describe the motion of each link with respect to the other previous links.

The first frame that must be defined is the inertial (world) frame with

respect to which any point in the configuration space of the manipulator

can be defined. Figure (2.2) shows a schematic diagram of the 2-DOF

robotic arm with all necessary frames defined and attached to the links. As

shown in figure (2.2), the z-axis of each frame represents the axis of

rotation of one revolute joint of the manipulator. axis is the axis of

rotation of the first revolute joint and is the axis of rotation of the second

revolute joint. Since figure (2.2) provides a planar view of the robotic arm,

the axes of rotations of both revolute joints are taken to be directed outside

the page.

11

Figure 2.2: Frame assignment for the 2-DOF robotic arm

The direction of the -axis of the inertial frame is chosen arbitrarily.

However, the directions of the x-axes of the other frames are determined

based on the following two assumptions called Denavit Hartenberg (DH)

coordinate frame assumptions [2]:

 DH1: The axis is perpendicular to the axis .

 DH2: The axis intersects the axis .

These assumptions are clearly considered in the choice of the x-axes of the

frames assigned for the robotic arm in figure (2.2). The axis intersects

and is perpendicular to the axis and the -axis intersects and is

perpendicular to the axis. After determining the directions of the z and x

axes of a frame, the direction of the -axis is determined using the right-

hand rule.

b) Derivation of Denavit-Hartenberg (DH) parameters

The second step in the process of deriving the kinematics of a robotic

manipulator is the determination of a group of parameters called Denavit-

Hartenberg parameters. These parameters are important for deriving the

homogenous transformation matrices between the different frames

assigned on the manipulator structure in step (a) [2]. The Denavit-

Hartenberg parameters for the link of a robotic manipulator are defined

as follows:

Joint angle (): is defined as the angle from the axis to the axis

about the axis .

12

Link offset (): is defined as the perpendicular distance from the origin

 to the intersection point of the axis with the axis along the

axis .

Link twist angle (): denotes the angle from the axis to the axis

measured about the axis .

Link length (): denotes the distance from the axis to the axis

measured along the axis .

Using the above definitions, the DH parameters for the 2-DOF robotic arm

shown in figure (2.2) can be determined and listed in table (2.2).

Link ()

1

 0 0

2

 0 0

c) Derivation of the homogenous transformation matrices

In order to express the position and orientation of a frame with respect to

another frame , a so called homogenous transformation matrix

 from

the frame to the frame must be derived. This matrix is of 4 4

dimension. The first three rows and columns of the homogenous

transformation matrix

 represent the orientation of the frame with

respect to the frame . The first three elements of the fourth column of the

transformation matrix

 represent the position coordinates of the origin of

frame with respect to the frame

The homogenous transformation matrices for the 2-DOF robotic arm

shown in figure 1.2 are derived as follows:

 [

]

 [

]

Table 2.2: DH-parameters for the 2-DOF robotic arm

13

 [

]

 [

]

Using the equations (2.1) and (2.2), the homogenous transformation matrix

 can be derived as follows:

 [

]

The homogenous transformation matrix defined in (2.3) is the one that

defines the forward kinematics of the 2-DOF robotic arm shown in figure

(2.2). From this matrix, the position coordinates of the manipulator end-

effector is given by:

And the end-effector's orientation matrix is defined by the first three rows

and three columns of the transformation matrix (2.3).

2.2.2 Inverse kinematics

The inverse kinematics of a robotic manipulator is concerned by the problem

of finding the manipulator joint variables (angular positions of the revolute

joints) given the position Cartesian coordinates of the end-effector. The

mathematical equations used to solve the inverse kinematics problem can be

derived either algebraically or geometrically [2]. The geometrical approach is

considered to be much easier for manipulators of high degrees of freedom. In

this section, the inverse kinematics equations for the 2-DOF robotic arm

shown in figure (2.2) will be derived using the geometrical method as follows:

 Figure (2.3) shows a geometrical manipulation on the planar view of the 2-

DOF robotic arm. This geometrical manipulation involved projecting the

position of the end-effector on the and axes of the inertial frame as well

as on the axis of frame .

14

 From figure (2.3), a mathematical equation for solving the elbow joint angle

can be derived using Pythagoras theorem as follows:

Therefore,

 (

)

It can also be shown from figure (2.3) that:

 (

) (

)

The equations (2.4) and (2.5) are used to solve the inverse kinematics problem

for the 2-DOF robotic arm shown in figure (2.2).

2.2.3 Singular configuration

A robotic manipulator is said to be in a singular configuration when it loses

one of its degrees of freedom [2,13]. This happens when the robot joint

velocities become extremely high [2,13] which is not a favorable case in

practice. In order to find the conditions when a singular configuration occurs,

the so called Jacobian matrices must be derived. The Jacobian matrices of a

robotic manipulator define the relationships between the linear and angular

velocities of the manipulator's end-effector and its joints' velocities. The

Figure 2.3: Geometrical approach for inverse kinematics derivation

15

Jacobian matrices for the 2-DOF robotic arm shown in figure (2.2) are derived

as follows:

Let and be the 3 1 vectors of the linear and angular velocities computed

at the end-effector of the 2-DOF robotic arm, then:

 ̇

, ̇

Where and represent the Jacobian matrices of the end-effector's linear

and angular velocities, respectively and ̇ represents the 2 1 vector of the

robot joint angular velocities. Therefore, the dimension of each Jacobian

matrix will be 3 2.

The equation (2.6) can be rewritten as follows:

[
 ̇

 ̇

 ̇

] [] *
 ̇

 ̇

+

Where and represent the components of the end-effector's linear

velocity due to the angular velocity of the first shoulder joint and the angular

velocity of the second elbow joint, respectively. These components of the

linear velocity can be derived as follows:

 [

]

 ̂ ̂ ̂

 [

]

 ̂ ̂ ̂

 [

]

16

, [] [

]

Equations (2.8) and (2.9) constitute the complete Jacobian matrix at the end-

effector of the 2-DOF robotic arm. As mentioned earlier, the singular

configurations of a robotic manipulator occur when the joint angular velocities

infinite values. This can help to find the conditions of the singular

configurations of the 2-DOF robotic arm as follows:

Equation (2.6) implies that:

 ̇

This means that the joint angular velocities become infinite when the

determinant of the Jacobian matrix component becomes zero. Therefore,

the singular configurations of the 2-DOF robotic arm can be calculated by

finding the determinant of in equation (2.8) and equalizing it to zero.

However, the dimension of is which is not the dimension of a square

matrix for which a determinant exists. Therefore, in order to avoid this

problem, we have to avoid the last zero row of the matrix . This can be

possibly done since the linear velocity of the arm's end-effector does not have

a component in the Z-direction. This is because the end-effector moves in a

planar motion. Therefore,

| | |

|

Then,

This implies that the 2-DOF robotic arm is considered to be in a singular

configuration when the angular position of the second elbow joint is

either .

2.3 Dynamics

The dynamics of a robotic manipulator plays a key role in forming a foundation of

understanding of the robot motion control. In order to build a control mechanism to

control the motion of a robotic manipulator, the relationships between the necessary

torques and forces that must be applied to the joints and the angular positions,

velocities, and accelerations of those joints must be established and thouroughly

understood. This is because any robot motion control strategy is based upon the

17

generation of an actuating torque to move the robot joints to a desired space

configuration. The problem concerned with establishing the relationships between the

joint torques and forces and their angular positions, velocities, and accelerations can

be solved using the manipulator dynamics equations [2]. Therefore, this section is

devoted to the derivation of the dynamics equations of the 2-DOF robotic arm shown

in figure (2.2).

There are two different methods used to derive the forward dynamics equations of a

robotic manipulator: Euler-Lagrange method and Newton-Euler method [2]. The

Euler-Lagrange method depends on finding the total kinetic and potential energies of

the manipulator and then using them to calculate the Lagrangian (L) of the whole

robot system which can be used to calculate the torque of each robot joint. The

Newton-Euler method depends on the concept of Newton's second law to calculate

the coupling torques between the adjacent links of the manipulator.

In the following, the first (Euler-Lagrange) method is utilized for deriving the

dynamics equations of the 2-DOF robotic arm.

A closed-form relationship that can be used to calculate the torques and forces applied

on the joints of a robotic manipulator is written as follows [2]:

 ̇

Where, L denotes the Lagrangian of the robotic manipulator and is defined as the

difference between the total kinetic energy (K) and the total potential energy (P) of the

robotic manipulator, denotes the joint variable, and denotes the torque or

force applied on the joint.

In order to find the Lagrangian of the 2-DOF robotic arm, the total kinetic and

potential energies of the arm must be derived. The total kinetic and potential energies

are defined as the sum of the kinetic and potential energies of the individual links of

the manipulator. The kinetic and potential energy associated with one link are

computed at the center of mass of that link. The derivation of the total kinetic and

potential energies of the 2-DOF robotic arm is done as follows:

The first link:

The following equation describes the kinetic energy computed at the center of mass of

the first link of the arm:

18

Where denotes the mass concentrated at the center of the first link, is the vector

of the linear velocity at the center of mass of the first link, is the vector of the

angular velocity at the center of mass of the first link, denotes the inertia tensor

matrix computed at the center of mass of the first link with respect to the inertial frame

of the robotic arm.

The linear velocity can be derived using the equation (2.6) as follows:

 ̇ [] *
 ̇

 ̇

+

Where and denote the components of the linear velocity due to the angular

velocity of the first joint ̇ and the angular velocity of the second joint ̇,

respectively.

By considering the center of mass of each link is at the center of the link, the linear

velocity components and can be calculated as follows:

 [

]

 ̂

 ̂ ̂

Since the sole movement of the second elbow joint of the robotic arm does not affect

the first link, the component added to the linear velocity at the center of the first link

due to the angular velocity of the second elbow joint will be zero. This implies that:

 ̂ ̂ ̂

Therefore, [

] *
 ̇

 ̇

+ [

 ̇

 ̇

]

When the first shoulder joint moves with a specific angular velocity ̇, every point on

the first link will move with the same angular velocity ̇ However, the sole

movement of the second elbow joint does not affect the first link. Therefore, the

angular velocity at the center of mass of the first link is given as follows:

19

 ̇ [

] *
 ̇

 ̇

+ [

 ̇

]

The computation of the inertia tensor matrix of a link depends on the geometrical

dimensions of that link as well as on the coordinate frame with respect to which the

computation is carried out. Therefore, in order to compute the inertia tensor matrix at

the center of mass of the first link of the robotic arm, the geometrical dimensions of the

first link must be determined and a local coordinate frame must be attached to the

center of the link in order to derive the inertia tensor matrix with respect to it. Figure

(2.4) shows a schematic diagram illustrating the geometrical shape of the first link. For

simplicity of calculation, we will consider both links of the robotic arm to have cubic

shapes. Other geometrical shapes may be considered but the calculation of the inertia

tensor matrix must differ accordingly.

As shown in figure (2.4), a local coordinate frame is attached at the center of the

link in order to use it for calculating the inertia tensor matrix. The inertia tensor matrix

computed at the center of the first link with respect to the local frame is given as:

 [

]

Where the diagonal elements , , and are called the principal moments of

inertia, and the other elements of the inertia tensor matrix are called the cross products

of inertia. Based on the schematic diagram shown in figure (2.4), and given that the

mass density of the first link is denoted by , the elements of the inertia tensor matrix

 can be calculated as follows:

Figure 2.4: A schematic diagram of the first link of the

2-DOF robotic arm

21

 ∫ ∫ ∫
 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ∫ ∫
 ⁄

 ⁄

 ⁄

 ⁄

 ∫ *

 +

 ⁄

 ⁄
 ⁄

 ⁄

 ∫ [

 ⁄

 ⁄

]

 ∫ *

 +

 ⁄

 ⁄

 *

 +

 ⁄

 ⁄

By doing similar calculations, the other elements of the inertia tensor matrix can be

calculated to have the following values:

 ∫ ∫ ∫
 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ∫ ∫ ∫
 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ∫ ∫ ∫
 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ∫ ∫ ∫
 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ∫ ∫ ∫
 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

 ⁄

It is clear from the definition of the cross products of inertia that the inertia tensor

matrix of a link is symmetric. The cross products of inertia for the first link are found

21

to be zero due to the geometrical symmetry of the link about the local frame as

shown in figure (2.4).

By substituting the elements into the equation (2.15), the inertia tensor matrix of the

first link with respect to the local frame is found to be:

[

]

In order to compute the kinetic energy defined in (2.11), the inertia tensor matrix at the

center of mass of the first link must be computed with respect to the inertial frame of

the robotic arm shown in figure (2.2). This requires the similarity transformation of the

locally-defined inertia matrix (2.16) which can be done as follows:

Where, represents the rotational matrix of the local frame attached at the

center of the first link with respect to the inertial frame of the 2-DOF robotic arm and

is given by:

 [

]

Therefore,

[

[

]

[

]

]

Substituting the equations (2.13), (2.14), and (2.17) into the equation (2.11) gives the

kinetic energy at the center of mass of the first link of the 2-DOF robotic arm as

follows:

 ̇

 ̇

The following equation is used to compute the potential energy at the center of mass of

the first link of the arm [2]:

22

Where is the vector of gravity in the inertial frame of the robotic arm, is the

position vector of the center of mass of the first link which was considered earlier to be

at the center of the link, and is the mass of the first link.

Therefore,

 []

[

]

The second link:

Following the same steps of computing the kinetic and potential energies of the first

link, the kinetic and potential energies at the center of mass of the second link are

computed as follows:

Where denotes the mass concentrated at the center of the second link, is the

vector of the linear velocity at the center of mass of the second link, is the vector of

the angular velocity at the center of mass of the second link, denotes the inertia

tensor matrix computed at the center of mass of the second link with respect to the

inertial frame of the robotic arm.

 ̇ [] *
 ̇

 ̇

+

[

]

*
 ̇

 ̇

+

Therefore,

[

 (

) ̇

 ̇

(

) ̇

 ̇

]

It is clear from the equation (2.21) that the angular velocities of both joints of the 2-

DOF robotic arm have effects on the linear velocity computed at the center of mass of

the second link.

23

 ̇ [

] *
 ̇

 ̇

+ [

 ̇ ̇

]

By considering that both links of the robotic arm have the same geometrical shape and

dimensions, it can be shown that both links will have the same inertia tensor matrix

relative to the local coordinate frames attached at the centers of the links. This implies

that the inertia tensor matrix at the center of the second link is the same as the one

derived in (2.16). Therefore,

[

]

By doing the similarity transformation of , the inertia tensor matrix at the center of

the second link with respect to the inertial frame of the arm is found to be as

follows:

Where, represents the rotational matrix of the local frame attached at the

center of the second link with respect to the inertial frame of the 2-DOF robotic arm

and is given by:

 [

]

Therefore,

[

[

]

[

]

]

Substituting the equations (2.21), (2.22), and (2.23) into the equation (2.20) gives the

kinetic energy at the center of mass of the second link of the 2-DOF robotic arm as

follows:

24

[((

) ̇

 ̇)

 ((

) ̇

 ̇)

]

 (̇ ̇)

The potential energy at the center of mass of the second link of the 2-DOF robotic arm

is computed as follows:

Where is the vector of gravity in the inertial frame of the robotic arm, is the

position vector of the center of mass of the second link, and is the mass of the

second link.

Therefore,

 []

[

]

 (

)

By adding the equations (2.18) and (2.24), the total kinetic energy of the 2-DOF

robotic arm is found to be:

 ̇

 ̇

[((

) ̇

 ̇)

 ((

) ̇

 ̇)

]

 (̇ ̇)

By adding the equations (2.19) and (2.25), the total potential energy of the 2-DOF

robotic arm is found to be:

 (

)

After computing the total kinetic and potential energies of the 2-DOF robotic arm, the

Lagrangian of the arm can be computed as follows:

25

 ̇

 ̇

[((

) ̇

 ̇)

 ((

) ̇

 ̇)

]

 (̇ ̇)

 (

 (

))

By using the Euler-Lagrange equations defined in (2.10), the torques applied to the

revolute joints of the 2-DOF robotic arm for specified angular positions , angular

velocities ̇, and angular accelerations ̈ can be computed and found to be:

 *

 (

)

 + ̈

 * (

)

 + ̈ [] ̇ ̇

 *

 + ̇

 *

 (

)+

 * (

)

 + ̈ *

 + ̈

 *

 + ̇

 *

 +

2.4 Modeling of the 2-DOF robotic arm on Dymola

In this section, a model is developed for the 2-DOF robotic arm shown in figure (2.2)

under the Dymola simulation environment [14]. The reason behind choosing Dymola

for simulation in this thesis rather than MATLAB is because of its dependence on the

object-oriented modeling language Modelica developed by Hilding Elmqvist in 1978

[15]. This language is useful for modeling any complex system by decomposing the

system into individual simple component models (objects) and then connecting such

models with suitable connectors to develop a model for the whole system. This

object-oriented modeling methodology does not require solving highly complicated

nonlinear equations in order to derive a closed-form mathematical model (such as a

transfer function) for the system as MATLAB requires [16]. In addition, using simple

differential algebraic equations (DAEs) to develop a modelica-model allows for

modeling complex systems containing components from different domains of

engineering [14,15].

26

The development of a modelica-model for the 2-DOF robotic arm on Dymola requires

the use of some of the component models packaged within the Multibody library

which is one of the several built-in libraries available in Dymola [14]. The main

components contained within the Multibody library are described as follows:

- World

The world component is used to model the inertial (world) frame of a multi-

body mechanical system such as a robotic manipulator. The world model

defines parameters for the gravity vector, as well as the properties needed for

developing an animation for the whole system. Therefore, the presence of this

component at the top level of the model of a multi-body system is a necessity

and its absence causes the translator (compiler) to generate an error.

- BodyShape
This component is used to model a rigid body characterized by a mass and an

inertia tensor such as a link of a robotic manipulator. The component model

defines parameters that allow for choosing a desired geometrical shape with its

dimensions as well as defining the coordinates of the center of mass of the

body relative to the frame attached at its starting terminal. The frames attached

at the ends of the BodyShape component allow for determining the position

and orientation of the body with respect to one of the two frames. The beauty

of using the BodyShape model appears when a number of BodyShape

components are connected. In this case, the kinematics problem of the whole

system is automatically solved. This component will be used later for the

modeling of the two links of the robotic arm.

- Revolute

The Revolute model is one of the models available within the Joints library.

This model, as its name implies, is used for the modeling of a revolute joint.

The parameters defined in the Revolute model include the angular position of

the revolute joint, the geometrical shape used to visualize the revolute joint

such as a small cylinder. The Revolute model will be used to define the

revolute joints of the 2-DOF robotic arm.

There are many other built-in libraries and components defined within the Multibody

library of Dymola. Information regarding the definitions and purposes of use of such

components can be obtained from [14]. Figure (2.5) shows a diagram illustrating the

use of the above components to build the model of the 2-DOF robotic arm on Dymola.

27

Chapter 3

2.5 Permanent magnet DC- motor

This section is devoted to the study and analysis of the dynamic behavior of the

permanent-magnet DC-motor which is considered to be the driving force of the 2-DOF

robotic manipulator. In order to facilitate the process of understanding how a DC-

motor works, a mathematical model for the DC-motor is first developed. After

developing a mathematical model, the stability and other characteristics of the time

response of the DC-motor system can be easily observed and analyzed for different

inputs and load values.

The conventional model used to describe the dynamics of a permanent-magnet DC

motor is shown in figure (2.6) [2].

It is clear from figure (2.6) that the model of a permanent-magnet DC motor consists

of two parts: an electrical part represented by the armature circuit and a mechanical

part. The components of the armature circuit shown in figure (2.6) include an armature

Figure 2.5: Dymola model for the 2-DOF robotic arm

Figure 2.6: A circuit diagram for armature-controlled DC motor

28

inductance , an armature resistance , and an input voltage signal source .

represents the armature current.

The mechanical part of the DC-motor model is shown in figure (2.7). It is shown in

this figure that the mechanical part of the DC-motor model consists of the motor

inertia , the motor damper , and the load inertia which is connected to the motor

inertia through a gear train with gear reduction ratio (). Both the motor inertia and

the motor damper affect the amount of torque needed for the motor to operate.

Figure 2.7: Mechanical part of the DC-motor system

The operation of a DC-motor is based on the effect of a constant magnetic field

(passing through the motor stator) on a current-carrying conductor (motor rotor). Such

effect is represented by the generation of torque to enforce the motor inertia to

rotate with a certain angular velocity . The angular motion of the motor inertia

within the constant magnetic field induces a voltage drop called back-electromotive

force across the terminals of the moving rotor as shown in figure (2.6).

The open-loop transfer function relating the angular position of the motor to the

input armature voltage is given by the following:

Where and are the motor constants.

The mathematical derivation of the above transfer function is explained in detail in

Appendix A. It is important to remind here that the derivation of a transfer function is

not necessary for simulating the behavior of a DC motor model on Dymola because the

simulation of a system on Dymola is based on the object-oriented and acausal

modeling methodology. However, the importance of such a transfer function will

29

appear in the process of designing a proportional-derivative (PD) controller for the

motor angular position in the next chapter.

2.6 Dymola Modeling and simulation of the DC-motor

In this section, the DC-motor conventional model shown in figures (2.6) and (2.7) will

be used to develop an object-oriented model for the motor on Dymola. The Dymola

model will then be simulated to analyze the step response of the DC-motor in the

presence and absence of a driven load. This simulation aims to investigate the stability

of the motor system without a controller as well as the impact of driving a certain load

on the motor angular position and velocity. Figure (2.8) shows the component-oriented

model developed in Dymola for the DC-motor system.

Figure (2.8) shows two diagrams. The upper one is the motor armature and mechanical

circuits similar to those shown in figures (2.6) and (2.7). The lower diagram shows a

simplified icon which represents an abstract model for the upper motor circuit diagram.

The motor icon was developed in order to use it later in a more complex system

structure which would contain the controllers and the 2-DOF robotic manipulator. The

motor circuit diagram shown in figure (3.3) also shows the motor parameter values

used in simulation which are , , ,

 , .

In order to observe the effect of connecting a constant load torque on the step response

of the motor angular position and velocity, the following simulation is conducted: In

the beginning of the simulation time, no load is connected to the motor. During this

Figure 2.8: Dymola model for the DC-motor system

31

time, the simulation will show the natural step response of the motor with no load

(when . At time , a load torque is applied to the

motor inertia. The simulation from this time on will show the effect of connecting the

load on the motor step response. Figures (2.9)-(2.12) show the step responses of

different characteristics of the DC-motor.

Figure 2.9: Step response of the DC motor angular position

Figure 2.10: Step response of the DC motor angular velocity

Figure (2.9) shows that for time , the motor angular position starts

increasing linearly with a slope of about 18.3 rad/sec which is the value of the motor

angular velocity during the same time interval as shown in figure (2.10). For time

 when the load is connected to the motor flange, the motor angular position

 starts increasing linearly with a slower slope of about 4.7 rad/sec which is the value

of the slower angular velocity for the same time interval as shown in figure (2.10).

[sec]

[sec]

31

Figure (2.11) shows that the armature current when no load is connected to the motor

is about 0.04 A. However, when the load is connected to the motor at , the

armature current starts increasing to the value of 0.22 A.

Figure 2.11: Step response of the DC motor armature current

Figure 2.12: Step response of the negative of DC motor torque

Such an increase in the armature current is logically necessary in order to generate a

larger torque for driving both the motor and the load inertias together. Since the motor

torque is directly proportional to the armature current through the motor constant ,

the increase of the armature current at time causes a corresponding increase

in the motor torque as shown in figure (2.12) in which the torque increases from

about to about

[sec]

[sec]

32

One important indication of figure (2.9) is the unstable behavior of the motor angular

position which keeps increasing linearly and never stabilizes at a certain value which is

not practically desired.

In order to observe the effect of the unstable behavior of the DC motor on the motion

of the 2-DOF robotic arm, the following simulation is conducted: DC-motors are

connected to the joints of the 2-DOF robotic manipulator modeled in figure (2.5)

through gear trains with and The step responses of the angular

positions and torques of both joints of the arm are shown in figures (2.13) – (2.16).

Figure 2.13: Step response of uncontrolled shoulder joint angular position

Figure 2.14: Step response of uncontrolled elbow joint angular position

[sec]

[sec]

33

It is clear from figures (2.13) and (2.14) that the angular positions of both joints of the

arm and are unstable, as expected, due to the unstable angular positions of their

driving motors and It is also clear that the angular position of the shoulder

joint is more affected by its nonlinear dynamic torque than the angular position

of the elbow joint . This is because the shoulder joint exerts a greater torque in order

to be able to drive both links of the manipulator. The elbow joint, however, needs to

exert a lower torque because it drives only one link of the manipulator.

Figure 2.15: Step response of uncontrolled shoulder joint torque

Figure 2.16: Step response of uncontrolled elbow joint torque

To see this in numbers, the value of the torque generated by the shoulder joint at time

 is This would mean that the disturbance load torque

[sec]

[sec]

34

applied on the inertia of the shoulder joint driving motor is

From figure (2.12), the motor torque generated when no load is connected is found to

be about Therefore, the net torque applied on the inertia of the shoulder

joint driving motor is Such a negative torque is the

reason why the shoulder joint angular position is always negative as shown in figure

(2.13).

On the other hand, the elbow joint exerts a lower torque of about . This

implies that the disturbance load torque applied on the inertia of the elbow joint

driving motor is

 Therefore, the net torque applied on the

inertia of the elbow joint driving motor is Despite the

negative value of the net torque, its magnitude is very small that is not sufficient to

enforce the motor angular position to have negative values. Moreover, the very small

magnitude of the applied torque causes the elbow joint angular position to have very

small values as shown in figure (2.14).

Figure (2.17) shows a (3D) visualization of the unstable behavior of the uncontrolled

joint driving motors.

Figure (2.17) shows the trajectory followed by the end-effector during a

period. It is clearly seen that the angular positions of the joint driving motors never

stabilize. At the outset, the shoulder joint starts rotating with negative angular

positions, as indicated by figure (2.13), until it reaches the maximum position of

 at the time instant . After that, the shoulder joint keeps

oscillating between the positions of and for the rest of the

simulation time. The angular position of the elbow joint, however, keeps increasing

with positive values making an elliptical trajectory as shown in figure (2.17).

Figure 2.17: 3D visualization of the trajectory of the uncontrolled arm

35

CHAPTER 3

 PD-Computed Torque Control

It was shown in the previous chapter that the open-loop step response of the

permanent-magnet DC motor is unstable. Such instability must therefore be corrected

before using the motor to drive a load. In this chapter, the problem of stabilizing the

angular position of the DC-motor is handled through designing a (PD) controller which

is done using the root locus method. The computed torque methodology is then

adopted in order to cancel the effects of the joint disturbance torques on the responses

of the PD-controlled motors.

3.1 PD-control

There are different methods used for designing a PD controller for a specified system.

One of these methods is based on a mathematical analysis which involves the

derivation of the system transfer function and then using the transfer function of the

PD-controller to achieve required time response characteristics [18].

Although this method seems to be simple for second-order systems, it becomes highly

complicated for higher order systems for which the derivation of the closed-loop

transfer function is complicated and a time consuming process. In order to facilitate the

process of designing a PD controller for higher order systems, the root locus method

was proposed as a technique that requires only the open-loop poles of the system

[17,18]. The root-locus method depends on tracking the movement of the open-loop

poles of the system on the complex number plane as the closed-loop system gain

increases from 1 to infinity. The resultant trajectory of the poles on the complex

number plane is called the root locus of the system. So, the root-locus based controller

design process is mainly based on making the root locus of the system pass through a

specified design point that achieves the required time response characteristics.

The general process of designing a PD controller for a system using the root locus

method is explained in detail in Appendix B.

As mentioned earlier, the primary goal of designing a PD controller for the DC motor

system is to achieve the stability of the motor angular position. The secondary goal of

using a PD controller is to achieve specific requirements for the motor step response.

These requirements are given as follows:

The settling time is taken to be approximately and the peak overshoot

 is to be about .

36

For these time response requirements, the design point that must be located on the

root locus of the DC-motor system is found to be the following:

The computation of the above design point is found in Appendix B.

Using the equation (2.30) and the motor parameter values shown in figure (2.8), the

open-loop transfer function of the DC-motor can be calculated as follows:

Using the tf2zpk MATLAB function, the open-loop poles of the DC-motor system can

be computed and are given as follows:

The general transfer function of a PD controller is given as , where

 and are the PD controller gains. This implies that the design of a PD controller

for a specific system involves inserting an additional zero into the open-loop transfer

function of the system such that the root locus of the resulting open-loop system passes

through the design point in order to achieve the required time response

characteristics. Applying such an implication is described in the following steps:

1- Let be the zero term to be added to the DC-motor open-loop transfer

function in (4.9). Therefore, the resulting open-loop transfer function would

be

2- In order for the design pole in (4.9) to be located on the root locus of the

resulting open-loop transfer function in step 1, the magnitude and phase angle

requirements derived in (4.2) must be satisfied. This enables to calculate the

corresponding location of the additional zero on the real axis ().

Applying steps 1 and 2 reveal that the additional zero .

Figure (3.1) shows the root locus of the resulting open-loop transfer function

 which was obtained using the rlocus MATLAB function. It is clear

from figure (4.1) that the root locus of the resulting open-loop transfer function did

pass through the design pole given in (3.1). The figure also shows that both the

required damping ratio and un-damped frequency calculated in Appendix B have been

reached. It is also important to note that the value of the closed loop gain at which the

root locus passes through the design pole is .

37

Therefore, the designed PD controller for the DC-motor system is

 with the controller gains and .

In order to test the efficiency of the designed PD controller, a simulation is carried out

to see its effect on the step response of the DC-motor angular position. Figure (3.2)

shows the closed-loop DC-motor system including the designed PD controller and the

DC-motor system model represented by the icon shown in figure (2.8). Figure (3.3)

shows the step response of the PD-controlled motor system shown in figure (3.2).

Figure 3.2: Block diagram of PD-controlled DC-motor system

Figure 3.1: Root locus of the open-loop transfer function (S+273.14) L(S)

38

Figure 3.3: Step response of PD-controlled DC-motor

It can be seen from figure (3.3) that the designed PD-controller is capable of stabilizing

the motor angular position and achieving the required settling time and overshoot

specifications since and the figure shows no overshoot above the steady

state value.

It is also noted that the steady state error is zero despite using only a PD controller in

the system. This is because the open-loop transfer function of the DC-motor system in

(3.2) has a system type I, which is responsible for eliminating the steady state error of

the system.

After designing a PD controller to stabilize the motor angular position and to achieve

specific time response requirements, the question now is whether the designed PD

controller will be able to preserve its efficiency if the DC-motor is used to drive the

joints of our 2-DOF robotic manipulator. This question can be answered by conducting

the following simulation on Dymola:

Two PD-controlled DC-motors as the one shown in figure (3.2) are used to drive the

joints of the 2-DOF robotic arm. The motors are connected to the arm joints through

gear trains with gear reducers and for the shoulder joint and the

elbow joint respectively. Figure (3.4) shows a block diagram for the 2-DOF robotic

arm driven by the PD-controlled DC-motors. The input voltage signal source

connected to both motors is a model developed on Dymola for a pick-and-place

function. Figure (3.5) shows the time responses of the angular positions of the two

driving motors.

[sec]

39

From figure (3.5), it is clear that when the PD-controlled DC-motors are connected to

the joints of the robotic arm, the designed PD-controller lost its capability of

preserving the zero steady state error in the time response of the DC-motor angular

position. This can be clearly seen from figure (3.5) where the error in the time response

is about for the shoulder joint motor angular position and about for

the elbow joint motor angular position.

Such a result was actually expected since the PD-controller was designed for the DC-

motor without being connected to a load (i.e. the open-loop transfer function of the

DC-motor (3.2) was computed based on the assumption that the load torque).

However, in this simulation when the DC-motors are connected to the joints of the

robotic arm, the inertias of the driving motors began experiencing some amount of

disturbance load torques which are the torques exerted by the dynamics of the 2-DOF

robotic arm.

This implies that now has a value and therefore the designed PD controller is no

longer capable of achieving the required time response characteristics. Therefore, in

order to recover the efficiency of the designed PD controller, a disturbance torque

rejection controller must be developed in order to cancel the effect of the disturbance

dynamic torques of the robotic arm joints which will be the topic of the next section.

The difference between the effects of the disturbance joint torques on the angular

positions of their driving motors can be clearly observed in figure (3.5) where the

disturbance torque of the shoulder joint has a greater effect on the angular position

Figure (3.4): Dymola model for the robotic arm driven by PD-controlled DC-motors

41

of its driving motor than the effect of the disturbance torque of the elbow joint

on the motor angular position .

In order to see the poor performance of the PD controller in the presence of the

disturbance torques of the manipulator joints more clearly, figure (3.6) shows a 3D

visualization of the end-effector's trajectory for a period of . It is shown in

figure (3.6) that the manipulator end-effector deviated from the desired trajectory from

 to . Such a deviation was caused by the large overshooting of

the angular positions of the joint driving motors during that period as shown in figure

(3.5).

Figure (3.5): Angular positions of the DC-motors with PD-control

Figure 3.6: 3D visualization of the trajectory of PD-controlled arm

[sec]

[rad]

41

3.2 PD-computed torque control

As shown in section 3.1, using the designed PD controller alone is not effective in

achieving the desired trajectory for the 2-DOF robotic manipulator due to the presence

of the dynamic disturbance torques of the manipulator joints. In order to improve the

performance of the PD controller in the presence of the disturbance torques, a

disturbance rejection control strategy must be developed in order to cancel the effect of

the disturbance torques of the joints on the angular positions of their driving DC-

motors. This section aims to develop a disturbance rejection controller using the well-

known computed torque method to be applied on the PD-controlled robotic arm.

The computed torque method was used extensively in the literature as a disturbance

torque rejection method to improve the performance of the trajectory tracking control

of robotic manipulators [6-8]. This method is based on the idea of computing estimated

values for the joint torques using the dynamics equations of the robotic manipulator.

The computed torque values can then be added to the actual negative torques of the

joints to cancel them out as shall be seen later in this section.

The following discussion shows mathematically the effectiveness of the computed

torque method in eliminating the joint disturbance torques for a general robotic

manipulator of DOF:

The mechanical part of the DC-motor model is described as:

Where denotes the motor inertia, denotes the motor damping coefficient, is

the motor torque and denotes the torque generated by the load which in our case

describes the disturbance torques due to the dynamics of the driven manipulator joints.

These disturbance torques of the joints can be described in matrix form as follows

[13]:

 ̈ (̇) ̇

Where is a symmetric square matrix of dimension and represents the

inertia matrix of the -DOF robotic manipulator, (̇) represents the vector of the

centrifugal and coriolis forces applied on the manipulator joints, represents the

 vector of gravitational forces applied on the manipulator joints, denotes the

joint angle, and represents the torques necessary for driving the joints of the

manipulator.

Substituting (3.4) into (3.3) reveals the following equation:

42

[̈ (̇) ̇]

For simplification purposes, let (̇) ̇ ̇ , then:

[̈ ̇]

The last term on the right hand side of equation (3.5) represents the disturbance torques

that are responsible for the deviation of the PD-controlled motor positions from their

desired trajectories as shown in figure (3.5). In order to remove the effect of such

disturbance torques of the joints and recover the trajectory tracking efficiency of the

PD controller, an additional term must be inserted into equation (3.5) as follows:

[̈ ̇] [̂ ̈ ̂(̇)]

Where ̂ and ̂(̇) represent the estimated inertia matrix and the estimated

centrifugal and coriolis forces, respectively.

In order for the last two terms on the right hand side of equation (3.6) to cancel out, the

following equations must be satisfied:

 ̂

 and ̂(̇)

 (̇)

The equation (3.7) constitutes the mathematical representation of the computed torque-

based disturbance rejection method for an -DOF robotic manipulator. It is important

to note here that the effectiveness of the computed torque method in eliminating the

effects of the disturbance torques of the joints depends mainly on the accuracy of

computing the actual mass matrix and centrifugal and coriolis forces of the driven

manipulator. In the following discussion, the use of equations (3.7) to develop a

computed torque-based disturbance rejection control for the 2-DOF robotic arm is

investigated:

Expanding the equation (3.4) for the 2-DOF robotic arm reveals the following:

 ̈ ̈ (̇)

,

 ̈ ̈ (̇)

By equating the equations of (3.8) to the dynamics equations of the robotic arm

derived in (2.28) and (2.29), the corresponding elements of the symmetric

43

inertia matrix and the corresponding elements of the vector (̇) of the robotic arm

are found to be:

 *

 (

)

 +

 * (

)

 +

 * (

)

 +

 *

 +

 [] ̇ ̇ *

 + ̇

 *

 (

)+

 *

 + ̇

 *

 +

Using the equations in (3.8), the estimated inertia matrix ̂ and the estimated

vector ̂(̇) for the 2-DOF robotic arm are computed using the following relations:

 ̂

 ̂

 ̂

 ̂

 ̂

 ̂

The equations (3.9) constitute the computed torque-based disturbance rejection control

strategy for the 2-DOF robotic arm. and represent the gear reduction

ratios of the gear trains connected to the shoulder joint and the elbow joint,

respectively.

In order to test the effectiveness of the computed torque-based disturbance rejection

controller to eliminate the effects of the disturbance torques generated by the joint

dynamics of the 2-DOF robotic arm, Modelica-based models are developed for both

the estimated inertia matrix ̂ and the estimated vector of centrifugal and coriolis

forces ̂(̇) in order to use them later in the Dymola simulation of the whole system.

These models can be found in Appendix C.

44

Figure (3.7) shows the Dymola model of the arm system with the designed PD-

computed torque controller. Figure (3.8) shows the simulation results of the arm

control system shown in figure (3.7).

Figure (3.8) shows that with the addition of the designed computed torque disturbance

rejection controller, the PD controllers recovered their efficiency of enforcing the joint

driving motors to follow their desired pick-and-place trajectory. This shows that the

developed computed torque disturbance rejection controller is capable of totally

eliminating the effects of the disturbance joint torques on the angular positions of their

driving motors.

Figure 3.7: Dymola model for the robotic system with computed torque controller

It can be also observed from figure (3.8) that the steady state error in the horizontal

areas of the response is equal to zero. However, in the vertical areas of the response,

there appears a steady state error of about between the desired trajectory and

the actual angular positions of the motors.

Figure (3.9) shows a 3D visualization of the effect of adding the designed computed

torque disturbance rejection controller on improving the trajectory followed by the

manipulator end-effector.

Comparing the trajectory followed by the end-effector in figure (3.9) with that shown

in figure (3.6), it can be clearly observed that with the addition of the designed

computed torque disturbance rejection controller, the large deviation of the end-

effector from the desired trajectory was effectively handled as shown in figure (3.9).

45

Figure 3.8: Angular positions of motors with computed torque controller

This is supported by figure (3.8) which shows no overshooting for the actual angular

position of either driving motor.

The non-zero error shown in the vertical areas of the response in figure (3.8) is caused

by the time varying nature of the applied pick-and-place function which cannot be

handled by the linear PD controller. Therefore, the feed-forward control technique

explained in [2] is used to eliminate this error. The feed-forward error elimination

technique depends on adding a feed-forward path in the closed loop control system of

each motor such that the transfer function of the feed-forward path is the reciprocal of

the open-loop transfer function of the DC-motor system. The following mathematical

investigation proves that this feed-forward control technique can totally eliminate the

error shown in figure (3.8):

Figure 3.9: 3D visualization of the arm trajectory with computed torque controller

[sec]

[rad]

46

Figure (3.10) shows a symbolic block diagram representing the PD-controlled DC

motor system where is the controller transfer function, is the open-loop

system transfer function, and is the feed-forward transfer function to be added to

the system:

Figure 3.10: Block diagram of control system with feed-forward path

From figure (3.10), it can be shown that

 [()]

Therefore,

 [] []

Which reveals that,

 []

[]

Equation (3.10) shows that in order for the error to be equal to zero, the feed-

forward transfer function must be equal to the reciprocal of the open-loop

system transfer function of the DC-motor.

Figure (3.11) shows a model developed on Dymola for the feed-forward controller

(FFC). Figure (3.12) shows the inclusion of the feed-forward controller (FFC) to each

of the PD-controlled driving motors of the arm. Figure (3.13) shows the simulation

results of the control system shown in figure (3.12).

It is clear from figure (3.13) that the error due to the time varying nature of the desired

pick-and-place trajectory is totally eliminated by the designed feed-forward controller.

As mentioned earlier, the efficiency of the computed torque disturbance rejection

control strategy is determined by the accuracy of the torques computed using the

relations in (3.9). This accuracy depends mainly on our knowledge of the accurate

parameters of the joint driving motors and the controlled manipulator itself.

C(s) G(s)

F(s)

R(s)

+

+

+

-

47

Therefore, the computed torque disturbance rejection controller will fail to achieve its

goal of accurately compensating for the joint disturbance torques in either one of the

following two conditions:

1- If any of the known parameters of the joint driving DC motors or the

controlled robotic arm is not accurate which is the case of a structured

uncertainty [7], [8].

Figure 3.11: Dymola model of the feed-forward controller (FFC)

Figure 3.12: Dymola model for the robotic system with computed torque disturbance rejection

and feed-forward controller (FFC)

48

2- If the model developed for the robotic arm in (2.28) and (2.29) is not correct in

the sense that other un-modeled dynamics of the manipulator exist and were

not considered in the development of the manipulator model. This case is

known as an unstructured uncertainty. Examples of the un-modeled dynamics

that might exist include the coulumb and viscous friction associated with the

arm joints, a sudden change in the mass of the payload attached to the end-

effector during the online operation of the arm [7,8].

The following simulations aim to test the efficiency of the designed computed torque

disturbance rejection controller in the cases of having structured and unstructured

uncertainties in the system model:

Simulation in the case of a structured uncertainty:

Table (3.1) lists the accurate and inaccurate parameters of both the joint driving DC-

motors and the 2-DOF robotic arm.

Figure (3.14) shows the simulation results of the robotic arm control system shown in

figure (3.12) with the parameters of the joint driving motors and the robotic arm

changed to their corresponding accurate values listed in table (3.1).

Figure 3.13: Angular positions of the motors with computed torque and feed-

forward control (FFC)

[sec]

[rad]

49

Table 3.1: Accurate and inaccurate parameter values for the driving motors

and the robotic arm

DC-motor parameters Robotic arm parameters

Inaccurate Accurate Inaccurate Accurate

As shown in figure (3.14), the actual angular positions of both joint driving motors

deviated from the desired pick-and-place trajectory despite the presence of the

designed disturbance torque rejection and the feed-forward controllers. The error in

the horizontal parts of the response for the shoulder joint motor angular position is

about and for the elbow joint motor angular position is about . This

error is due to the fact that the actual disturbance torques of the joints are greater than

the estimated torques computed by the designed disturbance rejection controller. The

reason for this difference is because the robotic arm parameters used for computing

the estimated inertia matrix and the estimated vector of coriolis and centrifugal forces

are different from the accurate parameters of the arm.

Figure (3.14) also shows an error in the vertical parts of the response of about

for the shoulder joint motor angular position and about for the elbow joint

motor angular position. This error is partly due to the inaccurate compensation for the

actual disturbance torques of the joints and partly due to the inaccurate motor model

used in the design of the feed-forward controller.

Figure 3.14: Effects of the structured uncertainties on motor angular positions

[sec]

[rad]

51

The effects of the structured uncertainties on the trajectory followed by the

manipulator end-effector are shown by the 3D visualization shown in figure (3.15).

Figure (3.15) shows that in the presence of the structured uncertainties, the end-

effector slightly deviated from its steady state trajectory during the period from

 to . Such a slight deviation is caused by the small

overshooting of the shoulder joint driving motor position during that period as shown

in figure (3.14).

Simulation in the case of an unstructured uncertainty:

In this simulation, the joints of the robotic arm are assumed to experience disturbance

torques at the time instant . The disturbance torques applied to the arm joints

are assumed to be constants with the values and These

disturbance torques simulate the cases when the robotic arm are subject to external

forces that might be applied on the arm links during its operation or when the robotic

arm is required to pick and place a payload of a certain mass value.

In such cases, a disturbance torque is added to the dynamic torque of each joint of the

robotic arm. Figure (3.16) shows the effects imposed by the externally applied

disturbance torques on the angular positions of the joint driving motors at the time

instant of .

As shown in figure (3.16), the designed computed torque disturbance rejection and the

feed-forward controllers are incapable of compensating for the suddenly applied

external torques at the time instant .

Figure (3.15): Trajectory of the arm with structured uncertainties

51

This can be clearly seen from the errors in the horizontal and vertical parts of the

response between the desired pick-and-place trajectory and the actual positions of the

joint driving motors that began to appear at .

Figure (3.17) shows a 3D visualization of the effects of the unstructured uncertainties

on the trajectory followed by the manipulator end-effector.

As shown in figure (3.17), the end-effector started to follow a completely different

trajectory from the desired one at the time instant when the external disturbance

torques were applied on the manipulator links.

From the simulations conducted above, it can be concluded that the computed torque

disturbance rejection method is effective only in the case of having accurate models

for both the controlled manipulator and its joints' driving motors which is not

Figure 3.16: Effects of the unstructured uncertainty on motor angular positions

Figure 3.17: Trajectory of the arm with unstructured uncertainties

[sec]

[rad]

52

necessarily possible in practice. This is due to the presence of both structured and

unstructured uncertainties that might suddenly be generated into the manipulator

system during its online operation in which case both the computed torque

disturbance rejection and the feed-forward controllers would fail to compensate for

such uncertainties.

In the next chapter, the problem of compensating for the structured and unstructured

uncertainties is handled by using an adaptive control method which is developed

based on the learning capabilities of artificial neural networks.

53

CHAPTER 4

Artificial Neural Network (ANN) Control

Artificial Neural Networks (ANNs) are considered one of the key intelligent tools

used in modern research to solve complex problems encountered in a wide variety of

engineering applications. They are playing key roles in fields like pattern

classification and recognition [19], optimization problem solving [20], prediction and

forecasting [21], as well plant identification and control [22]. The development of

Artificial Neural Networks (ANNs) was motivated by the scientists conventional

understanding of the operation of biological neurons of the human brain [22]. This

understanding led to the development of a simple mathematical model called a

perceptron that emulates the functional behavior of the biological neural network. In

the beginning of this chapter, a brief description of the structure and the operational

behavior of the biological neuron is given. Then, the mathematical model of an

artificial neuron is introduced and its analogy with the biological neuron is explained.

4.1 Biological neuron

A neuron is one of the brain cells that are responsible for the processing and transfer

of information represented by electrical impulses. Figure (4.1) shows a graphical

sketch that provides a typical description of the biological neuron structure. As shown

in figure (4.1), the neuron consists of a number of main components each of which

has a critical function. These components include the cell body which contains the

nucleus that is responsible for producing the chemical material needed for the neuron;

the dendrites are responsible for receiving electrical impulses from other neurons.

After the impulses are received and processed, they get transferred to other neurons

through the axon which is ended by a number of strands and substrands through

which the neuron is connected to other neurons. At the end of these strands, there are

synapses whose effectiveness determines the ability of the signal receiving neuron to

generate electrical impulses. The effectiveness of a synapse can be enhanced by its

previous behavior with the informational signals passing through it to other neurons

which implies that a synapse has got a memory that learns from its previous activities

and is thought to be responsible for the human memory [22].

The cerebral cortex of the human brain contains a vast number of about neurons

each of which is connected to other neurons [22]. The message is

transferred through the biological neurons superimposed on a train of pulses whose

frequency ranges from a few to hundred hertz which is much slower than the high

signal transmission frequency in modern digital electronic circuits. However, the

parallel distribution of the signals through the human neurons makes them capable of

carrying out perceptual tasks such as face recognition much faster than the serially

54

operated electronic circuits. Therefore, the strength of the human neurons lies in their

parallel computing and signal distribution capabilities as well as their self-memorizing

and learning characteristics.

4.2 Neuron mathematical model

The understanding of the structure and operational behavior of the biological neuron

described in the previous section led to the development of a simple mathematical

model for an artificial neuron that emulates the working strategy of the biological

neuron. Due to the key perceptual characteristic of the biological neural networks, a

layer of artificial neurons is called a perceptron or a connectionist [3,22]. Figure (4.2)

shows a general graphical notation that represents the mathematical model of a neuron

receiving a number of inputs and producing one output.

As shown in figure (4.2), the mathematical model of an artificial neuron is composed

of an input vector containing the input signals received by the neuron from either an

external source or other neurons. The input vector is the analogy of the dendrites of

the biological neuron; a weight vector which is responsible for connecting each

input signal with the neuron. The weight vector represents the mathematical model of

Figure 4.1: A sketch of a biological neuron

Figure 4.2: A graphical notation of an R-input neuron

55

the synapses of the biological neuron; a bias is an optional component of the

neuron's model and is usually used to change the location of the boundary decision

line to improve the classification of input patterns [3]; the net input of a neuron

defines the sum of the weighted inputs and the bias associated with that neuron. This

net input is the critical quantity that determines, through an activation function , the

nature of the neuron's output.

From figure (4.2), the mathematical relationship between the neuron's output and

the input vector is defined as:

There are different types of linear and non-linear activation functions that can be used

in the mathematical model of a neuron depending on the nature of the problem that

the neuron is required to solve. Some of the commonly-used activation functions

include a positive hard-limiter, a symmetrical hard-limiter, a pure linear function, a

positive linear function, a log-sigmoid, and a hyperbolic tangent sigmoid. The graphs

of such types of activation functions and their mathematical relationships are shown

in figure (4.3).

(e): A Log-sigmoid

 ,

(d): A positive linear function

Figure (4.3): Different types of neuronal activation function

 (a): A positive hard-

limiter

1

n

F(n)

 {

(b): A symmetrical hard-

limiter

n

1

-1

F(n)

 (c): A pure linear function

n

F(n)

n

F(n)

n

F(n)

n

F(n)

(f): A hyperbolic tangent

sigmoid

56

As shown in figure (4.3), the hard-limiting and linear activation functions are linear

and therefore can be used to solve linear problems such as the classification of

linearly separated patterns [3]. Problems like complex nonlinear function

approximation, nonlinear system identification, and process control require the use of

nonlinear activation functions such as the log-sigmoid functions shown in figures

(4.3-e) and (4.3-f).

As mentioned earlier, a number of neurons can be placed in different configurations

(layers) to form a neural network (perceptron). A perceptron network may consist of a

single layer or multiple layers of neurons. A single layer perceptron consists of a

number of neurons placed in a parallel structure. Figure (4.4-a) shows a single layer

perceptron consisting of a number of neurons each of which has its own activation

function which might be equal or different from those of other neurons, and its own

weight vector that connects it to the input vector.

It is clear from figure (4.4-a) how complex the connections of the inputs with the

neurons of a single layer perceptron are. Since there is no limitation for the number of

inputs applied to a single layer perceptron or the number of neurons that may be

placed in one layer, a more simplified representative notation of a single layer

perceptron is used as shown in figure (4.4-b).

It is shown in figure (4.4-b) that the weights of the neurons of the single layer

perceptron is represented by a single weight matrix with the dimensions .

This indicates that each row of the weight matrix is associated with a single neuron

of the layer. Likewise, the biases associated with the neurons of the layer are

gathered to form a single column vector denoted by .

Figure (4.4-b): An Abbreviated notation of

a single layer perceptron of neurons

Figure (4.4-a): A single layer

perceptron of neurons

57

Since each neuron in the layer has its own activation function, the abbreviated

notation in figure (4.4-b) represents the neurons activation functions by a single

matrix with the dimensions and the following form:

 [

]

The mathematical relationship between the output vector of a single layer perceptron

 and the input vector is written in a matrix form as:

A multiple-layer perceptron consists of a number of single-layer perceptrons

connected to each other in a series structure such that the outputs of each layer

constitute the inputs applied to the next layer. Figure (4.5) shows a multiple-layer

perceptron consisting of three single layer perceptrons.

A multiple layer perceptron may contain a large number of single layer perceptrons.

Therefore, in order to simplify the description of the mathematical relationship

between the output and the input vectors of a certain layer, a superscript using the

order number of the layer in the network is used as an indication of that layer. This

can be clearly seen from figure (4.5) in which every symbol is attached with a

superscript number to denote the layer referred to by that symbol. As an example, the

weight matrix of the first layer is denoted by ; the output vector of the second

layer is denoted by , and so on. Following this superscript notation, the

mathematical description of the whole three-layer perceptron shown in figure (4.5)

can be simply written in a single line as:

Figure 4.5: A multiple layer perceptron of three single layer perceptrons

58

The last layer of a multiple layer perceptron is given the name of the output layer and

all the other layers are called hidden layers. For the perceptron shown in figure (4.5),

the third layer is called the output layer and the two others are hidden layers.

4.3 Neural network learning

As mentioned earlier, the key strength of the biological neural network lies in its

capability of learning from the previous activities of its synapses. This learning

process helps to enhance the effectiveness of the neural synapses to generate better

response signals.

Likewise, in order for an artificial neural network (perceptron) to produce a desired

output response to a certain applied input signal, it must undergo a learning process

through which a teaching signal such as an error function determines whether the

network output reaches an acceptable level or requires further optimization. If the

teaching signal decides to further optimize the output value of the neural network

(ANN), the weight matrices and bias vectors of all the layers of the perceptron must

be adjusted through a set of updating rules determined by a learning algorithm.

There are various types of learning algorithms used in the literature for the learning

process of (ANNs) depending on the type of the neural network as well as the nature

of the problem to be solved. For example, the perceptron rule was used for pattern

classification problems as in [3], the Hebbian rule in [3] was used to teach an

Adaptive Linear (ADALINE) neural network to recognize decimal number patterns.

The learning algorithms usually used for teaching multi-layer perceptrons are called

backpropagation algorithms due to the fact that the derivatives used in the updating

rules of these algorithms are propagated from the last layer of the perceptron back to

the first layer [3]. Some of the well-known backpropagation algorithms include the

steepest descent algorithm (SDA), Newton, and Levenberg-Marquardt (LM)

algorithm [3,22]. Despite the faster convergence of the Newton and LM algorithm

than the SDA algorithm, the later one has been mostly used in the literature for the

learning process of multiple-layer perceptrons used in robotic manipulator trajectory

tracking control applications. This is due to its simple and easily-programmable rules

used for updating the network weights and biases.

The SDA algorithm was used frequently for the training of the feed-forward multiple

layer perceptrons in order to enable them to produce an output that continuously

converges to the desired value. Therefore, it can be considered as an optimization

method whose performance index is the output error of the neural network.

Since the SDA algorithm is used to minimize a function of the output error of a

multiple-layer perceptron, it is best to formulate a mathematical description of such a

performance index to be minimized.

59

Consider the feed-forward three-layer perceptron shown in figure (4.5). The

performance index function to be minimized by the SDA is described as follows:

Where is the value of the performance index at the iteration, and

denotes the output error vector of the perceptron at the iteration and is given by:

Where is the actual output vector of the perceptron at the iteration and

 is the desired output vector of the perceptron at the iteration.

In order to use the SDA algorithm, a set of proper responses of the perceptron should

be defined for a specified set of input values. These input-output pairs are used as the

training data of the neural network. After defining the training data set, it is now

suitable to describe the steps of the SDA which are shown in the flow chart in figure

(4.6).

For each iteration of the algorithm, a new input vector is applied and the response of

the perceptron is evaluated. The value of the performance index defined in (4.4) is

then checked if it satisfies a certain error value. If it does, the algorithm is terminated

and the perceptron is said to have learned the set of data used in the training process.

If the performance index value does not satisfy the desired criterion, the weights and

biases of the perceptron are modified according to the following update rules [3,22]:

Where is the learning rate which is usually chosen to be a small value and is the

superscript indicating the order number of the layer referred to.

The updating rules in (4.6) and (4.7) are based on the steepest descent optimization

method in which the next step in the process of searching for the minimum value of a

function is taken in the direction of the negative gradient of the function to be

optimized with respect to the search variable [23]. The function to be minimized in this

case is the error performance index defined in (4.4) and its search variables are the

perceptron weights and biases.

The computation of the partial derivatives involved in (4.6) and (4.7) can be conducted

using the chain rule as follows:

61

and,

Where
 denotes the element of the net input vector of the layer.

From figure (4.5), it can be shown that:

Figure 4.6: Flow chart of the SDA algorithm

Start

Input

Compute NN

response

Compute the

value of

If

 A

No

Terminate

Compute the

sensitivities

Update

weights &

biases

61

 ∑

The second partial derivative in each of (4.8) and (4.9) can be computed using (4.10)

as follows:

Let the first partial derivative involved in (4.8) and (4.9) be defined as the sensitivity of

the error performance index function due to changes in the element of the net input

vector of the layer and let it be denoted by
 . By substituting the equations given

in (4.8), (4.9), and (4.11) into the equations (4.6) and (4.7), the updating rules of the

weights and biases of the multiple-layer perceptron are given in the following forms:

The above updating rules can be reformulated in matrix form as follows:

The sensitivity vectors associated with the layers of the perceptron are computed

using the following equations:

 ̇

Where (is the order number referring to the output layer of the perceptron, and

 ̇ is the derivative of the matrix of the activation functions used in the output

layer with respect to their corresponding net inputs.

 ̇

The equation (4.17) is used for computing the sensitivity vector associated with the

 hidden layer. ̇ is the derivative of the matrix of the activation functions

used in the hidden layer with respect to their corresponding net inputs.

It can be observed from the equation (4.17) that the sensitivity vector of a certain layer

in the perceptron depends on the sensitivity vector of the next layer. This implies that

62

the sensitivity vectors are computed in a backward direction starting from the output

layer going back towards the input layer. That is the reason why the SDA algorithm is

named as an error backpropagation algorithm.

4.4 Neural network-based control

As mentioned earlier, (ANNs) are one of the modern intelligent tools that have been

used for the identification and control of complex nonlinear plant models. One of the

major applications in which neural networks are being used is the trajectory tracking

control of robotic manipulators.

In general, neural network-based control structures can be classified into model-based

and non-model based configurations. A model-based neural control strategy requires

the presence of a model of the plant to be controlled. An example of a model-based

neural network controller is the one proposed in [8] in which two feed-forward

multiple-layer perceptrons were trained offline to learn the highly complicated and

nonlinear estimated inertia matrix and the vector of centrifugal, coriolis, and

gravitational forces of a 2-DOF robotic arm. The output vector of the linear PD

controller was used as the performance index to update the weights and biases of both

perceptrons to compensate for any structured or unstructured uncertainties in the

estimated model.

In contrast, a non-model based neural control strategy does not require a mathematical

model or the knowledge of the parameters of the plant to be controlled. Suel et. al.

[26] introduced a non-model based neural control strategy called a feedback error

learning structure in which a multiple-layer perceptron was used as a feed-forward

controller to conduct online learning of the unknown inverse dynamics model of a 2-

DOF robotic manipulator. A PD controller was used to stabilize the angular positions

of the joint driving motors and its output was taken as the teaching signal of the feed-

forward neural network controller. There are various other non-model based neural

network-based control configurations that have been used for trajectory tracking

control of robotic manipulators such as the Reference Compensation Scheme used by

Jung and Hsia et. al. [24,25].

In the next subsection, a model-based neural network controller is designed and tested

for helping the computed torque disturbance rejection controller to compensate for the

structured and unstructured uncertainties.

4.4.1 Model-based neural network control (Online Torque Compensator (OTC))

As mentioned earlier, a model based control strategy depends on the presence of a

certain model of the controlled plant. For the 2-DOF robotic arm, the model that will

be used is the inverse dynamics model derived in (2.28) and (2.29) which was the

basis of designing the computed torque disturbance rejection controller in chapter 3.

63

The simulation results obtained in chapter 3 proved that the computed torque

disturbance rejection controller is not capable of compensating for the structured and

unstructured uncertainties. Therefore, an intelligent control technique based on the

learning capabilities of neural networks is employed to learn the difference between

the actual torques generated by the arm joints and the torques generated by the

designed computed torque disturbance rejection controller.

Figure (4.7) shows the inclusion of the designed neural OTC controller into the arm

control system. In this figure, it is shown that the designed neural OTC controller

receives the actual angular positions of the joints as input signals and generates two

corresponding torque signals. The weights and biases of the neural network are

updated according to the rules of the SDA algorithm. The performance index function

used to guide the updating process of the network weights and biases is the sum of the

squares of the outputs generated by the PD and the feed-forward (FFC) controllers of

the joint driving motors.

The neural OTC controller used in figure (4.7) is a feed-forward multiple-layer

perceptron consisting of two layers. The output layer contains two neurons with a pure

linear activation function each to produce the two torque difference output signals. The

first layer of the perceptron is a hidden layer containing three neurons with a log-

sigmoid activation function each. The number of neurons in the hidden layer was

selected based on two aspects:

1- The complexity of the problem to be solved by the neural network is not that large

since the proposed network is required to learn only the unknown factors of the

Figure 4.7: Dymola model of the robotic arm with neural network (OTC)

controller

64

system which constitute the inaccurate parameters of the joint driving motors and

the robotic arm links as well as any un-modeled dynamics that were not considered

in the developed model of the manipulator such as the un-modeled torques and

forces applied on the joints. The network is not required to learn the whole

manipulator dynamics.

2- It has been shown by several experiments in [3] that increasing the number of

neurons in the hidden layer of a neural network does increase the complex function

approximation capability of the network for the data set used in the training process

but affects its generalization capability when other data not included in the training

set is introduced to the network.

Therefore, the number of neurons in the hidden layer of the proposed perceptron was

chosen to be as small as 3.

Figure (4.8) shows the structure of the designed two-layer perceptron used for

learning the uncertainties in the 2-DOF robotic arm control system.

The modelica model developed in Dymola together with a diagram icon for the two-

layer perceptron shown in figure (4.8) can be found in Appendix D.

As mentioned earlier, the learning process of the two-layer perceptron controller aims

to minimize the error between the actual torques of the arm joints and the torques

generated by the computed torque disturbance rejection controller. This means that the

main goal of using the neural network controller is to eliminate the total disturbance

torques applied on the inertias of the joint driving motors.

In this case, the only controllers affecting the responses of the motors angular positions

are the PD and feed-forward (FFC) controllers. This implies that the performance

index function to be minimized by the network learning algorithm is the sum of the

squares of the outputs generated by the PD and FFC controllers.

Figure 4.8: Structure of the designed two-layer perceptron neural network

Figure 6.8: Structure of the designed two-layer perceptron neural network

65

The weights and biases of the perceptron are updated using the SDA rules derived in

(4.14 - 4.17). A modelica code was written to simulate the application of the SDA

algorithm for training the designed two-layer perceptron network. This Modelica code

can be found in Appendix D.

In order to test the effectiveness of the designed OTC controller to compensate for

both structured and unstructured uncertainties, the following simulation is conducted:

The structured uncertainty is simulated by changing the values of the parameters of the

joint driving motors and the robotic arm to their accurate values mentioned in table

(3.1). The unstructured uncertainty is simulated by applying a constant disturbance

torque of on both joints of the robotic arm at the time instant .

as shown in figure (4.7).

Figure (4.9) shows the motor angular positions after using the neural network (OTC)

controller.

By comparing the simulation results in figures (3.14) and (3.16) with those obtained in

figure (4.9), it can be clearly seen that the OTC controller is effectively capable of

compensating for both structured and unstructured uncertainties involved in the robotic

arm control system.

The large motor position errors appearing in figures (3.14) and (3.16) due to the

structured and unstructured uncertainties approximately totally disappeared from

figure (4.9). The position errors in the horizontal and vertical parts of the response are

both equal to approximately for both motors.

In order to see the effectiveness of the designed two-layer perceptron in learning the

difference between the actual disturbance torques of the arm joints and the torques

Figure 4.9: Angular positions of the motors with OTC controller

66

generated by the computed torque disturbance rejection controller, the total disturbance

torque applied on the inertia of each motor is plotted before and after adding the (OTC)

controller as shown in figures (4.10) and (4.11) respectively.

Figure (4.10) shows that before the time instant , the shoulder joint driving

motor was experiencing a disturbance torque of about , and the elbow

joint driving motor was experiencing a disturbance torque of about Such

disturbance torques were due to the structured uncertainties in the parameter values of

the arm.

Figure 4.10: Total disturbance torques applied on motors without OTC controller

Figure 4.11: Total disturbance torques applied on motors with (OTC) controller

[sec]

[sec]

67

When an external constant disturbance torque is suddenly applied on each motor at the

time instant which is the case of the unstructured uncertainty, the total

disturbance torques applied on the motors increased to become for the

shoulder joint driving motor and for the elbow joint driving motor.

When the designed OTC controller is added to the system, it successfully learned to

generate the disturbance torques and hence eliminated the total disturbance torque

applied on each joint driving motor within a period of as shown in figure

(4.11).

Figures (4.12) and (4.13) show the sum of the outputs of the linear PD and feed-

forward (FFC) controllers for both joints before and after adding the (OTC) controller,

respectively.

Figure 4.12: Sum of the outputs of PD and FFC controllers without (OTC) controller

Figure (4.12) clearly shows that the linear PD and feed-forward (FFC) controllers

failed to enforce the joint driving motors to follow the desired pick-and-place

trajectory. This is reflected by their almost continuous signals with the values of about

 for the shoulder joint driving motor, and about for the elbow joint driving

motor before the time instant . After , the PD and FFC controllers

supplied a signal of about to the shoulder joint driving motor and a signal of

about to the elbow joint driving motor. Such non-decreasing signals of the

linear PD and FFC controllers indicate that the computed torque controller alone is not

effective in compensating for the structured and unstructured uncertainties.

[sec]

[V]

68

Figure 4.13: Sum of the outputs of PD and FFC controllers with (OTC) controller

On the other hand, when the neural network OTC controller is added to the system, the

control signals supplied by the linear PD and FFC controllers began decreasing

dramatically until they both have reached the value of within a period of about

 as shown in figure (4.13). This is also another indication that the neural

network not only did compensate for the disturbance torque differences but also

effectively compensated for the inaccurate parameters of the driving motors that were

used previously for designing both the PD and FFC controllers.

Figure (4.14) shows a 3D visualization of the trajectory followed by the end-effector in

the case of using the (OTC) controller. Comparing the figure (4.14) with the figures

(3.15) and (3.17), it can be seen that the slight deviation of the end-effector from its

steady state trajectory appearing in figure (3.15) did not appear in figure (4.14). Also,

the large deviation of the end-effector from the desired trajectory in figure (3.17) is

effectively handled by the use of the (OTC) controller as shown by the smooth

trajectory in figure (4.14).

Figure 4.14: Trajectory of the arm with the (OTC) controller

[sec]

[V]

69

4.4.2 Non-model based neural network control (Feedback Error Learning (FEL))

As mentioned earlier, the key strength of a non-model based neural network control

strategy is that it does not require the knowledge of any parameter of the joint driving

motors or the arm links. There is no need for developing a mathematical model for

either the motor or the robotic arm.

In this case, the neural network of the non-model based controller would be

responsible for both identifying the models of the robotic arm and the motors as well

as compensating for the structured and unstructured uncertainties.

One of the non-model based neural control configurations used for the trajectory

tracking control of robotic manipulators is the feedback error learning structure (FEL)

as in [26]. In this configuration, a feed-forward multiple-layer perceptron is placed in

the feed-forward path of the PD-controlled motors as shown in figure (4.15).

As shown in figure (4.15), neither the computed torque disturbance rejection controller

nor the (FFC) controller is used in the arm control system. It is also important to note

that the parameters of the arm and the joint driving motors are assumed to be

completely unknown.

It is shown in the figure that the (FEL) controller receives the desired trajectories for

both joint driving motors as inputs and generates two control outputs to be added to the

outputs of the PD controllers.

Figure 4.15: Dymola model of the robotic arm with (FEL) controller

71

As mentioned earlier, the primary goal of using the neural (FEL) controller is to

identify the inverse dynamics of the DC motor-controlled robotic arm in which case

the joint driving motors would accurately follow their desired position trajectories.

This implies that the outputs of the PD controllers need to be minimized to become as

perfectly as zero.

In order to do so, the multiple-layer perceptron of the FEL controller is trained to

minimize its performance index function which is defined as the sum of the squares of

the outputs obtained from the PD controllers.

Like the model-based (OTC) controller shown in figure (4.7), the (FEL) controller

consists of an output layer containing two neurons which are responsible for

generating the two control outputs, and a hidden layer consisting of three neurons.

Again, the number of neurons in the hidden layer of a perceptron must be chosen to

suit the complexity of the function to be approximated by the network at the same time

of preserving the generalization capability of the network. For the purpose of a later

comparison with the model-based (OTC) controller, the same number of neurons is

chosen to be contained in the hidden layer of the (FEL) controller.

The neurons of the output layer both have a pure linear activation function, whereas

the neurons of the hidden layer have a log-sigmoid activation function each. The

Modelica code and Dymola icon developed for the (FEL) controller are found in

Appendix D.

The learning algorithm used for updating the weights and biases of the two-layer

perceptron of the (FEL) controller is the SDA algorithm derived in (4.14 - 4.17). The

learning rate used in the rules of the SDA algorithm is chosen to be 0.1.

The Modelica code used to simulate the learning process of the (FEL) controller by the

SDA algorithm is similar to the one used for the learning process of the model-based

(OTC) controller. The only difference is that the weights and biases of the (FEL)

controller are initialized to different values at the outset of the learning process. Also,

the performance index function to be minimized by the (FEL) controller is defined to

be the sum of the squares of the outputs of the PD controllers.

In order to test the performance of the designed FEL controller in compensating for the

structured and unstructured uncertainties, the PD-controlled robotic system is

purposely made to experience the same structured and unstructured uncertainties used

for the testing of the neural (OTC) controller. Figure (4.16) shows the motor angular

positions after using the designed (FEL) controller.

It is clear from figure (4.16) that the designed neural network (FEL) controller did

enforce the actual angular positions of the motors to follow the desired pick-and-place

71

trajectory with an acceptable precision despite the presence of both structured and

unstructured uncertainties in the system.

The steady state errors in the horizontal and vertical parts of the response for the

shoulder joint driving motor are about and , respectively. For the

elbow joint driving motor, the steady state errors in the horizontal and vertical parts of

the response are about and , respectively.

Table (4.1) shows the steady state errors in the horizontal and vertical parts of the

response for both motors when using different control mechanisms. By comparing

these results, it can be shown that the designed (FEL) controller reduced the steady

state error in the horizontal part of the response of the shoulder joint driving motor by

92% and that of the elbow joint driving motor by 87% from the case of using the

computed torque disturbance rejection and feed-forward (FFC) control in the presence

of the structured uncertainties only. The steady state error in the vertical part of the

response was improved by (FEL) controller by 94% for the shoulder joint driving

motor and 99% for the elbow joint driving motor.

Table 4.1: Steady state errors for different control mechanisms

[sec]

Figure 4.16: Angular positions of motors with FEL controller

[rad]

72

In order to test the capability of the (FEL) controller in identifying the inverse

dynamics of the robotic arm, the outputs of the PD controllers are plotted in figure

(4.17). It is clearly seen from figure (4.17) that the (FEL) controller is gradually

learning the inverse dynamics of the robotic arm as approved by the gradual decrease

of the control signals supplied to the driving motors by the PD controllers. Both PD

control signals continued to decay until they have reached the values of for the

the shoulder joint driving motor and for the elbow joint driving motor within

a period of These results also imply that the (FEL) controller is gradually

taking over the full control of the joint trajectory tracking system without getting any

help from the PD controllers.

Figure 4.17: Outputs of PD controllers with the (FEL) controller

[sec]

[V]

73

Chapter 5

Conclusion and Future Work

This thesis investigated the possibility of improving the trajectory tracking

performance of a 2-DOF robotic manipulator using different configurations of neural

network controllers. These configurations were classified into model-based and non-

model based structures. A model-based control strategy required the presence of a

mathematical model for the controlled manipulator and therefore considered to be

highly complicated and time consuming for higher degree of freedom manipulators. A

non-model based control strategy did not require a prerequisite knowledge of the

parameters of either the manipulator or the driving motors and hence no mathematical

model for the manipulator was needed.

The performance of each neural network based control strategy was compared with

that of the conventional computed torque control method through carrying out several

simulations of the robotic arm under the Dymola simulation environment based on the

Modelica language. The simulation results obtained proved the superiority of the

designed neural network-based controllers over a conventional computed torque

disturbance rejection controller in compensating for both structured and unstructured

uncertainties.

The non-zero position errors obtained by using the designed non-model based neural

(FEL) controller were caused by the insufficient number of weights updating

iterations used in the learning process of the neural network. It can be claimed that

further increasing the number of weight updating iterations will enable the neural

network controller to improve its learning of the arm inverse dynamics and hence

would generate more accurate actuating torques which will result in further reduction

of the driving motor position errors.

In addition, it was mentioned in chapter 4 that the error backpropagation SDA

algorithm used in the training process of the designed neural networks in this thesis is

considered the least efficient among other backpropagation algorithms due to its

highly slow convergence rate. In a future work, the performance of the designed

neural network controllers will be tested with the use of more efficient and faster

learning algorithms such as Levenberg and Marquardt algorithms.

One of the planned future works is to employ the designed neural network controllers

(OTC and FEL) to control the trajectory tracking performance of higher degree of

freedom manipulators such a Self Compliant Articulated Robotic Arm (SCARA) and

a PUMA 560 manipulator. Other neural network based control strategies such as

reference compensation technique will be also employed, tested, and compared with

the OTC and FEL controllers.

74

RFERENCES

[1] Mohsen Charmanirad. "Design and implementation of controller for robotic

 manipulators using Neural Networks", Master thesis, Malardalen University, 2009.

[2] Mark W. Spong, Seth Hutchinson, M. Vidyasagar. Robot Modeling and Control.

 John Willey and Sons, INC, New York, 2005.

[3] Martin T. Hagan, Howard B. Demuth, Mark Beale. Neural Network Design.

 PWS Publishing Company, USA, 1996.

[4] Ahmed Alassar. "Modeling and Control of 5-DOF Robot Arm Using Supervisory

 Control", Master thesis, Islamic University of Gaza, 2010.

[5] H. Delavari, R. Ghaderi, A. Ranjbar N., S.H. HosseinNia, S. Momani. "Adaptive

 Fractional PID Controller for Robot Manipulator", Proceedings of FDA'10.

 The 4
th

 IFAC Workshop Fractional Differentiation and its Applications. Spain,

 October 2010.

[6] Jafar Tavoosi, Afshar Shamsi Jokandan, Muhammad Amin Daneshwar. "A new

 method for position control of a 2-DOF robot arm using neuro-fuzzy controller",

 Indian Journal of Science and Technology, Vol. 5, No. 3, March, 2012.

[7] Refaat S. Ahmed, Kuldip S. Rattan, Omar H. Abdallah. "Adaptive Neural

 Network for Identification and Tracking Control of a Robotic Manipulator",

 Proceedings of the IEEE 1995 National Aerospace and Electronics Conference,

 Vol. 5, pp 601-605, 1995.

[8] Tomachika Ozaki, Tatsuya Suzuki, Takeshi Furuhashi, Shigeru Okuma, Yoshiki

 Uchikawa. "Trajectory Control of Robotic Manipulators Using Neural Networks".

 IEEE Transactions on Industrial Electronics, Vol. 38, No. 3, June 1991.

 [9] Joel Perez P., Jose P. Perez, Rogelio Soto, Angel Flores, Francisco Rodriguez,

 Jose Luis Meza, "Trajectory Tracking Error Using PID Control Law for Two-Link

 Robot Manipulator via Adaptive Neural Networks", Procedia Technology, Vol. 3,

 pp. 139-146, 2012.

 [10] Kamel Kara, Tedji Eddine Missoum, Kamel Eddine Hemsas, Mohamed Laid

 Hadjili, "Control of a Robotic Manipulator Using Neural Network Based Predictive

 Control", 17
th

 IEEE International Conference on Electronics, Circuits, and Systems

 (ICECS), pp. 1104-1107, 2010.

75

[11] Tzu-Chun Kuo, Ying-Jeh Huang, Chin-Yun Wang. "Real-time Learning

 Controller Design For a Two-Link Robotic Arm". Proceedings of the Sixth

 International Conference on Machine Learning and Cybernetics, Hong Kong,

 19-22 August, 2007.

[12] Zhao-Hui Jiang, Taiki Ishita "A Neural Network Controller for Trajectory Control

 of Industrial Robot Manipulators", Journal of Computers, Vol. 3, No. 8, August

 2008.

[13] Bruno Siciliano, Oussama Khatib. Handbook of Robotics. Springer, Berlin, 2008.

[14] Dassault Systems AB, Dymola (Dynamic Modeling Laboratory) – Getting Started

 with Dymola, Dassault Systems AB, Sweden, March 2013.

[15] Michael Tiller. Introduction to Physical Modeling with Modelica. Kluwer

 Academic Publishers, Massachusetts, 2001.

[16] Katsuhiko Ogata. Matlab for Control Engineers. Prentice Hall Inc., New Jersey,

 October, 2007.

[17] Benjamin C. Kuo. Automatic Control Systems. Prentice Hall Inc., New Jersey,

 1995.

[18] Richard C. Dorf, Robert B. Bishop. Modern Control Systems. Addison-Wesley

 Longman, Inc., California 1998.

[19] Richard P. Lippmann, "Pattern Classification Using Neural Networks", IEEE

 Communications Magazine, Vol. 27, Issue 11, pp. 47-50, November 1989.

[20] Hartati R.S., El-Hawary M.E., "New Approach for Solving Optimization

 Problems in Economic Load Dispatch using Hopfield Neural Networks",

 Proceedings of the Canadian Conference on Electrical and Computer

 Engineering, Vol. 2, pp. 722-725, 2000.

[21] Wei Xu, Tingting Zheng, Ziang Li, "A Neural Network Based Forecasting

 Method For the Unemployment Rate Prediction Using the Search Engine Query

 Data", IEEE 8
th

 International Conference on e-Business Engineering (ICEBE),

 Beijing, 19-21 October, 2011.

[22] Anil K. Jain, Jianchang Mao, "Artifical Neural Networks: A Tutorial", Journal of

 IEEE Computer, Vol. 29, pp. 31-44, March 1996.

[23] A. Ravindran, K. M. Ragsdell, G. V. Reklaitis. Engineering Optimization –

 Methods and Applications. John Wiley & Sons, Inc., New Jersey, 2006.

76

[24] Suel Jung, "Neural Network Controllers for Robot Manipulators". PhD

 Dissertation, University of California, 1996.

[25] Suel Jung, T.C. Hsia, "Neural Network Reference Compensation Technique for

 Position Control of Robot Manipulators", Proceedings of the IEEE International

 Conference on Neural Networks, Vol. 3, pp. 1765-1770, 1996.

77

APPENDIX A

Derivation of the Open Loop Transfer Function for the DC-Motor

The following analysis discusses the procedure of deriving the transfer function from

the motor angular position to the input voltage signal applied to the motor

armature circuit .

Referring to the armature circuit shown in figure (2.6), the dynamic equation of the

DC-motor can be derived as follows:

The torque applied to the motor inertia is directly proportional to the armature

current through the motor constant . The back-electromotive force voltage is

directly proportional to the angular velocity of the motor through the proportionality

constant . This can be mathematically written as:

From figure (2.7), the mathematical equation that describes the mechanical behavior of

the DC-motor is given as follows:

Where denotes the motor inertia, denotes the motor damping coefficient, is

the motor torque and denotes the torque generated by the load.

As mentioned in Chapter 2, the motor is connected to the load through a gear train with

gear reduction ratio . The main goal of using a gear train in a DC-motor is to enable

the motor to drive large loads which require the generation of large torques. So, the

gear train with the gear reduction ratio () magnifies the torque of the motor and

reduces its angular position by times as shown in figure (2.7).

Taking the Laplace transform of the electrical characteristic equation (A.1) reveals the

following:

78

 can be found by taking the Laplace transform of the equation (A.3) as follows:

Substituting (A.6) into (A.5) gives the following:

By letting and taking the Laplace transform of the mechanical characteristic

equation (A.4) and using the equation (A.2), the following equation is revealed:

By using the equations (A.7) and (A.8), the transfer function

 is found as follows:

79

APPENDIX B

PD Controller Design Using the Root Locus Method

B.1: Root locus method

Let be the open-loop transfer function of a system . Then, the closed-loop

system transfer function is given by:

In order to find the closed-loop poles of the system, the following equation must be

achieved:

Therefore,

 ‖ ‖ and the phase angle of where

{ }

This implies that in order for a design point to be located on the root locus of the open-

loop system, it should achieve the above magnitude and phase requirements of

The question now is how to find the design point that helps to achieve the time

response requirements which are mainly the settling time and the peak overshoot

 The answer to this question is explained as follows:

The settling time is defined as the time required for the step response of the closed-

loop system to reach and stay within the region of of the steady state value

[4,18,19]. The equation used to compute the settling time is as follows:

Where denotes the damping ratio and is the natural un-damped frequency in

 .

81

The peak overshoot is defined as the magnitude by which the step response of the

system overshoots the steady state value [4,18,19,20]. The peak overshoot requirement

is sometimes given as a percentage of the required steady state value. The equation

used to compute the peak overshoot is given as follows:

√

Equations (B.3) and (B.4) can be used to compute the corresponding damping ratio

 and un-damped frequency for specific settling time and overshoot requirements.

After finding the required damping ratio and un-damped frequency, the design point

() that needs to be located on the root locus of the open-loop system for some gain

in order to achieve the required settling time and peak overshoot can be calculated as

follows:

 √

B.2: Computation of the design point used in the PD controller design

Given the step response requirements mentioned in section 3.1, the corresponding

damping ratio and un-damped frequency are calculated as follows:

From equation (B.3), we have the following:

Therefore,

From equation (B.4), we have the following:

√

Therefore,

 By substituting the value of the damping ratio from (B.7) into (B.6), the un-

damped frequency can be revealed as follows:

81

By substituting equations (B.7) and (B.8) into equation (B.5), the design closed-loop

system pole that achieves the time response requirements is found to be:

82

APPENDIX C

Modelica Models Used in the Computed Torque-based Controlled Design

C.1: Modelica model of the estimated inertia matrix

C.2: Dymola icon for the estimated inertia matrix

83

C.3: Modelica Model for the estimated vector of centrifugal, coriolis, and

gravitational forces

C.4: Dymola icon for the estimated vector of centrifugal, coriolis, and

gravitational forces

84

APPENDIX D

Modelica Models Used in the Design of ANN Controllers

D.1: Modelica code of the ANN used in both (OTC) and (FEL) controllers

D.2: Dymola icon of the ANN used in the OTC controller

D.3: Modelica code of the EBA algorithm used for training the ANN of the OTC

controller

85

D.4: Modelica code of the EBA algorithm used for training the ANN of the FEL

controller

86

D.5: Dymola icon of the ANN used in the FEL controller

