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ABSTRACT 

 

This thesis investigated several control strategies to handle the trajectory tracking 

problem for a two degree-of-freedom (2-DOF) robotic arm using artificial neural 

networks (ANNs). Feed-forward two layer neural networks were designed and utilized 

in both model-based and non-model based control structures  to conduct online 

learning and identification of the inverse dynamics of the robotic manipulator and to 

compensate for both structured and unstructured uncertainties.  

 

The simulation results obtained proved the superiority of the proposed neural network 

controllers to dramatically reduce the error between the desired and actual position 

trajectories even in the presence of uncertainties unlike other conventional methods 

such as the PD-computed torque method. The neural network-based controllers 

proposed in this thesis provide solutions to the trajectory tracking problem of robotic 

manipulators with or without a mathematical model which would make them effective 

controllers for both planned and unplanned trajectory tracking problems for any degree 

of freedom robotic manipulator.  

 

The development of the mathematical models for the 2-DOF robotic arm and its joints 

driving motors as well as their simulation experiments were carried out under the 

Dynamic Modeling Laboratory (Dymola) environment which uses the Modelica 

object-oriented multi-domain system modeling language. The simulation results 

obtained in the thesis were accompanied by three dimensional (3D) figures in order to 

visualize the results and to help establish a deeper analysis and understanding of these 

results. 
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CHAPTER 1 

 

Introduction   

 

 

1.1 Research motivation  

 

Robotic Manipulators are widely used in different fields of industry. They are used for 

the purpose of saving time, effort, and sometimes life. This made robot manipulators 

play key roles in fields like car manufacturing, space exploration, search and rescues, 

waste treatment in nuclear plants, in addition to their different applications in medical 

surgery. For these reasons and due to the vast applications of robotic manipulators, the 

design of controllers to optimize the tracking and speed performance of robots has 

become a necessity and an important research area.  

 

In order to design a controller to control the motion of a manipulator, an accurate 

mathematical model for the robot must be first developed. This requires accurate 

determination of the manipulator parameters such as masses, inertias, and geometrical 

properties of the links, and the friction between the gearboxes of the robot joints. The 

masses and inertias of the links are usually determined from Computer Aided Design 

(CAD) models, but the friction between the gearboxes depend on the positions and 

velocities of the joints and this cannot be determined without experimentation which 

would be very difficult in high speed operation [1].  After developing a mathematical 

model for the robot, the inverse kinematics and dynamics problems must be solved in 

order to determine the desired position, velocity, and acceleration of each robot joint, 

as well as the necessary torques and forces to be applied to enforce these joints to 

follow their desired positions and velocities. These quantities are important to generate 

the right control signal for each robot joint.  

 

1.2 Statement of the problem 

 

When designing a controller to control the trajectory tracking performance of a 

manipulator, some of the problems encountered during the controller design process 

are as follows: 

  

1- The inverse kinematics and dynamics problems require the solution of complicated 

highly nonlinear equations which would take much time and processing power 

when solved offline using a computer software. Moreover, the complexity of such 

equations increases with the number of Degree of Freedom (DOF) of the 

manipulator.   

 

2- Due to the structured and unstructured uncertainties in the values of the link and 

joint parameters, there is always a difference between the conventional 
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mathematical model used for the manipulator and the real robot which would 

generate a considerable error between the desired and actual trajectories. Therefore, 

a conventional model-based controller is ineffective in controlling the robot in real 

time. This problem can be alleviated using adaptive control approaches to 

compensate for the modeling errors. One commonly-used adaptive control 

approach is the computed torque method [1-2]. However, the design of a 

conventional adaptive controller for a manipulator trajectory tracking application 

requires the solution of highly nonlinear equations that describe the dynamic 

behavior of the manipulator which is a time consuming task especially for 

manipulators with a high DOF.  In addition, if an adaptive controller works to 

compensate for the structured uncertainties such as the joint friction, it might not 

necessarily be capable of compensating for the unstructured uncertainties whose 

dynamics are not considered in the conventional model.  

 

3- The control methodologies which depend on controlling each joint of the 

manipulator independently, such as the PID-based control of each joint, are not 

effective. This is because such methodologies do not count for the coupled 

interaction between the joints which result in the generation of coupling 

disturbance torques between the different joints of the manipulator [2].    

 

1.3 Thesis contribution 

 

This thesis aims to investigate the possibility of designing neural network-based 

controllers to enhance the trajectory tracking performance of a robotic manipulator of 

unknown dynamics. This idea was motivated by the learning capabilities of neural 

networks to approximate and identify nonlinear systems [3]. The controller is capable 

of generating the required torques to enforce the manipulator joints to follow their 

desired position trajectories with an acceptable precision. The main contribution in this 

thesis is that the proposed controller is able to emulate the manipulator dynamic 

behavior without the need to have a complex nonlinear mathematical model for the 

robot. In addition, the proposed neural network controller is able to conduct online 

updating of its weights to compensate for any structured and unstructured uncertainties 

in the model such as joint friction forces or sudden changes in the load.  

 

1.4 Research methodologies 

 

In order to explore the capabilities of neural network-based controllers in effectively 

controlling the trajectory tracking performance of a 2-DOF robotic manipulator and to 

show their superiority over other conventional control techniques, the following tasks 

are achieved throughout the thesis:  

 

1- In the beginning of the research, a comprehensive review is established of the 

literature and state-of-the-art related to the theory and applications of neural 
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networks in the design of manipulator trajectory tracking controllers. Such a 

review provides a detailed exposure to the modern adaptive control approaches, 

different neural network architectures, as well as the commonly-used learning 

algorithms for training neural networks. The literature review also allows for 

determining the disadvantages of the different neural network control schemes 

proposed so far which enables the development of novel neural control strategies.  

 

2- In order to design a controller for a specific system, a model for the system must be 

first developed. Therefore, a detailed description of the manipulator structure and 

its parameters must be determined in order to facilitate the derivation of the 

kinematics and inverse dynamics equations of the manipulator. The kinematics 

equations are necessary for the determination of the desired angular positions of 

the joints from a planned trajectory given in the Cartesian space, whereas the 

dynamics equations are necessary to develop model-based trajectory tracking 

control strategies.  

 

3- Since the joints of a robotic manipulator are driven by motors, the use of 

permanent magnet DC motors is investigated in driving the two joints of the 

robotic arm. This requires the development of a mathematical model of the 

permanent magnet DC motor and then connecting such a model with the model of 

the robotic arm derived in step 2.  

 

4- One of the important steps in the process of designing a manipulator trajectory 

tracking controller is the design of a linear PD controller in order to achieve the 

stability of the motors angular positions before using them to drive the manipulator 

joints.  

 

5- When connecting a PD-controlled motor to each joint of the robotic arm through a 

gear reducer, the disturbance torques generated due to the nonlinear dynamics of 

the manipulator will dramatically affect the time response of the motor system 

which reflects the poor performance of the PD controller alone to reject such 

disturbances. This requires adding another adaptive controller in order to remove 

the effect of such disturbance torques. One of the adaptive controllers used in the 

literature to handle the disturbance rejection problem is the computed torque 

method. This method primarily depends on the availability of a mathematical 

model to estimate the inverse dynamics of the robotic manipulator. Therefore, it is 

considered to be a highly complicated approach for a high DOF manipulator. In 

addition, later simulation results show its poor efficiency to compensate for un-

modeled dynamics such as joint friction forces. However, for the reasons of later 

comparison with the adaptive neural network-based control techniques, the 

computed torque method is adopted and applied as a disturbance torque rejection 

method for the 2-DOF robotic arm.  
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6-  In order to avoid the complexity of the computed torque-based controller design 

and to handle its poor performance in compensating for un-modeled dynamics, 

intelligent control mechanisms must be adopted. There are various intelligent 

control techniques available in the literature such as Fuzzy logic-based PID control 

[4], genetic algorithm-based PID control [5], and neuro-fuzzy control [6].  One of 

the intelligent adaptive controllers used in manipulator trajectory tracking 

applications is neural network-based controllers [7]. The universal approximation 

capabilities of neural networks which make them effective candidates for 

approximating any complex nonlinear function with a very simple structure have 

attracted researchers to employ them for identifying the highly nonlinear inverse 

dynamics of robotic manipulators [8]. In this thesis, model-based and non-model 

based neural network controllers are designed and utilized to improve the trajectory 

tracking performance of the robotic arm with and without a mathematical model.    

 

7- As mentioned in step 6, a model-based neural network controller must be used in 

the presence of a computed torque disturbance rejection controller. Despite the fact 

that the model-based neural network would have to learn only the unknown factors 

of the system such as parameter inaccuracies and un-modeled dynamics, this 

model-based control strategy would be highly complicated and time-consuming for 

controlling a manipulator of higher DOF. In order to solve this problem, a non-

model-based neural network training algorithm must be used so that the neural 

network can work both as an online identifier of the manipulator inverse dynamics 

and as a compensator for structured and unstructured uncertainties.  

 

 

1.5 Literature review 

 

Neural networks are considered one of the modern intelligent tools that are being 

utilized in position trajectory tracking applications of robotic manipulators. This is due 

to their simple structure and model as well as their universal complex function 

approximation capabilities gained through simple training algorithms. Neural networks 

used for manipulator trajectory tracking applications have been designed and used in 

different control configurations some of which are listed as follows:  

 

Tomochika et al. [8] provided a Neural Network-based control strategy based on the 

idea of the computed torque method. The designed controller consisted of two separate 

three-layered neural networks, one of which was used to compute an estimated 

manipulator mass matrix, and the other network was trained to compute an estimated 

centrifugal and coriolis torque vector. The simulation results obtained by the authors 

proved the capability of the proposed controller to learn the nonlinear dynamics of a 2- 

DOF manipulator and it was able to enforce the end-effector to follow its desired 

position trajectory in the XY-plane. However, the speed of the model learning process 

of the controller cannot be considered to be fast since it took about 600 seconds to 

follow the specified trajectory of a small circle on the XY plane with an acceptable 
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precision. This means that the proposed controller would be inefficient in more 

complex and larger trajectory tracking tasks. In addition, the presence of a 

mathematical model for the controlled manipulator is still necessary to generate the 

training data set for each of the two neural networks. In order to speed up the model 

learning process of the proposed controller, a huge amount of training data sets must 

be provided and they should be uniformly distributed over the entire work space of the 

manipulator which would be hardly achievable and time consuming for wider 

workspaces especially with a manipulator with a larger number of DOF.  

 

Refaat et al. [7] proposed a robot trajectory tracking controller design which consisted 

of feed-forward and PD feedback components. The feed-forward control was 

performed by a three-layered Neural Network learned by a modified backpropagation 

algorithm to emulate the inverse dynamics equations of the manipulator. The proposed 

trained network was required to provide the necessary torque for each joint according 

to a given set of desired positions, velocities, and accelerations. The PD feedback 

component was used as an online learning signal to adjust the weights of the network 

in order to minimize the error in the generated torque due to any variations in the 

manipulator parameters or external disturbances. Despite the good performance shown 

by the proposed Neural Network-based controller to follow the desired joint position 

and speed trajectories with an acceptable error even in disturbance conditions, the 

structure of the network which contained a large number of neurons in the hidden layer 

(35 neurons) makes the training and weight adjustment process take a long time to 

reach the optimal weight matrices for generating the minimum output error. This large 

structure of the network even increases with the DOF of the controlled manipulator.  

 

Kuo et. al. [11] introduced an online learning control method in which a feed-forward 

compensator is proposed to learn and compensate for the unknown dynamic torques of 

the manipulator joints. The proposed feed-forward compensator is composed of a PD 

controller and a cerebellar model articulation controller (CMAC). The proposed 

CMAC controller was designed using a feed-forward single-layer neural network 

whose output is the sum of selected vectors of its weight matrix unlike the 

conventional law of a traditional neural perceptron which involves all the vectors of 

the weight matrix. The CMAC controller selects the weight vectors based on an 

associative memory index vector corresponding to a given input state. Despite the 

approved capability of the proposed controller in effectively learning the unknown 

dynamics and hence dominating the control of the 2-DOF robotic arm, the number of 

its neurons is proportional to the number of samples taken from the input space which 

would complicate the network structure for larger workspaces despite the fact that only 

a few number of these neurons would be active for a given input reference state. The 

other majority of the inactive neurons can be a useless overhead on the system. 

 

In [12], Zhao proposed a new hybrid non-model based trajectory tracking control 

strategy using a linear feedback controller in parallel with a feed-forward multiple-

layer neural network controller. The linear feedback controller was used to regulate the 
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joint position error and to generate actuating torques to help the joints to track their 

dynamic desired trajectories during the initial stage of the learning process of the 

neural controller. An error backpropagation algorithm was used to train the neural 

network controller online to learn and compensate for the uncertain inverse dynamics 

of the manipulator joints. The proposed hybrid controller was used to control the 

trajectory tracking performance of a SCARA AdeptOne XL industrial manipulator. 

Both simulation and experimental results proved the ability of the neural network to 

effectively learn and compensate for the unknown dynamics of the manipulator. The 

results also indicated that the neural controller was able to dominate the full control of 

the trajectory tracking of the manipulator as approved by the very small control inputs 

supplied by the linear feedback controller. 

 

Kamel et al. [10] applied the idea of the Generalized Linear Prediction control to 

design a nonlinear predictive controller for the tracking performance of a 2-DOF 

manipulator using a neuronal model of the nonlinear system. The proposed controller 

was designed to predict the future values of the manipulator joint velocities over a 

finite time horizon. Those predicted values of the joint velocities were used to compute 

the future errors which enabled the generation of incremental changes in the torque 

control signal. The simulation results showed that the designed neuronal-model was 

effective in predicting the manipulator joint velocities but the prediction error never 

reached an acceptable steady value even after a high number of training samples. 

Moreover, the second joint velocity prediction error showed large values of about 10 

rad/sec difference at the 800
th

 sample which is an unacceptable value. Such a velocity 

prediction error caused the occurrence of a continuously changing error in the tracking 

of the desired velocity of the second joint. In addition, no simulation experiments were 

done to test the effectiveness of the predictive neuro controller in the presence of 

structured and unstructured uncertainties and disturbances. 

 

Jafar et al. [6] proposed a Neuro-Fuzzy strategy for manipulator trajectory control by 

utilizing the advantages of both fuzzy logic based control and the learning capabilities 

of neural networks. The proposed controller incorporated a neural network which was 

trained offline to optimize the tuning of the parameters of the input and output 

membership functions of a designed fuzzy logic controller. The main contribution of 

this paper is that the rule base of the fuzzy controller inference system was determined 

by the used neural network. The neural network was trained using a hybrid learning 

algorithm which consisted of both the least squares method and the back-propagation 

method. The network training data set was obtained from the inputs and outputs of PID 

controllers. The simulation results obtained by the author showed the capability of the 

proposed NFC to track the desired position trajectories of a 2 DOF elbow manipulator 

even in the presence of uncertain frictional forces on each joint. The author claimed 

that the proposed NFC is effective to compensate for unstructured uncertainties and 

external disturbances but no simulation or experimental methods were used to verify 

their claim.   
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Joel et al. [9] used a new manipulator trajectory tracking control methodology using a 

recurrent neural network. Unlike the other used neural network-based controllers 

which required the presence of a large data set for the training of the used networks, 

the recurrent neural network-based controller (RNNC) proposed in this paper was 

trained online to minimize the error between the desired and actual trajectories of the 

manipulator. This means that no mathematical model of the controlled manipulator 

was necessary to be obtained. Despite the proved capability of the proposed RNNC to 

ensure the stability and trajectory tracking accuracy of a 2 DOF elbow manipulator, no 

simulation experiments were done to test the learning speed of network (e.g. the 

number of weight adjustment iterations the network took for the manipulator output to 

converge to an acceptable error was not shown). In addition, no experiments or 

simulations were done to test the effectiveness of the proposed RNNC to compensate 

unstructured uncertainties and external disturbances such as joint friction forces and 

payload changes.  

 

1.6 Thesis Organization  

 

This thesis is composed of five chapters organized in the following manner:  

 

- Chapter 2 explains the detailed process of deriving a mathematical model for the 2-

DOF robotic arm based on given structural and geometrical characteristics. This 

model constitutes the kinematics and inverse dynamics equations associated with 

the arm. A Dymola model based on Modelica language is developed in this chapter 

for the 2-DOF robotic arm using the built-in multi-body library contained in 

Dymola software. In the same chapter, mathematical and Dymola models are 

developed for the permanent magnet DC motor consisting of an armature circuit 

driving a mechanical load. The developed model is validated through carrying out 

simulations of the motor angular position with and without connecting a 

mechanical load.   

 

- Chapter 3 explains the process of designing a PD controller for the permanent 

magnet DC motor system using the root locus method to achieve specified time 

response requirements. The performance of the designed PD controller is tested 

through simulating the step response of the motor angular position with and 

without connecting it to the manipulator joints.  The chapter also explains how to 

handle the poor performance of the PD controller to compensate for the 

disturbance torques generated due to the inverse dynamics of the arm by using a 

computed-torque disturbance rejection controller.   

 

- In chapter 4, a model-based intelligent controller is designed using a feed-forward 

two-layer neural network which is trained online using the steepest descent error 

back propagation algorithm to learn the uncertain parameters of both the robotic 

arm and the joint driving motors. The neural controller is used as an online torque 

compensator along with the computed-torque disturbance rejection controller 
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developed in chapter 3 in order to remove the effect of the joint disturbance torques 

the driving motor angular positions. In addition, the neural controller is designed to 

conduct online training to adapt its weights in order to compensate for any 

structured and unstructured uncertainties. Chapter 4 also introduces a non-model 

based neural network controller which is used in the absence of a mathematical 

model for the robotic arm. The performance of both model-based and non-model 

based neural controllers are simulated and tested on Dymola. 

 

- The thesis ends with a brief conclusion and future work plans in chapter 5.  
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CHAPTER 2  

 

Two Degree-Of-Freedom Robotic Manipulator 

 

In this chapter, the structure of a two degree-of-freedom robotic arm will be fully 

described together with the parameters of its links including the mass, inertia tensor, 

as well as the geometrical dimensions of each link. The main goal of describing the 

structure of the robotic manipulator is to enable the derivation of the kinematics and 

dynamics equations that will be used later in the design process of the controllers.  

 

2.1 Geometrical structure 

 

A two degree of freedom elbow manipulator consists primarily of two links 

which can take the form of a cylinder or a bar. The two links are connected 

together serially with a revolute joint called "elbow". The other revolute joint 

called the "shoulder" is used to connect the first link with the fixed part of the 

manipulator. A schematic diagram illustrating an upper view of the robotic 

manipulator is shown in Figure (2.1). 

 

 

 
 

Table (2.1) lists the values of the parameters related to the links of the manipulator 

such as the mass, inertia tensor, and geometrical dimensions of each link.   

 

 

 

 

 

 

 

 

 

Figure 2.1: A schematic diagram of a 2-DOF robotic arm 

 

 

 

 

Table 2.1: Link parameters of the 2-DOF robotic arm 

Quantity 1
st
 Link 2

nd
 Link 

Length 0.25 m 0.15 m 

Mass 1.95 Kg 0.93 Kg 

The element I33 of the 

inertia tensor matrix 

0.0980 Kg.m2 0.980 Kg.m2 
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2.2 Kinematics  

 

The kinematics of a robotic manipulator refer to the mathematical equations that 

describe the forward and inverse relationships between the joint variables 

(angular positions of the revolute joints) and the Cartesian position coordinates of 

the manipulator end-effector [2]. The kinematics equations are very important 

tools in the process of mapping the manipulator desired trajectories from the 

Cartesian space to the joint space and vice versa. Such a mapping process will be 

considered when we come to the point of designing trajectory tracking 

controllers for the manipulator in Chapter 5.  

 

The kinematics of a robotic manipulator can be divided into forward and inverse 

kinematics. The forward kinematics describe the Cartesian position coordinates 

of the end-effector as functions of the joint angular positions. Whereas, the 

inverse kinematics describe the joint angular positions as functions of the end-

effector Cartesian coordinates. The following steps describe a general analytical 

procedure of deriving the forward and inverse kinematics of a robotic 

manipulator and will apply such a procedure for deriving the kinematics of the 2-

DOF robotic arm shown in Figure (2.1).  

 

2.2.1 Forward kinematics 

 

In order to derive the forward kinematics of a robotic manipulator, the 

following steps must be followed:  

 

a) Frame assignment  

 

Attaching a frame rigidly with each link of a robotic manipulator enables 

to describe the motion of each link with respect to the other previous links. 

The first frame that must be defined is the inertial (world) frame with 

respect to which any point in the configuration space of the manipulator 

can be defined. Figure (2.2) shows a schematic diagram of the 2-DOF 

robotic arm with all necessary frames defined and attached to the links. As 

shown in figure (2.2), the z-axis of each frame represents the axis of 

rotation of one revolute joint of the manipulator.    axis is the axis of 

rotation of the first revolute joint and   is the axis of rotation of the second 

revolute joint. Since figure (2.2) provides a planar view of the robotic arm, 

the axes of rotations of both revolute joints are taken to be directed outside 

the page. 



11 

 

 
Figure 2.2: Frame assignment for the 2-DOF robotic arm 

 

 

The direction of the   -axis of the inertial frame is chosen arbitrarily. 

However, the directions of the x-axes of the other frames are determined 

based on the following two assumptions called Denavit Hartenberg (DH) 

coordinate frame assumptions [2]: 

 

                   DH1: The axis    is perpendicular to the axis   . 

                   DH2: The axis    intersects the axis   .  

 

These assumptions are clearly considered in the choice of the x-axes of the 

frames assigned for the robotic arm in figure (2.2). The    axis intersects 

and is perpendicular to the    axis and the   -axis intersects and is 

perpendicular to the   axis.  After determining the directions of the z and x 

axes of a frame, the direction of the  -axis is determined using the right-

hand rule.  

 

b) Derivation of Denavit-Hartenberg (DH) parameters 

 

The second step in the process of deriving the kinematics of a robotic 

manipulator is the determination of a group of parameters called Denavit-

Hartenberg parameters. These parameters are important for deriving the 

homogenous transformation matrices between the different frames 

assigned on the manipulator structure in step (a) [2]. The Denavit-

Hartenberg parameters for the link   of a robotic manipulator are defined 

as follows:  

 

Joint angle (  ): is defined as the angle from the axis      to the axis    

about the axis     . 
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Link offset (  ): is defined as the perpendicular distance from the origin 

     to the intersection point of the axis    with the axis      along the 

axis     . 

 

Link twist angle (  ): denotes the angle from the axis       to the axis    

measured about the axis   . 

 

Link length (  ): denotes the distance from the axis      to the axis    

measured along the axis   .  

 

Using the above definitions, the DH parameters for the 2-DOF robotic arm 

shown in figure (2.2) can be determined and listed in table (2.2). 

 

 

 

Link ( )             

1   
 
 0 0    

2   
 
 0 0    

  

 

c) Derivation of the homogenous transformation matrices 

 

In order to express the position and orientation of a frame    with respect to 

another frame  , a so called homogenous transformation matrix   
 
 from 

the frame   to the frame   must be derived. This matrix is of 4 4 

dimension. The first three rows and columns of the homogenous 

transformation matrix   
 
  represent the orientation of the frame   with 

respect to the frame  . The first three elements of the fourth column of the 

transformation matrix   
 
 represent the position coordinates of the origin of 

frame   with respect to the frame    

 

The homogenous transformation matrices for the 2-DOF robotic arm 

shown in figure 1.2 are derived as follows: 

 

     
  [

                       
                       
                       

    

] 

                 [

          
         
    
    

]                   

 

Table 2.2: DH-parameters for the 2-DOF robotic arm 
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  [

                       
                       
                       

    

] 

 

                 [

          
         
    
    

]                   

 

Using the equations (2.1) and (2.2), the homogenous transformation matrix 

  
  can be derived as follows:  

 

  
         

   
  [

                  
                 
    
    

]               

 

The homogenous transformation matrix defined in (2.3) is the one that 

defines the forward kinematics of the 2-DOF robotic arm shown in figure 

(2.2). From this matrix, the position coordinates of the manipulator end-

effector is given by:  

 

                

               

       

 

And the end-effector's orientation matrix is defined by the first three rows 

and three columns of the transformation matrix (2.3).  

 

2.2.2 Inverse kinematics 

 

The inverse kinematics of a robotic manipulator is concerned by the problem 

of finding the manipulator joint variables (angular positions of the revolute 

joints) given the position Cartesian coordinates of the end-effector. The 

mathematical equations used to solve the inverse kinematics problem can be 

derived either algebraically or geometrically [2]. The geometrical approach is 

considered to be much easier for manipulators of high degrees of freedom. In 

this section, the inverse kinematics equations for the 2-DOF robotic arm 

shown in figure (2.2) will be derived using the geometrical method as follows: 

 Figure (2.3) shows a geometrical manipulation on the planar view of the 2-

DOF robotic arm. This geometrical manipulation involved projecting the 

position of the end-effector on the    and    axes of the inertial frame as well 

as on the    axis of frame       . 
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          From figure (2.3), a mathematical equation for solving the elbow joint angle       

can be derived using Pythagoras theorem as follows:  

 

  
    

    
    

                

 

Therefore,  

 

        (
  
    

    
    

 

     
)                      

 

It can also be shown from figure (2.3) that:  

 

        (
  

  
)       (

    
       

)                    

 

The equations (2.4) and (2.5) are used to solve the inverse kinematics problem 

for the 2-DOF robotic arm shown in figure (2.2).  

 

 

2.2.3 Singular configuration  

 

A robotic manipulator is said to be in a singular configuration when it loses 

one of its degrees of freedom [2,13]. This happens when the robot joint 

velocities become extremely high [2,13] which is not a favorable case in 

practice. In order to find the conditions when a singular configuration occurs, 

the so called Jacobian matrices must be derived. The Jacobian matrices of a 

robotic manipulator define the relationships between the linear and angular 

velocities of the manipulator's end-effector and its joints' velocities. The 

 
Figure 2.3: Geometrical approach for inverse kinematics derivation 

        

   

   



15 

 

Jacobian matrices for the 2-DOF robotic arm shown in figure (2.2) are derived 

as follows:  

 

Let   and   be the 3 1 vectors of the linear and angular velocities computed 

at the end-effector of the 2-DOF robotic arm, then: 

 

     ̇                      

,       ̇                      

 

Where    and    represent the Jacobian matrices of the end-effector's linear 

and angular velocities, respectively and  ̇ represents the 2 1 vector of the 

robot joint angular velocities. Therefore, the dimension of each Jacobian 

matrix will be 3 2. 

  

The equation (2.6) can be rewritten as follows:  

 

[
  ̇

  ̇

  ̇

]  [      ] *
  ̇

  ̇

+  

 

Where     and     represent the components of the end-effector's linear 

velocity due to the angular velocity of the first shoulder joint and the angular 

velocity of the second elbow joint, respectively. These components of the 

linear velocity can be derived as follows:  

 

               [
   
   

                     
] 

 

                                                       ̂               ̂    ̂ 

 

 

               [
   
   

           
] 

 

                                                ̂        ̂    ̂  

 

 

              [
                   
                 

  

]               
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,      [    ]  [
  
  
  

]                

 

Equations (2.8) and (2.9) constitute the complete Jacobian matrix at the end-

effector of the 2-DOF robotic arm. As mentioned earlier, the singular 

configurations of a robotic manipulator occur when the joint angular velocities 

infinite values. This can help to find the conditions of the singular 

configurations of the 2-DOF robotic arm as follows:  

 

Equation (2.6) implies that:  

 

 ̇    
      

 

This means that the joint angular velocities become infinite when the 

determinant of the Jacobian matrix component    becomes zero.  Therefore, 

the singular configurations of the 2-DOF robotic arm can be calculated by 

finding the determinant of    in equation (2.8) and equalizing it to zero. 

However, the dimension of    is     which is not the dimension of a square 

matrix for which a determinant exists. Therefore, in order to avoid this 

problem, we have to avoid the last zero row of the matrix   . This can be 

possibly done since the linear velocity of the arm's end-effector does not have 

a component in the Z-direction. This is because the end-effector moves in a 

planar motion.  Therefore, 

 

|  |  |
                   
                 

|    

 

Then,       
                    

                    

 

                                 

 

This implies that the 2-DOF robotic arm is considered to be in a singular 

configuration when the angular position of the second elbow joint    is 

either           . 

 

2.3 Dynamics 

 

The dynamics of a robotic manipulator plays a key role in forming a foundation of 

understanding of the robot motion control. In order to build a control mechanism to 

control the motion of a robotic manipulator, the relationships between the necessary 

torques and forces that must be applied to the joints and the angular positions, 

velocities, and accelerations of those joints must be established and thouroughly 

understood. This is because any robot motion control strategy is based upon the 
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generation of an actuating torque to move the robot joints to a desired space 

configuration. The problem concerned with establishing the relationships between the 

joint torques and forces and their angular positions, velocities, and accelerations can 

be solved using the manipulator dynamics equations [2]. Therefore, this section is  

devoted to the derivation of the dynamics equations of the 2-DOF robotic arm shown 

in figure (2.2).  

 

There are two different methods used to derive the forward dynamics equations of a 

robotic manipulator: Euler-Lagrange method and Newton-Euler method [2]. The 

Euler-Lagrange method depends on finding the total kinetic and potential energies of 

the manipulator and then using them to calculate the Lagrangian (L) of the whole 

robot system which can be used to calculate the torque of each robot joint. The 

Newton-Euler method depends on the concept of Newton's second law to calculate 

the coupling torques between the adjacent links of the manipulator.  

 

In the following, the first (Euler-Lagrange) method is utilized for deriving the 

dynamics equations of the 2-DOF robotic arm.   

 

A closed-form relationship that can be used to calculate the torques and forces applied 

on the joints of a robotic manipulator is written as follows [2]:  

 

 

  

  

   ̇
 

  

   
                      

  

Where, L denotes the Lagrangian of the robotic manipulator and is defined as the 

difference between the total kinetic energy (K) and the total potential energy (P) of the 

robotic manipulator,    denotes the     joint variable, and    denotes the torque or 

force applied on the     joint. 

 

In order to find the Lagrangian of the 2-DOF robotic arm, the total kinetic and 

potential energies of the arm must be derived. The total kinetic and potential energies 

are defined as the sum of the kinetic and potential energies of the individual links of 

the manipulator. The kinetic and potential energy associated with one link are 

computed at the center of mass of that link. The derivation of the total kinetic and 

potential energies of the 2-DOF robotic arm is done as follows:   

 

The first link:  

 

The following equation describes the kinetic energy computed at the center of mass of 

the first link of the arm:  
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Where    denotes the mass concentrated at the center of the first link,    is the vector 

of the linear velocity at the center of mass of the first link,    is the vector of the 

angular velocity at the center of mass of the first link,   denotes the inertia tensor 

matrix computed at the center of mass of the first link with respect to the inertial frame 

of the robotic arm. 

 

The linear velocity    can be derived using the equation (2.6) as follows:  

 

       ̇  [        ] *
  ̇

  ̇

+                

 

Where      and      denote the components of the linear velocity    due to the angular 

velocity of the first joint   ̇ and the angular velocity of the second joint   ̇, 

respectively.  

 

By considering the center of mass of each link is at the center of the link, the linear 

velocity components      and      can be calculated as follows:   

 

                 [

   
   

  

 
  

  

 
   

] 

                                            

                               
  

 
   ̂  

  

 
   ̂    ̂  

 

Since the sole movement of the second elbow joint of the robotic arm does not affect 

the first link, the component added to the linear velocity at the center of the first link 

due to the angular velocity of the second elbow joint will be zero. This implies that:  

  

        ̂    ̂    ̂  

 

Therefore,    [

 
  

 
   

  

 
   

  

] *
  ̇

  ̇

+  [

 
  

 
    ̇

  

 
    ̇

 

]              

 

When the first shoulder joint moves with a specific angular velocity   ̇, every point on 

the first link will move with the same angular velocity   ̇  However, the sole 

movement of the second elbow joint does not affect the first link. Therefore, the 

angular velocity at the center of mass of the first link is given as follows: 
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       ̇  [
  
  
  

] *
  ̇

  ̇

+  [
 
 
  ̇

]                

 

The computation of the inertia tensor matrix of a link depends on the geometrical 

dimensions of that link as well as on the coordinate frame with respect to which the 

computation is carried out. Therefore, in order to compute the inertia tensor matrix at 

the center of mass of the first link of the robotic arm, the geometrical dimensions of the 

first link must be determined and a local coordinate frame must be attached to the 

center of the link in order to derive the inertia tensor matrix with respect to it. Figure 

(2.4) shows a schematic diagram illustrating the geometrical shape of the first link. For 

simplicity of calculation, we will consider both links of the robotic arm to have cubic 

shapes. Other geometrical shapes may be considered but the calculation of the inertia 

tensor matrix must differ accordingly. 

 

 

 

 

 

 

 

 

    

   

      

 

 

 

 

    

 

As shown in figure (2.4), a local coordinate frame     is attached at the center of the 

link in order to use it for calculating the inertia tensor matrix. The inertia tensor matrix 

computed at the center of the first link with respect to the local frame     is given as:  

 

    [

            
            

            

]                  

 

Where the diagonal elements      ,     , and      are called the principal moments of 

inertia, and the other elements of the inertia tensor matrix are called the cross products 

of inertia. Based on the schematic diagram shown in figure (2.4), and given that the 

mass density of the first link is denoted by  , the elements of the inertia tensor matrix 

    can be calculated as follows: 

 
Figure 2.4: A schematic diagram of the first link of the 

2-DOF robotic arm 
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By doing similar calculations, the other elements of the inertia tensor matrix     can be 

calculated to have the following values:  
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It is clear from the definition of the cross products of inertia that the inertia tensor 

matrix of a link is symmetric. The cross products of inertia for the first link are found 
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to be zero due to the geometrical symmetry of the link about the local frame     as 

shown in figure (2.4).  

 

By substituting the elements into the equation (2.15), the inertia tensor matrix of the 

first link with respect to the local frame     is found to be:  

 

    

[
 
 
 
  

   

  
         

  
   

  
        

   
   

  
       ]

 
 
 
 

             

 

          

In order to compute the kinetic energy defined in (2.11), the inertia tensor matrix at the 

center of mass of the first link must be computed with respect to the inertial frame of 

the robotic arm shown in figure (2.2). This requires the similarity transformation of the 

locally-defined inertia matrix (2.16) which can be done as follows:  

 

            
  

 

Where,     represents the rotational matrix of the local frame     attached at the 

center of the first link with respect to the inertial frame of the 2-DOF robotic arm and 

is given by:  

 

    [
      
     
   

] 

 

Therefore, 

   

[
 
 
 
  

   

  
[         

           
 ]  

   

  
            

 
   

  
            

   

  
[         

           
 ]  

   
   

  
       ]

 
 
 
 

   

              

 

Substituting the equations (2.13), (2.14), and (2.17) into the equation (2.11) gives the 

kinetic energy at the center of mass of the first link of the 2-DOF robotic arm as 

follows:  

 

   
  

 

  
 

 
  ̇

 
  

   

  
         ̇

 
             

  

The following equation is used to compute the potential energy at the center of mass of 

the first link of the arm [2]:  
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Where   is the vector of gravity in the inertial frame of the robotic arm,    is the 

position vector of the center of mass of the first link which was considered earlier to be 

at the center of the link, and    is the mass of the first link.     

 

Therefore,   

 

   [   ]

[
 
 
 
 
  

 
  

  

 
  

 ]
 
 
 
 

      
  

 
               

 

The second link:  

 

Following the same steps of computing the kinetic and potential energies of the first 

link, the kinetic and potential energies at the center of mass of the second link are 

computed as follows:  

 

   
 

 
    

    
 

 
  

                       

 

Where    denotes the mass concentrated at the center of the second link,    is the 

vector of the linear velocity at the center of mass of the second link,    is the vector of 

the angular velocity at the center of mass of the second link,   denotes the inertia 

tensor matrix computed at the center of mass of the second link with respect to the 

inertial frame of the robotic arm. 
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  ̇
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  ]
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Therefore,  
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 (

   

 
        )   ̇  
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(
  

 
        )  ̇  

  

 
     ̇

 ]
 
 
 
 

             

  

It is clear from the equation (2.21) that the angular velocities of both joints of the 2-

DOF robotic arm have effects on the linear velocity computed at the center of mass of 

the second link.  
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 ̇  [

  
  
  

] *
  ̇

  ̇

+  [
 
 

  ̇    ̇

]               

 

By considering that both links of the robotic arm have the same geometrical shape and 

dimensions, it can be shown that both links will have the same inertia tensor matrix 

relative to the local coordinate frames attached at the centers of the links. This implies 

that the inertia tensor matrix at the center of the second link     is the same as the one 

derived in (2.16). Therefore,  

 

    

[
 
 
 
  

   

  
         

  
   

  
        

   
   

  
       ]

 
 
 
 

  

 

By doing the similarity transformation of    , the inertia tensor matrix at the center of 

the second link with respect to the inertial frame of the arm    is found to be as 

follows:  

 

            
  

 

Where,     represents the rotational matrix of the local frame     attached at the 

center of the second link with respect to the inertial frame of the 2-DOF robotic arm 

and is given by:  

 

    [
        
       
   

] 

 

Therefore,  
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Substituting the equations (2.21), (2.22), and (2.23) into the equation (2.20) gives the 

kinetic energy at the center of mass of the second link of the 2-DOF robotic arm as 

follows: 
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The potential energy at the center of mass of the second link of the 2-DOF robotic arm 

is computed as follows: 

 

           

 

Where   is the vector of gravity in the inertial frame of the robotic arm,     is the 

position vector of the center of mass of the second link, and    is the mass of the 

second link.  

 

Therefore,  
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        )            

 

By adding the equations (2.18) and (2.24), the total kinetic energy of the 2-DOF 

robotic arm is found to be:  
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By adding the equations (2.19) and (2.25), the total potential energy of the 2-DOF 

robotic arm is found to be:  

 

           
  

 
      (

  

 
        )              

 

After computing the total kinetic and potential energies of the 2-DOF robotic arm, the 

Lagrangian of the arm can be computed as follows:  
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By using the Euler-Lagrange equations defined in (2.10), the torques applied to the 

revolute joints of the 2-DOF robotic arm for specified angular positions  , angular 

velocities  ̇, and angular accelerations  ̈ can be computed and found to be:  
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2.4 Modeling of the 2-DOF robotic arm on Dymola 

 

In this section, a model is developed for the 2-DOF robotic arm shown in figure (2.2) 

under the Dymola simulation environment [14]. The reason behind choosing Dymola 

for simulation in this thesis rather than MATLAB is because of its dependence on the 

object-oriented modeling language Modelica developed by Hilding Elmqvist in 1978  

[15]. This language is useful for modeling any complex system by decomposing the 

system into individual simple component models (objects) and then connecting such 

models with suitable connectors to develop a model for the whole system. This 

object-oriented modeling methodology does not require solving highly complicated 

nonlinear equations in order to derive a closed-form mathematical model (such as a 

transfer function) for the system as MATLAB requires [16]. In addition, using simple 

differential algebraic equations (DAEs) to develop a modelica-model allows for 

modeling complex systems containing components from different domains of 

engineering [14,15].  
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The development of a modelica-model for the 2-DOF robotic arm on Dymola requires 

the use of some of the component models packaged within the Multibody library 

which is one of the several built-in libraries available in Dymola [14]. The main 

components contained within the Multibody library are described as follows:  

 

- World     

The world component is used to model the inertial (world) frame of a multi-

body mechanical system such as a robotic manipulator. The world model 

defines parameters for the gravity vector, as well as the properties needed for 

developing an animation for the whole system. Therefore, the presence of this 

component at the top level of the model of a multi-body system is a necessity 

and its absence causes the translator (compiler) to generate an error.  

 

- BodyShape 
This component is used to model a rigid body characterized by a mass and an 

inertia tensor such as a link of a robotic manipulator. The component model 

defines parameters that allow for choosing a desired geometrical shape with its 

dimensions as well as defining the coordinates of the center of mass of the 

body relative to the frame attached at its starting terminal. The frames attached 

at the ends of the BodyShape component allow for determining the position 

and orientation of the body with respect to one of the two frames. The beauty 

of using the BodyShape model appears when a number of BodyShape 

components are connected. In this case, the kinematics problem of the whole 

system is automatically solved. This component will be used later for the 

modeling of the two links of the robotic arm. 

 

- Revolute    

The Revolute model is one of the models available within the Joints library. 

This model, as its name implies, is used for the modeling of a revolute joint. 

The parameters defined in the Revolute model include the angular position of 

the revolute joint, the geometrical shape used to visualize the revolute joint 

such as a small cylinder. The Revolute model will be used to define the 

revolute joints of the 2-DOF robotic arm.  

 

There are many other built-in libraries and components defined within the Multibody 

library of Dymola. Information regarding the definitions and purposes of use of such 

components can be obtained from [14].  Figure (2.5) shows a diagram illustrating the 

use of the above components to build the model of the 2-DOF robotic arm on Dymola. 
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Chapter 3  

 

2.5 Permanent magnet DC- motor  

 

This section is devoted to the study and analysis of the dynamic behavior of the 

permanent-magnet DC-motor which is considered to be the driving force of the 2-DOF 

robotic manipulator. In order to facilitate the process of understanding how a DC-

motor works, a mathematical model for the DC-motor is first developed. After 

developing a mathematical model, the stability and other characteristics of the time 

response of the DC-motor system can be easily observed and analyzed for different 

inputs and load values.  

 

The conventional model used to describe the dynamics of a permanent-magnet DC 

motor is shown in figure (2.6) [2]. 

 

 

 

 

   

 

 

 

 

 

 

 

It is clear from figure (2.6) that the model of a permanent-magnet DC motor consists 

of two parts: an electrical part represented by the armature circuit and a mechanical 

part. The components of the armature circuit shown in figure (2.6) include an armature 

Figure 2.5:  Dymola model for the 2-DOF robotic arm 

 
Figure 2.6: A circuit diagram for armature-controlled DC motor 
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inductance  , an armature resistance  , and an input voltage signal source     .    

represents the armature current. 

 

The mechanical part of the DC-motor model is shown in figure (2.7). It is shown in 

this figure that the mechanical part of the DC-motor model consists of the motor 

inertia   , the motor damper   , and the load inertia which is connected to the motor 

inertia through a gear train with gear reduction ratio (   ). Both the motor inertia and 

the motor damper affect the amount of torque needed for the motor to operate. 

 

 
Figure 2.7: Mechanical part of the DC-motor system 

 

The operation of a DC-motor is based on the effect of a constant magnetic field   

(passing through the motor stator) on a current-carrying conductor (motor rotor). Such 

effect is represented by the generation of torque    to enforce the motor inertia to 

rotate with a certain angular velocity   . The angular motion of the motor inertia 

within the constant magnetic field induces a voltage drop called back-electromotive 

force    across the terminals of the moving rotor as shown in figure (2.6). 

 

The open-loop transfer function relating the angular position of the motor    to the 

input armature voltage      is given by the following: 

 

     

    
 

  

                      
               

 

Where    and    are the motor constants.  

 

The mathematical derivation of the above transfer function is explained in detail in 

Appendix A. It is important to remind here that the derivation of a transfer function is 

not necessary for simulating the behavior of a DC motor model on Dymola because the 

simulation of a system on Dymola is based on the object-oriented and acausal 

modeling methodology. However, the importance of such a transfer function will 
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appear in the process of designing a proportional-derivative (PD) controller for the 

motor angular position in the next chapter.  

  

2.6 Dymola Modeling and simulation of the DC-motor 

 

In this section, the DC-motor conventional model shown in figures (2.6) and (2.7) will 

be used to develop an object-oriented model for the motor on Dymola. The Dymola 

model will then be simulated to analyze the step response of the DC-motor in the 

presence and absence of a driven load. This simulation aims to investigate the stability 

of the motor system without a controller as well as the impact of driving a certain load 

on the motor angular position and velocity. Figure (2.8) shows the component-oriented 

model developed in Dymola for the DC-motor system.  

 

 

 

 

 

 

  

 

  

     

 

 

 

 

 

 

 

 

 

 

Figure (2.8) shows two diagrams. The upper one is the motor armature and mechanical 

circuits similar to those shown in figures (2.6) and (2.7). The lower diagram shows a 

simplified icon which represents an abstract model for the upper motor circuit diagram. 

The motor icon was developed in order to use it later in a more complex system 

structure which would contain the controllers and the 2-DOF robotic manipulator. The 

motor circuit diagram shown in figure (3.3) also shows the motor parameter values 

used in simulation which are       ,         ,              , 

                 ,                    . 

 

In order to observe the effect of connecting a constant load torque on the step response 

of the motor angular position and velocity, the following simulation is conducted: In 

the beginning of the simulation time, no load is connected to the motor. During this 

 
 

 

 
 

Figure 2.8: Dymola model for the DC-motor system 
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time, the simulation will show the natural step response of the motor with no load 

(when      . At time          , a load torque                is applied to the 

motor inertia. The simulation from this time on will show the effect of connecting the 

load on the motor step response. Figures (2.9)-(2.12) show the step responses of 

different characteristics of the DC-motor.   

 

 
 

Figure 2.9: Step response of the DC motor angular position  

 

 
 

Figure 2.10: Step response of the DC motor angular velocity 

 

Figure (2.9) shows that for time           , the motor angular position   starts 

increasing linearly with a slope of about 18.3 rad/sec which is the value of the motor 

angular velocity during the same time interval as shown in figure (2.10). For time 

         when the load is connected to the motor flange, the motor angular position 

  starts increasing linearly with a slower slope of about 4.7 rad/sec which is the value 

of the slower angular velocity for the same time interval as shown in figure (2.10). 

[sec] 

[sec] 
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Figure (2.11) shows that the armature current when no load is connected to the motor 

is about 0.04 A. However, when the load is connected to the motor at         , the 

armature current starts increasing to the value of 0.22 A. 

 

 
 

Figure 2.11: Step response of the DC motor armature current 

 

 
 

Figure 2.12: Step response of the negative of DC motor torque 

 

Such an increase in the armature current is logically necessary in order to generate a 

larger torque for driving both the motor and the load inertias together. Since the motor 

torque is directly proportional to the armature current through the motor constant   ,  

the increase of the armature current at time          causes a corresponding increase 

in the motor torque   as shown in figure (2.12) in which the torque increases from 

about            to about             

 

[sec] 

[sec] 
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One important indication of figure (2.9) is the unstable behavior of the motor angular 

position which keeps increasing linearly and never stabilizes at a certain value which is 

not practically desired.  

 

In order to observe the effect of the unstable behavior of the DC motor on the motion 

of the 2-DOF robotic arm, the following simulation is conducted: DC-motors are 

connected to the joints of the 2-DOF robotic manipulator modeled in figure (2.5) 

through gear trains with       and          The step responses of the angular 

positions and torques of both joints of the arm are shown in figures (2.13) – (2.16).  

 

 
 

Figure 2.13: Step response of uncontrolled shoulder joint angular position 

 

 
 

Figure 2.14: Step response of uncontrolled elbow joint angular position 

 

 

[sec] 

[sec] 
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It is clear from figures (2.13) and (2.14) that the angular positions of both joints of the 

arm    and    are unstable, as expected, due to the unstable angular positions of their 

driving motors     and      It is also clear that the angular position of the shoulder 

joint    is more affected by its nonlinear dynamic torque    than the angular position 

of the elbow joint   . This is because the shoulder joint exerts a greater torque in order 

to be able to drive both links of the manipulator. The elbow joint, however, needs to 

exert a lower torque because it drives only one link of the manipulator.  

 

 
 

Figure 2.15: Step response of uncontrolled shoulder joint torque 

 

 
 

Figure 2.16: Step response of uncontrolled elbow joint torque 

 

To see this in numbers, the value of the torque generated by the shoulder joint at time 

          is             This would mean that the disturbance load torque 

[sec] 

[sec] 
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applied on the inertia of the shoulder joint driving motor is 
  

  
 

   

  
            

From figure (2.12), the motor torque generated when no load is connected is found to 

be about            Therefore, the net torque applied on the inertia of the shoulder 

joint driving motor is                        Such a negative torque is the 

reason why the shoulder joint angular position is always negative as shown in figure 

(2.13).  

 

On the other hand, the elbow joint exerts a lower torque of about            . This 

implies that the disturbance load torque applied on the inertia of the elbow joint 

driving motor is 
  

  
 

    

   
            Therefore, the net torque applied on the 

inertia of the elbow joint driving motor is                         Despite the 

negative value of the net torque, its magnitude is very small that is not sufficient to 

enforce the motor angular position to have negative values. Moreover, the very small 

magnitude of the applied torque causes the elbow joint angular position to have very 

small values as shown in figure (2.14). 

 

Figure (2.17) shows a (3D) visualization of the unstable behavior of the uncontrolled 

joint driving motors.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.17) shows the trajectory followed by the end-effector during a         

period. It is clearly seen that the angular positions of the joint driving motors never 

stabilize. At the outset, the shoulder joint starts rotating with negative angular 

positions, as indicated by figure (2.13), until it reaches the maximum position of 

           at the time instant         . After that, the shoulder joint keeps 

oscillating between the positions of           and            for the rest of the 

simulation time. The angular position of the elbow joint, however, keeps increasing 

with positive values making an elliptical trajectory as shown in figure (2.17). 

 

 

Figure 2.17: 3D visualization of the trajectory of the uncontrolled arm 
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CHAPTER 3  

 

 PD-Computed Torque Control  

 

It was shown in the previous chapter that the open-loop step response of the 

permanent-magnet DC motor is unstable. Such instability must therefore be corrected 

before using the motor to drive a load. In this chapter, the problem of stabilizing the 

angular position of the DC-motor is handled through designing a (PD) controller which 

is done using the root locus method. The computed torque methodology is then 

adopted in order to cancel the effects of the joint disturbance torques on the responses 

of the PD-controlled motors.   

 

3.1 PD-control  

 

There are different methods used for designing a PD controller for a specified system. 

One of these methods is based on a mathematical analysis which involves the 

derivation of the system transfer function and then using the transfer function of the 

PD-controller to achieve required time response characteristics [18].  

 

Although this method seems to be simple for second-order systems, it becomes highly 

complicated for higher order systems for which the derivation of the closed-loop 

transfer function is complicated and a time consuming process. In order to facilitate the 

process of designing a PD controller for higher order systems, the root locus method 

was proposed as a technique that requires only the open-loop poles of the system 

[17,18]. The root-locus method depends on tracking the movement of the open-loop 

poles of the system on the complex number plane as the closed-loop system gain 

increases from 1 to infinity. The resultant trajectory of the poles on the complex 

number plane is called the root locus of the system. So, the root-locus based controller 

design process is mainly based on making the root locus of the system pass through a 

specified design point that achieves the required time response characteristics.  

 

The general process of designing a PD controller for a system using the root locus 

method is explained in detail in Appendix B.  

 

As mentioned earlier, the primary goal of designing a PD controller for the DC motor 

system is to achieve the stability of the motor angular position. The secondary goal of 

using a PD controller is to achieve specific requirements for the motor step response. 

These requirements are given as follows:  

 

The settling time    is taken to be approximately         and the peak overshoot 

      is to be about       .  
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For these time response requirements, the design point    that must be located on the 

root locus of the DC-motor system is found to be the following:   

 

                           

 

The computation of the above design point is found in Appendix B.  

 

Using the equation (2.30) and the motor parameter values shown in figure (2.8), the 

open-loop transfer function      of the DC-motor can be calculated as follows:  

 

     
     

                                     
          

 

Using the tf2zpk MATLAB function, the open-loop poles of the DC-motor system can 

be computed and are given as follows:  

 

                                                            

  

The general transfer function of a PD controller is given as           , where 

   and    are the PD controller gains. This implies that the design of a PD controller 

for a specific system involves inserting an additional zero into the open-loop transfer 

function of the system such that the root locus of the resulting open-loop system passes 

through the design point    in order to achieve the required time response 

characteristics. Applying such an implication is described in the following steps:  

 

1- Let       be the zero term to be added to the DC-motor open-loop transfer 

function      in (4.9). Therefore, the resulting open-loop transfer function would 

be               

 

2- In order for the design pole    in (4.9) to be located on the root locus of the 

resulting open-loop transfer function in step 1, the magnitude and phase angle 

requirements derived in (4.2) must be satisfied. This enables to calculate the 

corresponding location of the additional zero on the real axis ( ).  

 

Applying steps 1 and 2 reveal that the additional zero                 .  

 

Figure (3.1) shows the root locus of the resulting open-loop transfer function 

                which was obtained using the rlocus MATLAB function. It is clear 

from figure (4.1) that the root locus of the resulting open-loop transfer function did 

pass through the design pole    given in (3.1). The figure also shows that both the 

required damping ratio and un-damped frequency calculated in Appendix B have been 

reached. It is also important to note that the value of the closed loop gain at which the 

root locus passes through the design pole is         .  
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Therefore, the designed PD controller for the DC-motor system is          

                      with the controller gains         and          .  

 

In order to test the efficiency of the designed PD controller, a simulation is carried out 

to see its effect on the step response of the DC-motor angular position. Figure (3.2) 

shows the closed-loop DC-motor system including the designed PD controller and the 

DC-motor system model represented by the icon shown in figure (2.8). Figure (3.3) 

shows the step response of the PD-controlled motor system shown in figure (3.2).  

 

 
Figure 3.2: Block diagram of PD-controlled DC-motor system 

 
 

Figure 3.1: Root locus of the open-loop transfer function (S+273.14) L(S) 
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Figure 3.3: Step response of PD-controlled DC-motor  

 

It can be seen from figure (3.3) that the designed PD-controller is capable of stabilizing 

the motor angular position    and achieving the required settling time and overshoot 

specifications since             and the figure shows no overshoot above the steady 

state value.  

 

It is also noted that the steady state error is zero despite using only a PD controller in 

the system. This is because the open-loop transfer function of the DC-motor system in 

(3.2) has a system type I, which is responsible for eliminating the steady state error of 

the system.   

 

After designing a PD controller to stabilize the motor angular position and to achieve 

specific time response requirements, the question now is whether the designed PD 

controller will be able to preserve its efficiency if the DC-motor is used to drive the 

joints of our 2-DOF robotic manipulator. This question can be answered by conducting 

the following simulation on Dymola:  

 

Two PD-controlled DC-motors as the one shown in figure (3.2) are used to drive the 

joints of the 2-DOF robotic arm. The motors are connected to the arm joints through 

gear trains with gear reducers       and        for the shoulder joint and the 

elbow joint respectively. Figure (3.4) shows a block diagram for the 2-DOF robotic 

arm driven by the PD-controlled DC-motors. The input voltage signal source 

connected to both motors is a model developed on Dymola for a pick-and-place 

function. Figure (3.5) shows the time responses of the angular positions of the two 

driving motors.  

 

 

[sec] 
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From figure (3.5), it is clear that when the PD-controlled DC-motors are connected to 

the joints of the robotic arm, the designed PD-controller lost its capability of 

preserving the zero steady state error in the time response of the DC-motor angular 

position. This can be clearly seen from figure (3.5) where the error in the time response 

is about         for the shoulder joint motor angular position and about          for 

the elbow joint motor angular position.  

 

Such a result was actually expected since the PD-controller was designed for the DC-

motor without being connected to a load (i.e. the open-loop transfer function of the 

DC-motor (3.2) was computed based on the assumption that the load torque     ). 

However, in this simulation when the DC-motors are connected to the joints of the 

robotic arm, the inertias of the driving motors began experiencing some amount of 

disturbance load torques which are the torques exerted by the dynamics of the 2-DOF 

robotic arm. 

 

This implies that    now has a value and therefore the designed PD controller is no 

longer capable of achieving the required time response characteristics. Therefore, in 

order to recover the efficiency of the designed PD controller, a disturbance torque 

rejection controller must be developed in order to cancel the effect of the disturbance 

dynamic torques of the robotic arm joints which will be the topic of the next section.  

 

The difference between the effects of the disturbance joint torques on the angular 

positions of their driving motors can be clearly observed in figure (3.5) where the 

disturbance torque of the shoulder joint    has a greater effect on the angular position 

 
Figure (3.4): Dymola model for the robotic arm driven by PD-controlled DC-motors 



41 

 

of its driving motor     than the effect of the disturbance torque of the elbow joint    

on the motor angular position    . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to see the poor performance of the PD controller in the presence of the 

disturbance torques of the manipulator joints more clearly, figure (3.6) shows a 3D 

visualization of the end-effector's trajectory for a period of        . It is shown in 

figure (3.6) that the manipulator end-effector deviated from the desired trajectory from 

           to          . Such a deviation was caused by the large overshooting of 

the angular positions of the joint driving motors during that period as shown in figure 

(3.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (3.5):  Angular positions of the DC-motors with PD-control 

 

Figure 3.6: 3D visualization of the trajectory of PD-controlled arm 

[sec] 

[rad] 
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3.2 PD-computed torque control  

 

As shown in section 3.1, using the designed PD controller alone is not effective in 

achieving the desired trajectory for the 2-DOF robotic manipulator due to the presence 

of the dynamic disturbance torques of the manipulator joints. In order to improve the 

performance of the PD controller in the presence of the disturbance torques, a 

disturbance rejection control strategy must be developed in order to cancel the effect of 

the disturbance torques of the joints on the angular positions of their driving DC-

motors. This section aims to develop a disturbance rejection controller using the well-

known computed torque method to be applied on the PD-controlled robotic arm.  

 

The computed torque method was used extensively in the literature as a disturbance 

torque rejection method to improve the performance of the trajectory tracking control 

of robotic manipulators [6-8]. This method is based on the idea of computing estimated 

values for the joint torques using the dynamics equations of the robotic manipulator. 

The computed torque values can then be added to the actual negative torques of the 

joints to cancel them out as shall be seen later in this section.  

 

The following discussion shows mathematically the effectiveness of the computed 

torque method in eliminating the joint disturbance torques for a general robotic 

manipulator of    DOF:  

 

The mechanical part of the DC-motor model is described as:  

 

  
    

   
   

   

  
    

  
 

              

 

Where    denotes the motor inertia,    denotes the motor damping coefficient,    is 

the motor torque and    denotes the torque generated by the load which in our case 

describes the disturbance torques due to the dynamics of the driven manipulator joints. 

These disturbance torques of the joints can be described in matrix form as follows 

[13]:  

 

     ̈   (   ̇) ̇                     

 

Where      is a symmetric square matrix of dimension     and represents the 

inertia matrix of the  -DOF robotic manipulator,  (   ̇) represents the vector of the 

centrifugal and coriolis forces applied on the manipulator joints,      represents the 

    vector of gravitational forces applied on the manipulator joints,   denotes the 

joint angle, and    represents the torques necessary for driving the joints of the 

manipulator. 

 

Substituting (3.4) into (3.3) reveals the following equation:  
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[     ̈   (   ̇) ̇      ] 

 

For simplification purposes, let  (   ̇) ̇            ̇ , then:  

 

  
    

   
   

   

  
    

 

 
[     ̈       ̇ ]              

 

The last term on the right hand side of equation (3.5) represents the disturbance torques 

that are responsible for the deviation of the PD-controlled motor positions from their 

desired trajectories as shown in figure (3.5). In order to remove the effect of such 

disturbance torques of the joints and recover the trajectory tracking efficiency of the 

PD controller, an additional term must be inserted into equation (3.5) as follows:  

 

  
    

   
   

   

  
    

 

 
[     ̈       ̇ ]  [ ̂    ̈   ̂(   ̇)]           

 

Where  ̂    and  ̂(   ̇) represent the estimated inertia matrix and the estimated 

centrifugal and coriolis forces, respectively. 

 

In order for the last two terms on the right hand side of equation (3.6) to cancel out, the 

following equations must be satisfied:  

 

 ̂    
 

 
      and   ̂(   ̇)  

 

 
 (   ̇)             

 

The equation (3.7) constitutes the mathematical representation of the computed torque-

based disturbance rejection method for an  -DOF robotic manipulator. It is important 

to note here that the effectiveness of the computed torque method in eliminating the 

effects of the disturbance torques of the joints depends mainly on the accuracy of 

computing the actual mass matrix and centrifugal and coriolis forces of the driven 

manipulator. In the following discussion, the use of equations (3.7) to develop a 

computed torque-based disturbance rejection control for the 2-DOF robotic arm is 

investigated: 

 

Expanding the equation (3.4) for the 2-DOF robotic arm reveals the following:  

 

     ̈       ̈    (   ̇)     

,                                                                                              

     ̈       ̈    (   ̇)         

 

By equating the equations of (3.8) to the dynamics equations of the robotic arm 

derived in (2.28) and (2.29), the corresponding elements of the      symmetric 
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inertia matrix and the corresponding elements of the vector  (   ̇) of the robotic arm 

are found to be:  
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Using the equations in (3.8), the estimated inertia matrix  ̂    and the estimated 

vector  ̂(   ̇) for the 2-DOF robotic arm are computed using the following relations:  

 

   ̂  
 

  
           ̂  

 

  
           ̂  

 

  
             ̂  

 

  
         

                                                                                                                    

  ̂  
 

  
             ̂  

 

  
   

   

The equations (3.9) constitute the computed torque-based disturbance rejection control 

strategy for the 2-DOF robotic arm.        and        represent the gear reduction 

ratios of the gear trains connected to the shoulder joint and the elbow joint, 

respectively.    

 

In order to test the effectiveness of the computed torque-based disturbance rejection 

controller to eliminate the effects of the disturbance torques generated by the joint 

dynamics of the 2-DOF robotic arm, Modelica-based models are developed for both 

the estimated inertia matrix  ̂    and the estimated vector of centrifugal and coriolis 

forces  ̂(   ̇) in order to use them later in the Dymola simulation of the whole system. 

These models can be found in Appendix C.   
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Figure (3.7) shows the Dymola model of the arm system with the designed PD-

computed torque controller. Figure (3.8) shows the simulation results of the arm 

control system shown in figure (3.7).  

 

Figure (3.8) shows that with the addition of the designed computed torque disturbance 

rejection controller, the PD controllers recovered their efficiency of enforcing the joint 

driving motors to follow their desired pick-and-place trajectory. This shows that the 

developed computed torque disturbance rejection controller is capable of totally 

eliminating the effects of the disturbance joint torques on the angular positions of their 

driving motors. 

    

 

 
 

Figure 3.7: Dymola model for the robotic system with computed torque controller 

 

It can be also observed from figure (3.8) that the steady state error in the horizontal 

areas of the response is equal to zero. However, in the vertical areas of the response, 

there appears a steady state error of about          between the desired trajectory and 

the actual angular positions of the motors. 

 

Figure (3.9) shows a 3D visualization of the effect of adding the designed computed 

torque disturbance rejection controller on improving the trajectory followed by the 

manipulator end-effector.  

 

Comparing the trajectory followed by the end-effector in figure (3.9) with that shown 

in figure (3.6), it can be clearly observed that with the addition of the designed 

computed torque disturbance rejection controller, the large deviation of the end-

effector from the desired trajectory was effectively handled as shown in figure (3.9). 
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Figure 3.8: Angular positions of motors with computed torque controller 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is supported by figure (3.8) which shows no overshooting for the actual angular 

position of either driving motor.  

 

The non-zero error shown in the vertical areas of the response in figure (3.8) is caused 

by the time varying nature of the applied pick-and-place function which cannot be 

handled by the linear PD controller. Therefore, the feed-forward control technique 

explained in [2] is used to eliminate this error. The feed-forward error elimination 

technique depends on adding a feed-forward path in the closed loop control system of 

each motor such that the transfer function of the feed-forward path is the reciprocal of 

the open-loop transfer function of the DC-motor system. The following mathematical 

investigation proves that this feed-forward control technique can totally eliminate the 

error shown in figure (3.8):  

 

 

Figure 3.9: 3D visualization of the arm trajectory with computed torque controller 

[sec] 

[rad] 



46 

 

Figure (3.10) shows a symbolic block diagram representing the PD-controlled DC 

motor system where      is the controller transfer function,      is the open-loop 

system transfer function, and      is the feed-forward transfer function to be added to 

the system:  

 

 

 

 

 

 

 

 

 

Figure 3.10: Block diagram of control system with feed-forward path 

 

From figure (3.10), it can be shown that 

 

          [    (                 )] 

 

Therefore, 

  

       [          ]      [          ] 

 

Which reveals that,  

 

        
    [          ]

[          ]
              

 

Equation (3.10) shows that in order for the error      to be equal to zero, the feed-

forward transfer function      must be equal to the reciprocal of the open-loop 

system transfer function of the DC-motor.  

 

Figure (3.11) shows a model developed on Dymola for the feed-forward controller 

(FFC). Figure (3.12) shows the inclusion of the feed-forward controller (FFC) to each 

of the PD-controlled driving motors of the arm. Figure (3.13) shows the simulation 

results of the control system shown in figure (3.12).  

 

It is clear from figure (3.13) that the error due to the time varying nature of the desired 

pick-and-place trajectory is totally eliminated by the designed feed-forward controller. 

 

As mentioned earlier, the efficiency of the computed torque disturbance rejection 

control strategy is determined by the accuracy of the torques computed using the 

relations in (3.9). This accuracy depends mainly on our knowledge of the accurate 

parameters of the joint driving motors and the controlled manipulator itself. 
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Therefore, the computed torque disturbance rejection controller will fail to achieve its 

goal of accurately compensating for the joint disturbance torques in either one of the 

following two conditions:  

 

1- If any of the known parameters of the joint driving DC motors or the 

controlled robotic arm is not accurate which is the case of a structured 

uncertainty [7], [8].  

 

 

 

 

 

 

 

 
 

Figure 3.11: Dymola model of the feed-forward controller (FFC) 

 

 

Figure 3.12: Dymola model for the robotic system with computed torque disturbance rejection 

and feed-forward controller (FFC) 
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2- If the model developed for the robotic arm in (2.28) and (2.29) is not correct in 

the sense that other un-modeled dynamics of the manipulator exist and were 

not considered in the development of the manipulator model. This case is 

known as an unstructured uncertainty. Examples of the un-modeled dynamics 

that might exist include the coulumb and viscous friction associated with the 

arm joints, a sudden change in the mass of the payload attached to the end-

effector during the online operation of the arm [7,8]. 

 

The following simulations aim to test the efficiency of the designed computed torque 

disturbance rejection controller in the cases of having structured and unstructured 

uncertainties in the system model:  

 

Simulation in the case of a structured uncertainty: 

 

Table (3.1) lists the accurate and inaccurate parameters of both the joint driving DC-

motors and the 2-DOF robotic arm.  

 

Figure (3.14) shows the simulation results of the robotic arm control system shown in 

figure (3.12) with the parameters of the joint driving motors and the robotic arm 

changed to their corresponding accurate values listed in table (3.1).  

 

 

 

 

 

 
 

 

Figure 3.13: Angular positions of the motors with computed torque and feed-

forward control (FFC) 

[sec] 

[rad] 
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Table 3.1: Accurate and inaccurate parameter values for the driving motors 

and the robotic arm 

DC-motor parameters Robotic arm parameters 

Inaccurate Accurate Inaccurate Accurate 

                              

                                  

                                           

                                           

                     

  

 

 

 

 

   

 

 

  

 

 

 

 

 

 

 

 

 

 

As shown in figure (3.14), the actual angular positions of both joint driving motors 

deviated from the desired pick-and-place trajectory despite the presence of the 

designed disturbance torque rejection and the feed-forward controllers. The error in 

the horizontal parts of the response for the shoulder joint motor angular position is 

about         and for the elbow joint motor angular position is about         . This 

error is due to the fact that the actual disturbance torques of the joints are greater than 

the estimated torques computed by the designed disturbance rejection controller. The 

reason for this difference is because the robotic arm parameters used for computing 

the estimated inertia matrix and the estimated vector of coriolis and centrifugal forces 

are different from the accurate parameters of the arm.  

 

Figure (3.14) also shows an error in the vertical parts of the response of about         

for the shoulder joint motor angular position and about          for the elbow joint 

motor angular position. This error is partly due to the inaccurate compensation for the 

actual disturbance torques of the joints and partly due to the inaccurate motor model 

used in the design of the feed-forward controller. 

 
 

Figure 3.14: Effects of the structured uncertainties on motor angular positions  

 

 

 

[sec] 

[rad] 
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The effects of the structured uncertainties on the trajectory followed by the 

manipulator end-effector are shown by the 3D visualization shown in figure (3.15).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.15) shows that in the presence of the structured uncertainties, the end-

effector slightly deviated from its steady state trajectory during the period from 

           to           . Such a slight deviation is caused by the small 

overshooting of the shoulder joint driving motor position during that period as shown 

in figure (3.14).    

 

Simulation in the case of an unstructured uncertainty: 

 

In this simulation, the joints of the robotic arm are assumed to experience disturbance 

torques at the time instant        . The disturbance torques applied to the arm joints 

are assumed to be constants with the values             and             These 

disturbance torques simulate the cases when the robotic arm are subject to external 

forces that might be applied on the arm links during its operation or when the robotic 

arm is required to pick and place a payload of a certain mass value.  

 

In such cases, a disturbance torque is added to the dynamic torque of each joint of the 

robotic arm. Figure (3.16) shows the effects imposed by the externally applied 

disturbance torques on the angular positions of the joint driving motors at the time 

instant of        . 

 

As shown in figure (3.16), the designed computed torque disturbance rejection and the 

feed-forward controllers are incapable of compensating for the suddenly applied 

external torques at the time instant        . 

 

 
Figure (3.15): Trajectory of the arm with structured uncertainties 
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This can be clearly seen from the errors in the horizontal and vertical parts of the 

response between the desired pick-and-place trajectory and the actual positions of the 

joint driving motors that began to appear at        . 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3.17) shows a 3D visualization of the effects of the unstructured uncertainties 

on the trajectory followed by the manipulator end-effector.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure (3.17), the end-effector started to follow a completely different 

trajectory from the desired one at the time instant when the external disturbance 

torques were applied on the manipulator links.  

 

From the simulations conducted above, it can be concluded that the computed torque 

disturbance rejection method is effective only in the case of having accurate models 

for both the controlled manipulator and its joints' driving motors which is not 

 
 

 

Figure 3.16: Effects of the unstructured uncertainty on motor angular positions 

 

 

Figure 3.17: Trajectory of the arm with unstructured uncertainties 

[sec] 

[rad] 
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necessarily possible in practice. This is due to the presence of both structured and 

unstructured uncertainties that might suddenly be generated into the manipulator 

system during its online operation in which case both the computed torque 

disturbance rejection and the feed-forward controllers would fail to compensate for 

such uncertainties.  

 

In the next chapter, the problem of compensating for the structured and unstructured 

uncertainties is handled by using an adaptive control method which is developed 

based on the learning capabilities of artificial neural networks. 
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CHAPTER 4  

 

Artificial Neural Network (ANN) Control  

 

 

Artificial Neural Networks (ANNs) are considered one of the key intelligent tools 

used in modern research to solve complex problems encountered in a wide variety of 

engineering applications. They are playing key roles in fields like pattern 

classification and recognition [19], optimization problem solving [20], prediction and 

forecasting [21], as well plant identification and control [22].  The development of 

Artificial Neural Networks (ANNs) was motivated by the scientists conventional 

understanding of the operation of biological neurons of the human brain [22]. This 

understanding led to the development of a simple mathematical model called a 

perceptron that emulates the functional behavior of the biological neural network. In 

the beginning of this chapter, a brief description of the structure and the operational 

behavior of the biological neuron is given. Then, the mathematical model of an 

artificial neuron is introduced and its analogy with the biological neuron is explained.  

 

4.1 Biological neuron 

 

A neuron is one of the brain cells that are responsible for the processing and transfer 

of information represented by electrical impulses. Figure (4.1) shows a graphical 

sketch that provides a typical description of the biological neuron structure. As shown 

in figure (4.1), the neuron consists of a number of main components each of which 

has a critical function. These components include the cell body which contains the 

nucleus that is responsible for producing the chemical material needed for the neuron; 

the dendrites are responsible for receiving electrical impulses from other neurons. 

After the impulses are received and processed, they get transferred to other neurons 

through the axon which is ended by a number of strands and substrands through 

which the neuron is connected to other neurons. At the end of these strands, there are 

synapses whose effectiveness determines the ability of the signal receiving neuron to 

generate electrical impulses. The effectiveness of a synapse can be enhanced by its 

previous behavior with the informational signals passing through it to other neurons 

which implies that a synapse has got a memory that learns from its previous activities 

and is thought to be responsible for the human memory [22].  

 

The cerebral cortex of the human brain contains a vast number of about      neurons 

each of which is connected to          other neurons [22]. The message is 

transferred through the biological neurons superimposed on a train of pulses whose 

frequency ranges from a few to hundred hertz which is much slower than the high 

signal transmission frequency in modern digital electronic circuits. However, the 

parallel distribution of the signals through the human neurons makes them capable of 

carrying out perceptual tasks such as face recognition much faster than the serially 
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operated electronic circuits. Therefore, the strength of the human neurons lies in their 

parallel computing and signal distribution capabilities as well as their self-memorizing 

and learning characteristics. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Neuron mathematical model 

 

The understanding of the structure and operational behavior of the biological neuron 

described in the previous section led to the development of a simple mathematical 

model for an artificial neuron that emulates the working strategy of the biological 

neuron. Due to the key perceptual characteristic of the biological neural networks, a 

layer of artificial neurons is called a perceptron or a connectionist [3,22]. Figure (4.2) 

shows a general graphical notation that represents the mathematical model of a neuron 

receiving a number   of inputs and producing one output.   

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure (4.2), the mathematical model of an artificial neuron is composed 

of an input vector   containing the input signals received by the neuron from either an 

external source or other neurons. The input vector is the analogy of the dendrites of 

the biological neuron; a weight vector   which is responsible for connecting each 

input signal with the neuron. The weight vector represents the mathematical model of 

 

Figure 4.1: A sketch of a biological neuron 

 
Figure 4.2: A graphical notation of an R-input neuron 
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the synapses of the biological neuron; a bias   is an optional component of the 

neuron's model and is usually used to change the location of the boundary decision 

line to improve the classification of input patterns [3]; the net input   of a neuron 

defines the sum of the weighted inputs and the bias associated with that neuron. This 

net input is the critical quantity that determines, through an activation function  , the 

nature of the neuron's output.   

 

From figure (4.2), the mathematical relationship between the neuron's output   and 

the input vector   is defined as:  

 

                            

 

There are different types of linear and non-linear activation functions that can be used 

in the mathematical model of a neuron depending on the nature of the problem that 

the neuron is required to solve. Some of the commonly-used activation functions 

include a positive hard-limiter, a symmetrical hard-limiter, a pure linear function, a 

positive linear function, a log-sigmoid, and a hyperbolic tangent sigmoid. The graphs 

of such types of activation functions and their mathematical relationships are shown 

in figure (4.3).  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      
 

      

 
(e): A Log-sigmoid 
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(d): A positive linear function 

Figure (4.3): Different types of neuronal activation function 
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As shown in figure (4.3), the hard-limiting and linear activation functions are linear 

and therefore can be used to solve linear problems such as the classification of 

linearly separated patterns [3]. Problems like complex nonlinear function 

approximation, nonlinear system identification, and process control require the use of 

nonlinear activation functions such as the log-sigmoid functions shown in figures 

(4.3-e) and (4.3-f).  

 

As mentioned earlier, a number of neurons can be placed in different configurations 

(layers) to form a neural network (perceptron). A perceptron network may consist of a 

single layer or multiple layers of neurons. A single layer perceptron consists of a 

number of neurons placed in a parallel structure. Figure (4.4-a) shows a single layer 

perceptron consisting of a number of   neurons each of which has its own activation 

function which might be equal or different from those of other neurons, and its own 

weight vector that connects it to the input vector.  

 

It is clear from figure (4.4-a) how complex the connections of the inputs with the 

neurons of a single layer perceptron are. Since there is no limitation for the number of 

inputs applied to a single layer perceptron or the number of neurons that may be 

placed in one layer, a more simplified representative notation of a single layer 

perceptron is used as shown in figure (4.4-b).   

 

    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

It is shown in figure (4.4-b) that the weights of the   neurons of the single layer 

perceptron is represented by a single weight matrix   with the dimensions    . 

This indicates that each row of the weight matrix   is associated with a single neuron 

of the layer. Likewise, the biases associated with the   neurons of the layer are 

gathered to form a single column vector denoted by  .   

 

 
 

Figure (4.4-b): An Abbreviated notation of 

a single layer perceptron of   neurons 

 
 

Figure (4.4-a): A single layer 

perceptron of   neurons 
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Since each neuron in the layer has its own activation function, the abbreviated 

notation in figure (4.4-b) represents the neurons activation functions by a single 

matrix   with the dimensions    and the following form:  

 

  [

        
        
    
        

] 

 

The mathematical relationship between the output vector of a single layer perceptron 

  and the input vector   is written in a matrix form as:  

 

                       

 

A multiple-layer perceptron consists of a number of single-layer perceptrons 

connected to each other in a series structure such that the outputs of each layer 

constitute the inputs applied to the next layer. Figure (4.5) shows a multiple-layer 

perceptron consisting of three single layer perceptrons.   

 

 

 

 

 

 

 

 

 

 

 

 

 

A multiple layer perceptron may contain a large number of single layer perceptrons. 

Therefore, in order to simplify the description of the mathematical relationship 

between the output and the input vectors of a certain layer, a superscript using the 

order number of the layer in the network is used as an indication of that layer. This 

can be clearly seen from figure (4.5) in which every symbol is attached with a 

superscript number to denote the layer referred to by that symbol. As an example, the 

weight matrix of the first layer is denoted by   ; the output vector of the second 

layer is denoted by   , and so on. Following this superscript notation, the 

mathematical description of the whole three-layer perceptron shown in figure (4.5) 

can be simply written in a single line as:  

 

                                            

 

 
Figure 4.5: A multiple layer perceptron of three single layer perceptrons 
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The last layer of a multiple layer perceptron is given the name of the output layer and 

all the other layers are called hidden layers. For the perceptron shown in figure (4.5), 

the third layer is called the output layer and the two others are hidden layers.  

 

4.3 Neural network learning 

 

As mentioned earlier, the key strength of the biological neural network lies in its 

capability of learning from the previous activities of its synapses. This learning 

process helps to enhance the effectiveness of the neural synapses to generate better 

response signals.  

 

Likewise, in order for an artificial neural network (perceptron) to produce a desired 

output response to a certain applied input signal, it must undergo a learning process 

through which a teaching signal such as an error function determines whether the 

network output reaches an acceptable level or requires further optimization. If the 

teaching signal decides to further optimize the output value of the neural network 

(ANN), the weight matrices and bias vectors of all the layers of the perceptron must 

be adjusted through a set of updating rules determined by a learning algorithm.  

 

There are various types of learning algorithms used in the literature for the learning 

process of (ANNs) depending on the type of the neural network as well as the nature 

of the problem to be solved. For example, the perceptron rule was used for pattern 

classification problems as in [3], the Hebbian rule in [3] was used to teach an 

Adaptive Linear (ADALINE) neural network to recognize decimal number patterns.  

 

The learning algorithms usually used for teaching multi-layer perceptrons are called 

backpropagation algorithms due to the fact that the derivatives used in the updating 

rules of these algorithms are propagated from the last layer of the perceptron back to 

the first layer [3]. Some of the well-known backpropagation algorithms include the 

steepest descent algorithm (SDA), Newton, and Levenberg-Marquardt (LM) 

algorithm [3,22].  Despite the faster convergence of the Newton and LM algorithm 

than the SDA algorithm, the later one has been mostly used in the literature for the 

learning process of multiple-layer perceptrons used in robotic manipulator trajectory 

tracking control applications. This is due to its simple and easily-programmable rules 

used for updating the network weights and biases.   

 

The SDA algorithm was used frequently for the training of the feed-forward multiple 

layer perceptrons in order to enable them to produce an output that continuously 

converges to the desired value. Therefore, it can be considered as an optimization 

method whose performance index is the output error of the neural network. 

 

Since the SDA algorithm is used to minimize a function of the output error of a 

multiple-layer perceptron, it is best to formulate a mathematical description of such a 

performance index to be minimized.  
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Consider the feed-forward three-layer perceptron shown in figure (4.5). The 

performance index function to be minimized by the SDA is described as follows:  

 

                            

 

Where      is the value of the performance index at the     iteration, and      

denotes the output error vector of the perceptron at the     iteration and is given by:  

 

                             

 

Where       is the actual output vector of the perceptron at the     iteration and 

      is the desired output vector of the perceptron at the     iteration.  

 

In order to use the SDA algorithm, a set of proper responses of the perceptron should 

be defined for a specified set of input values. These input-output pairs are used as the 

training data of the neural network. After defining the training data set, it is now 

suitable to describe the steps of the SDA which are shown in the flow chart in figure 

(4.6). 

 

For each iteration of the algorithm, a new input vector is applied and the response of 

the perceptron is evaluated. The value of the performance index defined in (4.4) is 

then checked if it satisfies a certain error value. If it does, the algorithm is terminated 

and the perceptron is said to have learned the set of data used in the training process. 

If the performance index value does not satisfy the desired criterion, the weights and 

biases of the perceptron are modified according to the following update rules [3,22]: 

 

   
          

      
  

    
               

  
         

      
  

   
             

Where   is the learning rate which is usually chosen to be a small value and   is the 

superscript indicating the order number of the layer referred to.    

 

The updating rules in (4.6) and (4.7) are based on the steepest descent optimization 

method in which the next step in the process of searching for the minimum value of a 

function is taken in the direction of the negative gradient of the function to be 

optimized with respect to the search variable [23]. The function to be minimized in this 

case is the error performance index defined in (4.4) and its search variables are the 

perceptron weights and biases. 

 

The computation of the partial derivatives involved in (4.6) and (4.7) can be conducted 

using the chain rule as follows:  
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and,  

 

  

   
  

  

   
  

   
 

   
              

 

Where   
  denotes the     element of the net input vector of the    layer. 

 

From figure (4.5), it can be shown that:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Flow chart of the SDA algorithm 
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  ∑    

 

    

   

  
       

               

 

The second partial derivative in each of (4.8) and (4.9) can be computed using (4.10) 

as follows:  

 

   
 

    
    

           
   

 

   
                

 

Let the first partial derivative involved in (4.8) and (4.9) be defined as the sensitivity of 

the error performance index function due to changes in the     element of the net input 

vector of the    layer and let it be denoted by   
 . By substituting the equations given 

in (4.8), (4.9), and (4.11) into the equations (4.6) and (4.7), the updating rules of the 

weights and biases of the multiple-layer perceptron are given in the following forms:  

 

   
          

        
   

                 

 

  
         

        
              

  

The above updating rules can be reformulated in matrix form as follows:  

 

                                      

   

                               

  

The sensitivity vectors associated with the layers of the perceptron    are computed 

using the following equations:  

 

      ̇                       

 

Where (   is the order number referring to the output layer of the perceptron, and 

 ̇      is the derivative of the matrix of the activation functions used in the output 

layer with respect to their corresponding net inputs.  

 

    ̇                             

 

The equation (4.17) is used for computing the sensitivity vector associated with the 

    hidden layer.  ̇      is the derivative of the matrix of the activation functions 

used in the     hidden layer with respect to their corresponding net inputs.  

 

It can be observed from the equation (4.17) that the sensitivity vector of a certain layer 

in the perceptron depends on the sensitivity vector of the next layer. This implies that 
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the sensitivity vectors are computed in a backward direction starting from the output 

layer going back towards the input layer. That is the reason why the SDA algorithm is 

named as an error backpropagation algorithm.  

 

4.4 Neural network-based control 

 

As mentioned earlier, (ANNs) are one of the modern intelligent tools that have been 

used for the identification and control of complex nonlinear plant models. One of the 

major applications in which neural networks are being used is the trajectory tracking 

control of robotic manipulators.  

 

In general, neural network-based control structures can be classified into model-based 

and non-model based configurations. A model-based neural control strategy requires 

the presence of a model of the plant to be controlled. An example of a model-based 

neural network controller is the one proposed in [8] in which two feed-forward 

multiple-layer perceptrons were trained offline to learn the highly complicated and 

nonlinear estimated inertia matrix and the vector of centrifugal, coriolis, and 

gravitational forces of a 2-DOF robotic arm. The output vector of the linear PD 

controller was used as the performance index to update the weights and biases of both 

perceptrons to compensate for any structured or unstructured uncertainties in the 

estimated model.  

 

In contrast, a non-model based neural control strategy does not require a mathematical 

model or the knowledge of the parameters of the plant to be controlled. Suel et. al. 

[26] introduced a non-model based neural control strategy called a feedback error 

learning structure in which a multiple-layer perceptron was used as a feed-forward 

controller to conduct online learning of the unknown inverse dynamics model of a 2-

DOF robotic manipulator. A PD controller was used to stabilize the angular positions 

of the joint driving motors and its output was taken as the teaching signal of the feed-

forward neural network controller. There are various other non-model based neural 

network-based control configurations that have been used for trajectory tracking 

control of robotic manipulators such as the Reference Compensation Scheme used by    

Jung and Hsia et. al. [24,25]. 

 

In the next subsection, a model-based neural network controller is designed and tested 

for helping the computed torque disturbance rejection controller to compensate for the 

structured and unstructured uncertainties. 

 

4.4.1 Model-based neural network control (Online Torque Compensator (OTC)) 

 

As mentioned earlier, a model based control strategy depends on the presence of a 

certain model of the controlled plant. For the 2-DOF robotic arm, the model that will 

be used is the inverse dynamics model derived in (2.28) and (2.29) which was the 

basis of designing the computed torque disturbance rejection controller in chapter 3.  
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The simulation results obtained in chapter 3 proved that the computed torque 

disturbance rejection controller is not capable of compensating for the structured and 

unstructured uncertainties. Therefore, an intelligent control technique based on the 

learning capabilities of neural networks is employed to learn the difference between 

the actual torques generated by the arm joints and the torques generated by the 

designed computed torque disturbance rejection controller.  

 

Figure (4.7) shows the inclusion of the designed neural OTC controller into the arm 

control system. In this figure, it is shown that the designed neural OTC controller 

receives the actual angular positions of the joints as input signals and generates two 

corresponding torque signals. The weights and biases of the neural network are 

updated according to the rules of the SDA algorithm. The performance index function 

used to guide the updating process of the network weights and biases is the sum of the 

squares of the outputs generated by the PD and the feed-forward (FFC) controllers of 

the joint driving motors.    

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The neural OTC controller used in figure (4.7) is a feed-forward multiple-layer 

perceptron consisting of two layers. The output layer contains two neurons with a pure 

linear activation function each to produce the two torque difference output signals. The 

first layer of the perceptron is a hidden layer containing three neurons with a log-

sigmoid activation function each. The number of neurons in the hidden layer was 

selected based on two aspects:  

 

1- The complexity of the problem to be solved by the neural network is not that large 

since the proposed network is required to learn only the unknown factors of the 

 
 

Figure 4.7:  Dymola model of the robotic arm with neural network (OTC) 

controller  
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system which constitute the inaccurate parameters of the joint driving motors and 

the robotic arm links as well as any un-modeled dynamics that were not considered 

in the developed model of the manipulator such as the un-modeled torques and 

forces applied on the joints. The network is not required to learn the whole 

manipulator dynamics.  

 

2- It has been shown by several experiments in [3] that increasing the number of 

neurons in the hidden layer of a neural network does increase the complex function 

approximation capability of the network for the data set used in the training process 

but affects its generalization capability when other data not included in the training 

set is introduced to the network.  

 

Therefore, the number of neurons in the hidden layer of the proposed perceptron was 

chosen to be as small as 3. 

 

Figure (4.8) shows the structure of the designed two-layer perceptron used for 

learning the uncertainties in the 2-DOF robotic arm control system. 

 

 

 

 

 

 

 

 

 

 

 

 

The modelica model developed in Dymola together with a diagram icon for the two-

layer perceptron shown in figure (4.8) can be found in Appendix D.   

 

As mentioned earlier, the learning process of the two-layer perceptron controller aims 

to minimize the error between the actual torques of the arm joints and the torques 

generated by the computed torque disturbance rejection controller. This means that the 

main goal of using the neural network controller is to eliminate the total disturbance 

torques applied on the inertias of the joint driving motors.  

 

In this case, the only controllers affecting the responses of the motors angular positions 

are the PD and feed-forward (FFC) controllers. This implies that the performance 

index function to be minimized by the network learning algorithm is the sum of the 

squares of the outputs generated by the PD and FFC controllers.  

 

 

Figure 4.8: Structure of the designed two-layer perceptron neural network 

 

 

 

 

 

 

 

 

 

Figure 6.8: Structure of the designed two-layer perceptron neural network  
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The weights and biases of the perceptron are updated using the SDA rules derived in 

(4.14 - 4.17). A modelica code was written to simulate the application of the SDA 

algorithm for training the designed two-layer perceptron network. This Modelica code 

can be found in Appendix D.   

 

In order to test the effectiveness of the designed OTC controller to compensate for 

both structured and unstructured uncertainties, the following simulation is conducted: 

  

The structured uncertainty is simulated by changing the values of the parameters of the 

joint driving motors and the robotic arm to their accurate values mentioned in table 

(3.1). The unstructured uncertainty is simulated by applying a constant disturbance 

torque of          on both joints of the robotic arm at the time instant        . 

as shown in figure (4.7).  

 

Figure (4.9) shows the motor angular positions after using the neural network (OTC) 

controller.   

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By comparing the simulation results in figures (3.14) and (3.16) with those obtained in 

figure (4.9), it can be clearly seen that the OTC controller is effectively capable of 

compensating for both structured and unstructured uncertainties involved in the robotic 

arm control system.  

 

The large motor position errors appearing in figures (3.14) and (3.16) due to the 

structured and unstructured uncertainties approximately totally disappeared from 

figure (4.9). The position errors in the horizontal and vertical parts of the response are 

both equal to approximately            for both motors.  

 

In order to see the effectiveness of the designed two-layer perceptron in learning the 

difference between the actual disturbance torques of the arm joints and the torques 

 
Figure 4.9: Angular positions of the motors with OTC controller 
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generated by the computed torque disturbance rejection controller, the total disturbance 

torque applied on the inertia of each motor is plotted before and after adding the (OTC) 

controller as shown in figures (4.10) and (4.11) respectively.   

 

Figure (4.10) shows that before the time instant        , the shoulder joint driving 

motor was experiencing a disturbance torque of about            , and the elbow 

joint driving motor was experiencing a disturbance torque of about             Such 

disturbance torques were due to the structured uncertainties in the parameter values of 

the arm.  

 

 
 

Figure 4.10: Total disturbance torques applied on motors without OTC controller 

 

 
 

Figure 4.11: Total disturbance torques applied on motors with (OTC) controller 

[sec] 

[sec] 
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When an external constant disturbance torque is suddenly applied on each motor at the 

time instant         which is the case of the unstructured uncertainty, the total 

disturbance torques applied on the motors increased to become            for the 

shoulder joint driving motor and             for the elbow joint driving motor. 

 

When the designed OTC controller is added to the system, it successfully learned to 

generate the disturbance torques and hence eliminated the total disturbance torque 

applied on each joint driving motor within a period of        as shown in figure 

(4.11).  

 

Figures (4.12) and (4.13) show the sum of the outputs of the linear PD and feed-

forward (FFC) controllers for both joints before and after adding the (OTC) controller, 

respectively. 

 

 
 

Figure 4.12: Sum of the outputs of PD and FFC controllers without (OTC) controller 

 

Figure (4.12) clearly shows that the linear PD and feed-forward (FFC) controllers 

failed to enforce the joint driving motors to follow the desired pick-and-place 

trajectory. This is reflected by their almost continuous signals with the values of about 

      for the shoulder joint driving motor, and about       for the elbow joint driving 

motor before the time instant       . After       , the PD and FFC controllers 

supplied a signal of about       to the shoulder joint driving motor and a signal of 

about        to the elbow joint driving motor. Such non-decreasing signals of the 

linear PD and FFC controllers indicate that the computed torque controller alone is not 

effective in compensating for the structured and unstructured uncertainties. 

 

[sec] 

[V] 
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Figure 4.13: Sum of the outputs of PD and FFC controllers with (OTC) controller 

 

On the other hand, when the neural network OTC controller is added to the system, the 

control signals supplied by the linear PD and FFC controllers began decreasing 

dramatically until they both have reached the value of         within a period of about 

       as shown in figure (4.13). This is also another indication that the neural 

network not only did compensate for the disturbance torque differences but also 

effectively compensated for the inaccurate parameters of the driving motors that were 

used previously for designing both the PD and FFC controllers. 

 

Figure (4.14) shows a 3D visualization of the trajectory followed by the end-effector in 

the case of using the (OTC) controller. Comparing the figure (4.14) with the figures 

(3.15) and (3.17), it can be seen that the slight deviation of the end-effector from its 

steady state trajectory appearing in figure (3.15) did not appear in figure (4.14). Also, 

the large deviation of the end-effector from the desired trajectory in figure (3.17) is 

effectively handled by the use of the (OTC) controller as shown by the smooth 

trajectory in figure (4.14).   

 

 

 

 

 

 

 

 

 

 
 

Figure 4.14: Trajectory of the arm with the (OTC) controller  

 

[sec] 

[V] 
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4.4.2 Non-model based neural network control (Feedback Error Learning (FEL)) 

 

As mentioned earlier, the key strength of a non-model based neural network control 

strategy is that it does not require the knowledge of any parameter of the joint driving 

motors or the arm links. There is no need for developing a mathematical model for 

either the motor or the robotic arm.  

 

In this case, the neural network of the non-model based controller would be 

responsible for both identifying the models of the robotic arm and the motors as well 

as compensating for the structured and unstructured uncertainties. 

 

One of the non-model based neural control configurations used for the trajectory 

tracking control of robotic manipulators is the feedback error learning structure (FEL) 

as in [26]. In this configuration, a feed-forward multiple-layer perceptron is placed in 

the feed-forward path of the PD-controlled motors as shown in figure (4.15).   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As shown in figure (4.15), neither the computed torque disturbance rejection controller 

nor the (FFC) controller is used in the arm control system. It is also important to note 

that the parameters of the arm and the joint driving motors are assumed to be 

completely unknown.  

 

It is shown in the figure that the (FEL) controller receives the desired trajectories for 

both joint driving motors as inputs and generates two control outputs to be added to the 

outputs of the PD controllers.  

 

 
 

Figure 4.15: Dymola model of the robotic arm with (FEL) controller 
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As mentioned earlier, the primary goal of using the neural (FEL) controller is to 

identify the inverse dynamics of the DC motor-controlled robotic arm in which case 

the joint driving motors would accurately follow their desired position trajectories. 

This implies that the outputs of the PD controllers need to be minimized to become as 

perfectly as zero.  

 

In order to do so, the multiple-layer perceptron of the FEL controller is trained to 

minimize its performance index function which is defined as the sum of the squares of 

the outputs obtained from the PD controllers.  

  

Like the model-based (OTC) controller shown in figure (4.7), the (FEL) controller 

consists of an output layer containing two neurons which are responsible for 

generating the two control outputs, and a hidden layer consisting of three neurons.  

 

Again, the number of neurons in the hidden layer of a perceptron must be chosen to 

suit the complexity of the function to be approximated by the network at the same time 

of preserving the generalization capability of the network. For the purpose of a later 

comparison with the model-based (OTC) controller, the same number of neurons is 

chosen to be contained in the hidden layer of the (FEL) controller.  

 

The neurons of the output layer both have a pure linear activation function, whereas 

the neurons of the hidden layer have a log-sigmoid activation function each. The 

Modelica code and Dymola icon developed for the (FEL) controller are found in 

Appendix D.  

 

The learning algorithm used for updating the weights and biases of the two-layer 

perceptron of the (FEL) controller is the SDA algorithm derived in (4.14 - 4.17). The 

learning rate   used in the rules of the SDA algorithm is chosen to be 0.1.  

 

The Modelica code used to simulate the learning process of the (FEL) controller by the 

SDA algorithm is similar to the one used for the learning process of the model-based 

(OTC) controller. The only difference is that the weights and biases of the (FEL) 

controller are initialized to different values at the outset of the learning process. Also, 

the performance index function to be minimized by the (FEL) controller is defined to 

be the sum of the squares of the outputs of the PD controllers. 

 

In order to test the performance of the designed FEL controller in compensating for the 

structured and unstructured uncertainties, the PD-controlled robotic system is 

purposely made to experience the same structured and unstructured uncertainties used 

for the testing of the neural (OTC) controller. Figure (4.16) shows the motor angular 

positions after using the designed (FEL) controller.   

 

It is clear from figure (4.16) that the designed neural network (FEL) controller did 

enforce the actual angular positions of the motors to follow the desired pick-and-place 
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trajectory with an acceptable precision despite the presence of both structured and 

unstructured uncertainties in the system.  

 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

The steady state errors in the horizontal and vertical parts of the response for the 

shoulder joint driving motor are about          and         , respectively. For the 

elbow joint driving motor, the steady state errors in the horizontal and vertical parts of 

the response are about           and          , respectively.  

Table (4.1) shows the steady state errors in the horizontal and vertical parts of the 

response for both motors when using different control mechanisms. By comparing 

these results, it can be shown that the designed (FEL) controller reduced the steady 

state error in the horizontal part of the response of the shoulder joint driving motor by 

92% and that of the elbow joint driving motor by 87% from the case of using the 

computed torque disturbance rejection and feed-forward (FFC) control in the presence 

of the structured uncertainties only. The steady state error in the vertical part of the 

response was improved by (FEL) controller by 94% for the shoulder joint driving 

motor and 99% for the elbow joint driving motor. 

 

Table 4.1: Steady state errors for different control mechanisms 

 

 

 

 

 

 

 

 

 

 

 

 
[sec] 

Figure 4.16: Angular positions of motors with FEL controller  

[rad] 
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In order to test the capability of the (FEL) controller in identifying the inverse 

dynamics of the robotic arm, the outputs of the PD controllers are plotted in figure 

(4.17).  It is clearly seen from figure (4.17) that the (FEL) controller is gradually 

learning the inverse dynamics of the robotic arm as approved by the gradual decrease   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the control signals supplied to the driving motors by the PD controllers. Both PD 

control signals continued to decay until they have reached the values of        for the 

the shoulder joint driving motor and         for the elbow joint driving motor within 

a period of          These results also imply that the (FEL) controller is gradually 

taking over the full control of the joint trajectory tracking system without getting any 

help from the PD controllers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.17: Outputs of PD controllers with the (FEL) controller 

[sec] 

[V] 
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Chapter 5 

 

Conclusion and Future Work 

 

This thesis investigated the possibility of improving the trajectory tracking 

performance of a 2-DOF robotic manipulator using different configurations of neural 

network controllers. These configurations were classified into model-based and non-

model based structures. A model-based control strategy required the presence of a 

mathematical model for the controlled manipulator and therefore considered to be 

highly complicated and time consuming for higher degree of freedom manipulators. A 

non-model based control strategy did not require a prerequisite knowledge of the 

parameters of either the manipulator or the driving motors and hence no mathematical 

model for the manipulator was needed.  

 

The performance of each neural network based control strategy was compared with 

that of the conventional computed torque control method through carrying out several 

simulations of the robotic arm under the Dymola simulation environment based on the 

Modelica language. The simulation results obtained proved the superiority of the 

designed neural network-based controllers over a conventional computed torque 

disturbance rejection controller in compensating for both structured and unstructured 

uncertainties.  

 

The non-zero position errors obtained by using the designed non-model based neural 

(FEL) controller were caused by the insufficient number of weights updating 

iterations used in the learning process of the neural network. It can be claimed that 

further increasing the number of weight updating iterations will enable the neural 

network controller to improve its learning of the arm inverse dynamics and hence 

would generate more accurate actuating torques which will result in further reduction 

of the driving motor position errors.  

 

In addition, it was mentioned in chapter 4 that the error backpropagation SDA 

algorithm used in the training process of the designed neural networks in this thesis is 

considered the least efficient among other backpropagation algorithms due to its 

highly slow convergence rate.  In a future work, the performance of the designed 

neural network controllers will be tested with the use of more efficient and faster 

learning algorithms such as Levenberg and Marquardt algorithms. 

 

One of the planned future works is to employ the designed neural network controllers 

(OTC and FEL) to control the trajectory tracking performance of higher degree of 

freedom manipulators such a Self Compliant Articulated Robotic Arm (SCARA) and 

a PUMA 560 manipulator. Other neural network based control strategies such as 

reference compensation technique will be also employed, tested, and compared with 

the OTC and FEL controllers. 
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APPENDIX A 

 

Derivation of the Open Loop Transfer Function for the DC-Motor  

 

 

The following analysis discusses the procedure of deriving the transfer function from 

the motor angular position    to the input voltage signal applied to the motor 

armature circuit     . 

 

Referring to the armature circuit shown in figure (2.6), the dynamic equation of the 

DC-motor can be derived as follows:  

 

 
   
  

                       

 

The torque applied to the motor inertia    is directly proportional to the armature 

current    through the motor constant   . The back-electromotive force voltage    is 

directly proportional to the angular velocity of the motor through the proportionality 

constant   . This can be mathematically written as:  

 

                      

 

      

   

  
             

 

From figure (2.7), the mathematical equation that describes the mechanical behavior of 

the DC-motor is given as follows:  

 

  
    

   
   

   

  
    

  
 

             

 

Where    denotes the motor inertia,    denotes the motor damping coefficient,    is 

the motor torque and    denotes the torque generated by the load.  

 

As mentioned in Chapter 2, the motor is connected to the load through a gear train with 

gear reduction ratio    . The main goal of using a gear train in a DC-motor is to enable 

the motor to drive large loads which require the generation of large torques. So, the 

gear train with the gear reduction ratio (   ) magnifies the torque of the motor and 

reduces its angular position by   times as shown in figure (2.7).  

 

Taking the Laplace transform of the electrical characteristic equation (A.1) reveals the 

following:  
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      can be found by taking the Laplace transform of the equation (A.3) as follows:  

 

                         

 

Substituting (A.6) into (A.5) gives the following:  

 

                                      

 

By letting      and taking the Laplace transform of the mechanical characteristic 

equation (A.4) and using the equation (A.2), the following equation is revealed: 

 

                           

 

            

  

                                      

 

By using the equations (A.7) and (A.8), the transfer function 
     

    
 is found as follows: 
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APPENDIX B 

 

PD Controller Design Using the Root Locus Method 

 

 

B.1: Root locus method  

 

Let      be the open-loop transfer function of a system     . Then, the closed-loop 

system transfer function is given by:  

 

       
    

      
             

 

In order to find the closed-loop poles of the system, the following equation must be 

achieved:  

 

          

 

Therefore,  

 

        

 

       ‖    ‖     and the phase angle of                 where   

{              }              

 

This implies that in order for a design point to be located on the root locus of the open-

loop system, it should achieve the above magnitude and phase requirements of        

 

The question now is how to find the design point that helps to achieve the time 

response requirements which are mainly the settling time    and the peak overshoot 

      The answer to this question is explained as follows:  

 

The settling time    is defined as the time required for the step response of the closed-

loop system to reach and stay within the region of    of the steady state value 

[4,18,19]. The equation used to compute the settling time is as follows:  

 

   
 

    
             

 

Where    denotes the damping ratio and    is the natural un-damped frequency in 

       .  
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The peak overshoot      is defined as the magnitude by which the step response of the 

system overshoots the steady state value [4,18,19,20]. The peak overshoot requirement 

is sometimes given as a percentage of the required steady state value. The equation 

used to compute the peak overshoot is given as follows:  

 

      
 

  

√    
            

 

Equations (B.3) and (B.4) can be used to compute the corresponding damping ratio 

  and un-damped frequency    for specific settling time and overshoot requirements.  

 

After finding the required damping ratio and un-damped frequency, the design point 

(  ) that needs to be located on the root locus of the open-loop system for some gain   

in order to achieve the required settling time and peak overshoot can be calculated as 

follows:  

 

            √               

 

B.2: Computation of the design point    used in the PD controller design 

 

Given the step response requirements mentioned in section 3.1, the corresponding 

damping ratio    and un-damped frequency    are calculated as follows:  

 

From equation (B.3), we have the following:  

 

   
 

    
      

 

Therefore,  

 

                      

 

From equation (B.4), we have the following: 

 

      
 

  

√    
        

 

Therefore,  

 

                    

 

 By substituting the value of the damping ratio    from (B.7) into (B.6), the un-

damped frequency    can be revealed as follows:  
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By substituting equations (B.7) and (B.8) into equation (B.5), the design closed-loop 

system pole    that achieves the time response requirements is found to be: 
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APPENDIX C 

 

Modelica Models Used in the Computed Torque-based Controlled Design 

 

C.1: Modelica model of the estimated inertia matrix 

 

 
 

  

C.2: Dymola icon for the estimated inertia matrix  
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C.3: Modelica Model for the estimated vector of centrifugal, coriolis, and 

gravitational forces 

 

 
  

 

C.4: Dymola icon for the estimated vector of centrifugal, coriolis, and 

gravitational forces  
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APPENDIX D 

 

Modelica Models Used in the Design of ANN Controllers  

 

D.1: Modelica code of the ANN used in both (OTC) and (FEL) controllers 

 

 
D.2: Dymola icon of the ANN used in the OTC controller 

 

 
 

D.3: Modelica code of the EBA algorithm used for training the ANN of the OTC 

controller  
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D.4: Modelica code of the EBA algorithm used for training the ANN of the FEL 

controller  
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D.5: Dymola icon of the ANN used in the FEL controller  

 

 
 

 


