
University of Iowa
Iowa Research Online

Theses and Dissertations

Summer 2014

The semantic analysis of advanced programming
languages
Harley D. Eades III
University of Iowa

Copyright 2014 Harley Daniel Eades III

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/1312

Follow this and additional works at: https://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Eades, Harley D. III. "The semantic analysis of advanced programming languages." PhD (Doctor of Philosophy) thesis, University of
Iowa, 2014.
https://ir.uiowa.edu/etd/1312.

https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F1312&utm_medium=PDF&utm_campaign=PDFCoverPages

THE SEMANTIC ANALYSIS OF ADVANCED PROGRAMMING LANGUAGES

by

Harley D. Eades III

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

August 2014

Thesis Supervisor: Associate Professor Aaron Stump

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Harley D. Eades III

has been approved by the Examining Committee for the thesis
requirement for the Doctor of Philosophy degree in Computer
Science at the August 2014 graduation.

Thesis Committee:

Aaron Stump, Thesis Supervisor

Cesare Tinelli

Stephanie Weirich

Gregory Landini

Kasturi Varadarajan

To my lovely wife, Jenny Eades.

ii

Program testing can be used to show the presence of bugs, but never to show their
absence!

–Dijkstra (1970)

iii

ACKNOWLEDGEMENTS

The first person I would like to acknowledge is my advisor Aaron Stump. He

is one of the kindest and most intelligent people I have had the pleasure to work

with, and without his guidance I would have never made it this far. I can only hope

to acquire the insight and creativity you have when working on a research problem.

Furthermore, I would like to thank him for introducing me to my research area in

type theory and the foundations of functional programming languages.

Secondly, I would like to thank my wife, Jenny Eades, whose hard work liter-

ally made it possible for there to be food on our table and a roof over our heads. She

is a remarkable person who I cherish; without her I would be lost.

I would like to thank my family, especially my parents, Harley and Judy Eades,

for their support, and my brother, Steve Eades, who let Jenny and I sleep at his house

when we visited over the course of the last five years. My family always reminded me

to climb out of the office, and that it was okay to have fun outside of research.

Cesare Tinelli taught me about rigor and how to probe deep into a research

article to get at the heart of the matter. I would like to thank him for that.

Stephanie Weirich is an amazing researcher with great ideas, and I learned

a lot from her. I am very thankful for the time I got to spend working with her

especially during the summer of 2012.

I would also like to thank all of the members of the University of Iowa Compu-

tational Logic Center. I have really enjoyed interacting with them all both in research

iv

and personally. I learned a tremendous amount during our semester seminars.

Most of my research over the course of the last five years was part of the

Trellys project. I learned a lot from every member of the project. So I would like

to thank them all for their many conversations, especially during the yearly project

meetings. These were extremely fun, and we always had great homemade pizza. If I

forgot anyone, then I am sorry, and I thank you.

v

TABLE OF CONTENTS

LIST OF FIGURES . ix

INTRODUCTION . 1

PART A. BACKGROUND . 6

CHAPTER 1. A BRIEF HISTORY OF TYPE THEORY 7

1.1 The Early Days (1900 - 1960) 7
1.2 Modern Type Theory . 10

CHAPTER 2. THE COMPUTATIONAL TRINITY 32

2.1 Logic . 33
2.2 Category Theory . 36
2.3 Impact . 40

CHAPTER 3. CLASSICAL TYPE THEORY 42

3.1 The λµ-Calculus . 42
3.2 The λ∆-Calculus . 47
3.3 Beautiful Dualities . 51

3.3.1 The Duality of Computation 52
3.3.2 The Dual Calculus . 59

CHAPTER 4. DEPENDENT TYPE THEORY 64

4.1 Martin-Löf’s Type Theory . 64
4.2 The Calculus of Constructions 74

CHAPTER 5. DEPENDENT TYPES IN PRACTICE 80

CHAPTER 6. METATHEORY OF TYPE THEORIES 86

6.1 Hereditary Substitution . 88
6.2 Hereditary Substitution for STLC 89
6.3 Tait-Girard Reducibility . 97
6.4 Logical Relations . 102

6.4.1 Step-Indexed Logical Relations 103

vi

PART B. DESIGN . 113

CHAPTER 7. FREEDOM OF SPEECH 114

7.1 Syntax and Reduction Relation 119
7.2 Type System . 125

CHAPTER 8. SEPARATION OF PROOF FROM PROGRAM 135

CHAPTER 9. DUALIZED LOGIC AND TYPE THEORY 150

9.1 Pinto and Uustalu’s L . 154
9.2 Dualized Intuitionistic Logic . 156
9.3 Dualized Type Theory . 159

PART C. BASIC SYNTACTIC ANALYSIS 166

CHAPTER 10. FREEDOM OF SPEECH 167

10.1 Basic Results . 168
10.2 Type Preservation . 174
10.3 Logical consistency . 177

CHAPTER 11. DUALIZED LOGIC AND TYPE THEORY 201

11.1 Consistency of DIL . 201
11.2 Completeness of DIL . 204
11.3 Metatheory of DTT . 230

PART D. NORMALIZATION BY HEREDITARY SUBSTITUTION 252

CHAPTER 12. STRATIFIED SYSTEM F AND BEYOND 253

12.1 Stratified System F . 254
12.1.1 Basic Syntactic Lemmas . 257
12.1.2 Ordering on Types . 266
12.1.3 Hereditary Substitution . 269
12.1.4 Main Properties . 272
12.1.5 The Main Substitution Lemma 281
12.1.6 Concluding Normalization 284

12.2 Stratified System F+ . 287
12.2.1 Ordering on Types . 290
12.2.2 Hereditary Substitution . 292
12.2.3 Main Properties . 294

vii

12.2.4 Concluding Normalization 322
12.3 Dependent Stratified System F= 324

12.3.1 Basic Syntactic Results . 325
12.3.2 Hereditary Substitution . 334
12.3.3 Concluding Normalization 339

CHAPTER 13. THE λ∆-CALCULUS 344

13.1 Basic Syntactic Lemmas . 344
13.2 An Extension . 346

13.2.1 Problems with a Naive Extension 346
13.2.2 A Correct Extension . 347
13.2.3 Main Properties . 351

13.3 Concluding Normalization . 366
13.4 Related Work . 368

CONCLUSION . 372

REFERENCES . 375

viii

LIST OF FIGURES

Figure

1 Syntax and reduction rules for the Church-style simply-typed λ-calculus 12

2 Typing Relation for the Church-style simply typed λ-calculus 12

3 Syntax and reduction rules for the Curry-style simply-typed λ-calculus 16

4 Typing relation for the Curry-style simply typed λ-calculus 16

5 Syntax and reduction rules for Gödel’s system T 17

6 Typing Relation for the Gödel’s system T 17

7 Syntax and reduction rules for system F 22

8 Typing relation for the system F . 22

9 Syntax and reduction rules for SSF 25

10 Kinding relation for the SSF . 26

11 Typing relation for the SSF . 27

12 Syntax and reduction rules for system Fω 29

13 Kinding rules of system Fω . 30

14 Typing relation for the system Fω . 30

15 Syntax and reduction rules for the λµ-calculus 43

16 Type-checking algorithm for the λµ-calculus 44

17 Syntax and reduction rules for the λ∆-calculus 48

18 Type-checking algorithm for the λ∆-calculus 49

19 The Syntax and Reduction Rules for the λ̄µµ̃-Calculus 57

ix

20 The Typing Rules for the λ̄µµ̃-Calculus 57

21 Syntax of the Dual Calculus . 59

22 Reduction Rules for the Dual Calculus 61

23 Typing Rules for the Dual Calculus 62

24 The syntax of Martin-Löf’s Type Theory 65

25 Kinding for Martin-Löf’s Type Theory 68

26 Validity for Martin-Löf’s Type Theory 68

27 Typing Rules for Martin Löf’s Type Theory 69

28 Equality for Martin-Löf’s Type Theory 70

29 Syntax for the Separated Calculus of Constructions 77

30 Sorting Rules for the Separated Calculus of Constructions 77

31 Kinding Rules for the Separated Calculus of Constructions 78

32 Typing Rules for the Separated Calculus of Constructions 78

33 The Equality for the Separated Calculus of Constructions 79

34 Syntax and reduction rules for freedom of speech 120

35 Type-checking Rules for Logical Kinds 142

36 Type-checking Rules for Predicates 142

37 Type-checking Rules for Proofs . 143

38 Type-checking Rules for Proofs Continued 144

39 Semantic Values . 146

40 Syntax of L. 154

41 Inference Rules for L. 155

x

42 Syntax for DIL. 157

43 Inference Rules for DIL. 158

44 Reachability Judgment for DIL. 159

45 Syntax for DTT. 160

46 Type-Assignment Rules for DTT. 161

47 Reduction Rules for DTT. 162

48 Well-formed substitutions . 179

49 Classical typing of DTT terms . 240

50 Interpretations of types . 242

51 Syntax, Reduction Rules, and Commuting Conversions for SSF+ . . . 288

52 Well-formedness of Contexts for SSF+ 288

53 SSF+ Kinding Rules . 289

54 SSF+ Type-Assignment Rules . 289

55 Hereditary Substitution Function for Stratified System F+ 292

56 Hereditary Substitution Function for Stratified System F+ Continued 293

57 Syntax of Terms, Types, and Kinds and Reduction Rules for DSSF= . 325

58 DSSF= Kinding Rules . 325

59 DSSF= Type-Assignment Rules . 326

60 DSSF= Type Syntactic Equality . 326

61 Hereditary Substitution Function for Stratified System F= 338

xi

1

INTRODUCTION

There are two major problems growing in two areas. The first is in Computer

Science, in particular software engineering. Software is becoming more and more

complex, and hence more susceptible to software defects. Software bugs have two

critical repercussions: they cost companies lots of money and time to fix, and they

have the potential to cause harm.

The National Institute of Standards and Technology estimated that software

errors cost the United State’s economy approximately sixty billion dollars annually,

while the Federal Bureau of Investigations estimated in a 2005 report that software

bugs cost U.S. companies approximately sixty-seven billion a year [114, 137].

Software bugs have the potential to cause harm. In 2010 there were a approxi-

mately a hundred reports made to the National Highway Traffic Safety Administration

of potential problems with the braking system of the 2010 Toyota Prius [25]. The

problem was that the anti-lock braking system would experience a “short delay” when

the brakes where pressed by the driver of the vehicle [135]. This actually caused some

crashes. Toyota found that this short delay was the result of a software bug, and was

able to repair the the vehicles using a software update [115]. Another incident where

substantial harm was caused was in 2002 where two planes collided over Überlingen

in Germany. A cargo plane operated by DHL collided with a passenger flight holding

fifty-one passengers. Air-traffic control did not notice the intersecting traffic until

less than a minute before the collision occurred. Furthermore, the on-board collision

2

detection system did not alert the pilots until seconds before the collision. It was of-

ficially ruled by the German Federal Bureau of Aircraft Accidents Investigation that

the on-board collision detection was indeed faulty [99].

The second major problem affects all of science. Scientific publications are

riddled with errors. A portion of these errors are mathematical. In 2012 Casey

Klein et al. used specialized computer software to verify the correctness of nine

papers published in the proceedings of the International Conference on Functional

Programming (ICFP). Two of the papers where used as a control which where known

to have been formally verified before. In their paper [77] they show that all nine papers

contained mathematical errors. This is disconcerting especially since most researchers

trust published work and base their own work off of these papers. Kline’s work shows

that trusting published work might result in wasted time for the researchers basing

their work off of these error prone publications. Faulty research hinders scientific

progress.

Both problems outlined above have been the focus of a large body of research

over the course of the last forty years. These challenges have yet to be completed

successfully. The work we present here makes up the foundations of one side of the

programs leading the initiative to build theory and tools which can be used to verify

the correctness of software and mathematics. This program is called program veri-

fication using dependent type theories. The second program is automated theorem

proving. In this program researchers build tools called model checkers and satisfiabil-

ity modulo-theories solvers. These tools can be used to model and prove properties of

3

large complex systems carrying out proofs of the satisfiability of certain constraints

on the system nearly automatically, and in some cases fully automatically. As an

example André Platzer and Edmund Clarke in 2009 used automated theorem proving

to verify the correctness of the in flight collision detection systems used in airplanes.

They actually found that there were cases where two planes could collide, and gave

a way to fix the problem resulting in a fully verified algorithm for collision detection.

That is he mathematically proved that there is no possible way for two planes to

collide if the systems are operational [108]. Automated theorem provers, however,

are tools used to verify the correctness of software externally to the programming

language and compiler one uses to write the software. In contrast with verification

using dependent types we wish to include the ability to verify software within the

programming language being used to write the software. Both programs have their

merits and are very fruitful and interesting.

Every formal language within this thesis has been formally defined in a tool

called Ott [121]. In addition, the full Ott specification of every type theory defined

with in this thesis can be found in the appendix in [49]. Ott is a tool for writing

definitions of logics, programming languages, type theories, λ-calculi, and any other

formal language that consists of syntax and inference-style rules. Ott generates a

parser and a type checker which is used to check the accuracy of all objects definable

with in the language given to Ott as input. Ott’s strongest application is to check for

syntax errors within research articles. Ott is a great example of a tool using the very

theory we are presenting in this thesis. It clearly stands as a successful step towards

4

the solution of the second major problem outlined above.

This thesis consists of two major topics. The first topic is on the design of

general purpose dependently-typed functional programming languages. This topic is

covered in Part B (Design). The second topic is on the analysis of dependently-typed

functional programming languages and various type theories. This topic is broken

up into two parts: Part C (Basic Syntactic Analysis) and Part D (Normalization by

Hereditary Substitution). It is the content of these parts that consists of novel research

contributions. Specifically, the following list briefly outlines each contribution:

• The design and analysis of a core dependently-typed functional programming

language with a new property called freedom of speech. See Chapter 7 and

Chapter 10.

• The full design of a core dependently-typed functional programming language

called Separation of Proof from Program (Sep3) that remedies several short

comings of the freedom of speech language. This is a full programming language

that has been implemented, but this implementation is not a contribution of

this thesis. See Chapter 8. Part of Sep3’s design as well as several real-world

examples of verification carried out in Sep3 were published in the special issue

on advanced programming techniques for construction of robust, general and

evolutionary programs [74].

• The design and analysis of a new logic and corresponding type theory called Du-

alized Intuitionistic Logic (DIL) and Dualized Type Theory (DTT) respectively.

5

We introduce a new completely symmetric syntax that makes for a beautiful

definition of the two theories. See Chapter 9 and Chapter 11.

• We prove weak normalization of an entire family of predicative type theories

based on Stratified System F using a proof technique called hereditary substitu-

tion. See Chapter 12. A slightly different version of the proof of normalization

using hereditary substitution of Stratified System F given in this thesis was

presented at the workshop on proof-search in type theories [50].

• Similarly, we show that hereditary substitution can be extended to prove nor-

malization of a classical type theory called the λ∆-calculus. See Chapter 13.

This work first appeared at the workshop on control operators and their seman-

tics [52].

• The final contribution is the brief history of type theory given in Part A. There

we try and highlight the significant contributions of type theory starting with

Russell. This history is by no means complete, but we provide the complete

definition of many significant type theories. This tries to provide a one stop

shop for an introduction to the field.

6

PART A

BACKGROUND

7

CHAPTER 1

A BRIEF HISTORY OF TYPE THEORY

In this section we give a short history of type theory. This history will set the

stage for the later development by illustrating the reasons type theories exist and are

important, and by giving some definitions of well-known theories that make for good

examples in later sections. We first start with the early days of type theory between

the years of 1900 and 1960 during the time of Bertrand Russell and Alonzo Church.

They are as we consider them the founding fathers of type theory. The history given

here is presented in chronological order. This is not to be considered a complete

history, but rather a glimpse at the highlights of the history of type theory. This is

the least amount of history one must know to fully understand where we have been

and where this line of research may be heading.

1.1 The Early Days (1900 - 1960)

In the early 1900’s Bertrand Russell pointed out a paradox in naive set theory.

The paradox states that if H = {x |x 6∈ x} then H ∈ H ⇐⇒ H 6∈ H. The problem

Russell exploits is that the comprehension axiom of naive set theory is allowed to

use impredicative-universal quantification. That is x in the definition of H could be

instantiated with H, because we are universally quantifying over all sets. Russell

called this vicious circularity, and he thought it made no sense at all. Russell plagued

by this paradox needed a way of eliminating it. To avoid the paradox Russell, as

he described in letters to Gottlob Frege [67, 66], considers sets as having a certain

8

level and such sets may only contain objects of lower level. Actually, in his letters

to Frege he gives a brief description of what came to be called the ramified theory of

types which is a generalization of the type theory we describe here. However, this less

general type theory is enough to avoid Russell’s logical paradoxes. These levels can be

considered as types of objects and so Russell’s theory became known as simple type

theory. Now what does such a theory look like? Elliott Mendleson gave a nice and

simple definition of the simple type theory and we summarize this in the following

definition [91].

Definition 1.1.0.1.

Let U denote the universe of sets. We divide U as follows:

• J1 is the collection of individuals (objects of type 0).

• Jn+1 is the collection of objects of type n.

As mentioned above the simple type theory avoids Russell’s paradox. Lets con-

sider how this is accomplished. Take Russell’s paradox and add types to it following

Def. 1.1.0.1. We obtain if Hn = {xn−1 |xn−1 6∈ xn−1} then Hn ∈ Hn ⇐⇒ Hn 6∈ Hn.

We can easily see that this paradox is false. Hn can only contain elements of type

n− 1 which excludes Hn.

Russell’s simple type theory reveals something beautiful. It shows that to

enforce a particular property over a collection of objects we can simply add types to

the objects. This is the common theme behind all type theories. The property Russell

wished to enforce was predicativity of naive set theory. Throughout this thesis we

will see several different properties types can enforce. While ramified type theory

9

and simple type theory are the first defined type theories they however are not the

formulation used throughout computer science. The most common formulations used

are the varying formulations and extensions of Alonzo Church’s simply typed theory

and Haskell Curry’s combinatory logic [33, 29] 1.

In 1932 Alonzo Church published a paper on a set of formal postulates which

he thought could be used to get around Russell’s logical paradoxes without the need

for types [32]. In this paper he defines what we now call the λ-calculus. The original

λ-calculus consisted of variables, predicates denoted λx .t , and predicate application

denoted t1 t2. See the appendix in [49] for a complete definition of the λ-calculus. It

was not until Stephen Kleene and John Rosser were able to show that the λ-calculus

was inconsistent as a logic when Church had to embrace types [76]. To over come

the logical paradoxes shown by Kleene and Rosser, Church, added types to his λ-

calculus to obtain the simply typed λ-calculus [33, 12]. In the next section we give

a complete definition of Church’s simple type theory. The reason we postpone the

definition of the simply typed λ-calculus is because we provide a modern formulation

of the theory. So far we have summarized the beginnings of type theory starting with

Russell, Curry, and Church. Some really great references on this early history and

more can be found in [29, 37, 17]. We now move on to modern type theory where we

will cover a large part of type theory as it stands today.

1While Church’s simple type theory is the most common there are some other type
theories that have become very common to use and extend. To name a few: Gödel’s system
T, Girard-Reynolds system F, Thierry Coquand’s Calculus of Constructions, Per Martin-
Löf’s Type Theory, Michel Parigot’s λµ-Calculus, and Philip Wadler’s Dual Calculus.

10

1.2 Modern Type Theory

In this section we take a journey through modern type theory by presenting

various important advances in the field. We will provide detailed definitions of each

type theory considered. The reader may have noticed that the only definition of type

theory we have provide is that a type theory is any theory in which one must enforce

a property by organizing the objects of the theory into collections based on a notion

of type. This is not at all a complete definition and this section will serve as a guide

to a more complete definition. We do not give a complete general formal definition

of a type theory, but we hope that it is discernible from this survey. The first type

theory we define is the modern formulation of the simply typed λ-calculus.

The simply typed λ-calculus. There are three formulations of the simply

typed λ-calculus. The first one is called Church style [60, 17, 33], the second is

called Curry style [17, 117], and the third is in the form of a pure type system.

We introduce pure type systems in Section 4.2. We define the first and the second

formulations here beginning with the first. We will first define the type theories

and then we will comment on the differences between the two theories. The first

step in defining a type theory is to define its language or syntax. Following the

syntax are several judgments assigning some meaning to the language. A judgment

is a statement about the object language derived from a set of inference rules. In

the following type theories we will derive two judgments: the reduction relation and

the type-assignment relation. The syntax and reduction relation of the Church-style

simply typed λ-calculus (STLC) is defined in Figure 1 where t ranges over syntactic

11

expressions called terms and T ranges over syntactic expressions called types. Terms

consist of variables x , unary functions λx : T .t (called λ-abstractions) where x is

bound in t , and function application denoted t1 t2. Now types are variables X (we

use variables as base types or constants just to indicate that we may have any number

of constants), and function types denoted T1 → T2 where we call T1 the domain type

and T2 the range type. Note that if we remove the syntax for types from Figure 1

then we would obtain the (untyped) λ-calculus. The syntax defines what language

is associated with the type theory. Additionally, the reduction rules describe how

to compute with the terms. The Beta rule says that if a λ-abstraction λx : T .t is

applied to some term t ′, then that term may be reduced to the term resulting from

substituting t ′ for x in t which is the English interpretation for [t ′/x]t . We call [t ′/x]t

the capture avoiding substitution function . It is a meta-level function. That is, it is

not part of the object language. In STLC the types and terms are disjoint, but in type

theories the types are used to enforce particular properties on the terms . To enforce

these properties we need a method for assigning types to terms. This is the job of

what we will call the typing judgment , type-checking judgment, or type-assignment

judgment2. A judgment is a statement about the object language derived from a set

of inference rules. The typing judgment for STLC is defined in Figure 2. The typing

judgment depends on a typing context Γ which for now can be considered as a list

2Throughout the literature one may find the typing judgment being called the typing
algorithm, type-checking algorithm, or type-assignment algorithm. However, this is a par-
ticular case where the rules deriving the typing judgment are algorithmic in the sense that
when deriving conclusions from the inference rules deriving the judgment there is always a
deterministic choice on how to proceed.

12

Syntax:

T ::= X |T → T ′

t ::= x |λx : T .t | t1 t2

Full β-reduction:

(λx : T .t) t ′ [t ′/x]t
R Beta

t t ′

λx : T .t λx : T .t ′
R Lam

t1 t ′1
t1 t2 t ′1 t2

R App1
t2 t ′2

t1 t2 t1 t ′2
R App2

Figure 1. Syntax and reduction rules for the Church-style simply-typed λ-calculus

Γ, x : T ,Γ′ ` x : T
Var

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

Lam

Γ ` t1 : T1 → T2

Γ ` t2 : T1

Γ ` t1 t2 : T2

App

Figure 2. Typing Relation for the Church-style simply typed λ-calculus

of ordered pairs consisting of a variable and a type. This list is used to keep track of

the types of the free variables in a term . The grammar for context is as follows:

Γ ::= · | x : T |Γ1,Γ2

Here the empty context is denoted · and context extension is denoted Γ1,Γ2.

The inference rules deriving the typing judgment are used to determine if a

13

term has a particular type. That is the term t has type T in context Γ if there is

a derivation with conclusion Γ ` t : T and beginning with axioms. Derivations are

constructed in a goal directed fashion. We first match our desired conclusion with a

rule that matches its pattern and then derives its premises bottom up. To illustrate

this consider the following example.

Example 1.2.0.1.

Suppose Γ
def≡ x : T1 → T2, y : T1. Then we apply each rule starting with its

conclusion:

Γ ` x : T1 → T2

Var
Γ ` y : T1

Var

x : T1 → T2, y : T1 ` x y : T2

App

x : T1 → T2 ` λy : T1.(x y) : T1 → T2

Lam

· ` λx : T1 → T2.λy : T1.(x y) : ((T1 → T2)→ T1)→ T2

Lam

The Curry-style simply typed λ-calculus is exactly Church-style simply type

λ-calculus except there is no type annotations on λ-abstractions. That is we have

λx .t instead of λx : T .t in the syntax for terms. This definition of STLC was an

extension of Curry’s work on combinator logic.

Now a large number of type theories can be either in Church-style or in Curry-

style. The lack of typing annotations has a syntactic benefit. It prevents the pro-

grammer from having to fill in type annotations when defining functions. This can be

very beneficial when defining complicated functions. Curry-style type theories also

differ semantically. Church-style type theories contain annotations to enforce the as-

signment of exactly one type to any given term. Now Curry-style type theories do not

contain annotations, thus any given term may have many different types. Consider

14

the identity function λx .x this function may have the type Nat → Nat, but it can

also be given the type Bool → Bool. In fact, there are infinitely main types one can

give the Curry-style identity function. We can also characterize this semantic differ-

ence by what John Reynolds called intrinsic and extrinsic meanings. Church-style

theories give an intrinsic meaning to terms. This means that typeable terms are the

only terms assigned a meaning. Thus, the identity function λx : T .x always has a

meaning, because we can give it the type T → T , but the function λx : T .x x has

no meaning, because no matter how hard we try we can never give the correct type

annotation T . Now Curry-style theories give an extrinsic meaning to terms which

amounts to the same meaning we give un-type (or uni-typed) type theories. The

identity function λx .x can be assigned the meaning that it is the identity function

on the entire domain of values, not just the typeable ones. Note that we can give a

Curry-style type theory both an extrinsic and an intrinsic semantics, but Church-style

is always intrinsic [118]. A last remark is that type annotations can actually make

giving an intrinsic meaning difficult conducting the meta-theory of various expressive

type theories and programming languages, and thus removing annotations, but still

maintaining an intrinsic semantics may make meta-theoretic reasoning less difficult.

This is the benefit of using a type-annotation eraser function3 to translate a Church-

style type theory into a Curry-style type theory with an intrinsic semantics. This has

been very beneficial in the study of dependent type theories.

3This is often called “type erasure”, but the erasure is the image of the type-annotation
eraser function which is the result of applying the eraser, and hence not the process of
erasing.

15

The syntax and reduction relation of the Curry-style STLC is defined in Fig-

ure 3 and the typing judgment is defined in Figure 4. We call the typing judgment

defined here an implicit typing paradigm. The fact that it is implicit shows up in the

application typing rule App:

Γ ` t1 : T1 → T2

Γ ` t2 : T1

Γ ` t1 t2 : T2

App

Recall that these rules are read bottom up. Until now we have considered the typing

judgment as simply a checking procedure with the type as one of the inputs, but

often this judgment is defined so that the type is computed and becomes an output.

In theories like this the above rule causes some trouble. The type T1 is left implicit

that is by looking at only the conclusion of the rule one cannot tell what the value

of T1 must be. This problem also exists for the typing rule for λ-abstractions. This

is, however, not a problem in Church style STLC because that type is annotated on

functions. This suggest that for some Curry style type theories type construction is

undecidable. Not all type theories have a Church style and a Curry style formulations.

Thierry Coquand’s Calculus of Constructions is an example of a type theory that is

in the style of Church, but it is also unclear how to define a Curry style version. It

is also unclear how to define a Church style version of the type theory of intersection

types [17].

Gödel’s system T. The two type theories we have considered above are not

very expressive. In fact we cannot represent any decently complex functions on the

naturals within them. This suggests it is quite predictable that extensions of STLC

16

Syntax:

T ::= X |T → T ′

t ::= x |λx .t | t1 t2

Full β-reduction:

(λx .t) t ′ [t ′/x]t
R Beta

t t ′

λx .t λx .t ′
R Lam

t1 t ′1
t1 t2 t ′1 t2

R App1

t2 t ′2
t1 t2 t1 t ′2

R App2

Figure 3. Syntax and reduction rules for the Curry-style simply-typed λ-calculus

Γ, x : T ,Γ′ ` x : T
Var

Γ, x : T1 ` t : T2

Γ ` λx .t : T1 → T2

Lam

Γ ` t1 : T1 → T2

Γ ` t2 : T1

Γ ` t1 t2 : T2

App

Figure 4. Typing relation for the Curry-style simply typed λ-calculus

would arise. The first of these is Gödel’s system T. In this theory Gödel extends

STLC with natural numbers and primitive recursion. In [60] the authors present

system T with pairs and booleans, but we leave these out here for clarity. The big

improvement is primitive recursion. The syntax and reduction relation are defined in

Figure 5 and the type-checking relation is defined in Figure 6.

We can easily see from the definition of the language that this is a direct

extension of STLC. Gödel extended the types of STLC with a type constant Nat

17

Syntax:

T ::= Nat |T → T ′

t ::= x | 0 | S |λx : T .t | t1 t2 |R

Full β-reduction:

(λx : T .t) t ′ [t ′/x]t
R Beta

R t1 t2 0 t1

R RecBase

R t1 t2 (S t3) t2 (R t1 t2 t3) t3

R RecStep
t1 t ′1

R t1 t2 t3 R t ′1 t2 t3

R RecCong1

t2 t ′2
R t1 t2 t3 R t1 t ′2 t3

R RecCong2
t3 t ′3

R t1 t2 t3 R t1 t2 t ′3
R RecCong3

t t ′

λx : T .t λx : T .t ′
R Lam

t1 t ′1
t1 t2 t ′1 t2

R App1
t2 t ′2

t1 t2 t1 t ′2
R App2

t t ′

S t S t ′
R Succ

Figure 5. Syntax and reduction rules for Gödel’s system T

Γ, x : T ,Γ′ ` x : T
Var

Γ ` 0 : Nat
Zero

Γ ` S : Nat→ Nat
Succ

Γ ` R : T → ((T → (Nat→ T))→ (Nat→ T))
Rec

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

Lam

Γ ` t1 : T1 → T2

Γ ` t2 : T1

Γ ` t1 t2 : T2

App

Figure 6. Typing Relation for the Gödel’s system T

18

which is the type of natural numbers. He then extended the terms with a constant

term 0 denoting the natural number zero, a term S which is the successor function and

finally a recursor R which corresponds to primitive recursion. The typing judgment is

extended in the straightforward way. We only explain the typing rule for the recursor

of system T. Consider the rule:

Γ ` R : T → ((T → (Nat→ T))→ (Nat→ T))
Rec

We can think of R as a function which takes in a term of type T , which will be the

base case of the recursor, and then a term of type T → (Nat→ T), which is the step

case of the recursion, and a second term of type Nat, which is the natural number

index of the recursion, i.e. with each recursive call this number decreases. Finally,

when given these inputs R will compute a term by recursion of type T . While the

typing of R gives us a good picture of its operation the reduction rules for R give an

even better one. The rule

R t1 t2 0 t1

R RecBase

shows exactly that the first argument of R is the base case. Similarly, the rule

R t1 t2 (S t3) t2 (R t1 t2 t3) t3

R RecStep

shows how the step case is computed. The type of R tells us that its second argument

must be a function which takes in the recursive call and the predecessor of the index

of R. These two functions turn out to be all that is needed to compute all primitive

recursive functions [60].

19

The authors of [60] consider system T to be a step forward computationally,

but a step backward logically. We will see in Section 2 how type theories can be

considered as logics, but for now it suffices to say that they claim that system T

has no such correspondence. It turns out that system T is expressive enough to

define every primitive recursive function. In fact we can encode every ordinal from

0 to ε0 in system T. This is quite an improvement from STLC. We now pause to

give a few example terms corresponding to interesting functions and some example

computations.

Example 1.2.0.2.

Some interesting functions in system T:

Addition:

add x y
def≡ λx : Nat.(λy : Nat.(R x (λz : Nat.(λw : Nat.(S z))) y))

Multiplication:

mult x y
def≡ λx : Nat.(λy : Nat.(R 0 (λz : Nat.(λw : Nat.(add x z))) y))

Exponentiation:

exp x y
def≡ λx : Nat.(λy : Nat.(R (S 0) (λz : Nat.(λw : Nat.(exp x z))) y))

Predecessor:

pred x
def≡ λx : Nat.(R 0 (λz : Nat.(λw : Nat.w)) x)

Example 1.2.0.3.

We give an example reduction of addition. We define natural numbers using con-

structor form, and define a more convenient syntax as follows: 1̂
def≡ S 0, 2̂

def≡ S (S 0),

etc. Now we provide the following reduction:

20

add 2̂ 3̂ 2 R 2̂ (λz : Nat.(λw : Nat.(S z))) 3̂

 ((λz : Nat.(λw : Nat.(S z))) (R 2̂ (λz : Nat.(λw : Nat.(S z))) 2̂)) 3̂

 (λw : Nat.(S (R 2̂ (λz : Nat.(λw : Nat.(S z))) 2̂))) 3̂

 S (R 2̂ (λz : Nat.(λw : Nat.(S z))) 2̂)

 S (((λz : Nat.(λw : Nat.(S z))) (R 2̂ (λz : Nat.(λw : Nat.(S z))) 1̂)) 2̂)

 S ((λw : Nat.(S (R 2̂ (λz : Nat.(λw : Nat.(S z))) 1̂))) 2̂)

 S (S (R 2̂ (λz : Nat.(λw : Nat.(S z))) 1̂))

 S (S ((λz : Nat.(λw : Nat.(S z))) (R 2̂ (λz : Nat.(λw : Nat.(S z))) 0) 1̂))

 S (S ((λz : Nat.(λw : Nat.(S z))) 2̂ 1̂))

 S (S ((λw : Nat.(S 2̂)) 1̂))

 S (S (S 2̂))
≡ S (S (S (S (S 0))))

≡ 5̂
Notice that the example reduction given in Ex. 1.2.0.3 is terminating. A

natural question one could ask is, are all functions definable in system T terminating?

The answer is positive. There is a detailed proof of termination of system T in [60].

The proof is similar to how we show strong normalization for STLC in Section 6.3.

Termination is in fact guaranteed by the types of system T – in fact it is guaranteed by

the types of all the type theories we have seen up till now. Remember types are used

to enforce certain properties and termination is one of the most popular properties

types enforce.

Girard-Reynold’s System F. System T extended STLC with primitive re-

cursion, but it is not really that large of a leap forward, logically. However, a large

leap was taken independently by a French logician named Jean-Yves Girard and an

American computer scientist named John Reynolds. In 1971 Girard published his

thesis which included a number of advances in type theory one of them being an

extension of STLC with two new constructs [59, 60, 17]. In STLC we have term

variables and binders for them called λ-abstractions. Girard added type variables

21

and binders for them. This added the ability to define a large class of truly univer-

sal functions. He named his theory system F, and went on to show that it has a

beautiful correspondence with second order arithmetic [142]. He showed that every-

thing definable in second order arithmetic is also definable in system F by defining a

projection from system F into second order arithmetic. This shows that system F is

a very powerful type theory both computationally and as we will see later logically.

Later in 1974 Reynolds published a paper which contained a type theory equivalent to

Girard’s system F [116, 117]. Reynolds being in the field of programming languages

was investigating polymorphism. That is the ability to define universal (or generic4)

functions within a programming language. That is functions with generic types which

can be instantiated with other types. For example, being able to write a generic fold

operation which is polymorphic in the type of data the list can hold. In system T

or STLC this was not possible. We would have to define a new fold for each type of

list. Reynolds also showed that system F is equivalent to second order arithmetic, in

a similar, although different, way Girard did [142].

The syntax for terms, types, and the reduction rules are defined in Figure 7

and the definition of the typing relation is defined in Figure 8. Similar to system T

we can easily see that system F is an extension of STLC. Types now contain a new

type ∀X .T which binds the type variable X in the type T . This allows one to define

more universal types allowing for the definition of single functions that can work on

4 Throughout this thesis we will use the term “generic” to mean that terms or programs
are written with the most abstract type possible. Try not to confuse this with generic
programming in the sense used in the design of algorithms.

22

Syntax:

T ::= X |T → T ′ | ∀X .T
t ::= x |λx : T .t |ΛX .t | t1 t2 | t [T]

Full β-reduction:

(λx : T .t) t ′ [t ′/x]t
R Beta

(ΛX .t)[T] [T/X]t
R TypeRed

t t ′

λx : T .t λx : T .t ′
R Lam

t t ′

ΛX .t ΛX .t ′
R TypeAbs

t1 t ′1
t1 t2 t ′1 t2

R App1
t2 t ′2

t1 t2 t1 t ′2
R App2

t t ′

t [T] t ′[T]
R TypeApp

Figure 7. Syntax and reduction rules for system F

Γ, x : T ,Γ′ ` x : T
Var

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

Lam

Γ,X ` t : T

Γ ` ΛX .t : ∀X .T
TypeAbs

Γ ` t1 : T1 → T2

Γ ` t2 : T1

Γ ` t1 t2 : T2

App

Γ ` t : ∀X .T ′

Γ ` t [T] : [T/X]T ′
TypeApp

Figure 8. Typing relation for the system F

23

data of multiple different types. Terms are extended with two new terms the ΛX .t

and t [T]. The former is the introduction form for the ∀-type while the latter is the

elimination form for the ∀-type. The former binds the type variable X in t similarly

to the λ-abstraction. The latter is read, “instantiate the type of term t with the type

T .” The typing rules make this more apparent. The formulation of system F we

present here is indeed Church style so terms do contain type annotations. We need

a reduction rule to eliminate the bound variable in ΛX .t with an actual type much

like application for λ-abstractions. Hence, we extended the reduction rules of STLC

with a new rule R TypeRed which does just that. We next consider some example

functions in system F.

Example 1.2.0.4.

Example functions with their types in system F:

Identity:
Type: ∀X .(X → X)

Term: ΛX .λx : X .x
Pairs:

Type: ∀X .(∀Y .(X → (Y → (PAIRTY X Y))))
Term: ΛX .ΛY .λx : X .(λy : Y .ΛZ .(λz : X → (Y → Z).((z x) y)))

First Projection:
Type: ∀X .(∀Y .((PAIRTY X Y)→ X))

Term: ΛX .ΛY .(λp : PAIRTY X Y .((p[X]) (λx : X .λy : Y .x)))
Second Projection:

Type: ∀X .(∀Y .((PAIRTY X Y)→ Y))
Term: ΛX .ΛY .(λp : PAIRTY X Y .((p[Y]) (λx : X .λy : Y .y)))

Natural Number n:
Type: ∀X .((X → X)→ (X → X))

Term: ΛX .(λs : (X → X).(λz : X .(sn z)))
Note that in the previous example we used the definition

PAIRTY X Y
def≡ ∀Z .((X → (Y → Z))→ Z)

for readability. We could have gone even further than natural numbers and pairs by

24

defining addition, multiplication, exponentiation, and even primitive recursion, but

we leave those to the interested reader. For more examples, see [60]. The encod-

ings we use are the famous Church encodings of pairs and natural numbers. What

is remarkable about the encoding of natural numbers is that they act as function

iteration. That is for any function f from any type X to X and value v of type X

we have n [X] f v ∗ fnv, where n is the term n in the above table.

There is one important property of TypeApp which the reader should take

notice of. Notice that there are no restrictions on what types T ranges over. That is

there is nothing preventing T from being ∀X .T ′. This property is known as impred-

icativity and system F is an impredicative system. The reader may now be questioning

whether or not this type theory is terminating. That is can we use impredicativity

to obtain a looping term? The answer was settled negatively by Girard and we will

see how he proved this in Section 6. The possibility of writing a looping term in this

theory depends on the ability to be able find a closed inhabitant of the type ∀X .X .

We call a term closed if all of its variables are bound. An inhabitant of a type T is

a term with type T . Such a term could be given the type T1 → T2 and T1 which

would allow us to write a looping term. However, it is impossible to define a closed

term of type ∀X .X .

Stratified System F. Russell called impredicativity vicious circularity and

found it appalling. He actually took steps to remove it from his type theories all

together. To remove impredicativity – that is enforce predicativity – from his type

theories he added a second level of types which were used to organize the types of

25

his theory. This organization made it impossible to instantiate a type with itself.

Predicative systems are less expressive than impredicative systems [83]. This means

that there are functions definable in an impredicative theory which are not definable

in its predicative version. In [83, 45] Daniel Leivant and Norman Danner define and

analyze a predicative version of Reynolds-Girard’s system F called Stratified System

F (SSF). They show that SSF is substantially weaker than system F. In fact we

will discuss the fact that SSF can be proven terminating by a much simpler proof

technique then system F suggesting that it is indeed weaker in Section 6.1. The

syntax and reduction rules for SSF are defined in Figure 9, kinding rules in Figure 10,

and typing rules in Figure 11. The objective of SSF is to enforce the property of

Syntax:

K ::= ∗1 | ∗2 | . . .
T ::= X |T → T ′ | ∀X : ∗p .T
t ::= x |λx : T .t |ΛX : ∗p .t | t1 t2 | t [T]

Full β-reduction:

(λx : T .t) t ′ [t ′/x]t
R Beta

(ΛX : ∗p .t)[T] [T/X]t
R TypeRed

t t ′

λx : T .t λx : T .t ′
R Lam

t t ′

ΛX : ∗p .t ΛX : ∗p .t ′
R TypeAbs

t1 t ′1
t1 t2 t ′1 t2

R App1
t2 t ′2

t1 t2 t1 t ′2
R App2

t t ′

t [T] t ′[T]
R TypeApp

Figure 9. Syntax and reduction rules for SSF

26

Γ,X : ∗p ,Γ′ ` X : ∗p
K Var

Γ ` T1 : ∗p
Γ ` T2 : ∗q

Γ ` T1 → T2 : ∗max(p,q)

K Arrow

Γ,X : ∗p ` T : ∗q
Γ ` ∀X : ∗p .T : ∗max(p+1,q)

K Forall

Figure 10. Kinding relation for the SSF

predicativity on the types of system F. To accomplish this Leivant took the same

path as Russell in that he added a second layer of typing to system F. This second

layer is known as the kind level. Kinds are the types of types. The kinds of SSF are

the elements of the syntactic category K in the syntax for SSF. These are simply all

the natural numbers. We call these type levels. To stratify the types of system F

we use kinding rules to organize the types into levels making sure that polymorphic

types reside in a higher level than the types allowed to instantiate these polymorphic

types. The kinding rules are pretty straightforward. The one of interest is

Γ,X : ∗p ` T : ∗q
Γ ` ∀X : ∗p .T : ∗max(p+1,q)

K Forall.

This is the rule which enforces predicativity. It does this by making sure the level

of ∀X : ∗p .T is at a larger level than X . This works, because all the types we

instantiate this type with must have the same level as X . We can easily see that

p < max(p + 1, q) for all p and q . Hence, resulting in the enforcement of our desired

property.

27

Γ ` T : ∗p
Γ, x : T ,Γ′ ` x : T

Var
Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

Lam

Γ ` t1 : T1 → T2

Γ ` t2 : T1

Γ ` t1 t2 : T2

App
Γ,X : ∗p ` t : T

Γ ` ΛX : ∗p .t : ∀X : ∗p .T
TypeAbs

Γ ` t : ∀X : ∗p .T ′
Γ ` T : ∗p

Γ ` t [T] : [T/X]T ′
TypeApp

Figure 11. Typing relation for the SSF

A understandable question one could ask at this point is, are predicative the-

ories expressive enough to capture advanced mathematical reasoning, and real-world

programming? Unfortunately there is no correct answer at this time. This is a debat-

able question. Some believe predicative systems are enough and that impredicative

systems are too paradoxical [54]. In fact Hermann Weyl proposed a predicativist

foundation of mathematics. In his book [144] he developed a predicative analysis

using stratification to enforce predicativity. He goes on to show that a substantial

amount of mathematics can be done predictively.

I believe that impredicativity is not something that should be abolished, but

embraced. It gives theories more expressive power in an elegant way. This power

comes at a cost that reasoning about impredicative theories is more complex then

predicative theories, but this we think is to be expected. However, we do believe that

impredicativity needs to be better understood. At least in a computational light.

28

System Fω. In Girard’s thesis [59] Girard extends the type language of

system F with a copy of STLC. This type theory is called system Fω. The syntax and

reduction rules are in Figure 12, the kinding rules in Figure 13, and the typing rules in

Figure 14. There are two kinds denoted Type and K1 → K2. The formers inhabitants

are well-formed types, while the latter’s inhabitants are type level functions whose

inputs are types and outputs are types. There are only three forms of well-formed

types: variables, arrow types, and ∀-types. The additional members of the syntactic

category for types are used to compute types. These are λ-abstractions denoted

λX : K .T and applications denoted T1 T2. Note that in general these are not types.

They are type constructors. However, applications may be considered a type when

T1 T2 has type Type, but this is not always the case, because STLC allows for partial

applications of functions.

The ability to compute types is known as type computation. Type-level com-

putation adds a lot of power. It can be used to write generic function specifications.

We mentioned above that system F allows one to write functions with more generic

types which allows one to define term level functions once and for all. Type level

computation increases this ability. In fact module systems can be encoded in system

Fω [122]. There is one drawback though. Since terms are disjoint from types we

obtain a lot of duplication. For example, we need two copies of the natural numbers:

one at the type level and one at the term level. This is unfortunate. A fix for this

problem is to unite the term and type level allowing for types to depend on terms.

This is called dependent type theory and is the subject of Section 4. Using dependent

29

Syntax:

K ::= Type |K → K ′

T ::= X |T → T ′ | ∀X : K .T |λX : K .T |T1 T2

t ::= x |λx : T .t |ΛX : K .t | t1 t2 | t [T]

Full β-reduction:

(λx : T .t) t ′ [t ′/x]t
R Beta

(ΛX : K .t)[T] [T/X]t
R TypeRed

t t ′

λx : T .t λx : T .t ′
R Lam

t t ′

ΛX : K .t ΛX : K .t ′
R TypeAbs

t1 t ′1
t1 t2 t ′1 t2

R App1
t2 t ′2

t1 t2 t1 t ′2
R App2

t t ′

t [T] t ′[T]
R TypeApp

(λX : K .T) T ′ [T ′/X]T
TR TypeBeta

T T ′

λX : K .T λX : K .T ′
TR TypeLam

T1 T ′1
T1 T2 T ′1 T2

TR TypeApp1

T2 T ′2
T1 T2 T1 T ′2

TR TypeApp2

Type β-equality:

T ≡β T
Eq Refl

T2 ≡β T1

T1 ≡β T2

Eq Sym

T1 ≡β T2

T2 ≡β T3

T1 ≡β T3

Eq Trans
T1 ≡β T2

λX : K .T1 ≡β λX : K .T2

Eq Lam

T1 ≡β T ′1
T2 ≡β T ′2

T1 T2 ≡β T ′1 T ′2
Eq App

T1 ≡β T ′1
T2 ≡β T ′2

T1 → T2 ≡β T ′1 → T ′2
Eq Imp

T1 ≡β T2

∀X : K .T1 ≡β ∀X : K .T2

Eq Forall
(λX : K .T2) T1 ≡β [T1/X]T2

Eq Beta

Figure 12. Syntax and reduction rules for system Fω

30

Γ,X : K ,Γ′ ` X : K
K Var

Γ ` T1 : Type
Γ ` T2 : Type

Γ ` T1 → T2 : Type
K Arrow

Γ,X : K ` T : Type

Γ ` ∀X : K .T : Type
K Forall

Γ,X : K1 ` T : K2

Γ ` λX : K1.T : K1 → K2

K Lam

Γ ` T1 : K1 → K2

Γ ` T2 : K1

Γ ` T1 T2 : K2

K App

Figure 13. Kinding rules of system Fω

Γ ` T : Type

Γ, x : T ,Γ′ ` x : T
Var

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

Lam

Γ,X : K ` t : T2

Γ ` ΛX : K .t : ∀X : K .T
TypeAbs

Γ ` t1 : T1 → T2

Γ ` t2 : T1

Γ ` t1 t2 : T2

App

Γ ` t : ∀X : K .T ′

Γ ` t [T] : [T/X]T ′
TypeApp

T1 ≡β T2

Γ ` T2 : Type
Γ ` t : T1

Γ ` t : T2

Conv

Figure 14. Typing relation for the system Fω

31

types and type-level computation we could amongst other things define and use only

a single copy of the natural numbers.

Logically, through the computational trinity (see Section 2) system Fω corre-

sponds to higher-order logic, because we are able to define predicates of higher type.

This is quite a large logical leap forward from System F which corresponds to second

order predicate logic.

Throughout this section we took a brief journey into modern type theory. We

defined each of the most well-known type theories that are at the heart of the vast

majority of existing research in type theory and foundations of functional program-

ming languages. This was by no means a complete history, but whose aim was to

give the reader a nice introduction to the field.

32

CHAPTER 2

THE COMPUTATIONAL TRINITY

The Merriam-Webster dictionary defines “computation” as “the act or action

of computing : calculation”, “the use or operation of a computer”, “system of reck-

oning”, or “an amount computed”. These meanings suggest computation is nothing

more than the process of mathematical calculation, but computation is so much more

than this. In fact there are three perspectives of computation:

Type Theory

Logic Category Theory

∼=

Each offering a unique position for studying computational structure. The figure

above illustrates that type theory, category theory, and logic are equals where the

symbol in the middle can be read as “isomorphic to.” That is all three fields look

very different, but can be treated as equivalent. Type theories – as we have seen

above – or typed λ-calculi are essentially the study of functions where types en-

force some properties on these functions. Now as it turns out category theory is

basically the abstract study of mathematical structures using the abstraction of a

function called a morphism. Hence, in hindsight it is not surprising that type theory

and category theory are equals each offering a unique perspective of computation.

Less intuitive is the connection between these two fields and that of logic. Call-

33

ing this beautiful relationship the computational trinity is non-standard. In fact I

am proposing that this terminology become standard. The standard names for this

relationship is the Curry-Howard correspondence (or isomorphism) or the proofs-

as-programs propositions-as-types correspondence. The first pays tribute to Haskell

Curry and William Howard. As we will see both Curry and Howard did have a hand

in making this ternary relationship explicit, but they were not the only ones. Hence,

this former name is unsatisfactory. The second only signifies the connection between

logic and type theory; it does not mention category theory. Thus, it is unsatisfactory.

Therefore, a better name for this relationship must become standard and I propose

the computational trinity. Robert Harper calls this connection the “Holy Trinity”

and the three way connection given above computational trinitarianism, but we have

chosen to not use religious metafors in computational research. Thus, we propose

the name “computational trinity” to emphasize the common structure between each

point, and the fact that it is a three way connection. We now move onto making this

relationship more precise. We only discuss the details of the correspondence of type

theory and logic, and type theory and category theory. The other correspondence

between logic and category theory follows similarly. Furthermore, we do not go into

complete detail of each of these correspondences, but we give plenty of references for

the curious reader.

2.1 Logic

Intuitionism began with Luitzen Brouwer. Implicit in his work was an inter-

pretation of the formulas of propositional and predicate intuitionistic logic as compu-

34

tational objects. Brouwer’s student Arend Heyting made this interpretation explicit

for intuitionistic predicate logic against the advice of Brouwer. Brouwer believed

that intuitionistic logic should never be written down, but only exist in the mind

of the mathematician. Additionally, Andrey Kolmogorov defined this interpretation

for intuitionistic propositional logic. This interpretation has become known as the

Brouwer-Heyting-Kolmogorov-interpretation or the BHK-interpretation of intuition-

istic logic. Let’s consider this interpretation for intuitionistic propositional logic with

conjunction, disjunction, and implication. We denote arbitrary computational con-

structions as c which can be built up from pairs of proof terms (t0, t1), unary functions

denoted by λ-abstractions, and injections for proof terms for sums inl(t) for inject

left and inr(t) for inject right. The BHK-interpretation defined in Def. 2.1.0.1 de-

fines the assignment of proof terms using these constructs to formulas of intuitionistic

propositional logic.

Definition 2.1.0.1.

The BHK-interpretation:

c r (A1 ∧ A2) ⇐⇒ c = (t0, t1) such that t0 r A1 and t1 r A2.
c r (A1 ∨ A2) ⇐⇒ (c = inl(t) and t r A1) or (c = inr(t) and t r A2).
c r (A1 → A2) ⇐⇒ c is a function, λx.t, such that for any d r A1

(λx.t)d r A2.

We say a construction c realizes A ⇐⇒ c r A.

This was the first step towards the correspondence between type theory and

logic. The second was due to Curry. We mentioned in Section 1 that Curry noticed

that the types of the combinatory logic correspond to the formulas of intuitionistic

propositional logic. This suggested that combinatory logic can be seen as a proof

35

assignment to propositional logic. This was Curry’s main contribution to this line of

work. The third step was due to Howard. In [145] Howard revealed the correspon-

dence between STLC and intuitionistic propositional logic in natural deduction style.

He essentially uses the BHK-interpretation to assign proof terms to natural deduction

and then shows that this really is STLC. It is a beautiful result. More on this can

be found in [64, 145, 92, 93, 126, 136]. Since these early steps the correspondence

between logic and type theory has been developed quite extensively. Reynolds’ and

Girard extended this correspondence to second order predicate logic using system F,

and to higher order logic using system Fω by Girard [142, 59]. We will see other

advances to this correspondence with logic in Section 4 where we discuss dependent

types.

There is one requirement a type theory must meet in order for it to correspond

to a consistent logic. Computational constructs such as objects of type theory must

be total (terminating). That is they must always produce a result. One part of the

correspondence between type theory and logic is that the reduction rules of the type

theory amount to the cut-elimination algorithm for the logic. That is, reducing terms

amounts to normalizing proofs. The validity of the cut theorem – states that any

non-cut-free proof can always be reduced to a cut-free one – implies consistency of

the logic. The cut theorem in type theory amounts to being able to prove that all

terms in the type theory are terminating. Speaking of cut elimination one might think

that this correspondence only holds for sequent calculi, but one can normalize natural

deduction proofs as well [110]. It is widely known that showing a type theory to be

36

consistent – through the remainder of the thesis we will use the words consistent and

normalizing interchangeably – can be a very difficult task, and often requires advanced

mathematical tools. In fact a lot of the work going into defining new type theories

goes into showing it consistent. The type theories we have seen up till now are all

consistent. We will discuss in detail how to show type theories to be normalizing in

Section 6.

2.2 Category Theory

The year 1980 was a wonderful year for type theory. Not only did Howard show

that there exists a correspondence between natural deduction style propositional logic

and type theory, but Joachim Lambek also showed that there is a correspondence

between type theory and cartesian closed categories [1]. In this section we briefly

outline how this is the case and give an interpretation of STLC in a cartesian closed

category. Before we can interpret STLC we first summarize some basic definitions of

category theory. We begin with the definition of a category.

Definition 2.2.0.1.

A category denoted C,D, · · · is an abstract mathematical structure consisting of a set

of objects Obj denoted A,B,C, · · · and a set of morphisms Mor denoted f, g, h, · · · .

Two functions assigning objects to morphisms called src and tar. The function src

assigns a morphism its source object (domain object) while tar assigns its target object

(range object). We denote this assignment as f : A → B, where src(f) = A and

tar(f) = B. Now for each object A ∈ Obj there exists a unique family of morphisms

called identities denoted idA : A → A. For any two morphisms f : A → B and

37

g : B → C the composition of f and g must be a morphism g ◦ f : A→ C.

Morphisms must obey the following rules:

f : A→ B id : B → B

id ◦ f = f

f : A→ B id : A→ A

f ◦ id = f

c : C → D b : B → C a : A→ B

(c ◦ b) ◦ a = c ◦ (b ◦ a)

In order to interpret STLC we will need a category with some special features.

The first of these is the final object.

Definition 2.2.0.2.

An object 1 of a category C is the final object if and only if there exists exactly one

morphism ♦A : A→ 1 for every object A.

We will use the final object and finite products to interpret typing contexts. Finite

products are a generalization of the cartesian product in set theory.

Definition 2.2.0.3.

An object of a category C denoted A × B is called a binary product of the objects

A and B iff there exists morphisms π1 : A× B → A and π1 : A× B → B such that

for any object C and morphisms f1 : C → A and f2 : C → B there exists a unique

morphism f : C → A×B such that the following diagram commutes (we denote the

fact that f is unique by !f):

C

A �
π1�

f 1

A×B

f !

? π1 - B.

f
2

-

The notion of a binary product can be extended in the straightforward way to

finite products of objects denoted A1× · · · ×An for some natural number n. We will

38

use finite products to interpret typing contexts in the category. We need one more

categorical structure to interpret STLC in a category. We need a special object that

can be used to model implication or the arrow type.

Definition 2.2.0.4.

An exponential of two objects A and B in a category C is an object BA and an

arrow ε : BA×A→ B called the evaluator. The evaluator must satisfy the universal

property: for any object A and arrow f : A × B → C, there is a unique arrow,

f ∗ : A→ CB such that the following diagram commutes:

C

A×B
f ∗ × idB -

f

-

CB ×B

�

ε

We call f ∗ the currying of f . By universality of ε every binary morphism can

be curried uniquely. In the above definition we are using × as an endofunctor.

That is for any morphisms f : A → C and g : B → D we obtain the morphism

f × g : A×B → C ×D. We say a category C has all products and all exponentials if

and only if for any two objects in C the product of those two objects exists in C and

similarly for exponentials.

Definition 2.2.0.5.

A category C is cartesian closed if and only if it has a terminal object 1, all products,

and all exponentials.

This is all the category theory we introduce in this thesis. The interested reader

should see [42, 65, 82, 103] for excellent introductions to the subject.

39

We now have everything needed to interpret STLC as a category. Our inter-

pretation follows that of [65]. The idea behind the interpretation is to interpret types

as objects and terms as morphisms. Now a term alone does not make up a morphism,

because they lack a source and a target object. So instead we interpret only typeable

terms in a typing context. That is we interpret triples 〈Γ, t ,T 〉 where Γ ` t : T .

Definition 2.2.0.6.

Suppose C is a cartesian closed category. Then we interpret STLC in the category

C by first interpreting types as follows:

[[X]] = X̂
[[T1 → T2]] = [[T2]][[T1]]

Then typing contexts are interpreted in the following way:

[[·]] = 1
[[Γ, x : T]] = [[Γ]]× [[T]]

Finally, we interpret terms as follows:

Variables:

[[〈Γ, xi : Ti , xi ,Ti〉]] = ([[Γ]])× [[T]]
πi - [[T]]

λ-Abstractions:

[[〈Γ, λx : T1.t ,T1 → T2〉]] = [[Γ]]
[[〈Γ, x : T1, t ,T2〉]]∗- [[T2]][[T1]]

Applications:

[[〈Γ, t1 t2,T2〉]] = [[Γ]]
〈[[〈Γ, t1,T1 → T2〉]], [[〈Γ, t2,T1〉]]〉- [[T2]][[T1]] × [[T1]]

ε
- [[T2]]

In the previous definition X̂ is just an additional object of the category. It

does not matter what we call it. It does however need to be unique. This is how

we interpret STLC as a cartesian closed category. Modeling other type theories with

more advanced features follows quite naturally. It is not until we hit dependent types

where things change drastically.

40

2.3 Impact

The reader may now be wondering what the benefits are of the computational

trinity if there are any at all. The three perspectives of computation are all just that.

They provide a unique angle on computation. To paraphrase [151] a good idea in one

can be moved over to the others and it can be very “fruitful” to to look at the idea

at each angle1 .

Type theory can be seen as a foundation of typed functional programming

languages. After all they are typed λ-calculi. Thus, the correspondence between type

theory and logic results in programming becoming proving. Programs are proofs and

their types are the propositions they are proving. This correspondence tells us exactly

how to add verification to our programming languages. We isolate in some way a

consistent fragment of our typed functional programming language. This fragment

becomes the logic in which we prove properties of the programs definable within

our programming language. So the benefit of the correspondence between logic and

type theory is that it allows one language for programming and stating and proving

properties of these programs.

The first use of the correspondence between logic and type theory for pro-

gramming and mathematics – that is proving theorems – was Automath. Automath

was a formal language much like a type theory devised by Nicolaas de Bruijn in the

late sixties. A large body of ideas in modern type theory came from Automath. It al-

1Actually, Zenger was talking about the connection between type theory and program-
ming, but we think it applies very nicely here.

41

lowed for the specification of complete mathematical theories and was equipped with

a automated proof checker which was used to check the correctness of the formalized

theories. In fact Automath can be thought of as the grandfather to dependent type

theory. It was a wonderful line of work that resulted in a large number of great

ideas. One important thing was that de Bruijn independently from Howard stated

the correspondence between intuitionistic propositional logic and type theory [126].

The correspondence between type theory and category theory has many ben-

efits. The biggest benefit is that category theory is a very abstract theory. It allows

one to interpret type theories in such a way that one can see the basic structure of

the theory. It has also been extensively researched so when moving over to category

theory all the tools of the theory come along with it. This makes complex properties

about type theories more tractable. It can also be very enlightening to take an idea

and encode it in category theory. Develop the idea there and then move it over to

type theory. Often the complexities of syntax get in the way when working directly

in type theory, but these problems do not exist in category theory.

42

CHAPTER 3

CLASSICAL TYPE THEORY

Note that every type theory we have seen up till now has been intuitionistic.

That is they correspond to intuitionistic logic. We clearly state that all the work

Curry, Howard, de Bruijn, Girard, and others did was with respect to intuitionistic

logic. So a natural question is what about classical logic?

3.1 The λµ-Calculus

The reason intuitionistic logic was the focus is that it lends itself very nicely

to being interpreted as a system of computation. That’s the entire point behind the

BHK-interpretation and the work of Brouwer. This, it seemed, was not the case

for classical logic, until Timothy Griffin’s seminal paper titled “A Formulae-as-Types

Notion of Control” [64]. This offered a typing to the control operator call/cc, and

to everyone surprise connected control operators to classical proofs. Later, Michel

Parigot constructed the λµ-calculus in 1992 [101]. Parigot was able to define a clas-

sical sequent calculus called free deduction which had a cut-elimination procedure

validating the cut-theorem for classical logic [100]. This allowed for Parigot to define

a computational perspective of free deduction which he called the λµ-calculus. This

type theory can be considered the first type-safe strongly normalizing classical type

theory. We now briefly introduce the λµ-calculus. The syntax and reduction rules

are in Figure 15.

We can think of the language of the λµ-calculus as an extension of the λ-

43

Syntax:

T ,A,B ,C ::= X | ⊥ |A→ B
t ::= x |λx .t |µα.s | t1 t2

s ::= [α]t

Full β-reduction:

(λx .t) t ′ [t ′/x]t
R Beta

(µα.s) t ′ [t ′/∗α]s
R Struct

[α](µβ.s) [α/β]s
R Renaming

t t ′

λx .t λx .t ′
R Lam

s s ′

µα.s µα.s ′
R Mu

t t ′

[α]t [α]t ′
R Naming

t ′ t ′′

t ′ t t ′′ t
R App1

t ′ t ′′

t t ′ t t ′′
R App2

Figure 15. Syntax and reduction rules for the λµ-calculus

calculus. We extend it with two new operators. The first is the µ-abstraction µα.s

where α is called a co-variable, an output port, or an output variable. We call the

µ-abstraction a control operator. This name conveys the fact that the µ-abstraction

has the ability to control whether a value is returned or placed into its bound output

port. The body of the µ-abstraction must be a term called a statement denoted by

the metavariable s . Statements have the form [α]t . We can think of this as assigning

(or naming) an output port to a term. Now we extend the reduction rules with two

new reduction rules and two new congruence rules for the µ-abstraction and naming

operator. The R Struct rule is called the structural reduction rule. This allows one

to target reduction to a named subterm of the body of the µ-abstraction. This rule

44

x : Γ,Ax ` A,∆
Var

t : Γ,Ax ` B ,∆

λx .t : Γ ` A→ B ,∆
Lam

s : Γ ` Aα,∆

µα.s : Γ ` A,∆
Mu

t2 : Γ′ ` A,∆′

t1 : Γ ` A→ B ,∆

t1 t2 : Γ,Γ′ ` B ,∆,∆′
App

t : Γ ` A,∆

[α]t : Γ ` Aα,∆
NameApp

Figure 16. Type-checking algorithm for the λµ-calculus

uses a special substitution operation [t/∗α]s which says to replace every subterm of

s matching the pattern [α]t ′ with [α](t ′ t). We may also write [t/∗α]t ′ for the similar

operation on terms. This is called structural substitution.

As we said above the language of the λµ-calculus is an extension of the λ-

calculus, but its type assignment is very different than STLC. The type assignment

rules are defined in Figure 16. Right away we can see a difference in the form of

judgment. We now have e : Γ ` ∆ rather than Γ ` t : τ . The former is in sequent

form. This is the orignal presentation used by Parigot. The feature of this is that it

make it easy to see when the set of assumptions and conclusions are modified 1 Think

of e : Γ ` ∆ as e being a witness2 of the sequent Γ ` ∆. Just as in the other type

theories we have seen, Γ is the typing context or the set of assumptions (input ports).

Keeping to the style of Parigot we denote elements of Γ by Ax instead of x : A. The

1This is not the only formalization we could have used. See [44] for another example
which is closer to the style we have been using for the earlier type theories.

2Actually, “the witness”, because typing in unique.

45

environment ∆ is either empty ·, a formula A, one or more co-assumptions or output

ports, or a formula A followed by one or more output ports. Negation is defined in

the same way as it is in intuitionistic logic. That is ¬A =def A→⊥. Note that in ∆

we always have ⊥α (false) and in Γ we always have >x (true) where > ≡⊥→⊥ for any

∆ and Γ trivially. We often leave these left implicit to make the presentation clean

unless absolutely necessary. These two facts hold because a sequent A1
x1 , · · · ,Ai

xi `

B ,B1
α1 , · · · ,Bi

αi can be interpreted as (A1
x1 ∧· · ·∧Ai

xi) =⇒ (B ∨B1
α1 ∨· · ·∨Bi

αi)

where =⇒ is implication. Using this interpretation we can see that adding true to

the left and/or false to the right does not impact the logical truth of the statement.

This implies the following lemma.

Lemma 3.1.0.1. The following rules are admissible w.r.t. the λµ-calculus:

α fresh in ∆ s : Γ ` ∆

µα.s : Γ `⊥,∆
BtmInt

α fresh in ∆ t : Γ `⊥,∆
[α]t : Γ ` ∆

BtmElim

The λµ-calculus is a classical type theory so it should be the case that the

law of excluded middle (LEM), A ∨ ¬A, holds, or equivalently the law of double

negation (LDN) ¬¬A→ A. Since we do not have disjunction as a primitive we show

LDN. Before showing the derivation of the LDN we first define some derived rules for

handling negation and sequent manipulation rules. The following definition defines

all derivable rules. We will take these as primitive to make things cleaner. We do not

show the derivations here, because they are rather straightforward.

Lemma 3.1.0.2. The following rules are derivable using the typing rules and the

rules of Lemma 3.1.0.1:

46

t : Γ,Ax `⊥,∆
λx .t : Γ ` ¬A,∆

NegInt1

t1 : Γ ` ¬A,∆ t2 : Γ ` A,∆

t1 t2 : Γ `⊥,∆
NegElim1

α fresh in ∆ s : Γ,Ax ` ∆

λx .µα.s : Γ ` ¬A,∆
NegInt2

t1 : Γ ` ¬A,∆ t2 : Γ ` A,∆

t1 t2 : Γ ` ∆
NegElim2

We are now in the state where we can prove ¬¬A→ A in the λµ-calculus.

Example 3.1.0.3.

In this example we prove ¬¬A→ A. Suppose D is the following derivation:

y : ¬¬Ay ` ¬¬A,Aα Var

x : ¬¬Ay ,Ax ` A
Var

[α]x : ¬¬Ay ,Ax ` Aα NameApp

λx .µβ.[α]x : ¬¬Ay ` ¬A,Aα NegInt2

y (λx .µβ.[α]x) : ¬¬Ay `⊥,Aα NegElim1

Then the final proof is as follows:

D

[β′](y (λx .µβ.[α]x)) : ¬¬Ay ` Aα BtmElim

µα.[β′](y (λx .µβ.[α]x)) : ¬¬Ay ` A
Mu

λy .µα.[β′](y (λx .µβ.[α]x)) : · ` ¬¬A→ A
Lam

In the above example we leave out freshness constraints to make the presentation

cleaner. This example shows that the λµ-calculus really is classical. So from the log-

ical perspective of computation we gain classical reasoning, but do we gain anything

programmatically? It turns out that we do. We can think of the µ-abstraction and

naming application as continuations which allow us to define exceptions. In fact a

great way of thinking about the µ-abstraction µα.[β]t is due to Geuvers et al.:

47

From a computational point of view one should think of µα.[β]t as a com-

bined operation that catches exceptions labeled α in t and throws the results

of t to β. [57]

Using this point of view we can define catchα t and throwα t .

Definition 3.1.0.4.

The following defines exceptions within the λµ-calculus:

catchα t := µα.[α]t

throwα t := µβ.[α]t , where β is fresh

Using our reduction rules with the addition of µα.[α]t t provided that α is

fresh in t3, we can easily define some nice reduction rules for these definitions.

Definition 3.1.0.5.

Reduction rules for exceptions:

catchα (throwα t) catchα t

throwα (catchβ t) throwα ([α/β]t)

There are other reductions one might want. For the others and an extension of the

λµ-calculus see [57].

3.2 The λ∆-Calculus

In the previous section we introduced classical type theories and defined the

λµ-calculus. We saw that it was a sequent style logic. In this section we define the

natural deduction equivalent of λµ-calculus called the λ∆-calculus. After we define

the type theory we give a brief explanation of its equivalence to the λµ-calculus, but

we do not prove its equivalence. The λ∆-calculus was defined by Jakob Rehof and

3This is sometimes called η-reduction for control operators.

48

Syntax:

T ,A,B ,C ::= X | ⊥ |A→ B
t ::= x |λx : T .t |∆x : T .t | t1 t2

Full β-reduction:

(λx : T .t) t ′ [t ′/x]t
Beta

y fresh in t and t ′

z fresh in t and t ′

(∆x : ¬(T1 → T2).t) t ′ ∆y : ¬T2.[λz : T1 → T2.(y (z t ′))/x]t
StructRed

Figure 17. Syntax and reduction rules for the λ∆-calculus

Morten Sørensen in Rehof’s thesis [113]. Their work on the λ∆-calculus was done

independently of the λµ-calculus and they were not aware of their equivalence until

Parigot pointed it out. To our knowledge no actual proof was ever published, but

the proof is rather straightforward. The λ∆-calculus is an extension of STLC with

the LDN in the form of a control operator called ∆. Unlike the other type theories

we have seen we are going to first present the language and then the typing rules.

Lastly, we will define the reduction rules. It is our belief that the reduction rules may

be more clear after the reader sees the typing rules.

The language is defined in Figure 174 and the typing rules in Figure 18. We

give the formulation a la Church, but the formulation a la Curry does exist. We can

see that the syntax really is just the extension of STLC with the ∆x : T .t control

4We only include a subset of the reduction rules given by in Rehof and Sørensen. Just
as before negation is defined just as it is in intuitionistic logic. For the others see [113].

49

Γ, x : A,Γ′ ` x : A
Var

Γ, x : A ` t : B

Γ ` λx : A.t : A→ B
Lam

Γ, x : ¬A ` t :⊥
Γ ` ∆x : ¬A.t : A

Delta

Γ ` t2 : A
Γ ` t1 : A→ B

Γ ` t1 t2 : B
App

Figure 18. Type-checking algorithm for the λ∆-calculus

operator. This operator is the elimination form for absurdity ⊥. We can see this

connection by looking at its typing rule Delta. Here we assume ¬A and show ⊥, and

obtain A. We can use this rule to prove LDN:

Example 3.2.0.1.

Suppose Γ
def≡ x : ¬¬A, y : ¬A. Then the proof of ¬¬A→ A in the λ∆-calculus:

Γ ` x : ¬¬A
Var

Γ ` y : ¬A
Var

Γ ` x y :⊥
App

x : ¬¬A ` ∆y : ¬A.(x y) : A
Delta

· ` λx : ¬¬A.(∆y : ¬A.(x y)) : ¬¬A→ A
Lam

The λ∆-calculus is equivalent to the λµ-calculus. The following definition

gives an embedding from the λµ-calculus to the λ∆-calculus.

Definition 3.2.0.2.

The following embeds the Church style formulation of the λµ-calculus into the λ∆-

calculus:

Context:

50

|Γ,Ax | := |Γ|, x : A

|∆,Aα| := |∆|, x : ¬A,where x is fresh in |∆|

Terms and Statements:

|x | := x

|α| := y, for some fresh variable y

|λx : A.t | := λx : A.|t |

|t1 t2| := |t1| |t2|

|µα : A.s| := ∆x : ¬A.|s|αx

|[α]t |αx := x |t |

|[α]t |βx := z |t |, where α is distinct from β and z is fresh in t

Using the previous definition we can now prove that if a term is typeable in

the λµ-calculus then we can construct a corresponding term of the same type in the

λ∆-calculus.

Lemma 3.2.0.3.

i. If t : Γ ` A,∆ then Γ, |∆| ` |t | : A.

ii. If t : Γ ` .,∆ then Γ, |∆| ` |t | :⊥.

The previous lemma establishes that the λ∆-calculus is at least as expressive – in

terms of typeability – than the λµ-calculus. It so happens that we can prove that

the λµ-calculus is at least as strong as the λ∆-calculus which implies that both

type theories are equivalent with respect to typeability. We assume without loss of

generality that the typing context Γ is sorted so that all negative types come after all

positive types. A negative type is of the form ¬A.

51

Definition 3.2.0.4.

The following embeds the Church style formulation of the λ∆-calculus into the λµ-

calculus:

Contexts:
If Γ ≡ x1 : A1, . . . , xi : Ai , y1 : ¬B1, . . . , yj : ¬Bj , then
|x1 : A1, . . . , xi : Ai | := A1

x1 , . . . ,Ai
xi ≡ Γµ

|y1 : ¬B1, . . . , yj : ¬Bj | := B1
α1 , . . . ,Bj

αj ≡ ∆

Terms:
|x | := x

|λx : A.t | := λx : A.|t |

|t1 t2| := |t1| |t2|

|∆x : ¬A.t | := µα.[β]|t |, where α 6≡ β

Similar to the previous embedding we can now prove that all inhabited types of the

λ∆-calculus are inhabited in the λµ-calculus.

Lemma 3.2.0.5. If Γ ` t : A then |t | : Γµ ` A,∆.

Both of the above lemmas can be proven by induction on the form of the assumed

typing derivations. This equivalence extends to the reduction rules as well, but the

reduction rules are not step by step equivalent. Terms of the λ∆-calculus will have

to do more reduction than the corresponding terms of the λµ-calculus. We do not

show this here.

3.3 Beautiful Dualities

There are some beautiful dualities present in classical logic. We say a mathe-

matical or logical construct is dual to another if there exists an involution translating

each construct to each other. An involution is a self invertible one-to-one correspon-

52

dence. That is if i is an involution then i(i(x)) = x. Now in classical logic negation is

self dual, by De Morgan’s laws conjunction is dual to disjunction and vice versa, and

existential quantification is dual to universal quantification and vice versa. These du-

alities lead to wonderful symmetries in Gentzen’s sequent calculus. One can see these

symmetries in the rules for conjunction and disjunction. They are mirror images of

each other. These beautiful dualities are not only found in classical logic, but even

exist in intuitionistic logic. However, the dualities in intuitionistic logic are not well

understood from a type theoretic perspective.

3.3.1 The Duality of Computation

The λ̄µµ̃-calculus. Pierre-Louis Curien and Hugo Herbelin put these duali-

ties to work in a very computational way. They used these dualities to show that the

call-by-value reduction strategy (CBV) is dual to the call-by-name reduction strategy

(CBN). To do this they crafted an extension of the λµ-calculus formalized in such

a way that the symmetries are explicit [44]. They are not the first to attempt this.

Andrzej Filinski to our knowledge was the first to investigate dualities with respect

to programming languages in his masters thesis [55]. It is there he investigates the

dualities in a categorical setting. Advancing on this early work Peter Selinger gave a

categorical semantics to the λµ-calculus and then used these semantics to show that

CBV is dual to CBN [120]. However, Selinger’s work did not provide an involution

of duality. In [120] Selinger defines a new class of categories called control categories.

These provide a model for control operators. He takes the usual cartesian closed cat-

egory and enriches it with a new functor modeling classical disjunction. While this

53

is beautiful work we do not go into the details here.

Following Filinski and Selinger are the work of Curien and Herbelin, while

following them is the work of Philip Wadler. Below we discuss Curien and Herbelin’s

work then Wadler’s. Before going into their work we first define call-by-value and

call-by-name reduction.

The call-by-value reduction strategy is a restriction of full β-reduction. It is

defined for the λµ-calculus as follows. We first extend the language of the λµ-calculus

by defining two new syntactic categories called values and evaluation contexts.

v ::= x |λx.t |µα.t
E ::= � |E t | v E | [α]E

Values are the well-formed results of computations. In the λµ-calculus we only con-

sider variables, λ-abstractions, and µ-abstractions as values. The evaluation contexts

are defined by E. They give the locations of reduction and reduction order. They tell

us that one may reduce the head of an application at any moment, but only reduce

the tail of an application if and only if the head has been reduced to a value. This is

called left-to-right CBV and is defined next.

Definition 3.3.1.1.

CBV is defined by the following rules:

(λx.t) v [v/x]t
Beta

(µα.s) v [v/∗α]s
Struct

[α](µβ.s) [α/β]s
Naming

t t′

E[t] E[t′]
Context

A similar definition can be given for right-to-left CBV, but we do not give it here.

54

CBN can now be defined. We use the same definition of values as for CBV,

but we redefine the evaluation contexts.

E ::= � |E t | [α]E |µα.E

Definition 3.3.1.2.

CBN is defined by the following rules:

(λx.t) t′ [t/x]t
Beta

(µα.s) t [t/∗α]s
Struct

[α](µβ.s) [α/β]s
Naming

t t′

E[t] E[t′]
Context

The difference between CBN and CBV is that in CBN no reduction takes place within

the argument to a function. Instead we wait and reduce the argument if it is needed

within a function. If the argument is never used it is never reduced. CBN in general

is less efficient than CBV, but it can terminate more often than CBV. If the argument

to a function is divergent then CBV will never terminate, because it must reduce the

argument to a value, but CBN may terminate if the argument is never used, because

arguments are not reduced.

At this point we would like to give some intuition of why CBV is dual to CBN.

We reformulate an explanation due to Curien and Herbelin in [44]. To understand

the relationship between CBN and CBV we encode CBV on top of CBN using a new

term construct and reduction rule. It is well-known how to encode CBN on top of

CBV, but encoding CBV on top of CBN illustrates their relationship between each

other. Suppose we extend the language of the CBN λµ-calculus with the following

term:

55

t ::= . . . | letx = E in t

This extends the language to allow for terms to contain their evaluation contexts.

Then we add the following reduction rule:

v (letx = � in t) [v/x]t
LetCtx

Using this new term and reduction rule we can now encode CBV on top of CBN.

That is a CBV redex is defined in the following way:

(λx.t)CBV t
′ := t′ (let y = � in (λx.t)y)

Now consider the following redex:

(µx.s) (letx = � in t)

We can reduce the previous term by first reducing the µ-redex, but we can also

start by reducing the let-redex, because µ-abstractions are values. However, the two

reducts obtained from doing these reductions are not always joinable. This forms

a critical pair and shows an overlap between the LetCtx rule and the µ-reduction

rule. This can be overcome by giving priority to one or the other redex. Now if we

give priority to µ-redexes over all other redexes then it turns out that the reduction

strategy will be all CBN, but if we choose to give priority to the let-redexes over

all other redexes then all terms containing let-redexes will be reduced using CBV,

because the let-expression forces the term we are binding to x to be a value. What

does this have to do with duality? Well the let-expression we added to the λµ-calculus

is actually the dual to the µ-abstraction. To paraphrase Curien and Herbelin [44]:

56

The CBV discipline manipulates input in the same way as the λµ-calculus

manipulates output. That is computing t1 t2 can be viewed as filling the

hole of the context t1� with the result of t2 – its value – hence this value

of t2 is an input. This seems dual to passing output values to output ports

in the λµ-calculus.

This tells us that to switch from CBN to CBV we take the dual of the µ-abstraction

suggesting that CBV is dual to CBN and vice versa. This was the starting point of

Curien and Herbelin’s work. They make this relationship more precise by defining

an extension of the λµ-calculus with duals of λ-abstractions and µ-abstractions. This

requires the dual to implication. Let’s define Curien and Herbelin’s extension of

the λµ-calculus and then discuss how they used it to show that CBV is dual to

CBN. Curien and Herbelin called their extension of the λµ-calculus the λ̄µµ̃-calculus.

Despite the ugly name it is a beautiful type theory. Its syntax and reduction rules

are in Figure 19 and its typing rules are in Figure 20.

The new type A−B is the dual to implication called subtraction. It is logically

equivalent to A ∧ ¬B which is the dual to ¬A ∨ B which is logically equivalent to

A→ B . The syntactic category c are called commands. They have the form of 〈v | e〉

where v is a computation and e is its environment. Commands essentially encode an

abstract stack machine directly in the type theory. We can think of e as the stack of

terms to which v will be applied to. It also turns out that logically commands denote

cuts using the cut-rule of the underlying sequent calculus. Values defined by the

syntactic category v come in three flavors: variables, λ-abstractions, µ-abstractions,

57

Syntax:

T ,A,B ,C ::= ⊥ |X |A→ B |A− B
c ::= 〈v | e〉
v ::= x |λx .v |µα.c | e · v
e ::= α | µ̃x .c | v · e | βλ.e

CBV reduction:

〈λx .v1 | v2 · e〉 〈v2 | µ̃x .〈v1 | e〉〉
R Beta

〈µβ.c | e〉 [e/β]c
R Mu

〈v | µ̃x .c〉 [v/x]c
R MuT

〈e2 · v | βλ.e1〉 〈µβ.〈v | e1〉 | e2〉
R CoBeta

c c ′

E [c] E [c ′]
E Ctx

Figure 19. The Syntax and Reduction Rules for the λ̄µµ̃-Calculus

Terms:

Γ, x : A ` x : A |∆
Var

Γ, x : A ` v : B |∆
Γ ` λx .v : A→ B |∆

Lam

c : (Γ ` β : B ,∆)

Γ ` µβ.c : B |∆
Mu

Γ | e : A ` ∆
Γ ` v : B |∆

Γ ` e · v : B − A |∆
CoCtx

Contexts:

Γ |α : A ` α : A,∆
Covar

c : (Γ, x : A ` ∆)

Γ | µ̃x .c : A ` ∆
Comu

Γ ` v : A |∆
Γ | e : B ` ∆

Γ | v · e : A→ B ` ∆
Ctx

Γ | e : B ` β : A,∆

Γ | βλ.e : B − A ` ∆
Colam

Commands:
Γ ` v : A |∆
Γ | e : A ` ∆

〈v | e〉 : (Γ ` ∆)
Cut

Figure 20. The Typing Rules for the λ̄µµ̃-Calculus

58

and co-contexts denoted by e · v . These can be thought of as the computations to

give to the co-λ-abstraction and their output routed to an output port bound by

the co-λ-abstraction. Finally, we have expressions or co-terms which come in four

flavors: co-variables (output ports), µ̃-abstractions, contexts, and co-λ-abstractions.

The µ̃-abstraction is the encoding of the let-expression we defined above. We write

letx = � in v as µ̃x .〈v | e〉 where e is the evaluation context for v . Thus, the µ̃-

abstraction is the dual to the µ-abstraction. Now contexts are commands. These

provide a way of feeding input to programs. Co-λ-abstractions denoted βλ.e are

the dual to λ-abstractions. In stead of taking input arguments they return outputs

assigned to the output port bound by the abstraction. We can see that this is a

rather large reformulation/extension of the λµ-calculus. Just to summarize: Curien

and Herbelin extended the λµ-calculus with all the duals of the constructs of the

λµ-calculus.

Now reduction amounts to cuts logically, and computationally as running these

abstract machine states we are building. Programming and proving amounts to the

construction of these abstract machines. Other then this the reduction rules are

straightforward. The typing algorithm consists of three types of judgments:

Commands: c : (Γ ` ∆)
Terms: Γ ` v : A |∆
Contexts: Γ | e : A ` ∆

As we said early the command typing rule is cut while the judgment for terms and

contexts consist of the left rules and the right rules respectively. The bar | separates

input from output or left from right. Finally, using this type theory Curien and

Herbelin define a duality of the λ̄µµ̃-calculus into itself. Then using this duality they

59

T ,A,B ,C ::= X |A ∧ B |A ∨ B | ¬A
t , a, b, c ::= x | 〈a, b〉 | inl t | inr t | [k]not | (s).α

k , l ::= α | [k , l] | fst k | snd k | not[t] | x .(s)
s ::= t · k

Figure 21. Syntax of the Dual Calculus

show that starting with the CBN λ̄µµ̃-calculus and taking the dual one obtains the

CBV λ̄µµ̃-calculus.

3.3.2 The Dual Calculus

Philip Wadler invented a type theory equivalent to Curien and Herbelin’s λ̄µµ̃-

calculus called the dual calculus [140]. What we mean by equivalent here is that both

correspond to Gentzen’s classical sequent calculus LK, but both type theories are

definitionally inequivalent. The difference between the two type theories is that the

λ̄µµ̃-calculus is defined with only negation, implication, and subtraction. Then using

De Morgan’s laws we can define conjunction and disjunction. However, the dual

calculus is defined with only negation, conjunction, and disjunction. Then we define

implication, which implies we may define λ-abstractions. This is a truly remarkable

feature of classical logic.

The syntax of the dual calculus is defined in Figure 21. It is similar to the

λ̄µµ̃-calculus, consisting of types, terms, coterms (continuations), and statements. As

types we have propositional variables, conjunction, disjunction, and negation. Note

that negation must be a primitive in the dual calculus rather than being defined.

60

Terms in the dual calculus are variables, the introduction form for conjunction called

pairs denoted 〈a, b〉, the introduction forms for disjunction denoted inl t and inr t

which can be read as inject left and inject right respectively. The next term is the

introduction form of negation denoted [k]not. The final term is a binder for coterms

and is the computational correspondent to the left-to-right rule. It is denoted (s).α.

This can be thought of as running the statement s and then routing its output to

the output port α. The continuations or coterms are the duals to terms and consist

of covariables denoted α, copairs denoted [k , l], the duals of inject-left and inject-

right called first and second denoted fst k and snd k respectively. The next coterm

is the elimination form of negation denoted not[t] which can be thought of as the

continuation which takes as input a term of a negative formula and routes its output

to some output port. Finally, the dual to binding an output port is binding an input

port. This is denoted x .(s). Now statements are the introduction of a cut and are

denoted t · k . Computationally, we can think of this as a command which runs the

term t and routes its output to the continuation k which continues the computation.

The reduction rules for the dual calculus are in Figure 22 and the typing

rules are in Figure 23. The reduction rules correspond to cut-elimination and can be

thought of a simplification process on proofs. Computationally they can be thought

of as running programs with their continuations. We derive three judgments from the

typing rules for terms, coterms, and statements. They have the following forms:

Terms : Γ ` ∆← t → A
Coterms : Γ ` ∆← k ← A
Statements : Γ ` ∆← s

The syntax of judgments are different from Wadler’s original syntax. Here we use

61

(a · α).α a
EtaR

x .(x · k) k
EtaL

(s).α · k [k/α]s
BetaR

a · x .(s) [a/x]s
BetaL

[k]not · not[a] a · k
BetaNeg

inl a · [k , l] a · k
BetaCoProd1

inr a · [k , l] a · l
BetaCoProd2

〈a, b〉 · fst k a · k
BetaProd1

〈a, b〉 · snd k b · k
BetaProd2

Figure 22. Reduction Rules for the Dual Calculus

the arrows to indicate data flow. One meaning for the judgment Γ ` ∆ ← t → A is

that when all the variables in Γ have an input in t then computing t either returns

a value of type A or routes its output to a covariable in ∆. One meaning for the

judgment Γ ` ∆ ← k ← A is when the continuation gets input for all the variables

in Γ and gets an input of A it computes a value which is stored in an output port in

∆. Finally, the meaning of Γ ` ∆← s is that after the s is done computing it stores

its output in an output port in ∆. Each judgment has a logical meaning. The typing

rules for terms correspond to the right rules of LK, and the typing rules correspond

to the left rules of LK, while the judgment for statements correspond to the cut rule

of LK.

It has been said that Wadler invented the dual calculus when reading Curien

and Herbelin’s paper and found the subtraction operator confusing. This was his

reason for going with conjunction and disjunction instead of implication. He knew

62

Terms:

Γ, x : A ` ∆← x → A
t AxR

Γ ` ∆← a → A
Γ ` ∆← b → B

Γ ` ∆← 〈a, b〉 → A ∧ B
t Prod

Γ ` ∆← a → A

Γ ` ∆← inl a → A ∨ B
t CoProdl

Γ ` ∆← b → B

Γ ` ∆← inr b → A ∨ B
t CoProdr

Γ ` ∆← k ← A

Γ ` ∆← [k]not→ ¬A
t NegR

Γ ` ∆, α : A← s

Γ ` ∆← (s).α→ A
t IR

Coterms:

Γ ` ∆, α : A← α← A
ct AxL

Γ ` ∆← k ← A
Γ ` ∆← l ← B

Γ ` ∆← [k , l]← A ∨ B
ct CoProd

Γ ` ∆← k ← A

Γ ` ∆← fst k ← A ∧ B
ct ProdFst

Γ ` ∆← k ← B

Γ ` ∆← snd k ← A ∧ B
ct ProdSnd

Γ ` ∆← t → A

Γ ` ∆← not[t]← ¬A
ct NegL

Γ, x : A ` ∆← s

Γ ` ∆← x .(s)← A
ct IR

Statements:
Γ ` ∆← t → A
Γ ` ∆← k ← A

Γ ` ∆← t · k
st Cut

Figure 23. Typing Rules for the Dual Calculus

63

that conjunction and disjunction are duals in a well-known way unlike implication

and subtraction. Then using negation, conjunction, and disjunction he defined impli-

cation, λ-abstractions, and application. Now the definition of these differs depending

on which reduction strategy is used.

Definition 3.3.2.3.

Under CBN Implication, λ-abstractions, and application are defined in the following

way:

A→ B := (¬A) ∨ B
λx .t := (inl ([x .((inr t) · α)]not) · α).α
t k := [not[t], k]

Under CBV Implication, λ-abstractions, and application are defined in the following

way:

A→ B := ¬(A ∧ ¬B)
λx .t := [z .(z · fst (x .(z · snd (not[t]))))]not
t k := not[〈t , [k]not〉]

Notice that the two ways of defining implication in the previous definition are

duals. Wadler used the dual calculus to show that CBV is dual to CBN in [140] just

like Curien and Herbelin did in [44]. However, in a follow up paper Wadler showed

that his duality of the dual calculus into itself is an involution [141]. This was a step

further than Selinger. While Curien and Herbelin’s duality was an involution they

did not prove it. In his follow up paper Wadler also showed that the CBV λµ-calculus

is dual to the CBN λµ-calculus by translating it into the dual calculus and taking the

dual of the translation, and then translating back to the λµ-calculus.

64

CHAPTER 4

DEPENDENT TYPE THEORY

All the type theories we have seen thus far consist of what are called “non-

dependent types”. These are types which do not depend on terms. System Fω is an

advance where there is a copy of STLC at the type level, but this is not a dependency,

hence, system Fω is still simply typed. So it is natural to wonder if it is beneficial

to allow types to depend on terms. The answer it turns out is yes. Much like the

history of System F, dependent types came out of two fields: programming language

research and mathematical logic. As we mentioned above, the first practical applica-

tion of the computational trinity was a system called Automath which was pioneered

by de Bruijn in the 1970’s [27]. It also turns out that Automath’s core type theory

employed dependent types, and many claim it to be the beginning of the research

area under the umbrella term “dependent type theory”. Since the work of de Bruijn

a large body of research on dependent type theory has been conducted. We start

with the work of Per Martin-Löf.

4.1 Martin-Löf’s Type Theory

Martin-Löf is a Swedish mathematical logician and philosopher who was in-

terested in defining a constructive foundations of mathematics. The foundation he

defined he called Type Theory, but what is now referred to as Martin-Löf’s Type

Theory [53, 89]. It is considered the first full dependent type theory. Type The-

ory is defined by giving a syntax and deriving three judgments. Martin-Löf placed

65

S ::= Type |True
T ,A,B ,C ::= X | > | ⊥ |A + B |Πx : A.B |Σx : A.B
t , s , a, b, c ::= x | tt |λx : A.t | t1 t2 | (t1, t2) | case s of x , y .t | case s of x .t1, y .t2 |

abort

Figure 24. The syntax of Martin-Löf’s Type Theory

particular attention to judgments. In Type Theory types can be considered as specifi-

cations of programs, propositions, and sets. Martin-Löf then stresses that one cannot

know the meaning of a type without first knowing what its canonical members are,

knowing how to construct larger members from the canonical members, and being

able to tell when two types are equal. To describe this meaning he used judgments.

The judgments are derived using inference rules just as we have seen, and they tell

us exactly which elements are canonical and which can be constructed from smaller

members. There is also an equality judgment which describes how to tell when two

terms are equal. Martin-Löf’s Type Theory came in two flavors: intensional type

theory and extensional type theory. The difference amounts to equality types and

whether the equality judgment is distinct from the propositional equality or not. The

impact of intensional vs extensional is quite profound. The latter can be given a

straightforward categorical model, while the former cannot. We first define a basic

core of Martin-Löf’s Type Theory and then we describe how to make it intensional

and then extensional.

The syntax of Martin-Löf’s Type Theory is defined in Figure 24. The language

66

consists of sorts S denoted Type and True. The sort Type is a type universe and has

as inhabitants types. It is used to classify which things are valid types. The sort

True will be used when treating types as propositions to classify which formulas are

true. The second part of the language are types T . Types consist of propositional

variables X , true or top >, false or bottom ⊥, sum types A + B which correspond to

constructive disjunction, dependent products Πx : A.B which correspond to function

types, universal quantification, and implication, and disjoint union Σx : A.B which

correspond to pairs, constructive conjunction and existential quantification. We can

see that dependent products and disjoint union bind terms in types, hence, types

do depend on terms. The third and final part of the language are terms. We only

comment on the term constructs we have not seen before. The term tt is the inhabitant

of > and is called unit. We have a term which corresponds to a contradiction called

abort. Finally, we have two case constructs: case s of x , y .t and case s of x .t1, y .t2. The

former is the elimination form for disjoint union and says if s is a pair then substitute

the first projection for x in t and the second projection for y in t . Having the ability

to project out both pieces of a pair results in the disjoint union also called Σ-types

being strong. A weak disjoint union type is one in which only the first projection of a

pair is allowed . The second case construct case s of x .t1, y .t2 is the elimination form

for the sum type. This says that if s is a term of type A + B , but is an inhabitant of

the type A then substitute a for x in t1, or if s is an inhabitant of B substitute it for

y in t2. This we will see is the elimination form for constructive disjunction.

In dependent type theory we replace arrow types A → B with dependent

67

product types Πx : A.B , where B is allowed to depend on x . It turns out that we can

define arrow types as Πx : A.B when x is free in B ; that is, B does not depend on x .

We will often abbreviate this by A → B . Recall that the arrow type corresponds to

implication. The dependent product type also corresponds to universal quantification,

because it asserts for all terms of type A we have B , or for all proofs of the proposition

A we have B . Additionally, in dependent type theory we replace cartesian product

A × B by disjoint unions Σx : A.B where B may depend on x . The inhabitants of

this type are pairs (a, b) where b may depend on a. Now simple pairs can be defined

just like arrow types are defined using product types. The type A× B is defined by

Σx : A.B where B does not depend on x . Then b in the pair (a, b) does not depend

on a. We can define projections for simple pairs as follows:

π1 t := case t of x , y .x
π2 t := case t of x , y .y .

The kinding rules are defined in Figure 25. These rules derive the judgment

Γ ` T : Type which describes all well-formed types – inhabitants of Type. Now types

are also propositions of intuitionistic logic. The judgment Γ ` T : True describes

which propositions are true constructively. The rules deriving this judgment are in

Figure 26. Note that while ⊥ is a type, it is not a true proposition. This judgment

validates the correspondence between types and propositions. In fact we could have

denoted Πx : A.B as ∀x : A.B and Σx : A.B as ∃x : A.B . The typing rules are defined

in Figure 27. We include the typing rules for the derived forms for arrow types and

cartesian products. These can be derived as well. The rules here are straightforward,

so we only comment on the elimination rule for sum types. The rule is defined as

68

Γ `⊥: Type
K Bottom

Γ ` > : Type
K Unit

Γ, x : A ` B : Type

Γ ` Σx : A.B : Type
K Ext

Γ ` A : Type
Γ ` B : Type

Γ ` A× B : Type
K Prod

Γ, x : A ` B : Type

Γ ` Πx : A.B : Type
K Pi

Γ ` A : Type
Γ ` B : Type

Γ ` A→ B : Type
K Arrow

Γ ` A : Type
Γ ` B : Type

Γ ` A + B : Type
K Coprod

Figure 25. Kinding for Martin-Löf’s Type Theory

Γ ` > : True
LTrue

Γ ` A : True
Γ ` B : True

Γ ` A× B : True
LProd

Γ, x : A ` B : True

Γ ` Πx : A.B : True
LForalli

Γ ` t : A
Γ ` Πx : A.B : True

Γ ` [t/x]B : True
LForalle

Γ,X : True ` A : True

Γ ` X → A : True
LImpi

Γ ` X : True
Γ ` X → A : True

Γ ` A : True
LImpe

Γ ` A : True

Γ ` A + B : True
LOri1

Γ ` B : True

Γ ` A + B : True
LOri2

Γ ` A + B : True
Γ,A : True ` C : True
Γ,B : True ` C : True

Γ ` C : True
LOre

Γ ` t : A
Γ ` [t/x]B : True

Γ ` Σx : A.B : True
LExti

x fresh in C
Γ ` Σx : A.B : True
Γ, x : A,B : True ` C : True

Γ ` C : True
LExte

Figure 26. Validity for Martin-Löf’s Type Theory

69

Γ ` tt : >
Unit

Γ ` A : Type

Γ, x : A ` x : A
Var

Γ ` t : A
Γ ` b : [t/x]B

Γ ` (t , b) : Σx : A.B
Sum

x , y fresh in C
Γ ` s : Σx : A.B
Γ, x : A, y : B ` c : C

Γ ` case s of x , y .c : C
Case1

Γ ` a : A
Γ ` b : B

Γ ` (a, b) : A× B
Prod

Γ ` c : A× B

Γ ` π1 c : A
Prod1

Γ ` c : A× B

Γ ` π2 c : B
Prod2

Γ, x : A ` t : B

Γ ` λx : A.t : Πx : A.B
Pi

Γ ` t ′ : A
Γ ` t : Πx : A.B

Γ ` t t ′ : [t ′/x]B
App1

x fresh in B
Γ, x : A ` t : B

Γ ` λx : A.t : A→ B
Arrow

Γ ` t ′ : A
Γ ` t : A→ B

Γ ` t t ′ : B
App2

Γ ` B : Type
Γ ` a : A

Γ ` a : A + B
CoProd1

Γ ` A : Type
Γ ` b : B

Γ ` b : A + B
CoProd2

Γ ` s : A + B
Γ, x : A ` c : C
Γ, y : B ` c ′ : C

Γ ` case s of x .c, y .c ′ : C
Case2

Γ ` A : Type

Γ, x :⊥` abort : A
Abort

Γ ` a : A
Γ ` a = b : A

Γ ` b : A
Conv

Figure 27. Typing Rules for Martin Löf’s Type Theory

70

Γ ` a : A

Γ ` a = a : A
Eq Refl

Γ ` a = b : A

Γ ` b = a : A
Eq Sym

Γ ` a = b : A
Γ ` b = c : A

Γ ` a = c : A
Eq Trans

Γ ` a : >
Γ ` a = tt : >

Eq Unit

Γ ` a : A
Γ ` b : B

Γ ` a = π1 (a, b) : A
Eq Fst

Γ ` a : A
Γ ` b : B

Γ ` b = π2 (a, b) : B
Eq Snd

Γ ` t : A
Γ, x : A ` b : B

Γ ` (λx : A.b) t = [t/x]b : [t/x]B
Eq Beta

Γ ` t1 : Πx : A.B

Γ ` t1 = λx : A.(t1 x) : Πx : A.B
Eq Eta

Γ ` a : A
Γ, x : A ` c : C
Γ, y : B ` c ′ : C

Γ ` case a of x .c, y .c ′ = [a/x]c : [a/x]C
Eq Case1

Γ ` b : B
Γ, x : A ` c : C
Γ, y : B ` c ′ : C

Γ ` case b of x .c, y .c ′ = [b/x]c ′ : [b/x]C
Eq Case2

Γ ` t : T
Γ ` a : [t/x]A
Γ, x : T , y : A ` b : B

Γ ` case (t , a) of x , y .b = [t/x][a/y]b : [t/x][a/y]B
Eq Case3

Figure 28. Equality for Martin-Löf’s Type Theory

71

Γ ` s : A + B
Γ, x : A ` c : C
Γ, y : B ` c ′ : C

Γ ` case s of x .c, y .c ′ : C
Case2.

We mentioned above that this rule corresponds to the elimination form for construc-

tive disjunction. This rule tells us that to eliminate A ∨ B we must assume A and

prove C and then assume B and prove C , but this is exactly what the above rule

tells us. The computational correspondence is that the case construct gives us away

to case split over terms of two types.

As it stands Martin-Löf’s Type Theory is a very powerful logic. The axiom of

choice must be an axiom of set theory, because it cannot be proven from the other

axioms. The axiom of choice states that the cartesian product of a family of non-

empty sets is non-empty. Martin-Löf showed in [89] that the axiom of choice can

be proven with just the theory we have defined thus far in this section. Thus, one

could also prove the well-ordering theorem. This is good, because it shows that Type

Theory is powerful enough to be a candidate for a foundation of mathematics. This is

also good for dependent type based verification, because we can formulate expressive

specifications of programs.

The final judgment of Martin-Löf’s Type Theory is the definitional equality

judgment. It has the form Γ ` a = b : A. The rules deriving this judgment tell us

when we can consider two terms as being equal. Then two types whose elements are

equal based on this judgment are equal. The equality rules are defined in Figure 28

where we leave the congruence rules implicit for presentation purposes.

72

These rules look very much like full β-reduction, but these are equalities. They

are symmetric, transitive, and reflexive unlike reduction which is not symmetric. This

is a definitional equality and it can be used during type checking implicitly at will

using the following rule:

Γ ` a : A
Γ ` a = b : A

Γ ` b : A
Conv

We now describe when Martin-Löf’s Type Theory is extensional or intensional.

Extensional Type Theory. In extensional type theory our equality judg-

ment is not distinct from propositional equality. To make Martin-Löf’s type theory

extensional we add the following rules:

Kinding Typing
Γ ` A : Type
Γ ` a : A
Γ ` b : A

Γ ` IdA a b : Type

Γ ` a = b : A

Γ ` tt : IdA a b

Γ ` t : IdA a b

Γ ` a = b : A

Using these rules we can prove all of the usual axioms of identity: reflexivity, transi-

tivity, and symmetry [89]. Notice that these rules collapse definitional equality into

propositional equality. The right most typing rule is where extensional type theory

gets its power. This rule states that propositional equations can be used interchange-

ably anywhere. This power comes with sacrifice, some meta-theoretic properties one

may wish to have like termination of equality and decidability of type checking no

longer hold [128, 129].

Intensional Type Theory. Now to make Martin-Löf’s Type Theory inten-

sional we add the following rules:

73

Kinding: Typing:

Γ ` a : A

Γ ` r(a) : IdA a a

Γ ` c : IdA a b Γ, x : A ` d : B(x , x , r(x))
Γ, x : A, y : A, z : IdA x y ` B(x , y , z) : Type

Γ ` J(d , a, b, c) : B(a, b, c)

Equality:
Γ ` a : A

Γ ` J(d , a, a, r(a)) = d a : B(a, a, r(a))

As we can see here propositional equality is distinct from the definitional equality

judgment. In the above rules r(a) is the constant denoting reflexivity, and J(a, b, c, d)

is just an annotation on d with all the elements of the equality. Using these we can

prove reflexivity, transitivity, and symmetry. We do not go into any more detail

here between intensional and extensional type theory, but a lot of research has gone

into understanding intensional type theory. Models of intensional type theory are

more complex than extensional type theory. Recently, there has been an upsurge of

interest in intensional type theory due to a new model for type theory where types

are interpreted as homotopies [16]. See [128, 129, 68, 70] for more information.

We said at the beginning of this section that we would only define a basic core

of Martin-Löf’s type theory. We have done both for intensional Type Theory and

extensional Type Theory, but Martin-Löf included a lot more than this in his classic

paper [89]. He included ways of defining finite types as well as arbitrary infinite types

called universes much like Type. He also included rules for defining inductive types

which in the design of programming languages are very useful [48].

The universe Type contains all well-formed types. It is quite natural to think

of Type as a type itself. This is called the Type : Type axiom. In fact Martin-Löf did

that in his original theory, but Girard was able to prove that such an axiom destroys

74

the consistency of the theory. Girard was able to define the Burali-Forti paradox in

Type Theory with Type : Type [35, 36]. Now Type : Type is inconsistent when the

type theory needs to correspond to logic, but if it is used purely for programming it

is a very nice feature. It can be used in generic programming [28]. In Martin-Löf’s

Type Theory without the Type : Type axiom types are program specifications, hence,

the theory can be seen as a terminating functional programming language [97].

4.2 The Calculus of Constructions

An entire class of type theories called Pure Type Systems may be expressed

by a very simple core type theory, a set of type universes called sorts, a set of axioms,

and a set of rules. The rules specify how the sorts are to be used, and govern what

dependencies are allowed in the type theory. There is a special class of eight pure

type systems with only two sorts called � and ∗1 called the λ-cube [17]. The following

expresses the language of this class of types theories.

Definition 4.2.0.1.

The language of the λ-cube:

t , a, b ::= � | ∗ | c | x | t1 t2 |λx : t1.t2 |Πx : t1.t2

Notice in the previous definition that terms and types are members of the same

language. They are not separated into two syntactic categories. This is one of the

beauties of pure type systems. They have a really clean syntax, but this beauty comes

with a cost. Some collapsed type theories are very hard to reason about.

1 It is also standard to called these Type and Prop respectively. Type is the same as we
have seen above and Prop classifies logical propositions.

75

A pure type system is defined as a triple (S,A,R), where S is a set of sorts

and is a subset of the constants of the language, A is a set of axioms, and R is a set

of rules. In the λ-cube {∗,�} ⊆ S, A = {(∗,�)}, and R varies depending on the

system. The axioms stipulate which sorts the constants of the language have. In the

λ-cube there are at least two constants � and ∗. The set of rules are subsets of the

set {(∗, ∗), (∗,�), (�, ∗), (�,�)}. These rules represent four forms of dependencies:

i. terms depend on terms: (∗, ∗)
ii. terms depend on types: (�, ∗)
iii. types depend on terms: (∗,�)
iv. types depend on types: (�,�)

In the λ-cube terms always depend on terms, hence (∗, ∗) ∈ R for any system. For

example, (λx : t .a) b is a term depending on a term and λx : Type.b where b is a

type is a type depending on a type. An example of a term depending on a type is

the Λ-abstraction of system F. Finally, an example of a type depending on a term is

the product type of Martin-Löf’s Type Theory. Now using the notion of dependency

we define the core set of inference rules in the next definition.

Definition 4.2.0.2.

Given a system of the λ-cube (S,A,R) the inference rules are defined as follows:

(λx : t .b) a [a/x]b
Beta

(c, s) ∈ A
· ` c : s

Axioms

Γ ` a : s

Γ, x : a ` x : a
Var

Γ ` a : b
Γ ` a ′ : s (x : a ′) 6∈ Γ

Γ, x : a ′ ` a : b
Weakening

Γ ` a ′ : b
Γ ` a : Πx : b.b ′

Γ ` a a ′ : [a ′/x]b ′
App

76

Γ ` a : b
Γ ` b ′ : s b ≡β b ′

Γ ` a : b ′
Conv

Γ ` a : s1

Γ, x : a ` b : s2 (s1, s2) ∈ R
Γ ` Πx : a.b : s2

Pi

Γ, x : a ` b : b ′ Γ ` Πx : a.b ′ : s

Γ ` λx : a.b : Πx : a.b ′
Lam

In the previous definition s ranges over S, and we left out the congruence rules

for reduction to make the definition more compact. However, either they need to be

added or evaluation contexts do, for a full treatment of reduction. It turns out that

this is all we need to define every intuitionistic type theory we have defined in this

part of the thesis including a few others we have not defined. However, Martin-Löf’s

Type Theory is not definable as a pure type system. Taking the set R to be {(∗, ∗)}

results in STLC. System F results from taking the set R = {(∗, ∗), (�, ∗)}. System

Fω is definable by the set R = {(∗, ∗), (�, ∗), (�,�)}.

A good question now to ask is what type theory results from adding all possible

rules to R? That is what type theory is defined by R = {(∗, ∗), (∗,�), (�, ∗), (�,�)}?

This type theory is clearly a dependent type theory and is called the Calculus of

Constructions (CoC). It was first defined by Thierry Coquand in [38]. It is the most

powerful of all the eight pure type system in the λ-cube. We have seen one formulation

of CoC as a pure type system, but we give one more.

It turns out that CoC is really just an extension of system Fω. We do not have

to define it using a collapsed syntax – even though it is prettier. We call the extension

of system Fω to CoC separated CoC to distinguish it from the collapsed versions. The

syntax for separated CoC is in Figure 292. This formulation simply extends system

2We do not have a citation for where this formulation can be found. It was learned

77

S ::= ∗
K ::= Type |ΠX : K .K ′ |Πx : T .K
T ::= X |λX : K .T |λx : T1.T2 |T1 T2 |T t |ΠX : K .T |Πx : T .T ′

t ::= x |λx : T .t |λX : K .t | t1 t2 | t T

Figure 29. Syntax for the Separated Calculus of Constructions

Γ ` Type : ∗
S Type

Γ,X : K ` K ′ : ∗
Γ ` ΠX : K .K ′ : ∗

S Prod1
Γ, x : T ` K : ∗

Γ ` Πx : T .K : ∗
S Prod2

Figure 30. Sorting Rules for the Separated Calculus of Constructions

Fω with dependency. Due to the separation of the language we increase the number

of judgments. We now have four judgments: sorting, kinding, typing, and equality.

They are defined as one would expect. We do not go into much detail here. The

sorting rules are defined in Figure 30, the kinding rules are defined in Figure 31, the

typing rules in Figure 32, and finally the equality rules in Figure 33. We can see that

this formulation makes sense from the PTS perspective, because system Fω has the

following set of rules R = {(∗, ∗), (�, ∗), (�,�)} and we need to make it dependent.

That is we need types to depend on terms. So we add (∗,�) to R and we obtain

CoC.

We have now introduced every type theory we need for the remainder of this

by the author from Hugo Herbelin at the 2011 Oregon Programming Language Summer
School.

78

Γ,X : Type,Γ′ ` X : Type
K Var

Γ, x : T1 ` T2 : Type

Γ ` Πx : T1.T2 : Type
K Prod1

Γ,X : K ` T : Type

Γ ` ΠX : K .T : Type
K Prod2

Γ ` T1 : Type
Γ, x : T1 ` T2 : K

Γ ` λx : T1.T2 : Πx : T1.K
K Lam1

Γ ` K1 : ∗
Γ,X : K1 ` T : K2

Γ ` λX : K1.T : ΠX : K1.K2

K Lam2

Γ ` T1 : ΠX : K1.K2

Γ ` T2 : K1

Γ ` T1 T2 : K2

K App1

Γ ` T : Πx : T .K
Γ ` t : T

Γ ` T t : [t/x]K
K App2

Figure 31. Kinding Rules for the Separated Calculus of Constructions

Γ ` T : Type

Γ, x : T ,Γ′ ` x : T
Var

Γ ` T1 : Type
Γ, x : T1 ` t : T2

Γ ` λx : T1.t : Πx : T1.T2

Lam

Γ ` t1 : Πx : T1.T2

Γ ` t2 : T1

Γ ` t1 t2 : [t2/x]T2

App

Γ ` K : ∗
Γ,X : K ` t : T

Γ ` λX : K .t : ΠX : K .T
TypeAbs

Γ ` T : K
Γ ` t : ΠX : K .T ′

Γ ` t T : [T/X]T ′
TypeApp

T1 ≈ T2

Γ ` t : T1

Γ ` t : T2

Conv

Figure 32. Typing Rules for the Separated Calculus of Constructions

79

(λx : T .t) t ′ ≈ [t ′/x]t
R Beta1

(λX : K .t) T ≈ [T/X]t
R Beta2

(λx : T .T ′) t ≈ [t/x]T
R Beta3

(λX : K .T) T ′ ≈ [T ′/X]T
R Beta4

t ≈ t ′

λx : T .t ≈ λx : T .t ′
R Lam1

T ≈ T ′

λX : K .T ≈ λX : K .T ′
R Lam2

T ≈ T ′

λx : A.T ≈ λx : A.T ′
R Lam3

t1 ≈ t ′1
t1 t2 ≈ t ′1 t2

R App1
t2 ≈ t ′2

t1 t2 ≈ t1 t ′2
R App2

t1 ≈ t2

T t1 ≈ T t2

R App3
T1 ≈ T2

T1 t ≈ T2 t
R App4

t ≈ t ′

t T ≈ t ′T
R TypeApp1

T1 ≈ T2

T T1 ≈ T T2

R TypeApp2
T1 ≈ T2

T1 T ≈ T2 T
R TypeApp3

Figure 33. The Equality for the Separated Calculus of Constructions

part of thesis. So far we have taken a trip down the rabbit hole of type theory, from

the early days of type theory all the way to modern type theory. It is now time to

see what we can use these for in programming language research.

80

CHAPTER 5

DEPENDENT TYPES IN PRACTICE

Type theories are wonderful core languages for programming languages. Many

programming languages have been created based on type theories. Some examples

are Haskell, OCaml, ML, ACL2, Isabelle, Coq, Agda, Epigram, Guru and Idris. In

fact there has been an entire book written on using type theory for programming by

Benjamin Pierce [104]. Programming languages are defined with a goal in mind. Some

programming languages are general purpose languages and others are domain specific.

For example, ML, Haskell, Epigram, Idris, Guru and OCaml are examples of general

purpose programming languages. ACL2, Isabelle, Coq, and Agda are more domain

specific, because they are proof assistants. New programming languages are designed

usually to provide new advancements in the field. These advancements usually arise

from programming language research or research on type theory. In this section we

discuss the current applications of dependent type theories in both proof assistants

and as cores to general purpose functional programming languages. We also discuss

and give some motivation for using dependent types in the design of general purpose

functional programming languages.

The latest big advancement that has resulted in a surge of new language

designs is using dependent types to verify properties of programming languages. To

cite just a few references [139, 26, 90, 9, 98, 130, 87]. Now dependent types are very

powerful and provide a rich environment for verification, but they are very hard to

81

reason about. So it is natural to wonder if we can obtain some of the features of

dependent type theories without having to adopt full dependent types. This is the

chosen path the inventors of Haskell took. Tim Sheard showed that an extension of

system Fω is a strong enough type theory to obtain some features that dependent

types yield [123]. He defined a language called Ω which is based off of system Fω.

It has also been shown that system Fω extended with the natural numbers can be

used to state some nice properties of programs. One example is checking array out

of bounds violations during type checking versus during run-time. The kind of types

which allow the encoding of these types of features are called indexed types and are

investigated in [56, 151]. Indexed types are just types which depend on some data.

However, this data is in no way connected to the language of terms. This directly

implies some indexed types are indeed definable in system Fω, while other indexed

types may require an extension of the type language with other typing features, e.g.

existential types, natural numbers, etc. It has been conjectured that indexed types

may be computationally as powerful as dependent types. However, to make indexed

types as strong as dependent types the resulting type system would be very cluttered.

One would have to add a lot of new operators and duplications at the type level.

Another approach that provides dependent like features to a simple type theory are

Generalized Algebraic Data Types (GADT) [147]. These have been added to Haskell

[72]. These provide a way of guarding recursive data types. The main feature of

GADTs are enforcement of local constraints.

There are alternatives to type-based verification. A large body of work has

82

been done using model checking and testing to verify correctness of programs we cite

only a few [11, 15, 39, 78, 150]. However, these are external tools while dependent

types are part of the programming language itself. There has been some work on

automated theorem proving using dependent types. Alasdair Armstrong shows in [14]

that automated theorem provers can work in harmony with dependent type theory.

One thing this accomplishes is that repetitive trivial proofs can be done automatically.

This work also shows that the research on dependent type theory benefits from the

work on automated theorem proving. We believe that dependent type theories are,

however, the answer. They are more or just as powerful as the alternatives in a

concise and elegant fashion. They can be used as the core of proof assistants, general

purpose programming languages, domain specific languages, and an entire arsenal of

features can be encoded in them.

There are several well-known proof assistants based on dependent type theory.

One of the first is called NuPrl which is based on Martin-Löf’s Type Theory [34].

The proof assistant Coq is another proof assistant and is based on an extension of

Coquand’s CoC called the Calculus of Inductive Constructions [134]. Coq has been

used to verify the correctness of very large scale mathematics and programs. The

proof of the four colour theorem has been fully checked in it [62]. A C compiler

has been formally verified with in Coq [85, 84]. This project is called CompCert.

Agda is the second proof assistant based on Martin-Löf’s Type Theory. However,

we are not aware of any large scale mathematics in Agda. Finally, Twelf is a proof

assistant based on a restricted version of Martin-Löf’s Type Theory called LF [102].

83

More information on proof assistants can be found in [58]. These projects show that

dependent types are powerful enough to do real-world large scale mathematics, but

what about general purpose programming languages?

The number one application of dependent types in general purpose program-

ming languages is type based verification of programs. Hongewi Xi has done a large

amount of work on this topic. He has shown that array bounds checks can be elim-

inated when using dependent types [148]. They can be eliminated by defining the

type of arrays to include their size. Then all programs which manipulate arrays must

respect the arrays size constraints which are encoded in the type. Xi shows in [146]

that dependent types can be used to eliminate dead code in the form of unreachable

branches of case-expressions. He derives constraints based on the patterns and the

type of the function being defined. Then through type checking branches can actually

be eliminated. All of this and more can be found in Xi’s thesis [149].

One promising idea is to take a very expressive dependent type theory and

add general recursion and Type : Type. Then, either identify through a judgment or

syntactically identify a sublanguage of the dependent type theory which is consistent.

This consistent sublanguage will correspond to a logic by computational trinity, and

is called the proof fragment. Garrin Kimmel et al. show in [74] that crafting such

a type theory where the proof fragment is syntactically separated from the general

purpose programming language can be done and provides interesting features. The

language they use is called Sep3 which stands for Separation of Proof and Program.

Kimmel uses Sep3 to verify the correctness of a call-by-value λ-calculus interpreter.

84

The unique feature of Sep3 is that it allows for constraints to be verified about non-

terminating programs. All the proof assistants we have seen are all terminating.

That is, all programs one writes in them are terminating. This makes it very difficult

to formalize and verify properties of non-terminating programs. However, Sep3 is a

language which allows for non-terminating programs to be defined in the programming

language and even be mentioned in propositions. This is called freedom of speech. It

turns out that the proof fragment can be completely erased after type checking. This

means that proofs are really just specificational. This erasing is done by defining a

meta-level function called the eraser [88]. The erasure was investigated in a similar

setting as Sep3 in [124]. It is then applied to a program after being type checked.

This will make running programs more efficient. Sep3 also contains Type : Type this

axiom while inconsistent is wonderful for programming. It is shown in [28] that this

axiom can be used to encode lots of extra programming features. Type : Type is also

very useful for generic programming. This axiom, which allows for large eliminations,

that is types defined by recursion, allow for the definition of very generic programs.

An example is a completely generic zipwith function. This function would take a

function of arbitrary arity, two list of equal length, and returns a list of the same

lengths as the input, where the operator is applied to the two lists pairwise. This has

actually been done in Sep3 although it was not published.

All this work shows that dependent types need to be in main stream program-

ming. They provide ways to fully verify the correctness of programs thus eliminating

bugs. One unique feature of dependent types are that they are first class citizens of

85

the programming language. This allows for programmers to prove properties of their

programs in the same language they wrote them in, thus eliminating the need to learn

and use external tools. Dependent type theories correspond to logics by the compu-

tational trinity, and can be used to proof check large scale mathematics. Dependent

types are the future of programming languages.

86

CHAPTER 6

METATHEORY OF TYPE THEORIES

In this section we discuss how to reason about type theories at the meta-level.

There are many properties that one might wish to prove about a type theory, but the

property we will concentrate on is consistency of type theories. The mathematical

tools we discuss in this section have many applications not just consistency. However,

proving consistency gives a clear view of how to use these mathematical tools.

We have said several times that if a type theory is to correspond to a logic

then it must be consistent. Consistency tells us that if a theorem can be proven,

then it is true with respect to some semantics. To show a type theory consistent it is

enough to show that it is weakly normalizing [126].

Definition 6.0.0.3.

A type theory is weakly normalizing if and only for all terms t there exists a term

t′ such that t ∗ t′ and there does not exists any term t′′ such that t′ t′′. We call

t′ a normal form.

Loosely put, based on the computational trinity terms correspond to proofs and re-

duction corresponds to cut-elimination. We know that if all proofs can be normalized

using cut then we know that the logic is consistent. Now Gentzen actually showed

that, if all proofs can be normalized using cut elimination no matter what order the

cuts are done, then the logic is consistent, but weak normalization still leaves open

the possibility that a proof might have an infinite reduction sequence. Based on this

87

fact some require their type theories to be strongly normalizing.

Definition 6.0.0.4.

A type theory is strongly normalizing or terminating if and only for all terms t there

are no infinite descending chains beginning with t. That is, it is never the case that

t t1 t2 · · · .

Strong normalization gives a tighter correspondence with cut elimination then weak

normalization, because there are no chances of an infinite cut-elimination process

[126]. However, weak normalization is enough. We just need to know that a term can

be normalized.

It turns out that for all simply typed type theories weak normalization actually

implies strong normalization [125]. This turns out to be quite a profound result,

because it is harder to prove strong normalization than it is weak normalization. If

weak implies strong then we never have to do the harder proof. There is a long

standing conjecture about weak normalization implying strong normalization called

the Barendregt-Geuvers-Klop conjecture [126]. They conjectured that for any PTS

weak normalization implies strong normalization. Now we already know that weak

normalization implies strong normalization for simply typed theories. These are the

class of PTS’ where their set of rules are a subset of {(∗, ∗), (�,�), (�, ∗), (�,�)}.

However, it is unknown whether weak implies strong normalization for the class of

dependent PTS’.

Gödel’s famous theorems tell us that to prove consistency of a theory one must

use a more powerful theory than the one that is being proven consistent. Thus, to

88

reason about a type theory we translate the theory into a more powerful theory. We

call this more powerful theory the semantics of the type theory and it can be thought

of as giving meaning to the type theory. The most difficult task is choosing what

semantics to give to the type theory under consideration. Throughout the remainder

of this section we summarize several possible semantics to give to type theories.

6.1 Hereditary Substitution

In [110] Prawitz shows that using a lexicographic combination of the structural

ordering on intuitionistic propositional formulas and the structural ordering on proofs,

propositional intuitionistic logic can be proven consistent. This implies that STLC

can be proven consistent using the same ordering. Indeed it can be [60, 10, 86].

These proofs have a particular structure and are completely constructive. Kevin

Watkins was the first to make their constructive content explicit [143]. He examined

these proofs and defined a function called the hereditary substitution function, which

captures the constructive content of these proofs. Following Watkins, Robin Adams

did the same for dependent types [6].

Intuitively, the hereditary substitution function is just like ordinary capture

avoiding substitution except that if as a result of substitution a new redex is in-

troduced, that redex is then recursively reduced. We write [t/x]T t′ for hereditarily

substituting t for x of type T into t′. Let’s consider an example.

Example 6.1.0.1.

Consider the terms t ≡ λx : X.x and t′ ≡ (yz). Then ordinary capture avoiding

89

substitution would have the following result:

[t/y]t′ = (λx : X.x)z.

However, hereditary substitution has the following result:

[t/y]X→Xt′ = z,

because hereditary substitution first capture avoidingly substitutes t for y in t′ and

examines the result. It then sees that a new redex (λx : T.x)z has been created. Then

it recursively reduces this redex as follows: [z/x]Xx.

Hereditary substitution is important for a number of reasons. It was first used

as a means to conduct the metatheory of the type theory LF which is the core of the

proof assistant Twelf. LF is based on canonical forms. That is, the language itself

does not allow any non-normal forms to be defined. That is (λx : T.t) t′ is not a valid

term in LF. Thus, their operational semantics cannot use ordinary capture avoiding

substitution, because as we saw in the above example, we can substitute normal forms

into a normal form and end up with a non-normal form. So Watkins used hereditary

substitution instead of capture avoiding substitution in their operational semantics

[143]. Adams extended this work to dependent types in his thesis [6]. We will show

how to use hereditary substitution to show weak normalization. Let’s consider how

to define hereditary substitution for STLC.

6.2 Hereditary Substitution for STLC

The definition of the hereditary substitution depends on a partial function

called ctype. This function is equivalent to the treduce function used in [143]. It is

90

defined by the following definition.

Definition 6.2.0.1.

The partial function is defined with respect to a fixed type T and has two arguments,

a free variable x, and a term t, where x may be free in t. We define ctype by induction

on the form of t.

ctypeT (x, x) = T

ctypeT (x, t1 t2) = T ′′

Where ctypeT (x, t1) = T ′ → T ′′.

The ctype function simply computes the type of a term in weak-head normal form.

The following lemma states two very important properties of ctype. We do not include

any proofs here, but they can be found in [51].

Lemma 6.2.0.2.

i. If ctypeT (x, t) = T ′ then head(t) = x and T ′ is a subexpression of T .

ii. If Γ, x : T,Γ′ ` t : T ′ and ctypeT (x, t) = T ′′ then T ′ ≡ T ′′.

The purpose of ctype is to detect when a new redex will be created in the definition of

the hereditary substitution function. We define the hereditary substitution function

next.

Definition 6.2.0.3.

The following defines the hereditary substitution function for STLC. It is defined by

recursion on the form of the term being substituted into and the cut type T .

[t/x]Tx = t

91

[t/x]Ty = y

Where y is a variable distinct from x.

[t/x]T (λy : T ′.t′) = λy : T ′.([t/x]T t′)

[t/x]T (t1 t2) = ([t/x]T t1) ([t/x]T t2)

Where ([t/x]T t1) is not a λ-abstraction, or both ([t/x]T t1) and t1 are λ-

abstractions.

[t/x]T (t1 t2) = [([t/x]T t2)/y]T
′′
s′1

Where ([t/x]T t1) ≡ λy : T ′′.s′1 for some y, s′1, and T ′′ and ctypeT (x, t1) =

T ′′ → T ′.

We can see that every case of the previous definition except the application

cases are identical to the definition of capture-avoiding substitution. This is inten-

tional, because the hereditary substitution function should only differ when a new

redex is created as a result of a capture-avoiding substitution. The creation of a new

redex as a result of a capture-avoiding substitution can only occur when substituting

into an application with respect to STLC.

One thing to note about our definition of the hereditary substitution func-

tion defined above is that we define it in terms of all terms not just normal forms.

This was first done by Harley Eades and Aaron Stump in [50] in their work on us-

ing the hereditary substitution function to show normalization of Stratified System

F. Secondly, the definition of the hereditary substitution function is nearly total by

definition. In fact it is only the second case of application that prevents totality from

92

being trivial. Now if this case was used we know that ctypeT (x, t1) = T ′′ → T ′, and

by Lemma 6.2.0.2, T ′′ → T ′ is a subexpression of T . This implies that T ′′ is a strict

subexpression on T . So in this case the type decreases by the strict subexpression

ordering. In fact we prove totality of the hereditary substitution function for STLC

using the lexicographic combination (T, t) of the strict subexpression ordering. This

shows that ctype reveals information about the types of the input terms to the hered-

itary substitution function, which allows us to use the well-founded ordering to prove

properties of the hereditary substitution function.

We do not want to underplay the importance of the ordering on types. In

order to be able to even define the hereditary substitution function and prove that it

is indeed a total function one must have an ordering on types. This is very important.

Now in the case of STLC the ordering is just the subexpression ordering, while for

other systems the ordering can be much more complex. For some type theories no

ordering exists on just the types. Whatever ordering we use for the types ctype brings

this ordering into the definition of the hereditary substitution function.

How do we know when a new redex was created as a result of a capture-avoiding

substitution? A new redex was created when the hereditary substitution function is

being applied to an application, and if the the hereditary substitution function is

applied to the head of the application and the head was not a λ-abstraction to begin

with, but the result of the hereditary substitution function was a λ-abstraction. If

this is not the case then no redex was created. The first case for applications in the

definition of the hereditary substitution function takes care of this situation. Now

93

the final case for applications handles when a new redex was created. In this case

we know applying the hereditary substitution function to the head of the application

results in a λ-abstraction and we know ctype is defined. So by Lemma 6.2.0.2 we

know the head of t1 is x so t1 cannot be a λ-abstraction. Thus, we have created a

new redex so we reduce this redex by hereditarily substituting [t/x]T t′2 for for y of

type T ′′ into the body of the λ-abstraction t′1. We use hereditary substitution here

because we may create more redexes as a result of reducing the previously created

redex.

In STLC the only way to create redexes is through hereditarily substituting

into the head of an application. This is because according to our operational seman-

tics for STLC (full β-reduction) the only redex is the one contracted by the β-rule. If

our operational semantics included more redexes we would have more ways to create

redexes and the definition of the hereditary substitution function would need to ac-

count for this. Hence, the definition of the hereditary substitution function is guided

by the chosen operational semantics.

The hereditary substitution function has several properties. First it is a total

and type preserving function.

Lemma 6.2.0.4. Suppose Γ ` t : T and Γ, x : T,Γ′ ` t′ : T ′. Then there exists a

term t′′ such that [t/x]T t′ = t′′ and Γ,Γ′ ` t′′ : T ′.

The next property is normality preserving, which states that when the hereditary

substitution function is applied to normal forms then the result of the hereditary

substitution function is a normal form. We state this formally as follows:

94

Lemma 6.2.0.5. If Γ ` n : T and Γ, x : T ` n′ : T ′ then there exists a normal term

n′′ such that [n/x]Tn′ = n′′.

The final property is soundness with respect to reduction.

Lemma 6.2.0.6. If Γ ` t : T and Γ, x : T,Γ′ ` t′ : T ′ then [t/x]t′ ∗ [t/x]T t′.

Soundness with respect to reduction shows that the hereditary substitution function

does nothing more than what we can do with the operational semantics and ordinary

capture avoiding substitution. All of these properties should hold for any hereditary

substitution function, not just for STLC. They are correctness properties that must

hold in order to use the hereditary substitution function to show normalization.

We can now prove normalization of STLC using the hereditary substitution

function. We first define a semantics for the types of STLC.

Definition 6.2.0.7.

First we define when a normal form is a member of the interpretation of type T in

context Γ

n ∈ [[T]]Γ ⇐⇒ Γ ` n : T,

and this definition is extended to non-normal forms in the following way

t ∈ [[T]]Γ ⇐⇒ t ! n ∈ [[T]]Γ,

where t ! t′ is syntactic sugar for t ∗ t′ 6 .

The interpretation of types was inspired by the work of Prawitz in [111] although we

use open terms here where he used closed terms. Next we show that the definition of

the interpretation of types is closed under hereditary substitutions.

95

Lemma 6.2.0.8. If n′ ∈ [[T ′]]Γ,x:T,Γ′, n ∈ [[T]]Γ, then [n/x]Tn′ ∈ [[T ′]]Γ,Γ′.

Proof. By Lemma 6.2.0.4 we know there exists a term n̂ such that [n/x]Tn′ = n̂

and Γ,Γ′ ` n̂ : T ′ and by Lemma 6.2.0.5 n̂ is normal. Therefore, [n/x]Tn′ = n̂ ∈

[[T ′]]Γ,Γ′ .

Finally, by the definition of the interpretation of types the following result implies

that STLC is normalizing.

Theorem 6.2.0.9. If Γ ` t : T then t ∈ [[T]]Γ.

Proof. This holds by a straightforward proof by induction on the structure of the

assumed typing derivation where the application case uses the previous lemma.

Corollary 6.2.0.10. If Γ ` t : T , then there exists a normal form n, such that

t ! n.

This proof method has been applied to a number of different type theories.

Eades and Stump show that SSF is weakly normalizing using this proof technique in

[50]. The advantage of hereditary substitution is that it shows promise of being less

complex than other normalization techniques. For example, when proving normaliza-

tion using the Tait-Girard reducibility method – discussed in the next section – the

main soundness theorem must universally quantify over the domain of well-formed

substitutions, but this is not needed in the proof using hereditary substitution. In ad-

dition, the interpretation of types do not require advanced mathematical machinerary

like the reducibility method where they require quantification over types as well as

96

recursion over types (large eliminations). This implies that it would be easier to for-

malize in hereditary substitution proofs in proof assistants. However, it is currently

unknown which type theories can be proven normalizing using hereditary substitu-

tion.

The type theories currently known to be proven normalizing using the hered-

itary substitution proof technique are relatively simple. For example, the simply-

typed λ-calculus, predicative polymorphic versions of system F, and the LF family

of dependent types have all been shown to be weakly-normalizing using hereditary

substitution. However, it is currently unknown how to prove normalization of system

T using hereditary substitution, because the usual ordering on types is not proof

theoretically strong enough. The termination ordinal of the ordering on types would

have to be at least ε0, but such an ordering is non-trivial to construct. Furthermore,

impredicative theories like system F pose a similar problem. It is currently unknown

how to construct the ordering for second order types. The hereditary substitution

technique heavily depends on the ordering on types and the lack of one prevent its

use. As the type theory becomes more expressive through extensions the harder the

ordering on types becomes to construct.

Hereditary substitution can be used to maintain canonical forms and even

prove weak normalization of predicative simple type theories. It can also be used as a

normalization function. A normalization function is a function that when given a term

it returns the normal form of the input term. Andreas Abel and Dulma Rodriguez

used hereditary substitution in this manner in [4]. They used it to normalize types

97

in a type theory with type-level computation much like system Fω. In that paper

the authors were investigating subtyping in the presence of type level computation.

They found that hereditary substitution could be used to normalize types and then

do subtyping. This allowed them to only define subtyping on normal types. Similar

to their work Chantal Keller and Thorsten Altenkirch use hereditary substitution to

define a normalizer for STLC and formalize their work in Agda [73]. As we mentioned

above the drawback of hereditary substitution is that it does not scale to richer type

theories. Thus, to prove consistency of more advanced type theories we need another

technique that does scale.

6.3 Tait-Girard Reducibility

The Tait-Girard reducibility method is a technique for showing weak and

strong normalization of type theories. It originated from the work of William Tait.

He showed strong normalization of system Tusing an interpretation of types based on

set theory with comprehension. He called this interpretation saturated sets. Later,

John Yves Girard, against popular belief1, extended Tait’s method to be able to prove

system F strongly normalizing. He called his method reducibility candidates. The

reducibility candidates method is based on second order set theory with comprehen-

sion. It turns out that the genius work of Girard extends to a large class of type

theories. The standard reference on all the topics of this section is Girard’s wonderful

book [60]. We will summarize how to show strong normalization of STLC using Tait’s

1It has been said that while Girard was working on extending Tait’s method other
researchers, notably Stephen Kleene, criticized him for trying. They thought it was an
impossible endeavor.

98

method and then show how this is extended to system F. We leave all proofs to the

interested reader, but they can be found in [60].

The first step in proving strong normalization of STLC using Tait’s method is

to define the interpretation of types. An interpretation of a type T is a set of closed

terms closed under eliminations. We denote the set of strongly normalizing terms as

SN. Defining the interpretation of types depends on an extension by Girard which

constrains the number of lemmas down to a minimal amount. A term is neutral if it

is of the form t1 t2 for some terms t1 and t2. Neutrality characterizes the terms which

cannot be easily seen to be normalizing.

Definition 6.3.0.1.

The interpretation of types are defined as follows:

[[X]] = {t | t ∈ SN}
[[T1 → T2]] = {t | ∀t′ ∈ [[T1]].t t ′ ∈ [[T2]]}

The interpretation of types are known as reducibility sets. We say a term is reducible

if it is a member of one of these sets. Next we have some constraints the previous

definition must satisfy. Girard called these the CR 1-4 properties. Their proofs can

be found in [60].

Lemma 6.3.0.2. If t ∈ [[T]], then t ∈ SN.

Lemma 6.3.0.3. If t ∈ [[T]] and t t ′ then t ′ ∈ [[T]].

Lemma 6.3.0.4. If t is neutral, t ′ ∈ [[T]] and t t ′ then t ∈ [[T]].

Lemma 6.3.0.5. If t is neutral and normal then t ∈ [[T]].

The proof that [[T]] defined in Def. 6.3.0.10 satisfies these four properties can

99

be done by induction on the structure of T . We need two additional lemmas to show

that all typeable terms of STLC are reducible.

Lemma 6.3.0.6. If for all t2 ∈ [[T1]] and [t2/x]t1 ∈ [[T2]] then λx : T1.t1 ∈ [[T1 →

T2]].

The proof is by case analysis on the possible reductions of (λx : T1.t1) t2. To prove

that all terms are reducible we must first define sets of well-formed substitutions. We

denote the empty substitution as ∅.

Definition 6.3.0.7.

Well-formed substitutions are defined as follows:

` ∅
t ∈ [[T]] ` σ
` σ ∪ (x , t)

We say a substitution is well-formed with respect to a context if the substi-

tution is well-formed, the domain of the substitution consists of all the variables of

the context, and the range of the substitution consists of terms with the same type

as the variable they are replacing. We denote this by Γ ` σ. Thus, if Γ ` σ then

the domain of σ is the domain of Γ and the range of σ are reducible typeable terms

with the same type as the variable they are replacing. We define the interpretation

of a context as Γ = {σ |Γ ` σ}. We now have everything we need to show that all

typeable terms are reducible, hence, strongly normalizing.

Theorem 6.3.0.8. If σ ∈ [[Γ]] and Γ ` t : T then σ t ∈ [[T]].

Corollary 6.3.0.9. If · ` t : T then t ∈ SN.

Girard extended this method into a more powerful one called reducibility can-

didates to be able to prove strong normalization for system F. We first extend the

100

definition of a neutral term to include t [T]. The definition of the interpretation of

types are defined next.

Definition 6.3.0.10.

The interpretation of types are defined as follows:

[[X]]ρ = ρ(X)
[[T1 → T2]]ρ = {t | ∀t′ ∈ [[T1]]ρ.t t ′ ∈ [[T2]]ρ}
[[∀X .T]]ρ = {t | ∀T ′.t[T ′] ∈ [[T]]ρ{X 7→[[T ′]]}}

The sets defined in the previous definition are called parameterized reducibility

sets. Recall that system F has type variables so when we interpret types we must

interpret type variables. The naive extension would just replace type variables with

types, but Girard quickly realized this would not work, because the final case of the

above definition of the interpretation of types would then be [[∀X .T]] = {t | ∀T ′.t[T ′] ∈

[[[T ′/X]T]]} and we can no longer consider this a well-defined definition, because it

is not structurally recursive over the type. So instead we replace type variables

with reducibility candidates. A reducibility candidate is just a reducibility set which

satisfies the four CR properties above. We denote the set of all reducibility candidates

as Red. Then in the definition of [[∀X .T]]ρ we quantify over all reducibility sets.

This is where set comprehension is coming in; also note that this is a second order

quantification. We need two forms of substitutions: substitutions mapping term

variables to terms and type variables to types, but also substitutions mapping type

variables to reducibility candidates called reducibility candidate substitutions. We

denote the former by σ and the latter as ρ. The following two definitions derive when

both of these types of substitutions are well-formed.

101

Definition 6.3.0.11.

Well-formed substitutions:

` ∅
t ∈ [[T]]σ ` σ
` σ ∪ {(x , t)}

` σ
` σ ∪ {(X ,T)}

Definition 6.3.0.12.

Well-formed reducibility candidate substitutions:

` ∅
[[ρ′T]] ∈ Red ` ρ
` ρ ∪ {(X , [[T]]ρ′)}

The following lemmas depend on the following definition of well-formed substitutions

with respect to reducibility candidate substitutions.

Definition 6.3.0.13.

Well-formed substitution with respect to a well-formed reducibility candidate substi-

tution:

∅ ` ∅
[[ρ′T]] ∈ Red ρ ` σ

ρ ∪ {(X , [[T]]ρ′)} ` σ ∪ {(X ,T)}

We are now set to prove some new lemmas. The following proofs depend on

the lemmas we have proven above about STLC. We do not repeat them here. We say

a parameterized reducibility set [[T]]ρ is a reducibility candidate of type σT if and

only if [[σT]] ∈ Red and ρ ` σ. First, we prove that parameterized reducibility sets

are members of Red.

Lemma 6.3.0.14. [[T]]ρ is a reducibility candidate of type σT where ρ ` σ.

Our second result shows that substitution can be pushed into the parameter of the

reducibility set. Set comprehension is hiding in the statement of the lemma. In order

to push the substitution down into the parameter we must first know that [[T]]ρ really

102

is a set.

Lemma 6.3.0.15. If ` ρ then [[[T/X]T ′]]ρ = [[T ′]]ρ{X 7→[[T]]ρ}.

These final two lemmas are straightforward. They are similar to the lemmas above

for λ-abstraction and application.

Lemma 6.3.0.16. If for every type T and reducibility candidate R, [T/X]t ∈

[[T ′]]ρ{X 7→R}, then ΛX .t ∈ [[∀X .T ′]]ρ.

Lemma 6.3.0.17. If t ∈ [[∀X .T]]ρ, then t [T ′] ∈ [[[T ′/X]T]]ρ for every type T ′.

Finally, we can prove type soundness and obtain strong normalization.

Theorem 6.3.0.18. If Γ ` t : T , Γ ` σ and Γ ` ρ then, σt ∈ [[T]]ρ.

Corollary 6.3.0.19. If · ` t : T then t ∈ SN .

The proof of the corollary follows from Theorem 6.3.0.18 by using a certain ρ. The ρ

one must use is the one were every type variable is mapped to a subset of SN. This

extension is a giant leap forward and is the foundation of what we now call logical

relations. The interpretation of types we defined above are actually unary predicates

defined by recursion on the type. The form we defined them in here are in logical

relation form rather than the syntax of Girard in [60].

6.4 Logical Relations

Logical relations are straightforward extensions of reducibility sets. They were

first proposed as generalizations of Tait’s reducibility candidates by Gordon Plotkin in

1973 [109]. They were further generalized by Richard Statman in 1985 [127]. Logical

relations can be thought of as predicates defined by recursion on their parameter.

Usually, this is the type. They are always closed under eliminations and a usually

103

defined in the same way as we defined the interpretation of types for STLC and

system F. They are called “logical”, because of the fact that they are closed under

eliminations. This allows us to prove properties that are not preserved by elimination.

Termination is an example of this. Logical relations are not required to be unary.

However, we have not seen any applications of n-arity logical relations where n > 2.

An example where Binary logical relations have been used is the study program

equivalence. Logical relations have been used in a wide range of applications in fact,

from consistency proofs all the way to encryption.

Andrew Pitts used logical relations to show when two inhabitants of the dis-

joint union type are equivalent in [107]. Karl Crary gives a nice introduction to logical

relations in [105] where he shows how to solve the equivalence problem for terms. The

equivalence problem is being able to decide operational equivalence of terms. Eijiro

Sumii and Benjamin Pierce use logical relations to prove properties of a type theory

used for encryption in [132]. They prove behavior equivalences between terms of this

calculus which depend on encryption. One such property is to show that a particular

piece of data a program is keeping secret from attacks is never recovered by some

attacker. This property can be formalized as a behavior equivalence. They then use

logical relations to prove such equivalences.

6.4.1 Step-Indexed Logical Relations

There is one last extension to logical relations. So far we have introduced the

reducibility method and its extension to reducibility candidates. We briefly summa-

rized the fact that reducibility candidates gives rise to logical relations. However, we

104

have used logical relations only to prove properties about terminating theories. Can

logical relations be used to reason about non-terminating type theories? It turns out

that we can, but it requires yet another extension of logical relations.

Adding the ability to define general recursive types to a type theory results

in the theory being non-terminating. That is, one can define a diverging term. In

the field of programming languages recursive types are a very powerful feature. One

property one may wish to prove about a type theory with recursive types is contex-

tual equivalence of terms. Logical relations are usually used to prove such a property,

but they turn out not to work in the presence of recursive types. This was an out-

standing open problem until Andrew Appel and David McAllester were able to find

an extension of logical relations called step-indexed logical relations.

Step-indexed models were first introduced by Andrew Appel and David

McAllester in [13] as the semantics of recursive types. At the time it was not known

how to model recursive types without using complex machinery like domain theory.

Later, Amal Ahmed extended the earlier work by Appel and McAllester and was able

to prove contextual equivalence of terms of system F with recursive types [7]. Since

this earlier work a number of applications of step-indexed logical relations have been

conducted, e.g. [5, 8, 94, 138]. One drawback of using step-indexed logical relations

is that the proofs usually involve tedious computations of step indices. In [47] Derek

Dreyer et al. introduce a way of encapsulating the step index in such away that the

index no longer needs to be present in the model.

The major application of step-indexed logical relations have so far been meta-

105

theoretic results such as type safety, contextual equivalence or other safety results. It

was not until 2012 when they were actually used to prove normalization of typed

λ-calculi. Chris Casinghino et al. in [30] developed a type theory with general

recursion and recursive types with a collapsed syntax. This is a very interesting

development, because they use modal operators to separate a logical world (only

terminating programs) from a programmatic world within the same language. They

then prove normalization of the logical world using step-indexed logical relations.

We briefly describe what step-indexed logical relations are through an example.

We extend the CBV STLC with iso-recursive types and then try to prove type safety

of this extension using logical relations. We will run into trouble and will be forced

to use step-indexed logical relations instead.

Type safety is a property of a programming language which guarantees that

computation never gets stuck. We can always either complete the computation (hit

a value) or continue computing (take another step). Type safety is defined by the

following theorem:

Theorem 6.4.1.1. · ` t : T and t ∗ t′ then val(t′) or ∃t′′.t′ t′′.

Where val(t) is a predicate on terms which is true iff t is a syntactic value. Recall

values are either a variable or a λ-abstraction. Usually, type safety is shown by proving

type preservation and progress theorems. These theorems however are corollaries of

our type-safety theorem. The reason it is usually done this way is because it is

thought to be easier than giving a direct proof. We will see here that it is actually

106

pretty simple to give a direct proof using the logical relations2. We do not show any

proofs here, but they can all be found in the extended version of [7] which can be

accessed through Ahmed’s web page3.

We begin with the proof of type safety of the call-by-value STLC, and then

extend this to include iso-recursive types. To get the proof of the type safety theorem

to go through we need to first define the logical relations.

Definition 6.4.1.2.

We define logical relations for values and then we extend this definition to terms.

Logical relations for values:

V[[X]] = {v | · ` v : X}

V[[T1 → T2]] = {λx : T.t | · ` λx : T1 : T1 → T2 ∧ ∀v.v ∈ V[[T1]] =⇒ [v/x]t ∈ E [[T2]]}

Logical relations extended to terms:

E [[T]] = {t | · ` t : T ∧ ∃v.t ∗ v ∧ v ∈ V [[T]]}

Well-formed substitutions:

G[[Γ, x : T]] = {γ[x 7→ v] | γ ∈ G[[Γ]] ∧ v ∈ V [[T]]}

To express when a particular open term t has meaning with respect to our

chosen semantics we define a new judgment which has the form Γ |= e : T . This

judgment can be read as t models type T in context Γ.

Γ |= t : T =df ∀γ ∈ G[[Γ]] =⇒ γ(t) ∈ E [[T]].

We now turn to the fundamental property of logical relations. We state this property

2This section is based off of a lecture given by Amal Ahmed at the 2011 Oregon Pro-
gramming Language Summer School.

3http://www.ccs.neu.edu/home/amal/papers/lr-recquant-techrpt.pdf

107

as follows:

Lemma 6.4.1.3. If Γ ` t : T then Γ |= e : T .

Proof. By induction on the structure of the assumed typing derivation.

The fundamental property then allows us to prove our main theorem. To make

expressing this result cleaner we define the following predicate:

safe(t) =def ∀t′.t ∗ t′ =⇒ (val(t′) ∨ ∃t′′.t′ t′′).

Theorem 6.4.1.4. If Γ ` t : T then safe(t).

Proof. By induction on the assumed typing derivation.

To summarize we have shown how to prove type safety using logical relations

of CBV STLC. Next we extend CBV STLC with iso-recursive types. To the types

we add µα.T and type variables α. Do not confuse this operator with that of the

operator of the λµ-calculus. It is unfortunate, but this operator is used to capture

many different notions throughout the literature. The terms are extended to include

fold t and unfold t, and values are extended to include fold v. Finally, we add fold E

and unfold E to the syntax for evaluation contexts. To deal with free type variables

we either can add them to contexts Γ or add a new context specifically for keeping

track of type variables. We will do the latter and add the following to our syntax:

∆ := · | ∆, α

We need one additional rule to complete the operational semantics which is

unfold(fold v) v. We complete the extension by adding two new type checking

rules. They are defined as follows:

108

Γ,∆ ` t : [µα.T/α]T

Γ,∆ ` fold t : µα.T
fold

Γ,∆ ` t : µα.T

Γ,∆ ` unfold t : [µα.T/α]T
unfold

Let’s try and apply the same techniques we used in the previous section to prove type

safety of our extended language.

We first have to extend the definition of the logical relations to deal with

recursive types.

Definition 6.4.1.5.

We define logical relations for values and then we extend this definition to expres-

sions (terms t).

Logical relations for values:
V [[α]]ρ = ρ(α)

V [[X]]ρ = {v | · ` v : X}

V [[T1 → T2]]ρ =
{λx : T.t | (· ` λx : T1 : T1 → T2 ∧ ∀v.v ∈ V [[T1]]ρ) =⇒ [v/x]t ∈ E [[T2]]ρ}

V [[µα.T]]ρ = {fold v | ∀v.unfold (fold v) ∈ V [[[µα.T/α]T]]ρ.

Logical relations extended to expressions:

E [[T]]ρ = {t | · ` t : T ∧ ∃v.t ∗ v ∧ v ∈ V [[T]]ρ}

Well-formed substitutions:

G[[Γ, x : T]]ρ = {γ[x 7→ v] | γ ∈ G[[Γ]]ρ ∧ v ∈ V [[T]]ρ}

This definition is slightly different from the previous. Since we have type

variables we need to use Girard’s trick to handle reducibility-candidates substitutions.

Then we added the case for recursive types. Here we took the usual idea of using

the elimination form for µ-types. Now is this definition well-founded? Recall that

109

one of the main ideas pertaining to logical relations is that the definitions are done

by induction on the structure of the type. Now it is easy to see that the definition

above is clearly well-founded in all the previous cases, but it would seem not to be for

the case of the µ-type. The type [µα.T/α]T increased in size rather than decreasing.

So how can we fix this? First we notice that by the definition of our operational

semantics unfold (fold v)) v, so we can replace unfold (fold v) with just v in the

definition. So that simplifies matters a bit, although this does not help us with respect

to well-foundedness. One more attempt would be to take the substitution and push

it into ρ. Let’s see what happens when we try this. Take the following for our new

definition of the logical relation for µ-types:

V [[µα.T]]ρ = {fold v | ∀v.v ∈ V [[T]]ρ[α 7→V[[µα.T]]ρ]}.

Now we can really see the problem. This new definition is defined in terms of itself!

This is a result of the recursive type being recursive. So how can we fix this? To

define a well-founded definition for recursive types we need something a little more

powerful then just ordinary logical relations. This is where step indices come to the

rescue.

We need to not only consider the structure of the type as the measure of

well-foundedness for our definition for recursive types, but also the operational be-

havior defined by our operational semantics. Let’s just dive right in and define a new

definition of our logical relations. All of our logical relations are interpretations.

Definition 6.4.1.6.

We define an interpretation as I ∈ P(N× Term).

110

We say an interpretation is well-formed if its elements are all atoms (members of

the set Atom). An atom is a set of tuples of natural numbers and closed terms.

Additionally, we require an interpretation to be an element of the set Type. Atom

and Type are defined by the following definition.

Definition 6.4.1.7.
Atom = {(k, t) | k ∈ N ∧ t ∈ ClosedTerm}

Atomvalue = Atom restricted to values

Type = {I ⊆ Atomvalue | ∀(k, v) ∈ I.∀j ≤ k.(j, v) ∈ I}
One of the key concepts of step-indexed logical relations is the notion of approxima-

tion. Hence, we need to be able to take approximations of interpretations. This will

be more clear below.

Definition 6.4.1.8.

The n-approximation function on interpretations is defined as follows:

bIcn = {(k, v) ∈ I | k < n}

We are now in a position to start defining the interpretations of types (logical

relations).

Definition 6.4.1.9.

Logical relations for values:
V [[α]]ρ = ρ(α)

V [[X]]ρ = {(k, v) ∈ Atomvalue | · ` v : X}

V [[T1 → T2]]ρ = {(k, λx : T.t) ∈ Atomvalue | · ` λx : T1.t : T1 → T2 ∧
∀j ≤ k.∀v.(j, v) ∈ V [[T1]]ρ =⇒ (j, [v/x]t) ∈ T [[T2]]ρ}

V̄n[[µα.T]]ρ = {(k, fold v) ∈ Atomvalue | k < n ∧ ∀j < k.(j, v) ∈ V [[T]]ρ[α7→V̄k[[µα.T]]ρ]}

V [[µα.T]]ρ =
⋃
n≥0 V̄n[[µα.T]]ρ

The next definition extends the previous to terms.

111

Definition 6.4.1.10.

Logical relations extended to terms:

T [[T]] = {(k, t) ∈ Atom | · ` t : T∧
∀j ≤ k.∀t′.t j t′ ∧ · ` t′ : T ∧ (irred(t′) =⇒ (j, t′) ∈ V [[T]]ρ)}

We will need two types of substitutions one for term variables and one for type

variables. The following definitions tell us when they are well-formed.

Definition 6.4.1.11.

Well-formed term-variable substitutions:
G[[·]] = {(k, ∅)}

G[[Γ, x : T]] = {(k, γ[x 7→ v]) | k ∈ N ∧ (k, γ) ∈ G[[Γ]] ∧ (k, v) ∈ V [[T]]∅}
Definition 6.4.1.12.

Well-formed type-variable contexts:
D[[·]] = {∅}

D[[∆, α]] = {ρ[α 7→ I] | ρ ∈ D[[∆]] ∧ I ∈ Type}
Finally, we define when term t is in the interpretation of type T as follows:

Γ |= t : T =def ∀k ≥ 0.∀γ.(k, γ) ∈ G[[Γ]] =⇒ (k, γ(t)) ∈ T [[T]]∅.

Let’s take a step back and consider our new definition and use it to define

exactly what a we mean by step-indexed logical relations. Instead of our logical

relations being sets of closed terms they are now tuples of natural numbers and

closed terms. This natural number is called the step index. This is the number of

steps necessary for the closed term to reach a value. By steps we mean the number

of rule applications of our operational semantics. For example, t t′ 1 [t′/x]t =1 t′′,

where t′′ is the actual result of the substitution. Thus, applications actually consumes

two steps!

112

Now all of our definitions of the logical relations are well-defined using an

ordering consisting of only the type except for the definition of the logical relation

for µ-types. This is the case as we saw earlier where we need the step index. The

main point of this definition is that we take larger and larger approximations of the

runtime behavior of the elements of the µ-type logical relation. So we define the

logical relation for µ-types in terms of an auxiliary logical relation, where the number

of steps the members of the relation are allowed to take is bound by some natural

number n. This corresponds to V̄n[[µα.T]]ρ. Then we define the logical relation for

µ-types as the union of all the approximations, i.e. V [[µα.T]]ρ.

We can now conclude type safety for STLC with recursive types. We will need

the following two lemmas in the proof of the fundamental property of the logical

relation. We write ∆ ` T to mean that all the type variables in ∆ are free in T .

The first lemma is known as downward closure of the step-index logical relation. The

second is simple substitution commuting just as we saw for system F above.

Lemma 6.4.1.13. If ∆ ` T , ρ ∈ D[[∆]], (k, v) ∈ V [[T]]ρ, and j ≤ k then

(j, v) ∈ V [[T]]ρ.

Lemma 6.4.1.14. If ∆, α ` T , ρ ∈ D[[∆]] and I = bV [[µα.T]]ρck then

bV [[[µα.T/α]T]]ρcn = bV [[T]]ρ[α 7→I]cn.

Finally, we conclude with the fundamental property of logical relations.

Theorem 6.4.1.15. If Γ ` t : T then Γ |= t : T .

From the fundamental property of the logical relations we can prove type safety in a

similar way as for standard STLC above.

113

PART B

DESIGN

114

CHAPTER 7

FREEDOM OF SPEECH

The design of any programming language must facilitate reasoning about the

programming language itself. This facilitation comes in the form of a rigorous defi-

nition which makes mathematically precise all of the structure of the programming

language. This provides a means for researchers and implementors to fully under-

stand the limits of the language. Contrary to what programming language designers

have done in the past this rigorous definition does not only include the syntax, but

also includes mathematical definitions of the type system as well as an interpreter.

This is a significant benefit of basing programming languages on type theories. As

we have seen a type theory must be rigorously defined.

Considering the motivation we gave in the introduction, a mathematically rig-

orous design provides the necessary structure to allow programmers to mathematically

reason about the programs they write in the programming language. In addition, this

makes it possible for designers to reason about the correctness of the language itself,

and thus allow them to make strong guarantees of the correctness of the language to

their programmers. To prevent major bugs programming languages must be rigor-

ously defined. If we do not know what the programming language allows, then we

cannot be sure what is safe.

Recall from Chapter 2 that the computational trinity states that type theo-

ries are simultaneously a logic as well as a programming language, and this double

115

perspective provides the means of verifying properties of the programs we write in

the theory, but this feature comes with a strong invariant, every program must termi-

nate. Now suppose we are working on a large development in a programming language

based on type theory like Martin-Löf’s Type Theory or CoC which has come to a

difficult problem that can be solved by the definition of some terminating function.

Furthermore, suppose we have found the solution in some research paper, but the

termination proof is very complex and uses an advanced semantic proof technique,

and lastly suppose that this termination proof is not formalized in a type theory, but

is an informal proof that we trust. Since we are conducting our development in a

terminating type theory there is only one course of action. We have to formalize this

complex termination argument. This can be devastating to the development, because

doing such a proof may take months, even years to complete! Another hypothetical

is supposing we do not care if a program terminates. There are correctness properties

that hold regardless of termination. For example, consider associativity of list append

– using a pseudo syntax:

∀(AB C : List Nat).appendA (appendB C) = append (appendAB)C

This equation holds regardless of termination of A, B, or C, because if anyone of

them happen to diverge, then both sides of the equation diverge.

So the natural question is can we design a programming language based on

type theory that allows for non-terminating programs, but also be able to verify

properties of the programs we write in the language? It turns out that we can, and

in the next two chapters we introduce the designs of two new dependently-typed

116

functional programming languages called Freedom of Speech and Separation of Proof

from Program that amount to solutions to this question.

Directly supporting non-termination is one solution, but there is another pos-

sibility. Non-terminating functions can be simulated using the notion of coinduction

which is dual to induction. Coinduction provides a means to define and observe

infinite streams of data. Furthermore, coinductive types push the notion of non-

termination into the types. There are a large number of applications of coinduction,

and even more when we allow the mixture of induction and coinduction, for example

the definition of an infinite stream of trees requires their mixture. However, currently

there is no known type theory that supports both induction and coinduction, and

supports their (unrestricted) mixture while maintaining type safety. In the third

chapter of Design we introduce a new logic and corresponding type theory called Du-

alized Intuitionistic Logic and Dualized Type Theory respectively that is based on a

logic rich in duality that shows promise of being a logical framework for induction

and coinduction that is type safe and supports their mixture.

The requirement that every program must terminate can be relaxed by first

designing a very powerful programming language (PL), and then carving out two

fragments of programs. The first consists of all the terminating programs called

the logical fragment, and the second consists of all programs, and this is called the

programmatic fragment. That is, we have a picture that looks something like:

117

PL =⇒ Programmatic

Logical

The logical fragment will then be considered the “logical framework” of the language.

This is where the programs are proofs and the types are propositions; that is, the

logical fragment makes use of the computational trinity (Chapter 2). Now the pro-

grammatic fragment is where all the usual programming will take place. One can

then use the logical fragment to verify properties of the programs written in the pro-

grammatic fragment. Alternately, one can understand the fragments as worlds in the

sense of possible world semantics of modal logics. Below we will see how these two

worlds are connected. In fact, Chris Casinghino et al. have constructed a program-

ming language very much like freedom of speech, but they add modal operators to

the type system to distinguish the logical and programmatic fragments in [30, 31].

Then they characterize which programs can be moved from one fragment to another,

they call the types of these programs mobile types.

Once the logical fragment has been identified three additional features will

need to be added. The first feature is that types in the logical fragment will need to

be able to depend on programs from the programmatic fragment, but this feature has

to be designed so as to prevent these programs from being applied to any arguments

118

or this would prevent the logical fragment from being logically consistent. For an

overview of logical consistency and how it can be proven see Chapter 6. We call

this feature freedom of speech, because it intuitively states that logical types and

programs can talk about potentially non-terminating programs, but they are never

allowed to actually run them.

The second and third features are usability features. The logical fragment

is purely specificational. Its primary use is for the verification of programs written

in the programmatic fragment. Furthermore, carrying around non-computationally

interesting proofs is expensive. Thus, it is important to allow some specificational data

to be stripped away at compile time. In addition, it is important that the programmer

be the one to decide which data is removed. Now logical programs are proofs, but they

are also terminating programs, and thus can be considered both logical programs and

programmatic programs. The third and final feature is the ability to write programs

in the logical fragment and then move them into the programmatic fragment. This

facilitates code reuse and provides a means to write verified terminating programs.

We mentioned that the logical and programmatic fragments can be consider worlds.

Now the freedom of speech property relates the programmatic fragment to the logical

fragment by allowing the objects of the logical fragment to express properties about

the objects of the programmatic fragment. Additionally, the feature allowing the

programs of the logical fragment to be moved into the programmatic fragment relates

the logical fragment to the programmatic fragment. Thus, we have a situation best

captured by the following picture:

119

Logical Programmatic *

In this chapter we introduce the design of a programming language that contains all of

these features, and some additional ones. It is called Freedom of Speech, because it is

the first core dependently-typed functional programming language with the freedom

of speech property.

7.1 Syntax and Reduction Relation

We begin by first defining the syntax and reduction relation, and then move

on to the type system. The features discussed in the introduction to this chapter will

be made explicit when we introduce the type system, but we will see hints of them

in the syntax.

The syntax and the CBV reduction relation is defined in Figure 34. The

syntax is collapsed similarly to the Calculus of Constructions – see Chapter 4.2 for

more about the Calculus of Constructions. So we distinguish between types and

terms (programs) judgmentally. Expressions and the typing judgment will depend on

two annotations. The first is called the consistency classifier and is denoted θ which

can be one of L or C where an expression tagged with the former is interpreted to

mean “belonging to the logical fragment” and the latter to mean “belonging to the

programmatic fragment.” The second annotation is denoted ε which is called the

stage annotation and can be either + or − where the former means “run time” and

120

Syntax:

(Classifiers) θ ::= L |P
(Stages) ε ::= + | −

(Expressions) e, t ::= Type |N | x | (x :θ e1)ε → e2 | e1 = e2 | S |Z |
λx . e | rec f x e | rec− f e | e1 e2 | join | injdom | injran |
contra | abort

(Values) v ::= x |Type |N | (x :θ v1)ε → v2 | e1 = e2 |λx . e |
join | injdom | injran | rec f x v | rec− f v

(Evaluation Contexts) C ::= � | (x :θ C)ε → e2 | (x :θ e1)ε → C | rec f x C |
rec− f C | v C | C e

(Typing Contexts) Γ ::= · | x :θ e |Γ1,Γ2

CBV reduction:

(λx . e) v CBV [v/x]e
Cbv App

(rec f x v ′) v CBV [rec f x v ′/f][v/x]v ′
Cbv Rec

e CBV e ′

C[e] C[e ′]
Red Ctxt

C[abort] abort
Red Abort

e1 ∗ e
e2 ∗ e

e1 ↓ e2
ComputeJoin

Figure 34. Syntax and reduction rules for freedom of speech

121

the latter means “compile time.” The consistency classifier essentially is how we carve

out the logical fragment from the programmatic fragment, and the stage annotation

implements the second feature above where all programs marked as compile time will

be erased before run time. We now give a brief overview of the syntax of Freedom of

Speech.

Expressions are denoted t ,t1, . . . , ti and e,e1, . . . , ei , and consist of Type which

is the type of all types, N the type of natural numbers, variables denoted x ,y ,z , . . .,

dependent function types denoted (x :θ e1)ε → e2 – note that the programmer gets

to decide whether an argument is “logical” or “programmatic” and “run time” or

“compile time” – next we have equations denoted e1 = e2, the successor function and

the natural number zero denoted S and Z respectively, λ-abstractions denoted λx . e,

two recursors rec f x e and rec− f e where x is considered bound in e in the former,

application denoted e1 e2, three forms of proofs of equations denoted join, injdom, and

injran, where the latter two are injectivity proofs and are discussed further below, and

finally we have two forms of contradictions one logical and one programmatic denoted

contra and abort respectively.

The CBV reduction relation is broken up into three different judgments. The

first is denoted e1 CBV e2 and defines standard CBV β-reduction and consists

of two rules CBV App and CBV Rec where values are defined in Figure 34. We

will see that the latter rule can be used for both terminating and non-terminating

recursion depending on which fragment the recursor is typed in. Note that there are

no congruence rules in the definition of the first judgment. The second judgment

122

denoted e1 e2 extends the first with congruence rules, and a rule for aborting

a contradictory computation. This judgment consists of two rules Red Ctxt and

Red Abort. These two are defined in terms of evaluation contexts which can be

thought of as a means of specifying where with in an expression computation can

take place. The syntax of evaluation contexts can be found in Figure 34. This defines

a fragment of the syntax of expressions where exactly one well formed subexpression

has been replaced with a hole. Holes are denoted �. Let’s consider a few examples:

Example 7.1.0.1.

The following are all well-formed contexts:

((λx . S x)�), (�Z), and rec f x (rec g y �).

Now (λx.S�)Z and �� are not well-formed contexts.

In addition to the syntax of evaluation contexts we also define an operation that takes

an evaluation context and an expression and “plugs” the expression into the hole of

the context.

Definition 7.1.0.2.

Plugging an expression e into an evaluation context C is denoted C[e] and is defined

by recursion on the form of C as follows:

�[e] = e
((x :θ C)ε → e2)[e] = (x :θ C[e])ε → e2

((x :θ e1)ε → C)[e] = (x :θ e1)ε → (C[e])
(rec f x C)[e] = rec f x (C[e])
(rec− f C)[e] = rec− f (C[e])

(v C)[e] = v (C[e])
(C e ′)[e] = (C[e]) e ′

At this point one can easily see that the Red Ctxt and Red Abort are actually

a family of congruence rules parametric in the evaluation context C. Now the rule

123

Red Ctxt simply extended the CBV β-reduction to evaluation contexts, while the

rule Red Abort says that if abort appears anywhere in an evaluation context, then

the computation is aborted and concludes just abort. Let’s consider an example using

what we have introduced thus far before moving onto the type system.

Example 7.1.0.3.

First, we define the abstracted booleans and abstracted-boolean case similarly to how

we defined booleans in system F (see Example 1.2.0.4 in Chapter 1):

true
def≡ λx . λf1 . λf2 . λy . λz . f1 y

false
def≡ λx . λf1 . λf2 . λy . λz . f2 z

case
def≡ λx . λu . λf1 . λf2 . λy . λz . (u x f1 f2 y z)

We can define the usual Church-encoded booleans in terms of abstracted booleans as

follows:

CH-true
def≡ λx .λy .λz .true x (λx . x) (λx . x) y z

CH-false
def≡ λx .λy .λz .false x (λx . x) (λx . x) y z

CH-case
def≡ λx .λb.λy .λz .case x b (λx . x) (λx . x) y z

Now suppose we have the division div and the isZero functions. Then using

these we can define a function that takes in two natural numbers as input, and then

divides the first plus two by the second. However, there is a catch, the division

function is undefined when the second argument is zero. So instead of leaving the

exception handling to the division function let’s craft our function to throw an error

when the second argument is zero. In what way can we throw an error? This is

exactly when we use the abort term. We can define our function as follows:

div-plus-2
def≡ λx.λy.caseN (isZero y) (λx . abort) (λx.(div (S (S x)) y)) y x

In the definition of the function div-plus-2 we had to bundle up the abort program

inside a constant function to prevent our function from always triggering abort. This

124

ensures us that our function will abort if and only if it calls the function λx . abort.

Similarly, we had to bundle up the division function inside a λ-abstraction so as to

ensure that it does not throw an exception before our function can. Let’s consider

some computations using div-plus-2:

(λx.λy.caseN (isZero y) (λx . abort) (λx.(div (S (S x)) y)) y x) (S (SZ))Z
 2 caseN (isZero Z) (λx . abort) (λx.(div (S (S x))Z))Z (S (SZ))
 7 (isZero Z)N (λx . abort) (λx.(div (S (S x))Z))Z (S (SZ))
 ∗ trueN (λx . abort) (λx.(div (S (S x))Z))Z (S (SZ))
 6 (λx . abort)Z
 abort

(λx.λy.caseN (isZero y) (λx . abort) (λx.(div (S (S x)) y)) y x) (S (SZ)) (S (SZ))
 2 caseN (isZero (S (SZ))) (λx . abort) (λx.(div (S (S x)) (S (SZ)))) (S (SZ)) (S (SZ))
 7 (isZero (S (SZ)))N (λx . abort) (λx.(div (S (S x)) (S (SZ)))) (S (SZ)) (S (SZ))
 ∗ falseN (λx . abort) (λx.(div (S (S x))S (SZ))) (S (SZ)) (S (SZ))
 6 (λx.(div (S (S x))S (SZ))) (S (SZ))
 div (S (S (S (SZ))))S (SZ)
 ∗ S (SZ)

The previous example illustrates the syntax and the reduction relation of the

freedom of speech language, but it also illustrates how the CBV reduction order can

be manipulated using λ-abstractions. Notice that by wrapping the division function

up in a λ-abstraction we prevent the reduction relation from reducing it until it is

actually needed. If the isZero function returns true then the division function is

never needed and thus is never ran. This shows how call-by-name reduction can be

simulated by CBV reduction.

There is one final judgment defined with the reduction relation in Figure 34,

and it is denoted e1 ↓ e2. We call this the joinability judgment and is defined by only

one rule ComputeJoin. This rule states that whenever there exists an expression e

such that the expressions e1 and e2 both reduce to e in any number of steps, then

e1 and e2 are joinable. If e1 ↓ e2 holds then we consider the expressions e1 and e2 to

125

be equivalent. This judgment will be used to give the join expression its type in the

typing rule join.

7.2 Type System

Throughout this thesis we have seen that the reduction rules paired with the

type system is really where the heart of the programming language or type theory

lives. The reduction rules tells us how to compute while the typing rules tell us which

programs are valid and which programs we can consider as proofs. In this section

we present the typing rules of Freedom of Speech, and we will make explicit how it

contains all of the features we introduced in the introduction to this chapter.

The type system contains many rules, and so we break up the system and

introduce it in chunks. To see the complete definition in one place see the appendix

in [49]. Recall from the previous section that the syntax is collapsed. Types and

programs are described by a single syntactic category called expressions. This then

implies that we only have a single judgment defining the typing relation. This judg-

ment is denoted Γ `θ e : e ′, and we read this judgment as the expression e has type e ′

in fragment θ in environment Γ. We can think of this judgment as being parametric

in θ, and thus is two judgments in one. If θ is L, then e is a proof or logical program,

while if θ is P , then e is a potentially diverging program. So it is the typing judgment

that does the carving out of the two fragments.

We begin introducing the type system with the kinding rules:

Γ `P Type : Type
K Type

Γ `L N : Type
K Nat

126

Γ `θ′ e1 : Type
Γ, x :θ

′
e1 `θ e2 : Type

Γ `θ (x :θ′ e1)ε → e2 : Type
K Pi

Γ `θ1 e : e1

Γ `θ2 e ′ : e2

Γ `L e = e ′ : Type
K Eq

The expression Type is a universe containing all of the expressions that can be con-

sidered well-defined types with respect to an environment. Throughout the sequel we

sometimes denote expressions of type Type as A instead of e for readability. We call

an expression e a type if and only if Γ `θ e : Type for some environment Γ. If θ is L,

then e is can be considered a formula otherwise e is simply a type. The rules above

tell us that there are four types: the type Type, which is only a programmatic type

(for the explanation why see Section 4.1), the type of natural numbers, dependent

product types, and equations between well typed expressions. These are the only

expressions that will be considered types.

A few remarks about the types. Notice that the rule K Pi does not require the

consistency classifier of the arguments to match the consistency classifier of the range

type. This allows functions to take in arguments from one fragment and then produce

a program of the opposite fragment. For example, the type (x :P N)+ → x = x takes

a programmatic argument, but produces a formula which is the statement that x is

equivalent to itself. Thus, formulas can depend on potentially diverging programs.

This is exactly the freedom of speech property. Finally, note that the expressions of

an equation do not have to have the same type. This is called heterogenous equality.

In addition, note that the consistency classifiers for the two equations can be different.

For example, SZ is logical and programmatic, thus SZ = SZ, where the first is logical

127

and the second is programmatic, is a valid expression.

Now that we have characterized the types we can introduce how both logical

and programmatic programs are typed. First, we introduce the axioms for natural

numbers and assumptions:

Γ `L S : (x :L N)+ → N
Succ

Γ `L Z : N
Zero

Γ `θ e : Type
x :θ e ∈ Γ

Γ `θ x : e
Var

The astute reader will have noticed that natural numbers are typed only in the

logical fragment, but one might think that these are purely programmatic, because

they do not make for very interesting formulas. As we mentioned above the logical

fragment can be considered as a terminating functional programming language so

if one wishes to ensure that the program they are constructing is terminating then

they can construct it in the logical fragment. To use the natural numbers in the

programmatic fragment we add an additional typing rule:

Γ `L e : e1

Γ `P e : e1

Coerce

This rule allows any well-typed logical expression to be coerced into the programmatic

fragment. This corresponds to the edge relating the logical fragment to the program-

matic fragment in the diagram * from the introduction of this chapter. Thus, natural

numbers can be used in either fragment. The third rule we introduce above is the

variable rule Var which depends on the premise Γ `θ e : Type. This premise – we

will see these all throughout the definition of the typing relation – ensures that the

expression e is indeed a type. This is necessary because we only have one syntactic

128

category for expressions, so the only way to tell the difference between a type and an

expression is by using the typing judgment.

Programmatic and logical functions are introduced using two styles of λ-

abstractions:

Γ `θ e1 : Type
Γ, x :θ e1 `θ

′
e : e2

Γ `θ′ λx . e : (x :θ e1)+ → e2

Lam

Γ `θ′ e1 : Type

Γ, x :θ
′

e1 `θ v : e2 x /∈ FV (v)

Γ `θ v : (x :θ
′

e1)− → e2

ILam

The former introduces λ-abstractions with runtime relevant arguments, while the

latter introduces λ-abstractions whose argument is compile time relavent only. We

call the latter implicit λ-abstractions, because the argument is left implicit. The Lam

rule is intuitive, but notice that again the arguments consistency classifier does not

have to match the bodies, thus allowing freedom of speech.

The typing rule ILam has a restriction on the body of the implicit λ-abstraction.

In fact, there are a number of value restrictions in the definition of the typing relation.

This restriction is necessary in order to maintain the meta-theoretic property called

progress. This property states that every well-typed program can either take a com-

putational step or is already a value. Suppose the restriction on ILam is lifted. Then

the judgment · `L ZZ : (x :L N = (y :L N)+ → N)− → N holds, but ZZ is neither a

value nor a redex. It is a stuck term! Thus, this value restriction is necessary to rule

out stuck terms of this form.

Now we have two distinct λ-abstractions, and thus we will need two types of

applications:

129

Γ `θ′ [v/x]e2 : Type
Γ `θ′ e : (x :θ e1)+ → e2

Γ `θ v : e1

Γ `θ′ e v : [v/x]e2

AppPiTerm

Γ `θ′ [v/x]e2 : Type
Γ `θ′ e : (x :θ e1)− → e2

Γ `θ v : e1

Γ `θ′ e : [v/x]e2

AppAllTerm

The former eliminates function types with runtime arguments, while the latter elim-

inates function types with compile-time arguments. These rules are straightforward,

but do contain value restrictions similar to ILam. These restrictions prevent the ap-

plication of a logical function to a diverging non-value computation. For example,

if we lift the value restriction then we could type (e loop) in the logical fragment,

where loop is a program that simply calls itself infinitely often, but then the term

(e loop) diverges, and hence is no longer a proof. Remember, logical programs cannot

run programmatic programs, however, the term (e loop) is a prefect example of a

programmatic expression.

So far we have seen the typing rules for types, natural numbers, λ-abstractions,

and applications. Now we introduce the typing rules for introducing and eliminating

– or using – equations. The typing rules are as follows:

e ↓ e ′

Γ `θ1 e : e1

Γ `θ2 e ′ : e2

Γ `L join : e = e ′
join

Γ `θ [e ′1/x]e2 : Type
Γ `θ e : [e1/x]e2

Γ `L e ′ : e1 = e ′1
Γ `θ e : [e ′1/x]e2

Conv

The former introduces an equation by first judging that the expressions e and e ′ are

joinable as defined in Figure 34, then requiring that e and e ′ be well typed. Note that

the expressions e and e ′ can have different types and consistency classifiers. Thus, this

rule introduces heterogenous equality. Now equations are completely logical hence we

130

can consider join as the proof that e and e ′ are equivalent. Furthermore, e1 and e2

can be Type, thus e and e ′ can be types making join a proof of an equation between

types. We can now introduce equations, but how are they used? If we have a proof

that the expressions e1 and e ′1 are equivalent, that is we know Γ `L e ′ : e1 = e ′1, and

if we also have an expression e whose type depends on e1, then the rule Conv allows

us to replace e1 in the type e with its equivalent e ′1. Thus, the rule Conv allows one

to substitute equals for equals in types.

The rules Join and Conv have one particular disadvantage. Suppose

Γ
def≡ z :L Type, y :L Type, x :L z , u :L ((x1 :L N)+ → z) = ((x1 :L N)+ → y),

Γ `L λx1 . x : (x1 :L N)+ → z , and
Γ `L Z : N.

Then Γ `L (λx1 . x)Z : z . By applying Conv and using the assumption u, we may

conclude Γ `L (λx1 . x)Z : y , but (λx1 . x)Z x and Γ `L x : z . Therefore, we have

obtained a counterexample to type preservation! Notice that if we knew z = y then

this would no longer be a counterexample, but it is impossible to prove that z = y

from knowing ((x1 :L N)+ → z) = ((x1 :L N)+ → y) using only Join and Conv. So

to prevent counterexamples such as these we add the following rules:

Γ `L e1 = e ′1 : Type
Γ `L e ′ : ((x :θ e1)ε → e2) = ((x :θ e ′1)ε → e ′2)

Γ `L injdom : e1 = e ′1
InjDom

Γ `L [v/x]e2 = [v/x]e ′2 : Type
Γ `L e ′ : ((x :θ e1)ε → e2) = ((x :θ e ′1)ε → e ′2)
Γ `θ v : e1

Γ `L injran : [v/x]e2 = [v/x]e ′2
InjRan

These rules are known as injectivity rules for dependent products. The second rule

may seem a bit strange, especially the second premise, because we are substituting

131

a value v for two free variables of possibly different types. This is, however, not a

problem, because from the premises of InjRan, InjDom, and Conv we may conclude

Γ `θ v : e ′1. Then by InjDom we know Γ `L injdom : e1 = e ′1, and clearly Γ `θ v : e1

is equivalent to Γ `θ v : [e1/x]x . Thus by Conv, Γ `θ v : [e ′1/x]x , which is equivalent

to Γ `θ v : e ′1. So the rule InjRan is sound.

Equational reasoning is based on the runtime behavior of programs, but there

are a number of different programs of a different type so what happens when it is

possible to obtain a equation between contradicting values? The reader may object

to the very question, because the logical fragment – as we have said above – must

be consistent, but it is possible to start with inconsistent assumptions, and in these

cases the logical fragment needs to be able to trigger a contradiction. We introduce

the following rules to eliminate contradictory equations:

Γ `θ e1 : Type

Γ `P abort : e1

Abort

Γ `θ e1 : Type
Γ `L e : Z = S e ′

Γ `L contra : e1

Contra

Γ `θ e1 : Type
Γ `L e : v = abort

Γ `L contra : e1

ContraAbort

The first rule introduces abort and states that abort can have any type. As we have

seen above abort is used to indicate error states. The second rule, ContraAbort,

introduces the proof contra with any well-defined type as long as there is a proof

of some value being equivalent to abort. This means, if a program enters an error

state, then a contradiction has occurred. An example might be trying to verify

the correctness of div for all natural numbers. Then when Z is given as the second

132

argument it will reduce to abort. Thus, we would be able to obtain our result by

using contra. The third rule, Contra, is similar to the previous rule, except it requires

a proof that Z is equivalent to a natural number greater than Z.

There is one additional type of inconsistent equation that might be introduced

that can cause major problems. The fact that in an inconsistent context one can prove

two dependent products equivalent when they have differing stage annotations or

consistency classifiers can break freedom of speech. For example, it would be possible

to equate programmatic functions taking programmatic arguments to programmatic

functions taking logical arguments, which would be the opposite of the freedom of

speech property. Even worse we could equate logical functions taking programmatic

arguments to logical functions taking logical arguments which breaks the freedom of

speech property. To observe inconsistencies arising from equations between dependent

products having different compile time or runtime arguments, or different consistency

classifiers we add the following two rules:

Γ `θ′′ e : Type
Γ `L e ′ : ((x :θ e1)ε → e2) = ((x :θ

′
e ′1)ε

′ → e ′2)
θ 6= θ′

Γ `L contra : e
ContraPiTh

Γ `θ′′ e : Type
Γ `L e ′ : ((x :θ e1)ε → e2) = ((x :θ

′
e ′1)ε

′ → e ′2)
ε 6= ε′

Γ `L contra : e
ContraPiEp

It is possible to obtain other inconsistent equations, for example, an equation between

a dependent product and the type of natural numbers, but we do not add rules to

explicitly observe these inconsistencies, because they are not needed to conduct the

133

meta-theoretic analysis of Freedom of Speech.

The final three rules of the freedom of speech design handle natural number

– terminating – and general recursion. Terminating recursion is restricted to the

logical fragment, but can be moved over to the programmatic fragment using the

Coerce typing rule. Terminating recursion is introduced using the following rules:

Γ, x :L N `L (y :L N)+ → (p :L x = S y)− → [y/x]e2 : Type
Γ, x :L N, f :L (y :L N)+ → (p :L x = S y)− → [y/x]e2 `L v : e2

f , p /∈ FV (e2)

Γ `L rec f x v : (x :L N)+ → e2

RecNat

Γ, x :L N `L (y :L N)− → (u :L x = S y)− → [y/x]e2 : Type
Γ, x :L N, f :L (y :L N)− → (u :L x = S y)− → [y/x]e2 `L v : e2

f , p /∈ FV (e2)

Γ `L rec− f v : (x :L N)− → e2

RecNatComp

A recursive definition is denoted rec f x v and should be thought of as a function

from a natural number to some type e2. So there are two rules: one with a runtime

argument, and one with a compile time argument. The function we are defining we

call f ; f is bound in v . Now x is the recursive argument that decreases across recursive

calls, which is also bound in v , finally v is the definition of the recursive function.

Note that the invariant that the recursive argument decreases across recursive calls

is captured by the type of f . We can see that the programmer has to provide a proof

that x is one larger than the argument supplied to f at the sight of the recursive call.

Thus, termination is clearly captured by the type of f .

Lastly, we have the rule for general recursion:

Γ `θ′ e1 : Type
Γ, f :θ (x :θ

′
e1)+ → e2, x :θ

′
e1 `θ e : e2

Γ `P rec f x e : (x :θ′ e1)+ → e2

Rec

134

This rule is – expectedly – restricted to the programmatic fragment. The things to

note about this rule are that f has the exact same type as rec f x e, and that there

are no proofs requiring any arguments to decrease. Lastly, notice that the recursive

function we are defining, that is f , has a general type. Furthermore, notice that e2

can itself be Type, thus we can define types by recursion. These are known as large

eliminations and facilitate generic programming.

Throughout this chapter we have introduced the complete design of a new de-

pendently typed functional programming language where proofs and general recursive

programs can live in harmony with the freedom of speech property. As we discussed

the design we paid careful attention to our design choices. Many of these choices

were made to enforce particular meta-theoretic properties such as type safety and

consistency. It turns out that type preservation and consistency do indeed hold, and

their proofs are detailed in Chapter 10. However, we do not prove progress. There are

two interesting insights we gained from the design and analysis of freedom of speech.

The first one is that there are a number of value restrictions required throughout the

typing rules. These make programming very difficult, and it is imperative to find

ways to lift those restrictions. In fact, we conjecture that the value restrictions would

no longer be needed if call-by-name reduction was adopted instead of CBV, but this is

an open problem. The second interesting insight is meta-theoretic and is discussed in

Chapter 10. In the following chapter we introduce the design of a dependently-typed

functional programming language inspired by freedom of speech, but lifts all of the

value restrictions, and is extended to include data types and pattern matching.

135

CHAPTER 8

SEPARATION OF PROOF FROM PROGRAM

The previous chapter introduced the freedom of speech dependently-typed

functional programming language. This language contains two fragments, the logical

fragment and the programmatic fragment. However, these fragments are judgmentally

kept separate. That is, the syntax was the same for both fragments, even more so,

the syntax for programs and types are collapsed into a single syntactic category.

This particular design is very appealing because it has an elegant definition, but this

elegance comes at a cost. The type system suffers from many value restrictions, and

as we have said above, this makes programming very hard.

Consider a design where instead of a judgmental separation of the two frag-

ments – logical and programmatic – we insist on a syntactic one. This means that

the logical and programmatic fragments have completely distinct languages for types

and programs – but their semantics are not – and then the two fragments are related

using freedom of speech by typing rules. So we go from a picture that looks like this:

Programmatic

Logical

To the following picture:

136

Logical Programmatic

We have seen this diagram before in the previous chapter, but there it was used to

give an intuitive understanding of the free speech property, but the two fragments are

not strictly separate. Now we insist that they are in fact strictly separate, and the

first diagram above is no longer applicable; unlike the freedom of speech language.

We will see that this separation allows for the lifting of most of the value restrictions

from the typing rules.

The freedom of speech language is not a very expressive programming lan-

guage. For example, we did not show how to construct full programs, nor did freedom

of speech contain any notion of abstract data types or pattern matching. Thus, it is

rather difficult to consider freedom of speech as a real-world programming language.

In this chapter we introduce the design of a new programming language called Separa-

tion of Proof from Program (Sep3) that contains all of these new features. The logical

and programmatic fragments are strictly separate, and Sep3 is a full real-world pro-

gramming language complete with abstract datatypes and pattern matching. There

are also additional features that we will introduce below. The definition of Sep3 is

very large with over a hundred typing rules and a large amount of syntax. Therefore,

we do not have the space to introduce the complete definition in the same style as we

did for freedom of speech, but instead concentrate on the most important aspects of

137

the design. If the reader wishes to wade through the entire definition, then please see

the appendix in [49] but the reader may wish to read this chapter first to understand

the need for two definitions.

Sep3 consists of two distinct phases: compile time and runtime, and Sep3 sep-

arates each phase into its own language. The compile time phase uses the annotated

Sep3 language, and the runtime phase uses the unannotated Sep3 language. The for-

mer is then translated into the second using an meta-level function called the eraser.

This function removes the annotations from objects of the annotated language yield-

ing objects of the unannotated language, furthermore, the eraser function removes

all objects marked compile time, which includes the entire proof language. Thus to

reiterate, the primary goal of the annotated language is type checking and proving,

while the primary goal of the unannotated language is computation.

The reader may suspect that the unannotated language most likely consists

primarily of the programmatic fragment, because if the proof language is removed and

has no computational content, then why keep it around? This is precisely correct,

and an implementation of Sep3 would indeed do this, but we define an additional

eraser function to essentially translate the proof language of Sep3 into the Curry-style

version, that is a language with no annotations. We conjecture that the metatheory

of Sep3 would be easier to carry out in the unannotated language rather than the

annotated one. We do not pursue this strand of thought further, but wanted to

simply comment on this notion. We do not define the eraser functions here, but the

interested reader can find their complete definitions in the appendix. Throughout the

138

remainder of this chapter we will concentrate solely on the annotated Sep3 language

which we will just call Sep3.

The overall picture. Sep3 consists of four main judgments:

∆,Γ ` LK : Logicali Super kinding.

∆,Γ ` P : LK Kinding.

∆,Γ ` p : P Proof typing.

∆,Γ ` t : t ′ Program typing.

Logical Fragment

Programmatic Fragment

As the previous table indicates the logical fragment is broken up into three judgments.

This is because the language of the logical fragment is no longer collapsed. There are

distinct languages for proofs, predicates (types), kinds, and a new category we call

super kinds. Each of these will be discussed further below. Now the programmatic

fragment consists of only a single judgment, because it has a collapsed syntax very

much like the freedom of speech language. In fact, the programmatic fragment is

basically an extension of the freedom of speech language, and so is not really that

different. For this reason we do not discuss the programmatic fragment in detail, but

only discuss a few important aspects of the fragment.

In the freedom of speech language the connection between the two fragments is

very explicit. The connection from the logical fragment to the programmatic fragment

is modeled by the Coerce rule, and the connection from the programmatic fragment

was modeled by the dependent product types, which allowed arguments to functions

to be programs from the programmatic fragment. However, Sep3 does not have a

coercion rule from the logical fragment to the programmatic fragment. Instead both

139

fragments are related via the dependent product types. Logical programs are allowed

to have programmatic inputs, and programmatic programs are allowed to have logical

inputs.

The programmatic fragment. The programmatic fragment can be thought

of as an extension of the programmatic fragment of the freedom of speech language.

The extensions include datatypes, and pattern matching. There is one significant

improvement to the programmatic fragment over the freedom of speech language,

and that is the lifting of the value restrictions. For example, the following are the

λ-abstraction and function application rules from the programmatic fragment of Sep3:

∆,Γ, x :val t1 ` t : t2

∆,Γ ` λx+ : t1.t : Πx+ : t1.t2

TRM LamPL

∆,Γ, x : A ` t : t ′

x 6∈ FV (|t |)
∆,Γ ` λx− : A.t : Πx− : A.t ′

TRM LamMI

∆,Γ ` t : Πxε : A.t ′

∆,Γ ` a : A

∆,Γ ` t aε : [a/x]t ′
TRM App

We can see that these rules look very much like the rules of freedom of speech, but

there are some small differences. First, we annotate bound variables by their stage

annotations. This facilitates reasoning as well as the definitions of the eraser functions.

Secondly, in the TRM LamPL we annotate the free variable x in the context of the

premise with the val annotation. This indicates that x ranges over programmatic

values, and this is used to enforce call-by-value applications. Compare this to the

rule TRM LamMI where x does not only range over values, but also over diverging

terms.

These rules include the freedom of speech property. The type A is an alias for

one of t , P , or LK , which means compile-time functions – using TRM LamMI – can

140

take in programmatic arguments, proof arguments, or even predicates.

Finally, the application rule TRM App does not contain any value restriction.

The argument a ranges over general terms, proofs, and predicates. Thus, we have

successfully lifted the value restriction in the programmatic fragment.

The logical fragment. We would now like to introduce the logical fragment

in some detail so the reader can get an idea of how different it is from the logical

fragment of the freedom of speech language. The syntax of the logical fragment of

Sep3 is defined as follows:

(Super Kinds) L ::= Logicali (Logical Kind) LK ::= x
| Formulai
| ∀x : A.LK

(Predicates) P ::= x
| Λx : A .P
| P a
| ∀x : A.P
| let x = p inP
| let x = P inP ′

| let x = t [p] inP
| t1 = t2

| t !
| P1 + P2

| ∃x : A.P
| ⊥i
| t < t ′

(Proofs) p ::= x
| inl p withP
| inr p withP
| case p of x .p ′, y .p ′′

| Λx : A . p
| p a
| (a, p) asP
| case p1 of (x, y).p2

| let x = p ′ in p
| let x = P in p
| let x = t [y] in p
| join t1 t2

| conv p by q1 ... qn at x1 ... xm .P
| predconv p P
| valax t
| ord t t ′

| case t [x]p of R
| tcase t [x] of abort → p1|!→ p2

| ind f x : t , p1.p2

| contr p1

| contraval p1 p2

Super kinds are the types of logical kinds, which are themselves the types of predicates.

Finally, predicates are the types of proofs. The definition of the logical fragment is

141

very reminiscent of the definition of system Fω – see Section 1.2 for an introduction

of Fω. In fact, predicates can be computed using x , Λx : A .P , P a, let x = p inP ,

let x = P inP ′, and let x = t [p] inP ; we have three different let expressions, because

of the strict separation of the various languages. This implies that the logical fragment

is indeed a higher order language, but a predicative one. We have stratified the super

kinds and logical kinds into an infinite hierarchy of kinds. We denote this by Logicali

and Formulai. This stratification is similar to levels in SSF – see Section 1.2 for more

information on SSF.

Now in comparison with the freedom of speech language we can see that Sep3

has three new predicates: t !, P1 + P2, ∃x : A.P , and t < t ′. The first is called

the termination predicate and we will discuss this further below. The second is the

type of sum types or, logically, the type for disjunction, and the third is the type for

existential quantification. Note that we can existentially quantify over logical kinds,

predicates, proofs, and terms. Thus, the existential type makes use of the freedom

of speech property similar to the dependent product type. The final new predicate is

the structural ordering type t < t ′ which says that t is structurally smaller than t ′.

The structural ordering type will be discussed further below.

The proof language is fairly straightforward, and is very similar to the freedom

of speech language with the addition of the necessary proofs of the new predicates

just discussed. Thus, we do not go over each proof construct. The typing rules for

logical kinds, predicates, and proofs can be found in Figure 35, Figure 36, Figure 37,

and Figure 38 respectively. The reader may wish to look over the typing rules for

142

ΓOk
∆Ok

∆,Γ ` Formulai : Logical(i+1)

LK Formula

∆,Γ ` A : Ai
∆,Γ, x : A ` LK : Logicalj

∆,Γ ` ∀x : A.LK : Logicalmax (i+1,j)

LK Predicate

Figure 35. Type-checking Rules for Logical Kinds

∆,Γ ` LK : Logicali
x :γ LK ∈ Γ

∆,Γ ` x : LK
PRD Var

ΓOk
∆Ok
x = (P ,LK) ∈ ∆

∆,Γ ` x : LK
PRD GD

ΓOk
∆Ok

∆,Γ ` ⊥i : Formulai
PRD Btm

∆,Γ ` P1 : Formulai
∆,Γ ` P2 : Formulaj

∆,Γ ` P1 + P2 : Formulamax (i,j)

PRD Disj

∆,Γ ` P ′ : LK
∆,Γ ` LK : Logicali
∆,Γ, x : P ′ ` P : Formulaj

∆,Γ ` ∀x : P ′.P : Formulamax (i,j)

PRD Forall1

∆,Γ ` t : Type0
∆,Γ, x : t ` P : Formulai

∆,Γ ` ∀x : t .P : Formulamax (1,i)

PRD Forall2

∆,Γ ` t : Typei
∆,Γ, x : t ` P : Formulaj

∆,Γ ` ∀x : t .P : Formulamax (i+1,j)

PRD Forall3

∆,Γ ` LK : Logicali
∆,Γ, x : LK ` P : Formulaj

∆,Γ ` ∀x : LK .P : Formulamax (i,j)

PRD Forall4

∆,Γ ` P ′ : LK
∆,Γ ` LK : Logicali
∆,Γ, x : P ′ ` P : Formulaj

∆,Γ ` ∃x : P ′.P : Formulamax (i,j)

PRD Ext1

∆,Γ ` t : Type0
∆,Γ, x : t ` P : Formulai

∆,Γ ` ∃x : t .P : Formulamax (1,i)

PRD Ext2

∆,Γ ` t : Typei
∆,Γ, x : t ` P : Formulaj

∆,Γ ` ∃x : t .P : Formulamax (i+1,j)

PRD Ext3

∆,Γ ` LK : Logicali
∆,Γ, x : LK ` P : Formulaj

∆,Γ ` ∃x : LK .P : Formulamax (i,j)

PRD Ext4

∆,Γ ` p : P ′

∆,Γ, x : P ′ ` P : LK
x 6∈ FV (p)

∆,Γ ` let x = p inP : LK
PRD LetPF

∆,Γ ` P : LK ′

∆,Γ, x : LK ` P ′ : LK
x 6∈ FV (P)

∆,Γ ` let x = P inP ′ : LK
PRD LetPRD

∆,Γ ` t : t ′

∆,Γ, x : t ′, x ′ : x = t ` P : LK
x 6∈ FV (t)

∆,Γ ` let x = t [x ′] inP : LK
PRD Let

∆,Γ ` t : t1
∆,Γ ` t ′ : t2

∆,Γ ` t = t ′ : Formulai
PRD K Eq

∆,Γ ` t : t ′

∆,Γ ` t ! : Formulai
PRD TRM

∆,Γ ` A : W
∆,Γ, x : A ` P : LK

∆,Γ ` Λx : A .P : ∀x : A.LK
PRD Lam

∆,Γ ` P : ∀x : A.LK
∆,Γ ` a : A

∆,Γ ` P a : [a/x]LK
PRD App

Figure 36. Type-checking Rules for Predicates

143

∆,Γ ` P : LK
x :γ P ∈ Γ

∆,Γ ` x : P
PRF Var

ΓOk
∆Ok
x = (p,P) ∈ ∆

∆,Γ ` x : P
PRF GD

∆,Γ ` p : [a/x]P
∆,Γ ` a : A

∆,Γ ` (a, p) as (∃x : A.P) : ∃x : A.P
PRF Exti

∆,Γ ` p1 : ∃x : A.P
∆,Γ, x : A, y : P ` p2 : P ′

x 6∈ FV (P ′)

∆,Γ ` case p1 of (x, y).p2 : P ′
PRF ExtE

∆,Γ ` p : P1

∆,Γ ` P2 : Formulai

∆,Γ ` inl p withP2 : P1 + P2
PRF Inl

∆,Γ ` p : P2

∆,Γ ` P1 : Formulai

∆,Γ ` inr p withP1 : P1 + P2
PRF Inr

∆,Γ ` p : P1 + P2

∆,Γ, x : P1 ` p′ : P
∆,Γ, x : P2 ` p′′ : P

∆,Γ ` case p of x .p′, x .p′′ : P
PRF OrElim

∆,Γ ` t : Typei
∆,Γ, x : t ` p : P

∆,Γ ` Λx : t . p : ∀x : t .P
PRF FT

∆,Γ ` P : LK
∆,Γ ` LK : Logicali
∆,Γ, x :val P ` p : P ′

∆,Γ ` Λx : P . p : ∀x : P .P ′
PRF FPRD

∆,Γ ` LK : Logicali
∆,Γ, x :val LK ` p : P

∆,Γ ` Λx : LK . p : ∀x : LK .P
PRF FLK

∆,Γ ` p : ∀x : A.P
∆,Γ ` a : A

∆,Γ ` p a : [a/x]P
PRF App

∆,Γ ` p′ : P ′

∆,Γ, x : P ′ ` p : P
x 6∈ FV (p′)

∆,Γ ` let x = p′ in p : P
PRF LetPRF

∆,Γ ` P : LK
∆,Γ, x : LK ` p : P
x 6∈ FV (P)

∆,Γ ` let x = P in p : P
PRF LetPRD

Figure 37. Type-checking Rules for Proofs

144

∆,Γ ` t : t ′

∆,Γ, x : t ′, x ′ : x = t ` p : P
x 6∈ FV (t)

∆,Γ ` let x = t [x ′] in p : P
PRF Let

|t | . |t ′|
∆,Γ ` t : t1
∆,Γ ` t ′ : t2

∆,Γ ` join t t ′ : t = t ′
PRF Join

x1, ... , xn 6∈ FV (|P |)
∆,Γ ` p : [t1/x1] ... [tn/xn]P
∆,Γ ` [t ′1/x1] ... [t ′n/xn]P : Formulai
∆,Γ ` eqpf q1 ε1 : t1 = t ′1 ...∆,Γ ` eqpf qn εn : tn = t ′n

∆,Γ ` conv p by q1 ... qn at x1 ... xn .P : [t ′1/x1] ... [t ′n/xn]P
PRF Conv

∆,Γ ` p : P
P =β P ′

∆,Γ ` predconv p P ′ : P ′
PRF PRDConv

∆,Γ ` val t

∆,Γ ` valax t : t !
PRF Val

∆,Γ ` t : t1
∆,Γ ` t ′ : t2
∆,Γ ` val t
∆,Γ ` val t ′

t v+ t ′

∆,Γ ` ord t t ′ : t < t ′
PRF Ord

∆,Γ, x : t1, u :val x !, f :val ∀y : t2.∀u : y < x .[y/x]P ` p : P

∆,Γ ` ind f x : t1, u.p : ∀x : t1.∀u : x !.P
PRF Ind

∆,Γ ` P : Formulai
∆,Γ ` p′ : C a1ε1 . . . ar εr = C a ′1ε′1

. . . a ′sε′s
C 6= K
∀a ∈ {a1, . . . , ar}.((∃t.∆,Γ ` a : t) =⇒ (∃t ′, p.(a ≡ t ′ ∧∆,Γ ` p : t ′ !)))
∀a ∈ {a ′1, . . . , a ′s}.((∃t.∆,Γ ` a : t) =⇒ (∃t ′, p.(a ≡ t ′ ∧∆,Γ ` p : t ′ !)))

∆,Γ ` contr p′ : P
PRF CTR1

∆,Γ ` p : ⊥i
∆,Γ ` P : Formulai

∆,Γ ` contr p : P
PRF CTR2

∆,Γ ` P : Formulai
∆,Γ ` p1 : t = abort t ′

∆,Γ ` p2 : t !

∆,Γ ` contraval p1 p2 : P
PRF CTRV

∆,Γ ` t : t ′

∆,Γ ` p : t !
∆,Γ `PB R t t ′ y ∆3(getHC(t ′)) : P

∆,Γ ` case t [y]p of R : P
PRF Case

∆,Γ ` t : t ′

∆,Γ, u :val t ! ` p2 : P
∆,Γ, u :val abort t ′ = t ` p1 : P

∆,Γ ` tcase t [u]of abort → p1|!→ p2 : P
PRF TCase

Figure 38. Type-checking Rules for Proofs Continued

145

proofs to get an idea of which proof construct introduces each of the new predicates.

The termination prediate. In the freedom of speech language if one wanted

to prove that a programmatic program is terminating one simply had to define it in

the logical fragment, but this is not possible in Sep3, because of the strict separation of

the logical and programmatic fragments. The termination predicate adds the ability

to prove programmatic programs terminating. The termination predicate is denoted

t !, and can be read as the program t terminates at a value. We prove t ! using the

rule PRF Val:

∆,Γ ` val t

∆,Γ ` valax t : t !
PRF Val

This rule says, that if we can show ∆,Γ ` val t , then we can prove t !. We call

the judgment ∆,Γ ` val t the semantic value judgment. If it holds, then t is either

an actual syntactic value, a free variable annotated in the context as ranging over

values, or a termination cast. See Figure 39 for the definition of the semantic value

judgment. One may feel that the rule PRF Val is a bit restrictive. This rule is

supposed to allow the proof that a terminating program is indeed terminating, but

on the nose it seems that the only things we can prove are terminating are semantic

values, which are trivially terminating. However, this is not the case. If one can

prove that t is terminating for some non-value t , then one must have constructed the

value of t , say v . Now it is trivially the case that t and v are joinable, thus using

PRF Join we can prove t = v . In addition, since we know v is a value, then we can

prove that it is a semantic value trivially. Thus, using these two proofs we can then

prove ∆,Γ ` valax v : t ! using the rules PRF Val and PRF Conv.

146

ΓOk
∆Ok
x :val t ∈ Γ

∆,Γ ` val x
V Var

ΓOk
∆Ok

∆,Γ ` val Typei
V Type

ΓOk
∆Ok

∆,Γ ` val Πxε : A.t
V Pi

ΓOk
∆Ok

∆,Γ ` val λx+ : A.t
V LamPlus

∆,Γ ` val t

∆,Γ ` val λx− : A.t
V LamMinus

ΓOk
∆Ok

∆,Γ ` val rec f x : t1.t2

V Rec
∆,Γ ` v-or-p a1 ...∆,Γ ` v-or-p an

∆,Γ ` val C a1ε1 . . . anεn

V Ctor

ΓOk
∆Ok

∆,Γ ` val tcast t by p
V tCast

Figure 39. Semantic Values

The termination cast is a means of casting programs to values if they can be

proven to be terminating. That is, any terminating program may be treated as a

value. Lets consider the introduction rule for the termination cast:

∆,Γ ` t : t ′

∆,Γ ` p : t !

∆,Γ ` tcast t by p : t ′
TRM tCast

This rules states that if we have a well-typed t of type t ′, and a proof p that t

terminates, that is of type t !, then we may cast t to a value denoted tcast t by p

which is also of type t ′.

There is one final component of the termination predicate called the termi-

nation case expression. This is an expression that amounts to computationally case

147

splitting over the termination behavior of a program. Now do not be alarmed! This

does not imply that this is a proof of the halting problem. Consider the typing rule

for the termination case expression:

∆,Γ ` t : t ′

∆,Γ, u :val t ! ` p2 : P
∆,Γ, u :val abort t ′ = t ` p1 : P

∆,Γ ` tcase t [u] of abort → p1|!→ p2 : P
PRF TCase

This rule status that if t terminates then execute the second branch p2, which is

allowed to use the proof showing that t terminates, otherwise if t is diverges – here

we model divergence using abort t ′ – then execute the first branch p1 which is allowed

to use the proof showing t is equivalent to abort t ′. Now computationally speaking

this rule is undecidable. It is impossible to take an arbitrary program and decide

whether it diverges or not, but adding this axiom is not inconsistent, because it

simply captures the notion that either a program terminates or it diverges, and this

is no more inconsistent then adding the law-of-excluded middle to our logic. In fact,

one might expect that adding termination case could imply the law of excluded middle

making our logic classical, but this is an open problem.

Structural ordering. There is one final interesting feature that sets Sep3

apart from the freedom of speech language, and many others. Recall that in the

freedom of speech language the logical fragment contained a terminating recursor, but

the recursive argument had to be a natural number. Sep3 relaxes this requirement

to an arbitrary datatype by introducing a new predicate called the structural order

denoted t < t ′. Intuitively, if t is a well-defined strict subexpression of t ′, then we

may conclude t < t ′. The rule for introducing the structural order predicate is as

148

follows:
∆,Γ ` t : t1

∆,Γ ` t ′ : t2

∆,Γ ` val t
∆,Γ ` val t ′

t v+ t ′

∆,Γ ` ord t t ′ : t < t ′
PRF Ord

This rule is very much like the rule for introducing the termination predicate in that it

is defined for values only, however, when mixed with equality it can be very powerful.

The judgment t v+ t ′ is the subexpression ordering on datatype constructors. See

the appendix for the complete definition.

The structural order predicate is then used in the definition of induction in

the logical fragment:

∆,Γ, x : t1, u :val x !, f :val ∀y : t2.∀u : y < x .[y/x]P ` p : P

∆,Γ ` ind f x : t1, u.p : ∀x : t1.∀u : x !.P
PRF Ind

As we can see the inductive call must be given a proof that the argument we are

inducting over has structurally decreased. This means that we can now do induction

on many different types of data, for example, lists, trees, natural numbers, and any

other inductively defined data.

Throughout this chapter we have seen only the positive perspective of the

design of Sep3. So now we briefly discuss one major lesson learned from this design.

Relaxing the value restrictions was achieved by a strict separation of the logical and

programmatic fragments. In addition, the proof language has been separated into

several different languages. This strict separation prevents code reuse. That is, there

are functions that can be written in both the programmatic fragment and the logical

fragment, but these have to be written twice. Thus, through the strict separation we

149

have gained no value restrictions, but lost code reuse. This is the major drawback of

the Sep3 design.

In this chapter we introduced a new dependently-typed functional program-

ming language called Separation of Proof from Program. Sep3 is a large advancement

over the freedom of speech language. It has several new predicates for disjunction,

existential quantification, termination, and structural ordering. In addition Sep3 con-

tains the freedom of speech property, but is designed so as to prevent the need for

the value restrictions we have in the freedom of speech language. Thus, programming

in Sep3 is more enjoyable. Lastly, Sep3 contains inductive datatypes with pattern

matching. Therefore, real-world programming examples can be carried out in Sep3;

in fact, several examples can be found in the paper [74].

150

CHAPTER 9

DUALIZED LOGIC AND TYPE THEORY

Freedom of Speech and Sep3 are two very powerful programming languages,

but there is one feature they do not have, the ability to reason about infinite data

structures in an elegant way. Infinite data can be defined and reasoned about using

corecursion and coinduction respectively. Now both of the previous languages contain

induction, but only Sep3 contained inductive data types. This chapter is about the

design of a new simply typed theory called Dualized Type Theory (DTT).

DTT is based on a new bi-intuitionistic logic (BINT) called Dualized Intu-

itionistic Logic (DIL). Bi-intuitionisim is a conservative extension of intuitionistic

logic with prefect duality. That is, for every logical connective of the logic its dual

connective is also a logical connective of the logic. Due to the rich duality in BINT we

believe it shows promise of being a logical foundation for induction and coinduction,

because induction is dual to coinduction. Our working hypothesis is that a logical

foundation based on intuitionistic duality will allow the semantic duality between

induction and coinduction to be expressed in type theory, yielding a solution to the

problems with these important features in existing systems. For example, Agda re-

stricts how inductive and coinductive types can be nested (see the discussion in [3]),

while Coq supports general mixed inductive and coinductive data, but in doing so,

sacrifices type preservation.

One particular difference in the design of DTT from Freedom of Speech and

151

Sep3 is that we started from a logic, and then derived a corresponding type theory

from it. Thus, we make explicit use of the computational trinity (Chapter 2) by

starting on the logical side, and then moving to the type theoretic side.

Classical logic is rich with duality. Using the De Morgan dualities it is straight-

forward to prove that conjunction is dual to disjunction and negation is self dual. In

addition, it is also possible to prove that ¬A∧B is dual to implication. In intuitionistic

logic these dualities are no longer provable, but in [112] Rauszer gives a conservative

extension of the Kripke semantics for intuitionistic logic that not only models con-

junction, disjunction, negation, and implication, but also the dual to implication, by

introducing a new logical connective. The usual interpretation of implication in a

Kripke model is as follows:

[[A→ B]]w = ∀w′.w ≤ w′ → [[A]]w′ → [[B]]w′

Now Rauszer took the dual of the previous interpretation to obtain the following:

[[A−B]]w = ∃w′.w′ ≤ w ∧ ¬[[A]]w′ ∧ [[B]]w′

This is called subtraction or exclusion. Propositional BINT logic is a conservative

extension of propositional intuitionistic logic with perfect duality. That is, it contains

the logical connectives for disjunction, conjunction, implication, and subtraction, and

it is sound and complete with respect to the Rauszer’s extended Kripke semantics.

BINT logic is fairly unknown in computer science. Filinski studied a fragment

of BINT logic in his investigation into first class continuations in [55]. Crolard in-

troduced a logic and corresponding type theory called subtractive logic, and showed

152

it can be used to study constructive coroutines in [40, 41]. He initially defined sub-

tractive logic in sequent style with the Dragalin restriction, and then defined the

corresponding type theory in natural deduction style by imposing a restriction on

Parigot’s λµ-calculus in the form of complex dependency tracking. Just as linear

logicians have found – for example in [119] – Pinto and Uustalu were able to show

that imposing the Dragalin restriction in subtractive logic results in a failure of cut

elimination [106]. They recover cut elimination by proposing a new BINT logic called

L that lifts the Dragalin restriction by labeling formulas and sequents with nodes and

graphs respectively; this labeling corresponds to placing constraints on the sequents

where the graphs can be seen as abstract Kripke models. Goré et. al. also proposed a

new BINT logic that enjoys cut elimination using nested sequents; however it is cur-

rently unclear how to define a type theory with nested sequents [63]. Bilinear logic in

its intuitionistic form is a linear version of BINT and has been studied by Lambek in

[80, 81]. Biasi and Aschieri propose a term assignment to polarized bi-intuitionistic

logic in [24]. One can view the polarities of their logic as an internalization of the

polarities of the logic we propose in this article. Bellin has studied BINT similar to

that of Biasi and Aschieri from a philosophical perspective in [20, 21, 23], and he de-

fined a linear version of Crolard’s subtractive logic for which he was able to construct

a categorical model using linear categories in [22].

Throughout the remainder of this chapter we introduce the design of DIL and

its corresponding type theory DTT. DIL is a single-sided polarized formulation of

Pinto and Uustalu’s labeled sequent calculus L. DIL builds on L by removing the

153

following rules (see Section 9.1 for a complete definition of L):

Γ `G∪{(n,n)} ∆

Γ `G ∆
refl

n1Gn2

n2Gn3

Γ `G∪{(n1,n3)} ∆

Γ `G ∆
trans

nGn ′

Γ, n : T , n ′ : T `G ∆

Γ, n : T `G ∆
monL

n ′Gn
Γ `G n ′ : T , n : T ,∆

Γ `G n : T ,∆
monR

We show in Chapter 11 that in the absence of the previous rules DIL still maintains

consistency (Section 11.1) and completeness (Section 11.2). Furthermore, DIL is de-

fined using a dualized syntax which reduces the number of inference rules needed to

define the logic. Again, DIL is a single-sided sequent calculus with multiple conclu-

sions and thus must provide a means of moving conclusions from left to right. This

is done in DIL using cuts on hypotheses. We call these types of cuts “axiom cuts.”

Now we consider BINT logic to be the closest extension of intuitionistic logic

to classical logic while maintaining constructivity. BINT has two forms of negation,

one defined as usual, ¬A def
= A →⊥, and a second defined interms of subtraction,

∼A def
= > − A. The latter we call “non-A”. Now in BINT it is possible to prove

A∨∼A for any A [40]. Furthermore, when the latter is treated as a type in DTT, the

inhabitant is a continuation without a canonical form, because the inhabitant contains

as a subexpression an axiom cut. Thus, the presence of these continuations prevents

the canonicity result for a type theory – like DTT – from holding. Thus, if general cut

elimination was a theorem of DIL, then A∨∼A would not be provable. So DIL must

contain cuts that cannot be eliminated. This implies that DIL does not enjoy general

cut elimination, but all cuts other than axiom cuts can be eliminated. Throughout

154

(formulas) A,B ,C ::= > | ⊥ |A ⊃ B |A ≺ B |A ∧ B |A ∨ B
(graphs) G ::= · | (n, n ′) |G,G′

(contexts) Γ ::= · | n : A |Γ,Γ′

Figure 40. Syntax of L.

the sequel we define “cut elimination” as the elimination of all cuts other than axiom

cuts, and we call DIL “cut free” with respect to this definition of cut elimination.

The latter point is similar to Wadler’s dual calculus [141].

9.1 Pinto and Uustalu’s L

In this section we briefly introduce Pinto and Uustalu’s L from [106]. The

syntax for formulas, graphs, and contexts of L are defined in Figure 40, while the

inference rules are defined in Figure 41. The formulas include true and false denoted

> and ⊥ respectively, implication and subtraction denoted A ⊃ B and A ≺ B respec-

tively, and finally, conjunction and disjunction denoted A∧B and A∨B respectively.

So we can see that for every logical connective its dual is a logical connective of the

logic. This is what we meant by BINT containing perfect intuitionistic duality in the

introduction. Sequents have the form Γ `G n : A,∆, where Γ and ∆ are multisets of

formulas labeled by a node, G is the abstract Kripke model or sometimes referred to

as simply the graph of the sequent, and n is a node in G.

Graphs are treated as sets of edges and we denote (n1, n2) ∈ G by n1Gn2.

Furthermore, we denote the union of two graphs G and G′ as G ∪ G′. Now each

formula present in a sequent is labelled with a node in the graph. This labeling is

155

Γ `G∪{(n,n)} ∆

Γ `G ∆
refl

n1Gn2

n2Gn3

Γ `G∪{(n1,n3)} ∆

Γ `G ∆
trans

Γ, n : T `G n : T ,∆
hyp

nGn ′

Γ, n : T , n ′ : T `G ∆

Γ, n : T `G ∆
monL

n ′Gn
Γ `G n ′ : T , n : T ,∆

Γ `G n : T ,∆
monR

Γ `G ∆

Γ, n : > `G ∆
trueL

Γ `G n : >,∆
trueR

Γ, n :⊥`G ∆
falseL

Γ `G ∆

Γ `G n :⊥,∆
falseR

Γ, n : T1, n : T2 `G ∆

Γ, n : T1 ∧ T2 `G ∆
andL

Γ `G n : T1,∆
Γ `G n : T2,∆

Γ `G n : T1 ∧ T2,∆
andR

Γ, n : T1 `G ∆
Γ, n : T2 `G ∆

Γ, n : T1 ∨ T2 `G ∆
disjL

Γ `G n : T1, n : T2,∆

Γ `G n : T1 ∨ T2,∆
disjR

nGn ′

Γ `G n ′ : T1,∆
Γ, n ′ : T2 `G ∆

Γ, n : T1 ⊃ T2 `G ∆
impL

n ′ 6∈ |G|, |Γ|, |∆|
Γ, n ′ : T1 `G∪{(n,n ′)} n ′ : T2,∆

Γ `G n : T1 ⊃ T2,∆
impR

n ′ 6∈ |G|, |Γ|, |∆|
Γ, n ′ : T1 `G∪{(n,n ′)} n ′ : T2,∆

Γ, n ′ : T1 ≺ T2 `G ∆
subL

n ′Gn
Γ `G n ′ : T1,∆
Γ, n ′ : T2 `G ∆

Γ `G n : T1 ≺ T2,∆
subR

Figure 41. Inference Rules for L.

156

denoted n : A and should be read as the formula A is true at the node n. We denote

the operation of constructing the list of nodes in a graph or context by |G| and |Γ|

respectively. The reader should note that it is possible for some nodes in the sequent

to not appear in the graph. For example, the sequent n : A `· n : A, · is a derivable

sequent. Now the complete graph can always be recovered if needed by using the

graph structural rules refl, trans, monL, and monR.

The labeling on formulas essentially adds constraints to the set of Kripke

models. This is evident in the proof of consistency for DIL in Section 11.1; see the

definition of validity. Consistency of L is stated in [106] without a detailed proof,

but is proven complete with respect to Rauszer’s Kripke semantics using a counter

model construction. In Section 9.2 we give a translation of the formulas of L into the

formulas of DIL, and in Section 11.2 we will give a translation of the rest of L into

DIL which will be used to conclude completeness of DIL.

9.2 Dualized Intuitionistic Logic

The syntax for polarities, formulas, and graphs of DIL is defined in Figure 42,

where a ranges over atomic formulas. The following definition shows that DIL’s

formulas are simply polarized versions of L’s formulas.

Definition 9.2.0.1.

The following defines a translation of formulas of L to formulas of DIL:

p>q = 〈+〉
p⊥q = 〈−〉

pA ∧ Bq = pAq ∧+ pBq
pA ∨ Bq = pAq ∧− pBq

pA ⊃ Bq = pAq→+ pBq
pB ≺ Aq = pAq→− pBq

We represent graphs as lists of edges denoted n1 4p n2, where we consider the

edge n1 4+ n2 to mean that there is a path from n1 to n2, and the edge n1 4− n2 to

157

(polarities) p ::= + | −
(formulas) A,B ,C ::= a | 〈p〉 |A→p B |A ∧p B

(graphs) G ::= · | n 4p n ′ |G,G′
(contexts) Γ ::= · | p A @ n |Γ,Γ′

Figure 42. Syntax for DIL.

mean that there is a path from n2 to n1. Lastly, contexts denoted Γ are represented

as lists of formulas. Throughout the sequel we denote the opposite of a polarity

p by p̄. This is defined by +̄ = − and −̄ = +. The inference rules for DIL are in

Figure 43.

The sequent has the form G; Γ ` p A @ n which when p is positive (resp.

negative) can be read as the formula A is true (resp. false) at node n in the context Γ

with respect to the graph G. The inference rules depend on a reachability judgment

that provides a means of proving when a node is reachable from another within some

graph G. This judgment is defined in Figure 44. In addition, the imp rule depends

on the operations |G| and |Γ| which simply compute the list of all the nodes in G and

Γ respectively. The condition n ′ 6∈ |G|, |Γ| in the imp rule is required for consistency.

The most interesting inference rules of DIL are the rules for implication and

coimplication from Figure 43. Let us consider these two rules in detail. These rules

mimic the definitions of the interpretation of implication and coimplication in a Kripke

model. The imp rule states that the formula p (A→p B) holds at node n if assuming

p A @ n ′ for an arbitrary node n ′ reachable from n, then p B @ n ′ holds. Notice that

158

G ` n 4∗p n ′

G; Γ, p A @ n,Γ′ ` p A @ n ′
ax

G; Γ ` p 〈p〉@ n
unit

G; Γ ` p A @ n G; Γ ` p B @ n

G; Γ ` p (A ∧p B) @ n
and

G; Γ ` p Ad @ n

G; Γ ` p (A1 ∧p̄ A2) @ n
andBar

n ′ 6∈ |G|, |Γ|
(G, n 4p n ′); Γ, p A @ n ′ ` p B @ n ′

G; Γ ` p (A→p B) @ n
imp

G ` n 4∗p̄ n ′

G; Γ ` p̄ A @ n ′ G; Γ ` p B @ n ′

G; Γ ` p (A→p̄ B) @ n
impBar

G; Γ, p̄ A @ n ` + B @ n ′ G; Γ, p̄ A @ n ` −B @ n ′

G; Γ ` p A @ n
cut

Figure 43. Inference Rules for DIL.

when p is positive n ′ will be a future node, but when p is negative n ′ will be a past

node. Thus, universally quantifying over past and future worlds is modeled here by

adding edges to the graph. Now the impBar rule states the formula p (A →p̄ B) is

derivable if there exists a node n ′ that is provably reachable from n, p̄ A is derivable

at node n ′, and p B @ n ′ is derivable at node n ′. When p is positive n ′ will be a

past node, but when p is negative n ′ will be a future node. This is exactly dual to

implication. Thus, existence of past and future worlds is modeled by the reachability

judgment.

Before moving on to proving consistency and completeness of DIL we first

show that the formula A ∧− ∼A has a proof in DIL that contains a cut that cannot

159

G, n 4p n ′, G′ ` n 4∗p n ′
rel ax

G ` n 4∗p n
rel refl

G ` n 4∗p n ′ G ` n ′ 4∗p n ′′

G ` n 4∗p n ′′
rel trans

G ` n ′ 4∗p̄ n

G ` n 4∗p n ′
rel flip

Figure 44. Reachability Judgment for DIL.

be eliminated. This also serves as an example of a derivation in DIL. Consider the

following where we leave off the reachability derivations for clarity and Γ′ ≡ Γ,− (A∧−

∼A) @ n,−A @ n:

G; Γ′ ` −A @ n
ax

G; Γ′ ` + 〈+〉@ n
unit

G; Γ′ ` + ∼A @ n
impBar

G; Γ′ ` + (A ∧− ∼A) @ n
andBar

G; Γ′ ` − (A ∧− ∼A) @ n
ax

G; Γ,− (A ∧− ∼A) @ n ` +A @ n
cut

G; Γ,− (A ∧− ∼A) @ n ` + (A ∧− ∼A) @ n
andBar

Now using only an axiom cut we may conclude the following derivation:

G; Γ,− (A ∧− ∼A) @ n ` + (A ∧− ∼A) @ n G; Γ,− (A ∧− ∼A) @ n ` − (A ∧− ∼A) @ n
ax

G; Γ ` + (A ∧− ∼A) @ n
cut

The reader should take notice to the fact that all cuts within the previous two deriva-

tions are axiom cuts, where the inner most cut uses the hypothesis of the outer cut.

Therefore, neither can be eliminated.

9.3 Dualized Type Theory

In this section we give DIL a term assignment yielding Dualized Type The-

ory (DTT). First, we introduce DTT, and give several examples illustrating how to

program in DTT.

160

(indices) d ::= 1 | 2
(polarities) p ::= + | −

(types) A,B ,C ::= 〈p〉 |A→p B |A ∧p B
(terms) t ::= x | triv | (t , t ′) | ind t |λx .t | 〈t , t ′〉 | ν x .t ·t ′

(canonical terms) c ::= x | triv | (t , t ′) | ind t | λx .t | 〈t , t ′〉
(graphs) G ::= · | n 4p n ′ |G,G′

(contexts) Γ ::= · | x : p A @ n |Γ,Γ′

Figure 45. Syntax for DTT.

The syntax for DIL is defined in Figure 45. Polarities, types, and graphs are

all the same as they were in DIL. Contexts differ only by the addition of labeling each

hypothesis with a variable. Terms, denoted t , consist of introduction forms, together

with cut terms ν x .t · t ′1. We denote variables as x , y , z , The term triv is the

introduction form for units, (t , t ′) is the introduction form for pairs, similarly the

terms in1 t and in2 t introduce disjunctions, λx .t introduces implication, and 〈t , t ′〉

introduces coimplication. The type-assignment rules are defined in Figure 46, and

result from a simple term assignment to the rules for DIL. Finally, the reduction rules

for DTT are defined in Figure 47. The reduction rules should be considered rewrite

rules that can be applied anywhere within a term. (The congruence rules for this are

omitted.)

Programming in DTT is not functional programming as usual, so we now give

several illustrative examples. The reader familiar with type theories based on sequent

1In classical type theories the symbol µ usually denotes cut, but we have reserved that
symbol – indexed by a polarity – to be used with inductive (positive polarity) and coinduc-
tive (negative polarity) types in future work.

161

G ` n 4∗p n ′

G; Γ, x : p A @ n,Γ′ ` x : p A @ n ′
Ax

G; Γ ` triv : p 〈p〉@ n
Unit

G; Γ ` t1 : p A @ n G; Γ ` t2 : p B @ n

G; Γ ` (t1, t2) : p (A ∧p B) @ n
And

G; Γ ` t : p Ad @ n

G; Γ ` ind t : p (A1 ∧p̄ A2) @ n
AndBar

n ′ 6∈ |G|, |Γ|
(G, n 4p n ′); Γ, x : p A @ n ′ ` t : p B @ n ′

G; Γ ` λx .t : p (A→p B) @ n
Imp

G ` n 4∗p̄ n ′

G; Γ ` t1 : p̄ A @ n ′ G; Γ ` t2 : p B @ n ′

G; Γ ` 〈t1, t2〉 : p (A→p̄ B) @ n
ImpBar

G; Γ, x : p̄ A @ n ` t1 : + B @ n ′

G; Γ, x : p̄ A @ n ` t2 : −B @ n ′

G; Γ ` ν x .t1·t2 : p A @ n
Cut

Figure 46. Type-Assignment Rules for DTT.

calculi will find the following very familiar. The encodings are very similar to that of

Curien and Herbelin’s λ̄µµ̃-calculus [44]. The locus of computation is the cut term,

so naturally, function application is modeled using cuts. Suppose

D1 =def G; Γ ` λx .t : + (A→+ B) @ n
D2 =def G; Γ ` t ′ : + A @ n
Γ′ =def Γ, y : −B @ n

Then we can construct the following typing derivation:

D1

D2 G; Γ′ ` y : −B @ n
ax

G; Γ′ ` 〈t ′, y〉 : − (A→+ B) @ n
impBar

G; Γ ` ν y .λx .t ·〈t ′, y〉 : +B @ n
cut

162

ν z .λx .t ·〈t1, t2〉 ν z .[t1/x]t ·t2

RImp

ν z .〈t1, t2〉·λx .t ν z .t2· [t1/x]t
RImpBar

ν z .(t1, t2)·in1 t ν z .t1·t RAnd1

ν z .(t1, t2)·in2 t ν z .t2·t RAnd2
ν z .in1 t ·(t1, t2) ν z .t ·t1

RAndBar1

ν z .in2 t ·(t1, t2) ν z .t ·t2

RAndBar2
x 6∈ FV (t)

ν x .t ·x t
RRet

ν z .(ν x .t1·t2)·t ν z .[t/x]t1· [t/x]t2

RBetaL

ν z .c·(ν x .t1·t2) ν z .[c/x]t1· [c/x]t2

RBetaR

Figure 47. Reduction Rules for DTT.

Implication was indeed eliminated, yielding the conclusion.

There is some intution one can use while thinking of this style of programming.

In [75] Kimura and Tatsuta explain how we can think of positive variables as input

ports, and negative variables as output ports. Clearly, these notions are dual. Then

a cut of the form ν z .t·t ′ can be intuitively understood as a device capable of routing

information. We think of this term as first running the term t , and then plugging its

value into the continuation t ′. Thus, negative terms are continuations. Now consider

the instance of the previous term ν z .t·y where t is a positive term and y is a negative

variable (an output port). This can be intuitively understood as after running t , route

its value through the output port y . Now consider the instance ν z .t ·z . This term

can be understood as after running the term t , route its value through the output

163

part z , but then capture this value as the return value. Thus, the cut term reroutes

output ports into the actual return value of the cut.

There is one additional bit of intuition we can use when thinking about pro-

gramming in DTT. We can think of cuts of the form

νz.(λx1 · · ·λxi.t)·〈t1, 〈t2, · · · 〈ti, z〉 · · · 〉
as an abstract machine, where λx1 · · ·λxi.t is the functional part of the machine, and

〈t1, 〈t2, · · · 〈ti, z〉 · · · 〉 is the stack of inputs the abstract machine will apply the function

to ultimately routing the final result of the application through z , but rerouting this

into the return value. This intuition is not new, but was first observed by Curien and

Herbelin in [44]; see also [43].

Similarly to the eliminator for implication we can define the eliminator for

disjunction in the form of the usual case analysis. Suppose G; Γ ` t : + (A∧−B) @ n,

G; Γ, x : + A@n ` t1 : + C @n, and G; Γ, x : + B @n ` t2 : + C @n are all admissible.

Then we can derive the usual eliminator for disjunction. Define

case t of x .t1, x .t2
def
= ν z0.(ν z1.(ν z2.t ·(z1, z2))·(ν x .t2·z0))·(ν x .t1·z0).

Then we have the following result.

Lemma 9.3.0.1. The following rule is admissible:

G; Γ, x : p A @ n ` t1 : p C @ n
G; Γ, x : p B @ n ` t2 : p C @ n G; Γ ` t : p (A ∧p̄ B) @ n

G; Γ ` case t of x .t1, x .t2 : p C @ n
case

Proof. Due to the size of the derivation in question we give several derivations which

compose together to form the typing derivation of G; Γ ` case t of x .t1, x .t2 : p C @n.

164

The typing derivation begins using cut as follows:
D0 D1

G; Γ ` ν z0.(ν z1.(ν z2.t ·(z1, z2))·(ν x .t2·z0))·(ν x .t1·z0) : + C @ n
cut

Then the remainder of the derivation depends on the following sub-derivations:
D0 :

D3 D4

G; Γ, z0 : −C @ n ` ν z1.(ν z2.t ·(z1, z2))·(ν x .t2·z0) : +A @ n
cut

D1 :

D2 G; Γ, z0 : −C @ n, x : +A @ n ` z0 : −C @ n
ax

G; Γ, z0 : −C @ n ` ν x .t1·z0 : −A @ n
cut

D2 :
G; Γ, x : +A @ n ` t1 : +C @ n

G; Γ, z0 : −C @ n, x : +A @ n ` t1 : +C @ n
Weakening

D4 :
D5 G; Γ, z0 : −C @ n, z1 : −A @ n, x : +B @ n ` z0 : −C @ n

G; Γ, z0 : −C @ n, z1 : −A @ n ` ν x .t2·z0 : −B @ n
cut

D3 :
D6 D7

G; Γ, z0 : −C @ n, z1 : −A @ n ` ν z2.t ·(z1, z2) : +B @ n
cut

D5 :
G; Γ, x : +B @ n ` t2 : +C @ n

G; Γ, z0 : −C @ n, z1 : −A @ n, x : +B @ n ` t2 : +C @ n
Weakening

D6 :
G; Γ ` t : + (A ∧− B) @ n

G; Γ, z0 : −C @ n, z1 : −A @ n, z2 : −B @ n ` t : + (A ∧− B) @ n
Weakening

D7 :
D8 D9

G; Γ, z0 : −C @ n, z1 : −A @ n, z2 : −B @ n ` (z1, z2) : − (A ∧− B) @ n
and

D8 :

G; Γ, z0 : −C @ n, z1 : −A @ n, z2 : −B @ n ` z1 : −A @ n
ax

D9 :

G; Γ, z0 : −C @ n, z1 : −A @ n, z2 : −B @ n ` z2 : −B @ n
ax

Now consider the term ν x .in1 (ν y .in2 〈y , triv〉·x)·x . This term is the in-

habitant of the type A ∧− ∼A, and its typing derivation follows from the derivation

given in Section 9.2. We can see by looking at the syntax that the cuts involved are

indeed on the axiom x , thus this term has no canonical form. In [41] Crolard shows

that inhabitants such as these amount to a constructive coroutine. That is, it is a

165

restricted form of a continuation.

We now consider several example reductions in DTT. In the following examples

we underline non-top-level redexes. The first example simply α-converts the function

λx .x into λz .z as follows:

λz .ν y .λx .x ·〈z , y〉 (RImp)
 λz .ν y .z ·y

(RRet)
 λz .z

A more involved example is the application of the function λx .(λy .y) to the arguments

triv and triv.

ν z .λx .(λy .y)·〈triv, 〈triv, z 〉〉 (RImp)
 ν z .λy .y ·〈triv, z 〉

(RImp)
 ν z .triv·z

(RRet)
 triv

166

PART C

BASIC SYNTACTIC ANALYSIS

167

CHAPTER 10

FREEDOM OF SPEECH

The following chapters conduct basic meta-theoretic analysis of the freedom

of speech language, and dualized logic and its corresponding type theory dualized

type theory. We consider these analysis to be basic because they are straightforward

applications of existing techniques, and consist of the most basic properties that

should hold for any programming language.

At least a basic meta-theoretic analysis of a programming language is very

important. Every programming language should at least have been proven type safe,

and if the language contains a logical fragment, then it should be proven consis-

tent. These give strong guarantees to the programmer. Type safety ensures that if

a program has a type, then it can either compute something, or is the answer itself.

Furthermore, it ensures that if a program has a type, then after running it, the result

has the same type. Lastly, consistency – as we have mentioned before – ensures that

the objects of the language we call proofs really are proof. These sound like common-

sense properties, and they are, but many programming language implementors fail to

establish them. A programming language with such guarantees higers one confidence

in the correctness and consistency of the language. Therefore, a basic meta-theoretic

analysis is necessary to be able to trust the programs we write, and the verification

of programs carried out within the languages themselves.

In Chapter 7 we defined the Freedom of Speech language in its entirety. We

168

now introduce its analysis. The main results consist of logical consistency of the

logical fragment and type preservation. The former is shown by proving weak nor-

malization of the logical fragment – the reader may wish to recall the definition of

weak normalization; see Definition 6.0.0.3 of Chapter 6. The remainder of this chap-

ter proceeds by first introducing some basic lemmas to which the main results will

depend. Then we prove type preservation, and following this we will prove weak

normalization.

10.1 Basic Results

The main results depend on several auxiliary results, and we present each of

them in this section. The first two basic results are weakening and substitution for

typing. The latter states that if we know a term e is well typed in an environment

with a free variable x , and given an expression a with the same type as the free

variable, then [a/x]e has the same type as e. This is an important result for type

preservation, because we want to ensure that for any (λx . e) v that has type e ′, its

contractum [v/x]e has type e ′.

Lemma 10.1.0.1. [Weakening] If Γ `θ e : e ′, then Γ,Γ′ `θ e : e ′.

Proof. This holds by straightforward induction on the form of the assumed typing

derivation.

Lemma 10.1.0.2. [Substitution for Typing] If Γ, x :θ e1,Γ
′ `θ′ e : e2 and Γ `θ v : e1,

then Γ, [v/x]Γ′ `θ′ [v/x]e : [v/x]e2.

Proof. This is a proof by induction on the form of the assumed typing derivation. We

169

only give the non-trivial cases. All other cases are either similar to the cases given

here or are trivial.

Case.

Γ, x :θ e1,Γ
′ `θ′′ e′1 : Type

Γ, x :θ e1,Γ
′, y :θ

′′
e′1 `θ

′
e′2 : Type

Γ, x :θ e1,Γ
′ `θ′ (y :θ

′′
e′1)ε → e′2 : Type

K Pi

By the induction hypothesis, Γ, [v/x]Γ′ `θ′′ [v/x]e′1 : Type and Γ, [v/x]Γ′, y :θ
′′

[v/x]e′1 `θ
′

[v/x]e′2 : Type. Now we can apply K Pi to obtain, Γ, [v/x]Γ′ `θ′

(y :θ
′′

[v/x]e′1)ε → [v/x]e′2 : Type, which is equivalent to Γ, [v/x]Γ′ `θ′

[v/x]((y :θ
′′
e′1)ε → e′2) : Type.

Case.

Γ, x :θ e1,Γ
′ `θ1 e′ : e′1

Γ, x :θ e1,Γ
′ `θ2 e′′ : e′2

Γ, x :θ e1,Γ
′ `L e′ = e′′ : Type

K Eq

By the induction hypothesis we know Γ, [v/x]Γ′ `θ1 [v/x]e′ : [v/x]e′1 and

Γ, [v/x]Γ′ `θ2 [v/x]e′′ : [v/x]e′2. We can now apply K Eq to obtain Γ, [v/x]Γ′ `L

[v/x]e′ = [v/x]e′′ : Type, which is equivalent to Γ, [v/x]Γ′ `L [v/x](e′ = e′′) :

Type.

Case.

170

Γ, x :θ e1,Γ
′ `θ′ e′1 : Type

y :θ
′
e′1 ∈ (Γ, x :θ e1,Γ

′)

Γ, x :θ e1,Γ
′ `θ′ y :θ

′
e′1

Var

If x is distinct from y , then this case follows by first applying the induction

hypothesis to Γ, x :θ e1,Γ
′ `θ′ e′1 : Type and then reapplying the Var rule.

Now suppose x ≡ y . Then the previous typing assumption is equivalent to

the following:

Γ, x :θ e1,Γ
′ `θ e1 : Type

x :θ e1 ∈ (Γ, x :θ e1,Γ
′)

Γ, x :θ e1,Γ
′ `θ x :θ e1

Var

It suffices to show that Γ, [v/x]Γ′ `θ v : e1 is derivable. We know by assump-

tion that Γ `θ v : e1 is derivable, but by weakening (Lemma 10.1.0.1) we

know Γ, [v/x]Γ′ `θ v : e1.

The remainder of the cases follow similarly to the cases presented above.

The third result is regularity, which ensures that if an expression has a type,

then its type is well typed. Recall that in the logical fragment Type : Type does

not hold, thus if e is joinable with Type, then Γ `L e ′ : e does not imply that

Γ `L e : Type. However, this does hold in the programmatic fragment. Therefore,

regularity has the following statement and proof.

Lemma 10.1.0.3. [Regularity]

i. If Γ `L e ′ : e and it is not the case that e ≡ Type, then Γ `L e : Type.

ii. If Γ `P e ′ : e then Γ `P e : Type.

171

Proof. This is a proof by induction on the form of the assumed typing derivation.

The most interesting cases are presented below; all other cases are either similar to

the cases given here or are trivial. If it is not the case that e ≡ Type, then both

proofs can be given simultaneously. In fact, the proof of part ii when e ≡ Type holds

is trivial, thus we do not present it here.

Case.

Γ `θ e2 : Type

Γ, x :θ e2 `θ
′

e1 : e3

Γ `θ′ λx . e1 : (x :θ e2)+ → e3

Lam

By assumption we know Γ `θ e2 : Type and by the induction hypothesis,

Γ, x :θ e2 `θ
′
e3 : Type. Finally by applying K Pi, Γ `θ′ (x :θ e2)+ → e3 : Type.

Case.

Γ, x :L N `L (y :L N)+ → (p :L x = S y)− → [y/x]e2 : Type
Γ, x :L N, f :L (y :L N)+ → (p :L x = S y)− → [y/x]e2 `L v : e2

f , p /∈ FV (e2)

Γ `L rec f x v : (x :L N)+ → e2

RecNat

By the induction hypothesis, Γ, x :L N, f :L (y :L N)+ → (p :L x = S y)− →

[y/x]e2 `L e2 : Type. Since f is not free in e2 we know Γ, x :L N `L e2 : Type.

Finally, by K Pi using Γ, x :L N `L e2 : Type and K Nat, Γ `L (x :L N)+ →

e2 : Type.

Case.

172

Γ `θ′ e1 : Type

Γ, f :θ (x :θ
′

e1)+ → e2, x :θ
′

e1 `θ e3 : e2

Γ `P rec f x e3 : (x :θ
′

e1)+ → e2

Rec

By assumption Γ `θ′ e1 : Type and by the induction hypothesis Γ, f :θ (x :θ
′

e1)+ → e2, x :θ
′
e1 `θ e2 : Type. Now by K Pi, Γ, f :θ (x :θ

′
e1)+ → e2 `θ

(x :θ
′
e1)+ → e2 : Type. Clearly, f is not free in (x :θ

′
e1)+ → e2, thus,

Γ `θ (x :θ
′
e1)+ → e2 : Type.

The next result is an inversion principle, and this is needed in the prove of type

preservation. This principle states that for certain term constructors if we know the

conclusion of their typing rule is derivable, then we know the premises are derivable as

well. Inversion in general is very hard to prove for advanced type systems like Freedom

of Speech, so we only prove the inversion principles that are actually needed.

Lemma 10.1.0.4. [Inversion]

i. If Γ `θ′ λx.e : (x :θ e1)+ → e2, then Γ `L p : (x :θ e1)+ → e2 = (x :θ a)+ → b

and Γ, x :θ a `θ′ e : b.

ii. If Γ `L rec f x v : (x :L N)+ → e, then Γ `L p : (x :L N)+ → e = (x :L a)+ →

b and Γ, x :L a, f :L (y :L a)+ → (p :L x = S y)− → [y/x]b `L v : b.

ii. If Γ `P rec f x e : (x :θ
′

e1)+ → e2, then Γ `L p : (x :θ
′

e1)+ → e2 = (x :θ
′

a)+ → b and Γ, x :θ
′

a, f :θ (x :θ
′

a)+ → b `θ e : b.

Proof. We proceed by induction on the form of the assumed typing derivation. In

173

each part there are exactly two cases. The first is when the assumed typing derivation

ends with the introduction typing rule for the respective term constructor, or when

the derivation ends with the conversion rule. The former is trivial, so we only give

the cases for the latter.

Case.

Γ `θ′ e′ : [e′1/y]e′2
Γ `L e′′ : e′1 = e′′1

Γ `θ′ e′ : [e′′1/y]e′2
Conv

i. Here e′ ≡ λx.e and [e′′1/y]e′2 ≡ (x :θ e1)+ → e2. Now we have two

cases to consider, either e ′2 is y and e ′1 is a dependent product, or e ′2 is a

dependent product. If the former is true, then we know e ′′1 is a dependent

product, and this part follows by first applying the induction hypothesis

to Γ `θ′ e′ : [e′1/y]e′2, followed by applying the Conv typing rule.

Suppose the e ′2 is a dependent product. Then [e′′1/y]e′2 ≡ (x :θ [e′′1/y]r)+ →

[e′′1/y]s for some expressions r and s. Clearly, [e′1/y]e′2 ≡ (x :θ [e′1/y]r)+ →

[e′1/y]s. By the induction hypothesis, Γ `θ′ e′ : [e′1/y]e′2 implies Γ, x :θ

a `θ′ e : b and Γ `L p : ((x :θ [e′1/y]r)+ → [e′1/y]s) = ((x :θ a)+ → b).

Finally, since Γ `L e′′ : e′1 = e′′1 we can apply Conv to obtain Γ `θ′

p : ((x :θ [e′′1/y]r)+ → [e′′1/y]s) = ((x :θ a)+ → b).

ii. Here e ′ ≡ rec f x v and [e′′1/y]e′2 ≡ (x :L Nat)+ → e. Just as we saw in

the previous part we have two cases to consider, either e ′2 is y and e ′1

174

is a dependent product, or e ′2 is a dependent product. If the former is

true, then we know e ′′1 is a dependent product, and this part follows by

first applying the induction hypothesis to Γ `θ′ e′ : [e′1/y]e′2, followed by

applying the Conv typing rule.

Suppose the e ′2 is a dependent product. Then [e′′1/y]e′2 ≡ (x :L [e′′1/y]r)+ →

[e′′1/y]s for some expressions r and s. Clearly, [e′1/y]e′2 ≡ (x :L [e′1/y]r)+ →

[e′1/y]s. By the induction hypothesis, Γ `θ′ e′ : [e′1/y]e′2 implies Γ, x :θ

a, f :L (y :L a)+ → (p :L x = S y)− → [y/x]b `θ′ e : b and Γ `L

p : ((x :θ [e′1/y]r)+ → [e′1/y]s) = ((x :θ a)+ → b). Finally, we know

Γ `L e′′ : e′1 = e′′1 by assumption so we can apply Conv to obtain

Γ `L p : ((x :θ [e′′1/y]r)+ → [e′′1/y]s) = ((x :θ a)+ → b).

iii. This part is similar to the previous part.

10.2 Type Preservation

We are now in a position to prove type preservation. The proof is straightfor-

ward, and holds by induction on the typing derivation. Type preservation is definately

a result that should be proven for any type theory or programming language being

designed, implemented, or studied. This result ensures that reduction does not won-

der outside the bounds of the type system. If type preservation did not hold, then

one could start with a proof e of some type, and then use reduction to obtain that

e is a proof of some other type, or that e is not a proof at all, or if one starts with

the application of some program to a series of arguments that is supposed to return a

175

natural number, but then after reduction ends up with some other type, would make

reasoning about the correctness of the original program impossible!

Unusually so, the proof of logical consistency of freedom of speech actually

depends on type preservation. It is usually the case that they are important, but

distinct results. In the next section we will define an interpretation of types to prove

weak normalization. Due to the collapsed nature of the freedom of speech language

these interpretations depend heavily on the typing relation. It is this dependency

that results in the proofs of the critical properties of the interpretation of types to

depend on type preservation. We conclude this section with the statement and proof

of type preservation.

Theorem 10.2.0.1. [Preservation] If Γ `θ a : c and a b then Γ `θ b : c.

Proof. We proceed by induction on the assumed typing derivation and only consider

non-vacuous cases. We will implicitly assume a b in each case.

Case.

Γ `θ′ [v/x]e2 : Type
Γ `θ′ e : (x :θ e1)+ → e2

Γ `θ v : e1

Γ `θ′ e v : [v/x]e2

AppPiTerm

We have three cases to consider either e e′, e ≡ λx.e′ and e v [v/x]e′,

or e ≡ rec x f v ′ and e v [rec f x v ′/f][v/x]v′. Consider the former, by the

induction hypothesis, if e e′ then Γ `L e′ : (x :θ e1)+ → e2. Now by

applying the same rule, Γ `L e′ v : [v/x]e2.

176

Now suppose the second case, by assumption we know Γ `θ v : e1 and Γ `L

λx.e′ : (x :θ e1)+ → e2. By the Inversion Lemma (Lemma 10.1.0.4), Γ, x :θ

e′1 `L e′ : e′2, and Γ `L p : (x :θ e1)ε → e2 = (x :θ e ′1)ε → e ′2. Now we may

conclude Γ, x :θ a `L e′ : e2 and Γ `θ v : a using the assumption Γ `θ v : e1,

the injection rules InjDom and InjRan, and Conv. Thus, by substitution for

typing (Lemma 10.1.0.2), Γ `L [v/x]e′ : [v/x]e2.

The third case follows similarly to the previous case. First, apply inversion

(Lemma 10.1.0.4) to the typing assumption for e followed by conversion using

the injection rules and the conversion rules, and then finally apply substitu-

tion for typing (Lemma 10.1.0.2).

Case.

Γ `θ′ [v/x]e2 : Type
Γ `θ′ e : (x :θ e1)− → e2

Γ `θ v : e1

Γ `θ′ e : [v/x]e2

AppAllTerm

By the induction hypothesis, if e e′ then Γ `L e′ : (x :θ e1)− → e2. Thus,

by applying AppAllTerm, Γ `L e′ : [v/x]e2.

Case.

Γ `θ [e ′1/x]e2 : Type
Γ `θ e : [e1/x]e2

Γ `L e ′ : e1 = e ′1
Γ `θ e : [e ′1/x]e2

Conv

By the induction hypothesis, if e e′′ then Γ `θ e′′ : [e1/x]e2. By applying

Conv, Γ `θ e′′ : [e′1/x]e2.

177

Case.

Γ `L e : e1

Γ `P e : e1

Coerce

By the induction hypothesis, if e e′ then Γ `L e′ : e1 and by applying

Coerce, Γ `P e′ : e1.

Case.

Γ `θ′ e1 : Type
Γ, f :θ (x :θ

′
e1)+ → e2, x :θ

′
e1 `θ e : e2

Γ `P rec f x e : (x :θ′ e1)+ → e2

Rec

By the induction hypothesis, if e e′ then Γ, f :θ (x :θ
′
e1)+ → e2, x :θ

′
e1 `θ

e′ : e2 and by applying Rec, Γ `P rec f x e′ : (x :θ
′
e1)+ → e2.

10.3 Logical consistency

One recurring statement throughout this thesis is that if we are to consider a

type theory or programming language, or even a fragment of one as a logic, then that

logic must be proven consistent. We have to believe what it is telling us is true! If

consistency has not been shown, then neither the designer nor the programmer has

the right to consider any part of the language as containing proofs or formulas. We

have claimed that there is a logical fragment of freedom of speech, thus we must show

that this fragment is consistent. The proof of logical consistency is the topic of this

section.

178

We prove logical consistency using reducibility candidates first proposed by

Girard. For an overview of the reducibility method see Section 6.3. We begin with

the definition of the interpretation of types.

Definition 10.3.0.1.

Let J = {e | e ↓ join ∨ e ↓ injdom ∨ e ↓ injran} be the set of all the proofs of

equations and V be the set of terms such that t ! v, where v is a value. We define

the interpretation of types as follows:

e ∈ [[N]]Lρ if and only if

– · `L e : N
– e ∈ N = {e′ | e′ ! Sn Z where n ∈ N}

e ∈ [[(x :θ e1)+ → e2]]Lρ if and only if

– · `L e : (x :θ ρ e1)+ → ρ e2

– · `θ ρ ((x :θ e1)+ → e2) : Type
– e ∈ V
– ∀e′ ∈ [[e1]]θρ.e e

′ ∈ [[e2]]Lρ[x 7→e′]

e ∈ [[(x :θ e1)− → e2]]Lρ if and only if
– · `L e : (x :θ ρ e1)− → ρ e2

– · `θ ρ ((x :θ e1)− → e2) : Type
– e ∈ V
– ∀e′ ∈ [[e1]]θρ.e ∈ [[e2]]Lρ[x 7→e′]

e ∈ [[e1 = e2]]Lρ if and only if
– · `L e : ρ e1 = ρ e2

– · `θ ρ (e1 = e2) : Type
– e ∈ J
– ρ e1 ↓ ρ e2

e ∈ [[e′]]Pρ if and only if
– · `P e : ρ e′

– · `θ ρ e′ : Type
– e ∈ V

The interpretation of types consists of two parts, a deep interpretation and a

shallow one. We give a deep interpretation of the logical fragment where we character-

ize the termination behavior of the programs, while we give a shallow interpretation

of the programs of the programmatic fragment. The only property we can guarantee

of programmatic programs is that the terminating programs are well typed. Note

that the interpretation of types depends heavily on the typing judgment, this is the

dependency mentioned in the previous section on type preservation. Thus, the proofs

179

∅ ∈ [[·]]
Γ `L e′ : Type ρ ∈ [[Γ]] e ∈ [[e′]]Lρ

ρ ∪ {(x, e)} ∈ [[Γ, x :L e′]]

Γ `P e′ : Type ρ ∈ [[Γ]] v ∈ [[e′]]Pρ

ρ ∪ {(x, v)} ∈ [[Γ, x :P e′]]

Figure 48. Well-formed substitutions

of the critical properties, especially CR-Pres, depend on type preservation. Finally,

the interpretation of types depends on the notion of well-formed substitutions which

are defined in Figure 48.

Before we can move on we must justify why the interpretation of types covers

all cases, especially, for the logical fragment. We must show that there is no type-level

computation, and that the Type : Type axiom is purely programmatic. The following

two lemmata establish this fact:

Lemma 10.3.0.2. It is not the case that · `L Type : Type.

Proof. Suppose it is the case that · `L Type : Type is derivable. Then it must be the

case that its derivation ends with the one of AppAllTerm or Conv, but both of which

would have · `L Type : Type as a premise. No other rules are applicabile. Thus,

· `L Type : Type is a non-terminating derivation, a contradiction.

Lemma 10.3.0.3. [Characterization of Logical Types] If · `L e : Type, then e ≡ N,

e ≡ e1 = e2, or e ≡ (x :θ e1)ε → e2 for some expressions e1, e2, staging classifier θ

180

and consistency classifier ε.

Proof. This is a proof by induction on the assumed typing derivation. The previous

lemma imples that e cannot be Type. Thus, we only have the following non-trivial

cases:

Case.

· `L N : Type
K Nat

In this case e ≡ N, thus we obtain our result.

Case.

· `θ′ e1 : Type

·, x :θ
′

e1 `L e2 : Type

· `L (x :θ
′

e1)ε → e2 : Type
K Pi

Similar to the previous case.

Case.

· `θ1 e : e1

· `θ2 e ′ : e2

· `L e = e ′ : Type
K Eq

Similar to the previous case.

Case.

181

· `L [v/x]Type : Type
· `L e : (x :θ e1)+ → Type
· `θ v : e1

· `L e v : [v/x]Type
AppPiTerm

This case is impossible, because it requires · `L [v/x]Type : Type which is

equivalent to · `L Type : Type to be derivable, but by the previous lemma

this is impossible.

Case.

· `L [v/x]Type : Type
· `L e : (x :θ e1)− → e2

· `θ v : e1

· `L e : [v/x]Type
AppAllTerm

Similar to the previous case.

Case.

· `L [e ′1/x]Type : Type
· `L e : [e1/x]Type
· `L e ′ : e1 = e ′1

· `L e : [e ′1/x]Type
Conv

Similar to the previous case.

We now state and prove the critical properties of the interpretation of types.

These are standard, and so we simply list them with their proofs.

Lemma 10.3.0.4. [CR-Norm] If t ∈ [[e]]θρ then t is closed and t ∈ V .

182

Proof. This holds by definition of the interpretation of types.

Lemma 10.3.0.5. [CR-Pres] If t ∈ [[e]]θρ and t t′ then t′ ∈ [[e]]θρ

Proof. This is a proof by structural induction on e. By assumption we know · `θ ρ e :

Type, for each case below. Hence, we assume this for the remainder of the proof. In

each of the function-type cases below we assume t t′, and t′ ∈ V , because in each

case t ∈ V . We have two cases to consider when θ = L and when θ = P . The latter

is trivial so we only consider the former.

Case. Let e ≡ N. Suppose t ∈ [[N]]Lρ . Then by the definition of the interpretation of

types, t ∈ N and t is closed. Since CBV is deterministic, if t t′ then t′ ∈ N ,

and t being closed implies t′ is closed. At this point we still need show that

· `L t′ : N. This easily follows from type preservation (Theorem 13.1.0.4).

Thus, t′ ∈ [[N]]Lρ .

Case. Let e ≡ (x :θ e1)+ → e2. Suppose t ∈ [[e]]Lρ . By the definition of the

interpretation of types we know for all e′ ∈ [[e1]]θρ, we have t e′ ∈ [[e2]]Lρ[x 7→e′].

Let e′′ ∈ [[e1]]θρ. By the definition of left-to-right CBV, t e′′ t′ e′′. By

the induction hypothesis, t′ e′′ ∈ [[e2]]Lρ[x 7→e′′]. Now we need to show · `L t′ :

(x :θ ρ e1)+ → ρ e2. This easly follows from type preservation. Thus, by the

definition of the interpretation of types, t′ ∈ [[e]]Lρ , because e′′ is arbitrary.

Case. Let e ≡ (x :θ e1)− → e2. Suppose t ∈ [[e]]Lρ . By type preservation we

know · `L t′ : (x :θ ρ e1)− → ρ e2. Let u ∈ [[e1]]θρ. Then t ∈ [[e2]]Lρ[x 7→u].

183

By the induction hypothesis, t′ ∈ [[e2]]Lρ[x 7→u]. Thus, by the definition of the

interpretation of types, t′ ∈ [[e]]Lρ .

Case. Let e ≡ e1 = e2 and t ∈ [[e]]Lρ . By type preservation we know · `L t′ : ρ e1 =

ρ e2. By the definition of the interpretation of types, t ∈ V , ρ e1 ↓ ρ e2, hence,

t′ ∈ V , because t t′. Thus, again by the definition of the interpretation of

types, t′ ∈ [[e]]Lρ .

Lemma 10.3.0.6. [CR-Prog] If t t′, · `L t : ρ e, and t′ ∈ [[e]]Lρ then t ∈ [[e]]Lρ .

Proof. This is a proof by structural induction on e. By assumption we know · `θ

ρ e : Type, for each case below. Hence, we assume this for the remainder of the proof.

In each of the cases below we assume t t′, t is closed, and t′ ∈ [[e]]Lρ and in the

function-type cases we assume t ∈ V , because in each case t′ ∈ V . By assumption t

has the required type, thus we omit this assumption from the remainder of the proof.

Case. Let e ≡ N. By the definition of the interpretation of types we know t′ ∈ N

and t′ is closed. Now since CBV is deterministic and t t′ we know t ∈ N .

Thus, t ∈ [[N]]Lρ .

Case. Let e ≡ (x :θ e1)+ → e2. By the definition of the interpretation of types, for all

e′ ∈ [[e1]]θρ, we have t′ e′ ∈ [[e2]]Lρ[x 7→e′]. Let e′′ ∈ [[e1]]θρ. By the definition of left-

to-right CBV, t e′′ t′ e′′ and by the induction hypothesis, t e′′ ∈ [[e2]]Lρ[x 7→e′′].

By the definition of the interpretation of types, t ∈ [[e]]Lρ .

184

Case. Let e ≡ (x :θ e1)− → e2 and u ∈ [[e1]]θρ. Then t′ ∈ [[e2]]Lρ[x 7→u]. By the induction

hypothesis, t ∈ [[e2]]Lρ[x 7→u], thus, by the definition of the interpretation of

types, t ∈ [[e]]Lρ .

Case. Let e ≡ e1 = e2. By the definition of the interpretation of types, t′ ∈ V ,

ρ e1 ↓ ρ e2, hence, t ∈ V , because t t′. Therefore, by the definition of the

interpretation of types, t ∈ [[e]]Lρ .

The following results about substitution are also standard.

Lemma 10.3.0.7. [Substitution Distribution] [[e]]θρ[x 7→e′] = [[[e′/x]e]]θρ

Proof. This is a proof by induction on the form of e. We first consider when θ = L

and then when θ = P . Note that we do not show both directions of the equality. We

only prove left to right the other direction is similar.

Case. Let e ≡ N. Since ρ N = N for any substitution ρ, clearly [[e]]Lρ[x 7→e′] =

[[[e′/x]e]]Lρ .

Case. Let e ≡ (y :θ e1)+ → e2. Suppose a ∈ [[e]]θρ[x 7→e′]. Then by the interpretations

of types, · `θ a : (y :θ ρ[x 7→ e′] e1)+ → (ρ[x 7→ e′] e2), a ∈ V , and for any

a′ ∈ [[e1]]Lρ[x 7→e′] we have a a′ ∈ [[e2]]Lρ[x 7→e′][y 7→a′]. Clearly, ρ[x 7→ e′][y 7→ a′] is

equivalent to ρ[y 7→ [e′/x]a′][x 7→ e′], thus, a a′ ∈ [[e2]]Lρ[y 7→[e′/x]a′][x 7→e′]. Now by

the induction hypothesis, [[e1]]Lρ[x 7→e′] = [[[e′/x]e1]]Lρ and [[e2]]Lρ[y 7→[e′/x]a′][x7→e′] =

185

[[[e′/x]e2]]Lρ[y 7→[e′/x]a′]. Therefore, by the definition of the interpretation of types,

[[e]]Lρ[x 7→e′] ⊆ [[[e′/x]e]]Lρ .

Case. Let e ≡ (y :θ e1)− → e2. Similar to the previous case.

Case. Let e ≡ e1 = e2. Suppose a ∈ [[e]]θρ[x 7→e′]. By the definition of the interpretation

of types, · `L a : ρ[x 7→ e′] e1 = ρ[x 7→ e′] e2, · `L ρ[x 7→ e′] e1 = ρ[x 7→

e′] e2 : Type, a ∈ V , and ρ[x 7→ e′] e1 ↓ ρ[x 7→ e′] e2. Clearly, if · `L a :

ρ[x 7→ e′] e1 = ρ[x 7→ e′] e2 then · `L a : ρ [e′/x]e1 = ρ [e′/x]e2, the same

applies to the kinding judgment and if ρ[x 7→ e′] e1 ↓ ρ[x 7→ e′] e2 then

ρ [e′/x]e1 ↓ ρ [e′/x]e2. Therefore, by the definition of the interpretation of

types, [[e]]Lρ[x 7→e′] ⊆ [[[e′/x]e]]Lρ .

Now assume θ = P .

Case. Assume a ∈ [[e]]Pρ[x 7→e′]. By the definition of the interpretation of types, · `P

a : ρ[x 7→ e′] e, · `P ρ[x 7→ e′] e : Type and a is a value. Just as in the previous

case if · `P a : ρ[x 7→ e′] e and · `P ρ[x 7→ e′] e : Type then · `P a : ρ [e′/x]e

and · `P ρ [e′/x]e : Type. Therefore, by the definition of the interpretation of

types, [[e]]Lρ[x 7→e′] ⊆ [[[e′/x]e]]Lρ .

Lemma 10.3.0.8. [Well-formed substitution for typing] If ρ ∈ [[Γ]] and Γ,Γ′ `θ e : e′

then Γ′ `θ ρ e : ρ e′.

Proof. This is a proof by induction on the form of the assumped typing judgment.

We only show a few cases all the others are either trivial, or similar to the cases we

186

given below.

Case.

Γ,Γ′ `θ′ e1 : Type

Γ,Γ′, x :θ
′
e1 `θ e2 : Type

Γ,Γ′ `θ (x :θ
′
e1)ε → e2 : Type

K Pi

By the induction hypothesis, Γ′ `θ′ ρ e1 : Type and Γ′, x :θ
′
ρ e1 `θ ρ e2 : Type.

Thus, by applying K Pi Γ′ `θ (x :θ
′
ρ e1)ε → ρ e2 : Type, which is equivalent

to Γ′ `θ ρ ((x :θ
′
e1)ε → e2) : Type.

Case.

Γ,Γ′ `θ e : Type
x :θ e ∈ Γ,Γ′

Γ,Γ′ `θ x :θ e
Var

We have two cases to consider, either x :θ e ∈ Γ or x :θ e ∈ Γ′. Suppose the

former. By the induction hypothesis, Γ′ `θ ρ e : Type. Since x :θ e ∈ Γ there

exists a mapping (x 7→ e′) ∈ ρ such that e′ ∈ [[e]]θρ. By the definition of the

interpretation of types · `θ e′ : ρ e. Now by weakening (Lemma 10.1.0.1) we

know Γ′ `θ e′ : ρ e which is equivalent to Γ′ `θ ρ x :P ρ e.

Now suppose the that x :θ e ∈ Γ′, then ρ x = x. So by the induction

hypothesis we know Γ′ `θ ρ e : Type, and by reapplying the Var rule we

obtain Γ′ `θ x :θ ρ e which is equivalent to Γ′ `θ ρ x :θ ρ e.

187

In order to prove that the Join and Conv are logically consistent, we need to

know that if a type is equivalent to another, then their interpretations are equivalent.

It turns out that instead of proving the equality directly we can prove a much simpler

result. It suffices to show that if a type is equal to another, then the interpretation

of the first is subset of the interpretation of the second. Then using symmetry of the

equality proof we can obtain that they are in fact equal. The following two lemmas

prove this for both the programmatic fragment and the logical fragment respectfully:

Lemma 10.3.0.9. [Computational Semantic Conversion] If e ↓ e′ and Γ `θ′ e : B

and Γ `θ′′ e′ : C then [[[e/x]A]]Pρ ⊆ [[[e′/x]A]]Pρ .

Proof. We know that a ∈ [[[e/x]A]]Pρ iff · `P a : ρ [e/x]A and a is a value and

· `P ρ [e/x]A : Type by the definition of the interpretation of types. By Join,

Γ `L join : e = e′. Finally, by Conv, · `P a : ρ [e′/x]A. Now by regularity

· `P ρ [e′/x]A : Type. Thus, a ∈ [[[e′/x]A]]Pρ and [[[e/x]A]]Pρ ⊆ [[[e′/x]A]]Pρ .

Lemma 10.3.0.10. [Logical Semantic Conversion] If e ↓ e′ and Γ `θ′ e : B and

Γ `θ′′ e′ : C then [[[e/x]A]]Lρ ⊆ [[[e′/x]A]]Lρ .

Proof. We proceed by induction on the form of A. In each case we must show · `L a :

ρ[e′/x]A and · `L ρ[e′/x]A : Type. The former is easly accomplished by first applying

Join to obtain · `L join : e = e′ and then applying Conv to obtain the desired result.

The latter is obtained by regularity.

Case. Let A ≡ N. Obvious.

188

Case. Let A ≡ (x :θ a1)+ → a2, ρ be an arbitrary substitution and a ∈ [[[e/x]A]]Lρ .

By the definition of the interpretations of types, a ∈ [[[e/x]A]]Lρ iff for any

a′ ∈ [[[e/x]a1]]θρ we have a a′ ∈ [[[e/x]a2]]Lρ[x 7→a′]. Let a′′ be an arbitrary element

of [[[e/x]a1]]θρ. We have two cases to consider: when θ = L and θ = P . If θ = L

then by the induction hypothesis, [[[e/x]a1]]Lρ = [[[e′/x]a1]]Lρ . If θ = P then we

apply Lemma 10.3.0.9 to obtain [[[e/x]a1]]Pρ = [[[e′/x]a1]]Pρ . Also by the induc-

tion hypothesis, [[[e/x]a2]]Lρ[x 7→a′′] = [[[e′/x]a2]]Lρ[x 7→a′′]. Thus, a′′ ∈ [[[e′/x]a1]]θρ

and a a′′ ∈ [[[e′/x]a2]]Lρ[x 7→a′′] for arbitrary a′′, hence, by the definition of the

interpretations of types, a ∈ [[[e′/x]A]]Lρ . Therefore, [[[e/x]A]]Lρ ⊆ [[[e′/x]A]]Lρ .

Case. Let A ≡ (x :θ e1)− → e2. Similar to the previous case.

Case. Let A ≡ a1 = a2, ρ be an arbitrary substitution and a ∈ [[[e/x]A]]Lρ . By

the definition of the interpretations of types, a ∈ [[[e/x]A]]Lρ iff a ∈ V and

ρ[e/x]a1 ↓ ρ[e/x]a2. Clearly, if e ↓ e′ and ρ[e/x]a1 ↓ ρ[e/x]a2 then ρ[e′/x]a1 ↓

ρ[e′/x]a2. Thus, a ∈ [[[e′/x]A]]Lρ . Therefore, [[[e/x]A]]Lρ ⊆ [[[e′/x]A]]Lρ .

Finally, we have arrived at the main result, logical consistency. The following

soundness result implies that any well-typed expression can be closed using a series of

well-typed expressions, and this closed expression is joinable with a well-typed value.

Thus, all expressions of the logical fragment terminate with a value, and we are free

to call these expressions and values proofs, and their types formulas.

Theorem 10.3.0.11. [Type soundness] If Γ `L e : e′ then for all ρ ∈ [[Γ]], ρ e ∈

189

[[e′]]Lρ .

Proof. Throughout this proof we implicitly assume an arbitrary ρ ∈ [[Γ]] and that

· `L ρ e′ : Type. The latter holds by first applying regularity to obtain Γ `L e : Type

and then applying Lemma 10.3.0.8 to obtain · `L ρ e : Type.

Case.

Γ `L e : Type
x :L e ∈ Γ

Γ `L x :L e
Var

By definition of [[Γ]] we know there exists some e′ such that (x, e′) ∈ ρ and

e′ ∈ [[e]]Lρ . Now ρ x ≡ e′ ∈ [[e]]Lρ .

Case.

Γ `θ e1 : Type
Γ, x :θ e1 `L e : e2

Γ `L λx.e : (x :θ e1)+ → e2

Lam

We need to show ρ λx.e ≡ λx.(ρ e) ∈ [[(x :θ e1)+ → e2]]Lρ . So by the definition

of the interpretation of types, we must show for any e′ ∈ [[e1]]θρ, (λx.ρ e) e′ ∈

[[e2]]Lρ[x 7→e′]. Let e′ ∈ [[e1]]θρ. By CR-Norm, e′ is closed and e′ ∈ V , hence,

e′ ! v and by CR-Pres, v ∈ [[e1]]θρ. By the definition of the left-to-right CBV,

(λx.(ρ e)) e′ ∗ (λx.(ρ e)) v ρ[v/x] e. We know v ∈ [[e1]]θρ and ρ ∈ [[Γ]],

hence, by the definition of well-formed substitutions, ρ[v/x] ∈ [[Γ, x :θ e1]].

190

We can now apply the induction hypothesis to obtain, ρ[v/x]e ∈ [[e2]]Lρ[x 7→v].

It is easy to see that (λx.(ρ e)) e′ is closed so we can apply CR-Pres and

obtain (λx.(ρ e)) e′ ∈ [[e2]]Lρ[x 7→v]. By Lemma 10.3.0.10 and Lemma 10.3.0.7,

[[e2]]Lρ[x 7→v] = [[e2]]Lρ[x 7→e′]. Thus, by the definition of the interpretation of types,

λx.(ρ e) ∈ [[(x :θ e1)+ → e2]]Lρ .

Case.

Γ `θ e1 : Type
Γ, x :θ e1 `L v : e2

x 6∈ fvs(v)

Γ `L v : (x :θ e1)− → e2

ILam

We need to show ρ v ∈ [[(x :θ e1)− → e2]]Lρ . So by the definition of the interpre-

tation of types, we must show for any e′ ∈ [[e1]]θρ, ρ v ∈ [[e2]]Lρ[x 7→e′]. Let e′ ∈ [[e1]]θρ.

By CR-Norm, e′ is closed and e′ ∈ V , hence, e′ ! v′ and by CR-Pres v′ ∈ [[e1]]θρ.

By the definition of the left-to-right CBV, (ρ v) e′ ∗ (ρ v) v′ ρ[v′/x] v ≡ ρ v.

We know v′ ∈ [[e1]]θρ and ρ ∈ [[Γ]], hence, by the definition of well-formed sub-

stitutions, ρ[v′/x] ∈ [[Γ, x :θ e1]]. Thus, we can now apply the induction hy-

pothesis to obtain, ρ v ∈ [[e2]]Lρ[x 7→v′]. By Lemma 10.3.0.10 and Lemma 10.3.0.7

[[e2]]Lρ[x 7→v′] = [[e2]]Lρ[x 7→e′]. Thus, by the definition of the interpretation of types,

ρ v ∈ [[(x :θ e1)− → e2]]Lρ .

Case.

191

Γ `L e : (x :θ e1)+ → e2

Γ `θ v : e1

Γ `L e v : [v/x]e2

AppPiTerm

By the induction hypothesis, ρ e ∈ [[(x :θ e1)+ → e2]]Lρ . If θ = L then by the

induction hypothesis, ρ v ∈ [[e1]]θρ. If θ = P then by Lemma 10.3.0.8, · `P ρ v :

e1, and by the definition of the interpretation of types, ρ v ∈ [[e1]]θρ. Now we know

by the definition of the interpretation of types that for any v′ ∈ [[e1]]θρ, (ρ e) v′ ∈

[[e2]]Lρ[x 7→v′]. Instantiate v′ with ρ v. Then (ρ e) ρ v ≡ ρ(e v) ∈ [[e2]]Lρ[x 7→ρ v].

Case.

Γ `L e : (x :θ e1)− → e2

Γ `θ v : e1

Γ `L e : [v/y]e2

AppAllTerm

By the induction hypothesis, ρ e ∈ [[(x :θ e1)− → e2]]Lρ . If θ = L then by

the induction hypothesis, ρ v ∈ [[e1]]θρ. If θ = P then by Lemma 10.3.0.8,

· `P ρ v : ρ e1, thus, by the definition of the interpretation of types, ρ v ∈ [[e1]]θρ.

We know by the definition of the interpretation of types that for any v′ ∈ [[e1]]θρ,

ρ e ∈ [[e2]]Lρ[x 7→v′]. Instantiate v′ with ρ v. Then ρ e ∈ [[e2]]Lρ[x 7→ρ v].

Case.

e ↓ e ′

Γ `θ1 e : e1

Γ `θ2 e ′ : e2

Γ `L join : e = e ′
join

192

It is a property of left-to-right CBV that if e ↓ e′ then ρ e ↓ ρ e′ for any

substitution ρ. By Lemma 10.3.0.8, · `L join : ρ e = ρ e′. Hence by the

definition of the interpretation of types, join ∈ [[e = e′]]Lρ .

Case.

Γ `L e′ : ((x :θ e1)+ → e2) = ((x :θ e′1)+ → e′2)

Γ `L injdom : e1 = e′1
InjDom

By the induction hypothesis, e′ ∈ [[((x :θ e1)+ → e2) = ((x :θ e′1)+ → e′2)]]Lρ ,

which implies that ρ e1 ↓ ρ e′1. By Lemma 10.3.0.8, · `L injdom : ρ e1 = ρ e′1.

Therefore by the definition of the interpretation of types, injdom ∈ [[e1 = e′1]]Lρ .

Case.

Γ `L e′ : ((x :θ e1)+ → e2) = ((x :θ e′1)+ → e′2)
Γ `θ v : e1

Γ `L injran : [v/x]e2 = [v/x]e′2
InjRan

By the induction hypothesis, e′ ∈ [[((x :θ e1)+ → e2) = ((x :θ e′1)+ → e′2)]]Lρ ,

which implies that ρ e2 ↓ ρ e′2. Since compatibility joinablity is closed under

substitution, ρ [v/x]e2 ↓ ρ [v/x]e′2, we can move ρ to the outside, because

x is not a member of the domain of ρ. By Lemma 10.3.0.8, · `L injran :

ρ [v/x]e2 = ρ [v/x]e′2. Therefore by the definition of theinterpretation of types,

injran ∈ [[[v/x]e2 = [v/x]e′2]]Lρ .

Case.

193

Γ `L e : [e1/x]e2

Γ `L e′ : e1 = e′1

Γ `L e : [e′1/x]e2

Conv

Applying the induction hypothesis to Γ `L e′ : e1 = e′1 implies ρ e1 ↓ ρ e′1, and

· `L ρ e1 = ρ e′1 : Type. The latter implies that · `θ′ e1 : A an · `θ′ e′1 : A′.

Now by the induction hypothesis, e ∈ [[[e1/x]e2]]Lρ , and by Lemma 10.3.0.10,

[[[e1/x]e2]]Lρ = [[[e′1/x]e2]]Lρ , thus, e ∈ [[[e′1/x]e2]]Lρ .

Case.

Γ `L S : (x :L N)+ → N
Succ

Suppose e ∈ [[N]]Lρ then by CR-Norm e is closed and e ∈ N , hence, e ∗ n, where

n is a numeral. Clearly, S n is closed and S n ∈ N , thus, S n ∈ [[N]]Lρ[x 7→n] =

[[N]]Lρ . Before we can apply CR-Prog we must show that · `L S e : N. By

the definition of the interpretation of types, · `L e : N, and by assumption

· `L S : (x :L N)+ → e2. We can now apply AppPiTerm to obtain · `L S e : N.

Therefore, by CR-Prog, S e ∈ [[N]]Lρ .

Case.

Γ `L Z : N
Zero

Clearly, Z is closed and Z ∈ N . Thus, Z ∈ [[N]]Lρ .

194

Case.

Γ `θ e1 : Type
Γ `L e : Z = S e ′

Γ `L contra : e1

Contra

By the induction hypothesis, ρ e ∈ [[Z = S e′]]Lρ . By the definition of the

interpretation of types, Z and S e′ are compatibly joinable, which is not the

case, hence a contradiction. Thus, we obtain that contra ∈ [[e′′]]Lρ for any e′′.

Case.

Γ `θ e1 : Type
Γ `L e : v = abort

Γ `L contra : e1

ContraAbort

This case is similar to the previous case.

Case.

Γ `θ′′ e : Type

Γ `L e′ : ((x :θ e1)ε → e2) = ((x :θ
′
e′1)ε

′ → e′2)
θ 6= θ′

Γ `L contra : e
ContraPiTh

The induction hypothesis allows us to conclude that e′ is a member of the

interpretation of its type which tells us that ρ ((x :θ e1)ε → e2) ↓ ρ ((x :θ
′

e′1)ε
′ → e′2, but this is a contradiction, because θ 6= θ′. Therefore, contra ∈ [[e]]Lρ .

195

Case.

Γ `θ′′ e : Type

Γ `L e′ : ((x :θ e1)ε → e2) = ((x :θ
′
e′1)ε

′ → e′2)
ε 6= ε′

Γ `L contra : e
ContraPiEp

Similar to the previous case.

Case.

Γ, x :L N `L (y :L N)+ → (p :L x = S y)− → [y/x]e2 : Type
Γ, x :L N, f :L (y :L N)+ → (p :L x = S y)− → [y/x]e2 `L v : e2

f , p /∈ FV (e2)

Γ `L rec f x v : (x :L N)+ → e2

RecNat

We need to show that ρ rec f x v ≡ rec f x ρ v ∈ [[(x :L N)+ → e2]]Lρ . By

the definition of the interpretation of types, rec f x ρ v ∈ [[(x :L N)+ → e2]]Lρ

iff for any e ∈ [[N]]Lρ , we have (rec f x ρ v) e ∈ [[e2]]Lρ[x 7→e], because f 6∈ FV (e2).

Let e′ be an arbitrary element of [[N]]Lρ . By the definition of the interpretation

of types, e′ ! n ∈ N , hence, n ∈ V and by CR-Pres, n ∈ [[N]]Lρ . Thus,

(rec f x ρ v) e′ ∗ (rec f x ρ v) n [n/x][rec f x ρ v/f]ρ v. By the induction

hypothesis, for any ρ′ ∈ [[Γ, x :L N, f :L (y :L N)+ → (p :L x = S y)− → [y/x]e2]],

we have ρ′ v ∈ [[e2]]Lρ′ .

At this point we need to show that [n/x][rec f x ρ v/f]ρ ∈ [[Γ, x :L N, f :L

(y :L N)+ → (p :L x = S y)− → [y/x]e2]], but to conclude this we must have

196

rec f x ρ v ∈ [[(y :L N)+ → (p :L x = S y)− → [y/x]e2]]Lρ[x 7→n], which means we

have to prove the following proposition.

Proposition 10.3.0.12. For any n ∈ N, rec f x ρ v ∈ [[(y :L N)+ → (p :L

x = S y)− → [y/x]e2]]Lρ[x 7→n].

We proceed by induction on n. For the base case let n ≡ 0. Then rec f x ρ v ∈

[[(y :L N)+ → (p :L x = S y)− → [y/x]e2]]Lρ[x 7→0] iff for any e′ ∈ [[N]]Lρ[x 7→0], we have

(rec f x ρ v) e′ ∈ [[(p :L x = S y)− → [y/x]e2]]Lρ[x 7→0][y 7→e′]. Let e′′ be an arbitrary

element of [[N]]Lρ[x 7→0]. Then we know e′′ ∈ [[N]]Lρ[x 7→0] and e′′ ! n ∈ N , hence,

n ∈ V . Now we have to show that (rec f x ρ v) e′′ ∗ (rec f x ρ v) n ∈ [[(p :L

x = S y)− → [y/x]e2]]Lρ[x7→0][y 7→n]. By the definition of the interpretation types

we must show that for any e′′′ ∈ [[x = S y]]Lρ[x 7→0][y 7→n], we have, (rec f x ρ v) n ∈

[[[y/x]e2]]ρ[x 7→0][y 7→n][p 7→e′′′]. Let a ∈ [[x = S y]]Lρ[x7→0][y 7→n]. By the definition of the

interpretation, a ↓ join and 0 ↓ S n, but this is a contradiction.

Now let n ≡ S n′. By the definition of the interpretation of types, rec f x ρ v ∈

[[(y :L N)+ → (p :L x = S y)− → [y/x]e2]]Lρ[x 7→n] iff for any a ∈ [[N]]Lρ[x 7→n], we

have (rec f x ρ v) a ∈ [[(p :L x = S y)− → [y/x]e2]]Lρ[x 7→n][y 7→a]. Let a′ be

an arbitrary a. By CR-Norm and the definition of the interpretation of types,

a′ ∈ N , a′ ∈ V , hence, a′ ! v′ ∈ N. By CR-Pres and the definition of the

interpretation of types, (rec f x ρ v) a′ ∗ (rec f x ρ v) v′ ∈ [[(p :L x =

S y)− → [y/x]e2]]Lρ[x 7→n][y 7→v′] iff for any a′′ ∈ [[x = S y]]Lρ[x 7→n][y 7→v′], we have

(rec f x ρ v) v′ ∈ [[[y/x]e2]]Lρ[x 7→n][y 7→v′][p 7→a′′]. Let u ∈ [[x = S y]]Lρ[x 7→n][y 7→v′]. By

the definition of the interpretation of types, u ↓ join and S n′ ↓ S v′, which

197

implies n′ ↓ v′. Now (rec f x ρ v) v′ [v′/x][rec f x ρ v/f]ρ v, so by CR-Pres

it suffices to show, [v′/x][rec f x ρ v/f]ρ v ∈ [[[y/x]e2]]Lρ[x 7→n][y 7→v′][p7→u]. It is easy

to see that x is not free in [y/x]e2 and we know by assumption p is also not free

in [y/x]e2, hence, [[[y/x]e2]]Lρ[x 7→n][y 7→v′][p 7→u] = [[[y/x]e2]]Lρ[y 7→v′], and by a simple

renaming of variables, [[[y/x]e2]]Lρ[y 7→v′] = [[e2]]Lρ[x7→v′]. Thus, it suffices to show,

[v′/x][rec f x ρ v/f]ρ v ∈ [[e2]]Lρ[x 7→v′]. Finally, by Lemma 10.3.0.7, it suffices to

show, [n′/x][rec f x ρ v/f]ρ v ∈ [[e2]]Lρ[x 7→n′], because v′ ↓ n′.

By the inner induction hypothesis, rec f x ρ v ∈ [[(y :L N)+ → (p :L x =

S y)− → [y/x]e2]]Lρ[x 7→n′]. Thus, [n′/x][rec f x ρ v/f]ρ ∈ [[Γ, x :L N, f :L (y :L

N)+ → (p :L x = S y)− → [y/x]e2]]. We can now apply the outer induction

hypothesis, where we substitute v for e, e2 for e′, Γ, x :L N, f :L (y :L N)+ →

(p :L x = S y)− → [y/x]e2 for Γ, and [n′/x][rec f x ρ v/f]ρ for ρ, to obtain,

[n′/x][rec f x ρ v/f]ρ v ∈ [[e2]]Lρ[x 7→n′][f 7→rec f x ρ v/f] = [[e2]]Lρ[x 7→n′], because f 6∈

FV (e2). This concludes the proof of the proposition.

By Proposition 10.3.0.12, rec f x ρ v ∈ [[(y :L N)+ → (p :L x = S y)− →

[y/x]e2]]Lρ[x 7→n]. Thus, [n/x][rec f x ρ v/f]ρ ∈ [[Γ, x :L N, f :L (y :L N)+ → (p :L

x = S y)− → [y/x]e2]] and we can finally conclude, [n/x][rec f x ρ v/f]ρ v ∈

[[e2]]Lρ[x 7→n]. By CR-Pres, (rec f x ρ v) e ∈ [[e2]]Lρ[x 7→n]. Therefore, rec f x ρ v ∈

[[(x :L N)+ → e2]]Lρ .

Case.

198

Γ, x :L N `L (y :L N)− → (u :L x = S y)− → [y/x]e2 : Type
Γ, x :L N, f :L (y :L N)− → (u :L x = S y)− → [y/x]e2 `L v : e2

f , p /∈ FV (e2)

Γ `L rec− f v : (x :L N)− → e2

RecNatComp

We must show, for any a ∈ [[N]]Lρ , we have rec− f ρ v ∈ [[e2]]Lρ[x 7→a]. Let a′ be an ar-

bitrary a. Then by CR-Norm and the interpretation of types, a′ ∈ N , a′ ∈ V and

a ! n ∈ N. So (rec− f ρ v) a ∗ (rec− f ρ v) n [n/x][rec− f ρ v/f]ρ v ≡

[rec− f ρ v/f]ρ v. By CR-Pres it suffices to show, [rec− f ρ v/f]ρ v ∈ [[e2]]Lρ[x 7→n].

To conclude this we have to show [rec− f ρ v/f]ρ ∈ [[Γ, x :L N, f :L (y :L N)− →

(p :L x = S y)− → [y/x]e2]]. This requires us to prove the following proposition.

Proposition 10.3.0.13. For any n ∈ N, rec− f ρ v ∈ [[(y :L N)− → (p :L

x = S y)− → [y/x]e2]]Lρ[x 7→n].

We proceed by induction on n. For the base case let n ≡ 0. Then rec− f ρ v ∈

[[(y :L N)− → (p :L x = S y)− → [y/x]e2]]Lρ[x 7→0] iff for any e′ ∈ [[N]]Lρ[x 7→0],

we have rec− f ρ v ∈ [[(p :L x = S y)− → [y/x]e2]]Lρ[x 7→0][y 7→e′]. Let e′′ ∈

[[N]]Lρ[x 7→0]. Then, we know, e′′ ! n′ ∈ N , hence, n′ ∈ V . Now we have to

show that (rec− f ρ v) e′′ ∗ (rec− f ρ v) n′ ≡ rec− f ρ v ∈ [[(p :L x =

S y)− → [y/x]e2]]Lρ[x 7→0][y 7→n′]. By the definition of the interpretation types we

must show that for any e′′′ ∈ [[x = S y]]Lρ[x 7→0][y 7→n′] we have rec− f ρ v ∈

[[[y/x]e2]]ρ[x 7→0][y 7→n′][p7→e′′′]. Let a ∈ [[x = S y]]Lρ[x 7→0][y 7→n′]. Then by the definition

of the interpretation, a ↓ join and 0 ↓ S n, but this is a contradiction.

Now let n ≡ S n′. By the definition of the interpretation of types, rec− f ρ v ∈

[[(y :L N)− → (p :L x = S y)− → [y/x]e2]]Lρ[x 7→n] iff for any a ∈ [[N]]Lρ[x 7→n], we

199

have rec− f ρ v ∈ [[(p :L x = S y)− → [y/x]e2]]Lρ[x 7→n][y 7→a]. Let a′ be an arbitrary

a. Then by CR-Norm and the definition of the interpretation of types, a′ ∈ N ,

a′ ∈ V , hence, a′ ! v′ ∈ N. By CR-Pres and the definition of the interpretation

of types, (rec− f ρ v) a′ ∗ (rec− f ρ v) v′ ≡ rec− f ρ v ∈ [[(p :L x = S y)− →

[y/x]e2]]Lρ[x 7→n][y 7→v′] iff for any a′′ ∈ [[x = S y]]Lρ[x 7→n][y 7→v′], we have rec− f ρ v ∈

[[[y/x]e2]]Lρ[x 7→n][y 7→v′][p 7→a′′]. Suppose u ∈ [[x = S y]]Lρ[x 7→n][y 7→v′]. By the definition

of the interpretation of types, u ↓ join and S n′ ↓ S v′, which implies, n′ ↓ v′.

Now (rec− f ρ v) v′ [v′/x][rec− f ρ v/f]ρ v ≡ [rec− f ρ v/f]ρ v, so by

CR-Pres it suffices to show, [rec− f ρ v/f]ρ v ∈ [[[y/x]e2]]Lρ[x 7→n][y 7→v′][p 7→u]. It

is easy to see that x is not free in [y/x]e2 and we know p is also not free

in [y/x]e2, hence, [[[y/x]e2]]Lρ[x 7→n][y 7→v′][p7→u] = [[[y/x]e2]]Lρ[y 7→v′], and by a simple

renaming of variables, [[[y/x]e2]]Lρ[y 7→v′] = [[e2]]Lρ[x 7→v′]. Thus, it suffices to show,

[rec− f ρ v/f]ρ v ∈ [[e2]]Lρ[x 7→v′]. Finally, by Lemma 10.3.0.7, it suffices to show,

[rec− f ρ v/f]ρ v ∈ [[e2]]Lρ[x 7→n′], because v′ ↓ n′.

By the inner induction hypothesis, rec− f ρ v ∈ [[(y :L N)− → (p :L x =

S y)− → [y/x]e2]]Lρ[x 7→n′]. Thus, [rec− f ρ v/f]ρ ∈ [[Γ, x :L N, f :L (y :L N)− →

(p :L x = S y)− → [y/x]e2]]. We can now apply the outer induction hypothesis,

where we substitute v for e, e2 for e′, Γ, x :L N, f :L (y :L N)− → (p :L x =

S y)− → [y/x]e2 for Γ, and [rec− f ρ v/f]ρ for ρ, to obtain, [rec− f ρ v/f]ρ v ∈

[[e2]]Lρ[x 7→n′][f 7→rec− f ρ v/f] = [[e2]]Lρ[x 7→n′], because f 6∈ FV (e2). This concludes the

proof of the proposition.

By Proposition 10.3.0.12, rec− f ρ v ∈ [[(y :L N)− → (p :L x = S y)− →

200

[y/x]e2]]Lρ[x 7→n]. Thus, [rec− f ρ v/f]ρ ∈ [[Γ, x :L N, f :L (y :L N)− → (p :L x =

S y)− → [y/x]e2]] and we can finally conclude, [rec− f ρ v/f]ρ v ∈ [[e2]]Lρ[x 7→n]. By

CR-Pres, rec− f ρ v ∈ [[e2]]Lρ[x 7→n]. Therefore, rec− f ρ v ∈ [[(x :L N)− → e2]]Lρ .

201

CHAPTER 11

DUALIZED LOGIC AND TYPE THEORY

In Section 9 we introduced Dualized Intuitionistic Logic (DIL) and its cor-

responding type theory Dualized Type Theory (DTT). Now we present the basic

metatheory of both DIL and DTT. We start with proving consistency of DIL, and

then prove completeness by reduction to Pinto and Uustalu’s L. Then we move onto

show type preservation and strong normalization for DTT. We show the latter using

a version of Krivine’s classical realizability by translating DIL into a classical logic.

11.1 Consistency of DIL

In this section we prove consistency of DIL with respect to Rauszer’s Kripke

semantics for BINT logic. All of the results in this section have been formalized in

the Agda proof assistant1. We begin by first defining a Kripke frame.

Definition 11.1.0.1.

A Kripke frame is a pair (W,R) of a set of worlds W , and a preorder R on W .

Then we extend the notion of a Kripke frame to include an evaluation for

atomic formulas resulting in a Kripke model.

Definition 11.1.0.2.

A Kripke model is a tuple (W,R, V), such that, (W,R) is a Kripke frame, and V

is a binary monotone relation on W and the set of atomic formulas of DIL.

Now we can interpret formulas in a Kripke model as follows:

1Agda source code is available at https://github.com/heades/DIL-consistency

202

Definition 11.1.0.3.

The interpretation of the formulas of DIL in a Kripke model (W,R, V) is defined by

recursion on the structure of the formula as follows:

[[〈+〉]]w = >
[[〈−〉]]w = ⊥

[[a]]w = V w a

[[A ∧+ B]]w = [[A]]w ∧ [[B]]w
[[A ∧− B]]w = [[A]]w ∨ [[B]]w

[[A→+ B]]w = ∀w′ ∈ W.Rw w ′ → [[A]]w ′ → [[B]]w ′
[[A→− B]]w = ∃w′ ∈ W.Rw ′ w ∧ ¬[[A]]w ′ ∧ [[B]]w ′

The interpretation of formulas really highlights the fact that implication is dual to

coimplication. Monotonicity holds for this interpretation.

Lemma 11.1.0.4. [Monotonicity] Suppose (W,R, V) is a Kripke model, A is some

DIL formula, and w,w′ ∈ W . Then Rw w ′ and [[A]]w imply [[A]]w ′.

At this point we must set up the mathematical machinery which allows for the

interpretation of sequents in a Kripke model. This will require the interpretation of

graphs, and hence, nodes. We interpret nodes as worlds in the model using a function

we call a node interpreter.

Definition 11.1.0.5.

Suppose (W,R, V) is a Kripke model and S is a set of nodes of an abstract Kripke

model G. Then a node interpreter on S is a function from S to W .

Now using the node interpreter we can interpret edges as statements about

the reachability relation in the model. Thus, the interpretation of a graph is just the

conjunction of the interpretation of its edges.

Definition 11.1.0.6.

Suppose (W,R, V) is a Kripke model, G is an abstract Kripke model, and N is a

node interpreter on the set of nodes of G. Then the interpretation of G in the Kripke

203

model is defined by recursion on the structure of the graph as follows:

[[·]]N = >
[[n1 4+ n2, G]]N = R (N n1) (N n2) ∧ [[G]]N
[[n1 4− n2, G]]N = R (N n2) (N n1) ∧ [[G]]N

Now we can prove that if a particular reachability judgment holds, then the

interpretation of the nodes are reachable in the model.

Lemma 11.1.0.7. [Reachability Interpretation] Suppose (W,R, V) is a Kripke model,

and [[G]]N for some abstract Kripke graph G. Then

i. if G ` n1 4+ n2, then R (N n1) (N n2), and

ii. if G ` n1 4− n2, then R (N n2) (N n1).

We now have everything we need to interpret abstract Kripke models. The

final ingredient to the interpretation of sequents is the interpretation of contexts.

Definition 11.1.0.8.

If F is some meta-logical formula, we define pF as follows:

+F = F and −F = ¬F.

Definition 11.1.0.9.

Suppose (W,R, V) is a Kripke model, Γ is a context, and N is a node interpreter

on the set of nodes in Γ. The interpretation of Γ in the Kripke model is defined by

recursion on the structure of the context as follows:

[[·]]N = >
[[p A @ n,Γ]]N = p[[A]](N n) ∧ [[Γ]]N

Combining these interpretations results in the following definition of validity.

204

Definition 11.1.0.10.

Suppose (W,R, V) is a Kripke model, Γ is a context, and N is a node interpreter

on the set of nodes in Γ. The interpretation of sequents is defined as follows:

[[G; Γ ` p A @ n]]N = if [[G]]N and [[Γ]]N , then p[[A]](N n).

Notice that in the definition of validity the graph G is interpreted as a set of

constraints imposed on the set of Kripke models, thus reinforcing the fact that the

graphs on sequents really are abstract Kripke models. Finally, using the previous

definition of validity we can prove soundness.

Theorem 11.1.0.11. [Soundness] Suppose G; Γ ` p A @ n. Then for any Kripke

model (W,R, V) and node interpreter N on |G|, [[G; Γ ` p A @ n]]N .

11.2 Completeness of DIL

In this section we prove that every derivable sequent in L can be translated

to a derivable sequent of DIL. We will call a sequent in L a L-sequent and a sequent

in DIL a DIL-sequent. Throughout this section we assume without loss of generality

that all L-sequents have non-empty right-hand sides. That is, for every L-sequent,

Γ `G ∆, we assume that ∆ 6= ·. We do not loose generality because it is possible to

prove that Γ `G · holds if and only if Γ `G n :⊥ for any node n (proof omitted).

Along the way, we will see admissibility of the analogues of the rules we men-

tioned in Section 9.2. The proof of consistency was with respect to DIL including

the cut rule, but we prove completeness with respect to DIL where the general cut

rule has been replaced with the following two inference rules, which can be seen as

restricted instances of the cut rule:

205

p B @ n ′ ∈ (Γ, p̄ A @ n) G; Γ, p̄ A @ n ` p̄ B @ n ′

G; Γ ` p A @ n
axCut

p̄ B @ n ′ ∈ (Γ, p̄ A @ n) G; Γ, p̄ A @ n ` p B @ n ′

G; Γ ` p A @ n
axCutBar

These two rules are required for the crucial left-to-right lemma. This lemma depends

on the following admissible rule:

Lemma 11.2.0.1. [Weakening] If G; Γ ` p B @ n is derivable, then G; Γ, p1 A @ n1 `

p2 B @ n1 is derivable.

Proof. This holds by straightforward induction on the assumed typing derivation.

Note that we will use admissible rules as if they are inference rules of the logic

throughout the sequel.

Lemma 11.2.0.2. [Left-to-Right] If G; Γ1, p̄ A @ n,Γ2 ` p̄ ′ B @ n ′ is derivable, then

so is G; Γ1,Γ2, p
′ B @ n ′ ` p A @ n.

Proof. Suppose G; Γ1, p̄ A @ n,Γ2 ` p̄ ′ B @ n ′ is derivable and Γ3 =def Γ1, p̄ A @ n,Γ2.

Then we derive G; Γ1,Γ2, p
′ B @ n ′ ` p A @ n as follows:

p′ B @ n ′ ∈ (Γ3, p
′ B @ n ′)

G; Γ3 ` p̄′ B @ n ′

G; Γ3, p
′ B @ n ′ ` p̄′ B @ n ′

Weakening

G; Γ1,Γ2, p
′ B @ n ′ ` p A @ n

axCut

Thus, we obtain our result.

We mentioned DIL avoids analogs of a number of rules from L. To be able to

translate every derivable sequent of L to DIL, we must show admissibility of those

rules in DIL.

206

Lemma 11.2.0.3. [Reflexivity] If G,m 4p′ m; Γ ` p A @ n is derivable, then so is

G; Γ ` p A @ n.

Proof. This holds by a straightforward induction on the form of the assumed deriva-

tion.

Lemma 11.2.0.4. [Transitivity] If G, n1 4p′ n3; Γ ` p A @ n is derivable, n1 4p′

n2 ∈ G and n2 4p′ n3 ∈ G, then G; Γ ` p A @ n is derivable.

Proof. This holds by a straightforward induction on the form of the assumed deriva-

tion.

Lemma 11.2.0.5. [AndL] If G; Γ, p̄ A @ n ` p B @ n is derivable, then G; Γ `

p (A ∧p̄ B) @ n is derivable.

Proof. Suppose G; Γ, p̄ A @ n ` p B @ n is derivable. By weakening we know

G; Γ, p̄ (A ∧p̄ B) @ n, p̄ B @ n, p̄ A @ n ` p B @ n.

Then G; Γ ` p (A ∧p̄ B) @ n is derivable as follows:

D1 D2

G; Γ, p̄ (A ∧p̄ B) @ n ` p B @ n
Cut

G; Γ, p̄ (A ∧p̄ B) @ n ` p (A ∧p̄ B) @ n
AndBar

G; Γ, p̄ (A ∧p̄ B) @ n ` p̄ (A ∧p̄ B) @ n
ax

G; Γ ` p (A ∧p̄ B) @ n
Cut

where we have the following subderivations:
D0 :

G; Γ, p̄ (A ∧p̄ B) @ n, p̄ B @ n, p A @ n ` p A @ n
ax

G; Γ, p̄ (A ∧p̄ B) @ n, p̄ B @ n, p A @ n ` p (A ∧p̄ B) @ n
AndBar

207

D1 :
G; Γ, p̄ (A ∧p̄ B) @ n, p̄ B @ n, p̄ A @ n ` p B @ n

G; Γ, p̄ (A ∧p̄ B) @ n, p̄ B @ n, p̄ A @ n ` p̄ B @ n
ax

G; Γ, p̄ (A ∧p̄ B) @ n, p̄ B @ n ` p A @ n
Cut

D2 :

G; Γ, p̄ (A ∧p̄ B) @ n, p̄ B @ n, p A @ n ` p̄ (A ∧p̄ B) @ n
ax

D0

G; Γ, p̄ (A ∧p̄ B) @ n, p̄ B @ n ` p̄ A @ n
Cut

Lemma 11.2.0.6. [MonoL] If G; Γ, p A @ n1, p A @ n2,Γ
′ ` p ′ B @ n ′ is derivable

and n1 4p n2 ∈ G, then G; Γ, p A @ n1,Γ
′ ` p ′ B @ n ′ is derivable.

Proof. This result easily follows by part one of Corollary 11.2.0.17, and contraction

(Lemma 11.2.0.9).

Lemma 11.2.0.7. [MonoR] If G; Γ, p̄ A @ n1,Γ
′ ` p A @ n2 and n1 4p n2 ∈ G, then

G; Γ,Γ′ ` p A @ n2 is derivable.

Proof. Suppose G; Γ, p̄ A @ n1,Γ
′ ` p A @ n2 and n1 4p n2 ∈ G. Then by part one of

monotonicity (Corollary 11.2.0.17) we know G; Γ, p̄ A @ n2,Γ
′ ` p A @ n2. Finally, we

know by the axiom cut rule that G; Γ,Γ′ ` p A @ n2.

Lemma 11.2.0.8. [Exchange] If G; Γ ` p A @ n is derivable and π is a permutation

of Γ, then G; π Γ ` p A @ n is derivable.

Proof. This holds by a straightforward induction on the form of the assumed deriva-

tion.

Note that we often leave the application of exchange implicit for readablity. Finally,

we have the admissible for contraction.

208

Lemma 11.2.0.9. [Contraction] If G; Γ, p A @ n, p A @ n,Γ′ ` p ′ B @ n ′, then

G; Γ, p A @ n,Γ′ ` p ′ B @ n ′.

Proof. This holds by a straightforward induction on the form of the assumed deriva-

tion.

The proofs of the previous admissible rules depend on a general monotonic-

ity result (Lemma 11.2.0.16) for DIL. The proof of this will require some auxiliary

mathematical machinery. First, we show that arbitrary edges can be weakened into

the reachability judgment.

Lemma 11.2.0.10. [Graph Weakening] If G ` n1 4∗p n2, then G, n3 4p′ n4 `

n1 4∗p n2.

Proof. This holds by a straightforward induction on the form of the assumed deriva-

tion.

Now monotonicity is the notion of truths holding forever into the future, and

falsehood holding forever into the past. That is, if a formula is true in some current

world, then it must remain true, and if a forumla is false in the current world, then

it remains false forever into the past. Thus, a false formula may eventually become

true in the future, but a true formula cannot be true now and then become false

in the future. To capture this notion syntactically we require the definition of a

function which will push edges forward in the abstract Kripke model – the graph on

the sequent. This function is ultimately used to construct the reachability constraint

on implication in the general monotonicity lemma.

209

Definition 11.2.0.11.

We define the function raise on abstract graphs as follows:
raise (n1, n2, ·) = ·
raise (n1, n2, (n1 4p m, G)) = n2 4p m, raise (n1, n2, G)
raise (n1, n2, (m 4p n1, G)) = m 4p n2, raise (n1, n2, G)
raise (n1, n2, (m 4p m ′, G)) = m 4p m ′, raise (n1, n2, G),

where m 6≡ n1 and m ′ 6≡ n1.
raise (n1, n2, (m 4p̄ m ′, G)) = m 4p̄ m ′, raise (n1, n2, G),

where m 6≡ n1 and m ′ 6≡ n1.

The following asserts that the orientation of an edge can be flipped, as long

as the polarity is flipped.

Lemma 11.2.0.12. [RelAssumFlip] If G1, n1 4p n2, G2 ` m 4p′ m ′, then

G1, n2 4p̄ n1, G2 ` m 4p′ m ′.

Proof. This is a proof by induction on the form of the assumed derivation. We

only consider the case of the ax rule, because the remainder of the cases hold either

trivially or by simple applicaitons of the induction hypothesis followed by the rule in

the corresponding case.

Case.

G, n 4p′′ n ′, G′ ` n 4∗p′′ n ′
ax

We only consider the non-trivial case when G, n 4p′′ n ′, G′ ≡ G1, n1 4p

n2, G2. This implies that n ≡ m ≡ n1, n ′ ≡ m ′ ≡ n2, and p ′′ ≡ p ′ ≡ p. It

suffices to show G1, n2 4p̄ n1, G2 ` n1 4∗p n2. Clearly, we know by the rel ax

rule, G1, n2 4p̄ n1, G2 ` n2 4∗p̄ n1, and then by the rel flip rule we know

G1, n2 4p̄ n1, G2 ` n1 4∗p n2.

210

Using the raise function we can show that all nodes related to some node n1

which is related to a node n2 in some subgraph G1, are also related to n2. Now using

the following result we will be able to raise the lowerbound on edges in a DIL-sequent,

which will then be used to construct the reachability requirements for implication in

the general monotonicity lemma (Lemma 11.2.0.16).

Lemma 11.2.0.13. [Raising the Lower Bound] If G ` n1 4∗p n2 and G,G1 ` m 4∗p′

m ′, then G, raise (n1, n2, G1) ` m 4∗p′ m ′.

Proof. This is a proof by induction on the form of G,G1 ` m 4∗p′ m ′.

Case.

G′,m 4p′ m ′, G′′ ` m 4∗p′ m ′
ax

Note that it is the case that G′,m 4p′ m ′, G′′ ≡ G,G1. If m 4p′ m ′ ∈ G,

then we obtain our result, so suppose m 4p′ m ′ ∈ G1. Suppose p ≡ p ′. Now

if m 6≡ n1, then clearly, we obtain our result. Consider the case where m ≡ n1.

Then it suffices to show G, raise (n1, n2, G
′
1), n2 4p m ′, raise (n1, n2, G

′′
1) `

n1 4∗p m ′ where G1 ≡ G′1, n1 4p m ′, G′′1. This holds by the following

derivation:

G ` n1 4
∗
p n2

G, raise (n1,n2, G
′
1),n2 4p m ′, raise (n1,n2, G

′′
1) ` n2 4

∗
p m ′

rel ax

G, raise (n1,n2, G
′
1),n2 4p m ′, raise (n1,n2, G

′′
1) ` n1 4

∗
p m ′

rel trans

211

Now suppose p ′ ≡ p̄. if m ′ 6≡ n1, then clearly, we obtain our result. Consider

the case where m ′ ≡ n1. Then it suffices to show G, raise (n1, n2, G
′
1),m 4p̄

n2, raise (n1, n2, G
′′
1) ` m 4∗p̄ n1 where G1 ≡ G′1,m 4p̄ n1, G

′′
1. Finally, this

case follows by applying the rel trans rule.

Case.

G,G1 ` m 4∗p′ m
refl

Note that in this case m ′ ≡ m. Our result follows from simply an application

of the rel refl rule.

Case.

G,G1 ` m 4∗p′ m ′′ G,G1 ` m ′′ 4∗p′ m ′

G,G1 ` m 4∗p′ m ′
rel trans

This case holds by two applications of the induction hypothesis followed by

applying the rel trans rule.

Case.

G,G1 ` m ′ 4∗p̄′ m

G,G1 ` m 4∗p′ m ′
flip

It suffices to show G, raise (n1, n2, G) ` m 4∗p′ m ′. We know G ` n1 4∗p

n2, so by the induction hypothesis we know G, raise (n2, n1, G) ` m ′ 4∗p̄

m. So it suffices to show that G, raise (n2, n1, G) ` m ′ 4∗
p̄′

m implies

212

G, raise (n1, n2, G) ` m 4∗p′ m ′, but this easily follows by repeated appli-

cations of Lemma 11.2.0.12.

We can now use the previous result to raise the lower bound on sequents.

Lemma 11.2.0.14. [Graph Node Containment] If G ` n1 4∗p n2 and n1 and n2 are

unique, then n1, n2 ∈ |G|.

Proof. This holds by straightforward induction on the form of G ` n1 4∗p n2.

Lemma 11.2.0.15. [Raising the Lower Bound Logically] If G,G1, G
′; Γ ` p A @ n

and G,G′ ` n1 4∗p n2, then G, raise (n1, n2, G1), G′; Γ ` p A @ n.

Proof. This is a proof by induction on the form of G,G1, G
′; Γ ` p A @ n. We assume

with out loss of generality that n1 ∈ |G1|, and that n1 6≡ n2. If this is not the case

then raise (n1, n2, G1) = G1, and the result holds trivially.

Case.

G,G1, G
′ ` n ′ 4∗p n

G,G1, G
′; Γ, p A @ n ′ ` p A @ n

ax

Clearly, if G,G1, G
′ ` n ′ 4∗p n, then G,G′, G1 ` n ′ 4∗p n. Thus, this case

follows by raising the lower bound (Lemma 11.2.0.13), and applying the ax

rule.

Case.

213

G,G1, G
′; Γ ` p 〈p〉@ n

unit

Trivial.

Case.

G,G1, G
′; Γ ` p A1 @ n G,G1, G

′; Γ ` p A2 @ n

G,G1, G
′; Γ ` p (A1 ∧p A2) @ n

and

This case holds by two applications of the induction hypothesis, and then

applying the and rule.

Case.

G,G1, G
′; Γ ` p Ad @ n

G,G1, G
′; Γ ` p (A1 ∧p̄ A2) @ n

andBar

Similar to the previous case.

Case.

n ′ 6∈ |G,G1, G
′|, |Γ|

(G,G1, G
′, n 4p n ′); Γ, p A1 @ n ′ ` p A2 @ n ′

G,G1, G
′; Γ ` p (A1 →p A2) @ n

imp

Since we know n1 6≡ n2, then by Lemma 11.2.0.14 we know

n1, n2 ∈ |G,G′|. Thus, n ′ 6≡ n1 6≡ n2. Now by the induction hypothesis we

know (G, raise (n1, n2, G1), G′, n 4p n ′); Γ, p A1 @ n ′ ` p A2 @ n ′. This case

then follows by the application of the imp rule to the former.

214

Case.

G,G1, G
′ ` n 4∗p̄ n ′

G,G1, G
′; Γ ` p̄ A1 @ n ′ G,G1, G

′; Γ ` p A2 @ n ′

G,G1, G
′; Γ ` p (A1 →p̄ A2) @ n

impBar

Clearly, G,G1, G
′ ` n 4∗p̄ n ′ implies G,G′, G1 ` n 4∗p̄ n ′, and by raising the

lower bound (Lemma 11.2.0.13) we know G,G′, raise (n1, n2, G1) ` n 4∗p̄ n ′

which implies G, raise (n1, n2, G1), G′ ` n 4∗p̄ n ′.

Case.

p T ′ @ n ′ ∈ Γ G,G1, G
′; Γ, p̄ T @ n ` p̄ T ′ @ n ′

G,G1, G
′; Γ ` p T @ n

axCut

This case follows by a simple application of the induction hypothesis, and

then reapplying the rule.

Case.

p̄ T ′ @ n ′ ∈ Γ G,G1, G
′; Γ, p̄ T @ n ` p T ′ @ n ′

G,G1, G
′; Γ ` p T @ n

axCutBar

Similar to the previous case.

Finally, we have everything we need to prove that general monotonicity is

admissible in DIL. This implies the usual admissible monotonicity rule as a corollary.

215

Lemma 11.2.0.16. [General Monotonicity] If G ` n1 4∗p1 n ′1, . . . , G ` ni 4∗pi n ′i ,

G ` m 4∗p m ′, and G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p B @ m, then

G; p̄1A1@n ′1, . . . , p̄iAi@n ′i ` p B @ m ′.

Proof. This is a proof by induction on the form of G; p̄1 A1 @ n1, ... , p̄i Ai @ ni `

p B @ m. We assume without loss of generality that all of n1, n
′
1 . . . , ni , n

′
i are unique.

Thus, they are all member of |G|.

Case.

G ` ni 4
∗
p̄i

n ′

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p̄i Ai @ n ′
ax

It must be the case that p B @ m ≡ p̄i A @ n ′. In addition we know G `

ni 4∗pi n ′i and G ` n ′ 4∗p̄i m ′. It suffices to show G; p̄1A1@n ′1, . . . , p̄iAi@n ′i `

p̄i Ai @ m ′. This is derivable as follows:

G ` ni 4
∗
pi n ′i

G ` n ′i 4
∗
p̄i ni

rel flip

G ` ni 4
∗
p̄i n ′

G ` n ′ 4∗p̄i m ′

G ` ni 4
∗
p̄i m ′

rel trans

G ` n ′i 4
∗
p̄i m ′

rel trans

G; p̄1A1@n ′1, . . . , p̄iAi@n ′i ` p̄i Ai @ m ′
ax

Case.

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p 〈p〉@ m1

unit

Trivial.

216

Case.

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p B1 @ m
G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p B2 @ m

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p (B1 ∧p B2) @ m
and

This case follows easily by applying the induction hypothesis to each premise

and then applying the and rule.

Case.

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p Bd @ m

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p (B1 ∧p̄ B2) @ m
andBar

This case follows easily by the induction hypothesis and then applying

andBar.

Case.

n ′ 6∈ |G|, |p̄1 A1 @ n1, ... , p̄i Ai @ ni |
(G,m1 4p n ′); p̄1 A1 @ n1, ... , p̄i Ai @ ni , p B1 @ n ′ ` p B2 @ n ′

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p (B1 →p B2) @ m
imp

We know by assumption G ` n1 4∗p1 n ′1, . . . , G ` ni 4∗pi n ′i , and by graph

weakening (Lemma 11.2.0.10) G,m 4p n ′ ` n1 4∗p1 n ′1, . . . , G,m 4p n ′ `

ni 4∗pi n ′i . We also know by applying the rel refl rule that G,m 4p n ′ `

n ′ 4∗p̄ n ′ and G,m 4p n ′ ` n ′ 4∗p n ′. Thus, by the induction hypothesis

we know (G,m 4p n ′); p̄1A1@n ′1, . . . , p̄iAi@n ′i , p B1 @ n ′ ` p B2 @ n ′. Now we

can raise the lower bound logically (Lemma 11.2.0.15) with G1 ≡ m 4p n ′

and the assumption G ` m 4∗p m ′ to obtain

217

(G, raise (m,m ′,m 4p n ′)); p̄1A1@n ′1, . . . , p̄iAi@n ′i , p B1 @ n ′ ` p B2 @ n ′, but

this is equivalent to (G,m 4p n ′); p̄1A1@n ′1, . . . , p̄iAi@n ′i , p B1 @ n ′ ` p B2 @

n ′. Finally, using the former, we obtain our result by applying the imp rule.

Case.

G ` m 4∗p̄ n ′

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p̄ B1 @ n ′

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p B2 @ n ′

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p (B1 →p̄ B2) @ m
impBar

We can easily derive G ` m ′ 4∗p̄ n ′ as follows:

G ` m 4∗p̄ n ′

G ` n ′ 4∗p m
rel flip

G ` m 4∗p m ′

G ` n ′ 4∗p m ′
rel trans

G ` m ′ 4∗p̄ n ′
rel flip

This case then follows by applying the induction hypothesis twice to both

G; p̄1 A1 @n1, ... , p̄i Ai @ni , p̄ Bd̄ @m ` p̄ B1 @n ′ and G; p̄1 A1 @n1, ... , p̄i Ai @

ni , p̄ Bd̄ @ m ` p B2 @ n ′ using the assumptions G ` n1 4∗p1 n ′1, . . . , G `

ni 4∗pi n ′i , G ` m 4∗p m ′, and the fact that we know G ` n ′ 4∗p n ′ and

G ` n ′ 4∗p̄ n ′.

Case.

p̄j Aj @ nj ∈ (p̄1 A1 @ n1, ... , p̄i Ai @ ni)
G; p̄1 A1 @ n1, ... , p̄i Ai @ ni , p̄ B @ m ` pj Aj @ nj

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p B @ m
axCut

We know by assumption that G ` n1 4∗p1 n ′1, . . . , G ` ni 4∗pi n ′i , and

G ` m 4∗p m ′. In particular, we know G ` nj 4∗pj n ′j . It is also the

218

case that if p̄j Aj @ nj ∈ (p̄1 A1 @ n1, ... , p̄i Ai @ ni), then p̄j Aj @ n ′j ∈

(p̄1A1@n ′, . . . , p̄iAi@n ′i). This case then follows by applying the induction

hypothesis to G; p̄1 A1 @ n1, ... , p̄i Ai @ ni , p̄ B @ m ` pj Aj @ nj , to obtain,

G; p̄1A1@n ′1, . . . , p̄iAi@n ′i , p̄ B @ m ′1 ` pj Aj @ n ′j , followed by applying the

axCut rule.

Case.

p̄j Aj @ nj ∈ (p̄1 A1 @ n1, ... , p̄i Ai @ ni)
G; p̄1 A1 @ n1, ... , p̄i Ai @ ni , p̄ B @ m ` pj Aj @ nj

G; p̄1 A1 @ n1, ... , p̄i Ai @ ni ` p B @ m
axCutBar

Similar to the previous case.

The proofs of the admissible rules MonoL and MonoR depend on the following mono-

tonicity result.

Corollary 11.2.0.17. [Monotonicity] Suppose G ` n1 4∗p n2. Then

i. if G; Γ, p̄ A @ n1,Γ
′ ` p ′ B @ n ′, then G; Γ, p̄ A @ n2,Γ

′ ` p ′ B @ n ′, and

ii. if G; Γ ` p A @ n1, then G; Γ ` p A @ n2.

Proof. This result follows easily from Lemma 11.2.0.16.

We now have everything we need to prove that every derivable sequent of L

can be translated to a derivable sequent in DIL. The proof technique we use here does

not provide an algorithm taking a sequent of L and yielding a derivable sequent in

219

DIL. Such an algorithm would have to choose a particular conclusion in the L-sequent

to be the active formula of the DIL-sequent, but this is quite difficult. Instead we

show that all possible conclusions in the L-sequent can be chosen to be active and

yield a derivable DIL-sequent.

Using the translation of formulas given in Definition 9.2.0.1 we can easily

translate contexts. Right contexts Γ in L are translated to positive hypotheses, while

left contexts, not including the formula chosen as the active formula, are translated

into negative hypotheses. The following definition defines the translation of both

types of contexts.

Definition 11.2.0.18.

We extend the translation of formulas to contexts Γ and ∆ with respect to a polarity

p as follows:

p·qp = ·

pn : A,Γqp = p pAq@ n, pΓqp

Abstract Kripke models are straightforward to translate.

Definition 11.2.0.19.

We define the translation of graphs G in L to graphs in DIL as follows:

p·q = ·

p(n1, n2), Gq = n1 4+ n2, pGq

The previous definition implies the following result:

Lemma 11.2.0.20. [Reachability] If n1Gn2, then pGq ` n1 4∗+ n2.

The translation of a derivable L-sequent is a DIL-sequent which requires a

particular formula as the active formula. We define such a translation in the following

220

definition.

Definition 11.2.0.21.

An activation of a derivable L-sequent Γ `G ∆ is a DIL-sequent

pGq; pΓq+, p∆1,∆2q− ` + pAq@ n, where ∆ = ∆1, n : A,∆2.

Finally, the following theorem is the main result showing that any activation

of a derivable L-sequent is derivable in DIL.

Theorem 11.2.0.22. [Containment of L in DIL] If pGq; Γ′ ` + A @ n is an activa-

tion of the derivable L-sequent Γ `G ∆, then pGq; Γ′ ` + A @ n is derivable.

Proof. This is a proof by induction on the form of the sequent Γ `G ∆.

Case.

Γ `G,(n,n) ∆

Γ `G ∆
refl

We know by the induction hypothesis that every activation of Γ `G,(n,n) ∆ is

derivable. Suppose that pG, (n, n)q; Γ′ ` + A @ n is an arbitrary activation,

where p∆q− ≡ p∆1q−,−A @ n, p∆2q− and Γ′ ≡ p∆1q−, p∆2q−. This is

equivalent to pGq, n 4+ n; Γ′ ` + A @ n, and by the admissible rule for

reflexivity (Lemma 11.2.0.3) we have pGq; Γ′ ` + A @ n.

Case.

n1Gn2

n2Gn3

Γ `G,(n1,n3) ∆

Γ `G ∆
Trans

221

We know by the induction hypothesis that every activation of Γ `G,(n1,n3) ∆ is

derivable. Suppose that pG, (n1, n3)q; Γ′ ` + A @ n is an arbitrary activation,

where p∆q− ≡ p∆1q−,−A@n, p∆2q− and Γ′ ≡ p∆1q−, p∆2q−. This sequent

is equivalent to pGq, n1 4+ n3; Γ′ ` + A @ n. Furthermore, it is clear by

definition that if n1Gn2 and n2Gn3, then n1 4+ n2 ∈ pGq and n2 4+ n3 ∈

pGq. Thus, by the admissible rule for transitivity (Lemma 11.2.0.4) we have

pGq; Γ′ ` + A @ n, and we obtain our result.

Case.

Γ, n : A `G n : A,∆
hyp

It suffices to show that every activation of Γ, n : A `G n : A,∆ is derivable.

Clearly, pGq; pΓq+,+ pAq @ n, p∆q− ` + pAq @ n is a activation of Γ, n :

A `G n : A,∆. In addition, it is derivable:

pGq ` n 4∗+ n
Refl

pGq; pΓq+, p∆q−,+ pAq@ n ` + pAq@ n
ax

pGq; pΓq+,+ pAq@ n, p∆q− ` + pAq@ n
Exchange

In the previous derivation we make use of the exchange rule which is admis-

sible by Lemma 11.2.0.8.

Now consider any other activation pGq; Γ′ ` + B @ n ′. It must be the case

that Γ′ = pΓq+,+ A@n, p∆1q−,− pAq@n, p∆2q− for some ∆1 and ∆2. This

sequent is then derivable as follows:

222

pGq ` n 4∗+ n
Refl

pGq; pΓq+, p∆1q
−, p∆2q

−,−B @ n ′,+A @ n ` + pAq@ n
ax

pGq; pΓq+,+A @ n, p∆1q
−, p∆2q

−,−B @ n ′ ` + pAq@ n
Exchange

pGq; pΓq+,+A @ n, p∆1q
−,− pAq@ n, p∆2q

− ` +B @ n ′
L-to-R

Thus, we obtain our result.

Case.

n1Gn2

Γ, n1 : A, n2 : A `G ∆

Γ, n1 : A `G ∆
monL

Certainly, if n1Gn2, then n1 4+ n2 ∈ pGq. We know by the induction

hypothesis that all activations of Γ, n1 : A, n2 : A `G ∆ are derivable. Suppose

pGq; Γ′ ` + B @ n is an arbitrary activation. Then it must be the case that

Γ′ ≡ pΓq+,+ A @ n1,+ A @ n2, p∆1q−, p∆2q−, where p∆q− ≡ p∆1q−,−B @

n, p∆2q−. Now we apply the monoL admissible rule (Lemma 11.2.0.6) to

obtain pGq; pΓq+,+ A @ n1, p∆1q−, p∆2q− ` + B @ n, which is an arbitrary

activation of Γ, n1 : A `G ∆.

Case.

n1Gn2

Γ `G n1 : A, n2 : A,∆

Γ `G n2 : A,∆
monR

If n1Gn2, then n1 4+ n2 ∈ pGq. We know by the induction hypothesis

that all activations of Γ `G n1 : A, n2 : A,∆ are derivable. In particular, the

activation (modulo exchange (Lemma 11.2.0.8)) pGq; pΓq+, p∆q−,−A@n1 `

223

+ A @ n2 is derivable. It suffices to show that pGq; pΓq+, p∆q− ` + A @ n2.

This follows from the monoR admissible rule (Lemma 11.2.0.7). Finally, any

other activation of Γ `G n2 : A,∆ can be activated into pGq; pΓq+, p∆q− `

+ A @ n2 (Lemma 11.2.0.2). Thus, we obtain our result.

Case.

Γ `G ∆

Γ, n ′ : > `G ∆
trueL

We know by the induction hypothesis that all activations of Γ `G ∆ are deriv-

able. Suppose pGq; Γ′ ` + A@n is an arbitrary activation of Γ `G ∆. Then it

must be the case that Γ′ = pΓq+, p∆1q−, p∆2q−, where p∆q− ≡ p∆1q−,−A@

n, p∆2q−. Now by weakening (Lemma 11.2.0.1) we know pGq; Γ′,+ 〈+〉@n ′ `

+ A @ n, and by exchange (Lemma 11.2.0.8) pGq; + 〈+〉 @ n ′,Γ′ ` + A @ n,

which is exactly an arbitrary activation of Γ, n ′ : > `G ∆.

Case.

Γ `G n : >,∆
trueR

It suffices to show that every activation of Γ `G n : >,∆ is derivable. Consider

the activation pGq; pΓq+, p∆q− ` + p>q @ n. This is easily derivable by

applying the unit rule. Now any other activation of Γ `G n : >,∆ implies

pGq; pΓq+, p∆q− ` + p>q@n is derivable by Lemma 11.2.0.2, and hence, are

derivable.

224

Case.

Γ, n :⊥`G ∆
falseL

Suppose pGq; pΓq+,+ p⊥q @ n, p∆1q−, p∆2q− ` + A @ n ′ is an arbitrary

activation of Γ, n :⊥`G ∆, where p∆q− ≡ p∆1q−,−A @ n ′, p∆2q−. We can

easily see that by definition pGq; pΓq+,+ p⊥q@ n, p∆1q−, p∆2q− ` + A @ n ′

is equivalent to pGq; pΓq+,+ 〈−〉 @ n, p∆1q−, p∆2q− ` + A @ n ′. We can

derive the latter as follows:

+ 〈−〉@ n ∈ Γ′,−A @ n ′ pGq; Γ′,−A @ n ′ ` − 〈−〉@ n
unit

pGq; pΓq+,+ 〈−〉@ n, p∆1q
−, p∆2q

− ` +A @ n ′
axCutBar

In the previous derivation Γ′ ≡ pΓq+,+ 〈−〉 @ n, p∆1q−, p∆2q−. Thus, any

activation of Γ, n :⊥`G ∆ is derivable.

Case.

Γ `G ∆

Γ `G n ′ :⊥,∆
falseR

We know by the induction hypothesis that all activations of Γ `G ∆ are

derivable. Suppose pGq; Γ′ ` + A @ n is an arbitrary activation of Γ `G

∆. Then it must be the case that Γ′ = pΓq+, p∆q−. Now by weakening

(Lemma 11.2.0.1) we know pGq; Γ′,−〈−〉@ n ′ ` + A @ n, and by the left-to-

right lemma (Lemma 11.2.0.2) pGq; Γ′,−A@n ` + 〈−〉@n ′, which – modulo

exchange – is equivalent to pGq; pΓq+, p∆q− ` + p⊥q@ n ′. Thus, we obtain

225

our result.

Case.

Γ, n : T1, n : T2 `G ∆

Γ, n : T1 ∧ T2 `G ∆
andL

We know by the induction hypothesis that all activations of Γ, n : T1, n :

T2 `G ∆ are derivable. In particular, we know pGq; pΓq+,+ T1 @ n,+ T2 @

n, p∆1q−, p∆2q− ` + A @ n ′ where p∆q− = p∆1q−,−A@n′, p∆2q−. Using

exchange we know pGq; pΓq+, p∆1q−, p∆2q−,+ T1 @ n,+ T2 @ n ` + A @ n ′,

and by the left-to-right lemma pGq; pΓq+, p∆1q−, p∆2q−,+ T1 @n,−A@n ′ `

−T2 @ n, and finally by one more application of exchange

pGq; pΓq+, p∆1q−, p∆2q−,−A @ n ′,+ T1 @ n ` −T2 @ n. At this point we

know pGq; pΓq+, p∆1q−, p∆2q−,−A @ n ′ ` −T1 ∧+ T2 @ n by the using the

admissible andL rule (Lemma 11.2.0.5). Now using left-to-right

pGq; pΓq+, p∆1q−, p∆2q−,+ T1 ∧+ T2 @ n ` + A @ n ′ is derivable. Lastly, by

exchange pGq; pΓq+,+ T1 ∧+ T2 @ n, p∆1q−, p∆2q− ` + A @ n ′ is derivable,

which is clearly and an arbitrary activation of Γ, n : T1 ∧ T2 `G ∆.

Case.

Γ `G n : A,∆
Γ `G n : B ,∆

Γ `G n : A ∧ B ,∆
andR

We know by the induction hypothesis that all activations of Γ `G n : A,∆

and Γ `G n : B ,∆ are derivable. In particular, pGq; pΓq+, p∆q− ` + A @ n

226

and pGq; pΓq+, p∆q− ` + B @ n are derivable. Now by applying the and rule

we obtain pGq; pΓq+, p∆q− ` + A∧+B @n, which is a particular activation of

Γ `G n : A ∧ B ,∆. Finally, consider any other activation, then that sequent

implies pGq; pΓq+, p∆q− ` + A ∧+ B @ n is derivable using Lemma 11.2.0.2.

Thus, we obtain our result.

Case.

Γ, n : A `G ∆
Γ, n : A `G ∆

Γ, n : A ∨ B `G ∆
disjL

We know by the induction hypothesis that all activations of Γ, n : A `G ∆

and Γ, n : B `G ∆ are derivable. So suppose pGq; pΓq+,+ pAq@ n, p∆′q− `

+ C @ n ′ and pGq; pΓq+,+ pBq @ n, p∆′q− ` + E @ n ′′ are particular ac-

tivations, where p∆q− ≡ p∆1q−,−C @ n ′, p∆2q−,−E @ n ′′, p∆3q−, and

p∆′q− ≡ p∆1q−, p∆2q−, p∆3q−. By exchange (Lemma 11.2.0.8) we know

pGq; pΓq+, p∆′q−,+ pAq@ n ` + C @ n ′ and pGq; pΓq+, p∆′q−,+ pBq@ n `

+ E @ n ′′. Now by the left-to-right lemma (Lemma 11.2.0.2) we know

pGq; pΓq+, p∆′q−,−C @ n ′ ` − pAq @ n and pGq; pΓq+, p∆′q−,−E @ n ′′ `

− pBq@ n, and by applying weakening (and exchange) we know

pGq; pΓq+, p∆′q−,−C @n ′,−E@n ′′ ` − pAq@n and pGq; pΓq+, p∆′q−,−C @

n ′,−E @ n ′′ ` − pBq@ n. At this point we can apply the and rule to obtain

pGq; pΓq+, p∆′q−,−C @ n ′,−E @ n ′′ ` − pAq ∧− pBq@ n to which we can

apply the left-to-right lemma to and obtain

227

pGq; pΓq+, p∆′q−,−E @ n ′′,+ pAq ∧− pBq @ n ` + C @ n ′. Finally, we can

apply exchange again to obtain pGq; pΓq+,+ pAq ∧− pBq@ n, p∆′q−,−E @

n ′′ ` + C @ n ′, which – modulo exchange – is an arbitrary activation of

Γ, n : A ∨ B `G ∆. Thus, we obtain our result.

Case.

Γ `G x : T1, x : T2,∆

Γ `G x : T1 ∨ T2,∆
disjR

This case is similar to the case of andR case, except, it makes use of the

andBar rule.

Case.

n1Gn2

Γ `G n2 : T1,∆
Γ, n2 : T2 `G ∆

Γ, n1 : T1 ⊃ T2 `G ∆
impL

We know by the induction hypothesis that all activations of Γ `G y : T1,∆

and Γ, y : T2 `G ∆ are derivable. In particular, we know pGq; pΓq+, p∆q− `

+ pT1q@n2 is derivable, and so is pGq; pΓq+, p∆q− ` − pT2q@n2. The latter

being derivable by applying the induction hypothesis followed by exchange

(Lemma 11.2.0.8) and the left-to-right lemma (Lemma 11.2.0.2). We know

n1Gn2 by assumption and so by Lemma 11.2.0.20 pGq ` n1 4∗+ n2. Thus, by

applying the impBar rule we obtain pGq; pΓq+, p∆q− ` − pT1q→+ pT2q@n1.

At this point we can apply left-to-right to the previous sequent and obtain

228

and activation of Γ, n1 : T1 ⊃ T2 `G ∆, thus we obtain our result.

Case.

n2 6∈ |G|, |Γ|, |∆|
Γ, n2 : T1 `G∪{(n1,n2)} n2 : T2,∆

Γ `G n1 : T1 ⊃ T2,∆
impR

This case follows the same pattern as the previous cases. We know by the

induction hypothesis that all activations of Γ, y : T1 `G∪{(x ,y)} y : T2,∆ are

derivable. In particular, pGq, n1 4+ n2; pΓq+,+ pT1q@n2, p∆q− ` + pT2q@

n2 is derivable. By exchange (Lemma 11.2.0.8)

pGq, n1 4+ n2; pΓq+, p∆q−,+ pT1q @ n2 ` + pT2q @ n2 is derivable, and by

applying the imp rule we obtain pGq; pΓq+, p∆q− ` + pT1q →+ pT2q @ n1,

which is a particular activation of Γ `G n1 : T1 ⊃ T2,∆. Note that in the

previous application of imp we use the fact that if n2 6∈ |G|, |Γ|, |∆|, then

n2 6∈ |pGq|, |pΓq+, p∆q−|. Lastly, any other activation of Γ `G n1 : T1 ⊃

T2,∆ implies pGq; pΓq+, p∆q− ` + pT1q →+ pT2q @ n1 is derivable by the

left-to-right lemma, and hence is derivable.

Case.

n1 6∈ |G|, |Γ|, |∆|
Γ, n1 : T1 `G∪{(n1,n2)} n1 : T2,∆

Γ, n2 : T1 ≺ T2 `G ∆
subL

We know by the induction hypothesis that all activation of

Γ, n1 : T1 `G∪{(n1,n2)} n1 : T2,∆ are derivable. In particular, pGq, n1 4+

229

n2; pΓq+,+ pT1q@ n1, p∆q− ` + pT2q@ n1 is derivable. By exchange

(Lemma 11.2.0.8) pGq, n1 4+ n2; pΓq+, p∆q−,+ pT1q@ n1 ` + pT2q@ n1 is

derivable. Now by the left-to-right lemma we know

pGq, n1 4+ n2; pΓq+, p∆q−,− pT2q @ n1 ` − pT1q @ n1, and by assumption

we know y 6∈ |G|, |Γ|, |∆| which implies n1 6∈ |pGq|, |pΓq+, p∆q−| is deriv-

able. Thus, by applying the imp rule we know pGq, n1 4+ n2; pΓq+, p∆q− `

− pT2q →− pT1q @ n2 is derivable. Clearly, this is a particular activation

of Γ, n2 : T1 ≺ T2 `G ∆, and any other activation implies pGq, n1 4+

n2; pΓq+, p∆q− ` − pT2q →− pT1q @ n2 is derivable by the left-to-right

lemma, and hence are derivable.

Case.

yGx
Γ `G y : T1,∆
Γ, y : T2 `G ∆

Γ `G x : T1 ≺ T2,∆
subR

This case follows in the same way as the case for impL, except the particular

activation of Γ, y : T2 `G ∆ has to have the active formulas such that the

rule impBar can be applied.

Corollary 11.2.0.23. [Completeness] DIL is complete.

Proof. Completeness of L is proved in [106], and by Theorem 11.2.0.22 we know that

every derivable sequent of L is derivable in DIL.

230

11.3 Metatheory of DTT

We now present the basic metatheory of DTT, starting with type preservations.

We begin with the inversion lemma which is necessary for proving type preservation.

Lemma 11.3.0.1. [Inverstion]

i. If G; Γ, x : p A @ n,Γ′ ` x : p A @ n ′, then G ` n 4∗p n ′.

ii. If G; Γ ` (t1, t2) : p (A∧pB)@n, then G; Γ ` t1 : p A@n and G; Γ ` t2 : p B@n.

iii. If G; Γ ` ind t : p (A1 ∧p̄ A2) @ n, then G; Γ ` t : p Ad @ n.

iv. If G; Γ ` λx .t : p (A→p B)@n, then (G, n 4p n ′); Γ, x : p A@n ′ ` t : p B@n ′

for any n ′ 6∈ |G|, |Γ|.

v. If G; Γ ` 〈t1, t2〉 : p (A →p̄ B) @ n, then G ` n 4∗p̄ n ′, G; Γ ` t1 : p̄ A @ n ′,

and G; Γ ` t2 : p B @ n ′ for some node n ′.

Proof. Each case of the above lemma holds by a trivial proof by induction on the

assumed typing derivation.

The lemmas node substitution for typing and substitution for typing are essential

for the cases of type preservation that reduce a top-level redex. Node substitution,

denoted [n1/n2]n, is defined as follows:

[n1/n2]n2 = n1

[n1/n2]n = n where n is distinct from n2

The following lemmas are necessary in the proof of node substitution for typing.

Lemma 11.3.0.2. [Node Renaming] If G1, G2 ` n1 4∗p n3, then for any nodes n4 and

n5, where n5 is distinct from n1 and n3, we have [n4/n5]G1, [n4/n5]G2 ` n1 4∗p n3.

231

Proof. This is a proof by induction on the assumed reachability derivation. Through-

out each case suppose we have nodes n4 and n5.

Case.

G, n1 4p n3, G
′ ` n1 4

∗
p n3

ax

Trivial.

Case.

G1, G2 ` n 4∗p n
refl

Trivial.

Case.

G1, G2 ` n1 4
∗
p n ′ G1, G2 ` n ′ 4∗p n3

G1, G2 ` n1 4
∗
p n3

trans

By the induction hypothesis we know that for any nodes n ′4 and n ′5 that

[n ′4/n ′5]G1, [n
′
4/n ′5]G2 ` n1 4∗p n ′, and for any nodes n ′′4 and n ′′5 that

[n ′′4/n ′′5]G1, [n
′′
4/n ′′5]G2 ` n ′ 4∗p n3. Choose n4 for n ′4 and n ′′4 and n5 for n ′5 and

n ′′5 to obtain

[n4/n5]G1, [n4/n5]G2 ` n1 4∗p n ′ and [n4/n5]G1, [n4/n5]G2 ` n ′ 4∗p n3. Fi-

nally, this case follows by reapplying the rule to the previous two facts.

232

Case.

G ` n ′ 4∗p̄ n

G ` n 4∗p n ′
flip

Similar to the previous case.

Lemma 11.3.0.3. [Node Substitution for Reachability] If G, n1 4p1 n2, G
′ ` n4 4∗p

n5 and G,G′ ` n1 4∗p1 n3, then [n3/n2]G, [n3/n2]G′ ` [n3/n2]n4 4∗p [n3/n2]n5.

Proof. This is a proof by induction on the form of the assumed reachability derivation.

Throughout the following cases we assume G,G′ ` n1 4∗p1 n3 holds.

Case.

G1, n4 4p n5, G2 ` n4 4
∗
p n5

ax

Suppose G1, n4 4p n5, G2 = G, n1 4p1 n2, G
′. Then either n1 4p1 n2 ∈ G1,

n1 4p1 n2 ∈ G2, or n1 4p1 n2 ≡ n4 4p n5. Suppose n1 4p1 n2 ∈ G1, then

G1 = G′1, n1 4p n2, G
′′
1. Then it is easy to see that

[n3/n2](G′1, G
′′
1, n4 4p n5), [n3/n2]G2 ` [n3/n2]n4 4∗p [n3/n2]n5 is derivable

by applying ax. The case where n1 4p1 n2 ∈ G2 is similar.

Now suppose n1 4p1 n2 ≡ n4 4p n5. Then we know by assumption that

G1, n1 4p n2, G2 ` n1 4
∗
p n2

ax

233

Then it suffices to show [n3/n2]G1, [n3/n2]G2 ` [n3/n2]n1 4∗p [n3/n2]n2, which

is equivalent to [n3/n2]G1, [n3/n2]G2 ` [n3/n2]n1 4∗p n3. Now if n1 is equiv-

alent to n2, then [n3/n2]G1, [n3/n2]G2 ` [n3/n2]n1 4∗p n3 holds by reflexivity,

and if n1 is distinct from n2, then [n3/n2]G1, [n3/n2]G2 ` [n3/n2]n1 4∗p n3 is

equivalent to [n3/n2]G1, [n3/n2]G2 ` n1 4∗p n3. We know by assumption that

G,G′ ` n1 4∗p1 n3 holds, which is equivalent to G1, G2 ` n1 4∗p n3. Now

if n3 is equal to n2, then [n3/n2]G1, [n3/n2]G2 ` n1 4∗p n3 is equivalent to

G1, G2 ` n1 4∗p n3. So suppose n3 is distinct from n2, then by Lemma 11.3.0.2

we know [n3/n2]G1, [n3/n2]G2 ` n1 4∗p n3.

Case.

G, n1 4p1 n2, G
′ ` n 4∗p n

refl

Trivial.

Case.

G, n1 4p1 n2, G
′ ` n4 4

∗
p n6 G ` n6 4

∗
p n5

G, n1 4p1 n2, G
′ ` n4 4

∗
p n5

trans

This case by applying the induction to each premise, and then reapplying the

rule.

Case.

G, n1 4p1 n2, G
′ ` n5 4

∗
p̄ n4

G, n1 4p1 n2, G
′ ` n4 4

∗
p n5

flip

234

This case holds by applying the induction hypothesis to the premise, and

then reapplying the rule.

Lemma 11.3.0.4. [Node Substitution for Typing] If G, n1 4p1 n2, G
′; Γ ` t : p2 A @

n3 and G,G′ ` n1 4∗p1 n4, then [n4/n2]G, [n4/n2]G′; [n4/n2]Γ ` t : p2 A @ [n4/n2]n3.

Proof. This is a proof by induction on the form of the assumed typing derivation.

Throughout each of the following cases we assume G,G′ ` n1 4∗p1 n4 holds.

Case.

G, n1 4p1 n2, G
′ ` n 4∗p n3

G, n1 4p1 n2, G
′; Γ1, y : p2 A @ n,Γ2 ` y : p2 A @ n3

ax

First, by node substitution for reachability (Lemma 11.3.0.3) we know

[n4/n2]G, [n4/n2]G′ ` [n4/n2]n 4∗p [n4/n2]n3. Thus, by applying the ax rule

we may derive [n4/n2]G, [n4/n2]G′; [n4/n2]Γ1, y : p2 A @ [n4/n2]n, [n4/n2]Γ2 `

y : p2 A @ [n4/n2]n3.

Case.

G, n1 4p1 n2, G
′; Γ ` triv : p2 〈p2〉@ n3

Unit

Trivial.

Case.

235

G, n1 4p1 n2; Γ ` t1 : p2 A1 @ n3 G, n1 4p1 n2; Γ ` t2 : p2 A2 @ n3

G, n1 4p1 n2; Γ ` (t1, t2) : p2 (A1 ∧p2 A2) @ n3

And

This case holds by applying the induction hypothesis to each premise, and

then reapplying the rule.

Case.

G, n1 4p1 n2; Γ ` t ′ : p2 Ad @ n3

G, n1 4p1 n2; Γ ` ind t ′ : p2 (A1 ∧p̄2 A2) @ n3

AndBar

This case holds by applying the induction hypothesis to the premise, and

then reapplying the rule.

Case.

n ′ 6∈ |G, n1 4p1 n2, G
′|, |Γ|

(G, n1 4p1 n2, G
′, n3 4p n ′); Γ, x : p2 A1 @ n ′ ` t ′ : p2 A2 @ n ′

G, n1 4p1 n2, G
′; Γ ` λx .t ′ : p2 (A1 →p2 A2) @ n3

Imp

First, if n ′ 6∈ |G, n1 4p1 n2, G
′|, |Γ|, then n ′ 6∈ |G,G′|, |Γ|. Furthermore, we

know that [n4/n2]n ′ 6∈ |[n4/n2]G, [n4/n2]G′|, |[n4/n2]Γ|, because we know n ′ is

distinct from n2 by assumption, and if n ′ is equal to n4, then n ′ 6∈ |G, n1 4p1

n2, G
′|, |Γ| implies that n1 must also be n4, because we know by assumption

that G,G′ ` n1 4∗p1 n4 which could only be derivide by reflexivity since

n ′ 6∈ |G,G′|, |Γ|, but we know by assumption that n ′ 6∈ |G, n1 4p1 n2, G
′|, |Γ|

which implies that n ′ must be distinct from n1, and hence a contradiction, thus

n ′ cannot be n4. Therefore, we know n ′ 6∈ |[n4/n2]G, [n4/n2]G′|, |[n4/n2]Γ|.

236

By the induction hypothesis we know

[n4/n2](G,G′, n3 4p n ′); [n4/n2]Γ, x : p2 A1 @[n4/n2]n ′ ` t ′ : p2 A2 @[n4/n2]n ′

which is equivalent to

([n4/n2]G, [n4/n2]G′, [n4/n2]n3 4p n ′); [n4/n2]Γ, x : p2 A1@n ′ ` t ′ : p2 A2@n ′.

Finally, this case follows by applying the Imp rule using

n ′ 6∈ |[n4/n2]G, [n4/n2]G′|, |[n4/n2]Γ| and the previous fact.

Case.

G, n1 4p1 n2, G
′ ` n3 4

∗
p̄2

n ′

G, n1 4p1 n2, G
′; Γ ` t1 : p̄2 A1 @ n ′

G, n1 4p1 n2, G
′; Γ ` t2 : p2 A2 @ n ′

G, n1 4p1 n2, G
′; Γ ` 〈t1, t2〉 : p2 (A1 →p̄2 A2) @ n3

ImpBar

We now by assumption that G,G′ ` n1 4∗p1 n4 holds. So by node sub-

stitution for reachability (Lemma 11.3.0.3) we know [n4/n2]G, [n4/n2]G′ `

[n4/n2]n3 4∗p̄2 [n4/n2]n ′. Now by the induction hypothesis we know

[n4/n2]G, [n4/n2]G′; [n4/n2]Γ ` t1 : p̄2 A1 @ [n4/n2]n ′ and

[n4/n2]G, [n4/n2]G′; [n4/n2]Γ ` t2 : p2 A2 @ [n4/n2]n ′. This case then follows

by applying the rule ImBar to the previous three facts.

Case.

G, n1 4p1 n2, G
′; Γ, y : p̄2 A @ n3 ` t1 : + C @ n

G, n1 4p1 n2, G
′; Γ, y : p̄2 A @ n3 ` t2 : −C @ n

G, n1 4p1 n2, G
′; Γ ` ν x .t1·t2 : p2 A @ n3

Cut

237

This case follows by applying the induction hypothesis to each premise, and

then reapplying the rule.

Lemma 11.3.0.5. [Substitution for Typing] If G; Γ ` t1 : p1 A @ n1 and G; Γ, x :

p1 A @ n1 ` t2 : p2 B @ n2, then G; Γ ` [t1/x]t2 : p2 B @ n2.

Proof. This proof holds by a straightforward induction on the second assumed typing

relation.

Case.

G ` n 4∗p n ′

G; Γ1, y : p C @ n,Γ2 ` y : p C @ n ′
ax

Trivial.

Case.

G; Γ′ ` triv : p 〈p〉@ n
Unit

Trivial.

Case.

G; Γ′ ` t ′1 : p A @ n G; Γ′ ` t ′2 : p B @ n

G; Γ′ ` (t ′1, t
′
2) : p (C1 ∧p C2) @ n

And

Suppose Γ′ ≡ Γ, x : p1 B @ n1. Then this case follows from applying the

induction hypothesis to each premise and then reapplying the rule.

238

Case.

G; Γ′ ` t : p Cd @ n

G; Γ′ ` ind t : p (C1 ∧p̄ C2) @ n
AndBar

Suppose Γ′ ≡ Γ, x : p1 B @ n1. Then this case follows from applying the

induction hypothesis to the premise and then reapplying the rule.

Case.

n ′ 6∈ |G|, |Γ|
(G, n 4p n ′); Γ′, x : p C1 @ n ′ ` t : p C2 @ n ′

G; Γ′ ` λx .t : p (C1 →p C2) @ n
Imp

Similarly to the previous case.

Case.

G ` n 4∗p̄ n ′

G; Γ′ ` t ′1 : p̄ C1 @ n ′ G; Γ′ ` t ′2 : p C2 @ n ′

G; Γ′ ` 〈t ′1, t ′2〉 : p (C1 →p̄ C2) @ n
ImpBar

Suppose Γ′ ≡ Γ, x : p1 B @ n1. Then this case follows from applying the

induction hypothesis to each premise and then reapplying the rule.

Case.

G; Γ′, y : p̄ C @ n ` t ′1 : + C ′ @ n ′

G; Γ′, y : p̄ C @ n ` t ′2 : −C ′ @ n ′

G; Γ′ ` ν x .t ′1·t ′2 : p C @ n
Cut

Similarly to the previous case.

239

Finally, we prove type preservation.

Lemma 11.3.0.6. [Type Preservation] If G; Γ ` t : p A @ n, and t t ′, then

G; Γ ` t ′ : p A @ n.

Proof. This is a proof by induction on the form of the assumed typing derivation.

We only consider non-trivial cases. All the other cases either follow directly from

assumptions or are similar to the cases we provide below.

Case.

G; Γ, x : p̄ A @ n ` t1 : + B @ n ′

G; Γ, x : p̄ A @ n ` t2 : −B @ n ′

G; Γ ` ν x .t1·t2 : p A @ n
Cut

The interesting cases are the ones where the assumed cut is a redex itself,

otherwise this case holds by the induction hypothesis. Thus, we case split on

the form of this redex.

Case. Suppose ν x .t1·t2 ≡ ν x .λy .t ′1·〈t ′2, t ′′2 〉, thus, t1 ≡ λy .t ′1 and t2 ≡ 〈t ′2, t ′′2 〉.

This then implies that B ≡ B1 →+ B2 for some B1 and B2. Then

t ≡ ν x .t1·t2 ≡ ν x .λy .t ′1·〈t ′2, t ′′2 〉 ν x .[t ′2/y]t ′1·t ′′2 ≡ t ′.

Now by inversion we know the following:

(1) G, (n ′ 4+ n ′′); Γ, x : p̄ A @ n, y : + B1 @ n ′′ ` t ′1 : + B2 @ n ′′

for some n ′′ 6∈ |G|, |Γ, x : p̄ A @ n|
(2) G; Γ, x : p̄ A @ n ` t ′2 : + B1 @ n ′′′

(3) G; Γ, x : p̄ A @ n ` t ′′2 : −B2 @ n ′′′

(4) G ` n ′ 4∗+ n ′′′

240

Γ, x : p A,Γ′ `c x : p A
ClassAx

Γ `c triv : p 〈p〉
ClassUnit

Γ `c t1 : p A Γ `c t2 : p B

Γ `c (t1, t2) : p (A ∧p B)
ClassAnd

Γ `c t : p Ad

Γ `c ind t : p (A1 ∧p̄ A2)
ClassAndBar

Γ, x : p A `c t : p B

Γ `c λx .t : p (A→p B)
ClassImp

Γ `c t1 : p̄ A Γ `c t2 : p B

Γ `c 〈t1, t2〉 : p (A→p̄ B)
ClassImpBar

Γ, x : p̄ A `c t1 : + B
Γ, x : p̄ A `c t2 : −B

Γ `c ν x .t1·t2 : p A
ClassCut

Figure 49. Classical typing of DTT terms

Using (1) and (4) we may apply node substitution for typing (Lemma 11.3.0.4)

to obtain (5) [n ′′′/n ′′]G; [n ′′′/n ′′]Γ, x : p̄ A @ n, y : + B1 @ n ′′′ ` t ′1 : + B2 @ n ′′′.

Finally, by applying substitution for typing using (2) and (5) we obtain

(6) [n ′′′/n ′′]G; [n ′′′/n ′′]Γ, x : p̄ A @ n ` [t ′2/y]t ′1 : + B2 @ n ′′′,

and since n ′′ is a fresh in G and Γ we know (6) is equivalent to

(7)G; Γ, x : p̄ A @ n ` [t ′2/y]t ′1 : + B2 @ n ′′′.

Finally, by applying the Cut rule using (7) and (3) we obtain

G; Γ ` ν x .[t ′2/y]t ′1·t ′′2 : p A @ n.

241

A more substantial property is strong normalization of reduction for typed

terms. To prove this result, we will prove a stronger property, namely strong normal-

ization for reduction of terms which are typable using the system of classical typing

rules in Figure 49 [40]. This is justified by the following easy result (proof omitted),

where pΓq just drops the world annotations from assumptions in Γ:

Theorem 11.3.0.7. If G; Γ ` t : p A @ n, then pΓq `c t : p A

Let SN be the set of terms which are strongly normalizing with respect to

the reduction relation. Let Var be the set of term variables, and let us use x and

y as metavariables for variables. We will prove strong normalization for classically

typed terms using a version of Krivine’s classical realizability [79]. We define three

interpretations of types in Figure 50. The definition is by mutual induction, and can

easily be seen to well-founded, as the definition of [[A]]+ invokes the definition of [[A]]−

with the same type, which in turn invokes the definition of [[A]]+c with the same type;

and the definition of [[A]]+c may invoke either of the other definitions at a strictly

smaller type. The reader familiar with such proofs will also recognize the debt owed

to Girard [61]. That is we can see that this style of proof is very similar to proofs by

the Tait-Girard reducibility methods – See Section 6.3.

Lemma 11.3.0.8. [Step interpretations] If t ∈ [[A]]+ and t t′, then t′ ∈ [[A]]+; and

similiarly if t ∈ [[A]]− or t ∈ [[A]]+c.

Proof. The proof is by a mutual well-founded induction. Assume t ∈ [[A]]+ and t t′.

We must show t′ ∈ [[A]]+. For this, it suffices to assume y ∈ Var and t′′ ∈ [[A]]−, and

242

t ∈ [[A]]+ ⇔ ∀x ∈ Var. ∀t′ ∈ [[A]]−. ν x .t ·t ′ ∈ SN
t ∈ [[A]]− ⇔ ∀x ∈ Var. ∀t′ ∈ [[A]]+c. ν x .t ′·t ∈ SN
t ∈ [[〈+〉]]+c ⇔ t ∈ Var ∨ t ≡ triv
t ∈ [[〈−〉]]+c ⇔ t ∈ Var
t ∈ [[A→+ B]]+c ⇔ t ∈ Var ∨ ∃x, t′.t ≡ λx. t′ ∧ ∀t′′ ∈ [[A]]+. [t′′/x]t′ ∈ [[B]]+

t ∈ [[A→− B]]+c ⇔ t ∈ Var ∨ ∃t1 ∈ [[A]]−, t2 ∈ [[B]]+. t ≡ 〈t1, t2〉
t ∈ [[A ∧+ B]]+c ⇔ t ∈ Var ∨ ∃t1 ∈ [[A]]+, t2 ∈ [[B]]+. t ≡ (t1, t2)
t ∈ [[A1 ∧− A2]]+c ⇔ t ∈ Var ∨ ∃d.∃t′ ∈ [[Ad]]

+. t ≡ ind t
′

Figure 50. Interpretations of types

show ν y .t ′·t ′′ ∈ SN. From the assumption that t ∈ [[A]]+, we have

ν y .t ·t ′′ ∈ SN

which indeed implies that

ν y .t ′·t ′′ ∈ SN

A similar argument applies if t ∈ [[A]]−.

For the last part of the lemma, assume t ∈ [[A]]+c with t t′, and show

t′ ∈ [[A]]+c. The only possible cases are the following, where t 6∈ Vars.

If A ≡ A1 →+ A2, then t is of the form λx.ta for some x and ta, where for all

tb ∈ [[A1]]+, we have [tb/x]ta ∈ [[A2]]+. Since t t′, t′ must be λx.t′a for some t′a with

ta t′a. It suffices now to assume an arbitrary tb ∈ [[A1]]+, and show [tb/x]t′a ∈ [[A2]]+.

But [tb/x]ta [tb/x]t′a follows from ta t′a, so by our IH, we have [tb/x]t′a ∈ [[A2]]+,

as required.

If A ≡ A1 →− A2, then t is of the form 〈t1, t2〉 for some t1 ∈ [[A1]]− and

t2 ∈ [[A2]]+; and t′ ≡ 〈t ′1, t ′2〉 where either t′1 ≡ t1 and t2 t′2 or else t1 t′1 and

243

t′2 ≡ t2. Either way, we have t′1 ∈ [[A1]]− and t′2 ∈ [[A2]]+ by our IH, so we have

〈t ′1, t ′2〉 ∈ [[A1 →− A2]]+c as required.

The other cases for A ≡ A1 ∧p A2 are similar to the previous one.

Lemma 11.3.0.9. [SN interpretations]

1. [[A]]+ ⊆ SN 3. [[A]]− ⊆ SN
2. Vars ⊆ [[A]]− 4. [[A]]+c ⊆ SN

Proof. For purposes of this proof and subsequent ones, define δ(t) to be the length of

the longest reduction sequence from t to a normal form, for t ∈ SN.

The proof of the lemma is by mutual well-founded induction on the pair (A, n),

where n is the number of the proposition in the statement of the lemma; the well-

founded ordering in question is the lexicographic combination of the structural order-

ing on types (for A) and the ordering 1 > 2 > 4 > 3 (for n).

For proposition (1): assume t ∈ [[A]]+, and show t ∈ SN. Let x be a variable.

By IH(2), x ∈ [[A]]−, so by the definition of [[A]]+, we have

ν x .t ·x ∈ SN

This implies t ∈ SN.

For proposition (2): assume x ∈ Vars, and show x ∈ [[A]]−. For the latter,

it suffices to assume arbitrary y ∈ Vars and t′ ∈ [[A]]+c, and show ν y .t ′ ·x ∈ SN.

We will prove this by inner induction on δ(t′), which is defined by IH(4). By the

definition of [[A]]+c for the various cases of A, we see that ν y .t ′·x cannot be a redex

itself, as t′ cannot be a cut. If t′ is a normal form we are done. If t t′′, then we have

t′′ ∈ [[A]]+c by Lemma 11.3.0.8, and we may apply the inner induction hypothesis.

244

For proposition (3): assume t ∈ [[A]]−, and show t ∈ SN. By the definition of

[[A]]− and the fact that Vars ⊆ [[A]]+c by definition of [[A]]+c, we have

ν y .y ·t ∈ SN

This implies t ∈ SN as required.

For proposition (4): assume t ∈ [[A]]+c, and consider the following cases. If

t ∈ Vars or A ≡ 〈+〉, then t is normal and the result is immediate. So suppose

A ≡ A1 →+ A2. Then t ≡ λx.t′ for some x and t′ where for all t′′ ∈ [[A1]]+, [t′′/x]t′ ∈

[[A2]]+. By IH(2), the variable x itself is in [[A1]]+, so we know that t′ ≡ [x/x]t′ ∈ [[A2]]+.

Then by IH(1) we have t′ ∈ SN, which implies λx.t′ ∈ SN. If A ≡ A1 →− A2, then

t ≡ 〈t1, t2〉 for some t1 ∈ [[A1]]− and t2 ∈ [[A2]]+. By IH(3) and IH(1), t1 ∈ SN and

t2 ∈ SN, which implies 〈t1, t2〉 ∈ SN. The cases for A ≡ A1 ∧p A2 are similar to this

one.

Definition 11.3.0.10.

[Interpretation of contexts] [[Γ]] is the set of substitutions σ such that for all x : p A ∈

Γ, σ(x) ∈ [[A]]p.

Lemma 11.3.0.11. [Canonical positive is positive] [[A]]+c ⊆ [[A]]+

Proof. Assume t ∈ [[A]]+c and show t ∈ [[A]]+. For the latter, assume arbitrary

x ∈ Vars and t′ ∈ [[A]]−, and show ν x .t·t ′ ∈ SN. This follows immediately from the

assumption that t′ ∈ [[A]]−.

Finally, we have everything we need to conclude strong normalization of DTT.

245

Theorem 11.3.0.12. [Soundness] If Γ `c t : p A then for all σ ∈ [[Γ]], σt ∈ [[A]]p.

Proof. The proof is by induction on the derivation of Γ `c t : p A. We consider the

two possible polarities for the conclusion of the typing judgment separately.

Case.

Γ, x : p A,Γ′ `c x : p A
ClassAx

Since σ ∈ [[Γ, x : p A,Γ′]], σ(x) ∈ [[A]]p as required.

Case.

Γ `c triv : + 〈+〉
ClassUnit

We have triv ∈ [[〈+〉]]+c by definition.

Case.

Γ `c triv : −〈−〉
ClassUnit

To prove triv ∈ [[〈−〉]]−, it suffices to assume arbitrary y ∈ Vars and t ∈

[[〈−〉]]+c, and show ν y .t ·triv ∈ SN. By definition of [[〈−〉]]+c, t ∈ Vars, and

then ν y .t ·triv is in normal form.

Case.

Γ `c t1 : + A Γ `c t2 : + B

Γ `c (t1, t2) : + A ∧+ B
ClassAnd

By Lemma 11.3.0.11, it suffices to show (σt1, σt2) ∈ [[A∧+ B]]+c. This follows

directly from the definition of [[A ∧+ B]]+c, since the IH gives us σt1 ∈ [[A]]+

and σt2 ∈ [[B]]+.

246

Case.

Γ `c t1 : −A1 Γ `c t2 : −A2

Γ `c (t1, t2) : −A1 ∧− A2

ClassAnd

It suffices to assume arbitrary y ∈ Vars and t′ ∈ [[A1 ∧− A2]]+c, and show

ν y .t ′ · (σ t1, σ t2) ∈ SN. If t′ ∈ Vars, then this follows by Lemma 11.3.0.9

from the facts that σt1 ∈ [[A1]]+ and σt2 ∈ [[A2]]+, which we have by the IH.

So suppose t′ is of the form ind t ′′ for some d and some t′′ ∈ [[Ad]]
+. By the

definition of SN, it suffices to show that all one-step successors ta of the term

in question are SN. The proof of this is by inner induction on δ(t′′)+δ(σt1)+

δ(σt2), which exists by Lemma 11.3.0.9, using also Lemma 11.3.0.8. Suppose

that we step to ta by stepping t′′, σt1, or σt2. Then the result holds by the

inner IH. So consider the step

ν y .ind t ′′·(σ t1, σ t2) ν y .t ′′·σ td

We then have ν y .t ′′ ·σ td ∈ SN from the facts that t′′ ∈ [[Ad]]
+ and σtd ∈

[[Ad]]
−, by the definition of [[Ad]]

+.

Case.

Γ `c t : + Ad

Γ `c ind t : + A1 ∧− A2

ClassAndBar

By Lemma 11.3.0.11, it suffices to prove ind σ t ∈ [[A1 ∧− A2]]+, but by the

definition of [[A1 ∧− A2]]+, this follows directly from σt ∈ [[Ad]]
+, which we

have by the IH.

Case.

247

Γ `c t : −Ad

Γ `c ind t : −A1 ∧+ A2

ClassAndBar

To prove ind σ t ∈ [[A1 ∧+ A2]]−, it suffices to assume arbitrary y ∈ Vars and

t′ ∈ [[A1 ∧+ A2]]+c, and show ν y .t ′ · ind σ t ∈ SN. If t′ ∈ Vars, then this

follows from the fact that σt ∈ SN, which we have by Lemma 11.3.0.9 from

σt ∈ [[Ad]]
− (which the IH gives us). So suppose t′ is of the form (s1, s2)

for some s1 ∈ [[A1]]+ and s2 ∈ [[A2]]+. It suffices to prove that all one-step

successors of the term in question are in SN, as we did in a previous case

above. Lemma 11.3.0.9 lets us proceed by inner induction on δ(σt) + δ(s1) +

δ(s2), using also Lemma 11.3.0.8. If we step σt, s1 or s2, then the result holds

by inner IH. Otherwise, we have the step

ν y .(s1, s2)·ind σ t ν y .sd ·σ t

And this successor is in SN by the facts that sd ∈ [[Ad]]
+ and σt ∈ [[Ad]]

−,

from the definition of [[Ad]]
+.

Case.

Γ, x : + A `c t : + B

Γ `c λx .t : + A→+ B
ClassImp

By Lemma 11.3.0.11, it suffices to assume arbitrary y ∈ Vars and t′ ∈ [[A]]+,

and prove [t′/x](σt) ∈ [[B]]+. But this follows immediately from the IH, since

[t′/x](σt) ≡ (σ[x 7→ t′])t and σ[x 7→ t] ∈ [[Γ, x : + A]].

Case.

Γ, x : −A `c t : −B

Γ `c λx .t : −A→− B
ClassImp

248

It suffices to assume arbitrary y ∈ Vars and t′ ∈ [[A →− B]]+c, and show

ν y .t ′·λx .σ t ∈ SN. Let us first observe that σ t ∈ SN, because by the IH, for

all σ′ ∈ [[Γ, x : −A]], we have σ′t ∈ [[B]]−, and [[B]]− ⊆ SN by Lemma 11.3.0.9.

We may instantiate this with σ[x 7→ x], since by Lemma 11.3.0.9, x ∈ [[A]]−.

Since σ t ∈ SN, we also have λx .σ t ∈ SN. Now let us consider cases for

the assumption t′ ∈ [[A →− B]]+c. If t′ ∈ Vars then we directly have ν y .t ′·
λx .σ t ∈ SN from λx .σ t ∈ SN. So assume t′ ≡ 〈t1, t2〉 for some t1 ∈ [[A]]−

and t2 ∈ [[B]]+. By Lemma 11.3.0.9 again, we may reason by inner induction

on δ(t1)+δ(t2)+δ(σt) to show that all one-step successors of ν y .〈t1, t2〉·λx .σ t

are in SN, using also Lemma 11.3.0.8. If t1, t2, or σt steps, then the result

follows by the inner IH. So suppose we have the step

ν y .〈t1, t2〉·λx .σ t ν y .t2· [t1/x](σ t)

Since t1 ∈ [[A]]−, the substitution σ[x 7→ t1] is in [[Γ, x : −A]]. So we may

apply the IH to obtain [t1/x](σt) ≡ σ[x 7→ t1] ∈ [[B]]−. Then since t2 ∈ [[B]]+,

we have ν y .t2· [t1/x](σ t) by definition of [[B]]+.

Case.

Γ `c t1 : −A Γ `c t2 : + B

Γ `c 〈t1, t2〉 : + (A→− B)
ClassImpBar

By Lemma 11.3.0.11, as in previous cases of positive typing, it suffices to

prove 〈σ t1, σ t2〉 ∈ [[A →− B]]+c. By the definition of [[A →− B]]+c, this

follows directly from σt1 ∈ [[A]]− and σt2 ∈ [[B]]+, which we have by the IH.

Case.

249

Γ `c t1 : + A Γ `c t2 : −B

Γ `c 〈t1, t2〉 : − (A→+ B)
ClassImpBar

It suffices to assume arbitrary y ∈ Vars and t′ ∈ [[A →+ B]]+c, and show

ν y .t ′·〈σ t1, σ t2〉 ∈ SN. By the IH, we have σt1 ∈ [[A]]+ and σt2 ∈ [[B]]−, and

hence σt1 ∈ SN and σt2 ∈ SN by Lemma 11.3.0.9. If t′ ∈ Vars, then these

facts are sufficient to show the term in question is in SN. So suppose t′ ≡

λx.t3, for some x ∈ Vars and t′′ such that for all t4 ∈ [[A]]+, [t4/x]t3 ∈ [[B]]+.

By similar reasoning as in a previous case, we have t3 ∈ SN. So we may

proceed by inner induction on δ(t1) + δ(t2) + δ(t3) to show that all one-step

successors of ν y .λx .t3·〈σ t1, σ t2〉 are in SN, using also Lemma 11.3.0.8. If

it is t3, σt1, or σt2 which steps, then the result follows by the inner IH. So

consider this step:

ν y .λx .t3·〈σ t1, σ t2〉 ν y .[σ t1/x]t3·σ t2

Since we have that σt1 ∈ [[A]]+, the assumption about substitution instances

of t3 gives us that [σt1/x]t3 ∈ [[B]]+, which is then sufficient to conclude

ν y .[σ t1/x]t3·σ t2 ∈ SN by the definition of [[B]]+.

Case.

Γ, x : −A `c t1 : + B Γ, x : −A `c t2 : −B

Γ `c ν x .t1·t2 : + A
ClassCut

It suffices to assume arbitrary y ∈ Vars and t′ ∈ [[A]]−, and show ν y .(ν x .σ t1·
σ t2)·t ′ ∈ SN. By the IH and part 2 of Lemma 11.3.0.9, we know that σt1 ∈

[[B]]+ and σt2 ∈ [[B]]−. By Lemma 11.3.0.9 again, we have t′ ∈ SN, σt1 ∈ SN,

250

and σt2 ∈ SN. So we may reason by induction on δ(t′) + δ(σt1) + δ(σt2) to

show that all one-step successors of ν y .(ν x .σ t1·σ t2)·t ′ are in SN, using also

Lemma 11.3.0.8. If it is t′, σt1, or σt2 which steps, then the result follows by

the inner IH. The only possible other reduction is by the RBetaL reduction

rule (Figure 47). And then, since t′ ∈ [[A]]−, we may apply the IH to conclude

that [t′/x](σt1) ∈ [[B]]+ and [t′/x](σt2) ∈ [[B]]−. By the definition of ∈ [[B]]+,

this suffices to prove ν y .[t ′/x]σ t1· [t ′/x]σ t2 ∈ SN, as required.

Case.

Γ, x : −A `c t1 : + B Γ, x : −A `c t2 : −B

Γ `c ν x .t1·t2 : −A
ClassCut

It suffices to consider arbitrary y ∈ Vars and t′ ∈ [[A]]+c, and show ν y .t ′ ·
(ν x .σ t1 ·σ t2) ∈ SN. By the IH and part 2 of Lemma 11.3.0.9, we have

σt1 ∈ [[B]]+ and σt2 ∈ [[B]]−, which implies σt1 ∈ SN and σt2 ∈ SN by

Lemma 11.3.0.9 again. We proceed by inner induction on δ(t′) + δ(σt1) +

δ(σt2), using Lemma 11.3.0.8, to show that all one-step successors of ν y .t ′·
(ν x .σ t1·σ t2) are in SN. If it is t′, σt1, or σt2 which steps, then the result holds

by inner IH. The only other reduction possible is by RBetaR, since t′ cannot be

a cut term by the definition of [[A]]+c. In this case, the IH gives us [t′/x]σt1 ∈

[[B]]+ and [t′/x]σt2 ∈ [[B]]−, and we then have ν y .[t ′/x]σ t1· [t ′/x]σ t2 ∈ SN

by the definition of [[B]]+.

Corollary 11.3.0.13. [Strong Normalization] If G; Γ ` t : p A @ n, then t ∈ SN.

251

Proof. This follows easily by putting together Theorems 11.3.0.7 and 11.3.0.12, with

Lemma 11.3.0.9.

Corollary 11.3.0.14. [Cut Elimination] If G; Γ ` t : p A @ n, then there is normal

t′ with t ∗ t′ and t′ containing only cut terms of the form ν x .y·t or ν x .t·y, for y

a variable.

Using the previous results we can see that the canonicity restrictions placed

on the reduction relation enforces confluence of the reduction relation.

Lemma 11.3.0.15. [Local Confluence] The reduction relation of Figure 47 is locally

confluent.

Proof. We may view the reduction rules as higher-order pattern rewrite rules. It is

easy to confirm that all critical pairs (e.g., between RBetaR and the rules RImp,

RImpBar, RAnd1, RAndBar1, RAnd2, and RAndBar2) are joinable. Local conflu-

ence then follows by the higher-order critical pair lemma [95].

Theorem 11.3.0.16. [Confluence for Typable Terms] The reduction relation re-

stricted to terms typable in DTT is confluent.

Proof. Suppose G; Γ ` t : p A @ n for some G, Γ, p, and A. By Lemma 11.3.0.6,

any reductions in the unrestricted reduction relation from t are also in the reduction

relation restricted to typable terms. The result now follows from Newman’s Lemma,

using Lemma 11.3.0.15 and Theorem 11.3.0.13.

252

PART D

NORMALIZATION BY HEREDITARY SUBSTITUTION

253

CHAPTER 12

STRATIFIED SYSTEM F AND BEYOND

One motivation for the work in this thesis is that programming languages must

contain the means of verifying the software written in them. This verification would

catch major bugs during development as opposed to after the software is released to

the public. For example, the bug found in the breaking system of the 2010 Prius

would have never been released, and thus no accidents would have occurred. A

programming language that contains the ability to verify programs would have to

contain some notion of a logic, and this logic must be trusted. That is, the proofs

written in this logic must be true; this corresponds to logical consistency.

In Section 6.1 we introduce the hereditay substitution proof technique for

showing normalization and metioned that has one caveat, it is not known which type

theories it can be applied to – see Section 6.1 for a list of type theories that are

known to be proven normalizing using hereditary substitution, and a list of some

that are not. The contribution of each of the following chapters is to widen the set of

type theories hereditay substitution can be applied to. We first give several proofs of

normalization using hereditary substitution for several extensions of stratified system

F (SSF), and then give the first proof of normalization by hereditary substitution

for a classical type theory called the λ∆-calculus. Throughout all of the following

chapters we assume the reader is familiar with hereditary substitution. If the reader

is not, then they should first read Section 6.1.

254

12.1 Stratified System F

In [50] Harley Eades and Aaron Stump show that Stratified System F (SSF)

is normalizing using a proof method which uses the hereditary substitution function

implicitly. We find it apparent that the hereditary substitution technique we have

introduced in Section 6.1 is easier to understand, use, and is more informative –

with respect to the hereditary substitution function and its interaction with the type

theory – than the implicit version of the proof method. So in this section we re-

prove normalization of SSF using the hereditary function explicitly. This will set the

stage for the later chapters which extend SSF with various features and then reprove

normalization using hereditary substitution. For a brief introduction to SSF and its

history see Section 1.2.

Stratified System F, consists of types which are stratified into levels (or ranks)

based on type-quantification. The types that belong to level zero have no type-

quantification, the types at level one only quantify over types of level zero, and the

types at level n quantify over the types of level n−1. Stratifying System F into levels

prevents impredicativity. That is a type ∀X.T ′ is no longer allowed quantify over

itself. This restriction is similar to Russell’s simple theory of types.

First, we briefly reintroduce SSF for the readers convenience. The syntax for

Stratified System F can be found in the next definition followed by the definition of

the reduction rules stated as rewrite rules where we omit the congruence rules.

Definition 12.1.0.1.

The syntax for terms, types, and kinds:

255

K := ∗0 | ∗1 | . . .
T := X | T → T | ∀X : K.T
t := x | λx : T.t | t t | ΛX : K.t | t[T]

Definition 12.1.0.2.

Full β-reduction for SSF:

(ΛX : ∗p.t)[T] [T/X]t
(λx : T.t)t′ [t′/x]t

Both the kinding and typing relations depend on well-formed contexts which is defined

next.

Definition 12.1.0.3.

Context well-formedness rules:

· Ok
Γ Ok

Γ, X : ∗p Ok
Γ ` T : ∗p Γ Ok

Γ, x : T Ok

As stated before we use kinds to denote the level of a type. The following defines

kinding relation:

Definition 12.1.0.4.

The kind assignment rules for SSF are defined as follows:

Γ ` T1 : ∗p Γ ` T2 : ∗q
Γ ` T1 → T2 : ∗max(p,q)

Γ, X : ∗q ` T : ∗p
Γ ` ∀X : ∗q.T : ∗max(p,q)+1

Γ(X) = ∗p p ≤ q Γ Ok

Γ ` X : ∗q

These kind assignement rules are slightly different then the level assignment rules

defined by Leivant. The following rule:

Γ, X : ∗q ` T : ∗p
Γ ` ∀X : ∗q.T : ∗max(p,q)+1

256

was orignially defined to be the following by Leivant:

Γ, X : ∗q ` T : ∗p
Γ ` ∀X : ∗q.T : ∗max(p+1,q)

We conjecture that this modification does not hinder the expressive power of the type

theory, meaning, any typeable term of Leivant’s system is typeable in ours, but at

potentially higher level. However, we do not prove this here. The following lemma

shows that all kindable types are kindable with respect to a well-formed context.

Lemma 12.1.0.5. If Γ ` T : ∗p then Γ Ok.

Proof. This is a proof by structural induction on the kinding derivation of Γ ` T : ∗p.

Case.

Γ(X) = ∗p p ≤ q Γ Ok

Γ ` X : ∗q

By inversion of the kind-checking rule Γ Ok.

Case.

Γ ` T1 : ∗p Γ ` T2 : ∗q
Γ ` T1 → T2 : ∗max(p,q)

By the induction hypothesis, Γ ` T1 : ∗p and Γ ` T2 : ∗q both imply Γ Ok.

Since the arrow-type kind-checking rule does not modify Γ in anyway Γ will

remain Ok.

257

Case.

Γ, X : ∗q ` T : ∗p
Γ ` ∀X : ∗q.T : ∗max(p,q)+1

By the induction hypothesis Γ, X : ∗p Ok, and by inversion of the type-

variable well-formed contexts rule Γ Ok.

The previous lemma ensures that if a type is kindable then we could not have used a

“bogus” context where we assume something we are not allowed to assume. Now we

define the typing relation:

Definition 12.1.0.6.

Type assignment rules for SSF:

Γ(x) = T Γ Ok

Γ ` x : T

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

Γ, X : ∗p ` t : T

Γ ` ΛX : ∗p.t : ∀X : ∗p.T
Γ ` t : ∀X : ∗l.T1 Γ ` T2 : ∗l

Γ ` t[T2] : [T2/X]T1

The type assignment rules depend on the kinding relation defined above. Note that

the level of the type T and the level of the type variable X in the type application

rule must be the same.

12.1.1 Basic Syntactic Lemmas

We now state several results about the kinding relation. All of these are just

basic results needed by the proofs of the key results later. The reader may wish

to just quickly read through them. We simply list them with their proofs. Briefly,

258

Lemma 12.1.1.8 is used in the proof of Substitution for Typing (Lemma 12.1.5.27),

Lemma 12.1.1.9 is used in the main substitution lemma (Lemma 12.1.5.25), and

Lemma 12.1.1.10 is used in the proof of Context Weakening for the Interpretation of

Types (Lemma 12.1.5.26).

Lemma 12.1.1.7. [Level Weakening for Kinding] If Γ ` T : ∗r and r < s then

Γ ` T : ∗s.

Proof. We show level weakening for kinding by structural induction on the kinding

derivation of T : ∗r.

Case.

Γ(X) = ∗p p ≤ q Γ Ok

Γ ` X : ∗q

By assumption we know q < s, hence by reapplying the rule and transitivity

we obtain Γ ` X : ∗s.

Case.

Γ ` T1 : ∗p Γ ` T2 : ∗q
Γ ` T1 → T2 : ∗max(p,q)

By the induction hypothesis Γ ` T1 : ∗s and Γ ` T2 : ∗s for some arbitrary

s > max(p, q). Therefore, by reapplying the rule we obtain Γ ` T1 → T2 : ∗s.

Case.

259

Γ, X : ∗q ` T ′ : ∗p
Γ ` ∀X : ∗q.T ′ : ∗max(p,q)+1

We know by assumption thatmax(p, q)+1 < s which implies thatmax(p, q) <

s−1. Now by the induction hypothesis Γ, X : ∗q ` T ′ : ∗s−1. Lastly, we reap-

ply the rule and obtain Γ ` ∀X : ∗q.T ′ : ∗s.

Lemma 12.1.1.8. [Substitution for Kinding, Context-Ok]

Suppose Γ ` T ′ : ∗p. If Γ, X : ∗p,Γ′ ` T : ∗q with a derivation of depth d, then

Γ, [T ′/X]Γ′ ` [T ′/X]T : ∗q with a derivation of depth d. Also, if Γ, X : ∗p,Γ′ Ok

with a derivation of depth d, then Γ, [T ′/X]Γ′ Ok with a derivation of depth d.

Proof. This is a prove by induction on d. We prove the first implication first, and then

the second, doing a case analysis for each implication on the form of the derivation

whose depth is being considered.

Case.

(Γ, X : ∗p,Γ′)(Y) = ∗r r ≤ s Γ, X : ∗p,Γ′ Ok
Γ, X : ∗p,Γ′ ` Y : ∗s

By assumption Γ ` T ′ : ∗p. We must consider whether or not X ≡ Y . If

X ≡ Y then [T ′/X]Y ≡ T ′, r = p, and q = s; this conclusion is equivalent

to Γ, [T ′/X]Γ′ ` T ′ : ∗q and by the induction hypothesis Γ, [T ′/X]Γ′ Ok. If

X 6≡ Y then [T ′/X]Y ≡ Y and by the induction hypothesis Γ, [T ′/X]Γ′ Ok,

260

hence, Γ, [T ′/X]Γ′ ` Y : ∗q.

Case.

Γ, X : ∗p,Γ′ ` T1 : ∗r Γ, X : ∗p,Γ′ ` T2 : ∗s
Γ, X : ∗p,Γ′ ` T1 → T2 : ∗max(r,s)

Here q = max(r, s) and by the induction hypothesis Γ, [T ′/X]Γ′ ` [T ′/X]T1 :

∗r and Γ, [T ′/X]Γ′ ` [T ′/X]T2 : ∗s. We can now reapply the rule to get

Γ, [T ′/X]Γ′ ` [T ′/X](T1 → T2) : ∗q.

Case.

Γ, X : ∗q,Γ′, Y : ∗r ` T : ∗s
Γ, X : ∗p,Γ′ ` ∀Y : ∗r.T : ∗max(r,s)+1

Here q = max(r, s) + 1 and by the induction hypothesis Γ, [T ′/X]Γ′, Y : ∗r `

[T ′/X]T : ∗s. We can reapply this rule to get Γ, [T ′/X]Γ′ ` [T ′/X]∀Y : ∗r.T :

∗q.

We now show the second implication. The case were d = 0 cannot arise, since it

requires the context to be empty. Suppose d = n + 1. We do a case analysis on

the last rule applied in the derivation of Γ, X : ∗p,Γ′.

Case. Suppose Γ′ = Γ′′, Y : ∗q.

Γ, X : ∗p,Γ′′ Ok
Γ, X : ∗p,Γ′′, Y : ∗q Ok

261

By the induction hypothesis, Γ, [T ′/X]Γ′′ Ok. Now, by reapplying the rule

above Γ, [T ′/X]Γ′′, Y : ∗q Ok, hence Γ, [T ′/X]Γ′ Ok, since X 6≡ Y .

Case. Suppose Γ′ = Γ′′, y : T .

Γ, X : ∗p,Γ′′ ` T : ∗q Γ, X : ∗p,Γ′′ Ok
Γ, X : ∗p,Γ′′, y : T Ok

By the induction hypothesis, Γ′, [T ′/X]Γ′′ ` [T ′/X]T : ∗q and Γ′, [T ′/X]Γ′′ Ok.

Thus, by reapplying the rule above Γ, [T ′/X]Γ′′, x : [T ′/X]T Ok, therefore,

Γ, [T ′/X]Γ′ Ok.

Lemma 12.1.1.9. [Context Strengthening for Kinding, Context-Ok]

If Γ, x : T ′,Γ′ ` T : ∗p with a derivation of depth d, then Γ,Γ′ ` T : ∗p with a

derivation of depth d. Also, if Γ, x : T,Γ′ Ok with a derivation of depth d, then

Γ,Γ′ Ok with a derivation of depth d.

Proof. This is a prove by induction on d. We prove the first implication first, and then

the second, doing a case analysis for each implication on the form of the derivation

whose depth is being considered.

Case.

(Γ, x : T ′,Γ′)(X) = ∗p p ≤ q Γ, x : T ′,Γ′ Ok

Γ, x : T ′,Γ′ ` X : ∗q

262

By the second implication of the induction hypothesis, Γ,Γ′ Ok. Also,

(Γ,Γ′)(X) = ∗p. Now by reapplying the rule above, Γ,Γ′ ` X : ∗q.

Case.

Γ, x : T ′,Γ′ ` T1 : ∗p Γ, x : T ′,Γ′ ` T2 : ∗q
Γ, x : T ′,Γ′ ` T1 → T2 : ∗max(p,q)

By the first implication of the induction hypothesis, Γ,Γ′ ` T1 : ∗p and Γ,Γ′ `

T2 : ∗q. By reapplying the rule above we get, Γ,Γ′ ` T1 → T2 : ∗max(p,q).

Case.

Γ, x : T,Γ′, Y : ∗q ` T : ∗p
Γ, x : T ′,Γ′ ` ∀Y : ∗q.T : ∗max(p,q)+1

By the first implication of the induction hypothesis, Γ,Γ′, Y : ∗q ` T : ∗p. By

reapplying the rule we get, Γ,Γ′ ` ∀Y : ∗q.T : ∗max(p,q)+1.

We now prove the second implication. The case where d = 0 cannot arise, since it

requires the context to be empty. Suppose d = n + 1. We do a case analysis on

the last rule applied in the derivation of Γ, x : T,Γ′ Ok.

Case. Suppose Γ′ = Γ′′, Y : ∗l. Then the last rule of the derivation of Γ, x : T,Γ′ Ok

is as follows.

Γ, x : T,Γ′′ Ok

Γ, x : T,Γ′′, Y : ∗l Ok

By the second implication of the induction hypothesis, Γ,Γ′′ Ok. Now reap-

plying the rule we get, Γ,Γ′′, Y : ∗l Ok, which is equivalent to Γ,Γ′ Ok.

263

Case. Suppose Γ′ = Γ′′, y : T ′. Then the last rule of the derivation of Γ, x : T,Γ′ Ok

is as follows.

Γ, x : T,Γ′′ ` T ′ : ∗p Γ, x : T,Γ′′ Ok

Γ, x : T,Γ′′, y : T ′ Ok

By the first implication of the induction hypothesis, Γ,Γ′′ ` T ′ : ∗p and by the

second, Γ,Γ′′ Ok. Therefore, by reapplying the rule above, Γ,Γ′′, y : T ′ Ok,

which is equivalent to Γ,Γ′ Ok.

Lemma 12.1.1.10. [Context Weakening for Kinding] If Γ,Γ′′,Γ′ Ok, and Γ,Γ′ `

T : ∗p, then Γ,Γ′′,Γ′ ` T : ∗p.

Proof. This is a proof by structural induction on the kinding derivation of Γ,Γ′ ` T :

∗p.

Case.

(Γ,Γ′)(X) = ∗p p ≤ q Γ,Γ′ Ok

Γ,Γ′ ` X : ∗q

If (Γ,Γ′)(X) = ∗p then (Γ,Γ′′,Γ′)(X) = ∗p, hence, by reapplying the type-

variable kind-checking rule, Γ,Γ′′,Γ′ ` T : ∗p.

Case.

Γ,Γ′ ` T1 : ∗p Γ,Γ′ ` T2 : ∗q
Γ,Γ′ ` T1 → T2 : ∗max(p,q)

264

By the induction hypothesis Γ,Γ′′,Γ′ ` T1 : ∗p and Γ,Γ′′,Γ′ ` T2 : ∗q,

hence, by reapplying the arrow-type kind-checking rule Γ,Γ′′,Γ′′ ` T1 →

T2 : ∗max(p,q).

Case.

Γ,Γ′, X : ∗q ` T ′ : ∗p
Γ,Γ′ ` ∀X : ∗q.T ′ : ∗max(p,q)+1

By the induction hypothesis Γ,Γ′′,Γ′, X : ∗p ` T : ∗q, hence, by reapplying

the forall-type kind-checking rule Γ,Γ′′,Γ′ ` ∀X : ∗p.T : ∗max(p,q)+1.

Lemma 12.1.1.11. [Regularity] If Γ ` t : T then Γ ` T : ∗p for some p.

Proof. This proof is by structural induction on the derivation of Γ ` t : T .

Case.

Γ(x) = T Γ Ok

Γ ` x : T

By the definition of well-formedness contexts Γ ` T : ∗p for some p.

Case.

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

265

By the induction hypothesis Γ ` T1 : ∗p, Γ, x : T1 ` T2 : ∗q and by

Lemma 12.1.1.9, Γ ` T2 : ∗q. By applying the arrow-type kind-checking

rule we get Γ ` T1 → T2 : ∗max(p,q).

Case.

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

By the induction hypothesis Γ ` T1 → T2 : ∗r and Γ ` T1 : ∗p. By inversion

of the arrow-type kind-checking rule r = max(p, q), for some q, which implies

Γ ` T2 : ∗q.

Case.

Γ, X : ∗p ` t : T

Γ ` ΛX : ∗p.t : ∀X : ∗q.T

By the induction hypothesis Γ, X : ∗q ` T : ∗p. By applying the forall-type

kind-checking rule Γ ` ∀X.T : ∗max(p,q)+1.

Case.

Γ ` t : ∀X : ∗p.T1 Γ ` T2 : ∗p
Γ ` t[T2] : [T2/X]T1

By assumption Γ ` T2 : ∗r. By the induction hypothesis Γ ` ∀X : ∗p.T1 : ∗s

and by inversion of the forall-type kind-checking rule r = max(p, q) + 1,

for some q, which implies Γ, X : ∗p ` T1 : ∗q. Now, by Lemma 12.1.1.8,

Γ ` [T2/X]T1 : ∗q.

266

We have stated all the basic lemmas we will need. We now proceed to the proof

of normalization for SSF using hereditary substitution.

12.1.2 Ordering on Types

The following definition defines a well-founded ordering on the types of SSF.

It consists of essentially the strict-subexpression ordering with an additional case for

universal types. For the case of universal types the ordering states that a they are

always larger than their instantiation. Now this seems odd, because syntactically the

level of the instantiation could have increased, but it turns out that the level of the

type actually decreases. That is, we know the level of the universal type is larger

than the level of the instantiation. This is exactly the point of stratification!

Definition 12.1.2.12.

The ordering >Γ is defined as the least relation satisfying the universal closures

of the following formulas:

T1 → T2 >Γ T1

T1 → T2 >Γ T2

∀X : ∗l.T >Γ [T ′/X]T where Γ ` T ′ : ∗l.

We need transitivity in a number of places so we state that next.

Lemma 12.1.2.13. [Transitivity of >Γ] Let T , T ′, and T ′′ be kindable types.

If T >Γ T
′ and T ′ >Γ T

′′ then T >Γ T
′′.

Proof. Suppose T >Γ T ′ and T ′ >Γ T ′′. If T ≡ T1 → T2 then, T ′ must be a

subexpression of T . Now if T ′ ≡ T ′1 → T ′2 then, T ′′ must be a subexpression of T ′,

which implies that T ′′ is a subexpression of T . Thus, T >Γ T
′′. If T ′ ≡ ∀X : ∗l.T ′1

267

then, there exists a type T ′2 where, Γ ` T ′2 : ∗l, such that, T ′′ ≡ [T ′2/X]T ′1. The level of

T ′ is max(l, l′)+1, where l′ is the level of T ′1, the level of T ′′ is max(l, l′), and the level

of T is max(max(l, l′) + 1, p), where p is the level of the type, which is, the second

subexpression of T . Clearly, max(max(l, l′) + 1, p) ≥ max(l, l′), thus, T >Γ T
′′.

If T ≡ ∀X : ∗l.T1, then T ′ ≡ [T2/X]T1 for some type T2, where Γ ` T2 : ∗l. If

[T2/X]T1 ≡ T ′1 → T ′2 then the level of T ′ is max(p, q), where p is the level of T ′1 and

q is the level of T ′2. Now T ′′ must be a subexpression of T ′, hence the level of T ′′ is

either p or q. Now, since the level of T is greater than the level of T ′ and we know,

max(p, q) is greater than both p and q then T >Γ T
′′. If [T2/X]T1 ≡ ∀Y : ∗l′ .T ′1, then

T ′′ ≡ [T ′2/X]T ′1. Now if p is the level of T1, then the level of T is max(l, p)+1 and the

level of T ′ must be max(l, p) since we know the level of T ′ is greater than the level

of T ′′ then clearly, the level of T is greater than the level of T ′′. Thus, T >Γ T
′′.

To prove that the ordering on types (>Γ) is well founded we need a function which

computes the depth of a type. We will use this in a lexicographic ordering in the

proof of Lemma 12.1.2.15 and is vital to showing that our ordering on types is well

founded.

Definition 12.1.2.14.

The depth of a type T is defined as follows:

depth(X) = 1
depth(T → T ′) = depth(T) + depth(T ′)
depth(∀X : ∗l.T) = depth(T) + 1

We define the following metric (l, d) in lexicographic combination, where l is

the level of a type T and d is the depth of T . The following lemma shows that if

268

T >Γ T
′ then (l, d) > (l′, d′). We will use this lemma to show well-foundedness of the

ordering on types >Γ.

Lemma 12.1.2.15. [Well-Founded Measure] If T >Γ T
′ then (l, d) > (l′, d′), where

Γ ` T : ∗l, depth(T) = d, Γ ` T : ∗l′, and depth(T ′) = d′.

Proof. Assume T >Γ T ′ for some types T and T ′. We case split on the form of T .

Clearly, T is not a type variable.

Case. Suppose T ≡ T1 → T2. Then T ′ must be of the form T1 or T2. In both cases

we have two cases to consider; either T and T ′ have the same level or they do

not. Consider the first form and suppose they have the same level. Then it is

clear that depth(T) > depth(T ′). Now consider the latter form and suppose

T and T ′ have the same level. Then, clearly, depth(T) > depth(T ′). In either

form if the level of T and T ′ are different, then the level of T is larger than

the level of T ′. In all cases (l, d) > (l′, d′).

Case. Suppose T ≡ ∀X : ∗l.T1. Then T ′ must be of the form [T2/X]T1 for some

type Γ ` T2 : ∗l. It is obvious that the level of T is always larger than the

level of T ′. Hence, (l, d) > (l′, d′).

We now have the desired results to prove that the ordering >Γ is well-founded.

Theorem 12.1.2.16. [Well-Founded Ordering] The ordering >Γ is well-founded on

types T such that Γ ` T : ∗l for some l.

269

Proof. If there exists a infinite decreasing sequence using our ordering on types, then

there is an infinite decreasing sequence using our measure by Lemma 12.1.2.15, but

that is impossible.

12.1.3 Hereditary Substitution

The definition of the hereditary substitution function is a basic extension of

hereditary substitution function for STLC. Before defining the hereditary substitution

function we first define the construct type function for SSF. This function is now

defined for three different types of input: term variables, term applications, and type

applications.

Definition 12.1.3.17.

The construct type function for SSF is defined as follows:

ctypeT (x, x) = T

ctypeT (x, t1 t2) = T ′′

Where ctypeT (x, t1) = T ′ → T ′′.

ctypeT (x, t[T ′]) = [T ′/X]T ′′

Where ctypeT (x, t) = ∀X : ∗l.T ′′.

Finally, we can define the hereditary substitution function for SSF.

Definition 12.1.3.18.

We define the hereditary substitution function for SSF as follows:

[t/x]Tx = t

[t/x]Ty = y

270

Where y is a variable distinct from x.

[t/x]T (λy : T ′.t′) = λy : T ′.([t/x]T t′)

[t/x]T (ΛX : ∗l.t′) = ΛX : ∗l.([t/x]T t′)

[t/x]T (t1 t2) = ([t/x]T t1) ([t/x]T t2)

Where ([t/x]T t1) is not a λ-abstraction, or both ([t/x]T t1) and t1
are λ-abstractions.

[t/x]T (t1 t2) = [([t/x]T t2)/y]T
′′
s′1

Where ([t/x]T t1) ≡ λy : T ′′.s′1 for some y, s′1, and T ′′

and ctypeT (x, t1) = T ′′ → T ′.

[t/x]T (t′[T ′]) = ([t/x]T t′)[T ′]

Where [t/x]T t′ is not a type abstraction or t′ and [t/x]T t′

are type abstractions.

[t/x]T (t′[T ′]) = [T ′/X]s′1

Where [t/x]T t′ ≡ ΛX : ∗l.s′1, for some X, s′1 and Γ ` T ′ : ∗q,
such that, q ≤ l and ctypeT (x, t′) = ∀X : ∗l.T ′′.

The next lemma states the familiar properties of the construct type function. The

first property is slightly different then the one defined for STLC. The difference arises

from the fact that the ordering on types is not just the subexpression ordering, but

relies on the level of the type in the ordering on types. So instead of T being a

subexpression of the output of ctypeT it will be greater than or equal to the output

of ctypeT . The remainder of the properties are as usual.

Lemma 12.1.3.19. [Properties of ctypeT]

i. If Γ, x : T,Γ′ ` t : T ′ and ctypeT (x, t) = T ′′, then head(t) = x, T ′ ≡ T ′′, and

T ′ ≤Γ,Γ′ T .

ii. If Γ, x : T,Γ′ ` t1 t2 : T ′, Γ ` t : T , [t/x]T t1 = λy : T1.q, and t1 is not, then

271

there exists a type ψ such that ctypeT (x, t1) = ψ.

iii. If Γ, x : T,Γ′ ` t′[T ′′] : T ′, Γ ` t : T , [t/x]T t′ = ΛX : ∗l.t′′, and t′ is not, then

there exists a type ψ such that ctypeT (x, t′) = ψ.

Proof. We prove part one first. This is a proof by induction on the structure of t.

Case. Suppose t ≡ x. Then ctypeT (x, x) = T . Clearly, head(x) = x and T ≡ T .

Case. Suppose t ≡ t1 t2. Then ctypeT (x, t1 t2) = T ′′ when ctypeT (x, t1) = T ′ → T ′′.

Now t > t1 so by the induciton hypothesis head(t1) = x and T ′ → T ′′ ≤Γ,Γ′ T .

Therefore, head(t1 t2) = x, and certainly, T ′′ ≤Γ,Γ′ T .

Next we prove part two. This is a proof by induction on the structure of t1 t2.

The only possiblities for the form of t1 is x, t̂1 t̂2, or t̂[T ′′]. All other forms would not

result in [t/x]T t1 being a λ-abstraction and t1 not. If t1 ≡ x then there exist a type T ′′

such that T ≡ T ′′ → T ′ and ctypeT (x, x t2) = T ′ when ctypeT (x, x) = T ≡ T ′′ → T ′

in this case. We know T ′′ to exist by inversion on Γ, x : T,Γ′ ` t1 t2 : T ′.

Now suppose t1 ≡ (t̂1 t̂2). Now knowing t′1 to not be a λ-abstraction implies that

t̂1 is also not a λ-abstraction or [t/x]T t1 would be an application instead of a λ-

abstraction. So it must be the case that [t/x]T t̂1 is a λ-abstraction and t̂1 is not.

Since t1 t2 > t1 we can apply the induction hypothesis to obtain there exists a type

ψ such that ctypeT (x, t̂1) = ψ. Now by inversion on Γ, x : T,Γ′ ` t1 t2 : T ′ we know

there exists a type T ′′ such that Γ, x : T,Γ′ ` t1 : T ′′ → T ′. We know t1 ≡ (t̂1 t̂2)

so by inversion on Γ, x : T,Γ′ ` t1 : T ′′ → T ′ we know there exists a type ψ′′ such

that Γ, x : T,Γ′ ` t̂1 : ψ′′ → (T ′′ → T ′). By part two of Lemma 12.1.3.19 we

272

know ψ ≡ ψ′′ → (T ′′ → T ′) and ctypeT (x, t1) = ctypeT (x, t̂1 t̂2) = T ′′ → T ′ when

ctypeT (x, t̂1) = ψ′′ → (T ′′ → T ′), because we know ctypeT (x, t̂1) = ψ.

The case where t1 is a type application is similar to the previous case.

The remaining parts of the lemma are similar to part two.

12.1.4 Main Properties

We now define rset as an extension of the same function for STLC by adding

type application redexes to the set of overall redexes of a term. It is defined in the

following definition.

Definition 12.1.4.20.

The following function constructs the set of redexes within a term:

rset(x) = ∅

rset(λx : T.t) = rset(t)

rset(ΛX : ∗l.t) = rset(t)

rset(t1 t2)

= rset(t1, t2) if t1 is not a λ-abstraction.
= {t1 t2} ∪ rset(t′1, t2) if t1 ≡ λx : T.t′1.

rset(t′′[T ′′])

= rset(t′′) if t′′ is not a type abstraction.
= {t′′[T ′′]} ∪ rset(t′′′) if t′′ ≡ ΛX : ∗l.t′′′.

The extension of rset to multiple arguments is defined as follows:

rset(t1, . . . , tn) =def rset(t1) ∪ · · · ∪ rset(tn).

273

Next we state all the properties of the hereditary substitution function. They are

equivalent to the properties stated in Section 13.2.3 the only difference are their

proofs.

Lemma 12.1.4.21. [Total and Type Preserving] Suppose Γ ` t : T and Γ, x : T,Γ′ `

t′ : T ′. Then there exists a term t′′, such that, [t/x]T t′ = t′′ and Γ,Γ′ ` t′′ : T ′.

Proof. This is a proof by induction on the lexicorgraphic combination (T, t′) of >Γ,Γ′

and the strict subexpression ordering. We case split on t′.

Case. Suppose t′ is either x or a variable y distinct from x. Trivial in both cases.

Case. Suppose t′ ≡ λy : T1.t
′
1. By inversion on the typing judgement we know

Γ, x : T,Γ′, y : T1 ` t′1 : T2. We also know t′ > t′1, hence we can apply

the induction hypothesis to obtain [t/x]T t′1 = t̂′1 and Γ,Γ′, y : T1 ` t̂ : T2

for some term t̂′1. By the definition of the hereditary substitution function

[t/x]T t′ = λy : T1.[t/x]T t′1 = λy : T1.t̂
′
1. It suffices to show that Γ,Γ′ ` λy :

T1.t̂
′
1 : T1 → T2. By simply applying the λ-abstraction typing rule using

Γ,Γ′, y : T1 ` t̂ : T2 we obtain Γ,Γ′ ` λy : T1.t̂
′
1 : T1 → T2.

Case. Suppose t′ ≡ ΛX : ∗l.t′1. Similar to the previous case.

Case. Suppose t′ ≡ t′1 t′2. By inversion we know Γ, x : T,Γ′ ` t′1 : T ′′ → T ′

and Γ, x : T,Γ′ ` t′2 : T ′′ for some types T ′ and T ′′. Clearly, t′ > t′i for

i ∈ {1, 2}. Thus, by the induction hypothesis there exists terms m1 and

m2 such that [t/x]T t′i = mi, Γ,Γ′ ` m1 : T ′′ → T ′ and Γ,Γ′ ` m2 : T ′′ for

i ∈ {1, 2}. We case split on whether or not m1 is a λ-abstraction and t′1 is

274

not, or ctypeT (x, t′1) is undefined. We only consider the non-trivial cases when

m1 ≡ λy : T ′′.m′1, t′1 is not a λ-abstraction, and ctypeT (x, t′1) = ψ′′ → ψ′.

Suppose the former. Now by Lemma 12.1.3.19 it is the case that there exists a

ψ such that ctypeT (x, t′1) = ψ, ψ ≡ T ′′ → T ′, and ψ ≤Γ,Γ′ T , hence T >Γ,Γ′ T
′′.

Then [t/x]T (t′1 t
′
2) = [m2/y]ψ

′′
m′1. Therefore, by the induction hypothesis

there exists a term m such that [m2/y]T
′′
m′1 = m and Γ,Γ′ ` m : T ′′.

Case. Suppose t′ ≡ t′1[T ′′]. Similar to the previous case.

Lemma 12.1.4.22. [Redex Preserving] If Γ ` t : T , Γ, x : T,Γ′ ` t′ : T ′,

then |rset(t′, t)| ≥ |rset([t/x]T t′)|.

Proof. This is a proof by induction on the lexicorgraphic combination (T, t′) of >Γ,Γ′

and the strict subexpression ordering. We case split on the structure of t′.

Case. Let t′ ≡ x or t′ ≡ y where y is distinct from x. Trivial.

Case. Let t′ ≡ λx : T1.t
′′. Then [t/x]T t′ ≡ λx : T1.[t/x]T t′′. Now

rset(λx : T1.t
′′, t) = rset(λx : T1.t

′′) ∪ rset(t)
= rset(t′′) ∪ rset(t)
= rset(t′′, t).

We know that t′ > t′′ by the strict subexpression ordering, hence by the induc-

tion hypothesis |rset(t′′, t)| ≥Γ,Γ′ |rset([t/x]T t′′)| which implies |rset(t′, t)| ≥

|rset([t/x]T t′)|.

Case. Let t′ ≡ ΛX : ∗l.t′′. Similar to the previous case.

275

Case. Let t′ ≡ inl(t′′). We know rset(t′, t) = rset(t′′, t). Since t′ > t′′ we can

apply the induction hypothesis to obtain |rset(t′′, t)| ≥ |rset([t/x]T t′′)|. This

implies |rset(t′, t)| ≥Γ,Γ′ |rset([t/x]T t′)|.

Case. Let t′ ≡ inr(t′′). Similar to the previous case.

Case. Let t′ ≡ t′1 t
′
2. First consider when t′1 is not a λ-abstraction. Then

rset(t′1 t
′
2, t) = rset(t′1, t

′
2, t)

Clearly, t′ > t′i for i ∈ {1, 2}, hence, by the induction hypothesis |rset(t′i, t)| ≥

|rset([t/x]T t′i)|. We have two cases to consider. That is whether or not

[t/x]T t′1 is a λ-abstraction or not. Suppose so. Then by Lemma 12.1.3.19

ctypeT (x.t′1) = ψ and by inversion on Γ, x : T,Γ′ ` t′1 t′2 : T ′ there exists a

type T ′′ such that Γ, x : T,Γ′ ` t1 : T ′′ → T ′. Again, by Lemma 12.1.3.19

ψ ≡ T ′′ → T ′. Thus, ctypeT (x, t′1) = T ′′ → T ′ and T ′′ → T ′ is a subexpression

of T . So by the definition of the hereditary substitution function [t/x]T t′1 t
′
2 =

[([t/x]T t′2)/y]T
′′
t′′1, where [t/x]T t′1 = λy : T ′′.t′′1. Hence,

|rset([t/x]T t′1 t
′
2)| = |rset([([t/x]T t′2)/y]T

′′
t′′1)|.

Now T >Γ,Γ′ T
′′ so by the induction hypothesis

|rset([([t/x]T t′2)/y]T
′′
t′′1)| ≤ |rset([t/x]T t′2, t

′′
1)|

≤ |rset(t′2, t′′1, t)|
= |rset(t′2, [t/x]T t′1, t)|
≤ |rset(t′2, t′1, t)|
= |rset(t′1, t′2, t)|.

Suppose [t/x]T t′1 is not a λ-abstractions or ctypeT (x, t′1) is undefined.

Then

276

rset([t/x]T (t′1 t
′
2)) = rset([t/x]T t′1 [t/x]T t′2)

= rset([t/x]T t′1, [t/x]T t′2).
≥ rset(t′1, t

′
2, t).

Next suppose t′1 ≡ λy : T1.t
′′
1. Then

rset((λy : T1.t
′′
1) t′2, t) = {(λy : T1.t

′′
1) t′2} ∪ rset(t′′1, t′2, t).

By the definition of the hereditary substitution function,

rset([t/x]T (λy : T1.t
′′
1) t′2) = rset([t/x]T (λy : T1.t

′′
1) [t/x]T t′2)

= rset((λy : T1.[t/x]T t′′1) [t/x]T t′2)
= {(λy : T1.[t/x]T t′′1) [t/x]T t′2}
∪ rset([t/x]T t′′1)
∪ rset([t/x]T t′2).

Since t′ > t′′1 and t′ > t′2 we can apply the induction hypothesis to obtain,

|rset(t′′1, t)| ≥ |rset([t/x]T t′′1)| and |rset(t′2, t)| ≥ |rset([t/x]T t′2)|. Therefore,

|{(λy : T1.t
′′
1) t′2} ∪ rset(t′′1, t) ∪ rset(t′2, t)| ≥ |{(λy : T1.[t/x]T t′′1) [t/x]T t′2} ∪

rset([t/x]T t′′1) ∪ rset([t/x]T t′2)|.

Case. Suppose t′ ≡ t′1[T ′′]. It suffices to show that |rset(t, t′)| ≥ |rset([t/x]T t′)|.

Now

|rset(t, t′)| = |rset(t, t′1[T ′′])|
= |rset(t) ∪ rset(t′1[T ′′])|
= |rset(t) ∪ rset(t′1)|
= |rset(t, t′1)|.

and

|rset[t/x]T t′)| = |rset([t/x]T (t′1[T ′′]))|.

We have several cases to consider. Suppose t′1 and [t/x]T t′1 are not type

abstractions. Then

|rset([t/x]T (t′1[T ′′]))| = |rset(([t/x]T t′1)[T ′′])|
= |rset([t/x]T t′1)|.

277

We can see that t′ > t′1 so by the induction hypothesis

|rset([t/x]T t′1)| ≤ |rset(t, t′1)|
= |rset(t, t′)|.

Suppose t′1 ≡ ΛX : ∗l.t′′1. Then

|rset(t, t′)| = |rset(t, t′1[T ′′])|
= |{t′1[T ′′]} ∪ rset(t, t′′1)|

and

|rset([t/x]T t′)| = |rset([t/x]T (t′1[T ′′])|
= |rset((ΛX : ∗l.[t/x]T t′′1)[T ′′])|
= |{(ΛX : ∗l.[t/x]T t′′1)[T ′′]} ∪ rset([t/x]T t′′1)|.

Again, t′ > t′1 so by the induciton hypothesis |rset([t/x]T t′′1)| ≤ |rset(t, t′′1).

Thus, |rset(t, t′)| ≥ |rset([t/x]T t′)|.

Suppose t′1 is not a type abstraction, but [t/x]T t′1 ≡ λX : ∗l.t′′1. Then

|rset([t/x]T t′)| = |rset([T ′′/X]t′′1)|
= |rset(t′′1)|

and

|rset(t′, t)| = |rset(t′1[T ′′], t)|
= |rset(t′1, t)|.

Since t′ > t′1 we can apply the induction hypthothesis to obtain

|rset([t/x]T t′1)| = |rset(t′′1)
≤ |rset(t′1, t)|.

Therefore, |rset([t/x]T t′)| ≤ |rset(t′, t)|.

Case. Let t′ ≡ t′1 t
′
2. First consider when t′1 is not a λ-abstraction. Then

rset(t′1 t
′
2, t) = rset(t′1, t

′
2, t)

278

Clearly, t′ > t′i for i ∈ {1, 2}, hence, by the induction hypothesis |rset(t′i, t)| ≥

|rset([t/x]T t′i)|. We have three cases to consider. That is whether or not

[t/x]T t′1 is a λ-abstraction and t′1 is not, or ctypeT (x, t′1) is undefined. Sup-

pose t′1 is a λ-abstraction. Then by Lemma 12.1.3.19 ctypeT (x.t′1) = ψ and

by inversion on Γ, x : T,Γ′ ` t′1 t′2 : T ′ there exists a type T ′′ such that

Γ, x : T,Γ′ ` t1 : T ′′ → T ′. Again, by Lemma 12.1.3.19 ψ ≡ T ′′ → T ′. Thus,

ctypeT (x, t′1) = T ′′ → T ′ and T ′′ → T ′ is a subexpression of T . So by the defi-

nition of the hereditary substitution function [t/x]T t′1 t
′
2 = [([t/x]T t′2)/y]T

′′
t′′1,

where [t/x]T t′1 = λy : T ′′.t′′1. Hence,

|rset([t/x]T t′1 t
′
2)| = |rset([([t/x]T t′2)/y]T

′′
t′′1)|.

Now T >Γ,Γ′ T
′′ so by the induction hypothesis

|rset([([t/x]T t′2)/y]T
′′
t′′1)| ≤ |rset([t/x]T t′2, t

′′
1)|

≤ |rset(t′2, t′′1, t)|
= |rset(t′2, [t/x]T t′1, t)|
≤ |rset(t′2, t′1, t)|
= |rset(t′1, t′2, t)|.

Suppose [t/x]T t′1 is not a λ-abstractions or ctypeT (x, t′1) is undefined. Then

rset([t/x]T (t′1 t
′
2)) = rset([t/x]T t′1 [t/x]T t′2)

= rset([t/x]T t′1, [t/x]T t′2).
≤ rset(t′1, t

′
2, t).

Next suppose t′1 ≡ λy : T1.t
′′
1. Then

rset((λy : T1.t
′′
1) t′2, t) = {(λy : T1.t

′′
1) t′2} ∪ rset(t′′1, t′2, t).

By the definition of the hereditary substitution function,

279

rset([t/x]T (λy : T1.t
′′
1) t′2) = rset([t/x]T (λy : T1.t

′′
1) [t/x]T t′2)

= rset((λy : T1.[t/x]T t′′1) [t/x]T t′2)
= {(λy : T1.[t/x]T t′′1) [t/x]T t′2}
∪ rset([t/x]T t′′1)
∪ rset([t/x]T t′2).

Since t′ > t′′1 and t′ > t′2 we can apply the induction hypothesis to obtain,

|rset(t′′1, t)| ≥ |rset([t/x]T t′′1)| and |rset(t′2, t)| ≥ |rset([t/x]T t′2)|. Therefore,

|{(λy : T1.t
′′
1) t′2} ∪ rset(t′′1, t) ∪ rset(t′2, t)| ≥ |{(λy : T1.[t/x]T t′′1) [t/x]T t′2} ∪

rset([t/x]T t′′1) ∪ rset([t/x]T t′2)|.

Lemma 12.1.4.23. [Normality Preserving] If Γ ` n : T and Γ, x : T ` n′ : T ′ then

there exists a normal term n′′ such that [n/x]Tn′ = n′′.

Proof. By Lemma 12.1.4.21 we know there exists a term n′′ such that [n/x]Tn′ =

n′′ and by Lemma 12.1.4.22 |rset(n′, n)| ≥ |rset([n/x]Tn′)|. Hence, |rset(n′, n)| ≥

|rset(n′′)|, but |rset(n′, n)| = 0. Therefore, |rset(n′′)| = 0 which implies n′′ has no

redexes.

Lemma 12.1.4.24. [Soundness with Respect to Reduction] If Γ ` t : T and Γ, x :

T,Γ′ ` t′ : T ′ then [t/x]t′ ∗ [t/x]T t′.

Proof. This is a proof by induction on the lexicorgraphic combination (T, t′) of >Γ,Γ′

and the strict subexpression ordering. We case split on the structure of t′. When

applying the induction hypothesis we must show that the input terms to the substi-

tution and the hereditary substitution functions are typeable. We do not explicitly

state typing results that are simple conseqences of inversion.

280

Case. Suppose t′ is a variable x or y distinct from x. Trivial in both cases.

Case. Suppose t′ ≡ λy : T ′.t̂. Then [t/x]T (λy : T ′.t̂) = λy : T ′.([t/x]T t̂). Now t′ > t̂

so we can apply the induction hypothesis to obtain [t/x]t̂ ∗ [t/x]T t̂. At

this point we can see that since λy : T ′.[t/x]t̂ ≡ [t/x](λy : T ′.t̂) and we may

conclude that λy : T ′.[t/x]t̂ ∗ λy : T ′.[t/x]T t̂.

Case. Suppose t′ ≡ ΛX : ∗l.t̂. Similar to the previous case.

Case. Suppose t′ ≡ t′1 t
′
2. By Lemma 12.1.4.21 there exists terms t̂′1 and t̂′2 such

that [t/x]T t′1 = t̂′1 and [t/x]T t′2 = t̂′2. Since t′ > t′1 and t′ > t′2 we can

apply the induction hypothesis to obtain [t/x]t′1
∗ t̂′1 and [t/x]t′2

∗ t̂′2.

Now we case split on whether or not t̂′1 is a λ-abstraction and t′1 is not,

or ctypeT (x, t′1) is undefined. If ctypeT (x, t′1) is undefined or t̂′1 is not a λ-

abstraction then [t/x]T t′ = ([t/x]T t′1) ([t/x]T t′2) ≡ t̂′1 t̂
′
2. Thus, [t/x]t′ ∗

[t/x]T t′, because [t/x]t′ = ([t/x]t′1) ([t/x]t′2). So suppose t̂′1 ≡ λy : T ′.t̂′′1

and t′1 is not a λ-abstraction. By Lemma 12.1.3.19 there exists a type ψ

such that ctypeT (x, t′1) = ψ, ψ ≡ T ′′ → T ′, and ψ is a subexpression of

T , where by inversion on Γ, x : T,Γ′ ` t′ : T ′ there exists a type T ′′ such

that Γ, x : T,Γ′ ` t′1 : T ′′ → T ′. Then by the definiton of the hereditary

substitution function [t/x]T (t′1 t
′
2) = [t̂′2/y]T

′
t̂′′1. Now we know T >Γ,Γ′ T

′ so

we can apply the induction hypothesis to obtain [t̂′2/y]t̂′′1
∗ [t̂′2/y]T

′
t̂′′1. Now

by knowing that (λy : T ′.t̂′′1) t′2 [t̂′2/y]t̂′′1 and by the previous fact we know

(λy : T ′.t̂′′1) t′2
∗ [t̂′2/y]T

′
t̂′′1. We now make use of the well known result of

full β-reduction. The result is stated as

281

a ∗ a′

b ∗ b′ a′ b′ ∗ c

a b ∗ c

where a, a′, b, b′, and c are all terms. We apply this result by instantiating a,

a′, b, b′, and c with [t/x]t′1, t̂′1, [t/x]t′2, t̂′2, and [t̂′2/y]T
′
t̂′′1 respectively. Therefore,

[t/x](t′1 t
′
2) ∗ [t̂′2/y]T

′
t̂′′1.

Case. Suppose t′ ≡ t′1[T ′′]. Since t′ > t′1 we can apply the induction hypothesis to

obtain [t/x]t′1
∗ [t′/x]T t′1. We case split on whether or not [t′/x]T t′1 is a type

abstraction and t′1 is not. The case where it is not is trivial so we only consider

the case where [t′/x]T t′1 ≡ ΛX : ∗l.s′. Then [t′/x]T t′ = [T ′/X]s′. Now we

have [t/x]t′1
∗ [t′/x]T t′1 and [t/x](t′1[T]) ≡ ([t/x]t′1)[T] ∗ ([t′/x]T t′1)[T]

[T/X]s′. Thus, [t/x]t′ ∗ [t′/x]T t′.

12.1.5 The Main Substitution Lemma

The definition of the interpretation of types is identical to the definition for

STLC (Definition 6.2.0.7), so we do not repeat it here. Before concluding normaliza-

tion we state the main substitution lemma for the interpretation of types.

Lemma 12.1.5.25. [Substitution for the Interpretation of Types] If n′ ∈ [[T ′]]Γ,x:T,Γ′,

n ∈ [[T]]Γ, then [n/x]Tn′ ∈ [[T ′]]Γ,Γ′.

Proof. By Lemma 12.1.4.21 we know there exists a term n̂ such that [n/x]Tn′ = n̂

and Γ,Γ′ ` n̂ : T ′ and by Lemma 12.1.4.23 n̂ is normal. Therefore, [n/x]Tn′ = n̂ ∈

[[T ′]]Γ,Γ′ .

282

Before moving on to proving soundness of typing and concluding normalization

we need a couple of results about the interpretation of types: context weakening and

type substitution. They both are used in the proof of the type soundness theorem

(Theorem 12.1.6.28).

Lemma 12.1.5.26. [Context Weakening for Interpretations of Types] If Γ,Γ′,Γ′′ Ok

and n ∈ [[T]]Γ,Γ′′, then n ∈ [[T]]Γ,Γ′,Γ′′.

Proof. This proof is by structural induction on n.

Case. Let n ≡ x. By the definition of the interpretation of types Γ(x) = T . Clearly,

(Γ,Γ′)(x) = T , and Lemma 12.1.1.10 gives us Γ,Γ′ ` T : ∗p hence, x ∈ [[T]]Γ,Γ′ .

Case. Let n ≡ λx : T1.n
′. By the definition of the interpretation of types, there

exists a type T2, such that T = T1 → T2, and n′ ∈ [[T2]]Γ,x:T1 . By the induction

hypothesis, n′ ∈ [[T2]]Γ,Γ′,x:T1,, and by the definition of the interpretation of

types λx : T1.n
′ ∈ [[T1 → T2]]Γ,Γ′ .

Case. Let n ≡ n1 n2. By the definition of the interpretation of types, there exists

a type T1, such that n1 ∈ [[T1 → T2]]Γ, and n2 ∈ [[T2]]Γ. By the induction

hypothesis, n1 ∈ [[T1 → T2]]Γ,Γ′ , and n2 ∈ [[T2]]Γ,Γ′ . Thus, by the definition of

the interpretation of types n1n2 ∈ [[T2]]Γ,Γ′ .

Case. Let n ≡ ΛX : ∗p.n′. By the definition of the interpretation of types, there

exists a type T ′, such that n′ ∈ [[T ′]]Γ,X:∗p , and by the induction hypothesis

n′ ∈ [[T ′]]Γ,X:∗p,Γ′ . By the definition of the interpretation of types ΛX : ∗p.n′ ∈

[[∀X : ∗p.T ′]]Γ,Γ′ .

283

Case. Let n ≡ n′[T ′]. By the definition of the interpretation of types, there exists a

type T ′′ and l, such that T = [T ′/X]T ′′, Γ ` T ′ : ∗l, and n′ ∈ [[∀X : ∗l.T ′′]]Γ.

By the induction hypothesis n′ ∈ [[∀X : ∗l.T ′′]]Γ,Γ′ . We know, Γ ` T ′ : ∗k, for

some k ≤ l, so by Lemma 12.1.1.10, Γ,Γ′ ` T ′ : ∗k, hence Γ ` T ′ : ∗l. Thus,

n[T ′] ∈ [[[T ′/X]T ′′]]Γ,Γ′ .

Lemma 12.1.5.27. [Type Substitution for the Interpretation of Types]

If n ∈ [[T ′]]Γ,X:∗l,Γ′ and Γ ` T : ∗l, then [T/X]n ∈ [[[T/X]T ′]]Γ,[T/X]Γ′.

Proof. This proof is by structural induction on n.

Case. n is a variable y. Clearly, [T/X]n ≡ [T/X]y = y ∈ [[T ′]]Γ,X:∗l,Γ′ , and

(Γ, [T/X]Γ′)(y) = [T/X]T ′. Also, we have Γ, [T/X]Γ′ ` [T/X]T ′ : ∗p for

some p, by Lemma 12.1.1.8. Hence, by the definition of the interpretation of

types, y ∈ [[[T/X]T ′]]Γ,[T/X]Γ′ .

Case. Let n ≡ λy : ψ.n′. By the definition of the interpretation of types T ′ ≡

ψ → ψ′. By the induction hypothesis [T/X]n′ ∈ [[[T/X]ψ′]]Γ,Γ′,y:[T/X]ψ.

Again by the definition of the interpretation of types λy : [T/X]ψ.[T/X]n′ ≡

[T/X](λy : ψ.n′) ∈ [[[T/X]T ′]]Γ,[T/X]Γ′ .

Case. Let n ≡ n1 n2. By the definition of the interpretation of types T ′ ≡ ψ,

n1 ∈ [[ψ′ → ψ]]Γ,X:∗q ,Γ′ , and n2 ∈ [[ψ′]]Γ,X:∗q ,Γ′ . By the induction hypothe-

sis [T/X]n1 ∈ [[[T/X](ψ′ → ψ)]]Γ,[T/X]Γ′ and [T/X]n2 ∈ [[[T/X]ψ′]]Γ,[T/X]Γ′ .

284

Now by the definition of the interpretation of types ([T/X]n1)([T/X]n2) ∈

[[[T/X]ψ]]Γ,[T/X]Γ′ , since [T/X]n1, cannot be a λ-abstraction.

Case. Let n ≡ ΛY : ∗q.n′. By the definition of the interpretation of types T ′ = ∀Y :

∗q.ψ and n′ ∈ [[ψ]]Γ,X:∗l,Γ′,Y :∗q . By the induction hypothesis

[T/X]n′ ∈ [[[T/X]ψ]]Γ,[T/X]Γ′,Y :∗q and by the definition of the interpretation

of types ΛY : ∗q.[T/X]n′ ∈ [[∀Y : ∗q.[T/X]ψ]]Γ,[T/X]Γ′ which is equivalent to

[T/X](ΛY : ∗q.n′) ∈ [[[T/X](∀Y : ∗q.ψ)]]Γ,[T/X]Γ′ .

Case. Let n ≡ n′[ψ]. By the definition of the interpretation of types T ′ = [ψ/Y]ψ′,

for some Y , ψ, and there exists a q such that Γ, X : ∗l,Γ′ ` ψ : ∗q, and

n′ ∈ [[∀Y : ∗q.ψ′]]Γ,X:∗l,Γ′ . By the induction hypothesis [T/X]n′ ∈ [[[T/X](∀Y :

∗q.ψ′)]]Γ,[T/X]Γ′ . Therefore, by the definition of the interpretation of types

([T/X]n′)[ψ] ∈ [[[ψ/Y]([T/X]ψ′)]]Γ,[T/X]Γ′ , which is equivalent to

[T/X](n′[ψ]) ∈ [[[T/X]([ψ/Y]ψ′)]]Γ,[T/X]Γ′ .

12.1.6 Concluding Normalization

We are now ready to present our main result. The next theorem shows that

the type assignment rules are sound with respect to the interpretation of types.

Theorem 12.1.6.28. [Type Soundness] If Γ ` t : T then t ∈ [[T]]Γ.

Proof. This is a proof by induction on the structure of the typing derivation of t.

Case.

285

Γ(x) = T Γ Ok

Γ ` x : T

By regularity Γ ` T : ∗l for some l, hence [[T]]Γ is nonempty. Clearly, x ∈ [[T]]Γ

by the definition of the interpretation of types.

Case.

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

By the induction hypothesis t ∈ [[T2]]Γ,x:T1 and by the definition of the in-

terpretation of types t ! n ∈ [[T2]]Γ,x:T1 and Γ, x : T1 ` n : T2. Thus, by

applying the λ-abstraction type-checking rule, Γ ` λx : T1.n : Πx : T1.T2 so

by the definition of the interpretation of types λx : T1.n ∈ [[T1 → T2]]Γ. Thus,

according to the definition of the interpretation of types λx : T1.t ! λx :

T1.n ∈ [[T1 → T2]]Γ.

Case.

Γ ` t1 : T2 → T1 Γ ` t2 : T2

Γ ` t1 t2 : T1

By the induction hypothesis t1 ! n1 ∈ [[T2 → T1]]Γ, t2 ! n2 ∈ [[T2]]Γ,

Γ ` T2 → T1 : ∗p, and Γ ` T2 : ∗q. Inversion on the arrow-type kind-checking

rule yields, Γ ` T1 : ∗r, and by Lemma 12.1.1.10, Γ, x : T2,Γ
′ ` T1 : ∗r.

Now we know from above that n1 ∈ [[T2 → T1]]Γ and n2 ∈ [[T2]]Γ, hence

286

Γ ` n1 : T2 → T1 and Γ ` n2 : T2. It suffices to show that n1 n2 ∈

[[T2]]Γ. Clearly, n1 n2 = [n1/z](z n2) for some variable z 6∈ FV (n1, n2).

Lemma 12.1.4.21, Lemma 12.1.4.24, and Lemma 12.1.4.23 allow us to con-

clude that [n1/z](z n2) ∗ [n1/z]T2→T1(z n2), Γ ` [n1/z]T2→T1(z n2) : T2,

and [n1/z]T2→T1(z n2) is normal. Thus, t1 t2 ∗ n1 n2 = [n1/z](z n2) !

[n1/z]T2→T1(z n2) ∈ [[T2]]Γ.

Case.

Γ, X : ∗p ` t : T

Γ ` ΛX : ∗p.t : ∀X : ∗p.T

By the induction hypothesis and definition of the interpretation of types t ∈

[[T]]Γ,X:∗p , t
! n ∈ [[T]]Γ,X:∗p and ΛX : ∗p.n ∈ [[T]]Γ. Again, by definition of

the interpretation of types ΛX : ∗p.t ! ΛX : ∗p.n ∈ [[T]]Γ.

Case.

Γ ` t : ∀X : ∗l.T1 Γ ` T2 : ∗l
Γ ` t[T2] : [T2/X]T1

By the induction hypothesis t ∈ [[∀X : ∗l.T1]]Γ and by the definition of the

interpretation of types we know t ! n ∈ [[∀X : ∗l.T1]]Γ. We case split on

whether or not n is a type abstraction. If not then again, by the definition

of the interpretation of types n[T2] ∈ [[[T2/X]T1]]Γ, therefore t ∈ [[[T2/X]T1]]Γ.

Suppose n ≡ ΛX : ∗l.n′. Then t[T2] ∗ (ΛX : ∗l.n′)[T2] [T2/X]n′. By

the definition of the interpretation of types n′ ∈ [[T1]]Γ,X:∗l . Therefore, by

287

Lemma 12.1.5.27 [T2/X]n′ ∈ [[[T2/X]T1]]Γ.

Therefore, we conclude normalization of SSF.

Corollary 12.1.6.29. [Normalization] If Γ ` t : T , then there exists a normalform

n, such that t ! n.

12.2 Stratified System F+

Stratified System F+ (SSF+) is an extension of SSF with sum types denoted

T1 +T2, whose elimination form case t of x1.t1, x2.t2 is used to case split on a whether

or not term t with a sum type is truly x1 of type T1, or else x2 of type T2. We consider

sum types with so-called commuting conversions, which allow independent cases to be

permuted past each other (see Fig 51 below). Commuting conversions are well-known

to pose technical difficulties for normalization proofs based on reducibility (see [133]

and Chapter 10 of [60]). We will see that they can be handled straightforwardly with

hereditary substitution.

The syntax, reduction rules, and commuting conversions for SSF+ can be

found in Figure 51. The kind-assignment rules are defined in Figure 53 and the type-

assignment rules in defined in Figure 54. The kinding/typing relations depend on

well-formed contexts which are defined in Figure 52. To ensure substitutions over

contexts behave in an expected manner, we rename variables as necessary to ensure

contexts have at most one declaration per variable. Lastly, the basic meta-theoretic

results are used throughout this chapter (we omit their proofs, because they are

similar to the proofs for SSF):

288

Syntax:
K := ∗0 | ∗1 | . . .
T := X | T → T | ∀X : K.T | T + T
t := x | λx : T.t | t t | ΛX : K.t | t[T] | inl(t) | inr(t) | case t of x.t,x.t

Reduction Rules:
(ΛX : ∗p.t)[T] [T/X]t
(λx : T.t)t′ [t′/x]t

case inl(t) of x.t1,x.t2 [t/x]t1
case inr(t) of x.t1,x.t2 [t/x]t2

Commuting Conversions:
(case t of x.t1,x.t2) t′ case t of x.(t1 t

′),x.(t2 t
′)

case (case t of x.t1,x.t2) of y.s1,y.s2 case t of
x.(case t1 of y.s1,y.s2),
x.(case t2 of y.s1,y.s2)

Figure 51. Syntax, Reduction Rules, and Commuting Conversions for SSF+

· Ok
Γ Ok

Γ, X : ∗p Ok
Γ ` T : ∗p Γ Ok

Γ, x : T Ok

Figure 52. Well-formedness of Contexts for SSF+

Lemma 12.2.0.1. If Γ ` T : ∗p then Γ Ok.

Proof. This holds by straightforward induction on the form of the assumed kinding

derivation.

Lemma 12.2.0.2. [Level Weakening for Kinding] If Γ ` T : ∗r and r < s then

Γ ` T : ∗s.

289

Γ ` T1 : ∗p Γ ` T2 : ∗q
Γ ` T1 → T2 : ∗max(p,q)

Γ, X : ∗q ` T : ∗p
Γ ` ∀X : ∗q.T : ∗max(p,q)+1

Γ ` T1 : ∗p Γ ` T2 : ∗q
Γ ` T1 + T2 : ∗max(p,q)

Γ(X) = ∗p
Γ Ok p ≤ q

Γ ` X : ∗q

Figure 53. SSF+ Kinding Rules

Γ(x) = T
Γ Ok

Γ ` x : T

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : T1 → T2

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2

Γ, X : ∗l ` t : T

Γ ` ΛX : ∗l.t : ∀X : ∗l.T

Γ ` t : ∀X : ∗l.T1

Γ ` T2 : ∗l
Γ ` t[T2] : [T2/X]T1

Γ ` t : T1

Γ ` T2 : ∗p
Γ ` inl(t) : T1 + T2

Γ ` t : T2

Γ ` T1 : ∗p
Γ ` inr(t) : T1 + T2

Γ ` t : T1 + T2

Γ, x : T1 ` t1 : T
Γ, x : T2 ` t2 : T

Γ ` case t of x.t1,x.t2 : T

Figure 54. SSF+ Type-Assignment Rules

290

Proof. This holds by straightforward induction on the form of the assumed kinding

derivation.

Lemma 12.2.0.3. [Substitution for Kinding, Context-Ok] Suppose Γ ` T ′ : ∗p.

If Γ, X : ∗p,Γ′ ` T : ∗q with a derivation of depth d, then Γ, [T ′/X]Γ′ ` [T ′/X]T : ∗q

with a derivation of depth d. Also, if Γ, X : ∗p,Γ′ Ok with a derivation of depth d,

then Γ, [T ′/X]Γ′ Ok with a derivation of depth d.

Proof. This holds by straightforward induction on the d.

Lemma 12.2.0.4. [Regularity] If Γ ` t : T then Γ ` T : ∗p for some p.

Proof. This holds by straightforward induction on the form of the assumed typing

derivation.

12.2.1 Ordering on Types

In this section we define the ordering on types. It is a straightforward extension

of the ordering for SSF.

Definition 12.2.1.5.

Suppose op ∈ {+,→}. Then the ordering >Γ is defined as the least relation satisfying

the universal closures of the following formulas:

T1 op T2 >Γ T1

T1 op T2 >Γ T2

∀X : ∗l.T >Γ [T ′/X]T where Γ ` T ′ : ∗l.

Theorem 12.2.1.6. [Well-Founded Ordering] The ordering >Γ is well-founded on

types T such that Γ ` T : ∗l for some l.

291

Proof. The depth function, defined in the following definition, is used in the following

proof.

Definition 12.2.1.7.

The depth of a type T is defined as follows:

depth(X) = 1
depth(T → T ′) = depth(T) + depth(T ′)
depth(T + T ′) = depth(T) + depth(T ′)
depth(∀X : ∗l.T) = depth(T) + 1

We define the metric (l, d) in lexicographic combination, where l is the level

of a type T and d is the depth of T .

Lemma 12.2.1.8. [Well-Founded Measure] If T >Γ T ′ then (l, d) > (l′, d′), where

Γ ` T : ∗l, depth(T) = d, Γ ` T : ∗l′, and depth(T ′) = d′.

Proof. This holds by straightforward induction on the structure of T .

Finally, the proof of well-foundedness of >Γ. If there exists an infinite decreas-

ing sequence using our ordering on types, then there is an infinite decreasing sequence

using our measure by Lemma 12.2.1.8, but that is impossible.

We need transitivity in a number of places in the proof of the main substitution

lemma.

Lemma 12.2.1.9. [Transitivity of >Γ] Let T , T ′, and T ′′ be kindable types.

If T >Γ T
′ and T ′ >Γ T

′′ then T >Γ T
′′.

Proof. This proof is similar to the proof for the ordering used in the proof of normal-

ization of SSF (Lemma 12.1.2.13).

292

appT t1 t2 = t1 t2

Where t1 is not a λ-abstraction or a case construct.

appT (λx : T ′.t1) t2 = [t2/x]T
′
t1

appT (case t0 of x.t1,x.t2) t = case t0 of x.(appT t1 t),x.(appT t2 t)

rcaseT t0 y t1 t2 = case t0 of y.t1,y.t2

Where t0 is not an inject-left or an inject-right term or a case construct.

rcaseT inl(t
′) y t1 t2 = [t′/y]T1 t1

rcaseT inr(t
′) y t1 t2 = [t′/y]T2 t2

rcaseT (case t′0 of x.t′1,x.t′2) y t1 t2 =

case t′0 of x.(rcaseT t
′
1 y t1 t2),x.(rcaseT t

′
2 y t1 t2)

Figure 55. Hereditary Substitution Function for Stratified System F+

12.2.2 Hereditary Substitution

The definition of the hereditary substitution function for SSF+ is in Figure 55

and Figure 56. First, one should read this definition as a mutually recursive function

in terms of the hereditary substitution function [t/x]T t′, the application reduction

function appT t1 t2, and case construct reduction function rcaseT t0 x t1 t2. The

definitions of all these functions depend the same definition of ctypeT (x, t) as the

proof of normalization of SSF (Definition 12.1.3.17). So we do not repeat it here.

The hereditary substitution function is an extension of the hereditary substitu-

tion function for SSF. The most interesting case of the definition is when a commuting

conversion is created as a result of substitution. In this case we know by the ctypeT

function that the head of the application is in the form x t1 · · · t2. Furthermore, we

293

[t/x]Tx = t

[t/x]Ty = y

Where y is a variable distinct from x.

[t/x]T (λy : T ′.t′) = λy : T ′.([t/x]T t′)

[t/x]T (ΛX : ∗l.t′) = ΛX : ∗l.([t/x]T t′)

[t/x]T inr(t′) = inr([t/x]T t′)

[t/x]T inl(t′) = inl([t/x]T t′)

[t/x]T (t1 t2) = ([t/x]T t1) ([t/x]T t2)

Where ([t/x]T t1) is not a λ-abstraction or a case construct, or both ([t/x]T t1)
and t1 are λ-abstractions or case constructs, or ctypeT (x, t1) is undefined.

[t/x]T (t1 t2) = [([t/x]T t2)/y]T
′′
s′1

Where ([t/x]T t1) = λy : T ′′.s′1 for some y, s′1, and T ′′ and ctypeT (x, t1) =
T ′′ → T ′.

[t/x]T (t1 t2) = case w of y.(appT r ([t/x]T t2)),y.(appT s ([t/x]T t2))

Where [t/x]T t1 = case w of y.r,y.s for some terms w, r, s and variable y, and
ctypeT (x, t1) = T ′′ → T ′.

[t/x]T (t′[T ′]) = ([t/x]T t′)[T ′]

Where [t/x]T t′ is not a type abstraction or t′ and [t/x]T t′ are type abstrac-
tions.

[t/x]T (t′[T ′]) = [T ′/X]s′1

Where [t/x]T t′ = ΛX : ∗l.s′1, for some X, s′1 and Γ ` T ′ : ∗q, such that, q ≤ l
and
t′ is not a type abstraction.

[t/x]T (case t0 of y.t1,y.t2) = case ([t/x]T t0) of y.([t/x]T t1),y.([t/x]T t2)

Where ([t/x]T t0) is not an inject-left or an inject-right term or a case con-
struct, or ([t/x]T t0) and t0 are both inject-left or inject-right terms or case
constructs, or ctypeT (x, t0) is undefined.

[t/x]T (case t0 of y.t1,y.t2) = rcaseT ([t/x]T t0) y ([t/x]T t1) ([t/x]T t2)

Where ([t/x]T t0) is an inject-left or an inject-right term or a case construct
and ctypeT (x, t0) = T1 + T2.

Figure 56. Hereditary Substitution Function for Stratified System F+ Continued

294

know that applying the hereditary substitution function to the head of the applica-

tion results in a case construct. So we recursively reduce the created redex in the

same way the reduction rules do, but when we push the argument into the branches

of the resulting case construct more redexes may be created. So to handle recursively

reducing all of the newly created redexes in the branches we call the application re-

duction function appT . This function reduces redexes by recursively calling itself and

the hereditary substitution function. The remaining cases where new redexes are

potentially created are similar to these cases. The function rcaseT handles reducing

case constructs.

12.2.3 Main Properties

We are now to the point where we can prove the properties of the hereditary

substitution function. Just as we did in the proof for SSF we first must show the

properties of ctypeT hold.

Lemma 12.2.3.10. [Properties of ctypeT]

i. If ctypeT (x, t) = T ′ then head(t) = x and T ′ is a subexpression of T .

ii. If Γ, x : T,Γ′ ` t : T ′ and ctypeT (x, t) = T ′′ then T ′ ≡ T ′′.

iii. If Γ, x : T,Γ′ ` t1 t2 : T ′, Γ ` t : T , [t/x]T t1 = λy : T1.q, and t1 is not then

there exists a type T such that ctypeT (x, t1) = T .

iv. If Γ, x : T,Γ′ ` t1 t2 : T ′, Γ ` t : T , [t/x]T t1 = case t′0 of y.t′1,y.t′2, and t1 is

not then there exists a type T such that ctypeT (x, t1) = T .

v. If Γ, x : T,Γ′ ` case t0 of y.t1,y.t2 : T ′, Γ ` t : T , [t/x]T t0 = case t′0 of z.t′1,z.t′2,

295

and t0 is not then there exists a type T such that ctypeT (x, t0) = T .

vi. If Γ, x : T,Γ′ ` case t0 of y.t1,y.t2 : T ′, Γ ` t : T , [t/x]T t0 = inl(t′), and t0 is

not then there exists a type T such that ctypeT (x, t0) = T .

vii. If Γ, x : T,Γ′ ` case t0 of y.t1,y.t2 : T ′, Γ ` t : T , [t/x]T t0 = inr(t′), and t0 is

not then there exists a type T such that ctypeT (x, t0) = T .

Proof. The first two cases are equivalent to the proof of the properties for SSF

(Lemma 12.1.3.19). Cases three through five are similar, so we only give the proof of

part three. This is a proof by induction on the structure of t1 t2.

The only possiblities for the form of t1 is x or t̂1 t̂2. All other forms would not

result in [t/x]T t1 being a λ-abstraction and t1 not. If t1 ≡ x then there exist a type T ′′

such that T ≡ T ′′ → T ′ and ctypeT (x, x t2) = T ′ when ctypeT (x, x) = T ≡ T ′′ → T ′

in this case. We know T ′′ to exist by inversion on Γ, x : T,Γ′ ` t1 t2 : T ′.

Now suppose t1 ≡ (t̂1 t̂2). Now knowing t′1 to not be a λ-abstraction implies

that t̂1 is also not a λ-abstraction or [t/x]T t1 would be an application instead of a

λ-abstraction. So it must be the case that [t/x]T t̂1 is a λ-abstraction and t̂1 is not.

Since t1 t2 > t1 we can apply the induction hypothesis to obtain there exists a type

T such that ctypeT (x, t̂1) = T . Now by inversion on Γ, x : T,Γ′ ` t1 t2 : T ′ we know

there exists a type T ′′ such that Γ, x : T,Γ′ ` t1 : T ′′ → T ′. We know t1 ≡ (t̂1 t̂2)

so by inversion on Γ, x : T,Γ′ ` t1 : T ′′ → T ′ we know there exists a type T ′′ such

that Γ, x : T,Γ′ ` t̂1 : T ′′ → (T ′′ → T ′). By part two of Lemma 12.2.3.10 we

know T ≡ T ′′ → (T ′′ → T ′) and ctypeT (x, t1) = ctypeT (x, t̂1 t̂2) = T ′′ → T ′ when

296

ctypeT (x, t̂1) = T ′′ → (T ′′ → T ′), because we know ctypeT (x, t̂1) = T .

We now move on to proving the main properties of the hereditary substitution

function. First, we show that for typeable terms it is a total function and the output

maintains the same type as the principle term of substitution.

Lemma 12.2.3.11. [Total and Type Preserving] Suppose Γ ` t : T and Γ, x : T,Γ′ `

t′ : T ′. Then there exists a term t′′ such that [t/x]T t′ = t′′ and Γ,Γ′ ` t′′ : T ′.

Proof. This is a proof by induction on the lexicorgraphic combination (T, t′) of >Γ,Γ′

and the strict subexpression ordering. We case split on t′.

Case. Suppose t′ is either x or a variable y distinct from x. Trivial in both cases.

Case. Suppose t′ ≡ λy : T1.t
′
1. By inversion on the typing judgement we know

Γ, x : T,Γ′, y : T1 ` t′1 : T2. We also know t′ > t′1, hence we can apply

the induction hypothesis to obtain [t/x]T t′1 = t̂′1 and Γ,Γ′, y : T1 ` t̂ : T2

for some term t̂′1. By the definition of the hereditary substitution function

[t/x]T t′ = λy : T1.[t/x]T t′1 = λy : T1.t̂
′
1. It suffices to show that Γ,Γ′ ` λy :

T1.t̂
′
1 : T1 → T2. By simply applying the λ-abstraction typing rule using

Γ,Γ′, y : T1 ` t̂ : T2 we obtain Γ,Γ′ ` λy : T1.t̂
′
1 : T1 → T2.

Case. Suppose t′ ≡ ΛX : ∗l.t′1. Similar to the previous case.

Case. Suppose t′ ≡ t′1 t′2. By inversion we know Γ, x : T,Γ′ ` t′1 : T ′′ → T ′

and Γ, x : T,Γ′ ` t′2 : T ′′ for some types T ′ and T ′′. Clearly, t′ > t′i for

i ∈ {1, 2}. Thus, by the induction hypothesis there exists terms m1 and

m2 such that [t/x]T t′i = mi, Γ,Γ′ ` m1 : T ′′ → T ′ and Γ,Γ′ ` m2 : T ′′ for

297

i ∈ {1, 2}. We case split on whether or not m1 is a λ-abstraction, a case

construct and t′1 is not, or ctypeT (x, t′1) is undefined. We only consider the

non-trivial cases when m1 ≡ λy : T ′′.m′1 and t′1 is not a λ-abstraction or m1 ≡

case m′0 of y.m′1,y.m′2, ctypeT (x, t′1) = T ′′ → T ′, and t′1 is not a case construct.

Suppose the former. Now by Lemma 12.2.3.10 it is the case that there exists

a T such that ctypeT (x, t′1) = T , T ≡ T ′′ → T ′, and T is a subexpression of

T , hence T >Γ,Γ′ T
′′. Then [t/x]T (t′1 t

′
2) = [m2/y]T

′′
m′1. Therefore, by the

induction hypothesis there exists a term m such that [m2/y]T
′′
m′1 = m and

Γ,Γ′ ` m : T ′′.

Suppose m1 ≡ case m′0 of y.m′1,y.m′2 and t′1 is not a case construct. Now

[t/x]T t′ = case m′0 of y.appT m′1 m2,y.appT m′2 m2. By inversion on Γ,Γ′ `

m1 : T ′′ → T ′ we know there exists terms T1 and T2 such that Γ,Γ′ `

m′0 : T1 + T2 and Γ,Γ′, y : Ti ` m′i : T ′′ → T ′ for i ∈ {1, 2}. It suffcies

to show that there exists terms q and q′ such that appT m′1 m2 = q and

appT m′2 m2 = q′. To obtain this result we prove the following proposition.

Note that ctypeT (x, t′1) = T ′′ → T ′ which by Lemma 12.2.3.10 is equivalent

to T ′′ → T ′ and is a subexpression of T , hence T >Γ,Γ′ T
′′ and T >Γ,Γ′ T

′.

Proposition. For all Γ ` m2 : T ′′ and Γ ` m′1 : T ′′ → T ′ there exists a term

q such that appT m
′
1 m2 = q and Γ ` q : T ′.

We prove this by nested induction on the ordering (T, t′,m′1) and case splitting

on the structure of m′1.

Case. Suppose m′1 is neither a λ-abstraction or a case construct. Then

298

appT m
′
1 m2 = m′1 m2. Take m′1 m2 for q and by applying the application

typing rule we know Γ ` m′1 m2 : T ′.

Case. Suppose m′1 ≡ λz : T ′′.m′′1. Then appT m′1 m2 = [m2/z]T
′′
m′′1. By

inversion on the assumption Γ ` m′1 : T ′′ → T ′ we know Γ, z : T ′′ `

m′′1 : T ′. Since T >Γ T
′′ we can apply the outter induction hypothesis to

obtain there there exists a q such that [m2/z]T
′′
m′′1 = q and Γ ` q : T ′.

Therefore, appT m
′
1 m2 = q.

Case. Suppose m′1 ≡ case m′′0 of z.m′′1,z.m′′2. Then

appT m′1 m2 = case m′′0 of z.appT m′′1 m2,z.appT m′′2 m2. By inversion

on the assumption Γ ` m′1 : T ′′ → T ′ we know there exists types T1

and T2 such that Γ ` m′′0 : T1 + T2, Γ, z : T1 ` m′′1 : T ′′ → T ′ and

Γ, z : T2 ` m′′2 : T ′′ → T ′. Since m′1 > m′′1 and m′1 > m′′2 we can apply

the inner induction hypothesis to obtain there exists terms q′ and q′′ such

that appT m
′′
1 m2 = q′, Γ, z : T1 ` q′ : T ′, appT m′′1 m2 = q′′ and Γ, z : T2 `

q′′ : T ′. Hence, appT m
′
1 m2 = case m′′0 of z.appT m

′′
1 m2,z.appT m

′′
2 m2 =

case m′′0 of z.q′,z.q′′. It suffices to to show that Γ ` case m′′0 of z.q′,z.q′′ :

T ′. This is a simple consequence of applying the case-construct typing

rule using Γ ` m′′0 : T1 + T2, Γ, z : T1 ` q′ : T ′, and Γ, z : T2 ` q′′ : T ′.

By the previous proposition there exists terms q and q′ such that

[t/x]T t′ = case m′0 of y.appT m′1 m2,y.appT m′2 m2 = case m′0 of y.q,y.q′,

where appT m
′
1 m2 = q, Γ,Γ′, y : T1 ` q : T ′, appT m

′
1 m2 = q′ and Γ,Γ′, y :

T2 ` q′ : T ′. It suffices to show that Γ,Γ′ ` case m′0 of y.q,y.q′ : T ′. From

299

above we know that Γ,Γ′ ` m′0 : T1 + T2, Γ,Γ′, y : T1 ` q : T ′ and Γ,Γ′, y :

T2 ` q′ : T ′. Thus, by applying the case-construct typing rule we obtain

Γ,Γ′ ` case m′0 of y.q,y.q′ : T ′.

Case. Suppose t′ ≡ t′1[T ′′]. Similar to the previous case.

Case. Suppose t′ ≡ inl(t). Trivial.

Case. Suppose t′ ≡ inr(t). Trivial.

Case. Suppose t′ ≡ case m0 of y.m1,y.m2. By inversion on the assumption Γ, x :

T,Γ′ ` t′ : T ′ we know the following:

Γ, x : T,Γ′ ` m0 : T1 + T2, for some types T1 and T2,
Γ, x : T,Γ′, y : T1 ` m1 : T, and
Γ, x : T,Γ′, y : T2 ` m2 : T.

It is easy to see that t′ > mi for all i ∈ {0, 1, 2}. Hence, by the induction

hypothesis there exists terms m′0, m′1, and m′2 such that [t/x]Tmi = m′i for

all i ∈ {0, 1, 2},

(i) Γ,Γ ` m′0 : T1 + T2,
(ii) Γ,Γ′, y : T1 ` m′1 : T ′, and
(iii) Γ,Γ′, y : T2 ` m′2 : T ′.

We have two cases to consider.

Case. Suppose m0 and m′0 are inject-left terms, inject-right terms, or case con-

structs, or m0 is an inject-left term, inject-right term, or a case-construct

and m′0 is not, or m0 and m′0 are neither inject-left terms, inject-right

terms, or case constructs, or ctypeT (x,m0) is undefined. Then

[t/x]T (case m0 of y.m1,y.m2) = case m′0 of y.m′1,y.m′2 and by applying

the case-construct typing rule to i - iii above we obtain

Γ,Γ′ ` case m′0 of y.m′1,y.m′2 : T ′.

300

Case. Suppose m′0 is an inject-left term, inject-right term, or case construct and

ctypeT (x,m0) = T1 + T2. Then

[t/x]T (case m0 of y.m1,y.m2) = rcaseT m
′
0 y m

′
1 m

′
2 and by

Lemma 12.2.3.10 we know T1 + T2 ≡ T1 + T2 and is a subexpression of

T . It suffices to show that there exists some term q such that

rcaseT m
′
0 y m

′
1 m

′
2 = q and Γ,Γ′ ` q : T ′. We obtain this result by the

following proposition.

Proposition. For all Γ ` q0 : T , Γ, y : T1 ` q1 : T ′, and Γ, y : T2 ` q2 : T ′

there exists a term q̂ such that rcaseT q0 y q1 q2 = q̂ and Γ ` q̂ : T ′. We

prove this by induction on the the ordering (T, t′, q0) and case split on

the structure of q0.

Case. Suppose q0 is not an inject-left term, inject-right term, or a case

construct. Then

rcaseT q0 y q1 q2 = case q0 of y.q1,y.q2 and by applying the case-

construct typing rule using the assumptions Γ ` q0 : T , Γ, y : T1 `

q1 : T ′, and Γ, y : T2 ` q2 : T ′ we obtain Γ,Γ′ ` case q0 of y.q1,y.q2 : T ′.

Case. Suppose q0 ≡ inl(q′0). Then rcaseT q0 y q1 q2 = [q′0/y]T1q1 and by

inversion on Γ ` q0 : T we know Γ ` q′0 : T1. It suffices to show that

there exists a term q̂ such that [q′0/y]T1q1 = q̂ and Γ ` q̂ : T ′. Since

T >Γ T
′ we can apply the the outer induction hypothesis to obtain

that there exists such a term q̂.

Case. Suppose q0 ≡ inl(q′0). Similar to the previous case.

301

Case. Suppose q0 ≡ case q′0 of z.q′1,z.q′2. Then

rcaseT q0 y q1 q2 = case q′0 of z.(rcaseT q
′
1 y q1 q2),z.(rcaseT q

′
2 y q1 q2).

We know by assumption that Γ ` q0 : T , Γ ` q0 : T , and Γ, y : T1 `

q1 : T ′ so by inversion we know the following:

(i) Γ ` q′0 : T ′1 + T ′2, for some types T ′1 and T ′2,
(ii) Γ, z : T ′1 ` q′1 : T, and
(iii) Γ, z : T ′2 ` q′2 : T.

Now q0 > q′1 and q0 > q′1 so we can apply the induction hypothesis

twice to obtain terms q̂1 and q̂2 such that rcaseT q′1 y q1 q2 = q̂1,

rcaseT q′1 y q1 q2 = q̂1, Γ, z : T ′1 ` q̂1 : T ′ and Γ, z : T ′2 ` q̂2 :

T ′. So case q′0 of z.(rcaseT q′1 y q1 q2),z.(rcaseT q′2 y q1 q2) =

case q′0 of z.q̂1,z.q̂2. It suffices to show that case q′0 of z.q̂1,z.q̂2 = q̂

and Γ ` q̂ : T for some term q̂. Now q0 > q′0 so we can apply the

induction hypothesis to obtain our result, but before we can we must

show that Γ ` case q′0 of z.q̂1,z.q̂2 : T ′. This is a direct consequence

of applying the case-construct typing rule using i, Γ, z : T ′1 ` q̂1 : T ′

and Γ, z : T ′2 ` q̂2 : T ′. Therefore, by the induction hypothesis there

exists a term q̂ such that case q′0 of z.q̂1,z.q̂2 = q̂ and Γ ` q̂ : T .

The next result we show is that the hereditary substitution function cannot

create new redexes, but this requires we first show that redexes are either preserved

or destroyed. Just as we have seen before this requires the following definition.

Definition 12.2.3.12.

The following function constructs the set of redexes within a term:

302

rset(x) = ∅

rset(λx : T.t) = rset(t)

rset(ΛX : ∗l.t) = rset(t)

rset(t1 t2) = rset(t1, t2)
Where t1 is not a λ-abstraction.

rset(t1 t2) = {t1 t2} ∪ rset(t′1, t2)
Where t1 ≡ λx : T.t′1.

rset(t′′[T ′′]) = rset(t′′)
Where t′′ is not a type absraction.

rset(t′′[T ′′]) = {t′′[T ′′]} ∪ rset(t′′′)
Where t′′ ≡ ΛX : ∗l.t′′′.

rset(inl(t)) = rset(t)

rset(inr(t)) = rset(t)

rset(case t0 of x.t1,x.t2) = rset(t0) ∪ rset(t1, t2)
Where t1 is not an inject-left term or an inject-right term.

rset(case t0 of x.t1,x.t2) = {case t0 of x.t1,x.t2} ∪ rset(t0) ∪ rset(t1, t2)
Where t1 is an inject-left term or an inject-right term.

The extention of rset to multiple arguments is defined as follows:

rset(t1, . . . , tn) =def rset(t1) ∪ · · · ∪ rset(tn).

Lemma 12.2.3.13. [Redex Preserving] If Γ ` t : T , Γ, x : T,Γ′ ` t′ : T ′, and t′ then

|rset(t′, t)| ≥ |rset([t/x]T t′)|.

Proof. This is a proof by induction on the lexicorgraphic combination (T, t′) of >Γ,Γ′

and the strict subexpression ordering. We case split on the structure of t′, and we

only show the cases that differ from the proof of the same lemma for SSF

303

(Lemma 12.1.4.22).

Case. Let t′ ≡ inl(t′′). We know rset(t′, t) = rset(t′′, t). Since t′ > t′′ we can

apply the induction hypothesis to obtain |rset(t′′, t)| ≥ |rset([t/x]T t′′)|. This

implies |rset(t′, t)| ≥ |rset([t/x]T t′)|.

Case. Let t′ ≡ inr(t′′). Similar to the previous case.

Case. Let t′ ≡ t′1 t
′
2. First consider when t′1 is not a λ-abstraction or a case construct.

Then

rset(t′1 t
′
2, t) = rset(t′1, t

′
2, t)

Clearly, t′ > t′i for i ∈ {1, 2}, hence, by the induction hypothesis |rset(t′i, t)| ≥

|rset([t/x]T t′i)|. We have three cases to consider. That is whether or not

[t/x]T t′1 is a λ-abstraction, a case construct, or neither, or ctypeT (x, t′1) is

undefined. However, we only show the new cases. Suppose [t/x]T t′1 =

case t′′0 of y.t′′1,y.t′′2. Then

|rset([t/x]T (t′1 t
′
2))| = |rset(case t′′0 of y.(appT t

′′
1 [t/x]T t′2),y.(appT t

′′
2 [t/x]T t′2))|

= |rset(t′′0, (appT t′′1 [t/x]T t′2), (appT t
′′
2 [t/x]T t′2))|.

We know t′ > t′1 and t′ > t′2 so by the induction hypothesis

|rset([t/x]T t′1)| = |rset(t′′0, t′′1, t′′2)|
≤ |rset(t′1, t)|

and

|rset([t/x]T t′2)| ≤ |rset(t′2, t)|.

By inversion on Γ, x : T,Γ′ ` t1 t2 : T ′ there exists a type T ′′ such that

Γ, x : T,Γ′ ` t′1 : T ′′ → T ′. So by Lemma 12.2.3.10, ctypeT (x, t′1) = T ,

304

T ≡ T ′′ → T ′, and T is a subexpression of T . Hence, T >Γ,Γ′ T
′′ and

T >Γ,Γ′ T
′. At this point we must show the following proposition.

Proposition. For all Γ ` t1 : T ′′ → T ′ and Γ ` t2 : T ′′ we have

|rset(appT t1 t2)| ≤ |rset(t1, t2)|.

We prove this by nested induction on the ordering (T, t′, t1) and case split on

the structure of t1.

Case. Suppose t1 is not a λ-abstraction or a case construct. Then appT t1 t2 =

t1 t2 and |rset(t1 t2)| = |rset(t1, t2)|. Thus,

|rset(appT t1 t2)| ≤ |rset(t1, t2)|.

Case. Suppose t1 ≡ λy : T ′′.t′′1. Then appT t1 t2 = [t2/y]T
′′
t′′1. By inversion on

the assumption Γ ` t1 : T ′′ → T ′ we know Γ, y : T ′′ ` t′′1 : T ′. We know

T >Γ,Γ′ T
′′ so by the outter induction hypothesis

|rset([t2/y]T
′′
t′′1)| ≤ |rset(t′′1, t2)

= |rset(t1, t2).

Thus, |rset(appT t1 t2) ≤ |rset(t1, t2)|.

Case. Suppose t1 ≡ case t′′0 of y.t′′1,y.t′′2. Then

appT t1 t2 = case t′′0 of y.appT t
′′
1 t2,y.appT t

′′
2 t2.

By inversion on the assumption Γ ` t1 : T ′′ → T ′ we know Γ, y : T ′′1 `

t′′1 : T ′′ → T ′ and Γ, y : T ′′2 ` t′′2 : T ′′ → T ′. Since t1 > t′′1 and t1 > t′′2 we

can apply the induction hypothesis to obtain

|rset(appT t′′1 t2)| ≤ |rset(t′′1, t2)|

and

305

|rset(appT t′′2 t2)| ≤ |rset(t′′2, t2)|.

Suppose t′′0 is not an inject-left or an inject-right term. Then

|rset(t1, t2)| = |rset(case t′′0 of y.t′′1,y.t′′2, t2)|
= |rset(t′′0, t′′1, t′′2, t2)|

and
|rset(appT t1 t2)| = |rset(case t′′0 of y.appT t

′′
1 t2,y.appT t

′′
2 t2)|

= |rset(t′′0) ∪ rset(appT t′′1 t2) ∪ rset(appT t′′2 t2)|
≤ |rset(t′′0) ∪ rset(t′′1, t2) ∪ rset(t′′2, t2)|
= |rset(t′′0) ∪ rset(t′′1, t′′2, t2)|
= |rset(t′′0, t′′1, t′′2, t2)|.

Therefore, |rset(appT t1 t2)| ≤ |rset(t1, t2)|.

Now suppose t′′0 ≡ inl(t̂0). We only show the case when t′′0 is an inject-

left term, because the case when it is an inject-right term is similar. By

definition we know

|rset(t1, t2)| = |rset(case t′′0 of y.t′′1,y.t′′2, t2)|
= |{case t′′0 of y.t′′1,y.t′′2} ∪ rset(t′′0, t′′1, t′′2, t2)|

and
|rset(appT t1 t2)|

= |rset(case t′′0 of y.appT t
′′
1 t2,y.appT t

′′
2 t2)|

≤ |{case t′′0 of y.appT t
′′
1 t2,y.appT t

′′
2 t2} ∪ rset(t′′0) ∪ rset(t′′1, t′′2, t2)|

= |{case t′′0 of y.appT t
′′
1 t2,y.appT t

′′
2 t2} ∪ rset(t′′0, t′′1, t′′2, t2)|.

Therefore, |rset(appT t1 t2)| ≤ |rset(t1, t2)|.

Finally, suppose t′1 ≡ case t′′0 of y.t′′1,y.t′′2. Then

|rset([t/x]T (t′1 t
′
2))|

= |rset((case [t/x]T t′′0 of y.[t/x]T t′′1,y.[t/x]T t′′2) [t/x]T t′2)|
= |{[t/x]T (t′1 t

′
2)} ∪ rset([t/x]T t′′0, [t/x]T t′′1, [t/x]T t′′2, [t/x]T t′2)|.

Now t′ > t′′0, t′ > t′′1, t′ > t′′2, and t′ > t′2 so by the induction hypothesis

|rset([t/x]T t′′0| ≤ |rset(t′′0, t)|,
|rset([t/x]T t′′1| ≤ |rset(t′′1, t)|,
|rset([t/x]T t′′2| ≤ |rset(t′′2, t)|, and
|rset([t/x]T t′2| ≤ |rset(t′2, t)|.

Hence,

|rset([t/x]T t′′0, [t/x]T t′′1, [t/x]T t′′2, [t/x]T t′2)| ≤ |rset(t′′0, t′′1, t′′2, t′2, t)|.

306

Now

|rset(t′1 t′2, t)| = |rset((case t′′0 of y.t′′1,y.t′′2) t′2, t)|
= |{t′1 t′2} ∪ rset(t′′0, t′′1, t′′2, t′2, t)|.

Therefore, |rset([t/x]T (t′1 t
′
2))| ≤ |rset(t′1 t′2, t)|.

Case. Let t′ ≡ case t′0 of y.t′1,y.t′2. Suppose t′0 is not an inject-left term, and inject-

right term, or a case-construct. First we know

|rset(t′, t)| = |rset(t′0, t′1, t′2, t)|.

Now we have several cases to consider, when [t/x]T t′0 is an inject-left term, an

inject-right term, a case construct, something else entirely, or ctypeT (x, t′0) is

undefined. Suppose it is something else entirely or ctypeT (x, t′0) is undefined.

Then

|rset([t/x]T t′)| = |rset(case [t/x]T t′0 of y.([t/x]T t′1),y.([t/x]T t′2))|
= |rset([t/x]T t′0, ([t/x]T t′1), ([t/x]T t′2))|.

We can see that t′ > t′0, t′ > t′1, t′ > t′2 so by the induction hyothesis

|rset([t/x]T t′0| ≤ |rset(t′0, t)|,
|rset([t/x]T t′1| ≤ |rset(t′1, t)|, and
|rset([t/x]T t′2| ≤ |rset(t′2, t)|.

This implies that |rset([t/x]T t′0, ([t/x]T t′1), ([t/x]T t′2))| ≤ |rset(t′0, t′1, t′2, t)|.

Therefore, |rset(t′, t)| ≥ |rset([t/x]T t′).

Now suppose [t/x]T t′0 ≡ inl(t′′0). We only show the case for when [t/x]T t′0

is an inject-left term, because the case for when it is an inject-right term is

similar. We can see that

|rset(t′, t)| = |rset(case t′0 of y.t′1,y.t′2, t)|
= |rset(t′0, t′1, t′2, t)|

307

and |rset([t/x]T t′)| = |rset([t′′0/y]T1([t/x]T t′1))|. By inversion on Γ, x : T,Γ′ `

t′ : T ′ we know there exists types T1 and T2 such that Γ, x : T,Γ′ ` t0 : T1+T2.

So by Lemma 12.2.3.10 there exists a type T such that ctypeT (x, t′0) = T ,

T ≡ T1 + T2, and T is a subexpression of T . Thus, T >Γ,Γ′ T1, T >Γ,Γ′ T2,

t > t′0, and t > t′1 so we can apply the induction hypothesis to obtain

|rset([t′′0/y]T1([t/x]T t′1))| ≤ |rset(t′′0, [t/x]T t′1)|
= |rset([t/x]T t′0, [t/x]T t′1)|
≤ |rset(t′0, t′1, t)|
≤ |rset(t′0, t′1, t′2, t)|.

Next suppose [t/x]T t′0 ≡ case t′′0 of y.t′′1,y.t′′2. Then

|rset([t/x]T t′)| = |rset(rcaseT [t/x]T t′0 y [t/x]T t′1 [t/x]T t′2)|

and

|rset(t′, t)| = |rset(case t′0 of y.t′1,y.t′2, t)|
= |rset(t′0, t1, t′2, t)|.

Note that by inverision on Γ, x : T,Γ′ ` t′ : T ′ we know there exists types

T1 and T2 such that Γ, x : T,Γ′ ` t′0 : T1 + T2. So by Lemma 12.2.3.10 there

exists a type T such that ctypeT (x, t′0) = T , T ≡ T1 + T2, and T is a subex-

pression of T . Thus, T >Γ,Γ′ T1 and T >Γ,Γ′ T2. It suffices to show that

|rset(rcaseT [t/x]T t′0 [t/x]T t′1 [t/x]T t′2)| ≤ |rset([t/x]T t′0, [t/x]T t′1, [t/x]T t′2)|

which is a consequence of the following proposition.

Proposition. For all Γ ` t : T1 + T2, Γ, y : T1 ` t′1 : T ′, and Γ, y : T2 ` t′2 : T ′

we have |rset(rcaseT t y t′1 t′2)| ≤ |rset(t, t′1, t′2)|.

We prove this proposition by nested induction on (T, t′, t) and we case split

on t.

308

Case. Suppose t ≡ inl(t′). Then

rset(rcaseT t y t
′
1 t
′
2) = rset([t′/y]T1t′1).

By inversion on Γ ` t : T1 + T2 we know Γ ` t′ : T1. So by the outer

induction hypothesis

|rset([t′/y]T1t′1)| ≤ |rset(t′1, t′)|
= |rset(t, t′1)|
≤ |rset(t, t′1, t′2)|.

Therefore, |rset(rcaseT t y t′1 t′2)| ≤ |rset(t, t′1, t′2)|.

Case. Suppose t ≡ inr(t′). This case is similar to the previous case.

Case. Suppose t ≡ case t0 of z.t1,z.t2. Then

rcaseT t y t
′
1 t
′
2 = case t0 of z.(rcaseT t1 y t

′
1 t
′
2),z.(rcaseT t2 y t

′
1 t
′
2).

Now t > t′i for i ∈ {0, 1, 2}. Before we can apply the inductive hypothesis

we must show that t1 and t2 are typeable. By inversion on the assumption

Γ ` t : T1 + T2 we know Γ, z : T ′1 ` t1 : T1 + T2 and Γ, z : T ′2 ` t2 :

T1 + T2. So by the inner induction hypothesis |rset(rcaseT ti y t
′
1 t
′
2)| ≤

|rset(ti, t′1, t′2)|.

We have two cases to consider either t0 is not an inject-left term or an

inject-right term, or it is. If not then

rset(rcaseT t y t
′
1 t
′
2) = rset(t0, rcaseT t1 y t

′
2 t
′
2, rcaseT t2 y t

′
2 t
′
2)

otherwise

rset(rcaseT t y t
′
1 t
′
2)

= {rcaseT t y t
′
1 t
′
2} ∪ rset(t0, rcaseT t1 y t

′
1 t
′
2, rcaseT t2 y t

′
1 t
′
2).

Suppose t0 is not an inject-left or an inject-right term. Then

|rset(t, t′1, t′2)| = |rset(t0, t1, t2, t′1, t′2)|.

309

Now we know
|rset(t0, rcaseT t1 y t

′
2 t
′
2, rcaseT t2 y t

′
2 t
′
2)|

= |rset(t0) ∪ rset(rcaseT t1 y t
′
2 t
′
2) ∪ rset(rcaseT t2 y t

′
2 t
′
2)|

≤ |rset(t0) ∪ rset(t1, t′2, t′2) ∪ rset(t1, t′2, t′2)|
= |rset(t0, t1, t2, t′2, t′2)|.

Therefore, |rset(rcaseT t y t
′
1 t
′
2)| ≤ |rset(t, t′1, t′2)|.

Now suppose t0 ≡ inl(t′0). Then

|rset(t, t′1, t′2)| = |{t} ∪ rset(t0, t1, t2, t′1, t′2)|.

It suffices to show that

|{rcaseT t y t
′
1 t
′
2} ∪ rset(t0, rcaseT t1 y t

′
1 t
′
2, rcaseT t2 y t

′
1 t
′
2)|

≤ |{t} ∪ rset(t0, t1, t2, t′1, t′2)|.

Let A = rcaseT t1 y t
′
1 t
′
2 and B = rcaseT t2 y t

′
1 t
′
2. Since

|rset(rcaseT ti y t
′
1 t
′
2)| ≤ |rset(ti, t′1, t′2)| we obtain the following:

|{rcaseT t y t
′
1 t
′
2} ∪ rset(t0, A,B)|

= |{rcaseT t y t
′
1 t
′
2}|+ |rset(t0)|+ |rset(A)|+ |rset(B)|

≤ |{rcaseT t y t
′
1 t
′
2}|+ |rset(t0)|+ |rset(t1, t′1, t′2)|+ |rset(t2, t′1, t′2)|

= |{rcaseT t y t
′
1 t
′
2}|+ |rset(t0, t1, t2, t′1, t′2)|

= |{t} ∪ rset(t0, t1, t2, t′1, t′2)|.
The case when t0 is an inject-right term is similar to the case when it is

an inject-left term.

Now by the previous proposition we know

|rset(rcaseT [t/x]T t′0 [t/x]T t′1 [t/x]T t′2)| ≤ |rset([t/x]T t′0, [t/x]T t′1, [t/x]T t′2)|,

becuase by Lemma 12.2.3.11 t′0, t′1, and t′2 have the same types as [t/x]T t′0,

[t/x]T t′1, and [t/x]T t′2. Now t′ > t′0, t′ > t′1, and t′ > t′2, so

|rset([t/x]T t′0)| ≤ |rset(t′0, t),
|rset([t/x]T t′1)| ≤ |rset(t′1, t), and
|rset([t/x]T t′2)| ≤ |rset(t′2, t).

Thus,

310

|rset([t/x]T t′0, [t/x]T t′1, [t/x]T t′2)| ≤ |rset(t′0, t′1, t′2, t)|
= |rset(t′, t)|.

Suppose t′0 ≡ inl(t′′0). Again, we only show the case for when t′0 is an inject-left

term. We know

|rset([t/x]T t′)| = |rset(case [t/x]T t′0 of y.[t/x]T t′1,y.[t/x]T t′2)|
= |rset(case inl([t/x]T t′′0) of y.[t/x]T t′1,y.[t/x]T t′2)|
= |{[t/x]T t′} ∪ rset([t/x]T t′′0, [t/x]T t′1, [t/x]T t′2)|

and

|rset(t′, t)| = |rset(case t′0 of y.t′1,y.t′2, t)|
= |rset(case inl(t′′0) of y.t′1,y.t′2, t)|
= |{t′} ∪ rset(t′′0, t′1, t′2)|.

Now t′ > t′′0, t′ > t′1, and t′ > t′2 so by the induction hypothesis

|rset([t/x]T t′′0)| ≤ |rset(t′′0, t)|
|rset([t/x]T t′1)| ≤ |rset(t′1, t)|
|rset([t/x]T t′2)| ≤ |rset(t′2, t)|.

Therefore, |rset([t/x]T t′′0, [t/x]T t′1, [t/x]T t′2)| ≤ |rset(t′′0, t′1, t′2, t)| which implies

that |rset([t/x]T t′)| ≤ |rset(t′, t)|.

Finally, suppose t′0 ≡ case t′′0 of z.t′′1,z.t′′2. Then

|rset([t/x]T t′)|
= |rset(case [t/x]T t′0 of y.[t/x]T t′1,y.[t/x]T t′2)|
= |rset(case case [t/x]T t′′0 of z.[t/x]T t′′0t

′′
1,z.[t/x]T t′′0t

′′
2 of y.[t/x]T t′1,y.[t/x]T t′2)|

= |{[t/x]T t′} ∪ rset([t/x]T t′0, [t/x]T t′1, [t/x]T t′2)|

and

|rset(t′, t)| = |rset(case t′0 of y.t′1,y.t′2, t)|
= |rset(case case t′′0 of z.t′′1,z.t′′2 of y.t′1,y.t′2, t)|
= |{t′} ∪ rset(t′0, t′1, t′2)|.

Now t′ > t′′0, t′ > t′1, and t′ > t′2 so by the induction hypothesis

|rset([t/x]T t′0)| ≤ |rset(t′0, t)|,
|rset([t/x]T t′1)| ≤ |rset(t′1, t)|, and
|rset([t/x]T t′2)| ≤ |rset(t′2, t)|.

Therefore, |rset([t/x]T t′′0, [t/x]T t′1, [t/x]T t′2)| ≤ |rset(t′′0, t′1, t′2, t)| which implies

that |rset([t/x]T t′)| ≤ |rset(t′, t)|.

311

We now use the previous result to show the hereditary substitution function to be

normality preserving.

Lemma 12.2.3.14. [Normality Preserving] If Γ ` n : T and Γ, x : T ′ ` n′ : T ′ then

there exists a normal term n′′ such that [n/x]Tn′ = n′′.

Proof. By Lemma 12.2.3.11 we know there exists a term n′′ such that [n/x]Tn′ = t and

by Lemma 12.2.3.13 |rset(n′, n)| ≥ |rset([n/x]Tn′)|. Hence, |rset(n′, n)| ≥ |rset(t)|,

but |rset(n′, n)| = 0. Therefore, |rset(t)| = 0 which implies n′′ has no redexes. It

suffices to show that n′′ has no structural redexes. We prove this by induction on the

lexicographic ordering (T, n′). We case split on the structure of n′.

Case. Suppose n′ is a variable x or y distinct from x. Trivial in both cases.

Case. Suppose n′ ≡ λy : T ′′.n̂′. Then [n/x]Tn′ = λy : T ′′.[t/x]T n̂′. By inversion on

the assumption Γ, x : T ′ ` n′ : T ′ we know Γ, x : T ′,Γ′, y : T ′′ ` n̂′ : T ′. Since

n′ > n̂ we can apply the induction hypothesis to obtain there exists a term

t′ such that [t/x]T n̂ = t′ and t′ has no structural redexes. Therefore, neither

does λy : T ′′.[t/x]T n̂′.

Case. Suppose n′ ≡ ΛX : ∗l.n̂. Similar to the previous case.

Case. Suppose n′ ≡ inl(n′0). Similar to the λ-abstraction case.

Case. Suppose n′ ≡ n′1 n
′
2. By inversion we know Γ, x : T,Γ′ ` n′1 : T ′′ → T ′ and

Γ, x : T,Γ′ ` n′2 : T ′′ for some types T ′ and T ′′. Clearly, n′ > n′i for i ∈ {1, 2}.

Thus, by the induction hypothesis there exists normal terms m1 and m2 such

312

that [n/x]Tn′i = mi such that mi have no structural redexes. We case split

on whether or not m1 is a λ-abstraction or a case construct and n′1 is not,

or ctypeT (x, n′1) is undefined. We only consider the non-trivial cases when

m1 ≡ λy : T ′′.m′1 or m1 ≡ case m′0 of y.m′1,y.m′2 and n′1 is not a λ-abstraction

or a case construct. Suppose the former. Now by Lemma 12.2.3.10 there

exists a type T such that ctypeT (x, n′1) = T , T ≡ T ′′ → T ′, and T is a

subexpression of T , hence T >Γ,Γ′ T
′′. So [n/x]T (n′1 n

′
2) = [m2/y]T

′′
m′1 and

by the induction hypothesis there exists a term m such that [m2/y]T
′′
m′1 = m

and m has no structural redexes..

Suppose m1 ≡ case m′0 of y.m′1,y.m′2. By inversion on Γ,Γ′ ` m1 : T ′′ → T ′

we know there exists terms T1 and T2 such that Γ,Γ′ ` m′0 : T1 + T2 and

Γ,Γ′, y : Ti ` m′i : T ′′ → T ′ for i ∈ {1, 2}. Note that by Lemma 12.2.3.10

there exists a type T such that ctypeT (x, n′1) = T , T ≡ T ′′ → T ′, and T

is a subexpression of T , hence T >Γ,Γ′ T
′ and T >Γ,Γ′ T

′′. Now [t/x]T t′ =

case m′0 of y.appT m
′
1 m2,y.appT m

′
2 m2. It suffcies to show that there exists

terms q and q′ such that appT m′1 m2 = q, appT m′2 m2 = q′ and q and

q′ have no structural redexes. To obtain this result we prove the following

proposition.

Proposition. For all normal terms m2 and m′1 such that Γ ` m2 : T ′′ and

Γ ` m′1 : T ′′ → T ′ there exists a term q such that appT m
′
1 m2 = q and q has

no structural redexes.

We prove this by nested induction on the ordering (T, n′,m′1) and case split-

313

ting on the structure of m′1.

Case. Suppose m′1 is neither a λ-abstraction or a case construct. Then

appT m
′
1 m2 = m′1 m2. Take m′1 m2 for q and we know q has no structural

redexes, because m′1 and m2 are normal.

Case. Suppose m′1 ≡ λz : T ′′.m′′1. Then appT m′1 m2 = [m2/z]T
′′
m′′1. By

inversion on the assumption Γ ` m′1 : T ′′ → T ′ we know Γ, z : T ′′ `

m′′1 : T ′. Since T >Γ T ′′ we can apply the outter induction hypothesis

to obtain there there exists a q such that [m2/z]T
′′
m′′1 = q and q has no

structural redexes.

Case. Suppose m′1 ≡ case m′′0 of z.m′′1,z.m′′2. Then

appT m
′
1 m2 = case m′′0 of z.appT m

′′
1 m2,z.appT m

′′
2 m2. By inversion on

the assumption Γ ` m′1 : T ′′ → T ′ we know there exists types T1 and T2

such that Γ ` m′′0 : T1 + T2, Γ, z : T1 ` m′′1 : T ′′ → T ′ and Γ, z : T2 ` m′′2 :

T ′′ → T ′. Since m′1 > m′′1 and m′1 > m′′2 we can apply the inner induction

hypothesis to obtain there exists terms q′ and q′′ such that appT m
′′
1 m2 =

q′, q′ has no structural redexes, appT m
′′
1 m2 = q′′ and q′′ has no structural

redexes. Hence, appT m
′
1 m2 = case m′′0 of z.appT m

′′
1 m2,z.appT m

′′
2 m2 =

case m′′0 of z.q′,z.q′′ and case m′′0 of z.q′,z.q′′ has no structural redexes.

Note that m′′0 is normal, because m′1 is normal.

By the previous proposition there exists terms q and q′ such that

[n/x]Tn′ = case m′0 of y.appT m′1 m2,y.appT m′2 m2 = case m′0 of y.q,y.q′,

where appT m′1 m2 = q, appT m′1 m2 = q′, and q and q′ have no structural

314

redexes. Thus, case m′0 of y.q,y.q′ has no structural redexes.

Case. Suppose n′ ≡ case m0 of y.m1,y.m2. By inversion on the assumption Γ, x :

T,Γ′ ` n′ : T ′ we know the following:

Γ, x : T,Γ′ ` m0 : T1 + T2, for some types T1 and T2,
Γ, x : T,Γ′, y : T1 ` m1 : T, and
Γ, x : T,Γ′, y : T2 ` m2 : T.

It is easy to see that n′ > mi for all i ∈ {0, 1, 2}. Hence, by the induction

hypothesis there exists terms m′0, m′1, and m′2 such that [t/x]Tmi = m′i and

m′i have no structural redexes for all i ∈ {0, 1, 2}. We have two cases to

consider.

Case. Suppose m′0 is not an inject-left term, inject-right term, or case construct,

or m0 is an inject-left term, an inject-right term, or a case construct, or

ctypeT (x,m0) is undefined. Then

[n/x]T (case m0 of y.m1,y.m2) = case m′0 of y.m′1,y.m′2 which has no

structural redexes.

Case. Suppose m′0 is an inject-left term, inject-right term, or case construct and

m0 is not an inject-left term, an inject-right term, or a case construct.

Then [n/x]T (case m0 of y.m1,y.m2) = rcaseT m
′
0 y m

′
1 m

′
2, where by

Lemma 12.2.3.10 there exists a type T such that ctypeT (x,m0) = T , T ≡

T1 + T2, and T is a subexpression of T , hence T >Γ,Γ′ T1 and T >Γ,Γ′ T2.

Consider the case when m′0 ≡ inl(m′′0). Then we know by the definition

of rcase that rcaseT m′0 y m
′
1 m

′
2 = [m′′0/y]T1m′1. Clearly, T >Γ,Γ′ T1

hence by the the induction hypothesis there exists a term r such that

315

[m′′0/y]T1m′1 = r and r has no structural redexes. Similarly for when

m′0 ≡ inr(m′′0). So suppose m′0 ≡ case m′′0 of z.m′′1,z.m′′2 then it suffices

to show that there exists some term q such that rcaseT m
′
0 y m

′
1 m

′
2 = q

and q has no structural redexes. We obtain this result by the following

proposition.

Proposition. For all normal terms q and q1 such that Γ ` q0 : T ,

Γ, y : T1 ` q1 : T ′, and Γ, y : T2 ` q2 : T ′ there exists a term q̂ such that

rcaseT q0 y q1 q2 = q̂ and q̂ has no structural redexes. We prove this by

induction on the the ordering (T, n′, q0) and case split on the structure

of q0.

Case. Suppose q0 is not an inject-left term, inject-right term, or a case

construct. Then

rcaseT q0 y q1 q2 = case q0 of y.q1,y.q2 which has no structural redexes.

Case. Suppose q0 ≡ inl(q′0). Then rcaseT q0 y q1 q2 = [q′0/y]T1q1 and by

inversion on Γ ` q0 : T we know Γ ` q′0 : T1. It suffices to show that

there exists a term q̂ such that [q′0/y]T1q1 = q̂ and q̂ has no structural

redexes. Clearly, T >Γ T
′ so by the outer induction hypothesis there

exists such a term q̂.

Case. Suppose q0 ≡ inl(q′0). Similar to the previous case.

Case. Suppose q0 ≡ case q′0 of z.q′1,z.q′2. Then

rcaseT q0 y q1 q2 = case q′0 of z.(rcaseT q
′
1 y q1 q2),z.(rcaseT q

′
2 y q1 q2).

We know by assumption that Γ ` q0 : T , Γ ` q0 : T , and Γ, y : T1 `

316

q1 : T ′ so by inversion we know the following:

(i) Γ ` q′0 : T ′1 + T ′2, for some types T ′1 and T ′2,
(ii) Γ, z : T ′1 ` q′1 : T, and
(iii) Γ, z : T ′2 ` q′2 : T.

Now q0 > q′1 and q0 > q′1 so we can apply the inner induction hypoth-

esis twice to obtain terms q̂1 and q̂2 such that rcaseT q′1 y q1 q2 =

q̂1, rcaseT q′1 y q1 q2 = q̂1 where q̂1 and q̂2 have no structural re-

dexes. So case q′0 of z.(rcaseT q′1 y q1 q2),z.(rcaseT q′2 y q1 q2) =

case q′0 of z.q̂1,z.q̂2. It suffices to show that case q′0 of z.q̂1,z.q̂2 = q̂

for some normal term q̂. Now q0 > q′0 so we can apply the induc-

tion hypothesis to obtain our result, but before we can we must show

that Γ ` case q′0 of z.q̂1,z.q̂2 : T ′. This is a direct consequence of

applying the case-construct typing rule using i, Γ, z : T ′1 ` q̂1 : T ′

and Γ, z : T ′2 ` q̂2 : T ′. Therefore, by the inner induction hypothesis

there exists a term q̂ such that case q′0 of z.q̂1,z.q̂2 = q̂ and q̂ is has

no structural redexes.

Finally, we show that the hereditary substitution function is consistent with respect

to reduction.

Lemma 12.2.3.15. [Soundness with Respect to Reduction] If Γ ` t : T and Γ, x :

T,Γ′ ` t′ : T ′ then [t/x]t′ ∗ [t/x]T t′.

Proof. This is a proof by induction on the lexicorgraphic combination (T, t′) of >Γ and

the strict subexpression ordering. We case split on the structure of t′. When applying

317

the induction hypothesis we must show that the input terms to the substitution and

the hereditary substitution functions are typeable. We do not explicitly state typing

results that are simple conseqences of inversion. Furthermore, we only give the cases

that differ from the proof of the same result for SSF (Lemma 12.1.4.24).

Case. Suppose t′ ≡ inl(t′0). Then [t/x]T t′ = inl([t/x]T t′0). We can see that t′ > t′0

so by the induction hypothesis [t/x]t′0
∗ [t/x]T t′0. Hence, inl([t/x]t′0) ∗

inl([t/x]T t′0) which implies that [t/x](inl(t′0)) ∗ [t/x]T (inl(t′0)).

Case. Suppose t′ ≡ inr(t′0). Similar to the previous case.

Case. Suppose t′ ≡ case t′0 of y.t′1,y.t′2. Clearly, t′ > t′0, t′ > t′1, and t′ > t′2,

so we can apply the induction hypothesis to conclude [t/x]t′0
∗ [t/x]T t′0,

[t/x]t′1 ↓ [t/x]T t′1, and [t/x]t′2
∗ [t/x]T t′2. We have several cases to consider,

either when [t/x]T t′0 is an inject-left term or an inject-right term and t′0 is not,

when [t/x]T t′0 is a case construct and t′0 is not, or [t/x]T t′0 is not an inject-left

term, an inject-right term, or a case construct, or ctypeT (x, t′0) is undefined.

The cases when [t/x]T t′0 is not an inject-left term, an inject-right term, or a

case construct, or ctypeT (x, t′0) is undefined are trivial.

Let’s consider the case when [t/x]T t′0 is an inject-left term or an inject-

right term and t′0 is not. Since the case when [t/x]T t′0 is an inject-left

term is similar to the case when it is an inject-right term we only consider

the former. Suppose [t/x]T t′0 = inl(t′′0) and t′0 is not an inject-left term.

By Lemma 12.2.3.10 there exists a type T such that ctypeT (x, t′0) = T ,

T ≡ T1 + T2, and T is a subexpression of T , where by inversion on Γ, x :

318

T,Γ′ ` t′ : T ′ there exists types T1 and T2 such that Γ, x : T,Γ′ ` t′0 : T1 + T2.

Thus, T >Γ,Γ′ T1 and T >Γ,Γ′ T2. So [t/x]T t′ = [t′′0/y]T1([t/x]T t′1) and we know

from above that [t/x]t′1
∗ [t/x]T t′1. Now T >Γ,Γ′ T1, so by the induction

hypothesis, [t′′0/y]([t/x]T t′1) ∗ [t′′0/y]T1([t/x]T t′1). Thus, [t′′0/y]([t/x]t′1) ∗

[t′′0/y]T1([t/x]T t′1). It suffices to show [t/x]t′ ∗ [t′′0/y]([t/x]t′1). We can see

that

[t/x]t′ = [t/x](case x of y.t′1,y.t′2)
≡ case [t/x]x of y.[t/x]t′1,y.[t/x]t′2
≡ case inl(t′′0) of y.[t/x]t′1,y.[t/x]t′2
 [t′′0/y]([t/x]t′1).

Suppose [t/x]t′0 = case t′′0 of z.t′′1,z.t′′2 and t′0 is not. It suffices to show that

[t/x]t ∗ [t/x]T t′, which is equivalent to showing [t/x](case t′0 of y.t′1,y.t′2) ∗

[t/x]T (case t′0 of y.t′1,y.t′2). Now

[t/x]T (case t′0 of y.t′1,y.t′2)
= case t′′0 of z.(rcaseT t

′′
1 y t

′
1 t
′
2),z.(rcaseT t

′′
1 y t

′
1 t
′
2)

and

[t/x](case t′0 of y.t′1,y.t′2)
= case [t/x]t′0 of y.[t/x]t′1,y.[t/x]t′2
 ∗ case (case t′′0 of z.t′′1,z.t′′2) of y.[t/x]t′1,y.[t/x]t′2
 case t′′0 of z.(case t′′1 of y.t′1,y.t′2),z.(case t′′2 of y.t′1,y.t′2),

because we know from above that [t/x]t′0
∗ [t/x]T t′0. So it suffices to show

that (case t′′1 of y.t′1,y.t′2) ∗ (rcaseT t
′′
1 y t

′
1 t
′
2) and (case t′′2 of y.t′1,y.t′2) ∗

(rcaseT t′′2 y t′1 t′2), because we know from above that [t/x]ti ∗ [t/x]T t′i.

This is a consequence of the following proposition. First note that again by

Lemma 12.2.3.10 there exists a type T such that ctypeT (x, t′0) = T , T ≡

T1 +T2, and T is a subexpression of T , where by inversion on the assumption

Γ, x : T,Γ′ ` t′ : T ′ there exists types T1 and T2 such that Γ, x : T,Γ′ ` t′0 :

319

T1 + T2. Hence, T >Γ,Γ′ T1 and T >Γ,Γ′ T2.

Proposition. For all Γ ` t0 : T1 +T2, Γ, y : T1 ` t1 : T ′′ and Γ, y : T2 ` t2 : T ′′

we have (case t0 of y.t1,y.t2) ∗ (rcaseT t0 y t1 t2).

We prove this by nested induction on the ordering (T, t′, t0) and case splitting

on the structure of t0.

Case. Suppose t0 is not an inject-left term, an inject-right term, or a case con-

struct. Then

rcaseT t0 y t1 t2 = case t0 of y.t1,y.t2.

Case. Suppose t0 ≡ inl(t′0). Then

rcaseT t0 y t1 t2 = [t′0/y]T1t1

and

case t0 of y.t1,y.t2 ≡ case inl(t′0) of y.t1,y.t2
 [t′0/y]t1.

Now T >Γ T1 so by the outer-induction hypothesis [t′0/y]t1 ∗ [t′0/y]T1t1.

Therefore, (case t0 of y.t1,y.t2) ∗ (rcaseT t0 y t1 t2).

Case. Suppose t0 ≡ inl(t′0). Similar to the previous case.

Case. Suppose t0 ≡ case t′0 of z.t′1,z.t′2. Then

rcaseT t0 y t1 t2 = case t′0 of z.(rcaseT t
′
1 y t1 t2),z.(rcaseT t

′
2 y t1 t2)

and

case t0 of y.t1,y.t2
≡ case (case t′0 of z.t′1,z.t′2) of y.t1,y.t2
 case t′0 of z.(case t′1 of y.t1,y.t2),z.(case t′2 of y.t1,y.t2).

Trivially, t0 > t′1 and t0 > t′2 so by the inner-induction hypothesis

320

(case t′1 of y.t1,y.t2) ∗ (rcaseT t
′
1 y t1 t2)

and

(case t′2 of y.t1,y.t2) ∗ (rcaseT t
′
2 y t1 t2).

Therefore, (case t0 of y.t1,y.t2) ∗ (rcaseT t0 y t1 t2).

Case. Suppose t′ ≡ t′1 t
′
2. By Lemma 12.2.3.11 there exists terms t̂′1 and t̂′2 such that

[t/x]T t′1 = t̂′1 and [t/x]T t′2 = t̂′2. Since t′ > t′1 and t′ > t′2 we can apply the

induction hypothesis to obtain [t/x]t′1
∗ t̂′1 and [t/x]t′2

∗ t̂′2. Now we case

split on whether or not t̂′1 is a λ-abstraction and t′1 is not, t̂′1 is a case construct

and t′1 is not, ctypeT (x, t′1) is undefined, or t̂′1 is neither a λ-abstraction or a

case construct. We only show the case where t̂′1 is a case construct.

Finally, suppose t̂′1 ≡ case t0 of y.t1,y.t2 and t′0 is not a case construct. By

Lemma 12.2.3.10 there exists a type T such that ctypeT (x, t′1) = T , T ≡

T ′′ → T ′ and T is a subexpression of T , where by inversion on the assumption

Γ, x : T,Γ′ ` t′ : T ′ there exists a type T ′′ such that Γ, x : T,Γ′ ` t′1 : T ′′ → T ′.

Now

[t/x]T (t′1 t
′
2) = case t0 of y.(appT t1 ([t/x]T t′2)),y.(appT t1 ([t/x]T t′2))

and

[t/x](t′1 t
′
2) = ([t/x]t′1)([t/x]t′2).

Clearly, t′ > t′1 and t′ > t′2, so by the induction hypothesis [t/x]t′1
∗ [t/x]T t′1

and [t/x]t′2
∗ [t/x]T t′2. Thus,

321

([t/x]t′1) ([t/x]t′2) ∗ (case t0 of y.t1,y.t2) ([t/x]t′2)
 case t0 of y.(appT t1([t/x]t′2)),y.(appT t2([t/x]t′2))

and

((case t0 of y.(appT t1 ([t/x]t′2)),y.(appT t1 ([t/x]t′2)))) ∗

(case t0 of y.(appT t1 ([t/x]T t′2)),y.(appT t1 ([t/x]T t′2))).

It suffices to show that (t1 ([t/x]t′2)) ∗ (appT t1 ([t/x]t′2)) and (t2 ([t/x]t′2)) ∗

(appT t2 ([t/x]t′2)). This is a consequence of the following proposition:

Proposition. For all Γ ` t1 : T1 → T2 and Γ ` t2 : T1 we have (t1 t2) ∗

(appT t1 t2).

We prove this by nested induction on the ordering (T, t′, t1) and case split on

the structure of t1.

Case. Suppose t1 is not a λ-abstraction or a case construct. Then appT t1 t2 =

t1 t2.

Case. Suppose t1 ≡ λy : T1.t
′′
1. Then appT t1 t2 = [t2/y]T1t′′1. Clearly, T >Γ T1

so by the outer-induction hypothesis [t2/y]t′′1
∗ [t2/y]T1t′′1. Therefore,

(t1 t2) ∗ (appT t1 t2).

Case. Suppose t1 ≡ case t′0 of y.t′1,y.t′2. Then

appT t1 t2 = case t′0 of y.(appT t
′
1 t2),y.(appT t

′
2 t2)

and

(t1 t2) = (case t′0 of y.t′1,y.t′2) t2
 case t′0 of y.(t′1 t2),y.(t′2 t2).

We can see that t1 > t′1 and t1 > t′2 so by the inner-induction hypothesis,

(t′1 t2) ∗ (appT t
′
1 t2) and (t′2 t2) ∗ (appT t

′
2 t2). Therefore,

322

(case t′0 of y.(t′1 t2),y.(t′2 t2)) ∗ (case t′0 of y.(appT t
′
1 t2),y.(appT t

′
2 t2)),

which implies (t1 t2) ∗ (appT t1 t2).

12.2.4 Concluding Normalization

Similarly to SSF, the definition of the interpretation of types is identical to

the definition for STLC (Definition 6.2.0.7), so we do not repeat it here. We define

t ! t′ to be t ∗ t′ and t′ is normal. Before moving on to proving soundness of

typing and concluding normalization we need a basic result about the interpretation

of types: type substitution. It is used in the proof of the type soundness theorem

(Theorem 12.2.4.18).

Lemma 12.2.4.16. [Type Substitution for the Interpretation of Types]

If n ∈ [[T ′]]Γ,X:∗l,Γ′ and Γ ` T : ∗l then [T/X]n ∈ [[[T/X]T ′]]Γ,[T/X]Γ′.

Proof. This proof is similar to the proof of the same lemma for SSF (Lemma 12.1.5.27).

Next we now show substitution for the interpretation of types.

Lemma 12.2.4.17. [Hereditary Substitution for the Interpretation of Types] If n′ ∈

[[T ′]]Γ,x:T,Γ′, n ∈ [[T]]Γ, then [n/x]Tn′ ∈ [[T ′]]Γ,Γ′.

Proof. By Lemma 12.2.3.11 we know there exists a term n̂ such that [n/x]Tn′ = n̂

and Γ,Γ′ ` n̂ : T ′ and by Lemma 12.2.3.14 n̂ is normal. Therefore, [n/x]Tn′ = n̂ ∈

[[T ′]]Γ,Γ′ .

323

Finally, we are ready to present our main result, which implies normalization of SSF+.

Theorem 12.2.4.18. [Type Soundness] If Γ ` t : T then t ∈ [[T]]Γ.

Proof. This is a proof by induction on the assumed typing derivation. We only show

the cases that differ from the proof of type soundness for SSF (Theorem 12.1.6.28).

Case.

Γ ` t : T1 Γ ` T2 : ∗p
Γ ` inl(t) : T1 + T2

By the induction hypothesis, t ∈ [[T1]]Γ and by the definition of the inter-

pretation of types, t ! n ∈ [[T1]]Γ, and inl(n) ∈ [[T1 + T2]]Γ. Again, by the

definition of the interpretation of types inl(t) ! inl(n) ∈ [[T1 + T2]]Γ.

Case.

Γ ` t : T2 Γ ` T1 : ∗p
Γ ` inr(t) : T1 + T2

Similar the inject-left case above.

Case.

Γ ` t0 : T1 + T2 Γ, x : T1 ` t1 : T Γ, x : T2 ` t2 : T

Γ ` case t0 of x.t1,x.t2 : T

By the induction hypothesis and the definition of the interpretation of types

t0 ! n0 ∈ [[T1 + T2]]Γ and Γ ` n0 : T1 + T2, t1 ! n1 ∈ [[T]]Γ,x:T1 and

Γ, x : T1 ` n1 : T , and t2 ! n2 ∈ [[T]]Γ,x:T2 and Γ, x : T2 ` n2 : T . Clearly,

324

case t0 of x.t1,x.t2 ∗ case n0 of x.n1,x.n2

= [n0/z](case z of x.n1,x.n2),

for some variable z 6∈ FV (n0, n1, n2)∪{x}. Lemma 12.2.3.11, Lemma 12.2.3.15,

and Lemma 12.2.3.14 allow us to conclude that [n0/z](case z of x.n1,x.n2) ∗

[n0/z]T1+T2(case z of x.n1,x.n2), Γ ` [n0/z]T1+T2(case z of x.n1,x.n2) : T , and

[n0/z]T1+T2(case z of x.n1,x.n2) is normal. Thus,

[n0/z]T1+T2(case z of x.n1,x.n2) ∈ [[T]]Γ and we obtain case t0 of x.t1,x.t2 ∈

[[T]]Γ.

Corollary 12.2.4.19. [Normalization] If Γ ` t : T , then there exists a normal form

n, such that t ! n.

12.3 Dependent Stratified System F=

Dependent Stratified System F= (DSSF=) is SSF extended with dependent

types and equations between terms. Equations between terms are an important

concept in Martin-Löf type theory [69, 96], and play a central role also in dependently

typed programming languages, such as the Guru language [131], Sep3 (Section 8), the

freedom of speech language (Section 7), Coq [134], and many more. The syntax and

reduction rules are defined in Figure 57. The kind-assignment rules are defined in

Figure 58. One thing to note regarding the kind-assignment rules is that the level of

an equation is the same level as the type of the terms in the equation. The terms

used in an equation must have the same type – also known as homogenous equality.

Finally, the type-assignment rules are defined in Figure 59. Note that t1 ↓ t2 denotes

325

t := x | λx : T.t | t t | ΛX : K.t | t[T] | join
T := X | Πx : T.T | ∀X : K.T | t = t
K := ∗0 | ∗1 | . . .

(ΛX : ∗p.t)[T] [T/X]t
(λx : T.t)t′ [t′/x]t

Figure 57. Syntax of Terms, Types, and Kinds and Reduction Rules for DSSF=

Γ(X) = ∗p
Γ Ok p ≤ q

Γ ` X : ∗q

Γ ` T1 : ∗p
Γ, x : T1 ` T2 : ∗q

Γ ` Πx : T1.T2 : ∗max(p,q)

Γ, X : ∗q ` T : ∗p
Γ ` ∀X : ∗q.T : ∗max(p,q)+1

Γ ` t1 : T
Γ ` t2 : T Γ ` T : ∗p

Γ ` t1 = t2 : ∗p

Figure 58. DSSF= Kinding Rules

there exists a term t such that t1 ∗ t and t2 ∗ t.

12.3.1 Basic Syntactic Results

In this section we give a number of basic results. The reader may wish to

skip this section, and only refer to the results while reading the rest of the section.

The most interesting results covered in this section are the proof that type-syntactic

equality is an equivalence relation, and syntactic inversion of the typing relation.

The latter depends on a judgment called type-syntactic equality. It is defined in

Figure 60. We show that syntactic conversion holds for syntactic-type equality in

326

Γ Ok
Γ(x) = T

Γ ` x : T

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : Πx : T1.T2

Γ ` t2 : T1

Γ ` t1 : Πx : T1.T2

Γ ` t1 t2 : [t2/x]T2

Γ, X : ∗l ` t : T

Γ ` ΛX : ∗l.t : ∀X : ∗l.T

Γ ` t : ∀X : ∗l.T1

Γ ` T2 : ∗l
Γ ` t[T2] : [T2/X]T1

t1 ↓ t2 Γ ` t1 : T
Γ Ok Γ ` t2 : T

Γ ` join : t1 = t2

Γ ` t0 : t1 = t2
Γ ` t : [t1/x]T

Γ ` t : [t2/x]T

Figure 59. DSSF= Type-Assignment Rules

Γ ` p : t1 = t2

Γ ` [t1/x]T ≈ [t2/x]T
TEQ1

Γ ` [t1/x]T ≈ [t1/x]T ′ Γ ` p : t1 = t2

Γ ` [t1/x]T ≈ [t2/x]T ′
TEQ2

Figure 60. DSSF= Type Syntactic Equality

Lemma 12.3.1.11. We only state the syntactic inversion lemma for the typing rela-

tion, because syntactic inversion for the kinding relation is trivial. Note that we use

syntactic inversion for kinding throughout this section without indication. We now

list several basic lemmata:

Lemma 12.3.1.1. If Γ ` T : ∗p then Γ Ok.

Proof. Similar to the proof of the same lemma for SSF+.

Lemma 12.3.1.2. [Type Substitution for Kinding, Typing, and Context-Ok]

327

Suppose Γ ` T ′ : ∗p. Then

i. if Γ, X : ∗p,Γ′ ` T : ∗q with a derivation of depth d, then Γ, [T ′/X]Γ′ `

[T ′/X]T : ∗q with a derivation of depth d,

ii. if Γ, X : ∗l,Γ′ ` t : T with a derivation of depth d, then Γ, [T ′/X]Γ′ `

[T ′/X]t : [T ′/X]T with a derivation of depth d, and

iii. if Γ, X : ∗p,Γ′ Ok with a derivation of depth d, then Γ, [T ′/X]Γ′ Ok with a

derivation of depth d.

Proof. Similar to the proof of the same lemma for SSF+.

Lemma 12.3.1.3. [Term Substitution for Kinding, Typing, and Context-Ok] Sup-

pose Γ ` t′ : T ′. Then

i. if Γ, x : T ′,Γ′ ` T : ∗l with a derivation of depth d, then Γ, [t′/x]Γ′ ` [t′/x]T :

∗l with a derivation of depth d,

ii. if Γ, x : T ′,Γ′ ` t : T with a derivation of depth d, then Γ, [t′/x]Γ′ ` [t′/x]t :

[t′/x]T with a derivation of depth d, and

iii. if Γ, x : T ′,Γ′ Ok with a derivation of depth d, then Γ, [t′/x]Γ′ Ok with a

derivation of depth d.

Proof. All cases hold by straightforward induction on the d.

Lemma 12.3.1.4. [Context Weakening for Kinding and Typing]

Assume Γ,Γ′′,Γ′ Ok, Γ,Γ′ ` T : ∗p and Γ,Γ′ ` t : T . Then i. Γ,Γ′′,Γ′ ` T : ∗p

and ii. Γ,Γ′′,Γ′ ` t : T .

328

Proof. Similar to the proof of the same lemma for SSF+.

Lemma 12.3.1.5. [Regularity] If Γ ` t : T then Γ ` T : ∗p for some p.

Proof. This holds by straightforward induction on the form of the assumed typing

derivation.

At this point we show that type-syntactic equality is indeed an equivalence relation,

and that it respects substitution. Each of these may be used throughout the remainder

of the section without explicit mention.

Lemma 12.3.1.6. [Transitivity of Type Equality] If Γ ` T1 ≈ T2 and Γ ` T2 ≈ T3

then Γ ` T1 ≈ T3.

Proof. This holds by straightforward induction on the form of the assumed type

equality derivation.

Lemma 12.3.1.7. [Symmetry of Type Equality] If Γ ` T ≈ T ′ then Γ ` T ′ ≈ T .

Proof. This holds by straightforward induction on the form of the assumed type

equality derivation.

Lemma 12.3.1.8. [Substitution for Type Equality] If Γ, x : T,Γ′ ` T ′ ≈ T ′′

and Γ ` t : T then Γ, [t/x]Γ′ ` [t/x]T ′ ≈ [t/x]T ′′.

Proof. This holds by straightforward induction on the form of the assumed type

equality derivation.

329

Lemma 12.3.1.9. If Γ ` T ≈ Πj : T1.T2 then there exists a term h and types T ′1

and T ′2 such that T ≡ Πh : T ′1.T
′
2.

Proof. This is a proof by induction on the form of the assume type-equality derivation.

Case.

Γ ` p : t1 = t2

Γ ` [t1/x](Πj : T ′1.T
′
2) ≈ [t2/x](Πj : T ′1.T

′
2)

TEQ1

Trivial, because T must also be a Π-type.

Case.

Γ ` [t1/x]T ′ ≈ [t1/x](Πj : T ′1.T
′
2) Γ ` p : t1 = t2

Γ ` [t1/x]T ′ ≈ [t2/x](Πj : T ′1.T
′
2)

TEQ2

By the induction hypothesis T ≡ [t1/x]T ′ ≡ Πh : ψ1.ψ2 for some term h and

types ψ1 and ψ2.

Lemma 12.3.1.10. [Type Equality Context Conversion] If Γ, x : [T1/X]T,Γ′ ` t : T ′

and Γ ` p : T1 = T2 then Γ, x : [T2/X]T,Γ′ ` t : T ′.

Proof. This hold by straightforward induction on the assumed typing derivation.

The next lemma is type syntactic conversion which states that if a term t in-

habits a type T , then it inhabits all types equivalent to T . Following this is injectivity

of Π-types which is needed in the proof of syntactic inversion.

330

Lemma 12.3.1.11. [Type Syntactic Conversion] If Γ ` t : T and Γ ` T ≈ T ′ then

Γ ` t : T ′.

Proof. If Γ ` t : T and Γ ` T ≈ T ′ then we know several things: T ≡ [t̄/x̄]T ′′,

T ′ ≡ [t̄′/x̄′]T ′′, Γ ` p̄ : t̄ = t̄′, and Γ ` t : [t̄/x̄]T ′′ for some type T ′′. Suppose each

vector has i elements. Then by applying the conversion type-checking rule i times

with the appropriate proof from our vector of proofs we will obtain Γ ` t : [t̄′/x̄]T ′′.

This last result is exactly, Γ ` t : T ′.

Lemma 12.3.1.12. [Injectivity of Π-Types for Type Equality] If Γ ` Πy : T1.T2 ≈

Πy : T ′1.T
′
2 then Γ ` T1 ≈ T ′1 and Γ, y : T1 ` T2 ≈ T ′2.

Proof. This is a proof by induction on the form of the assumed typing derivation.

Case.

Γ ` p : t1 = t2

Γ ` [t1/x]T ′ ≈ [t2/x]T ′
TEQ1

Trivial, becasue T ′ and T ′′ only differ by terms, which do not affect the ordering

of types.

Case.

Γ ` [t1/x]T ′ ≈ [t1/x]T ′′ Γ ` p : t1 = t2

Γ ` [t1/x]T ′ ≈ [t2/x]T ′′
TEQ2

By the induction hypothesis T >Γ [t1/x]T ′′, which implies that T >Γ [t2/x]T ′′.

331

Finally, we prove syntactic inversion, but first we will need some convenient syntax

that is used in the statement of the following lemma. We write ∃(a1, a2, . . . , an) for

∃a1.∃a2 . . . ∃an.

Lemma 12.3.1.13. [Syntactic Inversion]

i. If Γ ` λx : T1.t : T then ∃T2. Γ, x : T1 ` t : T2 ∧ Γ ` Πx : T1.T2 ≈ T .

ii. If Γ ` t1 t2 : T then ∃(x, T1, T2).

Γ ` t1 : Πx : T1.T2 ∧ Γ ` t2 : T1 ∧ Γ ` T ≈ [t2/x]T2.

iii. If Γ ` ΛX : ∗l.t : T then ∃T ′. Γ, X : ∗l ` t : T ′ ∧ Γ ` T ≈ ∀X : ∗l.T ′.

iv. If Γ ` t[T2] : T then ∃(T1, T2).

Γ ` t : ∀X : ∗l.T1 ∧ Γ ` T2 : ∗l ∧ Γ ` T ≈ [T2/X]T1.

v. If Γ ` join : T then ∃(t1, t2, T ′).

t1 ↓ t2 ∧ Γ ` t1 : T ′ ∧ Γ ` t2 : T ′ ∧ Γ ` T ≈ t1 = t2 ∧ Γ Ok.

Proof. We prove all cases by induction on the form of the typing relation.

Case. Part i.

Case.

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : Πx : T1.T2

Trivial.

332

Case.

Γ ` p : t1 = t2 Γ ` λx : T1.t : [t1/y]T ′

Γ ` λx : T1.t : [t2/y]T ′

Here T ≡ [t2/y]T ′. By the induction hypothesis, where T is [t1/y]T ′, there

exists a type T2, such that Γ, x : T1 ` t : T2 and Γ ` Πx : T1.T2 ≈ [t1/y]T ′,

which implies that Γ ` [t′1/y](Πx : T ′1.T
′
2) ≈ [t1/y]T ′ and Γ ` p′ : t′1 = t1

for some terms t′1 and p′. Hence, by TEq2 Γ ` [t1/y](Πx : T ′1.T
′
2) ≈

[t1/y]T ′ and by applying the same rule a second time, except using the

proof Γ ` p : t1 = t2 we obtain Γ ` [t1/y](Πx : T ′1.T
′
2) ≈ [t2/y]T ′. Finally,

using TEq2 a third time using Γ ` p′ : t′1 = t1 we obtain Γ ` [t′1/y](Πx :

T ′1.T
′
2) ≈ [t2/y]T ′, which is equivalent to Γ ` Πx : T1.T2 ≈ [t2/y]T ′.

Case. Part ii.

Case.

Γ ` t1 : Πx : T1.T2 Γ ` t2 : T1

Γ ` t1 t2 : [t2/x]T2

Trivial.

Case.

Γ ` p : t1 = t2 Γ ` t1 t2 : [t1/y]T

Γ ` t1 t2 : [t2/y]T

Similar to the previous case.

Case. Part iii.

333

Case.

Γ, X : ∗l ` t : T

Γ ` ΛX : ∗l.t : ∀X : ∗l.T

Trivial.

Case.

Γ ` p : t1 = t2 Γ ` ΛX : ∗l.t : [t1/y]T ′′

Γ ` ΛX : ∗l.t : [t2/y]T ′′

Similar to the previous case.

Case. Part iv.

Case.

Γ ` t : ∀X : ∗l.T1 Γ ` T2 : ∗l
Γ ` t[T2] : [T2/X]T1

Trivial.

Case.

Γ ` p : t1 = t2 Γ ` t[T2] : [t1/y]T ′

Γ ` t[T2] : [t2/y]T ′

Similar to the previous case.

Case. Part v.

Case.

t1 ↓ t2 Γ ` t1 : T Γ ` t2 : T Γ Ok

Γ ` join : t1 = t2

334

Trivial.

Case.

Γ ` p : t′1 = t′2 Γ ` join : [t′1/y]T ′)

Γ ` join : [t′2/y]T ′

Similar to the previous case.

12.3.2 Hereditary Substitution

The ordering on types is defined as follows:

Definition 12.3.2.14.

The ordering >Γ is defined as the least relation satisfying the universal closure of

the following formulas:

Πx : T1.T2 >Γ T1

Πx : T1.T2 >Γ [t/x]T2, where Γ ` t : T1.
∀X : ∗l.T >Γ [T ′/X]T , where Γ ` T ′ : ∗l.

Just as we have seen before this is the ordering used in the proofs of the

properties of the hereditary substitution function, which state next. As one might

have expected this is a well-founded ordering.

Theorem 12.3.2.15. [Well-Founded Ordering] The ordering >Γ is well-founded on

types T such that Γ ` T : ∗l for some l.

Proof. This proof is similar to the same proof for SSF+. It depends on the following

function, and intermediate result.

Definition 12.3.2.16.

The depth of a type T is defined as follows:

335

depth(t) = 0, where t is any term.
depth(X) = 1
depth(Πx : T.T ′) = depth(T) + depth(T ′)
depth(∀X : ∗l.T) = depth(T) + 1

We use the metric (l, d) in lexicographic combination, where l is the level of a type

T , and d is the depth of T in the proof of the next lemma.

Lemma 12.3.2.17. [Well-Founded Measure] If T >Γ T
′ then (l, d) > (l′, d′), where

Γ ` T : ∗l, depth(T) = d, Γ ` T : ∗l′, and depth(T ′) = d′.

Proof. Similar to the proof of the same lemma for SSF+.

The type-syntactic-equality relation respects this ordering.

Lemma 12.3.2.18. If Γ ` T ′ ≈ T ′′ and T >Γ T
′ then T >Γ T

′′.

Proof. This is a proof by case analysis on the kinding derivation of Γ ` T : ∗p, with

a case analysis on the derivation of T >Γ T
′.

Case.

Γ(X) = ∗p p ≤ q Γ Ok

Γ ` X : ∗q

This case cannot arise, because we do not have X >Γ T for any type T .

Case.

336

Γ ` T1 : ∗p Γ ` T2 : ∗q
Γ ` T1 → T2 : ∗max(p,q)

By analysis of the derivation of the assumed ordering statement, we must

have T ′ ≡ T1 or T ′ ≡ T2. If T ′ ≡ T1 and p ≥ q then we have the required kind

derivation for T ′. If p < q then by level weakening Γ ` T1 : ∗q, and we have

the required kinding derivation for T ′. The case for when T ′ ≡ T2 is similar.

Case.

Γ ` T1 : ∗p Γ ` T2 : ∗q
Γ ` T1 + T2 : ∗max(p,q)

By analysis of the derivation of the assumed ordering statement, we must

have T ′ ≡ T1 or T ′ ≡ T2. If T ′ ≡ T1 and p ≥ q then we have the required kind

derivation for T ′. If p < q then by level weakening Γ ` T1 : ∗q, and we have

the required kinding derivation for T ′. The case for when T ′ ≡ T2 is similar.

Case.

Γ, X : ∗r ` T : ∗s
Γ ` ∀X : ∗r.T : ∗max(r,s)+1

By analysis of the derivation of the assumed ordering statement, we must have

T ′ ≡ [T ′′/X]T , for some type T ′′ with Γ ` T ′′ : ∗r. Let t = max(r, s) + 1.

Clearly, s < t, hence by level weakening Γ, X : ∗r ` T : ∗t and by substitution

337

for kinding Γ ` [T ′′/X]T : ∗t, and we have the required kinding derivation

for T ′.

The following lemma is used in the proof of totality of the hereditary substi-

tution function.

Lemma 12.3.2.19. [Congruence of Products] If Γ ` ψ ≈ Πy : T1.T2 and ψ is a

subexpression of T ′′ then T ′′ >Γ T1 and T ′′ >Γ,y:T1 T2.

Proof. The possible form for ψ is only a Π-type. So it suffices to show that if Γ ` Πy :

T ′1.T
′
2 ≈ Πy : T1.T2 and ψ is a subexpression of T ′′ then T ′′ >Γ T1 and T ′′ >Γ,y:T1 T2.

It must be the case that T ′′ >Γ T
′
1 and T ′′ >Γ,y:T1 T

′
2, because T ′1 and T ′2 are

both subexpressions of T ′′. By injectivity of Π-types for typed equality we obtain

Γ ` T ′1 ≈ T1 and Γ, y : T1 ` T ′2 ≈ T2. Finally, by Lemma 12.3.2.18 we know T ′′ >Γ T1

and T ′′ >Γ,y:T1 T2.

The hereditary substitution function is fully defined in Figure 61. We do not

repeat the definition of ctypeT for DSSF=, because it is exactly the same as the

previous system. Next we have the properties of the hereditary substitution function.

All of the proofs are similar to the proofs for SSF+, so we omit them here.

Lemma 12.3.2.20. [Total, Type Preserving, and Sound w.r.t Reduction]

Suppose Γ ` t : T and Γ, x : T,Γ′ ` t′ : T ′. Then there exists a term t′′ and a type T ′′

such that [t/x]T t′ = t′′, Γ, [t/x]Γ′ ` t′′ : T ′′, and Γ,Γ′ ` T ′′ ≈ [t/x]T ′,

and [t/x]t′ ∗ [t/x]T t′.

338

[t/x]Tx = t

[t/x]T y = y
Where y is a variable distinct from x.

[t/x]T join = join

[t/x]T (λy : T ′.t′) = λy : T ′.([t/x]T t′)

[t/x]T (ΛX : ∗l.t′) = ΛX : ∗l.([t/x]T t′)

[t/x]T (t1 t2) = ([t/x]T t1) ([t/x]T t2)
Where ([t/x]T t1) is not a λ-abstraction, ([t/x]T t1) and t1 are λ-abstractions,
or ctypeT (x, t1) is undefined.

[t/x]T (t1 t2) = [([t/x]T t2)/y]T
′′
s′1

Where ([t/x]T t1) ≡ λy : T ′′.s′1 for some y and s′1 and t1 is not a λ-abstraction,
and ctypeT (x, t1) = Πy : T ′′.T ′.

[t/x]T (t′[T ′]) = ([t/x]T t′)[T ′]
Where [t/x]T t′ is not a type abstraction or t′ and [t/x]T t′ are type abstractions.

[t/x]T (t′[T ′]) = [T ′/X]s′1
Where [t/x]T t′ ≡ ΛX : ∗l.s′1, for some X, s′1 and Γ ` T ′ : ∗q, such that, q ≤ l
and t′ is not a type abstraction.

Figure 61. Hereditary Substitution Function for Stratified System F=

Corollary 12.3.2.21. Suppose Γ ` t : T and Γ, x : T,Γ′ ` t′ : T ′. Then Γ, [t/x]Γ′ `

[t/x]T t′ : [t/x]T ′.

Lemma 12.3.2.22. [Redex Preserving] If Γ ` t : T , Γ, x : T,Γ′ ` t′ : T ′ then

|rset(t′, t)| ≥ |rset([t/x]T t′)|.

Proof. Just as we have seen for the previous systems this proof depends on the fol-

lowing function:

rset(x) = ∅

339

rset(join) = ∅

rset(λx : T.t) = rset(t)

rset(ΛX : ∗l.t) = rset(t)

rset(t1 t2)

= rset(t1, t2) if t1 is not a λ-abstraction.
= {t1 t2} ∪ rset(t′1, t2) if t1 ≡ λx : T.t′1.

rset(t′′[T ′′])

= rset(t′′) if t′′ is not a type absraction.
= {t′′[T ′′]} ∪ rset(t′′′) if t′′ ≡ ΛX : ∗l.t′′′.

Lemma 12.3.2.23. [Normality Preserving] If Γ ` n : T and Γ, x : T ′ ` n′ : T ′ then

there exists a normal term n′′ such that [n/x]Tn′ = n′′.

12.3.3 Concluding Normalization

We are now ready to conlcude normalization. The interpretation of types are

defined exactly the same way as they were for STLC (Definition 6.2.0.7). We do not

repeat that definition here. The next two lemmas are used in the proof of the type

soundness theorem.

Corollary 12.3.3.24. [Type Substitution for the Interpretation of Types] If n ∈

[[T ′]]Γ,X:∗l,Γ′ and Γ ` T : ∗l then [T/X]n ∈ [[[T/X]T ′]]Γ,[T/X]Γ′.

Proof. By the definition of the interpretation of types, Γ, X : ∗l,Γ′ ` n : T ′ and by

Lemma 12.3.1.2, Γ, [T/X]Γ′ ` [T/X]n : [T/X]T ′. Finally, by the definition of the

interpretation of types, [T/X]n ∈ [[[T/X]T ′]]Γ,[T/X]Γ′ .

340

Lemma 12.3.3.25. [Semantic Equality] If Γ ` p : t1 = t2 then [[[t1/x]T]]Γ =

[[[t2/x]T]]Γ.

Proof. We first prove the left to right containment. Suppose t ∗ n ∈ [[[t1/x]T]]Γ.

Then by the definition of the interpretation of types, Γ ` n : [t1/x]T . By assumption

we know Γ ` p : t1 = t2, hence, by applying the conversion type-checking rule Γ `

n : [t2/x]T . Finally, by the definition of the interpretation of types, n ∈ [[[t2/x]T]]Γ.

Therefore, t ∈ [[[t2/x]T]]Γ. The opposite direction is similar.

We now conclude type soundness for SSF=, and hence normalization.

Lemma 12.3.3.26. [Hereditary Substitution for the Interpretation of Types] If n′ ∈

[[T ′]]Γ,x:T,Γ′, n ∈ [[T]]Γ, then [n/x]Tn′ ∈ [[[n/x]T ′]]Γ,[n/x]Γ′.

Proof. This proof is similar to the same proof for SSF+.

Theorem 12.3.3.27. [Type Soundness] If Γ ` t : T then t ∈ [[T]]Γ.

Proof. This is a proof by induction on the structure of the typing derivation of t.

Case.

Γ(x) = T Γ Ok

Γ ` x : T

By regularity Γ ` T : ∗l for some l, hence [[T]]Γ is nonempty. Clearly, x ∈ [[T]]Γ

by the definition of the interpretation of types.

Case.

341

Γ, x : T1 ` t : T2

Γ ` λx : T1.t : Πx : T1.T2

By the induction hypothesis and the definition of the interpretation of types

t ∈ [[T2]]Γ,x:T1 , t
! n ∈ [[T2]]Γ,x:T1 and Γ, x : T1 ` n : T2. Thus, by applying

the λ-abstraction type-checking rule, Γ ` λx : T1.n : Πx : T1.T2, hence by

the definition of the interpretation of types λx : T1.n ∈ [[Πx : T1.T2]]Γ. Since

λx : T1.t ! λx : T1.n ∈ [[Πx : T1.T2]]Γ we know by the definition of the

interpretation of types λx : T1.t ∈ [[Πx : T1.T2]]Γ.

Case.

Γ ` t1 : Πx : T1.T2 Γ ` t2 : T1

Γ ` t1 t2 : [t2/x]T2

It suffices to show that there exists a normal term n such that t1 t2 ! n ∈

[[[t2/x]T2]]Γ. By the induction hypothesis and the definition of the interpreta-

tion of types t1 ! n1 ∈ [[Πx : T1.T2]]Γ, Γ ` n1 : Πx : T1.T2, t2 ! n2 ∈ [[T1]]Γ,

and Γ ` n2 : T1. Clearly,

t1 t2 ∗ n1 n2

= [n1/z](z n2),

for some fresh variable z 6∈ FV (n1, n2, T1, T2, x). By Lemma 12.3.2.20,

Lemma 12.3.2.23, and Corollary 12.3.2.21 [n1/x](z n2) ∗ [n1/x]T1(z n2),

[n1/x]T1(z n2) is normal, and Γ ` [n1/x]T1(z n2) : [n2/x]T2. Thus, t1 t2 !

[n1/x]T1(z n2). It suffices to show that Γ ` [n1/x]T1(z n2) : [t2/x]T2. This is

justified by the following typing derivation:

342

Γ ` t2 : T1

Γ ` n2 : T1 n2 ↓ t2
Γ ` join : n2 = t2

Join
Γ ` [n1/x]T1(z n2) : [n2/x]T2

Γ ` [n1/x]T1(z n2) : [t2/x]T2

Conv

Therefore, [n1/x]T1(z n2) ∈ [[[t2/x]T2]]Γ which implies that t1 t2 ∈ [[[t2/x]T2]]Γ.

Case.

t1 ↓ t2 Γ Ok

Γ ` join : t1 = t2

Clearly, join ∈ [[t1 = t2]]Γ by the definition of the interpretation of types.

Case.

Γ ` t0 : t1 = t2 Γ ` t : [t1/x]T

Γ ` t : [t2/x]T

By the induction hypothesis, t ∈ [[[t1/x]T]]Γ. By the definition of the in-

terpretation of types, t ! n ∈ [[[t1/x]T]]Γ. By assumption we know, Γ `

t0 : t1 = t2. Thus, by Lemma 12.3.3.25, [[[t1/x]T]]Γ = [[[t2/x]T]]Γ. There-

fore, n ∈ [[[t2/x]T]]Γ, hence, by the definition of the interpretation of types,

t ∈ [[[t2/x]T]]Γ.

Case.

Γ, X : ∗p ` t : T

Γ ` ΛX : ∗p.t : ∀X : ∗p.T

By the induction hypothesis, t ∈ [[T]]Γ,X:∗p , so by the definition of the inter-

pretation of types, t ! n ∈ [[T]]Γ,X:∗p and Γ, X : ∗p ` n : T . We can apply

343

the Λ-abstraction type-checking rule to obtain Γ ` ΛX : ∗p.n : ∀X : ∗p.T ,

thus ΛX : ∗p.n ∈ [[∀X : ∗p.T]]Γ. Since ΛX : ∗p.t ! ΛX : ∗p.n by definition

of the interpretation of types ΛX : ∗p.t ∈ [[∀X : ∗p.T]]Γ.

Case.

Γ ` t : ∀X : ∗l.T1 Γ ` T2 : ∗l
Γ ` t[T2] : [T2/X]T1

By the induction hypothesis t ∈ [[∀X : ∗l.T1]]Γ, so by the definition of the

interpretation of types t ! n ∈ [[∀X : ∗l.T1]]Γ and Γ ` n : ∀X : ∗l.T1. We

do a case split on whether or not n is a Λ-abstraction. We can apply the

type-instantiation type-checking rule to obtain Γ ` n[T2] : [T2/X]T1 and by

the definition of the interpretation of types n[T2] ∈ [[[T2/X]T1]]Γ. Therefore,

t ∈ [[[T2/X]T1]]Γ. Suppose n ≡ ΛX : ∗l.n′. Then t[T2] ∗ (ΛX : ∗l.n′)[T2]

[T2/X]n′. By inversion n′ ∈ [[T1]]Γ,X:∗l . Therefore, by Lemma 12.3.3.24

[T2/X]n′ ∈ [[[T2/X]T1]]Γ and t[T2] ∈ [[[T2/X]T1]]Γ, since t[T2] ↓ [T2/X]n′.

Corollary 12.3.3.28. [Normalization] If Γ ` t : T , then there exists a normal form

n, such that t ! n.

344

CHAPTER 13

THE λ∆-CALCULUS

So far in this chapter we have introduced proofs of normalization for several

extensions of SSF, which is an intuitionistic logic. In fact, to the knowledge of the

author the only type theories to which the hereditary substitution proof technique has

been applied to are intuitionistic. So a natural question is, can hereditary substitution

be used to prove normalization of a classical type theory? This would then imply that

hereditary substitution can be used to provide a constructive proof of normalization

for a non-constructive theory.

In this section we answer this question positively. We show normalization

using hereditary substitution for the classical type theory the λ∆-calculus. The λ∆-

calculus was introduced in Section 3.2. We do not repeat its definition. The reader

can find the syntax and reduction rules in Figure 17 and the typing rules in Figure 18.

We define negation just as it is in intuitionistic type theory, that is, ¬A =def A→⊥,

where ⊥ is absurdity. Arbitrary syntactically defined normal forms will be denoted

by the meta-variables n and m, and arbitrary typing contexts will be denoted by the

meta-variable Γ. We assume at all times that all variables in the domain of Γ are

unique. In addition we rearrange the objects in Γ freely without indication.

13.1 Basic Syntactic Lemmas

The following meta-results are well-known so we omit their proofs. We do not

always explicitly state the use of these results. The first two properties are weakening

345

and substitution for the typing relation.

Lemma 13.1.0.1. [Weakening for Typing] If Γ ` t : T then Γ, x : T ′ ` t : T for

any fresh variable x and type T ′.

Proof. Straightforward induction on the assumed typing derivation.

Lemma 13.1.0.2. [Substitution for Typing] If Γ ` t : T and Γ, x : T ,Γ′ ` t ′ : T ′

then Γ ` [t/x]t ′ : T ′.

Proof. Straightforward induction on the second assumed typing derivation.

The final three properties are, confluence, type preservation and inversion of the

typing relation. The proof of the confluence and type preservation can be found in

[113] and the proof of the latter is trivial.

Theorem 13.1.0.3. [Confluence] If t1 ∗ t2 and t1 ∗ t3, then there exists a term

t4, such that, t2 ∗ t4 and t3 ∗ t4.

Theorem 13.1.0.4. [Preservation] If Γ ` t : T and t t ′ then Γ ` t ′ : T .

Theorem 13.1.0.5. [Inversion]

i. If Γ ` x : T then x ∈ Γ.

ii. If Γ ` λx : T1.t : T1 → T2 then Γ, x : T1 ` t : T2.

iii. If Γ ` ∆x : ¬T .t : T then Γ, x : ¬T ` t :⊥.

Proof. This can be shown by straightforward induction on the assumed typing deriva-

tions.

346

At this point we have everything we need to state and prove correct the hereditary

substitution function.

13.2 An Extension

Since the λ∆-calculus is an extension of STLC, we might expect that the

hereditary substitution function for the λ∆-calculus is also an extension of the hered-

itary substitution function for STLC. In this section we show that this extension is

non-trivial by first considering the naive extension, and then discussing why it does

not work. Following this, we give the final extension and prove it correct.

13.2.1 Problems with a Naive Extension

Lets consider the definition of the hereditary substitution function for STLC

extended with two new cases. The first case for the ∆-abstraction whose definition

parallels the definition for the λ-abstraction. The second is a new application case

which handles newly created structural redexes and is defined following the same

pattern as the case which handles β-redexes. We use the same termination metric we

previously used.

Definition 13.2.1.1.

The naive hereditary substitution function is defined as follows:

[t/x]Ax = t

[t/x]Ay = y

[t/x]A(λy : A′.t ′) = λy : A′.([t/x]At ′)

[t/x]A(∆y : A′.t ′) = ∆y : A′.([t/x]At ′)

347

[t/x]A(t1 t2) = ([t/x]At1) ([t/x]At2)

Where ([t/x]At1) is not a λ-abstraction or ∆-abstraction, or both ([t/x]At1)
and t1 are λ-abstractions or ∆-abstractions.

[t/x]A(t1 t2) = [s ′2/y]A
′′
s ′1

Where ([t/x]At1) = λy : A′′.s ′1 for some y, s ′1 and A′′,
[t/x]At2 = s ′2, and ctypeA(x , t1) = A′′ → A′.

[t/x]A(t1 t2) = ∆z : ¬A′.[λy : A′′ → A′.(z (y s2))/y]¬(A′′→A′)s
Where ([t/x]At1) = ∆y : ¬(A′′ → A′).s for some, y s, and A′′ → A′,
([t/x]At2) = s2 for some s2, ctypeA(x , t1) = A′′ → A′, and
z is completely fresh.

There is one glaring issue with this definition and it lies in the final case. We

know from Lemma 13.2.3.4 and Lemma 13.2.3.5 that ctypeA(x , t1) = A′′ → A′ implies

that A ≥ A′′ → A′ < ¬(A′′ → A′). Thus, this definition is not well founded! To fix

this issue instead of naively following the structural reduction rule we immediately

simultaneously hereditarily reduce all redexes created by replacing y with the linear

λ-abstraction λy : A′′ → A′.(z (y s2)). To accomplish this we will define mutually with

the hereditary substitution function a new function called the hereditary structural

substitution function.

13.2.2 A Correct Extension

In order to reduce structural redexes in the definition of the hereditary substi-

tution we will define by induction mutually with the hereditary substitution function

a function called the hereditary structural substitution function. This function will

use the notion of a multi-substitution. These are given by the following grammar:

Θ ::= · |Θ, (y , z , t)

348

We denote the hereditary structural substitution function by 〈Θ〉AA′t ′ and hereditary

substitution by [t/x]At ′. The type of all the first projections of the elements of Θ is

¬(A→ A′) and the type of the second projections is ¬A′. Both functions are defined

by mutual induction using the metric (A, f, t ′), where f ∈ {0, 1}, in lexicographic

combination with the ordering on types, the natural number ordering, and the strict

subexpression on terms. The meta-variable f labels each function and is equal to

0 in the definition of the hereditary substitution function and is equal to 1 in the

definition of the hereditary structural substitution function. Again, in the definitions

of the hereditary substitution and hereditary structural substitution function it is

assumed that all variables have been renamed as to prevent variable capture. The

following is the final definition of the hereditary substitution function for the λ∆-

calculus.

Definition 13.2.2.2.

The hereditary substitution function is defined as follows:

〈Θ〉A1
A2

x = λy : A1 → A2.(z (y t))

Where (x , z , t) ∈ Θ, for some z and t, and y is fresh in x , z , and t.

〈Θ〉A1
A2

x = x

Where (x , z , t) 6∈ Θ for any z or t.

〈Θ〉A1
A2

(λy : A.t) = λy : A.〈Θ〉A1
A2

t

〈Θ〉A1
A2

(∆y : A.t) = ∆y : A.〈Θ〉A1
A2

t

〈Θ〉A1
A2

(x t ′) = z [t/y]A1s

349

Where (x , z , t) ∈ Θ, t′ ≡ λy : A1.t
′′, for some y and t ′′, and 〈Θ〉A1

A2
t ′′ = s.

〈Θ〉A1
A2

(x t ′) = z (∆z2 : ¬A2.s)

Where (x , z , t) ∈ Θ, t′ ≡ ∆y : ¬(A1 → A2).t ′′, for some y and t ′′, and

〈Θ, (y , z2, t)〉A1
A2

t ′′ = s, for some fresh z2.

〈Θ〉A1
A2

(x t ′) = z s ′

Where (x , z , t) ∈ Θ, t ′ is not an abstraction, and 〈Θ〉A1
A2

t ′ = s ′.

〈Θ〉A1
A2

(t1 t2) = s1 s2

Where t1 is either not a variable, or it is both a variable and (t1, z
′, t ′) 6∈ Θ

for any t ′ and z ′, 〈Θ〉A1
A2

t1 = s1, and 〈Θ〉A1
A2

t2 = s2.

[t/x]Ax = t

[t/x]Ay = y

[t/x]A(λy : A′.t ′) = λy : A′.([t/x]At ′)

[t/x]A(∆y : A′.t ′) = ∆y : A′.([t/x]At ′)

[t/x]A(t1 t2) = ([t/x]At1) ([t/x]At2)
Where ([t/x]At1) is not a λ-abstraction or ∆-abstraction, or both ([t/x]At1)
and t1 are λ-abstractions or ∆-abstractions.

[t/x]A(t1 t2) = [s ′2/y]A
′′
s ′1

Where ([t/x]At1) = λy : A′′.s ′1 for some y, s ′1 and A′′,
[t/x]At2 = s ′2, and ctypeA(x , t1) = A′′ → A′.

[t/x]A(t1 t2) = ∆z : ¬A′.〈(y , z , s2)〉A′′A′ s
Where ([t/x]At1) = ∆y : ¬(A′′ → A′).s for some y s, and A′′ → A′,
([t/x]At2) = s2 for some s2, ctypeA(x , t1) = A′′ → A′, and z is fresh.

We can see in the final case of the hereditary substitution function that the cut

type has decreased. Hence, this case is now well founded. Lets consider an example

which illustrates how our new definition operates.

350

Example 13.2.2.3.

Consider the terms t ≡ ∆f : ¬(b → b).(f (∆f ′ : ¬(b → b).(f ′ (λz : b.z)))) and

t ′ ≡ x u, where u is a free variable of type b. Again, our goal is to compute [t/x](b→b)t ′

using the definition of the hereditary substitution function in Definition 13.2.2.2. Now

[t/x](b→b)(x u) = ∆z1 : ¬b.(z1 (∆z2 : ¬b.(z2 u))),

because

ctype(b→b)(x , x) = (b→ b), [t/x](b→b)x = t , [t/x](b→b)u = u,

and for some fresh variable z1 of type ¬b

∆z1 : ¬b.〈(f , z1, u)〉bb(f (∆f ′ : ¬(b→ b).(f ′ (λz : b.z)))) =
∆z1 : ¬b.(z1 (∆z2 : ¬b.(z2 u)))

where

〈(f , z1, u)〉bb(f (∆f ′ : ¬(b→ b).(f ′ (λz : b.z)))) =
z1 (∆z2 : ¬b.〈(f , z1, u), (f ′, z2, u)〉bb(f ′ (λz : b.z)))

because

(f , z1, u) ∈ 〈(f , z1, u)〉,∆f ′ : ¬(b→ b).(f ′ (λz : b.z)) ≡ ∆f ′ : ¬(b→ b).(f ′ (λz : b.z)),

and for some fresh variable z2 of type ¬b

〈(f , z1, u), (f ′, z2, u)〉bb(f ′ (λz : b.z)) = z2 u

because

(f ′, z2, u) ∈ 〈(f , z1, u), (f ′, z2, u)〉, λz : b.z ≡ λz : b.z , 〈(f , z1, u)〉bbz = z

In the next section we prove the definition of the hereditary substitution func-

tion correct.

351

13.2.3 Main Properties

Just as we did for the previous system we now prove the properties of heredi-

tary substitution. We introduce some notation to make working with

multi-substitutions a bit easier. The sets of all first, second, and third projections of

the triples in Θ are denoted Θ1, Θ2, and Θ3 respectively. We denote the assumption

of all elements of Θi having the type T as Θi : T . This latter notation is used in

typing contexts to indicate the addition of all the variables in Θj for j ∈ {1, 2} to the

context with the specified type. We denote this as Γ,Θj : T ,Γ′ for some contexts Γ

and Γ′. The notation Γ ` Θ3 : T is defined as for all t ∈ Θ3 the typing judgment

Γ ` t : T holds. Finally, we denote terms in Θ3 being normal as norm(Θ3).

All of the following properties will depend on a few properties of the ctype

function. They are listed in the following lemma.

Lemma 13.2.3.4. [Properties of ctype]

i. If ctypeT (x , t) = T ′ then head(t) = x and T ′ ≤ T .

ii. If Γ, x : T ,Γ′ ` t : T ′ and ctypeT (x , t) = T ′′ then T ′ ≡ T ′′.

Proof. We prove part one first. This is a proof by induction on the structure of t.

Case. Suppose t ≡ x . Then ctypeT (x , x) = T . Clearly, head(x) = x and T is a

subexpression of itself.

Case. Suppose t ≡ t1 t2. Then ctypeT (x , t1 t2) = T ′′ when ctypeT (x , t1) = T ′ → T ′′.

Now t > t1 so by the induction hypothesis head(t1) = x and T ′ → T ′′

352

is a subexpression of T . Therefore, head(t1 t2) = x and certainly T ′′ is a

subexpression of T .

We now prove part two. This is also a proof by induction on the structure

of t.

Case. Suppose t ≡ x . Then ctypeT (x , x) = T . Clearly, T ≡ T .

Case. Suppose t ≡ t1 t2. Then ctypeT (x , t1 t2) = T2 when ctypeT (x , t1) = T1 → T2.

By inversion on the assumed typing derivation we know there exists type T ′′

such that Γ, x : T ,Γ′ ` t1 : T ′′ → T ′. Now t > t1 so by the induction

hypothesis T1 → T2 ≡ T ′′ → T ′. Therefore, T1 ≡ T ′′ and T2 ≡ T ′.

Lemma 13.2.3.5. [Properties of ctype Continued]

i. If Γ, x : T ,Γ′ ` t1 t2 : T ′, Γ ` t : T , [t/x]T t1 = λy : T1.t
′, and t1 is not a

λ-abstraction, then t1 is in head normal form and there exists a type A such

that ctypeT (x , t1) = A.

ii. If Γ, x : T ,Γ′ ` t1 t2 : T ′, Γ ` t : T , [t/x]T t1 = ∆y : ¬(T ′′ → T ′).t ′, and t1 is

not a ∆-abstraction, then there exists a type A such that ctypeT (x , t1) = A.

Proof. We prove part one first. This is a proof by induction on the structure of t1 t2.

The only possibilities for the form of t1 is x or s1 s2. All other forms would not

result in [t/x]T t1 being a λ-abstraction and t1 not. If t1 ≡ x then there exist a type T ′′

353

such that T ≡ T ′′ → T ′ and ctypeT (x , x t2) = T ′ when ctypeT (x , x) = T ≡ T ′′ → T ′

in this case. We know T ′′ to exist by inversion on Γ, x : T ,Γ′ ` t1 t2 : T ′.

Now suppose t1 ≡ s1 s2. Now knowing t1 to not a λ-abstraction implies that

s1 is also not a λ-abstraction or [t/x]T t1 would be an application instead of a λ-

abstraction. So it must be the case that [t/x]T s1 is a λ-abstraction and s1 is not.

Since s1 < t1 we can apply the induction hypothesis to obtain there exists a type A

such that ctypeT (x , s1) = A. Now by inversion on Γ, x : T ,Γ′ ` t1 t2 : T ′ we know

there exists a type T ′′ such that Γ, x : T ,Γ′ ` t1 : T ′′ → T ′. We know t1 ≡ s1 s2

so by inversion on Γ, x : T ,Γ′ ` t1 : T ′′ → T ′ we know there exists a type A′′

such that Γ, x : T ,Γ′ ` s1 : A′′ → (T ′′ → T ′). By part two of Lemma 13.2.3.4 we

know A ≡ A′′ → (T ′′ → T ′) and ctypeT (x , t1) = ctypeT (x , s1 s2) = T ′′ → T ′ when

ctypeT (x , s1) = A′′ → (T ′′ → A′), because we know ctypeT (x , s1) = A.

The proof of part two is similar to the proof of part one.

The first two properties of the hereditary substitution function are totality

and type preservation.

Lemma 13.2.3.6. [Totality and Type Preservation]

i. If Γ ` Θ3 : A and Γ,Θ1 : ¬(A → A′) ` t ′ : B, then there exists a term s such

that 〈Θ〉AA′t ′ = s and Γ,Θ2 : ¬A′ ` s : B.

ii. If Γ ` t : A and Γ, x : A,Γ′ ` t ′ : B, then there exists a term s such

that [t/x]At ′ = s and Γ,Γ′ ` s : B.

Proof. This is a mutually inductive proof using the lexicographic combination (A, f, t ′)

354

of our ordering on types, the natural number ordering where f ∈ {0, 1}, and the strict

subexpression ordering on terms. We first prove part one and then part two. In both

parts we case split on t ′.

Part One.

Case. Suppose t ′ is a variable x . Then either there exists a term a such that

(x , z , a) ∈ Θ or not. Suppose so. Then 〈Θ〉AA′x = λy : A→ A′.(z (y a)) where

y is fresh in x , z and a. Now suppose there does not exist any term a or z

such that (x , z , a) ∈ Θ. Then 〈Θ〉AA′x = x . Typing clearly holds, because if

(x , z , a) ∈ Θ then B ≡ ¬(A → A′) and we know Γ,Θ2 : ¬A′ ` λy : A →

A′.(z (y a)) : B or x 6∈ Θ1 then it must be the case that x : B ∈ Γ, hence, by

assumption and weakening for typing Γ,Θ2 : ¬A′ ` x : B .

Case. It must be the case that B ≡ B1 → B2 for some types B1 and B2. Suppose

t ′ ≡ λy : B1.t
′
1. Then 〈Θ〉AA′t ′ = 〈Θ〉AA′(λy : B1.t

′
1) = λy : B1.〈Θ〉AA′t ′1. Now

sense (A, 1, t ′) > (A, 1, t ′1) we may apply the induction hypothesis to obtain

that there exists a term s such that 〈Θ〉AA′t ′1 = s , and Γ,Θ2 : ¬A′, y : B1 `

s : B2. Thus, by definition and the typing rule for λ-abstractions we obtain

〈Θ〉AA′t ′ = λy : B1.s and Γ,Θ2 : ¬A′ ` λy : B1.s : B1 → B2.

Case. Suppose t ′ ≡ ∆y : ¬B .t ′1. Similar to the previous case.

Case. Suppose t ′ ≡ t ′1 t ′2. We have two cases to consider.

Case. Suppose t ′1 ≡ x for some variable x . In each case B ≡⊥.

Case. Suppose t ′2 ≡ λy : A.t ′′2 , for some y and t ′′2 , (x , z , t) ∈ Θ. Since

355

(A, 1, t ′) > (A, 1, t ′′2) and the typing assumptions hold by inversion

we can apply the induction hypothesis to obtain 〈Θ〉AA′t ′′2 = s for some

term s and Γ,Θ2 : ¬A′, y : A ` s : A′. Furthermore, sense (A, 1, t′) >

(A, 0, s), the previous typing condition and the typing assumptions we

also know from the induction hypothesis that [t/y]As = s ′ for some

term s ′ and Γ,Θ2 : ¬A′ ` s ′ : A′. Finally, by definition we know

〈Θ〉AA′t ′ = z ([t/y]As) = z s ′ and by using the application typing rule

that Γ,Θ2 : ¬A′ ` z s ′ : B .

Case. Suppose t ′2 ≡ ∆y : ¬(A → A′).t ′′2 , for some y and t ′′2 , (x , z , t) ∈ Θ.

Since (A, 1, t′) > (A, 1, t ′′2) we know from the induction hypothesis

that 〈Θ, (y , z2, t)〉AA′t ′′2 = s for some fresh variable z and term s , and

Γ,Θ2 : ¬A′, z2 : ¬A′ ` s :⊥. Finally, 〈Θ〉AA′t ′ = z (∆z2 : ¬A′.s) by

definition, and by using the application typing rule Γ,Θ2 : ¬A′ `

z (∆z2 : ¬A′.s) : B .

Case. Suppose t ′2 is not an abstraction, and (x , z , t) ∈ Θ. Since (A, 1, t′) >

(A, 1, t ′2) we know from the induction hypothesis that 〈Θ〉AA′t ′2 = s for

some term s and Γ,Θ2 : ¬A′ ` s : A → A′. Finally, 〈Θ〉AA′t ′ = z s

by definition, and by using the application typing rule Γ,Θ2 : ¬A′ `

z s : B .

Case. Suppose (x , z , t ′′) 6∈ Θ for any term t ′′ and z . Since (A, 1, t′) >

(A, 1, t ′2) we know from the induction hypothesis that 〈Θ〉AA′t ′2 = s for

some term s and Γ,Θ2 : ¬A′ ` s : A → A′. Finally, 〈Θ〉AA′t ′ = x s

356

by definition, and by using the application typing rule Γ,Θ2 : ¬A′ `

x s : B .

Case. Suppose t ′1 is not a variable. This case follows easily from the induction

hypothesis.

Part two.

Case. Suppose t ′ is either x or a variable y distinct from x . Trivial in both cases.

Case. Suppose t ′ ≡ λy : A1.t
′
1. By inversion we know there exists a type A2 such that

Γ, x : A,Γ′, y : A1 ` t ′1 : A2. We also know that t ′1 is a strict subexpression of

t ′, hence we can apply the second part of the induction hypothesis to obtain

[t/x]At ′1 = s1 and Γ,Γ′, y : A1 ` s1 : A2 for some term s1. By the definition of

the hereditary substitution function

[t/x]At ′ = λy : A1.[t/x]At ′1
= λy : A1.s1.

It suffices to show that Γ,Γ′ ` λy : A1.s1 : A1 → A2. By simply applying the

typing rule Lam using Γ,Γ′, y : A1 ` s1 : A2 we obtain Γ,Γ′ ` λy : A1.s1 :

A1 → A2.

Case. Suppose t ′ ≡ ∆y : ¬B .t ′1. Similar to the previous case.

Case. Suppose t ′ ≡ t ′1 t ′2. By inversion we know Γ, x : A,Γ′ ` t ′1 : B ′ → B and Γ, x :

A,Γ′ ` t ′2 : B ′ for some type B ′. Clearly, t ′1 and t ′2 are strict subexpressions

of t ′. Thus, by the second part of the induction hypothesis there exists terms

s1 and s2 such that [t/x]At ′1 = s1 and [t/x]At ′2 = s2, and Γ,Γ′ ` s1 : B ′ → B ′

and Γ,Γ′ ` s2 : B ′. We case split on whether or not s1 is a λ-abstraction

357

or a ∆-abstraction and t ′1 is not, or s1 and t ′1 are both a λ-abstraction or a

∆-abstraction. We only consider the non-trivial cases when s1 ≡ λy : B ′.s ′1

and t ′1 is not a λ-abstraction, and s1 ≡ ∆y : ¬(B ′ → B).s ′1 and t ′1 is not a

∆-abstraction. Consider the former.

Now by Lemma 13.2.3.4 it is the case that there exists a B ′′ such that

ctypeA(x , t ′1) = B ′′, B ′′ ≡ B ′ → B , and B is a subexpression of A, hence A >

B ′. By the definition of the hereditary substitution function [t/x]A(t ′1 t ′2) =

[s2/y]B
′
s ′1. Therefore, by the induction hypothesis there exists a term s such

that [s2/y]As ′1 = s and Γ,Γ′ ` s : B .

At this point consider when s1 ≡ ∆y : ¬(B ′ → B).s ′1 and t ′1 is not a ∆-

abstraction. Again, by Lemma 13.2.3.4 it is the case that there exists a B ′′

such that ctypeA(x , t ′1) = B ′′, B ′′ ≡ B ′ → B and B ′ → B is a subexpression

of A. Hence, A > B ′. Let r be a fresh variable of type ¬B . Then by the

induction hypothesis, there exists a term s′′, such that, 〈(y , r , s2)〉B ′B s ′1 = s′′

and Γ, r : ¬B ` s ′′ :⊥. Therefore, [t/x]A(t ′1 t ′2) = ∆r : ¬B .〈(y , r , s2)〉B ′B s ′1 =

∆r : ¬B .s ′′, and by the ∆-abstraction typing rule Γ ` ∆r : ¬B .s ′′ : B .

The next property shows that the hereditary substitution function is normality

preserving. The proof of normality preservation depends on the following auxiliary

result.

Lemma 13.2.3.7. For any Θ, A and A′, if n1 n2 is normal then head(〈Θ〉AA′(n1 n2))

is a variable.

358

Proof. This is a proof by induction on the form of n1 n2. In every case where n1 is

a variable and (n1, z , t) ∈ Θ for some term t and variable z , we know by definition

that 〈Θ〉AA′(n1 n2) = z t2 for some variable z and term t2. In the case where n1 is a

variable and (n1, z , t) 6∈ Θ for some term t and variable z , we know by definition that

〈Θ〉AA′(n1 n2) = (〈Θ〉AA′n1) (〈Θ〉AA′n2). Now by hypothesis and definition 〈Θ〉AA′n1 = n1.

Thus, (〈Θ〉AA′n1) (〈Θ〉AA′n2) = n1 (〈Θ〉AA′n2) and we know n1 is a variable. The final

case is when n1 is not a variable. Then it must be the case that n1 is a normal

application. So by the induction hypothesis head(〈Θ〉AA′n1) is a variable. Therefore,

head(〈Θ〉AA′(n1 n2)) = head((〈Θ〉AA′n1) (〈Θ〉AA′n2)) = head(〈Θ〉AA′n1) is a variable.

Lemma 13.2.3.8. [Normality Preservation]

i. If norm(Θ3), Γ ` Θ3 : A and Γ,Θ1 : ¬(A → A′) ` n ′ : B, then there exists a

normal form m such that 〈Θ〉AA′n ′ = m.

ii. If Γ ` n : A and Γ, x : A,Γ′ ` n ′ : B then there exists a term m such that

[n/x]An ′ = m.

Proof. This is a mutually inductive proof using the lexicographic combination

(A, f, n ′) of our ordering on types, the natural number ordering where f ∈ {0, 1}, and

the strict subexpression ordering on terms. We first prove part one and then part

two. In both parts we case split on n ′.

Part One.

Case. Suppose n ′ is a variable x . Then either there exists a normal form m and

variable z , such that, (x , z ,m) ∈ Θ or not. Suppose so. Then 〈Θ〉AA′x =

359

λy : A → A′.(z (y m)) where y is fresh in x , z and m. Clearly, λy : A →

A′.(z (y m)) is normal. Now suppose there does not exist any term m or z

such that (x , z ,m) ∈ Θ. Then 〈Θ〉AA′x = x which is clearly normal.

Case. Suppose n ′ ≡ λy : B1.n
′
1. Then 〈Θ〉AA′n ′ = 〈Θ〉AA′(λy : B1.n

′
1) = λy :

B1.〈Θ〉AA′n ′1. Now sense (A, 1, n ′) > (A, 1, n ′1) we may apply the induction

hypothesis to obtain that there exists a term m such that 〈Θ〉AA′n ′1 = m.

Thus, by definition we obtain 〈Θ〉AA′n ′ = λy : B1.m.

Case. Suppose n ′ ≡ ∆y : ¬B .n ′1. Similar to the previous case.

Case. Suppose n ′ ≡ n ′1 n ′2. We have two cases to consider.

Case. Suppose n ′1 ≡ x for some variable x .

Case. Suppose n ′2 ≡ λy : A.n ′′2 , for some y and n ′′2 , (x , z , n) ∈ Θ. Since

(A, 1, n ′) > (A, 1, n ′′2) and the typing assumptions hold by inversion

we can apply the induction hypothesis to obtain 〈Θ〉AA′n ′′2 = m for

some term m. We know from Lemma 13.2.3.8 that Γ,Θ2 : ¬A′, y :

A ` m : A′. Furthermore, sense (A, 1, n′) > (A, 0,m), the previous

typing condition and the typing assumptions we also know from the

induction hypothesis that [t/y]Am = m ′ for some term m ′. Finally,

by definition we know 〈Θ〉AA′n ′ = z ([n/y]Am) = z m ′. It is easy to

see that z m ′ is normal.

Case. Suppose n ′2 ≡ ∆y : ¬(A → A′).n ′′2 , for some y and n ′′2 , (x , z , n) ∈ Θ.

Since (A, 1, n′) > (A, 1, n ′′2) we know from the induction hypothesis

that 〈Θ, (y , z2, n)〉AA′n ′′2 = m for some normal form m, and Γ,Θ2 :

360

¬A′, z2 : ¬A′ ` m :⊥. Finally, 〈Θ〉AA′n ′ = z (∆z2 : ¬A′.m) by defini-

tion.

Case. Suppose n ′2 is not an abstraction, and (x , z , n) ∈ Θ. Since (A, 1, n′) >

(A, 1, n ′2) we know from the induction hypothesis that 〈Θ〉AA′n ′2 = m

for some normal form m. Finally, 〈Θ〉AA′n ′ = z m by definition.

Case. Suppose (x , z , n ′′) 6∈ Θ for any term n ′′ and z . Since (A, 1, n′) >

(A, 1, n ′2) we know from the induction hypothesis that 〈Θ〉AA′n ′2 = m

for some term m. Finally, 〈Θ〉AA′n ′ = x m by definition.

Case. Suppose n ′1 is not a variable. This case follows easily from the induction

hypothesis and Lemma 13.2.3.7.

Part two.

Case. Suppose n ′ is either x or a variable y distinct from x . Trivial in both cases.

Case. Suppose n ′ ≡ λy : B1.n
′
1. We also know that n ′1 is a strict subexpression of

n ′, hence we can apply the second part of the induction hypothesis to obtain

[n/x]An ′1 = m1 for some normal form m1. By the definition of the hereditary

substitution function

[n/x]An ′ = λy : A1.[n/x]An ′1
= λy : B1.m1.

Clearly, λy : B1.m1 is normal.

Case. Suppose n ′ ≡ ∆y : ¬B .n ′1. Similar to the previous case.

Case. Suppose t ′ ≡ t ′1 t ′2. Clearly, n ′1 and n ′2 are strict subexpressions of n ′. Thus,

by the induction hypothesis there exists normal forms n1 and n2 such that

361

[n/x]An ′1 = m1 and [n/x]An ′2 = m2. We case split on whether or not m1 is a

λ-abstraction or a ∆-abstraction and n ′1 is not, or m1 and n ′1 are both a λ-

abstraction or a ∆-abstraction. We only consider the non-trivial cases when

m1 ≡ λy : B ′.m ′1 and n ′1 is not a λ-abstraction, and m1 ≡ ∆y : ¬(B ′ → B).m ′1

and n ′1 is not a ∆-abstraction. Consider the former.

Now by Lemma 13.2.3.4 it is the case that there exists a B ′′ such that

ctypeA(x , t ′1) = B ′′, B ′′ ≡ B ′ → B , and B is a subexpression of A, hence A >

B ′. By the definition of the hereditary substitution function [n/x]A(n ′1 n ′2) =

[m2/y]B
′
m ′1. Therefore, by the induction hypothesis there exists a normal

form m such that [m2/y]Am ′1 = m.

At this point consider when m1 ≡ ∆y : ¬(B ′ → B).m ′1 and n ′1 is not a ∆-

abstraction. Again, by Lemma 13.2.3.4 it is the case that there exists a B ′′

such that ctypeA(x , t ′1) = B ′′, B ′′ ≡ B ′ → B and B ′ → B is a subexpression

of A. Hence, A > B ′. Let r be a fresh variable of type ¬B . Then by the

induction hypothesis, there exists a termm′′, such that, 〈(y , r ,m2)〉B ′B m ′1 = m′′

and Therefore, [n/x]A(n ′1 n ′2) = ∆r : ¬B .〈(y , r ,m2)〉B ′B m ′1 = ∆r : ¬B .m ′′.

The final correctness property of the hereditary substitution function is soundness

with respect to reduction. We need one last piece of notation. Suppose Θ =

(x1, z1, t1), . . . , (xi , zi , ti) for some natural number i . Then 〈Θ〉↑AA′ t ′ =def [λy : A →

A′.(zi (y ti))/xi](· · · ([λy : A→ A′.(z1 (y t1))/x1]t1) · · ·).

Lemma 13.2.3.9. [Soundness with Respect to Reduction]

362

i. If Γ ` Θ3 : A and Γ,Θ1 : ¬(A→ A′) ` t ′ : B, then 〈Θ〉↑AA′ t ′ ∗ 〈Θ〉AA′t ′.

ii. If Γ ` t : A and Γ, x : A,Γ′ ` t ′ : B then [t/x]t ′ ∗ [t/x]At ′.

Proof. This is a mutually inductive proof using the lexicographic combination

(A, f, t ′) of our ordering on types, the natural number ordering where f ∈ {0, 1}, and

the strict subexpression ordering on terms. We first prove part one and then part

two. In both parts we case split on t ′.

Part One.

Case. Suppose t ′ is a variable x . Then either there exists a term a such that

(x , z , a) ∈ Θ or not. Suppose so. Then by definition we know 〈Θ〉↑AA′ x =

λy : A → A′.(z (y a)), for some fresh variable y . Now 〈Θ〉AA′x = λy : A →

A′.(z (y a)), where we choose the same y . Thus, 〈Θ〉↑AA′ x ∗ 〈Θ〉AA′x . Now

suppose there does not exist any term a or z such that (x , z , a) ∈ Θ. Then

〈Θ〉AA′x = 〈Θ〉↑AA′ x = x. Thus, 〈Θ〉↑AA′ x ∗ 〈Θ〉AA′x .

Case. Suppose t ′ ≡ λy : B1.t
′
1. This case follows from the induction hypothesis.

Case. Suppose t ′ ≡ ∆y : ¬B .t ′1. Similar to the previous case.

Case. Suppose t ′ ≡ t ′1 t ′2. We have two cases to consider.

Case. Suppose t ′1 ≡ x for some variable x .

Case. Suppose t ′2 ≡ λy : A.t ′′2 , for some y and t ′′2 , (x , z , t) ∈ Θ. Now

〈Θ〉↑AA′ (x (λy : A.t ′′2))

= (λy : A→ A′.(z (y t))) (λy : A.(〈Θ〉↑AA′ t ′′2))

 z ((λy : A.(〈Θ〉↑AA′ t ′′2)) t)

 z ([t/y](〈Θ〉↑AA′ t ′′2))

363

Since (A, 1, t ′) > (A, 1, t ′′2) we can apply the induction hypothesis to

obtain 〈Θ〉↑AA′ t ′′2
∗ 〈Θ〉AA′t ′′2 . Hence,

z ([t/y](〈Θ〉↑AA′ t ′′2)) ∗ z ([t/y](〈Θ〉AA′t ′′2))

Furthermore, sense (A, 1, t′) > (A, 0, 〈Θ〉AA′t ′′2), we also know from the

induction hypothesis that

z ([t/y](〈Θ〉AA′t ′′2)) ∗ z ([t/y]A(〈Θ〉AA′t ′′2))
= 〈Θ〉AA′t ′

Case. Suppose t ′2 ≡ ∆y ′ : ¬(A → A′).t ′′2 , for some y and t ′′2 , (x , z , t) ∈ Θ.

Now using a fresh variable z2 we know

〈Θ〉↑
A
A′ (x (∆y ′ : ¬(A→ A′).t ′′2))

= (λy : A→ A′.(z (y t))) (∆y ′ : ¬(A→ A′).(〈Θ〉↑
A
A′ t ′′2))

 z ((∆y ′ : ¬(A→ A′).(〈Θ〉↑
A
A′ t ′′2)) t)

 z (∆z2 : ¬A′.([λy : A→ A′.(z2 (y t))/y ′](〈Θ〉↑
A
A′ t ′′2)))

= z (∆z2 : ¬A′.(〈Θ, (y ′, z2, t)〉↑
A
A′ t ′′2))

Since (A, 1, t′) > (A, 1, t ′′2) we know from the induction hypothesis

that 〈Θ, (y ′, z2, t)〉↑AA′ t ′′2
∗ 〈Θ, (y ′, z2, t)〉AA′t ′′2 . Thus,

z (∆z2 : ¬A′.(〈Θ, (y ′, z2, t)〉↑
A
A′ t ′′2)) ∗ z (∆z2 : ¬A′.(〈Θ, (y ′, z2, t)〉AA′t ′′2))

= 〈Θ〉AA′t ′.

Case. Suppose t ′2 is not an abstraction, and (x , z , t) ∈ Θ. Since (A, 1, t ′) >

(A, 1, t ′2) we know from the induction hypothesis that 〈Θ〉↑AA′ t ′2
∗

〈Θ〉AA′t ′2. Thus,

〈Θ〉↑AA′ t ′ = 〈Θ〉↑AA′ (x t ′2)

= z (〈Θ〉↑AA′ t ′2)
 ∗ z (〈Θ〉AA′t ′2)
= 〈Θ〉AA′(x t ′2) = 〈Θ〉AA′t ′.

Case. Suppose (x , z , t ′′) 6∈ Θ for any term t ′′ and z . Since (A, 1, t′) >

(A, 1, t ′2) we know from the induction hypothesis that 〈Θ〉↑AA′ t ′2
∗

〈Θ〉AA′t ′2. Thus,

364

〈Θ〉↑AA′ t ′ = 〈Θ〉↑AA′ (x t ′2)

= x (〈Θ〉↑AA′ t ′2)
 ∗ x (〈Θ〉AA′t ′2)
= 〈Θ〉AA′(x t ′2) = 〈Θ〉AA′t ′.

Case. Suppose t ′1 is not a variable. This case follows easily from the induction

hypothesis.

Part two

Case. Suppose t ′ is a variable x or y distinct from x . Trivial in both cases.

Case. Suppose t ′ ≡ λy : B1.s . Then [t/x](λy : B1.s) = λy : B1.([t/x]s). Now s is

a strict subexpression of t ′ so we can apply the second part of the induction

hypothesis to obtain [t/x]s ∗ [t/x]As . At this point we can see that since

λy : B1.[t/x]s ≡ [t/x](λy : B1.s) we may conclude that λy : B1.[t/x]s ∗

λy : B1.[t/x]As .

Case. Suppose t ′ ≡ ∆y : ¬B .s . Similar to the previous case.

Case. Suppose t ′ ≡ t ′1 t ′2. By Lemma 13.2.3.6 there exists terms s1 and s2 such that

[t/x]At ′1 = s1 and [t/x]At ′2 = s2. Since t ′1 and t ′2 are strict subexpressions

of t ′ we can apply the second part of the induction hypothesis to obtain

[t/x]t ′1
∗ s1 and [t/x]t ′2

∗ s2. Now we case split on whether or not s1 is

a λ-abstraction and t ′1 is not, a ∆-abstraction and t ′1 is not, or s1 is not a λ-

abstraction or a ∆-abstraction. If s1 is not a λ-abstraction or a ∆-abstraction

then [t/x]At ′ = ([t/x]At ′1) ([t/x]At ′2) ≡ s1 s2. Thus, by two applications of the

induction hypothesis, [t/x]t ′ ∗ [t/x]At ′, because [t/x]t ′ = ([t/x]t ′1) ([t/x]t ′2).

Suppose s1 ≡ λy : B ′.s ′1 and t ′1 is not a λ-abstraction. By Lemma 13.2.3.4

365

there exists a type B ′′ such that ctypeA(x , t ′1) = B ′′, B ′′ ≡ B ′ → B , and B ′′ is

a subexpression of A. Then by the definition of the hereditary substitution

function [t/x]A(t ′1 t ′2) = [s2/y]B
′
s ′1. Now we know A > B ′ so we can apply the

second part of the induction hypothesis to obtain [s2/y]s ′1
∗ [s2/y]B

′
s ′1. By

knowing that ((λy : B ′.s ′1) s2) ([s2/y]s ′1) and by the previous fact we know

(λy : B ′.s ′1) s2 ∗ [s2/y]B
′
s ′1. We now make use of the well known result of

full β-reduction. The result is stated as

a ∗ a ′

b ∗ b ′ a ′ b ′ ∗ c

a b ∗ c

where a, a ′, b, b ′, and c are all terms. We apply this result by instantiating

a, a ′, b, b ′, and c with [t/x]t ′1, s1, [t/x]t ′2, s2, and [s2/y]B
′
s ′1 respectively.

Therefore, [t/x](t ′1 t ′2) ∗ [s2/y]B
′
s ′1.

Suppose s1 ≡ ∆y : ¬(B ′ → B).s ′1 and t ′1 is not a ∆-abstraction. By

Lemma 13.2.3.4 there exists a type B ′′ such that ctypeA(x , t ′1) = B ′′, B ′′ ≡

B ′ → B , and B ′′ is a subexpression of A. Then by the definition of the hered-

itary substitution function [t/x]A(t ′1 t ′2) = ∆z : ¬B .〈(y , z , s2)〉B ′B s ′1, where z is

fresh variable. Now

[t/x](t ′1 t ′2) = ([t/x]t ′1) ([t/x]t ′2)
 ∗ s1 s2

≡ (∆y : ¬(B ′ → B).s ′1) s2

 ∆z : ¬B .[λy ′ : B ′ → B .(z (y ′ s2))/y]s ′1
= ∆z : ¬B .(〈(y , z , s2)〉↑B

′
B s ′1)

It suffices to show that ∆z : ¬B .(〈(y , z , s2)〉↑B
′

B s ′1) ∗ ∆z : ¬B .〈(y , z , s2)〉B ′B s ′1,

but this follows from the induction hypothesis, because (A, 0, t ′) > (B ′, 1, s ′1).

366

Using these properties it is now possible to conclude normalization for the

λ∆-calculus.

13.3 Concluding Normalization

We now define the interpretation [[T]]Γ of types T in typing context Γ. This

is in fact the same interpretation of types that was used to show normalization using

hereditary substitution of the various extensions of SSF.

Definition 13.3.0.1.

The interpretation of types [[T]]Γ is defined by:

n ∈ [[T]]Γ ⇐⇒ Γ ` n : T

We extend this definition to non-normal terms t in the following way:

t ∈ [[T]]Γ ⇐⇒ ∃n.t ! n ∈ [[T]]Γ

Finally, we have the main lemma hereditary substitution for the interpretation

of types.

Lemma 13.3.0.2. [Hereditary Substitution for the Interpretation of Types] If n ∈

[[T]]Γ and n ′ ∈ [[T ′]]Γ,x :T ,Γ′, then [n/x]Tn ′ ∈ [[T ′]]Γ,Γ′.

Proof. We know by Lemma 13.2.3.6 that there exists a term s such that [n/x]Tn ′ = s

and Γ,Γ′ ` s : T ′, and by Lemma 13.2.3.8 s is normal. Therefore, s ∈ [[T ′]]Γ,Γ′ .

Using the previous lemma and the properties of the hereditary substitution

function we can now prove type soundness.

Theorem 13.3.0.3. [Type Soundness] If Γ ` t : T then t ∈ [[T]]Γ.

367

Proof. This is a proof by induction on the assumed typing derivation.

Case.

Γ, x : A ` x : A
Ax

Trivial.

Case.

Γ, x : A ` t : B

Γ ` λx : A.t : A→ B
Lam

By the induction hypothesis t ∈ [[B]]Γ,x :A. By the definition of the interpre-

tation of types t ! n ∈ [[B]]Γ,x :A and Γ, x : A ` n : B . Thus, by applying

the λ-abstraction type-checking rule, Γ ` λx : A.n : A → B , hence by the

definition of the interpretation of types λx : A.n ∈ [[A → B]]Γ. Therefore,

λx : A.t ! λx : A.n ∈ [[A→ B]]Γ.

Case.

Γ, x : ¬A ` t :⊥
Γ ` ∆x : ¬A.t : A

Delta

Similar to the previous case.

Case.

Γ ` t2 : A
Γ ` t1 : A→ B

Γ ` t1 t2 : B
App

368

By the induction hypothesis we know t1 ∈ [[A → B]]Γ and t2 ∈ [[A]]Γ. So

by the definition of the interpretation of types we know there exists normal

forms n1 and n2 such that t1 ∗ n1 ∈ [[A → B]]Γ and t2 ∗ n2 ∈ [[A]]Γ.

Assume y is a fresh variable in n1 and n2 of type A. Then by hereditary

substitution for the interpretation of types (Lemma 13.3.0.2) [n1/y]A(y n2) ∈

[[B]]Γ. It suffices to show that t1 t2 ∗ [n1/y]A(y n2). This is an easy con-

sequence of soundness with respect to reduction (Lemma 13.2.3.9), that is,

t1 t2 ∗ n1 n2 = [n1/y](y n2) and by soundness with respect to reduction

[n1/y](y n2) ∗ [n1/y]A(y n2). Therefore, t1 t2 ∈ [[B]]Γ.

Finally, we conclude normalization for the λ∆-calculus using hereditary substitution.

Corollary 13.3.0.4. [Normalization] If Γ ` t : T then there exists a term n such

that t ! n.

13.4 Related Work

We first compare the proof method normalization using hereditary substitution

with other known proof methods. The λ∆-calculus could have been proven weakly

and strongly normalizing by translation to λµ-calculus. It is true that this is not as

complicated as the proof method here, but a proof by translation does not yield a

direct proof.

A direct proof of weak and strong normalization could have been given using

the Tait-Girard reducibility method. However, we claim that the proof method used

369

here is less complicated. The statement of the type soundness theorem is qualitatively

less complex due to the fact that there is no need to universally quantify over the set

of well-formed substitutions. We are able to prove type soundness on open terms di-

rectly. Additionally, the formalization of normalization using hereditary substitution

does not require recursive types to define the semantics of types which are required

when formalizing a proof using reducibility.

R. David and K. Nour give a short proof of normalization of the λ∆-calculus

in [46]. There they use a rather complicated lexicographic combination to give a

completely arithmetical proof of strong normalization. While they show strong nor-

malization their proof method is comparable to using hereditary substitution. As

we mentioned in the introduction hereditary substitution is the constructive content

of normalization proofs using the lexicographic combination of an ordering on types

and the strict subexpression ordering on terms. It is currently unknown if hereditary

substitution can be extended to show strong normalization, but we conjecture that

the constructive content of the proof of Lemma 3..6 in David and Nour’s work would

yield a hereditary substitution like function. Furthermore, for simply typed theories

we believe it is enough to show weak normalization and never need to show strong

normalization. It is well-known due to the work of G. Barthe et al. in [18] that for

the entire left hand side of the λ-cube weak normalization implies strong normaliza-

tion. We conjecture that this result would extend to the left hand side of the classical

λ-cube given in [19]. Thus, showing normalization using hereditary substitution is

less complicated than the work of David and Nour’s.

370

Similar to the work of David and Nour is the work of F. Joachimski and R.

Matthes. In [71] they prove weak and strong normalization of various simply typed

theories. The proof method used is induction on various lexicographic combinations

similar to hereditary substitution. After proving weak normalization of each type

theory they extract the constructive content of the proof yielding a normalization

function which depends on a substitution function similar to the hereditary substi-

tution function. In contrast once hereditary substitution is defined for a type theory

we can easily define a normalization function. Note that the following function is the

computational content of the type-soundness theorem (Theorem 13.3.0.3).

Definition 13.4.0.1.

We define a normalization function for the λ∆-calculus using hereditary substitution

as follows:

norm x = x

norm (λx : A.t) = λx : A.(norm t)

norm (∆x : A.t) = ∆x : A.(norm t)

norm (t1 t2) = [n1/r]A(r n2)

Where norm t1 = n1, norm t2 = n2, A is the type of t1, and r is fresh in t1

and t2.

This function is similar to the normalization functions in Joachimski and

Matthes’ work. We could use the above normalization function to decide βη-equality

for the λ∆-calculus. Indeed this one of the main application of hereditary substitu-

tion.

A. Abel in 2006 shows how to implement a normalizer using sized heteroge-

371

neous types which is a function similar to the hereditary substitution function in [2].

He then uses hereditary substitution to prove normalization of the type level of a

type theory with higher-order subtyping in [4]. This results in a purely syntactic

metatheory. C. Keller and T. Altenkirch recently implemented hereditary substitu-

tion as a normalization function for the simply typed λ-calculus in Agda [73]. Their

results show that hereditary substitution can be used to decide βη-equality. They

found hereditary substitution to be convenient to use in a total type theory, because

it can be implemented without a termination proof. This is because the hereditary-

substitution function can be recognized as structurally recursive, and hence accepted

directly by Agda’s termination checker.

372

CONCLUSION

Bugs are the bane of software development, and in order to rid the world of

such problems we must revisit the very foundations of programming languages. We

have argued that a programming language must be mathematically defined. This

allows programmers and language designers the ability to reason about the software

being developed in the language. Furthermore, we have argued that the programming

languages of the future must contain some notion of a logic which allows for the

verification of the programs written in the languages.

We introduced two new dependently-typed functional programming languages

that contain a logical fragment called Freedom of Speech and Separation of Proof

from Program. We proved logical consistency of the logical fragment of the former.

Furthermore, we introduced a new type theory called Dualized Type Theory that

shows promise of being a logical foundation of induction and co-induction. All of

these new theories constitute foundations of programming languages that directly

support verification of the software developed in them.

Finally, we showed how to adapt the hereditary substitution proof technique

for showing logical consistency by establishing normalization of several extensions of

Stratified System F. We also proved normalization by hereditary substitution of the

λ∆-calculus; the first classical type theory to be proved consistent using hereditary

substitution. These proofs show that hereditary substitution is a valuable tool that

can be used to establish consistency of the logical fragment of various programming

373

languages.

We believe the future is bright, and that investigations such as the ones in this

thesis will lead to new and exciting programming languages. These new languages

will have the means to prevent major bugs in safety critical devices from reaching the

public, but there is a lot more work to be done.

The following list addresses future work related to each theory:

- The freedom of speech language has a call-by-value operational semantics, but

this requires many unfortunate value restrictions. It would be worthwhile to

explore the language design when call-by-name is adopted. Some questions to

ask are is the language more elegant? That is, do we trade the value restrictions

for some other restrictions?

- We only presented the design of the Sep3, but the analysis still needs to be

done. In particular, consistency should be established for the proof fragment,

and type safety should be proven for the entire language.

- DTT is a nice start at understanding if bi-intuitionistic logic can be the basis of a

logical framework for induction and co-induction, but it is not clear that DTT

can be conservatively extended with such features and maintain type safety

and consistency. An exploration of these features is an important future goal.

Furthermore, the language design containing abstractions from the semantics

(abstract Kripke graphs, and worlds on types) is an unfortunate consequence

of the failure of cut-elimination due to subtraction, are there alternate designs

374

that could be used which prevent the need for these abstractions?

- Hereditary substitution still needs to be explored with respect to more expres-

sive type theories. For example, can it be used to prove normalization for a type

theory with large eliminations? How about impredicative theories like system

F? My conjecture is that it can, but it will require new ideas, because the order-

ings we have used to prove correctness of the hereditary substitution function

are too weak.

375

REFERENCES

[1] From lambda calculus to cartesian closed categories. To H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formalism, pages 376–402, 1980.

[2] A. Abel. Implementing a normalizer using sized heterogeneous types. In
In Workshop on Mathematically Structured Functional Programming, MSFP,
2006.

[3] A. Abel, B. Pientka, D. Thibodeau, and A. Setzer. Copatterns: program-
ming infinite structures by observations. In Proceedings of the 40th annual
ACM SIGPLAN-SIGACT symposium on Principles of Programming Languages
(POPL), pages 27–38. ACM, 2013.

[4] A. Abel and D. Rodriguez. Syntactic metatheory of higher-order subtyping.
In Proceedings of the 22nd international workshop on Computer Science Logic,
CSL ’08, pages 446–460, Berlin, Heidelberg, 2008. Springer-Verlag.

[5] U. Acar, A. Ahmed, and M. Blume. Imperative self-adjusting computation.
2008.

[6] R. Adams. A Modular Hierarchy of Logical Frameworks. PhD thesis, 2004.

[7] A. Ahmed. Step-indexed syntactic logical relations for recursive and quantified
types. In Lecture Notes in Computer Science. ESOP, 2006.

[8] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation inde-
pendence. POPL, 2009.

[9] T. Altenkirch and C. Mcbride. Generic programming within dependently typed
programming. In In Generic Programming, 2003. Proceedings of the IFIP TC2
Working Conference on Generic Programming, Schloss Dagstuhl, pages 1–20.
Kluwer Academic Publishers, 2003.

[10] R. Amadio and P. Curien. Domains and lambda-calculi. Cambridge tracts in
theoretical computer science. Cambridge University Press, 1998.

[11] J. Andrews and Y. Zhang. General test result checking with log file analysis.
IEEE Trans. Softw. Eng., 29:634–648, July 2003.

[12] P. Andrews. Churchś type theory. In E. N. Zalta, editor, The Stanford Ency-
clopedia of Philosophy. Spring 2009 edition, 2009.

376

[13] A. Appel and D. McAllester. An indexed model of recursive types for founda-
tional proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–683,
2001.

[14] A. Armstrong, S. Foster, and G. Struth. Dependently typed programming based
on automated theorem proving. CoRR, abs/1112.3833, 2011.

[15] D. Aspinall and J. Sevćık. Formalising java’s data race free guarantee. In
In 20th International Conference on Theorem Proving in Higher Order Logics
(TPHOLs 2007), pages 22–37. Springer, 2007.

[16] S. Awodey. Type theory and homotopy. Preprint, 2010.

[17] H. Barendregt. Lambda calculi with types. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, pages 117–309.
Oxford University Press, 1992.

[18] G. Barthe, J. Hatcliff, and M. H. SÃrensen. Weak normalization implies strong
normalization in a class of non-dependent pure type systems. Theoretical Com-
puter Science, 269(1-2):317 – 361, 2001.

[19] G. Barthe, J. Hatcliff, and M. Sørensen. A notion of classical pure type system
(preliminary version). Electronic Notes in Theoretical Computer Science, 6:4–
59, 1997.

[20] G. Bellin. Natural deduction and term assignment for co-heyting algebras in
polarized bi-intuitionistic logic. 2004.

[21] G. Bellin. A term assignment for dual intuitionistic logic. LICS’05-IMLA’05,
2005.

[22] G. Bellin. Categorical proof theory of co-intuitionistic linear logic. Submitted
to LOMECS, 2012.

[23] G. Bellin, M. Carrara, D. Chiffi, and A. Menti. A pragmatic dialogic interpre-
tation of bi-intuitionism. Submitted to Logic and Logical Philosophy, 2014.

[24] C. Biasi and F. Aschieri. A term assignment for polarized bi-intuitionistic logic
and its strong normalization. Fundam. Inf., 84(2):185–205, April 2008.

[25] blogs.consumerreports.org. Consumer reports cars blog: Japan investigates
reports of prius brack problem, 2010.

377

[26] E. Brady. Idris —: systems programming meets full dependent types. In
Proceedings of the 5th ACM workshop on Programming languages meets program
verification, PLPV ’11, pages 43–54, New York, NY, USA, 2011. ACM.

[27] N. De Bruijn. The mathematical language automath, its usage, and some of its
extensions. In M. Laudet, D. Lacombe, L. Nolin, and M. Schtzenberger, editors,
Symposium on Automatic Demonstration, volume 125 of Lecture Notes in Math-
ematics, pages 29–61. Springer Berlin / Heidelberg, 1970. 10.1007/BFb0060623.

[28] L. Cardelli. A polymorphic lambda-calculus with type:type. Technical report,
1986.

[29] F. Cardone and R. Hindley. History of lambda-calculus and combinatory logic.
2006.

[30] C. Casinghino, V. Sjöberg, and S. Weirich. Step-indexed normalization for a
language with general recursion. In MSFP ’12, 2012.

[31] C. Casinghino, V. Sjöberg, and S. Weirich. Combining proofs and programs in
a dependently typed langauge. In POPL ’14, 2014.

[32] A. Church. A set of postulates for the foundation of logic. The Annals of
Mathematics, 34(4):pp. 839–864, 1933.

[33] A. Church. A formulation of the simple theory of types. The Journal of Symbolic
Logic, 5(2):pp. 56–68, 1940.

[34] R. Constable, S. Allen, S. Allen, H. Bromley, W. Cleaveland, J. Cremer,
R. Harper, H. Douglas, T. Knoblock, N. Mendler, P. Panangaden, S. Smith,
J. Sasaki, and S. Smith. Implementing Mathematics with The Nuprl Proof De-
velopment System. Prentice Hall, 1986.

[35] T. Coquand. An analysis of girard’s paradox. In In Symposium on Logic in
Computer Science, pages 227–236. IEEE Computer Society Press, 1986.

[36] T. Coquand. A new paradox in type theory. In Logic, Methodology and Philos-
ophy of Science IX : Proceedings of the Ninth International Congress of Logic,
Methodology, and Philosophy of Science, pages 7–14. Elsevier, 1994.

[37] T. Coquand. Type theory. In E. N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Spring 2010 edition, 2010.

[38] T. Coquand and G. Huet. The calculus of constructions. Inf. Comput., 76(2-
3):95–120, 1988.

378

[39] P. Cousot. The verification grand challenge and abstract interpretation. In
B. Meyer and J. Woodcock, editors, Verified Software: Theories, Tools, Ex-
periments, volume 4171 of Lecture Notes in Computer Science, pages 227–240.
Springer, Berlin, Germany, December 2007.

[40] T. Crolard. Subtractive logic. Theor. Comput. Sci., 254(1-2):151–185, 2001.

[41] T. Crolard. A formulae-as-types interpretation of subtractive logic. J. Log. and
Comput., 14(4):529–570, August 2004.

[42] R. Crole. Categories for Types. Cambridge Mathematical Textbooks. Cam-
bridge University Press, 1994.

[43] P. Curien. Abstract machines, control, and sequents. In G. Barthe, P. Dybjer,
L. Pinto, and J. Saraiva, editors, Applied Semantics, volume 2395 of Lecture
Notes in Computer Science, pages 123–136. Springer Berlin Heidelberg, 2002.

[44] P. Curien and H. Herbelin. The duality of computation. In Proceedings of
the fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP), pages 233–243. ACM, 2000.

[45] N. Danner and D. Leivant. Stratified polymorphism and primitive recursion.
Mathematical. Structures in Comp. Sci., 9(4):507–522, 1999.

[46] R. David and K. Nour. A short proof of the strong normalization of the simply
typed lambdamu-calculus. SCHEDAE INFORMATICAE, 12:27–33, 2003.

[47] D. Dreyer, A. Ahmed, and L. Birkedal. Logical step-indexed logical relations.
Logical Methods in Computer Science, 7(2), 2011.

[48] P. Dybjer. Representing inductively defined sets by wellorderings in martin-löf’s
type theory. Theoretical Computer Science, 176(1-2):329, 1997.

[49] H. Eades. The semantics of advanced programming languages. Full version,
available at http://metatheorem.org/wp-content/papers/thesis-full.pdf, 2014.

[50] H. Eades and A. Stump. Hereditary substitution for stratified system f. In
Proof-Search in Type Theories (PSTT), 2010.

[51] H. Eades and A. Stump. Using the hereditary substitution function in normal-
ization proofs, 2011.

[52] H. Eades and A. Stump. Hereditary Substitution for the λ∆-Calculus. ArXiv
e-prints, September 2013.

379

[53] P. Martin-Löf. Cohen et al., editor. Constructive mathematics and computer
programming, volume 1, North-Holland, Amsterdam., 1982.

[54] S. Feferman. Predicativity. In S. Shapiro, editor, The Oxford Handbook of
Philosophy of Mathematics and Logic, pages 590–624. Oxford University Press,
2005.

[55] A. Filinski. Declarative continuations: An investigation of duality in program-
ming language semantics. In D. Pitt, D. Rydeheard, P. Dybjer, A. Pitts, and
A. Poign, editors, Category Theory and Computer Science, volume 389 of Lec-
ture Notes in Computer Science, pages 224–249. Springer Berlin Heidelberg,
1989.

[56] S. Fogarty, E. Pasalic, J. Siek, and W. Taha. Concoqtion: indexed types now!
In Proceedings of the 2007 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, PEPM ’07, pages 112–121, New
York, NY, USA, 2007. ACM.

[57] H. Geuvers, R. Krebbers, and J. McKinna. The lambda-mu-t-calculus. Annals
of Pure and Applied Logic, 2012.

[58] H. Geuvers and G. Nijmegen. Proof assistants: history, ideas and future, Febu-
rary 2009.

[59] J. Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris VII, 1971.

[60] J. Girard, Y. Lafont, and P. Taylor. Proofs and Types (Cambridge Tracts in
Theoretical Computer Science). Cambridge University Press, April 1989.

[61] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University
Press, 1990.

[62] G. Gonthier. A computer-checked proof of the four colour theorem. 2005.

[63] R. Goré, Linda Postniece, and Alwen Tiu. Cut-elimination and proof-search
for bi-intuitionistic logic using nested sequents. In C. Areces and R. Goldblatt,
editors, Advances in Modal Logic, pages 43–66. College Publications, 2008.

[64] T. Griffin. A formulae-as-types notion of control. In In Conference Record of the
Seventeenth Annual ACM Symposium on Principles of Programming Languages,
pages 47–58. ACM Press, 1990.

380

[65] C. Gunter. Semantics of Programming Languages: Structures and Techniques.
Foundations of Computing. MIT Press, 1992.

[66] J. Heijenoort. From Frege to Gödel: a source book in mathematical logic, 1879-
1931. Source books in the history of the sciences. Harvard University Press,
1967.

[67] J. Hintikka. From Dedekind to Gödel: essays on the development of the foun-
dations of mathematics. Synthese library. Kluwer Academic Publishers, 1995.

[68] H. Hofmann. Extensional Concepts in Intensional Type Theory. Thesis. Uni-
versity of Edinburgh, Department of Computer Science, 1995.

[69] M. Hofmann and T. Streicher. The Groupoid Model Refutes Uniqueness of
Identity Proofs. In Ninth Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 208–212. IEEE Computer Society, 1994.

[70] M. Hofmann and T. Streicher. The groupoid interpretation of type theory.
In Twenty-five years of constructive type theory (Venice, 1995), volume 36 of
Oxford Logic Guides, pages 83–111. Oxford Univ. Press, New York, 1998.

[71] F. Joachimski and R. Matthes. Short proofs of normalization for the simply-
typed lambda-calculus, permutative conversions and gödel’s t, 1999.

[72] S. Peyton Jones, D. Vytiniotiss, S. Weirich, and G. Washburn. Simple
unification-based type inference for gadts. In Proceedings of the eleventh
ACM SIGPLAN international conference on Functional programming, ICFP
’06, pages 50–61, New York, NY, USA, 2006. ACM.

[73] C. Keller and T. Altenkirch. Hereditary substitutions for simple types, formal-
ized. In Proceedings of the third ACM SIGPLAN workshop on Mathematically
structured functional programming, MSFP ’10, pages 3–10, New York, NY,
USA, 2010. ACM.

[74] G. Kimmell, A. Stump, H. Eades, P. Fu, T. Sheard, S. Weirich, C. Casinghino,
V. Sjoberg, N. Collins, and K. Y. Ahn. Equational reasoning about programs
with general recursion and call-by-value semantics. In PLPV, 2012.

[75] D. Kimura and M. Tatsuta. Dual Calculus with Inductive and Coinductive
Types. In R. Treinen, editor, Rewriting Techniques and Applications (RTA),
pages 224–238, 2009.

[76] S. Kleene and J. Rosser. The inconsistency of certain formal logics. The Annals
of Mathematics, 36(3):pp. 630–636, 1935.

381

[77] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. Mc-
Carthy, J. Rafkind, S. Tobin-Hochstadt, and R. Findler. Run your research: on
the effectiveness of lightweight mechanization. In Proceedings of the 39th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’12, pages 285–296, New York, NY, USA, 2012. ACM.

[78] G. Klein and T. Nipkow. Verified bytecode verifiers. Theor. Comput. Sci.,
298:583–626, April 2003.

[79] J. Krivine. Realizability in classical logic. Panoramas et synthèses, 27:197–
229, 2009. Interactive models of computation and program behaviour. Société
Mathématique de France.

[80] J. Lambek. Substructural Logics, volume 2, chapter From Categorical Grammar
to Bilinear Logic. Oxford Science Publications, 1993.

[81] J. Lambek. Cut elimination for classical bilinear logic. Fundam. Inform.,
22(1/2):53–67, 1995.

[82] F. Lawvere and S. Schanuel. Conceptual Mathematics: A First Introduction
to Categories. Conceptual Mathematics: A First Introduction to Categories.
Cambridge University Press, 2009.

[83] D. Leivant. Finitely stratified polymorphism. Inf. Comput., 93(1):93–113, 1991.

[84] X. Leroy. Formal certification of a compiler back-end or: programming a com-
piler with a proof assistant. In Conference record of the 33rd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL ’06, pages
42–54, New York, NY, USA, 2006. ACM.

[85] X. Leroy. Formal verification of a realistic compiler. Communications of the
ACM, 52(7):107–115, 2009.

[86] J. Lévy. An algebraic interpretation of the λβκ-calculus; and an application of
a labelled λ-calculus. Theoretical Computer Science, 2(1):97 – 114, 1976.

[87] D. Licata and R. Harper. A formulation of Dependent ML with explicit equality
proofs. Technical Report CMU-CS-05-178, Carnegie Mellon University Depart-
ment of Computer Science, 2005.

[88] Nathan M.-L. and T. Sheard. Erasure and polymorphism in pure type sys-
tems. In Proceedings of the Theory and practice of software, 11th international
conference on Foundations of software science and computational structures,
FOSSACS’08/ETAPS’08, pages 350–364, H. Berlin, 2008. Springer-Verlag.

382

[89] P. Martin-Löf and G.Sambin. Intuitionistic type theory. Studies in proof theory.
Bibliopolis, 1984.

[90] C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, 2004.

[91] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall/CRC, 5th
edition, 2009.

[92] G. Mints. A short introduction to intuitionistic logic. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2000.

[93] C. Murthy. Classical proofs as programs: How, what and why. Technical report,
Cornell University, 1991.

[94] G. Neis, D. Dreyer, and A. Rossberg. Non-parametric parametricity. ICFP,
2009.

[95] T. Nipkow. Higher-Order Critical Pairs. Proceedings of Sixth Annual IEEE
Symposium on Logic in Computer Science, pages 342–349, 1991.

[96] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf ’s Type
Theory. Oxford University Press, 1990.

[97] B. Nordstrom, K. Petersson, and J. Smith. Programming in Martin-Löf ’s Type
Theory: An Introduction. Oxford University Press, USA, July 1990.

[98] U. Norell. Towards a practical programming language based on dependent type
theory. PhD Thesis, 2007.

[99] The German Federal Bureau of Aircraft Accidents. Investigation report, 2004.

[100] M. Parigot. Free deduction: An analysis of “computations” in classical logic.
In A. Voronkov, editor, Logic Programming, volume 592 of Lecture Notes in
Computer Science, pages 361–380. Springer Berlin / Heidelberg, 1992.

[101] M. Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical
natural deduction. In A. Voronkov, editor, Logic Programming and Automated
Reasoning, volume 624 of Lecture Notes in Computer Science, pages 190–201.
Springer Berlin / Heidelberg, 1992. 10.1007/BFb0013061.

[102] F. Pfenning and C. Schürmann. System description: Twelf — a meta-logical
framework for deductive systems. In Automated Deduction — CADE-16, vol-
ume 1632 of Lecture Notes in Computer Science, pages 679–679. Springer Berlin
/ Heidelberg, 1999.

383

[103] B. Pierce. Basic Category Theory for Computer Scientists. Foundations of
Computing. MIT Press, 1991.

[104] B. Pierce. Types and programming languages. MIT Press, Cambridge, MA,
USA, 2002.

[105] B. Pierce. Advanced Topics in Types and Programming Languages. The MIT
Press, 2004.

[106] L. Pinto and T. Uustalu. Proof search and counter-model construction for
bi-intuitionistic propositional logic with labelled sequents. In M. Giese and
A. Waaler, editors, Automated Reasoning with Analytic Tableaux and Related
Methods, volume 5607 of Lecture Notes in Computer Science, pages 295–309.
Springer Berlin Heidelberg, 2009.

[107] A. Pitts. Existential types: Logical relations and operational equivalence. In
K. Larsen, S. Skyum, and G. Winskel, editors, Automata, Languages and Pro-
gramming, volume 1443 of Lecture Notes in Computer Science, pages 309–326.
Springer Berlin / Heidelberg, 1998. 10.1007/BFb0055063.

[108] A. Platzer and C. Edmund. Formal verification of curved flight collision avoid-
ance maneuvers: A case study. In A. Cavalcanti and D. Dams, editors, FM,
volume 5850 of LNCS, pages 547–562. Springer, 2009.

[109] G. Plotkin. Lambda-definability and logical relations. University of Edinburgh
School of Artificial Intelligence Memorandum SAI-RM-4, 1973.

[110] D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Publications,
1965.

[111] D. Prawitz. Logical Consequence from a Constructivist Point of View, volume 1,
pages 671–695. Oxford University Press, 2005.

[112] C. Rauszer. Semi-boolean algebras and their applications to intuitionistic logic
with dual operations,. Fundamenta Mathematicae, 83:219–249, 1974.

[113] J. Rehof and M. Sørensen. The Lambda-Delta-calculus. In Proceedings of the
International Conference on Theoretical Aspects of Computer Software (TACS),
pages 516–542, 1994.

[114] Research Triangle Institute. The Economic Impacts of Inadequate Infrastruc-
ture for Software Testing, 2002. Sponsored by the Department of Commerce’s
National Institute of Standards and Technology.

384

[115] Reuters. Toyota to recall 436,00 hybrids globally-document, February 2010.

[116] J. Reynolds. Towards a theory of type structure. In Colloque sur la Program-
mation, volume 19 of Lecture Notes in Computer Science, pages 408–425, New
York, 1974. Springer-Verlag.

[117] J. Reynolds. Theories of Programming Languages. Cambridge University Press,
1998.

[118] J. C. Reynolds. Programming methodology. chapter What Do Types Mean?:
From Intrinsic to Extrinsic Semantics, pages 309–327. Springer-Verlag New
York, Inc., New York, NY, USA, 2003.

[119] H. Schellinx. Some syntactical observations on linear logic. Journal of Logic
and Computation, 1(4):537–559, 1991.

[120] P. Selinger. Control categories and duality: on the categorical semantics
of the lambda-mu calculus. Mathematical Structures in Computer Science,
11(02):207–260, 2001.

[121] P. Sewell, F. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar, and R. Strnisa.
Ott: Effective tool support for the working semanticist. In Journal of Functional
Programming, volume 20, pages 71–122, 2010.

[122] C. Shan. Higher-order modules in system fω and haskell.
http://www.cs.rutgers.edu/ ccshan/xlate/xlate.pdf, 2006. Online; accessed
08-16-13.

[123] T. Sheard. Type-Level Computation Using Narrowing in Ωmega. In Program-
ming Languages meets Program Verification, volume 1643, 2006.

[124] V. Sjoberg, C. Casinghino, K. Y. Ahn, N. Collins, H. Eades, P. Fu, G. Kimmell,
T. Sheard, A. Stump, and S. Weirich. Irrelevance, heterogeneous equality, and
call-by-value dependent type systems. In J. Chapman and P. B. Levy, editors,
Proceedings Fourth Workshop on Mathematically Structured Functional Pro-
gramming, Tallinn, Estonia, 25 March 2012, volume 76 of Electronic Proceedings
in Theoretical Computer Science, pages 112–162. Open Publishing Association,
2012.

[125] M. Sorensen. Strong normalization from weak normalization in typed lambda-
calculi. Information and Computation, 133:35–71, 1997.

385

[126] M. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism.
Number v. 10 in Studies in Logic and the Foundations of Mathematics. Elsevier
Science, 2006.

[127] R. Statman. Logical relations and the typed lambda-calculus. Information and
Control, 65(23):85 – 97, 1985.

[128] T. Streicher. Semantics of Type Theory: Correctness, Completeness, and Inde-
pendence Results. Progress in theoretical computer science. Birkhäuser, 1991.

[129] T. Streicher. Investigations Into Intensional Type Theory. PhD the-
sis, Habilitation- sschrift, Ludwig-Maximilians-Universität Müchen, November
1993.

[130] A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified program-
ming in guru. In Proceedings of the 3rd workshop on Programming languages
meets program verification, PLPV ’09, pages 49–58, New York, NY, USA, 2008.
ACM.

[131] A. Stump, M. Deters, A. Petcher, T. Schiller, and T. Simpson. Verified Pro-
gramming in Guru. In T. Altenkirch and T. Millstein, editors, Programming
Languges meets Program Verification (PLPV), 2009.

[132] E. Sumii and B. Pierce. Logical relation for encryption. J. Comput. Secur.,
11(4):521–554, July 2003.

[133] M. Tatsuta and G. Mints. A simple proof of second-order strong normalization
with permutative conversions. Annals of Pure and Applied Logic, 136:134–155,
2005.

[134] The Coq Development Team. The coq proof assistant reference manual, 2008.

[135] thedetroitbureau.com. Nhtsa memo on regenerative braking, April 2011.

[136] A. Troelstra. History of constructivism in the 20th century. ITLI Prepublication
Series ML-91-05, 1991.

[137] United States Federal Bureau of Investigation. 2005 FBI Computer Crime
Survey.

[138] D. Vytiniotis and V. Koutavas. Relating step-indexed logical relations and
bisimulations. Technical Report MSR-TR-2009-25, Microsoft Research, March
2009.

386

[139] D. Vytiniotis and S. Weirich. Dependent types: Easy as PIE. In M. T. Morazán
and H. Nilsson, editors, Draft Proceedings of the 8th Symposium on Trends in
Functional Programming, pages XVII–1—XVII–15. Dept. of Math and Com-
puter Science, Seton Hall University, April 2007. TR-SHU-CS-2007-04-1.

[140] P. Wadler. Call-by-value is dual to call-by-name. SIGPLAN Not., 38(9):189–
201, August 2003.

[141] P. Wadler. Call-by-value is dual to call-by-name – reloaded. In J. Giesl, editor,
Term Rewriting and Applications, volume 3467 of Lecture Notes in Computer
Science, pages 185–203. Springer Berlin Heidelberg, 2005.

[142] P. Wadler. The girard,reynolds isomorphism (second edition). Theoretical Com-
puter Science, 375(1-3):201 – 226, 2007. Festschrift for John C. Reynolds 70th
birthday.

[143] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical
framework: The propositional fragment. In S. Berardi, M. Coppo, and F. Dami-
ani, editors, Types for Proofs and Programs, volume 3085 of Lecture Notes in
Computer Science, pages 355–377. Springer Berlin / Heidelberg, 2004.

[144] H. Weyl. Das kontinuum. Translated as Weyl 1994, 1918.

[145] W.Howard. The formulae-as-types notion of construction. 1969-1980.

[146] H. Xi. Dead code elimination through dependent types. In The First Interna-
tional Workshop on Practical Aspects of Declarative Languages, pages 228–242,
San Antonio, January 1999. Springer-Verlag LNCS vol. 1551.

[147] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors. In
Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’03, pages 224–235, New York, NY, USA, 2003.
ACM.

[148] H. Xi and F. Pfenning. Eliminating array bound checking through dependent
types. In Proceedings of ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 249–257, Montreal, June 1998.

[149] H. Xi and F. Pfenning. Dependent types in practical programming. In Pro-
ceedings of the 26th ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 214–227, San Antonio, January 1999.

387

[150] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking to find
serious file system errors. ACM Trans. Comput. Syst., 24:393–423, November
2006.

[151] C. Zenger. Indexed types. Theoretical Computer Science, 187(1Äı̀2):147 – 165,
1997.

	University of Iowa
	Iowa Research Online
	Summer 2014

	The semantic analysis of advanced programming languages
	Harley D. Eades III
	Recommended Citation

	LIST OF FIGURES
	INTRODUCTION
	Part A. BACKGROUND
	CHAPTER 1. A Brief History of Type Theory
	The Early Days (1900 - 1960)
	Modern Type Theory

	CHAPTER 2. The Computational Trinity
	Logic
	Category Theory
	Impact

	CHAPTER 3. Classical Type Theory
	The -Calculus
	The -Calculus
	Beautiful Dualities
	The Duality of Computation
	The Dual Calculus

	CHAPTER 4. Dependent Type Theory
	Martin-Löf's Type Theory
	The Calculus of Constructions

	CHAPTER 5. Dependent Types in Practice
	CHAPTER 6. Metatheory of Type Theories
	Hereditary Substitution
	Hereditary Substitution for STLC
	Tait-Girard Reducibility
	Logical Relations
	Step-Indexed Logical Relations

	Part B. DESIGN
	CHAPTER 7. Freedom of Speech
	Syntax and Reduction Relation
	Type System

	CHAPTER 8. Separation of Proof from Program
	CHAPTER 9. Dualized Logic and Type Theory
	Pinto and Uustalu's L
	Dualized Intuitionistic Logic
	Dualized Type Theory

	Part C. BASIC SYNTACTIC ANALYSIS
	CHAPTER 10. Freedom of Speech
	Basic Results
	Type Preservation
	Logical consistency

	CHAPTER 11. Dualized Logic and Type Theory
	Consistency of DIL
	Completeness of DIL
	Metatheory of DTT

	Part D. NORMALIZATION BY HEREDITARY SUBSTITUTION
	CHAPTER 12. Stratified System F and Beyond
	Stratified System F
	Basic Syntactic Lemmas
	Ordering on Types
	Hereditary Substitution
	Main Properties
	The Main Substitution Lemma
	Concluding Normalization

	Stratified System F+
	Ordering on Types
	Hereditary Substitution
	Main Properties
	Concluding Normalization

	Dependent Stratified System F=
	Basic Syntactic Results
	Hereditary Substitution
	Concluding Normalization

	CHAPTER 13. The -Calculus
	Basic Syntactic Lemmas
	An Extension
	Problems with a Naive Extension
	A Correct Extension
	Main Properties

	Concluding Normalization
	Related Work

	CONCLUSION
	REFERENCES

