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ABSTRACT

Mobile sensing applications (MSAs) are an emerging class of applications that process

continuous sensor data streams to make time-sensitive inferences. Representative application do-

mains range from environmental monitoring, context-aware services to recognition of physical

activities and social interactions. Example applications involve city air quality assessment, indoor

localization, pedometer and speaker identification. The common application workflow is to read

data streams from the sensors (e.g, accelerometers, microphone, GPS), extract statistical features,

and then present the inferred high-level events to the user. MSAs in the healthcare domain espe-

cially draw a significant amount of attention in recent years because sensor-based data collection

and assessment offer finer-granularity, timeliness, and higher accuracy in greater quantity than

traditional, labor-intensive, data gathering mechanisms in use today, e.g., surveys methods. The

higher fidelity and accuracy of the collected data expose new research opportunities, improve the

reliability and accuracy of medical decisions, and empower users to manage personal health more

effectively.

Nonetheless, a critical challenge to practical deployment of MSAs in real-world is to ef-

fectively manage limited resources of mobile platforms to meet stringent quality of service (QoS)

requirements in terms of processing throughput and delay while ensuring long term robustness. To

address the challenge, we model MSAs in dataflows as a graph of processing elements that are

connected by communication channels. The processing elements may execute in parallel as long

as they have sufficient data to process. A key feature of the dataflow model is that it explicitly

capture parallelism and data dependencies between processing elements. Based on the graph com-

position, we first proposed CSense, a stream-processing toolkit for robust and high-rate MSAs. In
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this work, CSense provide a simple language for developers to describe their sensing flow without

the need to deal with system intricacy, such as memory allocation, concurrency control and power

management. The results show up to 19X performance difference may be achieved automatically

compared with a baseline using the default runtime concurrency and memory management.

Following this direction, we saw the opportunities that MSAs can be significantly improved

from the perspective of memory performance and energy efficiency in view of the iterative execu-

tion. Therefore, we next focus on optimizing the runtime memory management through compile

time analysis. The contribution is a stream compiler that captures the whole program memory

behavior to generate an efficient memory layout for runtime access. Experiments show that our

memory optimizations reduce memory footprint by as much as 96% while matching or improving

the performance of the StreamIt compiler with cache optimizations enabled.

On the other hand, while there is a significant body of work that has focused on optimizing

the throughput or latency of processing sensor streams, little to no attention has been given to en-

ergy efficiency. We proposed an accurate offline energy prediction model for MSAs that leverages

the pipeline structure and iterative execution nature to search for the most energy saving batching

configuration w.r.t. a deadline constraint. The developers are expected to visualize the energy

delay trade-off in the parameter space without runtime profiling. The evaluation shows the worst-

case prediction errors are about 7% and 15% for energy and latency respectively despite variable

application workloads.
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CHAPTER 1

INTRODUCTION

Mobile sensing applications (MSAs) emerge as the data collection front end for making

timely inferences from continuous sensor data streams. Representative application domains range

from environmental monitoring, context-aware services to recognition of physical activities and

social interactions. Example applications involve city air quality assessment [2], indoor localiza-

tion [3], pedometer [4] and speaker identification [5]. The common application workflow is to read

data streams from the sensors (e.g, accelerometers, microphone, GPS), extract statistical features,

and then present the inferred high-level events to the user. MSAs in the healthcare domain espe-

cially draw a significant amount of attention in recent years because sensor-based data collection

and assessment offer finer-granularity, timeliness, and higher accuracy in greater quantity than tra-

ditional, labor-intensive, data gathering mechanisms in use today, e.g., surveys methods [6]. The

higher fidelity and accuracy of the collected data expose new research opportunities, improve the

reliability and accuracy of medical decisions, and empower users to manage personal health more

effectively.

However, developing robust and high-rate MSAs is challenging because of high sampling

rate, error-prone concurrency APIs, and low-level power management on modern mobile platforms

such as Android. High sampling rate imposes heavy memory workload while the concurrency APIs

and low-level power management tend to cause programming errors and energy bugs [7] at run-

time. In view of the performance improvement in our initial work due to static memory allocations,

the memory management for MSAs is worth further investigation to achieve both high performance

and reduced resource usage at the same time. A MSA can be broken down into the sensing and the

1



stream processing phases. While the sensing phase is straightforward, the stream processing can be

arbitrarily complex and compute intensive. The synchronous dataflow (SDF) is the conventional

model of computation for stream processing where the program is represented as a stream flow

graph (SFG) with processing units as nodes and FIFO communication channels as edges. A node

is schedulable for execution if its input is ready. Unfortunately, naive communication channel im-

plementations based on copy-by-value semantics may incur significant performance overhead. It is

generally hard to capture the whole program memory behavior but static analysis is possible when

programs are written in a SDF language, allowing the stream compiler to optimize the program by

transforming the program structure.

In additional to performance concerns, another critical challenge to making MSAs practical

in real-world deployment is to effectively manage the limited energy resources of mobile platforms

to meet stringent quality of service (QoS) requirements in terms of processing throughput and de-

lay. While there is a significant body of work that has focused on optimizing the throughput or

latency of processing sensor streams, little to no attention has been given to energy efficiency.

To facilitate latency constraints and asynchronous processing, we extends the stream language to

specify end-to-end deadlines and graph partitioning. Different graph partitions execute in separate

threads and the synchronous queue size between partitions controls the buffering latency. Unfor-

tunately, previous work such as [8, 9] based on runtime profiling is infeasible to search for energy

efficient batching configurations due to time-consuming state space exploration. Worse, the accu-

racy of runtime energy profilers relies on the OS resource usage updates which are not timely in

less than 10ms to save runtime overhead. This makes existing power models infeasible for high-

rate MSAs with short energy consuming operations. If intensive logging is incorporated to capture

the execution timing, the runtime overhead is likely to outweigh the energy savings. As a result,
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CSense [43] (IPSN 14’) ESMS [10] (EMSOFT 15’) Gratis (under review)
MoC - agent-based - synchronous dataflow - hybrid coordination model

Annotations
- explicit memory allocation
- domain constraints
- frame type constraints

- explicit I/O rates
- predefined memory access

- explicit I/O rates
- domain constraints
- deadline
- sensing intervals

Analyzability
- trackable memory usage
- threading boundaries - precise memory behavior characterization

- processing delay estimation
- energy usage prediction

Optimizations
- static memory pooling
- queue specialization
- flow analysis

- memory usage
- memory performance

- batching
- scheduled concurrency
- selective sensing
- adaptive sensing

Table 1.1. Research overview.

we are in need of an offline solution to fast evaluating the parameter space for an energy efficient

configuration without real-time profiling.

The goal of this dissertation is to develop optimization tools to tackle the aforementioned

technical challenges and deliver efficient runtime MSA solutions. A research overview that sum-

marizes my Ph.D. research work in terms of models of computation (MoC), annotations, analyz-

ability, and optimizations is given in table 1.1. Our initial work CSense [43] adopts a flexible

agent-based model that allows concurrent components to operate at dynamic rates. Rich annota-

tions provided by CSense include explicit memory allocation sources and sinks, domain threading

hints, and frame size constraints. The CSense toolkit leverages the additional information from the

annotations to prevent memory leaks and automate threading for synchronization safety at compile

time. The resulting performance is improved with static memory pooling, hybrid synchronization

primitives, and flow analysis that allocates efficient frame sizes w.r.t. frame type constraints. The

evaluation of CSense indicates the memory performance likely serves as the bottleneck of sensing

applications. However, the whole program behavior is difficult to analyze for further optimiza-

tions because of concurrent component executions. We consequently considered the SDF model

where each component declares its processing rates statically and must access the I/O channels

3



using pre-defined memory operations. Despite the copy-by-value semantics imposed by the SDF

on data exchange, the entire execution follows a cyclo-static schedule that may repeat infinitely.

This facilitates the static analysis of the memory access per component and the characterization of

the whole program memory behavior through simulating the static schedule once. Our following

work ESMS [10] stands for Efficient Static Memory Management for Streaming and demonstrates

the exploitation of location and temporal sharing opportunities to reduce the memory usage while

eliminating unnecessary memory operations to improve the performance. In the latest work, we

proposed Gratis that builds on a hybrid MoC combining SDF and CSense concurrent domains

to address the energy efficiency of MSAs. The programmer is allowed to specify the deadline

constraints and sensing intervals for duty cycling. The programming model supports application

power management (PM) policies that incorporate workload shaping techniques such as batching,

scheduled concurrency, and adaptive sensing. A simulation based approach is developed to ana-

lyze the concurrent execution timing and estimate the energy-delay trade-off based on individual

domain performance profiles. This results in predictable performance for fast PM policy space

exploration at compile time.

The remainder of the thesis is organized as follows. A theoretical background of stream

processing models of computation is given in chapter 2. A high level description of the devised

solutions focusing on the novel aspects is presented next. This section is concluded by outlining

the specific research contributions in this dissertation.

1.1 Long Term Robust High-Rate Mobile Sensing Applications

Robust and high-rate mobile sensing applications require a new programming model that

supports flexible application configuration, a high-level concurrency model, memory management,

and compiler analysis as well as optimizations. We address the requirement by proposing a stream-
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processing toolkit for developing robust and high-rate mobile sensing application in Java. The

toolkit compiler includes a novel flow analysis that optimizes the exchange of data across com-

ponents from an application-wide perspective. A mobile sensing application benchmark indicates

that flow analysis may reduce CPU utilization by as much as 45%. Static analysis is used to detect

a range of programming errors including application composition errors, improper use of mem-

ory management, and data races. We identify that memory management and concurrency limit

the scalability of stream processing systems. We incorporate memory pools, frame conversion

optimizations, and custom synchronization primitives to develop a scalable runtime. CSense is

evaluated on Galaxy Nexus phones running Android. Empirical results indicate that our runtime

achieves 19 times higher steam processing rate compared to a realistic baseline implementation.We

demonstrate the versatility of CSense by developing three mobile sensing applications.

1.2 Static Memory Management for Mobile Sensing Applications

Memory management is a crucial aspect of mobile sensing applications that must process

high-rate data streams in an energy-efficient manner. Our work is done in the context of syn-

chronous dataflow models in which applications are implemented as a graph of components that

exchange data at fixed and known rates over FIFO channels. We show that it is feasible to leverage

the restricted semantics of synchronous dataflow models to implement efficient stream processing

engines. Specifically, our memory optimization approach includes two components:

• We use abstract interpretation to analyze the complete memory behavior of a mobile sensing

application to identify opportunities for sharing data across components and to determine the

live ranges of exchanged samples. The static analysis is precise for a majority of considered

stream applications.
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• We propose novel heuristics for memory allocation that leverage the graph structure of ap-

plication to optimize data exchanges between application components to achieve not only

significantly lower memory footprints but also increased stream processing throughput. We

incorporate code generation techniques that transform a stream program into efficient C

code.

The memory optimizations are implemented as a new compiler for the StreamIt programming lan-

guage. Experiments show that our memory optimizations reduce memory footprint by as much

96% while matching or improving the performance of the StreamIt compiler with cache optimiza-

tions enabled. These results suggest that highly efficient stream processing engines may be built

using synchronous dataflow languages.

1.3 Workload Shaping Energy Optimizations for Mobile Sensing

Energy-efficiency is a key concern in mobile sensing applications, such as those for track-

ing social interactions or physical activities. An attractive approach to saving energy is to shape

the workload of the system by artificially introducing delays so that the workload would require

less energy to process. However, adding delays to save energy may have a detrimental impact on

user experience. To address this problem, we present Gratis, a novel paradigm for incorporating

workload shaping energy optimizations in mobile sensing applications in an automated manner.

Gratis adopts stream programs as a high-level abstraction whose execution is coordinated using

an explicit power management (PM) policy. We present an expressive coordination language that

can specify a broad range of workload shaping optimizations. A unique property of the proposed

power management policies is that they have predictable performance, which can be estimated at

compile time, in a computationally efficient manner, from a small number of measurements. We
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have developed a simulator that can predict the energy with a worst-case error of 7% and delay

with a worst-case error of 15%, even when applications have variable workloads. The simulator

is scalable: hours of real-world traces can be simulated in a few seconds. Building on the simu-

lator’s accuracy and scalability, we have developed tools for configuring and synthesizing power

management policies automatically. We have evaluated Gratis by developing two mobile appli-

cations and optimizing their energy consumption. For example, an application that tracks social

interactions using speaker identification techniques can run for only 7 hours without energy opti-

mizations. However, when Gratis employs batching, scheduled concurrency, and adaptive sensing,

the battery lifetime can be extended to 45 hours when the end-to-end deadline is one minute. These

results demonstrate the efficacy of our approach to optimize energy consumption in mobile sensing

applications automatically.

1.4 Research Contributions

This thesis makes the following research contributions detailed in the following chapters:

• Automation of developing robust high-rate MSAs : In Chapter 3, we describe CSense,

a stream-processing toolkit for developing robust and high-rate MSAs on Android. CSense

specifies a programming model allowing to express concurrency, component I/O port types,

and explicit memory management operations. A novel flow analysis is included to leverage

the type information and explicit memory management to perform application-wide opti-

mizations. Application composition errors, leaks and races can be detected at compile time.

CSense also eases the integration with components written in MATLAB for common signal

processing. At runtime, platform-specific power management is automatically employed for

long term background MSAs.
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• Static memory management and optimization for MSAs: Chapter 4 describes our Effi-

cient Static Memory Management for Streaming (ESMS) [10] compiler for efficient MSAs

written in StreamIt. In particular, we developed a novel static analysis that characterizes

the global memory behavior of a complete stream application. The static analysis can pre-

cisely identify the location and temporal reuse opportunities in most applications. We also

proposed a novel layout algorithm that leverages the identified location and temporal reuse

opportunities along with the application structure to optimize the memory layout. The code

generation techniques transform a stream program into efficient C code that effectively uses

the generated memory layouts.

• Accurate offline prediction of energy delay trade-off for MSAs: In Chapter 5, we present

Gratis to accurately predict the energy and delay behavior of MSAs at compile time. We

proposed a novel paradigm and coordination language for specifying PM policies that im-

plement workload shaping energy optimizations. At runtime, a scheduler coordinates the

execution of the app according to a PM policy. To accurately predict the energy-delay trade-

off at runtime, we developed an app simulator that can estimate the energy and delays of

an app accurately from a few measurements of its constituent components. Techniques for

synthesizing policy templates and for configuring their parameters are demonstrated to facil-

itate the PM state space exploration. The combination of these tools provides an automated

solution for PM in MSAs.
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CHAPTER 2

BACKGROUND

2.1 Models of Computation

A model of computation (MoC) formally specifies the behaviors and properties of a system

for developers to make sensible design decisions. In the following, we will explore different mod-

els of computations that execute dataflows in parallel but have different characteristics in terms

of determinacy, expressivity, and memory requirements. Determinate systems guarantee the or-

der of output given fixed input regardless of the parallel scheduling. Expressivity shows the class

of programs the language or model can express and may raise concerns about non-determinism

in the system and termination of executions. The memory requirements may be bounded or un-

bounded and system designers have to ensure the implementation consumes no more than available

resources.

The models of computation for stream processing can be traced back to the dataflow ar-

chitectures in 1970s. In contrast with the control flow based von Neumann architecture where the

execution of a program compiled as a sequential instruction stream follows a program counter, a

dataflow program is modeled as a directed graph that has functions as nodes and communication

channels as edges. The functions can be invoked simultaneously given the availability of required

inputs. The graph explicitly exposes the parallelism of a program. Therefore, it can simplify pro-

gram analysis and optimizations. In the following, we will present two representative dataflow

models: Kahn Process Networks (KPNs) [11] and Synchronous Data Flow (SDF) [12]. The two

models differ in their properties which affect our ability to build scalable stream processing sys-

tems.
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2.1.1 Kanh Process Networks

The requirements of KPNs are simple but effective to guarantee desirable properties such

as determinacy for parallel programming. A KPN is a network of processes connected by possibly

unbounded FIFO channels. No channels are shared across processes. A process always succeeds

writing to an output channel but may block waiting on an empty input channel.

A FIFO channel has a sequence of tokens, each of which represents one or more consec-

utive samples in the channel. A process may have multiple input and output channels. An input

sequence from multiple input channels is represented as a sequence of tuples, each tuple containing

a token per channel. The output sequence is modeled similarly. In KPNs, a process may consume

and produce an arbitrary number of tokens from and to its input and output channels.

Each process is a continuous function which maps a possibly infinite input sequence of

tuples to an output sequence of tuples. We note that KPNs consider continuous functions defined

on ordered sets rather than the special case of real numbers. To formally define the continuity of

processes, an input or output sequence is represented as an increasing chain of sequences χ =

{X0, X1, . . . ., Xn} that captures all the possible input or output sequences in an ordered set. The

variable Xi is a sequence of i tuples. Accordingly, X0 is an empty sequence denoted by ⊥ and Xn

is an infinite sequence as n → ∞. A source process without input is modeled as consuming an

empty sequence while a sink process without output produces an empty sequence. χ forms a prefix

ordering v where Xi is the prefix of Xj if i ≤ j, i.e., X0 v X1 v . . . . v Xn. The property holds

because channels are FIFO, i.e., χ is a complete partial order (cpo) if and only if for all subsets in

χ, there exists an upper bound in χ denoted by tχ such that each element in the subset is a prefix

of the upper bound. To be specific, Xn is the upper bound in χ and uχ is the empty sequence ⊥

which serves as the prefix of any sequence and is the lower bound of χ.
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A process in KPNs is a continous function F : χ → Ψ that maps an input sequence in

the increasing chain χ to an output seuqecne in another increasing chain Ψ such that the following

property holds:

F (tχ) = tF (χ)

Informally, it says the upper bound of input to the function is the upper bound of output

of the function. This implies the function is order-preserving, namely, monotonic. A function

F is monotonic if given Xi v Xj , F (Xi) v F (Xj) holds. It is straightforward to verify that

F (t{Xi, Xj}) = F (Xj) = t{F (Xi), F (Xj)} implies F (Xi) v F (Xj). Therefore a continuous

function must be monotonic. The intuition behind monotonicity allows the process in KPNs to

consume and produce sequences of tokens from and to channels incrementally. Support an input

sequence X = x1.x2 such that x1 is the prefix of X . F (x1) v F (X) by continuity implies that

the consumer process of F is able to incrementally process F (x1) and then the remaining output

induced by x2.

However, a monotonic function may not be continuous. In this case, it is possible for a

process to wait for an infinite input sequence before producing any output. Consider the monotonic

function F defined in Eq.(2.1) and the increasing input chain χ. In this case, tχ = limn→∞Xn

is infinite so F (tχ)=(v). Unfortunately, tF (χ) can only produce ⊥ because the process needs

to block reading indefinitely to determine if the input is an infinite sequence. This behavior may

cause non-determinism and justifies why KPNs require processes to be continuous functions. In

practice, we may think processes in KPNs are monotonic and never block reading infinite input
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forever.

F (X) =

{
⊥; if X is finite
(v); for some integer v if X is infinite (2.1)

Determinacy. An important property of KPNs known as the Kahn principle is that KPNs

are determinate if given the input and internal sequences, the final output sequences are uniquely

determined regardless of the process scheduling policies. This principle holds because all the

processes are continuous functions on cpos and by induction, a finite composition of processes is

also a continuous function. By the fixed-point theorem, there exists a least fixed point solution to

the system of equations formulated from the functions in the KPN. To derive such a solution, start

with⊥ as initial input sequences and iterate until the output sequence does not change. Specifically,

the least fixed solution is the least upper bound on the cpo. Nevertheless, it is still possible to

violate the semantics of KPNs without caution and cause non-determinism. This usually happens

when dataflow models are implemented in an imperative host language that allows processes to

communicate over shared variables, test if channels are empty, and call non-deterministic system

APIs. A dataflow compiler should alert programmers the potential violation of determinacy.

Boundedness of Channels. Another concern in KPNs is whether channels have bounded

capacity. A practical implementation of KPNs would require bounded memory requirements. In

the next section, we will describe how we can limit the semantics of the MoC to ensure bounded

channels. However, in the following we describe a solution proposed by Parks [13] proposed a

dynamic scheduling approach to guarantee bounded channel buffers. In his approach, the channel

capacity begins with at least one and each process would block for writing to a full channel. The

scheduler then schedules enabled processes to execute. A process is enabled if its input is ready

as required by KPNs. As expected, the system may reach an artificial deadlock when all the
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processes are blocked, some of which on a full FIFO. In this case, the scheduler increases the lowest

full channel capacity until the deadlock is resolved. However, implementations of KPNs based

on Parks’ approach may result in incomplete output since only global deadlocks are considered.

Geilen and Basten [14] have improved the scheduling despite local deadlock cycles. On the other

hand, if unbounded channel capacity is allowed, the fairness of scheduling should be concerned to

ensure enabled processes execute infinitely often. Otherwise, unfair scheduling may lead to low

throughput even though the output is still determinate.

Expressivity. KPNs have been shown to be Turing-complete in [15] given boolean tokens,

initial tokens in the channels of feedback loops, memoryless processes as well as conditional con-

structs such as the Switch and Select. A stateful process can be transformed to be memoryless by

passing its states through a self-loop channel and reading back in the next invocation. The Switch

and Select implement the if-then-else conditionals in common imperative languages.

Though KPNs are powerful in the sense of expressivity, the termination and channel buffer

boundedness are undecidable in general. Moreover, the runtime overhead due to the dynamic

scheduling could be undesirable for high performance computing. In the next section, we introduce

the synchronous data flow which models more restrictive semantics of KPNs but allows to decide

the termination and derives static schedules with bounded memory at compile time.

2.1.2 Synchronous Data Flow

Similar to KPNs, the Synchronous Data Flow (SDF) models a program as a directed graph.

However, SDFs require the production and consumption rates of processes during an invocation

to be known statically. Process states are maintained through self-loops. The execution flow of

the SDF is data-driven: the push model that starts from upstream sources to downstream sinks

in a topological order. There are many derivatives and variants of SDFs (e.g., StreamIt [16] and
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Lustre [17]) that adopt similar semantics for generating static schedules with bounded memory

allocations and allocating initial tokens to handle feedback loops. The remainder of the section

will cover these aspects of SDFs.

Figure 2.1. A SDF graph with nodes and edges numbered in order and letter rates.

Periodic Static Schedules. Assuming a single processor architecture, it is possible to

derive a periodic admissible sequential schedule (PASS) [12] from a SDF graph and then adapt

the schedule for multiprocessor architectures. A PASS is periodic to allow for processing infinite

streams of data by executing the program repetitively. It utilizes a finite amount of memory and is

sequential for a single processor system. The idea is to simulate process invocations and track the

number of tokens in the channel buffer to find such a schedule. The schedule makes sure the buffer

size in the number of tokens is the same as the beginning of executing the schedule.

To begin with, a topology matrix based on a SDF graph with rows representing channels and

columns representing processes. An entry in the topology matrix corresponding to the number of

tokens consumed or produced by a process. Each positive value indicates that the process produces

data while a negative value indicates a process consumes data. Fig. 2.1 shows a simple SDF with
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nodes and rate labeled edges. The topology matrix Γ of the SDF in the figure is given blow

Γ =

 c −e 0
d 0 −f
0 i −g

 . (2.2)

To simulate the invocation of a process, Γ is multiplied by an indicator column vector. The

vector vn(i) indicates the process i is executed at time n by setting the ith entry in vn to one and

setting all other entries to zero. In our example, vn(i) may take one of the following values: 1
0
0

 or

 0
1
0

 or

 0
0
1

 (2.3)

depending on which process is scheduled. A process is schedulable if there is sufficient data to

consume in its input channel(s). This ensures each time a process in invoked, the corresponding

channel buffer never underflows. We track the number of tokens available in a channel using the

column vector b(n). The number of tokens in a channel after invoking a process may be computed

using the following equation:

b(n+ 1) = b(n) + Γvn(i).

Suppose the initial buffer bize is b(0), the simulation iteratively executes processes until the channel

buffer size b(n) = b(0) for some n > 0. Clearly, the channel buffer usage is bounded and equal to

the maximum number of tokens on each channel during the simulation. Additionally, the sequence

of invocations recorded in vt for 0 ≤ t ≤ n constitutes one feasible PASS.

However, in some cases, the simulation never ends when there is no iteration such that

b(n) = b(0). This situation occurs when the rates are inconsistent. The authors in [18] proved that

the necessary condition for a SDF graph to have a PASS is

rank(Γ) = s− 1,
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where s is the number of processes. The proof is by induction on the rank of Γ. It starts with a

two-node tree with rank one. Whenever a node and an edge are added to connect the new node,

Γ is expanded to have a new column with a nonzero entry in the new row for the new node and

edge. In this way, rank(Γ) is always equal to the number of nodes minus one given the SDF graph

as a tree. Next, consider the actual SDF graph with more edges which only add rows to Γ without

decreasing its rank and thus the following equation holds.

s− 1 ≤ rank(Γ) ≤ s

Since the total buffer size change is equal to ΓΣn
t=0vt which should be zero for boundedness,

the nullity of nonzero Σn
t=0vt can only be one by the rank-nullity theorem and rank(Γ) = s − 1

as a result. If rank(Γ) = s for a given SDF graph, any schedule will result in either deadlock

or unbounded buffer size. That implies a particular channel has its buffer size either decreasing

or increasing unboundedly. After determing the existence of a PASS, it is sufficient to find the

schedule by simulating the process invocations. If there is a deadlock before the buffer size is

restored, some additional delays are necessary to add to the initial buffer size b(0). This concludes

the sufficient condition for the static schedule.

Figure 2.2. An example SDF graph for constructing a PAPS.
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Parallel Schedules. Based on the PASS, constructing a periodic admissible parallel sched-

ule (PAPS) is straightforward. For simplicity, assume the time to execute a SDF process takes

an integral number of time slots. This is realistic given processors with manageable pipelining.

Otherwise, some inter-process synchronization may be required. Suppose there are M processors,

each of which is assigned a static schedule ψi to run such that for each process, the total number

of invocations on all processors is a multiple of the number of invocations in a PASS, namely,

Σψi = J · φ

where φ is the corresponding PASS and J is some positive integer called the blocking factor to

scale up the PASS for better performance. Fig. 2.2 gives an example SDF graph with a minimum

PASS {1, 1, 2, 3} for executing processes 1, 1, 2, and 3 in one period. For J = 1 and J = 2 and

given M = 2, two possible PAPS can be constructed as follows:

ψ1 = {3}, ψ2 = {1, 1, 2} for J = 1

ψ1 = {3, 1, 3}, ψ2 = {1, 1, 2, 1, 2} for J = 2.

Assume it takes one time slot to execute process 1, two slots for process 2 and three slots for process

3. The makespans on both processors are illustrated in Fig. 2.3. Apparently, it is not efficient for

J = 1 since processor 2 needs to wait for processor 1 to complete (the shadow area) while for

J = 2, processor 2 is allowed to continue executing and both processors wait no time for each

other until the end of one period of the PAPS. Given an appropriate J, finding the optimal partition

is a well-known assembly line problem in operations research. Though it is NP-complete [19],

there are efficient approximation algorithms such as [20] for such constructions.

Asynchrony. In some cases, expressing the entire program in a single SDF graph is not fea-

sible due to the existence of asynchronous processes whose production and consumption rates are
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Figure 2.3. Makespans on two processors for J = 1 and J = 2 in (a) and (b).

data dependent. This implys the existence of internal Switch and Select logics which accept control

inputs and change the dataflow paths at runtime. Nonetheless, a practical solution is to partition the

program into separate SDF subgraphs connected by build-in Switch and Select components which

are compiled as conditional statements on a single processor architecture and inter-process com-

munication constructs on multiprocessor systems to direct the dataflow paths. In this way, each

SDF subgraph simply follows its own static schedule without concerning how dataflow is routed

outside the subgraphs or changing its semantics and is therefore free from non-determinism.

So far, we have gone through the main line of dataflow computational models for stream

processing including the semantics, scheduling and possible non-determinism. In the next section,

several optimizations based on static analyses of process semantics, channel buffer management,

and dynamic scheduling will be explored. Related work and their implementations will be intro-

duced with only essential differences from SDF.
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CHAPTER 3

LONG TERM ROBUST HIGH-RATE MOBILE SENSING APPLICATIONS

3.1 Introduction

Mobile phones are capable sensing platforms that include multi-modal sensors, increasing

computational and memory resources, and versatile networking capabilities. Their capabilities

have enabled a new generation of mobile sensing applications (MSAs). We are interested in using

mobile phones to transform how healthcare professionals collect information regarding a patient’s

physiology, physical activities, and social interactions. Results of recent studies on mobile health

systems have shown the feasibility of collecting medical records with higher resolution than is

possible through manual data collection methods [6, 21–23]. However, experience has also shown

us that the development of MSAs is particularly time demanding and challenging as significant

time is spent on ensuring that the system operates robustly within the resource constraints of the

embedded platform.

The development of MSAs faces several challenges that are poorly addressed by existing

operating systems like Android:

Concurrency: MSAs must handle data processing and asynchronous events concurrently: sensors

are sampled, data is uploaded to servers, and the system responds to user interactions or changes

in the environment. Such systems are difficult to implement correctly using low-level concur-

rency primitives such as threads or events. Thus, MSAs require a flexible concurrency model that

supports static analysis to detect bugs.

High Frame Rates: MSAs collect data from one or more sensors at high rates (e.g., 44100Hz

for processing audio). The collected data frames must be processed in real-time or within a few
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seconds from collection and may involve expensive signal processing operations (e.g., FFT). Sup-

porting such high rates is difficult due to the limited resources available on mobile phones.

Reliability: MSAs are intended for long-term data collection from users in unpredictable envi-

ronments. This operating regime, coupled with the need to provide a positive user experience,

motivates a focus on bug prevention to reduce run-time errors.

Java Run-time Environment: Although Java increases programmer productivity and reduces

programming errors (compared to C/C++), it also increases the complexity of implementing MSA

efficiently. Efficient implementations must manually manage memory, select appropriate concur-

rency mechanisms, and integrate native implementations of expensive operations.

To address these challenges, we propose CSense, a stream processing (SP) toolkit for de-

veloping MSAs that provides a programmer the following capabilities:

• Consistent with SP approaches [16, 24–27], an MSA is modeled as a directed acyclic graph

of components that encapsulate reusable user code. The programming model includes three

novel features: (1) a simple but expressive concurrency model that handles concurrent opera-

tions and asynchronous events efficiently, (2) a flexible type system used to specify the types

of inputs and outputs for components, and (3) the explicit inclusion of memory management

operations as part of the component graph.

• Our compiler includes a flow analysis that leverages type information and explicit memory

management to perform application-wide optimizations. The same information is leveraged

by our static analysis to identify a range of programming errors including application com-

position errors, incorrect usage of the memory management system, and data races. Code

generation techniques are used to integrate MATLAB functions (compiled into C code) as
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CSense components.

• We designed a run-time environment that supports high-rate SP on the Dalvik VM. This

required careful design of memory management and concurrency. The run-time environment

tightly integrates with Android’s power management system.

The primary novelty of CSense is the inclusion of type and memory management information as

part of the programming model to facilitate static program analysis and optimizations.

Several frameworks aim to simplify various aspects of MSA development. CSense is

closely related to efforts aimed at reducing the burden of resource management [26–29] and com-

plementary to those that focus on integration with cloud services [30] or machine learning sup-

port [31,32]. SeeMon [28] selects an informative set of sensors to track a user’s context. Coordina-

tor [29] extends these capabilities to adapt application behavior in response to resource availability.

JigSaw [26] provides customized pipelines for accelerometer, microphone, and GPS sensors. A

limitation of these systems is that they only support MSAs that may be defined using constrained

queries [28, 29] or customized pipelines [26]. In contrast, CSense provides a high-level stream

programming abstraction suitable for a broad range of MSAs. Similar to CSense, SymPhony [27]

provides a general programming model for MSAs, however, it emphasizes the problem of sharing

resources across multiple MSAs that run on a single device. We do not focus on resource sharing as

we are interested in mobile health applications where devices are dedicated to run a single applica-

tion. More importantly, SymPhony does not support flexible concurrency, compiler optimizations,

or static analyses.

The benefits of the CSense run-time and optimizations have been evaluated on mobile

phones. Experiments show that the use of memory pools and lock-free synchronization improves
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the peak SP rate by as much as 19 times over a realistic baseline implementation. Moreover, our

frame analysis reduces the number of memory copies and allows components to be executed at

different rates. We show that flow analysis can reduce CPU usage by as much as 45% in a realistic

application.

We have used CSense to implement three MSAs: SpeakerIdentifier, ActiSense, and Au-

dioSense. The three systems were selected because they produce different types of workloads and

pose different system challenges. SpeakerIdentifier is a CPU-intensive application that processes

speech samples to determine the identity of speakers. ActiSense requires high concurrency to

predict patient activities from multiple accelerometers connected to a phone over Bluetooth. Au-

dioSense [6] delivers electronic surveys and collects audio samples to evaluate the performance of

hearing aids. The key challenge of AudioSense is to collect sensor data reliably during weeklong

data collection sessions.

The remainder of the chapteris organized as follows. The programming model, compiler

analysis, and optimizations are presented in the next section. The run-time environment that exe-

cutes CSense applications is described in Section 3.3. Micro- and macro-benchmarks that show the

benefits of flow optimization and run-time environment are provided in Section 3.4. The related

work is reviewed in Section 3.5. Conclusions are included in Section 5.6.

3.2 CSense Design

CSense supports the development of MSAs that are robust and require high-rate SP. The

building blocks of CSense are fine-grained components that encapsulate user functionality. An ap-

plication is built by connecting components to form Stream Flow Graph (SFG). The SFG includes

type and memory management information that facilitate static compiler analyses and optimiza-

tions.
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The design of CSense is based on the following principles:

CSense builds on Java: CSense components are implemented as Java classes. The Android SDK

provides programmers a rich set of reusable components which, when used in conjunction with

object-oriented programming techniques, can significantly reduce development time. However,

this approach has disadvantages: (1) supporting high-rate SP requires careful engineering and

deep understanding of the operating system internals, (2) low-level concurrency primitives provide

little support for writing of safe code, and (3) it is difficult for compilers to analyze and optimize an

application globally when it is structured as loosely coupled Java components. CSense addresses

these limitations.

Flexible, safe, and optimized applications: Applications are modeled as SFGs, which capture

application-level properties including the flow of data between components, constraints on frame

types and their sizes, and concurrency. SFGs support flexible configuration, program analysis for

safety, and application-level performance optimizations.

Native code: Most stream operations can be implemented efficiently in Java. However, there are

cases when native implementations would significantly reduce computational overhead. CSense

components may be implemented in MATLAB and compiled to native code. This has the advan-

tage of including efficient signal processing functions that are often readily available as MATLAB

toolboxes.

The remainder of truntimehis section describes the programming model and associated

compiler analyses and optimizations. The runtime environment is described in next section.

3.2.1 Programming Model

Components are the building block of CSense applications. They encapsulate functionality

common to MSAs including support for data collection, feature extraction, file I/O, and network-
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1: public class RMSClassifierM<T extends Vector>
extends Module {

2: InputPort<T> in = newInputPort(this, "in");
3: OutputPort<T> above = newOutputPort(this, "above");
4: OutputPort<T> below = newOutputPort(this, "below");
5: double threshold;

6: public RMSClassifierM(double threshold) {
7: this.threshold = threshold;
8: }

9: public void onInput() {
10: T v = in.getFrame();
11: double rms = computeRMS(v);
12: if (rms ≥ threshold) above.push(v);
13: else below.push(v);
14: }
15: };

Figure 3.1. The RMSClassifierM module.

1: public class RMSClassifierC
extends SimpleConfiguration {

2: public RMSClassifierC(double threshold) {
3: // === specify Java implementation ===
4: super(RMSClassifierM.class);

5: // === type definitions ===
6: VectorC type = TypeC.newFloatVector()
7: type.addConstraint(Constraint.GT(8000));
8: type.addConstraint(Constraint.LT(24000));

9: // === ports definitions ===
10: InputPortC in = addInputPort(type, "in");
11: OutputPortC above = addOutputPort(type, "above");
12: OutputPortC below = addOutputPort(type, "below");

13: // === specify internal links ===
14: link(in, above); link(in, below)

15: // === add component arguments ===
16: addArgument(new Argument(threshold));
17: }
18: };

Figure 3.2. Configuration of RMSClassifierM.

ing operations. Applications are written by connecting components into a directed acyclic graph

called the Stream Flow Graph (SFG). We distinguish two types of components: modules and con-

figurations. Modules provide the underlying Java implementation of a component. Existing Java

libraries may be reused as part of module implementations. Configurations may be used to either

(1) configure a single module (called simple configurations) or to (2) connect and configure groups

of modules and configurations to create reusable components (called group configurations). A
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module must have at least one configuration to be used in an application. Each application has a

main group configuration that connects and configures all the modules of an application. We opted

to implement both modules and configurations in Java. Using Java has many advantages including

programmer familiarity, ease of integration with Android, and availability of compiler and analysis

tools.

An example of a module is shown in Figure 3.1. The RMSClassifierM classifies frames

based on their root means square (rms) value. The core of the module is the onInput() function

that is called when there are frames to be processed on all the module’s input ports. Within the

onInput function, the RMSClassifierM retrieves a frame from the in port and, depending

on the computed rms value, the frame is pushed on either the above or below port. More

complicated components may maintain private state and schedule/handle events. CSense, also

supports “pull” semantics: a component may request data from upstream components by calling

pull() on any of its input ports. Pulls are implemented as polling requests and the upstream

components may respond asynchronously by scheduling events. We will return to the details of

event handling in the context of the concurrency model later in this section.

A simple configuration defines the ports, internal connections, and initialization parameters

of the module it configures. An example of a simple configuration is shown in Figure 3.2. The

public interface of a component is defined by its input and output ports (lines 10 – 12). The types

of ports are specified according to the type system described in Section 3.2.4. A typical component

execution involves retrieving frames from input ports, modifying these frames, and pushing them

over output ports. The flow of frames within a component – from one input port to one or more

output ports – is captured by its internal connections (line 14). A connection indicates the potential

of a frame exchange rather than a requirement. Accordingly, a component that connects an input
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port (I) to two output ports (O1 and O2) may, at run-time, output a frame on O1, O2, or on both O1

and O2. For example, the configuration RMSClassifierC connects the input port in to both

above and below ports. At run-time, the module RMSClassifierM will output a frame on

either above or below depending on the rms value of the frame. We prohibit components from

creating new frames as precise information regarding the flow of frames is necessary to perform

optimizations and error checking.

Figure 3.3 provides an example of a group configuration that specifies a speaker identifi-

cation application. The group configuration allows for components to be instantiated, configured

(lines 5 – 10), and linked (lines 11–17). While groups constitute “syntactic sugar”, they facilitate

code reuse. For example, MFCCFeaturesG is a group that includes components that implement

several signal processing operations. Internally, the group automatically configures the filter bank

required to compute the Mel-Frequency Cepstral Coefficients (MFCCs) based on the size of the

feature type. These details are hidden from external components.

3.2.2 Memory Management

The overhead of memory operations, including object creation, copy, and garbage collec-

tion, can dwarf computation times as shown in Section 3.4. As a consequence, CSense adopts

pass-by-reference semantics and incorporates memory management operations into the SFG. For

memory management purposes, we distinguish three types of components: sources, user compo-

nents, and taps. Sources are the only components that produce new frames. Frames are modified

by user components and passed to a Tap when they are no longer used. As previously mentioned,

user components are prohibited from creating or copying frames. These operations are supported

by including Copy and Ref components in SFGs. We expect to raise the programmer’s awareness

of memory operations by incorporating explicit stream operators. More importantly, this approach
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1: public class SpeakerIdentifierG extends GroupConfiguration {
2: public SpeakerIdentifierG(int rateInHz,

URL server, double rms) {

3: // === type definitions ===
3: VectorC speechT = TypeC.newFloatVector(1024);
4: VectorC featureT = TypeC.newFloatVector(128);

5: // === add components to group ===
6: addComponent("audio", new AudioComponentC(rateInHz, 16));
7: addComponent("rmsClassifier", new RMSClassifierC(rms));
8: addComponent("mfcc", new MFCCFeaturesG(speechT, featureT));
9: addComponent("toDisk", new ToDiskComponentC(featureT));
10: addComponent("httpPost", new HttpPostC(server, "fileType"));

11: // === connect components ===
12: link("audio", "rmsClassifier");
13: toTap("rmsClassifier::below");
14: link("rmsClassifier::above", "mfcc::sin");
15: fromMemory("mfcc::fin");
16: toTap("mfcc::sout");
17: link("mfcc::fout", "toDisk");
18: toTap("toDisk");

19: // === specify concurrency constraints ===
20: getComponent("audio").setThreading(Threading.NEW DOMAIN);
21: getComponent("httpPost").setThreading(Threading.NEW DOMAIN);
22: getComponent("mfcc").setThreading(Threading.SAME DOMAIN);
23: }

audio toDisk httpPostrms
Classifier

Types declarations and size constraints:
audioT : vector<short>, ≥ 1000
energyT: vector<double>, ≥ 8000, ≤ 24000
speechT: vector<double>, = 128
featuresT: vector<double>, = 11
diskT: vector<double>
filenameT: vector<char>, ≤ 1024

mfcc

audioT!out

energyT!in

energyT!below

energyT!above

speechT!sin speechT!sout

featuresT!fout

diskT!in

filenameT!fout filenameT!out

diskT!out

S2

T1

S1

T2 T3 T4

featuresT!fin filenameT!fin

Memory 
Source Tap

Figure 3.3. The main configuration of a speaker identification system adapted from [1]. audio
records audio at a configurable frequency. RMSClassifier filters out silent frames. mfcc
computes MFCCs which are saved to disk by toDisk and uploaded to a server by httpPost
for identification. The types of ports are denoted by underlined text and their constraints are shown
in the grayed box. audio and httpPost require to be executed in different domains shown in
respective bounded boxes.

allows the entire flow of frames in an application to be known at compile time allowing for opti-

mizations and static analysis.

3.2.3 Concurrency

Concurrency is prevalent in MSAs: sensors are sampled, data is uploaded to servers, and

the user interacts with the system. This results in a mix of events and SP operations, which must

be processed concurrently.

CSense provides four concurrency mechanisms: domains, events, selectors, and a global

workspace. A domain includes a subgraph of components that are executed in the same thread.

Components pertaining to the same domain exchange frames through function calls without re-
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quiring synchronization. Data exchanges across domains are mediated by synchronization queues.

Synchronization queues buffer frames to handle variations in the execution rate of different do-

mains. A key advantage of the domain abstraction is its simplicity: the developer can reason about

the behavior of components within a domain using sequential semantics.

Each domain has a scheduler that is responsible for managing events and selectors. Both

mechanisms allow components to defer their execution to allow other components to run. CSense

supports high concurrency by integrating with Java New I/O (NIO). A component may register

NIO selectors with the scheduler. The scheduler calls the component when the selector has data

available to read or write. This mechanism allows the scheduler to multiplex I/O requests. We

restrict components to schedule events or register selectors for themselves, i.e., providing indepen-

dent event streams per component. Moreover, to preserve the integrity of the domain abstraction,

events and selector handlers are executed in the domain of the component that scheduled their ex-

ecution. Components may share state through a global workspace. The workspace is organized as

a dictionary in which shared variables are read and written through using agreed-upon keys.

CSense applications are multithreaded and may include shared state. As a consequence,

there is a potential for race conditions to occur when variables are accessed from multiple domains.

The race analysis ensures that individual accesses to shared variables occur in synchronized blocks.

This invariant ensures that individual accesses to shared variables are race-free. While this ap-

proach avoids a majority of data races, there still is the potential for data races when implementing

more complex synchronization protocols that involve multiple accesses to shared variables. Two

factors make enforcing the above invariant in Java programs difficult: (1) determining the target of

each update and (2) determining the complete set of potential execution inter-leavings. Our race

analysis takes advantage of the restricted semantics of the CSense programming model to address

28



these challenges. First, the problem of identifying the target of an update is straightforward since

the programming model requires shared variables to be accessed via the workspace. Second, un-

like for general Java programs whose call graph is not fully known at compile time, the call graph

in CSense is encoded by the SFG. The race analysis checks that all execution paths that access a

shared variable are from within synchronized blocks. This is accomplished by accounting for the

fact that the only entry points for a component are the onInput (called to exchange frames) and

onEvent (called to handle events) method calls. Our analysis may also have false positives i.e.,

the compiler may issue a warning when a race does not exist. For instance, this may occur when a

frame is accessed from two domains, but the two domains never execute concurrently.

The programmer can specify concurrency by defining constraints on components. First,

the programmer may specify that a component should be executed in a new domain using a

NEW DOMAIN constraint. The constraint is associated with sources and components that in-

clude long/blocking operations. For example, the NEW DOMAIN constraint may be added to the

audio and httpPost to record and upload data concurrently (lines 20 – 22 in Figure 3.3). Sec-

ond, the programmer may enforce that components are executed within the same domain using

a SAME DOMAIN constraint. For example, the components implementing the mfcc component

should not be split across domains. Otherwise, a large number of frames would have to be ex-

changed via synchronization queues adding significant overhead.

The compiler uses a simple heuristic to partition the SFG into domains subject to the spec-

ified concurrency constraints. The algorithm operates on the SFG in which all groups are flattened

except for those that include a SAME DOMAIN constraint. The algorithm iterates through each

source in the SFG assigning multiple components to a domain. Initially, the domain is set to zero

and incremented in each iteration of the algorithm. Let c and d be the source and domain currently
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under consideration. The algorithm assigns c to run in d. Additionally, it computes the predecessor

subgraph of c that includes all components x such that there is a path from x to c. If no component

in the predecessor subgraph requires a NEW DOMAIN, all components of the subgraph will be exe-

cuted in d. Otherwise, they will be assigned to a domain in a later iteration of the algorithm. Next,

the algorithm computes the successor subgraph of c that includes all components x such that there

is a path from c to x. Component x will be executed in domain d if no component on the path from

c to x has a NEW DOMAIN constraint. In a post-processing step, the groups with SAME DOMAIN

constraints are flattened and the members assigned to the group’s domain. The proposed heuristic

typically assigns subgraphs of components that share a path to the same domain, which reduces

overhead.

3.2.4 Type System

Our type system is designed to provide the programmer with flexibility in specifying frame

types. A frame can be either a vector or a multi-dimensional matrix of primitive Java types. While

Java does not support matrices as types, CSense supports them to simplify the integration with

MATLAB. The main extension to the type system is that we allow the programmer to specify sim-

ple constraints (≤, <, =, >, and ≥) over the size of each dimension of an array. These constraints

may be added cleanly as part of configurations (see lines 5 – 8 in Figure 3.2 for an example). Ob-

viously, the size of a frame must be eventually determined. We define type materialization to be

the procedure that determines the frame sizes subject to the defined constraints.

The support for parameterized and constrained frame types benefits error checking, com-

ponent reuse, and optimization. Let us consider the audio and mfcc components. The audio

component records sound in an underlying frame that is returned to the user when it is full. The

Android OS enforces a minimum size for the recording buffer to reduce CPU utilization when
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recording audio. In contrast, the input mfcc component outputs features that always contain 11

floats. CSense identifies configuration errors due to connections between ports of incompatible

rates at compile time. In other SP models, such errors would go unnoticed until run-time.

Rich types also foster component reuse. For example, the mfcc component may be pa-

rameterized to use vectors whose element type is either float or double. This allows the developer

to trade-off computational accuracy of MFCCs and computational overhead with a minor change

to the frame type. Similarly, depending on its configuration, the audio component may record

samples as bytes (8-bit samples) or shorts (16-bit samples). This allows audio to be configured

based on the type of its output ports.

Defining components that operate over ranges of sample sizes is a powerful construct.

For example, audio may use frames whose size exceeds 1024. Therefore, the same audio

component may be used in two applications with different size configurations. This makes it

feasible to select frame sizes such that components operate optimally from an application-wide

perspective. CSense may accomplish this through the flow analysis presented next.

3.2.5 Flow Analysis

Type materialization requires that the compiler determine the size of frames subject to

the constraints specified by developers. However, not all feasible solutions to this problem can

be implemented efficiently. A source of inefficiency is frame conversions that can occur when

ports, which require frames of different sizes, are connected. Consider the connection between

rmsClassifier and mfcc in Figure 3.3. A feasible solution is for the rmsClassifier to

output frames of 10,000 samples that mfcc must convert to frames of 128 samples. To handle this

mismatch, the compiler must introduce a Converter that receives frames of 10,000 samples and

outputs frames of 128 samples. Since 10,000 is not a multiple of 128, the Converter cannot
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be implemented efficiently as it requires at least some samples to be copied. In contrast, if the

rmsClassifier were to output a frame of 10,240 samples, then the samples can be divided

into 80 vectors that contain 128 samples as required by mfcc. This may be implemented without

copying by defining 80 non-overlapping views over the same memory buffer containing the 10,240

samples.

The goal of the flow analysis is to find a solution to the type materialization problem that

may be implemented efficiently. The flow analysis is performed at compile time and, therefore, it

does not introduce any run-time overhead. The analysis is performed on the application SFG (see

Figure 3.3 for an example) by considering each path sequentially. A path in the SFG captures the

flow of frames from a source to a tap following internal and external links. For example, the frames

from audio follow two paths: audio T1 and audio T2. The behavior of a conversion is

determined by three variables: super-frames (S), frames (F), and multipliers (M). A super-frame is

a contiguous block of memory that can be divided into an integer number of frames. Components

along all paths that originate at a source s use super-frames of the same size (Ss). Each port p of

a component A may require different frame sizes FA,p. This requirement is fulfilled by having A

execute MA times to ensure Ss = FA,p ·MA. When these constraints are satisfied, all conversions

on the paths from s may be implemented efficiently.

The compiler casts the problem of determining the super-frames, frames, and multipliers

as an Integer Linear Program (ILP). Integer linear constraints are generated based on the type

constraints supplied by the programmer according to the pseudocode shown in Figure 3.4. For

clarity, we consider the case of determining the appropriate conversions for a single source that

has a super-frame of size S. The algorithm considers each port p of a component A on the path.

Let CA,p be the set of type constraints associated with port p of component A. A constraint has
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the form (./, v), where ./ is an operator (./ ∈ {<,≤,=,≥, >}) and v is an integer. The algorithm

iterates through each type constraint, adding new constraints to the ILP problem. If ./ ∈ {=}, then

the size of the frame (FA,p) is set to equal v (as specified by the type constraint) and we ensure that

the super-frame (S) is a multiple of FA,p (lines 6 – 9). The multiplier MA is optimized based the

constraints of entire path. If the user does not supply a “=” constraint (./ /∈ {=}) (lines 13 – 14),

then we set MA = 1 indicating that the component can process the entire super-frame in a single

call. In this case, the value of the frame FA,p will be optimized based on the constraints of the

entire path. If ./ ∈ {≤, <,>,≥} (lines 10 – 11), then the size of the frame (FA,p) is constrained by

v. Additionally, the frames sizes FA,p are constrained to be smaller or equal to then super-frame

sizes S (line 3) and multipliers (MA) to be at least 1 (line 4).

Solving the created ILP will determine the value of super-frames, frames, and multipliers

subject to the type constraints specified by the programmer and those required to perform effi-

cient frame conversions. A typical MSA has an associated ILP with multiple feasible solutions.

Choosing an appropriate solution involves a trade-off between memory utilization and run-time

overhead. CSense currently uses the solution that has the least memory utilization. This is because

Android imposes strict limits on the memory utilization of an application, which limits an effective

evaluation of trade-offs in selecting different solutions.

The ILP does not have a feasible solution in two cases: there is no solution to type mate-

rialization and there is no efficient implementation. In the former case, the compiler generates an

error; in the latter case the compiler generates a warning indicating that inefficient conversions are

used and then reruns the ILP without the efficient frame conversion constraints. In practice, the

developers select frame sizes to be multiples of each other, in which case, a feasible solution to the

ILP problem exists.
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1:for (A, p) a component-port pair path
2: for (./, v) ∈ CA,p:
3: ILP: 0 < FA,p ≤ S
4: ILP: MA ≥ 1
5: hasEquals = False
6: if ./ ∈ {=}:
7: hasEquals = True
8: ILP: FA,p = v
9: ILP: S = FA,p ×MA

10: elif ./ ∈ {≤, <,>,≥}:
11: ILP: FA,p ./ v
12: if hasEquals = False:
13: ILP: MA = 1
14: ILP: S = FA,p ×MA

Figure 3.4. Frame analysis algorithm and notation.

3.2.6 Compiler

The compiler has the following workflow. The main configuration instantiates compo-

nents, and configures, and connect them. After flattening groups, the compiler checks that the SFG

is structurally correct: no ports are unconnected and no fan-ins, fan-outs, or cycles exist. Addition-

ally, we ensure that the all paths start with a source and end with a tap. The compiler runs the flow

analysis to materialize types and includes Converters, as appropriate. The SFG is partitioned

into domains and then checked for race conditions. The final step is to generate code for the target

platform.

We use the MATLAB compiler to generate C code for components that use MATLAB func-

tions. The C code is compiled as a static library. The general strategy for including a MATLAB

function as a CSense component is to create a mapping between input/output ports of the com-

ponent and the input arguments/return values of the MATLAB function. The compiler generates

custom wrapper classes that call the generated static library. Data is exchanged using NIO buffers

for efficiency. The compiler also generates a “main” application that configures components, con-

nects them, and creates threads for their execution. The code generation completes by compiling

the generated code. Even though in this chapterwe focus on Android, owing to Java’s portability,
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we have been able to run CSense applications on both Linux and OS X.

3.3 Runtime Environment
3.3.1 Scheduler

An application is partitioned into domains, each domain having its own scheduler. The

scheduler is responsible for managing memory, events, and selectors.

The goal of memory management is to minimize the impact of object creation, copying,

and garbage collection. We implement memory management as follows. Each source maintains a

memory pool that contains a number of super-frames. A source retrieves a super-frame from the

pool when it has data to write. Flow analysis (performed at compile time) ensures that frames are

exchanged efficiently until they reach a tap. Upon reaching the tap, the scheduler must determine

if it should put the super-frame back in the memory pool. We associate a reference counter with

each super-frame. The reference counter is incremented each time a new reference is created. Con-

versely, the counter is decremented when taps are reached and, when the counter becomes zero,

the super-frame is put back in the pool for reuse. During the initialization of an application, a con-

figurable number of frames (currently set to 8) are preallocated in each memory pool. Additional

frames may be allocated at runtime when new frames are request but none are available in the pool.

These mechanisms limit the creation of new frames and their garbage collection.

A component may schedule events to run after a delay. The scheduler maintains two ex-

ecution queues. The immediate execution queue is a FIFO queue that stores zero delay events.

Components use zero delay events to yield their turn and allow other components to be executed.

Non-zero delay events are inserted in a priority queue sorted by time when they are scheduled to

fire. The scheduler operates in rounds. In each round, the scheduler drains the immediate queue

and processes all the events in the priority queue scheduled to execute no later than the current
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time. A component may also register selectors with the scheduler. Selectors are checked at the end

of a round and components that have pending data are notified.

Memory pools and events may be accessed from different threads, so a concurrency mech-

anism is necessary. Java includes support for concurrent collections including blocking queues and

synchronized arrays that may be used to implement the event queues of schedulers and memory

pools of sources. However, the underlying implementation of these data structures uses reentrant

locks. Locks are designed to handle high levels of contention. Under low or medium contention,

locks introduce a high overhead since a thread must be suspended when it attempts to acquire a

lock that is already held by a different thread. Atomic variables provide a lightweight synchroniza-

tion mechanism that is implemented efficiently using hardware-supported compare-and-swap. The

challenge with atomic variables is that the developer has to implement appropriate mechanism to

handle concurrent access. To improve SP rates, we have implemented customized synchronization

primitives. Our synchronization primitives use a two-level locking scheme. Atomic variables are

used for concurrency in the low contention case. If the lock implemented using atomic variables is

not acquired after several attempts, we switch to using reentrant locks.

3.3.2 Android Integration

CSense is designed to take advantage of the underlying Android services. Consistent with

the Android architecture, a CSense application uses activities for user interfaces and a service to

host its runtime environment. The user interface and service run in the same process, but in dif-

ferent threads. CSense components have specialized implementations for Android. For example,

components that use sensors leverage on the Android APIs to capture motion, GPS, and audio data.

CSense integrates with Android’s power management to allow phones to sleep. Android

uses power locks to prevent the CPU and display from entering a sleep state. When no power locks
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are acquired, Android will aggressively turn them off. Releasing power locks prematurely may

result in an application being suspended for an indeterminate amount of time. Other resources,

such as network or GPS, are not managed though power locks. Instead, the programmer must

explicitly turn them on and off. These resources are typically accessed from a single CSense

component that is also responsible for managing their power consumption.

There are two challenges to integrating our scheduler and Android’s power management:

(1) we must determine when it is safe to sleep, and (2) we must develop an efficient mechanism to

enter and leave sleep states. To determine if it is safe to sleep, the scheduler consults the pending

events and registered I/O handlers. Each scheduler maintains an independent power lock that is

acquired during its initialization. In the following, we describe the behavior of each scheduler

independently. The CPU will sleep only when all schedulers release their power locks. Let tnow be

the current system time and tfirst be the time when the next event in either one of the scheduler’s

queues is scheduled to run. If tfirst < tnow, then the scheduler is running behind, effectively

having to catch up with the sequence of events. Thus, the power lock cannot be released to allow

the scheduler to catch up. Otherwise, if tfirst ≥ tnow, the scheduler can sleep for d = tfirst − tnow

seconds. In this case, the scheduler registers an alarm to wake up the system after d seconds.

Android guarantees that alarms wake up the system from sleep, at which point, the scheduler

reacquires the power lock. In the case when no events are scheduled, the scheduler will go to sleep

and may be woken by receiving data from other domains or by external events.

Initial testing indicated that the above algorithm has an important limitation: it does not

account for the time necessary to transition to sleep and then to wakeup. Let twakeup be the time

from the time when the power lock is released until the wakeup alarm is delivered. If the time

the scheduler may sleep d < twakeup, then some events will be delivered late. This is particularly
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(a) Scheduler implementations. (b) Total garbage collection time.

(c) CPU usage.

Figure 3.5. Producer-consumer benchmark to assess memory pooling and concurrency techniques.

problematic when there are numerous events to be processed due to highly concurrent workloads.

To address this limitation, we devised a two-level sleep strategy that only release the power lock

when d > tth, where tth is user-specified constant. If d < tth, then the scheduler will use Java’s

wait/notify mechanism to sleep for d seconds without releasing the power locks. Otherwise, we

release the power locks and allow the CPU to sleep. This algorithm is safe in that it does not

introduce additional delay penalties of pending events due to sleep.
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3.4 Evaluation

In this section, we provide an empirical evaluation of CSense on Galaxy Nexus phones run-

ning Android Jelly Bean. Galaxy Nexus uses a Texas Instruments OMAP 4460 SoC that includes

a 1.2 GHz dual-core ARM Contex-A9. The phone has 1GB of memory and 32 GB of storage. C

code is generated from MATLAB functions using MATLAB R2012b and MATLAB Coder 2.3.

The resulting code is cross-compiled into a static library using Android NDK (r8d). We evaluate

CSense using both micro- and macro-benchmarks.

3.4.1 Micro-benchmarks

Scheduler Scalability: We evaluated the scalability of the scheduler using a Producer-Consumer

benchmark. The producer generates frames at specified rates. The produced frames are passed to

the consumer and then to a tap. The producer and consumer operate in different domains to cap-

ture the impact of inter-domain connections. Memory was managed using either Java’s memory

management (GC) or using memory pools (MP). In the former case, new objects are created for

each frame and garbage collection is used to free them. Flow analysis is not used in this bench-

mark. Concurrency in the scheduler was implemented using locking primitives (L) and CSense’s

synchronization primitives (C). A scheduler implementation combines a memory management and

a locking mechanism. The results are averages over five runs; each run lasting for a minute. 95%-

confidence intervals are also plotted.

Figure 3.5a shows the performance of the three schedulers. We increase the offered rate

linearly and measure the rate at which the consumer receives frames. A scheduler should match

the offered rate until it reaches its peak rate. To understand the differences in performance, we also

measure the total garbage collection time and CPU usage. The CPU usage is measured as the total
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time the benchmark runs on either CPU core.

A naive implementation of the scheduler would use Java’s memory management and lock-

ing concurrency primitives (GC+L). GC+L performs poorly; it supports a peak rate of only 1,534

events/s. MP+L incorporates memory pools and relies on locking concurrency primitives. Memory

pools eliminate the creation of frames and reduce garbage collection. As a result, the peak event

rate is increased to 21,176 events/s – a 13.8 times increase. Figure 3.5b plots the garbage collec-

tion time for each implementation as reported by Dalvik. As expected, the naive implementation

has the highest garbage collection time. MP+L reduces garbage collection significantly, but does

not eliminate it. In fact, the garbage collection time increases slowly with the offered rate. This

increase may be attributed to ReentrantLock objects being created in Java concurrent collec-

tions. These objects are created when a thread attempts to access a lock that is already held by a

different thread.

Using our concurrency primitives, the scheduler (MP+C) may support a peak rate of 30,029

events/s. This represents an additional 30% improvement over MP+L. Overall, the proposed opti-

mizations provide a 19 times improvement over the naive implementation. Two factors contribute

to these improvements. The garbage collection time is reduced to zero when our customized syn-

chronization primitives are used. Additionally, as shown in Figure 3.5c, MP+C runs for a longer

time as indicated by the higher CPU time. This is because our synchronization primitives reduce

the number of thread suspensions and resumptions. This allows for multiple frames to be inserted

by the consumer or removed by the producer from the synchronization queue without requiring

context switches.
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(a) Benefits of flow analysis. (b) Detailed performance at 44100 Hz.

(c) Scheduler overhead.

Figure 3.6. MFCC benchmark to assess the benefits of the flow analysis.

3.4.2 Macro-benchmarks

We have implemented three applications to showcase the versatility of CSense: SpeakerI-

dentifier, ActiSense, and AudioSense. CSense facilitated incorporating MATLAB code in applica-

tions and its integration with additional Java components for data collection, file I/O, networking

operations, and UI. Each application highlights an aspect of the toolkit: the benefits of flow analy-

sis, the scheduler scalability, and its overhead. Statistics regarding the size of the ILP problem for

each application and compilation times are also provided.

SpeakerIdentifier: SpeakerIdentifier (see Figure 3.3) determines the identity of speak-
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Application Number of constraints
SpeakerIdentifier 53

AudioSense 164
ActiSense (phone only) 172

ActiSense (phone + 3 Shimmer motes) 564

Figure 3.7. Number of ILP constraints for each application.

ers based on their voice fingerprint. The application is based on SpeakerSense [1]; however, in

contrast to SpeakerSense, SpeakerIdentifier performs speaker identification remotely. The mfcc

component is implemented in MATLAB. To evaluate the effectiveness of flow analysis on a realis-

tic application, we will compile and profile the application with (flow-analysis) and without

(simple) flow analysis.

Figure 3.6a plots the CPU usage when the audio sampling rate was 8000, 22050, 32000,

and 44100 Hz. The figure clearly indicates the benefits of using the efficient frame conversions

enabled by flow analysis. Moreover, these benefits increase with the audio sampling rate. At

44100 Hz, using flow analysis, the CPU usage is reduced by 45% compared to the baseline. To

better understand the benefits of framing, Figure 3.6b plots the time spent in each component

of the MFCC pipeline. Aside from minimizing the number of object copies, the use of super-

frames has three additional advantages: (1) It reduces overhead since super-frames contain more

samples than frames but require the same number of function calls to push. This results in lower

overhead on mfccSource and tap components that are responsible for memory management.

(2) Super-frames allow components to execute at different rates. The super-frame is 4096 samples,

but the mfcc source and saveFeature are executed 32 and 1 time, respectively, to process a

super-frame. This feature explains the reductions in the CPU time of mfcc, saveFeature, and

saveAudio. (3) Finally, the Converter component is used to convert shorts to doubles. For
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efficiency, this component is implemented in native code. A benefit of using CSense is that the

compiler can automate such transformations thus reducing the development burden.

We instrumented the scheduler to measure the time each domain thread spends executing

the user code and the total time the thread was executed. The difference between the total and

user time is considered overhead. We divide the overhead into sleep overhead and scheduler over-

head. The sleep overhead measure the time to access the underlying power locks associated with

each domain. Figure 3.6c plots detailed scheduler overhead when the flow analysis is used. The

overhead percentage is computed relative to the total CPU usage reported in Figure 3.6a). The

overhead ranges from 2.37% to 1.83%, decreasing slightly as the sampling rate increases. The

slight decrease is the result of the CPU usage increasing faster than the scheduler overhead. These

results show that the scheduler introduces small overhead.

Figure 3.7 includes the number of ILP constraints that were generated by the flow analysis

for each application. All applications include less than a thousand linear constraints. ILP solvers

can solve problems of this size very efficiently. On a laptop with a 2.6 GHz Intel Core i7 with 16

GB of RAM all ILPs were solved in less than 10 ms.

ActiSense: ActiSense is an activity recognition application that uses accelerometers to

recognize running, sitting, walking, standing, and climbing stairs. The system is based on [22].

ActiSense includes a mobile phone and three Shimmer motes. Data from the Shimmer motes

is streamed to the phone over Bluetooth. Feature extraction is performed on the phone. The

extracted features are mean, time-domain and frequency-domain entropy, and correlation features

as described in [22]. A Support Vector Machine (SVM) classifier determines user activities in

real-time.

We have conducted a small user study involving 3 volunteers to evaluate the accuracy of
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the system. While instrumented, the volunteers performed the target activities as part of a circuit

of activities. The collected data was annotated with the start and end times of each activity. The

annotated data set was divided into training and testing data sets. We have evaluated four classifiers

(Naive Bayes, ensembles of Naive Bayes classifiers, SVM, and ensembles of SVM classifiers)

on the collected data set. The classification accuracy computed using 10-fold cross-validation is

shown in Figure 3.8.

The components of ActiSense are partitioned into six domains. Four domains are respon-

sible for collecting acceleration readings, saving them to flash, and making predictions using an

SVM classifier. Three of the four domains are allocated for processing acceleration data from

motes (one per mote). An additional domain is allocated to process acceleration data from the

phone. The remaining two domains are responsible for recording data from the gyroscope and

magnetometer sensors to disk.

Figure 3.9 plots the user time and associated overhead for each domain. The domains

processing data from the Shimmer motes spent a similar amount of thread time – about 400 ms.

The bulk of the time is spent on feature extraction (275 ms) and classification (68 ms). In contrast,

the time to process the data collected from the phone’s accelerometer is twice as long. The increase

is reflected in a longer feature extraction (530 ms) and prediction (95 ms) times. An explanation

for this difference is that the sensors use different sampling rates: the Shimmer motes are sampled

at 50 Hz while the phones are sampled at 60 Hz. The overhead across all domains is about 13%.

Half the overhead can be attributed to operations on Android’s power locks. The higher overhead

of ActiSense (compared to that of SpeakerIdentifier) is due to smaller super-frames. ActiSense

was configured to produce activity predictions every second, which prevented the creation of large

superframes. Relaxing this constraint will reduce overhead, as the flow analysis will use larger
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Classifier Configuration Accuracy
Naive Bayes Phone + Shimmer 69.54%

Naive Bayes Ensemble Phone + Shimmer 76.55 %
SVM Shimmer 88.43%
SVM Phone 94.64%

SVM Ensemble Shimmer + Phone 96%

Figure 3.8. ActiSense: Accuracy for different configuration and learning algorithms.

Figure 3.9. ActiSense: Execution time and overheads.

super-frames.

AudioSense: AudioSense [6] evaluates the performance of hearing aids using electronic

surveys. Surveys may be user initiated or triggered at random intervals on average every 1.5 hours.

Concurrent with the delivery of surveys, AudioSense collects audio samples and GPS locations

to provide a context for the surveys. AudioSense caches data on the mobile phone and uploads

it when it may establish a 3G connection to our remote server. AudioSense has been deployed

for six months as part of a clinical study. The challenge of developing such a system is to ensure

reliability during weeklong deployments.

Figure 3.10 plots the reliability for each day of the trial. The reliability is computed as
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(b) Reliability per patient.

Figure 3.10. AudioSense: Reliability during a 6-month trial.

the fraction of data uploaded out of the data that was collected. As shown in the graph, there

were three instances when the reliability was zero during the trial. The cause of these outages

was the server being offline for several days due to power outages. The remainder of the outages

may be attributed to coverage gaps in the study area. Figure 3.10b shows the reliability for the 13

patients in the study included in the first six months of the study. Excluding the server outages,

the reliability of AudioSense exceeds 90%. This shows that our toolkit is sufficiently mature to

support long-term deployments.

3.5 Related Work

CSense uses a stream processing (SP) model to support the development of high-rate and

robust MSAs. This section places CSense in the context of prior work on SP systems and static

analysis of Java programs.

Stream Programming: SP models have been studied for decades (see [33] for a review).

SP systems can be broadly divided into synchronous and asynchronous systems. Synchronous sys-

tems operate on a shared clock (or clocks) that dictates when components are executed. The rigid

timing of synchronous systems is suitable for compiler optimizations. Compilers can determine
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execution rates, buffering requirements, and implement efficient scheduling [16, 33, 34]. Asyn-

chronous systems provide a more flexible concurrency model but sacrifice performance, as many

of the optimizations developed for synchronous systems do not translate these systems. CSense

adopts an asynchronous model to support workloads that include both concurrent operations and

asynchronous events.

The problem of efficiently supporting asynchronous SP has been previously considered in

systems such as Click [24], XStream [35], and WaveScript [34]. Click executes components in a

single thread but avoids creating inflexible fixed schedules. Click maintains a task queue to which

sources and queue components are added when they have data to process. A scheduler determines

the execution order of the tasks in the queue. The execution of the other type of components is

triggered by function calls that traverse the component graph in a depth-first manner. A similar

approach to component scheduling is used in XStream and WaveScript. As described in Section

3.2.3, CSense extends this mechanism by including support for multiple execution domains and

event handling. CSense further reduces overhead through a flow analysis that allows components

to be executed multiple times without involving the scheduler.

Memory management can have a significant performance impact on SP. XStream and

WaveScript use an abstract data structure called SigSegs to efficiently exchange frames between

components. SigSegs have some similarity to our flow analysis that optimizes the memory allo-

cation of frames. However, in contrast to SigSegs that operate solely at run-time, we optimize

memory management by leveraging type information and explicit knowledge of frame flows at

compile time. This optimization is feasible in CSense due to the additional information supplied

by developers.

Static analysis: There have been several efforts to detect concurrency problems in Java
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programs. For example, ESC/Java2 [36] and Checker Framework [37] are static analysis tools that

identify potential bugs such as data races. Unfortunately, these tools are neither sound nor com-

plete, they cannot fully address the problems of aliasing and limited visibility into the Java/Android

run-time environment. More promising results are obtained in domain specific languages. For ex-

ample, NesC [38] limits programmers to using only static memory and a restricted concurrency

model to facilitate static analysis. CSense adopts a similar strategy by explicitly capturing memory

operations as part of component graphs and limiting its concurrency model.

3.6 Conclusions

In this chapter, we presented CSense – a stream programming toolkit for developing high

rate and robust mobile sensing applications on Android. CSense provides developers a program-

ming model, a compiler, and a run-time environment. The programming model extends existing

SP models by incorporating a flexible concurrency model, a new type systems that fosters com-

ponent reuse, and incorporates memory operations as part of the SFG. We leverage this additional

information for both the compilation and static analysis. Our compiler incorporates a novel flow

analysis that optimizes frames exchange across components from an application-wide perspective.

Empirical results indicate that the flow analysis may reduce CPU utilization as much as 45%.

Moreover, static analysis techniques can prevent a range of programming errors including the in-

correct usage of the memory management system and data races. These techniques enabled us to

deliver a mobile sensing application that uploads data to a server with over 90% reliability. We

have identified that the memory management and concurrency limit the scalability of SP on An-

droid. We incorporate memory pools, frame conversion optimizations, custom synchronization

primitives, and careful integration with power locks to develop a scalable run-time environment.

Micro-benchmarks indicate that these optimizations increase the peak stream rate by as much as
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19 times over a baseline implementation that uses Java’s concurrency management.
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CHAPTER 4

STATIC MEMORY MANAGEMENT FOR MOBILE SENSING APPLICATIONS

4.1 Introduction

The advancing capabilities of smartphones have enabled the development of a new gen-

eration of mobile sensing applications such as those for context monitoring [39], user identifica-

tion [40], personal health [41], and environmental monitoring [42]. At the heart of these applica-

tions, there are sophisticated stream engines that must process high-rate sensor data efficiently.

Memory management is a key challenge in the development of stream engines. Previous

studies have shown that poor memory management leads to applications with large memory foot-

prints and excessive memory accesses that reduce stream processing rates [26, 35, 43]. A common

source of inefficiency is the fact that stream operations such as windowing, splitting, appending,

and downsampling have been traditionally implemented using memory copying. Avoiding copying

requires the memory management to support data sharing among the components of an application.

Data sharing typically reduces both memory usage and the number of memory accesses. However,

in order to improve the stream processing rate, we must ensure that data sharing does not reduce

cache locality or increase code complexity.

The problem of effective memory management for stream processing may be addressed

through dynamic or static memory management. Dynamic memory management relies on special-

ized data structures for manipulating streams. A representative example is the SigSeg [34, 35]. A

SigSeg is organized as a list of buffers containing data samples; each buffer may be shared be-

tween components using reference counters. While the SigSeg is a clever data structure, dynamic

memory management suffers from two intrinsic limitations. (1) Dynamic memory management
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can exploit only a fraction of data reuse opportunities as some run-time overhead may be intro-

duced for analyzing an application’s behavior. (2) The data structure unavoidably adds a level of

indirection in accessing streams of samples, which reduces the performance of stream engines.

Compile-time solutions may be used to determine memory allocations without introducing

run-time overhead. The key is to develop a static analysis technique that may precisely identify

location and temporal sharing opportunities. Unfortunately, static analysis of general purpose

languages such as C or Java quickly becomes imprecise because of complex control structures and

pointer aliasing. We avoid these difficulties by focusing on a domain-specific stream processing

language called StreamIt [16]. We show that it is feasible to leverage the constrained semantics

of stream programs to implement stream operations efficiently through static memory allocation.

Since StreamIt is a representative example of a synchronous data-flow (SDF) language, we expect

that the results presented in this chapterwill translate into other systems and languages based on

SDF models.

We propose Efficient Static Memory management for Streaming (ESMS) that addresses the

above challenges. In this chapter, we make the following contributions: (1) We develop a novel

static analysis that characterizes the global memory behavior of a complete stream application.

The static analysis can precisely identify the location and temporal reuse opportunities in most ap-

plications. The analysis is imprecise for a fraction of components whose control logic depends on

the input data. In these cases, we provide a conservative but safe approximation of the application’s

memory behavior. (2) We propose a novel layout algorithm that leverages the identified location

and temporal reuse opportunities along with the application’s structure to optimize the memory

layout. We incorporate code generation techniques that transform a stream program into efficient

C code that effectively uses the generated memory layouts. (3) The memory optimizations are
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implemented as a new compiler for the StreamIt language. We evaluate the memory optimization

on both Intel and ARM platforms using 14 benchmarks including three realistic mobile sensing

applications. We compare our compiler against the standard StreamIt compiler with and without

the cache optimization enabled [44]. We find that our optimizations reduce the memory footprint

up to 96% while matching or improving the performance of the StreamIt compiler with cache

optimizations enabled.

4.2 StreamIt Overview

Language Overview. Our work builds on the StreamIt programming language and compiler in-

frastructure (see [16] for a detailed description). The basic computation unit of StreamIt is a

filter that may interact with other components by consuming data from the input channel, per-

forming computations that may affect the state of the filter, and producing data on the output

channel. StreamIt defines three basic memory operations: pop, peek, and push. The peek reads

a sample at a given index in the input channel without consuming it, pop consumes a sample from

the input, and push appends an item to the output channel. The pop and push access a channel

sequentially while peek provides (limited) random access. Consistent with the SDF model, the

number of items peek-ed, pop-ed, or push-ed during an execution is fixed and known at compile

time. A filter has a work function that is executed each time the component is invoked. The work

function specifies the rates rpeek, rpop, and rpush for the peek, pop, and push instructions. A

component may include states that are initialized using an init function.

StreamIt programs are written by hierarchically composing filters using pipeline,

split-join, and feedback constructs into a Stream Flow Graph (SFG). The pipeline con-

struct composes filters in sequence by connecting their inputs and outputs. The split-join

construct distributes a stream to a parallel set of streams that are joined later. A split has a sin-
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gle input channel but multiple output channels. The split may either duplicate its input so that

each parallel stream works on the same data or distribute it in a round-robin fashion. The join

performs the opposite operation by taking data from multiple input channels and merging them

into a single output channel in a round-robin fashion. The programmer may specify the number of

elements to be produced by splitters and consumed by joiners during each invocation by providing

a set of weights. The feedback construct is used for specifying feedback loops.

Execution Model. The problem of scheduling SDF components has been widely explored [18,45,

46]. It is well understood that scheduling can have a significant impact on the program performance

and memory utilization. A key advantage of SDF models is that they may be executed according

to cyclo-static schedules. A cyclo-static schedule includes an initialization phase that is executed

once and a steady phase that is executed repeatedly forever. The scheduling ensures that a filter

is executed only if there is enough data on its input channel. In this chapter, we assume a fixed

schedule and do not consider the interaction between scheduling and memory optimization, which

we will investigate in future work. We adopt the single appearance schedules (SASs) in [46], where

a filter’s work function appears only once in the schedule to reduce the code size.

The StreamIt language is tailored for stream programming. StreamIt follows SDF and

adopts copy-by-value semantics and does not support pointers. These restrictions simplify the

static analysis of stream programs and facilitate reasoning about their memory behavior statically.

4.3 Design

ESMS builds on the properties of stream programs to optimize memory management. A

key property of SDF systems is that their components may be executed using a cyclo-static sched-

ule. Accordingly, the complete memory behavior of a program can be observed during an execu-

tion of the initialization phase followed by a single execution of the steady phase. This property
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is essential for providing a complete description of the memory behavior of the program. Fur-

thermore, we propose a novel static analysis that leverages the semantics of stream programs to

identify location and temporal sharing opportunities.

The layout algorithm uses the location and temporal sharing opportunities to allocate mem-

ory efficiently. The layout algorithm is based on two empirical insights regarding the memory op-

erations of stream programs: (1) data sharing is often captured explicitly and may be exploited to

reduce the memory footprint and number of memory accesses and (2) owing to the data flow struc-

ture, a filter may typically reuse the memory freed by its predecessor in the SFG. These insights

coupled with three heuristics for handling memory conflicts form the basis of our layout algorithm.

Code generation techniques are then employed to efficiently implement the derived layouts.

The subsequent sections detail the static analysis and layout algorithm. Empirical evidence

regarding the effectiveness of our techniques is included in Section 4.4.

4.3.1 Static Analysis

The goal of our static analysis is to provide a sound approximation of the memory oper-

ations of a stream program under all possible executions. The memory behavior of the program

is summarized as a hierarchical Memory Graph (MG)1. The top level of the graph is represented

by components. Each component has one or more ordered input and output elements that form a

fragment. Each element represents a sample that may be consumed or produced during the com-

ponent execution. The grouped component inputs and outputs form the middle hierarchy while the

elements constitute the bottom.

We distinguish two types of data reuse opportunities: location sharing and temporal shar-

1An example memory graph is shown in Figure 4.4.
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ing. Location sharing is captured by adding edges between elements to indicate when samples are

passed without modification either within a component or between components. A property of MG

is that the elements on any path can be stored at the same memory location, exposing location shar-

ing. Temporal sharing is modeled separately by associating a live range L with each element that

captures the time interval when an element is “live” given the fixed schedule. Obviously, elements

that have non-overlapping live ranges may be stored at the same memory location.

The construction of MG proceeds in two steps:

• Component Analysis: Abstract interpretation (AI) is used to analyze the code of each com-

ponent. The analysis constructs a fragment that captures the location and temporal sharing

of a single component during an invocation of its work function.

• Whole-program Simulation: The schedule is simulated to stitch the previously constructed

fragments and compose a MG that characterizes the entire application. The stitching process

involves scaling component fragments to account for multiple invocations during the sched-

ule, adjusting the live ranges of elements, and adding edges to capture data sharing between

components.

The separation of the static analysis into two parts is motivated by the need to minimize the

compile time. AI is significantly more expensive than the stitching process. Limiting the number

of invocations of AI to one per filter allows us to handle multiple invocations of components.

4.3.1.1 Component Analysis

In this subsection, we present a static analysis that identifies location and temporal sharing

during the component execution. Our analysis builds on AI initially developed by Cousot et al.

[47]. The abstract domain of program variables is the intervals which approximate their concrete
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values. The functions α and γ map concrete values to intervals and vice-versa. The symbols⊥ and

> represent the bottom (i.e., the empty set) and top (i.e., [−∞,+∞] interval) of the real interval

lattice. Aside from arithmetic operations, interval approximations may be defined over a broad

range of functions [48] including those supported by StreamIt. Additionally, we use operators t

and u to represent union and intersection of intervals respectively.

The work function of the component is represented as a control flow graph (CFG). The

CFG has distinguishable entry and exit nodes, junction nodes with exactly two predecessors,

branch nodes with a true successor and an optional false successor, and block nodes with one

successor and predecessor. The junction nodes may be either simple or loop junctions. A block

may contain multiple instructions, but we constrain each block to include a single peek, pop, or

push. We will use Ii and Ok to denote the ith input and kth output elements of the considered

component.

The state of a component may include local variables, global variables, and constant pa-

rameters known at compile time. The value of a global variable is maintained across component

invocations. Since the derived results must hold for any component execution, states and the values

of input elements are initialized to >. In contrast, local variables are set to ⊥ prior to their first

assignment. Before analyzing the work function, constants including the component parameters

are propagated.

The pseudocode for the analysis is included in figure 4.1. The line numbers included in this

section refer to this algorithm. The analysis extends the basic worklist algorithm, which updates

a mapping from CFG edges to data flow facts until no new facts are derived. The notation INv[n]

and OUTv[n] refers to the data flow facts available immediately before and after a node n regard-

ing variable v. Variables are interpreted over abstract intervals similar to the approach in [49].
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However, our approach differs in two important aspects. First, to reduce pessimism, loop junctions

are handled by unrolling loops rather than applying interval widening. We ensure termination by

imposing an upper bound on the number of unrollings and applying widening when this bound is

exceeded. The upper bound is set to the number of iterations if loop bounds are available or a large

constant otherwise. Second, we handle function calls in a context-sensitive manner. The remainder

of the discussion focuses on the unique aspects necessary for analyzing memory operations.

Temporal sharing. The analysis creates a fragment that includes rpeek input and rpush output

elements. We determine the live range of each element to identify temporal sharing opportunities.

At a high level, this requires determining when and which elements are referenced by a peek,

pop, and push.

To keep track of the order of memory accesses, we add memory counters (mc) to the

propagated data flow facts. The mc provides a time frame that captures the time when a memory

operation is performed relative to the beginning of the component’s execution. Themc of the entry

node is initialized to zero. A memory operation increments the mc of the previous block (lines 11,

17, and 22). MCs are combined using the maximum at junctions (line 36).

To determine which elements are referenced by the memory instructions we define two sets

– pop and push – that include the elements referenced by pop, peek, and push. The domain

of the two counters is the concrete intervals. The pop and push are initialized to zero at the entry

node and incremented after each block node that includes a pop (line 12) and push (line 23),

respectively. The values of the pop and push counters are merged using interval union (lines 37 –

38) to track all possible referenced elements over all execution paths.

The derived live range facts of an element e are summarized in an interval L[e]. L[e] is a

global variable maintained during the analysis. We initialize L[Ii] = [0, 0] since an input element
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Ii is live in the beginning of the component execution. In contrast, we set L[Ok] = ∅, since an

output element Ok becomes live when it is first referenced by a push. For pop, peek, and

push, the set elem contains the elements that are accessed by each instruction (lines 13, 18, and

24). The concretization function γ is used in the computation of elem to map an abstract interval

representing these access indexes (i.e., INpop andOUTpush) to concrete values. The live range L[e]

grows monotonically by extending its interval to the current mc (lines 14, 19, and 25).

Location sharing. The analysis can also identify location sharing opportunities. Location sharing

happens when a component reads an element Ii and passes it unmodified as an output element Ok.

Two constraints must be satisfied for location sharing: (L1) the element Ii must be passed as Ok

in all executions, (L2) no other element Ij (i 6= j) is passed to Ok in any execution. Next, we will

discuss how to determine whether these conditions hold.

Determining location sharing opportunities requires tracking how elements are passed from

the input to the output. Let x be a variable whose value is set as a result of a pop or peek.

Besides propagating facts regarding the value of x, our analysis also propagates the input element

referenced by the pop or peek as Γ[x]. The values of Γ[x] are propagated in assignments as long

as x is not modified. Assignments such as y = x are handled by setting Γ[y] = Γ[x] (line 31).

The analysis determines if the two location sharing constraints are satisfied during the in-

terpretation of push (x). The analysis determines whether the argument x is passed (Γ[x] 6= ∅)

or updated (Γ[x] = ∅) by inspecting Γ[x]. The analysis ensures that this property holds across all

paths by associating a variableA[Ok] with each output elementOk. A[Ok] is initialized to true and

set to false if there exists an execution where Ok is updated rather than passed. Condition (L1)

is satisfied for element Ok when A[Ok] is true. Additionally, we keep track of all potential passes

from input element Ii to output element Ok during all executions in variable P. Condition (L2) is
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Input: CFG cfg
Output: Fragment f(V, E, L)
Data: worklist : queue

L – live ranges
A – pass or update
Γ – elements referenced in pop or push
P – potential edges

1 worklist = {cfg.entry()}
2 OUT{mc,pop,push}[cfg.entry()] = 0
3 foreach e ∈ input do L[e] = [0, 0]
4 foreach e ∈ output do L[e] = ∅; A[e] = true;
5 P =∅
6 while worklist 6= ∅ do
7 remove n from worklist
8 OUTv [n] = INv [n] ∀v
9 switch n do

10 case [x = pop() — pop()] do
11 if n is x = pop() then OUTmc[n] = INmc[n] + 1
12 OUTpop[n] = INpop[n] + 1

// Live range computation
13 Let elem={ input[e] — e ∈ γ(INpop[n]) }
14 L[e] = L[e] t [INmc[n], INmc[n]] ∀ e ∈ elem

// Track location sharing
15 if n is x = pop() then OUTΓ[x] = elem
16 case x = peek(y) do
17 OUTmc[n] = INmc[n] + 1

// Live range computation
18 Let elem={ input[e] — e ∈ γ(INpop[n] + y) }
19 L[e] = L[e] t [INmc[n], INmc[n]] ∀ e ∈ elem

// Track location sharing
20 OUTΓ[x] = elem
21 case push (x) do
22 OUTmc[n] = INmc[n] + 1
23 OUTpush[n] = INpush[n] + 1

// Live range computation
24 Let elem={ output[e] — e ∈ γ(INpush[n]) }
25 L[e] = L[e] t [INmc[n], INmc[n]] ∀ e ∈ elem

// Track location sharing
26 A[e] = A[e] ∧(INΓ[x][n] 6= ∅) ∀e ∈ elem
27 P = P ∪{(e, f) | e ∈ INΓ[x][n] ∧ f ∈ elem }
28 case z = x ⊕ y do
29 OUTΓ[z][n] = ∅
30 case x = y do
31 OUTΓ[x][n] = OUTΓ[y][n]
32 case branch do
33 OUTT

v [n] = INv [n] ∀v, if condition is true/undetermined
34 OUTF

v [n] = INv [n] ∀v, if condition is false/undetermined
35 case simple junction do
36 OUTmc = maxp∈pred(n) OUTmc[p]

37 OUTpop[n] = tp∈pred(n)OUTpop[p]

38 OUTpush[n] = tp∈pred(n)OUTpush[p]

39 OUTΓ[x][n] = tp∈pred(n)OUTΓ[x][p] ∀ variables x
40 case loop junction do
41 unroll the loop using widening if necessary
42 end
43 add the descendants whose facts have changed to the worklist
44 end

Figure 4.1. Component analysis.
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pop push mc
a1,2 0 0 0
n2 L[I0] = [0, 0] t [0, 0] = [0, 0]

x = >
Γ[x] = {I0}

a2,3 1 0 1
a3,4 1 0 1
n4

a4,5 2 0 1
n5 L[O0] = ∅ t [1, 1] = [1, 1]

A[O0] = false
a5,8 2 1 2
a3,6 1 0 1
n6 L[I1] = [0, 1]

t1 = >
Γ[t1] = {I1}

a6,7 2 0 2
n7 L[O0] = ∅ t [2, 2] = [2, 2]

A[O0] = true
P = {I1, O0}

a7,8 2 1 3
n8 L[I0] = [0, 0]

L[I1] = [0, 1]
L[O0] = [1, 1] t [2, 2] = [1, 2]
A[O0]=false
P = {I1, O0}

a8,9 2 1 3
n9 L[I2] = [0, 0] t [3, 3] = [0, 3]

t2 = >
Γ[t2] = {I2}

a9,10 3 1 4
n10 L[O1] = ∅ t [4, 4] = [4, 4]

A[O1]=true
P = {(I1, O0), (I2, O1)}

a10,11 3 2 5

Entry

Exit

x = pop()

x == 0

pop()

push(0)

t1 =pop()

push(t1)

Join

t2 = pop()

push(t2)

1

2

3

6
4

5
7

8

9

10

Resulting fragment

I0 I1 I2

O0 O1

[0,0] [0,1] [0,3]

[1,2] [4,4]11

Figure 4.2. Abstract interpretation of a code fragment.

satisfied for an pair (Ii, Ok) if (Ii, Ok) ∈ P is the only edge. The edges that satisfy both conditions

are added as the final edges (E) of the fragment.

An example of AI on a CFG fragment is shown in Figure 4.2. The table shows the data

flow facts available on each arc before and after the interpretation of a node. Only the updated or

newly derived facts are shown in the table. Initially, the values of the mc, pop, and push are set to

zero. Interpreting the pop on node 2 updates the fact that I0 is live in the interval L[I0] = [0, 0].

Since the value of I0 is unknown during the analysis, x is set to > and Γ[x] is set to I0. The

truth-value of the condition at branch 3 cannot be determined, so the analysis will execute both

branches. The pop in node 4 simply indicates that I1 is not in use anymore and, as a result, no new

facts are derived. The interpretation of the push in node 5 results in increasing the push and mc
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counters. Additionally, L[O0] that was initially ∅ is updated to [1, 1]. The algorithm records that

O0 was updated rather than passed by settingA[O0] = false. I1 is saved in t1 in node 6 and passed

as O0 in node 7. Thus during the execution of node 7, the analysis checks for location sharing.

Since t1 = I1, the analysis sets A[O0] = true and adds (I1, O0) as a potential location share. The

pop and push in nodes 6 and 7 are handled similarly. The analysis handles join nodes by using

either the maximum, interval union, or “and” operator. There are two interesting cases. The live

ranges L[O0] are merged to be [1, 2] using the interval union. Similarly, A[O0] has different values

indicating that O0 was passed on one path but updated on the other. Thus, the combined value of

A[O0] is set to false using the “and” operator. The analysis continues producing the results shown

in the figure.

4.3.1.2 Whole-program analysis

The component analysis constructs fragments that describe the memory optimization op-

portunities during a single invocation of a component. The whole-program analysis stitches these

fragments to compose a MG that characterizes the memory operations of the entire program. We

remind the reader that a stream schedule is composed of an initialization phase executed once and

a steady phase that is executed repeatedly forever. To characterize the entire program it is sufficient

to simulate the initialization phase and a single execution of the steady phase.

The stitching algorithm considers the execution of components in the schedule order. Con-

sider the execution of a component that is invoked n times during the schedule. For each compo-

nent, we add |I| = rpeek + rpop × (n − 1) input elements and |O| = rpush × n elements in the

MG.

The stitching algorithm must relate the indexes of input/output elements in MG to those in

the memory fragment (F). The mapping must recognize that a component may access its input over
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overlapping windows and produce samples in overlapping windows. Accordingly, the memory

operations of Ii is the union of memory operations of input elements IFj such that Ii ∈ IMG→F (Ii):

IMG→F (Ii) = {IFj ≥ 0 | IFj = Ii − k × rpop k ∈ N}

Similarly, the memory operations of Ok are the same as the operations of OF
l such that:

OMG→F (Ok) = {OF
l |Ok = mod (OF

l , rpush)}

Location sharing opportunities are computed by iteratively considering each possible link

(Ii, Ok). A link (Ii, Ok) is added to MG if there exists a link (IFj , O
F
l ) in the fragment such that

IFj ∈ IMG→F (Ii) and OF
l ∈ OMG→F (Ok). The construction does not introduce location sharing

conflicts regardless of potentially overlapping output windows.

The next step in the construction of MG is to capture the exchange of data between compo-

nents. This process takes advantage of the hierarchical nature of the stream graph. The components

connected in a pipeline are adjacent in topological order and linked through their inputs and out-

puts. The split-join constructs are handled by adding split and join components that internally

implement either duplicate data or round-robin policies.

The live ranges included in the fragment are the time when each memory operation was

performed relative to the beginning of the component execution. A live range in MG is repre-

sented as a triple (phase, step,mc) where the phase is the phase of the schedule (0 for init, 1

for steady), step is a counter that is incremented after each component invocation, and mc is the

memory counter in the fragment. The interval union operator can be easily extended to operate

over triples. To account for window overlaps, the live ranges of an element Ii is set to equal⊔
IFj ∈IMG→F (Ii)

L[IFj ]. Additionally, we also need to account that some elements may be shared.
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An element e shares the same location with f if there is a path between them. The live range of e

is expanded to
⊔
f∈sharedMG(e) L[f ] to account for location sharing.

4.3.2 Memory Layout

The layout algorithm operates on a single-appearance schedule [46]. Generating a good

layout is necessary for reducing memory usage, improving performance by reducing memory ac-

cesses, ensuring good cache locality, and generating efficient code. We propose three heuristics

and our empirical evaluation shows they effectively balance these requirements. Our approach is

driven by two empirical insights into stream programs. (1) StreamIt and other data flow languages

include constructs such as split-joins that share and reorder samples. Traditionally, memory copy-

ing across channels are used to implement these constructs. We opt for the alternative of changing

the logical layout of samples without performing any copy operations. This leads to significant

reductions in both the memory size and number of accesses. Samples are reordered using round-

robin split-joins can often be accessed efficiently using linear iterators of the form base+ step× i.

Typically, step is a small constant leading to reasonable cache locality. (2) A filter operates on the

input provided by the previous component in the SFG. It is often possible for a filter to reuse the

memory allocated for the previous filter. This is because as a filter pops samples from the input,

the memory locations where the samples were located become available for reuse.

Prior work has considered different buffer management strategies for storing samples due

to sliding windows. StreamIt filters process their input in sliding windows by peeking more sam-

ples than rpop. The proposed techniques include modulation [44, 50] and copy-shift [44]. The

modulation strategy stores samples in a circular buffer and requires modulo operations for index-

ing. Copy-shift avoids potentially expensive modulo operations by shifting the remaining samples

of sliding windows in the buffer from the previous filter execution. When coupled with execution
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scaling, the copy-shift approach can significantly outperform modulation [44]. Execution scaling

works by scaling the number of times each component in a schedule is executed. This has the

effect of reducing the number of copy operations relative to the size of the input. Our memory

management approach uses the copy-shift buffer management.

We organize the memoryM as cells, each cell having an address and a size equal to the ma-

chine word (64 bits on considered platforms). The memory supports two operations: memappend

and meminsert. The memappend(w) operation allocates w words at the end of current mem-

ory allocation. The meminsert(addr, w) operation inserts w words at location addr, rein-

dexing the memory addresses to account for the insertion. Additionally, meminsert ensures that

the mapping between elements and cells is maintained after the insertion. A layout is defined as

a mapping Π : V → M that maps each element in MG to a memory location. We also maintain

the reverse mapping Φ : M → 2|V | from an address to a set of elements stored at the address. A

valid mapping ensures that for any memory location m, the intersection of the live ranges of the

elements in Φ(m) is empty. This is accomplished by inspecting the appropriate live ranges in MG.

The layout algorithm generates the memory layout by simulating the execution of a com-

ponent in scheduling order and constructing Π incrementally. The pseudocode is included in Al-

gorithm 4.3 and the line numbers included in this section refer to this algorithm. The input to the

algorithm is the MG and the SFG with appropriately defined successor and predecessor functions.

Components operate over windows of input or output elements. We define two operations for ma-

nipulating windows: flatten and window. The window(w, size, overlap) transforms a single

window into a group of windows that overlap by overlap elements with each window having size

elements. Conversely, flatten produces a single window from overlapped windows. If c is a

source, the algorithm creates a window of size rpush×n that is mapped to the next available mem-
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Input: MG(V, E, L) – memory graph
SFG - stream flow graph
R[c] – elements that are remainders of component c
store[c] – storage for the remainders of component c

Data: in[prev] – input windows from the prev component(s)
out[next] – output windows to the next component(s)

1 foreach (phase, n, c) in schedule.init do
2 if c is source then
3 out = newwindow(rpush[c]× n )
4 p = memappend (rpush[c]× n)
5 foreach i = 0 . . . n do Π[out(i)] = p(i)
6 else
7 switch c do
8 case duplicate-split do
9 in = flatten (pred(c).out[c])

10 foreach next∈ succ(c) do
11 out[next].append(in)
12 end
13 case round-robin-split do
14 in = flatten (pred(c).out[c])
15 S = vector of weights of the splitter
16 start = 0
17 for 0 . . . n do
18 foreach next∈ succ(c) do
19 out[next].append(in[start:start+S[next])
20 start = start + S[next]
21 end
22 end
23 case round-robin-join do
24 J = vector of weights of the joiner
25 next = succ (c)
26 foreach prev∈ pred(c) do start[prev] = 0
27 for 0 . . . n do
28 foreach prev∈ pred(c) do
29 w = prev.out[c])
30 out[next].append(w[start[prev]:start[prev]+J[prev]])
31 start[prev] = start[prev] + J[prev]
32 end
33 end
34 case filter do
35 windows = window(in, rpeek[c], rpop[c])
36 for e ∈ R[c] do
37 Φ[e] = store[c][e]
38 end
39 next = succ(c)
40 out = newwindow(rpush × n)

41 j = 0 // index of the output sample;
42 for w = 0. . . n do
43 U = sharedElements(windows[w])
44 for i∈ U \ R[c] do
45 shared = Φ[Π[i]]
46 hasConflict =

⋂
e∈shared L(e)

47 if hasConflict = ∅ then
48 Π[j] = Π[i];
49 j++;
50 else
51 ... handle conflicts using described heuristics ...
52 end
53 end
54 end
55 end
56 end
57 Procedure sharedElements(window)
58 U = {Ii — Ii ∈ window}
59 for Ii in window do
60 L = {Ii|(Ii, Ok) ∈ E}
61 for eo in L do
62 Π[eo] = Π[Ii]
63 U = U \{eo}
64 end
65 end
66 return U
67 end

Figure 4.3. Layout algorithm.

ory location (line 2). All other components will generate their layouts based on the windows of

the previous components in the SFG, the details depending on whether the component is a split,
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join, or a filter.

Split-joins are used to share and to reorder samples and their behavior is captured as edges

in MG. The first step in handling both splits and joins is to flatten the output window(s) from

the previous component(s) into a single window. If c is a duplicate splitter, the layout algorithm

will pass the input window to the each of its successors (lines 10 – 11). If c is a round-robin

splitter, the layout algorithm passes a subset of the elements in the input window to the output

window of each successor (lines 15 – 20). The number of elements passed to each successor is

part of the splitter specification in the program (stored in S). Round-robin joiners are handled in

an equivalent manner. The layout generates an output window in which elements from each one

of the predecessor components are appended (lines 24 – 31). Samples are inserted by considering

the predecessors in order and adding the programmer specified number of samples (stored in J).

Note that split and join operate in the logical space and do not require changing the mapping

between logical space and memory.

The layout process for a filter starts by flattening the output window of the previous com-

ponent and windowing the result according to the component’s peek and pop rates. This generates

n windows each containing rpeek samples that the algorithm will manipulate. The algorithm will

first consider each element Ii in the input window, determining if there is an edge (Ii, Ok) in MG,

where Ok is an output element. The existence of the edge indicates that Ii and Ok may share the

same memory location. Accordingly, we map Ok to Ii’s memory cell (i.e., Π[Ok] = Π[Ii]). These

operations are performed as part of sharedElements procedure in the pseudocode. Let U in-

clude the set of elements whose mapping has not been determined. The elements in U are updated

by the component during its execution. We consider three heuristics for laying out these con-

flicts: always-append(AA), append-on-conflict(AoC), and insert-in-place(IP). (1) The AA heuris-
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tic maps elements in U to a group of contiguous memory cells at the end of the current allocation.

This approach has the advantage of ensuring cache locality and simplifies the generated code. (2)

The AoC heuristic will first try to layout windows within the memory region allocated for the pre-

vious component. When this is not possible due to conflicts in the live ranges of variables, then the

window will be mapped to a contiguous portion of memory at the end of current allocation. We ex-

pect that this heuristic will reduce the size of memory allocation over the previous heuristic albeit

at the cost of increased code complexity and execution time. (3) The IP heuristic inserts a number

of memory cells at the location where a conflict is determined. This has the effect of allowing the

subsequent components to operate on a layout that maps their input elements to proximate memory

locations.

The layout algorithm must account for the fact that after the initialization phase of the

schedule and at the completion of each steady phase, components with rpeek > rpop will have input

elements that are used in subsequent executions. The remainders of a component c are stored in

R[c]. Consistent with the copy-shift strategy, such components are responsible for saving these

remainders at the completion of the initialization and steady phases. The remainders are loaded in

the beginning of the input window of a component prior to the beginning its execution. Remainders

are treated as a special case since their live ranges cover the entire phase, creating few opportunities

for temporal reuse. Accordingly, remainders are saved and loaded from special remainder stores.

Components that operate on shared buffers also have shared remainders. We optimize the loading

and storing of data from shared stores to avoid duplicate memory operations.

Figure 4.4 shows the memory graph generated and stream schedule for a bandpass fil-

ter. The figure also includes the physical layout generated using the AoC heuristic. In the

initialization phase, the algorithm starts by creating a window containing 3 elements that start
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I0 I1 I2 I3
LowPassFilter0

LowPassFilter0
O0 O1

FloatSource
O0 O1 O2 O3

I0 I1
FloatPrinter
I0 I1

I0 I1 I2 I3
Splitter

Splitter
O0 O1 O2 O3 O4 O5 O6 O7

I0 I1 I2 I3
Subtracter

Subtracter
O0 O1

I0 I1 I2 I3
LowPassFilter1

LowPassFilter1
O0 O1

I0 I1 I2 I3
Joiner

Joiner
O0 O1 O2 O3

Schedule
Init: (FloatSource,3) (Splitter,3)
(LowPassFilter0,1) (LowPassFilter1,1)
(Joiner,1) (Subtractor,1) (FloatPrinter,1)
Steady: (FloatSource,1) (Splitter,1)
(LowPassFilter0,1) (LowPassFilter1,1)
(Joiner,1) (Subtractor,1) (FloatPrinter,1)

Live ranges:
Element Start End

FloatSource:O0 (0, 0, 0) (0, 7, 3)
FloatSource:O1 (0, 1, 0) (1, 3, 3)
FloatSource:O2 (0, 2, 0) (1, 6, 1)
FloatSource:O3 (1, 0, 0) (1, 6, 2)

LowPassFilter0:O0 (0, 6, 4) (0, 9, 3)
LowPassFilter0:O1 (1, 2, 4) (1, 5, 3)
LowPassFilter1:O0 (0, 7, 4) (0, 9, 4)
LowPassFilter1:O1 (1, 3, 4) (1, 5, 4)

Subtractor:O0 (0, 9, 2) (0, 10, 0)
Subtractor:O1 (1, 5, 2) (1, 6, 0)

Physical layout:
MEM Initialization Steady

0 FloatSource:O0 FloatSource:O1

LowPass1:O0 LowPass1:O1

1 FloatSource:O1 FloatSource:O2

2 FloatSource:O2 FloatSource:O3

3 LowPass0:O0 LowPass0:O1

4 Subtractor:O0 Subtractor:O1

Remainder store: 2 cells

Figure 4.4. Bandpass filter: memory graph, stream schedule, and physical layout.

at MEM[0]. The duplicate splitter replicates this window to the input of the low pass filters.

LowPassFilter0 checks if it may reuse the cell allocated for LowPassFilter0:I0 to

store its LowPassFilter0:O0. Since the intersection of the live ranges [(0, 0, 0), (0, 7, 3)] and
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[(0, 6, 3), (0, 9, 3)] is not empty, this is not possible. This is expected since this sample is also an in-

put to LowPassFilter1. Accordingly, it is mapped to MEM[3]. LowPassFilter1 performs

a similar check to determine if the cell allocated for LowPassFilter1:I0 may be reused for

LowPassFilter1:O0. In this case where the intersection of the live ranges [(0, 0, 0), (0, 7, 3)]

and [(0, 7, 4), (0, 9, 4)] is empty, the cell may be reused. Accordingly, LowPassFilter1:O0

will reuse MEM[0]. In the steady phase, FloatSource:O3 is pushed and shifted to MEM[2]

because FloatSource:O1 and FloatSource:O2 will be loaded to MEM[0:1]. The follow-

ing filters produce samples at the locations as in the initialization phase, proving the mapping

allows to execute the steady schedule infinite often. The resulting layout is shown in Figure 4.4.

We note that a naive memory management approach that uses respective buffers for splits and joins

(as it is the case for the default StreamIt compiler) would require a total of 13 cells, one for each

output element. In contrast, our layout algorithm requires only (5+2) cells by taking advantage of

location and temporal sharing.

Code generation. The last step in ESMS is the generation of C code from a StreamIt program.

Most of the details of code generation are unsurprising. The only aspect that requires careful

handling is the generation of code for peek, pop, and push. When the memory is accessed

contiguously, generating code for memory instructions is straightforward. However, handling a

fragmented memory layout is challenging when memory operations are nested in loops. Our com-

piler implements two methods for handling this case. In most cases, we opt for splitting the loop

at the boundary of contiguous memory locations. Obviously, this trade-off increased code com-

plexity for execution time improvements. The alternative is to apply indirect addressing where

the memory instructions operate in the logical space and a static mapping between the logical and

physical space is concretized as a lookup table used at run-time. A tunable constant is used to
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Benchmark Description
AutoCor autocorrelation computation
Bitonic Sort bitonic sort
MergeSort merge sort
Repeater repeats odd samples M times
FIR/FIRCourse finite impose response filters
FMRadio FM radio with 10-way equalizer
FFT2/FFT3 FFT computation
MatrixMult/MatrixMultBlock matrix multiplication
BeepBeep [3] acoustic localization
MFCC computation of MFCC coefficients
Crowd [39] estimation of number of

co-located speakers

Table 4.1. Benchmark suite.

control between the two options.

4.4 Experiments

In the following, we show the benefits of the proposed static analysis and memory layout

algorithm. Benchmarks are made on a desktop machine that has a 3GHz Intel(R) Xeon(R) CPU

E5-1680 v2, and a Nexus 10 tablet that has a Samsung Exynos 5250 SoC with 1.7 GHz Dual-core

Cortex-A15. The Xeon has 32KB L1 instruction and data caches, 256K L2, and shared 25MB L3

caches. The ARM has 32KB L1 instruction and data caches, and a shared 1 MB L2 cache. The

system runs Android 5.1. Programs are compiled using the native development kit (NDK) r10d

that uses gcc 4.8. A wrapper Java application is generated to invoke the generated code. All

programs are compiled using the highest optimization level (i.e., -O3).

The suite of benchmarks consists of 14 stream applications (see Table 4.1). The majority

of the benchmarks were developed as part of the StreamIt project. In addition, we implemented

three mobile sensing applications using StreamIt: the BeepBeep app [3] performs sound-based

localization, the MFCC app implements the core of a speaker identification app (e.g, [40]), and the

Crowd app [39] estimates the number of co-located speakers.
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Figure 4.5. Data, code, and speedup improvements on Intel Core i5-3550.

Static Analysis. We have evaluated the pessimism of the static analysis proposed in Sec-

tion 4.3.1. The static analysis was able to precisely characterize the memory behaviors of all

benchmarks with the exception of the MergeSort benchmark. It includes nondeterminism since

the control flow depends on the input data. This shows that for a wide range of programs our

analysis can precisely characterize the complete memory behavior of a stream program. For the

MergeSort benchmark, the analysis derived a safe approximation of location and temporal sharing

opportunities. We note that even for these benchmarks, the nondeterminism is confined to a single

component and does not affect the others in the application.
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Intel Measurements. We have measured the impact of memory optimizations on three

dimensions: data size, code size, and speedup. We report both absolute and relative improvements

in these dimensions. The relative improvements are computed based on the performance of the

default StreamIt compiler (labeled StreamIt). We have also run the StreamIt in conjunction with

the cache optimization described in [44]. These results are reported as CacheOpt. The compiler

with cache optimizations failed to generate code for MFCC and Crowd applications because it ran

out of memory. The performance of the always-append, append-on-conflict, and insert-in-place

heuristics are denoted by labels AA, AoC, and IP respectively. The code and data size results were

obtained only on the Intel perform using the size utility. The tool reports both the code and data

sizes in multiples of a page. The speedup results are based on the CPU user time reported by the

time utility.

Figure 4.5a shows the data size with StreamIt as the baseline. The average reductions

on memory footprint of AA, AoC, and IP are 50KB, 55KB, and 98KB. These represent reductions

on data size between 45–96%. The AA heuristic provides the smallest reductions on data size since

it always appends rather than attempts to resolve memory conflicts. The AoC and IP heuristics

achieved comparable performance in terms of memory usage. In contrast, enabling the CacheOpt

increased memory consumption by an average of 627KB. This increase can be as large as 98% for

MergeSort or FFT2.

Figure 4.5b shows the code size with StreamIt as the baseline. The average code reduc-

tions for AA, AoC, and IP are 130KB, 143KB, 136KB. In relative terms, the average reductions

are 69%, 72%, and 77% respectively. The ESMS optimizations reduce the code size by not gen-

erating code for split-join constructs and other components that reorder (without modifying)

the input data. Nevertheless, even with these savings, there are cases when ESMS has larger code
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size than StreamIt. CacheOpt typically has a minimal impact on the code size. On average, it

adds 14KB to the code size of the considered benchmarks.

Figure 4.5c shows the speedup relative to StreamIt. The average speedups of AA, AoC,

and IP are 3, 3.1, and 3. In contrast the average speedup of CacheOpt is merely 1.07. All of

ESMS heuristics outperformed CacheOpt with the exception of the two FIR benchmarks on both

platforms because the FIR pipeline is long enough to cause instruction cache misses in one sched-

ule iteration and the CacheOpt performs better by reducing the cache miss rate with execution

scaling which is constrained by the data cache size. ESMS with reduced data size is expected to

support more execution scaling in the future. Otherwise, the reason for these significant perfor-

mance improvements is the fact that ESMS uses less memory access by effectively sharing data

across components. We validated that this was the case by using cachegrind to track the num-

ber of memory accesses (data not included due to limited space). Moreover, the smaller footprint

leads to a smaller working set that fits within the large cache of this platform. On the Intel plat-

form, ESMS managed to improve the stream processing throughput while significantly reducing

the memory consumption. The heuristics that handle conflicts either by inserting or appending

achieve more memory savings than AA. Resolving conflicts through insertion tends to achieve

more reductions on data size but slightly lower performance than appending.

ARM Measurements. We generate Android applications that include the compiled code as a

shared library. To quantify the impact of memory optimizations on Android applications, we

measure the maximum resident working set size (RSS), which includes the total memory allocation

at run-time for both the Android application and the shared library. Figure 4.6a shows the RSS

relative to the baseline StreamIt on ARM. The average reductions for AA, AoC, and IP are 274KB,

247KB, and 261KB respectively. In contrast, CacheOpt increased the buffer size by 347KB in
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Figure 4.6. RSS and speedup improvements for Samsung Exynos 5250.
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order to operate on larger buffers. This shows ESMS facilitates effective memory savings. Figure

4.6b shows the speedup on ARM. The average speedups for AA, AoC, and IP are 2.18, 2.03,

and 2.3, respectively. CacheOpt achieved a comparable speedup of 2.18. The standard deviation

for the speedup improvements for AA, AoC, IP, and CacheOpt were 2.12, 2.16, 2.3, and 2.95.

The lower standard deviation of AA indicates that it performed the best. ESMS achieves similar

performance but significantly reduces the memory footprints.

4.5 Related Work

The memory optimization problem is similar to the classical aggregate update [51] problem

in functional programming languages. The numerous solutions proposed to address this problem

can be broadly classified as either run-time or static approaches. Run-time approaches typically

rely on either garbage collection or reference counting. In contrast, static approaches require com-

piler analyses to determine live ranges of variables in order to ensure safe data sharing. Live range

information may be extracted either through heuristics [52] or abstract interpretation [53]. A dis-

tinguishing aspect of our analysis is that it takes advantage of stream properties to characterize

complete applications.

In [54], a greedy in-place reuse of memory allocations is proposed for the data flow model

of LabView. The heuristic approach chooses variables using a cost metric to merge and store

them in the same location. In contrast, our layout algorithm takes advantage of the structure of

the data flow for memory optimization. More recently, an annotation-based approach has been

proposed to address memory management in the context of data flow languages [55]. We note

that StreamIt includes explicit data sharing information as part of the split-join construct.

Moreover, we show that significant improvements in stream processing rates and reductions on

memory footprints may be achieved without requiring annotations.
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The problem of scheduling SDF graphs to optimize different metrics has been studied ex-

tensively [45,50]. The previous work of phased scheduling [46] shows a steady state SDF schedule

can be rearranged in phases to shorten the output latency compared with SASs which have only

one phase at the expense of increasing code size. Since our goal is to optimize memory usage and

performance, ESMS may support phased scheduling in the future.

On the other hand, several cache performance improvements were proposed including the

copy-shift buffering and execution scaling for StreamIt in [44], and cache-aware optimizations for

synchronous data flows [56] as part of the Ptolemy project [57]. In contrast with [44] that trades

space for performance, our approach improves cache locality by saving space while eliminating

unnecessary memory operations to improve the performance. In [50], the memory reuse is based

on overlaying channel buffers in terms of their live ranges while maintaining periodical modulo

access. Compiler optimizations were also considered to generate instructions to avoid the modulo

overhead selectively given the static schedule. From this perspective, our compiler optimizations

allow for more aggressively reuse and even remap non-contiguous memory accesses across filter

invocations at some cost of increasing code complexity.

In addition, the linear analysis in [58] is an effective alternative to improve the performance

by reducing the number of linear filters while saving memory usage accordingly. Instead, we con-

sider filters only in terms of general memory operations and are able to eliminate non-productive

filters such as split-joins or filters that reorder their input without modifications. In this sense, our

optimizations are not limited to linear filters but more general.

Memory management can have a significant performance impact on stream processing en-

gines. XStream [35] and WaveScript [34] use an abstract data structure called SigSeg to merge

and segment data streams efficiently. CSense [43] proposes several memory management tech-
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niques to optimize the exchange of frames between components. StreamFlex [59] is yet another

stream processing toolkit written in Java, aiming at avoiding the garbage collection overhead while

satisfying real-time constraints.

4.6 Conclusions

In this chapter, we presented – ESMS – a novel approach for optimizing the memory man-

agement of stream programs. Our approach leverages the unique properties of stream programs for

both static analysis and memory layout. We developed a novel static analysis technique that char-

acterizes the behavior of complete stream programs by identifying location and temporal sharing

opportunities. Our analysis scales to handle large stream programs by separating the components

analysis from the creation of memory graphs through stitching. An evaluation conducted on 14

benchmarks including three for mobile sensing applications reveals that the analysis is precise for

a majority of stream applications. Besides, sound approximations of the memory behavior are

provided for the other applications.

We developed a novel memory layout algorithm. The algorithm recognizes that stream

programs have significant opportunities for location sharing. In StreamIt, these opportunities are

often the result of constructing programs using pipeline and split-join constructs. Addi-

tionally, we observe that connected filters in a SFG may often operate on the same memory since

the live ranges of their buffers usually do not overlap. Obviously, this is not always possible. We

introduced three simple heuristics to handle conflicts when they arise during the memory layout

process. Our empirical evaluation indicates that ESMS may achieve significant memory savings.

On the Intel platform, these memory savings are coupled with improvements in stream processing

rates over StreamIt with cache optimizations. On the ARM platform, the stream processing im-

provements are comparable to those achieved by StreamIt with cache optimizations. These results
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show that ESMS is effective in developing efficient memory management for stream programs. In

the future, we plan to continue exploring compiler optimization techniques to further improve the

performance of stream processing engines for mobile sensing applications.
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CHAPTER 5

WORKLOAD SHAPING ENERGY OPTIMIZATIONS FOR MOBILE SENSING

5.1 Introduction

Mobile sensing applications (MSAs) are an emerging class of mobile applications (apps

henceforth) that make inferences based on sensor data to provide users with advanced features

and customization. For example, Moves uses motion sensors to recognize when a user is walking,

cycling, or running to create a fine-grained record of their physical activities [60]. Similarly, Socio-

phone uses microphones to track face-to-face interactions and identify close social relations [61].

Unfortunately, MSAs can significantly reduce the battery life of a mobile phone due to their con-

tinuous operation and use of power-hungry resources such as cellular radio, Wi-Fi, GPS, or micro-

phone. Developers must, therefore, implement complex power management (PM) techniques that

coordinate the use of hardware resources to minimize energy consumption.

In this chapter, we focus on workload shaping energy optimizations with predictable per-

formance — a class of optimizations that save energy by controlling the time when hardware

resources are used. Workload shaping energy optimizations build on two insights regarding the

workload of MSAs. First, today’s mobile platforms have powerful processors and I/O interfaces

that provide high peak performance at a significant energy cost. Unfortunately, MSAs typically

generate light workloads that use a phone’s hardware inefficiently [62, 63]. Second, most of the

operations performed by a MSA, including data collection, inference, and synchronization with

remote services, are delay tolerant. Accordingly, we can save significant energy by introducing

delays to increase the workload of the system artificially to allow the hardware to operate more

efficiently. However, adding delays can hinder the user experience. Thus, it is essential for the
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developer to use PM policies that coordinate when hardware resources are used to reduce energy

consumption under soft end-to-end deadlines.

A unique property of the considered class of energy optimizations is that they provide pre-

dictable performance. A PM policy provides predictable performance if its energy and the delay

can be estimated in a computationally efficient manner, from a few measurements, at compile

time. Energy optimizations that have predictable performance have several significant practical

advantages. A developer can explore a broad range of PM policies to understand the trade-off

between energy consumption and delay. This information allows a developer determine the best

energy-delay tradeoff for his app. Equally important, energy optimizations with predictable per-

formance foster an agile software development approach in which energy considerations are ad-

dressed throughout the development cycles. In fact, we advocate that the performance of a PM

policy should be estimated as part of the build process. Finally, we should provide developers with

templates of energy optimizations that can be instantiated using automated tools. The tools are

geared towards developers who have a limited knowledge of PM.

Manually implementing workload shaping energy optimizations is difficult. It amounts

to exposing the locations in the code where an app uses a hardware resource as synchronization

points. Then, a PM policy would dynamically determine when each thread of the app will block

or resume at each synchronization point. Reasoning about the safety of such policies is inherently

difficult, let alone estimating the delay or energy consumption of the app. Our insight is that these

challenges can be addressed by adopting stream programs as a high-level abstraction for power

management: a stream program describes a MSA as a graph of components whose execution is

coordinated by an explicit PM policy at run-time. We will show that MSAs written using this

approach have composable performance, i.e. the delay and energy consumption of the entire app
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can be estimated accurately from performance profiles of its components. This property provides

a foundation for writing PM policies that have predictable performance.

In this chapter, we introduce Gratis – a new paradigm for specifying, configuring, and

synthesizing workload shaping energy optimizations. Specifically, we make the following contri-

butions:

• We present a novel paradigm and coordination language for specifying PM policies that imple-

ment workload shaping energy optimizations. The policies control the execution of a component

based on the data frames in its input/output queues. A component can be triggered to execute

in a data-driven manner when the number of frames in the queues exceeds a threshold. Alterna-

tively, the execution can be triggered in a time-driven manner based on the time remaining until

the deadline of a frame expires. At run-time, a scheduler coordinates the execution of the app

according to a PM policy.

• We developed an app simulator that can estimate the energy and delays of an app accurately from

a few measurements of its constituent components. The proposed technique is computationally

efficient and provides accurate performance estimates even for apps with dynamic workloads.

We present techniques for synthesizing policy templates and for configuring their parameters.

The combination of these tools provides an automated solution for PM in MSAs.

We have evaluated Gratis by implementing two MSAs for speaker identification (SI) and

activity recognition (AR). We demonstrate the expressiveness of our coordination language by

implementing workload shaping optimization that combines batching, scheduled concurrency, and

adaptive sensing. Workload shaping policies can effectively reduce the energy consumption. For

example, the battery of a phone running the SI app lasts for only 7 hours when audio data is
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processed as soon as possible. In contrast, if the user is willing to tolerate a 60-second latency, the

battery life is extended to 19 hours, which is a 2.7 times improvement. Adaptive sensing, which

collects audio only when speech is detected, extends the battery life to 45 hours. The AR app shows

similar trends. We have extensively evaluated the accuracy of the app simulator under a wide range

of configurations. Our results show the average prediction errors for energy and delay are 7% and

15%, respectively. These results demonstrate the effectiveness of incorporating workload shaping

optimizations in MSAs automatically.

The remainder of the chapteris organized as follows. The problem formulation is presented

in Section 5.2. The design and prototype implementation of Gratis are detailed in Section 5.3. A

detailed experimental study of using Gratis to implement two realistic MSAs is included in Section

5.4. Conclusions are provided in Section 5.6.

5.2 Problem Formulation

Workload shaping energy optimizations save significant energy by adding delays to shape

the workload of a MSA. However, the amount of delay that may be added must be carefully

controlled to ensure that it does not negatively impact the user experience. Through an example,

we will illustrate workload shaping energy optimizations, introduce our PM specification language

informally, and discuss the challenges of estimating the performance of PM policies. We will

formalize these concepts in Section 5.3.

Consider a MSA that collects information about a user’s social interactions using speaker

identification techniques. A basic version of the Speaker Identification (SI) app would contin-

uously collect audio data, extract features from the collected data, and upload them to a cloud

service to determine the identity of the speakers (see Figure 5.1a). The app has a lax end-to-end

deadline (e.g., on the order of minutes) since it operates in the background.
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(a) The basic SI app collects audio data (audio), extracts features (feature extraction) from the
samples, and uploads (upload) them to a remote server and saves them locally (todisk). The numbers
indicate how many samples are produced/consumed by each component.
1: E = { deadline : 10 min, th1 : 2 }
2: available(audio):
3: execute(audio)
4: post(audio):
5: execute(feature extraction)
6: post(feature extraction):
7: if feature extraction.num output ≥ th1:
8: execute(upload)
9: execute(todisk)

(b) A PM policy that incorporates batching and scheduled concurrency.

available(audio)
pre(audio)

audio

feature extraction (fe)

upload

todisk

Audio

CPU

Net

Disk

available(audio)
pre(audio)

post(upload)

post(todisk)

post(audio)
pre(fe)

post(fe)

post(audio)
pre(fe)

post(fe)
pre(upload)
pre(to disk)

(c) Timeline of events generated using policy in Figure 5.1b with per component resource usage.

Figure 5.1. The basic version of the SI app that implements batching and scheduled concurrency.

Timing Semantics: An important consideration is how to capture timing in our system. A natural

approach is to incorporate timing by associating a timestamp with each data sample. When a com-

ponent executes, it consumes some samples from its input and produces some output samples. The
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output samples are timestamped with the minimum of the timestamps of the consumed samples.

The end-to-end latency is the maximum difference between the time when a sample was produced

until it was consumed. The introduction of delays will artificially increase the end-to-end latency.

The developer constrains the end-to-end latency and bounds the impact on the user experience by

specifying a soft end-to-end deadline. A policy is associated with an environment data structure

that stores the values of its parameters. The end-to-end deadline is specified by setting the value of

the deadline variable in the environment (see line 1 in Figure 5.1b).

A limitation of maintaining a timestamp for each sample is that it has significant overhead.

A more efficient approach, and the one used in Gratis , is to organize samples into frames that

contain multiple samples and maintain a single timestamp per frame. This approach is similar to

the SigSeg data structure used in XStream [35] and WaveScript [34].

Workload Shaping Energy Optimizations: Workload shaping energy optimizations are a broad

class of optimizations that include batching, scheduled concurrency, and adaptive sensing. Batch-

ing saves energy by having power-hungry resources process multiple frames in a single activation

to minimize the usage time and offset startup and shutdown costs. In our example, the network

interface dominates the energy consumption of the app. Thus, significant energy savings may be

achieved by buffering the frames containing the extracted audio features and uploading them in

a single activation of the network interface. We may save additional energy by controlling the

concurrency of the app. For example, it is possible to overlap the feature extraction and network

upload. The net effect of this optimization is that it consolidates periods of activity and sleep al-

lowing the device to exploit deeper sleep states. Another approach to saving energy is adaptive

sensing (see Figure 5.3a). The app can use voice activity detection (vad) to determine whether

someone is speaking. If someone is speaking, the app should remain active to monitor the ongoing
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conversation. Otherwise, the app should sleep for a while to save energy. An app may use any

combination of the above optimizations.

In the following, we introduce informally a PM policy that combines batching and sched-

uled concurrency (see Figure 5.1b). Gratis executes the PM policy in an event-driven man-

ner. Figure 5.1c shows a timeline of the events that are generated when components are exe-

cuted, and the hardware resources used by each component. When the Android framework reads

256 audio samples, Gratis inserts the frame containing the samples in the input queue of the

audio component and calls the available(audio) handler. The available(audio)

handler triggers the execution of the audio component. When its execution is completed, the

post(audio) handler starts the execution of the feature extraction component. A typ-

ical pattern in Gratis policies is to trigger the execution of descendant components to be exe-

cuted in a post() handler. This pattern occurs when components are executed sequentially. The

post(feature extraction) handler has two important features. First, the execution of

upload and todisk is guarded by an if-statement. The consequent instructions are executed

only when the number of frames in the output queue of the feature extraction component

exceeds th1 = 2. By configuring th1, we can control the batching for the network (used by the

upload component) and disk (used by todisk component). Second, the upload and todisk

are scheduled to start concurrently. It is important to note that Gratis provides only coarse-grained

control over resource usage: Gratis only controls when a thread becomes ready to be scheduled

and not the precise interleaving of the threads. The operating system schedules the threads, sends

packets, and stores data to disk. Our experiments show that this approach is sufficient to control

the energy-delay tradeoff in MSAs.

Predictable Performance: The unique property of the considered energy optimizations is that
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they provide predictable performance. It is very difficult to reason about the impact a PM policy

has on an Android app in general since neither the dependencies between components nor the con-

currency of the app can be easily analyzed from Java code. In contrast to generic Android apps, a

unique property of Gratis apps is that they have composable performance: the overall performance

of the app can be determined from the energy and delay profiles of its components. We can ensure

this property by building on three key insights: (1) The dependencies between the components

and the amount of data produced and consumed by a component are captured explicitly in the

stream program. (2) The PM policy coordinates when each component starts its execution explic-

itly. (3) MSAs execute continuously in the background suffering minimal interference from other

apps [64].

Gratis takes advantage of these properties to estimate the energy and delay of an app of-

fline with minimal computational overhead. We build on the following intuition. Since a PM

policy controls concurrency explicitly, we can determine for any time the set of components that

execute concurrently. We enforce at compile-time that a component uses a single hardware re-

source. Therefore, we can determine the set of components that use each hardware resource. If

some components use the same hardware resource, they should use that resource in a fair manner.

The Linux scheduler enforces fair resource usage among competing threads. If components use

different hardware resources, they can be executed concurrently. These rules can be employed

to build an event-driven simulator that estimates the energy and delay based on the deterministic

sequence of events generated by the PM policy (such as the sequence of events shown in Figure

5.1c).
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5.3 Design

Gratis provides an intuitive and practical approach to specifying, evaluating, configuring,

and synthesizing workload shaping energy optimizations. Our approach uses stream programs as

a high-level abstraction for PM. Stream programs have the benefit of explicitly capturing produc-

tion/consumption rates of each component as well as their dependencies. We have developed a

novel coordination language to specify a broad range of workload shaping energy optimizations

as detailed in Section 5.3.1. Gratis apps are written in the StreamIt programming language [16]

that we extended to support I/O operations such as reading sensor data and send/receive packets.

A source-to-source compiler transforms the StreamIt code into an Android service. The execution

of the app is managed by a scheduler that enforces the PM policy at run-time.

Gratis is designed to support the agile software development methodology where energy

concerns are addressed throughout development cycles (see Figure 5.2). As part of the build pro-

cess, the energy and delay of the applied PM policy are evaluated using an app simulator. The app

simulator estimates the energy and end-to-end delay of an app based on the performance profile of

each component. Gratis supports an incremental development process. A change to a component

is localized and requires regenerating the energy and delay profile of only that component. The app

simulator is described in Section 5.3.2. One of the key challenges of writing PM policies is con-

figuring its parameters to reduce energy consumption while meeting the user-specified deadlines.

We have developed tools for configuring and synthesizing PM templates1 as described in Section

5.3.3.

1A PM template is a policy that does not include concrete values for its parameters.

87



App 
stream spec.

Component 
profiler

Trace 
instrumenter 

Execution 
traces

App 
simulator

Policy 
optimizer

Policy 
template

Component 
profiles

App 
performance

Figure 5.2. Gratis policy evaluation (black solid lines) and configuration (dotted red lines). The
App simulator determines the performance of an app based on the stream specification, the energy
and delay profiles of its components, and a set of execution traces even with dynamic workloads.
The Policy optimizer determines the values of the policy parameters.

5.3.1 Gratis Programming Model

The Gratis programming model provides support to express MSAs as stream programs and

control their behavior using a PM policy. Next, we formalize both aspects of the programming

model.

5.3.1.1 Mobile Sensing Apps as Stream Programs

An app is structured as a graph of components2 that are connected using FIFO queues. A

component is the basic unit of a stream program. During its execution, a component reads frames

from its input queue, performs computations based on the read data along with its internal states,

and produces frames inserted into the output queue. A traditional synchronous data flow model

(SDF) requires that a component produces and consumes the same number of frames in all its

executions [12]. Gratis allows components produce and consume a variable amount of data.

The key novelty of Gratis and the aspect where our work departs from SDF is its model of

2In StreamIt terminology, a component is called a filter. In this chapter, we opt for the more general term
of component since the proposed PM methodology readily extends to other stream programming systems.
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computation (MoC). A traditional dataflow system assumes that input data is always available to be

processed and the system should process the data as soon as possible. Therefore, in such systems,

the primary concern is to manage the CPU efficiently to maximize the overall throughput. In

sharp contrast, Gratis introduces delays to create workloads that may be processed more efficiently.

Additionally, Gratis coordinates multiple hardware resources to achieve the desired energy-delay

tradeoff. The execution of a Gratis app is controlled by an explicit PM policy that determines when

each component runs.

5.3.1.2 Policy Specification

The policy specification language is built on four constructs: events, event handlers,

guarded commands, and an execution environment.

Events and Handlers: Gratis may generate and handle three types of events: data avail-

able, execution, and timeout. The app’s scheduler registers to be notified when data is available

either from a sensor or a socket. The scheduler identifies the components that are interested in

receiving this data, inserts it in their input queues, and calls their available() handlers. The

available event is the only event triggered externally by the underlying Android framework.

The execution and timeout events are generated internally by Gratis. Gratis generates a pre(A)

event before starting the execution of a component A and a post(A) event after completing A’s

execution. The timeout events are generated when the minimum slack of the frames in a queue

falls below a configured threshold.

Commands: The logic of a PM policy is implemented using guarded commands.

The event handler contains a sequence of guarded commands. Gratis has two commands:

unsubscribe and execute. A source component subscribes to receive data from sensors

or a socket during its initialization. The unsubscribe(A, d) command stops the reception of
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these events by A for d seconds. This allows the device to sleep. The execute(A) command

triggers the execution of A when there are sufficient frames in A’s input queue to execute at least

once. After A starts executing, it may execute multiple times until the number of frames in its input

is less than A’s consumption rate. The execute(A) command is idempotent, i.e., if A is already

executing, the command has no effect.

Guards: The guards are boolean expressions that involve properties computed based on the

states of a component’s queues. Gratis exposes the number of frames in the input and output queues

as num input and num output. Additionally, Gratis also exposes the minimum of the slack

for the data frames in the input and output queues as input slack and output slack. The

value of the four properties can be computed efficiently by updating them as frames are inserted or

removed from a queue. We limit the complexity of the guard conditions since the PM policy must

be sufficiently lightweight to execute efficiently at run-time.

The execution of a component may be triggered in a data-driven manner when the number

of frames exceeds a threshold. Alternatively, the execution of a component may be triggered in a

time-driven manner when the minimum slack falls below a threshold. This case is handled using

the timeout event handler input timeout(A, t) when the value of input slack of A falls

below t seconds. The event handler output timeout(A, t) can be used in a similar fashion.

Environment: The app interacts with the PM policy through its execution environment.

The execution environment is a dictionary that maintains the policy parameters. The policy pa-

rameters can be used as part of the guarded commands. By default, the dictionary includes the

deadline variable, which specifies the end-to-end deadline. We provide a simple interface to allow

the values of the variables to be read and modified from the StreamIt code.

Optimization: A naive approach to implementing PM policies is to have each component
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(a) The app collects audio data (audio), determines whether the audio includes speech (vad), extracts
features (feature extraction) from the samples that include speech, and uploads (upload) to a
remote server and saves them locally (todisk). A “*” indicates that the rates are variable.
1: E = { deadline : 10 min, th1 : 2, th2 : 30 sec,

th3 : 1024, sleep duration : 10 sec }
2: available(audio):
3: execute(audio)
4: post(audio):
5: execute(vad)
6: post(vad):
7: unsubscribe(audio, sleep duration)
8: if vad.num output ≥ th1:
9: execute(feature extraction)
10: input timeout(feature extraction, th2):
11: execute(feature extraction)
12: post(feature extraction):
13: if feature extraction.num output ≥ th3:
14: execute(upload)
15: execute(todisk)

(b) A PM policy that incorporates batching, scheduled concurrency, and adaptive sensing optimizations.

Figure 5.3. The advanced version of the SI app that implements batching, scheduled concurrency,
and adaptive sensing.

operate in a different thread. This method would incur significant overhead since the app would

include many threads whose execution must be synchronized. Additionally, configuring the param-

eters of these policies would be remarkably time-consuming because of a large parameter space

to explore and configure. To address these issues, we partition the app into domains such that all

components that pertain to a domain use the same hardware resource. The components partitioned

into the same domain are executed in the same thread. This constraint ensures that we can control
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the hardware resources by starting/stopping the domains. In practice, this approach reduces the

complexity of writing and configuring PM policies significantly. For example, the SI app evalu-

ated in Section 5.4 has 16 types of component that are instantiated in a stream program that has

1804 components. However, the app has only four domains whose behavior must be coordinated

using a PM policy and significantly few parameters that must be configured.

Example: Lets us consider the advanced version of SI that uses adaptive sensing (see

Figure 5.3a). One of the challenges to supporting adaptive sensing in Gratis is that it introduces

workload dynamics. A vad execution may generate either a frame containing speech data or

no data. When the workload is dynamic, it is unclear what is the best strategy to configure the

policy parameters. We may use small values for the th1 and th3 that control batching to ensure

that even when the vad generates little data, the app will process it. However, this may not

be energy efficient. Increasing th1 and th3 shall improve energy efficiency but could also cause

longer processing delay. Deadlines may be missed if the vad does not produce sufficient data to

increase the number of frames in the queues of vad and feature extraction components

beyond th1 and th3 respectively.

A better approach to handling this situation is to use a timeout handler. The timeout

handler can be used to trigger the execution of the app based when the slack falls below a threshold.

In our example, the execution is triggered when the minimum slack of the frames in the input queue

of feature extraction falls below th2 = 30 sec. The policy shows how our coordination

language can be used to express a policy that combines batching, scheduled concurrency, and

adaptive sensing.
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5.3.2 Evaluating Power Management Policies

An important feature of the considered energy optimizations is that they have predictable

performance. We are interested in developing techniques that assess the performance of a policy in

a computationally efficient manner using a small number of measurements. Our solution involves

two steps: (1) the domain profiler constructs a performance profile for each domain and (2) the

app simulator estimates the overall performance of the app based on the performance profiles

and a set of traces. The set of traces is used to simulate dynamic apps and capture the timing of

activity events. This information is sufficient to replay the behavior of an app deterministically.

Additionally, we assume that the MSA works in the background with minimal interference from

other apps. Large-scale user studies support this observation [64].

Domain Profiler: To create accurate performance profiles, we must address the following

challenges: hardware resources have different energy/delay characteristics, and the resource usage

of a domain may depend on its input. We address these challenges by performing measurements

in which we control three parameters: batching, interim time, and data content. The batching

parameter controls the amount of data for a domain to execute one time. The interim time controls

the time between two consecutive batch executions. The values of each input must be selected

carefully when profiling dynamic domains. The compiler generates code that tracks the execution

time for a domain. We measure the energy consumed using a power meter, though software-based

solutions are also possible (e.g., [8, 65, 66]).

The delay of components typically scales linearly with the workload regardless of

the type of hardware resource used. In contrast, the energy consumed by a domain may

scale linearly or non-linearly with the workload. For example, the energy consumed by the

feature extraction domain, which uses the CPU, scales linearly with the workload (see
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Figure 5.4. Energy consumption for a subset of domains of the SI app evaluated in Section 5.4.

Figure 5.4b). For domains that use linear-scaling resources, it is sufficient to profile them with

different batch sizes using a fixed interim value. Figure 5.4b shows that changes in the interim

have little impact on the energy consumed by the feature extraction component. Network

interfaces (e.g., Wi-Fi or cellular) are examples of hardware resources whose energy consumption

scales non-linearly with the workload. For domains that use non-linear-scaling resources, we pro-

file them with different batching as well as different interim values. The reason why energy scales

non-linearly is because the hardware resource remains in a high-power state for a while after its last

usage [65]. For example, the energy consumed by upload varies significantly with the interim
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time as shown in Figure 5.4c. However, for a fixed interim, the energy consumed by upload can

be approximated by a function that scales linearly with the workload.

The domains of a stream program may be either static or dynamic. The resources usage of

a static domain depends only on the number of frames its processes and is independent of its input

values. For example, computing audio features or uploading them introduce similar resource usage

regardless of the values of the samples in frames. Empirical studies have shown that a majority of

stream programs are composed of only static components. Additionally, even in stream programs

that are dynamic, the majority of their components are static [10, 67]. The performance of static

domains can be evaluated using dummy data.

The input used to profile dynamic domains must be carefully selected to obtain an accurate

profile. A straight-forward approach is to generate the set of potential inputs based on the available

execution traces. While this is possible in principle, the set of possible inputs is too large to meet

our requirement of using a small number of measurements to generate a profile. An approach to

solving this problem is to compute the resource utilization of the domain for each element in the

input space. Since each domain uses a single resource, the resource utilization is a scalar. Its value

can be estimated by simulating the StreamIt code of that domain with the considered input. The

advantage of this approach is that it projects the input space onto a space of manageable size. For

example, the only dynamic domain in the SI app is the domain that includes the audio and the

vad components. In this case, the input space collapses into two clusters: a cluster where for the

case when vad detects speech and the other for when it does not detect speech3. In the general

3In the case of the SI app, the domain has similar performance regardless of whether speech is detected
or not. This is because the vad is lightweight, introducing little processing overhead. The benefit of using
adaptive sensing is that for a sample that does not contains speech, SI does not extract features or upload
them.
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case, clustering algorithms may be used to further partition the input space when its size is large.

Accordingly, when profiling a dynamic domain, we perform a set of measurements for each input

cluster.

As part of the app simulation, we must evaluate the execution time and energy consumption

of domains for configurations for which we do not have direct measurements. Consider the case

when the simulator wants to estimate the energy consumption of a component given the state of

its the input queue and the time from the previous invocation of the domains. We first compute

the resource utilization for each frame in the input queue to determine the most frequent input

cluster. We will use the performance measurements associated with the most frequent cluster

to estimate the energy consumption. For each cluster, there are performance measurements for

different batch and interims values. The time from the previous invocation is used as the interim

in the performance profile. Referring to Figure 5.4c, when the is interim i = 620, we generate a

dataset that approximates the behavior of the system at this interim based on the data collected for

interims 512 and 1024 using linear interpolation. Then, the energy is estimated by fitting a linear

function and evaluated given the number of frames in the component’s queue.

App Simulator: The performance of the app is determined by simulating it in an event-

driven manner according to its PM policy (see Figure 5.5). The input to the simulator is the

trace of activity events that are initially loaded into the queue of the simulator. The simulator

estimates the delay via the ∆ data structure. In response to an event, the simulator will call the

policy handler to execute the instructions associated with that event in the policy. If the

guard of the instruction holds, a pre execution event will be inserted in the queue to be processed

next. It is easy to ascertain whether the guard is true since guards are simple boolean expressions

involving properties associated with the queues of a component. The pre(d) event indicates that
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time = 0
queue = the trace of available events and the associated data
ready = a mapping from hardware resources to domains that use that resource and are ready to run
∆(d, data, num frames) = the latency profile for domain d and input data
while time < sim time do

(time, event, data) = queue.pop()
switch event do

case sample: do
policy handler(time, event, data, queue)

end
case pre(d): do

policy handler(time, event, data, queue)
if d.num input ≥ d.min input then

ready[d.resource()].append(d)
d.duration = ∆(d, d.input, d.num input)
d.data = data

end
end
case post(d): do

policy handler(time, event, data, queue)
end

end
sim execution(ready, time, queue.peek().time, queue)

end

Procedure policy handler(time, event, data, queue)
// Execute the instructions of the handler associated with the event

1 for instr in handler(event) do
2 if instr.guard() then
3 queue.schedule(time, pre(instr.target), data)
4 end
5 end

Procedure sim execution(ready, time, next event, queue)
// Execute the domains that are ready such that domains using different resources

run independently and those sharing resources use them fairly
6 tick = 5 ms
7 new event = False
8 while (time ≤ next event) and (new event = False) do
9 for resource in ready do

10 d = ready[resource].next domain()
11 d.duration -= tick
12 d.num input -= d.input(d.data)
13 d.num output += d.output(d.data)
14 if domain.duration ≤ 0 then
15 new event = True
16 ready.remove(d)
17 queue.schedule(time, post(finished), None)
18 end
19 end
20 time = time + tick
21 end

Figure 5.5. Pseudo-code for the app simulator whose output is used to assess the energy consump-
tion and end-to-end delay.

domain d may be executed when there is sufficient data in its queue for at least one execution. If

this is the case, the domain will be added to the ready data structure.

The ready data structure is a dictionary that maintains a mapping from hardware resources
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Figure 5.6. Simulation of three domains. Domain 1 and 2 use the CPU and have delays of 10 and
20, respectively. Domain 3 uses the network. Domains 1-2 and domain 3 execute in parallel since
they use different hardware resources. Domains 1 and 2 use the CPU fairly.

to a list of domains that are in execution. The core of the simulator is the sim execution func-

tion that simulates the execution of the ready domains. The function executes the ready domains

either until one is finished or until the time when the next event in the app will occur (provided

as the next event argument). Domains that use different resources are executed concurrently. In

contrast, domains that use the same resource must share it in a fair manner. This is accomplished

by cycling through the domains that are ready for a given resource using the next domain func-

tion of the ready data structure. The execution of the domains in a fair manner approximates the

behavior of the Linux kernel that implements a form of weighted fair queueing [68]. The result

of the simulation is a timeline of when each domain starts and finishes executing. The energy

consumption is evaluated at the completion of the simulation using the generated timeline.

Example: To clarify the behavior of the simulator, consider the case when two domains,

Domain 1 and Domain 2, require the CPU for 10 ms and 15 ms respectively. An additional domain,

Domain 3, requires the network for 7 ms (see Figure 5.6). Since the network and the CPU resources

are independent, the execution of the Domain 1 along with Domain 2, and Domain 3 is concurrent.

As a result, Domain 3 finishes after 7ms. In contrast, Domain 1 and Domain 2 uses the same
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resource. Accordingly, they must alternate using the CPU to share the CPU fairly. The Domain 1

and Domain 2 share the CPU for 15 ms until Domain 1 finishes executing. Domain 2 continues to

execute for another 10 ms until it finishes. Technically, Domain 3 execution still uses the CPU but

the time is relatively shorter than CPU domains (< 5 ms). The actual network transfer may happen

later with some delay after Domain 3 completes its execution. Therefore, the execution of Domain

3 essentially makes I/O requests to the OS. We ignore the tiny amount of CPU sharing to simplify

the simulation while still capturing precise execution interims.

5.3.3 Configuring and Synthesizing PM Templates

The coordination language that we have developed can express a broad range of workload

shaping energy optimizations. However, it does not address the problem of configuring the pa-

rameters of a PM policy. The policy parameters have a significant impact on the performance of

an app and determines the amount of energy that may be saved. To overcome this challenge, we

have developed a tool for automatically configuring a PM template. Moreover, we observed that

PM templates have a common structure despite different scheduled concurrency. Based on this

observation, we built a tool that automatically synthesizes PM templates. By combining the policy

synthesis and configuration tools, we provide developers with an automated mechanism for PM.

Policy Configuration: The input to the configuration tool is a PM template implementing

some scheduled concurrency with guards and timeouts as free variables to configure4. The config-

uration tool works as follows. We start by analyzing the template and classifying its parameters as

controlling either domain batching or queue timeouts. A batching parameter controls the threshold

in the number of frames for a domain to start execution. We can identify the batching parameters

4The PM policies in Figures 5.1b and 5.3b can be transformed into templates by removing the associated
environment E that specifies the policy parameter values.
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by inspecting the guards of the execute commands. A timeout parameter controls when a do-

main is executed in a time-driven manner. Timeout parameters are essential for handling the case

when the workload is dynamic. We can identify the timeout parameters by inspecting the second

argument of the timeout handler.

The overall strategy to configure the template parameters is to first configure the batching

parameters and then the timeout values. We have developed two configuration approaches that

build on grid search and gradient descent respectively. The grid search exhaustively iterates over

all possible batching configurations using a grid of possible values for each batch parameter. As

we consider each configuration, we maintain the solution that provides the minimum energy con-

sumption and meets the end-to-end deadline. For each batching configuration, we determine its

energy consumption and the maximum end-to-end latency using the app simulator. If the max-

imum end-to-end latency of the configuration is within the end-to-end deadline and the energy

consumption is better, we update the best solution with this configuration. If the maximum end-to-

end latency exceeds the deadline, it may be possible to reduce the latency of the configuration by

tuning the timeout parameters. We proceed with this step if the considered configuration has better

energy consumption than the current best solution. We iteratively decrease the timeout parameters

of the template until it either meets the deadline or its energy consumption becomes worse than the

current best solution.

The grid search is usually computationally feasible for apps that have a few domains (as

those described in Section 5.4). This is possible because the app simulator, which is invoked to

evaluate the performance of each configuration, is highly scalable as shown in Section 5.4.5. In

addition, the grid search can mostly evaluate multiple configurations in parallel. We ensure that

the updates of the best solution are atomic.
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Nonetheless, a gradient descent based search is more computationally efficient despite po-

tentially suboptimal solutions due to local minima. The gradient descent search works by initially

setting the batching parameters to the minima with the fixed concurrency. Then, we evaluate the

impact of increasing each batching parameter by a fixed amount. Note that these operations can

be done in parallel. Similar to the grid search method, we attempt to reduce the latency of the

considered configurations if they exceed the deadline. In the next iteration, we select the config-

uration that provides the best energy consumption w.r.t. the end-to-end deadline. We repeat the

process until there is no more improvement in energy consumption. After the batching and timeout

parameters are determined, the other scheduled concurrencies are evaluated for the most energy

saving one.

Policy Synthesis: After writing several PM policies, we have observed that the PM tem-

plates have a regular structure in spite of different scheduled concurrency. A domain in the stream

program triggers the execution of one or more of its descendants when number of frames in its

queue exceeds a threshold. The execution of these domains could either be sequential or in paral-

lel. Generating the PM commands to execute domains sequentially or in parallel is straightforward.

A timeout handler added to each component may trigger its execution when the slack falls below

a threshold. Building on these heuristics, we have developed a tool that can automatically syn-

thesize PM templates for a MSA. The parameters of the template are configured using the policy

configuration tool.

5.3.4 Prototype Implementation

We have developed a source-to-source compiler that transforms a StreamIt program into an

Android service that runs in the background. The result of the compilation process is a complete

Android project. This project can be referenced from Android apps that typically provide a user
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interface for controlling the service. The compiler translates each component type in a StreamIt

program into a Java class. The compiler also generates the code necessary for the Android service

implementation. This code implements the standard APIs for Android services and manages the

instantiation of the stream program. Further, the service provides an additional interface for loading

PM policies and modifying their parameters. The functionality common to Gratis apps is included

in a runtime library that provides support for managing sensors, network communication, and the

event system used for PM.

The compiler partitions the StreamIt program into domains. The first step is to determine

what resources are used by each component. The compiler will generate an error if a component

uses more than one hardware resource. Next, the partitioning process proceeds in a greedy man-

ner. We create the initial domain that includes the source of the stream program. The immediate

successors of the source are added to the domain if they use the same hardware resources. Other-

wise, a new domain is created, and the process is started recursively with the component requiring

a different hardware resource as the source of the new domain. Each domain will be executed as

a different thread and manages a power lock. The power lock is acquired when the domain starts

executing and released when the domain completes its execution.

The exchange of data between components is managed using FIFO queues. The compiler

differentiates the exchange of frames between components in the same domain and those in differ-

ent domains. Since components pertaining to the same domain run in the same thread, their queues

do not need to be synchronized. In contrast, the data exchange between domains must be synchro-

nized. The compiler generates code to instantiate the appropriate type of queues at run-time. The

size of the queue is configured using the app simulator to determine the peak value observed during

simulations. Note that by pre-allocating memory for each queue, we avoid the overhead of garbage
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collection that previous stream engines have shown to be significant.

The execution of the domains is managed by a scheduler. A nice property of the pro-

posed coordination language is that it associates event handlers with specific components and

queues. Accordingly, a queue maintains a set of guarded commands that it needs to evaluate.

The guarded commands are evaluated when data is inserted into the queue which changes the val-

ues num input, num output,input slack, and output slack. When a guard is true,

the scheduler generates a pre event prior to executing the domain, and a post event after the

execution completes [34, 35, 43].

5.4 Experiments

The goal of this section is to evaluate the efficacy of the proposed PM methodology for

developing energy-efficient MSAs. We are interested in answering the following questions:

• Can a broad range of workload shaping policies be specified using Gratis ?

• Can Gratis save significant energy using workload shaping policies? If so, what optimizations

are most effective?

• How accurate are the performance predictions?

• Can the parameters of Gratis PM templates be configured and synthesized effectively and effi-

ciently?

5.4.1 Methodology

We have developed mobile apps that implement two common tasks in mobile sensing:

tracking the user social interactions using speaker identification techniques (SI app) and recog-

nizing the user physical activities from motion sensors (AR app). We have evaluated the two apps
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using several workload shaping optimizations that combine batching, scheduled concurrency, and

adaptive sensing.

The SI app collects audio samples of type float at 44KHz. The app is partitioned into

four domains responsible for reading audio frames, extracting audio features, uploading them to

a remote server, and displaying them. SI computes fourteen Mel-frequency Cepstral Coefficients

(MFCCs) [69] from the collected frames. MFCCs have been extensively used for speaker iden-

tification and speech recognition on mobile phones [26, 40, 61]. The app may use either static or

adaptive sensing. In the case of static sensing, SI works in duty cycles by alternating between

reading audio for a period of P seconds and sleeping for 3P seconds. Adaptive sensing is imple-

mented using a voice activity detector to determine whether an audio frame contains speech. The

voice activity detector is based on the algorithm proposed by Moattar et al. [70]. When no speech

is detected, the app stops sampling for 11.1 seconds. Otherwise, the app continues collecting audio

data.

The AR app collects samples from the accelerometer at 225Hz that are aggregated into

frames of size 128. Similar to the SI app, the AR app is partitioned into four domains responsible

for collecting acceleration readings, extracting features, uploading to the server, and displaying the

features. The app extracts the energy and the entropy for each axis of the accelerometer. We have

evaluated the app using both continuous and adaptive sensing. Adaptive sensing is implemented

by determining whether the collected frames include any motion. If no motion is detected, the app

stops collecting samples for 18 seconds.

The SI and AR apps may be configured to run in real-time or use a previously recorded

trace file. We use the latter capability for the adaptive sensing experiments to evaluate the perfor-

mance of PM policies in a consistent manner. The performance of the SI file was evaluated using
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App Component Components Domains StreamIt Java Code
Types Code Size Size

SI 13 1,306 4 409 21,631
AR 16 1,804 4 551 19,984

Table 5.1. App size statistics.

several long audio recordings. The audio was collected in the homes of older adults as part of a

previous study5. Similarly, the performance of AR is evaluated using long acceleration traces. The

traces were obtained from a publicly available dataset.

The experiments were performed on Nexus 6 mobile phone running Android 5.0.2. The

phone used Wi-Fi to connect to an access point located in the same room. The SI and AR apps

have been tested using several PM policies configured with different parameters. Each experiment

took five minutes during which we measured the processing latency and the energy consumption.

The processing latency was measured directly by the application calling the standard Java API

nanoTime(). Power consumption was measured using an external power meter from Monsoon

Solutions [71]. The energy consumption was calculated by summing up the instantaneous power

measurements. Based on the computed energy consumption, we estimate the battery life of the

phone assuming a capacity of 3000 mAh.

5.4.2 Gratis Simplifies Power Management

The Gratis programming model provides mechanisms for specifying the structure of an app

and its PM policy. Adopting stream programs as a high-level abstraction significantly simplified

the implementation of MSAs: a developer can focus on the signal processing and machine learning

algorithms without having to consider the details of using Android. The statistics shown in Table

5A reference to the study is omitted due to the double-blind requirement.
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5.1 show that MSAs can be implemented as small stream programs. Our source-to-source compiler

transforms them into optimized Android code. The majority of the Android code is implemented

in the Gratis runtime library that is common to all apps.

The main benefit of Gratis is that it simplifies the integration of workload shaping opti-

mizations in MSAs. For each app, we have developed several PM policies that combine batching,

scheduled concurrency, and adaptive sensing. This demonstrates that our coordination language

can express a broad range of workload shaping optimizations. Manually writing PM policies for

SI and AR is relatively straightforward. This is primarily because the SI and AR apps have only

four domains whose operations must be coordinated. The complexity of writing PM policies in-

creases with the number of domains that must be coordinated. However, results detailed later in

the section show that PM policies with varying scheduled concurrency and batching yield little

energy improvement compared with those including just batching. Thus, a pragmatic approach is

to always execute domains sequentially, significantly reducing the complexity of writing policies.

An alternative that is most suitable for developers with minimal PM knowledge is to use

our automated PM template synthesis and configuration tools. The template synthesis tool gen-

erates PM templates that combine batching, scheduled concurrency, and adaptive sensing. The

templates are generated in a brute-force manner by enumerating all the possible configurations

where domains can be executed sequentially or in parallel. The policy configuration tool is then

used to configure the parameters controlling the batching and timeouts. When the app uses adap-

tive sensing, we require the developer to specify how long the app should sleep after detecting no

activity. Input from the developer is required because this parameter depends on the nature of the

app and may have a significant impact on its sensing accuracy. The results presented in this section

have been obtained using policies generated in this manner.
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5.4.3 Gratis Extends Battery Life

In this section, we evaluate the ability of Gratis to save energy using different PM policies.

We start by considering energy optimizations that combine batching (B) and scheduled concur-

rency (C) without adaptive sensing. We generated several PM templates that we instantiated with

different parameter values. The policy template FB + FC uses fixed batching and fixed concur-

rency. Fixed batching indicates that the domains process data beyond minimum thresholds. This

baseline represents the energy consumption of a stream program that is executed in a naive manner.

Fixed concurrency indicates that the domains execute one after another as soon as possible without

seeking to overlap hardware access.

This baseline shows the performance a naive execution of a stream program would have.

The policy template VB + FC uses batching but fixes concurrency as described above. We have

evaluated the template by configuring each domains with the following batch sizes: 1, 16, 32,

256, 512, 1024, and 2048. The line VB + VC includes the results from multiple policies that use

batching and controlled scheduling. Some of the templates overlap sensing with feature extraction,

or feature extraction with network upload. We use a total of 8 templates with different scheduled

concurrency.

Figures 5.7a and 5.7c show the energy-delay trade-off when SI and AR use static sensing.

The figures show that significant energy savings can be achieved by controlling the energy-delay

trade-off in a MSA. For example, the SI app can run for 7 hours when data is processed as soon

as possible by setting the end-to-end deadline to zero. In contrast, when the end-to-end deadline is

increased to 60 seconds, the battery life is extended to almost 19 hours, a 2.7 times improvement

in battery life. The AR app is less energy intensive. The phone can run AR for 20 hours when the

end-to-end deadline is zero. Setting the deadline to 60 seconds, extends the battery life to 27 hours,
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(b) SI: Impact of policy templates.
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(d) AR: Impact of policy templates.

Figure 5.7. The energy-delay trade-off for SI and AR when using static sensing. Batching signif-
icantly improves energy efficiency. Combining batching with scheduled concurrency provides no
additional benefit.

which is a 1.35 times improvement. Part of the reason for the better battery life of the AR app is

that the Nexus 6 includes a specialized co-processor for motion sensing. However, even with the

use of specialized hardware, there is still a benefit of using workload shaping optimizations. The

energy-delay trade-off shows that increasing the deadline yields diminishing energy savings. In

our apps, most of the energy savings can be obtained if the user is willing to tolerate a delay of

about 10 seconds.

Figures 5.7b and 5.7d plot the best configurations for the three classes of policies that we

108



consider for SI and AR respectively. We plot both the performance measured directly and the

performance estimated using the app simulator. The figures indicate that the policies that incor-

porate batching provide significant energy savings over the baseline. To our surprise, including

scheduled concurrency did not provide significant energy savings over the best batching policy.

Scheduled concurrency provides no additional improvement for SI. However, the best policy for

AR is the one that overlaps the execution of the audio and feature extraction components

concurrently with the upload component. This policy extends the battery life by an additional

13.2 minutes over Best(VB+FC) (note that this is not visible in the figure due the magnitude of

the y axis). The figures show that the app simulator predicts the energy consumed by both apps

with reasonable accuracy. We will analyze the accuracy of the simulator in more details in the next

subsection.

An effective approach to saving energy is to reduce the workload of the system by intro-

ducing adaptive sensing. We have integrated adaptive sensing in the previously generated policies.

The policies were generated using end-to-end deadlines of 10, 20, and 60 seconds respectively.

The adaptive sensing policies use timeout handlers to trigger the domain executions once the slack

falls below a threshold. The slack thresholds were configured by the policy configuration tool.

Figures 5.8a and 5.8c show the energy-delay trade-off when adaptive sensing is used. For

comparison, we include the static sensing data from the previous experiment. In contrast to the

static sensing case, most of the configurations are concentrated around the deadline given sufficient

batching. This is because of the timeout handler that triggers the execution of components when

the slack of the frames in their queues falls below a threshold. It is easy to see that adaptive sensing

significantly increases the battery life of the phone. This is because the apps intelligently determine

when it is necessary to remain awake. Adaptive sensing is effective in extending the battery life
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by 7 and 3 times for SI and AR respectively. Figures 5.8b and 5.8d plot the best configurations

for the three classes of policies that we previously defined when adaptive sensing is used. As

in the static sensing case, we observe that batching significantly increases the battery life of the

app. However, different scheduled concurrency may provides some additional energy savings for

adaptive sensing. When SI has a deadline of 10 seconds, batching increases the lifetime from 29

to 41 hours. Similar differences can be observed for the other deadlines. If the user is willing to

increase the end-to-end deadline from 10 to 60 seconds, the phone’s battery life may be extended by

4 more hours with combined scheduled concurrency. Note for SI with a deadline of 20 seconds,

combined scheduled concurrency can extend the battery life by additional 8 hours over the best

batching. AR has a similar behavior to SI with smaller improvement of scheduled concurrency

that extends the battery life by 2 hours given a deadline of 20 seconds.

5.4.4 Gratis Apps Have Composable Performance

We have evaluated the accuracy of the app simulator by comparing the difference between

the predicted and measured performance. Figure 5.9 plots the accuracy of the predictions for the

considered apps. Overall, the average error for energy predictions is 7%. The error for latency

is 15% on average. The SI latency error is larger in the cases of static sensing and adaptive

sensing with a short deadline because the measured end-to-end delays are small such that a small

variation could lead to large errors in percentage. Hence, this shows that our assumption that the

performance of Gratis apps is composable is reasonable.

We remark that the overall performance accuracy is slightly better in the static sensing

case than adaptive sensing. This is not surprising since in the adaptive case, we also have to cope

with variations in user input. Perhaps more interestingly, there is significant dependency between

the errors and the deadlines when adaptive sensing is used. The reason for this is because when
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Figure 5.8. The energy-delay trade-off for SI and AR when using adaptive sensing. Adaptive
sensing significantly reduces energy consumption relative to static sensing. Batching significantly
improves energy savings.

deadlines are tight the fraction of time that contributes to the end-to-end latency is dominated by

the time required to execute the domains. As the deadline is increased, the time that we artificially

inject for workload shaping starts dominating the end-to-end latency. Therefore, it is easier to

estimate the delays that we introduced than predicting the domain execution time based on average

performance profiles.
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Figure 5.9. Accuracy of energy and delay predictions for the app simulator.

5.4.5 Gratis App Simulator is Scalable

A key ingredient to the effectiveness of the template configuration and synthesis tools is

the scalability of the simulator. The simulator is invoked to evaluate the performance of each

policy. The most demanding use of the simulator is to simulate a policy that employs adaptive

sensing. Figure 5.10 plots how the simulation time increases with the length of the trace used by

the simulator. The performance of the simulator mainly depends on the batching parameters used

by the policy. The figure plots the best-case and the worst-case simulation time for a given trace

length. The simulator can process traces that are several hour long in a few seconds.
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App Search Method Best(VB + FC) Best(VB + VC)
SI Grid 14717 µAh / 254 s 14717 µAh / 7166 s

Gradient 14952 µAh / 56 s 14952 µAh / 66 s
AR Grid 220 mAh / 183 s 220 mAh / 2022 s

Gradient 221 mAh / 78 s 221 mAh / 88 s

Table 5.2. Policy synthesis and configuration for SI using a 10-
minute trace and AR using a 5-hour trace. Policies combine adaptive
sensing, batching, and controlled scheduling with a deadline of 60
seconds.

Table 5.2 shows the results of configuring the PM policies for SI and AR using adaptive

sensing, batching, and controlled scheduling. The synthesis and simulation tools used traces of

10 minutes and 5 hours for SI and AR, respectively. We report both the energy consumption and

the total simulation time using the grid search and the gradient descent method. Synthesizing and

configuring all the templates with varying batching and scheduled concurrency for SI requires

nearly 2 hours when the grid search is used. This time is reduced to 1 minute or so by using

the gradient descent method with merely 1.6% more energy consumption of the best PM policy.

Similarly, synthesizing and configuring the templates for AR requires 33.7 minutes when using the

grid search. This time is reduced to 1.47 minutes by using the gradient descent search with less

than 1% energy consumption difference from the identified best PM policy. These results show that

it is computationally feasible to automatically generate PM policies and that the gradient descent

search method provides an effective approach to reducing synthesis and configuration time.

5.5 Related Work

Researchers have developed a wide range of techniques for managing the trade-off between

energy consumption and performance. These methods reduce the energy consumption of a sensing

task by optimizing the subset of sensors that are used, the time when they are sampled, and the
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Figure 5.10. Simulation time for simulating SI and AR with adaptive sensing.

algorithms used to make inferences. For example, Kobe constructs offline an efficient sensing

pipelines by optimizing the features and classifiers that are used [31]. Similarly, Orchestrator

constructs multiple variants of a sensing pipeline and dynamically switches between these variants

at run-time [29]. ACE saves energy by caching inference results across apps and by substituting the

use of power-hungry sensors (e.g., GPS) with that of lower-power sensors (e.g., motion sensors)

whenever possible [72]. In this chapter, we focus on a broad class of PM policies that control

the time when operations are performed subject to soft end-to-end deadlines. Our techniques save

energy by shaping the workload so that it can be processed in a more energy-efficient manner

without sacrificing sensing accuracy. The unique aspect of our work is the ability to estimate the

impact of a PM policy on the energy and delay of an app at compile time.

Our solution leverages the use of high-level abstractions for writing energy-efficient pro-

grams. Several recent works have considered this approach. EnergyTypes allows developers to

specify phased behavior and energy-dependent modes of operations in their application using a

type system to dynamically adjust the CPU frequency and application fidelity at run-time to save
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energy [73]. EnerJ employs a type system for a developer to specify which data flows in their

apps can be approximated to save energy and guarantees isolation of precise and approximate

components [74]. LAB provides the APIs that allow developers to switch between multiple im-

plementations of a sensing algorithm to save run-time energy [75]. Closer to our work, Tempus

uses annotations that control when power-hungry operations are invoked [76]. A limitation of

these approaches is the required deep understanding of power management, operating systems,

and programming languages. More importantly, restructuring an app has an unpredictable impact

on its energy consumption and delay. As a result, the developer must re-profile the app even when

making minor changes.

The closest related works are the systems that use stream programs as a representation for

mobile apps. Green Streams [77] and StreaMorph [78] focus dynamic voltage and frequency scal-

ing (DVFS). Both papers recognize that executing streams as soon as possible results in energy

inefficiencies. Green Streams addresses this problem by ensuring that components are executed at

the same rate. StreaMorph further reduces energy consumption by compiling multiple versions of a

stream program and switching between them at run-time. Unfortunately, applying DVFS for MSAs

is usually ineffective because each invocation of a MSA component produces only a small amount

of data that cannot be processed efficiently. Gratis provides a flexible and general mechanism for

specifying a wider range of PM policies that coordinate multiple hardware resources. Energy sav-

ings are the result of creating batches of data that can be processed in an energy-efficient manner.

SymPhoney [27] is a stream execution engine that focuses on handling overload conditions due

to interfering applications. Gratis on the contrary focuses on the more common situation when an

app executes with minimal interference as a background service. Moreover, Gratis provides two

additional improvements. (1) Gratis uses a simulation-based technique to determine the energy
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and delay of a PM policy in a computationally efficient manner. (2) Building on this property,

Gratis optimizes the parameters of a PM policy to further reduce energy consumption.

The challenge to assessing the energy consumption and delay of computing programs has

been studied extensively. Existing solutions span the trade-off between accuracy and computation-

al/monitoring overhead. Emulators such as GEM5 [79] can provide accurate estimates of delays

and energy consumption of mobile apps in an offline manner. Unfortunately, emulators typically

have high processing demands requiring hours of emulation to estimate the performance of even

simple apps. They are insufficient for our needs as we are interested in quickly determining the

impact of a PM policy and optimizing its parameters. Several lightweight tools have been pro-

posed to evaluate the energy consumption of apps at run-time. PowerTutor can generate power

models for different components of a mobile device based on the battery drain behavior [8]. Eprof

is another power estimation tool that captures and accounts for the power usage of an application

through tracing system calls made by the program when it runs on a smartphone [65]. WattsOn is

an extension to Eprof that attempts to provide finer grained details regarding where energy is con-

sumed within an app [66]. In contrast to these works, BatteryExtender is an effort to allow users

to extend the phone battery life for a specific duration to accomplish a particular task [80]. Gratis

focuses on evaluating the energy consumption and delay from a small set of measurements. Our

technique takes advantage of the structure of stream programs and the fact that the PM policy con-

trols explicitly the scheduled concurrency to derive estimates of energy and delay in a constructive

manner based on individual domain profiles to compose and predict the overall performance of the

app. It is important to note that the above tools primarily focus on predicting energy consumption

through run-time profiling. Instead, Gratis advocates fast compile-time synthesis and configuration

of PM policies to save energy w.r.t. deadline constraints.
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5.6 Conclusions

Gratis is a novel paradigm for incorporating workload shaping energy optimizations with

predictable performance of MSAs. We adopt the stream programming model as a high-level ab-

straction for reasoning about the impact that energy optimizations have on the energy and the

delay of an app. Gratis departs from the traditional SDF in which components are executed as

soon as possible by using a PM policy that introduces artificial delay to generate workloads that

may be processed in a more energy efficient way. We control the impact of the introduced delays

on the user experience by specifying soft end-to-end deadlines. We presented a coordination lan-

guage that can express a broad range of workload shaping energy optimizations including those

for batching, scheduled concurrency, and adaptive sensing. We have developed an app simulator

that can estimate the performance of a PM policy in a computationally efficient manner from a

small number of measurements at compile time. The efficiency of the simulator is a consequence

of the Gratis apps having composable performance, which is a unique feature of our programming

model. The simulator is the basis for tools that configure and synthesize PM templates automati-

cally. In combination, these tools provide a developer with an automated approach to incorporating

workload shaping policies into MSAs and require minimal PM expertise.

We demonstrated that our approach is both flexible and expressive by incorporating work-

load shaping optimizations in two realistic apps. Our experimental results show that workload

shaping optimizations can save significant energy consumption. For example, the SI app with

static sensing can run for only 7 hours when data is processed as soon as possible. The battery

life can be extended to almost 19 hours when the deadline is relaxed to one minute. The im-

provement is the result of applying batching and scheduled concurrency optimizations. Additional

energy savings may be achieved by using adaptive sensing with combined scheduled concurrency
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to extend the battery life to 45 hours or more. The performance improvement for AR is equally

impressive. AR can operate for 20 hours without optimizations. The use of batching and scheduled

concurrency increases the battery life to 27 hours and even 60 hours with adaptive sensing. It is

worth noting that the energy savings come with minimal cost to the developer. We have extensively

evaluated the performance of our app simulator. We have developed a simulator that can predict

the energy and delay with average errors of 7% and 15% respectively even when applications have

variable workloads. The simulator is highly scalable in simulating short traces in less than a second

and long traces of sixteen hours under 2 minutes. These results demonstrate that it is feasible to

accurately estimate the performance of MSA PM policies at compile time.
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CHAPTER 6

CONCLUSIONS & FUTURE WORK

This dissertation illustrates the progress of stream processing optimizations for MSAs from

the perspective of memory management and energy efficiency. Chapter 2 gives the theorectical

background of SDF MoC that allows stream compilers to validate the composition of stream pro-

grams at compile time. An automated approach to ensuring long term robustness of high-rate

MSAs is demonstrated in chapter 3. Common application composition and programming errors

such as leaks and races can be checked by the stream compiler in ahead. Platform-specific PM and

foreign code integration to ease the development of MSAs are also supported. Chapter 4 describes

the static analysis to capture the whole program memory behavior based on abstract interpretation

and the efficient memory layout generation. The stream memory operations may be rewritten by

the compiler for efficient access to the generated layout. Energy efficiency improvement for MSAs

in terms of batching and deadline constraints is discussed in Chapter 5. We characterized the com-

posable energy behavior of MSAs by building separate domain profiles and an app simulator. The

policy space exploration for the most energy saving configuration can be done offline and save

MSA development cycles accordingly.

6.1 Future Work

I believe that the work developed as part of this thesis can serve as the basis of significant

future research in relevant areas with MoC in dataflow. There are several directions to extend in

the context of real user interactions, deep learning and cloud computing as follows:

• Our work so far is done analytically without reactions to real user activities and intentions at
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runtime. There are use cases where the runtime user activity predictions may further save the

energy consumption adaptively. For example of online photo viewing. Prefectching photos

generally shortens the tail energy consumption of network components if the photos are of

the user interest. Otherwise, excessive network transmissions waste energy when the user

quickly browses through photos of less interest. In this case, stream programs may react

to the user activities with dynamic batching between SFG partitions. While stream pro-

grams are typically optimized at compile time, appropriate repartitioning allows for making

dynamic decisions to improve energy efficiency at runtime. Ultimately, a reinforcement

learning algorithm may be developed to adaptively synthesizes PM policies for aggregation

of energy intensive operations w.r.t. deadline constraints.

• We have shown the runtime energy delay trade-off can be optimized through offline param-

eter space exploration. In view of similar dataflow modeling of deep networks, a similar

trade-off between the accuracy and deep learning hyperparameters deserves further investi-

gation for data scientists to make effective design decisions.

• Though consistency and fault-tolerance in cloud computing seem to serve as separate con-

cerns independent of existing stream optimizations, there might be inter-dependencies worth

explorations. For instance, super fine-grained partitioning and placement probably induce

increasing overhead to maintain consistency and high availability such that the service level

agreement (SLA) might not hold. An analytical model incorporated into stream compilers

would be useful to combine the best of both worlds.
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