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ABSTRACT

Today’s distributed systems exist on a scale that was unimaginable only a few

decades ago. Distributed systems now can consist of thousands or even millions of

computers spread across the entire world. These large systems are often organized into

overlay networks – networks composed of virtual links, with each virtual link realized

by one or more physical links. Self-stabilizing overlay networks promise that, starting

from any weakly-connected configuration, the correct network topology is always

built. This area of research is young, and prior examples of self-stabilizing overlay

networks have either been for simple topologies, or involved complex algorithms that

were difficult to verify and extend. We address these limitations in this thesis.

First, we present the Transitive Closure Framework, a generic framework to

transform any locally-checkable overlay network into a self-stabilizing network. This

simple framework has a running time which is at most a logarithmic number of rounds

more than optimal, and in fact is optimal for a particular class of overlay networks.

We also prove the only known non-trivial lower bound on the convergence time of

any self-stabilizing overlay network. To allow fast and efficient repairs for local faults,

we extend the Transitive Closure Framework to the Local Repair Framework. We

demonstrate this framework by implementing an efficient algorithm for node joins in

the Skip+ graph.

Next, we present the Avatar network, which is a generic locally checkable

overlay network capable of simulating many other overlay networks. We design a

self-stabilizing algorithm for a binary search tree embedded onto the Avatar network,
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and prove this algorithm requires only a polylogarithmic number of rounds to con-

verge and limits degree increases to within a polylogarithmic factor of optimal. This

algorithm is the first to achieve such efficiency, and its modular design makes it easy

to extend. Finally, we introduce a technique called network scaffolding, which builds

other overlay network topologies using the Avatar network.
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ABSTRACT

Today’s distributed systems exist on a scale that was unimaginable only a few

decades ago. Distributed systems now can consist of thousands or even millions of

computers spread across the entire world. These large systems are often organized into

overlay networks – networks composed of virtual links, with each virtual link realized

by one or more physical links. Self-stabilizing overlay networks promise that, starting

from any weakly-connected configuration, the correct network topology is always

built. This area of research is young, and prior examples of self-stabilizing overlay

networks have either been for simple topologies, or involved complex algorithms that

were difficult to verify and extend. We address these limitations in this thesis.

First, we present the Transitive Closure Framework, a generic framework to

transform any locally-checkable overlay network into a self-stabilizing network. This

simple framework has a running time which is at most a logarithmic number of rounds

more than optimal, and in fact is optimal for a particular class of overlay networks.

We also prove the only known non-trivial lower bound on the convergence time of

any self-stabilizing overlay network. To allow fast and efficient repairs for local faults,

we extend the Transitive Closure Framework to the Local Repair Framework. We

demonstrate this framework by implementing an efficient algorithm for node joins in

the Skip+ graph.

Next, we present the Avatar network, which is a generic locally checkable

overlay network capable of simulating many other overlay networks. We design a

self-stabilizing algorithm for a binary search tree embedded onto the Avatar network,
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and prove this algorithm requires only a polylogarithmic number of rounds to con-

verge and limits degree increases to within a polylogarithmic factor of optimal. This

algorithm is the first to achieve such efficiency, and its modular design makes it easy

to extend. Finally, we introduce a technique called network scaffolding, which builds

other overlay network topologies using the Avatar network.
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CHAPTER 1
INTRODUCTION

Now more than ever, network connectivity is ubiquitous for many. Not only

are residential broadband connections common, mobile network connections are also

seemingly omnipresent through Wi-Fi hot-spots and cellular data networks. For

many, connecting to another computer anywhere in the world is simply a matter

of pressing a few buttons, anywhere, anytime. The scale of today’s network connec-

tivity is impressive.

This new connectivity has brought about a new paradigm for distributed com-

puting. Now communication need not be modeled as occurring over a few static links,

but rather can be modeled as using any number of dynamic virtual links, each con-

sisting of one or more physical links. Networks that use these virtual links are called

overlay networks. The Internet – itself an overlay network – hosts many other overlay

networks, such as Gnutella [33], BitTorrent [8], and Skype [35].

Many overlay networks, including those hosted by the Internet, operate in

dynamic environments. These environments present an interesting challenge for fault-

tolerant computing. Faults are frequent occurrences, node membership in the system

may change dramatically in a short amount of time, and the system size may be

quite large. Early research into structured overlay networks (networks with exactly

one correct configuration) was ill-equipped to operate in these fragile environments.

Recently, however, a classic fault-tolerance paradigm has been combined with overlay

networks to elegantly handle the complex nature of faults inherent in these networks.

These new networks are called self-stabilizing overlay networks.
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Self-stabilizing overlay networks are overlay networks that can form a correct

topology regardless of their current state. While there has been several self-stabilizing

overlay networks proposed, the field is still new, and generic techniques for building

self-stabilizing networks (and proving them correct) are still absent, as are results

on efficient stabilization. This thesis hopes to address this missing piece of the self-

stabilizing overlay network puzzle.

1.1 Related Work

Self-stabilizing overlay networks bring together two areas of distributed com-

puting, one established and one more recent. In this section, we review this prior

work.

1.1.1 Self-Stabilization

First introduced by Dijkstra in 1974 [13], self-stabilization has been a well-

studied and productive area of research for several decades. Self-stabilization is the

ability of a system to recover from any transient fault, usually modeled as the system

starting in an arbitrary initial state. Specifically, a self-stabilizing system satisfies two

properties: closure and convergence [1]. Informally, closure is the property that a sys-

tem in a legal configuration remains in a legal configuration when executing program

actions, while convergence is the property that a system in an illegal configuration

will eventually reach a legal configuration by executing program actions.

More formally, let P be a predicate defined over the state of a system S. We

say that S is in a legal or valid state if P evaluates to true, and S is in an illegal



3

or invalid state otherwise. Let every process in S execute some program A. We say

that A satisfies the closure property if, from any state S where P is true, executing

actions of A always results in a configuration S ′ where P remains true. We say that

A satisfies the convergence property if, from any state S where P is false, executing

actions of A will always eventually result in a configuration S ′ where P is true. A

self-stabilizing algorithm satisfies both closure and convergence.

1.1.1.1 Randomization

Many self-stabilizing algorithms rely upon randomization. These randomized

algorithms rely on the output of a random number generator. Randomization is

a powerful technique that may provide solutions to problems that are unsolvable

with deterministic algorithms. The use of randomized algorithms does, however,

complicate analysis of worst-case convergence time and state space bounds, as now

performance must be measured with respect to either expected performance or with

high probability (or both).

To see the power of randomization, consider the problem of orienting the edges

of a ring. This problem begins with each node being a member of a ring topology. A

node has two incident edges, and these edges must be “directed” – that is, each edge

must have a source node and destination node designated such that a cycle exists

in the network going only from sources to destinations. Said another way, a legal

configuration has exactly one incoming and one outgoing edge incident upon every

node. Israeli and Jalfon [22] consider ring orientation with anonymous nodes (that
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is, nodes without identifiers), and show a solution is impossible with a deterministic

algorithm. They then prove orienting a ring is possible using randomization, and

provide a two-part algorithm to do so. In the first part, every pair of neighbors

agrees on a direction for their shared incident edge using randomization. In part

two, nodes create “tokens” based upon their incident edges, and these tokens are

circulated around the system, being removed when certain conditions are met. Once

all remaining tokens are being forwarded in the same direction, and every node has

received at least one of these tokens, the system is in a correct configuration. This

example demonstrates how randomization allows self-stabilizing solutions to problems

that would be impossible with a deterministic algorithm.

As another example, consider several randomized versions of Dijkstra’s original

work in self-stabilization [13], which circulated a token around a ring. Dijkstra’s

algorithm guaranteed that, regardless of how many “tokens” were originally present,

eventually only a single token would exist, and this token would be circulated amongst

all nodes infinitely often. Dijkstra’s (deterministic) algorithm required a minimum

of n states per node. In 1992, Herman [21] designed a randomized algorithm that

required only 3 states per node. In 2009, we designed a randomized algorithm which

circulated k tokens around a ring using only k + 1 states, which we proved was

optimal [4]. Both of these results would be impossible with a deterministic algorithm.

Randomization can increase the convergence time, however – for instance, Nakata [28]

proved the convergence time for Herman’s 3-state token ring algorithm was O(n2).
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1.1.1.2 Transformers

One way to create self-stabilizing systems is to use a transformer – an algo-

rithm that takes any distributed algorithm as input, and produces a self-stabilizing

version of the algorithm as output. Transformers usually sacrifice either convergence

time or state space requirements to guarantee stabilization, but they significantly

simplify the task of the algorithm designer.

Katz and Perry presented one of the first transformers in 1993 [24]. This

transformer works in two steps. First, a global snapshot is taken of the system by a

designated process. Next, this designated process decides if the system is in a legal

configuration, and issues a global reset command if it is not in a legal configuration.

The reset command brings every node in the system back to some predetermined legal

state. This global reset is simple and self-stabilizing. However, it requires snapshots

to be continuously collected, even in a legal state.

Awerbuch et al. presented another transformer in 1994 [3]. Their transformer

relies on processes having the ability to check locally if there was a fault, without

gathering the state of the entire system. With this local checking, a faulty configu-

ration leads to the issuance of an internal reset – that is, a reset that is initiated by

any node in the system. After issuing an internal reset, nodes must allow sufficient

time for the system to correct itself before another reset is issued.
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1.1.1.3 Fault Containment

Certain refinements of self-stabilization are concerned with performance mea-

sures besides worst-case convergence time or state space requirements. For example,

fault containment promises that a system with a single fault requires only a constant

time for its output to converge. Considering that the time to failure in modern com-

puting hardware is sufficiently long enough that most faults are isolated incidents,

fault containment is useful from both an applied and theoretical standpoint.

The first fault containment algorithm was presented by Ghosh et al. in

1996 [19]. This paper presented several measures to evaluate fault containment.

The containment time is the time it takes the system’s primary variables (the output

variables of the system) to reach a legal state after a single fault. Similarly, the con-

tamination number is the number of processes that must change their state during the

recovery from a single fault. The fault gap is the minimum distance two faults must be

apart so that each fault is repaired in constant time. Finally, the containment space

is the extra state space required to implement a fault-containing algorithm. Ghosh

et al. also presented a transformer for taking a non-reactive self-stabilizing system

and converting it to a fault-containing system. This was done using two protocols.

The first protocol takes a system with a single fault and, in constant time, sets the

primary variables to satisfy a legal configuration. The second protocol converges the

remaining system state.
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1.1.1.4 Superstabilization

Some self-stabilizing algorithms do not restrict the states of the system dur-

ing convergence – any arbitrary behavior is acceptable until a legal configuration

is reached. Superstabilization, first introduced by Dolev and Herman in 1997 [14],

guarantees some predicate holds during convergence.

Superstabilization focuses on dynamic systems, where topology changes caused

by link failures or node crashes should be expected. Such changes ideally would not

cause the entire system to “start over” with convergence. A superstabilizing system

is a self-stabilizing system that also guarantees a weaker predicate holds during a set

of topology changes originating in a legal configuration (that is, the system was in a

legal configuration, and then the topology changed). This weaker predicate is called

the passage predicate, while the time it takes the system to return to a legal state

after the topology change is called the superstabilization time. Finally, the number

of processes that must change state as a result of the topology change is called the

adjustment measure. Superstabilization quantifies not only how the system behaves

after a topology change, but also how much time and space is expended during this

convergence.1. Dolev and Herman also offer several examples of superstabilization.

One of these examples addresses the problem of graph coloring. A legal graph color-

ing is an assignment of colors to nodes such that no node in the graph has a neighbor

assigned the same color. Dolev and Herman present a superstabilizing algorithm with

1Notice that fault containment provides quick stabilization after any transient fault,
while superstabilization allows topology changes, as well as guarantees the passage predicate
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a passage predicate that allows nodes with a special color (⊥) to be neighbors. The

algorithm considers topology changes where either a node crashes or resumes execu-

tion, or a link recovers (at most k links from some node p are allowed to recover when

p resumes execution). After the occurrence of such a topology change, some process

t (selected using a set of given rules) sets its color to ⊥. With these modifications,

a superstabilizing algorithm is possible with superstabilization time of O(k), and an

adjustment measure of (k + 1). From a legal configuration, then, this system can

undergo a change in topology and still satisfy the passage predicate, and within O(k)

time steps, will again be a legally-colored graph.

1.1.1.5 Snap-Stabilization

Snap stabilization is another refinement of self-stabilization. Snap-stabilization

guarantees the system always satisfies the problem specification predicate. These

predicates are based upon external requests – the system receives a request, processes

this request, and “returns” a legal value. In this way, snap-stabilization is an “as-

needed” stabilization – if the system does not receive a request, it need not stabilize.

The first snap-stabilizing algorithm was presented by Bui et al. in 1999 [9],

and is built on top of the propagation of information with feedback (PIF) scheme.

In PIF, the root processor of a tree initiates a broadcast phase by broadcasting a

message to all its children. These children in turn broadcast this message to all of

their children. This continues until the broadcast reaches a leaf node, at which point

the leaf node initiates the feedback phase by sending feedback to its parent. Once a
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parent receives feedback from all of its children, it sends feedback to its parent, until

finally, the root node receives feedback from all of its children. At this point, the root

has aggregated feedback from all nodes in the tree. To make PIF snap-stabilizing, the

broadcast and feedback stages are augmented with a third stage called the cleaning

stage. This cleaning stage is executed after a node has sent feedback and before it

initiates another broadcast. This additional stage makes PIF snap-stabilizing – that

is, every request from the root to propagate some information and request feedback

completes successfully.

Delaët et al. consider snap-stabilization with a message-passing communica-

tion model [12]. They show that, if channels are allowed unbounded capacity, then

snap-stabilization is impossible for problems with a safety-distributed specification.

A safety-distributed specification is one whose safety property can only be violated by

considering the behavior of multiple processes. A classic example is mutual exclusion

– the safety property can only be violated if more than one process is in the critical

section at the same time. If channel capacity is allowed to be unbounded, then there

may be an arbitrary number of messages in the channel upon initialization, which can

“trick” a node into believing neighbors are in a correct configuration, which can en-

able a node to execute an incorrect action. If channels are bounded, snap-stabilizing

solutions are possible by the use of a data link protocol similar to the one presented

by Dolev and Tzachar [15]. This data link protocol requires a message to be received

several times before it is “accepted” by the algorithm (specifically, a message is not

considered valid until it is received 2 · k + 1 times, where k is the channel capacity).
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1.1.2 Overlay Networks

Overlay networks are networks composed of logical links, where each logical

link consists of one or more physical links. The canonical example of an overlay

network is the Internet – computers usually have a single physical connection (e.g. to a

router), but make many logical connections (e.g. to various web servers). Using logical

links allows for the creation and deletion of edges in the network, meaning specific

topologies can be created which ensure desirable properties, such as low diameter,

low node degree, and efficient routing.

Overlay networks can be partitioned into two sets: structured and unstruc-

tured. In an unstructured network, there are no specific requirements concerning the

desired topology (except that the network cannot be partitioned). Routing is often

quite inefficient with such networks since there are no rules for determining the best

path (or even any path) between two nodes. In some cases, routing is reduced to

executing a random walk. While routing efficiently may be difficult, maintaining the

“correct” topology is trivial, since any topology suffices. A popular unstructured

overlay network is the Gnutella file-sharing network [33]. While unstructured net-

works have no strict topological constraints, they may focus on self-optimization –

modifying their topologies not to reach a specific configuration, but rather to ensure

some operations are completed efficiently (for instance, queries for objects).

The other type of overlay networks are structured network. Structured net-

works have constraints on the network topology. Specifically, structured networks

have a single correct configuration. Examples of structured overlay networks include
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Chord [36] and Skip+ [23]. Structured networks usually allow for efficient routing

and low node degree. Many structured networks are organized as distributed hash

tables, or DHTs, where nodes and objects generate identifiers through the use of a

hash function, and every object is stored at a particular node based upon their iden-

tifiers. The canonical example of a structured P2P network is the Chord network, a

ring-based network with additional links (discussed in Chapter 2).

Overlay networks may be expected to operate in hostile environments where

node and link failures are common. It is not surprising, therefore, that researchers

have considered several forms of fault tolerance in overlay networks. Many overlay

networks include protocols to manage churn – the addition and deletion of nodes from

a valid system. Some of these protocols, nodes are assumed to leave “gracefully” – that

is, leave after executing a leave protocol. Other protocols, such as the one from Kuhn,

Schmid, and Wattenhofer [26], ensure that the network continues to operate (and no

data is lost) even after nodes crash. Skip graphs [2] consider not only adversarial

failures (i.e. a powerful adversary forcing nodes to crash), but also random failures,

showing that 85% of queries complete successfully even when nodes have a 50% chance

of failure. Notice that these methods of fault tolerance, however, are for a subset of

possible failures. Specifically, most overlay network protocols consider fault tolerance

only in cases where the network begins in a correct state, and node addition and

deletion is bounded for any particular time period.
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1.1.3 Self-Stabilizing Overlay Networks

Self-stabilizing overlay networks provide an elegant solution to fault tolerance

in overlay networks by guaranteeing that, from any weakly-connected topology, the

correct configuration is reached. Work on self-stabilizing overlay networks began in

2005 with two works: the Iterative Successor Pointer Rewiring Protocol [11] and the

Ring Network [34]. Both algorithms create a ring topology from any weakly-connected

initial state. Each algorithm requires nodes to constantly “search” the network to

discover faults, which means, even in correct configurations, nodes must continue to

exchange messages.

Silent self-stabilizing algorithms avoid this continuous search. A silent self-

stabilizing algorithm has no enabled actions in the correct configuration. For silent

self-stabilizing algorithms to exist, the overlay network being built must be locally

checkable. Informally, this means that all incorrect configurations contain at least

one node who can detect (based upon a predicate P , defined over a node’s local

state, evaluating to false) that the network is incorrect, while all nodes in the correct

configuration evaluate P to true. One of the first silent self-stabilizing overlay network

algorithms was published in 2007 by Onus et al. [30]. This work builds the Linear

topology, which is a “line” graph of nodes sorted by identifier. The authors present

two algorithms for Linear which stabilize in linear time. They also present a modified

Linear topology which uses “shortcut neighbors” to achieve logarithmic diameter.

The authors run several simulations which suggest the convergence time of their

algorithm is logarithmic. The Linear topology was examined again by Gall et al. [17],
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with the authors demonstrating the effects on convergence time if every node could

execute only a constant amount of work per round (where work is defined as adding

or deleting an incident edge). Gall et al. found that, with a worst-case scheduling of

actions while limiting work to a constant, convergence requires time polynomial in n.

In 2009, Jacob et al. presented a silent self-stabilizing algorithm for creating a

Skip+ graph (a locally-checkable variant of the Skip graph). Their algorithm runs in

a polylogarithmic number of rounds. Besides being self-stabilizing, the authors show

their protocol can resolve node joins and leaves in a logarithmic number of rounds

using only a polylogarithmic amount of work.

A self-stabilizing algorithm for the Chord network was created by Kniesburges

et al. in 2011 [25]. In this work, the authors present a locally checkable version of

the Chord network called Re-Chord (for “reactive Chord”). The Re-Chord network

is defined over a set of both real and virtual nodes. Every real node simulates zero or

more virtual nodes, with each node determining which nodes to simulate based upon

the distribution of other nodes in the network. The algorithm works by taking all

nodes (real and virtual) and forming a Linear graph, and then executing additional

actions to create the edges necessary for the Chord network. The convergence time

is O(n log n) due to the linearization step (and the presence of log n virtual nodes).

Also in 2011, Richa et al. presented a self-stabilizing version of the de Bruijn

graph called the “Linearized De Bruijn Network” (LDB) [32]. This work again relies

upon virtual nodes, although in this case only two virtual nodes are created per real

node. The LDB network is not locally checkable, however, and the authors rely upon
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a “linear probing” scheme to constantly search the network for faults. This linear

probing scheme requires O(n) time to complete, again resulting in linear convergence

time for LDB.

1.2 Contributions

In this thesis, we provide several new results in the area of self-stabilizing

overlay networks. Specifically, we show the following three results:

1. In Chapter 3, we present the Transitive Closure Framework. This framework

transforms any locally-checkable overlay network into a self-stabilizing network,

and has a running time which is within at most a logarithmic number of rounds

from optimal. We extend this framework to allow for the efficient repairs of a

subset of faults, which we call the Local Repair Framework.

2. In Chapter 4, we present the Avatar network, a generic locally checkable over-

lay network which simulates other overlay networks. Using a topology based

upon an embedded binary search tree, we present a self-stabilizing algorithm

which converges in only a polylogarithmic number of rounds and limits degree

increases to within a polylogarithmic factor of optimal. This algorithm is the

first to achieve such efficiency.

3. In Chapter 5, we introduce a technique called network scaffolding, which builds

other overlay network topologies using the Avatar network. We show how one

can easily create a self-stabilizing Chord overlay network with convergence time

which is polylogarithmic while limiting degree increases.
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CHAPTER 2
MODEL AND PROBLEM SPECIFICATIONS

In this chapter, we formally define the model of computation and the self-

stabilizing overlay network problem. We also discuss appropriate complexity measures

for the overlay network model. Finally, we review several common overlay networks

used throughout the remainder of this thesis.

2.1 Model of Computation

We model the distributed system as an undirected graph G = (V,E), with

V being the set of nodes representing the processors of the distributed system, and

E being the set of edges representing communication links. Every node u ∈ V is

mapped to a unique identifier, and we use the function id : V → Z+ to access this

identifier. For some systems, every node also is assigned a random string of bits,

which we access through the function rs : V → {0, 1}∗. We shall see in Section 2.4

how these random bits are used. We shall use idu and rsu to denote the identifier and

random sequence associated with node u, which node u stores as immutable data.

Where clear from context, we also refer to nodes simply by their identifier (e.g. node

10 is a node u such that idu = 10). Let λ be the collection of nodes and associated

identifiers and random sequences (λ = (V, id, rs)).

Every node in the network has a set of local variables called its state. The set

of all node states at some time i is called a configuration and is denoted Si. The initial

configuration is denoted S0. A node may change its state by executing a program. We

use a synchronous model of computation – that is, in one round, all nodes execute their
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programs, potentially changing their state. A computation is a series of configurations

S0, S1, . . . , Sc such that, for all configurations 0 ≤ i < c, Si+1 is reachable from Si by

every node executing its program. We say a self-stabilizing algorithm is silent if all

computations from any initial state are finite – that is, all computations result in a

configuration Sc, for some finite c, such that Sc is a valid state, and no node changes

the configuration by executing its program. Informally, one can think of a silent

algorithm as an algorithm that reaches the correct configuration and then “ceases”

execution (i.e. does not change the configuration).

A node u can communicate with any node in its neighborhood N(u) by sending

the nodes (called neighbors) a message. We use a synchronous message passing model

of communication where messages sent to node u in round i are received by node u

at the start of round (i + 1). Messages may be of unbounded size, although the

preference is to limit them to polylogarithmic in the number of nodes in the network.

We assume reliable communication channels where all sent messages are received and

all received messages are sent.

In the message passing communication model, “silent” self-stabilizing algo-

rithms may continue to exchange messages even in the correct configuration. Without

this, nodes cannot detect when the configuration is correct and when it is incorrect.

Therefore, when we speak of silent self-stabilization, we shall mean the computa-

tion terminates except for the exchange of messages used to determine the state of

a node’s neighbors. A silent self-stabilizing algorithm in the message passing model

should reach a configuration Sc such that the only action executed by every node in
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every round is to exchange information concerning a node’s local state.

For our overlay network model, we shall assume a node’s neighborhood N(u)

is part of a node’s state. We assume that a node’s view of its neighborhood matches

its actual neighborhood in the network – that is, no node can have a neighbor which

it is not aware of, and no node believes it has a neighbor which does not exist (in

the synchronous model, we can assume all nodes exchange a “heartbeat” message to

ensure this). Since a node’s neighborhood is part of its state, a node’s neighborhood

can change due to program actions. This means that the neighbors of a node u in

configuration Si may be different than the neighbors of u in configuration Sj, changing

u’s knowledge of the network. This ability to change the network topology is quite

different from traditional models of distributed computation such as CONGEST and

LOCAL [31].

Changes in the network topology can happen in one of two ways: in a round

i, a node u can delete any edge incident upon it, as well as add an edge between any

two neighbors. Specifically, let Gi be the configuration in round i. A node u can

(i) delete any edge (u, v) ∈ E(Gi), resulting in (u, v) /∈ E(Gi+1), and (ii) create the

edge (w, v) if (u,w), (u, v) ∈ E(Gi), resulting in (w, v) ∈ E(Gi+1). Restricting edge

creation to between nodes at distance 2 is reasonable since, in practice, the address

space of nodes is so large as to make blind “probes” impractical (e.g. a computer

cannot reasonably expect to find a neighbor by randomly sampling IP addresses in

the network). To maintain the decentralized nature of overlay networks, we also do

not assume the existence of an oracle that can return a link to a node of distance
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greater than 2 (for instance, there is no centralized server containing identities of

nodes in the network).

2.2 Definition of Self-Stabilizing Overlay Networks

We define a family of overlay networks as a mapping ON : Λ→ G, where Λ is

the set of all λ = (V, id, rs), and G is the set of all undirected graphs. For any set of

nodes V and associated identifiers and random sequences, then, there is exactly one

“correct” network ON (λ). We say that an overlay network algorithm is self-stabilizing

if it takes a weakly-connected network G = (V,E) as input and transforms it through

program actions into ON (λ).

One can consider the process of stabilization as a walk through the state space

of a system. Program actions move the system configuration along a path towards

a stable state. Early work on stabilization focused on finding any path to a legal

state. Later work focused on finding short paths from all configurations to a legal

configuration. In this thesis, we will consider both short paths, and short paths that

only go through intermediate states with low degree. To date, the existence of such

paths, and how to design a program to realize them, has not been considered.

We define NON (λ)(u) to be the neighborhood of node u in ON (λ). We say that

u is faulty in configuration Si if N(u) in configuration Si is not equal to NON (λ)(u).

Similarly, we say the network is faulty in configuration Si if there exists at least one

faulty node in Si. It is possible that a node is faulty in the network but cannot detect

it locally due to limited network knowledge. Specifically, a node u only knows (i) its
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local state (including N(u)), and (ii) the messages it has received from its neighbors.

This knowledge may be insufficient to detect that N(u) 6= NON (λ)(u).

2.2.1 Local Checkability

A family of overlay networks ON is locally checkable if and only if all faulty

configurations contain at least one node u that detects the configuration is faulty

using its local information. Such a node is called a detector. As stated earlier, this

“local” information consists of (i) a node u’s local state, including the neighbors of u,

and (ii) the messages received from u from nodes in N(u). For a silent self-stabilizing

algorithm to exist for an overlay network family ON , ON must be locally checkable.

An interesting question is, given a locally checkable overlay network ON , what

messages need to be exchanged between nodes so that nodes can detect a fault? One

approach is to simply have every node u share all of its state information with its

neighbors. In this approach, every node knows its 2-neighborhood. Specifically,

let the set of nodes within distance 2 of node u be N2(u), and let the associated

identifiers and random sequences be id2
u and rs2

u, respectively. Furthermore, let E(u)

be the set of edges between nodes in u’s 2-neighborhood – that is, E(u) = {(u, v)|v ∈

N(u)} ∪ {(v, w)|v ∈ N(u) ∧ w ∈ N(v)}. Note that the size of messages that are

exchanged even in a correct (silent) state can be quite large – at least a logarithmic

factor of the size of N(u).

To save bandwidth, we examine in Chapter 4 of this thesis how we can maintain

the local checkability of a network while exchanging only a (relatively) small amount of
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information between nodes. Specifically, every node maintains a string of bits (called

the proof label), which it exchanges with all of its neighbors in every round. In this

case, a silent self-stabilizing algorithm eventually reaches a state where only small

messages are being exchanged between neighbors. These messages can accompany

the heartbeat messages, for instance. We describe proof labels in more detail in

Chapter 4.

The local checkability of an overlay network has played a major role in current

self-stabilizing overlay network research. Because many overlay networks are not

locally checkable, to achieve silent stabilization, researchers have had to first create

a locally checkable version of an overlay network, and then create the algorithm. For

its prominent role in self-stabilizing overlay networks, local checkability has received

little formal attention – no current work offers explicit proofs of local checkability,

nor a formal definition with respect to overlay networks.

2.3 Measures of Complexity

Many of the traditional complexity measures for distributed computing apply

to overlay networks. Perhaps the most common measure is the time required for an

algorithm to bring the system into a legal configuration. Our model uses synchronous

networks where computation proceeds in rounds. In every round, every node in the

network receives messages sent to it in the prior round, executes all enabled actions,

and sends messages as specified by program actions. The round complexity, also

called the stabilization time or convergence time, for a network G and algorithm
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A is the number of synchronous rounds required for the algorithm A to reach the

correct configuration ON(λ) when starting from G = (V,E) and λ = (V, id, rs).

The convergence time for algorithm A is the maximum convergence time for network

G taken over all G ∈ G. We assume that overlay networks may consist of a large

number of nodes. Therefore, a “good” algorithm should have convergence time that

is sub-linear in n, with logarithmic in n being the best achieved to date.

One measure of complexity that has been proposed specifically for overlay

networks is work. Work, first introduced by Gall et al. [17], is a representation of

an “edge action” – the creation or deletion of an edge in the network. If we let Ei

represent the edges present in the network in round i, the work executed in round

i is |{(u, v) ∈ (Ei \ Ei−1)}| + |{(u, v) ∈ (Ei−1 \ Ei)}|. Gall et al. examined how

limiting each node to only a constant amount of work in each synchronous round

altered convergence time. They found convergence time may increase greatly when

work per node is limited to a constant (O(n) to O(n2) for the Linear network.

While the majority of the inter-node actions executed by some algorithms are

in fact edge creation or deletion (such as with Linear and Skip+), some algorithms

execute a large number of actions that exchange messages without creating an edge.

In these cases, the measure of work seems arbitrary. For instance, an algorithm could

send messages to gather the network’s state, which could require a quadratic number

of messages but no work. Furthermore, a node could add a linear number of edges

in O(n) rounds and still execute only a constant amount of work per round, even

though their maintenance overhead (e.g. heartbeat messages on each link) for the
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O(n) edges is very high.

We present a new overlay network complexity measure for analyzing overlay

network algorithm space requirements. Let G be a graph with nodes λ = (V, id, rs),

and let ∆G be the maximum degree of nodes in G. For a self-stabilizing algorithm

A executing on an overlay network G = (V,E), let ∆A,G be the maximum degree of

any node from V during execution of A beginning from configuration G. We define

the degree expansion of A on G as DegExpA,G = (∆A,G/max(∆G,∆ON (λ))). The

degree expansion of A on G measures the maximum degree any node u ∈ V has

during execution of the algorithm relative to the maximum degree a node must have

– either their initial degree in network G, or their degree in the correct configuration

ON (λ). Let the degree expansion of A be DegExpA = maxG∈G(DegExpA,G). Infor-

mally, the degree expansion of an overlay network algorithm is the largest any node

degree in any initial network may grow “unnecessarily” relative to the initial and final

configurations.

The degree expansion of a self-stabilizing overlay network algorithm is a more

appropriate measure than work. In modern overlay networks, the cost of creating

or deleting a link seems to be of similar magnitude to maintaining an existing link.

Therefore, provided a node’s neighborhood always remains “small”, any operation –

edge addition, edge deletion, exchanging messages – can be done quickly. Efficient

overlay network creation should limit degree expansion to be polylogarithmic.
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2.3.1 Modeling the Adversary

The measures listed above all measure an algorithm’s “worst-case” perfor-

mance. Specifically, they take the maximum value for each measure over all graphs

G ∈ G. There may be only a few configurations in G, however, that realize these

worst-case values. We often think of the initial network G as being created by some

adversary. The measures presented above all assume an omnipotent (capable of

modifying any state variable) and omniscient (capable of reading any state variable)

adversary that can connect nodes in any arbitrary fashion (provided they remain

weakly-connected) and has full knowledge of every λ = (V, id, rs). This powerful

adversary can always create a network that realizes the worst-case convergence time.

There are, however, weaker adversarial models. One common weaker adver-

sary is the random-sequence-oblivious adversary. This adversary can weakly connect

the nodes in any fashion, but only has knowledge of V and id, not of rs. The

complexity measures above are usually then given with some probability when using

this adversary. This is due to the fact that the configuration realizing the worst-case

performance may depend upon a particular distribution and arrangement of random

sequences, which the adversary cannot control. Unless otherwise noted, however, the

results here are all for the stronger adversary with knowledge of λ (as are all prior

results in the area).



24

Figure 2.1: A 6-node Linear network.

2.4 Network Specifications

Throughout this work we will use several overlay networks frequently as ex-

amples. We present these networks here and reference them in later chapters.

2.4.1 The Linear Network

Presented in 2007 by Onus et al. [30], the Linear network is a “sorted” line

graph. Specifically, every node keeps a link to its successor (if such a node exists)

succ(idu) = arg minw∈V (idw > idu) and to its predecessor (if it exists) pred(idu) =

arg maxw∈V (idw < idu). The correct Linear network, then, has diameter n − 1. A

Linear network consisting of 6 nodes is given in Figure 2.1.

The Linear network is locally checkable. Every node simply checks to see if

it has at most two neighbors – one with a larger identifier, and one with a smaller

identifier. All incorrect weakly-connected configurations violate at least one of these

conditions – either a node has too many neighbors, or a node has more than one

neighbor with larger or smaller identifiers.

2.4.2 Skip Graphs

The Skip graph, a distributed implementation of the Skip list data structure,

was first introduced in 2003 by Aspnes and Shah [2]. The graph consists of a series
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of “levels”, with the neighbors of a node u at level i being determined by both a

node’s random sequence rsu and the node’s identifier idu. To define Skip graphs, we

introduce some additional notation adapted from Jacob et al. [23].

• prei(u): for any node u and nonnegative integer i, prei(u) denotes the leftmost

(most significant) i bits of rsu

• pred(u,W ): for any node u and subset W of nodes, pred(u,W ) is the node in

the set W with largest id whose id is less than idu (that is, node u’s predecessor

from the set W ). If no such node exists, pred(u,W ) = ⊥.

• succ(u,W ): for any node u and subset W of nodes, succ(u,W ) is the node in

the set W with smallest id whose id is more than idu (that is, node u’s successor

from the set W ). If no such node exists, pred(u,W ) = ⊥.

A Skip graph consists of levels 0, 1, 2, . . . , L, where L = |rs|. At level i, a node u

is neighbors with pred(u, {w|prei(w) = prei(u)}) and succ(u, {w|prei(w) = prei(u)}).

It is often assumed that nodes are capable of extending their random sequences until

every node’s random sequence is unique. With this assumption, Skip graphs have

logarithmic degree and diameter with high probability. A Skip graph is given in

Figure 2.2 (nodes are ordered left-to-right by increasing identifiers, which are not

listed).

It is impossible, however, to create a silent self-stabilizing algorithm for the

Skip graph, since Skip graphs are not locally checkable. To see this, consider Figure

2.3, which is a faulty Skip graph with no detectors. The graph has a single fault – an

edge should exist between the node with identifier 1 and 22. However, no node has
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Figure 2.2: A Skip Graph.

knowledge of both 1 and 22, and therefore no node is a detector.

2.4.3 The Skip+ Network

Jacob et al. [23] augmented the Skip graph with additional edges to create

a locally-checkable graph appropriately named the Skip+ graph. In addition to the

edges of the Skip graph, every node in a Skip+ graph maintains edges in each level

i to “verify” its neighbor at level i + 1. Before presenting a formal definition, we

introduce the following terms, again adapted from the work of Jacob et al. [23].

• For node u, nonnegative integer i, and x ∈ {0, 1},

predi(u, x) = pred(u, {w | prei+1(w) = prei(u) · x})

In words, predi(u, x) is the predecessor for u, selected from all nodes who have

the same length-i random sequence prefix as u and whose (i + 1) bit of their
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Figure 2.3: A faulty Skip configuration with no detectors.

random sequence is x.

• For node u, nonnegative integer i, and x ∈ {0, 1},

succi(u, x) = succ(u, {w | prei+1(w) = prei(u) · x})

• For node u and nonnegative integer i,

lowi(u) = min{idpredi(u,0), idpredi(u,1)}

• For node u and nonnegative integer i,

highi(u) = max{id succi(u,0), id succi(u,1)}

• For node u and nonnegative integer i,

rangei(u) = [lowi(u), highi(u)]

Like Skip graphs, the Skip+ graph consists of levels 0, 1, . . . , |rs|. In a level i,

node u has edges to all nodes v such that idv ∈ rangei(u) and prei(u) = prei(v). A

legal Skip+ graph is shown in Fig. 2.4.
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Figure 2.4: A Skip+ graph. Notice the Skip+ graph consists of all edges from the

corresponding Skip graph and additional edges to make the graph locally checkable.

2.4.4 Chord

One of the most popular overlay networks for researchers is Chord, presented

in 2001 by Stoica et al. [36]. The Chord network consists of n nodes, each with a

unique identifier from 0 to (N − 1) (clearly n ≤ N). As with Linear, neighbors are

determined by the successor function succ(id), which returns the node v with the

smallest identifier greater than id . Unlike Linear, however, Chord is defined on a ring

topology, so if no such node exists, succ(id) returns the node w with the smallest

identifier.

Besides maintaining a link to its successor, every node u also maintains several

fingers to nodes spaced throughout the network. The ith finger of node u, 0 < i <

logN , connects u to succ((idu + 2i − 1) mod N). These fingers give the network

logarithmic diameter. The base Chord ring for N = 16 is shown in Figure 2.5, along
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Figure 2.5: A small Chord network.

Figure 2.6: A faulty Chord configuration with no detectors.

with the fingers for node u, with idu = 2. Notice that succ(2) = succ(2 + 2− 1) = 4,

and that succ(2 + 8− 1) = 11, since nodes 3 and 10 are missing.

As pointed out in the original Chord work [36], the Chord network is not

locally checkable. The authors offer an example similar to the one shown in Figure

2.6 (shown only with a node’s immediate successor pointers). No node in the network

can detect that the successor pointers are faulty, since no node has knowledge of a

“better” successor for any neighboring node.
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2.4.5 Re-Chord

The Re-Chord network [25] is a locally checkable version of the Chord net-

work. Like Skip+ graphs, Re-Chord was created to enable the design of a silent

self-stabilizing algorithm. In Re-Chord, the n nodes of V (called “real” nodes in the

work) “simulate” zero or more “virtual” nodes. The Re-Chord network is defined

over all nodes, real and virtual. Unlike Chord, nodes in Re-Chord are assigned real

identifiers from [0, 1) (for sufficiently large N the approaches are equivalent). Every

node (real and virtual) maintains links to their successor in the ring as with Chord.

Every real node u also maintains virtual nodes with identifiers idu + 1/2i mod 1, for

0 < i ≤ m, where m is the minimum value such that u has no edge to a real node

with identifier in the range [idu, idu + 1/2m]. To ensure local checkability, nodes also

label edges as either “un-marked” or “ring” edges, and only ring edges are allowed to

“cross” 0 (that is, an edge (u, v) with idu > id v is a ring edge). Note the real nodes in

Re-Chord have the same edges as Chord due to the presence of virtual nodes linking

to their successors, meaning any operation possible on the Chord network is possible

on the Re-Chord network.
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CHAPTER 3
BUILDING SELF-STABILIZING OVERLAY NETWORKS WITH THE

TRANSITIVE CLOSURE FRAMEWORK

Research in self-stabilizing overlay networks has mostly focused on specifics

– creating a specific (locally checkable) network, creating a specific algorithm for

building this network, and then providing specific convergence bounds for the given

algorithm. This approach has several drawbacks. First, the specific algorithms are

either complex and difficult to prove correct, or simple and for basic topologies only.

This complexity also makes it hard to analyze the algorithms in terms of optimality

– it is unclear from prior work what the best-case scenario is for overlay network

convergence time. Finally, the details often time hide the techniques being used for

defining the network and designing the algorithm.

To address these concerns, we present a generic framework for building self-

stabilizing overlay networks called the Transitive Closure Framework. We also define

a measure for overlay networks called the detector diameter, and provide a bound for

optimal convergence time. Finally, we extend the Transitive Closure Framework to

repair certain faults quickly.1

3.1 The Transitive Closure Framework

The Transitive Closure Framework (TCF) is a generic technique that can be

used to create self-stabilizing algorithms for any locally checkable overlay network. It

1This chapter is derived from our work which appeared first as a brief announcement in
2010 [5], as a full paper in 2011 [6], and is currently under review for the journal Theoretical
Computer Science [7].
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is shown in Algorithm 3.1. The basic idea of the Transitive Closure Framework is that

every node that detects the network is in a faulty configuration begins a transitive

closure process on its neighborhood, placing all nodes at distance 2 from it into its

neighborhood. After the network is completely connected, every node deletes its

incident edges that are not part of a correct configuration, and in the next round the

network has stabilized to the correct configuration.

As a “pre-processing” step of the algorithm, in every round nodes share their

current state with all neighbors. This is equivalent to every node knowing its 2-

neighborhood. We use N2(u) to denote all nodes that are at most distance 2 from u,

and id2
u and rs2

u to denote the identifiers and random sequences of the nodes from

N2(u). We use these constructs when defining the algorithm’s components. Notice

that TCF uses a predicate (called Detect) and a subroutine (called Repair) which

are not implemented. These are generic constructs that need to be instantiated for

each family of overlay network. The Detect predicate “signals” a node that the

network is in an incorrect state and the transitive closure process should begin, while

the Repair subroutine builds the correct network configuration. We define these

constructs below.

Definition 3.1. The Detect predicate at a node u is a predicate defined over over

(N2(u), id2
u, rs

2
u), Eu and is false exactly when N(w) = NON(N2(u),id2u,rs

2
u)(w) for all

w ∈ N(u)∪{u}; otherwise the Detect predicate is true. A node u is called a detector

if the Detect predicate evaluates to true at node u.

As an example, consider the Detect predicate for the Linear family of overlay
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networks presented in Section 2.4.1. The Detect predicate simply checks to see if the

subgraph induced by a node u’s 2-neighborhood fails to induce a path of length at

most 5, sorted by ids. If there is not such a path, Detect is set to true.

Definition 3.2. Given λ = (V, id, rs), the Repair subroutine at node v sets the

neighborhood of v to NON(λ)(v) in one round.

We now describe in more detail how the TCF algorithm from Algorithm 3.1

works. Whenever a node u evaluates Detect to true, it sets its local variable detectu

to true (Line 4). In the next round, all neighbors v ∈ N(u) will set their detectv to

true if they haven’t already (Line 12). Every node with detectu = true will execute

the transitive closure process (Line 11). This process is like “pointer jumping”, and

simply adds all x ∈ N(w) : w ∈ N(u) to N(u). Once the entire network is completely

connected, nodes execute the Repair subroutine (Line 8) and the correct overlay

network is built.

3.2 The Detector Diameter

The convergence time for the Transitive Closure Framework depends upon the

distribution of detectors in the network. Notice that once all nodes become detectors,

Algorithm 3.1 converges in O(log n) rounds. We are interested, then, in how long it

takes before all nodes in the network are detectors. In any faulty configuration, this

depends upon the distance between a node and its closest detector. We formalize this

concept next.

Let λ = (V, id, rs) be a set of nodes, and let G = (V,E) be a weakly-connected
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Algorithm 3.1 Transitive Closure Framework

Algorithm for process u

Variables: neighborhood N(u), Boolean detectu

in each round do

1. Send N(u), idu, and rsu to every neighbor v ∈ N(u)

2. Receive N(v), idv, and rsv from each v ∈ N(u)

3. Compute from this information: λ2 ← (N2(u), id2
u, rs

2
u) and

Eu ← {(u, v)|v ∈ N(u)} ∪ {(v, w)|v ∈ N(u)}

4. detectu ← Detect(λ2, Eu)∨ detectu

5. Send detectu to every neighbor v ∈ N(u)

6. Receive detectv from every neighbor v ∈ N(u)

7. if detectu ∧ ∀v ∈ N(u) : (detectv ∧ ({N(v) ∪ {v}} = {N(u) ∪ {u}})) then

8. N(u)← Repair(N(u) ∪ {u}, idu, rsu)

9. detectu ← false

10.else if detectu ∨ (
∨
v∈N(u) detectv) then

11. N(u)← N(u) ∪ {
⋃
v∈N(u) N(v)} //transitive closure

12. detectu ← true

13. fi

od
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graph consisting of these nodes. Assume G 6= ON (λ) for some family of overlay

networks ON , and let D ⊆ V be the set of detectors. The detector diameter of G with

respect to λ is denoted DetDiamON (λ)(G), and is the maximum distance in G between

any node in V and its closest detector. Note that DetDiamON (λ)(G) is also the

maximum number of rounds required before all nodes in G have detectu = true when

executing the Transitive Closure Framework. The detector diameter DetDiamON (n)

of a family of overlay networks ON is the maximum of DetDiamON (λ)(G) over all

λ = (V, id, rs) with |V | = n and all connected networks G consisting of nodes from

λ. Notice for networks that are not locally checkable, the detector diameter is ∞.

Using the detector diameter, we are then able to bound the running time of

the Transitive Closure Framework given in Algorithm 3.1.

Theorem 3.1. The Transitive Closure Framework presented in Algorithm 3.1 is a

self-stabilizing algorithm for constructing any locally-checkable family of overlay net-

works ON in at most DetDiamON(n) + log(n) + 1 rounds.

Proof. Consider some faulty (with respect to ON) configuration G. Since ON is

locally-checkable, there is at least one node u in G such that u is a detector. Node u

will set detectu to true (Line 4). In the next round, all neighbors w ∈ N(u) will set

detectw to true (lines 10-12). In general, in every round the distance between a node

w and the closest node x such that detectx = true decreases by one, until eventually

all nodes are detectors. Since every node is at most distance DetDiamON(n) from a

detector in G, at most DetDiamON(n) rounds are required. At this point, all nodes

in the network are executing the transitive closure step (line 11).
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When all nodes are executing the transitive closure step, the diameter of the

network is halved in every round. In log n rounds, then, the diameter of the network

is 1 (i.e. the network is a clique). Nodes will detect the network is a clique and all

neighbors are detectors (line 7), at which point all nodes will simultaneously build

the correct topology and clear their detect variable (lines 8-9).

Therefore, in at most DetDiamON(n) + log n + 1 rounds, the correct network

has been built from any arbitrary initial weakly-connected topology.

3.2.1 A Lower Bound for the Convergence Time

An interesting question is, given the detector diameter of a particular overlay

network ON , how far off from optimal is the Transitive Closure Framework with re-

spect to convergence time? We answer this question with the following theorem, which

gives the first non-trivial lower bound on the convergence time for self-stabilizing over-

lay networks. Let DiamON(n) be the maximum diameter of any member of ON with

at most n nodes.

Theorem 3.2. Let ON denote any family of locally checkable overlay networks.

Any silent self-stabilizing algorithm for constructing ON requires, in the worst case,

Ω(DiamON(n)) time.

Proof. Let λ = (V, id, rs) with |V | = n. Let G = ON(λ) (that is, G is the correct

ON network) and d = DiamON(G). There exists a shortest path consisting of distinct

nodes p0, p1, · · · , pd in the network G. Let V ′ = V \{p0} and id′ and rs′ be restrictions

of id and rs (respectively) to V ′, and let λ′ = (V ′, id′, rs′). Create a new network
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G′ = ON(λ′) (such a G′ must exist, as we have assumed ON : Λ → G is defined on

all members of Λ). Note that G′ is the correct ON network with node p0 removed.

We prove the theorem holds by constructing a graph GF that requires Ω(DiamON(n))

rounds to stabilize. To determine how to build GF , we examine the distance between

nodes p1 and pd in G′.

Case 1: distG′(p1, pd) >
d
2
. To construct GF , insert node p0 as a neighbor to node

pd in G′. The modified network is now faulty, as p0 must be a neighbor of p1

(and vice-versa) in the ideal configuration ON(λ). Furthermore, only pd and its

immediate neighbors have knowledge of node p0, and these nodes are at least

distance d
2

+ 1 away from node p1, and node p1 must change its local state to

reach the correct configuration. Information concerning the existence of a fault

due to the existence of p0 can travel at most one hop per round, and no node on

the path from p1 to pd is a detector before receiving this information. Therefore,

the self-stabilization time from such a state is at least d
2

+ 1 (the time required

for node p1 to be aware of node p0’s existence).

Case 2: distG′(p1, pd) ≤ d
2
. In this case, GF is the graph resulting from removing

node p0 from G. Let B(pd,
d
2
) be the subgraph induced by all nodes at distance

at most d
2

from node pd in G, and let B′(pd,
d
2
) be the subgraph induced by

all nodes at distance at most d
2

from node pd in G′. Notice that B(pd,
d
2
) does

not include node p1, while B′(pd,
d
2
) does include p1. Therefore, there must

exist at least one node w ∈ B(pd,
d
2
) whose neighborhood in G′ is different from

its neighborhood in G. If this were not the case, then B(pd,
d
2
) = B′(pd,

d
2
),
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which would be addressed by Case 1 above. Notice that node w is at least

distance d
2

from p0 in G, and that the correct neighborhood of w depends upon

the existence of node p0 – that is, removal of p0 from G causes w to change

its neighborhood. However, only immediate neighbors of p0 are aware of its

removal, and information that the network is faulty can travel at most one hop

per round. Therefore, it will require at least d
2

rounds before node w is aware

it should begin changing its neighborhood. Stabilization will require at least d
2

rounds in this case.

The implication of Theorem 3.2 is that for networks where the detector diame-

ter is of the order of the diameter, the Transitive Closure Framework is nearly optimal

– within at most an additive logarithmic factor of optimal. In fact, there may not

exist a self-stabilizing algorithm that converges in sub-logarithmic time in our model,

which would imply the Transitive Closure Framework is an optimal (with respect to

convergence time) algorithm for any locally-checkable self-stabilizing overlay network

family ON .

3.2.2 Example: The Linear Network

We can show easily that DetDiamLinear(n), the detector diameter for the Lin-

ear network, is O(n). Consider the network given in Figure 3.1. Notice that only

nodes (n− 2), (n− 1) and 0 detect a fault in the network. Node (n− 2) is of distance

(n−3) from node 1, and therefore we have a detector diameter of (n−3) (since Linear

is locally checkable, the detector diameter must be finite, and clearly it cannot exceed
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Figure 3.1: A faulty Linear network with DetDiamLinear(n) = O(n).

n).

3.2.3 Example: The Skip+ Network

To provide a non-trivial example of the Transitive Closure Framework, we

consider the Skip+ graph overlay network family. To compare the performance of

our Transitive Closure Framework with the optimal convergence of Skip+ graphs, we

must prove the detector diameter of Skip+ graphs. We present this analysis below.

3.2.3.1 The Detect Predicate and Repair Subroutine

The Transitive Closure Framework requires the existence of a Detect predicate

and Repair procedure for the desired overlay network. Detect and Repair both

follow easily from the definition of a Skip+ graph from Section 2.4.3. For the Detect

predicate, each node computes its range using its 2-neighborhood, and then verifies

that a node is a neighbor if and only if it is inside a node’s range at level i. For

the Repair subroutine, a node simply retains only those neighbors inside its range at

level i, for all i ∈ [0, |rs|].

3.2.3.2 The Detector Diameter

While defining the Detect predicate and Repair subroutine is straightforward,

analyzing the running time of the Transitive Closure Framework with these compo-
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nents is non-trivial. To find the convergence time of the Transitive Closure Framework

with respect to Skip+ graphs, we compute the detector diameter for Skip+ graphs.

Theorem 3.3. The detector diameter for the Skip+ network DetDiamSkip+(n) is

|rs|+ 1, which is O(log n) with high probability.

Proof. Let Gρ be a subgraph of an arbitrary network G, induced by the set of nodes

{v : pre|ρ|(v) = ρ}. Furthermore, let Cρ be some connected component in Gρ, VCρ

be the nodes from Cρ, and idCρ and rsCρ be the identifiers and random sequences of

nodes in VCρ . Notice that the maximum diameter of Skip+(VCρ , idρ, rsρ) is L−|ρ|+1,

where L = |u.rs| (each hop can bring a node at least one bit closer in random sequence

to any other node). We will find the detector diameter by using induction on the

length of ρ.

Base Case: |ρ| = L. In this case, ∀v, v′ ∈ Cρ : v.rs = v′.rs. Thus, either the

nodes in Cρ are completely connected (and thus Cρ = Skip+(VCρ , idρ, rsρ)), or some

node u ∈ Cρ has a neighbor v ∈ Cρ, and v has a neighbor v′ ∈ Cρ such that v′ is not

a neighbor of u. In this case, node u (v) has v′ (u) in its 2-neighborhood, and will

detect that a direct link should exist but does not. Therefore, u and v′ will become

detectors, and each node is at most (L− L) + 1 = 1 hops away from a detector.

Let σ · x be a bit sequence consisting of σ concatenated with the bit x, and

σ · x̄ be bit sequence made up of σ concatenated with the opposite of bit x.

Induction Hypothesis: Assume for all connected components in Gσ·x and

Gσ·x̄, every node in a faulty connected component is within L− (|σ|+1)+1 = L−|σ|

steps of a detector.
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Inductive Step: Consider the connected component Cσ·x, which joins with

0 or more other connected components to form Cσ. We assume Cσ does not match

the ideal Skip+ graph corresponding to the nodes of Cσ, else the lemma is vacuously

true. We examine the following cases, based upon how which components of Cσ·x are

combined to form Cσ.

Case 1: Cσ·x = Cσ. If Cσ·x = Cσ, then all nodes in Cσ are at most L − |σ|

from a detector by the induction hypothesis, and the claim holds.

Case 2: Cσ·x 6= Skip+(VCσ·x , idCσ·x , rsCσ·x). If Cσ·x was a faulty configuration,

the claim again holds by the induction hypothesis, as all nodes in Cσ·x remain within

L− |σ| hops of a detector in Cσ.

Case 3: Cσ·x 6= Cσ and Cσ·x = Skip+(VCσ·x , idCσ·x , rsCσ·x). There must be

some edge in Cσ that was not present in Cσ·x, or else Cσ = Cσ·x. Furthermore, notice

these new edges may only connect nodes in Cσ·x to nodes from Gσ·x̄ (otherwise, Cσ

would have been a single connected component in Gσ·x).

Consider first the case where Cσ·x connects with exactly one other connected

component Cσ·x̄ to form Cσ. If there exists a node in Cσ·x that is not connected to

a node in Cσ·x̄, then there must exist a node v ∈ Cσ·x such that v has no neighbor

x ∈ Cσ·x̄ and v has a neighbor w ∈ Cσ·x such that w has a neighbor x′ ∈ Cσ·x̄. Node

v will then have x′ inside it’s calculated range at level |σ|, but no direct link to x′,

and v is a detector. By assumption, v is within L − |σ| of all other nodes in Cσ·x.

If all nodes in Cσ·x are connected to at least one node in Cσ·x̄, then either there is a

detector in Cσ·x̄ that (by the induction hypothesis) is within L− |σ|+ 1 of all nodes
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in Cσ·x, or Cσ·x̄ was correct, in which case the diameter of the network is at most

L− |σ|+ 1, and our claim holds.

Next, consider where Cσ·x is connected to more than one component. As

before, if any node in Cσ·x has no edge to a node from Gσ·x̄, then there must exist

a node v ∈ Cσ·x without an edge to a node in Gσ·x̄, and v must have a neighbor

w ∈ Cσ·x such that v has a neighbor from Gσ·x̄. Therefore, v will be a detector, and

our claim holds.

Consider where all nodes in Cσ·x are connected to at least one node in Gσ·x̄. If

a node v ∈ Cσ·x has a link to nodes in two different connected components, say Cσ·x̄

and C ′σ·x̄, then v will detect that these nodes should be connected but are not, and v

becomes a detector. If all nodes in Cσ·x are connected to at least one node from Gσ·x̄,

and no node has connections to nodes from Cσ·x̄ and C ′σ·x̄, then there must exist two

neighbors v, w ∈ Cσ·x such that v and w share no neighbors from Gσ·x̄. In this case,

both v and w are detectors, and our claim holds.

To find the detector diameter, let ρ be the empty string. Every node is

at most distance L + 1 from a detector in a faulty configuration, and therefore

DetDiamSkip+(n) = L + 1 = |rs| + 1. Recall that the random sequence is often

extended until every node has a unique random sequence, implying L is c · log n with

high probability.

Combining Theorems 3.2 and 3.3 implies that any self-stabilizing algorithm

for Skip+ networks requires Ω(log n) rounds, and therefore the Transitive Closure

Framework is an optimal (with respect to convergence time) self-stabilizing algorithm



43

for Skip+ network construction. Notice that the original self-stabilizing Skip+ graph

algorithm had a O(log2 n) convergence time.

3.3 Modification: Making Local Repairs

3.3.1 The Local Repair Framework

The main drawback of the Transitive Closure Framework is the required linear

space (degree expansion) and logarithmic time for repairing any fault. Some faulty

network configurations may be repairable using only a small amount of extra space

and in only a few rounds (for instance, node joins and leaves), but the Transitive

Closure Framework will always require Θ(n) degree during convergence (degree ex-

pansion remains linear). We introduce a simple extension to TCF that alleviates this

limitation.

Key to improving upon the Transitive Closure Framework’s space requirement

is the ability to distinguish between configurations that can be repaired quickly with-

out using TCF and configurations that cannot. Therefore, the high-level idea behind

the approach is (i) defining local predicates for a subset of faulty configurations, (ii)

showing these faulty configurations are repaired quickly, and (iii) showing that a node

attempting to make a quick repair in a configuration that cannot be fixed with these

local actions delays the start of the TCF for only a small number of rounds. We pro-

vide a framework for these repairs, which we call the Local Repair Framework (LRF).

The LRF uses two new constructs which we define below.

Definition 3.3. Let L-Detectu be a predicate evaluated over (λ2, Eu) at a node
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u. L-Detectu is true when node u believes its neighborhood is part of a locally-

repairable configuration – i.e. node u calculates using local information that executing

the L-Repair subroutine will result in a correct configuration.

Definition 3.4. Let L-Repair be a subroutine with parameters node u, a set λ =

(V, id, rs), and a set of edges E. L-Repair returns a neighborhood for node u.

L-Repair satisfies the following two properties:

• Convergence : If N(u) is set to L-Repair(u, λ2, Eu) whenever

L-Detectu is true, after a finite number of rounds L-Detectu becomes false.

• Connectivity : Setting N(u) = L-Repair(u, λ2, Eu) does not disconnect the

network.

Notice that a node that detects a fault and executes L-Repair will eventually

reach a state where L-Detect is false. If the faulty configuration is a member of

a particular set of faults (LocalFaults), executing L-Repair is guaranteed to con-

verge to a legal configuration. If the faulty configuration is not a member of the

set LocalFaults, then eventually L-Detect is false for a detector, and other repairs

can be executed. Informally, this scenario is where a node thinks the configuration

is repairable quickly, when in fact there may be more drastic faults present in the

system. The maximum number of rounds L-Repair can be executed before L-Detect

is is guaranteed to be false is called the recovery time of LocalFault RTL-Repair(n).

If every detector u has L-Detectu = false, the LRF reduces to the sim-

ple TCF – no local repairs are recognized (RTL-Repair(n) = 0). Similarly, when
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L-Detectu = true for all detectors, the network configuration is stabilized using

L-Repair in RTL-Repair(n) rounds (this is the “expected” behavior of L-Repair).

We present the Local Repair Framework in Algorithm 3.2.

Algorithm 3.2 Local Repair Framework for Process u

Variables: neighborhood N(u)

in each round do

1. Send N(u), idu, rsu to every neighbor v ∈ N(u)

2. Receive N(v), idv, and rsv from each v ∈ N(u)

3. Compute from this information: λ2 := (N2(u), id2
u, rs

2
u) and

Eu := {(u, v)|v ∈ N(u)} ∪ {(v, w)|v ∈ N(u)}

4. if L-Detectu(λ
2, Eu) then

5. N(u) := L-Repair(u, λ2, Eu);

6. else if N2(u) 6= ON(N2(u)) then

7. Begin the Transitive Closure Process (Lines 4-13 of Algorithm 3.1);

8. fi

od
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3.3.1.1 Proof of the Local Repair Framework

We now provide a proof of correctness for the Local Repair Framework in

Algorithm 3.2.

Lemma 3.1. Starting from any configuration Gλ with node set λ = (V, id, rs), where

∀u ∈ V : L-Detectu = false, after at most DetDiamON(n) + log n + 1 rounds the

correct network ON(λ) is constructed.

Proof. Clearly if Gλ = ON(λ), the lemma holds. If the network is faulty and

L-Detectu is false for all nodes, then at least one node will initiate the Transitive

Closure process. The network remains connected, as neither the Transitive Closure

process nor the L-Repair subroutine disconnects the network (by definition). Also

notice that once the Transitive Closure process is initiated, it continues until the

correct network is built (as the network is locally checkable, at least one node will

be a detector until the network is correct). The remainder of the proof follows from

Theorem 3.1.

Lemma 3.2. Starting from any configuration where L-Repairu = true for some

detector, then in at most RTL-Repair(n) rounds either the correct overlay network is

built or the Transitive Closure program is initiated.

Proof. When L-Repairu = true for a detectors, the only neighborhood changes in the

network occur due to line 5, which executes the L-Repair subroutine. By definition,

after at most RTL-Repair(n) rounds the network is either correct, or the detector has

started the Transitive Closure process (line 7).



47

Theorem 3.4. Algorithm 3.2 is a self-stabilizing overlay network algorithm that can

recover from any configuration in at most RTL-Repair(n) + DetDiamON(n) + log n+ 1

rounds. Furthermore, a subset of configurations require at most RTL-Repair(n) rounds

to repair.

Proof. This follows easily from Lemmas 3.1 and 3.2.

3.3.2 Example of Local Repair: Join in Skip+ Graphs

To demonstrate this technique, we consider one of the most common classes of

faults: node joins. Specifically, we consider how to recover from node joins in Skip+

graphs.

As overlay network membership is often dynamic, accommodating nodes being

added to the system is a commonly-addressed fault in overlay networks. A node

that wishes to become a member of the overlay network begins the join process by

connecting to a single node that is already a member of the current (correct) network.

The goal of Join algorithms are to integrate the node into the correct network within

some small amount of time. In this section, we instantiate the LRF by adding node

Joins to Skip+ graphs.

3.3.3 The L-Detect Predicate and L-Repair Subroutine

The join procedure informally works as follows. A node that is joining is

connected to an arbitrary node in the correct network. The joining node u adds links

to nodes with longer random sequence prefix matches than its current neighbors, until

eventually it is neighbors with a node v such that v is the longest random sequence
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prefix match in the network. This is the highest level that u will be a non-singleton in

the network. Node u then adds neighbors one level at a time beginning with this top

level, with each level requiring one additional round. Once u has added all neighbors

at all levels, any extra links it created are deleted, and in the following round all

neighbors can update their range (if necessary) and delete their additional edges.

We begin by defining the following predicates that are evaluated locally on

each node u, which together form L-Detectu. For ease of notation, let pre(s1, s2)

return the prefix match between strings s1 and s2, and |pre(s1, s2)| be the length of

the matching prefix. Recall that Eu = {(u, v)|v ∈ N(u)} ∪ {(v, w)|v ∈ N(u)}, N2(u)

is the set of the “at-most 2-hop neighbors” of u, and idu and rsu are the restrictions

on id and rs from the set N2(u).

1. SingleNodeFaultu(v) := [NSkip+(N2(u),idu,rsu)(u) 6= N(u)]∧

[(Eu \ {(v, x),∀x}) = Skip+(N2(u) \ {v}, idu, rsu)]

• Node u detects its neighborhood is incorrect. However, node u’s local

neighborhood is consistent with the correct overlay network node u would

see with node v removed.

2. AllConnectedu := |N(u)| > 1 =⇒ ∀v ∈ N(u) : ∃w 6= v ∈ N(u) s.t. w ∈ N(v)

• If a node u has more than 1 neighbor, then for all neighbors v ∈ N(u),

there exists another neighbor w ∈ N(u) (not equal to v) such that an edge

exists between v and w.

3. LongerMatchExistsu := ∃w ∈ (N2(u) \N(u)) s.t.
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∀v ∈ N(u) : |pre(u.rs, w.rs)| > |pre(u.rs, v.rs)|

• In node u’s 2-neighborhood, there exists a node w who has a longer match-

ing random sequence than any node currently in u’s immediate neighbor-

hood.

4. InitiatingJoinu := LongerMatchExistsu ∧ AllConnectedu∧

SingleNodeFaultu(u)∧

[∀v ∈ N(u) :6 ∃w ∈ N(u) s.t. |pre(u.rs, v.rs)| = |pre(u.rs, w.rs)|]

• For u, LongerMatchExistsu, AllConnectedu, and

SingleNodeFaultu(u) (see above) and no two nodes in N(u) have the same

length prefix match with u.

5. CreatingJoinLinksu := AllConnectedu ∧ ¬LongerMatchExistsu∧

SingleNodeFaultu(u) ∧ (∃w ∈ N2(u) s.t. (u,w) ∈ NSkip+(N2(u),idu,rsu)(u)

∧w /∈ N(u))

• AllConnectedu, ¬LongerMatchExistsu, and SingleNodeFaultu(u) are

true. Also, node u has nodes in its 2-neighborhood that should be neigh-

bors in the correct Skip+ graph, yet are not neighbors now.

6. JoinCompletedu := AllConnectedu ∧ SingleNodeFaultu(u)∧

NSkip+(N2(u),idu,rsu)(u) ⊂ N(u)

• AllConnectedu and SingleNodeFaultu(u) is true for node u, and the

neighbors of u are a superset of the nodes u should have in it’s calculated

ideal configuration.
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7. WaitForJoinu := ∃v ∈ N(u) : SingleNodeFaultu(v)∧

NSkip+(N2(u),idu,rsu)(v) 6= N(v)

• Node u has a neighbor whose removal would make N(u) correct, and N(v)

does not match the calculated neighorhood for v.

8. JoinDetectedu := ∃v ∈ N(u) : SingleNodeFaultu(v)∧

NSkip+(N2(u),idu,rsu)(v) = N(v) ∧NSkip+(N2(u),idu,rsu)(u) ⊂ N(u)

• Node u has a neighbor v whose removal would make node u’s neighbor-

hood correct, node u’s current neighborhood is currently a superset of u’s

calculated neighborhood, and node v has a correct neighborhood.

We use the predicates above to define L-Detectu next.

Definition 3.5. For Join in Skip+ graphs, let L-Detectu :=

InitiatingJoinu ∨ CreatingJoinLinksu ∨ JoinCompletedu ∨WaitForJoinu∨

JoinDetectedu

We define the subroutine L-Repair for Join in Skip+ graphs below. The high-

level idea of the joining procedure from Algorithm 3.3 is simple. A joining node u

“traverses” the network (by adding edges), searching for the node with the longest

prefix match with u’s random sequence (predicate InitiatingJoinu is true). Once

this node is found, node u adds the appropriate neighbors for each level (predicate

CreatingJoinLinksu). Once all neighbors have been added, node u deletes the edges

that it used to find the longest prefix match. Other nodes in the network do nothing

if there is a single-node fault in the network (WaitForJoinu) until that single node
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has successfully joined the network (JoinDetectedu), and then their neighborhoods

are updated to incorporate the new node.

3.3.3.1 An Example Join

To clarify the Join procedure, we present an example Join for the Skip+ graph

from Fig. 2.4. Imagine a node u with u.id = 27 and u.rs = 110 joins the network

by connecting to node w, with w.id = 1. Both node w and u will detect their local

neighborhoods would appear correct if node u was removed (SingleNodeFaultw(u)

and SingleNodeFaultu(u)). Node w evalutes WaitForJoinw to true and will not

change its neighborhood (Line 10), while node u evaluates InitiatingJoinu to true,

since it has in its 2-neighborhood a node with a longer matching random sequence

than any current neighbor (node x, with x.id = 4 and x.rs = 111). As a result, node

u will, in one round, add the edge (u, x) (Line 2). In the next round, nodes u, w,

and x will detect their local neighborhoods would appear correct if u was removed.

Nodes w and x evaluate WaitForJoin to true and do not change their neighborhoods

(Line 10), while node u evaluates InitiatingJoinu to true and adds node y to its

neighborhood (Line 2), with y.id = 15 and y.rs = 110. In the next round, nodes u,

w, x, and y detect the network would appear correct if u was removed, and u can no

longer find a node with a longer matching prefix than y. The system state at this

point is shown in Figure 3.2.

Now that node u does not detect a node with a longer prefix match in its

2-neighborhood, it begins adding neighbors level-by-level (CreatingJoinLinksu eval-
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Algorithm 3.3 The L-Repair Subroutine for Join in Skip+ Graphs

Parameters: Node u, set λ2, edges Eu

1. if InitiatingJoinu then

// add the longest random sequence match to the neighborhood

2. return N(u) ∪ {x : x ∈ (N2(u) \N(u))∧

|pre(u.rs, x.rs)| = maxt∈N2(u)\u(|pre(u.rs, t.rs)|)∧

(∀y ∈ (N2(u) ∩ {z : |pre(u.rs, z.rs)| = |pre(u.rs, x.rs)|}) :

x.id ≥ y.id)};

3. else if CreatingJoinLinksu then

// add links level-by-level

4. return N(u) ∪ {x : x ∈ NSkip+(N2(u),idu,rsu)(u)∧

|pre(u.rs, x.rs)| = maxt∈N2(u)\N(u)(|pre(u.rs, t.rs)|);

5. else if JoinCompletedu then

// delete edges used to find longest matching random

// sequence, making the network correct for u

6. return NSkip+(N2(u),idu,rsu)(u);

7. else if JoinDetectedu then

8. return NSkip+(N2(u),idu,rsu)(u); // incorporate the joined node

9. else // WaitForJoinu

10. return N(u) // do nothing

11. fi
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Figure 3.2: A Skip+ Join in progress. Node 27 is joining the network.

uates to true). Node u already has the necessary links for levels 2 and 3 (created

during the search for the longest match). Furthermore, all nodes that should be

neighbors with u in level 1 are in u’s 2-neighborhood. Therefore, node u will create

a link in the next round to nodes a and b, with a.id = 22 and b.id = 31 (Line 4). In

the subsequent round u will add links to c and d, with c.id = 3 and d.id = 30, filling

in level 0. Neighbors of u during this process will evaluate WaitForJoin to true (as

u’s neighborhood is not correct), and will not change their neighborhoods (Line 10).

Node u’s neighborhood is now a superset of its calculated correct neighborhood

(the edge to node w, w.id = 1, is unnecessary). Node u, in the next round, will delete

its edge to node w, since JoinCompletedu is true (Line 6). At this point the network

is correct, and the Join procedure is complete.



54

3.3.4 Analysis of Skip+ Graph Join

We begin the analysis by proving the algorithm does not disconnect the net-

work regardless of the configuration. From there, we simply analyze how the neigh-

borhood of a node is modified by program actions, and show this can happen only a

logarithmic number of times before L-Detect must be false.

Lemma 3.3. (Connectivity) L-Repair, when starting from a weakly-connected topol-

ogy, does not disconnect the network.

Proof. Notice that only lines 6 and 8 may delete edges from the network. Therefore,

we only need consider these two actions when examining connectivity. First, consider

a node u that deletes edges by executing line 6 of Algorithm 3.3. The predicate

JoinCompletedu must be true. For all v ∈ N(u), JoinDetectedv is false, as u’s

neighborhood contains too many neighbors, which all nodes v detect. Therefore, only

node u will delete edges from its neighborhood when executing line 6. The predicate

AllConnectedu is true, meaning all of u’s neighbors are connected to each other.

Therefore, since only node u will delete a subset of its edges, and all v ∈ N(u) are

connected through a path that does not including u, the network remains connected

when a node executes line 6.

Next, consider the case where node u deletes edges from its neighborhood

using line 8 from Algorithm 3.3. Notice that no node v ∈ N(u) can delete an edge

using line 6 (see prior paragraph). If an edge is deleted in line 8, then, it must be

because the range of u has shrunk due to the presence of some w ∈ N(u) (since N(u)

is correct if w is removed, and adding nodes can only shrink a calculated range). If
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w ∈ N(u) causes some rangei(u) to shrink, then all nodes that were neighbors in level

i before are now at most distance 2 from u, and are reached by traveling through w.

Node w will not delete these edges in that round. Therefore, the network remains

connected during execution of L-Repair. with some immediate neighbors becoming

distance-2 neighbors through some node w.

Lemma 3.4. (Convergence) The recovery time RTSkip+Join(n) for Algorithm 3.3 is

2 · c · log n+ 2, where the random sequence |rs| is of length c · log n.

Proof. We consider two cases. First, imagine a single node u is joining a legal

Skip+ graph by creating a link to some node x in the network. At this point,

InitiatingJoinu may be true for at most c · log n rounds, as in every round where

InitiatingJoinu is true, u adds an edge to a node v such that |pre(u.rs, v.rs)| is

greater than |pre(u.rs, w.rs)| for all w ∈ N(u) (line 2). Once InitiatingJoinu is

false, node u has a neighbor w such that w has the longest matching random se-

quence prefix with u in the network.

Once InitiatingJoinu is false, CreatingJoinLinksu can be true for at most

c · log n rounds. Assume a node u is neighbors with some node w such that w has the

longest random sequence prefix match of any node in the network, and let the length

of this match be i. We calculate how many rounds are required before u has the

correct range at level i. When CreatingJoinLinksu is true, node u executes line 4,

which continues to add calculated neighbors to N(u). After at most c·log n−i+1 such

additions, node u has a neighbor w′ such that w′ ∈ rangei(u) and u ∈ rangei(w′),

as the diameter of the subgraph induced by all nodes x with |pre(u.rs, x.rs)| = i is
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c·log n−i+1 (every hop is at least one random sequence bit closer to the destination).

For every subsequent round k where CreatingJoinLinksu remains true, u adds links

level-by-level – that is, u adds links to its correct neighbors in level i − k. Note the

correct neighbors for node u at level t − 1 are in the correct 2-neighborhood of u

at level t. To see this, consider the nodes inside u’s (correct) range in level (t − 1),

which we shall denote Nt−1(u). Note that all nodes in Nt−1(u) that have a random

sequence prefix match of length at least t are immediate neighbors of u in level t.

Similarly, nodes in Nt−1(u) that do not match at least t bits of the random sequence

prefix are at most distance 2, as they must be neighbors with at least one node whose

random sequence differs in bit t, which then matches the first t bits of u’s random

sequence. This node must be at most distance 1 from u in level t. Therefore, in

(c · log n − i + 1) + i − 1 = c · log n rounds, CreatingJoinLinksu is false, as node u

will be neighbors with all nodes in NSkip+(N2(u),idu,rsu)(u).

Finally, in one round node u will trim the unnecessary edges that were used to

find the longest matching random sequence prefix (line 6). In one additional round, all

nodes with which u is joining with will trim their neighborhoods to be equal to their

calculated ideal neighborhoods (line 8). At this point, the network is now in a correct

Skip+ graph configuration. Therefore, RTL-Repair(n) = (c · log n) + (c · log n) + 2 =

2 · c · log n+ 2 rounds.

Next, consider the case where L-Detectu is true for some u, but the network

is not the result of a single node attempting to join. By similar arguments to the

correct Join case, a node can only execute 2 · c · log n+2 steps before it has built what
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it believes is the correct network. If at any point during this execution L-Detect is

false for a node, but the node detects a faulty configuration, the Transitive Closure

program is initiated.

Theorem 3.5. The Local Repair Framework given in Algorithm 3.2, instantiated

with the L-Repair subroutine from Algorithm 3.3 and predicate L-Repairu from Def-

inition 3.5, is a self-stabilizing algorithm for Skip+ graphs with convergence time for

any configuration at most 3 · c · log n + log n + 2 rounds. Joins occur in at most

2 · c · log n+ 2 rounds.

Proof. By Lemma 3.4, Joins require 2 · c · log n + 2 rounds. Since it will require at

most 2 · c · log n+ 1 rounds to initiate the Transitive Closure process, which will then

require log n + c · log n + 1 rounds to complete, any initial configuration requires at

most 3 · c · log n+ log n+ 2 rounds.
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CHAPTER 4
THE AVATAR NETWORK

Self-stabilizing overlay networks to date have considered either (i) efficient

(polylogarithmic) convergence time, or (ii) efficient (constant) degree growth. Clearly

a scalable solution in terms of both time and space would be desirable.

Another shortcoming is that overlay network analysis has either been com-

plicated and difficult to understand, or for simple topologies or algorithms that are

not scalable with respect to time or space. In this chapter, we address these two

concerns. Specifically, we present a self-stabilizing overlay network and prove that

its convergence time and degree expansion are both polylogarithmic. The network

definition is generic and can be used for other graphs, even those that are by them-

selves not locally checkable. Therefore, the network definition is a local checkability

transformer. Furthermore, the algorithm has a modular design, making modifications

and extensions for other topologies simple, as well as simplifying analysis.

4.1 Preliminaries

For computation, we use the synchronous shared memory model for overlay

networks presented in Chapter 2. We add one new component to this model – a public

random coin. Specifically, we use a model similar to the COMMON model presented

by Newman [29]. In this model, all nodes have access to a random sequence L of

length k. Furthermore, the adversary has no knowledge of L besides knowing its

length k. Besides this shared random sequence, we assume a powerful adversary that

can create an arbitrary weakly-connected initial state, including modifying any node’s
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variables.

When analyzing the algorithm, we will need to describe future configurations

resulting solely from executing the algorithm. For an algorithm A, let FA be a

function which maps a configuration Gi to the set of all configurations that can result

from executing A on Gi. FA(Gi) is a finite set for the algorithm, as the algorithm

is self-stabilizing and silent (that is, the configuration reaches a point where no more

changes are made).

As mentioned earlier, the stabilization process can be thought of as a walk

through the state space of a system. In this chapter, we present an algorithm where

this “walk” is both short (convergence time is low) and only goes through system

states with (relatively) low degree. This work is the first of its kind to identify such

a path.

4.2 The Avatar Network

In this section, we define the generic Avatar network, which embeds a guest

topology onto the nodes of the overlay network. We also introduce an instantiation

of this network based upon a binary search tree.

4.2.1 Specification

A network embedding [27] Φ maps the node set of a guest network Gg =

(Vg, Eg) onto the node set of a host network Gh = (Vh, Eh). Thus an embedding is a

mapping Φ : Vg → Vh. The dilation of Φ is defined as the maximum distance between

any two nodes Φ(u),Φ(v) ∈ Vh such that (u, v) ∈ Eg. Note that Φ can map more
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than one node in Vg onto a single node in Vh.

Informally speaking, the Avatar network is a host network designed to realize

a dilation-1 embedding for an appropriately-chosen guest network. Specifically, for

any N ∈ N, let [N ] be the set of nodes {0, 1, . . . , N − 1}. Let F be a family of graphs

such that, for each N ∈ N, there is exactly one N -node graph FN ∈ F ; we assume the

node set of FN is [N ]. We shall call F a full graph family, capturing the notion that

all graphs in the family have a “full” set of nodes (relative to the identifier space).

For any N ∈ N and V ⊆ [N ], AvatarF is a network with node set V that realizes a

dilation-1 embedding of FN ∈ F . The specific graph is defined below.

Definition 4.1. Let V ⊆ [N ] be a subset {u0, u1, . . . , un−1}, where ui < ui+1 for

0 ≤ i < n− 1. Let the range of a node ui, rangeui = [ui, ui+1) for 0 < i < n− 1. Let

rangeu0 = [0, u1) and rangeun−1
= [un−1, N). AvatarF(N, V ) is a graph with node set

V and edge set the union of the sets:

1. {(ui, ui+1)|i = 0, . . . , n− 1}

2. {(ui, uj)|ui 6= uj ∧ ∃(a, b) ∈ E(FN) ∧ a ∈ rangeui ∧ b ∈ rangeuj}

It is easy to see there exists a dilation-1 embedding Φ of FN onto the network

AvatarF(N, V ). Specifically, Φ maps a node b ∈ V (FN) onto the node ui when

b ∈ rangeui . Type (2) edges of AvatarF(N, V ) in the definition above are created

to make sure that this embedding has dilation 1. Type (1) edges, (ui, ui+1), for

0 ≤ i < n − 1, are also added in order to “linearize” the topology. A node ui ∈ V

can locally determine its range, and therefore can locally determine the node set

Φ−1(ui) ⊆ V (FN) mapped to ui.
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4.2.2 Advantages of Embeddings

There are several advantages to defining overlay networks in terms of net-

work embeddings. Concerning the design of algorithms, network embeddings allow

a convenient abstraction, and this helps us in algorithm description and analysis in

the remainder of the paper. However, embeddings also preserve several important

properties. Specifically,

• The diameter of AvatarF(N, V ) is at most the diameter of FN ∈ F . Therefore,

if FN has low diameter (e.g. O(logN)), then AvatarF(N, V ) has low diameter

as well. In cases where |V | and N are relatively close, then AvatarF(N, V ) has

low diameter with respect to n as well as N (e.g., if N ≤ nc for some constant

c, then O(logN) = O(log n)).

• The routing properties of FN are inherited by AvatarF(N, V ). Any routing

algorithm created for FN can easily be simulated on AvatarF(N, V ). In fact,

any algorithm created for FN can be simulated by nodes in AvatarF(N, V ).

• For some embeddings, the low degree of nodes in FN is preserved with the

nodes in AvatarF(N, V ). That is, nodes in FN have low degree, and therefore

nodes in AvatarF(N, V ) have low degree. However, this property does not

hold for all graph families F . For instance, consider a hypercube graph family,

H. While the degree of every node is logarithmic in a hypercube, a node ui

in AvatarH(N, V ) may have degree which is linear in N if |Φ−1(ui)| is large.

There are two ways to address this concern. First, if we assume the identifiers

of nodes in the host network are uniformly distributed, then |Φ−1(ui)| is, in
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expectation, N/n. Even without this uniform distribution assumption, there

are graph families where regardless of the size of Φ−1(ui), degrees remain low

(e.g. logarithmic).

4.2.3 The Full Graph Family Cbt

We now describe an instance of the Avatar network where the full graph

family is the family of complete binary search trees. We call this family of networks

Cbt, and use this network throughout the remainder of the paper. We define Cbt(N)

recursively.

Definition 4.2. For a ≤ b, let Cbt[a, b] be a binary tree rooted at r = b(b + a)/2c.

Node r’s left subtree is Cbt[a, r − 1], and r’s right subtree is Cbt[r + 1, b]. If a > b,

then Cbt[a, b] = ⊥. We define Cbt(N) = Cbt[0, N − 1]. Let the level of a node b in

Cbt[0, N − 1] be the distance from b to root bN − 1/2c.

Note there is exactly one topology satisfying these requirements for any N ∈ N.

Furthermore, every node b ∈ Cbt(N) can calculate this topology. Figure 4.1 gives an

example of the Cbt(15) graph.

4.2.3.1 Maximum Degree of AvatarCbt

One potential drawback of creating a topology realizing an embedding with

dilation of 1 is that a node ui may have a large Φ−1(ui), resulting in a high degree,

even if no node in FN has a large degree. It is not hard to construct examples where

the degree of a node ui is proportional to the size of Φ−1(ui). For instance, consider

a simple full graph family S, where every node bi in SN has exactly one neighbor,
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Figure 4.1: A Cbt(15) graph.

node bk, where k = i + N/2 mod N . Imagine AvatarS(N, V ), where u0 = 0 and

u1 = N/4 (there are no nodes with identifiers from 0 to N/4). The degree of u0

in AvatarS(N, V ) may be O(N) – every node in Φ−1(u0) has a neighbor outside of

Φ−1(u0).

Surprisingly, however, there are full graph families for which their embeddings

have low degree regardless of the distribution of identifiers of the host network. The

Cbt network is one such network. We show a logarithmic bound on the degree of any

node for the AvatarCbt network next. This bound is important not only for scalable

final configurations, but also for efficient convergence with the algorithm, as we shall

show later.

Lemma 4.1. Consider a node set V ⊆ [N ]. The maximum degree of any node ui ∈ V

in the AvatarCbt(N, V ) network is at most 2 · logN .

Proof. Consider the subset of nodes of [N ] mapped to node ui, Φ−1(ui). Let [N ]j be
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Figure 4.2: A linear representation of levels 0-2 of a complete binary search tree.

the set of all nodes at level j of Cbt(N). We show that, for any 0 ≤ j ≤ logN + 1,

there are at most 2 nodes in Φ−1(ui) ∩ [N ]j with neighbors outside of Φ−1(ui).

First, consider the edges in Cbt(N). Let the span of an edge (a, b) ∈ E[Cbt(N)]

(with a < b) be all nodes from [N ] in the interval (a, b), and let the size of a span

be b − a. Let a node segment S[a, b] be a contiguous set of nodes from [N ] (that is,

S = {c : a ≤ c ≤ b}). Notice that, by definition of Cbt(N), the spans of any two

edges with the same span size are disjoint. Therefore, for any segment S, there can

be at most two edges in E(Cbt(N)) with the same span size going from a node b ∈ S

to a node b′ /∈ S. Since there are at most logN span sizes in a complete binary search

tree, there are at most 2 · logN edges from a node inside any segment S[a, b] to a

node outside the segment.

For example, consider Figure 4.2, which is a linear representation of the first

two levels of Cbt(N), where N is a power of 2. Notice there are exactly 2 edges with

spans of size N/4 (from N/4 to N/2 and N/2 to 3N/4), and the span of the edges is

disjoint. Similarly, there are 4 edges that span N/8 points ((N/8, N/4), (N/4, 3N/8),

(5N/8, 3N/4), (3N/4, 7N/8)), also with disjoint spans.

Notice in the AvatarCbt network, Φ−1(ui) is a node segment from [N ]. The
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only edges from nodes in Φ−1(ui) that require an edge in AvatarCbt(N, V ) are those

from b ∈ Φ−1(ui) to b′ /∈ Φ−1(ui). As there are most 2 · logN such edges, the degree

of any node ui ∈ AvatarCbt(N, V ) is at most 2 · logN + 2 (at most two edges of type

(1)).

4.3 Local Checkability

As discussed in Chapter 2, silent self-stabilizing algorithms require the network

to reach a configuration where the internal state of a node no longer changes. This

requires nodes to determine when they can stop executing the actions that modify

their internal state. Clearly an algorithm that becomes silent in an incorrect config-

uration cannot be self-stabilizing, and an algorithm that never stops modifying the

internal state cannot be silent. Therefore, we need a mechanism to detect correct

configurations and prevent internal state from changing. Local checkability is such a

mechanism. Informally, local checkability is a distributed decision problem to decide

if the network G belongs to the family F – all nodes output true if the network is

correct, and at least one node returns false if the network is incorrect.

We modify the definition of local checkability given in Chapter 2. Specifically,

we introduce the use of proof labels, first presented by Göös and Suomela [20]. A proof

label for node u is a bit string P (u) = {0, 1}∗. Let NG(u) be the closed neighborhood

of u in graph G, which consists of all nodes at most distance 1 from u in G, and let

PG(u) be the proof labels associated with all nodes in NG(u). We now define local

checkability using these concepts.
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Definition 4.3. Let F be a family of graphs. We say that F is locally check-

able if there exists a function AF which takes as input ui and (NG(ui), PG(ui))

and returns a binary value AF(ui, (NG(ui), PG(ui))) such that (i) if G /∈ F , then

∃uj ∈ V (G) : AF(uj, (NG(uj), PG(uj))) = 0, and (ii) if G ∈ F , then ∀uj ∈ V (G) :

AF(uj, (NG(uj), PG(uj))) = 1. We say that AF is a verifier for F .

Therefore, said another way, a family of graphs F is locally checkable if, using

only their immediate neighborhood, (i) every node agrees the network is correct when

G ∈ F , and (ii) at least one node detects the network is incorrect if G /∈ F . While a

local algorithm is traditionally allowed to access a constant-size k-neighborhood, for

our discussion of overlay networks, we consider only k = 1.

For the AvatarF family of networks, we assign proof labels based upon the

ordering of nodes in V . Specifically, let the proof label PV (ui) for a node ui ∈ V be

defined as follows. For a set of nodes V , PV (ui) (ui ∈ V ) is a tuple (ui−1, ui+1), where

ui−1 is the predecessor for ui (⊥ for u0), and ui+1 is the successor of ui (⊥ for un−1).

Using PV , AvatarF is locally checkable for all full graph families F . We prove this

claim below.

Theorem 4.1. Let F be a full graph family. For any N ∈ N and V ⊆ [N ],

AvatarF(N, V ) is locally checkable with proof labels PV .

Proof. To prove this lemma, we describe verifier AF . Notice that a verifier, given ui

and (NG(ui), PV,G(ui)) can compute the range of all uj ∈ NG(ui). Therefore, AF can

calculate Φ−1(uj) for all nodes uj ∈ NG(ui). It is easy to see that this information
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is sufficient to determine (i) if all type (1) and (2) edges are present, and (ii) if any

additional edges are incident upon ui. If there exists an edge incident upon ui such

that the edge is not part of the realization of the dilation-1 embedding or is not ui’s

successor, then AF returns 0. Similarly, if there exists a node b ∈ V (FN) such that

b ∈ Φ−1(ui), the edge (b, b′) ∈ E(FN), and ui does not have an edge to a node uj

with b′ ∈ Φ−1(uj), then AF = 0. Otherwise, AF = 1. Therefore, AvatarF is locally

checkable for any full graph family F .

4.3.1 Implementing Proof Labels in the Self-Stabilizing Model

While proof labels make AvatarF locally checkable, their use is not entirely

consistent with the self-stabilizing model. Specifically, we cannot assume the existence

of an oracle to assign these proof labels, nor can we assume the adversary cannot

corrupt them. Ideally, our verifier would be able to detect a fault if either (i) the

network was faulty, or (ii) the proof labels were faulty. We show in this section

that there exists a verifier for the conjunction of correct proof labels and topology

– AvatarF is locally checkable even if proof labels are able to be corrupted by an

adversary.

Let P.u be a mutable proof label for node u, and let PG[u] be the collection of

P.u from all nodes distance at most 1 from u in G. Since P.u is mutable, it may be

corrupted by the adversary and may not always be equal to PV (u). We define next

the notion of a locally checkability with mutable proof labels.

Definition 4.4. Let F be a family of graphs. We say that F is locally checkable
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with mutable proof labels if there exists a function AF which takes as input ui

and (NG(ui), PG[ui]) and returns a binary value AF(ui, (NG(ui), PG[ui])) such that

(i) if G /∈ F or there exists a node uk with PV (uk) 6= P.uk, then ∃uj ∈ V (G) :

AF(uj, (NG(uj), PG[uj])) = 0, and (ii) if G ∈ F and ∀uk : P.uk = PV (uk), then

∀uj ∈ V (G) : AF(uj, (NG(uj), PG[uj])) = 1.

Theorem 4.2. The AvatarF family of networks is locally checkable with mutable

proof labels.

Proof. Again, we describe the verifier AF . First, notice that if node u has P.u[succ] =

v, and either v /∈ N(u) or ∃w ∈ N(u) : v < w < u, then AF will return 0. Similarly,

if P.u[pred ] = v and either v /∈ N(u) or ∃w ∈ N(u) : u < w < v, AF = 0. Therefore,

either all proof labels are equal to the value of a correct neighbor or ⊥ (when no

w < u or u < w exists in N(u)), or AF returns 0.

To verify, then, that the values for P.u[succ] and P.u[pred ] are correct is equiva-

lent to checking if the graph induced by successors and predecessors forms the network

family Linear. Since Linear is locally checkable, if the proof labels do not induce

the Linear family, then there must exist at least one node u such that AF returns 0.

Therefore, if the mutable proof label P.u does not match P (u), there must exist at

least one node u for which AF(u, (NG(u), PG[u])) = 0. The local checkability of the

network when all P.u = P (u) follows from Theorem 4.1.
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Figure 4.3: A faulty configuration. Node 0 has a faulty proof label, while node 6 is

missing a neighbor.

4.3.1.1 An Example Faulty Configuration

To see how mutable proof labels are locally checkable, consider Figure 4.3,

which is a faulty network containing both faulty proof labels and faulty neighbor-

hoods. First, notice that node 0 has a faulty proof label – its proof label indicates its

successor is 6, while the actual successor should be 3. Node 0 can locally detect this.

Secondly, notice that node 6 should have an edge to a node u such that 11 from Cbt

is embedded onto u. However, node 6 can detect that its neighbor 8 does not have

11 embedded onto it, and therefore node 6 is also a detector.

4.3.2 Proof Labels and Silent Stabilization

As mentioned earlier, a silent self-stabilizing algorithm, informally, is one

which eventually ceases computation in a correct configuration. In the message-

passing communication model, messages may continue to be exchanged to verify the

system is in a legal state, but no other state should change at each node. Prior models

have assumed that all of a node’s state information is exchanged with all neighbors

in every round. Even for networks where neighborhoods were small (logarithmic),

sharing all state information can result in O(log3 n) bits begin sent in each round.
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By explicitly noting a node’s proof label, we give an easy way to determine

what information nodes will share in a stable (correct) configuration. That is, if nodes

constantly share only their proof labels, faulty configurations can still be detected,

and nodes may share a much smaller amount of information. In our case, a node

shares only O(logN) bits per neighbor. For networks with neighborhoods of O(logN)

(such as AvatarCbt), we require only O(log2N) bits to be sent per round in the correct

(“silent”) states. Once a node detects a fault, we allow (potentially) more information

to be exchanged during convergence.

4.4 A Self-Stabilizing Avatar Network

In this section, we present the self-stabilizing algorithm for the AvatarCbt net-

work. Using several distributed computing techniques, including clustering, wave

propagation, and randomized symmetry breaking, the algorithm achieves polyloga-

rithmic convergence while limiting degree growth to at most a polylogarithmic factor

from optimal.

4.4.1 Virtual and Real Nodes

Definition 4.1 gives a structural definition of the correct Avatar network. In

this definition, the state of a node consists solely of (i) its neighborhood, and (ii) its

proof label. The algorithm, however, requires every node in the network to maintain

additional state, even in the correct Avatar configuration. We describe how we

augment the state of every node below.

The algorithm uses the notion of virtual nodes (as done by Kniesburges et
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al. [25] and Trehan [37]). Virtual nodes are a convenient abstraction for the embedding

of the guest network FN on the host network. Unlike an embedding (which is simply

a mapping), virtual nodes are actual entities. Virtual nodes can execute actions and

they have their own state, including their own neighborhoods. A node a ∈ [N ] from

the guest network is simulated by a node u ∈ V . We call node u ∈ V a real node,

and say it hosts a virtual node a (denoted hosta = u). In almost all instances, the

algorithms will assume they are executed on these virtual nodes.

We describe the implementation of these virtual nodes next. A real node u

hosts a set of virtual nodes, stored in the variable Virtualu – that is, virtual nodes

are simply part of the state of real nodes. Every real node u executes an independent

program for each virtual node in Virtualu, and each virtual node has its own state

and neighborhood Nb, containing the virtual nodes b is connected to. Each virtual

node b also has an associated identifier id b. Notice that these identifiers need not be

unique in a faulty state – there may be other virtual nodes with the same identifier.

Virtual nodes also keep two variables representing their (mutable) proof labels, succb

and pred b. Virtual nodes can also access the state of their host. Virtual node b

accesses its host’s variable var 0 with the statement host b.var 0. Finally, because Cbt

is full and every node knows N , every virtual node from Cbt(N) can calculate its (at

most 3) correct neighbors in the complete binary search tree.

We now describe the legal state AvatarCbt network including the virtual nodes.

Assume the network configuration matches the legal configuration described in Defi-

nition 4.1. Every real node ui now also maintains a set of virtual nodes Virtualui =
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Φ−1(ui) such that, for each b ∈ Virtualui , Nb matches the neighborhood of b in

Cbt(N). We can then think of a legal AvatarCbt(N, V ) configuration not as a net-

work with node set V , but rather as a network of virtual nodes [N ], with each virtual

node being simulated by a particular real node from V (the assignment matches

the embedding). Since the embedding is locally checkable, the assignment of virtual

nodes is also locally checkable – e.g. a node can easily determine if Virtualu matches

Φ−1(u).

Since virtual nodes are state, and an adversary can corrupt state in the self-

stabilizing model, initial configurations may consist of an arbitrary number of virtual

nodes. The algorithms will add and delete virtual nodes, and execute actions on

these virtual nodes, until eventually the network consists of exactly [N ] virtual nodes

assigned to real nodes as described above. Thinking of the network not as a collection

of real nodes, but rather as a collection of independent virtual nodes, will simplify the

design and analysis of the algorithms.

4.4.1.1 Virtual Edges

A natural question when using virtual nodes is how are edges handled in the

network – are edges between real nodes or virtual nodes? We shall assume that edges

exist between virtual nodes. We say an edge (a, b) is a virtual edge if a and b are

virtual nodes. A virtual edge (a, b) in the guest network Gg is realized by an edge

(hosta, host b) in the host Gh – that is, (a, b) ∈ Gg ⇒ (hosta, host b) ∈ Gh. We shall

assume that the initial configuration from the adversary includes these virtual edges.
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Since an adversary can modify both the topology and the local states of nodes, it can

easily make a real edge (u, v) in the real network, and also have nodes u and v believe

this edge is the realization of some set E((u,v) in the virtual network.

Two virtual nodes can create an edge between them if their hosts are at most

distance 2 from each other (a superset of the condition where two virtual nodes are

distance 2 from each other). This edge creation corresponds with an edge being

created in the host network, or an existing real edge realizing another virtual edge.

Therefore, a node c creating the virtual edge (a, b) corresponds to host c informing

hosta and host b that an edge should be created between virtual node a and virtual

node b. If hosta and host b are already connected, no changes occur in the real network

– only the local state of hosta and host b is updated. If hosta and host b are not

connected, the edge (hosta, host b) is added to the real network and the virtual edge

(a, b) is added. Finally, when virtual nodes a and b are hosted by the same real node

u, edges can be created and shared between nodes a and b by program actions in a

single round.

Since each virtual node knows its virtual neighborhood, and a real node can

read the state of its hosted virtual nodes (in fact, virtual nodes are state, but for

purposes of abstraction, we think of them as separate entities), every real node can

determine which virtual nodes are using any incident edge. There may be multiple

virtual edges realized by a single real edge. If the virtual edge (a, b) is deleted, the

edge (hosta, host b) is either deleted (if no other virtual edge is realized by it), or no

change in the real network topology is made (only changes to the states of a and b).
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Notice that, in the self-stabilizing model, the adversary may arbitrarily modify

the local state of any node, meaning there may exist edges incident upon a real node u

that are not incident upon any virtual node hosted by u. These faulty configurations

are easily detectable and repairable by u – u will detect an incident real edge that is

not realized by any hosted virtual node, and can assign this edge to a hosted virtual

node.

4.4.1.2 Two Examples

Figure 4.4 contains an example of (i) the real nodes of a AvatarCbt network, and

(ii) the virtual nodes corresponding to these real nodes. The colors of the N virtual

nodes correspond with the host of the nodes – each virtual node with the same color

is hosted by the same real node. Each virtual node operates independently, regardless

of the host – for instance, an action may “exchange” messages between nodes 0 and

1 in a single round, even though 0 and 1 are hosted by the same real node. Again,

our algorithms will think about this system not as a collection of n real nodes, but

rather as a collection of N independent virtual nodes.

An adversary may create configurations where there are an arbitrary number

of virtual nodes for each real node, and these virtual nodes are “connected” in an

arbitrary fashion. To see an example of this, consider Figure 4.5. Here, the boxes

represent the real nodes, while the nodes inside the boxes represent the adversarially-

assigned virtual nodes. As the figure shows, some real edges in the network do not

have corresponding virtual edges (the edge between real nodes 3 and 25). Further-
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(a) The real nodes of
AvatarCbt(15, V )

(b) Virtual nodes for AvatarCbt(15, V ). Col-
ors represent hosts.

Figure 4.4: A legal AvatarCbt(15, V ) network, for V = {0, 5, 8, 10}

more, every real node is hosting an arbitrary number of virtual nodes, and these

virtual nodes may or may not have incident edges. The algorithm starts from any

initial state, including the one shown in Figure 4.5, creates and deletes virtual nodes

and edges (and therefore modifies the underlying real network), and converges to a

state where the virtual network (and therefore, the real network) match a correct

configuration like shown in Figure 4.4.

4.4.2 Summary of the Algorithm

The self-stabilizing algorithm for AvatarCbt uses a technique similar to the

technique used in the algorithm for distributed minimum-weight spanning tree con-

struction by Gallager, Humblet, and Spira (1983) [18] – the network is organized into

disjoint clusters, each with a leader which coordinates the merging of clusters. After

a short amount of time, only a single cluster remains, and the system is in a correct

configuration.
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Figure 4.5: An arbitrary initial configuration of 4 real nodes and their internal state

with virtual nodes.

We divide the algorithm into three components. First, we divide the network

into clusters. Note that, in the self-stabilizing model, there is no guarantee that all

nodes are members of a cluster when the program begins. There may be arbitrary

initial configurations where nodes are not members of a cluster, and yet are unable

to detect this. Therefore, we present a process we call reset, which guarantees that,

regardless of the initial configuration, after a short amount of time every node in the

network is a member of a cluster. This critical component simplifies the design and

analysis of the remaining modules of the algorithm.

Once the network consists entirely of clusters, we repeat two steps: matching

clusters together, and then merging these matched pairs (we limit merges to pairs

of clusters only, which we shall explain later). Note that matching for any graph

is a difficult problem to solve efficiently without using randomization. Therefore,

we use a randomized symmetry-breaking algorithm to quickly compute a matching
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between clusters. There are topologies, however, where a maximal matching is small,

perhaps even of constant size. In these cases, convergence may be linear. In the

overlay network model, however, we can add edges to these topologies to ensure that

we can create a matching that is sufficiently large (O(n)), and therefore guarantee

fast convergence. The concern with this approach is that too many edges may be

added, causes nodes to have large degrees. The algorithm randomly assigns leaders,

and allows only leaders to add edges to the network. As we shall see, this is sufficient

to ensure (i) degrees remain small in the network, and (ii) matchings are large enough

to allow efficient convergence.

Once two clusters have been matched, the algorithm merges them together

into a single cluster. Merging is done in a systematic fashion so as to ensure that,

regardless of the initial topology of each cluster, degrees remain small. The first step

of a merge is a pre-processing step, which deletes all edges between two clusters (with

the exception of a single special edge). Next, two clusters merge together, building the

correct network level-by-level (with regards to the Cbt network). Once the clusters

have merged, the process of matching and merging repeats.

Note that while our implementation is for an embedding of the Cbt network

family, this technique is easy to extend to other topologies. To implement AvatarF

for a network F 6= Cbt, one can simply modify these three components.
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4.4.3 Defining a Cluster: The Subtree

Before describing the algorithm, we must define precisely the notion of a clus-

ter. There are several important properties we wish to maintain with our clusters.

First, since nodes in a cluster must communicate with the cluster leader, we would

like a mechanism to exist for efficient intra-cluster communication. Furthermore, we

would like an efficient way for two clusters to be merged together into a single clus-

ter. Finally, if the network consists of a single cluster, the correct AvatarCbt network

should not be too difficult to create.

These requirements lead us to the cluster for the AvatarCbt network, which we

call a subtree. We define subtrees below.

Definition 4.5. Let G be a graph with node set V . A subtree is set of nodes V ′ ⊆ V

in graph G such that G[V ′], the subgraph of G induced by V ′, is AvatarCbt(N, V
′),

and the virtual nodes hosted by nodes in V ′ form the correct Cbt(N) network, and

each virtual node b is hosted by ui, where b ∈ Φ−1(ui) in AvatarCbt(N, V
′).

One can think of a subtree as an embedding of Cbt(N) onto V ′ ⊂ V . Any

algorithm which runs on Cbt(N) can be executed not only on AvatarCbt(N, V ), but

also on any subtree AvatarCbt(N, V
′). Furthermore, since our algorithm uses virtual

nodes, which can be created and deleted with program actions, we can think of each

subtree as a set of virtual nodes [N ]. The goal of the algorithm is take the at-most

n subtrees of the network, each consisting of virtual nodes [N ], and merge them

together until eventually the set V is a subtree. By definition, the network is correct

at this point. We use the term subtree to help highlight the fact that our clusters



79

are actually N node Cbt networks (when considering virtual nodes), and not simply

a grouping of real nodes.

To clarify the notion of a subtree using both its real and virtual nodes, consider

Figure 4.6. Figure 4.6(a) contains a graph G with two subtrees – one consisting of

nodes in various shades of green, and one consisting of nodes shaded red. The virtual

nodes for these two subtrees is given in Figure 4.6(b). Each of the two subtrees is

represented as its own Cbt(N) graph. An edge in G corresponds to a connection

between nodes in one of the two Cbt(N) subtrees.

Notice that it may be possible to partition V into clusters several different

ways. Trivially, the set V ′ = {u} is a subtree. To design an algorithm to merge

clusters, however, requires nodes to identify themselves as members of only one clus-

ter. To do this, the algorithm uses the variable treeu for each u ∈ V , which we call

the tree identifier. The tree identifier is the identifier of node ui, where ui ∈ V ′ and

bN/2c ∈ Φ−1(ui) for AvatarCbt(N, V
′) – that is, the tree identifier for subtree T is

the host of the root of the virtual subtree. Note that the virtual nodes of a subtree

also have access to the tree identifier.

Finally, we present an intra-subtree communication mechanism in Section

4.4.7. This communication mechanism can guarantee that either (i) a message from

the root is correctly delivered to all nodes in the subtree, and the root receives feed-

back from all nodes, or (ii) some node detects a fault. If the communication mech-

anism is not faulty, we shall say it is consistent (more on this in Section 4.4.7). A

subtree in the algorithm should (i) have the correct real and virtual node structure,
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(a) The real nodes of subtrees T (top) and
T ′ (bottom)

(b) Virtual nodes for T (right) and T ′ (left)

Figure 4.6: Two subtrees T and T ′, and the virtual nodes hosted by nodes from

T and T ′. Colors relate a virtual node to its host. Notice a single real edge may

correspond with multiple virtual edges. For instance, the edge (5, 11) in the real

network corresponds to (5T , 13T ′) and (7T , 11T ′) in the virtual network.



81

(ii) have the correct tree identifier, and (iii) have a consistent communication state.

We formalize this notion in the following definition.

Definition 4.6. A set of nodes T is called a proper subtree when, for each b ∈

TCbt(N), (i) b is neighbors with all calculated subtree neighbors, (ii) all calculated sub-

tree neighbors have the same tree identifier as b, (iii) the PFC state of b is consistent,

(iv) every real node host b hosts all virtual nodes between itself and its successor in T ,

and (v) all non-subtree neighbors have a different tree identifier.

The algorithms below will assume that the network consists entirely of proper

subtrees. We explain later how we ensure this, and prove it is ensured in the analysis

section.

4.4.4 Merging Subtrees

The key component of the algorithm is to merge together subtrees until even-

tually all nodes u ∈ V are members of the same subtree. In the following section, we

describe how subtrees are merged. In this section, assume that the initial configura-

tion G0 contains only subtrees. We discuss later how to relax this assumption.

We also assume the existence of a communication mechanism which the root

of the subtree can use to (i) send information to all nodes in the subtree, and (ii)

collect some information from nodes in the subtree. We describe this intra-subtree

communication mechanism later.
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4.4.4.1 Merging Subtrees

The merge algorithm is based upon the observation that virtual subtrees

TCbt(N) and T ′Cbt(N) each have N nodes. If T and T ′ merge, the resulting subtree

T ′′ will host N virtual nodes, as well. Therefore, if T and T ′ merge, there must be N

virtual nodes from TCbt(N) ∪ T ′Cbt(N) that are deleted to form T ′′Cbt. Merging two sub-

trees, each with N nodes, into a single subtree with N nodes involves resolving which

virtual nodes will remain after the merge and which will be deleted. That is, there

are two real nodes u ∈ T and u′ ∈ T ′ such that both u and u′ are simulating a virtual

node b. When T and T ′ merge, either node u or u′ will delete its virtual node b. The

merging algorithm simply does an orderly comparison between virtual nodes from

each subtree to determine the “best” virtual node for each. Informally, the “best”

virtual node is the virtual node whose host’s identifier is closest to the identifier of

the virtual node. Formally, we define the relation ≺ as follows: for two virtual nodes

ai and aj, with idai = idaj , ai ≺ aj if and only if either idaj ≤ hostaj < hostai or

hostaj ≤ idaj < hostai . When ai ≺ aj, node hostaj is a “better” host than hostai for

a virtual node with identifier idaj , and therefore virtual node ai should be deleted.

A subtree T may participate in at most one merge at any particular time. If

subtree T is merging with subtree T ′, we say that T ′ (T ) is the merge partner of T

(T ′). We represent the merge partner of subtree T with the variable partnera = T ′, for

all a ∈ T . Subtree T begins the merge algorithm once the root of T , rT , is connected

to the root of T ′, rT ′ , partner rT
= treeT ′ , and partner rT ′

= treeT (we say that T has

been assigned merge partner T ′). We define the state of a subtree with regards to its
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merge partner below.

Definition 4.7. Let T be a proper subtree. T is an unmatched proper subtree if and

only if the root of T has not been assigned a merge partner. Similarly, T is a matched

proper subtree if and only if the root of T has been assigned a merge partner.

Once T (T ′) is a matched proper subtree, T (T ′) executes a preprocessing

step to (i) notify all subtree nodes that a merge with subtree T ′ (T ) is about to

occur, and (ii) to delete all edges between nodes in T and T ′, excepting the edge

connecting rT and rT ′ . To begin the preprocessing, node rT communicates the identity

of merge partner T ′ to all nodes in subtree T . Node rT also communicates the

value of the shared random sequence L with all nodes in T . When a node u ∈ T

receives this information, it updates its partneru variable, as well as a variable rsu,

representing the received random sequence value. This random sequence value is

used as a “randomized connectivity testing” procedure to delete the additional edges

between nodes in T and T ′ without disconnecting the network. If a node u is not the

root node and detects an edge (u, v) such that (i) partneru = treev, (ii) partner v =

treeu, and (iii) rsu = rsv = L, then u deletes the edge (u, v). We call such an edge a

matched edge between T and T ′. Notice that, with some probability dependent upon

the length of L, the network remains connected. If two neighboring nodes u ∈ T

and v ∈ T ′ have a matched edge between them, then with some probability there

must exist another path between u and v which will not be disconnected (specifically

a path through rT and rT ′), and therefore the edge (u, v) can be removed without

partitioning the network.
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Once this pre-processing has completed, subtrees T and T ′ are now connected

with a single edge between their roots. The resolution process can begin. The res-

olution algorithm is designed to be executed upon the virtual nodes in TCbt(N) and

T ′Cbt(N). We think of the resolution process as determining which N virtual nodes from

TCbt(N) should remain, and which should be deleted, when forming the new subtree

T ′′ = T ∪T ′. The algorithm begins with the virtual root nodes (which are connected),

and works recursively. For any two virtual nodes c0 ∈ TCbt(N) and c1 ∈ T ′Cbt(N) with

identical identifiers, the resolution procedure simply compares the two virtual nodes

to determine which should remain. Without loss of generality, assume that c0 ≺ c1.

We say that c1 is the winner of the resolution process, and c0 is the loser. The loser

node is “replaced” by the winner node (more on this procedure in a moment), and the

children of the loser node are copied to the winner node. Next, the winner connects

its left child with the left child received from the loser, and connects its right child

with the right child from the loser, and the resolution process is recursed concurrently

on these two subtrees. This allows logarithmic (in N) running time, since all reso-

lutions for virtual nodes at the same level of the tree complete in the same round.

Figure 4.7 contains an example of this merging process on the virtual representation

of subtrees T and T ′. Once this procedure reaches the leaves, of TCbt(N) and T ′Cbt(N),

a new subtree T ′′ = T ∪ T ′ has been formed. Nodes in T ′′ are informed of their new

subtree identifier, which is either T or T ′.

The merge process is given in Algorithm 4.1.

Notice that during the merge of T and T ′, nodes from T and T ′ may no longer
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Algorithm 4.1 The Merge Algorithm

Precondition: T and T ′ are merge partners with connected roots.

1. rootT (rootT ′) notifies T (T ′) of (i) merge partner T ′ (T ), and

(ii) value of the shared random sequence.

2. Remove all matched edges between T and T ′.

3. ResolveSubtree(rootT , rootT ′)

4. Once ResolveSubtree completes at leaves,

inform nodes in new subtree T ′′ = T ∪ T ′ about new subtree identifier

ResolveSubtree(a, b) : for a ∈ TCbt(N), b ∈ T ′Cbt(N)

// without loss of generality, assume a ≺ b

1. ReplaceNode(a, b)

// Node b is now connected to children of a.

// Let la (ra) be the left (right) child of a,

// and lb (rb) be the left (right) child of b.

2. Create edges (la, lb) and (ra, rb);

3. Concurrently execute ResolveSubtree(la, lb) and ResolveSubtree(ra, rb)
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Figure 4.7: The steps of the resolution process between two trees T and T ′.

form a proper subtree. However, every node in the set T ∪ T ′ can determine that

a merge is occurring – every node knows the identity of its subtree’s merge partner,

and can therefore detect when a parent or child has a wrong subtree identifier (in

TCbt(N)), or when a successor has an incorrect subtree identifier (in T ).

Finally, we discuss the way in which a loser node is “replaced” with the winner

node. A simple method would be for the “loser” node to (i) create edges from its two

children to the winner node, and (ii) delete itself. The resolution process would then

continue on to the next level. Notice, however, that this procedure, while only causing

a degree increase of 2 in the virtual network, causes a large degree in the underlying

real network. To see this, imagine a subtree T consisting of a single real node u (u

is hosting N virtual nodes). When the last (full) level of the tree resolves, u will be

hosting N/2 virtual nodes, each of which is connected to a virtual node from subtree

T ′. If each of these virtual nodes is hosted by a different real node, node u will have

a degree of N/2 in the real network. Therefore, the simple node replacement strategy

using only our virtual node abstraction may result in high node degree. To avoid high

degree in the real network, we must slightly violate the virtual node abstraction and
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take into account the underlying real network. We describe how this is done next.

Suppose a real node u is executing the merge procedure for a hosted virtual

node b, and suppose that b is the loser of a resolution step with winner b′. The host of

virtual node b′ must be a better successor (or predecessor) for node u than it currently

has. Therefore, node u can not only delete its virtual node b, but it can also delete

all virtual nodes from its new successor (or predecessor) and its old successor (or 0,

if u updated its predecessor). Of course, simply deleting these virtual nodes (and

their incident edges) may lead to network disconnection. Therefore, a real node u,

before deleting these virtual nodes, “copies” these nodes to its new-found successor (or

predecessor) (note that the operation of copying virtual nodes can be compressed into

the sending a range and the (at most 2·(logN+1)) links to nodes outside that range).

Since incident non-subtree edges do not affect the correctness of the new subtree T ′′,

these incident non-subtree edges are copied to the virtual node with identifier equal to

host b, as done before (e.g. for every deleted virtual node hosted by 14, any edges not

realizing a subtree edge are “copied” to virtual node 14). The resolution process in

the virtual network, then, corresponds to the process of updating the real network to

be a correct subtree, starting with the successor pointers. Informally, degrees remain

low because (i) a node u is set as the new successor of at most one node per level

during a merge, (ii) there are O(logN) edges transferred as the result of setting this

new successor, and (iii) there are O(logN) levels, resulting in polylogarithmic degree

increases in the real network. We provide a full proof in the analysis section. We give

the ReplaceNode procedure in Algorithm 4.2.



88

Algorithm 4.2 The ReplaceNode Procedure

ReplaceNode(c, d) :

1. if partnera 6= treeb ∨ partner b 6= treea ∨ rsa 6= L ∨ rsb 6= L then

2. Reset hosts of nodes c and d, ending the merge process.

3. fi

4. if hostd < succhostc then

5. succhostc = hostd

6. LostNodesc = {b : host b = host c ∧ b > succhostc}

7. else if predhostc = ⊥ ∧ hostd < host c then

8. predhostc = hostd;

9. LostNodesc = {b : host b = host c ∧ hostd < b < host c}

10. else // No successor pointer is updated

11. Connect subtree children of c to d; Delete node c

12. fi

// Let h be virtual node hosted by host c with idh = host c

13. for each a ∈ LostNodesc do

14. Copy edges (a, e) : treee /∈ {treec, treed} to node h; Delete (a, e);

15. Copy node a (including neighbors) to hostd; Delete a from Virtualhostc

16. od
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4.4.4.1.1 An Example Merge

We now present an example merge of two subtrees T and T ′. We shall show

both the real network during this merge, and the virtual Cbt(N) networks to make

clear how the abstraction updates the network in an orderly fashion. Assume subtrees

T and T ′ prepare for a merge by (i) connecting the roots of TCbt and T ′Cbt, and (ii)

removing any additional edges between T and T ′. This configuration is shown in

Figure 4.8. For the remainder of this example, we will use bT to denote a virtual node

that was originally hosted by a member of subtree T .

The merge process begins with virtual nodes 7T and 7T ′ resolving. The winner

of this resolution is 7T (hosted by 5 ∈ T ), while the loser is 7T ′ (hosted by 3 ∈ T ′).

Real node 3 (i) updates its successor from 9 to 5, (ii) creates links from virtual nodes

3T ′ and 11T ′ to 7T , (iii) deletes virtual node 7T ′ , and (iv) transfers virtual nodes

{5, 6, 8}T ′ to 5. Real node 5 is now hosting two virtual nodes with identifiers 5 and

6 – one each from TCbt and T ′Cbt. This configuration is shown in Figure 4.9. In one

additional round, virtual node 7T will connect its two left children and two right

children – 3T and 3T ′ , and 11T and 11T ′ , and the next level is ready to merge.

Next, virtual nodes 3T and 3T ′ resolve, as do 11T and 11T ′ . For 3T and 3T ′ ,

the winner is 3T ′ . Real node 0 (i) updates its successor to 3, (ii) connects children 1T

and 5T to winner 3T ′ , (iii) deletes virtual node 3T , and (iv) send virtual node 4T to

real node 3. Similarly, 11T ′ is the winner, so 10 (i) updates its successor to 11, (ii)

connects children 9T and 13T to 11T ′ , (iii) deletes virtual node 11T , and (iv) sends

virtual nodes {12, 13, 14}T to 11. This configuration is given in Figure 4.10. In the
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(a) The virtual nodes from T and T ′. Colors denote the hosts of each virtual node. Note
that after preprocessing, only a single edge connects T and T ′.

(b) The real nodes of subtrees T and T ′.
Note each real edge may realize multi-
ple virtual edges between virtual nodes, as
shown in Part 4.8(a).

Figure 4.8: Subtrees T and T ′ are merge partners and have completed the prepro-

cessing step.
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(a) The virtual nodes after one stage of resolution. Virtual node 7T ′ has been deleted,
and several virtual nodes in T ′ are now hosted by node 5 from T . In the next round,
7T will add edges (3T , 3T ′) and (11T , 11T ′).

(b) The real nodes of subtrees T
and T ′ after the first level has been
merged. 3 has changed its suc-
cessor from 9 to 5. In the next
round, 0 and 3 are connected (as
the result of the addition of virtual
edge (3T , 3T ′)), as are 11 and 10
(as the result of added virtual edge
(11T , 11T ′)).

Figure 4.9: The first level of Cbt(N) has resolved during a merge.
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next round, the winners connect their new children, preparing for the next resolution.

In the next round, virtual nodes 1, 5, 9, and 13 are resolved. The winners

of the resolution are 1T ′ , 5T , 9T ′ , and 13T ′ . The steps are repeated as given above,

resulting in the configuration shown in Figure 4.11.

Finally, the last level resolves. Notice the only resolutions that involve updat-

ing successors are between virtual nodes 0 and 8 – all other virtual nodes have the

same host, and no successor updates are required. These final two nodes resolve, with

0T and 8T winning. Afterwards, the new subtree T ′′ exists, given in Figure 4.12.

4.4.4.2 Selecting Merge Partners

As mentioned earlier, every time a node u becomes the new successor a node

v, the real degree of node u may increase by O(logN). If a subtree is merging with

k subtrees at the same time, it is possible for node u to become the new successor

for k other nodes concurrently. Therefore, to limit degree increase during merging,

we limit merges to occurring only between pairs of subtrees. This ensures degree

increases due to merges remains polylogarithmic regardless of a node’s initial degree.

There are two challenges for assigning merge partners to subtrees. The first

challenge is in finding a matching of subtrees. Imagine a graph where every node

represents an entire subtree in the network, and edges between nodes represent edges

between subtrees. Our goal is to find a large matching on this subtree graph. Finding

a matching is a non-trivial problem, and is quite difficult to do quickly without using

randomization. We use a randomized symmetry-breaking technique to facilitate the
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(a) The virtual nodes after two levels have been resolved. In the next round, the edges
(1T , 1T ′), (5T , 5T ′), (9T , 9T ′), and (13T , 13T ′) will be added.

(b) The real nodes of subtrees T
and T ′ after two levels have re-
solved during a merge. 0 has up-
dated its successor from 5 to 3,
while 10 creates a successor pointer
to 11. In the next round, nodes
0 and 1 will be connected (from
the virtual edge (1T , 1T ′)), as will
nodes 8 and 9 (from virtual edge
(9T , 9T ′)).

Figure 4.10: Subtrees T and T ′ after merging two levels.



94

(a) The virtual nodes after three levels have been resolved. After one round, all leaves
with the same identifier will be connected (e.g. (0T , 0

′
T ) will be added).

(b) The real nodes of subtrees
T and T ′ after three levels have
resolved during merge. Node
0 again updates its successor,
now to node 1, while 8 has new
successor 9. Note the connec-
tion of virtual nodes that oc-
curs in the next round does not
add any edge to this network.

Figure 4.11: Subtrees T and T ′ after three levels have been resolved.
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(a) The virtual nodes after merging is complete.

(b) The real network after merging is complete. Node 9 added node 10 as a successor
in the last resolution. Node 5 deletes virtual node 8 during resolution, causing the
deletion of link to 9.

Figure 4.12: Subtrees T and T ′ merged together into T ′′.
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matching. However, we cannot simply rely on standard matching techniques. There

are topologies where even a maximum matching consists of only a small number of

nodes. For instance, a star topology has a maximum matching of a single pair. If the

algorithm operates by merging only a single pair of subtrees at a time, convergence

time will clearly be at least linear.

The second challenge, then, is how to handle instances where even a maximum

matching is insufficient for fast convergence. Note that, while a matching on the

subtree graph may be small, we may be able to create a large matching in the square

of the subtree graph – that is, the graph resulting from connecting all nodes in

the subtree graph that are distance at most two. Notice in the overlay network

model, we can create these edges between nodes at distance 2 in a single round.

Therefore, we can transform configurations where even a maximum matching is small

into configurations where a large number of nodes (subtrees) are able to be matched

quickly. Of course, if too many edges are added to the network, we may no longer

be able bound the degrees of nodes during convergence. Therefore, the algorithm

designates some subtrees as “special” subtrees, and allows these subtrees to add edges

to the network. By using a randomized symmetry-breaking technique, we can ensure

there are sufficient number of these “special” subtrees to ensure large matchings are

found quickly, while at the same time preventing the degree of any node from growing

too large during convergence. We describe the algorithm next.

The algorithm works by focusing not on assigning merge partners directly,

but by assigning subtrees a role, which can be either leader, short follower, or long
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follower (this role is assigned either randomly or deterministically, depending upon

the configuration, as we show later). Consider first a follower subtree T . Nodes in

a follower subtree search their neighborhood for a potential leader – a node from a

leader subtree (how long nodes in T search for a leader depends upon whether it T

is a short or long follower). The root of T selects from the set of potential leaders

a subtree T ′, informs all nodes of T that T ′ is the leader, and connects to a node

from T ′. Subtree T then waits for T ′ to assign a merge partner S (which will occur

in a short amount of time, as we show in the analysis section). Note that, since a

subtree can have at most one leader, only a single extra edge will be added to find

T a merge partner. T and S merge using the merge algorithm from above, and the

selection process then repeats. If a follower subtree T does not find a leader, it simply

randomly selects a new role (selecting leader with probability 1/2, short follower with

probability 1/4, and long follower with probability 1/4).

Nodes in a leader subtree T announce to their neighbors that they are open –

that is, they can be selected as a potential leader. After a short amount of time, T

stops being an open leader, and no new followers are added. Nodes in T then assign

all followers a merge partner. This is done by pairing together all followers. If there

are an odd number of followers, one follower S will merge with the leader subtree

T . If there are an even number of followers, subtree T , after connecting all followers,

simply randomly selects a new role (with probabilities given above) and repeats the

selection procedure.

Notice that subtree T is guaranteed to merge if (i) T is a follower, and (ii) T
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selects a leader. However, there are configurations where a subtree T is either (i) a

leader, or (ii) a follower, and has only follower neighbors. Since a leader remains a

leader for only a short amount of time, the former case is handled by the fact that

T (if it does not find a merge partner) will select a new role in a short amount of

time, resulting in a constant probability of T being assigned a merge partner quickly.

In the latter case, note that with constant probability T is a long follower and has a

neighbor T ′ that is a short follower. In a short amount of time, then, T ′ has at least

a constant probability of becoming a leader, resulting in T being assigned a merge

partner quickly. We prove these claims more formally in the analysis section.

We now describe in more detail an implementation of this selection procedure.

When a subtree sees that it is unmatched and the network is faulty, it selects (by

way of the root node) one of three roles – short follower, long follower, or leader.

Consider first the case where rT , the root of subtree T , selects the role of leader.

Node rT informs all nodes in T of the new role, at which point nodes in T are open

leaders. If open leader u has a neighbor v such that v is a follower, v may tentatively

select u as its leader. After all nodes have been notified that T is a leader, the

root directs nodes in T to assign merge partners to all followers. This is done with

the procedure ConnectFollowers , which we describe later (in Section 4.4.7.1). The

procedure ConnectFollowers assigns a merge partner to every follower of T – if T

had an odd number of followers, T is also assigned a merge partner. Therefore, after

the leader algorithm has executed, either the subtree T has been assigned a merge

partner, or rT re-selects randomly a new role and continues program execution. The
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selection procedure for leaders is given in Algorithm 4.3.

Algorithm 4.3 The Selection Algorithm for a Leader

// Suppose the root rT of T has selected the leader role

1. Node rT informs all nodes in T of their role as leader.

2. Node rT initiates the ConnectFollowers procedure.

3. if T was not assigned a merge partner during ConnectFollowers then

4. rT randomly selects a new role

5. fi

Next, consider the case where root node rT selects one of the follower roles.

As mentioned previously, there are two types of followers: short followers and long

followers, named after how long they search for a leader. After selecting a follower

role, the root rT informs all nodes in T of the role, at which point every node u ∈ T

begins searching for a leader. The root periodically polls the subtree to see if anyone

has found a leader. That is, the root queries all nodes in the subtree to see if they

have found a leader. If a subtree node has found a leader, it informs the root of it.

This is done using the communication mechanism described in Section 4.4.7. If T is

a short follower, the root polls the subtree at most twice, while if T is a long follower,

the root polls the subtree at most 12 times. The root no longer checks for a leader

once one has been found.
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A node in follower subtree T selects a potential leader b if either (i) b is currently

a leader and is open, or (ii) b has already been assigned a merge partner. Nodes in T

inform the root when a potential leader is found, and the root node selects one. The

identity of this selected node, called the leader, is shared with T . Furthermore, an

edge to the leader is forwarded from some node in T to the root rT . If no potential

leaders are found before the search expires, the root randomly selects a new role and

continues execution. The selection procedure for followers is given in Algorithm 4.4.

Finally, we discuss how the role of a subtree T is set. If T was a follower

and found no leader, or was a leader and was not assigned a merge partner, then T

randomly selects another role and repeats the procedure. RandomRole is a random

variable that is assigned the value short follower with probability 1/4, long follower

with probability 1/4, and leader with probability 1/2. If T is completing a merge and

discovers it has at least one tree T ′ that is following T , then T will become a leader.

4.4.5 Terminating the Computation

While the AvatarCbt network is locally checkable, the algorithm presented

above requires some nodes that detect a fault to execute no repair action. For instance,

imagine two subtrees with a single edge connecting them, incident upon nodes c ∈ T

and d ∈ T ′. Note that only c and d know the network is faulty, but neither will

modify the edge (c, d) until “instructed” to do so by our communication mechanism.

This delayed repair mechanism is a key component of the algorithm, as it allows us

to coordinate repairs to limit degree increases (e.g. only a select few neighbors of any
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Algorithm 4.4 The Selection Algorithm for a Follower

// Assume the root rT of T has selected a follower role (short or long).

1. Root rT communicates the new role to nodes in T .

2. if T is a short follower then

3. Root rT sets pollCount = 2

4. else T is a long follower :

5. Root rT sets pollCount = 12

6. fi

7. while pollCount > 0 and no potential leader is found do

8. Root rT queries subtree T for a potential leader.

9. if u ∈ T found a potential leader v ∈ T ′ then inform rT of v fi

10. pollCount = pollCount − 1;

11. od

12. if a potential leader is returned to rT then

13. Root node rT selects one potential leader v ∈ T ′, informs nodes in T of v

14. Nodes in T forward any edge to v ∈ T ′ to the root.

15. else rT randomly selects a new role RandomRole fi



102

node u may increase the degree of u at any particular point in time).

The problem with this delayed repair, however, is that the only detector in

the network may be waiting for the “command” to execute a repair action, but this

command may never arrive (since no other node is a detector). To rectify this problem

is quite simple – every node keeps (and shares) a single bit representing whether or

not the configuration is correct. Let correct c be this bit. If either node c detects a

fault, or c has a neighbor b with correct b = 0, then correct c = 0. Since the network is

locally checkable, all incorrect configurations have at least one node with this bit set

correctly. Therefore, a faulty configuration will always have an enabled action. We

include this correct c bit in the proof label of each node.

Finally, this bit must be set to 1 once the correct configuration is built. To

do this, we can simply include in every invocation of the efficient communication

mechanism a “fault detected” bit, which allows the root to easily check if any node

in its subtree detects a fault in its immediate neighborhood. If a root discovers that

no node in its subtree detects a fault, then the configuration is correct and the root

can instruct them to set their correct c bit to 1.

4.4.6 Initializing the Subtrees

The algorithms presented thus far are intended to be executed on proper sub-

trees. Due to the arbitrary initial configuration, however, there may exist nodes in the

network that do not belong to a subtree. We present an algorithm that ensures, after

few rounds, the network consists entirely of subtrees and merging nodes (see Section
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4.4.4). This ensures that the algorithms given above execute as intended even in a

self-stabilizing setting.

This initialization process is called reset. Informally, a node executes a reset

when it detects a configuration that it does not know how to recover from. Specifically,

if a node u detects (i) it is not part of a proper subtree, and (ii) it is not executing

a merge, then u executes a reset, becoming a subtree of size 1. Node u can then

resumes executing the algorithms given above.

Algorithm 4.5 The Reset Algorithm

1. if Reset fault detected and did not reset in previous round then

2. Virtualu = [N ]

3. succu = ⊥; predu = ⊥;

4. for a ∈ Virtualu do

5. Connect a to Cbt neighbors from Virtualu

4.4.7 Intra-Subtree Communication

To allow the cluster leaders to coordinate merges efficiently, we need an effi-

cient method for communicating amongst nodes of the same cluster (subtree). The

algorithms use wave propagation for communication, a natural choice for the tree

topology. Specifically, we use propagation of information with feedback and clean-
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ing (PFC ) [10] for communication. This communication procedure is executed on

the virtual subtree TCbt(N). The root node initiates a PFC wave, which (i) propa-

gates information down the tree level-by-level until reaching the leaves, (ii) sends a

feedback wave from the leaves to the root, passing along any requested feedback in-

formation, and (iii) makes all nodes ready to execute another PFC wave. We assume

this procedure is used whenever the root needs to inform nodes of the subtree of some

information, or nodes in the subtree wish to communicate some information to the

root. Note that nodes keep a state variable for each part of the PFC wave. These

variables were used to ensure the communication mechanism is snap-stabilizing. For

our purposes, they ensure that communication between the root and all other nodes

occurs as expected regardless of the initial configuration – either there is a message

“in transit”, or at least one node detects a faulty configuration. This is important so

that, for instance, no node is waiting for feedback that will not occur.

Notice that, while the original PFC algorithm was snap-stabilizing, we do not

require this property. We choose instead to handle faulty configurations with the

reset action discussed earlier.

4.4.7.1 Implementing ConnectFollowers

To implement the ConnectFollowers procedure, we can use the PFC commu-

nication mechanism. It works as follows. First, a PFC wave is initiated by the root,

and when nodes receive the propagate portion of the wave, they set their role to Clos-

edLeader, preventing any neighbors from selecting them as potential leaders. Once
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Algorithm 4.6 Subroutine for PFC (I, F ) on virtual subtree TCbt(N)

Variable for Node a: PFCStatea

1. when root node root satisfies PFCStateChildren(root) = PFCStateroot = Clean then

2. rootT initiates PFC wave by setting PFCStateroot = Propagate(I)

3. Each node a executes the following:

4. if PFCStatea = Clean ∧ PFCStateParent(a) = Propagate(I)∧

PFCStateChildren(a) = Clean then

5. PFCStatea = Propagate(I)

6. else if PFCStatea = Propagate(I) ∧ PFCStateParent(a) = Propagate(I)∧

PFCStateChildren(a) = Feedback(F ) then

7. PFCStatea = Feedback(F ′)

8. else if PFCStatea = Feedback(F ) ∧ PFCStateParent(a) = Feedback(F )∧

PFCStateChildren(a) = Clean then

9. PFCStatea = Clean

10. fi

11. fi
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Figure 4.13: Example of the ConnectFollowers Procedure. Subtrees Q and P are

assigned merge partners in the second round (middle figure), while R is assigned

merge partner T in the third round (right-most figure).

the feedback wave begins, a node b only sends the feedback wave up the tree if it has

no neighboring node c that is a potential follower of b. This means the feedback wave

may be delayed slightly while neighbors decide to either (i) follow a node from T , or

(ii) follow a different subtree T ′. Notice, however, that this delay is short-lived, since

no new potential followers are added.

After a node has no more neighboring potential followers, it assigns merge

partners to all followers. If b has an even number of followers, each is paired with one

other follower. If b has an odd number of followers, all but one of these followers are

paired up, and the last follower is forwarded to the parent of b, who will continue the

process. If the root of the subtree receives an odd number of followers, it pairs up all

followers and itself. We give an example of this procedure in Figure 4.13.

We require a slightly modified PFC wave for the ConnectFollowers procedure.
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We show this modification with the use of “Feedback” actions, which we assume

a node executes before transitioning from the propagation to feedback state. We

call this the feedback action for node a. We give the ConnectFollowers procedure in

Algorithm 4.7.

Algorithm 4.7 Subroutine ConnectFollowers

1. Execute PFC (ConnectFollowers ,⊥):

2. Feedback Action for a:

3. while ∃b ∈ Na : roleb = PotentialFollower(a)∨

(roleb = Follower(a) ∧ b 6= root) do skip; od

4. Order the k followers in Na by tree identifiers b0, b1, b2, . . . , bk−1

5. for i = 0, 2, 4, . . . , bk/2c do

6. Create edge (bi, bi+1); Set merge partner of bi to bi+1 and vice versa

7. Delete edge (a, bi+1)

8. od

9. if k mod 2 6= 0 then

10. Create edge (parenta, bk−1) and delete edge (a, bk−1)

11. fi
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4.4.8 Summary

Figure 4.14 provides a transition diagram for the subtrees in the algorithm.

To begin, assume a subtree T randomly selects a role (node Random Role Selection).

Suppose the subtree T selects the role of leader. All nodes in T become open leaders

(node Open Lead), and can acquire followers. After a short amount of time, all

followers of T are connected (node Connecting Followers). T may have been assigned

a merge partner during this process, in which case it participates in a merge (node

Merging). If T was not assigned a merge partner, it simply randomly selects a new

role and the process repeats.

Suppose a subtree T selects the follower role. All nodes in T begin searching

for a neighboring open leader (node Searching for Leader). If at least one leader was

found, the root of T selects one neighboring leader, T ′, informs all nodes of the leader,

connects to a node from T ′, and waits to be assigned a merge partner (node Waiting

for Partner). After a short amount of time, leader T ′ assigns T a merge partner S,

and T and S merge (node Merging).

Finally, after subtrees T and S complete a merge to form R, nodes check for

any neighboring subtrees that have selected R as a leader. If there is such a neighbor,

R assumes the role of leader (node Open Leader). If there is no such neighbor, R

randomly selects a new role.
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Figure 4.14: The states of a subtree in the algorithm.

4.5 Analysis

The self-stabilizing algorithm for the AvatarCbt network presented in Section

4.4 converges in a polylogarithmic number of rounds in expectation, and has a degree

expansion that is at most polylogarithmic. We prove these claims in the following

section. Unless otherwise noted, all subtrees mentioned are virtual subtrees.

4.5.1 Convergence Time

We begin our analysis of the running time by showing that every node is part

of a cluster (the subtree) in a short amount of time. We then show that a subtree

merges with another subtree in a short amount of time (with constant probability),

quickly reaching a configuration with a single subtree.

Before discussing the running time of reset and merge, we prove the following
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lemma concerning the running time of a PFC wave on a subtree T .

Lemma 4.2. If the root of a subtree T initiates the PFC (I, F ) wave without prop-

agate or feedback actions, the PFC wave is complete (all nodes receive the informa-

tion, the root receives the feedback, and nodes are ready for another PFC wave) in

2 · (logN + 1) + 2 rounds.

Proof. After the root initiates the PFC (I, F ) wave, in every round the information I

moves from level k to k+1 until reaching a leaf. As the subtree has at most logN +1

levels, after at most logN + 1 rounds, all nodes have received the propagation wave.

Upon receiving the propagation wave, leaves set their PFC states to Feedback to

begin the feedback wave. Again, in every round the feedback wave moves one level

closer to the root, yielding at most logN + 1 rounds before the root has received the

feedback wave. Consider the transition to PFC state Clean. If a leaf node b sets its

PFC state to Feedback , in one round the parent of b will set its state to Feedback , and

in the second round, b will set its state to Clean. The process then repeats for the

parent of b. In general, two rounds after a node b is in state Feedback , it transitions

to state Clean. Therefore, 2 · (logN + 1) + 2 rounds after the root initiates a PFC

wave, all nodes receive the propagation wave, return the feedback wave, and move

back to a clean state, ready for another PFC wave.

4.5.1.1 Subtree Initialization

We begin by showing that all nodes are members of a proper subtree in a short

amount of time, and then show this implies no further reset faults are executed. First,
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notice that no node in a proper subtree has a reset fault enabled.

Definition 4.8. Let T be a proper subtree. T is a proper clean subtree if and only

if all nodes in T have a PFC state of Clean.

Lemma 4.3. Let node b be a member of a proper subtree T . Node b can only execute

a reset action if T begins the merging process from Algorithm 4.1.

Proof. To begin, notice that no reset is executed when the subtree edges of T remain

and the PFC state remains consistent. Since program actions cannot cause a con-

sistent PFC state to be inconsistent, a merge is the only action that can modify the

configuration of a node b such that b executes a reset.

Lemma 4.4. Let node rT detect locally it is the root of a proper subtree T (rT has

a consistent PFC state, and has two children with appropriate identifiers and tree

identifiers). If rT initiates a PFC (I, F ) wave and later receives the corresponding

feedback wave, then rT is the root of a proper subtree.

Proof. Every node will only continue to forward the propagate and feedback waves

if (i) they have the appropriate subtree neighbors, and (ii) their PFC states are

consistent. If either of these conditions are violated (e.g. T is not a proper subtree),

then there exists at least one node which will execute a reset, making it no longer a

part of the “subtree” T . Therefore, the PFC wave cannot complete when rT is not

the root of a proper subtree.
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Lemma 4.5. If node b is a member of a proper unmatched clean subtree T in con-

figuration Gi, then b will never execute a reset in any configuration Gj ∈ F(Gi).

Proof. By Lemma 4.3, only a merge can cause node b to execute a reset fault. We

show that any merge b participates in must be between two proper subtrees, and

therefore completes correctly (Lemma 4.16).

Suppose the root of T has been matched with the root of another subtree T ′.

T cannot begin modifying its subtree edges for the merge until both T and T ′ have

successfully completed the PFC (Prep(T, T ′),⊥) wave. Suppose T ′ was not a proper

subtree. In this case, T ′ would not successfully complete the PFC wave (Lemma 4.4),

and T would not begin a merge with T ′. Therefore, if T and T ′ merge together, both

must be proper subtrees, implying the merge completes successfully and either b has

been deleted, or b is again a member of a clean proper subtree T ′′ (see Lemma 4.16).

Lemma 4.6. Consider a node b that is not a member of a proper subtree in config-

uration Gi. In O(logN) rounds, b is a member of a proper unmatched clean subtree.

Proof. If b is not a member of a proper subtree and detects a reset fault in Gi, our

lemma holds.

Consider the case where b is not a member of a proper subtree but has no reset

fault. If b’s neighborhood is either missing its parent or children, or has a parent or

child with non-matching tree identifiers and b does not detect a reset fault, then
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b’s state must be consistent with performing a merge between trees T and T ′ from

Algorithm 4.1. In 2 rounds, b either has the correct subtree neighbors, each with

tree identifier of either T or T ′, and has passed the merge process on to its children,

or b has executed a reset. The children of b now either execute a reset, or are in a

state consistent with the merge process, and we repeat the argument. As there are

logN+1 levels, after 2 ·(logN+1) rounds either a node has reset due to this merging,

or the merge is complete. If a node has reset in round i, its parent will reset in round

i+1, its parent’s parent will reset in i+2, and so on. After at most logN +1 rounds,

b resets and becomes part of an unmatched clean proper subtree.

If b does not detect locally that it is not a member of proper subtree T , then

there must exist a node c within distance 2 · logN such that every node pi on a path

from b to c believes it is part of the same subtree as b, and node c detects an incorrect

subtree neighborhood or inconsistent PFC state. As with the above argument, either

c detects a reset fault immediately, or c is participating in a merge. In either case,

after O(logN) rounds, c has either reset, or c is a member of a proper unmatched

clean subtree resulting from a successful merge.

Combining Lemmas 4.5 and 4.6 gives us the following lemma.

Lemma 4.7. No node executes a reset action after O(logN) rounds.

We call a configuration Gi a reset-free configuration if and only if no reset

actions are executed in any configuration Gj ∈ F(Gi). We provide the following

assertion to simplify the remaining proofs. Notice that this assertion will hold true

after a logarithmic number of rounds (as shown above).
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Assertion 1. The proofs of Section 4.5.1.2 assume a reset-free configuration.

4.5.1.2 Merging

The next step of the analysis is to show that subtrees merge often enough

to quickly reach a configuration with a single subtree. We show a proper subtree

has constant probability of being matched with a merge partner within a logarithmic

number of rounds. Once a subtree T is assigned a merge partner T ′, the merge

completes within 4 · logN rounds, resulting in a single N -node subtree T ′′, with

V (T ′′) ⊂ V (T ) ∪ V (T ′).

First, we analyze the time required for a node b ∈ T that has selected some

neighboring subtree T ′ as a potential follower for the root of T to be connected to a

node in a leader subtree T ′.

Lemma 4.8. Let b ∈ T be a follower that has selected a neighbor c ∈ T ′ as a potential

leader. In at most 5 · (logN + 1) + 6 rounds, the root of T has an edge to some leader

subtree T ′′, and all nodes in T know this leader.

Proof. When b detects c becomes a potential leader, b marks c as a potential leader

immediately, regardless of the PFC state. After at most 2 · (logN + 1) + 2 rounds,

a feedback wave will reach b, at which point b will forward the information about its

potential leader. In an additional (logN + 1) + 2 rounds, the PFC wave completes,

at which point the root of T has at least one potential leader (which may or may not

be c) returned to it. The root of T will select one returned leader and execute the

leader-inform PFC wave. In logN + 1 rounds, all nodes know the identity of their
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leader and its subtree. Subtree T ’s selected leader c′ will be forwarded up the tree

during the feedback wave, reaching the root in an additional (logN + 1) + 2 rounds.

Lemma 4.9. Let rT be the root of subtree T . If rT selects the role of Leader, within

9 · (logN + 1) + 10 rounds either T has been paired with a merge partner, or T

randomly selects a new role. Furthermore, all followers of T have been assigned a

merge partner.

Proof. First, note that PFC (Lead ,⊥) requires 2 · (logN + 1) + 2 rounds to complete

(Lemma 4.2). The PFC (ConnectFollowers ,⊥) wave requires at most 7·(logN+1)+8

rounds. To see this, notice that the feedback action for this wave cannot advance past

a node b ∈ T until b has no neighbors that are potential followers and all followers

are root nodes. Let T ′ be a follower subtree that has selected T as a potential leader.

By Lemma 4.8, after at most 5 · (logN + 1) + 6 rounds, all potential followers of b are

either no longer following b, or are connected with a root to b.

Notice that the total wait for all nodes in T is 5 · (logN + 1) + 6, since all

nodes in T have a role of ClosedLead and are not assigned any additional potential

followers. Therefore, the feedback wave can be delayed at most 5 · (logN + 1) + 6

rounds, leading to a total 7 ·(logN+1)+8 rounds for the PFC (ConnectFollowers ,⊥)

wave. Upon completion of the PFC (ConnectFollowers ,⊥) wave, all followers of T

have been assigned a merge partner. If there were an odd number of followers, T has

also been assigned a merge partner, else T will randomly re-select a role.

Lemma 4.10. Let T be a short follower subtree. In at most 4 ·(logN+1)+4 rounds,
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either T has selected a leader, or T randomly re-selects a role.

Proof. A short follower polls its subtree for a leader at most twice, each requiring

2 · (logN + 1) + 2 rounds (Lemma 4.2). If a leader is not returned, T will randomly

select a new role. If at least one leader is returned, T selects it.

Lemma 4.11. Let T be a long follower subtree. In at most 24 · (logN + 1) + 24

rounds, either T has selected a leader, or T randomly re-selects a role.

Proof. By similar argument to Lemma 4.10, a long follower polls its subtree at most

12 times, each requiring 2 · (logN + 1) + 2 rounds (Lemma 4.2). If a leader is not

returned, T will randomly select a new role. If at least one leader is returned, T

selects it.

Lemma 4.12. Let T be a follower subtree that has returned a leader after a PFC

search wave of Algorithm 4.4. After at most 16 · (logN + 1) + 16 rounds, T has a

merge partner.

Proof. Let rT be the root node of T . Node rT selects a returned leader T ′ and, in

2 · (logN + 1) + 2 additional rounds, all nodes in T have been informed of leader T ′

and rT has an edge to a node b from T ′.

After rootT has an edge to a node b ∈ T ′, rootT waits to be assigned a merge

partner. Suppose T ′ had the role of leader when selected by T . By Lemma 4.9, after

at most 9 · (logN + 1) + 10 rounds, T will be assigned a merge partner.

Suppose T ′ was executing a merge when selected by T . T will be assigned a

merge partner when (i) T ′ finishes its merge, and (iii) T ′ finishes executing Algorithm
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4.3. If T ′ was merging, it completes in at most 5·(logN+1)+4 rounds (Lemma 4.16).

The resulting subtree T ′′ will be a leader, and will require at most 9 · (logN + 1) + 10

rounds before all followers have been assigned a merge partner (Lemma 4.9).

Since the initial configuration is set by the adversary, it can be difficult to

make probabilistic claims when dealing with the initial configuration. For instance,

the adversary could assign all subtrees the role of long follower, in which case the

probability that a merge happens over 24 · (logN + 1) + 24 rounds is 0. Notice,

however, that after a short amount of time, regardless of the initial configuration,

subtrees are guaranteed to have randomly selected their current roles. Therefore, we

ignore the first 24 · (logN + 1) + 24 rounds of execution in the following lemmas.

Definition 4.9. Let G0 be the initial network configuration. We define F∆(G0) to

be the set of future configurations reached after ∆ = 26 · (logN + 1) + 26 rounds of

program execution from the initial configuration.

Lemma 4.13. Let T be a follower subtree in configuration Gi ∈ F∆(G0). With

probability at least 1/2, T either randomly selects a new role or has found a leader in

4 · (logN + 1) rounds.

Proof. Subtree T must have randomly selected its follower role in Gi, as no subtree

can be a follower for longer than 24·(logN+1)+24 rounds. Given that T is a follower,

with probability 1/2, T must have been a short follower, and therefore either T finds

a leader or selects a new role after 4 · (logN + 1) + 4 rounds (Lemma 4.10).
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Lemma 4.14. Consider configuration Gi ∈ F∆(G0). With probability at least 1/4,

every node in subtree T will have been a potential leader for at least one round over

the next 21 · (logN + 1) + 20 rounds.

Proof. Consider the possible roles and states of any subtree T . If T is currently

participating in a merge or is an OpenLeader , then the lemma holds.

Suppose T is a follower in configuration Gi. By Lemma 4.13, with probability

at least 1/2, T will either find a leader or randomly select another role after 4·(logN+

1) + 4 rounds. If T finds a leader, after an additional 16 · (logN + 1) + 16 rounds

(Lemma 4.12), T is assigned a merge partner, and after at most logN + 1 additional

rounds, all nodes in T are potential leaders. If T randomly selects another role, with

probability 1/2 T selects the leader role, and all nodes are potential leaders after at

most logN + 1 additional rounds.

Suppose a node b ∈ T is a closed leader (roleb = ClosedLeader). After at

most 9 · (logN + 1) + 10 rounds (Lemma 4.9), either the root of T is assigned a

merge partner and b becomes a potential leader after an additional logN + 1 rounds,

or the root of T is not assigned a merge partner and selects a new role at random.

With probability 1/2, then, b becomes a potential leader after an additional logN +1

rounds.

Lemma 4.15. Every subtree T in configuration Gi ∈ F∆(G0) has probability at least

1/16 of being assigned a merge partner over 64 · (logN + 1) + 64 rounds.

Proof. After at most 24 · (logN + 1) + 24 rounds, if T has not been assigned a merge
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partner, T will re-select its role. With probability 1/4, T will be a long follower

and be searching for a leader for 24(logN + 1) + 24 rounds. By Lemma 4.14, a

neighboring subtree T ′ has probability at least 1/4 of being a potential leader during

this time. Therefore, T has probability at least 1/16 of selecting a leader within

48 · (logN + 1) + 48 rounds, which will result in T being assigned a merge partner

after at most an additional 16 · (logN + 1) + 16 rounds (Lemma 4.12).

Lemma 4.16. Let T and T ′ be proper subtrees, and let the merge partner of T (T ′)

be T ′ (T ). Assume the root rT of T and the root rT ′ of T ′ are connected. In 5 ·

(logN +1)+4 rounds, T and T ′ have merged together into a single proper unmatched

clean subtree T ′′, containing exactly N nodes.

Proof. The first step of the merge procedure is to execute the PFC (Prep) wave,

which requires 2 · (logN + 1) + 2 rounds (Lemma 4.2). Consider an invocation of

the procedure ResolveSubtree(a, b). Let a be from subtree T , b be from subtree T ′,

and without loss of generality let a ≺ b. ReplaceNode(a, b) requires only 1 round,

and results in the children of a being connected to node b. In the next round, b will

connect its children with the children from a, which requires 1 round. ResolveSubtree

is then executed concurrently for nodes from level i+ 1. Therefore, the running time

starting from level i is T (i) = 2 + T (i+ 1). Since there are logN + 1 levels, we have

T (0) =
∑logN

i=0 2 = 2 · (logN + 1). After the resolution process reaches the leaves, the

final feedback travels up the tree, requiring an additional logN + 1 rounds, plus 2

rounds for cleaning.
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Lemma 4.17. With probability at least (1 − N/2k) (where k = |L| and k ≥ logN),

the algorithms from Section 4.4 do not disconnect the network.

Proof. First, notice that deletions (of edges and nodes) that occur due to proper

subtrees T and T ′ merging do not disconnect the network – the only edges deleted

are those between nodes in T ∪ T ′, and these nodes will form a proper subtree T ′′

after the merge. The only way in which the network can be disconnected is if the

adversary creates an initial configuration such that a node b believes it is either

merging, or preparing for a merge, and thus deletes an edge to a node c. Notice that

for any edge (b, c) to be deleted, both b and c must have the same value for their

random sequence, and this value must match the shared random string L. While the

adversary can enforce the first condition, they are unable to guarantee the second.

Instead, for any particular pair of nodes a and b, the adversary has probability 1/2k

of setting the random sequences of a and b to match L. An adversary can have up to

N/2 different “guesses” in any initial configuration. Therefore, the probability that

the network is disconnected is at most N/2k+1 (for k ≥ logN).

Theorem 4.3. The algorithms given in Section 4.4 form a self-stabilizing algorithm

for the AvatarCbt network, with expected convergence time O(log2N).

Proof. We prove this theorem by noting that each time a merge occurs, the number

of subtrees in the network decreases by 1. Every subtree has a constant probability

of merging over a logarithmic-size time span. Therefore, if there are n ≤ N subtrees

in the network, the expected number of subtrees after O(logN) rounds is at most
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n/c. After O(logN) such segments, the expected number of remaining subtrees is 1.

When there is only a single proper subtree, it is the correct AvatarCbt network.

4.5.2 Degree Expansion

In this section, we analyze the degree expansion of the algorithm. To do so,

we consider first how a node’s degree may grow from program actions before the node

is part of a proper subtree. Next, we consider how a node’s degree may grow after

it becomes a member of a proper subtree. First, we prevent the following corollary,

which is a result of Lemma 4.1.

Corollary 1. Consider a node u hosting a set of nodes Virtualu such that all b ∈

Virtualu belong to the same proper subtree T . Node u has at most 2 · logN virtual

nodes with neighbors in subtree T that are not hosted by u.

We define the set of actions a node may execute that can increase the degree

of a real node u.

Definition 4.10. Let a degree-increasing action of a virtual node b be any action

that adds a node c to the neighborhood of a node b′ ∈ Nb such that b′ is not hosted by

host b. Specifically, the degree-increasing actions are:

1. (Selection for Leaders): edges added from the connecting and forwarding of

followers during the PFC (ConnectFollowers ,⊥) wave of Algorithm 4.3

2. (Selection for Followers): forwarding an edge to a leader after the root has

selected a leader in Algorithm 4.4

3. (Merge): resolution and virtual node transfer actions during Algorithm 4.1
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Notice that transferring all non-subtree edges from a loser node is not a degree-

increasing action, as the edges are “virtual transfers” between two virtual nodes

hosted by the same real node.

Lemma 4.18. Let u be a real node in configuration Gi. The maximum number of

real nodes u will add to any neighbor v’s neighborhood in a single round is 2 · logN .

Proof. We consider the degree-increasing actions. Notice that a real node will detect

a reset fault if it hosts two virtual nodes b and b′ such that b and b′ are executing

different algorithms – for example, if b is merging while b′ is executing a selection for

leaders, host u will reset and not forward any neighbors.

Consider the selection algorithms for both leaders and followers as executed

on a virtual node b. Node b can only increase the degree of its parent or of a follower.

Consider the degree increase b causes to its parent. Node b may give its parent a

single edge to a follower or a leader. Since u hosts at most 2 · logN virtual nodes

with subtree neighbors not hosted by u, and each of these neighbors can increase

the degree of a node by at most 1, node u can only increase the degree of a subtree

neighbor when executing selection for leaders and followers by at most 2 logN .

Next, consider how virtual node b may increase the degree of a follower with

Algorithm 4.3. Every follower b′ of b may have one additional edge added by b.

Notice, however, that every follower b′ must have a unique host – if not, this host

would detect a reset fault. Therefore, u can increase the degree of a real node v by

at most 1 when connecting followers in Algorithm 4.3.

Consider the merge actions of virtual nodes hosted by u. Again, node u must
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have all virtual nodes executing the merge algorithm, else u resets. In a given round,

u may update its successor and give up all hosted virtual nodes in a particular range

to its new successor v. The virtual nodes in this range can have at most 2 · logN real

neighbors.

Lemma 4.19. Let u be a real node in some configuration Gi. The degree expansion

of u before all virtual nodes hosted by u are members of a proper clean unmatched

subtree is O(log2N).

Proof. By Lemma 4.18, the largest number of nodes any node v will give to node u in

a single round is 2 · logN . Furthermore, in order for u to receive 2 · logN nodes from

a neighbor v, u must host a virtual node whose merge partner is equal to the subtree

of the virtual node of v. If u detects virtual nodes without matching tree identifiers,

it executes a reset. If u detects nodes from the same subtree but different levels being

connected to a neighbor attempting to merge, u executes a reset. Therefore, after

the first round, at most 2 · logN nodes can be added to u’s neighborhood in a single

round. Since, by Lemma 4.6, all nodes hosted by u are members of a proper clean

unmatched subtree in O(logN) rounds, the degree expansion of u before all nodes

hosted by u are members of the same proper clean unmatched subtree is O(log2N).

In the initial configuration, it is possible for all neighbors of u to give u 2·logN

neighbors. In this case, the degree expansion is limited to O(logN), since u will reset

immediately after receiving these neighbors.

Lemma 4.20. Let u be a real node such that all virtual nodes hosted by u are members
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of a proper clean unmatched subtree in configuration Gi. Let u’s degree in Gi be ∆u.

Node u’s degree will be at most ∆u+2 · logN ·(logN+1)+2 · logN ·T (lead)) until the

algorithm terminates, where T (lead) is the number of times the virtual nodes hosted

by u participate in the leader selection procedure of Algorithm 4.3.

Proof. We consider the three degree-increasing actions that a proper clean unmatched

subtree T from configuration Gi may execute. Consider first the follower selection

procedure from Algorithm 4.4. The degree can increase only from node b adding the

neighbor leader from subtree T ′ to the neighborhood of parent b. Furthermore, this

degree increase of one is temporary – a node deletes an edge to leader after forwarding

it, and once the root has the edge, it eventually becomes part of a merge, and either

the root of T or the root of T ′ is deleted.

Next, consider the selection procedure for leaders in Algorithm 4.3. During

the PFC (ConnectFollowers ,⊥) wave, a virtual node b may receive at most a single

neighbor from each child, and after an additional round will retain at most 1 of these

edges. Since a real node u can host at most 2 · logN nodes with children from another

host, the degree increase each time a node u participates in the selection procedure

for leaders is at most 2 · logN .

Finally, consider the degree increase from the merge algorithm. Assume b

and b′ are nodes in level i in T and T ′ (respectively), and suppose b and b′ resolve.

Without loss of generality, let b′ ≺ b. The degree of b can only increase by 2 (the

children of b′). The degree of host b may increase if host b′ copies some of its virtual

nodes to host b. By Corollary 1, any node v can have at most 2 · logN real neighbors
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inside subtree T ′. Furthermore, there can be exactly one node b′ ∈ T ′ that updates

its successor to host b at level i. As there are logN + 1 levels, the maximum degree

increase during a merge is 2 · logN · (logN + 1). Notice that, unlike the degree

increase from the selection procedure for leaders, the degree increase from merges is

not additive – the largest node u’s degree can be as the result of intra-subtree edges is

2 · logN , regardless of how many merges u participates in. Therefore, while a node’s

degree may temporarily grow during a merge to 2 · logN · (logN + 1), after the merge

is complete, u’s intra-subtree degree is at most 2 · logN .

Theorem 4.4. The degree expansion of the AvatarCbt algorithm is O(log2N) in ex-

pectation.

Proof. By Lemma 4.19, a node’s degree can increase by at most a O(log2N) factor

from u’s initial degree before all nodes hosted by u are in a proper clean unmatched

subtree. By Lemma 4.20, the degree of u can increase during execution by at most

2·logN ·(logN+1)+2·logN ·T (lead), regardless of the initial degree of u. Since a node

may begin execution with degree 1, and have degree 1 in the correct configuration,

this additive degree increase may be equal to the node’s degree expansion. Notice

each leader selection procedure requires O(logN) rounds, and the network converges

in O(log2N) rounds in expectation (Theorem 4.3). Therefore, T (lead) is O(logN) in

expectation, leading to a degree expansion of O(log2N) in expectation.



126

CHAPTER 5
SCAFFOLD NETWORKS

In this chapter, we investigate how AvatarCbt can be used as an intermediate

step towards building the Chord network. We present an algorithm which starts

with the AvatarCbt network and adds edges in a systematic fashion to create the

AvatarChord network. We show that this process increases the running time of the

self-stabilizing algorithm from Chapter 4 by only O(log2N) rounds, and increases

the degree expansion by only ∆0, where ∆0 is the maximum degree of a node in the

initial configuration.

5.1 Defining Scaffold Networks

One of the major barriers to both the design and analysis of self-stabilizing

overlay networks is the level of complexity. When constructing a large building, a

common approach is to erect a scaffold temporarily, and use this scaffold to build the

more complex permanent structure. Presumably, this scaffolding is easier to build

than the final structure, but at the same time it makes work significantly easier. Ap-

plying this idea to overlay networks, we use a simple self-stabilizing overlay network

ONs to build a more complex topology ONf . We call this approach network scaffold-

ing. The network ONs is called the scaffold network, and the desired topology ON f

is called the final network.

More formally, the network scaffolding approach is to design an algorithm A

which executes on a family of overlay networks ON s such that A eventually creates

the overlay network family ON f . Algorithm A uses the edges of a simpler network



127

to create the edges for the more complex network. The challenges here are two-

fold. First, attempts to build ON f should not slow down the building of ON s (if

necessary), nor should they increase the degree too much. Secondly, nodes should

be able to determine when to execute A, and when to execute the algorithm for the

scaffold network.

5.1.1 Example: Linear to Re-Chord

While the explicit definition of this approach is new, the idea of network

scaffolding is not. Consider the self-stabilizing Re-Chord network [25]. The basic

idea of the authors’ algorithm is (i) build a Linear network, and then (ii) create the

edges necessary for the Chord network using the Linear network. Re-Chord can be

thought of as a Linear scaffold network with the Chord final network.

The drawbacks of using Linear as a scaffold network are that (i) Linear

requires O(n) rounds to converge, and (ii) once converged Linear has diameter n−

1, meaning routing on the scaffold network is slow. These limitations result in a

O(n · log n) running time for Re-Chord (Re-Chord uses n real nodes and log n virtual

nodes). Clearly, then, using Linear as a scaffold network may simplify analysis, but

it comes at the cost of scalable convergence time.

5.2 Avatar as a Scaffold for Chord

In this section, we discuss how to use AvatarCbt as a scaffold for creating the

AvatarChord network. The algorithm uses the fact that Chord edges can be created

inductively. That is, assuming all fingers from 0 to k are present, the k+ 1 finger can
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be created in a single round. Specifically, if node b is the (i − 1) finger of c0, and c1

is the (i− 1) finger of b, the ith finger of c0 is c1. The algorithm begins by correctly

building finger 0, then recursively adds the first finger, then the second, and so on.

5.2.1 Defining Chord(N)

We begin by defining the full graph family Chord.

Definition 5.1. For any N ∈ N, let Chord(N) be a graph with nodes [N ] and edge

set defined as follows. For every node i, 0 ≤ i < N , add to the edge set (i, j), where

j = (i + 2k) mod N , 0 ≤ j < logN − 1. When j = (i + 2k) mod N , we say that j

is the kth finger of i.

Our goal is to create a graph G with node set V ⊆ [N ] such that (i) the

edges of the AvatarCbt network are a subset of the edges of G, and (ii) the edges of

AvatarChord are also a subset of the edges of G. Notice that, when N is a power of 2,

the edges of Chord(N) are a superset of the edges of Cbt(N). That is, the edges of

Cbt(N) are present in Chord(N). Therefore, for N ∈ {2i|i = 0, 1, . . .} and V ⊆ [N ],

the edges of AvatarCbt(N, V ) are a subset of the edges of AvatarChord(N, V ). For the

remainder of this chapter, we assume N is a power of 2.

5.2.1.1 Original Chord vs. Embedded Chord

The AvatarChord(N, V ) network does not match the original Chord network

composed of node set V . In our embedding, a virtual node b is hosted by a real node

u such that b is between u and its successor. That is, a node u hosts all virtual nodes

between u and succu. This implies that the kth finger f of a node b is an edge in the
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real network between host b and v, where v = maxw∈V (w ≤ f). In the original Chord

network, however, the kth finger f of node u ∈ V is to v = minw∈V (w ≥ f).

If we require AvatarChord to have the edges as the original Chord network, we

can build AvatarChord with the algorithm presented here, and then use the successor

pointers of AvatarChord to forward the Chord(N) edges. This action can be coordi-

nated through a PFC wave, for instance. Assuming node identifiers are uniformly

distributed, there is no significant increase in a node’s degree or “responsible range”

(the range of object identifiers mapped to a node u) between our mapping and the

original Chord mapping.

5.2.2 Avatar: A Chord Scaffold

Taking advantage of the network embedding approach, we design the algorithm

to be executed upon the virtual nodes of Cbt(N). Assume at the moment that the

network is a correct AvatarCbt network and all nodes are executing the algorithm to

build AvatarChord. The algorithm begins with the root of Cbt(N) initiating a PFC

wave which connects each virtual node with its 0th finger. Notice that, with the

exception of one node, the edges in the real network realizing every virtual node’s 0th

finger are already present. For any virtual node b 6= N−1, the 0th finger of b is either

(i) a virtual node with the same host as b, or (ii) a virtual node which is hosted by the

successor of host b. Virtual nodes 0 and N − 1 forward an edge to themselves up the

tree on the feedback wave, and the root of the tree connects them, thus completing

every virtual node’s 0th finger. The root then executes logN − 1 additional PFC
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waves, with wave k correctly adding the kth finger for all nodes. After O(log2N)

rounds, AvatarChord is built.

The algorithm requires nodes to know whether to execute the algorithm to

build AvatarCbt or the algorithm to build AvatarChord from AvatarCbt. We do so by

having every real node u maintain two bits – chordu and cbtu. When cbtu = 0, a

node is executing the algorithm to build the AvatarCbt network. If cbtu = 1 and

chordu = 0, then Algorithm 5.1 is executed (shown below). We discuss the setting of

these bits next.

5.2.3 Algorithm Selection

Algorithm 5.1 assumes it begins execution from the correct AvatarCbt network.

However, in a self-stabilizing setting, this may not be the case. Therefore, we need

a way to correctly determine which algorithm a node should execute. As mentioned

previously, this is done by each node keeping two bits, cbtu and chordu, which a node

shares with its neighbors. Informally, if a node detects its state is consistent with

executing Algorithm 5.1, it continues executing Algorithm 5.1. If it is not consistent,

it reverts to the AvatarCbt algorithm from Chapter 4.

Determining which algorithm to execute requires a node to determine if the

configuration will stabilize to a legal AvatarChord configuration simply by executing

Algorithm 5.1, or if the network needs to restore the legal AvatarCbt network first.

We define a subset of states under which Algorithm 5.1 will converge, and then define

a predicate which nodes can use to determine if the network is in one of these states.
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Algorithm 5.1 Algorithm for Chord(N) from Cbt(N)

// Execute when cbtu = 1 and chordu = 0

// If cbtu = 0, then execute the AvatarCbt algorithm from Chapter 4

1. Tree T executes a PFChord(MakeFinger(0),⊥) wave:

2. Propagate Action for a: LastWavea = 0

3. Feedback Action for a:

// Let b be the 0th finger of a.

4. if LastWavea = LastWaveb = 0 then

5. Create the virtual edge (a, b)

6. Forward an edge to node 0 or N − 1 (if present) to parent

7. else cbtu = 0 (where u is hosta) fi

8. for k = 1, 2, . . . , logN − 1 do

9. Tree T executes a PFChord(MakeFinger(k),⊥) wave:

10. Propagate Action for a: LastWavea = k

11. Feedback Action for a:

// Let b0, b1 be the k − 1 fingers of a.

12. if LastWavea = LastWaveb0 = LastWaveb1 = k then

13. Create edge (b0, b1), the kth finger of b0.

14. else cbtu = 0 (where u is hosta) fi

15. od
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Definition 5.2. A graph G with node set V is said to be in a scaffolded Chord

configuration if G ∈ FA(AvatarCbt(N, V )), where A is Algorithm 5.1. In other words,

G is reachable by executing Algorithm 5.1 on a correct AvatarCbt(N, V ) network.

Informally, to determine if the configuration is a scaffolded Chord configu-

ration, every virtual node simply checks to see if its neighborhood is a superset of

Cbt(N) but a subset of Chord(N), and the first k fingers from Chord(N) are present.

We define the predicate a node can use for this operation below.

Definition 5.3. Let scaffolded b be a predicate defined over the local state of a virtual

node b, as well as the state of nodes b′ ∈ N(b). The value of scaffolded b is the

conjunction of the following conditions.

1. Node b has all neighbors from Cbt(N), each with the proper host and tree iden-

tifier.

2. Node b has last executed the kth feedback wave of a PFC (MakeFinger(k),⊥)

wave.

3. All neighbors of b have either all k fingers present, or k + 1 fingers (if a child

has just processed a feedback wave), or k−1 (if parent has not yet processed the

current feedback wave).

4. Node b’s parent has last executed the kth feedback wave, and has the first k

Chord(N) fingers, or k−1 fingers if b has just completed the feedback transition

and b’s parent has not.

This predicate is used to set the chordu and cbtu bits as follows. If a fault
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is detected and scaffoldedu = false, then u = host b sets cbtu = 0. Furthermore, if

any neighbor has a different value for either bit cbtu or chordu, then both bits are

set to 0. We will show in a moment that this procedure is sufficient to ensure the

correct algorithm is executed within a short amount of time (i.e. if the configuration

is not a scaffolded Chord configuration, then all nodes begin executing the AvatarCbt

algorithm from Chapter 4 quickly). Notice that, once the correct configuration is

built, nodes can execute a final PFC wave to set chordu = 1. If any node detects any

fault during this process, it simply sets both bits to 0. Since AvatarChord is locally

checkable, at least one node will not complete this chordu = 1 PFC wave, and the

AvatarCbt algorithm will begin.

5.2.4 Analysis

5.2.4.1 Convergence Time

The convergence time analysis of the algorithm begins by showing that, after

O(logN) rounds, if the configuration is neither the correct AvatarChord network nor a

scaffolded Chord configuration, then all nodes are executing the AvatarCbt algorithm

from Chapter 4. During these O(logN) rounds, the degree of a node can at most

double from its initial degree. Finally, after the correct AvatarCbt network is built,

the AvatarChord network is built in O(logN) rounds. We prove each of these claims

below.

Lemma 5.1. Let Gi be a configuration with node set V ⊆ [N ]. Suppose Gi 6=

AvatarChord(N, V ), and Gi is not a scaffolded Chord configuration. Any node u ∈ Gi
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is distance at most 2 · (logN + 1) from a node v with cbtv = 0.

Proof. Imagine the subgraph induced by all nodes at distance at most 2 · (logN + 1)

from any node u. If this ball does not contain all the nodes in the network, then there

exists at least one node v in this ball such that v has a neighbor that it would not

have in the correct AvatarCbt(N, V ) configuration, and v detects this extra neighbor.

Therefore, v would set cbtv = 0. Furthermore, the real nodes in this ball must be

hosting exactlyN virtual nodes, with each virtual node hosted by the correct real node

with the correct tree identifier, else at least one node detects an incorrect embedding

(Chapter 4, Theorem 4.1). Finally, the PFC state of these N virtual nodes must be

consistent, else a faulty configuration that is not a scaffolded Chord configuration is

detected, and cbtu = 0.

Assume theN virtual nodes in this ball realize a Cbt(N) network with some ad-

ditional edges, and the PFC state is consistent. If the network is a correct AvatarChord

configuration, no node detects a fault, as AvatarF is locally checkable for any full

graph family. A virtual node can easily determine if it has the first k Chord(N)

fingers by examining its set of neighbors. Virtual nodes can also verify that the last

PFC feedback wave processed was for k (potentially k − 1 if finger k is a member of

Cbt(N)). If a b node detects it has a different number of correct Chord fingers as a

neighbor, it must either be currently processing a PFC wave and about to receive the

feedback wave (if the children have an extra finger) or pass the feedback wave to its

parent (if its parent has one less correct Chord finger). If neither of these conditions

are true, then b sets scaffolded b = 0. Therefore, if all nodes do not have their first k
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Chord fingers correct, or all nodes are not in a PFC wave to add their kth finger to

the already-correct set of k − 1 fingers, at least one node must set scaffolded b = 0,

which results in cbtu = 0 (where u = host b).

Lemma 5.2. Suppose configuration Gi is not the AvatarChord configuration, and Gi

is not a scaffolded Chord configuration. In at most 2 · (logN + 1) rounds, all nodes

are executing the self-stabilizing AvatarCbt algorithm from Chapter 4.

Proof. By Lemma 5.1, if G is not AvatarChord(N, V ) nor a scaffolded Chord network,

then every node u has a node v within distance at most 2 · (logN + 1) with cbtv = 0.

In every round, neighbors of nodes with cbtv = 0 set their own cbtu = 0. In at most

2 · (logN + 1) rounds, every node u has cbtu = 0, thus every node is executing the

AvatarCbt algorithm.

Lemma 5.3. Let G0 be the correct AvatarCbt(N, V ) configuration, and let each node

u ∈ V have chordu = 0 and cbtu = 1. In O(log2N) rounds, the configuration

converges to AvatarChord(N, V ).

Proof. We prove this by induction on the number of correct fingers. In G0, the root of

the virtual Cbt will begin the first PFC wave to add the 0th fingers. For every virtual

node b 6= N − 1, the 0th finger is either (i) a virtual node hosted by u = host b, or (ii)

a virtual node hosted by v such that v = succu. In either case, the real edge realizing

this virtual edge already exists, and creating this 0th finger is simply a matter of

a host updating a virtual node’s local state. For node N − 1, the first PFC wave

forwards to the root node an edge to virtual nodes 0 and N − 1, and the root will



136

connect these two nodes. This requires 2 · (logN + 1) rounds. At this point, all nodes

have the correct 0th finger.

Assume finger i has been created by the PFC (Chord(i),⊥) wave. The root

will execute the PFC (Chord(i+ 1),⊥) wave. Let virtual node b receive the feedback

wave. By the inductive hypothesis, node b has links to virtual nodes c0 and c1, where

b is finger i of c0, and c1 is finger i of b. Node b connects c0 and c1 in one round,

thereby creating finger (i+1) for c0. After 2 ·(logN+1) rounds, all nodes have added

their i+ 1 finger. As there are logN − 1 fingers, the total convergence time to reach

the AvatarChord network from G0 is O(log2N).

Using Theorem 4.3 and the above lemmas gives us the following result.

Theorem 5.1. Algorithm 5.1 combined with the self-stabilizing algorithm from Chap-

ter 4 is a self-stabilizing algorithm for the AvatarChord network with convergence time

O(log2N) in expectation.

5.2.4.2 Degree Expansion

Besides converging to a correct configuration quickly, the algorithm maintains

low degree expansion. We prove this next.

Lemma 5.4. Let ∆i be the maximum degree of a real node v in configuration Gi.

Suppose Gi is neither an AvatarChord configuration nor a scaffolded Chord configu-

ration. The degree of any node u ∈ V is multiplied by at most ∆i before u begins

executing the AvatarCbt algorithm.
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Proof. Consider a virtual node b hosted by u in configuration Gi. Notice that each

virtual neighbor b′ of b can add at most one node to the neighborhood of b per

2 · (logN + 1) rounds when executing Algorithm 5.1, as b′ attempts to add the kth

finger to b (at which point b′ must wait for another PFC wave). Furthermore, by

Lemma 5.2, after at most 2 · (logN + 1) rounds, all nodes in Gi have cbtu = 0.

Therefore, in the worst case a node u may become immediate neighbors with all real

nodes at distance 2 from u in Gi, resulting in a degree expansion of at most ∆i.

Combining the lemma above with Theorem 4.4 from Chapter 4 gives us the

following theorem.

Theorem 5.2. Algorithm 5.1 builds the AvatarChord network with degree expansion

of O(∆0 · log2N) in expectation, where ∆0 is the maximum degree of a real node in

the initial configuration.

Proof. By Lemma 5.4, the degree expansion from Algorithm 5.1 is at most ∆0 before

the AvatarCbt algorithm from Chapter 4 is executed. By Theorem 4.4, this algorithm

has a degree expansion ofO(log2N) in expectation. When executing from a scaffolded

Chord configuraiton, the only edge added by Algorithm 5.1 that is not an edge in the

final configuration is the forwarding of an edge to node 0 and N − 1. Therefore, once

the correct AvatarCbt network is built, Algorithm 5.1 builds AvatarChord with degree

expansion of at most 2. Therefore, from any configuration Algorithm 5.1 may increase

degrees by a factor of at most max(2,∆0) = ∆0 (a connected graph must have ∆i ≥ 2

for n > 2), the algorithm from Chapter 4 may increase degrees by c · log2N , giving

us O(∆0 · log2N) degree expansion.
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CHAPTER 6
CONCLUSIONS

Self-stabilization is an elegant approach for maintaining the topology of an

overlay network in the presence of faults. In this thesis, we presented several self-

stabilizing algorithms for overlay network creation. We also presented a non-trivial

lower bound on the convergence time of self-stabilizing overlay networks, and demon-

strated a systematic approach for overlay network design that is easily extensible.

This thesis is a good starting point for future overlay network research.

6.1 Summary of Contributions

6.1.1 The Transitive Closure Framework

In Chapter 3, we presented the Transitive Closure Framework, which is a

transformer that makes any locally checkable overlay network self-stabilizing. We

proved a bound on the convergence time of self-stabilizing overlay networks and used

this bound to show that the Transitive Closure Framework provides near-optimal

convergence time for a class of overlay networks which includes Linear and Skip+.

We then extended the framework to repair a subset of faults quickly with the Local

Repair Framework. We demonstrated the Local Repair Framework by implementing

a node join procedure for Skip+ graphs that executed in logarithmic time.

6.1.2 The Avatar Network

In Chapter 4, we presented a self-stabilizing overlay network algorithm which

converges in a polylogarithmic number of rounds and limits degree expansion to
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at most polylogarithmic. To do this, we first defined a family of overlay networks

based upon the embedding of any full graph family. We extended the notion of local

checkability to include proof labels, which gives a better measure of the state nodes

must exchange in the “correct” configuration to be locally checkable. We then showed

the graph definition was locally checkable using only a small number of bits per proof

label.

Using the full graph family Cbt, a graph based upon the binary search tree,

we designed a self-stabilizing algorithm which converges in O(log2N) rounds in ex-

pectation, while limiting the expected degree expansion of a node to O(log2N). This

result is the first to achieve efficient time and space convergence, and holds even for

a powerful adversary that can modify a node’s state arbitrarily. The algorithm uses

a modular design which is easy to understand, and which suggests a simple extension

to build other topologies efficiently.

6.1.3 Scaffolding Networks

Finally, in Chapter 5, we introduced a technique for using the AvatarCbt net-

work to build the AvatarChord network. Specifically, we showed (i) how to build the

AvatarChord network when starting from a legal AvatarCbt network, and (ii) how nodes

in the network can quickly determine whether to execute the scaffolding algorithm

to build AvatarChord, or whether to execute the algorithm from Chapter 4 to build

the AvatarCbt network. This combination results in a self-stabilizing algorithm for

AvatarChord network with a running time of O(log2N) rounds in expectation and
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an expected degree expansion of O(∆ · log2N), where ∆ is the maximimum degree

taken over all nodes in the initial configuration. This algorithm is interesting in two

respects: first, it is the only efficient self-stabilizing algorithm for creating the Chord

network; secondly, it demonstrates the power of the algorithm from Chapter 4 –

efficient extensions are simple to design and analyze.

6.2 Future Work

Several open problems are highlighted by this thesis. First, the efficient algo-

rithm for the AvatarCbt network from Chapter 4 requires a shared random sequence

L to avoid network disconnection. A natural open problem is to investigate if this

shared randomness is required for efficient convergence. An efficient solution without

shared randomness and a powerful adversary may not exist, since an edge cannot

be deleted without first determining if it is a cut edge. Since local states can be

arbitrarily corrupted in the self-stabilizing model, local states cannot be used to de-

termine if an edge is a cut edge (without the use of shared randomness, as we did).

Therefore, edges cannot be explicitly deleted, but rather must be delegated towards

the endpoint of the edge. That is, the edge (u, v) can become (u′, v) such that u′ is on

the path from u to v. Eventually, the edge becomes (v, v), at which point it can safely

be deleted. However, an adversary may be able to construct examples where many

edges must traverse a single node during this process. In these cases, it would seem

that either the degrees grow quite large, or the convergence time slows considerably.

Further work is needed to either (i) find a solution where shared randomness is not
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required, or (ii) prove such a result is impossible.

Second, future work could create an algorithm to efficiently create AvatarF

for any full graph family F . The approach to building an efficient AvatarCbt net-

work was generic and modular, and seems extensible to other networks. One need

only (i) define a cluster, (ii) discuss efficient communication in this cluster, and (iii)

define a merging algorithm. How such an extension would perform with other clus-

ters and other communication mechanisms remains to be seen. While bounding the

convergence time seems simple to prove using similar techniques to our implemen-

tation, understanding how the degree expansion is changed by the new modules is

non-trivial. Ideally, we would be able to define a measure analogous to the detector

diameter, only for degree expansion instead of convergence time.

Third, this work ignores the underlying implementation of overlay links and

assumes that each logical link is equivalent. One can think of a model where each

link has a cost associated with it. Our work has assumed a uniform cost model with

unlimited budgets – every node could send the same amount of information over every

incident edge, and all edges were equal. In practice, however, many logical links may

be realized by the same physical link, which imposes bandwidth constraints on the

amount of total information a node can share in a particular round. Furthermore,

the physical links of intermediate nodes (nodes not part of the network itself, but

required for routing) may have their own capacity constraints, which may make logical

links heterogeneous – some logical links may have a larger capacity than others,

and some may be slower than others. Understanding the role of physical links in
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logical networks is a hard. In fact, some measures of this connectivity are not even

efficiently computable with a centralized algorithm [16]. In the future, we would like

to determine how a non-uniform cost model of communication can be integrated into

the self-stabilizing overlay network model.

Finally, this work has always assumed the existence of a single correct con-

figuration for any set of nodes V . One could relax this requirement to allow semi-

structured overlay network – networks where a correct configuration is one satisfying

predicate P , and there are multiple such configurations for any node set V . Open

problems include not only finding interesting predicates, but also proving what kinds

of predicates can be locally verified (or verified with the minimum amount of global

knowledge). Future work can (i) investigate what predicates can be guaranteed in the

self-stabilizing overlay network model, and (ii) design efficient algorithms to satisfy

these predicates.
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