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ABSTRACT

In this report, we initiate study on understanding a theoretical model for

distributed computing called Congested Clique. This report presents constant-

time and near-constant-time distributed algorithms for a variety of problems in the

Congested Clique model.

We start by showing how to compute a 3-ruling set in expected O(log log log n)

rounds and using this, we obtain a constant-approximation to metric facility location,

also in expected O(log log log n) rounds. In addition, assuming an input metric

space of constant doubling dimension, we obtain constant-round algorithms to

compute maximal independent set on distance-threshold graphs and constant-factor

approximation to the metric facility location problem. These results significantly

improve on the running time of the fastest known algorithms for these problems in

the Congested Clique setting.

Then, we study two fundamental graph problems, Graph Connectivity (GC)

and Minimum Spanning Tree (MST), in the Congested Clique model, and present

several new bounds on the time and message complexities of randomized algorithms

for these problems. No non-trivial (i.e., super-constant) time lower bounds are known

for either of the aforementioned problems; in particular, an important open question is

whether or not constant-round algorithms exist for these problems. We make progress

toward answering this question by presenting randomized Monte Carlo algorithms for

both problems that run in O(log log log n) rounds (where n is the size of the clique). In
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addition, assuming an input metric space of constant doubling dimension, we obtain

constant-round algorithm the MST problem. Our results improve by an exponential

factor on the long-standing (deterministic) time bound of O(log log n) rounds for these

problems due to Lotker et al. (SICOMP 2005). Our algorithms make use of several

algorithmic tools including graph sketching, random sampling, and fast sorting.

Thus far there has been little work on understanding the message complexity of

problems in the Congested Clique. In this report, we initiate a study on the message

complexity of Congested Clique algorithms. We study two graph problems, Graph

Connectivity (GC) and Minimum Spanning Tree (MST), in the Congested Clique

model, focusing on the design of fast algorithms with low message complexity. Our

motivation comes from recently established connections between the Congested Clique

model and models of large-scale distributed computing such as MapReduce (Hegeman

et al., SIROCCO 2014) and the “big data” model (Klauck et al., SODA 2015). For

these connections to be fruitful, Congested Clique algorithms not only need to be fast,

they also need to have low message complexity. While the aforementioned algorithms

are fast, they have an Ω(n2) message complexity, which makes them impractical in

the context of the MapReduce and “big data” models.

This motivates our goal of achieving low message complexity, without sacri-

ficing the speed of the algorithm. We start with the simpler GC problem and show

that it can be solved in O(log log log n) rounds using only O(n poly log n) messages.

Then we derive subroutines to aid our earlier MST algorithm to run in O(log log log n)

rounds using O(m poly log n) messages on an m-edge input graph. Then, we present

v



an algorithm running in O(log∗ n) rounds, with message complexity Õ(
√
m · n) and

then build on this algorithm to derive a family of algorithms, containing for any ε,

0 < ε ≤ 1, an algorithm running in O(log∗ n/ε) rounds, using O(n1+ε/ε) messages.

Setting ε = log log n/ log n leads to the first sub-logarithmic round Congested Clique

MST algorithm that uses only Õ(n) messages.

Our results are a step toward understanding the power of randomization in

the Congested Clique with respect to both time and message complexity.
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1

CHAPTER 1
INTRODUCTION

Fundamental graph-theoretic problems such as computing Minimum Spanning

Tree (MST) frequently arise in science and engineering domains. These problems

show up as instances of models of real-world phenomena or as a subproblem of its

encompassing problem, often proving to be a bottleneck in the overall computation.

In today’s era of Big Data, the problem is exacerbated due to the sheer scale of the

graphs originating in domains such as bioinformatics, social network analysis, and

other relational contexts. Hence, efficient processing of such large-scale graphs is

paramount and acts as a significant challenge to the field of computer science. One

way to gain this efficiency is by means of distributing the processing of the graphs to

a network of machines which perform computation in parallel, communicating with

each other as required. Due to the advent of “cloud computing”, high-performance

computing, overlay networks, etc. most of these networks are fully connected, that

is, any machine can directly communicate with any other machine. To capture these

fully-connected networks, in this report we focus on the Congested Clique model of

distributed computing.

Distributed graph computing is sometimes necessary because the input is too

large to fit into a single machine (e.g., the Facebook graph), sometimes because the

input is inherently distributed (e.g., the Internet), sometimes because adding more

processing power might speed-up the computation. A distributed system is generally a

network of machines connected by communication channels. Communication channels
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can be physical wires, wireless radio transmissions, or even logical entities consisting of

mixture of wired and wireless connections. In the past, distributed graph computing

is studied by letting the input graph act as communication network. That is, each

node in the graph is a machine in the network and each edge in the input graph acts

as a communication channel. This tight coupling of input graph and the network

was motivated by several distributed systems such as the Internet. One of the

important challenge in distributed computing is congestion [50]. The Congest

model is designed to study the effect of congestion and distance on various problem

by restricting size of messages that node can send over a communication channel in

unit time. The lack of local information is one of the key challenges in the distributed

computing [50] and hence, classical sequential algorithms are not sufficient to solve

the problems in distributed manner. Few problems such as maximal independent set

and coloring are local in nature. So a natural extension to the Congest model is to

take out the congestion and focus on the locality alone. This model is called Local

model. Both, Congest and Local model are widely studied and well understood

by the community. The next natural extension to these model, in a theoretical

point of view, is to just focus on congestion alone. That is, all the information is

at most one hop away. We refer to this model as the Congested Clique model. More

formally, the Congest model is a synchronous, message-passing model of distributed

computation in which the amount of information that a node can transmit along an

incident communication link in one round is restricted to O(log n) bits, where n is

the size of the network [50]. As the name suggests, the Congest model focuses on



3

congestion as an obstacle to distributed computation. In this report, we focus on the

design of distributed algorithms in the Congest model on a clique communication

network; we call this the Congested Clique model. In the Congested Clique model,

all information is nearby, i.e., at most one hop away, and so any difficulty in solving

a problem is due to congestion alone.

Though initially the Congested Clique model was considered just a theoretical

model, recently there has been work showing connection between real-world dis-

tributed systems such as MapReduce model [22] and Big Data model [31]. Also

the rise in overlay networks and peer to peer (P2P) networks are another motivation

to study the Congested Clique model.

1.1 Congested Clique Model

The Congested Clique model consists of n machines that can communicate

with each other via an underlying complete network. A key feature of the model is

the bandwidth restriction on the communication links, i.e., only a limited number of

bits (typically O(log n) bits, as assumed here) can be sent along each link in each

round. In the Congested Clique, since the diameter of the communication network

is just one, every machine is within one hop of every other machine and thus all

information is quite local. The main algorithmic issue lies then in dealing with the

potential congestion caused by the bandwidth restrictions.

Each vertex v ∈ V of the network has a distinct identifier of O(log n) bits. At

the beginning of the computation, each vertex knows its own identity, the number n,
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and the part of the input it gets assigned. There are then two possible variants of

the model based on the amount of knowledge available at the vertices regarding the

network. In the first one, each computing entity initially knows, in addition to its own

identity, the identity of its n−1 neighbors, while in the second one a computing entity

initially does not know the identities of its n − 1 neighbors. Following, e.g., [5], we

denote these two variants as KT1 and KT0, respectively. Thus, in the KT0 model,

each node can send and receive messages along n− 1 communication links (without

loss of generality, numbered 1, 2, . . . , n − 1), without being aware of the identity of

nodes at the other end of the communication links. In this report we assume the KT1

model.

The computation proceeds in synchronous rounds. In each round each node

can perform some local computation and send a (possibly different) message of

O(log n) bits to each of its n − 1 neighbors. It is assumed that both the computing

entities and the communication links are fault-free. The Congested Clique model is

therefore specifically geared toward understanding the role of the limited bandwidth

as a fundamental obstacle in distributed computing, in contrast to other classical

models for distributed computing that instead focus, e.g., on the effects of latency

(the Local model) or on the effects of both latency and limited bandwidth (the

Congest model).

In distributed computing two complexity measures are usually relevant: the

time complexity of a computation is the total number of rounds to complete the

computation, while the message complexity of a computation is the total number of
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messages exchanged to complete the computation. In this report, we consider both

complexity measures.

1.2 Related Work and Motivation

Indeed, there has been a lot of recent work in studying various fundamental

problems in the Congested Clique model, including facility location [19, 6], minimum

spanning tree (MST) [39, 23], shortest paths and distances [8, 24, 45], triangle

finding [12, 11], subgraph detection [12], ruling sets [6, 23], sorting [49, 37], and

routing [37]. The modelling assumption in solving these problems is that the input

graph G = (V,E) is “embedded” in the Congested Clique, that is, each node of G is

uniquely mapped to a machine and the edges of G are naturally mapped to the links

between the corresponding machines (cf. Section 1.1).

Research on the Congested Clique has focused mostly on the time complexity

(i.e., the number of synchronous rounds) of these problems. The complete network

allows Θ(n2) (different) messages (each message is of size O(log n) bits) to be

exchanged in each round, and many of the time-efficient algorithms for various

problems have exploited this vast parallel communication ability to give “super-fast”

algorithms that run in a sub-logarithmic (in n) number of rounds. An important

early result is the work of Lotker et al. [39], which presented an O(log log n)-round

deterministic algorithm for the MST problem. This was a significant improvement at

the time (only an O(log n)-round algorithm was known [50]). Lotker et al. left open

the question of whether or not an even faster algorithm was possible—in particular,
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whether a constant-round algorithm could be possible for MST or for the (simpler)

problem of graph connectivity (GC). Regarding lower bounds, almost nothing non-

trivial is known.1 In particular, for the GC and MST problems, no super-constant

time lower bounds are known.2 The situation is not promising from the lower bounds

side: the recent results of [13] have proved that showing substantially super-constant

lower bounds on time in the Congested Clique is as hard as proving long-open lower

bounds in circuit complexity. However, this leaves open the important question of

whether or not constant-time algorithms are possible for GC as well as the MST

problem. Furthermore, there has been little work published on understanding the

message complexity of problems in the Congested Clique. In particular, to the best

of our knowledge, we are not aware of any work that addresses tradeoffs between

message and time complexities in Congested Clique.

In many applications, message complexity is the dominant cost as it plays a

major role in determining the running time and auxiliary resources (e.g., energy)

consumed by the algorithm. For example, communication cost is one of the

dominant costs in distributed computation on large-scale data in modern data

centers [31]. While computation cost performed locally within a machine might be

high, transferring huge amounts of data (e.g., petabytes) across machines during

1This is the case with respect to the standard unicast/multicast version of the Congested
Clique—the model assumed in this report—where each node can send a different message
(or no message at all) along each of its incident links in each round. Recently, time lower
bounds have been shown in the weaker broadcast version of the Congested Clique—where
machines can send only the same message across its incident links in a round—for some
problems such as shortest paths [24] and the subgraph detection problem [12].

2This is true even in the broadcast version of the model.
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computation can consume a substantial amount of time and resources and usually

dominates other costs [31]. In the particular context of the Congested Clique,

optimizing messages as well as time has direct applications to the performance of

distributed algorithms in other models such as the Big Data (k-machine) model [31],

which was recently introduced to study distributed computation on large-scale graphs.

The above work shows how to “convert” algorithms (cf. Conversion theorem of [31])

designed in the Congested Clique model to the Big Data model; the running time

in the Big Data model depends on both the time and the message complexities of

the corresponding algorithm in the Congested Clique model. As a consequence, the

fastest algorithm in the Congested Clique model need not yield the fastest algorithm

in the Big Data model; on the contrary, a slower but more message efficient algorithm

in the Congested Clique can yield a faster algorithm in the Big Data model. Another

related motivation comes from the connection between the Congested Clique model

and the MapReduce model. In [22] it is shown that if a Congested Clique algorithm

runs in T rounds and, in addition, has moderate message complexity, then it can be

simulated in the MapReduce model in O(T ) rounds.

1.3 Problem Specifications

In this section, we formally define the algorithmic problems. In this report

we focus on graph problems such as minimum spanning tree, graph connectivity, and

t-ruling set. As an application of t-ruling set we show how to solve metric facility

location problem. All these problems are formally defined below.
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1.3.1 Maximal Independent Set and t-Ruling Set

An independent set of a graph G = (V,E) is a set S of vertices such that for

every two vertices in S, there is no edge connecting the two. A maximal independent

set (MIS) is an independent set that is not a subset of any other independent set. In

other words, there is no vertex outside the independent set that may join it because

it is maximal with respect to the independent set property. A t-ruling set of a graph

G = (V,E) is an independent set I ⊆ V such that every vertex in G is at most t hops

from some vertex in I. A t-ruling set, for constant t, is a natural generalization of an

MIS and can stand as a proxy for an MIS in many instances.

The input to the t-ruling set problem (or the MIS problem) on a Congested

Clique H = (V,EH) is a spanning subgraph G = (V,E) of the underlying

communication network H. Each node v ∈ V is initially aware of all its neighbors

in G. At the end of the t-ruling set algorithm, every node is required to know the

identities of all nodes in the computed t-ruling set.

1.3.2 Metric Facility Location

The input to the metric facility location (MFL) consists of a metric space

(V, d) along with facility opening costs fv associated with each node v ∈ V . The

goal is to find a subset F ⊆ V of nodes to open as facilities so as to minimize

the facility opening costs plus connection costs, i.e., ∑v∈F fv +∑
u∈V D(u, F ), where

D(u, F ) := minv∈F d(u, v) is the connection cost of node u. Initially, each node v ∈ V

knows facility opening cost fv and distances d(v, w) for all w ∈ V .
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1.3.3 Graph Connectivity

The input to the graph connectivity (GC) problem is a spanning subgraph

G = (V,E), E ⊆ EN , of the underlying clique communication network N = (V,EN).

The input to each node v ∈ V consists of an (n − 1)-bit vector where the i-th bit is

associated with the i-th channel of v, indicates whether or not edge (v, ID(i)) ∈ E,

where ID(i) is the identifier of the node at the other end of v’s i-th channel. At the

end of the GC algorithm, we require that at least one machine knows whether G is

connected or not.

1.3.4 Minimum Spanning Tree

The input to the minimum spanning tree (MST) problem is a a spanning

subgraph G = (V,E), E ⊆ EN , of the underlying clique communication network

N = (V,EN). The input to each node v ∈ V consists of an (n− 1)-bit vector where

the i-th bit is associated with the i-th channel of v, indicates whether or not edge

(v, ID(i)) ∈ E, where ID(i) is the identifier of the node at the other end of v’s i-

th channel. Also, each node knows edge-weights of the incident edges. We assume

that edge-weights can be represented using O(log n) bits. At the end of the MST

algorithm, we require that each machine knows which of its incident edges belong to

the output MST. . Figure 1.1 demonstrate the MST problem in the Congested Clique

model on a 5-node graph.
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Figure 1.1: MST in the Congested Clique Model: input graph nodes and the network

machines are shown in circles. The solid lines indicate the edges in the input graph

along with weights. The solid lines and the dashed lines are the communication

channels. Fig. (a) shows what machine 3 knows initially while the expected status of

machine 5 in the end of computation is shown in Fig. (b).
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1.4 Contributions

This section summarizes our contribution and also describes organization for

the rest of the report.

1.4.1 Fast t-Ruling Set Computation and Application to Metric Facility Location

In Chapter 2 we present several constant-time or near-constant-time algo-

rithms for fundamental problems in the Congested Clique setting. Specifically our

results in Chapter 2 are:

• First, we present an algorithm that computes a 3-ruling set of G in expected

O(log log log n) rounds, significantly improving the running time of the 2-ruling

set algorithm of Berns et al. [7, 6].

• Via a reduction presented in Berns et al. [7, 6], this implies an expected

O(log log log n)-round algorithm for computing an O(1)-approximation for

MFL. Again, this significantly improves on the running time of the fastest known

algorithm for this problem.

• Secondly, we show how to compute MIS in growth-bounded graphs in O(1)

rounds.

Distributed algorithms that run in O(log log n) rounds are typically analyzed

by showing a doubly-exponential rate of progress; such progress, for example, is

achieved if the number of nodes that have “successfully finished” grows by squaring

after each iteration. The Congested Clique algorithms for MST due to Lotker et

al. [40] and the above-mentioned MFL algorithm due to Berns et al. [7, 6] are both
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examples of such phenomena. Our algorithm with triply-logarithmic running time,

involves new techniques that seem applicable to Congested Clique algorithms in

general. Our result raises the distinct possibility that other problems, e.g., MST,

can also be solved in O(log log log n) rounds on a Congested Clique. In fact, our next

set of results are motivated by this.

1.4.2 Fast Graph Connectivity Verification and Minimum Spanning Tree

Construction

In Chapter 3 we focus on two fundamental graph problems in the Congested

Clique, namely graph connectivity (GC) and minimum spanning tree (MST), and

present several new results that make progress toward understanding the time and

message complexities of randomized algorithms for these problems. In Chapter 3,

we positively answer questions raised in Chapter 2. Moreover, we initiate study of

message complexity of Congested Clique algorithms.

1.4.2.1 Faster Algorithms for GC and MST

Our first contribution consists of randomized (Monte Carlo) algorithms,

running in O(log log log n) rounds and succeeding with high probability (w.h.p.),

for both GC and MST3. Our results improve by an exponential factor on the long-

standing time upper bound of O(log log n) rounds for MST due to Lotker et al. [39]. It

is worth mentioning that the Lotker et al. MST algorithm is deterministic, in contrast

to ours, which uses randomness in a crucial way.

3Throughout this report, by “w.h.p.” we mean with probability at least 1− 1/nΩ(1).
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It is worth emphasizing that if we allow O(polylog n) bits per message, instead

of O(log n) bits per message (which is the standard bound for the Congested Clique

model), then our algorithm solves MST in O(1) rounds. Lotker et al. point out that

their algorithm also extends to a larger bandwidth setting; specifically, running in

O(log 1/ε) rounds if each message is nε bits long. For example, this implies that the

Lotker et al. algorithm would run in O(1) rounds if each message was allowed to

contain Θ(
√
n) bits. This need for poly-sized messages should be contrasted with our

MST algorithm which is capable of running in O(1) rounds using only O(polylog n)-

sized messages.

1.4.2.2 Focus on Message Complexity

Our O(log log log n)-round randomized MST algorithm presented in Chapter 3

has a message complexity of Θ(n2) (as does the algorithm of Lotker et al. [39]). As we

improved on the time complexity using randomization, a natural question is whether

we can improve the message complexity as well. By exploiting the synchronous

nature of the model one can solve any problem fairly trivially with an algorithm

that communicates only O(n) bits. The O(n) bits message complexity upper bound

mentioned above is not particularly satisfying because the algorithm it depends on

uses super-polynomially many rounds. This naturally leads to the question of whether

MST (or GC) can be solved fast and using only a small number of messages. In

Chapter 3, we provide a partial answer to this question in this chapter by presenting an

MST algorithm that requires only O(n polylog n) messages and O(polylog n) rounds.
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In Chapter 4 we make further progress towards this question.

1.4.3 Reducing Message Complexity of Graph Connectivity Verification

All of the MST algorithms mentioned above, essentially use the entire

bandwidth of the Congested Clique model, i.e., they use Θ(n2) messages. From

these examples, one might (incorrectly!) conclude that “super-fast” Congested Clique

algorithms are only possible when the entire bandwidth of the model is used. In our

next set of results, we focus on the design of MST algorithms in the Congested Clique

model that have low message complexity, while still remaining “super-fast.” In our

next set of contributions we partially answer questions raised in Chapter 3. These

results are described in Chapter 4. We first focus on GC and show that it can be

solved in O(log log log n) rounds using only O(n poly log n) messages.

1.4.3.1 Low-message-complexity GC Algorithm

The GC algorithm in Chapter 3 that runs in O(log log log n) rounds, uses

the fast parallel merge procedure of Lotker et al. [39] as a pre-processing step to

reduce the size (number of vertices) of the input graph to O(n/ poly log n). This

merge procedure uses Θ(n2) messages per iteration and our next main technical

contribution lies in showing how to reduce the message complexity of this merge

procedure toO(n poly log n) messages. Specifically, we show how to use linear sketches

[1, 2, 42] to sample sufficiently many edges connecting different components in parallel

so as to be useful to the fast parallel merge procedure of Lotker et al. [39]. An

additional technique that we use to limit the message complexity of this algorithm
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to O(n poly log n) is the design of a simple routing primitive that has linear message

complexity, while requiring only a constant number of rounds for completion. These

results are described in Chapter 4.

1.4.3.2 Linear-message-complexity MST Algorithm

We then consider the more challenging MST problem and first in Chapter 4

show that MST can be solved in O(log log log n) rounds using O(m poly log n)

messages. In addition to the low-message-complexity routing primitive mentioned

above, this result depends on a low-message-complexity sorting primitive (based on

the Congested Clique sorting algorithm of [37]) that we present. While we do not

know if exact MST can be solved in O(log log log n) rounds using O(n poly log n)

messages, we do show that for any ε > 0, a (1+ε)-approximation of MST can also be

constructed in O(log log log n) rounds using only O(n poly log n) messages. This final

approximation algorithm result makes crucial use of the GC result and the exact-MST

result mentioned above.

1.4.4 Reducing Message Complexity of Minimum Spanning Tree Construction

In Chapter 5, we positively answers questions raised in Chapter 3 and

Chapter 4, by presenting an O(log∗ n)-round algorithm that uses Õ(
√
m · n) 4

messages for an n-node, m-edge input graph. Two points are worth noting about this

message complexity upper bound: (i) it is bounded above by Õ(n1.5) for all values ofm

and is thus substantially sub-quadratic, independent ofm and (ii) it is bounded above

4The notation Õ hides poly(logn) factors.
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by o(m) for all values of m that are super-linear in n, i.e., when m = ω(n poly(log n)).

We then extend this result to design a family of algorithms parameterized by ε,

0 < ε ≤ 1, and running in O(log∗ n/ε) rounds and using Õ(n1+ε/ε) messages. If we set

ε = log log n/ log n, we get an algorithm running in O(log∗ n · log n/ log log n) rounds

and using Õ(n) messages. Thus we demonstrate the existence of a sub-logarithmic

round MST algorithm using only O(n · poly(log n)) messages, positively answering a

question posed in Chapter 3 and Chapter 4. All of the round and message complexity

bounds mentioned above hold with high probability (w.h.p.), i.e., with probability at

least 1− 1
n
. Our results indicate that the power of the Congested Clique model lies not

so much in its Θ(n2) bandwidth as in the flexibility it provides – any communication

link that is needed is present in the network, though most communication links may

eventually not be needed.

Finally, in Chapter 6, we summarizes our understanding of the Congested

Clique model and points out the open problems for future investigations.
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CHAPTER 2
SUPER-FAST ALGORITHM FOR METRIC FACILITY LOCATION

PROBLEM

2.1 Introduction

The input to the metric facility location (MFL) consists of a metric space

(V, d) along with facility opening costs fv associated with each node v ∈ V . The

goal is to find a subset F ⊆ V of nodes to open as facilities so as to minimize

the facility opening costs plus connection costs, i.e., ∑v∈F fv +∑
u∈V D(u, F ), where

D(u, F ) := minv∈F d(u, v) is the connection cost of node u. The facility location

problem is a more general version of the metric facility location problem without

metric space.

The facility location problem has been used as an abstraction for the problem

of locating resources in a wireless network [16]. Motivated by this application, several

researchers have considered the facility location problem in a distributed setting [46,

47, 43]. More recently, Berns et al. [6] presented a O(log log n)-round algorithm that

computes a O(1)-factor approximate solution to the MFL problem in the Congested

Clique. Berns et al. achieved this result by reducing MFL to 2-ruling set problem and

presented a O(log log n)-round 2-ruling set algorithm. In this chapter first we present

a O(log log log n)-round algorithm for 3-ruling set problem and using the reduction

in [6] we obtain a O(1)-factor approximation to the MFL problem in O(log log log n)

rounds in the Congested Clique improving it by an exponential factor. Then we
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present a O(1) round algorithm for the MIS problem in a more restricted setting. 1

2.1.1 Related Work

A number of classical problems in distributed computing, e.g., maximal

independent set (MIS), vertex coloring, edge coloring, maximal matching, shortest

paths, etc., are well-defined in this setting. However, the difficulty of proving lower

bounds in the Congested Clique model [13] means that it is not clear how quickly one

should be able to solve any of these problems in this model. Note that the input G can

be quite dense (e.g., have Θ(n2) edges) and therefore any reasonably fast algorithm

for the problem will have to be “truly” distributed in the sense that it cannot simply

rely on shipping off the problem description to a single node for local computation.

In this setting, the algorithm of Berns et al. [7, 6] that computes a 2-ruling set of G

in expected-O(log log n) rounds is worth mentioning.

2.1.2 Main Results

In this chapter we present several constant-time or near-constant-time algo-

rithms for fundamental problems in the Congested Clique setting.

• First, we present an algorithm that computes a 3-ruling set of G in expected

O(log log log n) rounds, significantly improving the running time of the 2-ruling

set algorithm of Berns et al. [7, 6].

• Via a reduction presented in Berns et al. [7, 6], this implies an expected

O(log log log n)-round algorithm for computing an O(1)-approximation for

1This chapter is derived from our work which appeared in 2014 [23].



19

MFL. Again, this significantly improves on the running time of the fastest known

algorithm for this problem.

Distributed algorithms that run in O(log log n) rounds are typically analyzed

by showing a doubly-exponential rate of progress; such progress, for example, is

achieved if the number of nodes that have “successfully finished” grows by squaring

after each iteration. The Congested Clique algorithms for MST due to Lotker et

al. [40] and the above-mentioned MFL algorithm due to Berns et al. [7, 6] are both

examples of such phenomena. Our algorithm with triply-logarithmic running time,

involves new techniques that seem applicable to Congested Clique algorithms in

general. Our result raises the distinct possibility that other problems, e.g., MST,

can also be solved in O(log log log n) rounds on a Congested Clique. In fact, our next

set of results presented in the next chapter (Chapter 3) are motivated by this and we

present O(log log log n)-round MST algorithm.

2.2 Technical Preliminaries

2.2.1 Metric spaces, doubling dimension, and growth-bounded graphs

If M = (V, d) is a metric space then we use BM(v, r) to denote the set of

points w ∈ V such that d(v, w) ≤ r. We call BM(v, r) the ball of radius r centered at

v. A metric space M = (V, d) has doubling dimension ρ if for any v ∈ V and r ≥ 0,

BM(v, r) is contained in the union of at most 2ρ balls BM(u, r/2), u ∈ V . In this

chapter, we work with metric spaces with constant doubling dimension, i.e., ρ = O(1).

Note that constant-dimensional Euclidean metric spaces are natural examples of
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metric spaces with constant doubling dimension. In distributed computing literature,

metric spaces of constant doubling dimension have been investigated in the context

of wireless networks [10, 34]. For a graph G = (V,E) and a node v ∈ V , let

BG(v, r) denote the set of all vertices u ∈ V that are at most r hops from v. A

graph G = (V,E) is said to have bounded growth (or said to be growth-bounded)

if the size of any independent set in any ball BG(v, r), v ∈ V , r ≥ 0, is bounded

by O(rc) for some constant c. For any metric space (V, d) and r ≥ 0, the graph

Gr = (V,Er), where Er = {{u, v} ∈ d(u, v) ≤ r} is called a distance-threshold

graph. It is easy to see that if (V, d) has constant doubling dimension then a

distance-threshold graph Gr, for any r ≥ 0, is growth-bounded; this fact will play

an important role in our algorithms. For a given metric space (V, d) the aspect ratio

λ(Y ) of a subset of points Y ⊆ V is the ratio of maximum of pair-wise distance

between points in Y to the minimum of pair-wise distance between points in Y , i.e.

λ(Y ) = max{d(u, v) | u, v ∈ Y }/min{d(u, v) | u, v ∈ Y }. The following fact is easy

to prove by applying the definition of doubling dimension: if (V, d) is a metric with

doubling dimension ρ and Y ⊆ V is a subset of points, then |Y | ≤ 2ρ·dlog2 λ(Y )e where

λ(Y ) is the aspect ratio of Y . We refer to this property as the growth-bounded property

of the metric space (V, d). Distance-threshold graphs and more generally, growth-

bounded graphs have attracted attention in the distributed computing community

as flexible models of wireless networks [34]. Schneider and Wattenhofer [54] present

a deterministic algorithm, running in O(log∗ n) rounds, for computing an MIS on a

growth-bounded graph.
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2.2.2 Lenzen’s routing protocol

A key algorithmic tool that allows us to design constant- and near-constant-

time round algorithms is a recent deterministic routing protocol by Lenzen [37] that

disseminates a large volume of information on a Congested Clique in constant rounds.

The specific routing problem, called an Information Distribution Task, solved by

Lenzen’s protocol is the following. Each node i ∈ V is given a set of n′ ≤ n messages,

each of size O(log n), {m1
i ,m

2
i , . . . ,m

n′
i }, with destinations d(mj

i ) ∈ V , j ∈ [n′].

Messages are globally lexicographically ordered by their source i, destination d(mj
i ),

and j. Each node is also the destination of at most n messages. Lenzen’s routing

protocol solves the Information Distribution Task in O(1) rounds.

2.2.3 General Notation

For a subset S ⊆ V , G[S] denotes induced subgraph of G by set S; thus

G[S] = (S,E ′) where E ′ = {{u, v} | u, v ∈ S and {u, v} ∈ E}. In the context of our

MST algorithm we will interpret metric distances d(u, v) as as edge weights; we will

use wt(u, v) and d(u, v) interchangeably. Given an edge-weighted graph G = (V,E)

and an edge set E ′ ⊆ E, we denote the sum of all edge-weights in E ′ as wt(E ′). We

use ∆ to denote the maximum degree of a graph; sometimes, to avoid ambiguity we

use ∆(G) to denote maximum degree of graph G. All logarithms are assumed to

have base 2 unless otherwise specified. We say an event occurs with high probability

(w.h.p.), if the probability of that event is at least (1− 1/nc) for a constant c ≥ 1.
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2.3 3-Ruling Sets in O(log log log n) Rounds

In this section, we show how nodes in V can use the underlying clique

communication network H to compute, in expected-O(log log log n) rounds, a 3-

ruling set of an arbitrary spanning subgraph G of H. At a high level, our 3-

ruling set algorithm can be viewed as having three steps. In the first step, the

graph is decomposed into O(log log n) degree-based classes and at the end of this

step every node knows the class it belongs to. In the next subsection, we describe

this degree-decomposition step and show that it runs in expected O(log log log n)

rounds. In the second step, each vertex v of the given graph G joins a set S

independently with probability pv, where pv depends on v’s class as defined in the

degree-decomposition step. This vertex-selection step yields a set S that will be shown

to have two properties: (i) the expected number of edges in the induced subgraph

G[S] is O(n · poly(log n)); and (ii) with high probability, every vertex in G is either

in S or has a neighbor in S. Given the degree-decomposition, the vertex-selection

step is elementary and requires no communication. In the third step, we use the

2-ruling set algorithm of Berns et al. [7, 6]. We show that, on an n-node graph with

O(n · poly(log n)) edges, this algorithm runs in expected-O(log log log n) rounds. We

will refer to this algorithm from [7, 6] as the 2-ruling set algorithm. Putting these

three steps together yields a 3-ruling set algorithm that runs in O(log log log n) rounds

in expectation.
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2.3.1 Degree-Decomposition Step

Let G = (V,E) be an arbitrary graph. Let U1 be the set of all nodes in G

with degrees in the range [n1/2, n). Let V1 be the remaining nodes, i.e., V1 = V \ U1.

Let U2 be the set of all nodes in V1 with degrees in G[V1] belonging to the range

[n1/4, n1/2). The decomposition continues in this manner until V is partitioned into

sets U1, U2, . . .. We now provide a more formal description. For k = 0, 1, 2, . . .,

let Dk = n1/2k . The Dk’s will serve as degree thresholds and will lead to a vertex

partition. Let k∗ = dlog log ne. Note that 1 < Dk∗ ≤ 2. Let V0 = V , G0 = G, and

U1 = {v ∈ V0 | degreeG0(v) ∈ [D1, D0)}. For 1 ≤ k < k∗, let

Vk = Vk−1 \ Uk, Gk = G[Vk], Uk+1 = {v ∈ Vk | degreeGk
(v) ∈ [Dk+1, Dk)}

Let Vk∗ = Vk∗−1\Uk∗ , Gk∗ = G[Vk∗ ], and Uk∗+1 = Vk∗ . See Figure 2.1 for an illustration

of this decomposition. Let NG(v) denote the set of neighbors of vertex v in graph G.

Here are some easy observations:

(i) For 0 ≤ k ≤ k∗, ∆(Gk) < Dk.

(ii) For 1 ≤ k ≤ k∗ + 1, if v ∈ Uk then |NG(v) ∩ Vk−1| < Dk−1.

(iii) For 1 ≤ k ≤ k∗ + 1, if v ∈ Uk then |NG(v) ∩ Uj| < Dj for j = 1, 2, . . . k − 1.

Now we describe algorithm to compute this degree-decomposition; in partic-

ular, we precisely describe how each node v computes an index k(v) ∈ [k∗ + 1] such

that v ∈ Uk(v). Below, we first describe at a high level a 2-phase approach that we

use to compute the index k(v) for each vertex v. Subsequently we will flesh out our

approach with necessary details and show that it is correct and can be implemented
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[n1/2, n)[n1/4, n1/2)[0, 2) [2, 4)

U1U2Uk∗Uk∗+1

Vk∗

Vk∗−1

V1

V0

. . . . . .

......

Figure 2.1: Degree-Decomposition Step. U1 is the set of all nodes in G with degrees in

the range [n1/2, n) and V1 is the remaining nodes. U2 is the set of all nodes in V1 with

degrees in G[V1] belonging to the range [n1/4, n1/2). The decomposition continues

in this manner until all nodes belong to some Uk. We use k∗ to denote dlog log ne.

Assuming that log log n = k∗, we see that U∗k is the set of nodes that have degree

in G[Vk∗−1] in the range [2, 4). Note that a node v that belongs to Uk+1 could have

degree in G that is much larger than Dk = n1/2k .
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in O(log log log n) rounds on a Congested Clique.

Lazy phase: Let t = d1 + log log log ne. The sets U1, U2, . . . , Ut are identified in

a leisurely manner, one-by-one, in O(log log log n) rounds. At the end of this

phase each vertex v ∈ ∪ti=1Ui knows the index k(v) ∈ [t] such that v ∈ Uk(v).

Speedy phase: The set of remaining vertices, namely Vt, induces a graph Gt whose

maximum degree is less than

Dt ≤ n1/21+log log log n = n1/(2 log logn).

This upper bound on the maximum degree helps us compute the index values

k(v) for the remaining vertices at a faster rate. We first show that each vertex

v in Gt can acquire knowledge of the graph induced by the ball BGt(v, k∗) in

O(log log log n) rounds via a fast ball-growing algorithm. (Recall that k∗ =

dlog log ne.) We then show that G[BGt(v, k∗)] contains enough information for

v to determine k(v) ∈ [k∗ + 1] via local computation. Therefore, after each

vertex v ∈ Vt acquires complete knowledge of the radius-k∗ ball centered at it,

it can locally compute index k(v) and proceed to the vertex-selection step.

We now present the Lazy-phase algorithm executed by all vertices v ∈ G.
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Algorithm 2.1 Lazy-phase algorithm at vertex v
1. k(v)← 0

2. for i← 1 to t do

3. s(v)← |{u ∈ NG(v) | 1 ≤ k(u) < i}|

4. if degreeG(v)− s(v) ∈ [Di, Di−1) then

5. k(v)← i

6. Send k(v) to all neighbors

7. break

8. end if

9. end for

Lemma 2.1. The Lazy-phase algorithm runs in O(log log log n) rounds and at the

end of the algorithm, for each vertex v ∈ ∪tj=1Uj, k(v) has a value in [t] such that

v ∈ Uk(v). For any vertex v /∈ ∪tj=1Uj, k(v) is set to 0.

Proof. Given that the sets U1, U2, . . . , Ui have been determined, and that the members

of each are known to every node in the network, each node can locally determine its

degree in Gi = G[Vi] and thus determine its membership in Ui+1. Each node can then

broadcast whether or not it has joined Ui+1, thus providing knowledge of Ui+1 to every

node in the network. It follows that the implementation of the Lazy-phase algorithm

requires exactly t = d1 + log log log ne rounds of communication to complete.

We now present the Speedy-phase algorithm executed by vertex v. Note that the

Speedy-phase algorithm is only executed at vertices v for which k(v) is 0 after the

Lazy-phase algorithm. In other words, the Speedy-phase algorithm is only executed

at vertices v in Gt, the graph induced by vertices not in ∪tj=1Uj. The key idea of the
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Speedy-phase algorithm is that once each node v in Gt has acquired knowledge of

Gt[BGt(v, r)], then in constant rounds of communication, each node v can “double”

its knowledge, i.e., acquire knowledge of Gt[BGt(v, 2r)]. This is done by each node v

sending knowledge of Gt[BGt(v, r)] to all nodes in BGt(v, r); the key is to establish

that this volume of communication can be achieved on a Congested Clique in constant

rounds. This idea has appeared in a slightly different context in [38].

Algorithm 2.2 Speedy-phase algorithm at vertex v
1. . Growing the ball BGt(v, k∗)

2. Each node sends a list of all of its neighbors in Gt to each of its neighbors (in Gt) .

After which each v ∈ Vt knows G[BGt(v, 1)]

3. for i← 0 to dlog log logne − 1 do

4. Send a description of G[BGt(v, 2i)] to all nodes in BGt(v, 2i)

5. Construct G[BGt(v, 2i+1)] from G[BGt(u, 2i)] received from all u ∈ BGt(v, 2i)

6. end for

7. Locally compute k(v) ∈ [k∗ + 1] such that v ∈ Uk(v)

Lemma 2.2. The Speedy-phase algorithm above runs in O(log log log n) rounds in

the congested-clique model and when this algorithm completes execution, each vertex

v in Gt knows G[BGt(v, k∗)].

Proof. Line 2 of the Speedy-phase algorithm can be completed in a constant number

of rounds using Lenzen’s routing protocol because each node needs only to send and

receive O(Dt) messages to/from O(Dt) neighbors (each message listing a neighbor

and destined for a neighbor), as the maximum degree of Gt is less than Dt.
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In implementing the Speedy-phase algorithm, the key step is to perform Line 4

in O(1) rounds of communication. If this can be done, then after O(log log log n)

rounds, each node v remaining in Vt will have knowledge of its entire neighborhood

graph out to a distance of 2dlog log logne ≥ dlog log ne = k∗ hops away from v.

Since Gt has maximum degree less than Dt, the neighborhood graph

G[BGt(v, 2i)] can be completely described by listing all O(D2i+1
t ) edges. Thus, such

a neighborhood can be communicated from v to another node (in particular, to any

other node in BGt(v, 2i)) via O(D2i+1
t ) = O(n(2i+1)/2t) messages of size O(log n).

Therefore, to perform a given iteration of Line 4 within the Speedy-phase algorithm,

each node will need to send (and receive) O(n(2i+1)/2t) messages (of size O(log n))

to O(D2i

t ) = O(n2i−t) other nodes in the network. As above, we can use Lenzen’s

routing protocol to perform this task in O(1) rounds as long as the total number of

messages to be sent (and received) by each node is O(n).

Thus, Line 4 of the Speedy-phase algorithm can be executed in a constant

number of rounds if n(2i+1+1)/2t = O(n); in other words, if 2i+1 +1 ≤ 2t, or i ≤ t−2 =

dlog log log ne − 1. This lower bound on the maximum value of i that still allows

Line 4 to be completed in O(1) rounds is precisely the final index in the for-loop

(Line 3). This completes the proof.

Lemma 2.3. For any graph H and a vertex v in H, suppose that v knows the graph

induced by BH(v, k∗). Then v can locally compute the index k(v) ∈ [k∗ + 1] such that

v ∈ Uk(v).

Proof. The proof is by induction. Whether a vertex u is in U1 is determined by its
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degree in H. Since v knows H[BH(v, k∗)] it can determine via local computation

which u ∈ BH(v, k∗ − 1) belong to U1 and which don’t. As the inductive hypothesis,

suppose that for some i ≥ 1, v has determined for all u ∈ BH(v, k∗ − i) the following

information:

(i) if u ∈ ∪ij=1Uj, then v knows k(u) ∈ [i] such that u ∈ Uk(u).

(ii) if u 6∈ ∪ij=1Uj, then v knows that u 6∈ ∪ij=1Uj.

Now consider a vertex u ∈ BH(v, k∗− i− 1) such that u 6∈ ∪ij=1Uj. In order to

determine if u ∈ Ui+1, vertex v needs to check if the residual degree of u, defined as

r(u) := degreeH(u)− |NH(u) ∩ (∪ij=1Uj)| (2.1)

belongs to the interval [Di+1, Di). In other words, we need to check that the degree

of u after we have deleted all neighbors in ∪ij=1Uj is in the range [Di+1, Di). Given

the information that v knows about all u ∈ B(v, k∗− i) (by the inductive hypothesis),

vertex v can compute the residual degree r(u) for each u ∈ BH(v, k∗−i−1). Therefore

for all such u, vertex v can determine if u ∈ Ui+1 or not. This completes the inductive

step of the proof.

Now since BH(v, 0) = {v}, it follows from the above inductive argument that

v can determine the index k(v) ∈ [k∗ + 1] such that v ∈ Uk(v).
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2.3.2 Vertex-Selection Step

Algorithm 2.3 Vertex-Selection Step
if v ∈ Uk for k = 1, 2, . . . , k∗ then

v is selected with probability min
(

2 logn
Dk

, 1
)

end if

if v ∈ Uk∗+1 then

v is selected with probability 1

end if

As mentioned earlier, the vertex-selection step randomly and independently samples

nodes in G, with each node v sampled with a probability pv that depends on the class

Uk(v) it belongs to. Specifically, if v belongs to Uk then v is independently selected

with probability min(2 log n/Dk, 1). Algorithm 2.3 shows pseudocode for the vertex-

selection step. Let S be the set of vertices that are selected. Let e(S) denote the set

of edges in the induced graph G[S].

Lemma 2.4. E[|e(S)|] = O(n · log2 n · log log n).

Proof. Consider an arbitrary vertex v ∈ V and let k, 1 ≤ k ≤ k∗ + 1 be such that

v ∈ Uk. We will show that the expected number of edges between v and nodes in

∪j≤kUj is less than 4k · log2 n.

In the graph G, node v has fewer than Dk−1 neighbors in Uk. Thus, if 1 ≤
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k ≤ k∗, the expected number of edges in e(S) between v and nodes in Uk is at most

2 log n
Dk

·
∑

u∈NG(v)∩Uk

2 log n
Dk

<
4 log2 n ·Dk−1

D2
k

= 4 log2 n.

If k = k∗ + 1, the number of edges between v and other nodes in Uk∗+1 is at most 1.

In the graph G, node v has fewer than Dj neighbors in Uj, for j < k. Thus, if

1 ≤ k ≤ k∗, the expected number of edges in e(S) between v and nodes in Uj, j < k,

is at most
2 log n
Dk

·
∑

u∈NG(v)∩Uj

2 log n
Dj

<
4 log2 n

Dk

≤ 4 log2 n.

If k = k∗+1, the expected number of edges in e(S) between v and nodes in Uj, j < k,

is

1 ·
∑

u∈NG(v)∩Uj

2 log n
Dj

< 2 log n.

Hence, summing over j, the expected total number of edges in e(S) between v

and ∪j≤kUj is less than 4k ·log2 n. Using the fact that k ≤ 1+log log n, we see that the

expected total number of edges in e(S) between v and ∪j≤kUj is O(log2 n · log log n).

The result follows.

Lemma 2.5. For any v ∈ V , Pr(v is in S or v has a neighbor in S) ≥ 1− 1/n2.

Proof. Suppose that v ∈ Uk, for some 1 ≤ k ≤ k∗. Vertex v has at least Dk

neighbors in Vk−1. Each such neighbor is selected for S with probability at least

min{(2 log n)/Dk, 1}. If 2 log n ≥ Dk, than any of these neighbors is selected for S

with probability 1, so v has a neighbor in S with probability 1. Otherwise, we have

Pr(v has no neighbor in S) ≤
(

1− 2 log n
Dk

)Dk

≤ e−2 logn ≤ 1
n2.8

Also, if v ∈ Uk∗+1, then v is selected for S with probability 1.
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2.3.3 2-Ruling Set Algorithm

We now briefly describe the 2-ruling set of Berns et al. [7, 6] that runs on

a Congested Clique in expected O(log log n) rounds. This text is borrowed largely

from [7, 6] and the reader is advised to consult these papers for a more detailed

description. Pseudocode for the algorithm appears in Algorithm 2.4. The algorithm

proceeds in Iterations and in each Iteration some number of nodes become inactive

and we measure progress by the number of edges remaining in the graph induced by

active nodes. In an Iteration i, each active node (S denotes the set of active nodes)

joins a “Test” set T independently with probability q =
√

n
m

(Line 6), where m is the

number of edges in the graph induced by active nodes. The probability q is set such

that the expected number of edges in G[T ] is equal to n. If the number of edges in

G[T ] is no more than 4n, then we can ship off G[T ] to a single node and have that

node locally compute an MIS. All of this takes a constant number of rounds and then

we delete T and its neighborhood N(T ) from the active set S. (Lines 7-10). Because

m, the number of edges in G[S], decreases, the probability q rises (Line 12) while

still having the expected number of edges in G[T ] during the next iteration bounded

above by n.

Berns et al. [7, 6] have analyzed this algorithm to show that it requires

expected O(log log n) rounds. We now sketch this analysis to observe that for n-

node graphs with O(n · poly(log n)) edges, this 2-ruling set algorithm requires an

expected O(log log log n) rounds.

Lemma 2.6. Given an n-vertex graph G with O(n ·poly(log n)) edges, Algorithm 2.4,
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Algorithm 2.4 2-RulingSet
Input: (G,S)

Output: A 2-ruling set R of G[S]

1. R← ∅

2. m← e[G[S]] (Each node x broadcasts its degree in G[S] to all others)

3. q ←
√

n
m

4. while m > 2n do

5. T ← ∅

6. Each x ∈ S joins T independently with probability q and broadcasts its choice.

7. if e[G[T ]] ≤ 4n then

8. L←LocalMIS(G[T ])

9. R← R ∪ L

10. S ← S \ (T ∪N(T ))

11. m← e[G[S]]

12. q ←
√

n
m

13. L←LocalMIS(G[S])

14. R← R ∪ L

15. return R.

2-RulingSet (derived from [7, 6]), computes a 2-ruling set of G in expected-

O(log log log n) rounds.

Proof. Algorithm 2.4, 2-RulingSet computes a 2-ruling set on a subgraph of a

Congested Clique in expected-O(log log n) rounds [7, 6]. The analysis of this algorithm

proceeds by defining O(log log n) threshold values Lk = n1+1/2k , for k = 0, 1, 2, . . .,

and computing a bound on the expected number of rounds required for the number
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of edges remaining in the unprocessed portion of the graph to fall from roughly Li to

roughly Li+1. In Lemma 9 of [7], it is proved that this expected number of rounds is

uniformly bounded by a constant for every k.

For our use of the 2-ruling set algorithm in the present work, we observe that,

if the number of edges in the input subgraph (of the Congested Clique) is already

sufficiently small, then the expected round-complexity of the 2-ruling set algorithm is

also much less than would be the case in general. Specifically, we consider a 2-ruling

set computation on an input subgraph havingO(n·poly(log n)) edges – in this case, the

computation begins having already reached threshold Lk′ , where n1+1/2k′ ≈ n · logc n

(for a constant c). More precisely, let k′ = blog log n − log log log n − log cc; then

1
2k′ ≥ c log logn

logn = logn logc n and n1+1/2k′ ≥ n logc n.

Therefore, using the same analysis as occurs in the proof of Theorem 2 in [7]

(and in which T (k) represents the number of iterations necessary to progress from

having at most Lk−1 edges remaining to at most Lk edges remaining), we see that the

expected running time (in rounds) of the 2-Ruling Set algorithm applied to an input

graph having only O(n logc n) edges can be written as

E

O(1) +
log logn∑
k=k′

O(T (k))
 = O(1) +

log logn∑
k=k′

O (E[T (k)])

= O(1) +
log logn∑

k=blog logn−log log logn−log cc
O(1)

= O(log log log n)

which completes the proof.
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2.3.4 Putting it all together

We now combine the algorithm for degree-decomposition step algorithm, the

vertex-selection step algorithm, and the 2-ruling set algorithm in order to obtain a

3-ruling set algorithm that runs in O(log log log n) rounds in expectation.

Algorithm 2.5 3-Ruling Set Algorithm
1. Each node v ∈ V uses the Lazy-phase and Speedy-phase algorithms to determine the

index k(v) ∈ [k∗ + 1] such that v ∈ Uk(v)

2. Run the vertex-selection step to compute S

3. I ← 2-RulingSet(G[S])

Lemma 2.7. With probability at least 1− 1/n, I is a 3-ruling set of G.

Proof. Consider a vertex v ∈ V . By Lemma 2.3.2, v has a neighbor in S with

probability at least 1 − 1/n2. Since I is a 2-ruling set of G[S], there is a node in

I at distance at most 3 from v. Thus, with probability at least 1 − 1/n we have

constructed a 3-ruling set for G.

2.4 MIS in Growth Bounded Graphs in Constant Rounds

Given a metric space (V, d) with constant doubling dimension, we show in

this section how to compute an MIS of a distance-threshold graph Gr = (V,Er),

for any real r ≥ 0, in a constant number of rounds on a Congested Clique. This

algorithm uses a combination of deterministic and randomized techniques that do

careful load balancing while maximizing parallelism in order to finish up in O(1)
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rounds. This algorithm has two important implications. First, it implies that an O(1)-

approximation to metric facility location on a metric of constant doubling dimension

can be computed in O(1) rounds in the Congested Clique model via the reduction

presented in [7]. Second, via a reduction developed later in this report (in Chapter 3,

Section 3.5), it also implies an O(1)-round O(1)-approximation algorithm for MST

on a metric with constant doubling dimension in the Congested Clique model.

2.4.1 Simulation of the Schneider-Wattenhofer MIS algorithm

Before we describe our MIS algorithm, we describe an algorithmic tool that

will prove quite useful. For some r ≥ 0, let Gr = (V,Er) be a distance-threshold

graph induced by the metric M = (V, d). We know that Gr is growth-bounded and

in particular the size of a largest independent set in a ball BGr(v, r) for any v ∈ V is

O(rρ), where ρ is the doubling dimension of (V, d). Schneider and Wattenhofer [54]

present a deterministic O(log∗ n)-round algorithm to compute an MIS for growth-

bounded graphs in the CONGEST model. Suppose that f is a constant such

that the Schneider-Wattenhofer algorithms runs in at most f log∗ n rounds (note

that f depends on ρ). We can simulate the Schneider-Wattenhofer algorithm in

the Congested Clique model by (i) having each node v ∈ V grow a ball of radius

f log∗ n, i.e., gather a description of the induced graph G[BGr(v, f log∗ n)] and then

(ii) having each node v locally simulate the Schneider-Wattenhofer algorithm using

the description of G[BGr(v, f log∗ n)]. Note that since the Schneider-Wattenhofer

algorithm takes at most f log∗ n rounds, it suffices for each node v ∈ V to know
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the entire topology of G[BGr(v, f log∗ n)] to determine if it should join the MIS. The

“ball growing” step mentioned above can be implemented by using Lenzen’s routing

protocol as follows, provided ∆ (the maximum degree of Gr) is not too large. Each

node v can describe its neighborhood using at most ∆ messages of size O(log n)

each. Node v aims to send each of these ∆ messages to every node w such that

d(v, w) ≤ r · f log∗ n. In other words, v aims to send messages to all nodes in

BM(v, r · f log∗ n). Since BGr(v, f log∗ n) ⊆ BM(v, r · f log∗ n), it follows that the

messages sent by v are received by all nodes in BGr(v, f log∗ n). We now bound the

size of BM(v, r · f log∗ n) as follows. Since M has doubling dimension ρ, the size of

any MIS in BM(v, r · f log∗ n) is O((log∗ n)ρ) and hence total number of nodes in

BM(v, r · f log∗ n) is O(∆ · (log∗ n)ρ). Therefore every node v has O((log∗ n)ρ · ∆2)

messages to send, each of size O(log n). Every node is the receiver of at most

O((log∗ n)ρ∆2) messages by similar arguments. Therefore, if ∆ = O(
√
n/(log∗ n)ρ/2),

we can use Lenzen’s routing protocol to route these messages in O(1) time. We refer

this simulation of the Schneider-Wattenhofer algorithm [54] as Algorithm SW-MIS.

The following theorem summarizes this simulation result.

Theorem 2.8. If ∆(Gr) = O(
√
n/(log∗ n)ρ/2) then Algorithm SW-MIS computes

an MIS of Gr in O(1) rounds on a Congested Clique.

2.4.2 Constant-Round MIS Algorithm

Our MIS algorithm consists of 4 phases. Next we describe, at a high level,

what each phase accomplishes.
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Phase 1: We compute vertex-subset P ⊆ V such that (i) every vertex in V is at

most one hop away from some vertex in P and (ii) Gr[P ] has maximum degree

bounded above by c ·
√
n, for some constant c > 0.

Phase 2: We process the graph Gr[P ] and compute two subsets W and Q of P such

that (i) every vertex in P of degree at least c · n1/4 is either in W or has a

neighbor in W and (ii) Q ⊆ W is an independent set such that every vertex

in W is at most 2 hops from some vertex in Q. Thus, if we delete W and all

neighbors of vertices in W what remains is a graph of maximum degree less

than c ·n1/4. Let V ′ denote the set P \ (W ∪N(W )). Thus, at the end of Phase

2, Q is a 3-ruling set of Gr[W ∪N(W )] and ∆(Gr[V ′]) < c · n1/4.

Phase 3: We compute an MIS R of the graph Gr[V ′] by simply calling SW-MIS.

Phase 4: Since Q is a 3-ruling set of Gr[W ∪N(W )] and R is an MIS of Gr[V ′], we

see that Q ∪ R is a 3-ruling set of Gr[P ] and thus a 4-ruling set of Gr. In the

final phase, we start with the 4-ruling set Q ∪ R and expand this into an MIS

I of Gr.

Phase 2 is randomized and runs in constant rounds w.h.p. The remaining phases are

deterministic and run in constant rounds each. Algorithm LowDimensionalMIS

summarizes our algorithm. We now describe each phase in more detail.

2.4.3 Phase 1: Reduce Degree to O(
√
n)

Algorithm ReduceDegree describes Phase 1 of our algorithm. The algorithm

consists of arbitrarily partitioning the vertex-set ofGr into
√
n groups of size (roughly)
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Algorithm 2.6 LowDimensionalMIS
Input: Gr = (V,Er)

Output: A maximal independent set I ⊆ V of Gr

1. P ← ReduceDegree(Gr) . Phase 1

2. (W,Q)← SampleAndPrune(Gr, P ) . Phase 2

3. V ′ ← V \ (W ∪N(W )); R← SW-MIS(Gr, V ′) . Phase 3

4. S ← Q ∪R; I ← RulingToMIS(S) . Phase 4

5. return I

Algorithm 2.7 ReduceDegree (Phase 1)
Input: Gr = (V,Er)

Output: P ⊆ V such that (i) V = P ∪N(P ) and (ii) ∆(Gr[P ]) < c ·
√
n for some constant

c > 0.

1. Partition V (arbitrarily) into d
√
ne subsets: V1, V2, . . . Vd

√
ne, each of size at most

√
n

2. for all i← 1 to d
√
ne in parallel do

3. Send Gr[Vi] to a vertex vi with lowest ID in Vi
4. Vertex vi executes Pi ← LocalMIS(Gr[Vi])

5. end for

6. P ← ∪d
√
ne

i=1 Pi

7. return P

√
n each and then separately and in parallel computing an MIS of each part. Since

each part has
√
n vertices, each part induces a subgraph with at most n edges and

therefore each such subgraph can be shipped off to a distinct node and MIS on each

subgraph can be computed locally. (The subroutine LocalMIS in Line 4 refers to

an unspecified MIS algorithm that is executed locally at a node.) Using the fact that
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Gr is growth-bounded, we show that the union of all the MIS sets (set P , Line 5)

induces a graph with maximum degree bounded by c ·
√
n for some constant c. Also,

we show that Phase 1 runs in constant rounds (Lemma 2.9).

Lemma 2.9. Algorithm ReduceDegree completes in O(1) rounds and returns a

set P such that ∆(Gr[P ]) < c · n1/2 for some constant c > 0 (that depends on the

doubling dimension of the underlying space).

Proof. Algorithm ReduceDegree starts by arbitrarily partitioning V into d
√
ne

disjoint subsets V1, . . . , Vd√ne each of size at most
√
n which can be done in O(1)

rounds easily. Since |Vi| ≤
√
n, Gr[Vi] contains at most n edges, for any i ∈ d

√
ne.

Using Lenzen’s routing protocol, all knowledge of Gr[Vi] can be shipped off to a

designated vertex vi in Vi (e.g., vertex with smallest ID in Vi) in O(1) rounds. The

vertex vi then computes an MIS Pi of Gr[Vi] locally as shown in Line 4 of Algorithm

ReduceDegree. Finally, vi informs vertices in Pi of their selection into the MIS.

The union of the Pi’s, denoted P , is returned by the algorithm. This discussion shows

that Algorithm ReduceDegree completes in O(1) rounds.

Consider a vertex u ∈ Pi for some i ∈ [d
√
ne]. In Gr[P ], vertex u cannot have

neighbors in Pi since Pi is an independent set in Gr[P ]. Consider a set Pj, j 6= i. The

distance between any two vertices in N(u) ∩ Pj must be more than r (these nodes

are independent) and it must be at most 2r (by the triangle inequality). Since the

underlying metric space has doubling dimension ρ, it follows that |N(u) ∩ Pj| ≤ 2ρ.

Hence the degree of u in Gr[P ] is bounded above by 2ρ · (d
√
ne − 1). The result

follows.
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Algorithm 2.8 SampleAndPrune (Phase 2)
Input: (Gr, P )

Output: (W,Q), W ⊆ P such that {v ∈ P | degreeGr[P ](v) ≥ n1/4} ⊆ W ∪ N(W );

independent set Q ⊆W such that Q is a 2-ruling set of Gr[W ].

1. for all v ∈ P in parallel do

2. Vertex v ∈ P adds itself to Wi with probability 1/n1/4 for i = 1, 2, . . . , d2 · logne.

3. end for

4. W ← ∪d2 logne
i=1 Wi

5. for all i← 1 to d2 logne in parallel do

6. Send Gr[Wi] to a vertex wi, where wi is the vertex of rank i in the sequence of

vertices in V sorted by increasing ID

7. Vertex wi executes Xi ← LocalMIS(Gr[Wi])

8. end for

9. Q← SW-MIS(Gr[∪d2 logne
i=1 Xi])

10. return (W,Q)

2.4.4 Phase 2: Sample and Prune

Algorithm SampleAndPrune implements Phase 2 of our MIS algorithm. It takes

the induced subgraph Gr[P ] as input and starts by computing a set W ⊆ P using a

simple random sampling approach. Specifically, for each i = 1, 2, . . . , d2 · log ne, each

vertex in P simply adds itself to a set Wi independently, with probability 1/n1/4. We

start by proving a useful property of W .

Lemma 2.10. Every node u with degree at least n1/4 in Gr[P ] has a neighbor in W

with probability at least 1− 1
n2 .

Proof. Let u ∈ P be a node with degree at least n1/4 in Gr[P ]. For any neighbor v
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of u, Pr(v /∈ W ) ≤
(
1− 1

n1/4

)d2 logne
. Therefore the probability that no neighbor of

u is in W is at most
(
1− 1

n1/4

)d2 logne·n1/4

. This is bounded above e−d2 logne, which is

bounded above by 1/n2.

After using random sampling to compute W , Algorithm SampleAndPrune

then “prunes” W in constant rounds to construct a subset Q ⊆ W such that Q

is a 2-ruling set of W . In the rest of this subsection we prove that Algorithm

SampleAndPrune does behave as claimed here.

Lemma 2.11. The number of edges in Gr[Wi] is O(n) w.h.p., for each i =

1, 2, . . . , d2 log ne.

Proof. We first bound the size of the set Wi and the maximum degree of Gr[Wi]

for any i = 1, 2, . . . , d2 log ne. Observe that E[|Wi|] = n3/4 and since nodes join Wi

independently, an application of Chernoff’s bound [14] yields Pr(|Wi| ≤ 6n3/4) ≥

1 − 1
n2 . To bound ∆(Gr[Wi]) we use the fact that degree of any node in Gr[P ] is at

most
√
n and therefore the expected degree of any node in Gr[Wi] is at most n1/4.

Another application of Chernoff’s bound yields Pr(degreeGr[Wi](v) ≤ 6n1/4) ≥ 1− 1
n2

for each node v. Using the union bound over all nodes v ∈ Wi yields that with

probability at least 1− 1
n
every node in Gr[Wi] has degree at most 6n1/4. Hence, with

high probability, the number of edges in G[Wi] is at most 36n.

Lemma 2.12. The set X := ∪d2 logne
i=1 Xi ⊆ P is computed in constant rounds w.h.p. in

Lines 4-6 of Algorithm SampleAndPrune. Furthermore, Every vertex in W is at

most one hop away from some vertex in X.
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Proof. We argue that Line 5 can be implemented in O(1) rounds w.h.p. By

Lemma 2.11, each node has to send at most O(n1/4) messages to wi and w.h.p. eachwi

receives at most O(n) messages. Therefore by Lenzen’s routing protocol Line 5 takes

O(1) rounds. To repeat this for each i = 1, 2, . . . , d2 log ne in parallel, every node has

to send at the most d2 log ne · n1/4 messages. Since wi’s are distinct no wi needs to

receive more than O(n) messages.

Each v ∈ W belongs to Wi for some i and is therefore at most one hop from

some vertex in Xi.

Lemma 2.13. W.h.p. it takes constant number of rounds to compute Q. Further-

more, Q is a 2-ruling set of Gr[W ].

Proof. Consider a node v ∈ ∪d2 logne
i=1 Xi. Since each Xi is an independent set, by using

the growth-bounded property of Gr[Xi], we see that the number of neighbors of v in

Xi is bounded above by a constant. Hence, the maximum degree in Gr

[
∪d2 logne
i=1 Xi

]
is O(log n). Since the maximum degree of this growth-bounded graph is O(log n),

by Theorem 2.8 an MIS of this graph can be computed in constant rounds by using

SW-MIS.

A node v ∈ W belongs to someWi and is therefore at most one hop from some

node in Xi. Also, every node in every Xi is at most one hop from some node in Q.

Also, Q is independent and therefore Q is a 2-ruling set of Gr[W ].
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2.4.5 Phase 4: Ruling Set to MIS

Algorithm RulingToMIS implements Phase 4 of our MIS algorithm. The

algorithm takes as input the graph Gr and the vertex subset S = Q ∪ R where Q

and R are the outputs of Phase 2 and Phase 3, respectively. Note that Lemma 2.13

implies that S is a 4-ruling set of Gr. This property is used to cover Gr with balls of

radius 4r, centered at members of S.

Consider the graph G9r = (V,E9r) where E9r = {{u, v} | u, v ∈

V and d(u, v) ≤ 9r}. In Lemma 2.14 we prove a constant upper bound on the

maximum degree ∆(G9r[S]). This allows us to compute a proper vertex coloring

of G9r[S] using a constant number of colors. This coloring guides the rest of the

algorithm, providing a schedule for processing the vertices in the aforementioned

balls centered at vertices in S. For each color i, the algorithm processes all vertices

in S colored i in parallel. For each vertex v ∈ S colored i, let Bv denote the subset

of B(v, 4r) of vertices still “active”. The algorithm computes an MIS of the induced

subgraph Gr[Bv]; this computation occurs in parallel for each v colored i. Since

the vertex coloring is with respect to G9r, two balls Bv and Bv′ that are processed

in parallel do not intersect and in fact are not even connected by an edge. Thus

processing in parallel all of the balls Bv for v colored i has no untoward consequences.

We note that due to the growth bounded property, every independent set of Gr[Bv]

has a constant number of vertices. Hence, we can use a simple sequential algorithm

to compute an MIS of Gr[Bv] – repeatedly each vertex with smallest ID in its

neighborhood joins the MIS and the graph is updated. We call this MIS algorithm
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Algorithm 2.9 RulingToMIS (Phase 4)
Input: (Gr, S = Q ∪R)

Output: A maximal independent set I ⊆ V of Gr

1. E9r ← {{u, v} | u, v ∈ S and d(u, v) ≤ 9r}

2. G9r[S]← (S,E9r)

3. Send G9r[S] to a vertex v∗ with lowest ID in S

4. Vertex v∗ executes Ψ ← LocalColoring(G9r[S]) with color pallet {1, 2, . . . , γ + 1}.

Here γ is the constant from Lemma 2.14.

5. V ′ ← V

6. for i = 1 to i = γ + 1 do

7. for all v ∈ S such that Ψ(v) = i in parallel do

8. Bv ← {u | u ∈ V ′ and d(u, v) ≤ 4r}

9. Iv ← SequentialMIS(G9r[Bv])

10. end for

11. V ′ ← V ′ \
(
∪v∈S∧Ψ(v)=i (N(Iv))

)
12. end for

13. I ← ∪v∈S Iv
14. return I

SequentialMIS and use it in Line 9 in Algorithm RulingToMIS. Since every

vertex in V is at distance at most 4r from some vertex in S, every vertex in V is is

some ball Bv and is eventually processed.

Lemma 2.14. ∆(G9r[S]) ≤ γ, where γ is a constant.

Proof. Consider any node v ∈ S and neighbors NG9r(v) of v in G9r[S]. By the

triangle inequality, any pair of nodes in NG9r(v) are at most distance 18r apart and

by Lemma 2.13, at least distance r apart. Hence NG9r(v) ∪ v has a constant aspect
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ratio and by the growth-bounded property, we have |NG9r(v) ∪ v| ≤ 18ρ = γ.

Lemma 2.15. Algorithm RulingToMIS executes in a constant number of rounds.

Proof. Since the maximum degree of G9r[S] is a constant, the entire description of

G9r[S] can be shipped to a designated vertex v∗ (e.g., a vertex with the smallest ID)

using Lenzen’s routing protocol in O(1) rounds. Then v∗ can compute a coloring

of G9r[S] such that no two adjacent vertices have the same color. Notice that the

maximum degree of G9r[S] is bounded above by γ, hence γ + 1 colors are sufficient.

The constant upper bound on the size of the color palette implies that the for-

loop starting in Line 6 executes a constant number of iterations. In each iteration i, all

nodes v ∈ S colored i are processed. Specifically, an MIS of Gr[Bv] is computed and

since the size of every independent set in Gr[Bv] is bounded above by a constant (by

appealing to the growth-bounded property), Algorithm SequentialMIS terminates

in constant rounds. Hence, each iteration of the outer-for-loop takes a constant

number of rounds of communication.

Lemma 2.16. The set I computed by Algorithm RulingToMIS is an MIS of Gr.

Proof. First we show that I is an independent set by contradiction. Suppose that for

some p, q ∈ I, p and q are adjacent in Gr. Then it must be the case that both p and

q were selected in the same iteration of the outer-for-loop; otherwise, the selection

of one of the two nodes would render the other unavailable for selection. If p and

q are selected in the same outer-for-loop iteration, it must be the case that p ∈ Bv

and q ∈ Bv′ where v 6= v′, but v and v′ have the same color. Since d(p, v) ≤ 4r,
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d(q, v′) ≤ 4r, and d(p, q) ≤ r, using the triangle inequality we see that d(v, v′) ≤ 9r.

But, if this is the case then there is an edge between v and v′ in G9r[S] and these

two vertices would not have the same color, contradicting our earlier conclusion that

v and v′ have the same color.

We now prove that I is maximal. Since S is a 4-ruling set of Gr, every node

u ∈ V is in B(v, 4r) for some v ∈ S. Suppose that v is colored i and therefore

Bv is processed in iteration i of the outer-for-loop. If u ∈ Bv then Algorithm

SequentialMIS will either pick u or a neighbor to join the MIS. Otherwise, if

u 6∈ Bv then it must be the case that in an earlier iteration of the outer-for-loop,

either u or a neighbor were selected to be in the MIS.

2.5 Constant-Approximation to MFL

Berns et al. [7, 6] showed how to compute a constant-factor approximation

to MFL in expected O(log log n) rounds. (The algorithm presented in [6] runs in

expected O(log log n · log∗ n) rounds, but this was subsequently improved to expected

O(log log n) in [7].) A high level description of this algorithm is as follows. Each

node v locally computes a value rv ≥ 0 that is a function of its opening cost fv and

distances to other nodes {d(v, w) | w ∈ V }. Nodes with similar rv-values join the

same class; more precisely, a node v with 3k · rm ≤ rv ≤ 3k+1 · rm, joins a class

Vk. Here rm is the minimum ru-value over all nodes u ∈ V . For nodes in each

class Vk, we construct a graph Hk = (Vk, Ek), where the edge-set Ek is defined as

{{u, v} | u, v ∈ Vk, d(u, v) ≤ ru + rv}. In the rest of the algorithm, in order to figure
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out which nodes to open as facilities, the algorithm computes a t-ruling set on each

graph Gk. Analysis in [7, 6] then shows that the solution to facility location produced

by this algorithm is an O(t)-approximation. In [7] it is shown how to compute a

2-ruling set in expected O(log log n) rounds on a Congested Clique. Since the classes

Vk form a partition of the nodes, the ruling set computations occur on disjoint sets

of nodes and can proceed in parallel. This leads to a constant-factor approximation

to MFL in expected O(log log n) rounds.

The 3-ruling set algorithm and the MIS algorithm in the present chapter can

replace the slower 2-ruling set and this yields the following result.

Theorem 2.17. There exists a distributed algorithm that computes a constant-

approximation to the metric facility location problem (w.h.p.) in the congested-

clique model and which has an expected running time of O(log log log n) rounds.

Additionally, if the input metric space has constant doubling dimension then a

constant-approximation can be computed in constant rounds (w.h.p.)

2.6 Conclusion

In a recent paper, Drucker et al. [13] show that the Congested Clique can

simulate powerful classes of bounded-depth circuits, implying that even slightly super-

constant lower bounds for the Congested Clique would give new lower bounds in

circuit complexity. This provides some explanation for why there are no non-trivial

lower bounds in the Congested Clique model. One could view this result as providing

motivation for proving even stronger upper bounds. As shown in this chapter, it is
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possible to design algorithms that run significantly faster that Θ(log log n) rounds

for well-known problems. Continuing this program, we are interested in designing

algorithms running in o(log log n) rounds for MST and related problems such as

connectivity verification.
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CHAPTER 3
SUPER-FAST ALGORITHMS FOR GRAPH CONNECTIVITY AND

MINIMUM SPANNING TREE

3.1 Introduction

In the previous chapter, we presented a O(log log log n)-round algorithm for

the metric facility location (MFL) problem. The Congested Clique algorithms for

MST due to Lotker et al. [40] and the MFL algorithm due to Berns et al. [7, 6]

have O(log log n) round complexity. Our algorithm for MFL from earlier chapter

with triply-logarithmic running time, involves new techniques that seem applicable

to Congested Clique algorithms in general. This raised the question about the MST

problem. Can MST also be solved in O(log log log n) rounds on a Congested Clique?

In this chapter, we affirmatively answer this question by presenting a randomized

O(log log log n)-round MST algorithm1.

3.1.1 Related Work

Research on the Congested Clique has focused mostly on the time complexity

(i.e., the number of synchronous rounds) of these problems. The complete network

allows Θ(n2) (different) messages (each message is of size O(log n) bits) to be

exchanged in each round, and many of the time-efficient algorithms for various

problems have exploited this vast parallel communication ability to give “super-fast”

algorithms that run in a sub-logarithmic (in n) number of rounds. An important

1This chapter is derived from our work which appeared in 2015 [21]
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early result is the work of Lotker et al. [39], which presented an O(log log n)-round

deterministic algorithm for the MST problem. This was a significant improvement at

the time (only an O(log n)-round algorithm was known [50]). Lotker et al. left open

the question of whether or not an even faster algorithm was possible—in particular,

whether a constant-round algorithm could be possible for MST or for the (simpler)

problem of graph connectivity (GC). Regarding lower bounds, almost nothing non-

trivial is known. In particular, for the GC and MST problems, no super-constant time

lower bounds are known. The situation is not promising from the lower bounds side:

the recent results of [13] have proved that showing substantially super-constant lower

bounds on time in the Congested Clique is as hard as proving long-open lower bounds

in circuit complexity. However, this leaves open the important question of whether

or not constant-time algorithms are possible for GC as well as the MST problem.

Thus far there has been little work on understanding the message complexity

of problems in the Congested Clique. Message complexity refers to the number of

messages (typically of polylogarithmic size) sent and received by all machines over

the course of an algorithm; in many applications, this is the dominant cost as it

plays a major role in determining the running time and auxiliary resources (e.g.,

energy) consumed by the algorithm. For example, communication cost is one of

the dominant costs in distributed computation on large-scale data in modern data

centers [31]. In the particular context of the Congested Clique, optimizing messages

as well as time has direct applications to the performance of distributed algorithms

in other models such as the Big Data (k-machine) model [31], which was recently
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introduced to study distributed computation on large-scale graphs. The above work

shows how to “convert” algorithms (cf. Conversion theorem of [31]) designed in the

Congested Clique model to the Big Data model; the running time in the Big Data

model depends on both the time and the message complexities of the corresponding

algorithm in the Congested Clique model. As a consequence, the fastest algorithm

in the Congested Clique model need not yield the fastest algorithm in the Big Data

model; on the contrary, a slower but more message efficient algorithm in the Congested

Clique can yield a faster algorithm in the Big Data model. Another related motivation

comes from the connection between the Congested Clique model and the MapReduce

model. In [22] it is shown that if a Congested Clique algorithm runs in T rounds

and, in addition, has moderate message complexity, then it can be simulated in the

MapReduce model in O(T ) rounds. Furthermore, there has been little work published

on understanding the message complexity of problems in the Congested Clique. In

particular, to the best of our knowledge, we are not aware of any work that addresses

tradeoffs between message and time complexities in Congested Clique.

3.1.2 Main Results

In this chapter we focus on two fundamental graph problems in the Congested

Clique, namely graph connectivity (GC) and minimum spanning tree (MST), and

present several new results that make progress toward understanding the time and

message complexities of randomized algorithms for these problems.
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3.1.2.1 Faster Algorithms for GC and MST

Our first contribution consists of randomized (Monte Carlo) algorithms,

running in O(log log log n) rounds and succeeding with high probability (w.h.p.), for

both GC and MST (cf. Section 3.3). Our results improve by an exponential factor on

the long-standing time upper bound of O(log log n) rounds for MST due to Lotker et

al. [39]. It is worth mentioning that the Lotker et al. MST algorithm is deterministic,

in contrast to ours, which uses randomness in a crucial way. Our algorithms make

use of several tools including sketching, random sampling, and fast sorting. We first

show how to solve GC in O(log log log n) rounds. We do this by making use of linear

sketches [2, 1, 42] in addition to Lotker et al.’s algorithm. The latter is used as

a “pre-processing” step to first decrease the size of the graph with which we must

work. Specifically, we run the algorithm of Lotker et al. for O(log log log n) rounds

and this yields enough MST edges so that the number of connected components

induced by these edges shrinks to O(n/ polylog n). This in turn lends itself to an

application of sketching. Linear sketching [2, 1, 42] is a powerful technique which is

helpful in efficiently determining an outgoing edge of a component. A sketch of a

vertex (or a component) is a short O(polylog n)-bit vector that efficiently encodes the

neighborhood of the vertex. Sampling from this sketch gives a random (outgoing) edge

of this vertex (component). A critically useful property arises from the linearity of the

sketches: adding the sketches of a set of vertices gives the sketch of the component

induced by vertex set; the edges between the nodes within a component (i.e., the

intra-component edges) are automatically “cancelled”, leaving only a sketch of the
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outgoing edges. After reducing the size of the graph to O(n/ polylog n), it is possible

to check connectivity locally by simply sending the sketches to a single node in the

clique. We use our connectivity algorithm as a key ingredient in our MST algorithm.

MST is a more-challenging problem, and (likely) cannot be solved using sketches

alone or by simply collecting information at a single node. However, by leveraging

the fact that our connectivity algorithm (except the Lotker et al. part) uses only O(n)

messages, we can run several GC subroutines in parallel. In our MST algorithm, edges

are partitioned into O(
√
n) groups by weight and each group of edges is processed

by a separate GC subroutine; therefore, up to Θ(
√
n) GC subroutines could be

running in parallel. We note that the runtimes of our algorithms are dominated

by the pre-processing step that employs the subroutine of Lotker et al. (which takes

O(log log log n) rounds); all other parts require only constant time.

It is worth emphasizing that if we allow O(polylog n) bits per message, instead

of O(log n) bits per message (which is the standard bound for the Congested Clique

model), then our algorithm solves MST in O(1) rounds. In other words, enlarging the

per-link bandwidth to O(polylog n) obviates the need for using the Lotker et al. MST

algorithm as a pre-processing step. Lotker et al. point out that their algorithm also

extends to a larger bandwidth setting; specifically, running in O(log 1/ε) rounds if

each message is nε bits long. For example, this implies that the Lotker et al. algorithm

would run in O(1) rounds if each message was allowed to contain Θ(
√
n) bits. This

need for poly-sized messages should be contrasted with our MST algorithm which is

capable of running in O(1) rounds using only O(polylog n)-sized messages.
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3.1.2.2 Focus on Message Complexity

Unlike time complexity, when we talk about message complexity there are

subtle distinctions that must be made relating to the models. In particular, the

distinction between having and not having initial knowledge of neighbors’ IDs is

relevant. Our O(log log log n)-round randomized MST algorithm has a message

complexity of Θ(n2) (as does the algorithm of Lotker et al. [39]). As we improved

on the time complexity using randomization, a natural question is whether we can

improve the message complexity as well. It turns out that the answer depends on the

distinction relating to initial knowledge, mentioned above. Specifically, Hegeman

et al. [21] show that Ω(n2) messages are needed by any (randomized) algorithm

(regardless of the number of rounds) to solve the GC (and hence the MST) problem

if each machine in the clique has (initial) knowledge of only itself (the so-called KT0

model, cf. Section 1.1). This result improves on the Ω(n2) MST lower bound of

Korach et al. [32], which applies only to deterministic algorithms. On the other hand,

if machines begin with knowledge of their neighbors’ IDs (the so-called KT1 model,

cf. Section 1.1), it turns out that by exploiting the synchronous nature of the model

one can solve any problem fairly trivially with an algorithm that communicates only

O(n) bits. The O(n) bits message complexity upper bound mentioned above is not

particularly satisfying because the algorithm it depends on uses super-polynomially

many rounds. This naturally leads to the question of whether MST (or GC) can be

solved fast and using only a small number of messages. We provide a partial answer

to this question in this chapter by presenting an MST algorithm in the KT1 model
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that requires only O(n polylog n) messages and O(polylog n) rounds. This result

is obtained by adapting to the Congested Clique model the algorithm in [1] that

combines the use of linear sketches with a standard Borůvka-type MST algorithm.

3.2 Graph Connectivity Verification in O(log log log n) Rounds

In this section we present a randomized algorithm in the Congested Clique

model that computes an MST in O(log log log n) rounds, w.h.p. As a first step

toward this algorithm, we present a randomized algorithm that solves GC w.h.p. in

O(log log log n) rounds. Both algorithms use Θ(n2) messages. Our GC algorithm

constructs a maximal spanning forest of the input graph (i.e., a spanning forest with

as many trees as the number of components in the input graph), and at the end of

the algorithm every node will know such a spanning forest.

3.2.1 Linear Sketches of a Graph

A key tool used by our algorithm is linear sketches [1, 2, 42]. An important

aspect of using sketches for connectivity is working with an appropriate graph

representation. As described in [42], we use the following graph representation. For

each node v ∈ V , we define the incidence vector av ∈ {−1, 0, 1}(
n
2) which describes

the edges incident on node v as follows:

av((x, y)) =



0 if {x, y} /∈ E

1 if {x, y} ∈ E and v = x < y

−1 if {x, y} ∈ E and x < y = v.
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With this representation it is easy to see the following property of these vectors: for

any subset of nodes S, the non-zero entries of ∑v∈S av corresponds exactly to the

edges in the cut (S, V \ S).

Once we have this representation, the next step is to project these vectors into

lower dimensional space, i.e., sketch space. Specifically, for each vector av, we compute

a random O(poly log n)–dimensional sketch sv, such that two properties are satisfied:

(i) sampling from the sketch sv returns a non-zero entry of av with uniform probability

(over all non-zero entries in av) and (ii) when nodes in a connected component are

merged, the sketch of the new “super node” is obtained by coordination-wise addition

of the sketches of the nodes in the component. The first property is referred as `0-

sampling in the streaming literature [9, 42, 26] and the second property is referred as

linearity (hence, the name linear sketches). The graph sketches used in [1, 2, 42] rely

on the `0-sampling algorithm by Jowhari et al. [26]. Sketches constructed using the

Jowhari et al. [26] approach are small, using only Θ(log2 n) bits per sketch and are

obtained by using a (random) linear projection. Specifically, the approach of Jowhari

et al. [26] requires the construction of a random O(log2 n)×
(
n
2

)
matrix L, such that

sv = L · av. Note that this implies that the sketch of the component obtained by

merging neighboring nodes u and v is simply the sum of the sketches su and sv:

su+v = L · (au + av) = L · au + L · av = su + sv.

To ensure this linearity property all nodes need to compute the same matrix L and

thus need access to shared randomness, i.e., polynomially many mutually independent

random bits. Sharing this volume of information is not feasible, given how fast we
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require our algorithms to be. So instead, we appeal to the `0-sampling algorithm

of Cormode and Firmani [9] which requires, for the construction of the matrix L,

a family of Θ(log n)-wise independent hash functions. As we make precise below,

avoiding the requirement of full independence reduces the volume of information that

needs to be shared considerably.

To be more precise, let Hk denote a family of k-wise independent hash

functions. For positive real x, let [x] denote the set {1, 2, . . . , dxe}. Let h : [N ]→ [N3]

be a randomly selected hash function from Hk, where N =
(
n
2

)
. For each r ∈ [c logN ]

for constant c > 1, let gr : [N ] → [2 logN ], be randomly selected from H2. Given

Hk, k = Θ(log n) and H2, Cormode and Firmani show that one can construct a

O(log4N) = O(log4 n)-bits linear sketch sv of av such that their `0-sampler succeeds

with probability at least 1− 1
Nc and, conditioned on this, outputs a non-zero entry of

av with probability 1
N ′

+N−c, where N ′ is the number of non-zero elements in av. For

the linearity property to hold, the same hash functions h and {gr}r need to be used by

all nodes v. For our purpose what this means is that the Θ(log n)-wise independent

hash function h and the O(log n), pair-wise independent hash functions {gr}r need to

be shared among all nodes in the network. A k-wise independent hash function whose

range is polynomial in n can be constructed using Θ(k log n) mutually independent

random bits [3]. Therefore, this implies that Θ(log2 n) mutually independent random

bits are sufficient to generate h and the Θ(log n) gr’s. Thus Θ(log2 n) mutually

independent random bits need to be shared among all nodes in the network and this

will allows every node v to construct a sketch sv of size O(log4 n). This sharing
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of O(log2 n) bits can be achieved in the following simple way. Designate Θ(log n)

nodes for generating dlog ne random bits each. Each of these designated node then

sends these dlog ne bits (using a constant number of messages each) to all other

nodes. In the applications of linear sketches to GC and MST, we need every node

v to compute t = Θ(log n) independent sketches s1
v, s2

v, . . . , stv, such that each family

{sjv}v, 1 ≤ j ≤ t has the linearity property. Using the simple approach describe

above, Θ(log2 n) nodes to could designated to generate and share in O(1) rounds all

the mutually independent random bits needed for generating all the sketches. We

summarize this in the following theorem.

Theorem 3.1. Given a graph G = (V,E), n = |V |, there is a Congested Clique

algorithm running in O(1) rounds, at the end of which every node v ∈ V has computed

an independent collection of t = Θ(log n) sketches, s1
v, s2

v, . . . , stv, such that each family

{sjv}v, 1 ≤ j ≤ t has the linearity property. The size of each computed sketch is

O(log4 n) bits. The `0-sampling algorithm on each sketch sjv returns an edge in av

with probability 1/(non-zero entries in av) + n−2.

3.2.2 Using Linear Sketches to Solve GC

In this section we describe how to utilize linear sketches to solve GC w.h.p. on

a Congested Clique in O(log log log n) rounds. Our algorithm runs in two phases.

Initially, the input graph can be viewed as having n components, one for each vertex.

In the first phase, we reduce the number of components to O(n/log4 n) by running the

deterministic MST algorithm of Lotker et al. [39] for O(log log log n) rounds. Phase 2
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operates on the resulting component graph. This is the graph whose vertices are

the components computed in Phase 1 and whose edges represent adjacencies between

components. Each component leader (e.g., node with minimum ID in the component)

computes Θ(log n) independent linear sketches of its neighborhood in the component

graph. Since this graph has O
(
n/log4 n

)
vertices and each linear sketch has size

O(log4 n) bits, the entire volume of all linear sketches at all nodes has size O(n log n)

bits. Thus, if we want to send all linear sketches to a single (global) leader machine,

we would have to solve a routing problem in which each sender has O(log4 n) messages

(of size O(log n) each) and the receiver (leader) is required to receive O(n) messages.

This problem can be solved using, for example, Lenzen’s routing protocol [37], in

O(1) rounds. The rest of the algorithm is simply local computation by the leader

followed by the leader communicating the output, which is of size O(n), to all nodes

in an additional O(1) rounds. We now provide the most important details.

The Lotker et al. MST algorithm takes an edge-weighted clique as input.

The algorithm runs in phases, taking constant number of communication rounds per

phase. At the end of phase k ≥ 0, the algorithm has computed a partition Fk =

{F1
k, F2

k, . . . , Fm
k} of the nodes of G into clusters, where each cluster is a connected

component of the graph induced by the edges selected thus far. Furthermore, for

each cluster F ∈ Fk, the algorithm has computed a minimum spanning tree T (F ).

It is worth noting that at the end of Phase k every node in the network knows the

partition Fk and the collection {T (F ) | F ∈ Fk} of trees. It is shown that at the end

of phase k the size of the smallest cluster is at least 22k−1 and hence |Fk| ≤ n/22k−1 .
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In the following, we refer to the Lotker et al. algorithm as the CC-MST algorithm.

Let CC-MST(G, k) denote the execution of CC-MST on an edge-weighted clique

graph G for k phases.

Theorem 3.2 (Lotker et al. [39]). CC-MST computes an MST of an n-node edge-

weighted clique in O(log log n) rounds. At the end of phase k, CC-MST has computed

a vertex-partition Fk and a collection of trees T k = {T (F ) | F ∈ Fk} with the

following properties: (i) |F | ≥ 22k−1 for all F ∈ Fk, (ii) every node knows Fk and

T k, and (iii) if the largest weight of an edge in T (F ), for cluster F ∈ Fk is w, then

there is no edge with weight w′ < w connecting F to a different cluster F ′ ∈ Fk.

Algorithm ReduceComponents describes Phase 1 of our GC algorithm. The input

to this algorithm is an arbitrary graph G (not a clique and not edge-weighted) and

the algorithm returns a forest T1 and a component graph G1 induced by the edges

in this forest. After Steps 2-3 of the algorithm, each node in the network knows

the forest T1, by Theorem 3.2. In Step 4, the subroutine BuildComponentGraph

computes the component graph G1 of the forest T1 using one round of communication,

as follows. Each node u examines each incident edge {u, v} and if v belongs to a

different connected component, then u send a message to the component leader of

v’s component. (Note that if u has two neighbors v1 and v2 that belong to the

same connected component, distinct from u’s connected component, then u only

sends one message to the component leader of the component containing v1 and

v2.) Each component leader v, processes each of the messages it has received in

the previous step, and if it has received a message from a node u, then it marks
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the leader of u’s component as a neighbor in the component graph. Thus, at the

end of BuildComponentGraph, every component leader knows all neighboring

component leaders in the component graph.

A tree T in forest T1 is called finished if it is a spanning tree of a connected

component of G; otherwise we call T unfinished. Finished trees correspond to

isolated nodes in the component graph and play no further role in the algorithm.

(In fact, if we only wanted to verify connectivity, as opposed to computing a maximal

spanning forest, we could have the algorithm stop and report “disconnected” as soon

as a finished tree, not spanning the entire graph, is detected.) Unfinished trees

(represented by their component leaders) can be viewed as vertices of the graph that

will processed in Phase 2. Note that at the end of Algorithm ReduceComponents,

it is guaranteed that every node knows the ID of the leader of the component it

belongs to and every component leader knows incident inter-component edges. Now

we prove the following lemma that bounds the number of vertices in the graph that

will be processed in Phase 2 of the GC algorithm.

Lemma 3.3. The number of unfinished trees in T1 are O
(

n
log4 n

)
.

Proof. In Step 1, we build a weighted clique from the input graph G by assigning

to every edge in G, the weight 1; non-adjacent pairs of vertices are assigned weight

∞. Step 2 simply executes CC-MST on this weighted clique for log log log n + 3

iterations, which returns a set of clusters F and a forest T∞ of trees, one spanning

tree per cluster. By Theorem 3.2(i), every cluster in F has size at least log4 n. Now

note that some edges of weight ∞ might have been selected by CC-MST to be
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Algorithm 3.1 Phase 1: ReduceComponents
Input: A graph G = (V,E).

Output: T1, a spanning forest of G with at most O(n/ log3 n) unfinished trees and G1, the

component graph induced by the edges of T1.

1. Assign unit weights to edges in G to obtain a weighted graph Gw; make Gw a clique by

adding edges not in G and assign weight ∞ to these newly added edges.

2. (F , T∞)← CC-MST(Gw, dlog log logn+ 3e)

3. T1 ← T∞ \ {{u, v} ∈ E(T∞) | wt(u, v) =∞}

4. G1 ← BuildComponentGraph(G, T1)

5. return (T1, G1)

part of T∞; and in Step 3 we discard these edges. By Theorem 3.2(iii), if a tree

T ∈ T∞ contains an edge of weight ∞, it is finished because all edges incident on T

and connecting to a different tree in T∞ have weight ∞ (i.e., they are non-edges in

G). Thus no unfinished tree in T∞ contains an edge of weight ∞. This implies that

no unfinished tree is fragmented in Step 3 of Algorithm ReduceComponents and

thus each unfinished tree has size at least log4 n. Therefore, there can be at most

O(n/ log4 n) unfinished trees.

Phase 2 runs on the component graph G1 returned by Phase 1. Note that G1 has

O(n/log4 n) non-isolated nodes and the Θ(log n), O(log4 n)-bit-sized linear sketches

computed for each non-isolated node would result in a total volume of O(n log n) bits

of information, which can be sent to a single node in O(1) rounds using Lenzen’s

routing protocol. At a high level, this is what happens in Phase 2 followed by local

computation of the maximal spanning forest. Phase 2 is described in more detail in

Algorithm SketchAndSpan below. Let v∗ denote the vertex in V with minimum

ID.
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Algorithm 3.2 Phase 2: SketchAndSpan
Input: G1 = (V1, E1), V1 ⊆ V .

Output: T2, a maximal spanning forest of G1

1. Each vertex v ∈ V1 that is not isolated computes sketches sv
i for i =

1, 2, . . . , c log n of its neighborhood.

2. Each vertex v ∈ V1 sends these c log n sketches to v∗.

3. v∗ uses these sketches to locally sample edges between connected components to

compute a maximal spanning forest T2 of G1.

4. v∗ assigns each edge in T2 to a node in V such that each node is assigned a

single edge. v∗ then sends each edge to its assigned node. Each node in V then

broadcast the edge it received from v∗ so that all nodes now know T2.

5. return T2

Our final GC algorithm executes Phase 1 (Algorithm ReduceComponents)

followed by Phase 2 (Algorithm SketchAndSpan). Edges in T2 are inter-component

edges and each such edge needs to be mapped to a real edge in input graph G. For

each edge {C1, C2} in T2 the leaders of components C1 and C2 know edges in G that

have induced edge {C1, C2}. One of the leaders, say the one with smaller ID, picks

an edge in G corresponding to {C1, C2}. Leaders send all their picked edges to v∗.

Denote by T ′2 the set of the all picked edges. Since T2 is a forest, v∗ is the target of

fewer than n edges and this communication takes O(1) rounds.

Theorem 3.4 (GC Algorithm). The GC problem can be solved in O(log log log n)

rounds w.h.p. in the Congested Clique model. Furthermore, if the bandwidth of each

communication link was O(log5 n) bits, instead of O(log n) bits, then GC could be
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solved in O(1) rounds.

Remark 3.5. It is worth noting that this approach of reducing number of components

and then using linear-sketch-based algorithm to solve the GC problem can be used to

solve the bipartiteness problem in O(log log log n) rounds w.h.p. and also the k-edge-

connectivity problem in O(k log log log n) rounds w.h.p. using the approach of Ahn et

al. [1].

3.3 Minimum Spanning Tree in in O(log log log n) Rounds

In this section we show how to obtain an exact solution to the MST problem

on a Congested Clique. The algorithm starts (in Step 1) with a pre-processing phase

in which:

(i) the number of components is reduced from n to O(n/log4 n) using the Lotker

et al. MST algorithm, similar to Phase 1 of our GC algorithm and

(ii) the number of edges is reduced to O(n3/2) by using the classical sampling result

of Karger, Klein, and Tarjan (KKT sampling) [28].

Part (ii) of the pre-processing phase runs in O(1) rounds and thus the running time

of this phase is dominated by Part (i), in which O(log log log n) rounds of the Lotker

et al. MST algorithm are executed. The use of KKT sampling yields two MST

subproblems, each with O(n3/2) edges and O(n/log4 n) vertices. Following the pre-

processing phase, in the main phase of our algorithm, we solve each of the two above-

mentioned MST problems in O(1) rounds. At a high level, this MST algorithm

partitions by edge-weight the O(n3/2) edges in the graph into O(
√
n) groups of size n
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each. We then solve O(
√
n) instances of the GC problem in parallel. We now provide

details of this algorithm.

3.3.1 Pre-Processing: Reducing Number of Components and Edges

We first reduce the number of components to at most O(n/log4 n) components

by executing CC-MST for dlog log log n + 3e phases, similar to Phase 1 our GC

algorithm. Let T1 be the spanning forest and G1 be the component graph obtained

by executing the above step. Here, we think of the component graph G1 as being

edge-weighted, with the weight of an edge connecting components C and C ′ set to the

minimum weight of an edge between a node in C and a node in C ′. By Theorem 3.2,

T1 is a subset of a MST of G. Our goal now is to complete this MST by determining

which edges in G1 are in the MST.

Karger, Klein, and Tarjan [28] present a randomized linear-time algorithm

to find a MST in an edge-weighted graph in a sequential setting (RAM model). A

key component of their algorithm is a random edge sampling step to discard edges

that cannot be in the MST. For completeness we state their sampling result and the

necessary terminology.

Definition (F -light edge [28]). Let F be a forest in a graph G and let F (u, v) denote

the path (if any) connecting u and v in F . Let wtF (u, v) denote the maximum weight

of an edge on F (u, v) (if there is no path then wtF (u, v) =∞). We call an edge {u, v}

F -heavy if wt(u, v) > wtF (u, v), and F -light otherwise.

Lemma 3.6 (KKT Sampling Lemma [28]). Let H be a subgraph obtained from G



67

by including each edge independently with probability p, and let F be the minimum

spanning forest of H. The number of F -light edges in G is at most n/p, w.h.p.

The implication of the above lemma is that if we set p = 1/
√
n then the number of

sampled edges in H and the number of F -light edges in G both are O(n3/2) w.h.p.

Crucially, none of the F -heavy edges can be in an MST of G. Therefore if we compute

a minimum spanning forest F of H, then we can discard all F -heavy edges and

compute a minimum spanning forest of the graph induced by the remaining F -light

edges in G. We have thus reduced the problem into two MST problems: (i) compute

a minimum spanning forest F of H where the number of edges in H is O(n3/2)

w.h.p. and (ii) compute a minimum spanning forest of the graph induced by F -light

edges in G. Note that these two problems cannot be solved in parallel since the latter

problem depends on the output of the first problem. Specifically, after problem (i) has

been solved we need to identify all F -light edges; these will serve as input to problem

(ii). Identifying F -light edges is easy because after problem (i) has been solved every

node knows F and can therefore determine which incident edges are F -light.

Algorithm 3.3 summarizes our approach. In the beginning of Algorithm

Exact-MST every node knows weights of incident edges and at the end of

the execution every node knows all the edges that are in the MST computed

by the algorithm. The subroutine BuildComponentGraph invoked in Step 2

now builds an edge-weighted component graph. Like the unweighted version of

BuildComponentGraph, this subroutine also runs in O(1) rounds. The only

difference is that each node u (in a component C) considers all edges to a component

C ′ (6= C) and informs the leader of C ′ about the edge between u and C ′ of

smallest weight. After this round of communication, component leaders have enough
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information to determine the smallest weight edge to every other component. The

subroutine SQ-MST is called twice (in Steps 4 and 6), to compute a minimum

spanning forest of a graph with O(n/log4 n) vertices and O(n3/2) edges. We describe

SQ-MST in detail in the next subsection and show that it runs in O(1) rounds w.h.p.

Algorithm SQ-MST comes with the guarantee that at the end of its execution, all

nodes know the MST computed by it.

Algorithm 3.3 Exact-MST
Input: An edge-weighted clique G(V,E)

Output: An MST of G

1. (F , T1)←CC-MST(G, dlog log logn+ 3e)

2. G1 ← BuildComponentGraph(G, T1)

3. H ← a subgraph of G1 obtained by sampling each edge in G1 independently with

probability 1√
n

4. F ← SQ-MST(H)

5. E` ← {{u, v} ∈ E(G1) | {u, v} is F -light}

6. T2 ← SQ-MST(E`)

7. return T1 ∪ T2

3.3.2 Computing MST of O(n3/2)-size Graph

We now describe Algorithm SQ-MST, which computes in O(1) rounds an

MST of a subgraph G′ = (V ′, E ′) of G with O(n3/2) edges and O(n/log4 n) vertices.

(Pseudocode appears in Algorithm 3.4.) The bounds on number of vertices and

number of edges are critical to ensuring that our MST algorithm runs in O(1) rounds.

The algorithm starts with edges in E ′ being sorted, i.e., each node computes the rank
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r(e) of each incident edge e in a sorted (by edge-weights) sequence of all edges in

E ′. This sorting problem can be solved in O(1) rounds on the Congested Clique

by using Lenzen’s distributed sorting algorithm [37]. Then each node partitions (in

Step 2) the incident edges based on their ranks. Thus we partition E ′ into O(
√
n)

sets E1, E2, . . . , Ep (p = O(
√
n)) each containing n edges (Ep might have less than n

edges) such that E1 contains all the edges whose ranks are in the range 1 to n, E2

contains the edges with ranks between n + 1 and 2n, and so on. Since nodes know

ranks of incident edges, each node can identify, for each incident edge e, an index

i ∈ [p] such that e ∈ Ei. In the next step (Step 3) we gather each set Ei at a guardian

node g(i). This can be done in O(1) rounds as well, using Lenzen’s routing protocol,

because (i) the number of edges incident on a node is less than n and therefore each

node is the sender of less than n edges, and (ii) |Ei| ≤ n and therefore each node is the

receiver of at most n edges. The role of a guardian node g(i) is to determine which of

the edges in Ei are a part of the MST. Specifically, g(i) wants to know for each edge

e = {u, v} ∈ Ei whether there is a path between u and v in the graph induced by

edges with ranks less than r(e). (Note that these are edges of weight no greater than

e). That is, for each edge e ∈ Ei, g(i) needs to determine whether there is a path

between u and v in the graph induced by edges ∪i−1
k=0Ek ∪ {e` ∈ Ei | r(e`) < r(e)}.

Let Gi be the subgraph of G′ induced by the edge set ∪i−1
k=0Ek. One way to solve this

problem would be for g(i) to compute a maximal spanning forest Ti of Gi. Then g(i)

could locally check uv-connectivity in the graph Ti ∪ {e` ∈ Ei | r(e`) < r(e)}. Thus

each g(i) needs to have available a solution to GC on the graph Gi. There are O(
√
n)
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such guardians — one for each part Ei and hence the challenge is executing O(
√
n)

instances of GC computations in parallel in the Congested Clique network.

What provides crucial help in permitting these p = O(
√
n) GC instances to

run in parallel is that G′ has O(n/log4 n) nodes and O(n3/2) edges. Note that since

G′ has O(n/ log4 n) nodes, Phase 1 of GC is not required and only Phase 2 of GC

needs to be executed in parallel on O(
√
n) instances. The main communication step

in Phase 2 of the GC algorithm is nodes sending their Θ(log n) linear sketches to

single node for local computation. Each node v ∈ V ′ has a set of incident edges

belonging to each graph Gi, 1 ≤ i ≤ p. Thus v computes Θ(p log n) = Θ(
√
n log n)

different linear sketches, each of size Θ(log4 n) bits. Therefore, in total each node v

has O(
√
n · log4 n) different O(log n)-sized messages to send. On the receiver’s side, a

guardian g(i) is the target of O(n) messages of size O(log n) bits. This communication

can be completed in O(1) using Lenzen’s routing protocol, and thus we obtain the

following theorem.

Theorem 3.7. Algorithm Exact-MST computes an MST of an n-node edge-

weighted clique in O(log log log n) rounds w.h.p. on the Congested Clique. Further-

more, if the bandwidth of each communication link is O(log5 n) bits, then MST can

be computed in O(1) rounds.

3.4 MST in O(polylog n) Rounds and O(n polylog n) Messages

In this subsection we show that if we allow the use of O(polylog n) rounds,

then we can obtain an algorithm that solves MST using only O(n polylog n) messages
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in the Congested Clique model. This should be contrasted with our O(log log log n)-

round algorithm, which uses Θ(n2) messages. This algorithm is an adaption of the

sketch-based algorithm in [48, 1, 27].

Theorem 3.8. An MST can be computed in the Congested Clique model in O(log5 n)

rounds using O(n log5 n) messages (of size O(log n)-bits each).

Proof. The algorithm proceeds in O(log n) phases, where in each phase a minimum-

weight outgoing edge (MWOE) incident on each node is selected (w.h.p.) and

the resulting connected components are merged together to form a new node.

Components are indicated by their component label; all nodes in a component hold

the ID of the leader of that component. Initially, each node is in a component on its

own.

Consider an arbitrary phase of the algorithm. Each component leader

generates O(log2 n) mutually independent random bits and sends these to each node

in its component. (Recall from the description of linear sketches in Section 3.2.1 that

the Cormode-Firmani [9] construction of linear sketches requires O(log2 n) mutually

independent random bits.) This communication can be done naively, taking O(log n)

rounds and using a total of O(n log n) messages. Each node in the graph uses the

received random bits to compute an O(log4 n)-bit linear sketch of its neighborhood

with respect to the original graph. Each node in the graph then sends its sketch to its

component leader, simply using O(log3 n) rounds. Each component leader computes

the sum of the received linear sketches and then samples an outgoing edge, w.h.p.

Suppose that a component leader v has obtained an outgoing edge with weight wv.
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Node v sends wv to all its followers who then delete all incident edges of weight

more than wv and obtain new, possibly smaller, neighborhoods. The entire process is

repeated O(log n) times, at which point v has found a MWOE, w.h.p. Each MWOE is

then sent to the node v∗ with minimum ID, which then merges components, updates

labels, and then informs nodes of their component labels. This completes the current

phase and yields the theorem.

We don’t know whether MST problem can be solved in O(1) rounds or not but

in the next section we show a constant-factor approximation to MST can be obtained

in O(1) rounds given that the weights in the input graph are from a constant doubling

dimension metric space.

3.5 Constant-Approximation to MST of Graphs in Metric Space

For a metric space (V, d), define a metric graph G = (V,E) as the clique on set

V with each edge {u, v} having weight d(u, v). In this section we present a constant-

round algorithm for computing a constant-factor approximation of an MST of given

metric graph G = (V,E) with constant doubling dimension.

Damian et al. presented a O(log∗ n)-round algorithm for constructing a light

spanner of a doubling dimension metric graph in the LOCAL model. The techniques

in [10] cannot be directly used in our setting due to (i) bandwidth constraints; (ii)

the sequential dependency of the construction in [10]; (iii) our need for a O(1)-

round reduction; and (iv) our requirement for an O(1)-approximation to MST.

Our techniques avoid these obstacles and provide an O(1)-round reduction in the
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congested-clique setting. Our overall approach is as follows. We start by showing how

to “sparsify” G and construct a spanning subgraph Ĝ = (V, Ê), Ê ⊆ E, such that

wt(MST (Ĝ)) = O(wt(MST (G))). Thus computing an MST on Ĝ yields an O(1)-

approximation to an MST on G. The sparsification is achieved via the construction

of a collection of maximal independent sets (MIS) in parallel on different distance-

threshold subgraphs of G. Thus we have reduced the problem of constructing a

constant-approximation of an MST on the metric graph G to two problems: (i) the

MIS problem on distance-threshold graphs and (ii) the problem of computing an

MST of a sparse graph Ĝ. Using the fact that the underlying metric space (V, d) has

constant doubling dimension, we show that Ĝ has linear (in |V |) number of edges.

As a result, problem (ii) can be easily solved in constant number of rounds by simply

shipping Ĝ to a single node for local MST computation. In Chapter 2:Section 2.4,

we have already shown how to compute an MIS of a distance-threshold graph in a

constant doubling dimensional space on a Congested Clique in constant number of

rounds. Finally, we show that due to the particular bandwidth usage of our MIS

algorithm, we can run all of the requisite MIS computations in parallel in constant

rounds.

3.5.1 Metric MST Algorithm

We now present our algorithm in detail; the reader is encouraged to follow

along the pseudocode in Algorithm 3.5. We partition the edge set E of the metric

graph into two subsets E` (light edges) and Eh (heavy edges) as follows. Let dm =
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max {d(u, v) | {u, v} ∈ E} denote the diameter of the metric space 2. Define E` =

{{u, v} | d(u, v) ≤ dm/n
3} and Eh = E \ E`. We deal with these two subsets E` and

Eh separately.

First consider the set of light edges E` and note that G[E`] may have several

components. We would like to select an edge set Ê` such that (i) any pair of vertices

that are in the same connected component in G[E`] are also in the same connected

component in G[Ê`], and (ii) wt(Ê`) = O(wt(MST (G))). (Note that one can define

Ê` = E` to have these two properties but we want to “sparsify” E`, ideally we

would like to have |Ê`| = O(n) and we show this for metric with constant doubling

dimension.) The algorithm for selecting Ê` is as follows. Let S be an MIS of the

distance-threshold graph Gr, where r = dm/n
2. (This MIS computation is not on

graph induced by E`, notice the r. This is done to obtain certain properties of Ê`

described above.) Define Ê` = {{u, v} | u ∈ S and d(u, v) ≤ 2 · dm/n2}. Note that

Ê` may not be a subset of E`.

Now we consider the set Eh of heavy edges. Let c1 > 1 be a constant. Let h

be the smallest positive integer such that ch1 ≥ n3. Observe that h =
⌈

3 logn
log c1

⌉
. Let

r0 = dm/c
h
1 (note that for any heavy edge {u, v}, d(u, v) > r0) and let ri = c1 ·ri−1, for

i > 0. We construct Êh in layers as follows. Let V0 = V and Vi for 0 < i ≤ h is an MIS

of the subgraphG[Ei] where Ei = {{u, v} | d(u, v) ≤ ri}. Let c2 > c1+2 be a constant.

Define Êi, the edge set at the layer i as: Êi = {{u, v} | u, v ∈ Vi and d(u, v) ≤ c2 · ri}.

2If the size of the encoding of distances is more than O(logn) bits then it is suffices to
know only most-significant logn-bits of encoding of dm to act as “proxy” for dm which will
only increase the approximation factor by a constant.
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We define Êh = ∪hi=1Êi and Ê = Êh ∪ Ê`. A key feature of our algorithm is that a

layer Êi does not depend on other layers and therefore these layers can be constructed

in parallel. We then call an as-yet-unspecified algorithm called MST-Sparse that

quickly computes an exact MST of Ĝ = G[Ê] in the Congested Clique model.

In the rest of the section, we first prove that the graph Ĝ = (V, Ê) contains a

spanning tree whose weight is within a constant-factor of the weight of a minimum

spanning tree of G. This result is true for an arbitrary metric space (V, d). We then

suppose that (V, d) has constant doubling dimension and show that for such metric

spaces |Ê| = O(|V |) and therefore MST-Sparse has a simple O(1) implementation

in the Congested Clique model. We finally combine this result with the MIS algorithm

from the previous chapter to obtain an O(1)-approximation to MST in a metric space

with constant doubling dimension in O(1) rounds in the Congested Clique model.

In the analysis that follows, we separately analyze the processing of light

edges and heavy edges. We first show the constant-approximation property of Ĝ

which doesn’t require metric to be of constant doubling dimension. Later we show

if the underlying metric has constant doubling dimension then Algorithm 3.5 runs in

constant rounds w.h.p..

3.5.2 Constant-Approximation Property

Let T be an MST of graph G = (V,E). Let T̂ be a MST of the graph Ĝ =

(V, Ê). We now prove that wt(T̂ ) = O(wt(T )). First we claim that the connectivity

that edges in E` (i.e., the light edges) provide is preserved by the edges selected
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into Ê` (Lemma 3.9) and the total weight of these selected edges is not too high

(Lemma 3.10). Later we prove a similar claim for heavy edges (Lemma 3.11).

Lemma 3.9. For any vertices s and t in V , if there is a s-t path in G[E`] then there

exists an s-t path in G[Ê`].

Proof. Consider an edge {u, v} ∈ E`. If {u, v} ∈ Ê` then we are done. If {u, v} /∈ Ê`

then we show that there exists a vertex w such that {u,w}, {v, w} ∈ Ê`. Since

{u, v} ∈ E`, d(u, v) ≤ dm/n
3. Furthermore, since {u, v} /∈ Ê` it means both u and

v are not in S, an MIS of Gr, r = dm/n
2. Hence there is a vertex w ∈ S such that

d(u,w) ≤ dm/n
2. By the definition of Ê`, {u,w} ∈ Ê`. By the triangle inequality,

we have d(v, w) ≤ dm/n
2 + dm/n

3 which implies {v, w} ∈ Ê`. The lemma follows by

repeatedly applying above result to each edge of the given s-t path.

Lemma 3.10. wt(Ê`) = O(wt(T )).

Proof. The weight of each edge in Ê is at most 2dm/n2 and since there are at most n2

edges in Ê` (trivially), we see that wt(Ê`) = O(dm). We obtain the lemma by using

the fact that the total weight of any spanning tree is bounded below by dm.

Consider an edge {u, v} ∈ E(T ). Let C(u) and C(v) be the components

containing u and v respectively in the graph T \ {u, v}.

Lemma 3.11. If {u, v} ∈ E(T )∩Eh then there exists an edge {u′, v′} ∈ Ê such that

(i) d(u′, v′) ≤ c2 · d(u, v) and (ii) u′ ∈ C(u) and v′ ∈ C(v).

Proof. Let i be the largest integer such that ri < d(u, v). Hence d(u, v) ≤ ri+1 =

c1 · ri ≤ (c2 − 2) · ri (since c2 was chosen to be greater than c1 + 2).
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Let u′ and v′ be the nearest nodes in the MIS Vi of G[Ei] from u and v

respectively. Note that u′ could be u and v′ could be v. Thus d(u, u′) ≤ ri and

d(v, v′) ≤ ri. By the triangle inequality we have, d(u′, v′) ≤ d(u′, u) + d(u, v) +

d(v, v′) ≤ ri + (c2− 2) · ri + ri ≤ c2 · ri < c2 · d(u, v). Hence, (u′, v′) ∈ Êi and also note

that d(u′, v′) ≤ α · d(u, v) where α is any constant greater than c2. Now note that

{u, v} is the lightest edge between a vertex in C(u) and a vertex in C(v) by virtue

of being an MST edge. Therefore, it is the case that u′ ∈ C(u) and v′ ∈ C(v) since

d(u, u′) < d(u, v) and d(v, v′) < d(u, v).

This lemma implies that for every cut (X, Y ) of G and an MST edge {u, v} that

crosses the cut, there is an edge {u′, v′} in Ĝ also crossing cut (X, Y ) with weight

within a constant factor of the weight of {u, v}. The following result follows from this

observation and properties of Ê` proved earlier.

Theorem 3.12. Algorithm 3.5 computes a spanning tree T̂ of G such that wt(T̂ ) =

O (wt (MST (G))).

3.5.3 Constant Running Time

The result of the previous subsection does not require that the underlying

metric space (V, d) have constant doubling dimension. Now we assume that (V, d)

has constant doubling dimension and in this setting we show that Algorithm Metric-

MST-Approximation can be implemented in constant rounds. Even though

the algorithm is described in a “sequential” style in Algorithm 3.5, it is easy to

verify that most of the steps can be easily implemented in constant rounds in the
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Congested Clique model. However, to finish the analysis we need to show: (i)

that ComputeMIS executes in constant rounds, (ii) that the h = O(log n) calls

to ComputeMIS in Line 10 can be executed in parallel in constant rounds, and

(iii) that MST-Sparse in Line 13 can be implemented in constant rounds. In the

following, we show (iii) by simply showing that Ĝ has linear number of edges. In the

previous section, we have shown (i) and later in this section we show (ii).

We first show |Ê`| = O(n) in Lemma 3.13 and then argue about heavy edges.

Lemma 3.13. |Ê`| = O(n).

Proof. For any edge {u, v} ∈ Ê` either u or v or both belong to S (by construction).

We orient edges such that an edge is directed towards the node in S. If both end points

are in S then we add two oppositely directed edges. We prove that the out-degree of

a node is bounded by a constant.

Consider a node u. Let No(u) be the set of endpoints of all outgoing edges of u.

If |No(u)| < 2 then we are done, therefore consider the case |No(u)| ≥ 2. Consider

any two nodes vi, vj ∈ No(u). By construction we have, d(u, vi) ≤ 2 · dm/n2 and

d(u, vj) ≤ 2 · dm/n2. Therefore by the triangle inequality, d(vi, vj) ≤ 4 · dm/n2.

Also, by the definition of orientation vi, vj ∈ S and therefore by the definition of S

we have, d(vi, vj) > dm/n
2. Hence the aspect ratio of No(u) is at most 4. By the

growth-bounded property, we have |No(u)| = O(1). Hence, |Ê`| = O(n).

Now we show |Êh | = O(n). We first show in the following lemma two useful

properties of vertex-neighborhoods in the graph induced by Êi.
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Lemma 3.14. For each u ∈ Vi, (i) |Ni(u)| ≤ c3 where c3 = c2
O(ρ) and (ii) Ni(u)∪{u}

induces a clique in G[Ej] for all i > 0 and j ≥ i+ δ where δ =
⌈

log 2c2
log c1

⌉
.

Proof. We first show that the aspect ratio of Ni(u) is bounded by 2c2. This follows

from two facts: (a) any two points in Ni(u) are at least distance ri apart, and (b)

any point in Ni(u) is at distance at most c2 · ri from u and therefore, by using the

triangle inequality, any two points in Ni(u) are at most 2c2 · ri apart. Then using the

bound from the growth-bounded property we obtain the result claimed in part (i).

Now we show part (ii) of the claim. If |Ni(u)| = 0 then we are done. If

|Ni(u)| = 1 then let v ∈ Ni(u). This implies d(u, v) ≤ c2 · ri < cδ1 · ri = ri+δ which

implies {u, v} ∈ Ej, j ≥ i+ δ.

Now assume |Ni(u)| > 1. Consider any two distinct vertices v, w ∈ Ni(u). Since

{u, v} , {u,w} ∈ Êi we have d(u, v) ≤ c2 · ri and d(u,w) ≤ c2 · ri. By the triangle

inequality, d(v, w) ≤ 2c2 · ri ≤ cδ1 · ri = ci+δ. Therefore {v, w} ∈ Ei+δ and hence we

have {v, w} ∈ Ej, for all j ≥ i+ δ.

The implication of the above result is that |Êi| is linear in size. Since we

use O(log n) layers in the algorithm, it immediately follows that |Êh | is O(n log n).

However, part (ii) of the above result implies that only one of the nodes in Ni(u) will

be present in Vj, j ≥ i+ δ since Vj is an independent set of G[Ej]. This helps us show

the sharper bound of |Êh | = O(n) in the following.

Without loss of generality assume that h is a multiple of δ (if not, add at most
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δ − 1 empty layers Êh+1, Êh+2, . . . to ensure that this is the case). Let

β(j) =
jδ⋃

i=(j−1)δ+1
Êi for j = 1, 2, . . . , h

δ

be a partition of the layers Êi into bands of δ consecutive layers. Let Êodd = ∪j:oddβ(j)

and Êeven = ∪j:evenβ(j).

Lemma 3.15. |Êodd| = O(n), |Êeven| = O(n) and therefore |Ê| = O(n).

Proof. We prove the claim for Êodd. The proof is essentially the same for Êeven. We

aim to prove the following claim by induction on k (for odd k): for some constant

C > 0, ∣∣∣∣∣∣
⋃

j:odd≥k
β(j)

∣∣∣∣∣∣ ≤ C ·

∣∣∣∣∣∣
⋃

j:odd≥k
V (j)

∣∣∣∣∣∣ , (3.1)

where V (j) is the set of vertices such that every vertex in V (j) has some incident edge

in β(j). Setting k = 1 in the above inequality, we see that |Êodd| = | ∪j:odd≥k β(j)| =

O(n). To prove the base case, let k′ be the largest odd integer less than or equal

to h/δ. Then, ∪j:odd≥k′β(j) = β(k′) and ∪j:odd≥k′V (j) = V (k′). Consider a vertex

v ∈ V (k′). By Lemma 3.14, there are at most c3 edges incident on v from any layer.

There are δ layers in β(k′) and therefore there are at most c3δ edges from β(k′)

incident on any vertex v ∈ V (k′). Hence, |β(k′)| ≤ c3δ|V (k′)|. Therefore, for any

constant C ≥ c3δ, it is the case that | ∪j≥k′ β(j)| ≤ C · | ∪j≥k′ V (j)|.

Taking (3.1) to be the inductive hypothesis, let us now consider | ∪j≥k−2 β(j)|.

Then,
∣∣∣∣∣∣

⋃
j:odd≥k−2

β(j)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃

j:odd≥k
β(j)

∣∣∣∣∣∣+ |β(k− 2)| ≤ C ·

∣∣∣∣∣∣
⋃

j:odd≥k
V (j)

∣∣∣∣∣∣+ c3δ · |V (k− 2)|. (3.2)
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The second inequality is obtained by applying the inductive hypothesis and the

inequality |β(k − 2)| ≤ c3δ|V (k − 2)|. By Lemma 3.14, at most half the vertices

in V (k − 2) appear in ∪j≥kV (k). Therefore, |V (k − 2) \ (∪j≥kV (j))| ≥ |V (k − 2)|/2.

Hence,
∣∣∣∣∣∣

⋃
j:odd≥k−2

β(j)

∣∣∣∣∣∣ ≤ C ·

∣∣∣∣∣∣
⋃

j:odd≥k
V (j)

∣∣∣∣∣∣+ 2c3δ ·

∣∣∣∣∣∣V (k − 2) \ (
⋃

j:odd≥k
V (j))

∣∣∣∣∣∣ .
Picking C ≥ 2c3δ, we then see that
∣∣∣∣∣∣

⋃
j:odd≥k−2

β(j)

∣∣∣∣∣∣ ≤ C·

∣∣∣∣∣∣
⋃

j:odd≥k
V (j)

∣∣∣∣∣∣+
∣∣∣∣∣∣V (k − 2) \

 ⋃
j:odd≥k

V (j)
∣∣∣∣∣∣
 = C·

∣∣∣∣∣∣
⋃

j:odd≥k−2
V (j)

∣∣∣∣∣∣ .
The result follows by induction.

3.5.4 Many MIS Computations in Parallel

In this section, we argue that Algorithm 2.6 LowDimensionalMIS can be

executed on the O(log n) different distance threshold graphs in parallel on a Congested

Clique. Table 3.1 shows number of messages sent/received per node in the execution

of Algorithm 2.6 and from this it is easy to see that Line 8 of Phase 2 can be executed

as it is using Lenzen’s routing protocol in O(1) rounds for all the O(log n) layers in

parallel due to their low communication requirements. For Lines 4-6 of Phase 2 we

do the following load balancing via a designated receiver scheme: each vertex has to

send at most O(n1/4 log n) messages in an execution of Phase 2 for a layer. Therefore,

for O(log n) layers one node is responsible of sending O(n1/4 log2 n) messages. There

are only d2 log ne receivers needed for in an execution at a layer. For all layers the

number of receivers needed are O(log2 n). Hence we can designate different receivers
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such that no receiver gets more than O(n) messages in execution of Phase 2 for all

layers. Similar designated receiver scheme is applied for the execution of Phase 1.

For parallel execution of Line 9 (SequentialMIS) of Phase 4 for all O(log n)

layers we use the following message encoding scheme: Each vertex v constructs a

O(log n)-length bit string specifying 1 at position ` if v is in MIS for the layer `

otherwise 0. Each vertex v broadcasts this string. For a layer `, each vertex considers

only `th bit of this message.

Table 3.1: Number of messages sent/received per node in the execution of Algo-

rithm 2.6

Phase Line Analysis Number of mes-

sages to send per

node

Number

of

receivers

Number of mes-

sages to receive

per receiver

1 2-4 Lemma 2.9 O(n1/2) n1/2 O(n)

2
4-6 Lemma 2.12 O(n1/4 log n) d2 log ne O(n)

8 Lemma 2.13 O (poly(log n)) n O (poly(log n))

3 - Thm. 2.8 O(n1/2 poly(log∗ n)) n O(n1/2 poly(log∗ n))

4
3 Lemma 2.15 O(1) 1 O(n)

9 Lemma 2.15 1 (1-bit) n n
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3.6 Conclusion

Our work makes progress in understanding both the time and message

complexity of two important graph problems, graph connectivity and minimum

spanning tree, in the Congested Clique. We improve the upper bound on the

round complexity of MST in the Congested Clique model significantly, presenting

an O(log log log n)-round algorithm, and this makes the question of whether there is

an O(1)-round MST algorithm in the Congested Clique model even more tantalizing.

Our work also suggests new questions, that simultaneously focus on both round and

message complexity. For example, is it possible to design sub-logarithmic GC or MST

algorithms that use O(n polylog n) messages?
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Algorithm 3.4 SQ-MST

Input: A weighted subgraph G′(V ′, E ′, wt) with O
(

n
log4 n

)
vertices and O(n3/2) edges

Output: An MST of G′

1. r(E) ← DistributedSort(E); each edge e ∈ E ′ is assigned a rank r(e), in

non-decreasing order of edge-weights.

2. Partition edges in E based on their ranks r(e) into p partitions E1, E2, . . . Ep

(p = O(
√
n)), each partition having n edges (Ep might have less than n edges)

such that E1 contains edges with ranks 1, 2, . . . , n; E2 contains edges with ranks

n+ 1, n+ 2, . . . , 2n; and so on.

3. Let g(i) be the node in G with ID i. Assign g(i) as the “guardian” of part Ei.

Nodes send edges in Ei to g(i).

4. for i = 1 to i = p in parallel do

5. Let Gi = (V ′,∪i−1
j=1Ej). Each vertex v ∈ V ′ constructs t = Θ(log n) sketches

si,1v , si,2v , . . . , si,tv . of its neighborhood with respect to Gi.

6. Each node v ∈ V ′ sends the sketch collection {si,jv }tj=1 to g(i).

7. g(i) executes locally:

(a) Ti ← SpanningForest(Gi) (based on linear

sketches received)

(b) g(i) processes edges in Ei in rank-based order.

for each edge ej = {u, v} in e1, e2, . . . :

if there is a path between u and v in

Ti ∪ {e` | ` < j} then discard ej
else add ej toMi.

8. end for

9. return ∪pi=1Mi
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Algorithm 3.5 Metric-MST-Approximation
Input: A metric graph G = (V,E) on metric space (V, d)

Output: A tree T̂ such that wt(T̂ ) = O (wt (MST (G)))

1. dm = max{d(u, v) | {u, v} ∈ E}

2. E` ←
{
{u, v} | d(u, v) ≤ dm

n3

}
. Processing light edges

3. S ← ComputeMIS(G[E0]) where E0 ←
{
{u, v} | d(u, v) ≤ dm

n2

}
4. Ê` ←

{
{u, v} | u ∈ S and d(u, v) ≤ 2·dm

n2

}
5. Eh ←

{
{u, v} | d(u, v) > dm

n3

}
. Processing heavy edges

6. h←
⌈

3 logn
log c1

⌉
; r0 ← dm

ch
1

7. for i = 1 to h in parallel do

8. ri ← (c1)i · r0

9. Ei ← {{u, v} | d(u, v) ≤ ri}

10. Vi ←ComputeMIS(G[Ei])

11. Êi ← {{u, v} | u, v ∈ Vi and d(u, v) ≤ c2 · ri}

12. end for

13. Êh ← ∪hi=1Êi; Ê ← Ê` ∪ Êh

14. return MST-Sparse(G[Ê])
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CHAPTER 4
REDUCING MESSAGE COMPLEXITY OF GRAPH

CONNECTIVITY AND MINIMUM SPANNING TREE

4.1 Introduction

In earlier chapter (Chapter 3), it was shown that there are randomized (Monte

Carlo) algorithms that solve the Graph Connectivity (GC) problem and the minimum

spanning tree (MST) problem, both in O(log log log n) rounds. This result improved

on the previous fastest (deterministic) MST algorithm of Lotker et al. [39], that ran in

O(log log n) rounds. While the above mentioned algorithms are exceedingly fast, their

speed seems to arise from the use of the entire bandwidth of the Congested Clique,

i.e., essentially all Θ(n2) possible messages. Both algorithms consist of steps in which

Θ(n2) messages are exchanged, in the worst case. In this chapter, we investigate

the question of whether GC and MST can be solved as fast, if we impose stringent

restrictions on the message complexity, i.e., the total number of messages that are sent

during the course of the algorithm. Specifically, we consider two natural restrictions

on the message complexity: near-linear in n, i.e., O(n poly log n) and near-linear inm,

i.e., O(m poly log n), where n and m are the number of vertices and edges respectively

of the input graph. This focus on the message complexity of Congested Clique

algorithms (in addition to round complexity) is motivated by connections between

the Congested Clique model and models of large-scale distributed computing such as

MapReduce [22] and the “big data” model [31]. These papers [22, 31] prove simulation

theorems that respectively show how an algorithm in the Congested Clique model can
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be simulated in the MapReduce model and in the “big data” model. The motivation

for these theorems is simple: due to the simplicity of the Congested Clique model, it

is far easier to design algorithms in this model as compared to the MapReduce or the

“big data” model. As might be expected, the above mentioned simulation theorems

yield efficient algorithms in the underlying model, if the initial Congested Clique

algorithm is not only fast (has small round complexity), but also has small message

complexity. More generally, the Congested Clique model can be viewed an abstraction

of overlay networks (as mentioned in [39]) or as an abstraction of high-performance

computing clusters, similar in spirit to the BSP model [56]. For Congested Clique

algorithms to be meaningful in these contexts, it is critical that they not only be fast,

but have low message complexity as well.

4.1.1 Notation

We denote m = |E|, the number of edges in an input graph. All logarithms

are assumed to have base 2 unless otherwise specified. Throughout, by “w.h.p.” we

mean with probability at least 1 − n−Ω(1). For ease of exposition, we assume nodes

have distinct IDs in the range [0, n− 1]. We denote a set of integers 1, 2, . . . , x by [x].

4.1.2 Related Work

In [21], it is shown that one can compute MST on a Congested Clique using

O(n poly log n) messages but it also requires O(poly log n) rounds. This result is a

direct application of linear sketches [1, 2, 42]. Recently, King et al. [30] showed

how to construct an MST in a distributed network with o(m) communication. Their
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algorithm can be adopted to Congested Clique model to run in O(poly log n) rounds

using O(n poly log n) messages. King et al. [30] obtained this result via developing a

linear sketch type short representation of neighborhood of a vertex. Both [21] and

[30] results rely on a representation which allows sampling an outgoing edge from a

component quickly.

4.1.3 Main Results

We first focus on GC and show that it can be solved in O(log log log n) rounds

using only O(n poly log n) messages.

4.1.3.1 Low-message-complexity GC Algorithm

The GC algorithm in [21] that runs in O(log log log n) rounds, uses the fast

parallel merge procedure of Lotker et al. [39] as a pre-processing step to reduce the

size (number of vertices) of the input graph to O(n/ poly log n). This merge procedure

uses Θ(n2) messages per iteration and our main technical contribution lies in showing

how to reduce the message complexity of this merge procedure to O(n poly log n)

messages. Specifically, we show how to use linear sketches [1, 2, 42] to sample

sufficiently many edges connecting different components in parallel so as to be useful

to the fast parallel merge procedure of Lotker et al. [39]. An additional technique

that we use to limit the message complexity of this algorithm to O(n poly log n) is

the design of a simple routing primitive that has linear message complexity, while

requiring only a constant number of rounds for completion. Many recent Congested

Clique algorithms have relied on the deterministic routing protocol due to Lenzen
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[37] that runs in constant rounds on the Congested Clique. While this subroutine

is extremely useful for designing fast Congested Clique algorithms, the number of

messages is not a resource it tries to explicitly conserve. Specifically, Lenzen’s routing

protocol uses Ω(n1.5) messages, independent of the number of messages that need to

be routed. We observe that our GC algorithm does not require the full power of

Lenzen’s routing protocol and our routing primitive suffices for all the routing needs

of our GC algorithm.

4.1.3.2 Linear-message-complexity MST Algorithm

We then consider the more challenging MST problem and first show that MST

can be solved in O(log log log n) rounds using O(m poly log n) messages. In addition

to the low-message-complexity routing primitive mentioned above, this result depends

on a low-message-complexity sorting primitive (based on the Congested Clique sorting

algorithm of [37]) that we present. While we do not know if exact MST can be solved

in O(log log log n) rounds using O(n poly log n) messages, we do show that for any

ε > 0, a (1 + ε)-approximation of MST can also be constructed in O(log log log n)

rounds using only O(n poly log n) messages. This final approximation algorithm result

makes crucial use of the GC result and the exact-MST result mentioned above.

4.2 Technical Preliminaries

In this section we describe the low-message subroutines for the routing and

sorting problem that we use in our algorithms.
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4.2.1 Routing

Theorem 4.1 (Randomized Scatter-Gather (RSG)). There are k messages that need

to be delivered and each node is source of up to n messages and each node is destination

of up to c · n1−ε messages, where ε > 0 and c ≥ 1 are constants. Then there exists

an algorithm that, with probability at least 1− 1
n
, delivers all k messages within

⌈
3c
ε

⌉
rounds using 2k messages.

Proof. Each node v distributes messages it needs to send, uniformly at random among

all nodes, with the constraint that no node gets more than one message. Each

intermediate node then sends the received messages to the specified destinations.

If an intermediate node receives several messages intended for the same destination,

it sends these one-by-one in separate rounds. We show that w.h.p. no intermediate

node will receive more than
⌈

3c
ε

⌉
messages intended for the same destination and hence

every intermediate node can deliver all messages to destinations in
⌈

3c
ε

⌉
rounds.

Let Mw be the set of messages from all senders intended for w and let rw = |Mw| ≤

c · n1−ε be the total number of messages intended for w. Consider a node u. Let

Xw(u) be the random variable denoting the number of messages intended for w,

received by u in the first step. For m ∈ Mw, let Ym(u) ∈ {0, 1} indicate if m was

sent to u in the first step. Hence Xw(u) = ∑
m∈Mw

Ym(u). Since u was chosen

uniformly at random as the intermediate destination for messages intended to w, we

have E[Xw(u)] ≤ cn1−ε

n
= c · n−ε. Notice that if for any subset of messages in Mw if

the sources of these messages is different then the corresponding indicator variables

are independent. On the other hand if the source of these messages is the same
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then they are negatively correlated [14]. Therefore by Chernoff’s bound [14] we have,

Pr(Xw(u) > c′) ≤ n−2 where c′ ≤
⌈

3c
ε

⌉
. By the union bound, with probability at least

1− n−1, each intermediate node will receive at most
⌈

3c
ε

⌉
messages intended for each

node and hence can be delivered in less than d3c
ε
e rounds.

By using techniques from [6, 11], we obtain the following result for a particular case

of the routing problem.

Theorem 4.2 (Deterministic Scatter-Gather (DSG)). A subset of nodes hold a bulk

of messages intended to a node v∗ such that the total number of messages is k ≤ cn.

Then there exists a deterministic algorithm that delivers all k messages within 2
⌈
k
n

⌉
+2

rounds using 2k + 2 messages. Moreover, this can be extended to a scenario where

there is a set V ∗ ⊆ V of destinations and every message needs to be delivered to

every node in V ∗. In this case, the algorithm terminates in 2
⌈
k
n

⌉
+ 2 rounds using

(2k + 2)|V ∗| messages.

Proof. Let V ′ ⊆ V be the set of nodes who holds messages for v∗. Let ai be the

number of messages at node vi. We first order all messages in an arbitrary order as

follows. Each node vi orders its ai messages arbitrary mi1 , . . . ,miai
which induces

a global order, obtained by local node orders based on IDs. Nodes can learn the

global index of a message in 2 rounds of communication: node vi sends ai to v∗ and

then v∗ sends the starting index to vi. Each node sends the message with index j

to an intermediate destination node jmod n which takes at most
⌈
k
n

⌉
rounds. Hence

each intermediate node receives at most
⌈
k
n

⌉
messages which gets delivered to v∗ in
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additional d k
n
e rounds. To extend this to multiple v∗, the intermediate node sends

the copy of message to each such v∗ ∈ V ∗. Therefore the above algorithm delivers all

k messages as claimed.

Now consider the reverse scenario:

Theorem 4.3 (Deterministic Gather-Scatter). A node v∗ holds a bulk of messages

intended for a subset of nodes R ⊆ V such that the total number of messages is

k ≤ n and each message needs to delivered to all nodes in R. Then there exists a

deterministic algorithm that delivers all k messages within 2 rounds using k + k · |R|

messages.

Proof. Node v∗ sends each message mi to a supporter node si. Since k < n, an one-

to-one mapping of mi to si is possible and hence this can be done in a single round

and uses k messages. Each supporter node then broadcast the received message to

all nodes in R. This requires one round and k · |R| messages.

4.2.2 Sorting Subroutine

Consider the following problem: given k keys of size O(log n) each from a

totally ordered universe such that each node has up to n keys. The goal is to learn

the rank of each of these keys in a global ordered enumeration of all k keys. Patt-

Shamir and Teplitsky [49] designed a randomized algorithm that solved this problem

in O(log log n) rounds which was later improved to O(1) rounds by the deterministic

algorithm of Lenzen [37]. But, both the algorithms [49, 37] have Ω(n1.5) message

complexity regardless of the number of keys to sort. We provide a randomized
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algorithm which reduces the problem to the similar problem as above but on a smaller

clique. Our algorithm solves the problem for k = O(n2−ε), ε > 0 in O(1) rounds using

O(k) messages w.h.p.

The high level idea of our Algorithm DistributedSort is to redistribute k

keys to
⌊√
k
⌋
nodes and then sort them using Lenzen’s sorting algorithm [37] on the

clique induced by these b
√
kc nodes in O(1) rounds with O(k) messages. For the

redistribution, we rely on our low-message routing schemes (RSG and DSG). Let

kv be the number of keys v has. Each node v sends kv to node v∗. Notice that,

k = ∑
w∈V kw. Let idxw = ∑

u:ID(u)<ID(w) ku for all w ∈ V . For each w ∈ V , v∗ sends

idxw to w . Order keys present at each node v arbitrarily. Assign labels to keys

starting from idxv. Set destination of the key with label i to node (i mod
⌊√

k
⌋
). At

this point the input is divided among
⌊√

k
⌋
nodes, each holding up to

⌈√
k
⌉
keys. Let

Vµ denote the set of nodes with IDs in the range [0,
⌊√
k
⌋
− 1]. Nodes in Vµ executes

Lenzen’s sorting algorithm [37] and learn the global index of the keys in sorted order.

Each key with its rank in global sorted order is sent back to the original node (by

reversing the route applied earlier to this key).

Theorem 4.4 (Distributed Sorting). Given k = O(n2−ε) comparable keys of size

O(log n) each such that each node has up to n keys for some constant ε > 0. Then,

Algorithm DistributedSort requires O
(

1
ε

)
rounds and O(k) messages w.h.p., such

that at the end of the execution each node knows the rank of each key it has.

Proof. We first show that the redistribution of keys among
⌊√
k
⌋

nodes takes

O(1) rounds and O(k) messages. Since each of the
⌊√
k
⌋
nodes need to receive
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⌈√
k
⌉

= O(n1−ε) keys, the keys can be routed using RSG scheme (Theorem 4.1)

in O(1) rounds and O(k) messages. Nodes in Vµ can now execute Lenzen’s sorting

algorithm [37] which takes O(1) rounds and O(k) messages. The reverse routing

of these keys takes another O(1) rounds and O(k) messages. Therefore, in total

Algorithm DistributedSort required O(1) rounds and O(k) messages.

4.3 Graph Connectivity

In this section, we present a randomized (Monte Carlo) algorithm for GC prob-

lem on a Congested Clique, running in O(log log log n) rounds using O(n poly log n)

messages, w.h.p. Our GC algorithm constructs a maximal spanning forest of the

input graph (i.e., a spanning forest with as many trees as the number of components

in the input graph) and at the end of the algorithm every node knows which of its

incident edges are part of the forest and knows whether the graph is connected or

not. We make use of linear sketches [1, 2, 42] and a modified version of Lotker et

al. [39] MST algorithm.

4.3.1 Graph Sketches

A key tool used by our algorithm is linear sketches [1, 2, 42]. We described

this concept in-depth in Chapter 3 (see Section 3.2.1 therein). Since it is a key tool

we summarize it below for convenience.

Let av denote a vector whose non-zero entries represent edges incident on

v. A linear sketch of av is a low-dimensional random vector sv, typically of size

O(poly(log n)), with two properties: (i) sampling from the sketch sv returns a non-
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zero entry of av with uniform probability (over all non-zero entries in av) and (ii) when

nodes in a connected component are merged, the sketch of the new “super node” is

obtained by coordination-wise addition of the sketches of the nodes in the component.

The first property is referred to as `0-sampling in the streaming literature [9, 42, 26]

and the second property is linearity. The graph sketches used in [1, 2, 42] rely on the

`0-sampling algorithm by Jowhari et al. [26]. Sketches constructed using the Jowhari

et al. [26] approach use Θ(log2 n) bits per sketch, but require polynomially many

mutually independent random bits to be shared among all nodes in the network.

Sharing this volume of information is not feasible; it takes too many rounds and too

many messages. So instead, we appeal to the `0-sampling algorithm of Cormode and

Firmani [9] which requires a family of Θ(log n)-wise independent hash functions, as

opposed to hash functions with full-independence. In the earlier chapter (Chapter 3)

we provided details of how the Cormode-Firmani approach can be used in the

Congested Clique model to construct graph sketches. We summarize the result in

the following theorem.

Theorem 4.5. Given a graph G = (V,E), n = |V |, there is a Congested Clique

algorithm running in O(1) round, using O(n poly log n) messages, at the end of which

every node v ∈ V has computed a sketch of av. The size of the computed sketch

of a node is O(log4 n) bits. The `0-sampling algorithm on this sketch returns an

edge in av with probability 1/(number of non-zero entries in av)± n−c. Moreover, if

s = O(poly log n) sketches per node need to be constructed in parallel then it requires

O(1) rounds and O(s · n poly log n) messages.
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4.3.2 Overview of The Graph Connectivity Algorithm

Similar to GC algorithm in [21], our GC algorithm runs in two stages. Initially,

the input graph can be viewed as having n components — one for each vertex. In the

first stage, we reduce the number of components to O
(

n
log4 n

)
by running the modified

version of Lotker et al. algorithm for O(log log log n) phases (subsection 4.3.3. Stage 2

operates on the resulting component graph. This is the graph whose vertices are the

components computed in Stage 1 and whose edges represent adjacencies between

components. We show that the reduction in the number of components due to

Stage 1 helps to finish Stage 2 in another O(1) rounds using only O(n) messages

(subsection 4.3.4). Both Stage 1 and Stage 2 requires communication of at most

O(n poly log n) messages overall.

First we describe the Lotker et al. [39] MST algorithm for an edge-weighted

clique graph. The Lotker et al. algorithm runs in phases, taking constant number

of communication rounds per phase. At the start of phase k, each component is

of size at least µ = 22k−2 and we have MST of each component. At the end of

phase k ≥ 0, the algorithm has computed a partition Fk of the nodes of G into

components such that for each F ∈ Fk, |F | ≥ µ2. Furthermore, for each component

F ∈ Fk, the algorithm has computed a minimum spanning tree T (F ). The sets Fk

and T k(= {T (F ) : F ∈ Fk}) are known to every node at the end of the phase k. The

goal of each component leader in phase k is to select edges so that at least µ outgoing

edges are picked that are connecting to µ distinct components. These edges are sent

to v∗ (the node with minimal ID) and v∗ locally inspects these edges and decides
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which of these edges are added to T k and updates Fk accordingly (merge procedure).

v∗ then distributes Fk and T k to all nodes. It is shown that at the end of phase

k the size of the smallest cluster is at least µ2 = 22k−1 and hence |Fk| ≤ n/22k−1 .

Hence after log log n such phases, the algorithm terminates. On the other hand,

communicating entire T k to all nodes takes Θ(n2) messages in each phase. This

algorithm can be adopted to an m-edge graph and the message complexity can be

reduced to Θ(m) per phase by communicating only the component labels to neighbors

in each phase instead of communicating the entire T k. Hence, one can modify Lotker

et al. algorithm to run in O(log log n) rounds using O(m log log n) messages. But

in case of Graph Connectivity we want to reduce the message complexity further

to O(n poly log n). In the following subsection we show how to felicitate the merge

procedure for the first O(log log log n) phases.

4.3.3 Stage 1: Fast Parallel Merge via Sketches

The goal of Stage 1 is to reduce the number of components to at most

O
(

n
log4 n

)
in O(log log log n) rounds using only O(n poly log n) messages. As described

above, if we run Lotker et al. algorithm for O(log log log n) phases then the number

of components are reduced as needed but it requires Θ(m log log log n) messages.

To get around this critical issue we propose the following algorithm using linear

sketches. Consider a phase k ≤ dlog log log ne + 3. As said earlier, in a phase k

each component needs to pick µ edges connecting to µ components in O(1) rounds.

If a component leader has sketches of all nodes in its component then using these
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sketches it can sample one edge incident on its component. The challenges are: (i)

there is no restriction on the size of a component, for example, if a component is

of size ω(n/ log4 n) then communicating sketches of nodes in it to the leader require

more than constant rounds of communication. (ii) how many sketches are required

to pick at least µ edges to µ distinct components? To tackle challenge (i), we show

that we can restrict the growth of components to O(poly log n) without affecting the

progress of the algorithm up to O(log log log n) phases. If the size of any component

is restricted to O(poly log n) then each node in the component can communicate

its sketch to the component leader in O(1) rounds using O(n poly log n) messages

by executing RSG scheme (Theorem 4.1). To address challenge (ii), we analyze the

number of edges need to be sampled to make progress (in terms of size of components)

and given the size restriction in (i) we argue that O(poly log n) sketches are sufficient.

Let v∗ be the node in the graph with minimum ID. At the start of the phase

k, v∗ knows the set of edges T k−1 (T 0 = ∅) which induces the set of components

Fk−1 (for each Fi ∈ F0, Fi = {vi}). For each F ∈ Fk−1, if |F | ≥
⌊
log4 n

⌋
then

the status of component F and all the nodes in F is inactive, otherwise the status

is active. Moreover, each node in component F ∈ Fk−1 knows its component label

`(F ), which is the node with the minimum ID in F , and knows its status. `(F ) acts

as the component leader of F . At the end of the phase, a set of edges T k is known

to v∗ such that the size of any component induced by T k is at least 22k−1 .

Algorithm 4.1 describes phase k < dlog log log ne + 3 of Stage 1. Let µ

be the size of the smallest component (known to every component leader at the
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beginning of the phase). The goal is to provide enough information to each component

leader so that the component leader can sample µ edges connecting to µ distinct

components. This is achieved in Steps 1-2. Specifically, in Step 1 each active node

computes t = Θ(log13 n) sketches (Theorem 4.5). These sketches are gathered at

respective component leaders by RSG scheme (Theorem 4.1) in O(1) rounds using

only O(n poly log n) messages. In Step 2, each active component leader samples t

edges, one from each sketch. We show that from these t edges, a leader of an active

component F can pick µ edges connecting to µ distinct components or an inactive

component (Lemma 4.8). These µ edges get delivered to v∗ in Step 2(b) and 3. In

Step 4, v∗ locally executes the merge procedure (Lotker et al. [39]) on the edges

received from Step 3 and the set T k−1. The merge procedure takes received edges

and T k−1 and computes a spanning forest T k. v∗ then sends a message to each

node notifying it of its (possibly) new component label with respect to the set of

components F k induced by edges in T k. If the size of the component F is more than⌊
log4 n

⌋
then v∗ also notifies `(F ) to become inactive in subsequent phases.

Lemma 4.6. Step 1 of Algorithm 4.1 can be implemented in O(1) rounds and using

O(n log16 n) messages w.h.p.

Proof. A node needs to send O(log13 n) sketches. Each sketch is of size O(log4 n) bits

(Theorem 4.5). Hence a node needs to send O(log17 n) bits in total. On the other

hand, the leader of the active component F is a receiver of at most O(|F | · log17 n)

bits. F is active only if |F | < log4 n. Therefore, in any phase k ≤ dlog log log ne+3, a

leader of active component needs to receive at most O(log21 n) bits. These messages
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can be routed using RSG scheme (Theorem 4.1) which requires O(1) rounds and

O(n log16 n) messages w.h.p.

Lemma 4.7. Let S be a subset of edges incident on an active component F ∈ Fk−1

such that |S| ≥ log12 n. Let µ = min{|F ′| : F ′ ∈ Fk−1}. Then S contains either an

edge connecting F to an inactive component or µ edges connecting F to µ different

active components in Fk−1.

Proof. Let f be the size of the largest active component in Fk−1 at the beginning

of phase k. Consider an active component F . If S has an edge which connects F

to an inactive component then we are done. Therefore, consider the case where S

doesn’t contain an edge which connects F to an inactive component. The number

of edges having exactly one end point in F and the other in F ′ is at most f 2 for

all active neighbors F ′ of F . Therefore, if we have f 3 distinct edges incident on

F , then by pigeonhole principle, at least f of these edges connect F to f distinct

active components. By the definition of active components, we have f <
⌊
log4 n

⌋
.

Therefore, any subset of incident edges on F of size at least f 3 <
⌈
log12 n

⌉
has the

claimed property.

Lemma 4.8. In Step 2, w.h.p., a leader node of an active component F ∈ Fk−1

possesses sufficient information to sample µ outgoing edges such that these sampled

edges connect to µ different components or contain an edge connecting to an inactive

component where µ = min{|F ′| : F ′ ∈ Fk−1}.

Proof. Since µ ≤ |F |, by Lemma 4.7,
⌈
log12 n

⌉
distinct incident edges on F are
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sufficient to obtain µ sampled edges satisfying the above claimed property. We show

that the leader of F possesses sufficient information to compute a set of incident edges

on F with size at least s =
⌈
log12 n

⌉
.

If we sample O(s log s) edges incident on F uniformly and independently at random,

then the sample set has s distinct samples w.h.p. by coupon collector argument as

follows: Let T denote the number of sampling steps required to obtain s distinct edges.

Let ti (1 ≤ i ≤ s) denote the number of sampling steps to collect the ith distinct edge

after i − 1 distinct edges have been obtained. T = ∑s
i=1 ti. The probability of

sampling a new edge given iâĹŠ1 edges is pi = (s − (i − 1))/s. Therefore, ti has

geometric distribution with expectation 1/pi. By the linearity of expectations we

have, E[T ] = ∑s
i=1

1
pi

= s · Hs (where Hs is the sth harmonic number. It is easy to

show that Pr(T > 3 log s) < n−2. Therefore, Θ(s log s) samples suffices to obtain a

set of size s w.h.p.

Now, to execute a jth, j ∈ [1,Θ(s log s)] sampling step, we sample an edge from

jth sketch which returns an incident edge on F with near-uniform probability. That

is, we get an incident edge with probability 1
s
± n−2 (Theorem 4.5) instead of 1

s
.

Notice that, if we replace the uniform probability with the above probability in the

earlier analysis then the number of samples required is Θ(s log s) + O(n−2). Hence

O(s log s) + o(1) = O(log13 n) sketches are sufficient.

To aid the analysis of Algorithm 4.1 we define the following terms.

Definition. Fake and real edges All the edges in the component graph have weight

1 and they are called real edges. For an active component F ∈ Fk−1 if degree of F
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in the component graph is less than µ then then the algorithm considers fake edges

connecting F to distinct components with weight ∞.

Theorem 4.9. At the end of phase k ≤ dlog log log ne+ 3 in Algorithm 4.1, the size

of the smallest component in Fk is at least 22k−1 w.h.p.

Proof. If F ∈ Fk−1 is inactive then |F | ≥ log4 n ≥ 22k−1 for any k ≤ dlog log log ne+3.

Lotker et al. show that if for each component F ∈ Fk−1, δ(= size of the smallest

component in Fk−1) edges connecting F to δ distinct components are received from

each component then the size of the smallest component induced by selected edges

and T k−1 is at least δ2. Therefore, in our case, if v∗ receives µ edges connecting F

to µ distinct components for every active component F ∈ Fk−1 then we are done. So

consider the following cases.

If degree of F in the component graph is less than µ then v∗ assumes that the

remaining edges are fake edges. v∗ constructs a minimum spanning forest T k of the

edges in T k−1, edges received, and the fake edges. The claim still holds by applying

the similar arguments as in Lotker et al. [39]. Because of the fake edges some of the

components may not represent the connected components of the input graph, we deal

with them separately in Stage 2.

On the other hand, if v∗ received µ edges from an active component F but

these do not connect F to distinct components. Then, by Lemmas 4.7 and 4.8, it must

be the case that at least one of µ edges connect F to an inactive component w.h.p.

In this case, the size of this newly formed component is at least log4 n ≥ 22k−1 .



103

4.3.4 Stage 2: Finishing Up the Connected Component Construction

We execute Algorithm 4.1 for dlog log log ne + 3 phases. Let T∞ denote the

forest returned by the last phase. Recall that T∞ might have fake edges and hence

the components induced by T∞ may not be connected components. Let T1 = T∞ \

{{u, v} ∈ T∞ | wt(u, v) =∞} denote the forest with only real edges. A tree T in forest

T1 is called finished if it is a spanning tree of a connected component of G; otherwise

we call T unfinished. We ignore all finished trees in the rest of our algorithm.

Lemma 4.10. After executing dlog log log ne+ 3 phases of Algorithm 4.1 the number

of unfinished trees is at most O
(

n
log4 n

)
. Moreover, executing these many phases

require O(log log log n) rounds and O(n log16 n log log log n) messages w.h.p.

Proof. By Theorem 4.9, after dlog log log ne + 3 phases the size of the smallest

component is at least log4 n w.h.p. Observe that if trees T1, T2 ∈ T1 are connected by

a fake edge in T∞ then both T1 and T2 are finished trees: a fake edge {u, v} is added

to T∞ by v∗ if there are no real edges in G which crosses the cut induced by deleting

the edge {u, v} from T∞. Unfinished trees don’t contain any fake edges and hence the

size of unfinished trees remain the same. Therefore, by Theorem 4.9 there can be at

most O
(

n
log4 n

)
unfinished trees w.h.p.

By Lemma 4.6, Step 1 of a single phase requires O(1) rounds and O(n log16 n)

messages. The rest of steps of a phase finishes in O(1) rounds using O(n) messages.

Therefore, to execute dlog log log ne + 3 phases, we need O(log log log n) rounds and

O(n log16 n log log log n) messages.
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These unfinished trees will be viewed as vertices of the graph that will be

processed in Stage 2. At the end of this algorithm it is guaranteed that every node

knows the ID of the leader of the component it belongs to.

Stage 2 runs on the component graph G1 induced by unfinished trees in T1. At

a high level, each node in G1 computes O(log n) sketches of its neighborhood in G1

and all the sketches are gathered at a single node v∗ so that v∗ can locally compute

a spanning forest using the received sketches. The challenge is to compute these

sketches with respect to G1. Note that, if each component leader knows the incident

inter-component edges (i.e., edges in G1) then it is trivial to compute sketches with

respect to G1 locally. Also, since G1 has O
(

n
log4 n

)
non-isolated nodes (each non-

isolated node corresponds to an unfinished tree) and O(log n) sketches each of size

O(log4 n) bits computed for each non-isolated node would result in a total volume of

O(n log n) information to be sent to v∗. Thus all sketches can be sent to v∗ in O(1)

rounds and O(n) messages using the DSG routing scheme (Theorem 4.2). Therefore,

it remains to show that how to compute sketches with respect to G1 without initially

having knowledge of the incident edges of G1.

Consider the components induced by unfinished trees in T1. Call a component

small if the number of nodes in the component is at most b
√
nc, otherwise call it large.

Nodes in all small components compute O(log n) sketches with respect to G and these

need to be shipped to the respective component leaders. Since these components are

small, the respective component leader has to receive at most O(
√
n · log4 n · log n) =

O(
√
n log5 n) bits and hence can be delivered using the RSG routing scheme in O(1)
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rounds using O(n log4 n) messages. Component leader then merge these sketches to

obtain O(log n) sketches of the component by the linearity property. Now we consider

the case of large components. For a large component of size t, we divide the large

component into s =
⌈
t√
n

⌉
blocks. Each block does the similar things as did by a

small component. The sketches of s = O(
√
n) are gathered at the component leader

similarly.

Each component leader now has sketches of its neighborhood in G1. As

described earlier, each component leader send these sketches to v∗. The rest of the

algorithm is simply local computation by v∗ followed by v∗ communicating the output,

which is of size O(n) in an additional O(1) rounds. The following lemma is easy to

prove.

Lemma 4.11. Stage 2 of GC algorithm requires O(1) rounds of communication and

O(n log4 n) messages.

Theorem 4.12 (GC Algorithm). The GC problem can be solved in O(log log log n)

rounds using O(n log16 n log log log n) messages in the Congested Clique model w.h.p.

4.4 Exact MST Algorithm in O(log log log n) Rounds using O(m poly log n)

Messages

In this section we present Algorithm Exact-MST which computes an exact

MST of a m-edge graph in O(log log log n) rounds using O(m poly log n) messages. In

the next section we show how to utilize this algorithm along with the GC algorithm

to obtain a (1 + ε)-approximation to MST in O(log log log n) rounds using only



106

O(n poly log n) messages.

Similar to the algorithm in [21], Algorithm Exact-MST starts with reducing

the number of components and number of edges. First, it reduces the number of

component from n to O
(

n
log4 n

)
using a variant of the MST algorithm of Lotker et

al. in O(log log log n) rounds using O(m log log log n) messages. Then, the number of

edges is reduced fromm toO(
√
mn) by using the sampling result of Karger, Klein, and

Tarjan (KKT sampling) [28] in another O(1) rounds using O(m) messages. The KKT

sampling yields two MST subproblems, each with O(
√
mn) edges (and O(n/ log4 n)

vertices). We solve these subproblems in O(1) rounds using O(m) messages each

using the distributed sorting and GC algorithm discussed earlier in the chapter.

Karger, Klein, and Tarjan [28] present a randomized linear-time algorithm to

find an MST in a edge-weighted graph in a sequential setting (RAM model). They

achieved this result via a random edge sampling step to discard edges that cannot

be in the MST. For completeness we state their sampling result and the necessary

terminology.

Definition (F -light edge [28]). Let F be a forest in a graph G and let F (u, v) denote

the path (if any) connecting u and v in F . Let wtF (u, v) denote the maximum weight

of an edge on F (u, v) (if there is no path then wtF (u, v) =∞). We call an edge {u, v}

is F -heavy if wt(u, v) > wtF (u, v), and F -light otherwise.

Lemma 4.13 (KKT Sampling Lemma [28]). Let H be a subgraph obtained from G

by including each edge independently with probability p, and let F be the minimum

spanning forest of H. The number of F -light edges in G is at most n/p w.h.p.
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Observe that if we sample edges with p =
√
n/m then the number of sampled edges

in H and the number of F -light edges in G both are O(
√
mn) w.h.p. Also, none of

the F -heavy edges can be in an MST of G. Therefore if we compute a minimum

spanning forest F of H, then we can discard all F -heavy edges and it is sufficient

to compute a minimum spanning forest of the graph induced by the remaining F -

light edges in G. Thus, we have reduced the problem into these subproblems: (i)

compute a minimum spanning forest F of H, (ii) compute F -light edges in G, and

(iii) compute a minimum spanning forest of the graph induced by these F -light edges.

Notice that input to problem (i) and problem (iii) has the same size (O(
√
mn) edges

and O(n/ log4 n) vertices). Though the problems (i) and (iii) are identical we cannot

solve them in parallel since input to problem (iii) depends on the output of problem

(i). We show that (i) and (iii) can be solved in O(1) rounds and O(m) messages.

Identifying F -light edges (problem (ii)) is easy if after problem (i) has been solved

every node knows F and can therefore determine which incident edges are F -light.

But that will incur message complexity of O(n2). We develop a simple algorithm that

computes F -light edges in O(1) rounds and O(m) messages using DSG scheme (see

Lemma 4.16).

The pseudocode of our exact MST computation is outlined in Algorithm 4.2.

In the beginning of Exact-MST every node knows weights of incident edges and

at the end of the execution every node knows which of its incident edges are part

of the MST. Algorithm SQ-MST computes a minimum spanning forest of a graph

with O(n/ log4 n) vertices and O(
√
mn) edges and at the end of the execution of this
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algorithm, all nodes know which of its incident edges are in the computed forest. In

the next subsection we describe this algorithm and show that it runs in O(1) rounds

using O(m) messages w.h.p. The following lemma follows directly from the discussion

on Lotker et al. MST algorithm presented in Subsection 4.3.2.

Lemma 4.14. Step 1 of Algorithm Exact-MST can be implemented in

O(log log log n) rounds using O(m log log log n) messages.

Lemma 4.15. BuildComponentGraph routine (Step 2 of Algorithm Exact-

MST) can be implemented using O(m) messages and O(1) rounds.

Proof. At the end of Step 1, each node knows its component label with respect to T1.

Each node communicates its label with its neighbors. For each incident edge {u, v},

node v sends a message to `(u) if `(u) 6= `(v) notifying the existence of an inter-

component edge between `(u) and `(v) to the respective component leaders. Hence

in two rounds, each component leader knows the incident inter-component edges.

Lemma 4.16 (F -light Edge Identification). Computing F -light edges (Step 5) can

be done in O(1) rounds using O(m) messages.

Proof. Input to the F -light edge identification algorithm is a spanning forest, i.e., each

node knows which of its incident edges are part of F . At the end of the algorithm

each node knows which of its incident edges are F -light. Let v∗ be the node with ID

0. Let S ⊆ V be the set of nodes with IDs in the range [0,
⌈
m
n

⌉
]. We call nodes in

S as supporters. All the edges in F are gathered at these supporters in O(1) rounds

and O(|S| · |F |) = O(m) messages using DSG scheme (Theorem 4.2). At this point,
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all nodes in S have entire F stored locally. Now we can query about m edges by

asking any of these supporter nodes. That is, m edges needs to be partitioned into⌈
m
n

⌉
partitions each having at most n edges and each partition is sent to a supporter.

Supporter then locally decides which of the edges are F -light and sends the answer

back. Above two routing steps can be implemented using DSG scheme in O(1) rounds

using O(m) messages.

4.4.1 MST Algorithm for Sub-problems

In this section, we describe how to compute a minimum spanning forest of

a graph with O(n/ log4 n) nodes and O(
√
mn) edges in O(1) rounds using O(m)

messages. The algorithm is similar to the algorithm in [21]. The SQ-MST algorithm

in [21] runs in O(1) rounds using O(n2) messages. Here we improve the algorithm

(when m = o(n2)) and reduce the message complexity to O(m).

Lemma 4.17. Step 3 of Algorithm SQ-MST can be executed using O(
√
mn)

messages in O(1) rounds w.h.p.

Proof. Each node needs to send its incident edges to the respective guardians based

on the edge-ranks. Each guardian needs to receive n edges (one guardian may have

to receive less than n edges). Note that, because of this RSG scheme cannot be used

to deliver these messages. Therefore we design the following algorithm.

Initially all the O(
√
mn) edges are distributed evenly among the n machines

based on ranks, that is, an edge with rank r(e) needs to be delivered to machine with

ID r(e) mod n. This way, each machine has to receive at most O(
√

m
n

) = O(
√
n)
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edges and hence can be delivered using RSG scheme in O(1) rounds and O(
√
mn)

messages w.h.p. Then, observe that each machine now has edges which need to be

delivered to distinct guardians and hence can be sent directly in one round. The total

messages used is twice the number of edges that need to be delivered.

Lemma 4.18. Step 6 of Algorithm SQ-MST can be executed using O(n) messages

in O(1) rounds.

Proof. Let p =
⌈√

m
n

⌉
be the number of guardians (refer Step 2 and 3). For each

i ∈ [p], each node needs to send sketches with respect to Gi to g(i). For each i ∈ [p],

each g(i) needs to receive at most O(n) messages (O(log4 n) messages from each of

O
(

n
log4 n

)
nodes). Note that, because of this RSG routing scheme cannot be used to

deliver these messages. Therefore we design the following algorithm which is similar

to Lemma 4.17.

Partition n machines into
⌈
log4 n

⌉
-size partitions. Let P (i) be the ith partition

which has machines with IDs in the range [i · dlog4 ne, (i + 1) · dlog4 ne), for i =

0, 1, . . . , O(n/ log4 n). Arrange machines in each partition based on their IDs. Arrange

guardians and senders in ascending order based on their IDs. Each sender arranges its

messages based on this order as well, that is, the first dlog4 ne messages are intended

for the first guardian and so on. The ith sender send its jth message intended for

kth guardian to jth machine in P ((k + i − 1) mod p). Note that every sender has to

send at most O(1) messages to the same machine and hence this can be done in O(1)

rounds. Also observe that, every machine gets at most O(1) messages intended for

the same guardian and hence delivered in another O(1) rounds. Hence all messages
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can be delivered in O(1) rounds using O(n) messages.

Theorem 4.19 (SQ-MST). Algorithm SQ-MST computes a minimum spanning

forest of a graph G′ = (V ′, E ′, wt) with |V ′| = O
(

n
log4 n

)
vertices and |E ′| = O(

√
mn)

edges in O(1) rounds and O(
√
mn) messages w.h.p.

Proof. Step 1 can be implemented in O(1) rounds and O(
√
mn) messages using

Theorem 4.4. From Lemma 4.17 and Lemma 4.18, Step 3 and Step 6 can be executed

using O(
√
mn) messages and O(1) rounds. The rest is local computation followed by

communicating output which is of size O(n).

Theorem 4.20 (Exact MST). Algorithm Exact-MST computes an MST of a m-

edge input graph in O(log log log n) rounds using O(m log log log n) messages w.h.p.

4.5 (1 + ε)-Approximate MST in O(log log log n) Rounds using

O(n poly log n) Messages

In this section we show how to compute a (1 + ε)-approximation to MST in

O(log log log n) rounds using only O(n poly log n) messages. We develop this low-

message complexity algorithm using the algorithms developed earlier in this chapter.

Specifically, we use GC algorithm and exact MST algorithm as subroutines.

Let W be the max edge weight. Consider the geometric series W,W/(1 +

ε),W/(1 + ε)2, . . . and round down each edge weight to the nearest element in this

sequence. Weights that are less than W/n2 can be rounded to 0. Thus we get

O(log n) distinct edge weights. We separately consider edges of each weight and

run GC algorithm on this subset of edges. We run O(log n) instances of the GC
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algorithm in parallel to compute a maximal forest for each edge-subset (induced by

a weight). All of this takes O(log log log n) rounds and uses O(n poly log n) messages

w.h.p. Now the union of the maximal forests yields a set of O(n log n) edges. We

execute Exact-MST (Algorithm 4.2) on this O(n log n)-edge graph which takes

another O(log log log n) rounds and O(n poly log n) messages w.h.p. Approx-MST

(Algorithm 4.4) presents pseudocode for computing a (1 + ε)-approximate MST on

graph G.

Lemma 4.21. O
(

logn
log(1+ε)

)
instances of GC Algorithm (Theorem 4.12) can be executed

in parallel on the Congested Clique. The parallel execution requires O(log log log n)

rounds and O(n poly log n/ log(1 + ε)) messages in total.

Proof. We execute GC algorithm for each instance as it is described in Section 4.3

except that instead of having a single node v∗ for all instances, we designate Θ(log n)

distinct nodes, one for each instance to avoid the congestion. It is easy to see that

the rest of the steps can be executed in parallel either as it is or using the routing

schemes (Theorem 4.1 and 4.2) as needed.

Lemma 4.22. Let M be a minimum spanning tree of G. Then, the tree T returned

by Approx-MST has the property:

∑
e∈M

wt(e) ≤
∑
e∈T

wt(e) ≤ (1 + ε)
∑
e∈M

wt(e).

Theorem 4.23 (Approximate MST). Algorithm Approx-MST computes a (1 + ε)-

approximate MST of G in O(log log log n) rounds using O (n poly log n/ log(1 + ε))

messages for any constant ε > 0 w.h.p.
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4.6 Recent Update

Recently Ghaffari and Parter [20] designed anO(log∗ n)-round algorithm, using

the techniques presented in Chapter 3 but supplemented with the use of sparsity-

sensitive sketching, which is useful for sparse graphs and random edge sampling,

which is useful for dense graphs. Similar to the algorithm in Chapter 3 this algorithm

has Θ(n2) message complexity. Both the MST algorithms (the algorithm presented

in Chapter 3 and Gaffari-Parter [20]) have similar communication patterns. Hence

the techniques developed in this chapter to reduce the message complexity of our

algorithm (Chapter 3) can also be applied to Ghaffari-Parter [20] algorithm to obtain

a O(log∗ n)-round algorithm using O(m poly log n) messages. We call this modified

Ghaffari-Parter algorithm as LinearMessages-MST. Below we summarize this

result

Theorem 4.24 (LinearMessages-MST). There exist a MST algorithm that

computes a minimum spanning tree of an n-node m-edge input graph in O(log∗ n)

rounds using O(m poly log n) messages w.h.p. in the Congested Clique.

4.7 Conclusion

In this chapter, we presented O(log log log n)-rounds algorithm for GC and

MST that use O(n poly log n) and O(m poly log n) messages respectively on anm-edge

n-node graph. We showed that if constant-factor approximation solution to MST is

acceptable then we can solve this problem using only O(n poly log n) messages in

O(log log log n) rounds. Our results make crucial use of the low-message complexity
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routing and sorting algorithm developed in this chapter which we believe will be

of independent interest in developing low-message complexity fast algorithms on

Congested Clique for variety of problems. We also showed that the recent O(log∗ n)-

round algorithm [20] can be modified in similar way to reduce the message complexity

to O(m poly log n) from Θ(n2).

We conclude this chapter with the following problem: Can we solve exact

MST in sub-logarithmic rounds (ideally in O(log∗ n) rounds) using o(m) (ideally only

O(n poly log n)) messages?
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Algorithm 4.1 Phase k of Stage 1 of GC Algorithm executed by a node v which is
in component F
Input: A set of edges T k−1 known to v∗ (T 0 = ∅). The set of connected components

induced by T k−1 is Fk−1 and for each F ∈ Fk−1, |F | ≥ 22k−2 . For each F ∈ Fk−1,
if |F | ≥

⌊
log4 n

⌋
then F is inactive and all nodes in F are inactive, otherwise it is

active (for k = 0, all nodes are active). At the start of phase k ≤ dlog log log ne+3
each node in a component F ∈ Fk−1 knows its component label `(F ), which is
the node with the minimum ID in F and knows whether it is active or inactive.
`(F ) acts as the component leader of F . Every component leader also knows µ -
the size of the smallest component.

Output: A set of edges T k is known to v∗ such that the size of any connected
component induced by T k is at least 22k−1 . Each node knows the component label
of its component induced by T k and its status (active/inactive). Each component
leader knows the size of the smallest component induced by T k denoted by µ.
. v∗ is the node in the graph with minimum ID.

1. if v is active then
2. Compute t = O(log13 n) sketches s1

v, s2
v, . . . , stv with respect to G. Send these

sketches to `(F ) using RSG routing scheme (Theorem 4.1).
3. end if
4. if v = `(F ) then
5. (a) Using sketches received in Step 1, locally sample either µ edges connecting

to µ different active components or an edge to an inactive component
(Lemma 4.7 and Lemma 4.8).
(b) Appoint for each sampled edge e, a guardian node g(e) in F , such that
each node in F is assigned as guardian to at most one edge and send e to
g(e)

6. end if
7. if v = g(e) then send e to v∗.
8. if v = v∗ then
9. (i) Locally inspects set of received edges and T k−1 to construct a spanning

forest T k.
(ii) Send message to each node notifying it of its (possibly) new component
label. If the size of a component F is |F | >

⌊
log4 n

⌋
then notify `(F ) to

change its status to inactive.
10. end if
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Algorithm 4.2 Exact-MST Algorithm
Input: An edge-weighted n-node, m-edge graph G = (V,E,w). Each node knows

weights and end-points of incident edges. Every weight can be represented using

O(log n) bits.

Output: An MST T of G. Each node in V knows which of its incident edges are

part of T .

1. (F , T1)← CC-MST(G, log log log n+ 3)

2. G1 ← BuildComponentGraph(G, T1)

3. H ← a subgraph of G1 obtained by sampling each edge independently with

probability
√

n
m

4. F ← SQ-MST(H)

5. Compute F -light edges

6. E` ← {{u, v} ∈ E(G1) | {u, v} is F -light}

7. T2 ← SQ-MST(E`)

8. return T1 ∪ T2
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Algorithm 4.3 SQ-MST

Input: a weighted subgraph G′(V ′, E ′, wt) with O
(

n
log4 n

)
vertices and O(

√
mn)

edges

Output: an MST of G′

1. r(E ′)← DistributedSort(E ′) in non-decreasing order of edge-weights

(Theorem 4.4).

2. Partition edges in E ′ based on their ranks r(e) into p partitions E1, E2, . . . Ep

(p =
⌈√

m
n

⌉
), each partition having n edges (Ep might have less than n edges)

such that E1 contains edges with ranks 1, 2, . . . , n; E2 contains edges with ranks

n+ 1, n+ 2, . . . ,.

3. Let g(i) be the node in G with ID i and assign g(i) as the guardian of partition

i. Gather partition Ei at g(i) (Lemma 4.17).

4. for i = 1 to i = p in parallel do

5. Let Gi = (V ′,∪i−1
j=1Ej). Each vertex v in V ′ constructs sketches siv of its

neighborhood with respect to Gi.

6. Each node v ∈ V ′ delivers siv to g(i) (Lemma 4.18).

7. g(i) executes locally:

(a). Ti ← SpanningForest(Gi) (based on sketches received)

(b). g(i) processes edges in Ei in rank-based order.

For each edge ej = {u, v} in e1, e2, . . . :

if there is a path between u and v in Ti ∪ {e` | ` < j}

discard ej
else add ej toMi.

8. end for

9. return ∪pi=1Mi
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Algorithm 4.4 Approx-MST: execution at a node v
Input: A weighted graph G(V,E,wt). Each node only knows weights of incident

edges and IDs of neighbors. All nodes know ε (the approximation factor).

Output: A spanning tree T such that wt(T ) = (1 + ε)wt(MST (G)) for a given

ε > 0. Each node knows which of the incident edges are part of T .

1. Let Ev be the set of edges incident on v. Send max(wt(e) : e ∈ Ev) to v∗.

2. if v = v∗ then

3. Let W be the maximum of edge weight received in earlier step. Send W to

all nodes.

4. end if

5. Let r0 = 0 and r1 = W
n2 . Define ri = (1 + ε) · ri−1 for i = 2, . . . ,

⌈
2 logn

log(1+ε)

⌉
. Let

Ev
i = {e | e ∈ Ev and wt(e) ∈ [ri, ri+1)}.

. The edge sets Ev
i for all v define Θ(log n) different graphs Gi = (V,Ei).

6. for i = 0 to i =
⌈
2 logn

log(1+ε)

⌉
in parallel do

7. Fi ← GCForest(Gi) (Theorem 4.12).

8. end for. The union of Fi induces the graph G′ = (V, F ), F = ∪iFi,

|F | = O(n log n).

9. T ← Exact-MST(G′) (Execute Algorithm 4.2).
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CHAPTER 5
SUPER-FAST MINIMUM SPANNING TREE ALGORITHMS USING

O(M) MESSAGES

5.1 Introduction

In Chapter 3 we presented a MST algorithm that runs in O(log log log n)

rounds but uses Θ(n2) messages. Then, in Chapter 4 we showed how to reduce

this complexity to O(m poly log n) messages without affecting the running time. We

concluded the earlier chapter by asking can MST be solved in sub-logarithmic rounds

using only o(m) messages. This chapter positively answers this question and presents

the first “super-fast” MST algorithm with o(m) message complexity for input graphs

with m edges. Specifically, we present an algorithm running in O(log∗ n) rounds, with

message complexity Õ(
√
m · n) and then build on this algorithm to derive a family

of algorithms, containing for any ε, 0 < ε ≤ 1, an algorithm running in O(log∗ n/ε)

rounds, using O(n1+ε/ε) messages. Setting ε = log log n/ log n leads to the first sub-

logarithmic round Congested Clique MST algorithm that uses only Õ(n) messages.

Our primary tools in achieving these results are (i) a component-wise bound

on the number of candidates for MST edges, extending the sampling lemma of Karger,

Klein, and Tarjan [28] and (ii) Θ(log n)-wise-independent linear graph sketches [9] for

generating MST candidate edges.
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5.1.1 Related Work

The earliest non-trivial example of a Congested Clique algorithm is the

deterministic MST algorithm that runs in O(log log n) rounds due to Lotker et al. [39].

Using linear sketching [1, 2, 26, 42, 9] and the sampling technique due to Karger,

Klein, and Tarjan [28], Hegeman et al. [21] were able to design a substantially faster,

randomized Congested Clique MST algorithm, running in O(log log log n) rounds.

Soon afterwards, Ghaffari and Parter [20] designed an O(log∗ n)-round algorithm,

using the techniques in Hegeman et al., but supplemented with the use of sparsity-

sensitive sketching, which is useful for sparse graphs and random edge sampling, which

is useful for dense graphs.

On the other hand, there are no non-trivial time complexity lower bounds in

this model whatsoever and Drucker et al. [13] provide a partial explanation for this by

showing that the Congested Clique model can simulate powerful classes of bounded-

depth circuits, implying that even slightly super-constant lower bounds in this model

would give new lower bounds in circuit complexity. In this context, our focus on time

and message complexity may prove useful; while unconditional lower bounds on time

complexity in the Congested Clique model may currently be out of reach, it may be

possible to prove time complexity lower bounds while restricting message complexity.

For example, one might hope to show a non-trivial time complexity lower bound for

MST conditioned on the algorithm using Õ(n) messages.

There has been an increased focus on message complexity in the Congest

model as well. For example, in PODC 2015 King et al. [30] presented a low
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message-complexity MST algorithm in the Congest model that uses Õ(n) messages,

contradicting long-believed “folklore” that MST construction in the Congest model

would require Ω(m) messages. One can make a few changes to the King et al. [30]

algorithm to run in the Congested Clique model, requiring O(log2 n/ log log n) rounds

and Õ(n) messages.

5.1.2 Main Results

All of the MST algorithms mentioned above, essentially use the entire

bandwidth of the Congested Clique model, i.e., they use Θ(n2) messages. From

these examples, one might (incorrectly!) conclude that “super-fast” Congested Clique

algorithms are only possible when the entire bandwidth of the model is used. In this

chapter, we focus on the design of MST algorithms in the Congested Clique model that

have low message complexity, while still remaining “super-fast.” Message complexity

refers to the number and size of messages sent and received by all machines over

the course of an algorithm; in many applications, this is the dominant cost as it

plays a major role in determining the running time and auxiliary resources (e.g.,

energy) consumed by the algorithm. In our main result, we present an O(log∗ n)-

round algorithm that uses Õ(
√
m · n) messages for an n-node, m-edge input graph.

Two points are worth noting about this message complexity upper bound: (i) it is

bounded above by Õ(n1.5) for all values of m and is thus substantially sub-quadratic,

independent of m and (ii) it is bounded above by o(m) for all values of m that

are super-linear in n, i.e., when m = ω(n poly(log n)). We then extend this result
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to design a family of algorithms parameterized by ε, 0 < ε ≤ 1, and running in

O(log∗ n/ε) rounds and using Õ(n1+ε/ε) messages. If we set ε = log log n/ log n, we

get an algorithm running inO(log∗ n·log n/ log log n) rounds and using Õ(n) messages.

Thus we demonstrate the existence of a sub-logarithmic round MST algorithm using

only O(n · poly(log n)) messages, positively answering a question posed in Hegeman

et al. [21]. We note that Hegeman et al. present an algorithm using O(n ·poly(log n))

messages that runs in O(log5 n) rounds. All of the round and message complexity

bounds mentioned above hold with high probability (w.h.p.), i.e., with probability at

least 1− 1
n
. Our results indicate that the power of the Congested Clique model lies not

so much in its Θ(n2) bandwidth as in the flexibility it provides – any communication

link that is needed is present in the network, though most communication links may

eventually not be needed.

5.1.3 Applications

Optimizing message complexity as well as time complexity for Congested

Clique algorithms has direct applications to the performance of distributed algorithms

in other models such as the Big Data (k-machine) model [31], which was recently

introduced to study distributed computation on large-scale graphs. Via a Conversion

Theorem in [31] one can obtain fast algorithms in the Big Data model from Congested

Clique algorithms that have low time complexity and message complexity. Another

related motivation comes from the connection between the Congested Clique model

and the MapReduce model. In [22] it is shown that if a Congested Clique algorithm
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runs in T rounds and, in addition, has moderate message complexity then it can be

simulated in the MapReduce model in O(T ) rounds.

5.2 Technical Preliminaries

5.2.1 Linear Sketches

A key tool used by our algorithm is linear sketches [1, 2, 42]. We described

this concept in-depth in Chapter 3 (see Section 3.2.1 therein). Since it is a key tool

we summarize it below for convenience.

Let av denote a vector whose non-zero entries represent edges incident on

v. A linear sketch of av is a low-dimensional random vector sv, typically of size

O(poly(log n)), with two properties: (i) sampling from the sketch sv returns a non-

zero entry of av with uniform probability (over all non-zero entries in av) and (ii) when

nodes in a connected component are merged, the sketch of the new “super node” is

obtained by coordination-wise addition of the sketches of the nodes in the component.

The first property is referred to as `0-sampling in the streaming literature [9, 42, 26]

and the second property is linearity. The graph sketches used in [1, 2, 42] rely on the

`0-sampling algorithm by Jowhari et al. [26]. Sketches constructed using the Jowhari

et al. [26] approach use Θ(log2 n) bits per sketch, but require polynomially many

mutually independent random bits to be shared among all nodes in the network.

Sharing this volume of information is not feasible; it takes too many rounds and too

many messages. So instead, we appeal to the `0-sampling algorithm of Cormode and

Firmani [9] which requires a family of Θ(log n)-wise independent hash functions, as
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opposed to hash functions with full-independence. In the earlier chapter (Chapter 3)

we provided details of how the Cormode-Firmani approach can be used in the

Congested Clique model to construct graph sketches. We summarize the result in

the following theorem.

Theorem 5.1. Given an input graph G = (V,E), n = |V |, there is a Congested

Clique algorithm running in O(1) rounds and using O(n · poly(log n)) messages, at

the end of which every node v ∈ V has computed a linear sketch sv of av. The size

of the computed sketch of a node is O(log4 n) bits. The `0-sampling algorithm on this

sketch succeeds with probability at least 1− n−2 and, conditioned on success, returns

an edge in av with probability in the range [1/Lv − n−2, 1/Lv + n−2], where Lv is the

number of non-zero entries in av.

5.2.2 Concentration Bounds for sums of k-wise-independent random variables

The use of k-wise-independent random variables, for k = Θ(log n), plays a key

role in keeping the time and message complexity of our algorithms low. The use of

Θ(log n)-wise independent hash functions in the construction of linear sketches has

been mentioned above. In the next subsection, we discuss the use of Θ(log n)-wise-

independent edge sampling as a substitute for the fully-independent edge sampling

of Karger, Klein, and Tarjan. For our analysis we use the following concentration

bound on the sum of k-wise independent random variables, due to Schmidt et al. [53]

and slightly simplified by Pettie and Ramachandran [52].

Theorem 5.2 (Schmidt et al. [53]). Let X1, X2, . . . , Xn be a sequence of random
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k-wise independent 0-1 random variables with X = ∑n
i=1Xi. If k ≥ 2 is even and

C ≥ E[X] then:

Pr(|X − E[X]| ≥ T ) ≤
[√

2 cosh
(√

k3/36C
)]
·
(
kC

eT 2

)k/2
.

We use the above theorem for k = Θ(log n) and C = T = E[X]. Furthermore,

in all instances in which we use this bound, E[X] > k3 and therefore the contribution

of the cosh(·) term is O(1), whereas the contribution of the second term on the right

hand side is smaller than 1/nc for any constant c.

5.3 Algorithmic Overview

The high-level structure of our algorithm is simple. Suppose that the input is

an n-node, m-edge graph G = (V,E). We start by sparsifying G by sampling each

edge with probability p and compute a minimum spanning forest F of the resulting

sparse subgraph H. Thus H contains O(m · p) edges w.h.p. Now consider an edge

{u, v} in G and add it to F ; if F + {u, v} contains a cycle and {u, v} is a heaviest

edge in this cycle, then by Tarjan’s “red rule” [55] the MST of G does not contain

edge {u, v}. Ignoring all such edges leaves a set of edges that are candidates for being

in the MST. We appeal to the well-known sampling lemma due to Karger, Klein, and

Tarjan [28] that provides an estimate of the size of this set of candidates.

Definition (F -light edge [28]). Let F be a forest in a graph G and let F (u, v) denote

the path (if any) connecting u and v in F . Let wF (u, v) denote the maximum weight

of an edge on F (u, v) (if there is no path then wF (u, v) =∞). We call an edge {u, v}

F -heavy if w(u, v) > wF (u, v), and F -light otherwise.
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Lemma 5.3 (KKT Sampling Lemma [28]). Let H be a subgraph obtained from G

by including each edge independently 1 with probability p and let F be the minimum

spanning forest of H. The number of F -light edges in G is at most n/p, w.h.p.

As our next step we compute the set of F -light edges and in our final step,

we compute an MST of the subgraph induced by the F -light edges. Thus, at a high

level our algorithm consists of two calls to an MST subroutine on sparse graphs, one

with O(m · p) edges and the other with O(n/p) edges. In between, these two calls is

the computation of F -light edges. This overall algorithmic structure is clearly visible

in Lines 5–7 in the pseudocode in Algorithm 5.1 MST-v1.

There are several obstacles to realizing this high-level idea in the Congested

Clique model in order to obtain an algorithm that is “super-fast” and yet has low

message complexity. The reason for sparsifyingG and appealing to the KKT Sampling

Lemma is the expectation that we would need to use fewer messages to compute an

MST on a sparser input graph. However, all of the “super-fast” MST algorithms

mentioned earlier in the chapter use Θ(n2) messages and are insensitive to the number

of edges in the input graph. We described how to modify the O(log log log n)-round

MST algorithm to use Õ(m) messages in Chapter 4. Similar modifications applies to

the Ghaffari-Parter MST algorithm which allows us to complete the two calls to the

MST subroutine in O(log∗ n) rounds using max{O(m · p), O(n/p)} messages. Setting

1For reasons that will become clear later, our goal of keeping the message complexity low,
does not allow us to assume full independence in this sampling. Instead we use Θ(logn)-
wise independent sampling and show that a slightly weaker version of the KKT Sampling
Lemma holds even with limited independence sampling.
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the sampling probability p in our algorithm to
√

n
m

balances the two terms in the

max(·, ·) and yields a message complexity of O(
√
m · n).

Our main contribution (Section 5.5) is to show that the computation of F -light

can be completed in O(1) rounds, while still using Õ(
√
m · n) messages. To explain

the challenge of this computation we present two simple algorithmic scenarios:

• Suppose that we want each node u to perform a local computation to determine

which of its incident edges from G are F -light. To do this, node u needs to know

wF (u, v) for all neighbors v. Thus u needs degreeG(u) pieces of information

and overall this approach seems to require the movement of Ω(m) pieces of

information, i.e., Ω(m) messages.

• Alternately, we might want each node that knows F to be responsible for

determining which edges in G are F -light. In this case, the obvious approach

is to send queries of the type “Is edge {u, v} F -light?” to nodes that know F .

This approach also requires Ω(m) messages.

Various combinations of and more sophisticated versions of these ideas also require

Ω(m) messages. So the fundamental question is how do we determine the status

of m edges (i.e., F -light or F -heavy) while exchanging far fewer than m messages?

Below we outline two techniques we have developed in order to positively answer this

question.

Component-wise bound on number of F -light edges. As mentioned above,

the KKT Sampling Lemma upper bounds the total number of F -light edges

by O(n/p), which is O(
√
m · n) for p =

√
n/m. We show (in Corollary 5.12)
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that a slightly weaker bound (weaker by a logarithmic factor) holds even if the

edge-sampling is done using an Θ(log n)-wise-independent sampler. If we could

ensure that the total volume of communication is proportional to the number of

F -light edges, we would achieve our goal of o(m) message complexity. To achieve

this goal we show that the set of F -light edges has additional structure; they

are “evenly distributed” over the components of F . To understand this imagine

that F is constructed from H using Borŭvka’s algorithm. Let Ci = {Ci
1, C

i
2, . . .}

be the set of components at the beginning of a phase i of the algorithm. For

each component Ci
j ∈ Ci, the algorithm picks a minimum weight outgoing edge

(MWOE) eij from F . Components are merged using edges eij, j = 1, 2, . . . and

we get a new set of components Ci+1. Let Lij be the set of edges in G leaving

component Ci
j with weight less than w(eij). We show in Lemma 5.11 that the set

of all F -light edges is just the union of the Lij’s, over all phases i and components

j within Phase i. Furthermore, we show in Lemma 5.9 that the size of Lij for

any i, j is is bounded by Õ(1/p). This bound suggests that we could make

each component Ci
j responsible for identifying the Lij-edges. (Note that we

don’t use Borŭvka’s algorithm to compute F because that would take Θ(log n)

rounds. We compute F in O(log∗ n) rounds using the modified Ghaffari-Parter

algorithm (see Chapter 4). Then F is gathered at a small number of nodes and

each node who knows F completely simulates Borŭvka’s algorithm locally on

F , thus identifying the components Ci
j and their MWOE’s eij.)

Component-wise generation of F -light edges using linear sketches. Linear s-
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ketches play a key role in helping nodes in each component Ci
j collectively

compute all edges in Lij. For any node v and number x, let Nx(v) denote the

set of neighbors of v that are connected to v via edges of weight less than

x. Each node v ∈ Ci
j computes a w(eij)-restricted sketch sv, i.e., a sketch

of its neighborhood Nw(ei
j), and sends it to the component leader of Ci

j who

aggregates these sketches to compute a single component sketch. Sampling this

sketch yields a single light edge in Lij. Since Lij has Õ(1/p) edges, each node

v ∈ Ci
j can send Õ(1/p) separate w(eij)-restricted sketches to the component

leader of Ci
j and the Coupon Collector argument ensures that this volume of

sketches is enough to generate all edges incident in Lij w.h.p.

The sampling approach of Karger, Klein, and Tarjan is used in a somewhat

minor way in earlier Congested Clique MST algorithms [20, 21] and in fact in [33]

it is shown that this sampling approach can be replaced by a simple, deterministic

sparsification. However, the Θ(log n)-wise independent sampling we use in the current

algorithm seems crucial for ensuring low message complexity, while keeping the

algorithms fast.

5.4 MST Algorithms

In this section we describe two “super-fast” MST algorithms, the first runs

in O(log∗ n) rounds, using Õ(
√
m · n) messages and the second algorithm running in

O(log∗ n/ε) rounds, using Õ(n1+ε/ε) messages, for any 0 < ε ≤ 1.
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5.4.1 A super-fast algorithm using Õ(
√
mn) messages

Our first algorithm MST-v1, shown in Algorithm 5.1 has already been

outlined in Section 5.3. The correctness, time complexity, and message complexity

of this algorithm depends mainly on two subroutines: LinearMessages-MST(·)

and Compute-F-Light(·). For the purpose of this section, we assume that

LinearMessages-MST(H) computes an MST on an n-node m-edge input graph H

in O(log∗ n) rounds using Õ(m) messages. This is shown in Chapter 4. We also show

that Compute-F-Light(G,F, p) terminates in O(1) rounds using Õ(n/p) messages

w.h.p. This is the main result in our chapter and is shown in Section 5.5.

Lemma 5.4. For some constants c1, c2 > 1, (i) Pr(|E(H)| > c1 ·
√
mn) < 1

n
and (ii)

Pr(|E`| > c2 ·
√
mn poly(log n)) < 1

n
.

Proof. For 0 < i ≤ m, let Xi = 1 if edge i is sampled. Hence |E(H)| = ∑
iXi and

E[|E(H)|] =
√
mn. Note that Xi’s are Θ(log n)-wise independent. Therefore, by

Theorem 5.2 we have, Pr(|E(H)| > c1
√
mn) < 1

n
for some suitable constant c1 > 1.

Claim (ii) follows from Corollary 5.12.

The following theorem summarizes the properties of Algorithm MST-v1. The

running time and message complexity bounds follow from Table 5.1.

Theorem 5.5. Algorithm MST-v1 computes an MST of an edge-weighted n-node,

m-edge graph G when it terminates. Moreover, it terminates in O(log∗ n) rounds and

requires Õ(
√
mn) messages w.h.p.
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Algorithm 5.1 MST-v1
Input: An edge-weighted n-node, m-edge graph G = (V,E,w).

. Each node knows weights and end-points of incident edges. Every weight can

be represented using O(log n) bits.
Output: An MST T of G.

. Each node in V knows which of its incident edges are part of T .

. Let v∗ denote the node with lowest ID in V , known to all nodes.

1. v∗ generates a sequence π of Θ(log2 n) bits independently and uniformly at random

and shares with all nodes in V .

2. p←
√

n
m

3. Each node constructs an Θ(log n)-wise-independent sampler from π and uses this

to sample each incident edge in G with probability p

4. H ← the spanning subgraph of G induced by the sampled edges

5. F ← LinearMessages-MST(H)

6. E` ← Compute-F-Light(G,F, p)

7. T ← LinearMessages-MST((V,E`, w))

8. return T

5.4.2 Trading messages and time

The MST-v2 algorithm (shown in Algorithm 5.2) is a recursive version of

MST-v1 algorithm yielding a time-message trade-off. The algorithm recurses until

the number of edges in the subproblem becomes “low” enough to solve it via a call to

the LinearMessages-MST subroutine. Specifically, we treat a n-node graph with

m = O(n1+ε) edges as a base case. For graphs with more edges we use a sampling

probability of p = 1/nε, leading to a sparse graph H with O(m/nε) edges w.h.p.,
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which is recursively processed. The use of limited independence sampling is critical

here. One simple approach to sampling an edge would be to let the endpoint with

higher ID sample the edge and inform the other endpoint if the outcome is positive.

Unfortunately, this would lead to the use of Õ(m/nε) messages w.h.p., exceeding

our target of Õ(n1+ε) messages when m is large2. Using Θ(log n)-wise-independent

sampling allows us to complete the sampling step using Õ(n) messages.

Theorem 5.6. Algorithm MST-v2 outputs an MST of an edge-weighted n-node, m-

edge graph when terminates. Moreover, for any ε > 0, it terminates after O (log∗ n/ε)

rounds and uses Õ (n1+ε/ε) messages, w.h.p.

Proof. If m = O(n1+ε) then the claim follows from Theorem 4.24. Let T (m) denote

the time required for Algorithm 5.2 to compute an MST of a n-node, m-edge graph.

Since Compute-F-Light(·) runs in O(1) time and LinearMessages-MST(·) runs

in O(log∗ n) time, we see that, T (m) = T (m/nε) + O(log∗ n), for all large m. The

first quantity is the result of a recursive call on the sampled graph H, where each

edge is sampled with probability p = 1/nε. Solving this recursion with base case

m = O(n1+ε), we get T (m) = O(log∗ n/ε). The message complexity bound is obtained

by similar arguments.

Setting ε = log log n/ log n, we get the following result.

Corollary 5.7. There exists an algorithm that computes an MST of an n-node, m-

2This approach would have worked fine for MST-v1, but to keep the two algorithms
consistent to the extent possible, we use the Θ(logn)-wise independent sampler there as
well.
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Algorithm 5.2 MST-v2
Input: An edge-weighted n-node, m-edge graph G = (V,E,w)

. Each node knows weights and end-points of incident edges in G. Every weight

can be represented using O(log n) bits. There is a parameter ε > 0, known to

all nodes.
Output: An MST T of G.

. Each node in V knows which of its incident edges are part of T .

. Let v∗ denote the node with lowest ID in V and c ≥ 1 is a constant.

1. if m < c · n1+ε then

2. T ← LinearMessages-MST(G)

3. return T

4. else

5. v∗ generates a sequence π of Θ(log2 n) bits independently and uniformly at

random and shares with all nodes in V

6. p← 1/nε

7. Each node constructs an Θ(log n)-wise-independent sampler from π and uses

this to sample each incident edge in G with probability p

8. H ← the spanning subgraph of G induced by the sampled edges

9. F ←MST-v2(H)

10. E` ← Compute-F-Light(G,F, p)

11. T ← LinearMessages-MST((V,E`, w))

12. return T

13. end if

edge input graph and w.h.p. terminates in O(log n · log∗ n/ log log n) rounds and Õ(n)

messages.
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5.5 Efficient Computation of F -light Edges

In this section we describe the Compute-F-Light algorithm and prove its

correctness and analyze its time and message complexity. The inputs to this algorithm

are the graph G, a spanning forest F of G, and a probability p. Recall that F

is a minimum spanning forest of the subgraph H obtained by sampling edge in G

with probability p, using a Θ(log n)-wise-independent sampler. The main ideas in

Compute-F-Light have been informally described in Section 5.3. The Compute-

F-Light algorithm is described below in Algorithm 5.3.

5.5.1 Analysis

Let Ci = {Ci
1, C

i
2, . . .} be the set of components at the beginning of Phase i of

Borŭvka’s algorithm being simulated on F . Consider the set of edges from G with

exactly one endpoint in Ci
j with weight at most w(eij): Lij = {e = {u, v} ∈ E | u ∈

Ci
j, v /∈ Ci

j and w(e) ≤ w(eij)}. For example, see Figure 5.1. Our first task is to

bound the size of Lij and for this we appeal to the following lemma from Pettie and

Ramachandran [52] on sampling from an ordered set.

Lemma 5.8 (Pettie & Ramachandran [52]). Let χ be a set of n totally ordered

elements and χp be a subset of χ, derived by sampling each element with probability

p using a k-wise-independent sampler. Let Z be the number of unsampled elements

less than the smallest element in χp. Then E[Z] ≤ p−1(8(π/e)2 + 1) for k ≥ 4.

Observe that a straight-forward application of the above lemma gives us

E[|Lij|] = O(1/p). In the next lemma, we modify the proof of Lemma 5.8 in Pettie &
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Ci = {A,B,C,D,Z}
ei1 = {a2, b1}
ei2 = {b5, c1}
ei3 = {c1, b5}
ei4 = {d1, z3}
ei5 = {z3, d1}
Li
1 = {{a2, b1}, {a1, c3}, {a3, b2}, {a5, z1}}

Li
2 = {{b5, c1}}

Li
3 = {{c1, b5}}

Li
4 = {{d1, z3}, {d3, c4}}

Li
5 = {{z3, d1}, {z1, a5}}

Figure 5.1: Illustration of notation and terminology used in Algorithm 5.3 Compute-

F-Light. At the beginning of Phase i of Borŭvka’s algorithm, there are 5 components

{A,B,C,D,Z}. Each component’s MWOE in F is shown as thick directed arc. Solid

arcs show edges in G that are in respective Lij’s and hence identified as being F -light.

Dashed arcs (e.g., a4b3) represent edges that the algorithm ignores; these edge are

not F -light. Dotted arcs (e.g., b4z2, c2d2) represent edges in G whose status has not

yet been resolved by the algorithm. After the merging of components is completed,

we end up with two components {ABC,DZ}.

Ramachandran [52] to obtain a bound on size of Lij that holds w.h.p.

Lemma 5.9. Pr
(
There exist i and j:|Lij| > c · log3 n/p

)
< 1

n
for some constant c >

1.

Proof. Fix a Phase i and a component Ci
j in that phase. Let X be the set of all edges

from G having exactly one endpoint in Ci
j. Let Xt be an indicator random variable
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defined as Xt = 1 if the tth smallest edge in X is sampled, and 0 otherwise. For any

integer `, 1 ≤ ` ≤ |X|, let S` = ∑`
t=1Xt count the number of ones in X1, . . . , X`.

Note that Lij ⊆ X is a set of all edges with weight at most eij, the MWOE from

Ci
j in F . This implies that the lightest edge in X that is sampled is eij, otherwise

Borŭvka’s algorithm would have chosen a different MWOE. In other words, Xk = 0

for all k ≤ ` if the rank of eij in the ordered set X is ` + 1 or more. Therefore,

Pr
(
|Lij| > `

)
= Pr(S` = 0).

Observe that, S` is a sum of 0-1 random variables which are Θ(log n)-wise-

independent and E[S`] = p`. By Theorem 5.2, we have Pr(S` = 0) < 1
n3 for ` >

c · log3 n/p for some constant c > 1. The lemma follows by applying union bound

over all phases and components.

Lemma 5.10. For any Phase i and any component-MWOE pair (Ci
j, e

i
j), w.h.p.

O
(
log5 n/p

)
w(eij)-restricted sketches of Ci

j are sufficient to find all edges in Lij.

Proof. Consider an oracle which when queried returns an edge in Lij independently

and uniformly at random. Let Ts denote the number of the oracle queries required to

obtain s = |Lij| distinct edges (i.e., all edges in Lij). Then by the Coupon Collector

argument [44], Pr(Ts > βs log s) < s−β+1 for any β > 1. Also, if the oracle is not

uniform, but is “almost uniform,” returning an edge in Lij with probability 1
s
± s−α

for a constant α > 2, then we get Pr(Ts > βs log s+ o(1)) < s−β+1.

Now, to simulate a tth oracle query (t ∈ [1, Ts]) mentioned above, we sample

an unused sketch of Ci
j until we get an edge. Since sampling from a sketch fails

with probability at most n−2, w.h.p., O(1) sketches are sufficient to simulate one
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oracle query. Hence w.h.p., O(Ts) sketches are sufficient to simulate Ts oracle queries.

Therefore, with probability at least 1 − s−β+1, O(βs log s) sketches are sufficient to

get s distinct edges from Lij.

By Lemma 5.9, we have w.h.p., s = |Lij| = O
(
log3 n/p

)
. Therefore by letting

s = Θ
(
log3 n/p

)
and β = O(log n) in the above argument, w.h.p., O

(
log5 n/p

)
sketches are sufficient to find all edges in Lij.

Lemma 5.11. Let E` be the set of F -light edges in G. Let L = ∪i ∪j Lij. Then,

E` = L.

Proof. We first show that L ⊆ E`. Consider a Phase i and a component-MWOE pair

(Ci
j, e

i
j). Consider any edge e = {u, v} ∈ Lij with u ∈ Ci

j, v /∈ Ci
j. Since eij is the

MWOE from Ci
j and u ∈ Ci

j, any path in F connecting u to any node x /∈ Ci
j has

to go through edge eij. Therefore, for any x /∈ Ci
j, wF (u, x) ≥ w(eij). Since v /∈ Ci

j

we have wF (u, v) ≥ w(eij). Moreover, since e ∈ Lij, we have w(e) ≤ w(eij) implies

w(e) ≤ wF (u, v). Hence, e is F -light. Since this is true for any e ∈ Lij, we have

Lij ⊆ E`. Hence, L ⊆ E`.

Now, we show that E` ⊆ L. For any node u ∈ V , let Cq(u) denote the

component containing u just before Phase q of Borŭvka’s algorithm (Step 2 in

Algorithm Compute-F-Light). For the sake of contradiction, let there be an edge

e = {u, v} ∈ E` \ L. Let i be the index of the phase in which component of u and

component of v is merged together3 (that is, for any q < i + 1, Cq(u) 6= Cq(v) and

3If u and v are never merged into one component, i.e., they are in different components
in F then {u, v} ∈ Lij where i is the phase in which u’s component becomes maximal with
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Ci+1(u) = Ci+1(v)). Consider the path F (u, v) and note that since Ci+1(u) = Ci+1(v),

the entire path F (u, v) is in Ci+1(u). Now consider the Phase i components

Ci
1, . . . , C

i
t , t ≥ 2 along this path F (u, v) (see Figure 5.2). WLOG, let u ∈ Ci

1

and v ∈ Ci
t and suppose that the path F (u, v) visits the components in the order

u ∈ Ci
1, C

i
2, . . . , C

i
t−1, v ∈ Ci

t . For example, in Figure 5.2 the path F (u, v) starts in Ci
1

then goes through Ci
2, then to Ci

3, and finally to Ci
4. Let F ′(u, v) denote the subset

of edges in F (u, v) that have endpoints in two distinct Phase i components.

Now consider the MWOE’s of these components: eij is the MWOE for Ci
j for

j = 1, 2, . . . , t. There are three cases depending on how the MWOEs eij relate to the

path F (u, v).

• eij connects Ci
j to Ci

j+1 for j = 1, 2, . . . , t− 1. Since e has exactly one endpoint

in Ci
1 and e /∈ Li1 (since e /∈ L), we have w(e) > w(ei1). Furthermore, due to the

structure of the MWOEs: w(ei1) > w(ei2) > · · · > w(eit−1). This implies that

w(e) is larger than the weights of all edges in F ′(u, v).

• eij connects Ci
j to Ci

j−1 for j = 2, . . . , t. Since e has exactly one endpoint in

Ci
t and e /∈ Lit (since e /∈ L), we have w(e) > w(eit). Furthermore, due to the

structure of the MWOEs: w(eit) > w(eit−1) > · · · > w(ei2). This implies that

w(e) is larger than the weights of all edges in F ′(u, v).

• There is some `, 1 ≤ ` < t such that eij connects Ci
j to Ci

j+1 for j = 1, 2, . . . , `

and eij connects Ci
j to Ci

j−1 for j = ` + 1, . . . , t. This case is illustrated in

respect to F and j is such that u belongs to Cij . This follows from the fact that eij = ⊥ and
w(eij) =∞.
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Figure 5.2 with ` = 2. In this case, w(e) > w(ei1) and w(e) > w(eit) for reasons

mentioned in the previous two cases. Furthermore, due to the structure of the

MWOEs: w(ei1) > w(ei2) > · · · > w(ei`) and w(eit) > w(eit−1) > · · · > w(ei`+1).

This implies that w(e) is larger than the weights of all edges in F ′(u, v).

Thus in all three cases, w(e) is larger than the weights of all edges in F ′(u, v). Now

let eF = {u′, v′} ∈ F be the maximum weight edge in F (u, v). Since e is F -light, we

have w(e) < w(eF ). This inequality combined with the fact that w(e) is larger than

the weights of all edges in F ′(u, v) implies that u′ and v′ belong to the same Phase i

component, i.e., Ci(u′) = Ci(v′). For example, in Figure 5.2, u′ and v′ are in Ci
2.

Let Ci(u′) = Ci(v′) = Ci
` for some ` ≤ t. Let F (u, v) = F (u, u′) ∪ {u′, v′} ∪

F (v′, v). Since eF is the heaviest edge in F (u, v), all the edges in F (u, u′) are lighter

than eF . Hence at any Phase i′ < i, Borŭvka’s algorithm considers edges in F (u, u′)

for component Ci′(u′) and edges in F (v′, v) for component Ci′(v′) before considering

eF . The implication of this is, Ci(u) = Ci(u′) and Ci(v) = Ci(v′). But, Ci(u) 6= Ci(v)

therefore, Ci(u′) 6= Ci(v′) – a contradiction.

From Lemma 5.9 and Lemma 5.11 we get the following bound on the number

of F -light edges in G.

Corollary 5.12. W.h.p., the number of F -light edges in G is Õ (n/p).

A naive implementation of Step 5 may require super-constant number of

rounds because of receiver-side bottlenecks, but we describe here a more sophisticated

implementation which runs in O(1) rounds, using Õ(n/p) messages.
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Figure 5.2: Illustration of proof of Lemma 5.11. After Phase i, components

Ci
1, C

i
2, C

i
3, C

i
4 are merged together using edges ei1, ei2, ei3, ei4 in F . Dashed curves

represent paths in F between the respective end-points. e is an F -light edge. eF

is the heaviest edge on path from u to v in F .

Lemma 5.13. Step 5 of Algorithm 5.3 can be implemented in O(1) rounds using

Õ(n/p) messages.

Proof. A component Ci
j can be quite large and as a result, the volume of sketches of

all nodes in Ci
j can be much larger than can be received by Ci

j’s component leader

in O(1) rounds. So before we can gather sketches at component leaders, we perform

two tasks:

(i) each commander vi sets up a simple rooted tree communication structure for

each component Ci
j, j = 1, 2, . . . and

(ii) vi informs each node in each component Ci
j, j = 1, 2, . . ., the identity of that

node’s parent in the rooted tree communication structure.

We will show that once these two tasks are completed, then all requisite sketches can
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then be gathered at component leaders in O(1) rounds. Of course, we will also need

to show that these two tasks can be completed in O(1) rounds.

Recall that each commander vi knows F and locally simulates Borŭvka’s

algorithm on F and therefore knows the components Ci
j for all j. We will now

describe how vi sets up the rooted tree communication structure for a particular

component Ci
j. Let s := n2/3·p

log9 n
and let S0 := Ci

j. Since p =
√
n/m, we know that p is

bounded below by 1/
√
n and therefore s ≥ n1/6

log9 n
. This shows that s is asymptotically

greater than 1 and for the rest of the proof we assume that s > 1. Now commander

vi partitions S0 into d|S0|/se subsets, each of size at most s. For each of the d|S0|/se

parts, node vi appoints a part leader (e.g., node with smallest ID in that part). Let

S1 be the set of part leaders. Note that |S1| = d|S0|/se. Next, commander vi appoints

each part leader as the parent of all other nodes in that part.

Now vi repeats this process on S1 to construct the set S2. In other words, vi

partitions S1 in d|S1|/se subsets, each of size at most s, picks part leaders for each of

the parts of S1 (S2 is the set of these part leaders), and appoints each part leader the

parent of all other nodes in its part. Commander vi continues in this manner until

it generates a set St such that |St| ≤ s. Commander vi then picks a leader for St

and makes it the parent of all other nodes in St. We let St+1 denote the singleton set

containing this final leader. It it easy to see that the choices of part leaders can be

made such that the single node in St+1 is the component leader of Ci
j.

Now note that |Si+1| = d|Si|/se for i = 0, 1, . . . , t. Since |S0| ≤ n and s ≥ n1/6

log9 n
,

it follows that t = O(1) and therefore the rooted tree communication structure we
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create for each component has O(1) depth.

Since each part has size at most s, each node in the rooted tree has at most s

children. Now consider how the sketches are sent up this rooted tree to the component

leader of Ci
j. First, nodes in S0 are required to send Θ

(
log5 n
p

)
sketches each to their

parents, i.e., nodes in S1. Thus each node in S1 needs to receive a total of at most

s×Θ
(

log5 n

p

)
×Θ(log4 n) = n2/3 · p

log9 n
×Θ

(
log5 n

p

)
×Θ(log4 n) = Θ(n2/3)

bits. This means that we can use the RSG scheme (Theorem 4.1) to deliver all

sketches from nodes in S0 to nodes in S1 in O(1) rounds, while keeping the number

of messages bounded above by O
(
|Ci

j| · log5 n
p

)
. Once sketches are delivered to nodes

in S1, these nodes will aggregate the sketches. More specifically, suppose that each

node v in S0 organizes the Θ
(

log5 n
p

)
sketches that it sends to its parent, as a vector

(s1(v), s2(v), . . . , sβ(v)) where β = Θ
(

log5 n
p

)
. Each node w in S1, on receiving sketch-

vectors from children, computes the following size-β vector:

(∑
v

s1(v),
∑
v

s2(v), . . . ,
∑
v

sβ(v)
)
.

Each of the sums above are over all children v of w (in the rooted tree). Note that the

linearity property of the sketches permits this type of aggregation. At the end of this

step, nodes in S1 have a size-β vectors to send to their parents (i.e., nodes in S2). The

above-described process that delivers information from S0 to S1 can be used to deliver

information from S1 to S2, also in O(1) rounds, using O
(
|Ci

j| · log5 n
p

)
messages. Thus,

this scheme delivers β = Θ
(

log5 n
p

)
component sketches to the component leader of

Ci
j in O(1) rounds while using O

(
|Ci

j| · log5 n
p

)
messages.
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The routing scheme we have described above can be executed in parallel for

all components in a particular phase, i.e., for Ci
j for a fixed i and all possible j.

We now point out that a stronger claim is true: the above-mentioned routing can

be accomplished in parallel for all phases as well. This is because there are O(log n)

phases and thus each node has O(log n) times as much information to send and receive

as before (when we were talking about just one phase) and the constraints of the RSG

scheme are still met. Thus this routing scheme delivers information needed by each

component leader to compute Θ
(

log5 n
p

)
component sketches, in O(1) rounds using

O
(
n · log5 n

p

)
= Õ(n/p) messages.

Finally, we point out that the information on the routing tree communication

structure can be communicated by the commanders to all nodes in 1 communication

round. This is because each commander vi needs to tell each node v the ID of v’s

parent in the routing tree, of Ci
j, where v belongs to Ci

j. Thus each commander needs

to send n messages to n distinct nodes. Also note that there are O(log n) phases

in Borŭvka’s algorithm and therefore each node needs to receive messages from

O(log n) distinct nodes (commanders). All this can be done by direct communication

in 1 round using O(n log n) messages.

Table 5.2 summarizes the time and message complexity of each step of

Algorithm Compute-F-Light. From Lemma 5.11 and Table 5.2 we get the following

result.

Theorem 5.14. Algorithm Compute-F-Light computes all F -light edges for given

graph G and a minimum spanning forest F of H where H is obtained by sampling each
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edge in G with probability p using a Θ(log n)-wise-independent sampler. Moreover,

the computation takes O(1) rounds and uses Õ (n/p) messages.

5.6 Conclusion

In this chapter, we presented an algorithm running in O(log∗ n) rounds, with

message complexity Õ(
√
m · n) and then build on this algorithm to derive a family

of algorithms, containing for any ε, 0 < ε ≤ 1, an algorithm running in O(log∗ n/ε)

rounds, using O(n1+ε/ε) messages. Setting ε = log log n/ log n leads to the first sub-

logarithmic round Congested Clique MST algorithm that uses only Õ(n) messages.

We believe that the tools and techniques used to achieve these results can be extended

to more general setting – the Congest model. The fastest MST algorithm in the

Congest model requires O(
√
n+D) rounds but uses Ω(m) messages. On the other

hand, the low-message-complexity algorithm [30] uses O(n poly log n) messages but

requires O(n poly log n) rounds. We believe we can use the tools and techniques

developed in this chapter to obtain the first O(
√
n + D)-round o(m)-messages MST

algorithm in the Congest model. We conclude this chapter with the following open

problem: Is there a Õ(
√
n+D)-round o(m)-message MST algorithm in the Congest

model?
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Table 5.1: Time and message complexity for steps in Algorithm 5.1 MST-v1

Step Time Messages Analysis

1 O(1) Õ(n) Theorem 4.3

2-4 - - Local computation

5 O(log∗ n) Õ(|E(H)|) Chapter 4, Theorem 4.24

6 O(1) Õ (
√
mn) Theorem 5.14 with p =

√
n
m

7 O(log∗ n) Õ(|E`|) Chapter 4, Theorem 4.24

Table 5.2: Time and message complexity for steps in Algorithm 5.3 Compute-F-

Light

Step Time Messages Analysis

1 O(1) Õ(n) Theorem 4.2

2 - - Local computation

3 O(1) Õ(n) Trivial direct communication

4 O(1) Õ(n/p) Theorem 5.1

5 O(1) Õ(n/p) Lemma 5.13
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Algorithm 5.3 Compute-F-Light
Input: (i) An edge-weighted n-node, m-edge graph G = (V,E,w), (ii) A spanning

forest F of G, and (iii) a number p, 0 < p < 1.

. F is a minimum spanning forest of a subgraph H of G, where H is a spanning

subgraph of G obtained by sampling each edge in G with probability p using a

Θ(log n)-wise-independent sampler. Each node knows weights and end-points

of incident edges from G and F . Every weight can be represented using O(log n)

bits.
Output: F -light edges of G.

. Each node in V knows which of its incident edges from G are F -light.

1. Let {v1, v2, . . . , vc} be set of commander nodes (or in short, commanders) where

c = Θ(log n). Gather F at each of these commanders.

2. Each commander simulates Borŭvka’s algorithm locally on input graph F . Let

Ci = {Ci
1, C

i
2, . . .} be the set of components at the beginning of Phase i. The node

with smallest ID in a component Ci
j is the leader of component Ci

j and the ID of

the leader serves as the label of each component. For each component Ci
j ∈ Ci,

the algorithm picks a MWOE eij from F . Components are merged and we get a

new set of components Ci+1. If there is no incident edge on a component Ci
j in F

then commander sets eij = ⊥ with the understanding that w(⊥) =∞.

3. For each component Ci
j, commander vi sends the following 3-tuple to each node

in Ci
j:

(a) Phase number i, (b) label of Ci
j, and (c) w(eij).

4. A node v having received a 3-tuple (i, `, w′) associated with component Ci
j for

some i and j computes Θ
(

log5 n
p

)
different graph sketches with respect to its w′-

restricted neighborhood Nw′(v).

5. The component leader of Ci
j for each i and j, gathers Θ

(
log5 n
p

)
w(eij)-restricted

sketches from all the nodes in Ci
j and computes w(eij)-restricted sketches of Ci

j.

Then it samples an edge from each sketch computed and notifies the end-points

of all sampled edges.

6. return Union of sampled edges over all i over all j.
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CHAPTER 6
FUTURE WORK

In this chapter we conclude our report with few open problems related to our

work. We plan to use our expertise developed during this work to tackle these open

problems in the future.

We provide two sets of problems that we plan to work in the future. The first

set of problems is on the more general model – the Congest model. The second set

of problems is on more specific related distributed models – MapReduce model [29]

and the k-machine model a.k.a. the Big Data model [31, 48].

6.1 MST in the Congest Model

Earlier in Chapter 1 we defined the Congest model. Here we review the

existing work on the MST problem in this model and conclude the section with the

open problem.

6.1.1 Related Work

The MST problem in the Congest is well studied in the past [17, 4, 35, 51].

The research on the MST problem was initiated by the seminal work of Gallager,

Humblet, and Spira [17]. They presented a O(n log n)-round MST algorithm which

uses O(m log n) messages. Later, this result was improved by Awerbuch [4] and

the round and message complexity was reduced to O(n) rounds and O(m + n log n)

messages.
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Garay et al. [18] initiated the analysis of the time complexity of the MST

problem with additional parameters and presented the first sublinear time algorithm,

requiring O(D + n0.614), where D is the diameter of the input graph. This was

further improved to O(D +
√
n log∗ n) by Kutten and Peleg [35]. In fact, Peleg and

Rubinovich [51] proved that this is optimal with respect to time by proving a lower-

bound of Ω̃(
√
n) rounds on graphs with D = Ω(log n). Recently, Lotker et al. [40]

proved lower bound of Ω̃(n1/3) rounds on graphs with constant diameters (D > 2).

6.1.2 Open Problems

All of the above mentioned sublinear time algorithms requires Θ(m + n3/2)

messages. On the other hand, the low-message-complexity algorithm [30] uses

O(n poly log n) messages but requires O(n poly log n) rounds. This leads us to the

question whether there exists an MST algorithm that achieves simultaneously Õ(m)

messages and Õ(D +
√
n) rounds:

Open Problem 1 (MST in the Congest Model). Is there a Õ(
√
n + D)-round

Õ(m)-message (ideally o(m)) MST algorithm in the Congest model?

We believe we can use the tools and techniques developed in this report

(especially, Chapter 5) to obtain the first O(
√
n + D)-round o(m)-messages MST

algorithm in the Congest model.

6.2 MST in the MapReduce Model

First we briefly describe the MapReduce model. Then we review existing work

in this model and conclude this section with the open problems.
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6.2.1 MapReduce Model

Our description of the MapReduce model follows the work of Karloff et al. [29]

and Hegeman et al. [22].

The basic unit of information is a 〈key, value〉-pair. The input, and all

intermediate data, is stored in these 〈key, value〉-pairs and the computation proceeds

in rounds. At a high level, each round is composed of three phases: map, shuffle,

and reduce. In the map phase, 〈key, value〉-pairs are processed individually and the

output of this phase is a collection of 〈key, value〉-pairs. In the shuffle phase, all the

〈key, value〉-pairs with the same key are aggregated and sent to the same machine.

In the reduce phase, each key and all associated values are processed together. Below

we elaborate each phase in some more details.

- The map phase of a round is a collection of functions {µ1, µ2, . . . µm} called

mappers, one per 〈key, value〉-pair. Each mapper takes a 〈key, value〉-pair and

outputs a collection of 〈key, value〉-pairs. Since each mapper is independent of

other mappers, the mappers can be arbitrarily distributed among machines.

- The shuffle phase is entirely implemented by the underlying MapReduce

framework and is responsible for the data movement after the map phase.

Specifically, in the shuffle phase, a 〈key, value〉-pair 〈k, v〉 emitted by a mapper

is physically moved to the machine which will run the reducer responsible for

the key k. We ignore the shuffle phase and consider data movement from one

machine to another as a part of the map phase.

- The reduce phase of a round is a collection of functions {ρ1, ρ2, . . . , ρr} called
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Each mapper takes a (key, value) pair and

emits a collection of (key, value) pairs.
All values with the same key are

routed to one reducer.

Reducers operate on a key and a
multi-set of values and emit a
multi-set of (key, value) pairs.

Output of reducers = input of mappers in next round

Figure 6.1: This figure describes the execution of the map phase, the shuffle phase,

and the reduce phase of a single round of MapReduce program.

reducers. Each reducer operates on an input a pair 〈k, {vk,i}i〉, where the first

element is a key k and the second is a multiset of values which consists of all

the values contained in the 〈key, value〉-pairs emitted by mappers in this round

and having key k. The output of each reducer is a multiset {〈k, vk,`〉}`, where

the key k in each pair is the same as for the key k of the input.

For further illustration of each of these phases, see Figure 6.1.

Karloff et al. [29] restricted the following resources in the MapReduce model

(see [29] for the justification of these constraints). Let n be the size of the input (note

that this is total size and not the size of a single mapper’s input). We assume, as do

Karloff et al. [29] and Lattanzi et al. [36], that memory is measured in O(log n)-bit-

sized words. Let 0 < ε < 1 be a constant.
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Memory: Memory per machine is restricted to O(n1−ε). Moreover, the total space

available for any mapper or reducer is constrained to O(n1−ε). This also implies

that the size of any 〈key, value〉-pair is no larger than O(n1−ε).

Machines: The total number of machines is restricted to O(n1−ε), hence the total

memory available is O(n2−2ε). This implies that, the total space taken by

all 〈key, value〉-pairs emitted by all the mappers in a round is restricted

to O(n2−2ε). It is worth noting that there is no space restriction on the

〈key, value〉-pairs emitted by reducers.

Time: Each mapper and reducer run in time polynomial in the original input length.

Since the shuffle step is time consuming, we want to minimize the number of

MapReduce rounds. The round complexity of a MapReduce algorithm is measured in

terms of number of MapReduce rounds required to terminate the algorithm.

6.2.1.1 Graph problems in the MapReduce

As discussed earlier the input to the MapReduce framework is made of a list

of 〈key, value〉-pairs distributed among machines. An input graph with m edges

is represented as m 〈key, value〉-pairs where each edge {u, v} with weight w is

represented as 〈{u, v};w〉. If the input graph is unweighted then w = 1 is used. The

input is distributed among all available machines (may not be randomly). For the

MST problem, we require that when the algorithm ends each machine knows which

of its edges (input 〈key, value〉-pairs) belong to the output MST; for verification

problems such as GC, we require that when the algorithm ends at least one machine
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knows the output value.

6.2.2 Related Work

The existing work on MST in the MapReduce differentiate sparse graph

instances and dense graph instances. We call a graph G, c-dense, if the number

of edges m in G is at least n1+c for some 0 < c ≤ 1. Karloff et al. [29] presented a

O(1) round algorithm to compute MST of c-dense graphs. Later Lattanzi et al. [36]

showed that MST of a c-dense graph can be computed in
⌈
c
ε

⌉
rounds using O(nc−ε)

machines with each machine having O(n1+ε) memory for some constant 0 < ε < c.

For sparse graphs, Karloff et al. [29] presented a O(log n)-round MST algorithm.

6.2.3 Open Problems

In the case of sparse graphs, the question of whether o(log n) round algorithm

exist or not is still open, even in the case of GC problem.

Open Problem 2 (GC/MST problem in the MapReduce model). Design a o(log n)-

round MapReduce algorithm to solve the GC problem or the MST problem for graphs

with m = Θ(n) edges.

It is worth mentioning that, even for graph problems like maximal matching, min

cut, etc. there are efficient algorithms in the case of dense graphs [36] but when the

input graph is sparse then these problems have comparatively high round complexity.

Furthermore, consider the following simple problem of counting number of cycles in a

2-degree regular graph: given a n-node graph such that degree of each node is exactly

2 (hence m = n), then find the number of cycles in this graph. Observe that there is
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a single cycle if and only if the graph is connected. Hence this cycle counting problem

can be solved in O(log n) rounds by using the O(log n)-round GC algorithm. Also,

one can solve this problem in O(log n) rounds using the standard pointer-jumping

technique [25]. But the question whether this can be solved in o(log n) rounds is

open.

Open Problem 3. Given an n-node input graph G such that the degree of each node

is 2 (hence m = n). Determine whether G has one cycle or multiple cycles in o(log n)

rounds in the MapReduce model.

Notice that, the above problem is a special case of the GC problem: If this 2-degree

regular graph is connected, then it has exactly one cycle, if it is not connected, then

there are multiple cycles. There is no known MapReduce algorithm to answer this

besides the O(log n)-round GC algorithm and the O(log n)-round pointer-jumping

algorithm [25].

6.3 MST in the k-machine Model

First we briefly describe the k-machine model. Then we review existing work

in this model and conclude this section with the open problems.

6.3.1 k-machine Model

The k-machine model was first introduced by Klauck et al. [31] to abstract key

constraints of large-scale graph processing frameworks such as Pregel [41] and Apache

Giraph [15]. Our description of the k-machine model follows the work of Klauck et

al. [31] and Pandurangan et al. [48].
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The k-machine model consists of a network of k > 1 (distinct) machines

N = {p1, · · · , pk} that are pairwise interconnected by bidirectional point-to-point

communication links. Each machine executes an instance of a distributed algorithm.

The computation advances in synchronous rounds where, in each round, machines

can exchange messages over their communication links. Each link is assumed to

have a bandwidth of O(log n) bits where n is the number of nodes in the input graph.

Local computation within a machine is considered free, while communicating messages

between the machines is the costly operation. It is assumed that both the computing

entities and the communication links are fault-free. The time (or round) complexity

of a computation is the number of rounds required to complete the computation.

6.3.1.1 Graph problems in the k-machine model

We are interested in solving the minimum spanning tree (MST) problem

and the graph connectivity (GC) problem in the k-machine model. The following

description is applicable to any graph problem. We are given an input graph G

of n vertices and m edges. We assume that n >> k. Initially, the entire input

graph is not known to a single machine, rather it is “distributed” among the k

machines in a “balanced” way. This partition can be done in several ways, but we

assume random vertex-centric partition, i.e, the n vertices and their incident edges

are assigned randomly to machines: each vertex of G is assigned independently and

randomly to one of the k machines (see Figure 6.2 for an illustration). If the vertex

v is assigned to machine pi, we call pi the home machine of v. The home machine of



155

v knows the end-points of all the incident edges and also knows the home machines

of these end-points. If G is weighted, then the home machine of v also knows the

weights of incident edges on v. We call edge e = {u, v} is assigned to machine pi if

pi is home of either u or v. For the GC problem, at the end of computation, each

machine knows whether G is connected or not. For the MST problem, depending

upon the requirement at the end of the computation, there are the following variants:

(i) for every MST edge {u, v} the home machine of u and the home machine of v

must both eventually know {u, v} as being part of the MST, (ii) for every MST edge

e = {u, v} at least one machine knows e as being part of MST, but not necessarily

any of the home machines of e.

6.3.2 Related Work

Klauck et al. [31] designed a O
(
n
k

poly log n
)
-round algorithm in the k-machine

model such that at the end of the algorithm every machine knows which of its assigned

edges are part of the computed MST. Furthermore, they proved a matching lower

bound of Ω
(
n
k

)
rounds for this variant of the MST problem. Recently, Pandurangan

et al. [48] broke this Ω
(
n
k

)
barrier, under the slightly less stringent requirement that

at least one machine outputs each spanning tree edge e, but not necessarily any of the

home machines of e. For this variant of the MST problem, Pandurangan et al. [48]

designed a O
(
n
k2 poly log n

)
-round k-machine algorithm. Moreover, it is shown that

there is a Ω
(
n
k2

)
lower bound for this variant of the MST problem [48].
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1

2

3

4

5

p1 p2

p3

Figure 6.2: This figure illustrates how a 5-node input graph is distributed across

k = 3 machines. The machines p1, p2, and p3 are shown as rectangles and the

communication links between these machines are shown in solid lines. Each machine

knows the ID of the assigned nodes, ID neighbors of assigned nodes, and the ID of

machines of these neighbors.
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6.3.3 Open Problems

Though any Congested Clique algorithm can be simulated in the k-machine

model using the Conversion Theorem [31], the obtained k-machine algorithm may

not be optimal. Pandurangan et al. [48] obtained a

O
((

n
k2

)
poly log n

)
round k-machine algorithm for the MST problem by addressing

the problem directly in the k-machine model. But, if k is large, say k >
√
n, then

we have a O(poly log n)-round k-machine algorithm for the MST problem. On the

other hand, the lower-bound for the MST problem is Ω( n
k2 ), that is, for k >

√
n it

translates to Ω(1). Hence for large values of k, O(poly log n)-round algorithm may

not be optimal. This motivates us to further study this and investigate the following

problem in particular:

Open Problem 4 (GC/MST in the k-machine). Design a o(log n)-round algorithm

for the GC or the MST problem in the k-machine model for some value of k = Ω(
√
n).
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