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ABSTRACT

Automated theorem proving is a method to establish or disprove logical

theorems. While these can be theorems in the classical mathematical sense, we

are more concerned with logical encodings of properties of algorithms, hardware

and software. Especially in the area of hardware verification, propositional logic

is used widely in industry. Satisfiability Module Theories (SMT) is a set of logics

which extend propositional logic with theories relevant for specific application

domains. In particular, software verification has received much attention, and

efficient algorithms have been devised for reasoning over arithmetic and data

types. Built-in support for theories by decision procedures is often significantly

more efficient than reductions to propositional logic (SAT). Most efficient SAT

solvers are based on the DPLL architecture, which is also the basis for most

efficient SMT solvers. The main shortcoming of both kinds of logics is the weak

support for non-ground reasoning, which noticeably limits the applicability to

real world systems.

The Model Evolution Calculus (ME) was devised as a lifting of the DPLL

architecture from the propositional setting to full first-order logic. In previous

work, we created the solver Darwin as an implementation of ME, and showed how

to adapt improvements from the DPLL setting. The first half of this thesis is

concerned with ME and Darwin. First, we lift a further crucial ingredient of SAT

and SMT solvers, lemma-learning, to Darwin and evaluate its benefits. Then,

we show how to use Darwin for finite model finding, and how this application

benefits from lemma-learning.
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In the second half of the thesis we present Model Evolution with Linear

Integer Arithmetic (ME(LIA)), a calculus combining function-free first-order logic

with linear integer arithmetic (LIA). ME(LIA) is based on ME and supports

similar inference rules and redundancy criteria. We prove the correctness of

the calculus, and show how to obtain complete proof procedures and decision

procedures for some interesting classes of ME(LIA)’s logic. Finally, we explain

in detail how ME(LIA) can be implemented efficiently based on the techniques

employed in SMT solvers and Darwin.
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In the second half of the thesis we present Model Evolution with Linear

Integer Arithmetic (ME(LIA)), a calculus combining function-free first-order logic

with linear integer arithmetic (LIA). ME(LIA) is based on ME and supports

similar inference rules and redundancy criteria. We prove the correctness of

the calculus, and show how to obtain complete proof procedures and decision

procedures for some interesting classes of ME(LIA)’s logic. Finally, we explain
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Today’s hardware and software systems are already complicated, and are

steadily becoming ever bigger and more complex. It is common that the effort

that goes into developing a software product exceeds hundreds, thousands, or

even many more man-years. Obviously, it is beyond a human’s capability to know

and understand more than only a small part of a system, and it is impossible to

reason about a complete system in all but very abstract and simplified ways. This

has given rise to many approaches with the goal of supporting the development

of robust and functionally correct large scale systems. High level and domain

specific languages aim at reducing complexity, by removing unnecessary clutter,

by simplifying software artifacts to express only relevant information, and by

enforcing (domain specific) invariants. Many aspects of software engineering have

a similar purpose, for example modularization, requirements management, design,

and software development processes and best practices in general. While these

techniques, broadly speaking, aim at reducing the likelihood of introducing errors,

other methods focus directly on finding errors.

Testing has become an important and integral part of software develop-

ment. Most testing techniques rely on checking properties like invariants and

assertions by simulation or test cases. In essence, the software is executed in a

test environment and its actual and expected behavior and output are compared.

Advantages of this approach are that with some discipline it is not too difficult

to implement, and that running tests is usually fast. This makes it possible to
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maintain a regression test suit, and to continuously check the software for bugs

during development. The main disadvantage is that testing is incomplete, as it

verifies the system behavior only for specific input. Thus, testing usually means

bug finding, not verification. In principle, properties can be checked not only

during development but also in released software, for example by keeping asser-

tions in the release version, or in design by contract approaches. But, this can,

firstly, have significant run time overhead, and, secondly, still requires the system

to deal with bugs at run time.

An alternative to run time testing, i.e., dynamic testing, are static ap-

proaches. Static analysis reasons over the source code of software, and tries to

find property violations for all possible inputs. The tools have often a narrow

focus on properties like access of invalid pointers, out of bounds array accesses,

integer overflows, or missing variable initializations. Other tools, especially ones

based on logical formalizations of software and its properties, tend to pursue more

ambitious goals. In these scenarios, proving a logical theorem usually corresponds

to showing that a property holds, while disproving a theorem in the best case

gives rise to a concrete counterexample, e.g. the trace of a program run, which

exposes a bug. Among these approaches are, for example, tools that execute a

program symbolically, i.e., simultaneously for all possible inputs, and are able to

perform automatic unit test generation with high (or full) code coverage based

on this information [70, 35], or to verify with the help of annotations and in-

teractive user input that contracts or properties like loop termination hold [20].

Other approaches translate a program its properties and run a theorem prover

on the resulting logical formula. For example, in extended static checking simple
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properties, like e.g. dereferencing of null pointers, can be inferred and checked au-

tomatically, while in more complicated cases, especially termination arguments

and contracts, user annotations are required [28, 6]. The model checking ap-

proach models a system as a state machine, and properties as reachability of

states. The symbolic representation of state machines makes it possible to reason

over infinite states, and automatic abstraction and abstraction refinement make

it possible to scale to large systems, by focusing only on details which are relevant

for the currently investigated properties. Applying model checking is most preva-

lent in hardware verification [36], but is also employed successfully for software

verification [5, 43].

If a method can show that a property holds for all inputs, it is not merely

testing for bugs but (partially) verifying software correctness. This is a crucial

difference, as verification provides a much higher degree of confidence in robust-

ness and correctness than testing. Many kinds of static analysis can be quite

efficient and well worth the effort for some classes of bugs, in particular those

which can be detected with a local analysis of the source. In contrast, full pro-

gram analysis for complex properties usually requires user guidance, for example

through annotations or interactive proofs, and comes with high computational

and financial costs. This is not surprising, considering that problems involving

e.g. termination or integer constraints are often undecidable. One goal of current

research is to extend the reach of verification techniques, but research is also fo-

cused on making algorithms and tools more efficient and easier to use in practice.

While there has been significant success in both regards [22], verification is at

the moment only feasible and being used in parts of industry where failure is an
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extreme cost factor, for example in hardware companies or the air traffic sector.

For the remainder of this thesis, we will mostly take an application-

agnostic stance, and evaluate our approaches on standard sets of benchmarks

provided by the automated reasoning community. Inspecting the applications of

logics in the verification methods sketched above, it becomes clear that reduc-

tions to propositional logic, i.e., the SAT problem, are widely used, especially

in industrial settings. For many applications, notably in software verification,

propositional logic is not sufficiently expressive. Satisfiability Modulo Theories

(SMT) provides extensions of propositional logic which make it possible to reason

natively and efficiently about aspects of properties involving arithmetic, memory

management, and many data structures [23]. A shortcoming of both approaches

is the limited support for quantification, i.e., the capacity to reason about all

possible values of a variable, not only finitely many. While this is at least in

theory adequate for finite data types like fixed sized integers, it usually leads to

an explosion of the logical encoding, as it has to resort to quantifier instantiation.

Furthermore, it does not always suffice to reason about unbounded and infinite

types, such as the memory heap or inductive data structures.

This thesis is concerned with combining SAT and SMT with first-order

approaches to support quantification natively, such that the algorithm and im-

provements that make SAT and SMT solvers efficient and successful carry over to

this extended setting. As most efficient SAT and SMT systems are based on the

DPLL architecture, our lifting to the first-order setting tries to build on that ar-

chitecture. The lifting of DPLL techniques to the Model Evolution (ME) calculus

is already quite sophisticated, and is accompanied by an efficient implementation
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incorporating adaptations of crucial DPLL ingredients. In contrast, the lifting of

SMT is still in its early stages. We have devised the Model Evolution with Linear

Integer Arithmetic (ME(LIA)) calculus in the spirit of DPLL and ME. Its logic

is the extension of propositional logic with quantifiers, linear arithmetic (LIA),

and uninterpreted predicate and constant symbols. While we do not have an

implementation and an empirical evaluation of the calculus yet, we give detailed

guide lines of how to obtain efficient procedures and implementations, based on

our experience with implementations of SAT, SMT, and ME solvers.

1.2 Outline

The thesis builds on the ME calculus, which has been developed by Peter

Baumgartner and Cesare Tinelli in [16, 18]. Darwin, the implementation of ME,

is previous work developed by the author as part of his Master’s thesis. The

remainder of this thesis consists of new contributions based on publications co-

authored by the author.

In Chapter 2 we will be concerned with ME. We will first briefly introduce

the DPLL architecture, and then give a quick overview of the ME calculus, as

far as needed for the further discussion.

The first contribution in this chapter, in Section 2.3, is based on [10, 9].

We explain several possible ways of adapting one of the core ingredients of effi-

cient DPLL implementations, learning lemmas from conflicts. Lemma-learning is

crucial for learning from mistakes made during the search. It enables a solver to

prune search space by avoiding making the same, or similar, mistakes in the fu-

ture. Like DPLL, ME works with clauses. It processes quantifiers by unification-

guided clause instance generation. We show how to lift lemma-learning from a
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ground, i.e., propositional, to a first-order setting. The algorithm has the flex-

ibility to learn lemmas which are closely based on the clause instances which

caused a conflict, but also provides the flexibility to learn more general lemmas,

thus incorporating real learning. Empirically, the later comes with significant

computational overhead, so that the former is more effective in practice.

The second half of the chapter, Section 2.4, is based on [13]. We use finite

model finding as an example application for which SAT-based approaches, and in

particular the DPLL-based solver Paradox, are highly effective in practice. We

adapt SAT methods to the ME setting, explore which adaptations are useful, and

add some ME specific improvements. Finally, we show that Darwin benefits from

the lemma-learning capabilities introduced in the previous section when search-

ing for finite models. Furthermore, evaluating Darwin against competitive SAT

implementations shows complementary behavior. While Darwin scales better in

terms of memory performance, it can be significantly slower in solving a problem.

This is not surprising, given its (additional) support of quantifiers.

Chapter 3 introduces the ME(LIA) calculus. While it is based on the pre-

sentation of the calculus in [14], it has been modified significantly. Foremost, in

ME as well as in the original presentation of ME(LIA), clause instantiation was

implicit in the concept of a context unifier. In its new incarnation, the calculus

creates and maintains clause instances explicitly. In our experience, this makes

the presentation much clearer and the calculus easier to understand. Addition-

ally, we have extended ME(LIA) with notions that were the basis for obtaining an

efficient implementation of ME. These include more general redundancy criteria,

a concept of universality which makes it possible to strongly constrain the search
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space, and additional inference rules which serve to exploit universality and to

process constraints more efficiently. We have also generalized the input logic of

the calculus, by substituting a notion of compactness for the original restriction

that all free constants may range only over finite domains of integers. Compact-

ness still guarantees completeness; it covers the case of bounded constant domains

as well as other classes of restrictions to the ME(LIA) logic as special cases. We

present a basic proof procedure and prove it complete, as well as a sophisticated

proof procedure and its instantiations to the above mentioned classes. Finally,

the ingredients which are necessary for an efficient and robust implementation

are discussed, including heuristics, learning, non-chronological backtracking, and

proof-generation.

1.3 Preliminaries

In this section we introduce general formal preliminaries which are needed

for the discussions in the following chapters. We will be mostly concerned with

standard notions of first-order logic in automated deduction [60]. Notions that

are too specific to be of interest in all chapters, like for example LIA constraints,

will be introduced only where needed. We first introduce the syntax of first-order

logic, followed by its semantics, and finally provide some notions of calculi. Intu-

itively, terms denote specific objects, formulas express statements about specific

and arbitrary objects via predicates and quantification, and calculi reason about

the truth of statements according to the semantics.
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1.3.1 Syntax

A signature (Σ) consists of a set of function symbols (f, g, h, . . . ) and a

set of predicate symbols (P, Q, R, . . . ). A function symbol of arity 0 is also called

a constant (a, b, c, . . . ), a predicate symbol of arity 0 is also called a propositional

variable. We assume a denumerable infinite set W of variables (x, y, z, . . . ).

A (Σ-)term is either a variable x or an expression f(t1, . . . , tn), where f

is an n-ary function symbol, and t1, . . . , tn are terms. An atom is an expression

P (t1, . . . , tn), where P is an n-ary predicate symbol, and t1, . . . , tn are terms.

A formula is defined inductively. If F, F1, . . . , Fn are formulas, then all of the

following are formulas:

• ⊤ and ⊥,

• an atom P (t1, . . . , tn),

• a negation ¬F ,

• a conjunction F1 ∧ · · · ∧ Fn,

• a disjunction F1 ∨ · · · ∨ Fn,

• a universal quantification ∀xF ,

• an existential quantification ∃xF

The implication F → G of two formulas is defined as ¬F ∨ G. In the case of a

quantification ∀xF or ∃xF , F and all its sub-formulas and sub-terms are in the

scope of the quantifier, and x is bound in F . A variable is free in a formula if

it is not bound. A term or formula is ground or propositional if it contains no

variables, a formula is closed if it contains no free variables. We may introduce a
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fresh variable, if we want to use a variable that is not contained in any term or

formula considered so far.

A literal is an atom A (positive) or its negation ¬A (negative), or ⊤ or

⊥. A positive (negative) literal has positive (negative) polarity. If A is an atom,

then ¬A is the complement of A, and vice versa. A clause is a disjunction of

literals L1 ∨ · · · ∨Ln. A unit clause consists of one literal, a Horn clause contains

at most one positive literal. All variables occurring in the literals of a clause are

implicitly considered to be universally quantified, e.g., P (x) ∨Q(x, y) stands for

∀x∀y(P (x) ∨ Q(x, y)). A clause is often represented as the set of its literals. A

set of clauses (or formulas) stands for the conjunction of the contained formulas,

the empty clause stands for ⊥, and the empty clause set stands for ⊤.

Propositional logic can be seen as the subset of first-order logic where the

signature contains only propositional variables.

1.3.2 Semantics

A (Σ)-structure Z = (D, I) for a signature Σ consists of a domain D and

an interpretation I. The domain or universe D of a structure Z is a non-empty set.

The interpretation I of a Σ-structure Z with domain D maps each n-ary function

symbol f to an n-ary function fI from Dn to D, and each n-ary predicate symbol

p to an n-ary relation pI over Dn. The domain of an interpretation I may also

be denoted by |I|. A variable assignment A for a Σ-structure Z = (D, I) maps

each variable of W to an element of D.

The value tA of a Σ-term t for a variable assignment A is defined induc-

tively. If t is a variable x then tA is A(x), and if t is a term f(t1, . . . , tn) then tA

is fI(tA1 , . . . , tAn). We write A[x 7→ d] to denote the variable assignment which is
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identical to A except that it maps x to d.

We assume for simplicity w.l.o.g. that no variable occurs free and bound in

a formula, or bound by more than one quantifier. This can be ensured by standard

renaming methods. The truth value of a formula for a structure Z = (D, I) and

a variable assignment A is defined inductively. A formula is either true (satisfied,

holds) or it is false (falsified) in (Z, A).

• ⊤ is true,

• ⊥ is false,

• an atom P (t1, . . . , tn) is true iff (tA1 , . . . , tAn) ∈ P I,

• a negation ¬F is true iff F is false,

• a conjunction F1 ∧ · · · ∧ Fn is true iff all F1, . . . , Fn are true,

• a disjunction F1 ∨ · · · ∨ Fn is true iff one of F1, . . . , Fn is true,

• a quantification ∀xF is true iff for all d ∈ D, F is true in (Z, A[x 7→ d]),

• a quantification ∃xF is true iff for some d ∈ D, F is true in (Z, A[x 7→ d]),

A closed Σ-formula is valid if it is true in (Z, A) for each structure Z and

variable assignment A for Σ, it is satisfiable if it is true in some (Z, A), and it is

unsatisfiable otherwise. (Z, A) is a model of a closed formula F if F is true in

(Z, A), also written (Z, A) |= F . A closed formula F entails a closed formula G,

written F |= G, if each model of F is a also model of G. Then G is a consequence

of F . F and G are logically equivalent if each model of F is a model of G and

vice versa. F and G are equisatisfiable, if either both F and G are satisfiable, or

neither is.
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The Herbrand universe of a signature Σ is the set of all ground terms

over Σ. The Herbrand base of a signature Σ is a subset of all ground atoms

over Σ. A Herbrand interpretation I of a signature Σ interprets all terms as

themselves, i.e., tI = t for each ground term t. That is, Herbrand interpretations

differ only in the interpretation of predicate symbols, as induced by the Herbrand

base: a ground atom is true if it is in the Herbrand base, it is false otherwise.

A Herbrand structure of a signature Σ consists of a Herbrand universe and a

Herbrand interpretation.

1.3.3 Calculus

A calculus defines a set of derivation rules that operate on some formal

representation of a first-order formula F . A proof procedure for a calculus is

an algorithm that constructs derivations by applying the rules of the calculus.

A refutation is (an artifact of) a derivation that proves the unsatisfiability of a

formula, or, equivalently, its validity. A calculus is (refutationally) complete, if

it has a proof procedure that terminates with a refutation for each unsatisfiable

formula. A calculus is sound, if when it derives a refutation for a formula, then

the formula is unsatisfiable. A calculus is a decision procedure if it is sound and

terminates for any formula. Proving a formula valid usually gives rise to a proof

artifact, a calculus specific witness for the unsatisfiability of a formula.

While propositional logic is decidable, first-order logic is undecidable. It is

in fact semi-decidable, i.e., there are complete calculi but no decision procedures.

Any set of first-order formulas can be converted into an equisatisfiable

clause set, i.e., the conjunction of the formulas in the first set is equisatisfiable

to the conjunction of the clauses in the second set. Thus calculi usually operate
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on (finite) clause sets, as this leads to significant simplifications in devising a

calculus and proving its correctness, i.e., its soundness and completeness. Fur-

thermore, Herbrand interpretations are a purely syntactic concept, and a formula

is satisfiable if and only if it has a Herbrand model. Therefore, operations of a

first-order calculus are commonly semantically justified by the search for a Her-

brand interpretation, conceptually or factually.

Two main categories of calculi are resolution and tableaux. Resolution

calculi infer clauses as consequences of the initial clause set until the clause set

is saturated under some redundancy criterion. Sound and complete resolution

calculi derive the empty clause as the consequence of any unsatisfiable clause

set. As mentioned above, this is equivalent to being able to prove the validity

of a formula, as a formula is valid if and only if its negation is unsatisfiable.

Tableaux calculi construct derivation trees by case analysis on input clauses or

formulas. If a tree can be closed, the unsatisfiability of the input clause set has

been shown. A closed tree serves as a proof of the unsatisfiability of the input.

Furthermore, nodes are labeled with inference rules (derivation rules), which

define the relation between a node (premise) and its children (conclusions). ME

is a sound and complete calculus in the tableaux tradition. It constructs binary

trees by case analysis of instances of literals from the input clause set. Each

branch can be closed individually, and if a branch is open and exhausted under

some redundancy criteria, a Herbrand model can be extracted from its leaf. The

same applies in essence to ME(LIA), modulo the detail that it operates on a

combination of first-order logic and arithmetic. Thus, ME(LIA) does not work

with Herbrand models, as will be explained in Section 3.4.
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CHAPTER 2
MODEL EVOLUTION

2.1 Introduction

In propositional satisfiability the DPLL procedure, named after its authors

Davis, Putnam, Logemann, and Loveland [33, 32], is the dominant method for

building (complete) SAT solvers. Its popularity is due to its simplicity, its polyno-

mial space requirements, and the fact that, as a search procedure, it is amenable

to powerful but also relatively inexpensive heuristics for reducing the search space.

These solvers are so powerful that many developers of automated reasoning-based

tools use them as back-ends to solve first-order satisfiability problems, albeit of-

ten in an incomplete way, by means of ingenious domain specific translations into

propositional logic [72, 37, 48]. The treatment of quantifiers is highly inefficient,

however, because it is based on enumerating all possible ground instances of an

input formula’s clause form. The Model Evolution calculus (ME) properly lifts

the DPLL procedure to first-order clausal logic. While it relies on clause instanti-

ation as well, this process is guided by unification and produces instances only as

necessary. Furthermore, most of the powerful search heuristics that make DPLL

effective at the propositional level can be successfully adapted to the first-order

case, as shown with Darwin [12, 11], an implementation of the calculus.

In this chapter we are concerned with lifting one further improvement from

DPLL to ME, learning, and demonstrating that applications benefit from switch-

ing from propositional logic to first order logic as a target language. We will first

briefly introduce the DPLL architecture and its most important ingredients, as

this is the basis for our efficient implementation of ME, as well as the discussion
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of implementations of ME(LIA) (see Section 3.7). As we are interested in proof

procedures, i.e., in making design decisions which result in an efficient implemen-

tation, the presentation of the calculus based on derivation rules as in [18] is too

abstract for our purposes. We will therefore first introduce the ME calculus as an

abstract transition system, in the style of [58]. We will then show in Section 2.4

how to integrate learning in ME by adding new rules to the transition system.

We will accompany this by a discussion of the design choices and an experimen-

tal evaluation of the implementation of learning in Darwin. In Section 2.5 we

will show that Darwin is competitive with and complementary to DPLL based

approaches for the application of finite model finding. This supports our thesis

that a translation to first-order logic can be beneficial for applications that are

currently based on a translation to propositional logic.

2.2 The DPLL Procedure

The DPLL procedure can be used to decide the satisfiability of sets of

propositional clauses. The essential ingredients of the procedure are recursive

reduction to smaller problems, unit propagation, and incremental construction of

Herbrand models.

The procedure can be described as a sequent-style calculus [71] with three

core rules, Split, Assert, and Close, where a sequent is of the form Λ ⊢ Φ. Con-

ceptually, it creates a derivation tree where each node corresponds to a literal

of an input clause set Φ. We call the set of literals on a branch a context Λ.

The conjunctions of the literals of a context Λ induce a (partial) Herbrand in-

terpretation. It can be extended to those Herbrand interpretations, where the

Herbrand base contains P for each positive literal P in Λ and does not contain
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P for each negative literal ¬P in Λ. We call these Herbrand interpretations the

models of a context (or branch). The Split rule creates binary branching points,

where the two children nodes are labeled with a literal and its complement. The

Assert rule extends a branch with one child node, which is labeled with a literal

implied by all extensions of the partial Herbrand model of the branch and Φ. If

there is no such model for a branch, it is closed with the Close rule. To obtain

a decision procedure it suffices in principle to apply Split to all literals in the

input, and to apply Close whenever it is applicable. As each branch of the tree

induces a (complete) Herbrand model, and each possible Herbrand model for the

input signature is induced by one branch, the input clause set is unsatisfiable

if all branches of the tree are closed. Furthermore, each open branch induces a

Herbrand model.

It is of course not efficient in practice to build a full exponential binary

decision tree for all literals in the input. Implementations try to avoid con-

structing an exponential tree, generally speaking, by closing branches as early as

possible, performing unit propagation with Assert, learning from closed branches

(lemma learning), pruning parts of the search space (backjumping), and heuris-

tically choosing Split literals to facilitate the above. The impressive capabilities

of modern DPLL solvers arise from efficient and effective implementations of all

these techniques and more, by employing sophisticated data structures and from

intricate interactions between the different components [57, 66].

All implementations, conceptually, construct the derivation tree by a depth-

first exploration. An application of Close is justified by a conflicting input clause

that is falsified in all Herbrand models of the branch. The conflict is detected
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by the same mechanism that makes unit propagation efficient [73], in essence

by watching which literals of a clause are not complementary with branch lit-

erals. Thus a branch is closed as soon as one clause is falsified by all branch

models. When backtracking along the branch, the analysis of the conflict enables

backjumping. Instead of continuing the derivation on the right side of the most

recent left Split application on the branch, it is continued on the right side of

the most recent left Split that is relevant for the conflict. Furthermore, basically

by the same mechanism it is possible to learn lemmas, clauses which via unit

propagation effectively help to avoid repeating the decisions which led to the

current conflict. Finally, conflict analysis plays an important rule in dynamically

adapting the heuristics that decides the order of Split and Assert applications.

2.3 The Model Evolution Calculus

2.3.1 Introduction

The Model Evolution calculus is a lifting of the DPLL calculus to the

first-order level. This is achieved by suitable first-order versions of the rules

Split, Assert, and Close. Similarly to DPLL, the derivation rules of the Model

Evolution calculus apply to and produce a derivation tree with sequents of the

form Λ ⊢ Φ. However, this time the literals and clauses may contain variables,

with the context context Λ in a sequent Λ ⊢ Φ determining a single interpretation

IΛ. The purpose of the main rules of the calculus is to recognize when IΛ is not

a model of Φ, via syntactic unification between elements of Λ and Φ, and evolve

it into an actual model. We will in this chapter ignore the optional simplification

rules of the calculus, presented in [18]. They are not relevant to the discussion

and complicate the presentation of the proof procedure below.
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2.3.2 Preliminaries

The ME calculus uses two disjoint, infinite sets of variables, the set X of

universal variables (x, y, z, . . . ), and the set V of parametric variables (or just

parameters) (u, v, w, . . . ). We denote by Σsko the expansion of Σ obtained by

adding to Σ an infinite number of (Skolem) constants not already in Σ. If t is

a term we denote by Var(t) the set of t’s variables and by Par(t) the set of t’s

parameters. A term is universal if it contains no parameters, it is parametric

otherwise. A substitution (σ, ρ, . . . ) is a mapping from variables to terms,

which is the identity for all but finitely many places. We will denote by {w1 7→

t1, . . . , wn 7→ tn} the substitution σ such that wiσ = ti for all i = 1, . . . , n and

wσ = w for all w ∈ X ∪ V \ {w1, . . . , wn}. Also, we will denote by Dom(σ)

the set {w1, . . . , wn} and by Ran(σ) the set {w1σ, . . . , wnσ}. The result of the

application of a substitution σ to a term t, written tσ, is obtained from t by

replacing each occurrence of each variable x in t by σ(x). If s and t are two

terms, s is more general than t (s & t) iff there is a substitution σ such that

sσ = t. We say that s is a variant of t (s ≈ t) iff there is a renaming ρ such that

sρ = t. We write s � t if s & t but s 6≈ t. We say that s is parameter-preserving

more general than t (s ≥ t), iff there is a parameter-preserving substitution σ

such that sσ = t. When s ≥ t we will also say that t is a p-instance of s. We say

that s is a parameter-preserving variant, or p-variant, of t (s ≃ t), iff there is a

parameter-preserving renaming ρ such that sρ = t. We write s  t if s ≥ t but

s 6≃ t. A unifier σ of two terms s and t is a substitution such that sσ = tσ. A

unifier σ of two terms s and t is most general, if there is no unifier ρ of s and t

such that sσ is an instance of sρ and ρ is not a variant of σ. All of the above is



18

extended to formulas in the obvious way.

An ME proof procedure can be described abstractly as a transition system

over states. An annotated literal is a literal with an annotation which marks it

as a decision or a propagated literal. An (ordered) context is a sequence of

annotated literals. When convenient, we will see an ordered context simply as

a set of literals, ignoring both the annotations and multiple occurrences of its

elements. The concatenation of two ordered contexts will be denoted by simple

juxtaposition. When we want to stress that a context literal L is annotated as

a decision literal we will write it as Ld. With an ordered context of the form

Λ0 L1 Λ1 · · ·Ln Λn, where L1, . . . Ln are all the decision literals of the context, we

say that the literals in Λ0 are at decision level 0, and those in Li Λi are at decision

level i, for all i = 1, . . . , n. A state is of the form ⊥ or Λ ⊢ Φ, where ⊥ is a

distinguished fail state, Λ is an (ordered) context, and Φ is a clause set. For a

given state S, a transition rule defines whether there is a transition from S by

this rule and, if so, to which state S ′. A proof procedure is then a transition

system, a set of transition rules defined over some given set of states. Given a

transition system R, we denote by =⇒R the transition relation defined by R. If

=⇒ is a transition relation between states we write, as usual, S =⇒ S ′ instead

of (S, S ′) ∈ =⇒. We denote by =⇒∗ the reflexive-transitive closure of =⇒. We

call any sequence of transitions of the form S0 =⇒R S1, S1 =⇒R S2, . . . a

derivation in R, and denote it by S0 =⇒R S1 =⇒R S2 =⇒ . . .

Where L is a literal and Λ a context, we will write L ∈≃ Λ if L is a p-variant

of a literal in Λ. A literal L is contradictory with a context Λ iff Lσ = Kσ for

some K ∈≃ Λ and some p-preserving substitution σ. A context Λ is contradictory
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if one of its literals is contradictory with Λ. Every (ordered) context the proof

procedure works with will start with a pseudo-literal of the form ¬v. In examples

we will usually not write ¬v explicitly. Each non-contradictory context starting

with ¬v defines a Herbrand interpretation IΛ, see [18] for more details. In a state

of the form Λ ⊢ Φ, the interpretation IΛ is meant to be a candidate model for Φ.

The purpose of the proof procedure is to recognize whether the candidate model

is in fact a model of Φ, or whether it potentially falsifies a clause of Φ. The latter

situation is detectable syntactically through the computation of context unifiers.

Definition 2.3.1 (Context Unifier) Let Λ be a context and

C = L1 ∨ · · · ∨ Lm ∨ Lm+1 ∨ · · · ∨ Ln

a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context unifier

of C against Λ with remainder Lm+1σ ∨ · · · ∨ Lnσ iff there are fresh p-variants

K1, . . . , Kn ∈≃ Λ such that

1. σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},

2. for all i = 1, . . . , m, (Par(Ki))σ ⊆ V ,

3. for all i = m + 1, . . . , n, (Par(Ki))σ 6⊆ V .

A context unifier σ of C against Λ with remainder Lm+1σ∨· · ·∨Lnσ is admissible

(for Split) iff for all distinct i, j = m + 1, . . . , n, Var(Liσ) ∩ Var(Ljσ) = ∅.

If σ is a context unifier with remainder D of a clause C against a context

Λ, we call each literal of D a remainder literal of σ. We say that C is conflicting

(in Λ because of σ) if σ has an empty remainder.
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Example 2.3.2 Let Λ be {¬v, p(v1, u1)} and let C1 be r(x) ∨ ¬p(x, y), where

x, y, x1 are universal and v, v1, u1, v2 are parametric. Then, the substitutions

σ1 := {v 7→ r(x), v1 7→ x, u1 7→ y}

σ2 := {v 7→ r(v1), x 7→ v1, u1 7→ y}

σ3 := {v 7→ r(v1), x 7→ v1, y 7→ u1}

are all context unifiers of C1 against Λ with respective remainders r(x)∨¬p(x, y),

r(v1)∨¬p(v1, y), and r(v1). But only σ2 and σ3 are admissible. The context unifier

σ1 is not admissible because its remainder literals are not variable-disjoint.

2.3.3 A Basic Proof Procedure

A basic proof procedure for ME is the transition system B, defined by the

rules Decide, Propagate, Backjump and Fail below. The relevant derivations in

this system are those that start with the state {¬v} ⊢ Φ, where Φ is the input

clause set.

Decide: Λ ⊢ Φ, C ∨ L =⇒ Λ (Lσ)d ⊢ Φ, C ∨ L

where

1. σ is an admissible context unifier of C ∨ L against Λ with at least two

remainder literals,

2. Lσ is a remainder literal,

3. neither Lσ nor (Lσ)
sko

is contradictory with Λ.

We call the literal Lσ above a decision literal of the context unifier σ and the

clause C ∨ L. This rule corresponds to an application of the left-hand side of
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the Split rule in ME, with the additional restriction that the context unifier must

have at least two remainder literals. Decide makes the non-deterministic decision

of adding the literal Lσ to the context. It is the only rule that adds a literal as

a decision literal.

Propagate: Λ ⊢ Φ, C ∨ L =⇒ Λ, Lσ ⊢ Φ, C ∨ L

where

1. σ is an admissible context unifier of C∨L against Λ with a single remainder

literal Lσ,

2. Lσ is not contradictory with Λ,

3. there is no K ∈ Λ s. t. K ≥ Lσ.

We call the literal Lσ in the rule above the propagated literal of the context

unifier σ and the clause C ∨L. Propagate models variations of Split and Assert in

ME. It corresponds to applying the left-hand side of Split in ME with a context

unifier with a unit remainder, and ignoring the right-hand side, an optimization

justified as Close is immediately applicable to the right-hand side. Furthermore,

it puts less stringent restrictions on Assert, making it possible to assert parametric

literals. For simplicity, we ignore here the case in which L is negative. That case

somewhat complicates the definition of Propagate and is needed neither for the

proof procedure’s completeness nor for describing the results of this work.

Backjump: Λ LdΛ′ ⊢ Φ, C =⇒ Λ L
sko
⊢ Φ, C

where

1. C is conflicting in Λ LdΛ′ but not in Λ
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This rule corresponds to the application of the Close rule in ME, followed by

a right-hand side Split application higher up in the closed branch. Backjump

models both chronological and non-chronological backtracking by allowing but

not requiring that the undone decision literal L is the most recent one. Note

that L’s complement is added as a propagated literal, after all (and only) the

universal variables of L have been Skolemized, which is needed for soundness.

More general versions of Backjump are conceivable, for instance along the lines

of the backjumping rule of Abstract DPLL [58]. Again, we present this one here

mostly for simplicity.

Fail: Λ ⊢ Φ, C =⇒ ⊥

where

1. C is conflicting in Λ,

2. Λ contains no decision literals.

This rule corresponds to the application of the Close rule in ME to the last

unexplored branch of the derivation tree, with all other branches being already

closed.

Restart: Λ ⊢ Φ =⇒ {¬v} ⊢ Φ

Restart is used to generate fair derivations that explore the search space in an

iterative-deepening fashion.

One can show that there are (deterministic) rule application strategies for

this transition system that are refutationally sound and complete. That is, they
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reduce a state of the form {¬v} ⊢ Φ to the state ⊥ if and only if Φ is unsatisfiable.

Furthermore, for all (finite) derivations ending with an irreducible state of the

form Λ ⊢ Φ, i.e., a state to which no transition rule applies, Λ determines a

Herbrand model of Φ.

2.4 Lemma-Learning

2.4.1 Introduction

In order to obtain an efficient proof procedure for ME it is crucial to adapt

effective techniques that have been developed in the context of DPLL. For some

techniques, in particular backjumping, this is relatively straightforward and does

lead to performance improvements, as has been shown in [12]. Complement-

ing backjumping with a lemma-learning mechanism turns out to be significantly

more complicated. Firstly, because the notion of lemmas and lemma-generation

has to be lifted to first-order logic, and the mechanism in particular has to take

into account that ME makes use of two kinds of variables with different seman-

tics. Secondly, first-order lemma-generation depends on unification, which adds

a significant computational overhead that can offset the potential advantages of

learning. We will present and prove correct three lemma-generation procedures

for ME with various degrees of power, effectiveness in pruning the search space,

and computational overhead. Even if formally correct, each of these procedures

presents issues and complications that do not exist at the propositional level, but

need to be addressed for learning to be effective for ME in practice. We also

present experimental results based on the implementation of all three lemma-

generation procedures in Darwin.
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2.4.2 Related Work

The paper [42] is about satisfiability checking of function-free first-order

formulas. Instead of the widely used reduction to propositional satisfiability

followed by running a SAT solver, the authors propose to keep some of the original

formulas (clauses) and extend a SAT solver to reason with them natively, on the

first-order level, instead of grounding them right away. Their main result is that

this idea may well pay off when problem instances become larger.

There is potential to connect their approach to ours by observing that

these first-order formulas obviously need not come from the input formula—they

could be lemma clauses learned by the techniques we propose. From the perspec-

tive of the Model Evolution calculus, the mentioned result allows to speculate that

even for ground derivations the learning of non-ground lemma clauses, which is

supported by our techniques, may pay off when properly implemented.

Regarding directly related work, i.e., conflict-driven lemma-learning in

first-order theorem proving, not much has been done. The only approaches we

are aware of have been formulated for the model elimination calculus. One of

them is described in [2] and consists of the “caching” and “lemmaizing” techniques.

Caching means to store solutions to sub-goals (which are single literals) in the

proof search. The idea is to look up a solution (a substitution) that solves the

current sub-goal, based on the solution of a previously computed solution of a

compatible sub-goal. This idea of replacing search by look-up is thus conceptually

related to lemma learning as we consider it here. However, caching corresponds

to learning of unit clauses, and it works only for Horn clause sets. Closer to

our approach is the lemmaizing technique, which allows to generate and use
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new clauses as the derivation proceeds. Lemma clauses are generated on branch

closure and by taking the so-called A-literals of a branch into consideration. The

basic motivation for doing so is, like in our approach, to represent a sub-proof by

a single clause. Unsurprisingly, the lemmas are consequences of the input clauses,

potentially there are a lot of them, and their use may and should be subject to

(arbitrary) heuristics. As far as we can tell from [2], the use of lemmas there

seems having been restricted to unit lemmas, perhaps for pragmatic reasons,

although the mechanism has been defined more generally (already in [51]). A

related approach of learning for model elimination, which generalizes this caching

technique, is described in [49]. By caching the solutions in a more context-

dependent (“local”) way, it works for non-Horn clauses, too. In particular the

variant of failure caching, which can be used to conclude that a sub-goal does not

have a solution, turned out to be very useful in practice.

Another source for related work is Explanation-Based Learning (EBL),

an established deductive learning approach in Artificial Intelligence. Generally

speaking, it allows for learning logical descriptions of a concept from the de-

scription of a single concept instance and a preexisting knowledge base. In our

discussion, we follow the rather general and powerful framework in [64]. Using

standard terminology, its basis consists essentially of the language of definite logic

programs and the calculus of SLD-resolution. EBL then means to derive from

a given SLD proof a (definite) clause which shall represent parts of the proof or

even generalizations thereof. The rationale is to derive clauses that are of high

utility, that is, help to find shorter proofs of similar theorems without broadening

the search space too much. Deriving such clauses can be explained using resolu-
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tion terminology, although [64] use their own language. It basically amounts to

partially repeating parts of the given SLD proof and further modifying the clause

derived this way in a sound way. For instance, one of the heuristics prescribed is

to exhaustively apply resolution steps with binary clauses, i.e., implications with

one body literal. Another heuristics amounts to factoring, while still another one

is based on removing redundant sub-goals. The connection to our approach be-

comes apparent from the regression processes defined below. Structurally, these

are SLD-derivations and play a comparable role in deriving lemma clauses. It

should thus be not too difficult to adapt the heuristics developed in [64] to our

setting. The heuristics currently used in our approach are modeled after the ones

successfully used for lemma-learning in propositional SAT solvers.

2.4.3 Adding Learning to ME Proof Procedures

To illustrate the potential usefulness of learning techniques for a transition

system like the system B defined in the previous subsection, it is useful to look

first at an example of a derivation in B.

Example 2.4.1 Let Φ be a clause set containing, among others, the clauses:

(1) ¬Q(x) ∨ R(x, y)

(2) ¬P (x) ∨ ¬R(y, x) ∨ S(y)

(3) ¬R(x, y) ∨ T (x)

(4) ¬S(x) ∨ ¬T (x)

Figure 2.1 provides a trace of a possible derivation of Φ. We use the

notation t(x) to suggest that t is a term containing the variable x. The first

column shows the literal added to the context by the current derivation step, the
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second column specifies the rule used in that step, and the third one indicates

which instance of a clause in Φ was used by the rule. From the instance alone

it should be easy to see which context unifier was used in the last four rule

applications. A row with ellipses stands for zero or more intermediate steps.

Note that Backjump replaces the whole sub-sequence Q(u)d R(u, y) S(u) T (u) of

the current context with ¬Q(u).

Context Literal Derivation Rule Clause Instance
. . . . . . . . .

P (t(x)) Propagate instance P (t(x)) ∨ · · · of some clause in Φ
where t(x) is a term in the variable x.

. . . . . . . . .
Q(u)d Decide instance Q(u) ∨ · · · of some clause in Φ
R(u, y) Propagate instance ¬Q(u) ∨R(u, y) of (1)
S(u) Propagate instance ¬P (t(x)) ∨ ¬R(u, t(x)) ∨ S(u) of (2)
T (u) Propagate instance ¬R(u, y) ∨ T (u) of (3)
¬Q(u) Backjump instance ¬S(u) ∨ ¬T (u) of (4)

Figure 2.1: Trace of a derivation in the system B.

It is clear by inspection of the trace that any intermediate decisions made between

the additions of P (t(x)) and Q(u) are irrelevant in making clause (4) conflicting

at the point of the Backjump application. The fact that (4) is conflicting depends

only on the decisions that lad to the propagation of P (t(x))—say, some decision

literals L1, . . . , Ln with n ≥ 0—and the decision to add Q(u). This means that

the decision literals L1, . . . , Ln, Q(u) will eventually produce a conflict, i.e., make

some clause conflicting, in any context that contains them. The basic goal of

this work is to define efficient conflict analysis procedures that can come to this

conclusion automatically and store it in the system in such a way that Backjump is
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applicable, possibly after some propagation steps, whenever the current context

happens to contain again the literals L1, . . . , Ln, Q(u). Even better would be

the possibility to avoid altogether the addition of Q(u) as a decision literal in

any context containing L1, . . . , Ln, and instead to add the literal ¬Q(u) as a

propagated literal. We discuss how to achieve these in the rest of the section.

Within the abstract framework of Section 2.4.3, and in perfect analogy to

the Abstract DPLL framework of [58], learning can be modeled very simply and

generally by the addition of the following two rules to the transition system B,

in a system we will call L:

Learn: Λ ⊢ Φ =⇒ Λ ⊢ Φ, C

where

1. Φ |= C.

Forget: Λ ⊢ Φ, C =⇒ Λ ⊢ Φ

where

1. Φ |= C.

In this very general formulation, learning is simply the addition of an

entailed clause to the clause set. While in principle one could learn any entailed

clause, Learn is meant to be used to add only clauses that are more likely to

cause further propagations and correspondingly reduce the number of needed

decisions. The Forget rule’s intended use is to control the growth of the clause

set, by removing entailed clauses that cause little propagation.
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Because of the potentially high overhead involved in generating lemmas

and propagating them in practice, we focus in this work on only the kind of

conflict-driven learning that has proven to be very effective in DPLL-based

solvers. This technique can be described proof-theoretically as a linear reso-

lution derivation whose initial central clause is a conflicting clause in the DPLL

computation, and whose side clauses are clauses used in unit propagation steps.

In terms of the abstract framework above, the linear resolution derivation pro-

ceeds as follows. The central clause C ∨ L is resolved with a clause L ∨ D in

the clause set only if L was added to the current context by a Propagate step

with clause L ∨D. Since the net effect of each resolution step is to replace L in

C ∨L by L’s “causes" D, we can also see this resolution derivation as a regression

process.

Both of the first two methods we present below lift this regression to the

first-order case, although with different degrees of generality. The first method

is, at least in theory, strictly subsumed by the second. We present it here because

it does have some advantages in practice, and because it can be used to greatly

simplify the presentation of the second method. The third and last method is

less general than the other two. In our experiments we used it mostly as a sanity

check against the other methods, because of its much lower overhead.

2.4.4 The Grounded Method

Let D = ({¬v} ⊢ Φ0 =⇒L . . . =⇒L Λ ⊢ Φ) be a derivation in the

transition system L where Λ contains at least one decision literal and Φ contains

a clause C0 conflicting in Λ. We describe a process for generating from D a

lemma, a clause logically entailed by Φ, which can be learned in the derivation
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by an application of Learn to the state Λ ⊢ Φ.

We describe the lemma-generation process itself as a transition system,

this time applied to annotated clauses, pairs of the form C | S where C is a

clause and S is a finite mapping {L 7→ M, . . .} from literals in C to context

literals of D. A transition invariant for C | S will be that C consists of negated

ground instances of context literals, while S specifies for each literal L of C the

context literal M of which L is an instance, provided that M is a propagated

literal. The mapping L 7→ M will be used to regress L, that is to resolve it with

M in the clause used in D to add M to the context.

The initial annotated clause A0 will be built from the conflicting clause of

D, and will be regressed by applying to it the GRegress rule, defined below, one or

more times. In the definition of A0 and of GRegress we use the following notational

conventions. If σ is a substitution and C a clause or a literal, Cσ denotes the

expression obtained by replacing each universal variable or parameter of Cσ by a

fresh Skolem constant (one per universal variable or parameter). If σ is a context

unifier of a clause L1∨· · ·∨Ln against some context, we denote by Lσ
i the context

literal paired with Li by σ.

Assume that C0 is conflicting in Λ because of some context unifier σ0.

Then A0 is defined as the annotated lemma

A0 = C0σ0 | {Lσ0 7→ Lσ0 | L ∈ C0 and Lσ0 is a propagated literal}

consisting of a fresh grounding of C0σ0 by Skolem constants and a mapping of

each literal of C0σ0 to its paired literal in Λ if that literal is a propagated literal.

The regression rule is
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GRegress: D ∨M | S, M 7→ Lσ =⇒gr D ∨ Cσµ | S, T

where

1. Lσ is the propagated literal of some context unifier σ and clause L ∨ C,

2. µ is a most general unifier of M and Lσ,

3. T = {Nσµ 7→ Nσ | N ∈ C} and Nσ is a propagated literal.

Note that the mapping is used by GRegress to guide the regression so

that no search is needed. The regression process simply repeatedly applies the

rule GRegress an arbitrary number of times starting from A0 and returns the

last clause. While this clause is ground by construction, it can be generalized to

a non-ground clause C by replacing each of its Skolem constants by a distinct

universal variable. As proved in the next two results, this generalized clause is a

logical consequence of the current clause set Φ in the derivation, and so can be

learned with an application of the Learn rule.

To start, every regression of the initial annotated lemma with GRegress

generates a logical consequence of the clause set.

Lemma 2.4.2 If A0 =⇒∗gr C | S, then the following holds.

1. For every M 7→ N ∈ S, M is a (ground) instance of N ,

2. The (ground) clause C is a consequence of Φ.

Proof. Suppose a regression derivation A0 =⇒∗gr C | S of length l ≥ 0 as given.

We directly prove the claim by induction on l.
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l = 0) 1. By construction of A0, M = Lσ0 for some literal L and N is the

propagated literal Lσ0 . By definition of context unifier we have that Lσ0 = Nσ0.

So M is a ground instance of N .

2. Immediately by construction, as C0σ0 is a ground instance of the closing clause.

l > 0) 1. For the mappings of S added by the application of the rule, the proof

is analogous to the base case. For the others, the claims holds by induction.

2. Using the notation as introduced in the GRegress rule above, we prove first

that GRegress preserves consequenceship.

With M being a (ground) instance of Lσ, as obtained by the induction

hypothesis and 1, the most general unifier µ is in fact a matcher such that Lσµ =

M . Thus, the clause D ∨ Cσµ is a (ground) instance of the resolution resolvent

D ∨ Cσ of the parent clause D ∨ M , which is ground, and the parent clause

Lσ ∨ Cσ, where the most general unifier used is µ.

Now, the (ground) clause D ∨ M is a consequence of Φ by induction

assumption and Lσ ∨ Cσ is an instance of a clause in Φ by construction. With

the soundness of resolution it follows that D ∨Cσµ is a consequence of Φ.

Below we write C as a suggestive notation to denote a ground clause

standing in a certain relation with another clause C.

Theorem 2.4.3 If A0 =⇒∗gr C | S, the clause C obtained from C by replacing

each constant of C not in Φ by a fresh universal variable is a consequence of Φ0.

Proof. By Lemma 2.4.2 and the Free Constants Theorem of first order logic.
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From a practical viewpoint, an important invariant is that one can con-

tinue regressing the initial clause until it contains only decision literals. This

result, expressed in the next proposition, gives one great latitude in terms of how

far to push the regression. In practice, to reduce the regression overhead and

following a common practice in DPLL solvers, in our implementation we regress

only propagated literals belonging to the last decision level of Λ.

Theorem 2.4.4 If A0 =⇒∗gr A and A has the form D∨M | S, M 7→ N , then the

GRegress rule applies to A.

Proof. It is enough to show that M is an Assert literal in D and M is an instance

of N . The latter holds by Lemma 2.4.2, the former is easily provable again by

induction on the length of regression derivations.

Example 2.4.5 We are going to show a possible regression of the conflicting

clause ¬S(x) ∨ ¬T (x) in the derivation of Example 2.4.1. This clause is conflict-

ing because of the context unifier σ0 = {x 7→ u}, pairing the clause literals ¬S(x)

and ¬T (x) respectively with the context literals S(u) and T (u). So we start with

the initial annotated clause:

A0 = (¬S(x) ∨ ¬T (x))σ0 | {(¬S(x))σ0 7→ (¬S(x))σ0 , (¬T (x))σ0 7→ (¬T (x))σ0}

= ¬S(a) ∨ ¬T (a) | {¬S(a) 7→ S(u), ¬T (a) 7→ T (u)} .

To ease the notation burden, we represent the regression in the more

readable form of a linear resolution tree in Figure 2.2.

At each step the central clause is the regressed clause, the literal in bold

font is the regressed literal, and the side clause is the clause (L ∨ C)σ identified
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¬S(a) ∨¬T(a) ¬R(u, y) ∨ T (u)

¬S(a) ∨ ¬R(a, b) ¬P (t(x)) ∨ ¬R(u, t(x)) ∨ S(u)

¬R(a, b) ∨ ¬P (t(c)) ∨ ¬R(a, t(c)) ¬Q(u) ∨R(u, y)

¬P (t(c)) ∨¬R(a, t(c)) ∨ ¬Q(a) ¬Q(u) ∨ R(u, y)

¬P (t(c)) ∨ ¬Q(a)

Figure 2.2: Grounded regression of ¬S(x) ∨ ¬T (x).

in the precondition of GRegress. The introduced fresh Skolem constants are a, b

and c. Stopping the regression with the last resolvent in the derivation gives the

lemma ¬P (t(c)) ∨ ¬Q(a). After abstracting away the Skolem constants we get

the lemma ¬P (t(x))∨¬Q(y). The fact that the literals in this lemma are variable

disjoint is not typical of the regression process. It is just a (nice) feature of this

particular example.

To judge the effectiveness of lemmas learned with this process in reducing

the explored search space we also need to argue that they let the system later

recognize more quickly, or possibly avoid altogether, the set of decisions responsi-

ble for the conflict in D. This is not immediately obvious within the ME calculus

because of the role played by parameters in the definition of a conflicting clause.

Recall that a clause is conflicting because of some context unifier σ iff it moves

parameters only to parameters in the context literals associated with the clause.

To show that lemmas can have the intended consequences, we start by observing

that, by construction, every literal Li in a lemma C = L1 ∨ · · · ∨ Lm generated

with the process above is a negated instance of some context literal Ki in Λ. Let

us write CΛ to denote the set {K1, . . . , Km}.

Lemma 2.4.6 If A0 =⇒∗gr E | S and the clause E is obtained from E by replacing

each constant of E not in Φ by a fresh universal variable, then E is conflicting
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in any context that contains EΛ.

See Section 2.4.10 for a proof.

Theorem 2.4.7 Any lemma C produced from D by the regression method in this

section is conflicting in any context that contains CΛ.

Proof. Follows immediately from Lemma 2.4.6

Proposition 2.4.7 implies, as we wanted, that having had the lemma C in

the clause set from the beginning could have led to the discovery of a conflict

sooner, that is, with less propagation work and possibly also less decisions than

in D. Moreover, the more regressed the lemma, the sooner the conflict would

have been discovered.

Example 2.4.8 Looking back at the lemmas generated in Example 2.4.5, it is

easy to see that the lemma ¬R(x, y)∨¬P (t(z))∨¬R(x, t(z)) becomes conflicting

in the derivation of Figure 2.1 as soon as R(u, y) is added to the context. In

contrast, the more regressed lemma ¬P (t(x)) ∨ ¬Q(y) becomes conflicting as

soon as the decision Q(u) is made.

Since a lemma generated from D is typically conflicting once a subset of

the decisions in Λ is taken, learning it in the state Λ ⊢ Φ, C0 will help recognize

more quickly these wrong decisions later, in extensions of D that undo parts of Λ

by backjumping. In fact, if the lemma is regressed enough, one can often do even

better and completely avoid the conflict later on, for example with a derivation

strategy that prefers applications of Propagate to applications of Decide.
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Example 2.4.9 Consider an extension of the derivation in Figure 2.1, where the

context has been undone enough that now its last literal is P (t(x)). By applying

Propagate to the lemma ¬P (t(x)) ∨ ¬Q(y) it is possible to add ¬Q(y) to the

context. This prevents the addition of Q(u) as a decision literal, because Q(u) is

contradictory with ¬Q(y), and avoids the conflict with clause (4).

So far, what we have described mirrors what happens with propositional

clause sets in DPLL based SAT solvers. What is remarkable about learning at

the ME level, in addition to that it does have the same nice effects obtained in

DPLL, is that its lemmas are not just caching compactly the reasons for a specific

conflict. For being a first-order formula, a lemma in ME represents an infinite

class of conflicts of the same form. For instance, the lemma ¬P (t(x)) ∨ ¬Q(y)

in our running example will become conflicting once the context contains any

instance of P (t(x)) and Q(y), not just the original P (t(x)) and Q(u). In fact,

due to (p-preserving) unification, a lemma can be conflicting in a context even

due to context literals that are more general than the literals of the lemma. Our

lemma-generation process then does perform learning in a more proper sense of

the word, as it can generalize over a single instance of a conflict, and so leads to

additional pruning of the search space.

A slightly more careful look at the derivation in Figure 2.1 shows that

the lemma ¬P (t(x)) ∨ ¬Q(y) is actually not as general as it could be. The

reason is that a conflict arises also in contexts that contain, in addition to any

instance of Q(y), also any generalization of P (t(x)). So a better possible lemma is

¬P (x)∨¬Q(y). We can produce such generalized lemmas by lifting the regression

process similarly as in Explanation-Based Learning (see Section 2.1). We describe
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Figure 2.3: Grounded regression derivation and its lifting.

this lifted process next.

2.4.5 The Lifted Method

Consider again the derivation D from the previous subsection, whose last

state Λ ⊢ Φ contains a clause C0 that is conflicting in Λ because of some context

unifier σ0. Starting with the annotated lemma

C ′0 | S
′
0 = C0σ0 | {Lσ0 7→ Lσ0 | L ∈ C0 and Lσ0 is a propagated literal},

one can build a regression of the form

C ′0 | S
′
0 =⇒gr C ′1 | T

′
1 =⇒gr . . . =⇒gr C ′n | T

′
n .

We have seen that this regression determines a linear resolution derivation, whose

derivation tree is depicted in Figure 2.3(a), where C ′0 and D′i are instances of

clauses in Φ, and C ′i+1 is a resolvent of C ′i and D′i for all i = 0, . . . , n− 1.

Using basic results about resolution and unification, this derivation can

be lifted to one of the form shown in Figure 2.3(b), where C0 and each Di are

the clauses in Φ that C ′0 and D′i are instances of, and each Ci+1 is a resolvent of

C ′i and D′i and a generalization of C ′i+1.

Conceptually, the lifted derivation can be built simply by following the

steps of the grounded derivation, but this time using the original clauses in Φ for
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the initial central clause and the side clauses. In practice the lifted derivation can

of course be built directly, without building the grounded derivation first. We do

this by starting with the annotated lemma

C0 | S0 = C0 | {L 7→ Lσ0 | L ∈ C0 and Lσ0 is a propagated literal},

and regressing that lemma with the following lifted version of GRegress:

Regress: D ∨M | S, M 7→ Lσ =⇒r (D ∨ Cv)µ | S, T

where

1. Lσ is the propagated literal of some context unifier σ and clause L ∨ C,

2. Lv ∨ Cv is a fresh variant of L ∨ C,

3. µ is a most general unifier of M and Lv,

4. T = {Nvµ 7→ Nσ | N ∈ C} and Nσ is a propagated literal.

Theorem 2.4.10 For every grounded regression

C ′0 | S
′
0 =⇒gr C ′1 | T

′
1 =⇒gr . . . =⇒gr C ′n | T

′
n ,

there is a lifted regression

C0 | S0 =⇒r C1 | T1 =⇒r . . . =⇒r Cn | Tn ,

such that Ci & C ′i and Φ |= Ci for all i = 0, . . . , n.

Proof. The grounded regression can be written as a linear resolution deriva-

tion from ground instances of clauses from Φ. Using standard lifting arguments

(see [29]) this derivation can be lifted to a derivation using the clauses from Φ
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¬S(x) ∨¬T(x) ¬R(x1, y1) ∨ T (x1)

¬S(x) ∨ ¬R(x, y1) ¬P (x2) ∨ ¬R(y2, x2) ∨ S(y2)

¬R(x, y1) ∨ ¬P (x2) ∨ ¬R(x, x2) ¬Q(x3) ∨ R(x3, y3)

¬P (x2) ∨¬R(x, x2) ∨ ¬Q(x) ¬Q(x4) ∨ R(x4, y4)

¬P (x2) ∨ ¬Q(x)

Figure 2.4: Lifted regression of ¬S(x) ∨ ¬T (x).

instead of their instances, which, in turn, can be written as the lifted regression

as stated. This proves Ci & C ′i.

Regarding Φ |= Ci, observe that C0 ∈ Φ and, according to the above, Ci is

a resolution resolvent of Ci−1 and some clause from Φ, for all i = 1, . . . , n. Then

Φ |= Ci follows by the soundness of the resolution inference rule.

As in the grounded case then, we can use any regressed clause C as a

lemma. In contrast, this time there are no constants to abstract, as the regression

process resolves only input clauses of C. Again, the resulting clause is a logical

consequence of Φ.

Example 2.4.11 Figure 2.4 shows the lifting of the grounded regression in Fig-

ure 2.2 for the conflicting clause ¬S(x)∨¬T (x) in the derivation of Example 2.4.1.

This time, we start with the initial annotated clause:

(¬S(x) ∨ ¬T (x)) | {¬S(x) 7→ S(u), ¬T (x) 7→ T (u)} .

As before, we represent the regression as a linear resolution tree, where

this time at each step the central clause is the regressed clause, the literal in bold

font is the regressed literal, and the side clause corresponds to the clause Lv ∨Cv

in the precondition of Regress. The lemma learned in this case is ¬P (x)∨¬Q(y).
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2.4.6 The Propositional Method

Recall that each propagated literal L in a context is the result of a unifica-

tion of a clause in the clause set with some previous context literals K1, . . . , Kn.

This sort of dependency of L on K1, . . . , Kn defines a dependency graph over

context literals (whose roots are the context’s decision literals) that can be used

for conflict analysis. In fact, if C is a conflicting clause in a context Λ because of

some context unifier σ, starting from the context literals used by σ and tracing the

dependency graph backwards, one can precisely determine the set {L1, . . . , Lk} of

decision literals that are ultimately responsible for the conflict. Then one could

simply remember this set of decisions and make sure that they are not repeated

again. The way we do this is to abstract each Li by a unique (modulo p-renaming)

propositional variable Pi, add the propositional clause P1 ∨ · · · ∨Pk to the clause

set, and from then on add Pi to the context each time Li is added. Then the

clause will become conflicting every time L1, . . . , Lk occur together again in a con-

text. By applying Propagate to these propositional clauses, one can even avoid

the conflict by not adding Li again as a decision literal if Pi is present in the

context.

The appeal of this method is that it is relatively cheap to generate and

process this sort of lemmas. The downside is that these lemmas are less general

than those computed with the previous methods, as they just cache one specific

set of conflicting decisions.

2.4.7 Implementation

We implemented the three learning methods described in the previous

section in Darwin [12]. We discuss this implementation and comment on a few
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details.

2.4.7.1 Lemma-Generation

Since we merely take the decision literals relevant for a conflict as the

pseudo-lemma in the propositional abstraction, the lemma-generation methods

of interest are grounded and lifted regression. For both cases we employ memo-

ization to avoid regressing the same context literal more than once.

In the case of the grounded regression, memoization is achieved implicitly.

Recall that here each literal to regress corresponds to a (negated) ground instance

of a propagated context literal, which in turn depends itself on previous context

literals in the context. It is easy to see that these dependencies between context

literals determine a directed graph, called a conflict graph in the SAT literature,

whose roots are the context literals associated to the current clause to regress (the

regression clause) and whose leaves are decision literals. The regression process

explores a conflict graph by a breadth-first traversal. The literals in the regression

clause are regressed in the order of addition to the context, where instances of

more recently added context literals are regressed first. This makes sure that all

instances of the same context literal are regressed in a row. Now, simply because

the regression clause is represented as a set, each literal is automatically regressed

only once.

The process is not as simple for the lifted method, as it in general involves

unification operations, as opposed to just matching operations as in the grounded

case. More precisely, the regression process is implemented by maintaining three

data structures. Firstly, a set of all the literals in the current regression clause,

the regression set, secondly, a set of regressed literals, literals that will not be
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regressed further due to some stop criterion, and thirdly, a set of unification

constraints. If a literal chosen from the regression set is not to be regressed,

for example because it is paired with a decision literal, then it is simply moved

to the set of regressed literals. Otherwise, it is replaced by the literals in the

corresponding side clause, and the unifier of the corresponding resolution step

is added to the set of unification constraints. The regression stops when the

regression set is empty. At that point, the unification constraints are solved, and

the resulting unifier is applied to the set of regressed literals, thus producing the

lemma clause.

As the literals of a regression clause are not ground, memoization for

variants of a literal is not implicit by using a simple set representation, as in

the grounded method. Thus, in the lifted process, memoization is achieved by

doing the regression depth-first, again in the order of addition of literals to the

context. For each regressed literal its regressed literals and constraints are stored.

Whenever the same literal is to be regressed again, this information is reused by

creating a copy using fresh variables. As described in [12], this does not require

the creation of new terms, but merely replacing integer offsets. As an optimization

and similar to the grounded case, a context literal is regressed only once if it is

an instance of a ground clause literal.

2.4.7.2 Regression Depth

In analogy to the common procedure in SAT solvers, only literals propa-

gated after the most recent decision literal responsible for a conflict are regressed.

The favored backjumping method backtracks up to but excludes the second most

recent responsible decision literal, L. That is, the derivation is continued right
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after the decision of L. In contrast, as allowed by the Backjump rule, Darwin

only backtracks up to and including the most recent decision literal K responsi-

ble for the conflict. That is, the derivation is continued right before deciding on

K, keeping all propagations and decisions made after the decision of L. Thus,

propositional backjumping backtracks farther and is in a sense more eager. Ex-

perimental results have shown that this more eager form of backjumping is not

beneficial in Darwin, as the right split does not in general prevent the jumped over

decision literals and the subsequent propagations from being reasserted. That is,

most of the times eager backjumping does not change the search space in a bene-

ficial way, but instead introduces additional overhead. This has the effect that in

Darwin a negated decision literal does not necessarily depend on the current de-

cision level, and therefore a branch closure might not depend on the most recent

decision literal, which makes the algorithm somewhat more complicated.

An important optimization for propositional solvers is to stop the regres-

sion at a unique implication point (UIP) [52]. In essence, a UIP is a node of the

conflict graph such that each path from the most recent decision literal involved

in the conflict to the literals in the regression set goes through the UIP. In par-

ticular, the (node of the) decision literal is a UIP. Thus, when backjumping to

the split decision and undoing it, all literals of a lemma regressed up to a UIP

except for the UIP literal are conflicting. Applying Propagate to it makes the

application of the right-hand side of the split decision redundant, as it is implied

by the obtained context.

It is unclear how to lift this idea to the first-order level, though, as in

general there may be several, distinct instances of a propagated literal used in a
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closure. The naive approach of treating all instances of the same context literal

as a potential UIP did not turn out to be efficient in practice. Furthermore, while

the UIP can be found automatically in the grounded regression, namely when the

regression set contains only instances of exactly one context literal, this is not

possible using the depth-first approach of the lifted regression. Here either the

regression needs to be done breadth-first, but then memoization cannot be used,

or the UIP must be computed before the actual regression is performed.

As a side note we point out that, for the same reason as above, unlike in the

propositional case lemmas cannot be used in general to make the explicit addition

of the negated decision literal unnecessary after backjumping. The following

example makes this clear.

Example 2.4.12 A part of a derivation based on the clauses

(1) P (a, b) ∨Q(a, x)

(2) ¬P (a, b) ∨ ¬Q(a, c)

(3) P (x, b) ∨ ¬Q(x, x)

might be Decide of Q(a, x) based on (1), Propagate of ¬P (a, b) based on (2), and

Fail based on (3). Learning yields the grounded and lifted lemma ¬Q(a, c) ∨

¬Q(a, a). While this lemma does become conflicting if Decide of Q(a, x) is ap-

plied again, it does not prevent that application of Decide. The reason can be

seen by looking at Split, the inference rule on which Decide is based. As x is a

universal variable, the left split in essence stands for ∀xQ(a, x), and the right

split stands for ¬∀xQ(a, x) or ∃x¬Q(a, x). This is modeled in ME by introduc-

ing a fresh Skolem constant s and using ¬Q(a, s) as the right split literal. The

lemma ¬Q(a, c)∨¬Q(a, a) gives us in a sense something stronger, as it limits the
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number of instances which can be false to just two, instead of merely saying that

“some” instance must be false. Unfortunately, as the lemma is not unit, it is not

effective.

It is unclear how to detect situations of this kind, where it is beneficial

to abstract a set of literals by one literal through the introduction of Skolem

constants, and we have not pursued this any further. This problem tends to occur

more frequently with lifted lemmas, as the more general learning process often

introduces several partially instantiated literals instead of one common instance,

making Propagate sometimes less efficient with lifted lemmas.

2.4.7.3 Simplification

A lemma computed in the grounded and lifted regression is simplified

before usage. Note that a context literal asserted in the root decision level, that

is before any decision literal is added to the context, is never regressed according

to the description above. But, as it is implied by the clause set, its grounded

regression does in essence correspond to a unit resolution step. As a consequence,

root assert context literals do not need to be and are not added to the lemma. For

the lifted regression the case is more complicated, as it is only directly applicable

if the context literal is an instance of a unit clause. As in addition the constraint

has to be computed as usual, which in some cases leads to a significant overhead

due to a large number of constraints, root asserts are not treated specially here.

Simplifying the lemma is particularly important in the lifted case because

it is not unusual for the lemma regression process to produce very long lemmas,

with several instances or variants of the same literal. As condensing is too expen-
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sive, we employ a simpler method which produces good results in practice with

a number of unification tasks linear in the number of literals. If all instances of

the same context literal in a lemma have a common instance, they are replaced

by their most general common instance, and the corresponding unifier is applied

to the remainder of the lemma. Then, if still several variants of a literal occur,

they are condensed into one literal, and the renaming is again applied to the

remainder of the lemma. Finally, duplicates of literals are removed as clauses are

treated as sets of literals.

Unfortunately, this method sometimes simplifies the lemma in an un-

wanted way, making the lemma in effect useless. For example, if in a con-

text the literals ¬P (a), ¬Q(a), ¬Q(b), and ¬R(b) lead to a conflict, then the

learned grounded lemma might be P (a)∨Q(a)∨Q(b)∨R(b), and the more gen-

eral lifted lemma might be P (x) ∨ Q(x) ∨ Q(y) ∨ R(y). Now, its simplification,

P (x) ∨ Q(x) ∨ R(x), cannot be used to prevent the recreation of the conflicting

context, and in fact not even to close on it.

2.4.7.4 Application

In principle, during a derivation of the proof procedure lemmas can be

used like any other clause as far as the rules Decide, Propagate, and Fail are

concerned. As a lemma’s purpose is to prune the search space, applying Decide

to lemmas does not seem like a sensible choice, as confirmed by our experimental

results. Using lemmas only for Fail applications and for selected applications of

Propagate turned out to be the most efficient usage.

Furthermore, to reduce the context unifier computation overhead, poten-

tial propagations for a new lemma are computed only based on future extensions
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of the context. Therefore, when after an application of Backjump a lemma is

learned, it does not propagate the negated decision literal L
sko

. As an optimiza-

tion this happens only if the lemma is unit, which might in fact propagate a

strictly p-preservingly more general literal than L
sko

. In conjunction with the

above described shortening of grounded lemmas with root context literals, this

case occurs more often in the grounded than the lifted case, making a grounded

lemma sometimes more effective than the corresponding lifted one.

In general, applications of Propagate are restricted in Darwin to those with

universal propagated literals, i.e., parameter-free literals. Adding non-universal

propagated literals to the context is not only unnecessary for completeness, but

also counterproductive for efficiency, as it substantially increases the number of

context unifiers usable by Decide or Propagate. On the other hand, adding literals

propagated by a lemma is useful to avoid conflicts, as we discussed earlier. In the

current implementation, we strike a balance between these two conflicting needs

by adding to the context a non-universal propagated literal only if the propagating

clause has been learned as a lemma at least n times in the derivation—a crude but

easily computed estimate of the lemma’s usefulness in avoiding future conflicts.

Experimentally, a value of n = 3 seems to give the best results.

2.4.7.5 Forget

At the moment we have implemented only a relatively crude scheme for

forgetting lemmas, again inspired by similar schemes in the SAT literature [66].

In this scheme, there exists an upper limit u and a lower limit l on how many

lemmas are stored at any time. If a new lemma is learned after u has been

reached, the worst lemmas are removed until there are only l lemmas left. The
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new lemma is then added to this smaller lemma set.

The value of a lemma is determined by a score, which is initially set to the

worst score among the existing lemmas. Whenever the lemma is responsible for

an application of Fail, i.e., the lemma is involved in the regression of a conflict,

its score is incremented by 1. When the worst lemmas are removed, all scores

are divided by 2. As an alternative, we also tried to decay the score periodically

after a certain number of Backjump applications. This score is not currently used

in the heuristics for choosing which lemma to propagate on, mostly because it

is not trivial to integrate properly into the system’s architecture. Unfortunately,

these schemes did not lead to any improvement over not applying Forget at all.

2.4.8 Experimental Evaluation

We evaluated the effectiveness of lemma-learning over two problem sets,

firstly directly over the TPTP problem library, and secondly on transformations

of TPTP problems obtained in an application of finite model finding.

2.4.8.1 TPTP

We first evaluated the effectiveness of lemma-learning in Darwin over the

TPTP problem library version 3.1.1 [68]. Since Darwin can handle only clause

logic, and has no dedicated inference rules for equality, we considered only clausal

problems without equality. Furthermore, as Darwin never applies the Decide rule

in Horn problems [12], and thus also never backtracks, we further restricted the

selection to non-Horn problems only. All tests were run on Xeon 2.4Ghz machines

with 1GB of RAM. The imposed limit on the prover were 300s CPU time and

512MB of RAM.
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Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps

no lemmas 896 2.7 2397.0 1.00 24991 597286 45074
propositional 895 2.8 2507.6 0.96 20056 570962 37102
grounded 895 2.4 2135.6 1.12 9476 391189 18935
lifted 898 2.4 2173.4 1.10 9796 399525 19367

no lemmas 244 3.0 713.9 1.00 24481 480046 40766
propositional 243 3.4 821.1 0.87 19546 453577 32794
grounded 243 1.8 445.1 1.60 8966 273849 14627
lifted 246 2.0 493.7 1.45 9286 282600 15059

no lemmas 108 5.2 555.7 1.00 23553 435219 38079
propositional 107 4.5 478.8 1.16 18703 392616 30209
grounded 108 2.2 228.5 2.43 8231 228437 12279
lifted 111 2.6 274.4 2.02 8535 238103 12688

no lemmas 66 5.0 323.9 1.00 21555 371145 34288
propositional 66 4.5 289.7 1.12 17044 333648 27026
grounded 67 1.7 111.4 2.91 6973 183292 9879
lifted 70 2.3 151.4 2.14 7275 193097 10294

Table 2.1: Effect of lemma-learning on the TPTP

The four sections of Table 2.1 correspond to problems that are solved

within 300s and Darwin takes respectively at least 0, 3, 20, and 100 applications

of Backjump without lemmas. The four rows of each section summarize the

results for various configurations of Darwin, namely, not using lemmas and using

lemmas with the propositional, grounded, and lifted regression methods. Solved

Problems gives the number of problems solved by a configuration, while the

remaining values are for the subsets of 894, 241, 106, 65 problems solved by all

configurations. Avg Time (Total Time) gives the average (total) time needed

for the 894 problems solved by all configurations, Speed up shows the run time

speed up factor of each configuration versus the one with no lemmas. Failure,

Propagate, and Decide give the number of rule applications, with Failure

including both Backjump and Fail applications.
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Focusing on the first section, a significant observation is that all config-

urations solve almost exactly the same number of problems, which is somewhat

disappointing. The situation is similar even with an increased timeout of one

hour per problem. A sampling of the derivation traces of the unsolved problems

reveals, however, that they contain only a handful of Backjump steps, suggesting

that the system spends most of the time in propagation steps and supporting op-

erations such as the computation of context unifiers. The second observation is

that for the solved problems the search space, measured in the number of Decide

applications, is significantly pruned by all learning methods (with 18% to 58%

less decisions), although this improvement is only marginally reflected in the run

times. This too seems to be due to the fact that most derivations involve only

a few applications of Backjump. Indeed, 652 of the 898 solved problems require

at most 2 backjumps. This implies that only a few lemmas can be learned, and

thus their effect is limited and the run time of most problems remains unchanged.

Based on these tests, it is not clear if this an intrinsic property of the calculus,

an artifact of the specific proof procedure implemented by Darwin, or a feature

of the TPTP library.

For a more meaningful comparison, the other three sections of Table 2.1

show the same statistics, but restricted to the problems solved with more ap-

plications of Backjump. There, the effect of pruning the search space is more

pronounced and does translate into reduced run times. In particular, the speed

up of each lemma configuration with respect to the no lemmas one steadily in-

creases with the difficulty of the problems, reaching a factor of almost 3 for the

most difficult problems in the grounded case. Moreover, the lifted lemmas con-
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figuration always solves a few more problems than the no lemmas one.

Because of the way Darwin’s proof procedure is designed, in addition to

pruning search space, lemmas may also cause changes to the order in which the

search space is explored. Since experimental results for unsatisfiable problems

are usually more stable with respect to different space exploration orders, it

is instructive to separate the data in Table 2.1 in unsatisfiable and satisfiable

problems.

Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps

no lemmas 563 3.3 1827.4 1.00 22741 495924 35831
propositional 562 3.5 1975.5 0.92 18478 476066 28959
grounded 561 3.0 1705.2 1.07 8336 294819 11620
lifted 562 3.1 1731.8 1.06 8610 300273 12004

no lemmas 193 1.9 364.4 1.00 22283 419920 35121
propositional 192 2.7 508.9 0.71 18020 399969 28249
grounded 191 1.2 234.7 1.55 7878 218739 10910
lifted 192 1.4 271.4 1.34 8152 224587 11294

no lemmas 89 2.9 255.6 1.00 21589 388200 34109
propositional 89 2.4 216.2 1.18 17390 352350 27328
grounded 90 0.8 68.2 3.74 7352 188032 10216
lifted 90 1.2 103.1 2.48 7615 194755 10581

no lemmas 61 3.7 226.4 1.00 20157 351521 32011
propositional 61 3.1 190.8 1.19 16169 317696 25570
grounded 61 0.9 54.0 4.19 6484 163481 9058
lifted 62 1.4 88.2 2.57 6748 170424 9429

Table 2.2: Effect of lemma-learning on unsatisfiable TPTP problems

The results for unsatisfiable problems in Table 2.2 show the same pattern

as the aggregate results. The speed up factors for grounded lemmas in partic-

ular are respectively 1.07, 1.55, 3.74, and 4.19, which actually compares more
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Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps

no lemmas 333 1.7 569.6 1.00 2250 101362 9243
propositional 333 1.6 532.1 1.07 1578 94896 8143
grounded 334 1.3 430.4 1.32 1140 96370 7315
lifted 336 1.3 441.6 1.29 1186 99252 7363

no lemmas 51 7.0 349.5 1.00 2198 60126 5645
propositional 51 6.2 312.2 1.20 1526 53608 4545
grounded 52 4.2 210.4 1.66 1088 55110 3717
lifted 54 4.4 222.3 1.57 1134 58013 3765

no lemmas 18 17.7 300.1 1.00 1964 47019 3970
propositional 18 15.4 262.6 1.14 1313 40266 2881
grounded 19 9.4 160.3 1.87 879 40405 2063
lifted 21 10.1 171.3 1.75 920 43348 2107

no lemmas 5 24.4 97.5 1.00 1398 19624 2277
propositional 5 24.7 98.9 0.99 875 15952 1456
grounded 6 14.4 57.4 1.70 489 19811 821
lifted 8 15.8 63.2 1.54 527 22673 865

Table 2.3: Effect of lemma-learning on satisfiable TPTP problems

favorably overall to the corresponding speed up factors in Table 2.1, respectively

1.12, 1.60, 2.43, and 2.91. The speed up factors for satisfiable problems are a lot

smaller, always well below 2. In general, most solved satisfiable problems require

only very few applications of Decide and Backjump.

Plotting the individual run times of the no lemmas configuration against

the lemma configurations, and the grounded against the lifted lemmas configura-

tion for all solved problems with at least 3 backjumps, as seen on a log-log scale

in Figure 2.5, clearly shows the positive effect of learning.

For readability, the cutoff is set at 100s instead of 300s, because in all cases

less than a handful of problems are solved in the 100-300s range. For nearly all of

the problems, the performance of the grounded lemmas configuration is better,

often by a large margin, than the one with no lemmas. A similar situation occurs



53

 0.1

 1

 10

 100

 0.1  1  10  100

gr
ou

nd
ed

no lemmas

 0.1

 1

 10

 100

 0.1  1  10  100

lif
te

d

no lemmas

 0.1

 1

 10

 100

 0.1  1  10  100

pr
op

os
iti

on
al

no lemmas

 0.1

 1

 10

 100

 0.1  1  10  100

gr
ou

nd
ed

lifted

Figure 2.5: Comparison of lemma-learning methods

with lifted lemmas, although there are more problems for which the no lemmas

configuration is faster. In contrast, the plot for the propositional configuration

looks considerably different, with few outliers for either configuration, and basi-

cally all points closely clustered around the diagonal. Finally, the comparison of

the grounded and the lifted learning method shows that the gained generality of

the latter almost never pays off in terms of run time, except that it allows the

system to solve three additional problems.

Overall, the results above indicate that the propositional method is not

nearly as effective at pruning the search space or decreasing the run time as the

other two learning methods, confirming our hypothesis that generalizing pays off.

They also show that lifted lemmas generate more Decide applications and have

higher overhead than grounded lemmas. The larger number of decision steps

of the lifted method versus the grounded one seems paradoxical at first sight,

but can be explained by observing that lifted lemmas also cause the addition
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of more general propagated literals to a context, leading to a higher number of

(possibly useless) context unifiers. Furthermore, due to the increased generality of

lifted lemmas and the way they are simplified when they are too long, sometimes

Propagate applies to a grounded lemma but not to the corresponding lifted lemma,

making the latter less effective at avoiding conflicts (see Section 2.4.7).

The higher overhead of the lifted method can be attributed to two main

reasons. The first is the increased number of context unifiers to be considered

for rule applications. The second is the intrinsically higher cost of the lifted

method versus the grounded one, because of its use of unification—as opposed

to matching—operations during regression, and its considerable post-processing

work in removing multiple variants of the same literals from a lemma—something

that occurs quite often.

2.4.8.2 Finite Model Finding

It is somewhat surprising that only a minority of the TPTP problems used

in the first experiment cause a considerable amount of search and backtracking,

and that, on the other hand, many decidable fragments of first-order logic are

NP-hard. We considered a second problem set, stemming from the application

of Darwin to finite model finding described in Section 2.5, which exhibits more

search. In this scenario, Darwin is run over transformations of a problem for in-

creasing domain sizes, until a model is found or unsatisfiability can be concluded.

In the configurations with learning, Darwin learns and uses lemmas during each

iteration, and carries the ones that are independent of the domain size over to

the next iterations. Thus it is reasonable to consider together all iterations of a

run when measuring the effect of learning.
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Method Solved Average Total Speed Failure Propagate Decide
Probls Time Time up Steps Steps Steps

no lemmas 657 5.6 3601.3 1.00 404237 16122392 628731
propositional 658 4.4 2827.1 1.27 198023 7859965 351236
grounded 669 3.3 2106.3 1.71 74559 4014058 99865
lifted 657 4.7 3043.9 1.18 41579 1175468 68235

no lemmas 162 17.8 2708.6 1.00 398865 15911006 614572
propositional 163 13.0 1971.1 1.37 193302 7659591 338074
grounded 174 7.9 1203.1 2.25 70525 3833986 87834
lifted 162 14.0 2126.2 1.27 38157 1023589 57070

no lemmas 52 36.2 1702.9 1.00 357663 14580056 555015
propositional 53 20.5 961.9 1.77 161851 6540084 291492
grounded 64 10.5 495.3 3.44 53486 3100339 64845
lifted 57 11.5 538.7 3.16 26154 678319 39873

Table 2.4: Effect of lemma-learning on finite model finding

Table 2.4 shows the results for the 815 satisfiable clause problems of the

TPTP library. The sections of the table are structured as before, except that

without lemmas Darwin applies Backjump respectively at least 0, 100, and 1000

times. To give an idea how our results compare to other approaches, we remark

that Mace 4 and Paradox 1.3, currently the fastest finite model finders available,

respectively solve 553 and 714 of those problems, making Darwin second only to

Paradox.

In general, solving a problem in Darwin with the process above requires

significantly more applications of Backjump than for the set of experiments pre-

sented earlier. As a consequence, the grounded lemmas configuration performs

significantly better than the no lemmas configuration, solving the same problems

in about half the time, and also solving 12 new problems. The lifted configuration,

on the other hand, performs only moderately better. Although the search space

is significantly reduced, the overhead of lemma simplification almost outweighs
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the positive effects of pruning. Restricting the analysis to harder problems shows

that the speed up factor of grounded lemmas increases gradually to about 3.5.

This confirms that lemmas do have a significant positive effect if the focus in

solving a problem lies on search instead of constraint propagation.

2.4.9 Conclusion

We have introduced three methods for implementing conflict-based learn-

ing in proof procedures for the Model Evolution calculus. The methods have

various degrees of generality, implementation difficulty, and practical effective-

ness. The experimental results indicate that for problems that are not trivially

solvable by the Darwin implementation, all methods have a dramatic pruning

effect on the search space. The grounded method, however, is the most effective

at reducing the run time as well.

The main focus of future work is the development of good heuristics for

simplifying and forgetting lemmas, and to tune the decision heuristics of Darwin

based on the data obtained from regressing conflict sets.

2.4.10 Proofs

Lemma 2.4.6 If A0 =⇒∗gr E | S and the clause E is obtained from E by replacing

each constant of E not in Φ by a fresh universal variable, then E is conflicting

in any context that contains EΛ.

Proof. Suppose a regression derivation A0 =⇒∗gr E | S of length l ≥ 0 as given.

We directly prove the claim by induction on l.

l = 0) By construction of A0, E is the clause C0σ0, a ground instance of some

clause C0 which is conflicting in Λ because of the context unifier σ0. If C0 =
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L1 ∨ · · · ∨ Ln, for some n ≥ 0, the context unifier σ0 of C0 exists against any

context containing {Lσ0

1 , . . . , Lσ0

n }, which is, by definition, the set EΛ.

The constants in C0σ0 and not in Φ are just the fresh constants introduced

by σ0. Thus, E = C0σ0. Because any standard unification algorithm computes

idempotent unifiers, it is safe to assume that the context unifier σ0 is idempotent.

It follows C0σ0 = C0σ0σ0, and thus σ0 is a context unifier of E against any context

containing {Lσ0

1 , . . . , Lσ0

n }.

l > 0) We use notation similar as introduced in the GRegress rule above. Thus

let

D ∨M | S ′, M 7→ Lσ =⇒gr D ∨ Cσµ | S ′, T

be the last GRegress application (i.e., E = D ∨ Cσµ). We assume by induction

the result to hold for D ∨M , i.e., that D ∨M is conflicting in any context that

contains (D ∨ M)Λ, where D ∨ M is obtained from D ∨ M by replacing each

constant of D ∨M not in Φ by a fresh universal variable. We will directly show

that under these assumptions E = D ∨ Cσµ is conflicting in any context that

contains EΛ.

Let (D ∨M)Λ = {Kδ
1 , . . . , K

δ
m, M δ}, where D = K1 ∨ · · · ∨Km, for some

m ≥ 0, and δ the context unifier such that D∨M is conflicting with Λ because of δ.

As D ∨M is conflicting with Λ because of δ, δ moves parameters to parameters

only. More precisely, by construction D ∨ M is parameter-free, and the only

parameters moved by δ can thus be assumed to be those in {Kδ
1 , . . . , K

δ
m, M δ},

and it holds (Par({Kδ
1 , . . . , K

δ
m, M δ}))δ ⊆ V . We will need this result further

below.

By the above notation, the clause E is of the form D ∨ Cσµ, for some
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context unifier σ of a clause L ∨ C against some context literals of Λ, where Lσ

is a propagated literal and µ is a most general unifier of M and Lσ (in fact, µ

is a matcher of Lσ to M , as M is ground). For further use below, we write the

clause L∨C as L∨L1 ∨ · · · ∨Ln, for some n ≥ 0. The literals paired with L∨C

by σ then are denoted by {Lσ, Lσ
1 , . . . , L

σ
n}.

The substitution µ can be written as µ = µ′ ◦γ, where µ′ is a most general

unifier of M and Lσ (in fact, a matcher of Lσ to M) and γ is a substitution

that moves all the parameters and variables in M to the fresh constants such

that Mγ = M . Assume that γ has furthermore been extended to move all

the remaining parameters and variables in Cσµ to fresh constants. It follows

Cσµ = Cσµ′γ, and, since E = D ∨ Cσµ we get E = D ∨ Cσµ′.

With (D ∨ M)Λ = {Kδ
1 , . . . , K

δ
m, M δ} from above and {Lσ, Lσ

1 , . . . , L
σ
n}

being the literals paired with L∨C by σ we get (D ∨Cσµ′)Λ = {Kδ
1 ,. . .,K

δ
m, Lσ

1 ,

. . ., Lσ
n} (= EΛ).

It remains to prove that D∨Cσµ′ is conflicting in any context that contains

(D ∨Cσµ′)Λ. For this, we show that the substitution σµ′δ is a context unifier of

D ∨ Cσµ′ against Λ with paired literals {Kδ
1 , . . . , K

δ
m, Lσ

1 , . . . , L
σ
n}. It suffices to

take a literal Ki from D and a literal Lj from C arbitrary and to show that

(1) (a) Kiσµ′δ = Kδ
i σµ′δ and (b) (Ljσµ′)σµ′δ = Lσ

j σµ′δ, and

(2) (a) (Par(Kδ
i ))σµ′δ ⊆ V and (b) (Par(Lσ

j ))σµ′δ ⊆ V .

First we show that neither σ nor µ′ act on Ki, i.e., that Kiσ = Ki and Kiµ
′ = Ki

hold: the literal Ki is a literal from D, which is obtained from the (ground) clause

D by replacing each constant in D not in Φ by a fresh universal variable. Thus,
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Ki is parameter-free and all its variables are disjoint from the variables in L and

Lσ. Thus, the context unifier σ (of the clause L ∨C) need not act on the clause

D ∨M , and hence in particular not on Ki, which implies Kiσ = Ki. Similarly,

recall that µ′ is a matcher of Lσ to M . Clearly we may assume µ′ to move

the variables and parameters of Lσ only. With the freshness of the variables in

D ∨M , thus, Kiµ
′ = Ki.

Next we show, similarly, that neither σ nor µ′ acts on Kδ
i , i.e., that Kδ

i σ =

Kδ
i and Kδ

i µ
′ = Kδ

i hold. For this, we need the fact that context literals used in

context unifiers are fresh. Thus, neither σ nor µ′ acts on Kδ
i , which is a context

literal of the context unifier δ, and the stated equalities follow.

From Kδ
i σ = Kδ

i and Kδ
i µ
′ = Kδ

i and together withKiσ = Ki, Kiµ
′ = Ki

the above equation (1-a) is equivalent to Kiδ = Kδ
i δ, which holds trivially by

notation.

By Kδ
i σ = Kδ

i and Kδ
i µ
′ = Kδ

i , condition (2-a) is equivalent to (Par(Kδ
i ))δ

⊆ V . Recall that D ∨M is conflicting with Λ because of δ. By definition, δ thus

does not have a remainder, and (Par(Kδ
i ))δ ⊆ V follows in particular.

It remains to prove conditions (1-b) and (2-b).

Regarding (1-b), it is safe to assume that σ is idempotent. Recall that µ′

is a matcher form Lσ to M , and all variables of M are fresh, as argued further

above. It is not difficult to see that σµ′ must be idempotent, too. Thus (1-b) is

equivalent to Ljσµ′δ = Lσ
j σµ′δ. This, however, follows trivially from Ljσ = Lσ

j σ,

which holds by notation.

Regarding (2-b), notice first (Par(Lσ
j ))σ ⊆ V . This holds because Lσ is a

propagated literal and, by definition of Propagate, none of the literals in Cσ is a



60

remainder literal. In particular, thus (Par(Lσ
i ))σ ⊆ V . Next we will extend this

inequality and obtain (Par(Lσ
j ))σµ′δ ⊆ V , which will complete the proof.

Recall from the regression step we are considering that M is paired with

Lσ. Recall further that D ∨M is conflicting with Λ because of δ. The literal

paired with M in the context unifier δ is thus a fresh p-variant of Lσ, say, Lσρ

for some appropriate p-renaming ρ. That is, Mδ = Lσρδ. We also know that

Lσ can be instantiated to M by µ′. That is, Lσµ′ = M . Applying δ yields

Lσµ′δ = Mδ = Lσρδ. Now, as D ∨ M is conflicting because of δ, δ has no

remainder literals. In particular, thus, (Par(Lσρ))δ ⊆ V . From this it is not

too difficult to see that ρδ maps all parameters of Lσ to parameters. Since

Lσµ′δ = Mδ = Lσρδ, µ′δ maps all parameters of Lσ to parameters. Recall

that µ′ can be restricted to move parameters and variables of Lσ only. All other

parameters that µ′δ moves are moved by δ to parameters (because δ has no

remainder literals). Together thus we obtain from (Par(Lσ
j ))σ ⊆ V the desired

result (Par(Lσ
j ))σµ′δ ⊆ V .

2.5 Finite Model Finding

2.5.1 Introduction

Recent years have seen considerable interest in procedures for computing

finite models of first-order logic specifications [72]. One of the major paradigms,

MACE-style model building, is based on reducing model search to a sequence of

propositional satisfiability problems and applying (efficient) SAT solvers to them.

A problem with this method is that it does not scale well as the propositional

formulas to be considered may become very large.

We propose a new approach in the MACE tradition that exploits new
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advances in instantiation-based first-order theorem proving. Instead of using

propositional logic as a target logic, we use function-free first-order clause logic,

for which ME is a decision procedure. The main appeal of this method is that

first-order clause sets grow more slowly than their propositional counterparts,

thus allowing for more space efficient reasoning.

Apart from this difference, the general idea in our approach follows the

MACE tradition. To find a model with n elements for a given a clause set

(possibly with equality), the clause set is first converted into function-free clause

logic by means of the following transformations:

1. Each clause is flattened (nested function symbols are removed).

2. Each n-ary function symbol is replaced by an n + 1-ary predicate symbol

and equality is eliminated.

3. Clauses are added to the clause set that impose totality constraints on the

new predicate symbols, but over a domain of cardinality n.

The details of our transformation differ in various aspects from the propo-

sitional approach, as explained below. In particular, we add no functionality con-

straints over the new predicate symbols. The main difference, however, is that

due to the different target logic, we use Darwin instead of a SAT solver to look

for models. While we do take advantage of some of the distinguishing features

of Darwin and the ME calculus, especially in the way models are constructed,

our method depends neither on Darwin nor ME. Without much additional effort,

we could use any other decision procedure for function-free clause logic, such as

Inst-Gen [38, 45] or DCTP [50].
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We illustrate our method in some detail, presenting the main translation

and its implementation within Darwin, and discuss our experimental results in

comparison with Paradox [30] and Mace4 [54], competitive finite model finders.

The results indicate that our method is rather promising as it can solve 1074

of the 1251 satisfiable problems in the TPTP library [68]. These problems are

neither a subset nor a super-set of the sets of 1083 and 802 problems respectively

solved by Paradox and Mace4.

2.5.2 Related Work

Methods for model computation can be classified as those that directly

search for a finite model, like the extended PUHR tableau method [26], the

methods in [21, 34] and the methods in the SEM-family [65, 74, 54], and those

that are based on transformations into certain fragments of logic and which rely

on readily available systems for these fragments (see [15] for a recent approach).

One of the most popular solvers following the first approach is perhaps

Mace4. It reduces the finite model finding problem to the construction of mul-

tiplication tables for all function and predicate symbols occurring in the input

ground clauses via constraint solving. Initially, each cell of a table ranges over

all elements of the current domain, i.e., 1 to n for a given domain size n. Con-

straint propagation based on the ground clauses, and in particular the equality

constraints in the clauses, is used to strengthen the range of each cell. Together

with backtracking search this makes it possible to phrase a finite model finding

problem as a constraint satisfaction problem, and to solve it by using constraint

solving techniques.

The second approach includes the family of MACE-style model builders [53],
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named after Mace2, not Mace4. These systems search for finite models, essen-

tially by constructing a sequence of translations corresponding to interpretations

with domain sizes 1, 2, . . ., in increasing order, until a model has been found.

MACE-style model builders usually use propositional logic as their target logic.

The model builder from this class with the best performance today is probably

Paradox [30]. As mentioned before, our method follows this approach.

2.5.3 Preliminaries

We assume as given a signature Σ. We denote the function symbols of

a signature Σ by ΣF, and the predicate symbols by ΣP. As we are working

with equality, we assume ΣP contains a distinguished binary predicate symbol ≈,

used in infix form, with 6≈ denoting its negation. For a given atom P (t1, . . . , tn)

(possibly an equation) the terms t1, . . . , tn are also called the top-level terms (of

P (t1, . . . , tn)). An E-interpretation interprets the equality relation as the identity

relation, i.e., for every E-interpretation I, ≈I = {(d, d) | d ∈ |I|}.

We are primarily interested in computing finite models, that is models

with a finite domain. A calculus is finite model complete if it is guaranteed to

detect the existence of a finite model for any formula in finite time if such a model

exists. In the remainder of the section, we assume that M is a given (finite) clause

set.

2.5.4 Finite Model Transformation

In this section we describe a set of transformations that we apply to the

input problem to reduce it to an equisatisfiable problem in function-free clause

logic without equality, for a given domain size.
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We write L ∨ C  C ′ ∨ C to indicate that the clause C ′ ∨ C is obtained

from the clause L ∨ C by a (single) application of one of the rules.

2.5.4.1 Basic Transformation

We first describe the basic transformation B.

Algorithm 2.5.1 (Basic Transformation B)

(1) Abstraction of positive equations.

s ≈ y ∨ C  s 6≈ x ∨ x ≈ y ∨ C

if s is not a variable and x is a fresh variable

x ≈ t ∨ C  t 6≈ y ∨ x ≈ y ∨ C

if t is not a variable and y is a fresh variable

s ≈ t ∨ C  s 6≈ x ∨ t 6≈ y ∨ x ≈ y ∨ C

if s and t are not variables and x and y are fresh variables

These rules make sure that all (positive) equations are between variables.

(2) Flattening of non-equations.

(¬)P (. . . , s, . . .) ∨ C  (¬)P (. . . , x, . . .) ∨ s 6≈ x ∨ C

if P is not ≈, s is not a variable, and x is a fresh variable

(3) Flattening of negative equations.

f(. . . , s, . . .) 6≈ t ∨ C  f(. . . , x, . . .) 6≈ t ∨ s 6≈ x ∨ C

if s is not a variable and x is a fresh variable

(4) Separation of negative equations.

s 6≈ t ∨ C  s 6≈ x ∨ t 6≈ x ∨ C
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if s and t are not variables, and x and y are fresh variables

This rule makes sure that at least one side of a (negative) equation is a

variable. Notice that this property is also satisfied by the transformations

(2) and (3).

(5) Removal of trivial negative equations.

x 6≈ y ∨ C  Cσ

where σ = {x 7→ y}

(6) Orientation of negative equations.

x 6≈ t ∨ C  t 6≈ x ∨ C

if t is not a variable

For a clause C, let the basic transformation of C, denoted as B(C), be the

clause obtained from C by applying the transformations (1)-(6), in this order,

each as long as it is applicable. It is easy to see that this process is guaranteed

to terminate.

We extend this notation to clause sets in the obvious way, i.e., B(M) is

the clause set consisting of the basic transformation of all clauses in M . Strictly

speaking, B(C) and B(M) are unique only up to variable renaming, and even

this does not necessary hold anymore with some of the improvements described

below.

Note that this transformation follows the one applied by the MACE-style

model finder Paradox closely. The only difference is in (1), where, in contrast

to Paradox, equations of the form s ≈ x resp. x ≈ s are rewritten. This
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allows us to omit functionality axioms, as explained below. Although this change

may introduce more variables, this has not the negative impact it would have in

Paradox’s case, as the transformed clause set is not grounded (Section 2.5.6).

The two flattening transformations (2) and (3) alone, when applied ex-

haustively, turn a clause into a flat one, where a clause is flat if each of its literals

is flat:

1. each top-level term of each of its negative equations is a variable or has the

form f(x1, . . . , xn), where f is a function symbol, n ≥ 0, and x1, . . . , xn are

variables;

2. each top-level term of each of its non-equations is a variable.

Similar flattening transformations have been considered before as a means to deal

more efficiently with equality within calculi for first-order logic without equal-

ity [25, 3].

The basic transformation above is correct in the following sense:

Lemma 2.5.2 (Correctness of B) The clause set M is E-satisfiable if and

only if B(M) is E-satisfiable.

Proof. That flattening preserves E-satisfiability (both ways) is well-know (see

[25]). Regarding transformations (1), (4), (5) and (6), the proof is straightforward

or trivial.

2.5.4.2 Conversion to Relational Form

It is not hard to see that, for any clause C, the following holds for the

clause set B(C):
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1. each of its positive equations is between two variables,

2. each of its negative equations is flat and of the form f(x1, . . . , xn) 6≈ y, and

3. each of its non-equations is flat.

After the basic transformation, we apply the following one, turning each

n-ary function symbol f into a (new) n + 1-ary predicate symbol Rf .

(7) Elimination of function symbols.

f(x1, . . . , xn) 6≈ y ∨ C  ¬Rf (x1, . . . , xn, y) ∨ C

Let BR(M) be the clause set obtained from an exhaustive application of

this transformation to B(M).

For example, application of (1) - (6) transforms the clause a ≈ f(z) into

a 6≈ x∨f(z) 6≈ y∨x ≈ y, and applying (7) as well yields ¬Ra(x)∨¬Rf (z, y)∨x ≈

y.

Recall that an n + 1-ary relation R over a set A is left-total if for every

a1, . . . , an ∈ A there is an b ∈ A such that (a1, . . . , an, b) ∈ R. The relation R

is right-unique if whenever (a1, . . . , an, b) ∈ R there is no other tuple of the form

(a1, . . . , an, b
′) in R.

Because of the above properties (1)–(3) of B(M), the transformation

BR(M) is well-defined, and will produce a clause set with no function symbols.

This transformation however is not unsatisfiability preserving unless one consid-

ers only left-total interpretations for the predicate symbols Rf . More formally:

Lemma 2.5.3 (Correctness of BR) The clause set M is E-satisfiable if and

only if there is an E-model I of BR(M) such that (Rf)
I is left-total, for every

function symbol f ∈ ΣF.
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Proof. The direction from left to right is straightforward. For the other direction,

let I be an E-model of BR(M) such that (Rf )
I is left-total for every function

symbol f ∈ ΣF.

Recall that functions are nothing but left-total and right-unique relations.

We will show how to obtain from I an E-model I′ of BR(M), that preserves left-

totality and adds right-uniqueness, i.e., such that (Rf )
I′

is both left-total and

right-unique for all f ∈ ΣF. Since such an interpretation is clearly a model of

B(M), it will then follow immediately by Lemma 2.5.2 that M is E-satisfiable.

We obtain I′ as the interpretation that is like I, except that (Rf)
I′

contains

exactly one tuple (d1, . . . , dn, d), for every d1, . . . , dn ∈ |I|, chosen arbitrarily

from (Rf )
I (this choice exists because (Rf )

I is left-total). It is clear from the

construction that (Rf )
I′

is right-unique and left-total. Trivially, I′ interprets ≈

as the identity relation, because I does, as I is an E-interpretation. Thus, I′ is

an E-interpretation, too.

What is left to prove is that when I is a model of BR(M) so is I′. This

follows from the fact that every occurrence of a predicate symbol Rf , with f ∈ ΣF,

in the clause set BR(M) is in a negative literal. But then, since (Rf )
I′

⊆ (Rf )
I

by construction, it follows easily that any clause of BR(M) satisfied by I is also

satisfied by I′.

The significance of this lemma is that it requires us to interpret the pred-

icate symbols Rf as left-total relations, but not necessarily as right-unique ones.

Consequently, right-uniqueness will not be axiomatized below.
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2.5.4.3 Adding Finite Domain Constraints

In order to enforce left-totality, one could add the Skolemized version of

axioms of the form

∀x1, . . . , xn∃y Rf (x1, . . . , xn, y)

to Br(M). The resulting set would be E-satisfiable exactly when M is E-

satisfiable. But the axioms would require the introduction of function symbols,

which are not part of our target logic.

However, since we are interested in finite satisfiability, we can use finite

approximations of these axioms. To this end, let d be a positive integer, the

domain size. We consider the expansion of the signature of Br(M) with d domain

values, that is, d fresh constant symbols, which we name 1, . . . , d. Intuitively, for

each E-interpretation of cardinality d, instead of the totality axiom above we can

now use the axiom

∀x1, . . . , xn∃y ∈ {1, . . . , d} Rf(x1, . . . , xn, y) .

Concretely, if f is an n-ary function symbol let the clause

Rf (x1, . . . , xn, 1) ∨ · · · ∨ Rf(x1, . . . , xn, d)

be the d-totality axiom for f , and let D(d) be the set of all d-totality axioms for

all function symbols f ∈ ΣF. The set D(d) axiomatizes the left-totality of (Rf )
I,

for every function symbol f ∈ ΣF and interpretation I with |I| = {1, . . . , d}.

2.5.4.4 Putting all Together

Since we want to use clause logic without equality as the target logic of our

overall transformation, the only remaining step is the explicit axiomatization of
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the equality symbol ≈ over domains of size d—so that we can exploit Lemma 2.5.3

in the (interesting) right-to-left direction. This is easily achieved with the clause

set

E(d) = {i 6≈ j | 1 ≤ i, j ≤ d and i 6= j} .

Finally then, we define the finite-domain transformation of M as the clause

set

F
′(M, d) := BR(M) ∪ D(d) ∪ E(d) .

Notice that equality is now completely axiomatized, and we can use a first-

order calculus without equality to reason about the transformed input. To make

this point explicit, we define the transformation F(M, d) as identical to F′(M, d),

except that each occurrence of ≈ is replaced by the fresh predicate symbol E.

Putting all together we arrive at the following first main result:

Theorem 2.5.4 (Correctness of the Finite-Domain Translation) Let d be

a positive integer. Then M is E-satisfiable by some finite interpretation with do-

main size d if and only if F(M, d) is satisfiable.

Proof. Follows from Lemma 2.5.3 and the comments above on D(d) and E(d),

together with the observation that, for being a set of universal formulas with no

function symbols other than the constants 1, . . . , d, the set F(M, d) is satisfiable if

and only if it is satisfiable in a Herbrand interpretation with universe {1, . . . , d}.

More precisely, for the only-if direction assume as given a Herbrand model

I of F(M, d) with universe {1, . . . , d}. It is clear from the axioms E(d) that I

assigns false to the equation E(d′, d′′), for any two different elements d′, d′′ ∈
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{1, . . . , d}. Now, the model I can be modified to assign true to all equations

E(d′, d′), for all d′ ∈ {1, . . . , d} and the resulting E-interpretation will still be a

model for F(M, d). This is, because the only occurrences of negative equations in

F(M, d) are those contributed by E(d), which are still satisfied after the change.

Notice, in particular, that BR(M) contains only positive occurrences of equations,

if any. It is this modified model that can be turned into an E-model of M .

This theorem suggests immediately a practical procedure to search for

finite models, by testing F(M, d) for satisfiability, with d = 1, 2, . . ., and stopping

as soon as the first satisfiable set has been found. Moreover, any reasonable such

procedure will return in the satisfiable case a Herbrand representation of some

finite model.

2.5.5 Implementation

We implemented the transformation described so far within our theorem

prover Darwin. In addition to being a full-blown theorem prover for first-order

logic without equality, Darwin is a decision procedure for the satisfiability of

function-free clause sets, and thus is a suitable back-end for our transformation.

We call the combined system FM-Darwin (for Finite Models Darwin).

Conceptually, FM-Darwin builds on Darwin by adding to it as a front-end

an implementation of the transformation F, and invoking Darwin on F(M, d), for

d = 1, 2, ..., until a model is found. In reality, FM-Darwin is built within Darwin

and differs from the conceptual procedure described so far as detailed below.
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2.5.5.1 Preprocessing Improvements

Initial Transformation FM-Darwin implements some obvious optimizations

over the transformation rules described in Section 2.5.4. For instance, the trans-

formations (1)–(4) are done in parallel, depending on the structure of the current

literal. Transformation (6) is done implicitly as part of transformation (7), when

turning equations into relations. Also, when flattening a clause, the same vari-

able is used to abstract different occurrences of identical sub-term, which leads

to significant improvements in a number of cases.

Naming Subterms Clauses with deep terms lead to long flat clauses. To avoid

this, deep subterms can be extracted and named by an equation. For instance,

the clause set

P (h(g(f(x)), y)), Q(g(f(z)))

can be replaced by the clause set

P (h2(x, y)), Q(h1(z)), h2(x, y) = h(h1(x), y), h1(x) = g(f(x))

where h1 and h2 are fresh function symbols. When carried out repeatedly, reusing

definitions across the whole clause set, this transformation yields shorter flattened

clauses.

We tried some heuristics for when to apply the transformation, based on

how often a term occurs in the clause set, and how big the flattened definition is,

i.e., how much it is possible to save by using the definition. The only consistent

improvement on TPTP problems was achieved when introducing definitions only

for ground terms. This solves 16 more problems, 14 of which are Horn. Thus,

currently only ground terms are flattened by default with this transformation in
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FM-Darwin.

Splitting Clauses Systems like Paradox and Mace2 use transformations that,

by introducing new predicate symbols, can split a flat clause with many variables

into several flat clauses with fewer variables. For instance, a clause of the form

P (x, y) ∨Q(y, z)

whose two subclauses share only the variable y can be transformed into the two

clauses

P (x, y) ∨ S(y) ¬S(y) ∨Q(y, z)

where the predicate symbol in the connecting literal S(y) is fresh. This sort

of transformation preserves (un-)satisfiability. Thus, in this example, where the

number of variables in a clause is reduced from 3 to 2, procedures based on a

full ground instantiation of the input clause set may benefit from having to deal

with the O(2n2) ground instances of the new clauses instead of the O(n3) ground

instances of the original clause. A similar observation was made in [44] and

exploited beneficially to solve planning problems by reduction to SAT.

As it happens, reducing the number of variables per clause is not neces-

sarily helpful in our case. Since (FM-)Darwin does not perform an exhaustive

ground instantiation of its input clause set, splitting clauses can actually be

counter-productive because it forces the system to populate its model represen-

tation with instances of connecting literals like S(y) above. Our experiments

indicate that this is generally expensive unless the connecting literals do not con-

tain any variables. Still, in contrast to plain Darwin, where in general clause

splitting is only an improvement for ground connecting literals, for FM-Darwin
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splitting in all cases gives a slight improvement. In particular, in our experi-

ments on the TPTP library (see Section 2.5.6) it helped to solve eight additional

satisfiable problems.

Rc1(1) ∨ · · · ∨ Rc1(d)
Rc2(1) ∨ · · · ∨ Rc2(d)

...

Rcm
(1) ∨ · · · ∨ Rcm

(d)

Rc1(1)
Rc2(1) ∨ Rc2(2)

...
Rcd

(1) ∨ · · · ∨Rcd
(d)

Rcd+1
(1) ∨ · · · ∨Rcd+1

(d)
...

Rcm
(1) ∨ · · · ∨ Rcm

(d)
(a) (b)

Figure 2.6: Totality axioms for constants and their triangular form

Symmetry Breaking Symmetries, in particular value symmetries, have been

identified as a major source of inefficiencies in constraint solving. A constraint

satisfaction problem exhibits value symmetry if permuting the values of a partial

solution for the problem, i.e., a satisfying assignment of values to a subset of the

problem’s variables, gives another partial solution. Breaking such symmetries

often produces considerable efficiency gains—with no loss of generality.

In our context, it is easy to break some value symmetries introduced by

assigning domain values to constant symbols. Extending this mechanism to unary

function symbols, as done by Paradox, did not result in an improvement, so it

is not discussed here. Suppose ΣF contains m constants c1, . . . , cm. Recall that

D(d) contains, in particular, the axioms shown in Figure 2.6(a). Similarly to

what is done by Paradox, these axioms can be replaced by the more “triangular”
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form shown in Figure 2.6(b). It is easy to see that the triangular form has less

satisfying interpretations over the domain {1, . . . , d} than the first form, and

that, nevertheless, any interpretation satisfying the first form is isomorphic to

an interpretation satisfying the second. In fact, one could further strengthen the

symmetry breaking axioms by adding (unit) clauses like ¬Rc1(2), . . .¬Rc1(d). We

do not add them, as they do not constrain the search for a model further.

As this optimization allowed to solve about 40 more satisfiable TPTP

problems, we consider it to be highly effective, especially in combination with the

optimization described next.

Sort Inference Like Paradox, FM-Darwin performs a kind of sort inference

in order to improve the effectiveness of symmetry breaking. Each function and

predicate symbol of arity n in Σ is assigned a type respectively of the form

S1×. . .×Sn → Sn+1 and S1×. . .×Sn, where all sorts Si are initially distinct. Each

term in the input clause set is assigned the result sort of its top symbol. Two sorts

Si and Sj are then identified based on the input clause set by applying a union-

find algorithm with the following rules. First, all sorts of different occurrences of

the same variable in a clause are identified; second, the result sorts of two terms

s and t in an equality E(s, t) are identified; third, for each term or atom of the

form f(. . . , t, . . .) the argument sort of f at t’s position is identified with the sort

of t.

All sorts left at the end are taken to be disjoint and of the same size. In

essence, this is achieved by using annotated versions {1S, . . . , dS} of the domain

values for each sort S. This way, when a sorted model is found it can be translated

into an unsorted model by an isomorphic translation of each sort into a single
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domain of size d. Thus, in order to find a model for the original problem, one

can instead search for a sorted model of this kind. This allows for applying

the symmetry breaking axioms discussed above independently for each sort. For

example, if Σ contains the constant symbols a, b, c and d, then the totality axioms

for the unsorted problem could be Ra(1), Rb(1)∨Rb(2), Rc(1)∨Rc(2)∨Rc(3), and

Rd(1)∨Rd(2)∨Rd(3)∨Rd(4). In contrast, if a, b, and c were of one sort, and d of a

different sort, then the axioms would be Ra(1), Rb(1)∨Rb(2), Rc(1)∨Rc(2)∨Rc(3),

and Rd(1), a significant reduction of the search space.

It turns out that distinct sorts can be inferred for a large number of TPTP

problems, leading to almost 30 more solved problems and a speed up of a factor

of two, compared to symmetry breaking for only one sort.

Meta Modeling Recall from step (7) of the transformation F that every func-

tion symbol is turned into a predicate symbol. In our actual implementation, we

go one step further and use a meta modeling approach that can make the final

clause set produced by our translation more compact, and generally speed up

the search as well, thanks to the way models are built in the Model Evolution

calculus. The idea is the following.

For every n > 0, instead of generating an n + 1-ary relation symbol Rf

for each n-ary function symbol f ∈ ΣF we use an n + 2-ary relation symbol

Rn, for all n-ary function symbols. Then, instead of translating a literal of the

form f(x1, ..., xn) 6≈ y into the literal ¬Rf (x1, ..., xn, y), we translate it into the

literal Rn(f, x1, ..., xn, y), treating f as a zero-arity symbol. The advantage of

this translation is that instead of needing one totality axiom per relation symbol

Rf with f ∈ ΣF, we only need one per function symbol arity (among those found
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in ΣF). For example, if ΣF contains the function symbols f1, . . . , fn of arity n,

then instead of one totality axiom per function symbol

Rf1
(x1, . . . , xn, 1) ∨ · · · ∨ Rf1

(x1, . . . , xn, d)

. . .

Rfn
(x1, . . . , xn, 1) ∨ · · · ∨ Rfn

(x1, . . . , xn, d)

it suffices to have the following single totality axiom for all function symbols of

arity n

Rn(y, x1, . . . , xn, 1) ∨ · · · ∨ Rn(y, x1, . . . , xn, d)

where the variable y is meant to be quantified over the (original) function sym-

bols in ΣF. Furthermore, in all reasonable proof procedures based on the Model

Evolution calculus y will be instantiated in a totality axiom only if there is a com-

plementary literal of the form ¬Rn(f, x′1, . . . , x
′
n, d), thus ensuring that y will be

instantiated only with zero-arity symbols representing function symbols of arity

n. While this is not required for correctness, it ensures that the transformation

does not increase the search space. Note that the zero-arity symbols representing

the original function symbols in the input are in addition to the domain con-

stants, and never interact with them. They are intuitively of a different sort S.

Moreover, by the Herbrand theorem, we can consider with no loss of generality

only interpretations that populate the sort S precisely with these constants, and

no more.

Meta modeling turns out to provide only a very modest improvement, in

terms of time as well as memory, for a number of reasons. First, the generalization

can only pay off (and is used only) if for a given arity there are at least two sym-

bols of that arity, otherwise it merely introduces unification overhead. Second,
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the symmetry breaking axioms prevent its application to constant symbols. And

third, because of sort inference in combination with the PerS predicates intro-

duced in conflict-based learning below, it does not suffice to generalize function

symbols by arity alone, instead their sorts have to be taken into account as well.

Altogether this makes it questionable if the increase in complexity introduced by

this transformation is justified.

Initial Domain Size Following again the example of Paradox, FM-Darwin

performs some static analysis of the input clause set to quickly determine a (pos-

sibly suboptimal) lower bound k on the cardinality of any model of the clause

set. Roughly, this is done by identifying cliques of disequations entailed by the

clause set. Then, the search starts with k as the initial domain size instead of 1.

The computation of a lower bound is done by default because of its very

small overhead. However, we must add that in our experiments it did not lead

to any substantial performance improvement overall.

2.5.5.2 Run-time Improvements

Restarts The search for models of increasing size is built in Darwin’s own

restarting mechanism. For refutational completeness Darwin explores its search

space in an iterative-deepening fashion with respect of certain depth measures.

The same mechanism is used in FM-Darwin to restart the search with an increased

domain size d + 1 if the input problem has no models of size d.

By modifying the treatment of equality we could allow for increasing the

domain size in steps greater than 1. That is, when going from domain size d to

domain size d + m, we would add the axioms E(d + 1) instead of E(d + m). This
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would enforce a lower domain size of d + 1 instead of d + m. Furthermore, as

Darwin has no native support for equality we would need to add the standard

axioms of equality, that is reflexivity, symmetry, transitivity, and predicate sub-

stitution axioms. This ensures that the domain elements are in an equivalence

relation, if a model of domain size smaller than d + m is found. As it turned out

in our experiments that this is significantly less efficient, we consider only a fixed

increment of 1 in the following.

Because the clause sets F(M, d) and F(M, d + 1), for any d, differ only in

the their subsets D(d) ∪ E(d) and D(d + 1) ∪ E(d + 1), respectively, there is no

need to re-generate the constant part, and this is not done.

Conflict-based Learning Some of the lemmas learned by FM-Darwin are

domain size independent and can therefore be carried over to later iterations with

bigger domain sizes. To do that, each clause in D(d+1) is actually guarded by an

additional literal Dd standing for the current domain size. Note that symmetry

breaking axioms replacing totality axioms do not need to be guarded. In FM-

Darwin, the lemmas depending on the current domain size d retain the guard Dd

when they are built, making it easy to eliminate them when moving to the next

size d + 1. We remark that the original problem is shown to be unsatisfiable if

all lemmas are domain size independent, which might be worth considering in

lemma-learning and especially lemma-forgetting heuristics, or when domain sizes

are incremented separately for each sort.

Lemmas produced by Darwin can be slightly generalized in FM-Darwin

by making the following observation. Assume for now, just for simplicity, that

sort inference on the input clause set M produces a single sort S. When the
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number m of input constants (of sort S) is smaller than the current domain size

d, the symmetry breaking triangular form for the totality axioms forces the first

m domain values to be the interpretation of the input constants, but imposes

no constraints on the remaining d −m domain values. As a consequence, every

Herbrand model I of the clause set F(M, d) is invariant under any permutation p

of (m + 1, . . . , d). In other words, if the model satisfies a ground literal L, it will

also satisfy the literal obtained by applying p to L. This means that whenever

F(M, d) entails a formula ϕ(v1, . . . , vk) containing the domain values v1, . . . , vk

from {m + 1, . . . , d}, it will also entail the formula

∀x1, . . . , xk.
∧

1≤i≤k

xi ∈ {m + 1, . . . , d} ∧
∧

1≤i<j≤k

¬E(xi, xj) ⇒ ϕ(x1, . . . , xk)

where ϕ(x1, . . . , xk) is obtained from ϕ(v1, . . . , vk) by replacing, for each i, every

occurrence of the value vi with the fresh variable xi.

In the general case of more than one sort, this kind of generalization is

applied to lemmas containing unconstrained domain constants as follows. During

preprocessing, the system adds to F(M, d) a unit clause of the form PerS (v) (for

“v is permutable in S”) for each inferred sort S and domain value v of sort S that

is unconstrained by the symmetry breaking axioms for S. Then, during search,

every computed lemma C(v1, . . . , vk) containing unconstrained values v1, . . . , vk

of sort S, say, is generalized to the lemma

C(x1, . . . , xk) ∨
∨

1≤i≤k

¬PerS(xi) ∨
∨

1≤i<j≤k

E(xi, xj)

where x1, . . . , xk are fresh variables (of sort S). This lemma is then further

generalized by applying to it the same process but for another sort, until all

unconstrained domain values have been eliminated.
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With the resulting generalized lemma the system can break more symme-

tries at run time than with the original lemma. In fact, the search process will

avoid not just any (candidate) model I that falsifies the original lemma but also

any model obtained from I by a well-sorted permutation of the unconstrained

domain values.

A subtle point is that naming of subterms and splitting of clauses might in-

troduce Skolem constants. Symmetry breaking must be applied to these constants

just as to input constants, thus potentially increasing the number of constrained

domain elements.

Combined with the improvement described next, which reduces the over-

head of using longer clauses, generalized lemmas lead to shorter derivations, a

smaller search space and smaller run-times overall. While using the original

lemmas leads in general to a significant speed up of a factor of 2 to 4 (see Sec-

tion 2.4.8), the magnitude of the additional improvement of the lemma general-

ization in our experimental evaluation so far is, however, minimal. For instance,

the speed up factor is only 1.11 over the whole TPTP library. More important,

the number of solved problems is essentially unchanged.

Constraint-based approach FM-Darwin has a facility for treating equality

and permutability predicates as built-in constraints. In this approach, every

clause of the form

C ∨
∨

i,ι

¬PerSι(xi) ∨
∨

i,j

E(xi, xj)
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where C contains no disequations and no permutability literals, is rewritten as a

constrained clause of the form C ← Γ where Γ is the constraint set

⋃

i,ι

{PerSι(xi)} ∪
⋃

i,j

{xi 6≈ xj} .

Recall that Darwin’s inference process is based on generating instances of

input clauses and lemmas by computing context unifiers. In the regular approach,

if the clause contains an equation E(x, y), with x and y of some sort S, the

computation of the context unifiers will attempt to instantiate x and y to all

domain values for S. Similarly, if the clause contains a permutability literal

PerS(x), it will attempt to instantiate x to all unconstrained domain values for

S.

In the constraint-based approach, context unifiers are computed as usual

but using only the clause part C of a constrained clause C ← Γ. Then, each

context unifier σ for C is further refined into the unifier σθ for each solution

θ of the constraint Γσ over the sort domains. These solutions are computed

using constraint satisfaction techniques that treat sort assignments to variables

as well as permutability constraints as domain constraints, and disequations as

disequality constraints.

The main advantages of this approach are that (i) it is not necessary to

include in F(M, d) the quadratically many ground disequations ¬E(d, d′) for all

distinct domain values nor the linearly many ground permutability predicates

PerS(d), (ii) Darwin’s inference rules operate on shorter clauses, especially in

case of generalized lemmas, and (iii) computing the context unifiers σθ using

the specialized constraint solving algorithm for the θ part is more efficient than

computing σθ directly with Darwin’s context unification procedure.
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We finally remark that meta modeling and lemma-learning are the only

optimization specific to the targeted function-free clause logic, and of those only

lemma-learning is specific to Model Evolution calculus. All other optimizations

are applicable in the original propositional MACE-style setting as well.

2.5.6 Experimental Evaluation

2.5.6.1 Space Efficiency

As we have seen, our reduction to a clause set F(M, d) encoding finite

E-satisfiability is heavily influenced by the one done in Paradox, but with the

difference that in Paradox the whole counterpart of our clause set F(M, d) is

grounded out, simplified, and fed to a SAT solver.

Feeding the set F(M, d) directly instead to a theorem prover capable of

deciding the satisfiability of function-free clause sets has the advantage of often

being more space-efficient. In Paradox, as the domain size d is increased, the

number of ground instances of a clause grows exponentially in the number of

variables in the clause [30]. In contrast, in our transformation no ground instances

of the clause set F are produced. The subsets D and E do grow with the domain

size d; however, the number of clauses in D(d) remains constant in d while their

length grows only linearly in d. The number of clauses in E(d), which are all unit,

grows instead quadratically.

As far as preprocessing the input clause set is concerned then, our ap-

proach already has a significant space advantage over Paradox’s. This is crucial

for problems that have models of a relatively large size. The only data structure

that grows unbounded in size in Darwin is the context, the data structure rep-

resenting the current candidate model for a problem. With function-free clause
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sets the size of the context depends on the number of possible ground instances

of input literals, a much smaller number than the number of possible ground

instances of input clauses. In addition, our experiments show that the context

basically never grows to its worst-case size.

The different asymptotic behaviors between FM-Darwin and Paradox can

be verified experimentally with the following simple problem.

Example 2.5.5 (Too big to ground) Let P be an n-ary predicate symbol, let

c1,. . .,cn be distinct constants, and let x, x1, . . . , xn be distinct variables. Then

consider the clause set consisting of the following n · (n− 1)/2 + 1 unit clauses,

for n ≥ 0:

P (c1, . . . , cn)

¬P (x1, . . . , xi−1, x, xi+1, . . . , xj−1, x, xj+1, . . . , xn) for all 1 ≤ i < j ≤ n

The first clause just introduces n constants. Any (domain-minimal) model has

to map them to at most n domain elements. The remaining clauses force the

constants to be mapped to pairwise distinct domain elements. Thus, the smallest

model has exactly n elements. This clause set is perhaps the simplest clause set

to specify a domain with n elements in first-order logic without equality.

We ran the example for n = 3, . . . , 10 on FM-Darwin, Mace4 and Paradox

and obtained the results in Table 2.5.

All Time results are CPU time in seconds, Mem is the required mem-

ory size in megabytes with a memory limit of 400 MB. “Fail at size d” means

that the memory limit was exhausted while searching for a model with size d,

“Inconclusive” that Paradox gave up in that domain size after the time stated.
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FM-Darwin Mace4 Paradox
n |Cont| Mem Time Time Vars Clauses Time
3 14 1 < 1 < 1 14 0 < 1
4 24 1 < 1 < 1 301 123 < 1
5 37 1 < 1 < 1 3192 534 < 1
6 53 1 < 1 < 1 46749 7919 < 1
7 72 1 1.1 178 823666 46749 12
8 94 1 5.1 Fail at size 7 Inconclusive, size ≥ 7 36
9 119 1 50 Fail at size 6 Inconclusive, size ≥ 5 9.6

10 147 1 566 Fail at size 4 Inconclusive, size ≥ 4 3.6

Table 2.5: Finite model finding for Too-big-to-ground

|Cont| is the maximum context size needed by FM-Darwin in a derivation, Vars

and Clauses are the number of propositional variables and clauses introduced

by Paradox in the translation to propositional logic. These results confirm our

expectations on FM-Darwin’s greater scalability with respect to space consump-

tion. The growth of the (propositional) variables and clauses within Paradox

clearly shows exponential behavior. In contrast, Darwin’s context grows much

more slowly.

2.5.6.2 Comparative Evaluation on TPTP

We evaluated the effectiveness of our approach on all the satisfiable prob-

lems of the TPTP 3.1.1 in comparison to Paradox 1.3 and Mace4. Since Darwin’s

native input language is clause logic, we used the E prover [63] version 0.91 to

convert non-clausal TPTP problems into clause form. All tests were run on Xeon

2.4Ghz machines with 1GB of RAM, with the imposed limits of 300s of CPU

time and 512MB of RAM. The results are grouped based on being Horn and/or

containing equality. Sol gives the number of problems solved by a configuration,

and Time the average time used to solve these problems. FM-Darwin was run
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with the grounded learning option and with an upper limit of 500 lemmas (see

Section 2.4 for details), Paradox and Mace4 were run in the default configuration.

Problem Type Problems FM-Darwin Mace4 Paradox 1.3
Horn ≈ Sol Time Sol Time Sol Time

no no 607 575 3.9 394 3.0 578 0.9
no yes 383 312 4.3 190 7.8 264 0.4
yes no 65 51 17.5 37 0.2 59 2.1
yes yes 196 136 7.0 181 3.6 182 5.3

All 1251 1074 5.1 802 4.1 1083 1.6

Table 2.6: Finite model finding over the TPTP

The results given in Figure 2.6 show that in terms of solved problems FM-

Darwin significantly outperforms Mace4. Overall, our system is almost as good

as Paradox, outperforming it over the non-Horn problems in the set. We specu-

late that a factor in Paradox’s superior performance for Horn problems might be

its very efficient unit propagation algorithm based on the watched literals mech-

anism. As the only non-Horn clauses introduced by the transformation are the

totality axioms, and as lemmas learned from Horn clauses are still Horn, solving

Horn problems probably requires only a minimal amount of actual search and

reduces to a large degree to unit propagation.

More precisely, FM-Darwin solves 328 problems that Mace4 cannot solve,

and solves 82 problems that Paradox cannot solve. Mace4 runs out of time for

169 of these problems and out of memory for the remaining ones, while Paradox

runs out of memory or gives up. We sampled some of these problems and re-ran

Paradox without memory and time limits, but to no avail. For problem NLP049-1,
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for instance, about 10 million (ground) clauses were generated for a domain size

of 8, consuming about 1 GB of memory, and the underlying SAT solver could not

complete its run within 15 minutes.

In contrast, on all problems FM-Darwin never uses more than 200 MB

of memory, and in most cases less than 50 MB. In conclusion then, both the

artificial problem in Example 2.5.5 and the more realistic problems in the TPTP

library support our thesis that FM-Darwin scales better on bigger problems, that

is, problems with a larger set of ground instances for non-trivial domain sizes.

While both approaches have the same complexity for a satisfiable problem, that

is exponential for each domain size, this cost is paid eagerly in the propositional

approach. On the other hand, Paradox and, to a lesser extent, Mace4 tend to

solve problems faster than FM-Darwin.

2.5.6.3 CASC J3

Finally, we report on the results of CASC-J3, the CADE ATP System

Competition that was part of the 2006 Federated Logic Conference [69]. CASC

is an annually held competition of first-order provers, based on the TPTP library.

Table 2.6 shows the results for FM-Darwin for the SAT and EPR divisions

of CASC-J3. The SAT division contains only satisfiable problems, while the EPR

division contains only function-free clausal problems. Mace4 did not participate

in CASC-J3 and Paradox only in the SAT division, therefore only Paradox is

part of the evaluation. FM-Darwin finished third in the SAT division, after two

versions of Paradox, and likewise third in the EPR division, after Darwin and

DCTP, another decision procedure for function clause logic.

Consistent with the previous evaluation, FM-Darwin performs reasonably
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Division FM-Darwin Darwin 1.3 Paradox 1.3
Sol Time Sol Time Sol Time

SAT 70 13.6 18 31.6 90 5.7

FM-Darwin Darwin 1.3 Vampire 8.0
Sol Time Sol Time Sol Time

EPR 92 10.33 100 4.7 78 4.19

Table 2.7: Finite model finding results of CASC-J3

well on the satisfiable problems in the SAT division. An explanation for Paradox

apparently being significantly superior to FM-Darwin is that satisfiable function-

free clause problems are included only in the EPR division, but not in the SAT

division, and that among these are a large number of the problems for which

FM-Darwin succeeds, but Paradox fails.

The results show furthermore that FM-Darwin is hugely superior to Dar-

win in the SAT division, while for function-free problems, which are decided by

both systems, Darwin is superior. In more detail, Darwin can solve only 21 prob-

lems that FM-Darwin cannot solve. Of those 16 turn out to be function-free

clause problems, and only for one of the other problem does Darwin return an

infinite model. So, at least on the TPTP problems, Darwin’s capability to find

infinite Herbrand models does not seem to be an advantage.

In contrast the results show that Darwin is very efficient for EPR prob-

lems, thus providing the basis for FM-Darwin’s efficiency. This does not only

hold compared to FM-Darwin, but especially compared to other systems, like

Vampire, a saturation based prover. In detail, Vampire solves 48 unsatisfiable

EPR problems, but only 30 satisfiable ones. This highlights that while systems
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such as Vampire are highly efficient in a general refutation setting, they are not

well-suited for the transformation presented in this section. First, because they

are not decision procedures for a function-free clause set and in practice often fail

to determine its satisfiability, and second, because they are usually not capable

of providing a model. In contrast, recent instantiation based calculi such as ME,

Inst-Gen [38], and Disconnection Calculus [50] satisfy both criteria.

2.5.7 Conclusion

Recent years have seen considerable interest in procedures for comput-

ing finite models of first-order logic specifications. Established, leading methods

based on propositional reasoning, and embodied by systems like Paradox and

Mace4, do not scale well with the required domain size of the (smallest) mod-

els. We approached this major problem by instead reducing model search to

function-free first-order clause sets, and to apply (efficient) theorem provers ca-

pable of deciding such problems. We presented our approach in some detail and

argued for its correctness. We then provided a comparative evaluation show-

ing that our prover, FM-Darwin, is competitive with the state-of-the-art model

builders Paradox and Mace4. The results also demonstrate that the expected

space advantages do indeed occur.

While FM-Darwin scales better memory-wise than the other systems con-

sidered, it generally struggles like all other finite model-finders with problems

(such as the TPTP problem LAT053-1) whose smallest model is relatively large

(20 or more elements). Increasing the scalability towards larger domain sizes is

then certainly a main area of further research.
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CHAPTER 3
MODEL EVOLUTION WITH LINEAR INTEGER ARITHMETIC

CONSTRAINTS

3.1 Introduction

In Chapter 2 we have introduced an efficient instantiation based approach

for reasoning about first-order formulas, the Model Evolution calculus. While

first-order logic is a very powerful logic, many applications of automated de-

duction require reasoning over some form of integer arithmetic. Efficient theory

reasoning is crucial in these cases, as approximations of arithmetic by axiomati-

zation in first-order logic are incomplete as well as inefficient.

Theory reasoning techniques developed within first-order theorem proving

are often impractical as they require the enumeration of complete sets of theory

unifiers (in particular those in the tradition of Stickel’s Theory Resolution [67]) or

feature only weak or no redundancy criteria (e.g., Bürckert’s Constrained Reso-

lution [27]). The family of Satisfiability Modulo Theories solvers is quite efficient

for ground problems modulo some well supported theories, but lacks support for

quantifiers and resorts to incomplete or inefficient heuristics when dealing with

quantified formulas [40, 41]. A popular class of SMT solvers is based on the

DPLL(T) architecture, which combines a DPLL based SAT solver with decision

procedures for the supported theories.

We will be concerned with combining some of the strengths of the two

approaches. We have developed a calculus, Model Evolution with Linear Integer

Arithmetic Constraints (ME(LIA)), which supports efficient reasoning over the

theory of Linear Integer Arithmetic (LIA) as well as first-order clause logic. It re-
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lies on a decision procedure for the full fragment of LIA instead of a complete enu-

merator of LIA-unifiers. The main restriction imposed on the calculus is that it

does not support uninterpreted function symbols except for constants. To obtain

(semi-)decidability additional restrictions are needed. In a sense, ME(LIA) is to

DPLL(LIA) what ME is to DPLL, a lifting from the ground to a restricted quan-

tified case, while keeping and building on proven architecture and design choices.

For example, splitting, propagation, backjumping, and learning are techniques

applicable and common to all these approaches.

In more detail, the restrictions are as follows. Firstly, every variable is

restricted to range over a bounded below interval of Z, which we for simplicity

take to be N. This restriction is not essential, it is used here only because it

simplifies the treatment of the calculus. Secondly, the input needs to be restricted

further in order to make complete proof procedures possible. One example for a

sufficient condition is to bound the free constants to range over finite domains.

Another one is to restrict the input to ground clauses. This, together with the

exclusion of free function symbols other than constants, makes (entailment in) the

logic recursively enumerable, and semi-decided by the calculus we present here.

Further restricting the variables to finite intervals makes the logic decidable, and

our calculus terminating.

In spite of these restrictions, the logic is quite powerful. For instance,

functions with a finite range can be easily encoded into it. This makes the logic

particularly well-suited for applications that deal with bounded domains, such

as, for instance, bounded model checking and planning. As has been argued in

Section 2.5, these sorts of applications can benefit from a reduction to a more
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powerful logic for which efficient decision procedures are available. On top of the

function-free fragment of clause logic used there, we now add integer constraints

to the picture. The ability to reason natively about the integers can provide a

reduction in search space even for problems that do not originally contain integer

constraints.

The ME(LIA) calculus is derived from the ME calculus. Recall that the

main data structures of ME are the context Λ, consisting of a finite set of first-

order literals inducing the candidate models in a derivation, and Φ, consisting

of the input clause set. Similarly, in ME(LIA) the context consists of the pair

Λ · Γ and the clause sets are represented by the pair Φ · Ψ. Here, Λ is a set of

first-order constrained literals, in essence literals over free constant and predicate

symbols and LIA constraints, and Γ is a set of closed LIA constraints. Again,

the context induces a candidate model, but this time for an expansion of the

integer structure by free predicate and constant symbols. The input clauses are

kept in Φ like in ME. But in contrast to ME, where clause instances were used

implicitly when computing context unifiers and applying inference rules, clause

instances are created explicitly in ME(LIA) and put in Ψ. A clause instance is

now obtained by strengthening LIA constraints, instead of by term instantiation

as in ME. In fact, one could represent clause instantiation in ME as gathering

unification constraints, thus making the two calculi even more similar on the

presentation level.

The crucial insight that leads from ME to ME(LIA) lies in the use of the

ordering < on integers instead of the ordering induced by term instantiation.

This then allows ME(LIA) to work with concepts over integers that are similar
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to concepts over free terms used in ME. For instance, productivity can be used

as a redundancy notion in a very similar fashion, but now formulated as LIA

constraints instead of unification problems.

3.2 Related Work

Most of the related work has been carried out in the framework of the

resolution calculus. One of the earliest related calculi is theory resolution [67]. In

our terminology, theory resolution requires the enumeration of a complete set of

solutions of constraints. The same applies to various “theory reasoning” calculi

introduced later [7, 39]. In contrast, in ME(LIA) all background reasoning tasks

can be reduced to satisfiability checks of (quantified) constraint formulas. This

weaker requirement facilitates the integration of a larger class of solvers (such

as quantifier elimination procedures) and leads to potentially far less calls to

the background reasoner. For an extreme example, the clause ¬(0 < x) ∨ P (x)

has infinitely many most general solutions with respect to the term instantia-

tion ordering, namely {x 7→ 1}, {x 7→ 2}, . . . Thus, any calculus based on the

computation of complete sets of (most general) solutions of LIA-constraints may

need to consider all of them. In contrast, in ME(LIA), or in other calculi based

on satisfiability alone, like the constrained tableaux calculus in [61], or, notably

Bürckert’s constrained resolution [27], it is enough just to check that a constraint

like (0 < x) is LIA-satisfiable.

Constrained resolution admits background theories with (infinitely, es-

sentially denumerable) many models, as opposed to the single fixed model that

ME(LIA) works with. In fact, the proof-generation algorithm for ME(LIA) that

we will present in Section 3.7.5.4 can be easily phrased in terms of constrained
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resolution, as the RQ-resolution rule of constrained resolution is exactly the com-

bination of the resolution and factoring rules used by us. On the other hand,

ME(LIA) provides a goal oriented calculus with strong redundancy criteria, both

of which are still absent in current research on constrained resolution.

The importance of powerful redundancy criteria has been emphasized in

the development of the modern theory of resolution in the 1990s [59]. With

slight variations they carry over to hierarchical superposition [4], a calculus that

is related to constrained resolution. The recent calculus in [1] instantiates hi-

erarchical superposition to Linear Rational Arithmetic. Similarly, the calculus

in [46] integrates dedicated inference rules for Linear Rational Arithmetic into

superposition. In [18] Baumgartner et al. describe conceptual differences be-

tween ME, further instance based methods [8] and other (resolution) calculi. For

instance, like ME, ME(LIA) explicitly maintains a candidate model, which gives

rise to a redundancy criterion different to the ones in superposition calculi. Also,

it is known that instance-based methods naturally decide different fragments of

first-order logic, and the same holds true for the constrained case.

Over the last years, Satisfiability Modulo Theories (SMT) has become a

major paradigm for theorem proving modulo background theories. In one of its

main approaches, DPLL(T), a DPLL-style SAT-solver is combined with a decision

procedure for the quantifier-free fragment of the background theory T [58]. The

treatment of quantified formulas is incomplete and usually guided by heuristic

instantiation, although progress has been made in obtaining complete procedures

for some classes of quantified formulas [40, 24]. In fact, addressing this intrinsic

limitation by lifting DPLL(T) to the first-order level is one of the main moti-
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vations for the ME(LIA) calculus, much like ME was motivated by the goal of

lifting the propositional DPLL procedure to the first-order level while preserv-

ing its good properties. The calculus mirrors the DPLL part of the DPLL(T)

approach closely, lifting the data structures and the splitting and unit propa-

gation operations to quantified constrained literals. Support for other crucial

ingredients like lemma-learning, backjumping, theory learning and theory propa-

gation are described as part of a potential proof procedure. With these rules then

ME(LIA) can indeed be seen as a proper lifting of DPLL(T) to the first-order

level (within recursion-theoretic limitations).

The original ME calculus has been extended in several ways to support na-

tive reasoning over equality. The first extension, Model Evolution with Equality

(MEE), extends ME with a resolution based equality treatment [17]. The second

extension, MESUP, is a combination of ME and Superposition, which integrates

both calculi and their redundancy criteria [19]. All three current further develop-

ments of the basic ME calculus, MEE, MESUP, and ME(LIA), natively support

equality reasoning, recognizing that this is essential for basically all applications.

The first two approaches focus on first-order reasoning, and are in fact complete

for full first-order logic with equality. In contrast, ME(LIA) was devised for ap-

plications involving integer reasoning. Thus ME(LIA) is not a proper extension

of ME, since to be able to obtain complete procedures the support for function

symbols is significantly restricted.

3.3 Informal Overview

It is instructive to discuss the main ideas of the ME(LIA) calculus with

some simple examples before defining the calculus formally.
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The following example from finite model reasoning demonstrates the ad-

vantage of native reasoning over integers:

a : [1 .. 100] (1)

P (a) (2)

¬P (x)← x : [1 .. 100] (3)

Here, a : [1 .. 100] restricts the range of the constant a to the given interval. The

clause set above is unsatisfiable because the interval declaration for a together

with the unit clause P (a) permit only models that satisfy one of P (1), . . . , P (100).

Such models however falsify the third clause. Finite model finders, e.g., need

about 100 steps to refute the clause set, one for each possible value of a. The

ME(LIA) calculus, on the other hand, reasons directly with integer intervals and

allows a refutation in O(1) steps.

For a more complex example, consider the following two unit constrained

clauses

P (x)← a < x (1)

¬P (x)← x = b (2)

where a, b are free constants, which we call parameters, x, y are (implicitly univer-

sally quantified) variables, and a < x and x = b are the respective constraints of

clause (1) and (2). A constrained clause is merely a suggestive way to write a stan-

dard clause, where the constrained part of the clause implies the non-constrained

part. For example, P (x) ← a < x is equivalent to P (x) ∨ ¬a < x. We also

restrict the parameters to finite domains with the global constraints a : [1 .. 10],
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b : [1 .. 10]. Informally, clause (1) states that for each value of a in {1, . . . , 10},

P (x) holds for all integers x greater than a. Similarly for clause (2).

The clause set above is satisfiable in any expansion of the integers structure

Z to {a, b, P} that maps a, b into {1, . . . , 10} with a ≥ b. The calculus discovers

this and computes a data structure that denotes exactly these expansions. To

see how this works, it is best to describe the calculus’ main operations using a

semantic tree construction, illustrated in Figure 3.1.

b : [1..10]
a : [1..10]

(a) Initial tree

P (x) | a < x ¬P (x) | a < x

b : [1..10]
a : [1..10]

(1)

(b) (1) causes Split

a + 1 = b a + 1 6= b

P (x) | a < x ¬P (x) | a < x

b : [1..10]
a : [1..10]

(2)

(1)

(c) (2) causes Domain Split

a + 1 = b

P (x) | a < x ¬P (x) | a < x

b : [1..10]
a : [1..10]

(2)

(1)

a + 1 6= b

¬P (x) | P (x) |
x = b ∧ a < x x = b ∧ a < x

(d) (2) causes Split

a + 1 = b

P (x) | a < x ¬P (x) | a < x

b : [1..10]
a : [1..10]

(2)

(1)

a < b

(1)
a ≥ b

a + 1 6= b

¬P (x) | P (x) |
x = b ∧ a < x x = b ∧ a < x

(⋆)

(e) (1) causes Domain Split

Figure 3.1: ME(LIA) derivation example

Each branch in the semantic tree denotes a finite set of first-order in-
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terpretations that are expansions of Z. These interpretations are the key to

understanding the working of the calculus. The calculus’ goal is to construct a

branch denoting a set of interpretations that are each a model of the given clause

set and the global parameter constraints, or to show that there is no such model,

by closing all branches. Closed branches are marked with the number of the

clause used to close them.

In the example in Figure 3.1(a), the initial single-node tree denotes all

interpretations that interpret a and b over {1, . . . , 10} and falsify by default all

ground atoms of the form P (n) where n is an integer constant (e.g., P (−1), P (4),

. . .). Each of these (100) interpretations falsifies clause (1).

The calculus detects this by using the inference rule Inst to generate a

falsified clause instance of the input clause (1), which in this case is identical

to (1) itself. It then applies the Split inference rule to the constrained literal

P (x) | a < x, derived from clause (1), and extends the tree as in Figure 3.1(b).

The left branch of the new tree now denotes all interpretations that interpret a

and b as before but satisfy P (n) (only) for values n greater than a. The right

branch still denotes the same set of interpretations as in the original branch.

However, the presence of ¬P (x) | a < x now imposes a restriction on later

extensions of the branch.

For each interpretation that satisfies the constraint of a constrained literal,

the calculus singles out a unique minimal solution, i.e., a tuple of integers, as its

least solution. In the case of the constraint a < x whose tuple of variables is

the singleton (x), its least solution is (a + 1) for all interpretations. This entails

that in the right branch, which contains ¬P (x) | a < x, the ground literal
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¬P (a + 1) is permanently satisfied in the sense that (i) ¬P (Z(a) + 1) is true in

each interpretation Z of the branch and (ii) no extension of the branch is allowed

to change that. As a consequence, the right branch permanently falsifies clause

(1), and so it can be closed using the Close inference rule. Similarly, P (a + 1)

is permanently satisfied in the left branch of Figure 3.1(b). In DPLL terms, the

split with P (x) | a < x and ¬P (x) | a < x is akin to a split on the complementary

ground literals P (a + 1) and ¬P (a + 1). The calculus’ soundness proof relies in

essence on this observation.

In interpretations of the branch where a + 1 = b, this poses a problem

because there clause (2) is falsified. Since the branch does also have interpreta-

tions where a + 1 6= b, the calculus makes progress by splitting on a + 1 = b.

This is done with the Domain Split rule, leading to the tree in Figure 3.1(c). The

leftmost branch there denotes only interpretations where a + 1 = b, and can be

closed because it permanently falsifies clause (2). It is worth pointing out that

Domain Splits like the above, identifying “critical” cases of parameter assignments,

can be computed deterministically. They do not need not be guessed.

The branch ending in a + 1 6= b still contains interpretations that falsify

the clause set. For instance, those that map a to 2 and b to 4 will satisfy the

literal P (4) and so falsify clause (2). The calculus handles this by generating the

clause instance ¬P (x)← x = b∧a < x based on clause (2) and the branch literal

P (x) | a < x. This makes the Split rule applicable with the literal ¬P (x) | x =

b ∧ a < x, which yields the tree in Figure 3.1(d).

Moving to the branch ending in ¬P (x) | x = b ∧ a < x, let us consider

its interpretations where a < b. As defined later, those interpretations satisfy
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P (a + 1), . . . , P (b− 1) and falsify, among others, P (b), P (b + 1) and so on. This

is a consequence of the fact that when a < b then the minimal solution of the

constraint in P (x) | a < x, namely a + 1, is smaller than the minimal solution

of the constraint in ¬P (x) | x = b ∧ a < x, namely b. If the branch had only

such interpretations, it would permanently falsify clause (1) and could then be

closed. This situation is achieved by applying Domain Split with the literal a < b,

resulting in the tree of Figure 3.1(e). As for the branch ⋆, all its interpretations

satisfy P (n) for all n > a, because the constraint in ¬P (x) | x = b ∧ a < x is

now unsatisfiable, and falsify P (b) by default, because a ≥ b. It follows that they

all satisfy the clause set. The calculus recognizes this and stops. With a similar

argument the branch ending in P (x) | x = b ∧ a < x can be extended with a

Domain Split on a < b, whose left child would be closed due to clause (2) and

whose right child would induce the same interpretations as ⋆. Which of these two

branches is found first depends on the proof procedure that builds the tree. Had

the clause set been unsatisfiable, the calculus would have generated a tree with

closed branches only.

Note how the calculus found a model, in fact a set of models, for the input

clause set without having to enumerate all possible values for the parameters a

and b, resorting instead to much more course-grained domain splits. In its full

generality the calculus still works as sketched above. Its formal description is,

however, more complex because the calculus handles constraints with more than

one (free) variable, it does not require the computation of explicit (symbolic)

representations of minimal solutions, and it supports universal constraints which

permanently satisfy not only their least but all their solutions.



101

3.4 Preliminaries

Detailed proofs of the results in this and the following sections are provided

in Section 3.9.

3.4.1 Constraints

The language of our logic is made of sets of admissible constrained Σ-

clauses, defined below. A (parametric linear integer) constraint is a first-order

formula over the signature ΣΠ
Z = {

.
=,

.
<, +, −, 0, ±1, ±2, . . .} ∪ Π, where Π is

an infinite (denumerable) set of constant symbols not in ΣZ = ΣΠ
Z \ Π. The

symbols of ΣZ have the expected arity and usage. Following a common math

terminology, we will call the elements of Π parameters.

We will use, possibly with subscripts, the letters m, n to denote the integer

constants (the constants in ΣZ); a, b to denote parameters (the constants in

Π); c, d, s, t to denote constraints; and l, k to denote literals; We will use
.

≤ to

denote less than or equal, definable using
.
= and

.
<. We write t : [m .. n] as an

abbreviation of m
.

≤ t ∧ t
.

≤ n. We write c(x) to denote that c is a constraint

whose argument tuple is exactly x. We denote by ∃̄ c (resp. ∀̄ c) the existential

(resp. universal) closure of the constraint c, and by π x c the projection of c on

x, i.e., ∃y c where y is a tuple consisting of all the free variables of c that are not

in the variable tuple x. The notations ∀x c and ∃x c stand just for c when x is

empty.

A constraint is ground if it contains no variables, closed if it contains no

free variables. We define a satisfaction relation |=Z for closed parameter-free

constraints as follows: |=Z c if c is satisfied in the standard sense in the structure

Z of the integers—the one interpreting the symbols of ΣZ in the usual way over
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the universe Z. A parameter assignment α, a mapping from Π to Z, determines

an expansion Zα of Z to the signature ΣΠ
Z that interprets each a ∈ Π as α(a). For

each parameter assignment α and closed constraint c we write α |=Z c to denote

that c is satisfied in Zα. A (possibly non-closed) constraint c is α-satisfiable if

α |=Z ∃̄ c. For finite sets Γ of closed constraints we denote by Mods(Γ) the set of

all assignments α such that α |=Z Γ. We write Γ |=Z c to denote that α |=Z c

for all α ∈ Mods(Γ). We might abuse α to denote the constraint which equates

each parameter a with the value α(a).

If e is a term or a constraint, y = (y1, . . . , yk) is a tuple of distinct variables

containing the free variables of e, and t = (t1, . . . , tk), we denote by e[t/y] the

result of simultaneously replacing each free occurrence of yi in e by ti, possibly

after renaming e’s bound variables as needed to avoid variable capturing. We will

write just e[t] when y is clear from context. With a slight abuse of notation, when

x is a tuple of distinct variables, we will write e[x] to denote that the free variables

of e are included in x. For any assignment α, a tuple m of integer constants is

an α-solution of a constraint c[x] if α |=Z c[m]. For instance, {a 7→ 3} |=Z c[4, 1]

with c[x, y] = a
.
= x− y, and a : [1 .. 10] |=Z ∃x x

.
< a.

As indicated in Section 3.3, the calculus needs to analyze constraints and

their minimal solutions. In short, to make progress the calculus requires that

there exist minimal solutions for each (satisfiable) constraint. In order to achieve

completeness, the calculus also requires that the number of minimal solutions is

denumerable. As we show below, it is possible to build orderings and restrictions

on constraints such that both of these requirements are satisfied, and such that

the number of minimal solutions is in fact finite. One solution would be to



103

base minimal solutions on an ordering which ensures that both requirements are

satisfied, for example 0,−1, 1,−2, 2, . . . (see Lemma 3.9.1 in Section 3.9.1 for

further details). Instead we choose to go with the natural order
.
< on integers,

as this makes some notions simpler and makes operational reasoning about the

calculus more intuitive. On the other hand, the predicate
.
< does not guarantee

that minimal solutions always exist—consider e.g. the constraint x
.
< 0. We will

address this problem below, but first we need to introduce the extension of
.
<

from integers to constraint solutions.

With tuples s = (s1, . . . , sn) and t = (t1, . . . , tn) of terms, we will use the

following abbreviations, where s
.

≤ t denotes the component-wise extension of the

integer ordering
.

≤ to integer tuples, s
.

≤ℓ t denotes the lexicographic extension

of
.

≤, and s
.
< t and s

.
<ℓ t the strict versions of those:

s
.
= t

def
= s1

.
= t1 ∧ · · · ∧ sn

.
= tn

s
.

≤ t
def
= s1

.

≤ t1 ∧ · · · ∧ sn

.

≤ tn

s
.
< t

def
= s

.

≤ t ∧ ¬(s
.
= t)

s
.
<ℓ t

def
= s1

.
< t1 ∨ (s1

.
= t1 ∧ (s2, . . . , sn)

.
<ℓ (t2, . . . , tn))

s
.

≤ℓ t
def
= s

.
= t ∨ s

.
<ℓ t

We note that if n = 0 then s
.
= t and s

.

≤ t hold by convention, and thus

s
.

≤ℓ t holds as well, while s
.
< t and s

.
<ℓ t do not hold.

We say that a constraint c is admissible iff for all parameter assignments

α, if c is α-satisfiable then the set of α-solutions of c contains a finite but non-zero

number of minimal elements with respect to
.

≤, each of which we call a minimal
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α-solution of c. This can be easily enforced by conjoining a given constraint c[x]

with the constraint n
.

≤ x for some tuple n of integer constants.

Lemma 3.4.1 Let c[x] be a constraint and n a tuple of integer constants of the

same length as x such that |=Z ∃x n
.

≤ x. Then c is admissible.

From now on we always assume that all constraints are admissible.

We stress that for the calculus to be effective, it need not actually compute

minimal solutions. Instead, it is enough for it to work with constraints that denote

each of the n minimal α-solutions m1, ..., mn (in strict lexicographic order) of an

α-satisfiable constraint c[x]. This is achieved with the formulas defined below,

where y is a tuple of fresh variables with the same length as x and k ≥ 1.

µ c
def
= c ∧ ∀y (c[y]→ ¬(y

.
< x))

µℓ c
def
= c ∧ ∀y (c[y]→ x

.

≤ℓ y)

µk c
def
= µℓ (¬(µ1 c) ∧ · · · ∧ ¬(µk−1 c) ∧ (µ c))

Recalling that c is admissible, it is easy to see that for any assignment

α, µ c has at most n α-solutions (for some n): the n minimal α-solutions of c, if

any. If c is α-satisfiable, let m1, ..., mn be the enumeration of these solutions in

the lexicographic order
.
<ℓ. Observing that

.
<ℓ is a linearization of

.
<, it is also

easy to see that µℓ c has exactly one α-solution: m1. Similarly, for k = 1, . . . , n,

µk c has exactly one α-solution: mk. This is thanks to the additional constraint

¬(µ1 c)∧· · ·∧¬(µk−1 c), which excludes the previous minimal α-solutions, denoted

by µ1 c, . . . , µk−1. For k > n, µk c is never α-satisfiable.
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Lemma 3.4.2 Let α be an assignment and c an admissible constraint. Then,

there is an n ≥ 0 such that µ1 c, . . . µn c have unique, pairwise different α-

solutions, which are all minimal α-solutions of c. Furthermore, for all k > n,

µk c is not α-satisfiable.

For example, if c[x, y] = a
.

≤ x ∧ a
.

≤ y ∧ x 6
.
= y then

• {(x
.
= a∧y

.
= a+1), (x

.
= a+1∧y

.
= a)} is the set of all minimal α-solutions

of c for any α,

• µ c is semantically equivalent (≡) to (x
.
= a∧y

.
= a+1)∨(x

.
= a+1∧y

.
= a),

• µℓc ≡ (x
.
= a ∧ y

.
= a + 1),

• µ1 c ≡ (x
.
= a ∧ y

.
= a + 1),

• µ2 c ≡ (x
.
= a + 1 ∧ y

.
= a), and

• µ3 c is not α-satisfiable, for any α.

For convenience, we will implicitly consider the ordering
.
< when we talk

about minimal solutions of a constraint, while we will consider the ordering
.

≤ℓ

when we talk about the least solution of a constraint.

3.4.2 Constrained Clauses

We now expand the signature ΣΠ
Z with a finite set of free predicate symbols,

and denote the resulting signature by Σ. The language of our logic is made of

sets of admissible constrained Σ-clauses, defined below. The semantics of the

logic consists of all the expansions of the integer structure to the signature Σ, the

Σ-expansions of Z.
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A normalized literal is an expression of the form (¬)P (x) where P is an n-

ary free predicate symbol of Σ and x is an n-tuple of distinct variables. We write

L(x) to denote that L is a normalized literal whose argument tuple is exactly x.

A normalized clause is an expression C = L1(x1) ∨ · · · ∨ Ln(xn) where

n ≥ 0 and each Li(xi) is a normalized literal, called a literal in C. We write

C(x) to indicate that C is a normalized clause whose variables are exactly x. We

denote the empty clause by �.

A (constrained Σ-)literal K is a pair L(x) | c where L(x) is a normalized

literal and c is a constraint with free variables included in x. We denote by K the

constrained literal L(x) | c, where L is the complement of L. For convenience we

may use the literal L(t) instead of its normalized version L(x) | π x (x
.
= t[z/x])

where z is a tuple of fresh variables, e.g. P (a) instead of P (x) | x = a.

A (constrained Σ-)clause D[x] is an expression of the form

C(x)← c

where C(x) is a normalized clauses and c is a constraint with free variables

included in x. When C is � we call D a constrained empty clause. We call

C(x) ← d an instance of C(x) ← c, if for any parameter assignment α it holds

that α |=Z ∀̄ (d → c). For a constrained clause D = L1(x1) ∨ · · · ∨ Ln(xn) ← c

we call each Li(xi) | ci, with ci = π xi c, a (constrained) literal of D.

A clause C(x) ← c is LIA-(un)satisfiable if there is a (no) Σ-expansion

of the integer structure Z that satisfies the formula ∀x (c → C(x)). A set S of

clauses and constraints is LIA-(un)satisfiable if there is an (no) Σ-expansion of

Z that satisfies every element of S. As we are interested in LIA-satisfiability

only, we will from now on for convenience shorten LIA-(un)satisfiable to just
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(un)-satisfiable, unless we want to stress that we are working with the standard

interpretation of LIA.

We will consider only admissible clauses, i.e., constrained clauses C(x)← c

where (i) C 6= � and (ii) c is an admissible constraint. Condition (i) above is

motivated by purely technical reasons. It is, however, no real restriction, as any

clause �← c in a clause set S can be replaced by false ← c, where false is a 0-ary

predicate symbol not in S, once S has been extended with the clause ¬false ← ⊤.

Requiring admissible constraints is the real restriction, needed to guar-

antee the existence of minimal solutions, as explained earlier. To simplify the

presentation, we will further restrict ourselves to clauses with (trivially admissi-

ble) constraints of the form c[x] ∧ 0
.

≤ x, where 0 is the tuple of all zeros. For

brevity, in our examples we will usually leave the constraint 0
.

≤ x implicit.

We may mark a constrained literal as universal, otherwise we call it non-

universal. The permanent constraint perm(L(x) | c) of a universal constrained

literal is c, the permanent constraint of a non-universal literal is µℓ c. That is,

the permanent constraint of a non-universal literal is just its least α-solution for

any assignment α, while for a universal literal it is the constraint itself. This

will enable the calculus to make stronger assumptions during a derivation. For

convenience, we will write perm(c) instead of perm(L(x) | c) when the constrained

literal in question is clear from context.

As informally introduced in Section 3.3, the calculus relies on least α-

solutions in order to make progress. In fact, the calculus compares least α-

solutions of constraint literals with respect to
.

≤ℓ with the following comparison
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operators, where x and y are disjoint vectors of variables of the same length:

c
.
<µℓ

d
def
= ∃x ∃y (µℓ c[x] ∧ µℓ d[y] ∧ x

.
<ℓ y) .

In words, for every α, the formula c
.
<µℓ

d is α-satisfiable iff c and d are

α-satisfiable, and the least α-solution of c is
.
<ℓ-smaller than the least α-solution

of d.

Similarly, we write

c
.
=µℓ

d
def
= ∃x (perm(c[x]) ∧ perm(d[x]))

to denote the formula expressing that the permanent constraints of c[x] and d[x]

of two constrained literals have common solutions.

From the above, it is not difficult to show the following.

Lemma 3.4.3 (Total ordering) Let α be a parameter assignment, and c[x]

and d[x] two α-satisfiable admissible constraints. Then, one of the following

cases applies:

(i) α |=Z c
.
<µℓ

d

(ii) α |=Z c
.
=µℓ

d

(iii) α |=Z d
.
<µℓ

c

We stress that the restriction to α-satisfiable constraints is essential here.

If c or d is not α-satisfiable, then none of the listed cases applies. If c and d are

not constraints of universal literals, then the three cases are mutually exclusive,

otherwise Case (ii) as well as one of the other cases can apply.
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3.4.3 Constrained Contexts

A (constrained) context is a pair Λ ·Γ where Λ is a finite set of constrained

literals and Γ is a finite set of closed constraints. We will call a constrained literal

in Λ a context literal. We will implicitly identify the set Λ with its closure under

renamings of a context literal’s free variables.

In the discussion of Figure 3.1 we explained informally the meaning of

parameter constraints and constrained literals. In terms of the semantic tree

presentation, each branch there corresponds roughly to a context Λ · Γ, where Γ

are the parameter constraints along the branch and Λ are the constrained literals.

The purpose of this section is to provide a formal account for that.

Definition 3.4.4 (α-Covers) Let α be a parameter assignment. A constrained

literal L(x) | c1 α-covers a constrained literal L(x) | c2 if α |=Z ∃̄ c2 and α |=Z

∀̄ (c2 → c1).

If Γ is a set of closed constraints, L(x) | c1 Γ-covers L(x) | c2 if it α-covers

it for all α ∈ Mods(Γ).

The intention of the previous definition is to compare context literals with

respect to their set of solutions for a fixed assignment α. This is expressed

basically by the second condition in the definition of α-covers. For example,

P (x) | a
.
< x α-covers P (x) | a+1

.
< x, for any α. The first condition (α |=Z ∃̄ c2)

is needed to exclude α-coverage for the trivial reason that c2 is not α-satisfiable.

Without it, for example, P (x) | x
.
= 2 would α-cover P (x) | x

.
= a ∧ a

.
= 5 when,

say, α(a) = 3, which is not intended. But note that α 6|=Z ∃x (x
.
= a ∧ a

.
= 5) in

this case. Also note that the two conditions α |=Z ∃̄ c2 and α |=Z ∀̄ (c2 → c1) in

combination enforce that c1 is α-satisfiable as well.
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Definition 3.4.5 (α-Extends) Let α be a parameter assignment. A constrained

literal L(x) | c1 α-extends a constrained literal L(x) | c2 if L(x) | c1 α-covers

L(x) | c2 and L(x) | perm(c1) α-covers L(x) | perm(c2).

If Γ is a set of closed constraints, L(x) | c1 Γ-extends L(x) | c2 if it

α-extends it for all α ∈ Mods(Γ).

The notion of α-extension is similar to that of α-coverage, but requires in

addition that the permanent constraints themselves are α-covering.

For instance, P (x) | 0
.

≤ x ∧ x
.
< 7 α-extends and α-covers P (x) | 0

.

≤

x ∧ x
.
< 3 for any α, the least solution being (0) for both literals. On the other

hand, P (x) | 0
.

≤ x ∧ x
.
< 7 α-covers P (x) | 1

.

≤ x ∧ x
.
< 3, but only when

P (x) | 0
.

≤ x ∧ x
.
< 7 is universal does it α-extend P (x) | 1

.

≤ x ∧ x
.
< 3 as well.

The concepts introduced in the next three definitions allow us to associate

a set of structures to each context satisfying certain well-formedness conditions.

Definition 3.4.6 (α-Contradictory) Let Λ ·Γ be a context and α ∈ Mods(Γ).

A constrained literal L(x) | c is α-contradictory with Λ if there is a context literal

L(x) | d in Λ such that α |=Z c
.
=µℓ

d. It is Γ-contradictory with Λ if there is

a L(x) | d in Λ such that Γ |=Z c
.
=µℓ

d. The literal L(x) | c is contradictory

with the context Λ · Γ if it is α-contradictory with Λ for some α ∈ Mods(Γ). The

context Λ · Γ itself is contradictory if some context literal in Λ is contradictory

with it.

Note that the calculus always uses Γ-contradictory in such a way that

the following more general definition would be justified as well: L(x) | c is α-

contradictory with the context for each α ∈ Mods(Γ). That is, we do not use the
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same context literal for all α but can choose a different one for each. We decided

to go with the less general definition as it is probably more efficient to implement

and puts less stringent requirements on a proof procedure.

The notion of Γ-contradictory is based on conflicts between context literals

and clause literals due to overlaps in the permanent constraints of α-solutions

for all α ∈ Mods(Γ). It underlies the abandoning of candidate models due to

permanently falsified clauses in Section 3.3, which is captured precisely in the

Close rule of the calculus.

The following definition is analogous to the notion of productivity in ME.

To achieve that either a ground literal or its complement is produced (and not

both), a universal literal has to trump a non-universal literal. Just comparing

minimal solutions does not suffice, all solutions of a universal constraint must be

taken into account.

Definition 3.4.7 (α-Produces) Let Λ · Γ be a context and α ∈ Mods(Γ). A

constrained literal L(x) | c1 α-produces a constrained literal L(x) | c2 wrt. Λ iff

1. L(x) | c1 α-covers L(x) | c2, and

2. (a) L(x) | c1 is universal, or

(b) there is no L(x) | d ∈ Λ such that

i. L(x) | d α-covers L(x) | c2, and

A. L(x) | d is universal, or

B. α |=Z c1

.
<µℓ

d.

The set Λ α-produces a constrained literal K if some literal in Λ α-produces K

wrt. Λ. A context Λ · Γ produces K if there is an α ∈ Mods(Γ) such that Λ α-
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produces K. If a literal L(x) | c1 in Λ α-covers L(x) | c2 for some α ∈ Mods(Γ),

but does not α-produce it wrt. Λ due to some literal L(x) | d in Λ, we say that

L(x) | d α-blocks L(x) | c1 from α-producing L(x) | c2 in Λ · Γ

We require our contexts not only to be non-contradictory but also to

guarantee that the associated Σ-expansions of Z are total over tuples of natural

numbers. All this is achieved with admissible contexts.

Definition 3.4.8 (Γ, Admissible Context) A context Λ · Γ is admissible if

1. Γ is satisfiable.

2. For each free predicate symbol P of non-zero arity in Σ, the set Λ contains

¬P (x) | −1
.

≤ x.

3. Λ · Γ is not contradictory.

Thanks to Condition 2 in the above definition, an admissible context α-

produces a literal ¬P (n) with n consisting of non-negative integer constants,

if no other literal in the context α-produces P (n). While this does not cover

propositional literals, i.e., predicate symbols of arity 0, a simple preprocessing

step can take care of that. For each predicate symbol P of arity 0 in the signature

we introduce a fresh predicate symbol P ′ of arity 1. Then, we transform the input

clause set by exhaustively replacing each clause of the form (¬)P ∨C ← c, where

P is a propositional symbol, by the clause (¬)P ′(x) ∨ C ← c ∧ x
.
= 0, where x is

a fresh variable.
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Observe that admissible contexts Λ ·Γ may contain context literals whose

constraint is not α-satisfiable for some (or even all) α ∈ Mods(Γ). For those α’s,

such literals simply do not matter as their effect is null.

Admissible contexts are always consistent in the following sense.

Lemma 3.4.9 (Consistent α-Productivity) Let Λ·Γ be an admissible context

and α ∈ Mods(Γ). For any constrained literal L(x) | c, Λ cannot α-produce both

L(x) | c and its complement L(x) | c.

The following definition provides the formal account of the meaning of

contexts.

Definition 3.4.10 (Induced Structure) Let Λ · Γ be an admissible context

and let α ∈ Mods(Γ). The Σ-structure ZΛ,α induced by Λ and α is the expansion

of Z to all the symbols in Σ that agrees with α on the parameters and satisfies

a positive ground literal L(s) iff Λ α-produces L(s).

Lemma 3.4.11 Let Λ · Γ be an admissible context and α ∈ Mods(Γ). For any

ground literal L(s) such that α |=Z 0
.

≤ s, ZΛ,α satisfies L(s) if and only if Λ

α-produces L(s).

Thus, Definition 3.4.10 connects syntax (α-productivity) to semantics

(truth) in a one-to-one way. For convenience, we might say that a context satis-

fies (falsifies) a clause if one of the structures induced by it satisfies (falsifies) the

clause.

As an important consequence all ground instances of a literal correspond-

ing to its permanent constraint are satisfied in an induced structure.
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Lemma 3.4.12 Let Λ ·Γ be an admissible context, let L(x) | c be a context literal

in Λ, and let α ∈ Mods(Γ). If c is α-satisfiable then each literal in {L(m) | α |=Z

perm(c)[m/x]} is satisfied by ZΛ,α.

That is, the permanent constraints of context literals are responsible for

refining the current and, as will become clear later, all future structures induced

by a context. We make the effect of a permanent constraint more explicit, by

using it to define the notion of permanently satisfied ground literals on top of it.

Definition 3.4.13 (Permanently α-Satisfied) Let Λ·Γ be an admissible con-

text, and let L(x) | c ∈ Λ be a context literal in Λ. A ground literal L(s) is

permanently α-satisfied by a L(x) | c ∈ Λ in Λ · Γ for some α ∈ Mods(Γ), if s is

an α-solution of perm(c).

A ground literal L(s) is permanently α-falsified by a context literal K in

a context Λ · Γ, if its complement L(s) is permanently α-satisfied by K in Λ · Γ.

These notions extend to ground clauses in the natural way.

The definition implies that if a ground literal L(s) is permanently α-

satisfied in an admissible context Λ · Γ, then ZΛ,α satisfies L(s) in Λ · Γ. The

calculus will further justify the understanding that, if a L(s) is permanently α-

satisfied in Λ·Γ, then in any context Λ′·Γ′ obtainable from Λ·Γ with α ∈ Mods(Γ′)

it is the case that ZΛ′,α satisfies L(s) as well.

That is, intuitively, for a given α ∈ Mods(Γ′) such that c is α-satisfiable,

a universal context literal L(x) | c causes all its ground instances L(mα), with

mα an α-solution of c, to be permanently α-satisfied in the current and all future
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contexts. In contrast, a non-universal context literal L(x) | c causes only the

ground instance L(mα) with mα being the lexicographic least α-solution of c to

be permanently α-satisfied.

The inference rules of the calculus will use the notion of a Γ-universal

literal to detect if a context literal can be made universal, i.e., if it permanently

satisfies only its least or all of its solutions.

Definition 3.4.14 (α-Universal) Let C[x] ← c(x) be a clause with literals

Li(xi) | ci(xi) for 1 ≤ i ≤ k, and Λ · Γ an admissible context. Let for a given

assignment α ∈ Mods(Γ) the set S be defined as the set consisting of all α-

solutions of c, and let Si be defined as the set consisting of the projections of

each α-solution in S over xi. Then the literal Li(xi) | ci of the clause C ← c is

α-universal in the context Λ ·Γ iff for each mi ∈ Si there is an m ∈ S such that i)

mi is the projection of m over xi, and ii) for each Lj(xj) | cj with i 6= j, Lj(mj)

is permanently α-falsified in Λ · Γ.

If a literal of a clause C ← c is α-universal in Λ · Γ for all α ∈ Mods(Γ),

then it is Γ-universal in Λ.

That is, in a given context the Γ-universal literals of a clause instance are

literals that, solely due to permanently falsified literals, must be Γ-satisfied in

the induced structure in order to satisfy C ← c. Note that the notion of an α-

universal (Γ-universal) literal depends on a clause and the current context, while

a universal constrained literal is independent of both. The calculus connects

these two notions by marking a context literal as universal if it is Γ-universal

at the point when it is added to the context. Universal constrained literals are

an optimization of the calculus, they are needed neither for completeness nor for
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soundness. It is safe to (consistently) consider a universal context literal as non-

universal. This makes it possible to use cheap approximations of the potentially

expensive check for the Γ-universality criterion given above (see Section 3.7.5.1).

3.4.4 Context Unifier

In Section 3.3 we explained the derivation in Figure 3.1 as being driven by

semantic considerations, to construct a model by successive branch extensions.

The calculus’ inference rules achieve that in their core by generating falsified

clause instances based on context unifiers.

Definition 3.4.15 (Context Unifier) Let Λ · Γ be an admissible context and

C[x] = L1(x1) ∨ · · · ∨ Lk(xk) ← c[x] a constrained clause with free variables x.

A context unifier of C against Λ · Γ is a constraint

d[x] = d′[x] ∧ ∃y (y
.

≤ x ∧ µj d′[y]), where d′[x] = c[x] ∧ e1[x1] ∧ · · · ∧ ek[xk]

with each ei coming from a context literal Li(xi) | ei in Λ, and j ≥ 1. We say

that each literal Li(xi) | ci of C with ci = π xi c has been paired with Li(xi) | ei.

The following lemma follows directly by construction of the constraint of

a literal of a clause.

Lemma 3.4.16 Let Λ · Γ, C, d, and Li(xi) | ei be as in Definition 3.4.15. Then

for all α ∈ Mods(Γ), the least α-solution of each literal Li(xi) | di of C ←

d cannot be smaller than the least solution of the corresponding context literal

Li(xi) | ei.
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The constraint d can perhaps be best understood as follows. Its compo-

nent d′ = c[x] ∧ e1[x1] ∧ · · · ∧ ek[xk] denotes any simultaneous solution of C’s

constraint and the constraints coming from pairing each of C’s literals with a

context literal with the same predicate symbol but opposite sign. The compo-

nent µjd
′[y] denotes the jth minimal solution of d′, which bounds from below the

solutions of d. A simple, but important consequence (for completeness) is that

for any α and concrete solution m of d′, j can be always chosen so that d[m] is

α-satisfied. As a special case, when m is the j-th minimal solution of d′, it is also

the least (and single minimal) solution of d.

Example 3.4.17 As a first example, without parameters, for simplicity, let d′

= c[x1, x2] ∧ e1[x1] ∧ e2[x2] where

c = ¬(x1
.
= x2), e1 = 1

.

≤ x1, e2 = 1
.

≤ x2 .

Then, the (unique) solution of µj d′ for j = 1 is (1, 2); for j = 2 it is (2, 1). By

fixing j = 1 now let us commit to (1, 2). Then the solutions of d1 are (1), (2), . . .

and the solutions of d2 are (2), (3), . . . The least solution of d1, (1), coincides with

the projection over x1 of the committed minimal solution (1, 2). Similarly for d2.

This is no accident and is crucial in proving the soundness of the calculus. It

relies on the property that the least (individual) solutions of all the di’s are, in

combination, the least solution of d—which is in turn the j.th minimal solution

of d′. In the example, the least solutions of d1 and d2 are 1 and 2, respectively,

and combine into (1, 2), the least solution of d.

We stress that all the notions in the above definition are effective thanks

to the decidability of LIA. A subtle point here is the choice of j in (3.4.4), as
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j is not bounded a priori. However, all these notions hold only if d and thus

d′ is α-satisfiable for some α ∈ Mods(Γ). As d′ as a conjunction of admissible

constraints is itself admissible, it follows as argued before that only finitely many

members of any family of context unifiers are admissible. By this argument, the

possible values for j are effectively bounded.

The calculus performs clause instantiation solely based on context unifiers.

The next example takes a closer look at the role played by context unifiers in the

third step in the example from the introduction.

Example 3.4.18 Consider the context

{P (x) | a
.
< x} · {a : [1 .. 10], b : [1 .. 10]}

and the input clause

¬P (x)← x
.
= b.

The context corresponds to the left branch in Figure 3.1(b). There is a context

unifier, for any j ≥ 1:

d = x
.
= b ∧ a

.
< x ∧ ∃y (y

.

≤ x ∧ µj (y
.
= b ∧ a

.
< y)).

The sole literal of the clause instance ¬P (x) ← d is K ′ = ¬P (x) | d1, where

d1 = π x d = d. The constraint y
.
= b ∧ a

.
< y has a unique minimal α-solution,

which is then also its least α-solution. Thus, d is equivalent to x
.
= b ∧ a

.
< x,

obtained with j = 1. Let us analyze if K ′ is Γ-contradictory, that is, if Γ |=Z

(a
.
< x)

.
=µℓ

d. That is true iff

Γ |=Z ∃x µℓ (a
.
< x) ∧ µℓ (x

.
= b ∧ a

.
< x) . (3.1)
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By quantifier elimination we can show that checking (3.1) reduces to checking if

Γ |=Z a + 1
.
= b. Since that entailment does not hold, K ′ is not Γ-contradictory.

But since some α ∈ Mods(Γ) do satisfy a + 1
.
= b, a literal split is not

applicable to K ′, as the resulting context would be contradictory. Splitting the

domain with a + 1
.
= b makes K ′ Γ-contradictory in the left conclusion, and the

literal split applicable in the right conclusion. This case analysis gives rise to the

domain split in Figure 3.1(c).

The last example gives a preview of the guiding role that context unifiers

can play in determining the universality of context literals.

Example 3.4.19 Let Λ · Γ be a context containing the (non-universal) literals

L1(x) | x
.

≤ b, L1(x) | a
.

≤ x, and L2(x, y) | −1
.

≤ x ∧−1
.

≤ y. Let d be a context

unifier of the clause L1(x) ∨ L2(x, y)← (x
.
= a ∨ x

.
= b) ∧ x

.
< y paired with the

literals L1(x) | a
.

≤ x and L2(x, y) | −1
.

≤ x ∧ −1
.

≤ y. If Γ |=Z d then the literal

L2(x, y) | d2 is Γ-universal while the literal L1(x) | d1 is not.

3.5 The Calculus

The input language of the calculus consists of a (finite) set Φ of constrained

clauses and a satisfiable (finite) set Γ of closed constraints. We call the logic

described by this language the ME(LIA)-logic.

The inference rules of the calculus are defined over quadruples, sequents,

of the form Λ·Γ ⊢ Φ·Ψ, where Λ·Γ is an admissible context, and Φ and Ψ are sets

of constrained clauses. We will write Λ, L to denote the set of constrained literals

Λ ∪ {L}, and similar with closed constraints, resp. constrained clauses, for Γ,

resp. Φ and Ψ. We will implicitly define the components of a sequent S as ΛS,
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ΓS, Φs, and Ψs. Φ is initialized with a set Φ0 of admissible input clauses, while Ψ

is initially empty and is extended by the calculus with instances of clauses from

Φ.

The completeness of the calculus guarantees that each of its branches

terminates with failure, i.e., contains the constrained empty clause �← ⊤, when

Φ0 is LIA-unsatisfiable. Contrapositively, from any unfailing branch it is possible

to extract (possibly in the limit) a set of models for Φ0. When the branch is

finite and ends with a sequent Λn ·Γn ⊢ Φn ·Ψn, these models are precisely those

denoted by Λn · Γn.

Context unifiers play a crucial role in the evolution of Λ · Γ. To illustrate

their use, consider a sequent Λ ·Γ ⊢ Φ ·Ψ. If for some α ∈ Mods(Γ) the structure

ZΛ,α induced by Λ and α falsifies Φ, it must falsify a “ground” instance C[m] of

some clause C(x) ← c in Φ. This implies the existence of a context unifier d of

C(x) ← c against Λ · Γ, where m is an α-solution of d. The Inst rule, described

later, will add the clause instance C(x) ← d to Ψ. This will trigger other rules

of the calculus, which try to extend the context to make it satisfy C(x)← d.

If C(x) ← d in Ψ has a literal L(xi) | di which is not contradictory with

the context, the problem with C[m] can be fixed by adding L(xi) | di to Λ using

the rules Split or Extend introduced below. In essence, if mi is the projection of

m over xi, then for each α ∈ Mods(Γ) that satisfies d, L(xi) | di will α-produce

Li[mi] in the new context (assuming it is not blocked by other context literals,

see Definition 3.4.7), since its least solution is no greater than mi. That will

make the new ZΛ,α satisfy Li[mi] and so C[m] as well. This is the analogous of

“lifting” in Herbrand-based theorem proving.
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If a literal of C ← d is contradictory with the context, it must be β-contra-

dictory with Λ for one or more β ∈ Mods(Γ). Then, it is necessary to strengthen Γ

to eliminate offending βs. This is achieved with the Domain Split rule. Strength-

ening Γ using Domain Split eventually makes either Split or Extend applicable to

a literal of C(x) ← d, or makes all literals of C(x) ← d Γ-contradictory. In the

latter case, the calculus will close the corresponding branch with the Close rule.

3.5.1 Derivation Rules

The ME(LIA) calculus consists at its core of five mandatory rules, which

are sufficient to obtain a sound and complete proof procedure. The original cal-

culus in [14] is extended here with a number of redundancy criteria, simplification

rules, and optional derivation rules, which are geared towards improving the effi-

ciency of practical proof procedures. To simplify the presentation, the core and

optional derivation rules only extend components of a sequent, while the sim-

plification rules only shrink components of a sequent. Furthermore, redundancy

criteria apply only to clause instances in Ψ, while the clause simplification rules

apply only to clauses in Φ. An implementation would probably integrate obvious

simplifications, for example due to redundancy criteria, into a rule application.

It is also noteworthy that for some rules, for example Close and Extend, the

application of a rule instance does not make it non-applicable in the conclusions.

That is, the rule instance could in principle be applied infinitely often, even in

the case where the premise and conclusions of a rule instance are identical. This

is of course pointless in practice. When a rule instance has been applied to a

sequent, then it does not need to be applied to its conclusions or any sequent

obtained from its conclusions by further rule applications. This is justified by
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the redundancy criteria and side conditions of the derivation rules defined below.

Thus an implementation does not have to apply any rule instance more than

once.

We call the clause in Ψ singled out in the premises of Close, Split, Extend,

Domain Split, and Assert the selected clause of the rule instance. We call the

clause in Ψ singled out in the conclusions of Inst and Inst Assert the derived

clause of the rule instance.

3.5.1.1 Redundancy

Redundancy criteria serve to determine clauses in Ψ which are redundant

and can be safely ignored when considering which inference rules need to be ap-

plied. Redundancy is a persistent notion. If a clause is redundant in a sequent S,

then it is redundant in all conclusions obtained from S. Thus an implementation

can opt to remove a clause D from Ψ as soon as it recognizes that D is redundant.

Let S be a sequent, and let D(x) = L1(x1) ∨ · · · ∨ Lk(xk) ← d be a

clause in ΨS. Then there must be a sequent SInst to which Inst was applied

with derived clause D, and from which S is derived by a sequence of inference

rule applications. Furthermore, d must be a context unifier of a clause C(x) =

L1(x1) ∨ · · · ∨ Lk(xk)← c in ΦInst paired with context literals Li(xi) | ei in ΛInst.

Definition 3.5.1 (Redundancy) Let C, D and Li(xi) | ei be as above. The

clause D is α-redundant in a sequent Λ · Γ ⊢ Φ ·Ψ for an α ∈ Mods(Γ) if any of

the following holds:

(i) R-Unsatisfiable: α |=Z ∀̄ ¬d

That is, D is trivially satisfied because its constraint is α-unsatisfiable.
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(ii) R-Unproductive: There is an i, 1 ≤ i ≤ k such that Li(xi) | ei does not

α-produce Li(xi) | ci wrt. Λ.

That is, one of the context literals of the context unifier does not α-produce

the complement of the instance of the clause literal it was paired with.

(iii) R-Subsume: There is (modulo variable renaming) a clause E = F ← f in

Ψ such that F ⊂ {L1, · · · , Lk} and each literal of E α-extends some literal

of D.

This is analogous to strict subsumption in first-order logic.

A clause in Ψ is Γ-redundant in S if it is α-redundant in S for all α ∈

Mods(Γ). An inference rule application is α-redundant in S if its selected or

derived clause is α-redundant. It is Γ-redundant in S if it is α-redundant in S

for all α ∈ Mods(Γ).

The definition formalizes that an inference rule application is Γ-redundant

in a sequent S = Λ ·Γ ⊢ Φ ·Ψ if it is not applicable to the sequent Λ ·Γ ⊢ Φ ·Ψ′,

where Ψ′ is obtained from Ψ by removing all clauses which are redundant in S.

As a side note, the following is a natural candidate for a redundancy

criterion: If a literal of a clause instance D is α-produced by a context Λ · Γ,

then D is α-redundant in Λ ·Γ. Intuitively, in this case the context literals which

were used to compute the context unifier d are not sufficient for falsifying any

ground instance of C. As it turns out, this redundancy criterion is a special case

of R-Unproductive, and thus it is not necessary to specify it explicitly.



124

3.5.1.2 Core Rules

The core rules of the calculus are crucial for obtaining sound and complete

proof procedures.

Inst
Λ · Γ ⊢ (Φ, C ← c) ·Ψ

Λ · Γ ⊢ (Φ, C ← c) · (Ψ, C ← d)

where

1. d is a context unifier of C ← c against Λ · Γ.

This rule recognizes through the existence of a context unifier d that the context

(possibly) falsifies the instance C ← d of the input clause C ← c. It adds the

instance to Ψ, which enables other rules.

Close
Λ · Γ ⊢ Φ · (Ψ, C ← c)

Λ · Γ ⊢ Φ · (Ψ, C ← c,�← ⊤)

where

1. each literal of C ← c is Γ-contradictory with Λ.

This rule recognizes that the context permanently Γ-falsifies some (ground in-

stance of a) clause and adds the empty clause as a marker for that.

A potential special case worth noting is when the selected clause is a

constrained empty clause, i.e., � ← c. Close then applies, its side condition is

trivially satisfied as �← c has no literal. But Close is only sound if c is entailed

by Γ, which is usually ensured precisely by having Γ-contradictory literals. This

is the reason why we insist that all input clauses are admissible, as this ensures

that Φ cannot contain a constrained empty clause. Thus, it is impossible for this

special case to occur.
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We note that the correctness proof justifies to weaken Condition 1 in Close

so that each literal of C ← c is α-contradictory with Λ for each α ∈ Mods(Γ).

Thus, an implementation can make use of this fact to apply Close more eagerly,

but it is not required to do so to be complete.

Split
Λ · Γ ⊢ Φ · (Ψ, C ← c)

(Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c) (Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c)

where

1. Li | ci is a literal of C ← c,

2. neither Li | ci nor Li | ci is contradictory with Λ · Γ.

This rule, analogous to the main rule of the DPLL procedure, derives one of two

possible sequents non-deterministically. The left conclusion fixes the context by

adding the split literal Li | ci, which then Γ-produces a literal of the potentially

falsified clause C ← c. The right conclusion is needed for soundness and forces

the calculus to consider other alternatives.

Split is intended to be applied only if the clause, and in particular the split

literal, is not currently produced by the context, i.e., it is not R-Unproductive Γ-

redundant. Its application makes C ← c R-Unproductive Γ-redundant in the left

conclusion, and the split literal contradictory in the right conclusion.

Extend
Λ · Γ ⊢ Φ · (Ψ, C ← c)

(Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c)

where

1. Li | ci is a literal of C ← c,

2. Li | ci is Γ-contradictory with Λ.
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This rule can be seen as a one-branched Split, where the split literal must be

produced by all α ∈ Mods(Γ). Its application makes C ← c R-Unproductive

Γ-redundant in the left conclusion.

To illustrate the need for Extend, suppose Λ = {¬P (x) | −1
.

≤ x, P (x) |

x : [1 .. 5]}, Γ = ∅ and C = P (x) ← x : [1 .. 7]. The clause C is falsified in the

(single) induced interpretation, because, for instance, ¬P (6) is satisfied. Adding

P (x) | x : [1 .. 7] to Λ will fix the problem. However, Split cannot be used for

that since ¬P (x) | x : [1 .. 7] is Γ-contradictory with Λ—for having the same least

solution, 1, as the constraint of P (x) | x : [1 .. 5]. Extend will do instead.

Domain Split
Λ · Γ ⊢ Φ · (Ψ, C ← c)

Λ · (Γ, d) ⊢ Φ · (Ψ, C ← c) Λ · (Γ,¬d) ⊢ Φ · (Ψ, C ← c)

where

1. Li | ci is a literal of C ← c,

2. there is an α ∈ Mods(Γ), and an Li | e or Li | e in Λ such that Li | ci is

α-contradictory but not Γ-contradictory with Li | e,

3. d = ∃̄(ci
.
=µℓ

e).

The purpose of this rule is to enable applications of Close, Split, and Extend, which

are not applicable to the current context due to too strong or insufficient contra-

dictions between clause literals and the context. It achieves this by partitioning

the current Mods(Γ) into two non-empty parts thanks to the split constraint d.

3.5.1.3 Optional Rules

The following rules are optional, but are often preferable to the core rules.
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Inst Assert
Λ · Γ ⊢ (Φ, C ∨ L0 ← c) ·Ψ

Λ · Γ ⊢ (Φ, C ∨ L0 ← c) · (Ψ, C ∨ L0 ← d)

where

1. K = L0(x0) | −1
.

≤ x0,

2. d is a context unifier of C ∨ L0 ← c against (Λ, K) · Γ, where L0(x0) is

paired with K and no other literal of C ∨ L0 ← c is paired with K,

3. L0 | d0 is Γ-universal in Λ · Γ.

The intent of this rule is to detect if universal literals can be added to the context,

and to add a clause instance suitable for Assert. In the conclusion either Close

applies, or Assert applies with assert literal L0 ← d0, possibly after an application

of Domain Split.

While K is contained in any admissible context if L is positive, the K used

here is not actually in Λ but merely used for technical reasons. This achieves in

essence that L0(x0) is not paired with any literal, thus generating the most general

clause instance possible. As a design choice, K could be restricted to positive

literals only, in order to keep the applicability of Inst and Inst Assert mutually

exclusive.

Assert
Λ · Γ ⊢ Φ · (Ψ, C ← c)

(Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c)

where

1. Li | ci is a literal of C ← c,

2. Li | ci is not contradictory with Λ · Γ,
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3. Li | ci is Γ-universal in Λ · Γ,

4. Li | ci is marked as universal in (Λ, Li | ci) · Γ.

This rule is intended to strengthen the context and make applications of Split

and Extend Γ-redundant by adding universal literals to the context.

It might be surprising that the side conditions of Assert do not explicitly

require that each Lj | cj of C ← c with j 6= i must be Γ-contradictory with Λ.

This is justified by the observation that the assert literal Li | ci is Γ-universal in

Λ · Γ. This implies that Lj | cj is α-contradictory with Λ for each α ∈ Mods(Γ).

While this condition is weaker it is still sufficient for soundness.

The decision to introduce universal literals only here, but not in the Split

rule, keeps the calculus simpler. Otherwise, the reduction to ground DPLL style

splitting is not easily justified anymore, and, similarly to ME, we would need to

introduce a mechanism like Skolem constants in order to deal with right conclu-

sions.

Ground Split
Λ · Γ ⊢ Φ ·Ψ

Λ · (Γ, l) ⊢ Φ ·Ψ Λ · (Γ, l) ⊢ Φ ·Ψ

where

1. l is a ground constraint literal over the parameters Π,

2. α |=Z l, for some α ∈ Mods(Γ),

3. Γ 6|=Z l.

This rule partitions Γ by extending it with ground literals only, with the goal of

keeping Γ as ground as possible, thus keeping tests involving it (relatively) cheap.
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In particular, an application of Domain Split to d can be replaced by a

succession of applications of Ground Split to ground literals l, such that l occurs

in some constraint e with α |=Z e↔ d, and α |=Z l and Γ 6|=Z l. The constraint

e could, for example, be computed from d by quantifier elimination.

3.5.1.4 Simplification Rules

The simplification rules below are the direct counterparts to the simpli-

fication rules of ME [18], and simplify the input clause set Φ as well as the set

of constrained literals Λ. Removing clauses from Φ with Subsume leads to less

clause instances generated by Inst, while shortening clauses with Resolve leads to

shorter clause instances generated by Inst. As most of the calculus’s rule operate

on the (literals of the) generated clause instances in Ψ, these simplifications can

significantly reduce the number of possible rule applications.

Subsume
(Λ, L0 | e) · Γ ⊢ (Φ, C ∨ L0 ← c) ·Ψ

(Λ, L0 | e) · Γ ⊢ Φ ·Ψ

where

1. Γ |=Z ∀̄(c0 → perm(L0 | e)).

This rule captures standard first-order unit subsumption. It removes an input

clause which contains a literal that is permanently satisfied by the context. Recall

that c0 is the constraint of the literal L0 | c0 of C ∨ L0 ← c.

This implies either that L0 | e is universal, or that L0 | c0 has at most one

α-solution for each α ∈ Mods(Γ), i.e., it is in essence ground.

Resolve
(Λ, L0 | e) · Γ ⊢ (Φ, C(x) ∨ L0 ← c) ·Ψ

(Λ, L0 | e) · Γ ⊢ (Φ, C(x)← d) ·Ψ
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where

1. C is not empty,

2. Γ |=Z ∀̄(c0 → perm(L0 | e)),

3. d = π x c.

This rule captures standard first-order unit resolution. It removes a literal from

an input clause whose complement is permanently satisfied. Recall that c0 is the

constraint of the literal L0 | c0 of C ∨ L0 ← c. The constraint d of the simplified

clause is obtained from c by existentially quantifying the variables which are local

to L0 in C ∨ L0.

Condition 1 makes the calculus behave somewhat more nicely, by ensuring that

Close is the only rule that adds a constrained empty clause to Ψ. But as simpli-

fying a clause with Resolve to an empty constrained clause C = � ← d makes

Close applicable to C (in a sound way), it is not really necessary.

Compact
(Λ, L | e) · Γ ⊢ Φ ·Ψ

Λ · Γ ⊢ Φ ·Ψ

where

1. For each α ∈ Mods(Γ) there is a literal in Λ that α-extends L | e.

This rule simplifies Λ by removing literals that have no effect. The intended use

is that a literal is only added to the context if Compact is not applicable to it, and

that a literal is removed from the context when a Γ-extending literal is added to

the context.



131

3.5.2 Derivations

Derivations in the ME(LIA) calculus are defined in terms of derivation

trees, where each node corresponds to a particular application of a derivation

rule, and each of the node’s children corresponds to one of the conclusions of

the rule. More precisely, a derivation tree is a labeled tree inductively defined as

follows.

Let Φ be an admissible clause set and Γ a satisfiable set of closed con-

straints. A one-node tree is a derivation tree (of Φ and Γ) iff its root is labeled by

an initial sequent for Φ and Γ, that is, a sequent of the form Λ ·Γ ⊢ Φ ·Ψ, where

Λ contains (only) the constrained literal ¬P (x) | −1
.

≤ x for each free predicate

symbol P in Σ, and Ψ is the empty set. It is easy to see that the context Λ · Γ is

admissible.

A tree T′ is a derivation tree iff it is obtained from a derivation tree T

by adding to a leaf node N in T new children nodes N1, . . . , Nm so that the

sequents labeling N1, . . . , Nm can be derived by applying a rule of the calculus

to the sequent labeling N . In this case, we say that T′ is derived from T. When

it is convenient and it does not cause confusion, we will identify the nodes of a

derivation tree with their labels.

We say that a branch in a derivation tree is closed if its leaf is labeled by

a sequent of the form Λ · Γ ⊢ Φ · Ψ,� ← ⊤; otherwise, the branch is open. A

derivation tree is closed if each of its branches is closed, and it is open otherwise.

We say that a derivation tree (of Φ and Γ) is a refutation tree (of Φ and Γ) iff it

is closed.

If in a derivation tree the branch B is an extension of the branch B′, where
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the leaf node of B is labeled with the segment S and the leaf node of B′ is labeled

with the segment S ′, we call S ′ an extension of S.

Definition 3.5.2 (Derivation) Let Φ be an admissible clause set and Γ a sat-

isfiable set of closed constraints. A derivation (in ME(LIA)) of Φ and Γ is a

possibly infinite sequence of derivation trees D = (Ti)i<κ, such that T0 is a one-

node tree whose root is labeled with an initial sequent for Φ and Γ, and for all i

with 0 < i < κ, Ti is derived from Ti−1.

We say that D is a refutation of Φ and Γ iff D is finite and ends with a refutation

tree of Φ and Γ.

We show below that the ME(LIA) calculus is sound and (strongly) com-

plete in the following sense: for all admissible clause sets Φ and satisfiable sets

of closed constraints Γ, Φ ∪ Γ is unsatisfiable iff every fair derivation of Φ and Γ

is a refutation of Φ and Γ.

3.6 Correctness

3.6.1 Soundness

Theorem 3.6.1 (Soundness) For all admissible clause sets Φ and satisfiable

sets of closed constraints Γ, if there is a refutation tree of Φ and Γ, then Φ ∪ Γ

is LIA-unsatisfiable.

In essence, and leaving Γ aside, the proof is by first deriving a binary tree

over parameter-free literals that reflects the applications of the derivation rules

in the construction of the given refutation tree. For instance, a Split application

with split literal L(x) | c gives rise to the literal L(m), where m is the least

α-solution of c for a given α. In the resulting tree neighboring nodes will be
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labeled by complementary literals, like L(m) and ¬L(m). In the second step it

is shown that this binary tree is closed by ground instances from the input set.

It is straightforward then to argue that Φ ∪ Γ is LIA-unsatisfiable.

3.6.2 Fairness

To prove the calculus’ completeness we will introduce the notion of an

exhausted branch, in essence, a (limit) derivation tree branch that need not be

extended any further by the calculus and that is obtained by a fair derivation.

The specific notion of fairness that we adopt is defined formally in the

following. For that, it will be convenient to describe a tree T as the pair (N,E),

where N is the set of the nodes of T and E is the set of the edges of T. In the

rest of the section, we will use κ to denote a countable (possibly infinite) ordinal,

and i, j to denote finite ordinals.

Each derivation D = (Ti)i<κ = (Ni,Ei)i<κ in the calculus determines a

limit tree T := (
⋃

i<κ Ni,
⋃

i<κ Ei). It is easy to show that a limit tree of a

derivation D is indeed a tree. But it will not be a derivation tree unless D is

finite.

We will assume the following setup for the remainder of this section, in-

cluding Section 3.6.3. Let Φ be an admissible clause set, Γ a finite satisfiable set

of closed constraints, and assume that D is a derivation of Φ and Γ. Let T be the

limit tree of D, and let B = (Ni)i<κ be a branch in T with κ nodes. For all i < κ,

let Si = Λi ·Γi ⊢ Φi ·Ψi be the sequent labeling node Ni, where Λ0 ·Γ0 ⊢ Φ0 ·Ψ0

is the initial sequent for Φ and Γ.

Definition 3.6.2 (Limit Context and Clause Set) We define the limit con-
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text of B as ΛB · ΓB := (
⋃

i<κ Λi) · (
⋃

i<κ Γi) and the limit clause set of B as

ΦB := (
⋃

i<κ Φi).

Although, strictly speaking, ΛB · ΓB is not a context because ΛB may be

infinite, for the purpose of the completeness proof we treat it as one. This is

possible because all relevant definitions (in particular Definition 3.4.15) can be

applied without change to ΛB · ΓB as well.

One of the main technical notions needed to prove the calculus’ complete-

ness is that of an exhausted (limit) branch, in essence, a (limit) derivation tree

branch that need not be extended any further.

We need to introduce a further notion in order to define an exhausted

branch.

Definition 3.6.3 (Compactness) A set of closed constraints is compact, if,

when each of its finite subsets is satisfiable, then the set itself is satisfiable. The

branch B is compact if ΓB is compact.

An exhausted branch is one that is compact, cannot be closed, and to

which only Γ-redundant applications of the core rules are possible.

Definition 3.6.4 (Exhausted branch) The branch B is exhausted if for all

i < κ all of the following hold:

(i) Close is not applicable to Si.

(ii) For all α ∈ Mods(ΓB), if Inst is applicable to Si with derived clause D, then

there is a j ≥ i with j < κ such that D is in Ψj or D is α-redundant in Sj .
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(iii) For all α ∈ Mods(ΓB), if Split, Extend, or Domain Split is applicable to Si

with selected clause D, then there is j ≥ i with j < κ such that D is

α-redundant in Sj.

(iv) B is compact.

Due to this definition, a proof procedure has, for a given sequent Λ · Γ ⊢

Φ ·Ψ, to consider only clauses from Ψ that are not Γ-redundant in Λ ·Γ ⊢ Φ ·Ψ.

Note that Condition (i) implies that an exhausted branch cannot contain

the empty constrained clause �← ⊤. Compactness ensures that ΓB is satisfiable.

Lemma 3.6.5 ΓB is satisfiable, and for all i < κ, Mods(ΓB) ⊆ Mods(Γi).

Definition 3.6.6 (Fairness) A limit tree of a derivation is fair if it is a refu-

tation tree or it has an exhausted branch. A derivation is fair if its limit tree is

fair. A proof procedure is fair if it produces only fair derivations.

We point out that fair proof procedures cannot exist in general, as the

ME(LIA)-logic is not semi-decidable and a fair proof procedure gives rise to a

complete procedure. But for important subclasses such procedures exist and are

effective, as will be shown in Section 3.7.

3.6.3 Completeness

For the rest of the section assume that D is a fair derivation that is not a

refutation. Observe that D’s limit tree must have at least one exhausted branch.

Let B be this branch.
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The following proposition is the main result for proving the calculus com-

plete.

Theorem 3.6.7 (Model Construction) For every α ∈ Mods(ΓB), ZΛB,α is a

model of ΦB.

It is worth noting that, due to Lemma 3.6.5, Proposition 3.6.7 never holds for

the trivial reason that ΓB is unsatisfiable. The completeness of the calculus is

then a consequence of Proposition 3.6.7 and Lemma 3.6.5. We state it here in its

contrapositive form to underline the model computation ability of ME(LIA).

Theorem 3.6.8 (Completeness) Since T is not a refutation tree, Φ ∪ Γ is

satisfiable. More specifically, for every exhausted branch B of T and for every

α ∈ Mods(ΓB), ZΛB,α is a model of Φ ∪ Γ.

Note that the theorem includes a proof convergence result, that every fair

derivation of an unsatisfiable clause set is a refutation. In practical terms, it

implies that as long as a derivation strategy guarantees fairness, the order of

application of the rules of the calculus is irrelevant for proving an input clause

set unsatisfiable, giving to the ME(LIA) calculus the same flexibility enjoyed by

the DPLL calculus at the propositional level.

Proof. Since T is not a refutation tree and B is an exhausted branch, ΓB is sat-

isfiable by Lemma 3.6.5. Let α be arbitrary in Mods(ΓB). By Proposition 3.6.7,

ZΛB,α is a model of ΦB. Since ΦB is defined as
⋃

i<κ Φi, ZΛB,α is a model of each

Φi, and in particular of Φ0 ( = Φ). By Lemma 3.6.5, α ∈ Mods(Γ0) ( = Mods(Γ)).

By definition, ZΛB,α agrees with α on the parameters.

It follows that ZΛB,α is a model of Φ ∪ Γ.
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When the branch B in Theorem 3.6.8 is finite, ΛB · ΓB coincides with the

context Λn ·Γn, say, in B’s leaf. From a model computation perspective, this is a

very important fact because it means that a model of the original clause set—or

rather, a finite representation of it, Λn · Γn—is readily available at the end of the

derivation; it does not have to be computed from the branch, as in other model

generation calculi.

3.7 Proof Procedures

In this chapter we present some fair proof procedures for restricted versions

of the input language of the calculus, and provide guidelines for their efficient

implementation. We will first introduce a basic proof procedure that is fair for

the restriction of the ME(LIA) input language to parameters with finite ranges.

We will then present a more sophisticated and in some details underspecified

proof procedure. We will instantiate it in several ways to get fair procedures for,

the same language of bounded parameters as above, function-free first-order logic

with equality, and ground formulas. Finally, we will explain how to refine the

procedure presented before to obtain efficient procedures and implementations.

Some of the refinements are specific to ME(LIA), such as heuristics and efficient

treatment of universal literals, others are adaptations of ingredients of Darwin

and DPLL solvers, such as backjumping and learning.

3.7.1 General Approaches To Achieving Fairness

The core ingredient of any fair strategy is that each rule application must

be considered eventually and cannot be postponed indefinitely. We outline two

basic approaches for achieving this.
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In the first approach, a proof procedure computes all possible rule appli-

cations exhaustively at each step in a derivation. That is, when a rule is applied,

all potential rule applications to its conclusions are computed eagerly. If all com-

puted applications are stored in a first-in first-out queue in the order they are

computed and are considered for application in FIFO order, then the above prop-

erty holds naturally. Furthermore, it is possible to interleave this chronological

rule application scheme with a rule application heuristic more geared towards ob-

taining short derivations. As long as there are only finitely many steps between

two rule applications taken from the FIFO queue, it is still the case that no rule

application is postponed indefinitely.

A practical drawback of this approach in the context of derivation tree

based calculi is that the tree is in essence constructed breadth-first. A bet-

ter alternative is to use iterative deepening over some bound imposed on rule

applications, which significantly reduces memory requirements. Empirically, in

first-order calculi refutations are usually possibly with small bounds. By first

exhausting all rule applications within a bound, and then increasing the bound

and restarting the proof procedure, no rule application is postponed indefinitely.

Common bounds are often based on the depth or weight of the terms involved

in a rule application, or the depth of derivation branches, or the number of ap-

plications of specific inference rules. While these could be used for ME(LIA)

as well, due to the role played by constraints and the high complexity of con-

straint simplification, the depth or weight of terms might not be a good measure.

An alternative would be to impose an upper bound on the minimal solutions of

constraints of context literals. A problem with this approach is that minimal
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bounds exist only symbolically, and checking them requires constraint solving,

which might not be efficient in practice.

Thus, a good starting point for an implementation might be to choose

an interactive deepening strategy that imposes limits on the number of rule ap-

plications per branch, in particular on Split and Domain Split. This should be

compared and combined with limiting the upper bounds of minimal solutions of

context literal constraints. Which approach is preferable in practice might de-

pend on the problem structure. In the end, only an implementation can provide

solid clues to which kinds of bounds work well for ME(LIA).

3.7.2 A Basic Proof Procedure

In this section we present a basic proof procedure. It serves the purpose

of, firstly, showing that fair proof procedures exist for the ME(LIA) calculus,

and secondly, to lay the foundation for the more sophisticated proof procedure

introduced in the next section. For simplicity, we will consider only the core rules

of the calculus and ignore the optional and simplification rules. Furthermore, we

have to restrict the input to be able to guarantee that the procedure computes

only fair derivations. For this, we will assume that the initial Γ bounds every

parameter in the input signature from below and above, i.e., each parameter

ranges over a finite domain. The functional style pseudo-code in Figure 3.2 gives

a high-level overview of the procedure.

The two main data structures maintained throughout the procedure are

the set of open branches of the current derivation tree (OpenBranches), and the

set of rule application candidates (Candidates). A rule application candidate is a

pair of a potential rule application and the branch to whose leaf node sequent it
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Basic Procedure
1 function basic (Φ, Γ)
2 let Λ = {¬P (x) | −1

.

≤ x} for all predicates in Φ
3 let Ψ = ∅ // empty set of clause instances
4 let B = Λ · Γ ⊢ Φ ·Ψ // initial sequent and single node branch
5 let Candidates = candidates ({B}) // initial candidate rule applications
6 solve (OpenBranches, Candidates)
7

8 function candidates (Branches)
9 // returns the set of candidates applicable to the leaf sequents of Branches,

10 // where a candidate is a pair (RuleApp, Branch),
11 // with RuleApp a potential rule application to a branch Branch ∈ Branches

12

13 function select (OpenBranches, Candidates)
14 // returns (RuleApp, OpenBranch), where
15 // (RuleApp, RuleBranch) is in Candidates,
16 // OpenBranch ∈ OpenBranches is an extension of RuleBranch,
17 // RuleApp is applicable to OpenBranch, and
18 // no applicable candidate in Candidates is smaller than RuleBranch.
19 // returns None if there is no such candidate
20

21 function solve (OpenBranches, Candidates)
22 if OpenBranches is empty then
23 ⊥ // unsatisfiable, all branches closed
24 else case select (OpenBranches, Candidates) of
25 None →
26 OpenBranches // satisfiable, each leaf sequent induces a model
27 Some (RuleApp,OpenBranch) →
28 if RuleApp is an instance of Close then
29 solve (OpenBranches \ {OpenBranch}, Candidates)
30 else
31 let Conclusions = branches obtained by appl. RuleApp to OpenBranch

32 let Candidates′ = Candidates ∪ candidates (Conclusions)
33 let OpenBranches′ = (OpenBranches \ {OpenBranch}) ∪ Conclusions

34 solve (OpenBranches′, Candidates′)

Figure 3.2: Basic ME(LIA) proof procedure

applies. Rule applications are considered in the order of the depth of the branch

in which they were computed. This gives rise to the breadth-first construction of

a derivation tree based on the chronological order of rule applicability, which in

essence ensures fairness.
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In more detail, the function basic takes as input a clause set Φ and a

satisfiable set of closed constraints Γ. Additionally, Γ has to impose lower and

upper bounds on all parameters occurring in Φ. basic then creates the initial

sequent of the derivation based on Φ and Γ, by adding the literal ¬P (x) | −1
.

≤ x

for each predicate symbol P in the signature of Φ, and setting Ψ to the empty

set. It also computes all possible applications of the core rules of the calculus to

the initial sequent Λ · Γ ⊢ Φ ·Ψ, and adds them to the candidate set Candidates.

With the data structures set up control is given to the function solve.

solve first checks if the derivation contains any open branches, and ter-

minates with ⊥ if this is not the case. This signals that a refutation has been

found. Otherwise, it checks if Candidates contains any applicable candidates.

A candidate (RuleApp, RuleBranch) is applicable if there is an open branch

OpenBranch in the set of OpenBranches which is (identical to or) an extension

of RuleBranch, and RuleApp is applicable to the leaf sequent of OpenBranch.

If there are no applicable candidates in Candidates then solve terminates with

OpenBranches, and each branch in OpenBranches induces a model of the input

sets Φ and Γ. If there are applicable candidates in Candidates then the smallest

one, (RuleApp, RuleBranch), is selected with the function select , where a strict

order is imposed based on the depth of the RuleBranch of a candidate.

Now, RuleApp is applied to the leaf sequent of its associated open branch,

OpenBranch. If RuleApp is an instance of Close, then OpenBranch is simply

removed from OpenBranches. Otherwise OpenBranch is replaced by the open

branches obtained by extending it with the conclusions of RuleApp. Finally, the

candidate set is extended by adding the candidates which are applicable to the
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new branches, computed with the function candidates. Then solve calls itself

recursively with the updated sets of open branches and candidates.

The soundness of the procedure is easy to see, as it builds a derivation

tree by application of the core rules of the calculus, and only removes branches

when Close is applied. Fairness, and thus completeness, requires a more involved

argument.

Theorem 3.7.1 (Fairness) The above proof procedure is fair.

Let us first give a high level argument why the procedure is fair, to get

an intuition about the argument underlying the proof below. It is easy to see

that whenever the procedure terminates, it has either found a refutation or a

finite exhausted branch, so this case is immediate. It remains to argue that

each infinite branch of the limit tree is exhausted, i.e., that conditions (i)-(iv) of

Definition 3.6.4 hold. Conditions (i) and (iv) are immediate, see the proof below.

We will use a termination argument to show that conditions (ii) and (iii) are

satisfied as well.

Let Si and D be as in condition (ii) resp. condition (iii), and denote

the rule application by RuleApp. We must show that D is Γ-redundant at some

point. Since all candidate rule applications are computed exhaustively, RuleApp

is in Candidates at some point. Now, let Ord be the lexicographic order over

(place(RuleApp, Candidates), |OpenBranches|), where place(RuleApp, Candidates)

is the number of candidates that are applicable and smaller than or equal to

RuleApp (according to the strict order imposed by select), and |OpenBranches|

is the size of OpenBranches. We will use Ord as the order for the termination

argument.
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Since we have an infinite branch, solve must call itself infinitely often. If

the first recursive call, in line 29, is executed, |OpenBranches| is decremented.

Since |OpenBranches| is always strictly positive, the first recursive call can not

be called infinitely often without incrementing |OpenBranches| in between. It

follows that the second recursive call in line 34, which increases |OpenBranches|

by a finite amount, must be called infinitely often. Now, if the second recursive

call is executed, then place(RuleApp, Candidates) is decreased, as each call to

solve decreases place(RuleApp, Candidates) by at least one until it is 0. But when

place(RuleApp, Candidates) is 0, then RuleApp and thus D must be Γ-redundant.

It follows that conditions (ii) and (iii) hold.

The actual proof is more detailed and follows the pseudo-code much closer.

Proof. Let us first observe that the procedure constructs a derivation tree which

is represented by the set OpenBranches. This is easy to see, as OpenBranches is

only modified when a rule is applied to a branch in OpenBranches (lines 29, 31),

and then replaced by the new open branches obtained by its conclusions (lines 29,

33). That is, OpenBranches is a representation of a derivation tree simplified by

removing its closed branches.

Secondly, observe that if a rule instance becomes applicable to the leaf

of some branch B, then in each extension of B the rule instance either becomes

non-applicable after a finite number of steps, or the branch is closed. For, upon

construction of a branch B all possible core rule applications are computed in

line 32 and added to the previously computed set of rule applications. Further-

more, Candidates only grows but never shrinks. If solve terminates although

Candidates still contains applicable rule instances, it must be in line 23 because
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all branches have been closed. Otherwise, if it terminates it must be in line 25,

because select fails to find an applicable rule instance in Candidates. Now, the

only way for the procedure to not terminate is by creating an infinite branch in

the limit tree through infinitely many applications of solve, with the recursive

calls in lines 29 and 34. Recall that the set of open branches is modified only

in lines 29 and 33. As any given branch has only finitely many nodes, and the

call in line 29 removes exactly one open branch, any infinite sequence of calls

must include executing line 33, and thus line 34. Furthermore, as line 34 extends

a branch only by the finitely many conclusions of an inference rule application

created in line 31, it follows that line 34 must be executed infinitely many times

as well. Now, the rule applications in Candidates are applied in the order given

by select in line 27, which prefers rule applications computed in shorter branches.

As each component of a sequence is finite, and by construction of the derivation

rules, there can be only finitely many instances of (core) rules that are applica-

ble to a given sequence. It follows that only finitely many rule applications in

Candidates are associated with branches of the same length. As B is of finite

length, it follows that select will consider any rule instance added to Candidates

that was added when B was created after finitely many executions of line 24.

Thus, there is a j ≥ i such that the rule instance has been applied or is not

applicable anymore. This of course holds for the finite open branches obtained

in case of termination in line 25 as well.

Now, let us consider an arbitrary open branch B = (Ni)i<κ of a limit tree

constructed by the procedure. As observed above, as B is an open branch it must

be in OpenBranches. Let us denote each initial segment of B of length i by Bi
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with the leaf sequent Si = Λi ·Γi ⊢ Φi ·Ψi. Note that all components of a sequent

can only grow along a branch, they never shrink, as the procedure makes only use

of the core rules. Now let us check by case analysis that each of the conditions

(i)-(iv) of Definition 3.6.4 holds, i.e., that B is an exhausted branch.

(i) If Close were applicable to some Si, then it would be applicable to all Sj with

j ≥ i. Thus it would be applied to some Bj in line 28. But then Bj would

be removed eventually from OpenBranches in line 29, and its extension B

could not be in OpenBranches. Thus Close cannot apply to any Si, and

Condition (i) holds.

(ii) Whenever Inst is applicable to some Si, then it is also applicable to any

extension of Si. Thus, Inst is applied eventually and the derived clause is

part of some Sj, j ≥ i, and Condition (ii) holds.

(iii) Assume that Split, Extend, or Domain Split applies to some Si with selected

clause D, and let α ∈ Mods(ΓB). By definition of ΓB, α ∈ Mods(Γi) for all

i.

Firstly, note that by (i) Close does not apply to any Si with selected clause

D. It follows that some literal L of D is not Γi-contradictory with Λi,

and, since ΓB is satisfiable due to compactness, also not ΓB-contradictory

with ΛB. Furthermore, by construction of the core rules, each literal of D

that is not ΓB-contradictory gives rise to an application of Split, Extend,

or Domain Split. That is, if Split, Extend, or Domain Split is applicable

to some literal L of D, and D is ΓB-contradictory in ΛB · ΓB, then there

must be other literals of D which are not ΓB-contradictory in ΛB · ΓB.
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Then L is not relevant for making D ΓB-redundant, the other literals are.

Also, if Extend is applicable to Si, then it is also applicable to all Sj with

j ≥ i. Furthermore, the application of Extend makes its selected clause

R-Unproductive Γ-redundant in the conclusion. It follows that an reduction

of the applicability of Split, Extend, or Domain Split to these two cases, that

the literal is Γj-contradictory or Extend applies, suffices to guarantee that

D is Γj-redundant in some Sj and that Condition (iii) holds.

Now consider the case when Domain Split applies to D with some literal

L and constraint d. In the two cases when the Domain Split application

becomes non-applicable and in the left conclusion of a Domain Split appli-

cation, L is either Γj-contradictory or Extend is applicable to it. It remains

the case of the right conclusion of the Domain Split application to some Sj

with j ≥ i. If L is not contradictory with the context of Sj , then Split

applies. Otherwise Domain Split applies again, with a different constraint

than d. Now notice that due to the finite range imposed on the parame-

ters, Domain Split can be applied only finitely many times. It follows that

for some k ≥ j it holds that Γk′ = ΓB for all k′ ≥ k. As Domain Split

does eventually not apply anymore, applications of Domain Split reduce to

L being Γj-contradictory, or Extend or Split being applicable.

Now consider the case when Split applies with selected literal L of D. If it

is applied to some Sj, then D is R-Unproductive α-redundant in the branch

obtained from its left conclusion, and Split is not applicable in its right

conclusion. If it is not applied, then this can only be because Split is not

applicable in some Sj . But if Split is not applicable, then either L or
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its complement is contradictory with the context. That is, either L is

Γj-contradictory, or Extend becomes applicable, or Domain Split becomes

applicable.

In summary, as Close does not apply we can focus on literals which are

not ΓB-contradictory in the context of B (and thus of any Bi), Split in its

left conclusion and Extend make D α-redundant, and as there can be no

infinite sequence of Domain Splits and right Splits it follows that they reduce

eventually to one of the above cases. It follows that Condition (iii) holds.

(iv) The procedure can modify a Γi only by application of Domain Split, which

strengthens Γi in both conclusions, while keeping both strengthened ver-

sions satisfiable. Because there are only finitely many parameters and each

parameter is bounded over a finite range, these strengthenings can occur

only finitely many times. It follows that ΓB is finite. Thus compactness

follows trivially, and Condition (iv) holds.

In summary, it follows that on termination and in the limit each branch

in OpenBranches is exhausted, and that the procedure is fair.

As mentioned before, the ME(LIA) logic is not even semi-decidable, and

thus a fair proof procedure cannot exist for all inputs. The following example

provides an intuition of how the above procedure fails if parameter bounds are

not imposed on the input language.
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Example 3.7.2 Let Γ be empty and let Φ consist of the following clauses:

¬P (x)← x ≥ 0 ∧ x = a (1)

P (x)← x = 0 (2)

¬P (x) ∨ P (y)← y = x + 1 (3)

Clearly, Φ is unsatisfiable. Due to clauses (2) and (3), P (m) must be true

for all m ≥ 0, but due to clause (1), P (m) must be false for some m ≥ 0.

a
.
= 0 a 6

.
= 0

¬P (x) | x
.
= 0

(3)

(1)

(1) ...

B

(3)

(2)
P(x) | x

.
= 0

P(x) | x
.
= 1 ¬P (x) | x

.
= 1

P(x) | x
.
= 2 ¬P (x) | x

.
= 2

a
.
= 1 a 6

.
= 1

Figure 3.3: Unfairness of basic procedure for unrestricted ME(LIA) input

A possible derivation with the basic procedure is shown in Figure 3.3. It

fails to produce a refutation tree, but instead builds an infinite open branch B

in its limit tree. While ΓB contains no models, ΓS is satisfiable for each sequent

S along B. That is, B is not compact and thus not exhausted, and thus the

procedure is not fair.

The basic procedure has the advantage of being relatively straightforward
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to prove fair. Its obvious downside is its inefficiency. It makes no use of redun-

dancy criteria to avoid applying redundant rule instances, and it does not use

any of the optional or simplification rules. While the procedure terminates only

if each exhausted branch happens to be finite, it can easily be modified so that

it stops as soon as one of the open branches is exhausted. It is still performing

breadth-first search and has to manage the whole derivation tree at once, while an

iterative deepening approach needs to consider only a single branch and naturally

terminates on the first exhausted branch. Furthermore, the strictly chronological

order of rule applications needs to be enhanced by a candidate selection heuristics.

The proof procedure presented next will improve on these shortcomings.

3.7.3 A DPLL(LIA) Based Procedure

As mentioned before, ME is closely modeled on DPLL, lifting most notions

from the ground to the first-order level. Similarly, DPLL(LIA) extends DPLL(T)

to reason over LIA constraints, by tightly integrating a LIA decision procedure

in the DPLL framework. One motivation for developing ME(LIA) was to explore

how to integrate a LIA decision procedure in the same spirit in the ME setting.

The proof procedure presented in this section tries to achieve exactly that.

We will focus on this aspect of the procedure, while intentionally leaving

most details unspecified. We assume that the proof procedure performs a depth-

first search. Apart from that, we keep the procedure quite abstract, and refer

to Section 3.7.5 for a discussion of the remaining design decisions. Firstly, this

greatly simplifies the presentation. Secondly, it makes specializations specific for

a given input logic and problem structure possible, in order to obtain a more

efficient and, if possible, fair procedure.
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Thus, we will first give a short overview of the DPLL(LIA) architecture,

followed by a discussion on how to mirror this in ME(LIA). We will then present

the proof procedure as a system of cooperating agents.

3.7.3.1 DPLL(T)

The paper [47] provides a detailed presentation of the DPLL(T) archi-

tecture in the style of a transition system. A DPLL(T) solver creates a deriva-

tion in a depth-first fashion, where each branch corresponds to an incrementally

built conjunction of propositional literals and literals of the theory T. The DPLL

solver works on propositional literals, which includes theory literals abstracted

to propositional literals, whereas the theory solver works on theory literals only.

The DPLL solver drives the search, by performing splitting, unit propagation,

learning, and backjumping as usual. The theory solver performs (theory) unit

propagation and (theory) lemma-learning based on the theory literals on the

branch. The purpose of a lemma can be, firstly, to encode that the current

branch is T-unsatisfiable. Or, secondly, to serve as justification for a theory im-

plication. Or, thirdly, to encode as a disjunction the set of alternatives which

need to be explored before the theory solver can determine if the current branch

is unsatisfiable, thus delegating search decisions to the DPLL solver.

The two solvers cooperate closely with each other. Both can extend the

current derivation branch by unit propagation, and both can close it, thus re-

ducing the search space aggressively. They need to cooperate on conflict lemma-

learning, as a lemma can depend on propagations from the DPLL as well as the

theory solver. Finally, the theory solver needs to know which literals are known

to the DPLL solver, as this determines which literals should be propagated and
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can be part of theory lemmas.

At the moment, the major drawback of the DPLL(T) approach, and its

instance DPLL(LIA), is the limited support for quantifiers, which are basically

treated by heuristic instantiation. ME(LIA) goes beyond that.

3.7.3.2 Reduction to DPLL(LIA)

ME and ME(LIA) are conceptually very similar, the exceptions being that

ME supports functions and that its notions are fundamentally based on syntactic

unification, while ME(LIA) supports LIA constraints and relies on constraint

solving. As mentioned before, if substitutions are not applied eagerly in ME,

but instead unification is represented as a constraint problem, the presentations

of ME and ME(LIA) resemble each other even more. The crucial difference in

practice is that for syntactic unification efficient algorithms with linear complexity

as well as indexing techniques exist, while solving LIA constraints has doubly

exponential complexity. In principle, the calculus is formulated abstractly enough

to make it possible to make use of an existing efficient LIA solver, for example one

based on the DPLL(LIA) architecture or one based on quantifier elimination (see

Section 3.7.5.7). But as each operation of the calculus, such as finding applicable

rule instances or checking for redundancy, relies on LIA solving, this fact makes

it doubtful that treating each LIA problem in isolation is going to be effective in

practice. Thus the proof procedure presented here tries to spread the cost of LIA

solving among problems with a similar structure. This will also have the effect of

replacing any application of Domain Split by a number of applications of Ground

Split.

This is achieved by reducing each LIA problem to a ground LIA problem,
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and by having the same kind of cooperation between the main solver and the

LIA solver as in DPLL(LIA). Recall that all queries involve Γ and variants of

constraints taken from constrained clauses and constrained literals. While con-

straint problems may contain quantifiers, they, and in particular all constraints

in Γ, are closed.

We let Γ be managed by a DPLL(LIA)-style LIA solver, i.e., the solver

accepts ground literals incrementally and can perform theory propagation and

theory learning. Thus we get very efficient handling of Γ and of queries consist-

ing of conjunctions of ground literals only. This implies that Γ can contain only

ground LIA literals, and in fact we are going to reduce all queries to a satisfi-

ability test of a conjunction of ground LIA literals. We reduce LIA constraints

to ground formulas by quantifier elimination. Due to the high cost of quantifier

elimination, we try to do this partially and incrementally, and might thus defer

full quantifier elimination and solving of a particular constraint to a later time.

Quantifier elimination eventually exposes some ground top level structure, i.e.,

conjunctions and disjunctions of ground literals. These literals give rise to Do-

main Split candidates, which constrain Γ such that constraints can be efficiently

simplified further, possibly even to trivially true or false constraints. If Domain

Splits which benefit the simplification of many LIA problems are preferred, this

has the potential to, firstly, amortize the cost of quantifier elimination over many

constraints, and, secondly, to make constraint solving relatively cheap, as it is

reduced to checking the satisfiability of conjunctions of ground literals.

Let us take a closer look at how constraints are constructed. Firstly, we

have context unifiers, which are relevant for redundancy checks and form the
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basis for the constraints of all constrained literals. Secondly, we have queries

based on context literal constraints. These require renaming and quantification

of the free variables of the constraints, followed by putting them in a conjunction,

implication, or imposing an order. Finally, the resulting closed constraint is

checked for entailment or satisfiability against Γ. For example, determining if

c(x) and d(y) are Γ-contradictory translates into checking the unsatisfiability of

the constraint Γ∧∀z¬(perm(c[z])∧perm(d[z])). Determining if c(x) α-covers d(y),

which is part of the test for α-productivity and thus R-Unproductive, translates

into checking the satisfiability of Γ ∧ ∃̄ d and Γ ∧ ∀z (d[z]→ c[z]).

While the queries involving universal quantifiers are especially expensive

to check, and in fact a DPLL(LIA) solver might give up on such a query, their

exists extensive structural sharing. Context unifiers are at the core constructed by

conjunction of a clause constraint with context literal constraints. Furthermore,

the constraint of a clause instance, i.e., a context unifier, and the constraints of

the literals of the clause differ only in which variables are free, but are identical

otherwise. If we can assume that performing quantifier elimination on constraints

with shared structures results in constraints which are also similar in structure

and ground LIA literals occurrences, the above described interaction between

quantifier elimination and strengthening of Γ is an effective way of mitigating the

cost of solving the LIA problems coming up in the calculus. This thesis has to

be evaluated in practice, though.

A remaining problem is if the LIA solver should perform internal search

or not. That is, the satisfiability of a conjunction of LIA literals can in general

not be determined without search. This search can be performed internally by
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the LIA solver, without impacting the rest of the system. Alternatively, the LIA

solver can delegate the search decisions to the DPLL solver. Instead of performing

a case split, the LIA solver creates a theory lemma, which encodes the case split

as a disjunction. The DPLL solver is then responsible for satisfying the lemma,

which amounts to trying out all cases.

We could use the same approach for ME(LIA), for example by generating

Domain Splits as needed. Alternatively, we could use a full DPLL(LIA) solver,

which can take care of the search internally. In the end, it is an empirical question

if information exchange on this micro level is useful and worth the additional

complexity. We will for simplicity assume that the LIA solver can take care of

conjunctions of literals internally.

3.7.3.3 Architecture

We will present the proof procedure as a system of asynchronously co-

operating modules. By organizing the conceptually different parts of the pro-

cedure in components, we make their responsibilities and dependencies explicit.

Furthermore, by only imposing weak restrictions on the interactions between the

components, instantiations of the procedure can use different communication pro-

tocols. Apart from making it possible to try out different strategies, this is a core

ingredient of customizing the procedure for specific inputs, and in particular, for

obtaining fair procedures, as explored in Section 3.7.4.

We organize the system in seven modules. As our architecture makes use of

exactly one instance of each module, we might talk about, e.g., “the Eliminator”,

when strictly speaking we should be talking about “the instance of the module

Eliminator”. We first give a short overview of the modules:
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• Builder: builds the derivation tree by rule application and backtracking,

performs lemma-learning.

• Selector: gathers possible rule applications from other modules, selects one

heuristically.

• Instantiator: manages Φ and lemmas, computes Inst, Inst Assert, Subsume,

Resolve applications.

• Searcher: manages Ψ, computes Close, Split, Extend, Assert, Domain Split

applications.

• Interpreter: manages Λ, performs context checks, computes Compact appli-

cations.

• Solver: manages Γ, performs constraint solving.

• Eliminator: performs quantifier elimination.

We make a few assumptions about the procedure:

• The system contains only one instance of each module. This suffices for a

depth-first exploration, as only one sequent has to be represented at any

time. We discuss extensions of the system to support more module instances

in Section 3.7.3.4.

• In the initialization phase the Instantiator and the Interpreter are set up

with the initial Φ and Γ. Then the Builder is run to build the complete

derivation. That is, the proof procedure is not interactive and cannot be

guided or queried during the derivation process. Extensions for supporting

interactive usage are discussed in Section 3.7.3.4.
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• Each module except for the Builder supports a push / pop mechanism,

which is globally controlled by the Builder. This suffices to implement

backtracking for a depth-first procedure, including advanced versions (see

Section 3.7.5.5).

• Each module responsible for computing inference rule applications is ex-

haustive in the sense that it will consider each possible inference rule ap-

plication eventually. Furthermore, the responsibility for obtaining a fair

procedure lies with the Selector. This is achieved by a mixture of push and

pull mechanisms. Interpreter and Solver provide a callback mechanism which

is used by Instantiator and Searcher to be notified about changes to Λ resp.

Γ, which trigger the computation of new inference rule applications. The

Selector has to pull application candidates from Instantiator and Searcher,

so that it can select among these. These mechanisms will become clearer

when we introduce the module interfaces below.

We now give a more detailed description of each module. We describe each

module interface in a functional style, and discuss the module’s responsibilities.

We assume that the types Constraint, Clause, Literal, Candidate, Context,, and

Proof are predefined. Unit, Option, List stand for the usual types and type

constructors, | stands for a variant type, and a callback function is represented

as a lambda function. For each interface function we first give its name and

signature, possibly including notes, preconditions, and information about the

return value. We omit the push / pop functions, as these are common to all

modules except for Builder.

Figure 3.4 provides a high level overview of the dependencies between the
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modules.

Builder

Selector

learn

Instantiator Searcher

Interpreter Solver

Eliminator

candidates candidates

select

register register register

solve solve, model

reduce

add

add, core, modeladd

Figure 3.4: DPLL(LIA)-style ME(LIA) proof procedure

Builder builds the derivation tree, performs lemma-learning.

derive Unit→ Proof | Context
returns a proof of unsatisfiability, or a context if a model has been found.

Table 3.1: Interface: Builder

The Builder (Table 3.1) is run with derive, and returns either a proof or

the limit context of a (finite) exhausted branch. In the later case it is possible

to refine Γ to a single model by using Solver and Interpreter, and to check for any

ground literal if it is satisfied (produced) in it. The Builder asks the Selector for
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the next inference rule to apply. It terminates when Selector select returns None,

or if a refutation has been built.

The Builder manages and builds the derivation tree by applying inference

rules, learning lemmas, and performing backtracking. Depending on the inference

rule applied, either push and one of Solver add, Interpreter add, Searcher add is

called, or a pop is initiated in the case of backtracking.

Lemmas are added with Instantiator learn. While lemma-learning is an

optional feature and the procedure could be simplified by removing it, we have

decided to include it in the architecture, as we expect it to be crucial for efficiency.

The Builder is parametric in the backtracking (Section 3.7.5.5) and learning

(Section 3.7.5.6) mechanism. In order to be able to perform advanced versions

of backtracking it might need additional information in the form of unsatisfiable

cores from the Solver.

Selector gathers possible rule applications, selects best one heuristically.

select Unit→ Candidate Option
returns A candidate returned by Instantiator, or Searcher which was not re-

turned before, or None if no such candidate exists.

Table 3.2: Interface: Selector

The Selector (Table 3.2) is responsible for gathering all possible rule ap-

plications with Instantiator candidates and Searcher candidates. It picks one

heuristically when select is called. It may only return None if both candidates

functions return None, and if it has already returned all applicable non-redundant

candidates gathered before. In order to obtain fairness, each candidate should be
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selected eventually.

Selector is parametric in the selection heuristics (Section 3.7.5.3), as well

as in the redundancy criteria applied to returned candidates.

Instantiator manages Φ, Φ consist of input clauses Φi and lemmas Φl, com-
putes Inst, Inst Assert, Subsume, Resolve, applications.

learn c : Clause→ Unit
requires c is entailed by Φi

note adds c to Φl

candidates Unit→ Candidate List
returns at least one not previously returned rule application candidate,

an empty list if none exists.

Table 3.3: Interface: Instantiator

The Instantiator (Table 3.3) is responsible for managing Φ. It also man-

ages lemmas added with learn, which may be forgotten heuristically to avoid

being flooded with lemmas. It registers callbacks with the Interpreter, so that it

can efficiently compute all possible applications of Inst and Inst Assert to input

clauses and lemmas. Rule application candidates are returned with candidates.

Subsume and Resolve are applied internally to simplify Φ. Exporting them with

candidates would require to extend the interface such that the Builder could

upon application feed the simplification information back to the Instantiator. This

could potentially be beneficial, if the clause instance in Ψ managed by the Searcher

would then be simplified as well.

The Instantiator is parametric in how and when candidates are computed,

as well as in the lemma forgetting heuristics.

The Searcher (Table 3.4) is responsible for managing Ψ. It registers call-
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Searcher manages Ψ, computes Close, Split, Extend, Assert, Domain Split

applications.

add c : Clause→ ls : Literal List→ Unit
requires Inst is applicable to c and ls with derived clause c′.
desc adds c′ to Ψ.
candidates Unit→ Candidate List
returns at least one not previously returned rule application candidate,

an empty list if none exists.

Table 3.4: Interface: Searcher

backs with the Interpreter and the Solver, so that it can efficiently compute all

possible applications of inference rules to clause instances. It computes all rule

application candidates of (non-redundant) clauses added with add to Ψ, and

returns them with candidates.

The Searcher searches for the best way to make a clause instance redun-

dant. It has to use the Interpreter for checks of clause literals against the context.

Due to quantifier elimination, a request to Interpreter might make a Domain Split

necessary. Similarly, checking for redundancy, e.g. if a clause is R-Unsatisfiable

redundant, might require to use the Eliminator and perform Domain Splits on the

returned simplified constraint. In essence, the Searcher is in in both cases blocked

on that action and has to wait till the Builder applies the Domain Split, before

that particular action can be continued.

The Searcher is parametric in how and when candidates are computed,

how quantifier elimination and Domain Splits are interleaved with the candidate

computation, and which redundancy criteria are applied.

The Interpreter (Table 3.5) is responsible for Λ, and all checks on the

context. Λ is initialized with ¬P (x) | −1
.

≤ x for all predicate symbols P .

Interpreter is responsible to notify all registered modules of additions to Λ via
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Interpreter manages Λ, performs context checks, computes Compact

applications.

add l : Literal → Unit
requires the constraint of l is quantifier-free.
note adds a literal to Λ.
check_contr l : Literal → Literal | DomainSplit | None
returns a Λ literal contradictory with l, if there is any,

None, if there is none,
Domain Split if Γ-strengthening needed to determine this.

check_extended l : Literal → Literal | DomainSplit | None
returns like check_contr, but for a literal extending l.
check_produces l : Literal → k : Literal → Literal | DomainSplit | None
requires l covers k
returns like check_contr,

but looks for a literal blocking l from producing k.
is_produced l : Literal → Bool
returns true iff l is Γ-produced in Λ.
register (Literal → Unit)→ Unit
note registers a callback function, activated whenever add is

called

Table 3.5: Interface: Interpreter

callback. check_contr, check_extended, and check_produces exist for the

α and Γ versions. If a check depends on a constraint that does not simplify to

true or false after eliminating a single quantifier, then a Domain Split that helps to

simplify the constraint is returned. Compact is applied internally. is_produced

allows to check if a ground literal is true in a model.

The Interpreter is parametric in how it checks a query against all context

literals.

The Solver (Table 3.6) is responsible for Γ. It accepts only ground literals

for addition with add, and notifies all registered modules via callback of additions

to Γ. An unsatisfiable core is a (small) unsatisfiable subset of Γ, a satisfiable core

is a (small) subset of Γ that determines a model for all constants.

The Eliminator (Table 3.7) is responsible for quantifier elimination. It
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Solver contains and performs constraint solving with Γ.

add c : Constraint→ Unit
requires c is a ground literal.
solve Unit→ Status
returns status of Γ: unsatisfiable or satisfiable.
core Unit→ Literal List
returns unsatisfiable or satisfiable core depending on status of Γ.
model Unit→ Constraint
requires solve returns satisfiable.
returns a model of Γ as equalities between constants and integers.
register (Constraint→ Unit)→ Unit
note registers a callback function, activated whenever add is called.

Table 3.6: Interface: Solver

Eliminator performs quantifier elimination

reduce c : Constraint→ Constraint
requires c is a closed constraint.
returns c itself if it is ground,

a constraint equivalent to c with (at least) one less quantifier oth-
erwise.

Table 3.7: Interface: Eliminator

reduces non-ground closed constraints by removing at least one quantifier. Γ

should be used to simplify reduced forms.

The Eliminator might cache constraints and their simplified forms, so that

it can avoid repeated applications of the expensive quantifier elimination algo-

rithm if possible.

In case that the Monniaux based quantifier elimination algorithm is used

(see Section 3.7.5.7), the Eliminator needs a LIA solver which can solve arbitrary

ground constraints. Then the Eliminator might maintain an internal DPLL(LIA)

solver which is kept in sync with Γ, i.e., the observable state of the Solver. Al-

ternatively, the Solver itself might be a DPLL(LIA) solver, in which case the
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Eliminator can use it directly. But as the Monniaux algorithm requires a series of

queries and changing the state of the LIA solver, this also requires that the Elim-

inator has exclusive access to the Solver during the whole process of eliminating

a quantifier.

3.7.3.4 Extensions

We are now going to explore a few extensions of the above architecture.

Parallelism Having set up the architecture as a system of asynchronously com-

municating modules, it is natural to wonder if this can be exploited to obtain

speed ups in a parallel setting. This is indeed possible, and a straightforward

way to parallelize the search is by having instances of Instantiator and Searcher

for each clause, not only for the whole clause sets Φ and Ψ. When the context

is extended, each instance would then be responsible for the rule applications for

one clause only. The Builder and the Selector have to be modified only slightly,

to be able to manage and gather candidates from more than only one instance

of each of the other modules. As each Searcher instance potentially needs to

use an Interpreter, an Eliminator, and a Solver, it makes sense to have several in-

stances of these modules as well, in order to avoid that accessing them becomes

the bottleneck of the system. Of course, keeping them synchronized adds new

overhead.

Interactive Usage The interface is geared towards a one run use. That is,

setting up the Solver and the Instantiator according to the initial Γ and Φ, running

the Builder, and checking the result. For a more interactive use of the system the
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modules would need to export more functionality. In particular, it would need

to be possible to control the Builder and the Selector. This includes running

the Builder inference step by inference step, controlling backjumping and global

push / pop synchronization, and injecting Split and Domain Split decisions into

the Selector queue, and overriding decisions of the Selector. Furthermore, the

Instantiator would need to allow for a client to add and remove clauses at any

time. This would complicate lemma management, as after removing a clause

from Φi a lemma might not be entailed by Φ any longer.

In short, the system must be usable as a (decision) procedure for ME(LIA)

problems as a component of a bigger system, just like it itself uses a LIA solver

as a component.

Heuristics As mentioned in Section 2.2, it is common in DPLL systems to base

the selection heuristic in part on the analysis of a Close application. Similarly,

the lemma forgetting process is guided by the relevance of a lemma for recent

branch closures. As the Builder obtains this information during backtracking and

lemma-learning, it would make sense to share it with the Instantiator and the

Selector.

3.7.4 Some Fair Proof Procedures And Decision Procedures

In this section we are going to instantiate the proof procedure presented

in the previous chapter for a number of special cases of the ME(LIA) language.



165

3.7.4.1 ME(LIA) With Bounded Parameters

For applications like bounded model checking and planning a logic which

makes it possible to efficiently reason over finite domains is appropriate. The

specialization of the ME(LIA) logic where all parameters range only over finite

domains gives that. Encoding functions with finite ranges is immediate. In

principle, parameters with finite domains can be eliminated by an exhaustive

case analysis over all the possible values. In practice, however, doing that can

be prohibitively expensive, depending on the size of the parameters’ domains. In

contrast, ME(LIA) refines the possible ranges of each parameter by splitting on

Γ, which is much more coarse grained and driven by the current interpretation.

See Section 3.3 for examples for this input language.

We have already given a fair procedure for this case with the basic proof

procedure in Section 3.7.2. Furthermore, the DPLL(LIA) based procedure intro-

duced above instantiates straightforwardly to a fair procedure. We only need to

require that each applicable and non-redundant core inference rule is eventually

made available to the Selector by the candidates function of the Instantiator and

the Searcher, and that the Selector eventually returns it via select to the Builder.

With the core of the argument given for the fairness of the basic procedure, i.e.,

that Γ can be strengthened only finitely many times, it is easy to see that the

procedure is fair.

3.7.4.2 A Decision Procedure For Function-free First-order Clause Logic

As mentioned in Chapter 2, ME is a decision procedure for first-order

clause logic without (non-constant) function symbols. Considering that this class

is in the language of both ME and ME(LIA), it is natural to wonder if ME(LIA)
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is a decision procedure as well. As it turns out, a decision procedure is easily

obtained, and the approach used for finite model finding in Section 2.5 provides

valuable insights. In fact, ME(LIA) is a decision procedure even for the extension

of this language with equality.

For a given problem, we first convert it to constrained clauses and then

extend Γ such that each of the n constants in the problem is restricted to range

from 1 to n. We also impose the same range bound on each variable occurring in

a clause constraint, i.e., the free variables shared with the clause literals as well

as the local quantified variables. Then we can apply the fair procedure described

above in Section 3.7.4.1, and immediately get a complete procedure, and, in fact,

a decision procedure.

Intuitively, this is clear. While ME(LIA) works with infinite interpreta-

tions, each finite model of a problem is isomorphic to the substructure obtained

from some ME(LIA) model by restricting its domain to the range from 1 to n.

Thus the procedure is sound. Since all variables are bounded, there is only a finite

number of different least solutions of all constraints. As an admissible context is

not contradictory and Γ cannot be strengthened infinitely often, at some point

none of Split, Ground Split, Assert, Domain Split can be applied anymore (or is

redundant). Similarly, Extend can be applied only finitely many times, as due to

the finite range imposed on each variable there can be only finitely many ways

that any literal can be Γ-extended. Note that while Compact removes literals

from a context, any application of Split or Extend which might potentially add

the literal again must be R-Unproductive redundant. Thus, only a finite number

of literals is added to a context, which implies that the number of applications of
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Inst, Inst Assert, Subsume, Resolve, and Compact is finite as well. It follows that

the procedure terminates for any input.

3.7.4.3 A Decision Procedure For Ground Clauses

As the last example, we consider the input for which DPLL(LIA) proce-

dures are most effective, ground first-order formulas with LIA constraints. An

example clause of this language, before normalization, is P (a+2)∨Q(b−a)∨a
.

≤ b.

If we allow no function symbols except for constants, it is straightforward to ob-

tain a decision procedure for ME(LIA).

We will prove that any derivation can add only finitely many literals to

the context. It follows immediately that Split, Extend, Assert, and Domain Split,

and thus also Inst and Inst Assert, can be applied only finitely many times. Any

reasonable procedure using Domain Split, including any implementation of 3.7.3,

will not resort to infinitely many application of Domain Split where finitely many

applications of Ground Split suffice. Thus we can conclude that such a procedure

terminates, and we have a decision procedure for ground formulas.

We now prove that any derivation can consider only finitely many con-

strained literals for addition to the context, modulo constraint equivalence. The

normalization of ground clauses to constrained clauses introduces variables, but

only in such a way that in each constrained clause each variable is equated to

a ground LIA constraint. That is, each input clause C ← c is of the form

L1(x1) ∨ · · · ∨ Lk(xk) ← f ∧ x1 = f1 ∧ · · · ∧ xn = fn, where all xi are pairwise

disjoint, f is ground, and each fi is a tuple of ground constraints. It follows that

for each parameter assignment α each clause constraint is either α-unsatisfiable

or has a unique α-solution.
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We proceed by induction over the sequents of a derivation, with the hy-

pothesis that for any sequent Λ · Γ ⊢ Φ · Ψ of a derivation, for each context

unifier d of a clause in Φ against Λ ·Γ, each di is equivalent to a constraint of the

form
∧

C←c∈Φ′ π xi c, where Φ′ is a non-empty subset of Φ. That is, di = π xi d

is equivalent to the conjunction of the top level conjuncts fC ∧ xi = fCi
of some

input clauses C ← fC ∧ x1 = fC1
∧ · · · ∧ xn = fCn

. Thus, for each parameter

assignment α, either di is α-unsatisfiable, or di and all fC ∧ x1 = fC1
have the

same unique α-solution. We assume that Φ remains fixed during the derivation,

as simplifications achieved by applications of Subsume and Resolve require only

minor changes to our argument.

For the base case we have to consider the initial sequent of a derivation,

Λ · Γ ⊢ Φ · Ψ. Here, the only literals in Λ are the default literals of the form

P (xi) | −1
.

≤ xi. It is immediate that each context unifier d of a clause C ← c is

equivalent to c. Thus each di is identical to ci = π xi c, and the claim follows.

For the inductive case consider any sequent Λ · Γ ⊢ Φ ·Ψ of a derivation.

Let d be an arbitrary context unifier of a clause L1(x1) ∨ · · · ∨ Lk(xk) ← c in

Φ against context literals Li | ei from Λ. Each context literal is either one of

the default literals, or it has been added with Split, Extend, or Assert. In the

latter case, by hypothesis, its constraint is equivalent to a constraint of the form

∧
C←c∈Φ′ π xi c, where Φ′ is a non-empty subset of Φ. From the above it follows

that d has at most one solution for each α ∈ Mods(Γ), and by Definition 3.4.15

it follows then that d is equivalent to c ∧ e1 ∧ · · · ∧ en. As c is of the shape

f ∧ x1 = f1 ∧ · · · ∧ xn = fn, and by the shape of each ei, the claim follows.

As the input clause set is finite, there can then be only finitely many
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constrained literals with constraints that are not equivalent. Furthermore, no

two literals L | e and L | f with equivalent constraints e and f can be added to

an admissible context, and only one of two literals L | e and L | f with equivalent

constraints e and f need to be added to a context, as justified by redundancy. It

is now immediate that Split, Extend, and Assert, and thus also Inst, Inst Assert, and

Ground Split, are applicable only finitely many times (without being redundant),

as was claimed above.

3.7.5 Improvements

This section describes a number of ingredients and improvements which

are likely to be important for any efficient implementation of ME(LIA). We

will first discuss simple adaptations of techniques which proved effective in Dar-

win [12]. In the remaining sections we will describe more complex methods in

more detail.

An obvious technique from Darwin on the data structure level that apply

with none or small modifications, is to use offsets to make the creation of variants

of literals and constraints cheap. Another one is use a database to memoize

constraints. This is especially efficient if constraints are aggressively normalized

and simplified.

3.7.5.1 Universal Literals

Universal context literals are preferable to non-universal ones, as they in

general constrain further modifications of the context significantly more, which

leads to shorter derivations. Furthermore, universal literals often require sig-

nificantly less complicated constraints in order to check basic concepts like α-
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contradictory or α-productivity, which are crucial for checking the applicability

and redundancy of most inference rule applications. Thus it would be desir-

able to recognize and mark literals as universal whenever possible. That is, each

application of Inst Assert should be detected, which in turn always triggers an ap-

plication of Assert (or Close). As this is expensive to detect in general, a practical

implementation has to rely on heuristics and approximations.

First, we note that if all but one literal of a clause can be paired with

universal context literals, it is immediate that Inst Assert applies. Secondly, we

note that for a literal whose constraint has at most one α-solution for each α ∈

Mods(Γ) it makes no difference if it is universal or not, as its permanent constraint

is the same in both cases. This is easy to detect for some classes of literals. For

example, literals whose non-constrained part is propositional have the empty

tuple as the only solution for all α. Also, literals whose constraints equate all

free variables with constants, parameters, or ground terms, like L(x1, x2) | x1
.
=

2 ∧ x2
.
= a, have at most one solution for each α. Thus, these types of context

literals can be treated as universal, even if they were not added by Assert.

Now, a simple way of cheaply detecting universal literals is to perform

basic unit propagation on universal literals. For the base case, Inst Assert trivially

applies to a unit clause. For the more general case, if all but one literal of a clause

can be paired with universal context literals, then it is immediate from the above

that Inst Assert applies. Thus, checks for Γ-universality in Inst Assert and Assert

are reduced to checking if the paired context literals are marked as universal.

A further optimization which can enable more applications of Inst Assert

resp. Assert is clause splitting, a common optimization in theorem provers. If a
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clause consists of several variable disjoint literal sets, then it is split into several

clauses which are connected by fresh propositional literals. For example, the

clause (1) P (x) ∨ Q(y) ← x
.
> 0 ∧ y

.
> 0 can be split into the two clauses

(1a) P (x)∨¬A(z) ← x
.
> 0∧ z

.
= 0 and (1b) A(z)∨Q(y)← y

.
> 0∧ z

.
= 0, which

are connected by the fresh predicate symbol A. Originally, we would have to split

on a non-universal literal in clause (1), e.g. P (x) | x
.
> 0. But now it is possible

to first split on A(z) | z
.
= 0 from clause (1b). As explained above, A(z) | z

.
= 0

can be considered to be universal, which makes the assertion of the universal

literal P (x) | x
.
> 0 from clause (1a) possible in the left-hand conclusion, and

the assertion of the universal literal Q(y) | y
.
> 0 from clause (1b) in the right-

hand conclusion. For the rest of the derivation the contexts are now far more

constrained than they would have been without splitting.

3.7.5.2 Context Unifier Computation

Note that the definition of context unifier gives rise to a family of context

unifiers parametric in j, where j denotes the j-th least solution of the conjunction

c of the clause and context literal constraints. While there can be only finitely

many least solutions due to the admissibility of the involved constraints, j is not

bounded in general. But as the (i + 1)-th context unifier constraint is stronger

than the i-th constraint, it follows that it suffices to enumerate the context unifiers

for increasing j. When a context unifier is unsatisfiable in Γ, for some i, then the

context unifiers for 1 . . . i− 1 are all that exist for this family.

There might be a significant number of context unifiers, all of which give

rise to an application of Inst, which in turn gives rise to rule applications on

the derived clause instance. Thus computing all context unifiers eagerly might
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be expensive, especially if only a few are actually needed to close a derivation

branch. As with a stronger Γ the number of least solutions of c can shrink, it

might thus pay off to delay the enumeration of context unifiers based on heuristics

and fairness criteria.

3.7.5.3 Heuristics

The ME(LIA) calculus is highly non-deterministic. With only minor re-

strictions to achieve fairness, any order of rule applications ensures correctness.

This property makes it possible for a proof procedure to make well thought-out

design choices, about when and how to introduce determinism. It implies that

the decision heuristics, which selects among all known applicable rule instances

the one which is used to extend the current derivation, is a crucial part of any

efficient proof procedure. While the effectiveness of a heuristics is highly de-

pendent on the calculus, the application domain, other design choices, and even

implementation details, some guidelines can be formulated for ME(LIA) based

on experience with implementations of other calculi, especially Darwin.

Initial Interpretation A first observation is that ME(LIA) provides some flex-

ibility in the initial interpretation induced by a context. Although an admissible

context is defined to contain ¬P (x) | −1
.

≤ x for each free predicate symbol, the

complement P (x) | −1
.

≤ x works just as well. This makes it possible to decide

independently for each predicate symbol if all its instances are by default inter-

preted as true or as false, for example based on the polarity of its occurrences in

the input clause set.

Note that the unit propagation scheme described above in Section 3.7.5.1
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does not depend on the default interpretation, as Inst Assert makes use of universal

literals only. Thus it is possible to defer committing to an initial interpretation

until after then end of an initial unit propagation and simplification phase. In

fact, like in ME, a Horn problem can be refuted with the rules Inst Assert, Assert,

and Close alone, without any need for an initial interpretation of the free predicate

symbols.

Derivation Rules Some derivation rules are clearly preferable to others. Close

is obviously the rule with the highest priority. If a derivation branch can be

closed, then applying any other rule is just wasted work.

The simplification rules are in principle also high on the priority list. But

they are only worth applying in practice if the savings offset the work needed to

compute and apply the rules. The same argument applies for checking if a rule

application is redundant, as in principle no redundant rule should be applied.

For example, in Darwin it turned out that redundancy and Resolve are often very

beneficial, while Subsume and Compact have basically no effect.

Assert and Inst Assert are next in the priority ordering, followed by Extend.

The splitting rules need to make a case distinction, introducing all the complexity

of search, learning and backtracking. A literal split actively modifies a context

in order to satisfy a clause, while a domain split enables applications of other

rules. Thus Split might be preferable to Domain Split and Ground Split, but some

interleaving seems to be necessary. Finally, Ground Split should be preferred over

Domain Split, as it introduces only ground constraints, which should be cheaper

to process.
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Clause Literals Each of the non-Γ-contradictory literals of a clause instance

gives rise to a rule application, with the goal of making the clause redundant. If

Extend is applicable to a literal of a clause, then it can always be applied even-

tually. Thus, all other clause literals can be completely ignored by the selection

heuristics. If Assert is applicable to a literal, then it can either be applied even-

tually, or the literal becomes Γ-contradictory. The problematic cases are again

the splits.

Thus an important measure of a clause instance are the number of (dif-

ferent) literals which are not Γ-contradictory and to which neither Extend nor

Assert are applicable. In the worst case, each of these remainder literals gives

rise to one split on the same branch. Thus, when a heuristic has to select from a

number of split applications, it should prefer splits on literals from clauses with

fewer remainder literals. We remark that in contrast to ME it is not possible in

ME(LIA) to focus on one remainder literal only and to ignore the others [12].

A case worth pointing out is when all literals but one of a clause is closing,

and Split or Domain Split applies to this literal. If Split applies, then in the left

conclusion the clause is redundant, and in the right conclusion Close applies to the

clause. If Domain Split applies, then in the left conclusion the clause is closing,

and in the right conclusion Split is applicable. That is, in this case no search

is needed, as three of the four branches created by the two splits can be closed

immediately.

Preference should also be given to candidate Split literals that occur in

many clauses.
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Generation The generation of an input clause is 0. The generation of a derived

clause of an application of Inst and Inst Assert is the maximum of the generations

of the context literals paired with the context unifier. The generation of a clause

literal is the same as the generation of its clause. Choosing literals with a small

generation from time to time helps to avoid getting lost deep in the search space

and focusing on a small subset of the input clauses only.

Constraints It is difficult to compare constraints in a meaningful way, even if

they have been simplified extensively. Ground constraints are highly preferable,

as they are cheap to process and context literals with ground constraints can be

treated as universal (see Section 3.7.5.1). Quantifier alternations are the worst

that can happen, they are the core reason for the exponential complexity of the

LIA theory. It is not clear if strong or weak constraints are preferable, as context

literals with strong constraints are useful for making a specific clause redundant,

while context literals with more general constraints impact more clauses.

Conflicts A crucial part of the selection heuristics of DPLL solvers is to give

preference to clauses and literals which were responsible for closing branches [66].

For this, each clause and literal is assigned a score. When a branch is closed and

a lemma is learned, then all clauses and literals regressed are considered to be

relevant and their score is increased. Periodically, all scores are decreased, in order

to ensure that recent conflicts carry more weight than less recent conflicts. This

provides some locality to the heuristic, as in a depth-first traversal more recent

conflicts are more likely to be effective in the current context of the derivation

tree.
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Combining Heuristics While some of the above guide lines, like delaying the

application of splitting rules, are probably effective for any input, most will be

effective in one scenario but not in others, giving rise to numerous competing

decision heuristics.

One approach to tackle this problem is to use machine learning to learn

heuristics for specific classes of input problems [62]. An alternative is to alter-

nate between different heuristics, a common scheme in theorem provers [55]. In

this context randomization can be a valuable heuristics, although it has the seri-

ous drawback that the proof procedure is not deterministic. A solver might not

be capable of reproducing a proof, unless it logs the randomized decisions. Fi-

nally, using the generation of clause instances as a heuristics can be the essential

ingredient for ensuring fairness.

3.7.5.4 Proof-Generation

An important feature of a theorem prover is proof-generation. Apart from

the direct benefit of having a proof, e.g., of a theorem, this makes it possible to

independently verify the correctness of the result computed by the prover. Con-

sidering the complexity of an efficient implementation of a proof procedure, this

greatly increases the confidence in a theorem prover. Combined with the model

generation capabilities of the ME(LIA) calculus, this gives an implementation

the opportunity to gain high confidence of correctness through the use of exter-

nal model and proof checking tools, which can be very simple pieces of software.

We explain below how a resolution proof can be extracted in a straightforward

way from a ME(LIA) refutation tree. It follows the same principles as used in

other DPLL based procedures, and can be easily simplified and adapted for the
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ME calculus.

Overview We will first present a version of the proof-generation algorithm

Regress that for simplicity does not compute a resolution proof (from a refutation)

of Φ and Γ, but only for Φ and one α ∈ Mods(Γ). Regress performs a recursive

bottom-up labeling of a refutation tree with lemmas. It labels nodes to which

Close was applied with (an instance of) the selected clause of the Close application,

and computes lemmas for inner clauses by resolution based on the lemma labels of

their children nodes. The procedure terminates with a constrained empty clause

� ← c in the root node such that c is α-satisfiable. That is, we have derived a

constrained empty clause for α.

We will then show how to extend Regress to the procedure Regress∗, which

computes a proof for Φ and Γ. In essence, the refutation proof gives rise to a

finite partition of the models of Γ. Regress∗ computes a constrained empty clause

�← ci for one αi of each partition Γi. By Γi |=Z ci, Γ entails the conjunction of

the constraints of all constrained empty clauses. Thus, we can derive the empty

clause by resolution modulo the theory LIA.

Before introducing the regression algorithm, we will first define the struc-

ture of a label, along with an invariant. We will then describe the algorithm,

and prove that the labels computed by it satisfy the invariant. From this we will

conclude that the algorithm constructs a resolution proof from a refutation tree.

Labels A label is simply a lemma along with a mapping from each literal of the

lemma to a literal of the context. The mapping will guide the resolution steps.

Definition 3.7.3 (Label) A (regression) label is a tuple (Lemma, Link), where
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Lemma is a clause and Link maps each literal of Lemma to a literal. The merge

of two such literal to literal maps Link1 and Link2 is the map Link, where for a

literal L, Link(L) is defined as

• Link1(L) or Link2(L), if L is in the domain of both Link1 and Link2,

• Link1(L), if L is in the domain of Link1 only,

• Link2(L), if L is in the domain of Link2 only,

• undefined otherwise.

That is, when we merge the maps of two labels and their domains overlap,

we resolve this conflict arbitrarily.

The following invariant on labels will be crucial in showing that the algo-

rithm computes a proof. It states that Lemma is a logical consequence of Φ, the

constraint of Lemma is satisfiable, and each literal L of Lemma is α-contradictory

with a literal K from the Λ of the labeled node, such that Link maps L to K.

Definition 3.7.4 (Label Invariant) Let T be a refutation tree with root se-

quent Λ · Γ ⊢ Φ · Ψ. Fix an α ∈ Γ. Let (C ← c, Link) be the label of node N

with sequent S = ΛS · ΓS ⊢ ΦS ·ΨS. The α-invariant of the label is that either

c is not α-satisfiable or all of the following hold:

(i) Φ |=Z C ← c,

(ii) α |=Z ∀̄(c(x)→ 0
.

≤ x), and

(iii) For each literal Li | ci of C ← c, the literal Link(Li | ci) is in ΛS and

α-contradictory with Li | ci.



179

A label is α-invariant if it satisfies the α-invariant. A label is Γ-invariant

for some Γ, if it is α-invariant for all α in Γ.

Regress We now present the algorithm Regress, and show that it computes a

resolution proof from a refutation tree.

Algorithm 3.7.5 (Regress) The algorithm Regress takes as input a refutation

tree T , and performs a case analysis based on the rule instance applied to its root

note N with sequent S. Let in the following in each case the (one or two) children

nodes of N be denoted by N1, . . . , Nn with sequents S1, . . . , Sn. Assume w.l.o.g.

that all clauses computed by Regress or taken from a component of a sequent, i.e.,

Φ or Ψ, are variable disjoint. Fix an α in Mods(ΓS). We assume that each label

computed for a child node is α-invariant, as will be justified by Lemma 3.7.6. If

α 6∈ Mods(ΓS), then in each case Regress returns (� ← ⊥, Link), where Link is

an empty map. Thus we will consider below only the cases where α ∈ Mods(ΓS).

If the rule application is an instance of

(i) one of the rules Inst, Inst Assert, Subsume, Resolve, or Compact, then it

returns Regress(N1).

(ii) the rule Extend, with literal Li | ci of selected clause C ← c, then there

must be a literal Li | c′i in ΛS which ΓS-extends Li | perm(Li | ci). This

follows as Li | ci is non-universal and Li | ci is ΓS-contradictory in ΛS, by

definition of Extend.

Let (LemmaN1
, LinkN1

) be the result of Regress(N1). Let Link be obtained

from LinkN1
by replacing all mappings to Li | ci by mappings to Li | c′i.

Then Regress returns (LemmaN1
, Link).
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(iii) the rule Close, then α ∈ Mods(ΓS), the selected clause C(x) ← c is in ΨS,

and each of its literals is α-contradictory with ΛS. By Lemma 3.9.5 there

is a clause C(x)∨D ← d in Φ such that each α-solution of c extends to an

α-solution of d∧c. By this and C(x)← c being closed on, for each literal Li

of C, Li | (d∧c)i is α-contradictory with ΛS. Furthermore, by Lemma 3.9.5

also for each literal Li of D the literal Li | (d ∧ c)i is Γs-contradictory with

ΛS.

Let Lemma be C∨D ← d∧c. Let Link map each literal of Lemma to a literal

in ΛS with which it is α-contradictory. Then Regress returns (Lemma, Link).

(iv) the rule Split, then the split literal Li | ci is in ΛS1
and its complement

Li | ci is in ΛS2
. Let (LemmaN1

, LinkN1
) be the result of Regress(N1), and

let (LemmaN2
, LinkN2

) be the result of Regress(N2). Note that ΓS, ΓS1
and

ΓS2
are identical.

LinkN1
may map some literals of LemmaN1

to Li | ci and LinkN2
may map

some literals of LemmaN2
to Li | ci.

If more than one is mapped in the case of N1, then, assuming that the

children are α-invariant, LemmaN1
must be of the shape C∨Li(x)∨Li(y)←

d where Li(x) and Li(y) are both mapped to Li | ci. We simplify LemmaN1

to C ∨ Li(x) ← π z (d ∧ x
.
= y), where z are the variables occurring in C

and Li(x). By applying this method of factoring repeatedly to LemmaN1

and LemmaN2
, the procedure ensures that eventually at most one literal is

mapped in each case.

Now, if none is mapped in LinkN1
then the procedure returns Regress(N1),
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and if none is mapped in LinkN2
then the procedure returns Regress(N2).

Otherwise, again assuming that the children are α-invariant, LemmaN1
must

be of the form C ∨Li ← d and LemmaN2
must be of the form C ′ ∨Li ← d′,

We rename the clauses such that the variables of Li and Li are identical. Let

Lemma be the resolvent on the split literal, i.e., (C ∨C ′)(x)← π x (d∧ d′).

Let Link be the merge of LinkN1
and LinkN2

. Then Regress returns (Lemma,

Link).

(v) one of the rules Domain Split or Ground Split, then by assumption of α ∈

Mods(ΓS) and definition of the rules, either α ∈ Mods(ΓN1
) or otherwise

α ∈ Mods(ΓN2
). In the first case Regress returns Regress(N1), in the second

case it returns Regress(N2).

(vi) the rule Assert, then Li | ci is the assert literal of the selected clause C∨Li ←

c, and Li | ci is in ΛS1
. Let (LemmaN1

, LinkN1
) be the result of Regress(N1).

If LinkN1
maps no literal to Li | ci, then Regress returns (LemmaN1

, LinkN1
).

Otherwise, assuming that N1 is α-invariant, LemmaN1
must be of the form

C ′∨Li ← c′. We rename C ∨Li ← c and C ′∨Li ← c′ such that they agree

on the variables of Li and Li. Let Lemma be the resolvent C∨C ′ ← πxc∧c′

of the two clauses, where x are the variables occurring in C ∨ C ′.

By definition of Assert, Li | ci of C ∨ Li ← c is α-universal in ΛS. By

πx(c∧c′) being stronger than c, Li | πx(c∧c′)i of (C∨Li)(x)← πx(c∧c′)

is also α-universal in ΛS. It follows that each literal Lj | π x (c ∧ c′)j of

C ∨ Li ← π x (c ∧ c′) other than Li | π x (c ∧ c′)i is α-contradictory with

ΛS. Let LinkN0
map each Lj | π x (c ∧ c′)j to a literal in ΛS with which it
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is α-contradictory. Let Link be the merge of LinkN0
and LinkN1

.

In the case that the selected clause of Assert is not an input clause, it must

be a simplification of an input clause obtained by applications of Resolve.

Then we can adapt Link as explained in Case (iii) for Close.

If Link maps a literal to Li | ci, i.e., LinkN1
mapped more than only the

one literal considered above to Li | ci, then Regress repeats the steps above

using (Lemma, Link) instead of (LemmaN1
, LinkN1

). When this recursive

process finally terminates, Link maps no literal to Li | ci. Then Regress

returns the final (Lemma, Link).

For simplicity and w.l.o.g. we will assume in the following that the leaf

nodes of a refutation tree are the conclusions of applications of Close, and that

Close is applied exactly once on each path. It is easy to see that any refutation

tree can be converted to a refutation tree of this shape, by simply cutting off all

branches below the first Close application.

The next lemma states that Regress computes only α-invariant labels.

The theorem makes then use of the fact that this holds in particular for the root

node of a refutation tree, which gives us as a corollary that Regress computes a

resolution proof of the unsatisfiability of Φ, α modulo LIA.

Lemma 3.7.6 Let T be a refutation tree with root sequent Λ · Γ ⊢ Φ · Ψ. Fix

an α ∈ Γ. When Regress is applied to T , it computes a label for each inner node

such that each label is α-invariant.
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Theorem 3.7.7 Let T be a refutation tree with root sequent Λ · Γ ⊢ Φ ·Ψ. Fix

an α ∈ Γ. Then Regress labels the root node of T with a clause �← c such that

Φ ∪ {α} ∪ {�← c} is unsatisfiable.

Proof. Let (C ← c, Link) be the label computed by Regress for T .

As Γ is refined only by partitioning with Domain Split and Ground Split,

each model of a sequent of a derivation node is also a model of a sequent of one

of the children nodes. It follows that there must be at least one leaf node with

sequent S ′ such that α ∈ ΓS′.

By construction of Regress (and as is explained further in the proof of

Lemma 3.7.6), whenever the constraint of a lemma in the label of at least one

child node is α-satisfiable, then so is the constraint of the lemma in the label of

the node itself. Thus c is α-satisfiable.

By Lemma 3.7.6 it follows that (C ← c, Link) is α-invariant. As Λ · Γ

is admissible, by 3.7.3-(ii) there can be no literals in Λ that are α-contradictory

with any literal of C ← c. By 3.7.3-(iii), C is �. As c is α-satisfiable, � ← c is

unsatisfiable in Φ ∪ {α}. The claim follows.

As Regress constructs all lemmas by applying resolution and factoring, it

is easy to see that it in fact builds a resolution proof of the empty clause from Φ

and Γ, piece by piece for each model α of Γ. Equivalently, it constructs the lemma

Φ |=Z ¬α for each α, and thus, if there are finitely many α, as a consequence

Φ |=Z ¬Γ.

Regress∗ As a refutation tree is finite, it is intuitively clear that even if there

are infinitely many models of Γ, Regress needs to be called only finitely many
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times in order to obtain sufficiently many constrained empty clauses to conclude

the empty clause. Let us for simplicity first assume that Assert has not been used

in the refutation. Then, in essence, the models of Γ can be partitioned by taking

all Γi of the Close nodes, creating all intersections until a fix point is reached,

and then taking the satisfiable partitions which are minimal wrt. to their set of

models. Each partition constitutes an equivalence class in the sense that Regress

computes the same constrained empty clause for each of its models.

Equivalently, but closer to the actual derivation, the Domain Split and

Ground Split applications occurring in T can be combined in all possible ways.

Let d1, · · · , dn be an enumeration of all n domain split constraints occurring in

T . Then each of the 2n conjunctions over all di, where for each i either di or

¬di is used as a conjunct, gives rise to a smallest (or empty) partition. It is easy

to see that each α ∈ Mods(Γ) is a model of exactly one partition, as Domain

Split and Ground Split perform a binary partition and thus α is a model of only

one conjunction. Looking closely at Regress it becomes clear that, apart from

Assert, when applied to a node with a sequent S it does not distinguish among

the models of ΓS. That is, each label is in fact Γi-invariant for each partition

Γi. Therefore it suffices to run Regress only once for each partition, for any of its

models.

Extending this to take Assert into consideration complicates things quite

a bit. The mappings created for the literals of the lemma which stem from the

selected clause are chosen by α-contradiction, not by Γ-contradiction. In fact,

Γ-contradiction might not hold, and thus it is not possible to create the same

map Link for each α ∈ Mods(Γ) when regressing an application of Assert. But,
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as Λ is finite, each Assert regression can require only finitely many different Link

maps. Thus, we can partition Γ further, such that for all α in each partition it

holds that for each Assert application of the refutation tree to some sequent S,

all literals of the selected clause are α-contradictory with exactly the same set of

literals from ΛS.

The postprocessing approach above might be too inefficient to be useful in

practice. An implementation should modify Regress to compute the partitions on

the fly, as we will do with the algorithm Regress∗. It will be the basis for justify-

ing non-chronological backtracking and learning, as described in Sections 3.7.5.5

and 3.7.5.6.

Algorithm 3.7.8 (Regress∗) We formulate the regression algorithm Regress∗

as a modification of Regress. It takes the same input, but does not fix an α.

Instead of assigning one label to a node N with sequent S, it assigns a map from

constraint sets Γ1, . . . , Γn to labels. The union of the constraint sets must be

equivalent to ΓS, and when a constraint set Γi is mapped to Label then Label

must be α-invariant for all α in Mods(Γi).

The modifications to the regression of the inference rule applications are

as follows.

(i) In the case of an application of Close to sequent S of node N , Regress∗

maps ΓS to Regress(N).

(ii) In the case of Split, Regress tries to resolve the two clauses in the left and

right children labels. Regress∗ has to try to resolve over the cross product

of the labels in the domains of the left and right children. That is, first the
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domains of Regress ∗ (N1) and Regress ∗ (N2) are harmonized by creating

the intersections of all partitions up to a fix point as described above, and

duplicating the map entries accordingly. For example, if Regress ∗ (N1)

maps Γ to Label, and the created partitions contain Γ1 and Γ2, then after

harmonization Regress ∗ (N1) maps Γ1 as well as Γ2 to Label. Thus we

can now assume that the domains of Regress ∗ (N1) and Regress ∗ (N2) are

identical. Then Regress ∗ (N) maps each constraint set Γ′ in the domain

of Regress ∗ (N1) to the result of the application of Regress to the labels

mapped to by Γ′ in Regress ∗ (N1) resp. Regress ∗ (N2)

(iii) In the case of Domain Split and Ground Split, Regress ∗ (N) is the union of

Regress ∗ (N1) and Regress ∗ (N2).

(iv) The case of Assert is similar to the case of Split. But, as explained above,

harmonization of the partitions is now done based on which subsets of each

partition are contradictory with the same context literals for each of the

literals of the selected clause. Considering that the Assert application is

part of the derivation and its side conditions have thus been checked by the

proof procedure, it is reasonable to assume that sufficient information to

perform this partition is available.

The remaining cases are straightforward.

3.7.5.5 Backtracking

As mentioned before, it is reasonable to assume that a proof procedure

will explore a derivation tree by a depth-first left to right traversal. When back-
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tracking from a closed branch, chronological backtracking explores the branches

of all right splits (Split, Domain Split, Ground Split) on the branch. In contrast,

backjumping, as an instance of non-chronological backtracking, jumps over right

split branches which are useless for finding a refutation or a model.

The proof-generation procedures Regress and Regress∗ described above

in Section 3.7.5.4 provide a strong intuition of when and how backjumping is

justified in ME(LIA). If Regress∗ does not depend on any label of some branch B

of a refutation tree T , then that branch is useless. For example, if for a Split node

N with children N1 and N2 Regress ∗ (N) returns Regress ∗ (N1) or Regress∗ (N2),

then the Split was not needed. For a depth-first exploration this translates into

performing the left split at N , closing the sub-tree and computing the lemma

for N1 during backtracking, and finally backjumping over the node N without

exploring the sub-tree N2

Now consider the other splitting rules, Domain Split and Ground Split,

applied to a node N with children N1 and N2, where S is the sequent of N . By

definition, Regress∗(N) is the union of the maps Regress∗(N1) and Regress∗(N2).

Consider a mapping from Γ to Label in Regress∗(N). Regress∗ enforces that Label

is α-invariant for all α ∈ Mods(Γ). By construction of the mapping, Mods(Γ) ⊆

Mods(ΓS). Now Label could very well be α-invariant for some α ∈ Mods(ΓS)

although α 6∈ Mods(Γ). Let Γ′ be such that Mods(Γ) ⊆ Mods(Γ′), Mods(Γ′) ⊆

Mods(ΓS), and Label is α-invariant for all α ∈ Mods(Γ′). Then the domain of

Label can be generalized to Γ′ in Regress ∗ (N), and all mappings from any Γ′′

with Mods(Γ′′) ⊆ Mods(Γ′) can be removed from Regress∗ (N). This leads to less

fine grained partitions of the constraint sets, and less lemmas to maintain during
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the procedure. In particular, if a Domain Split or Ground Split was useless, then

Regress ∗ (N1) can be generalized such that the union of its domains is equal to

ΓS, and Regress ∗ (N2) is not needed at all. In that case the right split can be

omitted.

We stress that proof-generation serves as a justification for backjumping,

it is neither a requirement nor a strict guide line for its implementation. For

example, to jump over a domain split N with children N1 and N2 and with split

constraint d, we would need to check if d was relevant for any α-contradictory

check used in closing and regressing the derivation branch below N1. This could

be done by extracting unsatisfiable cores from the constraint solver that is used

for Γ checks (see Section 3.7.3.3). If the split constraint d is not part of any

unsatisfiable core, then the split was not needed and N can be backjumped over.

Similarly, approximations for backjumping over literal splits are possible.

We still use the Link structure, but the constraint and the partitions of Γ are

completely ignored. Instead of computing lemmas for partitions of Γ by reso-

lution, the literals of all lemmas are considered to be a conflict set. A split is

clearly not relevant if the Link structures of the conflict sets of the two children

nodes do not contain the split literals. While it is not clear how effective this

approximation is in practice, it is simpler and cheaper to compute, which might

make it worthwhile.

3.7.5.6 Learning

Like in the case of backtracking, the proof generating procedure Regress∗

gives clear guide lines of how to compute lemmas analogous to their computation

in ME (see Section 2.4). The first crucial difference is that a lemma-learning
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algorithm would stop (latest) at split nodes instead of resolving them. In a sense,

proof-generation can be seen as an extension of lemma-learning with a focus on

reliability instead of efficiency. Thus, the second important difference is that

lemma computation does not need to be complete, rather it needs to be cheap

and the computed lemmas need to be effective. As mentioned in Section 3.7.5.5,

generalizing the partitions for which lemmas are effective in the context of domain

splits can reduce the number of computed lemmas, but makes their computation

more expensive. Similarly, when regressing a split node it is not necessary to

partition the Γs and then consider the cross product of the lemmas. Instead,

an approximation worth considering might be to use each lemma only once for

resolution. This way significantly less lemmas are learned. The ones that are

learned should be relevant in the current context, whereas the missed ones tend

to require more regression steps before they can be learned.

A learning procedure based on Regress∗ corresponds closely to the ground-

ed method in ME (see Section 2.4.4), as it starts with the instances of input

clauses used in the applications of Close. The generalization to the lifted method

(Section 2.4.5) is immediate, by taking in the Close nodes the input clauses them-

selves as lemmas, instead of their instances. Then each generated lemma is at

least as general as in the original algorithm, and all resolve and factoring steps still

apply. This gives some justification to expect that lemma-learning in ME(LIA)

can be similarly beneficial as in the ME case.

Not surprisingly, the main disadvantage of lemma-learning in ME com-

pared to DPLL holds for ME(LIA) as well, lemma-learning does not suffice to

avoid right splitting on context literals. In fact, Example 2.4.12 demonstrates
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this not only for ME, but for ME(LIA) as well.

3.7.5.7 Constraint Simplification

As mentioned before, the most critical part of any implementation is prob-

ably how constraints are handled. The core operations of the calculus, inference

rule application and redundancy detection, rely fundamentally on constraint solv-

ing.

One important step is to enforce strong normalization conventions on con-

straints. This makes algorithms operating on constraints simpler and faster,

and enables far more sub-constraint sharing between constraints, especially when

constraints are managed in a hash-consing data structure. Finally, simplifying

constraints by quantifier elimination as explained below assumes a specific nor-

malization that is easy to obtain from the one introduced next.

A reasonable normalization would for example rewrite all occurrences of ∀,

.

≤,
.
>,

.

≥ to equivalent constraints not containing any of these symbols. It might

even make sense to rewrite all Boolean connectives to ¬, ∧, and ∨. Furthermore,

multiplication by a constant factor can be introduced as an abbreviation for

a fixed number of additions. Then each atomic constraint can be written as

either P [x]
.
< 0 or P [x]

.
= 0, where P [x] is a polynomial with variables x.

Assuming there is a global order on variables, polynomials should be kept ordered

first by variables and secondly by coefficient. Apart from stronger normalization

this makes the addition and subtraction of polynomials efficient. A strict total

ordering over Boolean terms also allows for the normalization to be extended to

conjunctions and disjunctions.

There are a number of obvious and trivial yet often effective simplification
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techniques. On the constraint level it is often possible to simplify constraints

by evaluation when they contain integer constants. On the Boolean level this

basically amounts to the propagation of true and false, the detection of literals

subsuming or subsumed by other literals or contradictory with other literals in a

conjunction or disjunction, possibly by using cheap LIA properties for example

of equations, and the detection of conjunctions and disjunctions that are trivially

true or false.

It can also pay off to simplify constraints aggressively by eliminating all

quantifiers. The high initial cost might be worth it in the long run, when the same

constraint is used repeatedly in constraint solving. Furthermore, it is the basis

for the proof procedure described in Section 3.7.3.3. A quantifier elimination

algorithm transforms a constraint into an equivalent constraint which does not

contain any quantifiers. For example, ∃x(y
.

≤ x∧x
.

≤ 5) (normalized to ∃x(−x+

y − 1
.
< 0 ∧ x − 6

.
< 0)) is equivalent to y

.

≤ 5 (normalized to y − 6
.
< 0),

which contains the free variable y but no quantifiers. LIA allows one to eliminate

all quantifiers, which implies that a closed constraint is simplified to either true

or false. All quantifier elimination algorithms work from the inside out. That

is, innermost quantifiers have to be eliminated first, and a quantifier cannot be

eliminated in general if another quantifier is in its scope.

We propose a combination of two quantifier elimination algorithms. The

main algorithm is based on a quantifier algorithm for Real Linear Arithmetic

by Monniaux [56]. We adapt it to LIA by using Cooper’s quantifier elimination

algorithm [31] as a component for solving conjunctions of LIA constraints, in-

stead of conjunctions of Linear Rational Arithmetic constraints as in the original
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approach. At its core, the Monniaux algorithm eliminates a quantifier of a con-

straint ∃xc, with c quantifier-free, by enumerating all the solutions of c with an

SMT solver. A solution s, or rather a class of solutions, is defined by a satisfiable

core, i.e., a conjunction of the atoms in c. Cooper’s algorithm is used to simplify

∃xs to the quantifier-free formula s′. c is replaced by c ∧ ¬s′ to exclude the

solutions defined by s, and the procedure is restarted. It terminates when c is

simplified to false, i.e., when all solutions have been found. The disjunction of the

solutions is a quantifier-free formula that is equivalent to the original constraint

∃xc. The integration of quantifier elimination for each solution in the enumera-

tion loop makes this algorithm potentially more performant than either Cooper’s

algorithm or an SMT based solution enumeration alone [56]. Furthermore, it is

easy to implement, as a standard SMT solver can be used, and Cooper has to

operate only on literal conjunctions, not arbitrary formulas.

If the SMT solver used for the enumeration takes Γ into account as an

additional constraint, it should terminate faster and find fewer solutions.

It must be noted that Cooper introduces divisibility constraints of the

form i | p, where i is an integer constant and p is an arbitrary polynomial. As

i | p can be expressed as ∃x(i
.
∗ x

.
= p), this does not change the expressiveness of

the language of the calculus. If the SMT solver supports the division predicate

natively, it might make sense to extend the input language of the calculus with

it, as this makes it possible to formalize a wider range of problems naturally.

3.7.5.8 Candidate Recomputation

Although each candidate rule application can be represented in constant

size, it can still happen that too many candidates are computed to be stored
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in memory. A solution is to store only the best candidates, forget the others,

and recompute them on demand. For example, Darwin achieves this by storing

candidates in a min-max heap, which supports efficient removal of the best as well

as the worst element. The procedure must keep track of which candidates have

been forgotten in a compact way, i.e., by remembering only the best forgotten

candidate for some partition of the candidate space. Possible partitions are, for

example, by application rule, by depth of the derivation tree, or by the selected

clause from Φ or Ψ.

If the number of candidates kept is big enough, recomputation should

occur almost never, as the best candidates should suffice to keep the derivation

going. If not, then the derivation is probably taking that long that the time spent

for recomputation is not going to matter overall anyways.

3.8 Conclusion

We have presented an extended version of the previously published version

of the ME(LIA) calculus. It incorporates universal literals, additional redundancy

criteria, and additional inference rules.

Clearly, implementing the calculus based on the presented detailed guide

lines is the next step. The implementation needs to be evaluated in practice, to

see how it compares to alternative approaches, including ME. Although many

theorem proving techniques carry over from the ME setting, it is not clear how

to achieve something like term indexing for ME(LIA). That is, how to perform

context checks such that the context literals are not considered linearly one by

one, but that some kind of indexing allows to check many literals simultaneously.

Support for universal literals needs further consideration. It needs to be
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explored if Split can be generalized to work with universal literals, and especially

without complicating the calculus too much. It is also worth investigating if the

notion of universality can be broken down from the level of literals to the level

of variables, akin to ME.

While support for finite domain functions and for approximating functions

by using predicates can give some leverage, support for proper function symbols

would be important. Similarly, it needs to be investigated which other constraint

theories are suitable for combination with the ME(LIA) framework. The crucial

properties of LIA which were exploited in ME(LIA) are a non-dense ordering,

and the decidability of the satisfiability of arbitrary LIA constraints. Finally, it

is an interesting question if several theories can be combined instead of using just

one, as is done in DPLL(T) [47].

3.9 Proofs

3.9.1 Preliminaries

Lemma 3.9.1 Let
wf

≤ be the ordering 0,−1, 1,−2, 2, . . . over the integers. Let

wf.

≤ be defined the same way as
.

≤ is defined in Section 3.4.1, except that integers

are compared by
wf

≤ instead of
.

≤. Then any constraint c[x] is admissible.

Proof. If c is not satisfiable for any assignment α, then c is trivially admissible.

Thus, assume in the following that α is an arbitrary assignment such that c is

α-satisfiable.

Due to
wf

≤ being well-founded,
wf.
< is a well-founded partial ordering over

the α-solutions of c, and thus c has minimal solutions. Any two minimal α-

solutions l and m must be incomparable, that is there must be two indices i, j,
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with 1 ≤ i ≤ n, 1 ≤ j ≤ n, and i 6= j, such that mi

wf
< li and lj

wf
< mj . As

m has finitely many elements, there can be only finitely many such (ordered)

combinations of i and j. Thus it suffices to show that for any given pair i, j there

are only finitely many minimal α-solutions of c which differ at i, j. Let the set

of all such solutions be denoted by Sij. If Sij is empty, it trivially contains only

finitely many solutions. So assume in the following that it is not empty.

Now, Sij can be ordered such that the i.th component of the k.th solu-

tion is less than the i.th component of the k + 1.th solution wrt.
wf
< , and the

j.th component of the k.th solution is greater than the j.th component of the

k + 1.th solution wrt.
wf
> . That is, when traversing Sij in order solution by solu-

tion, the i.th component is strictly increasing, and the j.th component is strictly

decreasing.

Now pick an arbitrary solution m in Sij . The i.th resp. j.th component

of all solutions is bounded below by 0 wrt.
wf
< . It follows that there can be

only finitely many solutions in Sij whose i.th component is smaller than the i.th

component of m. Furthermore, if a solution is bigger than m at the j.th position,

then it must be smaller than m at the i.th position. Again, it follows that there

can be only finitely many solutions in Sij whose j.th component is bigger than

the j.th component of m wrt.
wf
>.

Thus, Sij consists of m, finitely many solutions which are smaller than

m at the i.th position, and finitely many solutions which are bigger than m at

the j.th position. Thus, Sij is finite, for each pair of positions i, j there are only

finitely many minimal solutions which are incomparable due to i, j, and there are

only finitely many pairs of positions. The claim follows.



196

Lemma 3.4.1 Let c[x] be a constraint and n a tuple of integer constants of the

same length as x such that |=Z ∃x n
.

≤ x. Then c is admissible.

Proof. Analogous to the proof of Lemma 3.9.1. The crucial observation is that

it follows from |=Z ∃x n
.

≤ x that
.
< is a well-founded partial ordering over the

α-solutions of c with n as the lower bound.

Lemma 3.4.2 Let α be an assignment and c an admissible constraint. Then,

there is an n ≥ 0 such that µ1 c, . . . µn c have unique, pairwise different α-

solutions, which are all minimal α-solutions of c. Furthermore, for all k > n,

µk c is not α-satisfiable.

Proof. Let m1, . . . ,mn be all minimal α-solutions of c, for some n ≥ 0. They

exist because c is admissible. Without loss of generality assume they are ordered

lexicographically, i.e. mi

.

≤ℓ mj whenever 1 ≤ i ≤ j ≤ n.

To prove the first part of the lemma it suffices to show that mk is the

unique α-solution of µk c, for all k = 1, . . . , n. It then follows that these solutions

are pairwise different, because m1, . . . ,mn are all different.

The case n = 0 being trivial, we assume n > 0 and prove the statement

by induction on k, for all k = 1, . . . , n.

If k = 1 then recall that by assumption m1 is the least of all minimal α-

solutions of c. This fact is expressed in our constraint language as the constraint

µℓ(µ c) ( = µ1 c), which has exactly one α-solution, m1.

If k > 1 then assume by induction that m1, . . . ,mk−1 are the unique

α-solution of µ1 c, . . . µk−1 c, respectively. We have to prove this for µk c.

By assumption, mk is a minimal α-solution of c (the k-th one). Thus, mk is

an α-solution of µ c. Because m1, . . . ,mn are all pairwise different, it follows with
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the induction hypothesis (and k ≤ n) that mk is not an α-solution of any of the

constraints µ1 c, , ..., µk−1 c. Thus mk is an α-solution of ¬(µ1 c)∧ · · ·∧¬(µk−1 c).

It follows that mk is an α-solution of the conjunction c′ = ¬(µ1 c)∧· · ·∧¬(µk−1 c)∧

(µc).

For the induction step it suffices to show that mk is the least α-solution of

c′. Because then, with µk c = µℓ c′ it follows with the definition of the µℓ-operator

that mk is the unique α-solution of µk c.

By way of contradiction, assume there is a least α-solution m of c′ with

m 6= mk. We consider two (exhaustive) cases.

In the first case mk

.

≤ℓ m. This is a direct contradiction to the assumption

that m is the least α-solution of c.

In the second case m
.

≤ℓ mk. Because m is a (least) α-solution of c′, m is

in particular an α-solution of its conjunct (µ c). In other words, m is a minimal α-

solution of c′. Further, recall that m1, . . . ,mk, . . . ,mn are all minimal α-solutions

and that they are lexicographically ordered. Altogether, with m
.
< mk it follows

that m = mj , for some 1 ≤ j < k. By the induction hypothesis, mj is an α-

solution of µj c. On the other hand, with m and thus also mj being a solution of

µk c, mj is also an α-solution of µk c’s conjunct ¬(µj c). A plain contradiction.

From the contradictions in both cases conclude m = mk, which remained

to be shown for the first part.

It remains to show that µk c is not α-satisfiable, for all k > n. This,

however, is clear with the first part, because any such α-solution m would provide

a minimal α-solution for c that is different to each of m1, . . . ,mn. However

m1, . . . ,mn was assumed to consist of all minimal α-solutions.
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Lemma 3.4.3 Let α be a parameter assignment, and c[x] and d[x] two α-satis-

fiable admissible constraints. Then one of the following cases applies:

(i) α |=Z c
.
<µℓ

d

(ii) α |=Z c
.
=µℓ

d

(iii) α |=Z d
.
<µℓ

c

Proof. c[x] and d[x] contain the same free variables and are thus comparable wrt.

.
= and

.

≤. Thus the formulas in cases (i)-(iii) are well-formed.

Since both c[x] and d[x] are α-satisfiable, the solutions µℓ c[x] and µℓ d[x]

are α-satisfiable as well, with least solutions mc and md. Clearly, either mc

.
< md

is true, in which case (i) holds, or md

.
< mc is true in which case (iii) holds, or

md
.
= mc is true, in which case (ii) holds, as the least α-solution of a constraint

is also an α-solution of the permanent constraint of a constraint.

Lemma 3.4.9 (Consistent α-Productivity) Let Λ·Γ be an admissible context

and α ∈ Mods(Γ). For any constrained literal L(x) | c, Λ cannot α-produce both

L(x) | c and its complement L(x) | c.

Proof. Suppose, by contradiction, Λ α-produces both L(x) | c and its complement

L(x) | c, for some context literal L(x) | c. Then there need to be two context

literals K = L(x) | c1 and K ′ = L(x) | c2 in Λ that α-produce L(x) | c and

L(x) | c wrt. Λ, respectively. By definition of α-productivity, K and K ′ α-cover

these literals and so c1 and c2 must be α-satisfiable. Now, with Lemma 3.4.3

three cases apply: if α |=Z c1
.
=µℓ

c2 then Λ · Γ would be contradictory, which is

impossible by admissibility; if α |=Z c1

.
<µℓ

c2 then K cannot α-produce L(x) | c,
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and if otherwise α |=Z c2

.
<µℓ

c1 then K ′ cannot α-produce L(x) | c. Both cases

contradict the assumption made.

Lemma 3.4.11 Let Λ · Γ be an admissible context and α ∈ Mods(Γ). For any

ground literal L(s) such that α |=Z 0
.

≤ s, ZΛ,α satisfies L(s) if and only if Λ

α-produces L(s).

Proof. Let L(s) be an arbitrary ground literal over Σ. As Λ · Γ is admissible

Λ contains the literal ¬L(x) | −1
.

≤ x. Either this literal α-produces ¬L(s),

or it is α-blocked by some context literal L(x) | c. Now either L(x) | c α-

produces L(s), or it is in turn α-blocked by some context literal. It is clear from

Definition 3.4.7 that then there must be a literal that α-covers L(s) or ¬L(s)

that is not α-blocked by another context literal, since universal literals cannot be

blocked and non-universal literals can only be α-blocked by literals with a bigger

least α-solution. By Lemma 3.4.9 only one of L(s) or ¬L(s) can be α-produced.

The claim follows by definition of ZΛ,α

Lemma 3.4.12 Let Λ ·Γ be an admissible context, let L(x) | c be a context literal

in Λ, and let α ∈ Mods(Γ). If c is α-satisfiable then each literal in {L(m) | α |=Z

perm(c)[m/x]} is satisfied by ZΛ,α.

Proof. Let m be an arbitrary α-solution of perm(c). Observe that because

of this, and because by definition also α |=Z ∀̄(perm(c) → c), it follows that

L(x) | c α-covers L(m). If L(x) | c α-produces L(m), then the claim follows by

Lemma 3.4.11, since m was an arbitrary α-solution of perm(c).

If L(x) | c is universal in Λ · Γ, it α-produces L(m) by definition. So

assume that L(m) is not universal. Then, L(m) must be the least α-solution of
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L(x) | c.

Now assume that a context literal L(x) | d from Λ α-blocks L(x) | c from

α-producing L(m). α |=Z c
.
<µℓ

d cannot hold, as then L(x) | c would not α-

cover L(m). α |=Z c
.
=µℓ

d cannot hold, as then Λ · Γ would be contradictory.

α |=Z d
.
<µℓ

c cannot hold, as then L(x) | c would not be α-blocked by L(x) | d.

But one of these cases must hold due to Lemma 3.4.3. Thus, there is no such

blocking literal in Λ, L(x) | c α-produces L(m), and the claim follows.

3.9.2 Soundness

To prove soundness we have to show that whenever there is a refutation

of Φ and Γ then Φ ∪ Γ is LIA-unsatisfiable.

To prove the result, we need to take the context literals Λ into account,

as they evolve in the refutation and constrain the candidate models. To this end,

for a given parameter assignment α we define a set Λµℓ(α) of constrained unit

clauses as follows.

Definition 3.9.2 (µℓ-satisfiability) Let Λ · Γ ⊢ Φ · Ψ be a sequent and α a

parameter assignment. Then Λµℓ(α) consists of the set of all unit clauses L(x)←

perm(c) such that the literal L(x) | c is in Λ and c is α-satisfiable.

We say that Λ·Γ ⊢ Φ·Ψ is µℓ-satisfiable iff for some parameter assignment

α ∈ Mods(Γ), Λµℓ(α) ∪ Γ ∪ Φ ∪ Ψ is LIA-satisfiable in some Σ-interpretation Z

that agrees with α on the parameters. We call Z a µℓ-model of Λ · Γ ⊢ Φ · Ψ.

In words, for an assignment α ∈ Mods(Γ) the clause set Λµℓ(α) (concep-

tually) consists of the set of (possibly infinitely many) ground literals which are
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permanently α-satisfied in Λ, and µℓ-satisfiability requires that any µℓ-model has

to satisfy Λµℓ(α).

We will use the contrapositive of the following theorem to show that when-

ever there is a refutation of Φ and Γ, then the initial sequent of the refutation is

µℓ-unsatisfiable.

Lemma 3.9.3 For each rule of the ME(LIA) calculus, if the premise of the rule

is µℓ-satisfiable, then one of its conclusions is µℓ-satisfiable as well.

Proof. We carry out a case analysis wrt. the derivation rule applied. We consider

the rules in the order of core, optional, simplification.

3.9.2.1 Core Rules

Inst) The premise of Inst has the form Λ ·Γ ⊢ (Φ, C ← c) ·Ψ, while its conclusion

has the form Λ · Γ ⊢ (Φ, C ← c) · (Ψ, C ← d), where d is a context unifier of

C ← c against Λ · Γ.

As d is a context unifier of C ← c, it follows by construction of d that d is

a stronger constraint than c. Thus any model of C ← c is also a model of C ← d.

It follows immediately that any model of Λµℓ(α) ∪ Γ ∪ (Φ, C ← c) ∪ Ψ is also a

model of Λµℓ(α) ∪ Γ ∪ (Φ, C ← c) ∪ (Ψ, C ← d).

Thus if the premise of Inst is µℓ-satisfiable then so is the conclusion.

Close) The premise of Close has the form Λ · Γ ⊢ Φ · (Ψ, C ← c), while its

conclusion has the form Λ · Γ ⊢ Φ · (Ψ, C ← c,� ← ⊤), where each literal of

C ← c is Γ-contradictory with Λ.
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As Λ · Γ ⊢ Φ · (Ψ, C ← c,�← ⊤) is µℓ-unsatisfiable, we must show that

Λ ·Γ ⊢ Φ ·(Ψ, C ← c) is µℓ-unsatisfiable as well. Equivalently, we must show that

for all parameter assignments α, Λµℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c) is LIA-unsatisfiable

in all Σ-interpretations that agree with α on the parameters.

Let α be any parameter assignment. If α /∈ Mods(Γ) then there is no

Σ-interpretation that agrees with α on the parameters and that satisfies Γ. In

this case the claim follows trivially. Hence assume from now on α ∈ Mods(Γ).

Let C ← c be of the form L1(x1) ∨ · · · ∨ Lk(xk) ← c[x]. As each literal

Li(xi) | ci[xi] of C ← c is Γ-contradictory with Λ, there must be literals Li | di

in Λ such that α |=Z ci
.
=µℓ

di. By the definition of
.
=µℓ

it follows that di, ci,

and c are α-satisfiable. By definition of
.
=µℓ

, by Definition 3.9.2, and since clause

literals are not universal, any Σ-model Z of Λµℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c) that

agrees with α on the parameters must assign true to each literal Li(mi), where

mi is the least α-solution of ci.

Let n be the least α-solution of c. Z must then satisfy L1(n1)∨· · ·∨Lk(nk),

as it is a ground instance of the clause C ← c. Since ci is defined as πxi c[x], ni is

the least α-solution of ci, and thus α |=Z mi
.
= ni. As Z assigns true to Li(mi),

for all i = 1, . . . , k, such a model Z cannot exist, which remained to be shown.

Split) The premise of Split has the form Λ · Γ ⊢ Φ · (Ψ, C ← c), while its

conclusions have respectively the form (Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c) and

(Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c). Suppose that Λ · Γ ⊢ Φ · Ψ, C ← c is µℓ-

satisfiable. Then there must be a parameter assignment α ∈ Mods(Γ) such that

Λµℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c) is LIA-satisfiable in some Σ-interpretation Z that

agrees with α on the parameters.
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If ci is not α-satisfiable then by definition Λµℓ(α) = (Λ, Li | ci)
µℓ(α) =

(Λ, Li | ci)
µℓ(α) and it is easy to see that µℓ-satisfiability is preserved even for

both conclusions.

If on the other hand ci is α-satisfiable, then {Li | ci}
µℓ(α) = {Li(mi)}

and {Li | ci}
µℓ(α) = {Li(mi)}, for some integer vector mi, since Li | ci is not

universal. Thus Z must satisfy either (Λ, Li(mi))
µℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c) or

(Λ, Li(mi)
µℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c), which is clearly the case.

In conclusion in any case one of the consequences is µℓ-satisfiable.

Extend) The premise of Extend has the form Λ · Γ ⊢ Φ · (Ψ, C ← c) while its

conclusion has the form (Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c), where Li | ci is

Γ-contradictory with Λ.

Suppose that Λ · Γ ⊢ Φ · (Ψ, C ← c) is µℓ-satisfiable. Then there must be

a parameter assignment α ∈ Mods(Γ) such that Λµℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c) is

LIA-satisfiable in some Σ-interpretation Z that agrees with α on the parameters.

As Li | ci is Γ-contradictory with Λ, with the same argumentation as for

Close above it follows that (in particular) Z cannot LIA-satisfy (Λ, Li(mi))
µℓ(α) ∪

Γ ∪ Φ ∪ (Ψ, C ← c). Hence Z must LIA-satisfy (Λ, Li(mi))
µℓ(α) ∪ Γ ∪ Φ ∪

(Ψ, C ← c). Equivalently, with Li | ci being non-universal, (Λ, Li | ci) · Γ ⊢

Φ · (Ψ, C ← c) is µℓ-satisfiable, which was to be shown.

Domain Split) The premise of Domain Split has the form Λ · Γ ⊢ Φ · (Ψ, C ← c)

while its conclusions have respectively the form Λ · (Γ, d) ⊢ Φ · (Ψ, C ← c) and

Λ · (Γ,¬d) ⊢ Φ · (Ψ, C ← c).

Suppose that Λ ·Γ ⊢ Φ ·Ψ, C ← c is µℓ-satisfiable. Then there must be a

parameter assignment α ∈ Mods(Γ) such that Λµℓ(α) ∪ Γ ∪ Φ ∪ Ψ ∪ (Ψ, C ← c) is
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LIA-satisfiable in some Σ-interpretation Z that agrees with α on the parameters.

As Z agrees with α on the parameters, if α |=Z d then Z satisfies d. And

if α 6|=Z d then α |=Z ¬d and so Z satisfies ¬d. Corresponding to the case that

applies, it follows that one of the consequences is µℓ-satisfiable.

3.9.2.2 Optional Rules

Inst Assert) The premise of Inst Assert has the form Λ · Γ ⊢ (Φ, C ∨ L0 ← c) ·Ψ

while its conclusion has the form Λ · Γ ⊢ (Φ, C ∨ L0 ← c) · (Ψ, C ∨ L0 ← d).

The reasoning is essentially the same as in the case for Inst, as d is a

context unifier and thus a stronger constraint than c.

Assert) The premise of Assert has the form Λ · Γ ⊢ Φ · (Ψ, C ← c) while its

conclusion has the form (Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c). Furthermore, Li | ci is

Γ-universal in Λ · Γ, and Li | ci is marked as universal in (Λ, Li | ci) · Γ.

Suppose that Λ · Γ ⊢ Φ · (Ψ, C ← c) is µℓ-satisfiable. Then there must be

a parameter assignment α ∈ Mods(Γ) such that Λµℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c) is

LIA-satisfiable in some Σ-interpretation Z that agrees with α on the parameters.

Let C ← c be of the form L1(x1) ∨ · · · ∨ Lk(xk) ← c[x]. Let m be an

arbitrary α-solution of c. Since L1(m1) ∨ · · · ∨ Lk(mk) ← c[m] is an instance of

a clause in Φ, it is satisfied by Z.

For all Lj(xj) of C ← c with i 6= j the following holds. Since Li(xi) | ci

is Γ-universal in Λ · Γ, by Definition 3.4.14, Lj(mj) is permanently α-falsified in

Λ · Γ. By Definition 3.4.13, there must be a literal Lj(xj) | ej in Λ such that mj

is an α-solution of perm(ej). By Definition 3.9.2, Lj(mj) is falsified in Z.
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Since m was arbitrary, Z must then satisfy Li(mi) for all α-solutions of

ci.

In summary, as Z is a model of Λµℓ(α) ∪ Γ ∪ (Ψ, C ← c) as well as of

Li(xi) ← ci, and Λµℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c) ∪ {Li(xi) ← ci} is the same as

(Λ, Li | ci)
µℓ(α) ∪ Γ ∪ Φ ∪ (Ψ, C ← c), Z is also a model of the latter.

Thus, from the premise Λ · Γ ⊢ Φ · (Ψ, C ← c) being µℓ-satisfiable it

follows that the conclusion (Λ, Li | ci) · Γ ⊢ Φ · (Ψ, C ← c) is µℓ-satisfiable as

well.

Ground Split) The proof is analogous to the proof of Domain Split.

3.9.2.3 Simplification Rules

Subsume) The premise of Subsume has the form (Λ, L0 | e)·Γ ⊢ (Φ, C∨L0 ← c)·Ψ

while its conclusion has the form (Λ, L0 | e) · Γ ⊢ Φ ·Ψ.

Thus any µℓ-model of (Λ, L0 | e)·Γ ⊢ (Φ, C∨L0 ← c)·Ψ is also a µℓ-model

of (Λ, L0 | e) ·Γ ⊢ Φ ·Ψ, as the clause set (Λ, L0 | e)
µℓ(α) ∪ Γ ∪ Φ ∪ Ψ is a subset

of (Λ, L0 | e)
µℓ(α) ∪ Γ ∪ (Φ, C ∨L0 ← c) ∪ Ψ, and thus any model of the former

is also a model of the latter.

Resolve) The premise of Resolve has the form (Λ, L0 | e)·Γ ⊢ (Φ, C(x)∨L0 ← c)·Ψ

while its conclusion has the form (Λ, L0 | e) · Γ ⊢ (Φ, C(x) ← d) · Ψ, where

Γ |=Z c0 → perm(L0 | e) and d = π x c.

Suppose that (Λ, L0 | e) · Γ ⊢ (Φ, C ∨ L0 ← c) · Ψ is µℓ-satisfiable.

Then there must be a parameter assignment α ∈ Mods(Γ) such that (Λ, L0 |



206

e)µℓ(α) ∪ Γ ∪ (Φ, C ∨L0 ← c) ∪ Ψ is LIA-satisfiable in some Σ-interpretation Z

that agrees with α on the parameters.

Let C consist of the literals L1(x1), . . . , Lk(xk). From Γ |=Z ∀̄(c0 →

perm(L0 | e)) follows with α ∈ Mods(Γ) that ∀̄(c0 → perm(L0 | e)) holds in Z.

By Z satisfying L0(m) for each α-solution m of perm(e), L0(n0) is falsified in Z

for each α-solution n0 of c0. Furthermore, for each α-solution n of c the ground

instance L1(n1) ∨ · · · ∨ Lk(nk) ∨ L0(n0) ← c[n] is satisfied in Z. As for each

α-solution n of c, n0 is an α-solution of c0, it follows that L0(n0) is falsified in Z

and one of L1(n1)∨ · · · ∨Lk(nk) must be satisfied instead. As d is the projection

of c to the variables of C not in L0, it follows that C ← d is true in Z.

Thus any µℓ-model of (Λ, L0 | e)·Γ ⊢ (Φ, C∨L0 ← c)·Ψ is also a µℓ-model

of (Λ, L0 | e) · Γ ⊢ (Φ, C ← d) ·Ψ.

Compact) The premise of Compact has the form (Λ, L | e) · Γ ⊢ Φ · Ψ while its

conclusion has the form Λ · Γ ⊢ Φ ·Ψ.

Analogous to the case of Subsume, it is immediate from Definition 3.9.2

that any µℓ-model of the premise is also a µℓ-model of the conclusion.

Theorem 3.6.1 (Soundness) For all admissible clause sets Φ and satisfiable

sets of closed constraints Γ, if there is a refutation tree of Φ and Γ, then Φ ∪ Γ

is LIA-unsatisfiable.

Proof. Let T be a refutation tree of Φ and Γ.

By the contrapositive of Lemma 3.9.3 it follows that if T is a refutation

tree of Φ and Γ, then its root sequent Λ · Γ ⊢ Φ ·Ψ must be µℓ-unsatisfiable, as

all its leaf node sequents Si contain the constrained empty clause � ← ⊤ in Ψi
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and are thus trivially µℓ-unsatisfiable.

By admissibility, the only literals in Λ are of the form ¬P (x) | −1
.

≤ x.

Thus for all α ∈ Mods(Γ) the α-solution of each ground literal that is permanently

α-satisfied in Λ · Γ is of the form −1. But by admissibility the solutions of each

constrained clause in Φ are bounded below by 0. Thus the root sequent is µℓ-

satisfiable iff Φ ∪ Γ is LIA-satisfiable.

The claim follows.

3.9.3 Fairness

We will assume the same setup as in Section 3.6.2.

Lemma 3.6.5 ΓB is satisfiable, and for all i < κ, Mods(ΓB) ⊆ Mods(Γi).

Proof. First we show that Γi is satisfiable, for all i < κ. This however follows

easily from the facts that, by definition, Γ0 ( = Γ) is satisfiable, and that the only

derivation rules that can manipulate the Γi’s, Domain Split and Ground Split,

preserve satisfiability (and admissibility) in both conclusions. In fact, each Γi is

finite and each Γi+1 is obtained from Γi by adding at most one constraint. By

compactness of ΓB, ΓB as the union of all Γi is satisfiable as well.

Furthermore, as ΓB =
⋃

i<κ Γi, Mods(ΓB) ⊆ Mods(Γi).

3.9.4 Completeness

We assume the same setup as in Section 3.6.3.

Lemma 3.9.4 Let α be in Mods(ΓB). For any literal L | c in Λj such that c is

α-satisfiable, each Λj′ with j′ ≥ j contains a literal which α-extends L.
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Proof. Let L | c be an arbitrary literal in Λj such that c is α-satisfiable. First

observe that because c is α-satisfiable, L | c α-extends itself. Now assume that

Sj′, with j′ > j, is the first sequent such that L | c is not in Λj′. This can only be

because Compact was applied to the previous sequent. But then, by definition of

Compact, there must be a literal L | c′ in Λj′ which α-extends L | c.

As said, the following theorem is the main result for proving the calculus

complete.

Theorem 3.6.7 (Model Construction) For every α ∈ Mods(ΓB), ZΛB,α is a

model of ΦB.

Proof. Let α be arbitrarily in Mods(ΓB). Clearly, ΛB ·ΓB is admissible and hence

ZΛB,α is indeed defined. Suppose ad absurdum that ZΛB,α is not a model of ΦB.

This implies the existence of a constrained clause C[x] = L1(x1)∨· · ·∨Lk(xk)←

c[x] from ΦB that is falsified by ZΛB,α. It holds k ≥ 1 because the clause set Φ

is admissible. That is, there is a vector m of constants from Z such that C[m] is

falsified by ZΛB,α. By Lemma 3.4.11 there must be context literals L1(x1) | e1,

. . . , Lk(xk) | ek in ΛB which α-produce L1(m1), . . . , Lk(mk). By Lemma 3.9.4

it follows that there must be a j < κ such that each Λj′, with j′ ≥ j, contains for

each Li(xi) | ei a literal that α-extends Li(xi) | ei.

We first show that the clause D[x] = L1(x1) ∨ · · · ∨ Lk(xk) ← d[x], with

d the context unifier of C and the above context literals, is not α-redundant in

any Sj′:

(i) R-Unsatisfiable: D is α-satisfiable in ΓB, thus it cannot be R-Unsatisfiable

α-redundant in any Sj′, with j′ ≥ j, as α is a model of each Γj′ by
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Lemma 3.6.5.

(ii) R-Unproductive: If D is R-Unproductive α-redundant in some Sj′, with j′ ≥

j, then one of the context literals Li(xi) | ei does not α-produce Li(xi) | di

in Sj′. But this cannot be, as then by Definition 3.4.7 some Li(xi) | fi in Λj′

blocks Li(xi) | ei from α-producing Li(xi) | di in Λj′, and thus Li(xi) | ei

does in particular not α-produce Li(mi). By Lemma 3.9.4 some literal in

ΛB α-extends Li(xi) | fi, which implies that it in turn blocks Li(xi) | ei from

α-producing Li(mi) in SB. But this is a contradiction to the assumptions,

and thus there is no such Li(xi) | fi in Λj′ and D is not R-Unproductive

α-redundant in Sj′.

(iii) R-Subsume: We can assume that D is not R-Subsume α-redundant in any

Sj′, with j′ ≥ j. Because if it were due to some clause D′ in Ψj′, then we

would have chosen D′ instead of D in our considerations. This is possible, as

each literal of D′ is α-extended by a literal of D, and thus (a subset of) the

context literals Li(xi) | ei from above also falsifies the clause instance D′[m′]

of D′, where m′ is the projection of m to D′’s variables. Furthermore, if D′

is α-redundant in Sj′, then so is D. This is immediate for R-Unsatisfiable and

R-Unproductive, and follows for R-Subsume by transitivity of the R-Subsume

property. Furthermore, as the chain of replacements due to R-Subsume can

be at most as long as the size of the longest clause, this replacement process

is well-founded and terminates.

As Inst applies to Sj with selected clause C and derived clause D, by

Definition 3.6.4-(ii) D is in Ψj′, for some j′ ≥ j. Let that j be that j′ for the
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remainder of the proof.

Together, we have now shown that,

for all j′ ≥ j, D is in Ψj′ and D is not α-redundant in Sj′. (3.2)

This property will lead to various contradictions below.

We perform a case analysis on the status of the literals of D in Λj · Γj .

Note that as Λj · Γj is admissible, it cannot be that a literal and its complement

are α-contradictory with Λj for any α ∈ Mods(Γj).

1. All literals of D are Γj-contradictory with Λj. Then Close is applicable

to Sj . But this is a contradiction to Definition 3.6.4-(i).

Thus, as k ≥ 1, there must be some literal Li(xi) | di of D that is not

Γj-contradictory with Λj . We will make use of Li(xi) | di in the remaining cases.

2. Li(xi) | di is Γj-contradictory with Λj. Then Extend is applicable to Sj

with selected clause D. By Definition 3.6.4-(iii) D is α-redundant in Sj′, for some

j′ ≥ j. This is a direct contradiction to (3.2).

3. Neither Li(xi) | di nor Li(xi) | di is α-contradictory with Λj. Here, Split

is applicable to Sj with split literal Li(xi) | di. Again, by Definition 3.6.4-(iii) D

is α-redundant in Sj′, for some j′ ≥ j. This is a direct contradiction to (3.2).

4. Li(xi) | di or Li(xi) | di is α-contradictory with Λj. Then there must

be a literal Li(xi) | fi or Li(xi) | fi in Λj such that α |=Z di
.
=µℓ

fi, but not

Γ |=Z di
.
=µℓ

fi. Thus Domain Split is applicable to Sj. Again, by Definition 3.6.4-

(iii) D is α-redundant in Sj′, for some j′ ≥ j. This is a direct contradiction

to (3.2).
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In sum, each case has led to a contradiction now. Consequently, the

assumption that ZΛB,α is not a model of ΦB is false, and the proof is complete.

3.9.5 Proof-Generation

Lemma 3.9.5 Let B be a derivation branch with root sequent Λ · Γ ⊢ Φ ·Ψ and

N a node of B with sequent S = ΛS · ΓS ⊢ ΦS ·ΨS.

Then for each clause C(x)← d in ΨS there is a clause C(x) ∨D ← c in

Φ, such that (i) d is stronger than the projection of c to the variables local to C,

and (ii) for each literal Li in D, Li | ci is Γs-contradictory with ΛS.

Proof. As C(x) ← d is the derived clause of an Inst application it must be an

instance of some clause C(x′) ← c′ in ΦS . Assume that the variables of the

clauses are renamed such that x and x′ are identical. If C ← c′ is in Φ then

(i) and (ii) follow trivially, as D is empty and c is stronger than c′. Otherwise,

C ← c′ must have been obtained from some C∨D ← c in Φ through applications

of Resolve.

Observe that by definition of Resolve c′ is obtained from c by existentially

quantifying the variables local to D. With C ← d being an instance of C ← c′,

(i) follows.

Furthermore, if Resolve is applied to some sequent Sj with literal Li in

D, it follows by definition and with c′ being a projection of c, that Li | ci is

Γsj
-contradictory with ΛSj

. By ΓS being an extension of all ΓSj
used in resolving

C ∨D ← c to C ← c′, and by Lemma 3.9.4, (ii) follows.

Lemma 3.7.6 Let T be a refutation tree with root sequent Λ · Γ ⊢ Φ · Ψ. Fix
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an α ∈ Γ. When Regress is applied to T , it computes a label for each inner node

such that each label is α-invariant.

Proof. The proof will be by induction on the structure of the derivation tree, with

the hypothesis that each label computed for a child node is α-invariant. The base

cases are the sub-trees where Close was applied to the root node N with sequent

S, all other rule applications make use of the induction hypothesis. The proof is

by case analysis of the possible rule applications.

If the constraint c of a constrained clause in a label is not α-satisfiable the

invariant holds trivially. We will consider only the cases where c is α-satisfiable.

Close Let Regress(N) be (C ← c, Link).

As C ← c is an instance of a clause in Φ it is immediate that 3.7.6-(i) and

(ii) hold. By construction of Link, 3.7.6-(iii) holds as well.

Inst, Extend, Domain Split, Inst Assert, Ground Split, Subsume, Resolve, Compact

Immediate by construction, as the label of the child node is α-invariant by the

induction hypothesis.

Split Assume the induction hypothesis holds for Regress(N1) and Regress(N2).

If one of the trivial cases of the algorithm applies, i.e., it returns Regress(N1)

or Regress(N2), the claim follows immediately. Otherwise, let Regress(N) be

(C ∨C ′)(x) ← π x (d∧ d′), LinkN), let Regress(N1) be (C ∨Li ← d, LinkN1
), and

let Regress(N2) be (C ′ ∨ Li ← d′, LinkN2
).

Invariant 3.7.6-(i) and (ii) are immediate by hypothesis, as (C ∨ C ′)(x)

← πx(d∧d′) is obtained by resolution on C∨Li ← d and C ′∨Li ← d′. As Li | di
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is α-contradictory with the (non-universal) left split literal Li | ci, and Li | d
′
i is

α-contradictory with the (non-universal) right split literal Li | ci, it follows that

di and d′i have the same least α-solution. Thus d ∧ d′ is α-satisfiable. As the

α-solutions of π x (d ∧ d′) are exactly the α-solutions of d and d′ joined over the

variables local to di resp. d′i, it follows that each literal of (C∨C ′)(x)← πx(d∧d′)

has the same least α-solution as the corresponding literal of C ∨ Li ← d resp.

C ′ ∨ Li ← d′. By construction of Link, 3.7.6-(iii) holds as well.

For the more complicated case in which one of the clauses returned by

Regress(N1) or Regress(N2) are factored, observe that the literals factored must

have the same least α-solution, as they are all α-contradictory with the same

non-universal literal. It follows immediately by the hypothesis that by replacing

in a label the original clause with its factored version, we obtain a label which is

α-invariant as well.

Assert Let Li | ci be the literal of the selected clause C∨Li ← c. Let Regress(N)

be (C ∨ C ′ ← π x (c ∧ c′), Link), and let Regress(N1) be (C ′ ∨ Li ← c′, LinkN1
).

As Li | ci and Li | c′i are α-contradictory in N , c ∧ c′ is α-satisfiable.

Invariant 3.7.6-(i) and (ii) are immediate by hypothesis, as C ∨C ′ ← π x (c ∧ c′)

is obtained by resolution on C ′ ∨ Li ← c′ and a clause from Φ. By construction

of Link, (iii) holds as well.
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