
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2009

Algorithmic game theory and the computation of
market equilibria
Benton John McCune
University of Iowa

Copyright 2009 Benton John McCune

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/405

Follow this and additional works at: https://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
McCune, Benton John. "Algorithmic game theory and the computation of market equilibria." PhD (Doctor of Philosophy) thesis,
University of Iowa, 2009.
https://ir.uiowa.edu/etd/405.

https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F405&utm_medium=PDF&utm_campaign=PDFCoverPages

ALGORITHMIC GAME THEORY AND THE COMPUTATION OF MARKET

EQUILIBRIA

by

Benton John McCune

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

December 2009

Thesis Supervisor: Associate Professor Kasturi Varadarajan

1

ABSTRACT

It is demonstrated that for certain markets where traders have constant elas-

ticity of substitution utility (CES) functions, the existence of a price equilibrium can

be determined in polynomial time. It is also shown that for a certain range of elastic-

ity of substitution where the CES market does not satisfy gross subsitutability that

price equilibira can be computed in polynomial time. It is also shown that for mar-

kets satisfying gross substitutability, equilibria can be computed in polynomial time

even if the excess demand is a correspondence. On the experimental side, equilibrium

computation algorithms from computer science without running time guarantees are

shown to be competitive with software packages used in applied microeconomics.

Simulations also lend support to the Nash equilibrium solution concept by show-

ing that agents employing heuristics in a restricted form of Texas Holdem converge

to an approximate equilibrium. Monte Carlo simulations also indicate the long run

preponderance of skill over chance in Holdem tournaments.

Abstract Approved:

Thesis Supervisor

Title and Department

Date

ALGORITHMIC GAME THEORY AND THE COMPUTATION OF MARKET

EQUILIBRIA

by

Benton John McCune

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

December 2009

Thesis Supervisor: Associate Professor Kasturi Varadarajan

Copyright by
BENTON JOHN MCCUNE

2009
All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Benton John McCune

has been approved by the Examining Committee for the the-
sis requirement for the Doctor of Philosophy degree in Com-
puter Science at the December 2009 graduation.

Thesis committee:

Kasturi Varadarajan, Thesis Supervisor

Samuel Burer

Sukumar Ghosh

Suely Oliveira

Sriram Pemmaraju

To my wife Jennifer, my mother Patricia, my father Daniel, and my sister Julie for
their many years of love and support

ii

ACKNOWLEDGEMENTS

Where the thesis falls short, the responsibility is my own. Where it succeeds,

it owes a good deal to more people than I can name. I shall however try to name a

few.

I would like to thank the members of my committee - Samuel Burer, Sukumar

Ghosh, Suely Olieveira, Sriram Pemmaraju, and Kasturi Varadarajan. Their com-

ments and questions were helpful in improving the thesis and their service over the

years is appreciated. I would also like to acknowledge Jarkko Kari’s service on my

qualifying exam committee.

I would like to extend thanks my coauthors Bruno Codenotti, Sriram Pem-

maraju, Sriram Penumachta, Rajiv Raman, and Kasturi Varadarajan.

I would like to thank Steve Bowers and Andrew Rinner at ITS for allowing

me to acquire some practical experience in software development and participate in

a worthwhile project. I would also like to thank Nedim, Vani, and Derek for helping

to make my time there well spent. The programming experience acquired there no

doubt helped improve my ability to write the code needed for the end of the thesis.

For making the Computer Science department a pleasant place to work, I’d

like to thank my fellow students and friends. Particularly those who’ve moved on

helping to provide motivation for me to the same! So many thanks to Juw Won,

Imran, Rajiv, Sang-Cheol, Zhihong, and Shouxi. Thanks and best wishes to those

who remain in the department - particularly Matt, Gaurav, Erik, and Saurav.

iii

I would be remiss if I didn’t acknowledge my many excellent teachers through-

out more than a few years of schooling. I must single out a few. I would like to thank

my physics teacher, Mr. Gerald Bucklin, for being a terrific teacher and introducing

me to the power and excitement of ideas. I’d also like to thank Dr. Clifford Reiter for

introducing me to the world of research. His ability to find problems that are both

interesting and tractable has only grown more appreciated over the years.

I would like to thank Bruno Codenotti for providing me with an introduction

to the field of algorithmic game theory. His impact on my work (not to mention that

of other students) was out of all proportion to his length of time at the University of

Iowa. His passion and learning and ability to contextualize research areas was both

a resource and an inspiration.

Sriram Pemmaraju’s lectures in both his courses and the Algorithms Reading

Group were some of the finest I have attended - a model of clarity and rigor. His

ceaseless interest in new problems always provided an example of what a scholar

should be. And, to my mind no less important, one could always count on him for a

smile and a kind word.

I am especially grateful to my advisor, Dr. Kasturi Varadajan. Having come

to Iowa without having taken a course in computer science, it was Kasturi who first

introduced me to the study of algorithms through his excellent course and sparked my

first real interest in theoretical computer science. Kasturi was always generous with

both time and ideas. This was critical as time after time, many days of confusion

would be cleared upon his blackboard. This work would not have been possible

iv

without his kind advice, erudition, encouragement and, not least, his patience. And

for that, I will remain grateful.

v

ABSTRACT

It is demonstrated that for certain markets where traders have constant elas-

ticity of substitution utility (CES) functions, the existence of a price equilibrium can

be determined in polynomial time. It is also shown that for a certain range of elastic-

ity of substitution where the CES market does not satisfy gross subsitutability that

price equilibira can be computed in polynomial time. It is also shown that for mar-

kets satisfying gross substitutability, equilibria can be computed in polynomial time

even if the excess demand is a correspondence. On the experimental side, equilibrium

computation algorithms from computer science without running time guarantees are

shown to be competitive with software packages used in applied microeconomics.

Simulations also lend support to the Nash equilibrium solution concept by show-

ing that agents employing heuristics in a restricted form of Texas Holdem converge

to an approximate equilibrium. Monte Carlo simulations also indicate the long run

preponderance of skill over chance in Holdem tournaments.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Market Equilibrium Definitions 2
1.1.1 Equilibrium . 3
1.1.2 Market Example . 3
1.1.3 Demand and Excess Demand 4
1.1.4 Walras’ Law and Homogeneity 5
1.1.5 Gross Substitutability . 6
1.1.6 Important Utility Functions 6
1.1.7 The Fisher Market . 7
1.1.8 Approximate Equilibria 8

1.2 Some Relevant History of Market Equilibria in Mathematical Eco-
nomics . 9
1.2.1 The Existence of Equilibrium 9
1.2.2 Tatonnement . 10
1.2.3 Some other Computational Approaches for General Markets 12
1.2.4 Approaches for more Specialized Markets 13

1.3 Recent Computer Science approaches 15
1.4 Thesis Contributions to the Computation of Market Equilibria . 18
1.5 Game Theory and the Nash Equilibrium 20
1.6 Additional Thesis Contributions 24

2 EXTENDING POLYNOMIAL TIME COMPUTABILITY TO MAR-
KETS WITH DEMAND CORRESPONDENCES 26

2.1 Introduction . 26
2.2 Definitions . 27

2.2.1 Demand and Excess Demand 27
2.2.2 Gross Substitutability Correspondences 28
2.2.3 Homogeneity and Walras’ Law 28
2.2.4 Approximate Equilibria 29

2.3 Results . 30
2.3.1 Related Work . 30
2.3.2 Preliminaries . 31
2.3.3 Strong Separation Lemma for Correspondences 35

vii

2.3.4 The Spending Constraint Model 40

3 MARKET EQUILIBRIUM FOR CES EXCHANGE ECONOMIES: EX-
ISTENCE AND COMPUTATION . 47

3.1 Introduction . 47
3.2 Background . 51
3.3 Demand of CES Consumers . 52
3.4 Existence of an Equilibrium . 54
3.5 Efficient Computation by Convex Programming 61

4 AN EXPERIMENTAL STUDY OF DIFFERENT APPROACHES TO
COMPUTING MARKET EQUILIBRIA 72

4.1 Introduction . 72
4.2 Definitions and Market Models 80

4.2.1 Utility Functions . 80
4.2.2 Input Generators . 82
4.2.3 Computational Environment 86

4.3 The Performance of an Efficient General Purpose Solver 86
4.4 An Algorithm Derived from the Tâtonnement process 91
4.5 Welfare Adjustment Schemes . 97
4.6 Explicit Convex Programs . 104

5 AGENT HEURISTICS AND PATHS TO NASH EQUILIBIRUM . . 106

5.1 Introduction . 106
5.2 Two Player Push-Fold No Limit Holdem 107

5.2.1 Equilibrium Strategy . 111
5.2.2 Results Oriented Strategy 112
5.2.3 Odds Aware Strategy . 114

5.3 Simulations . 115
5.3.1 Measures of Distance . 115
5.3.2 Sensitivity Parameter . 117
5.3.3 Different Update Rules 118
5.3.4 Different Stack Sizes . 119

5.4 Discussion . 121

6 SKILL VS. CHANCE IN THE POKER TOURNAMENT ECONOMY
- A MONTE CARLO SIMULATION 123

6.1 Introduction . 123
6.2 Tournament Model . 125
6.3 Poker Economy Model . 127

viii

6.4 Experiments . 128
6.4.1 A No Skill Poker Tournament Economy 131
6.4.2 Varying Bankroll Strategies 133

6.5 Discussion . 135

7 OPEN PROBLEMS . 136

7.1 Introduction . 136
7.2 Completing the Complexity Classification of CES Economies . . 136
7.3 Theoretical Derivation of Experimental Findings 137

REFERENCES . 139

ix

LIST OF TABLES

1.1 Prisoner’s Dilemma Payoff Matrix . 21

1.2 Matching Pennies Payoff Matrix . 22

6.1 Buyin Table . 130

6.2 Buyin Table . 132

6.3 Buyin Table . 134

x

LIST OF FIGURES

4.1 PATH on markets with 50 traders and goods. The desirability matrix is ob-

tained by adding β times the output of a sharply concentrated generator and

(1− β) times the output of a subset generator, with β = 0.95. The endowment

matrix is from the sharply concentrated generator. Rows of the table corre-

spond to top elasticity σt, and columns to bottom elasticity σb. Six values –

0.1, 0.3, 0.5, 0.9, 1.3, and 1.7 – were chosen for these elasticities. (a) Each entry

of this table corresponds to a choice of σt and σb, and the number shown is

the average running time in seconds over five inputs. (b) Each entry shows the

number of failures out of the five runs. 88

4.2 PATH on markets with 50 traders and goods. The desirability and en-
dowment matrices are generated using the concentrated generators. . . . 89

4.3 PATH on markets with 50 traders and goods. The desirability and en-
dowment matrices are generated using the uniform generators. 90

4.4 The running time of PATH, in seconds, as a function of the input size
(m = n). (a) The concentrated generator is used for the desirability matrix
and the uniform generator for the endowment matrix; σt = σb = 1.25. (b)
The uniform generator is used for both the desirability and endowment
matrix; σt = 1.5 and σb = 0.5. There were five runs for each input size. . 91

4.5 Performance of tâtonnement on markets with 50 traders and goods. σt

varies with the rows and σb with the columns. The desirability matrix is
obtained by adding β times the output of a sharply concentrated generator,
and (1 − β) times the output of a subset generator, with β = 0.95. The
endowment matrix is from the sharply concentrated generator. (a) The
number of iterations, in thousands, averaged over 5 runs. (b) The number
of failures out of 5 runs. 93

4.6 Performance of tâtonnement on markets with 50 traders and goods. The
desirability and endowment matrices are generated using the concentrated
generators. 94

xi

4.7 The number of iterations of tâtonnement, as a function of the input size ,
with m = n. (a) The uniform generator is used for both the desirability
matrix and the endowment matrix; σt = σb = 1.1. (b) The desirability
matrix is obtained by adding β times the output of a sharply concentrated
generator and (1 − β) times the output of a subset generator, with β =
0.95. The endowment matrix is from the sharply concentrated generator;
σt = 0.1 and σb = 1.5. The number of iterations for each input size is
averaged over five runs. 96

4.8 The number of iterations of tâtonnement, as a function of log10(1/ε), with
m = n = 50. (a) The uniform generator is used for both the desirability
matrix and the endowment matrix; σt = 1.2 and σb = 0.5. (b) The
desirability matrix is obtained by adding β times the output of a sharply
concentrated generator and (1−β) times the output of a subset generator,
with β = 0.95. The endowment matrix is from the sharply concentrated
generator. ; σt = σb = 1.0. The number of iterations for each input size is
averaged over five runs. 97

4.9 Number of iterations of the iterative Fisher algorithm. The elasticity of
the CES functions of the traders varies with the rows; β varies with the
columns; each entry is the average number of iterations over 5 runs. We
have m = n = 25 and the desirability matrix is computed using the
uniform generator . 101

4.10 The iterative Fisher algorithm when the concentrated generator is used for
the desirability matrix; m = n = 25. (a) The average number of iterations
over 5 runs. (b) The number of failures out of 5 runs. 103

4.11 Running time as a function of size for (a) the convex program for Fisher
instances with σ = 0.25, and (b) for the convex program for exchange
instances with σ = 1.25. 104

5.1 Diagram of the Push Fold Game . 109

5.2 Showdown when Player A pushes and Player B calls 110

5.3 Euclidean Distance of Results Oriented Pusher from Nash Equilibrium
pushing strategy while playing a Results Oriented Caller for 2 million
hands. Both players had a stack size of 10 big blinds. 117

5.4 Expected Value of ROS Pusher against ROS Caller compared to the Ex-
pected Value of a best response to that same caller. 118

xii

5.5 Three Simulations with ROS pushers and callers. Graph shows the gap in
expected value between a best response and the actual strategy for three
different values of the sensitivity parameter. 119

5.6 Graph shows the ratio of an Odds Aware player’s expected value gap to
the Results Oriented player’s expected value gap. 120

5.7 Simulations for three ROS players with differing stack sizes. The graph
shows the gap in expected value between the actual strategy and a best
response. 121

6.1 The variance explained by skill as a function of the number of tournaments
played by 5000 players. 131

6.2 Average profit as a function of the Bankroll Management Strategy. . . . 135

xiii

1

CHAPTER 1
INTRODUCTION

The last decade has seen a great deal of growth in the field that has come to

be called algorithmic game theory. Computer scientists have made rich contributions

to this field with work on mechanism design, the efficency of equilibria, as well as the

computation of equilibria. Central to the field is the concept of equilibrium (Nash and

correlated equilibria in games, price equilibria in markets) - the predicted outcome of

independent rational agents pursuing their own self interest.

The thesis consists of five chapters besides this introduction. The main prob-

lem studied in the first three chapters is the computation of market equilibria. Market

equilibria are examined both theoretically and experimentally. The final two chapters

study the game of poker through simulations.

The study of market equilibria has been central to economic theory for over

a century. Though long serving as a cornerstone in the foundation of microeconomic

theory, it is only over the past few decades that economists have increasingly come

to rely on general equilibrium models to model real world problems [59]. General

Equilibrium analysis has been applied to areas such as domestic tax policy and in-

ternational trade policy.

Efficient algorithms for computing market equilibria could be helpful when

analyzing complex models with many variables. The problem of finding efficient

algorithms for computing market equilibria has illicited a great deal of interest from

computer scientists in recent years. In a short span of time, much progress has been

2

made.

I will begin by providing the definitions and concepts needed to discuss the

market equilibrium problem. Then, I proceed to discuss some of the important results

from the economics literature. The work from mathematical economics has been used

extensively in the computer science results of recent years. I then proceed to discuss

some of the recent developments in computer science.

This brief review will largely restrict itself to a discussion of an exchange

economy. The most important thing missing from this type of model is the production

of goods. In the exchange setting, all goods are present in the market at the beginning

and no goods are produced as outputs from or serve as inputs to a production process.

1.1 Market Equilibrium Definitions

We consider the exchange model in detail. We are given m economic agents or

traders who trade in n divisible goods. Let Rn
+ be the subset of Rn where each vector

has only nonnegative components. A vector x = (x1, x2, . . . xn) ∈ Rn
+ will represent

a bundle of goods which consists, for each i, of xi units of good i. Each trader will

have a concave utility function ui : Rn

+ → R+ that induces a preference ordering on

bundles of goods which are represented by vectors in Rn

+. Traders enter the market

with an initial endowment of goods represented by wi = (wi1, . . . , win) ∈ Rn

+. All

traders then sell all their goods at the market price and buy the most favorable bundle

of goods they can afford. If all traders do this and demand does not exceed supply,

an equilibrium is said to exist.

3

1.1.1 Equilibrium

More formally, a price is represented by a vector π = (π1, . . . , πn) ∈ Rn
+ with

πj signifying the price of the jth good. The bundle of goods purchased by the ith

trader is given by xi = (xi1, . . . , xin) ∈ Rn

+. A vector π ∈ Rn
+ and vectors x̄i, for each

trader i, are said to an equilibrium price and allocation if the following conditions

hold.

1) x̄i is a solution to the following optimization problem, for which π is con-

sidered an input:

max ui(x) (1.1)

subject to π · x ≤ π · wi

and x ∈ Rn

+

A solution, x̄i, to this problem is called the demand of the ith trader.

2) Aggregate Demand does not exceed initial endowments:

For each good j, we have
m
∑

i=1

x̄ij ≤
m
∑

i=1

wij.

1.1.2 Market Example

We consider a simple market where there are two traders that trade in apples

and oranges. Each trader has a linear utility function. Trader 1 has u1 = A + 2O

4

where A represents the number of apples and O the number of oranges. Trader 2 has

u2 = A+O. Suppose Trader 1’s initial endowment is (3,1) - she has three apples and

one orange. Trader 2’s initial endowment is (1,2).

I claim that π = (2, 3) is an equilibrium price vector - apples are 2 dollars with

oranges being 3 dollars. This can be easily verified. Trader 1 sells her bundle of goods

for 3×2+1×3 = 9 dollars. She then buys 3 oranges since that maximizes her “bang

for the buck” because she gets twice as much utility from oranges as she does from

apples and they only cost 50% more. Trader 2 sells her goods for 1× 2 + 2× 3 = 8

dollars. Since she is indifferent between apples and oranges and oranges are more

expensive, she spends all 8 dollars on 4 apples. The traders entered the market with

a combined total of 4 apples and 3 oranges and leave with a combined 4 apples and

3 oranges. Thus, (2,3) must be an equilibrium price.

1.1.3 Demand and Excess Demand

For any price vector π, not necessarily an equilibrium price, we call any xi(π)

that satisfies the conditions in optimization problem 1.1 a demand of trader i at price

π. Market or Aggregate Demand of good j at price π is defined to be Xj(π) =
∑m

i=1 xij .

We call Zj(π) = Xj(π) −∑m
i=1 wij the market excess demand of good j at price π.

The vectors X(π) = (X1(π), . . . , Xn(π)) and Z(π) = (Z1(π), . . . , Zn(π)) are simply

called market demand and market excess demand.

It should be noted that a trader’s demand need not be unique. That is, the

demand need not be a function, but could be a multi-valued correspondence. Think

5

of the two trader linear example introduced above. If the price vector was (1,1), then

trader 2 would be indifferent between any combination of apples and oranges that

added up to her income.

These definitions are quite important as many properties and important re-

sults can be stated using excess demand. This allows one to state rather general

results without explicit reference to a specific underlying utility function or prefer-

ence ordering.

1.1.4 Walras’ Law and Homogeneity

We say that a market satisifies Walras’ Law if for every price π, π ·Z(π) = 0. If

traders satisfy their budget constraints tightly, then Walras’ Law follows easily. This

will happen whenever preferences satisfy local nonsatiation (e.g. 3 apples are better

than 2 apples), so in most reasonable markets, Walras’ Law will hold.

Another property that is even more general is that the demand function is

homogeneous of degree zero in price, that is, for all prices and all k > 0, xi(π) =

xi(kπ). It seems reasonable that in an exchange market, it’s the relative price of

goods that’s important. An obvious corollary is that any constant multiple of an

equilibrium price is an equilibrium price.

Any result established for markets where these principles hold is considered

extremely general.

6

1.1.5 Gross Substitutability

The property of gross substitutability (GS) is quite important to equilibrium

theory and the computation of market equilibria. There are many reasonable markets

that satisfies this property, but also many that do not. An excess demand function

is said to satisfy gross subsitutability if for any two prices, π1 and π2 such that

0 < π1
j ≤ π2

j , for all j, and π1
l < π2

l for some l, then for any good k where π1
k = π2

k,

Zk(π1) < Zk(π2). If we can only guarantee that Zk(π1) ≤ Zk(π2) then we say that

weak gross substitutability (WGS) is satisfied. This simply means that if you raise the

price on one good, then the demand of the other goods will go down (or at least, not

go up under WGS.)

It should be pointed out out that it can be easily shown that if each traders

excess demand function satisfies weak gross substitutability, then the market excess

demand satisfies weak gross substitutability.

1.1.6 Important Utility Functions

One widely used class of utility functions are the constant elasticity of substi-

tution or CES utility functions. CES functions have the following form:

u(xi) = (

n
∑

j=1

(aijxij)
ρ)1/ρ.

We restrict the coefficients so that aij ≥ 0 and ρ < 1 and ρ ne0. Thus, if we restrict

ourselves to nonnegative allocations, we have the convenient property that for all x,

u(x) ≥ u(0) = 0. Also, the elasticity of substitution for goods in the market or σ can

7

be defined in terms of theρ exponents. More precisely, σ = 1
1−ρ

. The family of CES

functions include some significant special functions as limiting cases. As σ →∞, the

utility functions become linear, that is ui(x) =
∑n

j=1 aijxij . If σ → 1, then the utility

functions become Cobb-Douglas, identical to ui(x) =
∏n

j=1 x
aij

ij . With Cobb-Douglas

utilities, at any price whatsoever, a trader will always spend the same proportion of

their income on a good. As σ → 0, the CES utility function becomes the Leontief

utility function which has the form ui(x) = minj aijxij . These special cases of CES

are important enough that even results for exchange markets restricted to traders

with one of these utility functions have drawn considerable interest.

The CES functions are widely used in economists in part because of their

power in modelling many different types of markets as illustrated by the discussion

of their special cases. Another reason is that one can easily do an explicit calculation

of demand and therefore of excess demand. This can be quite important in practice.

An even more flexible utility function is the nested CES. A nested CES is a CES at

the top level, but the xij portion may be replaced by another nested CES function.

The nested CES are extremely powerful and it is also possible to efficiently compute

demands for traders with nested CES utilities.

1.1.7 The Fisher Market

One special case of the exchange model is equivalent to Fisher model. In this

case, we have proportional endowments, that is

wij
∑m

p=1 wpj

=
wik

∑m
p=1 wpk

8

for all traders i and all goods j, k. This means that traders’ relative incomes are

entirely independent of price. In the standard treatment of the Fisher model, traders

are simply consumers endowed with a money income. This money is used to purchase

a bundle of n goods just like in the exchange case, but a single seller has all the goods.

An equilibrium occurs when each consumer buys the most preferred basket they can

afford and the consumers don’t demand more in the aggregate than the seller can

provide.

1.1.8 Approximate Equilibria

Since equilibrium prices may be irrational, algorithms cannot compute exact

equilibria. We therefore need precise definitions of approximate equilibria which can

be computed. Roughly speaking, weak approximate equilibria occur when traders get

bundles near their optimal utility whenever the traders come close to staying within

their budget constraints.

More precisely, we say that a bundle xi ∈ Rn

+ is a µ-approximate demand of

trader i at price π if for µ ≥ 1 (this restriction on µ holds in all definitions that

follow), if ui(xi) ≥ 1
µ
u∗

i and π · xi ≤ µπ · wi where u∗
i is the trader’s optimal utility

subject to the budget constraint.

Prices π and allocations xi form a strong µ-approximate equlibrium if xi is the

demand of trader i at prices π and
∑m

i=1 xij ≤ µ
∑m

i=1 wij for each good j.

Prices π and allocations xi form a weak µ-approximate equlibrium if xi is a

µ-approximate demand of trader i at prices π and
∑m

i=1 xij ≤ µ
∑m

i=1 wij for each

9

good j.

We call an algorithm a polynomial time algorithm if it computes a (1 + ǫ)-

approximate equilibrium for any ǫ > 0 in time that is polynomial in the input pa-

rameters and log(1
ǫ
).

An algorithm is called a polynomial time approximation scheme if it is only

polynomial time in 1
ǫ

(rather than log(1
ǫ
).)

1.2 Some Relevant History of Market Equilibria in Mathematical

Economics

As mentioned earlier, computer scientists have only contributed to the field

of market equilibrium computation in recent years. In this section, I discuss some of

the important results to be found in the economics literature.

1.2.1 The Existence of Equilibrium

Leon Walras, largely ignored in his time, is now widely considered the father

of general equilibrium theory and even the “greatest of all economists” by Schum-

peter [55]. Walras formulated a market model in 1874 with his “Elements of Pure

Economics” [98]. Walras even attempted a proof of existence and provided the first

algorithm to compute this market equilibrium with his tatonnement price adjustment

mechanism .

It would take a full eighty years before the existence of equilibrium in a rel-

atively unrestricted neo-Walrasian setting with concave utility functions would be

10

shown by Arrow and Debreu [6]. Arrow and Debreu built on the work of Wald

who had shown existence in a more restricted setting [97]. (Incidentally, Wald also

presented the first versions of gross substitutability and the weak axiom of revealed

preferences. [55])

Existence of equilibira theorems have generally relied on fixed point theorems

such as Brouwer’s and Kakutani’s. Arrow and Debreu utilized Nash’s famous equi-

librium result in game theory which in turn relied on a fixed point theorem from

mathematics.

For the exchange market we’ve been considering, the proof of existence is now

quite simplified and takes roughly a page in microeconomics textbooks [95]. Since we

know that we have homogeneity of degree zero, we simply normalize prices so that

they add up to one, that is
∑n

j=1 πj = 1. Denote the n − 1 dimensional simplex by

Sn−1 and we know that now π ∈ Sn−1. If Z : Sn−1 → Rn is simply a continuous

function and satisfies Walras’ Law then an equilibrium can be shown to exist by an

application one of the most basic fixed point theorems, Brouwer’s theorem.

If the excess demand satisfies gross substitutability then the normalized price

equlibrium is unique [95]. This need not be the case in general, markets could contain

many disconnected sets of price equilibria.

1.2.2 Tatonnement

As alluded to above, the first attempt at an algorithm to compute a Walrasian

equilibrium was proposed by Walras. It was a simple price update procedure inspired

11

by the Paris Bourse and Walras’ economic intuition which he called tatonnement.

There is an auctioneer who announces a price vector to the traders. The traders then

compute their individual excess demands and report them to the auctioneer. The

auctioneer then computes the aggregate excess demand by totalling the individual

excess demands. The auctioneer then adjusts the price vector in the direction of

the excess demand. That is, those goods for which demand is greater than what is

present in the market have their prices increased, those goods with negative excess

demand have their prices decreased. The new prices are then reported to the traders

and the process repeats until Zj(π) ≤ 0, that is, until we are at an equilibrium.

This accords nicely with intuitions about how the law of supply and demand would

operate. Formalized, the update step would look like this:

πk+1 = πk + f(Z(πk))

where f is a sign preserving function.

Paul Samuelson formalized a continuous version of the tatonnement process

that was important in later analysis [84]. Here the tatonnement process is governed

by a system of differential equations:

dπk

dt
= Gk(Z(π)), k = 1, . . . , n

where Gk is a continuous sign preserving function.

After the celebrated existence result was shown in 1954 by Arrow and Debreu,

more work went into analyzing the stability of tatonnement [4]. Walras had hoped

that his price adjustment mechanism would always converge to equilibria. Arrow,

12

Block, and Hurwicz answered in the affirmative for the restricted case of markets

that satisfy weak gross substitutability [4]. Unfortunately for the Walras conjecture,

convergence could not be guaranteed in markets without weak gross substitutability.

It was soon shown by Scarf with a simple example that tatonnement does not always

converge [88]. Scarf had produced a mere three trader market where tatonnement

continually oscillates if it does not start at equilibrium. Later, it would be shown

by Sonnenschein, Mantel, and Debreu that Scarf’s example was not remotely unique

(for a recent treatment, see [18]).

1.2.3 Some other Computational Approaches for General Markets

Scarf’s counterexample encouraged ongoing efforts towards finding alternative

methods to compute equilibria. Scarf himself used the fixed point based existence

theorems to produce techniques to approximate fixed points or in our case, equilibrium

prices [87]. In these approaches, one follows a path through the decomposed price

simplex and eventually reach equilibrium. Others such as Kuhn [62] and Eaves [40]

expanded on the work of Scarf. The worst case running time is actually exponential

in the number of goods though. There is reason to suspect that this line of research

cannot result in a polynomial time algorithm [75].

Smale developed an alternative technique based on Newton’s method with

guaranteed convergence [90, 91]. This approach also has no polynomial worst case

guarantees, but generally performs well in practice.

13

1.2.4 Approaches for more Specialized Markets

Curtis Eaves did work in a few of the markets mentioned earlier. Eaves was

able to find a polynomial time algorithm for the Cobb-Douglas market. He was actu-

ally able to transform the computation of the market equilibrium into the relatively

easy case of solving a linear system of equations for a nonnegative solution [38]. This

will of course give a very nice polynomial bound on running time. Eaves also did work

on the exchange market where traders have linear utility functions. Eaves formulated

the market equilibrium problem as a linear complemenatarity problem [37]. Lemke’s

algorithm will then compute the solution to the linear complementarity problem,

which then gives equilibrium prices and allocations. Lemke’s algorithm does not have

polynomial time worst case guarantees though.

When Arrow, Block and Hurwicz established their important results on the

stability of tatonnement [4], they also proved a lemma that would turn out to be

useful for future work. It is as follows:

Lemma 1.2.1 Separation Lemma If a market satisfies positive homogeneity,

gross substitutability and Walras’ law and possesses an equilibrium price vector π∗

satisfying π∗
j > 0 for each good j, then for all non-equilibrium price vectors satisfying

πj > 0, we have π∗ · Z(π) > 0.

This lemma can be generalized to hold when only weak gross substitutability

is present. This implies that the set of equilibrium prices is convex. This also provides

14

a separating hyperplane that separates any non equilibrium price vector π ∈ Rn

+ from

the convex set of equilibrium prices. We even have π∗ · Z(π) > 0 from the theorem

and π ·Z(π) = 0 from Walras’ law. We only need to be able to compute the individual

excess demands Zj(π) in order to produce the separating hyperplane.

Polterovich, Spivak, Primak, Newman, and Nenakov expanded on the Sepa-

ration Lemma (see [73, 74, 78, 79]). Nenakov and Primak rewrote the conditions for

market equilibrium when traders have linear utilities as a convex feasibility problem

with a finite number of constraints [73]. They also wrote a convex program for a

linear utility model that included some production, but that program had an infinite

number of inequalities. Nenakov and Primak also used the same approach for traders

with Cobb-Douglas utility functions.

Gale used his joint work with Eisenberg [42] to show that the equilibrium for a

linear utility Fisher market can be derived from the solution to a convex program [47].

This approach was then expanded by Eisenberg to cover homogeneous utility functions

(u(αx) = αu(x)) [41]. If we let ei signify the income of trader i and qj represent the

amount of good j present in the market, then this is the Eisenberg program:

Maximize

m
∑

i=1

log ui(xi)

subject to
m
∑

i=1

xij ≤ qj ∀j, 1 ≤ j ≤ n

xij ≥ 0 ∀i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n

The solutions xi are equilibrium allocations from which one can obtain the

15

equilibrium price vector.

1.3 Recent Computer Science approaches

In 2001, Christos Papadimitriou gave a lecture that initiated the recent com-

puter science research on computing market equilibria [76]. In the first few years,

this research proceeded unaware of some important results from the mathematical

economics literature. In some cases, this resulted in reproduction of earlier results.

More recently, work has utilized more concepts from economics and expanded upon

earlier results. Computer scientists have not only turned economists’ work on the

structure of equilibria into polynomial time algorithms, but have also expanded our

knowledge of the structure of equilibria.

Devanur, Papadimitriou, Saberi, and Vazirani produced a novel polynomial

time algorithm for the special case of the Fisher Market where every buyer has a

linear utility function [69]. They modelled their algorithm after Kuhn’s primal-dual

algorithm for bipartite matching.

Codenotti and Varadarajan [29] formulated a solution for Leontief utility

Fisher Markets in terms of convex programming. This was done before computer

scientists were made aware of Eisenberg’s convex program discussed earlier [41]. In

the linear case, solutions will always be rational if the parameters of the problem are.

Codenotti and Varadarajan demonstrated that this is not the case for Leontief utility

functions or homogeneous utility functions generally. If prices can be irrational, then

an approximation algorithm is the best one can do.

16

Ye would go on to develop finely tuned interior point algorithms to solve

convex programs for both Fisher and Arrow-Debreu linear utility models in the most

efficient ways known [100]. Before Ye’s paper, the best known time complexity for

these problems were O(n8log(1/ǫ)) using two different methods. Ye uses a modified

primal-dual path following algorithm similar to those used in linear programming to

achieve a new time complexity bound of O(n4log(1/ǫ)).

With computer scientists now having absorbed more of the established theory

from economics, much progress has been accomplished in expanding the regions where

we have polynomial time algorithms.

Codenotti, Pemmaraju, and Varadarajan [23] were able to expand upon the

Separation Lemma of Arrow, Block, Hurwicz [4] to compute a polynomial time al-

gorithm for markets where the aggregate excess demand satisfies weak gross subsi-

tutability and you have the ability to efficiently compute an approximate demand.

This result is nice because it includes many of the important special cases such as the

linear, Cobb-Douglas, and CES functions with σ ≥ 1. The framework can be used to

generate polynomial time results without assuming anything about the precise form

of the utility functions other than that the excess demand function will satisfy weak

gross substitutability (and a few other weak assumptions). The approach utilized in

their paper is extended in Chapter 2.

It has recently been shown that in general, the problem of computing an

equilibrium is quite thorny. Codenotti, Saberi, Varadarajan and Ye [27] show that it

is NP-hard to decide whether a Leontief exchange economy even has an equilibrium.

17

Chen and Deng [16] made a major breakthrough in algorithmic game theory

when they demonstrated that finding a Nash equilibrium in a two player game is

PPAD complete (for a precise definition of PPAD, see [31, 75].) When this result

is combined with the result from [27] that reduces two-player games to a special

type of Leontief Exchange economy, we see that it is PPAD-complete to compute an

equilibrium for markets even when they are known to exist. Huang and Teng [57]

show that the polynomial time computation of an approximate equilibrium is not

possible unless PPAD ⊂ P .

Once it was shown that the continuous version of tatonnement converged for

markets satisfying weak gross substitutability, a natural question for the computer

scientist would be whether the discrete tatonnement could serve as an efficient polyno-

mial time algorithm in those markets. Codenotti, Pemmaraju, and Varadarajan [23]

had already presented a polynomial time algorithm for practically the entire range of

markets with demand functions satisfying WGS, but the simplicity of Walras’ 19th

century algorithm remained alluring and Codenotti, McCune, and Varadarajan’s pa-

per [20] was able to achieve a positive result on a discrete version of tatonnement.

It turns out that a simple discrete version of tatonnement does converge to an

approximate equilibrium in polynomial time for markets satisfying WGS. Recalling

that the aggregate excess demand may be irrational, the discrete version of taton-

nement is of the form:

πk+1
j = πk

j + βY k
j ,

where πk
j denotes the price of good j at the k-th iteration, and Y k

j is an approximation

18

of market demand for good j at price vector πk. β is a carefully chosen positive,

rational parameter. The technique of market transformation used in the paper is also

utilized in chapter 2 so we save a discussion of it until then.

There have been some very recent expansion of polynomial time computability

results into settings that do not satisfy gross substituability. Devanur and Kannan [34]

show that an equilibrium for a market where traders have piece-wise linear concave

(PLC) utility functions and there are a constant number of goods can be computed in

polynomial time. However, Chen et al. [15] show that the problem of computing an

equilibrium for markets where traders have additively separable PLC utility function

is PPAD-complete.

1.4 Thesis Contributions to the Computation of Market Equilibria

Chapter 2 extends polynomial time computability of market equilibria to mar-

kets satisfying gross substitutability where the demand is a correspondence. This

result was previously established for markets where the demand is a function of the

price [23]. The technical lynchpin for the algorithm is a strong separation lemma that

allows the use of the ellipsoid method. This lemma stregthens the lemma from [77]

in a way that is analagous to how [23] strengthens Lemma 1.2.1.

Devanur and Vazirani [35] haved introduced a spending constraint market

model that is described in the chapter. The chapter also provides an exact polynomial

time algorithm for the spending constraint market model. The chapter gives the

widest, general framework for computing for markets satisfying gross subsitutability.

19

This work was published in [67].

Chapter 3 provides a polynomial time algorithm that decides existence of

market equilibia in a CES economy. The constant elasticity of subsitution (CES)

utility functions are quite flexible and widely used in economics. This existence

problem is solved by checking the bi-connectivity of a digraph associated with the

input of the market.

The chapter also presents Codenotti and Varadarajan’s convex program for

a CES economy that does not satisfy gross subsitutability. The chapter also shows

that the ellipsoid method can be used to compute equilibria in polynomial time for a

CES market that does not satisfy gross subsitutability. The overwhelming majority of

efficient market equilibrium computation algorithms have been for markets satisfying

gross subsitutability. Most of the results of this chapter were based on joint work

with Bruno Codenotti, Sriram Penumachta, and Kasturi Varadarajan and appeared

in [19].

Chapter 4 consists of an experimental study of recently developed algorithms

to compute market equilibria and compares their performance against the commonly

used packages from applied microeconomics. The experiments find that many mar-

kets for which there are no polynomial time guarantees, the recent algorithms from

computer science still fare well. This chapter is based on joint work with Bruno

Codenotti, Sriram Pemmaraju, Rajiv Raman, and Kasturi Varadarajan. This work

appeared in [25, 26], with the final journal version in [24].

20

1.5 Game Theory and the Nash Equilibrium

Actors in game theoretic models are similar to actors in the exchange mar-

ket setting. They have outcome preferences that we choose to model with utility

functions. They are rational decision makers that then makes choices to maximize

their utility. In the market setting, individual actors have no need to consider the

preferences or endowments of other traders. Any influence those factors may hold are

entirely mediated by the prices of the goods and the actor simply maximizes utility

subject to their budget constraint. In noncooperative game theory, the actor must

consider the interests and anticipate the actions of their opponents.

The Nash equilibrium has long been considered the primary solution concept

in game theory. Formally, the Nash equilibrium is only a state of the game where

no player has incentive to unilaterally deviate from her current strategy, but the

Nash equilibrium has, at least implicitly, been considered a prediction of behavior as

well. This aspect of the Nash equilibrium has recently been called into question by

computer science.

Let us illustrate the concept of Nash equilibrium with the well known Pris-

oner’s Dilemma. A pair of criminals are accused of jointly participating in a crime.

They are interrogated separately and are offered incentives to cooperate by confess-

ing and implicating their fellow prisoner. If both prisoners maintain silence, they will

both receive a light sentence of 1 year on lesser charges. If they implicate each other,

they both receive a moderate sentence of five years. If Prisoner A implicates Prisoner

B, but Prisoner B remains silent then Prisoner A will go free while Prisoner B receives

21

a harsh sentence of ten years. There is one Nash equilibrium and that is where both

prisoners defect and implicate each other since regardlesss of what the other prisoner

does, you are better off defecting, it is a dominant strategy. This is illustrated by

Table 1.1. We assume each prisoner has a utility function of u(x) = 10 − x with

x being the number of years in prison. The ordered couplets in the table have the

Prisoner A’s utility followed by prisoner B’s.

Prisoner B Remains Silent Prisoner B Defects

Prisoner A Remains Silent 9, 9 0, 10

Prisoner A Defects 10, 0 5, 5

Table 1.1: Prisoner’s Dilemma Payoff Matrix

A mixed strategy is where a player may randomize their behavior and play a

probability distribution over the action space. In the Prisoner’s Dilemma example,

there is a pure Nash equilibrium, but these don’t exist for every game. Take for

example, the Matching Pennies game. In the matching pennies game, each players

chooses heads or tails. If both Players make the same choice then player A gets 1

point. If players make opposite choices, then player B receives one.

Not every game has a pure Nash equilibrium, but every game (subject to some

very mild assumptions regarding actions and preferences) does have a mixed Nash

equilibrium [70,71]. In the Matching Pennies example, when each player plays Heads

22

Head Tail

Head 1, 0 0, 1

Tail 0, 1 1, 0

Table 1.2: Matching Pennies Payoff Matrix

or Tails with .5 probability, then we are at a Nash equilibrium. This is easy to see

- let A equal the probability that player A plays heads, so A’s mixed strategy is

represented by (A, 1− A). Let B be the probability that player B plays heads. The

expected utility of player A is given by E(uA) = AB + (1−A)(1−B). The expected

utility function of player B is given by E(uB) = A(1−B)+B(1−A). Suppose player

B is playing (.5, .5) - that is, she is playing Heads and Tails with probability .5. Then

we wish to determine what a best response by A would be. The expected value for

player A is E(uA) = .5A+ .5(1−A) = .5. Thus, regardless of what player A does, she

will have the same expected utility so (.5, .5) is a best response for A. Similarly, if A

is playing (.5, 5), then B’s expected utility is given by E(uB) = .5(1−B)+B(.5) = .5.

Thus, any response by B is a best response so she will experience no regret playing

(.5, .5). Since neither player would wish to deviate from playing the mixed strategy

(.5, .5), it is a Nash equilibirum.

There has recently been a great deal work investigating the complexity of

computing Nash equilibria. Christos Papadimitriou [68] articulates the view that a

solution concept must not only be intuitively compelling, but also tractable compu-

tationally. Even though the concept of Nash equilibrium is not inherently a com-

23

putational one, if rational utility maximizing agents are expected to arrive at the

equilibrium, one might expect a computer could compute the equilibrium efficiently.

In the words of Papadimitriou, “Efficient computability is an important modeling

prerequisite for solution concepts.”

One could go even further than Papadimitriou since a solution could poten-

tially be computed efficiently, but only with information unavailable to agents within

the game. If a solution cannot be computed based on the information available to

agents, it might be thought unlikely to be a valid prediction of behavior. In general,

one problem with the concept of Nash equilibrium is that it is not clear how agents

will arrive at it.

In 2001, Papadimitriou placed the computation of Nash Equilibrium as one

of the central problems in theoretical computer science. It has been shown by Chen

and Deng [16] that even in the two player case, the problem of computing a Nash

equilibrium is PPAD-complete. Some problems [61] in PPAD(“Polynomial Parity

Arguments on Directed Graphs”) [75], such as computing Brouwer fixed points and

finding an n-player Nash equilibrium are widely thought to be intractable. Therefore,

it is strongly suspected that PPAD 6= P . For a precise definition of PPAD, see [31,75].

The Nash equilibrium concept has been central to the burgeoning field of

algorithmic game theory. In addition to the work on computation of equilibria, there

has been a good deal of work in algorithmic mechanism design, particularly with

respect to auctions. Another critical concept that has been examined in great detail,

particularly in the area of selfish routing, is the price of anarchy - the ratio between the

24

social utility of the optimal outcome and the worst Nash equilibrium. As can be seen

from our Prisoner’s dilemma example, the predicted outcome, the Nash equilibrium,

can be worse for all players than another game outcome. For a review of the field,

see [68].

1.6 Additional Thesis Contributions

Chapter 5 addresses the question of how independent agents might arrive

at a Nash equilibrium, especially in a game when determining the equilibrium is

nontrivial. If we are in a situation with “bounded rationality” where agents have no

hope of initially computing and then employing the equilibrium strategy, can they

adjust their strategy based on the experience of repeated play and eventually arrive at

the equilibrium strategy? This question is even more relevant in a game of imperfect

information where players do not have full information about the game even after it

has been played.

Chapter 5 examines the behavior of individual agents using heuristic decision

procedures and its relation to convergence to Nash equilibirum. This is done by

examining certain situations in Texas Holdem poker. I conduct repeated simulations

of short stacked two player no limit games with players using a variety of adaptive

strategies. It is shown experimentally that player using relatively simple heuristics

can converge to an approximate Nash equilibrium. This provides some support for

the Nash equilibrium as a solution concept even though equilibria might be difficult

to efficently compute in general.

25

Chapter 6 is less directly connected to the previously discussed literature.

Chapter 6 uses Monte Carlo simulations to determine the relative contributions of skill

and chance in tournament poker. There have been many arguments demonstrating

the presence of skill in poker, but no studies attempting to quantify the relative

contributions of skill and luck. Tournament poker is considered by most to have a

greater element of luck than typical cash game poker.

The chapter conducts simulations of individual tournaments using a simple,

yet realistic model of player skill. As players bankrolls grow and shrink when they

win or lose, they choose tournaments with entry fees or buyins appropriately. The

simulation of tournaments leads to a simulation of the emergent poker economy. It is

then shown that a great deal of player profitability in the poker tournament economy

can be explained by skill when a sufficient amount of time has passed and many

tournaments have been played.

Players may different in their risk tolerance and bankroll management. This

will affect the buyin at which they are willing to play a tournament at with a given

bankroll. It is shown that even skilled players can sacrifice profitability if they take on

too much risk through aggressive bankroll management - playing tournaments with

buyins that are high relative to their bankrolls.

26

CHAPTER 2
EXTENDING POLYNOMIAL TIME COMPUTABILITY TO

MARKETS WITH DEMAND CORRESPONDENCES

2.1 Introduction

This chapter1 presents a polynomial time algorithm that computes an approxi-

mate equilibrium for any exchange economy with a demand correspondence satisfying

gross substitutability. Such a result was previously known only for the case where

the demand is a function, that is, at any price, there is only one demand vector. The

case of multi valued demands that is dealt with here arises in many settings, notably

when the traders have linear utilities.

We also show that exchange markets in the spending constraint model have

demand correspodences satisfying gross substitutability and that they always have

an equilibrium price vector with rational numbers. As a consequence the framework

considered here leads to the first exact polynomial time algorithm for this model.

In order to outline the contributions of the chapter to the computation of mar-

ket equilibria, I will begin by providing the necessary definitions and concepts needed

to discuss the market equilibrium problem in the context of demand correspondeces.

For the basic market equilibrium definitions, see the thesis introduction.

1This work appeared in [67]

27

2.2 Definitions

We consider the exchange model in detail. We are given m economic agents

or traders who trade in n goods. Let Rn
+ be the subset of Rn where each vector has

only nonnegative components. Each trader will have a concave, typically continuous,

utility function ui : Rn

+ → R+ that induces a preference ordering on bundles of

goods which are represented by vectors in Rn

+. Traders enter the market with an

initial endowment of goods represented by wi = (wi1, . . . , win) ∈ Rn

+. All traders

then sell all their goods at the market price and buy the most favorable bundle of

goods they can afford. If all traders do this and demand does not exceed supply, we

are at an equilibrium.

2.2.1 Demand and Excess Demand

For any price vector π, not necessarily an equilibrium price, we call an xi(π)

that satisfies (1.1) a demand of trader i at price π. Market or Aggregate Demand of

good j at price π is defined to be Xj(π) =
∑m

i=1 xij . We call Zj(π) = Xj(π)−∑m
i=1 wij

the market excess demand of good j at price π. The collections X (π) = {X(π)|X(π) =

(X1(π), . . . , Xn(π))} and Z(π) = {Z(π) = Z(π) = (Z1(π), . . . , Zn(π))} are simply

called market demand and market excess demand. Note that X and Z are both

mappings from Rn

+ to 2Rn

.

We can now simply express what it means for a price π to be an equilibrium

for a market with excess demand Z. π is an equilibrium if there exist z ∈ Z(π) such

that z ≤ 0.

28

2.2.2 Gross Substitutability Correspondences

The property of gross substitutability has an important effect on the struc-

ture of price equilibria and the possibility of computing market equilibria. Roughly

speaking, a market possesses the gross substitutability property if when the prices on

one set of goods are raised, demand does not decrease for the other goods. A formal

definition is provided below.

Following Polterovich and Spivak [77], we define gross substitutability (GS)

correspondences. Let π1 and π2 be price vectors for a market with n goods. We

denote I(π1, π2) = {i|π1
i = π2

i }.

We say that gross substitutability prevails for Z, or Z is a GS correspondence,

if for all π1, π2 such that π1 ≤ π2 and I(π1, π2) 6= ∅, and for any z ∈ Z(π1), y ∈ Z(π2),

the following relation holds

mini∈I(π1,π2)(zi − yi) ≤ 0.

That is, at least one good that has its price unchanged does not have its

demand decreased. This is an extremely mild definition for gross subsitutability.

Other definitions that one might come across (typically in cases where the demand is

assumed to be a function) are stronger and imply this one.

2.2.3 Homogeneity and Walras’ Law

A market is said to satisfy positive homogeneity if for any π and any λ > 0,

Z(π) = Z(λπ). Walras’ law states that for any price π and any z ∈ Z(π), π · z = 0.

29

These will typically hold under very mild assumptions such as when the the utility

function u(x) has the property that for any x ∈ Rn

+, there exists a y ∈ Rn

+ such that

u(y) > u(x).

2.2.4 Approximate Equilibria

When equilibrium prices are irrational, algorithms cannot compute exact equi-

libria. We therefore need precise definitions of approximate equilibria which can be

computed. Roughly speaking, weak approximate equilibria occur when traders get

bundles near their optimal utility whenever the traders come close to staying within

their budget constraints.

More precisely, we say that a bundle xi ∈ Rn

+ is a µ-approximate demand of

trader i at price π if for µ ≥ 1 (this restriction on µ holds in all definitions that

follow), if ui(xi) ≥ 1
µ
u∗

i and π · xi ≤ µπ · wi where u∗
i is the trader’s optimal utility

subject to the budget constraint.

Prices π and allocations x form a weak µ-approximate equlibrium if xi is a

µ-approximate demand of trader i at prices π and
∑m

i=1 xij ≤ µ
∑m

i=1 wij for each

good j. A price π is considered a weak µ-approximate equlibrium price if if there

exists x such that π and x form a weak µ-approximate equlibrium.

We call an algorithm a polynomial time algorithm if it computes a (1 + ǫ)-

approximate equilibrium for any ǫ > 0 in time that is polynomial in the input pa-

rameters and log(1
ǫ
).

30

2.3 Results

In this paper, it is shown via a strong separation lemma that when an excess

demand correspondence satisfies gross substitutability, a weak approximate equilib-

rium can be computed in polynomial time using the ellipsoid method. This had been

previously established only when the demand was single-valued [23]. The exchange

market where traders have linear utilities is the most prominent market where the

demand need not be single-valued. Previously, this linear utilities market had to be

treated as a special case [58], but in the framework provided by this paper it is solved

naturally as merely one case of a market with a demand correspondence satisfying

gross substitutability.

The Spending Constraint Model of Vazirani and Devanur [35] is introduced

and it is shown that the demand in this model is a GS correspondence. This gives

a prominent example of a market that did not naturally fit into any other general

framework. It is also shown that price equilibria for the spending constraint model

are rational and can be computed exactly in polynomial time.

2.3.1 Related Work

Codenotti, Pemmaraju, and Varadarajan [23] were able to expand upon the

Separation Lemma of Arrow, Block, Hurwicz [4] to compute a polynomial time algo-

rithm for markets where the aggregate excess demand function satisfies weak gross

subsitutability and you have the ability to efficiently compute an approximate de-

mand. This result thus includes many of the important special cases such as the

31

Cobb-Douglas, and CES functions with elasticity σ ≥ 1. The framework can be used

to generate polynomial time algorithms without assuming anything about the precise

form of the utility functions other than that the excess demand function will satisfy

weak gross substitutability (and a few other weak assumptions). Codenotti, McCune,

and Varadarajan [20] show that a simple Walrasian price adjustment technique can

compute approximate equilibrium prices if the demand function satisfies Weak Gross

Substitutability. Codenotti et al. developed a convex program for an exchange mar-

ket for a range of CES utility functions including some that do not satisfy gross

subsitutability [19].

2.3.2 Preliminaries

Some more extensive definitions and basic lemmas are needed in order to

proceed to the main results of the paper.

2.3.2.1 Correspondences

Following Polterovich and Spivak [77], there are some mild, elementary as-

sumptions regarding the excess demand correspondences in this paper. They are as

follows.

• The correspondence is defined on Rn
++ (each component is positive), convex-

valued, closed and such that every compact set lying in Rn
++has a non-empty

bounded image in Rn.

• The correspondence is positive homogeneous.

32

• The correspondence satisfies Walras’ law. That is, for all z ∈ Z(π) and all π,

π · z = 0.

It should be noted that these assumptions are quite natural and extremely

mild.

Some more notation is necessary. For vectors π1 and π2, let max(π1, π2) be a

vector where each component is the maximum of the corresponding component of π1

and π2. Similarly, we define min(π1, π2).

We also denote

H1(π
1, π2) = {i|π1

i < π2
i }, H2(π

1, π2) = {i|π1
i ≥ π2

i }

For any a ∈ Rn and H ⊂ N = {1, 2, . . . , n}, we define a[H] as a vector with

compononents

ai[H] = ai, i ∈ H,

ai[H] = 0, i /∈ H.

2.3.2.2 Combining Lemma

Polterovich and Spivak [77] prove a useful “combining” lemma that we restate

here.

Lemma 2.3.1 Let a GS correspondence Z, x ∈ Z(π1), y ∈ Z(π2) be given. π̄ =

min(π1, π2), and ¯̄π = max(π1, π2). Then, there exist vectors ā ∈ D(π̄) and ¯̄a ∈ D(¯̄π)

33

such that

ā ≤ x[H1] + y[H2] and ¯̄a ≥ x[H2] + y[H1] where

H1 = H1(π
1, π2) and H2 = H2(π

1, π2).

2.3.2.3 Polterovich-Spivak Separation Lemma

Polterovich and Spivak [77] prove a separation lemma for correspondences

(that satisfy the assumptions listed above) that generalizes the important lemma

from Arrow, Block and Hurwicz [4]. The lemma is as follows

Lemma 2.3.2 Let Z be a GS correspondence. If π̂ is an equilibrium, π a price, and

z ∈ Z(π), then π̂ · z ≥ 0. If, moreover, π is not an equilibrium price, then π̂ · z > 0.

2.3.2.4 Demand Oracle

We say that an exchange market M is equipped with a demand oracle if there

is an algorithm that takes a rational price vector π and returns a vector Y ∈ Qn such

that there is a Z(π) ∈ Z(π), with |Yj−Zj(π)| ≤ σ for all j. The algorithm is required

to run in polynomial time in the input size and log(1/σ).

2.3.2.5 A Market Transformation

Let M be an exchange market with m traders and n goods. We then transform

market M into market M̂ by adding a phantom trader that will give us an equilibrium

price vector with a reasonably bounded price ratio. Let 0 < η ≤ 1 be a parameter.

34

For each trader i, the new utility functions and initial endowments are the same as in

M ′ except that there is one additional trader m + 1. We set ŵm+1 = (ηW1, . . . , ηWn)

for the initial endowment while the trader’s utility function is the Cobb-Douglas

function ûm+1(x) =
∏n

j=1 x
1/n
j . This trader will spend 1/n-th of her budget on each

good. Notice that the total amount of each good j in the market M̂ is now Ŵj =

∑m+1
i=1 ŵij = Wj(1 + η).

The following lemma contains various useful results:

Lemma 2.3.3 • The market M̂ has an equilibrium.

• Every equilibrium π of M̂ satisfies the condition
maxjπj

minjπj
≤ 2L, where L is bounded

by a polynomial in the input size of M and log(1
ǫ
).

• For any µ ≥ 1, a weak µ-approx equilibrium for M̂ is a a weak µ(1 + η)-approx

equilibrium for M .

• M̂ has a demand oracle if M does.

• Let π and π′ be two sets of prices in Rn
+ such that |πj − π′

j | ≤ ǫ ·min{πj , π
′
j}

for each j, where ǫ > 0. Let xi be a (1 + δ)-approximate demand for trader i at

prices π. Then xi is a (1+ ǫ)2(1+ δ)-approximate demand for trader i at prices

π′.

The ratios of largest price to smallest price must be bounded and we define

some regions where this is the case. We define the region ∆ = {π ∈ Rn
+|2−L ≤ πj ≤

1}. Here, L is given by the second item in lemma 2.3.3 and bounded by a polynomial

35

in the input size of M and log(1/ǫ). We note that a normalized equilibrium price for

M̂ lies in ∆. Also, ∆+ = {π ∈ Rn
+|2−L − 2−L

2
≤ πj ≤ 1 + 2−L

2
}.

2.3.3 Strong Separation Lemma for Correspondences

In this section, we present a strong separation lemma for correspondences.

This lemma strengthens Theorem 3 from [77] in a way that is similar to how the

separation lemma 3.2 in [23] strengthens the celebrated lemma from [4]. Once this

strong separation lemma is established, the ellipsoid method will be able to produce

an approximate equilibrium in polynomial time whenever the demand is a GS corre-

spondence.

First, we prove the following straightforward lemma:

Lemma 2.3.4 If M is an exchange market with an excess demand Z that is a GS

correspondence and we let M̂ with excess demand Z ′ be the market M with the special

Cobb-Douglas trader added then Z ′ is also a GS correspondence.

Proof:

Let π1, π2 such that π1 ≤ π2 and I(π1, π2) 6= ∅ be given. Let g′ ∈ Z ′(π1)

and z′ ∈ Z ′(π2) be given. Note that g′ = g + zCD(π1) and z′ = z + zCD(π2) with

g ∈ Z(π1), z ∈ Z(π2) and zCD representing the excess demand function of the special

Cobb-Douglas trader.

Since Z is a GS correspondence, minj∈I(π1,π2)(gj − zj) ≤ 0. Thus, we can

choose j ∈ I(π1, π2) such that gj ≤ zj . Fix this j. Clearly, by GS of Cobb-Douglas

utilities, zCD
j (π1) ≤ zCD

j (π2). Therefore,g′
j ≤ z′j and mini∈I(π1,π2)(g

′
i − z′i) ≤ 0. Thus,

36

Z ′ is a GS correspondence.

This lemma will let us now prove the main lemma for the paper.

Lemma 2.3.5 Let M be an exchange market with an excess demand Z that is a GS

correspondence and let M̂ with excess demand Z ′ be the market M with the special

Cobb-Douglas trader added. If π̂ is an equilibrium for M̂ and π̂ ∈ ∆, z′ ∈ Z ′(π),

π ∈ ∆+, and π is not a (1 + ǫ)-approximate equilibrium price for M̂ . then π̂ · z′ ≥ δ

where δ ≥ 2−E and E is bounded by a polynomial in the input size of M̂ and log(1
ǫ
).

Proof:

Let Ω(π, π̂) = {N1, . . . , Nt, . . . , Nl} where Nt = {i|πi/π̂i = γt}, with γt > γt+1.

Let πk = min{π, γkπ̂} and Hk = {i|πi < γkπ̂} = ∪t<kNt.

By homogeneity, 0 ∈ Z ′(γkπ̂). By the previous lemma, Z ′ is a GS correspon-

dence. Then, by the Poltervitch-Spivak combining lemma, there exist vectors g′k such

that g′k ∈ Z ′(πk), and g′k ≤ z′[Hk ∪Nk].

Note that g′k = gk + zCD(πk) where gk ∈ Z(πk) and zCD represents the excess

demand of the special Cobb-Douglas trader. Also, z′ = z + zCD(π) where z ∈ Z(π).

Also note that I(πk, π) = Hk∪Nk. Since Z is a GS correspondence, minj∈I(πk,π)(g
k
j−

zj) ≤ 0. Thus, we can choose j(k) ∈ Hk ∪Nk such that gk
j(k) ≤ zj(k).

We claim that for some k ≥ 2 and some j′, πk−1
j′ − πk

j′ ≥
ǫπk

j′

3n
. Note that this

immediately implies πj′ − πk
j′ ≥

ǫπk
j′

3n
. If this weren’t the case, then by lemma 2.3.3,

z′ would be a (1 + ǫ)-approximate demand at π̂, which would make π a weak (1 +

ǫ)-approximate equilibrium. Fix both k and j′.

37

The income of the Cobb-Douglas trader at π is given by π · wCD. Therefore:

π · wCD − πk · wCD ≥ πj′ wCD,j′ − πk
j′ · wCD,j′ = (πj′ − πk

j′)wCD,j′ ≥
ǫπk

j′wCD,j′

3n

This trader spends an equal amount of her income on each good. Note that

for any good j ∈ Nk, πj = γkπ̂j = πk
j . Also note that for any good j ∈ Hk, πj = πk.

Thus for j ∈ ∪t≤kNt,

zCD,j(π)− zCD,j(π
k) = xCD,j(π)− x′

CD,j(π
k) = (π ·wCD)/(nπj)− (πk ·wCD)/(nπk

j) =

π · wCD − πk · wCD

nπj
≥

πk
j′ǫwCD,j

3πjn2
.

Note that this holds for j(k).

We can therefore conclude that z′j(k) − g′k
j(k) ≥

πk
j′

ǫwCD,j

3πj(k)n2 . We then define δ′ =

πk
j′

ǫwCD,j

3n2 .

Since πj[∪t≥jNt] = π[∪t≥jNt], Walras Law and the inequality g′j ≤ z′[Hj ∪Nj]

implies

0 = πjg′j ≤ πz′[∪t≥jNt].

Let βt = πz′[Nt] which gives us

∑

t≥j

βt ≥ 0, j = 1, 2, . . . l.

38

Thus,

0 ≤ γ−1
1

l
∑

t=1

βt ≤ γ−1
1 β1 + γ−1

2

l
∑

t=2

βt ≤ . . . <
l
∑

t=1

γ−1
t βt = π̂z′.

The last sum can also be written as γ−1
1

∑l
t=1 βt + (γ−1

2 − γ−1
1)
∑l

t=2 βt + . . . +

(γ−1
l − γ−1

l−1)βl. Notice that each term in this sum is nonnegative.

We know that j(k) ∈ Nk or j(k) ∈ Hk. We also know that πj(k) · (z′j(k) −

g′k
j(k)) ≥ δ′. Thus since we know 0 = g′k ≤ z′[∪t≥kNt], then clearly δ′ = πkg′k + δ′ ≤

πz′[∪t≥kNt] =
∑

t≥k βt.

We know

0 ≤ γ−1
1

l
∑

t=1

βt + (γ−1
2 − γ−1

1)

l
∑

t=2

βt + . . . + (γ−1
l − γ−1

l−1)βl = π̂z′.

We know that the term (γ−1
k − γ−1

k−1)(
∑

t≥k βt) ≥ (γ−1
k − γ−1

k−1)δ
′. Let δ =

(γ−1
k−1 − γ−1

k−1)δ
′. Since every term in the sum is nonnegative,

0 < 2−E ≤ δ ≤ π̂z′

as long as we can get a proper lower bound on δ by demonstrating a lower

bound for γ−1
k − γ−1

k−1. Note the equality

γ−1
k − γ−1

k−1 = 1/γk − 1/γk−1 =
γk−1 − γk

γk−1γk
.

Since all prices are in ∆, γk−1γk is sufficiently bounded, we need only lower

bound γk−1 − γk.

39

We know we have a proper lower bound on πk−1
j′ − πk

j′ which we will call π̂j′σ.

So,

πk−1
j′ − πk

j′ = γk−1π̂j′ − γkπ̂j′ = π̂j′(γk−1 − γk) ≥ π̂j′σ

.

Thus, we have a good lower bound where

(γk−1 − γk) ≥ σ

and thus

0 < 2−E ≤ δ ≤ π̂z′.

The separation lemma allows us to use the ellipsoid method to construct a

polynomial time algorithm. As stated previously, this approach follows the work

of [23] and utilizes the central-cut ellipsoid method.

The following theorem is the algorithmic result of the strong separation lemma

for correspondences.

Theorem 2.3.6 Let M be an exchange market where the excess demand is a GS

correspondence. Assume that M is equipped with a demand oracle. A polynomial-

time algorithm that given any π ∈ Rn
+ and µ > 0, asserts that π is a weak (1+ µ)-

approximate equilibrium or that π is not a weak (1 + µ/2)-approximate equilibrium

40

is also assumed to exist. There then exists an algorithm that takes M, a rational

ǫ > 0 and returns a weak (1 + ǫ)-approximate equilibrium price vector in time that is

polynomial in the input size of M and in log(1
ǫ
).

For a more detailed look at how one uses a separation oracle and the central-cut

ellipsoid method to derive an algorithmic result, see the end of Chapter 3.

2.3.4 The Spending Constraint Model

Nikhil Devanur and Vijay Vazirani have introduced a new market model which

they call the “Spending Constraint Model” [33,35]. Their purpose in introducing their

new model is to retain weak gross substitutability, but present an efficient algorithm

for a wide class of concave utility functions. We present the spending constraint

model for the Exchange or Arrow-Debreu Market and show that our techniques can

compute equilibria for these markets in polynomial time. The Fisher case is largely

similar.

There are n goods and n′ traders. Each agent i has an endowment of ei ∈

[0, 1]n. The income of the trader will be represented by mi =
∑

1≤i≤n eijπj . There

is one unit of each good in the market. For i ∈ 1, 2, . . . n and j ∈ 1, 2, . . . n′, let

f i
j : [0, mi] → R+ be the rate function of trader i for good j; the rate at which i

derives utility per unit of j received as a function of the amount of her budget spent

on j. Define gi
j : [0, mi]→ R+ to be:

gi
j =

∫ x

o

f i
j(y)

πj

dy.

41

This function give the utility derived by trader i spending x dollars on good j

at price πj . We let j = 0 represent money, thus f i
0 and gi

0 will be used to determine

the utility of unspent money. The price of money, πo, is assumed to be 1. Devanur

and Vazirani provide a further restriction that the f i
j ’s be decreasing step functions.

In this case, the gi
j’s will then be piecewise-linear concave functions.

Each step of f i
j is called a segment. The set of segments defined by function

f i
j is denoted by seg(f i

j). Suppose one of these segments, s has range [a, b] ⊆ [0, mi],

and f i
j = c, for x ∈ [a, b]. Then we define value(s) = b− a, rate(s) = c, and good(s)

= j (good(0) = money.) Let segments(i) be the union of all the segments of buyer i.

Devanur and Vazirani also add the two following assumptions. For each good,

there is a buyer who desires it. That is, For all j ∈ 1, 2, . . . n, there is i ∈1, 2, . . . n’

such that there is s ∈ seg(f i
j) : rate(s) > 0. Also, each buyer i wishes to use all of

her money:
∑

s∈segments(i),rate(s)>0 value(s) ≥ mi. These assumptions will ensure that

an equilibrium exists and that all equilibrium prices are positive.

With all these assumptions in place, optimal baskets for traders are easily

characterized. Bang for the Buck relative to prices π for segment s ∈ seg(f i
j), is

defined as rate(s)/πj (or just rate(s) if j = 0). Sort all segments s ∈ segments(i) by

decreasing bang per buck, and partition by equality into classes: Q1, Q2, For a

class Ql, value(Ql) is defined to be the sum of the values of segments in it. At prices

p, goods corresponding to any segment in Ql make i equally happy, and those in Ql

are desired strictly more by i than those in Ql+1. There is k such that

42

∑

1≤l≤k−1

value(Ql) < e(i) ≤
∑

1≤l≤k

value(Ql).

Clearly, i’s optimal allocation, that is i’s demand, must contain all goods corre-

sponding to segments in Q1, . . . , Qk−1, and a bundle of goods worth mi−(
∑

1≤l≤k−1 value(Ql))

from segments in Qk. It is said that for buyer i, at prices p, Q1, . . . , Qk−1 are forced

partitions, Qk is the flexible partition, and Qk+1, . . . are the undesirable partitions.

Note that the possibility of a flexible partition implies that the demand of this

market need not be single-valued, it is a correspondence. It is assumed that prices

are positive and the demand is homogenous of order zero. In particular for any price

π (where π0 represents the price of money):

Z(π) = Z(1,
π1

π0
,
π2

π0
, . . . ,

πn

π0
).

Thus, the standard spending constraint formulation provides us with a well

defined demand correspondence. In the proofs of the lemmas below, one must use

general prices, not simply prices where π0 = 1, so a trader’s income is taken to be

mi ∗ π0.

It is straightforward to show that this correspondence will sastify the mild con-

ditions (homogeneity, Walras’ Law, etc.) detailed earlier when correspondences were

introduced. We must now show that this market’s demand satisfies the Poltervitch-

Spivak definition of gross substitutability. Then, lemma 2.3.5 can be applied and

it will be shown that a polynomial time algorithm to compute an equilibrium for

Spending Constraint Markets can be produced. If the equilibrium price produced by

43

the algorithm has π0 6= 1, simply divide each price by the price of good 0 and we are

provided with an equilibrium that makes sense in the spending constraint context.

It should be noted that in [35], Devanur and Vazirani show that the demand

satisfies a different definition of Weak Gross Subsitutability. This is in the restricted

case where the fi are continuous and strictly decreasing and the demand is a differ-

entiable function. This section is concerned with the case where the fi are decreasing

step functions (a case considered closely in [33,35]) and the demand need not be single

valued. Therefore, the GS lemma in [35] does not apply since that definition of GS

assumes the demand is a differentiable function. Vazirani does show that weak gross

substituability holds for the Fisher case in [33]. The proof of the following lemma for

the exchange market is similar to the Fisher market argument in [33].

Lemma 2.3.7 A Spending constraint model exchange market M has a demand Z

that is a GS correspondence.

Proof:

Let positive price vectors π and π′ with π ≤ π′ and π 6= π′ be given. It should

be noted that all traders will have at least as much income under π′ as they do under

π. Let z ∈ Z(π) and z′ ∈ Z(π′) be given. Suppose Z is not a GS correspondence.

Then for all i ∈ I(π, π′), zi > z′i.

Consider a trader i that spends more on good j /∈ I(π, π′) under π′ than under

π even though π′
j > πj . Let k be such that a segment of good j is in class Qk where

this portion of j is purchased under π′ but not π. Clearly, this segment could not have

been in the forced partition under π or it would have been purchased at that price.

44

If it was in the flexible partition or undesirable partition under π then it has an even

worse bang for buck relative to prices π′. This means that any good l in I(π, π′) that

were in the forced or flexible partitions under π would have been purchased under π′

and thus z′il ≥ zi
l . All traders that do not spend more on a good j /∈ I(π, π′) under

π′ than under π, then must spend at least as much on goods in I(π, π′) as they did

under π since they have at least as much income under π′ and all their nonnegative

additional income goes to goods in I(π, π′). Thus, traders spend at least as much on

goods in I(π, π′) under π′ as under π. Therefore there is a good i ∈ I(π, π′), such that

zi− z′i ≤ 0 and we have a contradiction. Therefore, Z must be a GS correspondence.

2.3.4.1 Rationality of Prices in the Spending Constraint Model

This section demonstrates that when the Spending Constraint Model has ra-

tional input parameters, equilibirum prices will also be rational. The existence of a

rational price equilibrium along with lemma 2.3.7, lemma 2.3.2 and an extension of

the ellipsoid method due to Jain [58] will allow the computation of an exact equilibria

in polynomial time.

Lemma 2.3.8 Let M be an Spending Constraint Exchange Market with rational in-

put parameters. There is a rational equilibrium price vector for M . The binary repre-

senation of the numerator and denominator of this vector is bounded by a polynomial

in the input size.

Proof:

45

Suppose π is an equilibrium price.

Let Q1, . . . , Qk be the partition of segments into equivalence classes ordered

so that they have decreasing “bang for the buck” for a given trader. Thus, we know

that for all traders i, with all goods j and j′, and corresponding good segments s

and s′ with s ∈ Qp, s′ ∈ Qq, if p ≤ q, we then have rate(s)
πj
≥ rate(s′)

πj′
. This inequality

constraint can be re written as rate(s′)πj ≤ rate(s)πj′ .

At equilibrium with each trader maximizing utility subject to their budget

constraints, we have each trader possessing a k such that

∑

1≤l≤k−1

value(Ql) <
∑

1≤i≤n

eijπj ≤
∑

1≤l≤k

value(Ql).

Trader i’s demand must contain all goods corresponding to segments in Q1, . . . , Qk−1,

and a bundle of goods worth mi − (
∑

1≤l≤k−1 value(Ql)) from segments in Qk.

The market clears at equilibrium. For each good j,
∑

i xij ≤
∑

i eij = 1.

If a price satisfies all these constraints, then it is an equilibrium. Note that all

of the constraints are linear, thus a solution to the linear system, a price equilibrium,

is rational.

A similar lemma has been shown for the Spending Constraint Fisher market

in [33].

Theorem 2.3.9 Exact equilibrium prices for Spending Constraint Markets can be

computed in polynomial time.

46

The theorem follows from lemma 2.3.8, lemma 2.3.7, lemma 2.3.2 and a

straightforward application of Theorem 12 in [58].

47

CHAPTER 3
MARKET EQUILIBRIUM FOR CES EXCHANGE ECONOMIES:

EXISTENCE AND COMPUTATION

3.1 Introduction

In this chapter1, we consider exchange economies where the traders’ prefer-

ences are expressed in terms of the extensively used constant elasticity of substitution

(CES) utility functions. We show that for all these economies it is possible to say

whether an equilibrium exists in polynomial time.

We then describe a convex formulation of the equilibrium conditions, which

leads to polynomial time algorithms for a wide range of the parameter defining the

CES utility functions. This range includes instances that do not satisfy weak gross

substitutability. It is then demonstrated that the ellipsoid method can be shown to

compute approximate equilibria in polynomial time.

An exchange economy consists of a collection of goods, initially distributed

among a number of traders. The preferences of the traders for the bundles of goods

are expressed by a utility function. Each trader wants to maximize her utility, subject

to her budget constraint.

An equilibrium is a set of prices at which there are allocations of goods to

traders such that two conditions are simultaneously satisfied: each trader’s allocation

maximizes her utility subject to the budget constraint, and the market clears.

1The results of this chapter based on joint work with Bruno Codenotti, Sriram Penu-
machta, and Kasturi Varadarajan and appeared in [19].

48

Existence. An early and fundamental triumph of Mathematical Economics

was the 1954 result by Arrow and Debreu [6] that, even in a more general situation

which includes the production of goods, subject to mild sufficient conditions, there is

an equilibrium. However, given a set of traders, each endowed with a utility function

and a nonnegative vector of initial endowments, an equilibrium does not need to exist.

Thus the problem arises of determining whether a given exchange economy has

an equilibrium. In this paper, we show that this problem can be solved in polynomial

time, whenever the utility functions are of the form u(x1, . . . , xn) =
(

∑n
j=1 cjx

ρ
j

) 1
ρ

,

with ρ < 1, ρ 6= 0, i.e., for constant elasticity of substitution (CES) utility functions

[92].

This result generalizes methods of Eaves [38], who analyzed the existence of

positive equilibrium prices for Cobb-Douglas utility functions, and Gale [48], who

analyzed the existence of equilibria for linear utility functions. (See also Jain [58],

who employs a sufficient condition for the existence of positive price equilibria for

linear utility functions.) Our result is in contrast with the NP-hardness result of [27],

which applies to Leontief utility functions. As described below, linear, Cobb-Douglas,

and Leontief utility functions are limiting cases of CES utility functions.

Computation. The problem of computing equilibrium prices for exchange

economies has attracted a lot of attention since the 1960s. In recent years, theoretical

computer scientists have become interested in the polynomial-time solvability of the

problem. Several results [75] seem to indicate that in order for the problem to admit

polynomial time algorithms, certain restrictions should be satisfied by the market.

49

Two well studied restrictions are gross substitutability – GS (see [1], p. 611)

and the weak axiom of revealed preferences – WARP (see [1], Section 2.F). Although

restrictive, these conditions are useful and model some realistic scenarios.

It is well known that GS implies that the equilibrium prices are unique up

to scaling ([95], p. 395), and that WGS and WARP both imply that the set of

equilibrium prices is convex ([1], p. 608). When the set of equilibria is convex, it is

enough to add a non-degeneracy assumption (which is almost always satisfied) to get

the uniqueness of the equilibrium up to scaling [32].

All the polynomial-time algorithms developed so far apply to scenarios where

either WGS or WARP hold. In this chapter we discuss a convex characterization of

the equilibrium conditions which applies to exchange economies with CES functions

such that −1 ≤ ρ < 0. 2 Note that these economies do not fall into either WGS or

WARP.

Related Work. In a series of papers which started with linear utility func-

tions, polynomial time algorithms have been developed to compute equilibria for more

and more general settings [14,20,28,49,58,60,69,80,100]. However, the corresponding

market satisfies one of the two conditions discussed above (WGS or WARP) (see [21]

for a review).

The technical tool used in some of these results is to reformulate the problem

in terms of mathematical programming in a way that a polynomial time algorithm

2Similar convex formulations hold for ρ > 0, as well as for other functional forms. A
comprehensive presentation of these results can be found in [28].

50

(or approximation scheme – in general the equilibrium point is not a vector of ra-

tionals) can be obtained by known optimization techniques. In particular, convex

programming has been proven to be a particularly useful tool [23, 28, 58, 73, 100].

Summary of Our Contribution. We settle several issues concerning equi-

libria in exchange economies with CES utility functions. We first show that the

existential problem can always be solved in polynomial time by checking the bi-

connectivity of a digraph associated with the input. We then discuss the range of

these functions for which the economy’s equilibria form a convex set and use this

characterization to derive a polynomial-time algorithm. We leave open the important

problem of whether or not it is possible to find polynomial-time algorithms for the

range where the economies admit multiple disconnected equilibria.

Organization. In Section 3.2, we formally describe the model of an exchange

economy, introduce CES functions, and hint at their economic relevance. Section 3.3

is devoted to a detailed discussion of the demand function of traders with CES utility

functions.

In Section 3.4, we characterize the problem of existence of an equilibrium

for CES exchange economies, in terms of a graph property that can be verified in

polynomial time.

In Section 3.5 we present the demonstration that equilibrium prices and allo-

cations for an exchange economy, where the traders are endowed with CES functions

with −1 ≤ ρ < 0, can be computed by solving a feasibility problem, defined in terms

of explicitly given convex constraints. Here, it is then shown that this formulation can

51

lead to a polynomial time algorithm for computing the equilibrium via the ellipsoid

method.

3.2 Background

For definitions of the exchange model and equilibrium, see Chapter 1.

CES utility functions. The most popular family of utility functions is given

by CES (constant elasticity of substitution) functions, which have been introduced

in [92]. We refer the reader to the book by Shoven and Whalley [59] for a sense

of their pervasiveness in applied general equilibrium models. A CES function ranks

the trader’s preferences over bundles of goods (x1, . . . , xn) according to the value of

u(x1, . . . , xn) =
(

∑n
j=1 cjx

ρ
j

) 1
ρ

. where −∞ < ρ < 1, but ρ 6= 0.

The success of CES functions is due to the useful combination of their mathe-

matical tractability with their expressive power, which allows for a realistic modeling

of a wide range of consumer preferences. Indeed, one can model markets with very

different characteristics in terms of preference towards variety, substitutability versus

complementarity, and multiplicity of price equilibria, by changing the values of ρ and

of the utility parameters cj .

CES functions have been thoroughly analyzed in [5], where it has also been

shown how to derive, in the limit, their special cases, i.e., linear, Cobb-Douglas, and

Leontief functions (see [5], p. 231). Let σ = 1
1−ρ

. The parameter σ is called the

elasticity of substitution. For σ → ∞ (ρ → 1), CES take the linear form, and the

goods are perfect substitutes, so that there is no preference for variety. For σ > 1

52

(ρ > 0) , the goods are partial substitutes, and different values of σ in this range

allow us to express different levels of preference for variety. For σ → 1 (ρ→ 0), CES

become Cobb-Douglas functions, and express a perfect balance between substitution

and complementarity effects. Indeed it is not difficult to show that a trader with a

Cobb-Douglas utility spends a fixed fraction of her income on each good.

For σ < 1 (ρ < 0), CES functions model markets with significant complemen-

tarity effects between goods. This feature reaches its extreme (perfect complementar-

ity) as σ → 0 (ρ → −∞), i.e., when CES takes the form of Leontief functions. In

the latter case, the shape of the optimal bundle demanded by the consumer does not

depend at all on the prices of the goods, but is fully determined by the parameters

defining the utility function.

Whenever the relative incomes of the traders are independent of the prices,

CES functions give rise to a market which satisfies WARP. This happens for instance

in the Fisher model, a very special case of the exchange model. On the other hand,

CES functions satisfy WGS if and only if ρ ≥ 0, whereas, if ρ < −1, they allow for

multiple disconnected equilibria [52].

3.3 Demand of CES Consumers

In this section, we characterize the demand function of traders with CES

utility functions. Consider a setting where trader i has an initial endowment wi =

(wi1, . . . , win) ∈ Rn
+ of goods, and the CES utility function ui(xi1, . . . , xin) =

(

∑n
j=1 αijx

ρi

ij

)
1
ρi ,

where αij ≥ 0, and −∞ < ρi < 1, but ρi 6= 0.

53

We assume throughout that wij > 0 for some j, and also that αij > 0 for some

j. If αij > 0, we say that trader i wants good j. If trader i does not want good j, it

is easy to see that the utility of a bundle xi ∈ Rn
+ is independent of xij . We adopt

the convention that αijx
ρi

ij = 0 when αij = 0 and xij = 0.

First consider the case where ρi > 0. Evidently, if we start with any bundle

xi ∈ Rn
+ and add to it an arbitrarily small amount of a good that i wants, we get

a bundle with more utility. From this, it follows that the demand of the trader is

well-defined at a given price if and only if each of the goods that the trader wants

has a strictly positive price.

Now consider the case where ρi < 0. It is easy to see that a bundle xi ∈ Rn
+

has a strictly positive utility if and only if it has a strictly positive amount of each of

the goods that the trader wants. Evidently, if we start with any bundle xi ∈ Rn
+ that

has strictly positive utility and add to it an arbitrarily small amount of a good that i

wants, we get a bundle with more utility. Let π be a price at which the income π ·wi

is positive. Since the trader can afford a bundle with positive utility, we conclude

that the demand is well-defined if and only if each of the goods that the trader wants

has a strictly positive price. Now let π be a price at which the income π · wi is zero.

We see that the demand is well-defined if and only if at least one of the goods that

the trader wants is positively priced.

Irrespective of whether ρi is positive or negative, traders with positive income

demand a positive amount of each good they want. Traders with CES utilities are

also non-satiable on all goods they want which means that demand is not well-defined

54

on the zero priced goods they want.

Also irrespective of whether ρi is positive or negative, the demand is well-

defined at any strictly positive price vector π ∈ Rn
++. It is in fact unique and is given

by the expression

xij(π) =
α

1/1−ρi

ij

π
1/1−ρi

j

×
∑

k πkwik
∑

k α
1/1−ρi

k π
−ρi/1−ρi

k

. (3.1)

The formula above is folklore and is derived using the Kuhn-Tucker conditions.

3.4 Existence of an Equilibrium

The celebrated paper of Arrow and Debreu [6] had a much weaker set of as-

sumptions sufficient for the existence of equilibrium than earlier work. The assump-

tions were still somewhat restrictive though. Indeed, Arrow and Debreu themselves

called the assumptions for their first existence theorem “clearly unrealistic” and im-

mediately proceeded to weaken the sufficent conditions for their second theorem. See

the introduction to Maxfield [66] for a discussion of the work on showing existence

of equilibrium under progressively weaker assumptions. In general, it is NP-hard to

determine whether a market possesses an equilibrium or not [27].

Gale [48] provided a very simple two trader example of a market that does

not possess an equilibrium. Gale’s example was for the linear exchange model, but it

also serves as an example for the CES case with ρ > 0. Suppose trader one possesses

both apples and oranges, but only wants apples. Trader two wants both apples and

oranges, but owns only oranges. This simple market has no equilibrium. If oranges

55

are priced at zero, then the demand of trader two is not well-defined. If oranges

have a positive price, then trader one will want to sell all of her oranges to buy more

apples even though she already owns all the apples present in the market. Gale’s

example will not work for the CES with ρ < 0 case though because that actually has

an equilibrium with a positive price for apples and zero price for oranges.

In this section, we characterize the existence of equilibrium for an exchange

economy where the traders have CES utility functions. The characterization imme-

diately implies a polynomial time algorithm to decide whether the economy has an

equilibrium. As before, we assume that each trader wants some good. That is for

each trader i, there exists a j such that αij > 0.

We assume in the remainder of this section that each trader has a positive

amount of precisely one good. This assumption is without loss of generality: we

may replace a trader with positive amounts of k different goods with k traders, each

with the same utility function and a positive amount of one good. A straightforward

argument that employs the homogeneity of the CES utility functions shows that this

transformation preserves the equilibria.

It is easy to see, but nonetheless worth noting, that the traders with positive

income will be precisely those traders whose single good is positively priced.

Definition 3.4.1 There is a vertex vi for each consumer i. We have an arc from

vi to vk when trader i possesses a good which trader k wants. The resulting directed

graph is called an economy graph.

The following existence theorem is the main result we use from Maxfield [66].

56

Theorem 3.4.2 If the economy graph is strongly connected, an equilibrium exists.

Moreover, all goods are positively priced at any equilibrium in such a market.

Proof: This follows from Theorem 2 of Maxfield [66] who obtains this result

using strong connectivity and general results on the existence of a quasi-equilibrium

([1], Chapter 17).

Definition 3.4.3 We say that a strongly connected component in the economy graph

is on if every trader within it has a positive income. If no trader in a strongly con-

nected component has a positive income, then we say that that component is off.

Lemma 3.4.4 At equilibrium, every strongly connected component in an economy

graph is either on or off.

Proof: Suppose not. Suppose we are given an equilibrium price π, but there

is a component that is neither on or off. In that case, there must be a trader with

positive income that desires a good from a trader with no income. That means the

zero income trader’s good must have a price of zero. Since the trader with positive

income is non-satiable on the zero priced good, demand is not well-defined for that

good and therefore, π is not an equilibrium. This provides a contradiction.

Consider a strongly connected component C of the economy graph that has

no incoming arcs from traders outside C. We claim that a good held by any trader i

in C is also desired by some trader i′ in C. If C consists simply of the node vi, then

since there are no incoming arcs from outside, it must be that i desires his own good

57

(because i must desire some good). If C consists of more than one node, the claim

follows from strong connectivity.

Furthermore, it follows that a good held by a trader in C is not held by any

trader outside C. Otherwise, C would have an incoming arc.

Lemma 3.4.5 At equilibrium, a strongly connected component of an economy graph

is on if and only if it has no incoming arcs.

Proof: Suppose the economy has an equilibrium price π. Suppose a strongly

connected component C1 is on. We will show C1 can have no incoming arcs. If C1

has an incoming arc, that means some trader in C1 wants some good in another

component C2. This trader will purchase a good that is present in C2 since she has a

positive income. If C2 is off, then the trader in C1 will demand an infinite amount of a

good in C2, thus contradicting the assumption of equilibrium. Thus, at equlibrium C2

must be on. If C2 has any incoming arcs, then we can make an identical argument to

show that the components providing the incoming arcs must also be on. This implies

that there is a chain of on components that only ends with an on component that

has no incoming arcs. Therefore, without loss of generality, let us assume C2 has no

incoming arcs. A trader in C1 will purchase a portion of some positively priced good

in C2. This is because there is no other place for the trader to acquire that good,

otherwise there would be an arc incoming to C2 from some external trader that owns

that good. There is no way for traders in C2 to get back the value from C1. This is

because traders in C2 desire and thus purchase only goods that are in C2, all of which

are unique to C2. This implies that traders in C2 maximizing their utility cannot

58

satisfy their budget constraint tightly even though they wish to consume more goods

and have income to buy them. Thus, π is not an equilibrium which is a contradiction.

Suppose the economy has an equilibrium price π. Suppose further than a

component, C, has no incoming arcs. We show that C must be on. Suppose C

is off. Traders in C demand only goods in C. All goods in C are free so utility

maximizing traders (who by assumption, desire at least one good) in C will have

undefined demands without violating their budget constraints. Therefore, π is not an

equilibrium. We have a contradiction and the lemma is proven.

There is an important distinction, which bears repeating, between CES utility

functions with ρ > 0 and those with ρ < 0. Traders with ρ > 0 will have positive

utility as long as they have a positive amount of some good that they desire. Traders

with ρ < 0 will only have positive utility if they have a positive amount of all goods

they desire. Moreover, traders with ρ > 0 with zero income have undefined demands

if any of their desired goods are priced at zero. Zero income traders with ρ < 0 only

have undefined demand if all of their desired goods are free.

The following theorem is the main result of this section.

Theorem 3.4.6 An equilibrium exists if and only if for every vertex v in a strongly

connected component with incoming arcs, either (a) v has a CES utility function with

ρ > 0 and all its incoming arcs are from vertices in strongly connected components

without incoming arcs, or (b) v has a CES utility function with ρ < 0 and has at least

one incoming arc from a strongly connected component without incoming arcs.

59

Proof: Suppose an equilibrium price π exists. Then by Lemma 3.4.5, the

strongly connected components that are on are precisely those that have no incoming

arcs. And it is precisely the goods that are held by traders in such components that

have positive price. Let C1 be a strongly connected component with incoming arcs

(if none exist, then this direction of the theorem is trivially true). Suppose there is a

vertex i with a CES utility function with ρ > 0, and it has an incoming arc from a

vertex that is in a strongly connected component with incoming arcs. Then i wants a

good with price zero and so her demand is not defined, contradicting the assumption

that π is an equilibrium price. Now suppose that there is a vertex i with a CES utility

function with ρ < 0, and none of its incoming arcs are from a vertex in a strongly

connected component with no incoming arcs. This means that trader i desires only

zero priced goods and thus has undefined demand contradicting the assumption that

π is an equilibrium price.

For the other direction of the theorem, suppose that every vertex in a strongly

connected component with incoming arcs has an incoming arc from a strongly con-

nected component without incoming arcs. Each strongly connected component can

be considered as an economy unto itself, and has an equilibrium with positive prices

by Maxfield’s theorem. For each good in a component with no incoming arcs we

assign prices to goods identical to their equilibrium prices as subeconomies. As no

good in one of these strongly connected components is owned outside the component,

this assignment of prices is well-defined.

For each good held by a trader in a component with incoming arcs, we assign

60

a price of zero. By the argument above, we know that none of these goods are the

same as those that were priced positively so this price is well defined. We claim that

this price π is an equilibrium price.

For a trader in a component without incoming arcs, we assign the bundle that

is the same as the one she gets in the equilibrium for the corresponding subeconomy.

Clearly, this is a valid demand.

Consider a trader in a component with incoming arcs. Her income is 0. We

claim that her demand is well-defined and that the zero bundle is a valid demand

vector. This is because she is either a CES trader with ρ > 0 and all the goods

that she wants are in components with no incoming arcs and hence positively priced,

or she is a CES trader with ρ < 0 and at least one of the goods that she wants is

positively priced, and thus the best utility she can afford is 0.

We now verify that condition (2) in the definition of an equilibrium holds, that

is, the demand is at most the supply. For a good held by a trader in a component with

no incoming arc, this follows from the equilibrium conditions of the corresponding

subeconomy, and the fact that any trader outside the component demands 0 units of

the good. For a good held by a trader in a component with incoming arcs, the net

demand is 0, so condition (2) trivially holds.

This completes the proof of the theorem.

It may be worth noting that this theorem easily extends to the Cobb-Douglas

case. On the relevant properties, the Cobb-Douglas utility functions are identical to

the ρ < 0 case. The linear case has been understood for some time [48]. As mentioned

61

earlier, the final CES limit case, determing existence of equilibria when traders have

Leontief utility functions is now known to be NP-hard [27].

We conclude by noting that besides yielding a polynomial time algorithm for

checking the existence of equilibrium, the above characterization provides a polynomial-

time reduction of the computation of an equilibrium for the original economy to the

computation of positive price equilibria for sub-economies.

3.5 Efficient Computation by Convex Programming

In this section, we consider an economy in which each trader i has a CES utility

function with −1 ≤ ρi < 0. We present Codenotti and Varadarajan’s demonstration

that the positive price equilibria of such an economy can be characterized as the

solutions of a convex feasibility problem. The results of the previous section show that

the computation of an equilibrium for an economy can be reduced to the computation

of a positive price equilibrium for a sub-economy that is represented by a strongly

connected graph as discussed above. With this reduction, we can now show via

the elliposoid method, that there is a polynomial time algorithm for computing an

approximate equilibrium. This is significant because previous algorithms have been

for markets that satisfy gross substituability.

Since the demand of every trader is well-defined and unique at any positive

price, we may write the equilibria as the set of prices π ∈ R++ such that for each

good j, we have
∑

i xij(π) ≤ ∑i wij . Let ρ = −1, and note that ρ ≤ ρi, for each i.

Let fij(π) = π
1/(1−ρ)
j xij(π). Let σj = π

1/(1−ρ)
j . In terms of the σj ’s, the equilibria are

62

the set of σ = (σ1, . . . , σn) ∈ R++ such that for each good j,

∑

i

fij(σ) ≤ σj(
∑

i

wij).

We argue that this is a convex feasibility program. Since the right hand side

of each inequality is a linear function, it suffices to argue that the left hand side is a

convex function. The latter is established via the following proposition.

Proposition 3.5.1 The function fij(σ) is a convex function over R++.

Proof: If αij = 0, fij is zero over the domain and the proposition follows.

Otherwise, fij is positive at each point of the domian. It therefore suffices to show

that the constraint fij ≤ t defines a convex set for positive t. Using formula 3.1 for

demand, this constraint is

α
1

1−ρi

ij

σ
ρi−ρ

1−ρi

j

×
∑

k σ1−ρ
k wik

∑

k α
1

1−ρi

ik σ
−ρi(1−ρ)

1−ρi

k

≤ t.

Rewriting, and raising both sides to the power 1/(1− ρ), we obtain

α
1

(1−ρ)(1−ρi)

ij × (
∑

k

σ1−ρ
k wik)

1
1−ρ ≤ t

1
1−ρ σ

ρi−ρ

(1−ρi)(1−ρ)

j v
−ρi
1−ρi

i , (3.2)

where

vi =

(

∑

k

α
1

1−ρi

ik σ
−ρi(1−ρ)

1−ρi

k

)

1−ρi
−ρi(1−ρ)

. (3.3)

The left hand side of inequality 3.2 is a convex function, and the right hand

side is a concave function that is non-decreasing in each argument when viewed as

63

a function of t, σj , and vi, since the exponents are non-negative and add up to one.

Since 0 < −ρi(1−ρ)
1−ρi

< 1, the right hand side of equality 3.3 is a concave function, in

fact a CES function. It follows that the right hand side of inequality 3.2 remains

a concave function when vi is replaced by the right hand side of equality 3.3. This

completes the proof.

Converting the Convex Program into an Algorithm We now show through

a series of lemmas that this convex program produces a polynomial time algorithm

to compute an approximate equilibrium via the ellipsoid method. If we let an ǫ > 0

be given, then we wish to find a (1 + ǫ)-approximate equilibrium in polynomial time.

Choose L to be an integer such that for all i, −1 ≤ ρi ≤ − 1
L
. Also, L must be chosen

such that for all i and j, 1
L
≤ wij (if wij 6= 0),

∑

i wij ≤ L, 1
L
≤ αij(if αij 6= 0) and

∑

i αij ≤ L. L must also have the property that it bounds the number of goods and

traders. Define K = L8n.

The following lemma shows that at equilibrium, there is a bound on the ratio

of the largest price to the smallest price.

Lemma 3.5.2 At equilibrium, σmax

σmin
≤ K.

Proof: Suppose we have

πmax

πmin
≤ K.

It would follow that,

64

σmax

σmin

= (
πmax

πmin

)
1

1−ρ ≤ K
1

1−ρ .

Since K ≥ 1, we have K
1

1−ρ ≤ K. Therefore,

σmax

σmin
≤ K.

Therefore, we must show that πmax

πmin
≤ K.

Let π be a market equilibrium price. Scale the prices so the πmax = 1. Because

this is a strongly connected component of an economy graph, we may construct a

chain (j0, j1, j2, . . . , jm) where m < n, the number of goods, and for each jk, there is

a trader that posseses the jth
k good and desires the jth

k+1 good.

Choose i and j′ such that j0 = j′ and wij′ ≥ 1
L

and πj′ = πmax. Choose jm

such that πjm
= πmin. Now we examine the demand for trader i for good j where

j = j1 6= j′. We may do this because we are in strongly connected component with

multiple traders and goods (equilibrium computations are trivial for a single good or

single trader economy).

Recall the formula for demand from Formula 3.1.

xij(π) =
α

1/1−ρi

ij

π
1/1−ρi

j

×
∑

k πkwik
∑

k α
1/1−ρi

k π
−ρi/1−ρi

k

.

We can utilize the various bounds to see that

xij(π) ≥
1
L

π
1
2
j

× πj′wij′

L
. ≥

1
L

π
1
2
j

×
1
L

L
. =

1

L3π
1
2
j

Since π is an equilibrium,

65

xij(π) ≤
∑

i

wij ≤ L.

Therefore,

L ≥ 1

L3π
1
2
j

.

Solving for πj , we get

πj ≥
1

L8
.

Therefore, any trader that possesses good j has an income of at least 1
L9 and

any prices for goods (such as j2) that this trader desires can be bound below by 1
L16

simply by using the process in the proof above. If we iterate this process, we will

reach jm (a good with πmin) in fewer than n steps and can therefore bound the price

of the last good in the chain by 1
L8n .

Therefore, for all j, πj ≥ 1
K

and σmax

σmin
≤ K

We define

gi(σ) =
∑

i

fij(σ)− σj(
∑

i

wij).

Note that if for all i, gi(σ) < 0, then σ is an equilibrium. In general, for

ǫ > 0, we set ǫ′ = ǫ
L2 . Define a box B = {π| 1

4K
≤ πj ≤ 1}. Define an interior box

in B, B2 = {π| 1
2K
≤ πj ≤ 1

2
} Let σ̂ be an equilibrium inside B2. There must be an

equilibrium inside B2 by Lemma 3.5.2. Let D be the disk with radius min(1
4K

, ǫ′

K10)

centered around σ̂.

66

The following lemma shows that if the gi(σ) are almost less than zero, then σ

is an approximate equilibrium.

Lemma 3.5.3 If σ ∈ B and for all i, gi(σ) ≤ ǫ
′

, then π is a (1 + ǫ)-approximate

equilibrium.

Proof:

Let ǫ > 0 be given. Recall that ǫ′ = ǫ
L2 . Suppose gi(σ) ≤ ǫ′. Utilizing the

definitions of f and g,

gi(σ) =
∑

i

σjxij(π)− σj

∑

i

wij ≤ ǫ′

Divide by σj to get

∑

i

xij(π)−
∑

i

wij ≤
ǫ′

σj
≤ ǫ′

σmin
≤ ǫ′

1
L

≤ Lǫ′

Thus,

∑

i

xij(π) ≤
∑

i

wij + Lǫ′

Since L
∑

i wij ≥ 1, we have

∑

i

wij + Lǫ′ ≤
∑

i

wij + Lǫ′(L
∑

i

wij) =
∑

i

wij(1 + L2ǫ′) = (1 + ǫ)
∑

i

wij .

Thus,

∑

i

xij(π) ≤ (1 + ǫ)
∑

i

wij

67

and π is a (1 + ǫ)-approximate equilibirum.

The following lemma bounds the degree to which gi can change in the box B.

Lemma 3.5.4 The magnitude of the derivative of gi over B is bounded by K9.

Proof:

First, we examine the partial derivative.

∂gi

∂σj
=
∑

i

(
∂fij(σ)

∂σj
− wij)

Define S =
∑

k α
1/(1−ρi)
k σk

−ρi(1−ρ)
1−ρi

∂f

∂σj
=

α
1/(1−ρi)
ij

σ
(ρi−ρ)/(1−ρi)
j

(σ1−ρ
j wij)S − (

∑

k σ1−ρ
k wik)(α

1/(1−ρi)
ij (−ρi(1−ρ)

1−ρi
)σ

ρ−1
1−ρi

j

S2

+

∑

k σ1−ρ
k wik

S

(

−α
1/(1−ρi)
ij (

ρi − ρ

1− ρi
)σ

ρ−1
1−ρi

)

If we examine each term, we see that −K7 ≤ ∂f
∂σj
≤ K6. This quickly yields

| ∂gi

∂σj
| ≤ K8. The gradient has n components so its magnitude is bounded above by

(n ∗ (K8)2)
1
2 ≤ (K17)

1
2 ≤ K9.

Lemma 3.5.5 Let σ0 ∈ B. We can compute an approximation ᾱ of ▽gi(σ0) so that

|▽gi(σ0) · (σ − σ0)− ᾱ · (σ − σ0)| ≤ ǫ′

4
for each σ ∈ B. This computation can be done

in time polynomial in n, and the encoding length of K, σ0 and ǫ.

68

Proof: Both σ and σ0 are in B, so it must be the case that for each j, |σj −σ0j| < 1.

Therefore, we only need to bound each component of ▽g(σ0)− ᾱ by ǫ′

4n
. One can see

the formula for the partial derivatives of gi in the proof of Lemma 3.5.4. All of the

terms can be approximated closely enough to bound |g(σ0)− ᾱ| in polynomial time.

This is the separating oracle lemma that will be used in the ellipsoid method.

Lemma 3.5.6 Given any σ0 ∈ Qn, we can either assert that σ0 is an ǫ-approximate

equilibrium, or we can return a vector c ∈ Qn such that c · σ ≤ c · σ0 for any σ ∈ D.

This compuation can be done in time polynomial in n and the encoding length of K,

σ0, and ǫ.

Proof:

Note that due to the radius of the disk being no larger than 1
4K

and σ̂ ∈ B2,

that D ⊂ B. Let σ ∈ D be given.

There are 3 cases to consider.

Case 1: σ0 6∈ B.

Case 2: σ0 ∈ B and gi(σ0) ≤ ǫ′

2
for each i.

Case 3: σ0 ∈ B and gi(σ0) > ǫ′

2
for each i.

Case 1: We can check that σ0 6∈ B by scanning the components of σ0. There

is some i where either (a) σ0i > 1 or (b) σ0i < 1
4K

. If (a), choose c = ei and

c·σ = σi ≤ 1 < σ0i = c·σ0. If (b), choose c = −ei and c·σ = −σi ≤ −1
4K

< −σ0i = c·σ0

69

Case 2: We can check that gi(σ0) ≤ ǫ′

2
for each i and then assert that σ0 is an

ǫ-approximate equilibrium by Lemma 3.5.3.

Case 3: First, we argue that gi(σ) ≤ ǫ′

4
(for all i). Because gi is convex and σ̂ is

an equilibrium, we know that 0 ≥ gi(σ̂) ≥ gi(σ)+▽gi(σ) · (σ̂−σ). From Lemma 3.5.4

and the size of D, we know that ▽gi(σ) · (σ̂ − σ) ≥ −(K9)(ǫ′

K10) = − ǫ′

K
. Therefore

0 ≥ gi(σ)− ǫ′

K
, so gi(σ) ≤ ǫ′

K
≤ ǫ′

4
.

By convexity, we know that the tangent gi(σo) + ▽gi(σ0)(σ − σ0) ≤ gi(σ).

Because gi(σo) ≥ ǫ′

2
and gi(σ) ≤ ǫ′

4
, we may conclude that gi(σ) ≤ g(σ0) − ǫ′

4
. Thus,

gi(σo) + ▽gi(σ0)(σ− σ0) ≤ gi(σ0)− ǫ′

4
which implies that that ▽gi(σ0)(σ− σ0) ≤ − ǫ′

4
.

By Lemma 3.5.5, we may compute ᾱ in polynomial time such that |▽gi(σ0) · (σ −

σ0) − ᾱ · (σ − σ0)| ≤ ǫ′

4
. This implies that ᾱ · (σ − σ0) ≤ 0. If we choose c = ᾱ, we

have c · (σ − σ0) = c · σ − c · σ0 ≤ 0. Therefore c · σ ≤ c · σ0.

Applying the Ellipsoid Method This separating oracle lemma will allow us to

directly apply (with some slight modifications) the central-cut ellipsoid method, The-

orem 3.21 from [53]. Here is the modified central-cut ellipsoid theorem:

Theorem 3.5.7 There is an algorithm , called the central-cut ellipsoid method,

that solves the following problem:

Input: A rational number µ > 0 and a closed convex set C ⊂ Rn contained

in a ball of radius R. There is an oracle that for any y ∈ Qn either accepts y or finds

a vector c ∈ Qn such that c · x ≤ c · y for any x ∈ C.

70

Output:

Either

(i) a vector a ∈ Qn that the oracle accepts, or

(ii) an ellipsoid E such that C ⊆ E and vol(E) ≤ µ.

The number of calls that the algorithm makes to the oracle is polynomial in n

and the encoding length of its input parameters R and µ,. The number of bits used

to represent the rational numbers in the vectors given to the oracle is also bounded by

such a polynomial.

Proof: For the proof of the original version of the central-cut ellipsoid method

theorem, see Theorem 3.21 in [53].

Now, we show that the central-cut ellipsoid method theorem can utilize our

separation oracle to find an approximate equilibrium.

First, we set µ = (ǫ′

nK10)
n. This disk D is shall be our closed, convex set, and

we shall set R = n in order to easily bound it. If we input σ0 and if the oracle from

Lemma 3.5.6 accepts, then we already have an approximate equilibrium otherwise

the oracle gives a separating hyperplane just like it needs to for the theorem. Thus,

the ellipsoid method will either produce a 1 + ǫ-approximate equilibrium or it will

produce an ellipsoid E such that D ⊆ E(A, a) and vol(E(A, a)) ≤ µ

This condition can’t be reached though, because the volume of an m-ball of

radius r is bounded below by (r
m

)m. This means that vol(D) >

(

ǫ′

K10

n

)n

≥ (ǫ′

nK10)
n =

µ. Thus it can never be the case that D ⊆ E(A, a) if vol(E(A, a)) ≤ µ. Therefore,

the method always finds a (1 + ǫ)-approximate equilibrium and the entire algorithm

71

runs in time polynomial in the input size of the market and the encoding length of ǫ.

72

CHAPTER 4
AN EXPERIMENTAL STUDY OF DIFFERENT APPROACHES TO

COMPUTING MARKET EQUILIBRIA

4.1 Introduction

Over the last few years, the problem of computing market equilibrium prices

for exchange economies has received a good deal of attention in the theoretical com-

puter science community. Such activity led to a flurry of polynomial time algorithms

for various restricted, yet significant, settings. The most important restrictions arise

either when the traders’ utility functions satisfy a property known as gross substi-

tutability or when the initial endowments are proportional (the Fisher model).

In this chapter1 we experimentally compare the performance of some of these

recent algorithms against that of the most used software packages. In particu-

lar, we evaluate the following approaches: (i) the solver PATH, available under

GAMS/MPSGE, a popular tool for computing market equilibrium prices; (ii) a dis-

crete version of a simple iterative price update scheme called tâtonnement; (iii) a

discrete version of the welfare adjustment process; (iv) convex feasibility programs

that characterize the equilibrium in some special cases.

We analyze the performance of these approaches on models of exchange economies

where the consumers are equipped with utility functions which are widely used in real

world applications.

1This chapter is based on joint work with Bruno Codenotti, Sriram Pemmaraju, Rajiv
Raman, and Kasturi Varadarajan. This work appeared in [25, 26], with the final journal
version in [24].

73

The outcomes of our experiments consistently show that many market set-

tings allow for an efficient computation of the equilibrium, well beyond the restric-

tions under which the theory provides polynomial time guarantees. For some of the

approaches, we also identify models where they are are prone to failure.

In its exchange version, the market equilibrium problem consists of finding

prices and allocations of goods to traders such that each trader maximizes her utility

function and the market clears (see below for precise definitions). A fundamental

result in economic theory states that, under mild assumptions, market clearing prices

exist [6].

Soon after this existential result was shown, researchers started analyzing eco-

nomic processes leading to the equilibrium. The most popular of these is tâtonnement ,

which, starting from an arbitrary price vector, updates it according to the mar-

ket excess demand generated by such prices [3, 4]. In its continuous version, the

tâtonnement process is known to converge [4] whenever the market satisfies weak

gross substitutability (see below for the definition). However, it need not converge if

the market does not satisfy this property (see [1], Chapter 17).

The failure of tâtonnement to provide global convergence stimulated a sub-

stantial amount of work on the computation of the equilibrium. Scarf and some

coauthors developed pivoting algorithms which search for an equilibrium within the

simplex of prices [39,54,85,86]. Unlike tâtonnement, these algorithms always reach a

solution, but they lack a clear economic interpretation and they require exponential

time, even on certain simple instances.

74

Motivated by the lack of global convergence of tâtonnement, and by the lack of

a clear economic interpretation for Scarf’s methods, Smale developed a global New-

ton’s method for the computation of equilibrium prices [90]. His approach provides a

price adjustment mechanism which takes into account all the components of the Jaco-

bian of the excess demand functions. However, Smale’s technique does not come with

polynomial time guarantees, and its behavior, when the current price is far from equi-

librium, seems complicated. For this reason, most solvers based on Newton’s method,

including PATH, the solver used in Section 4.3 and which is available under the pop-

ular GAMS framework, do a line search within each Newton’s iteration, in order to

guarantee that some progress is made even far from equilibrium (see [45, 46, 63]).

A different line of work has attempted to take advantage of the convexity

of the set of equilibrium prices in certain exchange markets (see chapter one). For

example, in [4] it is shown that when the market satisfies weak gross substitutability,

a fundamental inequality holds which defines an infinite collection of hyperplanes

that separates equilibrium prices from the rest. A stream of work has extended this

characterization to handle settings where the demand need not be a single-valued

function of the prices. These settings include in particular the case of linear utility

functions (see [74, 78, 79] and the references therein). Some of these papers build

upon the characterization above to propose Ellipsoid and cutting-plane algorithms to

compute the equilibrium.

There has also been some work on writing the equilibria for certain special

exchange economies as solutions to explicit convex programs – Nenakov and Primak

75

[73] for linear and Cobb-Douglas utilities, and Eaves [38] for Cobb-Douglas utilities.

Another family of computational techniques follow from Negishi’s characteri-

zation of the market equilibrium as the solution to a welfare maximization problem,

where the welfare function that is maximized is a linear combination of individual

utility functions obtained by using certain positive weights [72]. This characteri-

zation transforms the problem of computing equilibrium prices into the problem of

computing the appropriate weights of the linear combination mentioned above. For

this computation, there is a natural welfare adjustment process or joint maximization

procedure that works in the space of the weights in a manner that is analogous to

how the tâtonnement process works, in the space of prices. As a result, this pro-

cess is convergent under conditions similar to those implying the convergence of the

tâtonnement process [65].

Recently, the question of when the market equilibrium problem can be solved

in polynomial time has received considerable attention, starting with the work of Deng

et al. [99]. The focus has been on isolating restrictive yet important families of markets

for which the problem can be solved in polynomial time [20,23,29,49,58,60,69,80,100].

Several techniques have emerged in the process – primal-dual methods, auction-based

algorithms, variants of welfare adjustment, tâtonnement, and convex programming

formulations. See [22] for a review of this body of work.

This paper aims to complement the flurry of recent theoretical advances in

the design of polynomial time algorithms for the market equilibrium problem with an

experimental investigation. The specific goal of this paper is to comparatively study

76

four approaches to the problem.

1. The popular software tool based on the modeling language GAMS (short for

“General Algebraic Modeling System”) and specifically its subsystem MPSGE

(short for “Mathematical Programming System for General Equilibrium Analy-

sis”). GAMS/MPSGE is the most commonly used tool for practical applications

involving the solution of market equilibrium problems. The solver we used for

the market equilibrium problem within the GAMS/MPSGE framework is the

Newton-based solver PATH [63].

2. A version of the tâtonnement process. The continuous tâtonnement process

converges for markets satisfying weak gross substitutability, and is particularly

attractive due to its simplicity. The main question is whether the theoretically

well understood continuous tâtonnement process can be turned into a simple

discrete algorithm that has good convergence properties.

3. The sequential joint maximization algorithm of [81]. Such an algorithm roughly

corresponds to “Algorithm 2” in [60] that computes an approximate equilibrium

in an exchange market by iteratively solving a special case of exchange which

arises when the initial endowments are collinear (a.k.a. Fisher’s model). Al-

gorithm 2 in [60] does not fit perfectly into the framework of sequential joint

maximization because it uses an extra fictitious trader.

4. Solving convex programming formulations for the market equilibrium problem

for some speical cases [29, 41]. In the experiments reported in this paper, we

77

use the “convex” option in the general purpose non-linear solver LOQO, in

combination with AMPL, its modeling language.

In our experiments, the utility functions of the traders are derived from the

family of CES and nested CES functions. (See below for the definitions.) Our main

motivation for studying these functions is that they are widely used to model pro-

duction and consumption [59, 93]. Our main observations are:

1. The PATH solver (used within GAMS) typically converges when applied to CES

functions. For certain choices of market types with nested CES functions, how-

ever, the PATH solver exhibits a large variance in performance and often fails

to converge when applied to exchange economies with nested CES functions.

2. The convex programming approach, which is applicable to a subclass of CES

functions [29], compares favorably against PATH and seems to be competitive

in terms of scalability.

3. With an appropriately chosen price update rule, the discrete version of tâtonnement

performed remarkably well on CES functions and in particular scaled well com-

pared to PATH. On nested CES functions, however, the tâtonnement algorithm

also often fails to converge for certain market types, although it generally con-

verges for most market types. The market types on which tâtonnement performs

well complement those on which PATH performs well.

4. The welfare adjustment process is almost always convergent on CES exchange

economies, where the initial endowment vectors are almost proportional. Even

78

when the initial endowments are farthest from being proportional, the process

converges, although with a significantly larger number of iterations, for all but

a few market types.

Theoretical studies of the market equilibrium problem (for the exchange model)

have revealed that polynomial time solvability depends very much on the nature of the

utility functions and the nature of the initial endowments. In the case of CES func-

tions for example, gross substitutability implies polynomial time solvability whenever

the elasticity of substitution (see below for the definition) is greater than or equal to

one; the existence of convex feasibility formulations implies polynomial time solvabil-

ity when the elasticity is greater than or equal to 1
2

[29]; when the elasticity is smaller

than 1
2

we do not know much about polynomial time solvability but we do know that

convex feasibility formulations are ruled out because multiple disconnected equilibria

can occur. For the extreme case of Leontief utility functions (zero elasticity), we

know that polynomial time solvability is unlikely because the problem turns out to

be PPAD-complete (see [75] for the definition of the complexity class PPAD).

In the special case where the initial endowments of the traders happen to

be proportional, we have polynomial time solvability for all CES functions due to

Eisenberg’s convex program [41].

This background led us to the formulation of different input market types, and

motivated us to study how the experimental performance of each algorithm varies with

the market type.

Prior to this paper, there has been some work analyzing the practical perfor-

79

mance of different algorithms for the market equilibrium problem. In [17] the per-

formance of a distributed implementation of tâtonnement is discussed; in [89] several

complementarity solvers are implemented and their relative merits analyzed, while

in [54] the efficiency of Newton’s method is investigated. In [7] an approach based

on global minimization is illustrated, and the outcomes of some numerical experi-

ments are reported. More recently, in [43] the performance of interior point methods

has been analyzed, and computational data have been obtained for some small scale

benchmarks. A common feature of the experiments reported in these works is that the

sizes of the problems considered were quite small. To the best of our knowledge, this

paper provides the first attempt at an experimental evaluation of different algorithms

for large-scale problems.

The rest of this paper is organized as follows. In Section 4.2 we provide the

basic definitions, introduce the market models, describe the different types of input

data, and the computational settings used for the experiments.

In Section 4.3 we present the results of the experimental work performed us-

ing the PATH solver, available under the GAMS/MPSGE system. We identify set-

tings where PATH consistently performs well, and, by contrast, scenarios where the

running-time of PATH is less predictable.

In Section 4.4 we analyze some simple price update schemes, which are discrete

versions of the tâtonnement process, and show that, for certain market types, they

rapidly converge well beyond what the theory predicts.

In Section 4.5 we describe the outcomes of the experiments done using the

80

sequential joint maximization algorithm, which is based on Negishi’s approach for

establishing the existence of the equilibrium [72]. This algorithm seems to converge

in a few iterations, even for settings where the theory does not guarantee convergence.

However the experiments have been limited to medium size instances, due to the fact

that each iteration requires solving a convex program with a large number of variables.

Finally, in Section 4.6 we report on an experimental study of some of the

convex-programming based approaches for computing equilibria in various special

cases. Here too the experiments on large scale problems have not been possible, for

the same reason as above.

4.2 Definitions and Market Models

For the definitions of an exchange economy, market equilibria, and related

properties such as gross subsitutability, see the introductory chapter. The CES utility

function is central to the experiment and a nested version of CES is also introduced,

so the definition is repeated below.

In this chapter, we address the computational problem of finding the equi-

librium price vector for an exchange economy given the initial endowment and an

appropriate representation of the utility function for each trader.

4.2.1 Utility Functions

An important aspect of our experiments is the generation of markets with

enough variety so as to represent a wide range of phenomenon. The utility function

of every agent is a generalization of the constant elasticity of substitution (CES)

81

functional form. A CES function is a concave function defined as

u(x1, x2, . . . , xn) =
(

n
∑

j=1

α
1
σ

j x
σ−1

σ

j

) σ
σ−1

,

where αj ≥ 0 for each j and σ > 0, σ 6= 1. The αj’s and σ are parameters that can

be assigned values to obtain different utility functions. The parameter σ represents

the elasticity of substitution, a natural measure of the curvature of the indifference

curves of the utility function. We call an elastic market a market where consumers

are highly sensitive to price changes. In the case of CES functions, this happens when

all the consumers have a utility function with elasticity of substitution at least one.

The CES functions range from linear utility functions (when σ → ∞) that are fully

elastic to Leontief functions (when σ → 0) that are completely inelastic. When the

utility function is linear, goods are perfect substitutes and when the utility function

is Leontief, goods are perfect complements. In between, when σ → 1, CES functions

become the Cobb-Douglas functions that express a balance between substitution and

complementarity effects. While σ models the elasticity of substitution, the αj’s cap-

ture how much an agent desires good j. CES functions are ubiquitous in economics

literature because of their power to express a wide variety of substitution and comple-

mentarity effects as well as their mathematical tractability which allows for explicit

computation of the associated demand function.

In our experiments, the traders’ utility functions u(x) are chosen from a simple

family of nested CES functions that generalize CES functions. Let u1(x) be a CES

function with elasticity σb that depends only on the quantity of the first ⌊n/3⌋ goods.

82

That is,

u1(x1, x2, . . . , xn) =
(

⌊n/3⌋
∑

j=1

α
1

σb

j x
σb−1

σb

j

)

σb
σb−1

,

where each αj ≥ 0. Similarly, let

u2(x1, x2, . . . , xn) =
(

⌊2n/3⌋
∑

j=⌊n/3⌋+1

α
1

σb

j x
σb−1

σb

j

)

σb
σb−1

,

and

u3(x1, x2, . . . , xn) =
(

n
∑

j=⌊2n/3⌋+1

α
1

σb

j x
σb−1

σb

j

)

σb
σb−1

.

Then

u(x) =
(

u1(x)
σt−1

σt + u2(x)
σt−1

σt + u3(x)
σt−1

σt

)

σt
σt−1

,

for some elasticity σt. We refer to u() as a 2-level nested CES function with 3 nests,

the bottom elasticities being all equal to σb, and the top elasticity being σt. Note that

if the bottom and top elasticities are equal, then u becomes a CES function with

elasticity σb = σt.

Nested CES functions are used extensively to model both production and con-

sumption in applied general equilibrium: We refer the reader to the book by Shoven

and Whalley [59] for a sense of their pervasiveness. The popular modeling language

MPSGE [83] uses nested CES functions to model production and consumption.

4.2.2 Input Generators

Assuming that we use 2-level nested CES functional forms as described above

to represent agent’s preferences, generating a market corresponds to generating αj’s,

σt, σb, and the endowments for each agent. Let m be the number of agents and n

83

the number of goods. For 1 ≤ i ≤ m, 1 ≤ j ≤ n, let αij denote the coefficient

α
1

σb

j of the term x
σb

σb−1

j in agent i’s utility function. For notational convenience let A

denote the m× n matrix of the αij’s. We will call this the desirability matrix since it

represents the distribution of agents extent of desire for different goods. Without loss

of generality, we can assume that the αij ’s are normalized so that the entries in each

row in A sum to 1. Let W denote the m× n matrix of endowments. Without loss of

generality, we assume that endowments are normalized so that entries in W are are

in the range [0, 1] and all column sums are 1. This implies that the total quantity of

each good is one. While the σt (and σb) values for different agents can be different

in general, for our experiments we typically assume that these are all identical. Thus

generating a market corresponds to generating m × n matrices A and W and the

two values σt and σb. We generate matrices A and W independently, using several

generators we have implemented.

4.2.2.1 Generators for the desirability matrices

We have implemented several generators for the desirability matrix A.

Uniform Generator This constructs matrices A such that each agent’s desire is

uniformly distributed among the n goods. Specifically, each row in A is chosen

independently by first picking uniformly a random vector from [0, 1]n and then

normalizing so that the sum of the numbers in the vector is 1.

Concentrated Generator This constructs matrices in which for 1 ≤ i ≤ m, agent

i desires a fraction .8 of good n− i. That is, αi,n−i = .8. Two goods j1 and j2

84

are chosen at random from among the other goods, and their desires are set to

0.1 each. The goods j1 and j2 are chosen at random with replacement and so

they may be identical in which case the agent’s desire for this good is just 0.2.2

This generator assumes that3 m ≤ n.

Sharply Concentrated Generator The desire of agent i is 1 for good i and zero

for the remaining goods. This generator assumes that m ≤ n.

Subset Generator For each agent i, a random subset Ji of the goods with expected

size n/4 is chosen. Agent i’s desire for each good outside Ji is set to 0 and the

rest of the mass is distributed uniformly among the goods in Ji. Rows in the

matrix are generated independently of each other.

4.2.2.2 Introducing correlation in desires

In the description of the uniform generator and the subset generator above, we

mentioned that rows of the desirability matrix are independently generated. We get

matrices with richer structure and asymmetry between goods by introducing some

dependence. We explored the following type of dependence.

Replicated desires In this case, after the first row of A is generated the remaining

rows are generated by simply copying the first row.

2To ensure the existence of an equilibrium, we sometimes perturb the desirability matrix
so that each entry is at least some very small positive number ε.

3In most of our experiments, we have m = n.

85

By combining desirability matrices of two types, we can get a new type of

desirability matrix. For example, we can generate a desirability matrix A1 using the

sharply concentrated generator, a desirability matrix A2 using the subset generator,

pick a parameter β in the range [0, 1] and output βA1 + (1−β)A2. We do in fact use

such combinations in some our experiments.

4.2.2.3 Generators for the endowment matrices

We have implemented several generators for the endowment matrix that are

very similar to the generators for the desirability matrix. We have a uniform gen-

erator and the subset generator for endowment matrices that are identical to the

corresponding generators for the desirability matrices, except that now columns are

independently generated, instead of rows. (Recall that the entries in each column

add up to 1.) The sharply concentrated generator for the endowment matrix assumes

that m ≥ n and gives the entire 1 unit of the j-th good to the j-th trader. The con-

centrated generator for the endowment matrix also assumes that m ≥ n. It takes the

output of the concentrated generator and perturbs it so that the off-diagonal entries

are small positive numbers.

Some dependence can also be introduced among the columns of the endowment

matrix with the uniform and subset generators. The main kind of dependence we use

is that of replicated columns – having generated the first column, the remaining

columns are simply copies of it. Note that this leads to the situation where the

endowments of the agents are proportional – the Fisher model.

86

Finally we may combine the output of two generators, as indicated for the

desirability matrix, to get a new type of generator.

4.2.3 Computational Environment

All of our experiments were performed on a machine with an AMD Athlon,

64 bit, 2202.865 Mhz processor, 2GB of RAM, and running Red Hat Linux Release

3, Kernel Version - 2.4.21-15.0.4

• The experiments in Section 4.3 use the mixed-complementarity solver PATH

that is available under GAMS, which is a modeling system for mathemati-

cal programming problems. GAMS consists of a language compiler integrated

with high-performance solvers, and it is tailored for complex, large scale mod-

eling applications (see [10]). GAMS has been extended to GAMS/MPSGE by

Rutherford [82] to easily handle economic equilibrium problems. The web site

http://www.gams.com/solvers/mpsge/pubs.htm lists a number of scientific

papers which have been using MPSGE.

• The experiments in Sections 4.5 and 4.6 involve solving convex programs. For

this task, we used the general nonlinear solver LOQO [94], which is based on an

infeasible primal-dual interior point method, and runs faster on convex programs

(for which it can be run with the “convex option” on) than on non-convex ones.

4.3 The Performance of an Efficient General Purpose Solver

In this section, we present the outcomes of the experiments we have carried

out with the PATH solver available under GAMS/MPSGE.

87

PATH is a sophisticated solver, based on Newton’s method, which is the most

used technique to solve systems of nonlinear equations [36, 46]. Newton’s method

constructs successive approximations to the solution, and works very well in the

proximity of the solution. However, there are no guarantees of progress far from

the solution. For this reason, PATH combines Newton’s iterations with a line search

which makes sure that at each iteration the error bound decreases, by enforcing the

decrease of a suitably chosen merit function. This line search corresponds to a linear

complementarity problem, which PATH solves by using a pivotal method [45].

Our experiments with GAMS/PATH are of two kinds. The first kind aims at

understanding the sensitivity of PATH to specific market types and parameter ranges

of interest. The second kind studies how the running time scales with input size.

4.3.0.1 Sensitivity to Market Type

Figures 4.1, 4.2, and 4.3 summarize the performance of PATH on economies

with 50 traders and goods for three different choices of generators for the desirability

and endowment matrices. One phenomenon that clearly stands out is that the per-

formance is quite good when the top elasticity σt is less than or equal to the bottom

elasticity σb. This range includes the special case of CES functions. In contrast, the

performance can be significantly worse for some instances where σt > σb. This phe-

nomenon can be seen both in the running time and in the number of runs in which

PATH declares a failure in computing the equilibrium.

The degradation in performance is more striking for some configurations of

88

0.1 0.3 0.5 0.9 1.3 1.7

0.1 1.96 1.11 1.11 1.00 1.00 1.03

0.3 52.31 1.67 1.68 1.64 1.33 1.37

0.5 82.08 86.06 1.85 1.75 1.76 1.68

0.9 40.87 99.08 2.15 1.72 1.76 1.76

1.3 85.29 122.69 1.95 1.44 1.40 1.50

1.7 88.73 58.34 61.11 1.36 1.35 1.39

0.1 0.3 0.5 0.9, 1.3, 1.7

0.1 0 0 0 0

0.3 5 0 0 0

0.5 3 2 0 0

0.9 5 5 0 0

1.3 5 3 0 0

1.7 4 1 1 0

(a) (b)

Figure 4.1: PATH on markets with 50 traders and goods. The desirability matrix is

obtained by adding β times the output of a sharply concentrated generator and (1 − β)

times the output of a subset generator, with β = 0.95. The endowment matrix is from

the sharply concentrated generator. Rows of the table correspond to top elasticity σt, and

columns to bottom elasticity σb. Six values – 0.1, 0.3, 0.5, 0.9, 1.3, and 1.7 – were chosen

for these elasticities. (a) Each entry of this table corresponds to a choice of σt and σb, and

the number shown is the average running time in seconds over five inputs. (b) Each entry

shows the number of failures out of the five runs.

89

0. 1 0.3 0.5 0.9 1.3 1.7

0.1 1.77 1.23 1.23 1.19 1.15 1.07

0.3 110.01 1.84 1.88 1.97 1.90 1.86

0.5 64.38 20.00 2.18 2.01 1.97 2.06

0.9 76.65 43.25 2.29 2.04 1.98 1.99

1.3 2.42 1.82 1.68 1.61 1.68 1.72

1.7 1.62 1.58 1.67 1.64 1.56 1.54

0. 1 0.3 0.5, 0.9, 1.3, 1.7

0.1 0 0 0

0.3 5 0 0

0.5 3 1 0

0.9 3 0 0

1.3 0 0 0

1.7 0 0 0

(a) (b)

Figure 4.2: PATH on markets with 50 traders and goods. The desirability and
endowment matrices are generated using the concentrated generators.

90

0.1 0.3 0.5 0.9 1.3 1.7

0.1 1.25 1.04 1.03 1.04 1.04 1.04

0.3 2.60 1.37 1.24 1.25 1.16 1.08

0.5 2.04 1.58 1.45 1.24 1.25 1.25

0.9 2.85 1.74 1.66 1.58 1.41 1.33

1.3 3.13 1.77 1.91 1.78 1.54 1.49

1.7 3.12 1.84 1.90 1.98 1.66 1.70

0.1, 0.3, 0.5, 0.9, 1.3, 1.7

0.1 0

0.3 0

0.5 0

0.9 0

1.3 0

1.7 0

(a) (b)

Figure 4.3: PATH on markets with 50 traders and goods. The desirability and
endowment matrices are generated using the uniform generators.

generators than others. For instance, PATH performs much better on the configura-

tion corresponding to Figure 4.3 than on the configuration corresponding to Figure

4.1.

4.3.0.2 Running Time as a Function of Input Size

To get an estimate of how the running time of PATH varies with input size,

we experimented with some generator configurations and choices of σt and σb where

PATH does not report failure. Figure 4.4 illustrates how the running time grows fairly

91

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

Size

T
im

e

Market 2 0 1.250000 G(Scatter)

10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Size

T
im

e

Market 0 0 1.500000−0.500000 G(Scatter)

(a) (b)

Figure 4.4: The running time of PATH, in seconds, as a function of the input size
(m = n). (a) The concentrated generator is used for the desirability matrix and
the uniform generator for the endowment matrix; σt = σb = 1.25. (b) The uniform
generator is used for both the desirability and endowment matrix; σt = 1.5 and
σb = 0.5. There were five runs for each input size.

rapidly with size for two such parameter choices. The runs on other benchmarks (in

PATH’s good range) yield very similar figures.

4.4 An Algorithm Derived from the Tâtonnement process

In 1874 Léon Walras proposed that an equilibrium price vector could be

reached via a discrete price-adjustment process that he called tâtonnement. In Samuel-

son’s (1947) now-standard version of tâtonnement, competitive agents receive a price

signal, and report their excess demands at these prices to the central auctioneer. The

auctioneer then computes aggregate excess demands, adjusts the prices incrementally

in proportion to the magnitude of excess demands, and announces the new incre-

mentally adjusted price level. In each round, agents recalculate their excess demands

92

upon receiving the newly adjusted price signal and report these to the auctioneer.

The process continues until prices converge to an equilibrium.

In its continuous version, the tâtonnement process is governed by the differ-

ential equation system: dπi

dt
= Gi(Zi(π)) for each i = 1, 2, . . . , n where Gi() is some

continuous and differentiable, sign-preserving function and the derivative of πi is with

respect to time. The continuous version of tâtonnement is more amenable to analysis

of convergence, and it is this process that is shown to be convergent by Arrow, Block,

and Hurwicz [4] for markets satisfying weak GS.

In our implementation of tâtonnement, the starting price vector is (1, 1, . . . , 1).

Let πk be the price vector after k iterations (price updates). In iteration (k + 1), the

algorithm computes the excess demand vector Z(πk) and then updates each price

using the rule πk+1
i ← πk

i + ci,k · Zi(π
k). One specific choice of ci,k that we have used

in many of our experiments is

ci,k =
πk

i

i ·maxj |Zj(πk)| .

This choice of ci,k ensures that |ci,k ·Zi(π)| ≤ πk
i and therefore π continues to remain

non-negative. Also noteworthy is the role of i that ensures that the “step size”

diminishes as the process (hopefully) approaches the equilibrium.

Our experiments with tâtonnement were of three kinds. In the first, we at-

tempt to understand the sensitivity of its performance, measured in terms of the num-

ber of iterations, to the market type. In the second, we study how the performance

scales with size. For these two kinds of experiments, we terminated tâtonnement

when maxi |Zi(π
k)| fell below a threshold value of ǫ = 10−4 (success) or when the

93

0. 1 0.3 0.5 0.9 1.3 1.7

0.1 0.21 100.00 100.00 0.07 3.96 5.66

0.3 0.14 0.55 75.48 0.06 6.79 2.04

0.5 0.35 0.85 0.45 0.04 5.78 2.68

0.9 0.83 0.12 0.52 0.22 4.10 4.19

1.3 0.59 0.27 1.24 0.54 0.03 0.18

1.7 0.10 0.78 0.67 1.67 0.02 0.01

0.1 0.3 0.5 0.9, 1.3, 1.7

0.1 0 5 5 0

0.3 0 0 3 0

0.5 0 0 0 0

0.9 0 0 0 0

1.3 0 0 0 0

1.7 0 0 0 0

(a) (b)

Figure 4.5: Performance of tâtonnement on markets with 50 traders and goods. σt

varies with the rows and σb with the columns. The desirability matrix is obtained
by adding β times the output of a sharply concentrated generator, and (1− β) times
the output of a subset generator, with β = 0.95. The endowment matrix is from the
sharply concentrated generator. (a) The number of iterations, in thousands, averaged
over 5 runs. (b) The number of failures out of 5 runs.

number of iterations exceeded 100, 000 (failure), whichever happened first. In the

third kind of experiment, where we study how the performance depends on ε, we

increased the limit on the number of iterations to 10 million.

94

0. 1 0.3 0.5 0.9 1.3 1.7

0.1 0.29 1.27 2.90 1.07 2.64 0.63

0.3 0.10 1.10 0.16 0.60 1.73 1.29

0.5 0.12 1.20 1.85 7.69 0.14 0.48

0.9 0.90 0.10 2.51 2.91 2.70 3.54

1.3 0.50 0.13 0.33 0.21 0.29 0.32

1.7 0.75 0.15 0.21 0.48 1.21 3.41

0.1, 0.3, 0.5, 0.9, 1.3, 1.7

0.1 0

0.3 0

0.5 0

0.9 0

1.3 0

1.7 0

(a) (b)

Figure 4.6: Performance of tâtonnement on markets with 50 traders and goods. The
desirability and endowment matrices are generated using the concentrated generators.

95

4.4.0.3 Sensitivity to Market Type

Figures 4.5 and 4.6 illustrate the performance of tâtonnement on economies

with 50 traders and goods for two different choices of generators for the desirability

and endowment matrices. As in the case of PATH, the choice of generators signifi-

cantly impacts the performance of tâtonnement. In contrast with what we observed

for PATH, tâtonnement performs better on markets with σt ≥ σb than on markets

with σt < σb. This can be seen in Figure 4.5 in the number of failures as well as the

number of iterations used. We observed this phenomenon consistently in generator

configurations for which there was a degradation in the performance of tâtonnement.

4.4.0.4 Performance as a function of input size

We measured how the number of iterations taken by the tâtonnement algo-

rithm changes with size for various configurations of the desirability and endowment

generators, σt and σb. As with PATH, we focussed on the parts of the configuration

space where tâtonnement does not tend to fail. In these experiments, the input size

is the number of traders which equals the number of goods. Quite remarkably, we

find that the number of iterations does not grow significantly with input size, but

stays nearly flat once the input size is beyond a certain threshold. This phenomenon

happens consistently across the input configurations, and is illustrated by the plots

shown in Figures 4.7 (a) and (b). The running time, on the other hand, does grow

with the input size.

At each iteration of the tâtonnement algorithm, the essential and most expen-

96

0 50 100 150 200 250 300
0

2000

4000

6000

8000

10000

12000

Size

Ite
ra

tio
ns

Market 0 0 1.100000−1.100000 L

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5
x 10

5

Size

Ite
ra

tio
ns

Market 10 9 0.100000−1.500000 L

(a) (b)

Figure 4.7: The number of iterations of tâtonnement, as a function of the input size
, with m = n. (a) The uniform generator is used for both the desirability matrix
and the endowment matrix; σt = σb = 1.1. (b) The desirability matrix is obtained
by adding β times the output of a sharply concentrated generator and (1− β) times
the output of a subset generator, with β = 0.95. The endowment matrix is from the
sharply concentrated generator; σt = 0.1 and σb = 1.5. The number of iterations for
each input size is averaged over five runs.

sive task is the computation of the demand at the new price. The demand function

for traders with CES utilities has an explicit formulation which can be easily derived.

If Mi denotes the income of the i-th trader, then her demand for good j is

(
αij

πj

)σ Mi
∑

1≤j≤n ασ
ijπ

1−σ
j

.

Using this formula, the aggregate excess demand can be computed in O(mn)

time.

The same asymptotic bound applies to the computation of the demand for

nested CES functions, when the number of nests is a constant, as was the case in the

experiments we conducted.

97

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

2

4

6

8

10

12

14

16

18
x 10

5

Log(1/epsilon)

Ite
ra

tio
ns

Market 0 0 1.200000−0.500000 E

1 2 3 4 5 6 7
0

1

2

3

4

5

6
x 10

6

Log(1/epsilon)

Ite
ra

tio
ns

Market 10 9 1.000000 E

(a) (b)

Figure 4.8: The number of iterations of tâtonnement, as a function of log10(1/ε),
with m = n = 50. (a) The uniform generator is used for both the desirability matrix
and the endowment matrix; σt = 1.2 and σb = 0.5. (b) The desirability matrix is
obtained by adding β times the output of a sharply concentrated generator and (1−β)
times the output of a subset generator, with β = 0.95. The endowment matrix is
from the sharply concentrated generator. ; σt = σb = 1.0. The number of iterations
for each input size is averaged over five runs.

4.4.0.5 Performance as a function of ε

The number of iterations of tâtonnement seems to grow rapidly with respect

to log(1
ǫ
), quite independently of the market type. Figures 4.8(a) and (b) show typical

plots.

4.5 Welfare Adjustment Schemes

In this section we report on some experimental work for computing equilibria in

the exchange model using the sequential joint maximization algorithm, which is based

on Negishi’s approach for establishing the existence of the equilibrium [72]. Let Rn
++

denote the subset of Rn with all positive coordinates. Let α = (α1, . . . , αm) ∈ Rm
++,

98

be any vector. Consider the allocations that solve the following optimization problem

over xi ∈ Rn
+:

Maximize
m
∑

i=1

αiui(xi)

Subject to
∑

i

xij ≤
∑

i

wij for each good j.

The optimal allocations x̄i are called the Negishi welfare optimum at the welfare

weights αi. Let π = (π1, . . . , πn) ∈ Rn
+, where the “dual price” πj is the Lagrangian

multiplier associated with the constraint in the program corresponding to the j-th

good. Define Bi(α) = π ·wi − π · x̄i, the budget surplus of the i-th trader at prices π

and with allocation x̄i. Define fi(α) = Bi(α)/αi, and f(α) = (f1(α), . . . , fm(α)).

Under some standard assumptions on the utility functions, the following prop-

erties hold for the map f : Rm
++ → Rm (see Chapter 7 of the book by Ginsburgh and

Waelbroeck [51] for a systematic exposition.)

1. f(α) is single valued, continuous, and differentiable at each α ∈ ℜm
++.

2.
∑

i αifi(α) = 0, which corresponds to Walras’ Law.

3. For any real λ > 0, f(λα) = f(α), which is positive homogeneity.

4. There exists an α∗ ∈ Rm
++ such that f(α∗) = 0. The corresponding dual prices

constitute an equilibrium for the economy.

Properties (1)-(3) follow from definitions and basic optimization theory; property (4)

follows from Negishi’s theorem [72]. This characterization suggests an approach for

99

finding an equilibrium by a search in the space of Negishi weights. This approach,

which is complementary to the traditional price space search, is elaborated in [51,

65, 81]. In particular, Mantel shows [65] that if the utility functions are strictly

concave and log-homogeneous, and generate an excess demand that satisfies gross

substitutability, then we have ∂fi(α)
∂αi

< 0 and
∂fj(α)

∂αi
> 0 for j 6= i. This is the analogue

of gross substitutability in the “Negishi space.” He also shows that a differential

welfare-weight adjustment process, which is the equivalent of tâtonnement, converges

to the equilibrium in these situations. The related computational methods that work

in the space of welfare weights to find an α∗ such that f(α∗) = 0 are usually called

welfare adjustment or joint maximization methods.

If each ui is the logarithm of a function that is homogeneous of degree one,

which is the case in our experiments4, then a result of Eisenberg [41] implies that

the dual prices corresponding to welfare weights α = (α1, . . . , αm) are precisely the

Fisher equilibrium prices for the model in which the traders have incomes α1, . . . , αm.

The welfare adjustment methods can then be seen as attempting to compute an

equilibrium for the exchange economy by iteratively solving Fisher instances. This

idea has been explored by Ye [100] for the case of linear utility functions. The second

algorithm of Jain, Mahdian, and Saberi [60] may also be seen in this light, although

it uses an extra trader and thus does not fit directly into this framework.

We implemented an algorithm for computing the equilibrium for an exchange

4The nested CES functions we use are homogeneous of degree one; however, it is easy
to verify that replacing each trader’s utility function by its logarithm does not change the
equilibria.

100

market that uses an algorithm for the Fisher setting as a black box. The algorithm

starts off from an arbitrary initial price π0, and computes a sequence of prices as

follows. Given πk, the algorithm sets up a Fisher instance by setting the money of

each trader to be ek
i = πk ·wi, where wi is the i-th trader’s initial endowment. Let πk+1

be the price vector that is the solution of the Fisher instance with incomes ek
1, . . . , e

k
m.

The goods in the Fisher instance are obtained by aggregating the initial endowment

wi of each trader. If πk+1 is within a specified tolerance of πk, we stop and return

πk+1; one can show that πk+1 must be an approximate equilibrium. Otherwise, we

compute πk+2 and proceed.

This may be seen as a version of tâtonnement in the Negishi space. We are

simply performing the step ek+1
i ← ek

i + ek
i fi(e

k).

In our implementation of the iterative Fisher algorithm, we stop when the

Euclidean distance between the successive prices falls below 0.001 (success) or when

the number of iterations exceeds 100 (failure). In our experiments, we studied how

the convergence of the iterative Fisher algorithm varied with elasticity of the CES

utility functions (we set σt = σb) and the initial endowments. If the elasticity is

greater than 1, then gross substitutability holds, and Mantel’s results [65] show that a

differential version of welfare adjustment converges to the equilibrium welfare weights.

On the other hand, if the initial endowments of the traders are proportional, then

Eisenberg’s result [41] implies that our iterative Fisher algorithm should terminate

in two iterations. Setting m = n, we generate the endowment matrix by taking β

times the output of the sharply concentrated generator plus (1−β) times the output

101

of a uniform generator with replicated columns (recall that this yields proportional

endowments). We varied the parameter β from 0 to 1. Note that when β = 0, the

initial endowments are proportional, whereas when β = 1, the initial endowments are

orthogonal. We varied the elasticity of the utility functions of the traders from 0.1 to

1.3.

Figure 4.9 shows the result of such an experiment when the uniform generator

is used for the desirability matrix. The algorithm converges in a very small number

of iterations for all elasticity and β values, though the number of iterations tends to

be somewhat higher when β equals 1.

0.0 0.2 0.4 0.6 0.8 1.0

0 .1 2 2 2 2 2 5.2

0.3 2 2 2 2 2 5

0.5 2 2 2 2 2 5

0.7 2 2 2 2 2 4.8

0.9 2 2 2 2 2 4.8

1.1 2 2 2 2 2 4.4

1.3 2 2 2 2 2 4

Figure 4.9: Number of iterations of the iterative Fisher algorithm. The elasticity
of the CES functions of the traders varies with the rows; β varies with the columns;
each entry is the average number of iterations over 5 runs. We have m = n = 25 and
the desirability matrix is computed using the uniform generator

102

Figure 4.10 (a) tabulates the number of iterations where we use the concen-

trated generator for the desirability matrix. Note that the number of iterations is

quite small when β ≤ 0.8, indicating that the iterative Fisher algorithm tends to

converge quickly when the initial endowments are even reasonably close to being

proportional. The number of iterations is significantly larger when the initial endow-

ments are orthogonal (β = 1). Even in this case, failure to converge tends to happen

only for small elasticity values, as can be seen from Figure 4.10 (b).

These results are quite representative of the behavior we observed over different

choices of generators for the desirability matrix. The explanation for these good

convergence results should be read in the light of the discussion above, which shows

that we are actually performing a welfare adjustment process in the Negishi space.

Ye [100] gives an example with two traders and two goods and linear utilities for

which the simple iterative Fisher algorithm described above cycles between two prices

(and therefore does not converge). As explained, the iterative update in the above

algorithm corresponds to making the update αk+1
i ← αk

i + αk
i fi(α

k) in the Negishi

space. It is conceivable (and probably even provable using the technology in [4])

that a differential version of the above converges to an equilibrium when the utility

functions satisfy GS; note that Mantel [65] has shown that a differential version of

αk+1
i ← αk

i +fi(α
k) converges to an equilibrium in this situation. In our experiments,

we worked with the simple iterative Fisher and not a differential version, motivated

by the fact that this is done in practice [81].

103

0.0 0.2 0.4 0.6 0.8 1.0

0 .1 2 2 2.4 3 3 75.2

0.3 2 2 3 3 3 87

0.5 2 2 3 3 3 47.6

0.7 2 2 2.8 3 3 48.6

0.9 2 2 2.4 3 3 46.2

1.1 2 2 2.8 3 3 56.4

1.3 2 2 2.6 3 3 62.4

0.0 0.2 0.4 0.6 0.8 1.0

0 .1 0 0 0 0 0 3

0.3 0 0 0 0 0 2

0.5 0 0 0 0 0 0

0.7 0 0 0 0 0 0

0.9 0 0 0 0 0 0

1.1 0 0 0 0 0 0

1.3 0 0 0 0 0 0

(a) (b)

Figure 4.10: The iterative Fisher algorithm when the concentrated generator is used
for the desirability matrix; m = n = 25. (a) The average number of iterations over 5
runs. (b) The number of failures out of 5 runs.

104

10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

Size

T
im

e

smoothfisherLOQOtimeVsSize

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

Size

T
im

e
(s

ec
on

ds
)

Market 5 0 A

(a) (b)

Figure 4.11: Running time as a function of size for (a) the convex program for Fisher
instances with σ = 0.25, and (b) for the convex program for exchange instances with
σ = 1.25.

4.6 Explicit Convex Programs

In this section, we report on an experimental study of some of the convex-

programming based approaches for computing equilibria in various special cases.

The Fisher Setting. We implemented the convex program of Eisenberg [41] for

computing the equilibrium in the Fisher setting when the traders have homogeneous

utility functions. The program has n ∗m variables for a market with m traders and

n goods, has n linear constraints, and a concave objective function. Our interest is

in measuring how well the running time scales with size. In our experiments, we set

n = m. Figure 4.11(a) depicts how the average running time varies with n for a a

typical run where traders having CES utilities with σ = 0.25. We did not run the

experiments beyond n = 50 since the solver LOQO took too long to complete. We

suspect that this happens because the number of variables in the program is n ∗m.

105

Exchange Economies with CES utilities. Codenotti et al. [29] present convex

programs that characterize the equilibria in exchange economies where traders have

CES functions with elasticity that lies in the range (a) [1/2, 1), and (b) (1,∞). We

implemented a version of their convex program when the elasticities lie in the latter

range. This program has n + m variables for a market with m traders and n goods

and n + m constraints. In our experiments, all the traders have the same elasticity

and n = m. We measured how well the running time scales with problem size.

Figure 4.11(b), which is quite typical, depicts how the average running time varies

with n for σ = 1.25. Note that the running time compares favorably with that of

PATH for the same input configuration (see Figure 4.4 (a)).

We also measured how the running time varies with elasticity. For a market

with n = 25, we varied the elasticity of substitution from 1 to 20 and found that,

beyond a certain point, the running time is stable and increases only very mildly

with the elasticity. We experimented with different kinds of markets and found this

behavior to be fairly typical.

106

CHAPTER 5
AGENT HEURISTICS AND PATHS TO NASH EQUILIBIRUM

5.1 Introduction

There has recently been a great deal work investigating the complexity of

computing Nash equilibria. Christos Papadimitriou [68] articulates the view that a

solution concept must not only be intuitively compelling, but also tractable compu-

tationally. Even though the concept of Nash equilibrium is not inherently a com-

putational one, if rational utility maximizing agents are expected to arrive at the

equilibrium, one might expect a computer could compute the equilibrium efficiently.

In the words of Papadimitriou, “Efficient computability is an important modeling

prerequisite for solution concepts.”

One could go even further than Papadimitriou since a solution could poten-

tially be computed efficiently, but only with information unavailable to agents within

the game. If a solution cannot be computed based on the information available to

agents, it might be thought unlikely to be a valid prediction of behavior. In general,

the problem with the concept of Nash equilibrium is that it is not clear how agents

will arrive at it.

In 2001, Papadimitriou placed the computation of Nash Equilibrium as one

of the central problems in theoretical computer science. It has been shown by Chen

and Deng [16] that even in the two player case, the problem of computing a Nash

equilibrium is PPAD-complete. Some problems [61] in PPAD(“Polynomial Parity

107

Arguments on Directed Graphs”) [75], such as computing Brouwer fixed points and

finding an n-player Nash equilibrium are widely thought to be intractable. Therefore,

it is strongly suspected that PPAD 6= P . For a precise definition of PPAD, see [31,75].

This chapter uses simulations of a restricted form of Two Player Texas Hold’em

to show that in this setting, the Nash equilibrium is a reasonable long run expectation

for player behavior. If players update their strategies based on simple adaptations to

their performance with hands up until that point, they find themselves near the Nash

equilibrium after they play many hands.

5.2 Two Player Push-Fold No Limit Holdem

Models of poker have been studied in conjuction with game theory from the

very beginning [9,44,96]. These models have tended to be very simple approximations

of actual poker games. More recently, game theoretic ideas have been applied to

improve artificial intelligence for actual poker games, specifically two player Texas

Hold’em (e.g. [50]). Chen and Ankenman analyze several simplified models of poker

[13].

The model we wish to examine in detail is two player push-fold No Limit

Holdem. This game is quite close to the actual game of Texas Holdem late in tourna-

ments where the blinds are very large relative to the size of the players’ chip stacks.

With deeper stacks, players would want to take advantage of later betting rounds.

I follow Chen and Ankemenan’s description of the game [13]. Each player has

a stack of size S. The first player to act, the pusher, or the attacker pays a small

108

blind (forced bet) of 0.5 units. The second player to act, the caller, or the defender,

pays a big blind of 1 unit. Both players receive two private “hole” cards. At this

point, the attacker can “push”, that is, bet the remainder of her chips or fold. If the

attacker folds then the defender wins the 1.5 unit pot. If the attacker pushes, then the

defender can call or fold. If the defender folds then the attacker wins the pot. If the

defender decides to call the attacker’s push then five community cards are dealt out

and we have a showdown where both players display their cards. Both the attacker

and the defender can use their hole cards and the community cards to construct the

best possible five card poker hand. The winning hand receives the entire pot of 2S

units. In case of a tie, the pot is split evenly. The Push-Fold game can be seen

graphically in Figure 5.1 with an example showdown in Figure 5.2.

Suppose the attacker pushes all in. If the defender knew her opponent’s hole

cards, the decision to call or fold would be a straightforward calculation. The defender

would want to call if calling had a greater expected value in chips gained than folding.

The defender can calculate her probability p of winning with her hole cards versus the

attacker’s hole cards. She will want to call if (S + 1)p− (S − 1)(1− p) > 0. A simple

manipulation shows that she will call if p > S−1
2S

. One can see that p approaches 1/2

as S grows.

In a real game, the defender will not know the attacker’s cards and thus

not know the probability p of winning the hand. If instead, she knew the attacker’s

pushing strategy then she could calculate her chance of winning against the attacker’s

range of hands. There are 1326 possible hands. If one played each hand the same way

109

Figure 5.1: Diagram of the Push Fold Game

every time, then a strategy could be represented as a vctor in {0, 1}1326. If a player

wished to randomize their behavior (e.g. push (K hearts, 2 clubs) 85% of the time

and fold it 15% of the time) and use a mixed strategy, then their strategy would be

represented by a vector in [0, 1]1326.

Some hands are strategically equivalent though - there is no reason to treat (7

clubs, 8 hearts) any differently than (7 spades, 8 diamonds). One would treat suited

hands like (7 spades, 8 spades) differently since they have a greater chance of winning

110

Figure 5.2: Showdown when Player A pushes and Player B calls

by getting a flush. There are only 169 strategically different hands. This includes

13 pairs, 13 ∗ 12/2 suited hands, and 13 ∗ 12/2 non suited hands. A pushing (or

calling) strategy can thus be represented by vector x ∈ [0, 1]169 where xi represents

the probability of pushing (or calling) with the ith hand. Typically, a strategy will

dictate that a player always play or always fold a given hand so most recommended

strategies have the overwhelming majority of components either 0 or 1.

Some hands are clearly superior to other hands. For example, pocket aces are

111

superior to pocket kings since AA has a higher probability of winning against every

hand than KK does. Thus there will never be any rational strategy where one will

call with KK, but fold AA. One can not put a complete ordering of hands in this

manner though since the relation is not transitive. 22 is a favorite against Ace-King

offsuit and Ace-King offsuit is a strong favorite against Jack-Ten suited, but Jack-Ten

suited is a favorite against 22.

5.2.1 Equilibrium Strategy

If x is a strategy for player 1, and y is the strategy for player 2 then we can

calculate E(x, y), the expected gain in chips for player 1. There is randomness in

both what hole cards the players will receive and in who the winner of the hand is,

but the probability distributions are known. We know the probability of receiving a

certain hand and can calculate the probability that one specific set of hole cards will

defeat another specific set of hole cards. Therefore, once the strategies are given, the

expected gain in chips for each player can be calculated. In some cases, one might

want to calculate the conditional expected value of playing a particular hand (e.g.

AK offsuit) against an opponent’s strategy.

Chen and Ankeman were the first to publish the Nash Equilibrium or “opti-

mal” strategies for the two player push-fold game [13]. They published a table that

gives the equilibrium strategy for a game with stack sizes of less than 50 big blinds.

This is a strategy where each player is playing a best response to the other player

and neither has any reason to deviate. If x is a strategy for player 1, and y is the

112

strategy for player 2, we represent the expected gain in chips for player 1 by E(x, y).

The expected gain for player 2 is necessarily −E(x, y).

Definition 5.2.1 Strategies x∗ and y∗ are equilibrium strategies if and only if E(x∗, y∗) ≥

E(x, y∗) for all x ∈ [0, 1]169 and −E(x∗, y∗) ≥ −E(x∗, y) for all y ∈ [0, 1]169

As mentioned earlier, many Texas Holdem tournaments essentially become the

2 player push-fold game at the end due to the stack sizes becoming small relative to

the blinds thus precluding multiple betting rounds. Empirically, it is quite clear that

most participants do not employ the equilibrium strategy. The following strategies

are attempts to model sensible strategies. In fact, these strategies though in some

sense simple, are likely superior to many players because they will have access to

perfect memory of previous hands and can perform fast and accurate calculations of

probablities. Because this is a zero-sum game, a more tractable problem than the

general case, there is some hope that some of these strategies might lead to a Nash

equilibrium.

5.2.2 Results Oriented Strategy

The first strategy is what I will interchangably call basic adapative or the

results oriented strategy (ROS). In this strategy, the player is wholly ignorant of poker

strategy and the value of poker hands. The player only sees the results, the change in

the size of her chipstack after playing or folding a hand. The player begins by pushing

(or calling) every hand with probability .5. The player keeps track of how successful

113

the strategy is with each hand. The vector z ∈ [0, 1]169 stores this information with

zi being equal to the total profitability of hand i when it was pushed (or called)

with compared to what would’ve happened if the hand had not been played. For

example, suppose the pusher has pushed J8 offsuit ten times and lost a total of 3

chips. If the pusher had folded each time, he would have lost 10× .5 = 5 chips, thus

zi = −3− (−5) = 2 for i correspending to J8 offsuit. There will be a separate vector

for calling and folding. The strategy vector x will be determined by z. Specifically,

we set xi(zi) to be the sigmoid function, a special case of the logistic function:

xi(zi) =
1

(1 + e−αzi)

with α being a sensitivity paramter. As the zi diverge from 0, the xi will tend

towards 0 or 1. This is desirable since the equilibrium strategy for all stack sizes is a

pure strategy with the exception of one or two hands. Larger values of α would cause

faster convergence towards a pure strategy but could be less likely to converge to a

best response against their opponent. This is because a fluke early result (e.g. losing

twice with pocket aces) could have the effect of a player never playing a hand that

has a very high expected value.

The player has no knowledge of poker hands, but has perfect memory on the

success of hands that have been played so far. There will be separate x vectors for

guiding pushing and calling decisions, xp and xc.

114

5.2.3 Odds Aware Strategy

The odds aware strategy (OAS) is similar to the ROS. The player begins by

playing every hand with .5 probability. The difference is that when there is a push and

a call, she sees the other players cards’ and can determine the probability of winning

the hand. She can thus determine the probablity that she will win that hand. This

probability can be used to determine the expected gain in chips and this expected

gain in chips is used in the average for zi rather than the actual profit from the given

hand.

This strategy is best illustrated with an example. Each Player has a stack size

of ten units. Suppose that on the first hand, the first player pushes with (2h, 2c)

and player two calls with (Ah, Kh). The community cards are then dealt out and

they are (2s, 2d, Th, Jh, Qh) so Player 1 has her four of a kind 2’s (2h, 2c, 2s, 2d,

Qh) defeated by Player 2’s Royal Flush (Th, Jh, Qh, Kh, Ah). Under ROS, Player

1 has a profit of −10 which will result in a zi = −9.5. If player 1 had been using

the OAS, they would realize that the community cards could have been different and

that over all possible community cards, (2h, 2c) will defeat (Ah, Kh) 855,521 times,

lose 845,329 times, and tie 11,454 times for an overall pot equity of 50.3%. In OAS,

the pushing player would have a zi = (.503×20)−10− (−.5) = .56. The OAS player

would be expected to move more smoothly in the equilibrium direction since they

would be less prone to being influenced by uncommon random events.

115

5.3 Simulations

The simulations consist of repeated plays of the push-fold game with the stack

sizes reset to a constant at the beginning of each hand. The majority of experiments

were conducted with a stack size of 10. This is due to the fact that the equilibrium

strategies for stack size 10 are more interesting. If stack sizes are very large (say 1000

units), then the equilibrium strategy would simply have the pusher and caller playing

only when dealt two pocket aces. If the stack size was extremely small like 2 units,

then the equilibrium play would be for the pusher to push almost every hand and

the caller call every hand. With a stack size of ten, the equilibrium pusher will be

pushing roughly half the time.

5.3.1 Measures of Distance

There are multiple ways one can measure the effectiveness of an adaptive

strategy. One can look at the Euclidean distance of the strategy from the equilibrium

strategy and how that changes over time. One problem with that method is that not

all hands and their associated push-fold decisions carry equal monetary weight for

the player. For some hands, there is very little difference in expected gain in chips

between pushing and folding. If a strategy differs from the equilibrium strategy only

on these marginal hands, this strategy will be very close to a best response despite

being some distance away in 169 dimension Euclidean space.

I present graphs where we see both the Euclidean distance from equilibrium

and the expected gain in chips for a strategy compared to the expected gain in chips

116

for a strategy that is a best response to the opponent’s strategy. Because the results

for the pusher and caller are largely similar, I present graphs only for the pushing

player.

The first simulation has two basic adapative or ROS players playing against

one another. Initially, the pusher pushes every hand with probability .5 and the

caller calls every hand with probability .5. They then adjust based on their results

according the ROS update rule described above with each player utilizing an α = .01.

You can see in figure 5.3 that the player moves in the direction of the equi-

librium strategy, but that progress slows down rather quickly. After 2 million hands,

the distance to the equilibrium vector has been cut in half, but there is still a rather

large gap. It turns out that most of the gap is indeed produced by hands where the

player is nearly indifferent between pushing or folding. The hands where the player

disagrees with the equlibrium play tend to have an expected value of near -.5 big

blinds, the exact expected value one would get for folding. The strategy for really

obvious hands with expected values far from -.5 tended to be close to the equilibrium

strategy.

In figure 5.4, you can see the evolution of the expected value of the pusher’s

strategy against the caller’s actual strategy. This is compared with the expected value

of a perfectly exploitative strategy against the caller’s strategy. The gap between

the two starts out extremely large, but eventually converges to the point where the

expected value of the pusher’s strategy is within 1 big blind per 100 hands of a best

response to his opponent’s actual strategy. The caller’s strategy is also close to a best

117

Figure 5.3: Euclidean Distance of Results Oriented Pusher from Nash Equilibrium
pushing strategy while playing a Results Oriented Caller for 2 million hands. Both
players had a stack size of 10 big blinds.

response. This is the case despite never knowing the opponent’s actual strategy and

only adapting based on the results of previous hands. Convergence is not quick, but

this gives some support to the notion of Nash Equilibrium as a prediction of behavior

in the context of the push-fold game.

5.3.2 Sensitivity Parameter

For the basic adaptive or the results oriented strategy, the sensitivity param-

eter α for the update function is important. I found that in practice, .01 was an

effective value. It could be argued that convergence is too slow and it takes an un-

reasonable number of hands to converge, but the results in the previous section show

that we do indeed see convergence to an effective strategy, a near equilibrium. If we

118

Figure 5.4: Expected Value of ROS Pusher against ROS Caller compared to the
Expected Value of a best response to that same caller.

up the sensitivity parameter to .1 then we do see an initial improvement in conver-

gence speed, but the strategy never gets very close to being within 1 big blind/100

hands of a best response even after two million hands. If we up α all the way to 1,

we don’t go anywhere near equilibrium. In fact, in this simulation, the Euclidean

distance actually increases from 6.5 to 8.1 and the gap in expected value stays above

20 big blinds per 100 hands. This can be seen in Figure 5.5.

5.3.3 Different Update Rules

In this section, I compare and contrast the performance of the basic adaptive

or results-oriented strategy (ROS)to the odds-aware strategy (OAS). We see, as one

would expect, somewhat faster convergence to near equilibrium. We run both ROS

and OAS pushers against an equilibrium caller. Both players converge towards equi-

119

Figure 5.5: Three Simulations with ROS pushers and callers. Graph shows the gap
in expected value between a best response and the actual strategy for three different
values of the sensitivity parameter.

librium, but the OAS is somewhat faster. The OAS is within 1 big blind per 100

hands after 500,000 hands. The ROS takes 1 million hands to get to that level Figure

5.6 shows the ratio of the OAS gap (difference in strategy expected value to best

response expected value) to the ROS gap. As you can see, the OAS is superior, but

the difference is not overwhelming.

5.3.4 Different Stack Sizes

All prevous experiments were done with a stack size of 10. As argued previ-

ously, this stack size makes for a more interesting equilibrium strategy for the push

fold game. This section examines simulations with stack sizes of 5 and 40. At equi-

librium, players with stack size of 5 will play most hands equilibrium players with

120

Figure 5.6: Graph shows the ratio of an Odds Aware player’s expected value gap to
the Results Oriented player’s expected value gap.

stack size 40 will play very few hands. Also, the equilibrium play of Push-Fold players

with a stack size of 40 will bear less resemblance to optimal play in full blown Texas

Hold’em because those players would have more room for betting in later betting

rounds. Interestingly, with a stack size of 5, the pusher has a slight advantage in

expected value at the Nash equilibrium. At size 10, the pusher has a small disadvan-

tage. At size 40, the pusher has an extreme disadvantage with the Nash equilibrium

resulting in the pusher losing an expected 30 big blinds per 100 hands.

The results of the experiments largely confirm the convergence results with

stack size ten. The expected value gap for stack size 40 naturally starts out much

larger since there are more big blinds to win, but in the end there is convergence so

that the gap between the resulting strategy and the best response is close to 1 big

121

blind per 100 hands. We find slightly better convergence in the case of stack size

equal to 5. This can be seen in Figure 5.7. Note that the graph begins after 50,000

hands so some of the differences can be seen. In the full graph, the initial gap for

stack size equal to 40 was over 150 big blinds per 100 hands and it was difficult to

distinguish the smaller differences at the end of the figure.

Figure 5.7: Simulations for three ROS players with differing stack sizes. The graph
shows the gap in expected value between the actual strategy and a best response.

5.4 Discussion

The simulations in this chapter lend some credence to the concept of Nash

equilibrium as a prediction of the behavior of actors with imperfect information.

Despite a lack of theoretical knowledge of the game and no knowledge of the strategies

122

of their opponents, players adjusting their play through a fairly simple heuristic based

on past performance were able to eventually converge to nearly a best response versus

their opponent’s actual strategy.

123

CHAPTER 6
SKILL VS. CHANCE IN THE POKER TOURNAMENT ECONOMY -

A MONTE CARLO SIMULATION

6.1 Introduction

Poker has long been studied in game theoretic and artificial intelligence circles

[9, 30, 44, 96]. Poker has also been examined in some depth by legal scholars [12]. A

central question in legal circles is whether poker should be considered a game of skill or

a game of chance as American law treats such games differently. The question has also

been examined scientifically. Noga Alon analyzes some toy models of Texas Hold’em

and applies the Central Limit Theorem to a long sequence of hands to conclude that

“poker is predominantly a game of skill.” [2] Psychologists have shown that even a

modest amount of instruction can improve the results of inexperienced players [64].

The role of skill is assumed to be quite central within the artificial intelligence and

poker instructional literature.

One area of poker in which luck is thought by many to be most prominent

is tournament poker. Most poker is played in cash or “ring” games with chips that

directly represent money. A player can leave the game at any time and take her chips

with her. In a tournament, the players continue to play until they have all the chips

or no chips. Players are rewarded based on where they finished in the tournament,

typically with only the top ten percent receiving any money at all. Most tournament

payouts are very top heavy with the top few places receiving much more than anybody

else.

124

In cash games, it is fairly straightforward to determine if one was is a statisti-

cally significant winner. One first calculates their historical win rate in big blinds per

hand. Then, one can calculate the standard deviation and find a confidence interval

for a player’s win rate. This can be done easily because the distribution of hand

outcomes is not that far from normal [13] and one can accumulate a large sample size

relatively quickly and the central limit theorem applies.

We can illustrate this with an example. Suppose a player plays 2,000 hands of

poker and wins 50 big blinds during that time. Thus, we have a mean of µ2000 = 2.5 big

blinds per 100 hands. Suppose the standard deviation is σ = 15 per 100 hands. This

gives a standard error of SE = 15√
20

= 3.35. This gives a 95 percent confidence interval

on the player’s true win rate of roughly [2.5− 1.96 ∗ 3.35, 2.5 + 1.96] = [−4.04, 9.04].

If the player had instead played 20,000 hands with the same observed win rate and

standard deviation, the confidence interval would instead be [.42, 4.58] and they could

say they were a statistically signicant winning player.

For tournaments, the main problem in applying this approach is that in ad-

dition to the very high variance, the distribution of pay outcomes is highly skewed.

Also, the distribution can vary from tournament to tournament and an entire tourna-

ment takes a much longer time than a single hand of poker so it takes a long time to

get a significant sample size. If one plays very large live tournaments, then a lifetime

is not long enough for this statistical approach to have much merit.

The most prominent poker tournament in the world is the annual World Series

of Poker (WSOP) Main Event in Las Vegas. This event has a ten thousand dollar

125

buyin and routinely draws thousands of players. From 2002 to 2007 in the largest

fields of players seen, this tournament has been won by an amateur hitherto unkown

to the poker world. This has added to the popular notion that poker tournament

results are mostly a result of chance.

This chapter models poker tournaments and the resulting poker economy using

a monte carlo simulation. I am therefore able to offer quantitative estimates on the

contribution of luck versus skill over time. I will also examine the role of differing

poker bankroll strategies and how they can effect long term player profit. Another

question of interest is whether it is possible for high stakes tournaments to arise if

there is no skill and players are limited in the size of their initial poker bankrolls.

6.2 Tournament Model

In an actual poker tournament, players are randomly assigned tables (typically

with nine players). Players will play poker hands and whenever a player loses all of

their chips, they are forced to exit the tournament. The blinds (forced bets) rise as

time goes on forcing more and more players to risk all of their chips. As players are

eliminated, the remaining players are consolidated into fewer tables. Eventually, one

player will have all of the chips and is declared the winner. The other players are

paid out according to what place they finished in with most player receiving nothing.

To model poker tournaments, I make no attempt to model the play of individ-

ual hands. Instead, I make the assumption that when one holds the skill of opponents

constant, a player’s probability of doubling the size of their chip stack is constant.

126

This is a simplifiying assumption that is not exactly correct since generally more (and

different) skill can be applied in the early stages of a tournament when stack sizes are

large relative to the blinds, but this effect is likely quite small in practice. In fact,

this assumption is weaker than in [13] where in their “Theory of Doubling Up” they

assume that the probability of doubling up is constant throughout the tournament

regardless of a change in the skill level of opponents during the course of the tour-

nament. The key to this approach is that the details of the mechanism for doubling

one’s chip stack are not important - it is only relevant how likely one is to double

their chip stack.

A player’s skill will be represented by an integer P ∈ [40, 60]. Player skill will

be assumed to be binomial distribution centered around 50 so the probability that a

player has skill equal to P is simply
(

20
P−40

)

(1
2
)20. When two players are in an all-in

confontation, the percentage chance of player i defeating player j is 50+Pi−Pj . The

value of P is therefore the probability (in percentage terms) that the player defeats

an average player. Given the nature of the most prominent form of poker, Texas

Holdem, and the probabilities of the hands going up against each other, 40 and 60

seem to be at the boundary of the skill edge that is possible. Even simple strategies

such as going all in every hand could not be at a much more extreme disadvantage

against expert play than what is assumed here.

In a modelled tournament, two players are chosen at random and forced into

an all-in confrontation. This process is iterated until one player has all of the chips

and is declared the winner. Players will then be paid out cash based on the order

127

of where they finish with at least ten percent of players receiving money and the

majority of the money going to the top few finishers. Each player will have to pay

a fixed amount of money, or a buyin (BI) in order to play the tournament. The

total prizepool consists of the sum of all player buyins. This study uses the published

tournament payout structures from PokerStars.com, the largest online poker site [56].

6.3 Poker Economy Model

I propose that an initial pool of thousands players each deposit one hundred

dollars into their poker bankroll B. Players can have different tolerance for risk of ruin

(B = 0) and will choose a tournament with a buy in appropriate to that level of risk

tolerance R. Even skilled players with a positive expectation in tournaments will have

some significant risk of ruin if they are too agressive with their bankroll management.

Players will play the largest buyin (BI) tournament available such that B
BI

> R. For

example, suppose a player has a bankroll of B = 150 dollars, an R = 50, and available

tournaments with buyins of 1, 2, and 10 dollars. Since 150
10

= 15 < 50 = R, the player

will not play a ten dollar tourney. But 150
2

= 75 > 50 = R, so the player can play

in the 2 dollar tournament. I will assume players will always be willing to play in 1

dollar tournaments if they have a bankroll of at least one dollar.

At each point in time, every player will play in a tournament by this buyin

rule. When players win, they place the winnings in their bankroll so players with

growing bankrolls will increase the stakes of the tournaments that they choose to

play. At each point in time, there will a record of how profitable each player has

128

been. When players run out of money, they will redeposit one hundred dollars into

their bankroll. In this model, the casino does not take any money out of the prize

pool.

There are other variations one might explore on the basic model that go beyond

the scope of this chapter. Profitable players might also withdraw winnings from their

bankroll at different rates. Losing players might have different chances of quitting or

redepositing when they go broke and this could have an effect on the overall average

skill levels even without any player learning and improvement. One could also look

at the effect of new players joining at varying rates.

6.4 Experiments

We wish to determine how much of poker success is determined by skill. There

have been a wide variety of arguments that skill is a portion of poker success - many

players would argue that that point hardly needs an argument. The degree to which

success is determined by skill or chance has not been explored and is a significant

open question. This chapter assumes the existence of skill and addresses the degree

to which skill determines player outcomes in poker tournaments.

The fundamental approach of this chapter is to have each player play thousands

of tournaments so that we have a relatively large sample. Then we can look at the

correlation between player skill and player profit. One would expect the correlation to

increase with the number of tournaments played. We then do a plot with the number

of tournaments played on the x-axis and the variation in in profitability explained by

129

skill (the r2) y axis.

The first experiment consists of a poker economy of 5000 players who all

deposit 100 dollars into their poker accounts. The available buyins for tournaments

are 1, 2, 5, 10, 20, 30, 50, 100, 200, 500, and 1000. All players have the same risk

tolerance or bankroll strategy (R = 50) and will play the highest buyin tournament

for which they can afford more than 50 buyins. A player will always be willing to

play the 1 dollar buyin tournament. If they cannot afford the 1 dollar tournament,

they will deposit 50 more dollars into their poker account. The players each play a

total of 5000 tournaments.

At first, all 5000 players play in a 1 dollar tournament. As time progresses,

losing players run out of money and redeposit, thus growing the poker economy. After

5000 tournaments, there is a total of 4,896,300 dollars in the economy for an average

deposit of nearly 1,000 dollars. Winning players move up to larger stakes. After 5000

tournaments, there are players playing at every stake from 1 to 1000, with fewer and

more skilled players as you move up the stakes. You can see the effict in table 6.1.

There are 2970 players with an average skill of 49.1 playing 1 dollar tournaments.

There are only 12 players with an average skill level of 56.6 playing the 1000 dollar

tournaments.

I then examined how much of the variation in profitability of the players is

explained by their skill level P . I used an ordinary least squares regression on P , P 2,

P 3, P 4, P 5, and 10P . When only a few tournaments have been played, the model is

almost useless and very little of the variation in player profit is explained. After a

130

Buyin Players Average Skill

1 2970 49.1

2 783 50.4

5 462 51.0

10 297 51.8

20 121 52.4

30 116 53.1

50 103 53.4

100 65 54

200 55 54.9

500 16 55.6

1000 12 56.6

Table 6.1: Buyin Table

few hundred tournaments, a significant amount of the variation is explained by the

model. After a few thousand, the majority of the profit variance is explained and

in many cases, all of the variables are highly significant. This experiment is best

summarized by figure 6.1. As you can see, the trend is clear, but the graph is not

monotonic. This was typical - there were often stretches of a few hundred tournaments

where odd results from skilled players getting unlucky slightly decreased the explained

variation.

131

Figure 6.1: The variance explained by skill as a function of the number of tourna-
ments played by 5000 players.

6.4.1 A No Skill Poker Tournament Economy

I ran another simulation that was identical except that there was no skill.

All 5000 players were given a skill of 50. The size of the economy was similar to

the scenario with skilled players with the average deposit being 957 dollars as com-

pared to 979 in the skilled case. Perhaps suprisingly, the distribution of players into

tournaments of different buyins after 5000 tournaments was strikingly similar as one

can see examining table 6.2. Even without skill, somebody has to win the tourna-

ments and when those winning players move up in stakes, somebody has to get lucky

and win at those stakes and move up. It turns out that the distribution of players

into tournament buyins does not tell us anything about the nature of skill in poker

tournaments.

132

Buyin Skilled Players Unskilled Players

1 2970 2973

2 783 761

5 462 463

10 297 317

20 121 114

30 116 111

50 103 100

100 65 70

200 55 63

500 16 15

1000 12 13

Table 6.2: Buyin Table

There was however a difference between the skilled and unskilled poker economies

regarding the distrubution of player profits after 5,000 tournaments. A few of the most

skilled players had greater profit than the most profitable player in the unskilled econ-

omy. This is because even in the highest stakes games, these players have an edge

whereas, by definition, nobody in the unskilled economy has an edge. On the bottom

end, there are 320 players in the skilled economy that lost more money than the

losingest player in the unskilled economy. These are players that are at a disadvan-

tage even at the easiest games at the lowest stakes. These players had an average skill

133

of 45.9 as compared with 49.1 for the average player in the 1 dollar tourney. These

aspects can be summarized in the difference of standard deviation in player profit for

the two types of economies after 5,000 tournaments. In the poker economy with skill,

the standard deviation in profit is 7597 whereas in the unskilled poker economy, it is

only 5954.

6.4.2 Varying Bankroll Strategies

Playing skill and chance are not the only determinants of poker success. There

is also the factor of bankroll strategy. If a very skilled player is too agressive with his

bankroll strategy, she could lose a great deal of her winnings with a modest stretch

of bad luck. If a player is too cautious, she could be missing out on a great deal of

potential profit in higher stakes games.

I ran a simulation similar to the first one, but with varying bankroll strategies.

There were 5000 players with the same skill distribution and 5000 tournaments played,

but with R uniformly at random taken to be a multiple of 10 with 10 ≤ R ≤ 100. The

differing bankroll strategies, particularly the aggressive strategies with low R caused

more players to go bust and forced them to redeposit more often. Thus, the size of

the overall poker economy was larger with an average deposit of $1127 as compared

to $979 with R fixed at 50. The variance was also larger, 10, 873 compared to 7597, as

bad players with aggressive bankroll management racked up big losses. Nonetheless,

the players final distribution in tournaments was similar as can be seen in Table 6.3.

We also see the same pattern with higher buyins associated with higher average skill.

134

Buyin Fixed R Varied R

1 2970 2852

2 783 892

5 462 469

10 297 283

20 121 128

30 116 113

50 103 107

100 65 75

200 55 59

500 16 10

1000 12 12

Table 6.3: Buyin Table

Very aggressive bankroll management appeared to be counterproductive when

seeking long term profit. One player with a skill of 57 and an R of 10 lost 161 dollars

over the 5000 tournament span. In the first simulation with everybody’s R = 50, the

least profitable player with a skill of 57 won over 19, 000 dollars. The most skilled

player in that scenario to lose money had a skill of 54. If we group players by their

R value, we find that the R = 10 people lost the most on average while an R ≥ 50

was effective. If we regress average profitability on R and
√

R, we explain 89% of the

variation (adjusted r2 = .86) in average profit. This is best seen in Figure 6.2.

135

Figure 6.2: Average profit as a function of the Bankroll Management Strategy.

6.5 Discussion

The simulations in this chapter provide a quantitative estimate of the role

that skill plays in tournament poker. In accord with popular perception, the role of

skill in determing the outcome of a single tournament is rather small. However, over

time, the role of skill explains a large majority of the variation in player profit in the

poker tournament economy. Skilled players can threaten their potential profit with

overly aggressive bankroll management, but barring that, the most skilled players will

eventually be profitable and the unskilled players will lose money.

136

CHAPTER 7
OPEN PROBLEMS

7.1 Introduction

The open problems in algorithmic game theory are legion. There are two im-

portant problems that flow directly out of the work in this thesis. There are some

remaining CES markets for which it is unknown whether a polynomial time equlib-

rium computation algorithm exists, but there are also no hardness results. The first

problem is either finding a polynomial time algorithm for these markets or alterna-

tively demonstrating PPAD-completeness. The other problem is proving that players

in Two Player Push-Fold Texas Holdem employing heuristics without access to in-

formation about their opponent’s past strategies will converge to an approximate

equilibrium.

7.2 Completing the Complexity Classification of CES Economies

Recall that CES utility functions can be defined in terms of a paramter ρ such

that ρ < 1 and ρ 6= 0. Utility functions with ρ > 0 satisfy gross substitutability. The

limit cases of ρ→ 1 (linear utilities) and ρ→ 0 (Cobb-Douglas utilities) also satisfy

gross substitutability. Approximate equilibria in these markets can all be computed

in polynomial time by the algorithm introduced in Chapter 2. For −1 ≤ ρ < 0, a

polynomial time algorithm is provided in Chapter 3.

For ρ→ −∞, the Leontief utilities, it is NP-hard just to determine if a market

has an equilibrium or not [27]. When the equilibrium is known to exist, it is PPAD-

137

complete to compute it [16, 27]. There are no results for ρ < −1. Settling the

question of whether one can compute approximate equilibria for this range of ρ in

polynomial time or whether it is perhaps complete for a difficult complexity class is

completely open. Attempting to show PPAD-completeness would probably be the

more promising route. This is because Gjerstad [52] has shown that the set of price

equilibria for markets where traders have ρ in this range can be disconnected. This

introduces difficulties not present in other regions of ρ where the set of price equilibria

is convex.

The solution of this problem would be signicant for two reasons. One is that

we would now be able to completely classify markets with CES utility functions. This

would be remarkable because CES utility functions encompass such a wide range of

behavior. The other is that regardless of what is shown for ρ < −1, it would be a

novel finding. If there is as polynomial time algorithm, it would be quite striking to

have one when the equilibrium structure can be so complicated. The other is that

the first and most prominent hardness results for markets, the Leontief utility case, is

a somewhat pathalogical case where you have no possibility of substituting one good

for another. CES utility functions with ρ < −1 are smoother and more well behaved

so it would be remarkable to have a hardness result for these markets.

7.3 Theoretical Derivation of Experimental Findings

In chapter 5, it is shown experimentally that players employing relatively sim-

ple heuristics converge to an approximate equilibrium. When equilibria for Push-Fold

138

Holdem were first computed [13], a technique called fictitious play [8, 11] was used.

With fictitious play, an iterative procedure to compute equilibria, players (at least

in part) play a best response to the strategy their oppenent has been playing. This

cannot be employed by actual players in the Push-Fold game because they do not

know what strategies their opponents have been employing even after the hands have

been played.

It would be an advance if it could be proven that players employing the heuris-

tics from chapter 5 which rely only on public information will converge upon an ap-

proximate equilibrium. The simulations conducted in this thesis provide some reason

to think that such a demonstration is possible. This would give further credence to

the Nash equlibrium as a solution concept in at least some settings.

139

REFERENCES

[1] J. R. Green A. Mas-Colell, M. D. Whinston. Microeconomic Theory. Oxford
University Press, 1995.

[2] N. Alon. Poker, chance and skill. http://www.math.tau.ac.il/ no-
gaa/PDFS/skill4.pdf, 2007.

[3] K.. Arrow and L.Hurwicz. Competitive stability under weak gross substitutabil-
ity: The “euclidean distance” approach. International Economic Review, 1:38–
49, 1960.

[4] K.J. Arrow, H.D. Block, and L.Hurwicz. On the stability of the competitive
equilibrium, ii. Econometrica, 27:82–109, 1959.

[5] K.J. Arrow, H.B. Chenery, B.S. Minhas, and R.M. Solow. Capital-labor sub-
stitution and economic efficiency. The Review of Economics and Statistics,
43(3):225–250, 1961.

[6] K.J. Arrow and G. Debreu. Existence of an equilibrium for a competitive
economy. Econometrica, 22(3):265–290, 1954.

[7] A.M. Bagirov and A.M. Rubinov. Global optimization of marginal functions
with applications to economic equilibrium. Journal of Global Optimization,
20:215–237, 2001.

[8] Ulrich Berger. Brown’s original fictitious play. Game Theory and Information
0503008, EconWPA, March 2005.

[9] E. Borel. Traite du Calcul des Probabilites et de ses Applications. Gauthier-
Villars, Paris, 1938.

[10] A. Brooke, D. Kendrick, and A. Meeraus. GAMS: A user’s guide. The Scientific
Press, South San Francisco, 1988.

[11] G.W. Brown. Iterative solutions of games by fictitious play. In T.C. Koopmans,
editor, Activity Analysis of Production and Allocation, pages 374–376. Wiley,
1951.

[12] A. Cabot and R. Hannum. Public policy, law, mathematics and the future of
an american tradition. Cooley Law Review, 2006.

140

[13] B. Chen and J. Ankenman. The Mathematics of Poker. ConJelCo, Pittsburgh,
PA, 2006.

[14] Ning Chen, Xiaotie Deng, Xiaoming Sun, and Andrew Chi-Chih Yao. Fisher
equilibrium price with a class of concave utility functions. In ESA, pages 169–
179, 2004.

[15] Xi Chen, Decheng Dai, Ye du, and Shang-Hua Teng. Settling the complexity of
arrow-debreu equilibria in markets with additively separable utilities. CoRR,
2009.

[16] Xi Chen and Xiaotie Deng. Settling the complexity of two-player nash equi-
librium. In FOCS ’06: Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06), pages 261–272, Washington, DC,
USA, 2006. IEEE Computer Society.

[17] J. Q. Cheng and M. P. Wellman. The walras algorithm: A convergent dis-
tributed implementation of general equilibrium outcomes. Computational Eco-
nomics, 12(1):1–24, 1998.

[18] P.A. Chiappori and I. Ekeland. Individual excess demands. Journal of Mathe-
matical Economics, 40:41–57, 2004.

[19] B. Codenotti, B. McCune, S. Penumatcha, and K. Varadarajan. Market equilib-
rium for ces exchange economies: Existence, multiplicity, and computation. In
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer
Science, pages 505–516. Springer Verlag, 2005.

[20] B. Codenotti, B. McCune, and K. Varadarajan. Market equilibrium via the
excess demand function. In Proceedings of the 37th annual ACM symposium on
Theory of computing, pages 74 – 83, New York, NY, USA, 2005. ACM Press.

[21] B. Codenotti, S. Pemmaraju, and K. Varadarajan. Algorithms column: The
computation of market equilibria. SIGACT News, 35, December 2004.

[22] B. Codenotti, S. Pemmaraju, and K. Varadarajan. The computation of market
equilibria. ACM SIGACT News, 35(4):23–37, 2004.

[23] B. Codenotti, S. Pemmaraju, and K. Varadarajan. On the polynomial time
computation of equilibria for certain exchange economies. In Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms, pages 72–81,
Philadelphia, PA, USA, 2005. Society for Industrial and Applied Mathematics.

141

[24] Bruno Codenotti, Benton Mccune, Sriram Pemmaraju, Rajiv Raman, and Kas-
turi Varadarajan. An experimental study of different approaches to solve the
market equilibrium problem. J. Exp. Algorithmics, 12:1–21, 2008.

[25] Bruno Codenotti, Benton McCune, Sriram V. Pemmaraju, Rajiv Raman, and
Kasturi Varadarajan. An experimental study of different approaches to solve
the market equilibrium problem. In ALENEX/ANALCO, pages 167–179, 2005.

[26] Bruno Codenotti, Benton McCune, Rajiv Raman, and Kasturi Varadarajan.
Computing equilibrium prices : Does theory meet practice? In European Sym-
posium on Algorithms, pages 83–94, 2005.

[27] Bruno Codenotti, Amin Saberi, Kasturi R. Varadarajan, and Yinyu Ye. Leontief
economies encode nonzero sum two-player games. In SODA, pages 659–667,
2006.

[28] Bruno Codenotti and Kasturi Varadarajan. Market equilibrium in exchange
economies with some families of concave utility functions. Computational Eco-
nomics 0503001, EconWPA, March 2005.

[29] Bruno Codenotti and Kasturi R. Varadarajan. Efficient computation of equi-
librium prices for markets with leontief utilities. In ICALP, pages 371–382,
2004.

[30] J. Schaeffer D. Billings, A. Davidson and D. Szafron. The challenge of poker.
Artificial Intelligence Journal, 134, 2002.

[31] Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou.
The complexity of computing a nash equilibrium. In STOC ’06: Proceedings of
the thirty-eighth annual ACM symposium on Theory of computing, pages 71–78,
New York, NY, USA, 2006. ACM.

[32] G. Debreu. Economies with a finite set of equilibria. EConometrica, 38:387–392,
1970.

[33] N. Devanur and V.V. Vazirani. Market equilibrium when buyers have spending
constraints. Webpage: http://www.cc.gatech.edu/fac/Vijay.Vazirani/,
2004.

[34] Nikhil R. Devanur and Ravi Kannan. Market equilibria in polynomial time for
fixed number of goods or agents. In FOCS, pages 45–53, 2008.

[35] Nikhil R. Devanur and V.V. Vazirani. The spending constraint model for market

142

equilibrium: algorithmic, existence and uniqueness results. In STOC, pages
519–528, 2004.

[36] S.P. Dirkse and M.C. Ferris. A pathsearch damped newton method for com-
puting general equilibria. Annals of Operations Research, pages 211–232, 1996.

[37] B. C. Eaves. A finite algorithm for the linear exchange model. Journal of
Mathematical Economics, 3:197–203, 1976.

[38] B. C. Eaves. Finite solution of pure trade markets with cobb-douglas utilities.
Mathematical Programming Study, 23:226–239, 1985.

[39] B. C. Eaves and H. Scarf. The solution of systems of piecewise linear equations.
Mathematics of Operations Research, 1(1):1–27, 1976.

[40] B.C. Eaves. Homotopies for computation of fixed points. Mathematical Pro-
gramming, 3:1–22, 1972.

[41] E. Eisenberg. Aggregation of utility functions. Management Sciences, 7(4):337–
350, 1961.

[42] E. Eisenberg and D. Gale. Consensus of subjective probabilities: The pari-
mutuel method. Annals of Mathematical Statistics, 30:165–168, 1959.

[43] M. Esteban-Bravo. Computing equilibria in general equilibrium models via
interior-point methods. Computational Economic, 23:147–171, 2004.

[44] C. Ferguson and T. Ferguson. On the borel and von neumann poker models.
Game Theory and Applications, 9:17–32, 2003.

[45] M. C. Ferris and T. S. Munson. Path 4.6.
http://www.gams.com/solvers/path.pdf.

[46] M. C. Ferris and T. S. Munson. Complementarity problems in gams and the
path solver. Journal of Economic Dynamics and Control, 24:165–188, 2000.

[47] D. Gale. The Theory of Linear Economic Models. McGraw Hill, New York,
1960.

[48] D. Gale. The linear exchange model. Journal of Mathematical Economics,
3:205–209, 1976.

[49] R. Garg and S. Kapoor. Auction algorithms for market equilibrium. In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, pages
511–518. ACM, 2004.

143

[50] Andrew Gilpin and Tuomas Sandholm. A texas hold’em poker player based on
automated abstraction and real-time equilibrium computation. In AAMAS ’06:
Proceedings of the fifth international joint conference on Autonomous agents
and multiagent systems, pages 1453–1454, New York, NY, USA, 2006. ACM.

[51] V. A. Ginsburgh and J. L. Waelbroeck. Activity Analysis and General Equilib-
rium Modelling. North Holland, 1981.

[52] S. Gjerstad. Multiple equilibria in exchange economies with homothetic, nearly
identical preference. University of Minnesota, Center for Economic Research,
Discussion Paper, 288, 1996.

[53] Martin Grotschel, Lazlo Lovasz, and Alexander Schrijver. Geometric Algorithms
and Combinatorial Optimization. Springer-Verlag, 1991.

[54] P.T. Harker and B. Xiao. Newton’s method for the nonlinear complementar-
ity problem: a b-differential equation approach. Mathematical Programming,
48:339–358, 1990.

[55] http://cepa.newschool.edu/het/home.htm. The history of economic thought
websites. Web Page.

[56] http://www.pokerstars.com/poker/tournaments/rules/prize structure/20/.
Poker stars multi table tournament prize structures. Web Page, 2007.

[57] Li-Sha Huang and Shang-Hua Teng. On the approximation and smoothed
complexity of leontief market equilibria. In FAW, pages 96–107, 2007.

[58] Kamal Jain. A polynomial time algorithm for computing the arrow-debreu
market equilibrium for linear utilities. In FOCS, pages 286–294, 2004.

[59] J. Whalley J.B. Shoven. Applying General Equilibrium. Cambridge University
Press, 1992.

[60] M. Mahdian K. Jain and A. Saberi. Approximating market equilibria. In
Approximation, Randomization, and Combinatorial Optimization: Algorithms
and Techniques, 6th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems, APPROX 2003 and 7th International
Workshop on Randomization and Approximation Techniques in Computer Sci-
ence, RANDOM 2003, Princeton, NY, USA, August 24-26, 2003, Proceedings,
pages 98–108. Springer, 2003.

[61] S. Kintali. A compendium of ppad-complete problems. Webpage:
http://www.cc.gatech.edu/ kintali/ppad.html, 2009.

144

[62] H.W. Kuhn. Simplicial approximation of fixed points. In Proc. National
Academy of Sciences of the United States of America, volume 61, pages 1238–
1242, 1968.

[63] T. S. Munson M. C. Ferris and D. Ralph. A homotopy method for mixed
complementarity problems based on the path solver. pages 143–167, London,
2000. Chapman and Hall.

[64] D. Detterman M. DeDonno. Poker is a skill. 12:31–36, 2008.

[65] R. R. Mantel. The welfare adjustment process: its stability properties. Inter-
national Economic Review, 12:415–430, 1971.

[66] R. R. Maxfield. General equilibrium and the theory of directed graphs. Journal
of Mathematical Economics, 27:23–51, 1997.

[67] Benton McCune. Extending polynomial time computability to markets with
demand correspondences. In WINE, pages 347–355, 2007.

[68] E. Tardos N. Nisan, T. Roughgarden and V. Vazirani. Algorithmic Game The-
ory. Cambridge University Press, New York, NY, 2007.

[69] A. Saberi V. V. Vazirani N. R. Devanur, C. H. Papadimitriou. Market equilib-
rium via a primal-dual-type algorithm. In 43rd Symposium on Foundations of
Computer Science, pages 389–395. IEEE Computer Science, 2002.

[70] J.F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences of the United States of America, 36:48–49, 1950.

[71] J.F. Nash. Non-cooperative games. Annals of Mathematics, 54:286–295, 1951.

[72] T. Negishi. Welfare economics and existence of an equilibrium for a competitive
economy. Metroeconomica, 12:92–97, 1960.

[73] E. I. Nenakov and M. E. Primak. One algorithm for finding solutions of the
arrow-debreu model. Kibernetica, 3:127–128, 1983.

[74] D. J. Newman and M. E. Primak. Complexity of circumscribed and inscribed
ellipsoid methods for solving equilibrium economical models. Applied Mathe-
matics and Computation, 52:223–231, 1992.

[75] C.H. Papadimitriou. On the complexity of the parity argument and other inef-
ficient proofs of existence. Journal of Computer and System Sciences, 48.

145

[76] Christos H. Papadimitriou. Algorithms, games, and the internet. In In STOC,
pages 749–753. ACM Press, 2001.

[77] V.M. Polterovich and V.A. Spivak. Gross substitutability of point to set corre-
spondences. Journal of Mathematical Economics, 11:113–140, 1983.

[78] M. E. Primak. An algorithm for finding a solution of the linear exchange model
and the linear arrow-debreu model. Kibernetika, 5:76–81, 1984.

[79] M. E. Primak. A converging algorithm for a linear exchange model. Journal of
Mathematical Economics, 22:181–187, 1993.

[80] S. Kapoor R. Garg and V. Vazirani. An auction-based market equilibrium
algorithm for the separable gross substitutability case. In Approximation, Ran-
domization, and Combinatorial Optimization, Algorithms and Techniques, 7th
International Workshop on Approximation Algorithms for Combinatorial Opti-
mization Problems, APPROX 2004, and 8th International Workshop on Ran-
domization and Computation, RANDOM 2004, Cambridge, MA, USA, August
22-24, 2004, Proceedings, pages 128–138. Springer, 2004.

[81] T. Rutherford. Sequential joint maximization. 18, 1999.

[82] T.F. Rutherford. Extensions of gams for complementarity problems arising
in applied economic analysis. Journal of Economic Dynamics and Control,
19:1299–1324, 1995.

[83] T.F. Rutherford. Applied general equilibrium modeling with mpsge as a gams
sybsystem: An overview of the modeling framework and syntax. Computational
Economics, 14:1–46, 1999.

[84] Paul Samuelson. Foundations of economic analysis. Harward University Press,
1947.

[85] H. Scarf. The approximation of fixed points of a continuous mapping. SIAM
J. Applied Math, 15:1328–1343, 1967.

[86] H. Scarf. The computation of equilibrium prices: An exposition. In Handbook
of Mathematical Economics, volume 2, pages 1008–1061, 1982.

[87] H. Scarf. Applied General Equilibrium Analysis, chapter The Computation of
Equilibrium Prices. 1984.

[88] H.E. Scarf. Some examples of global instability of the competitive equilibrium.
International Economic Review, 1:157–172, 1960.

146

[89] S.C.Billups, S.P.Dirkse, and M.C. Ferris. A comparison of large scale mixed
complemetarity problem solvers. Comput. Optim. Appl., 7:3–25, 1997.

[90] S. Smale. A convergent process of price adjustment. Journal of Mathematical
Economics, 3:107–120, 1976.

[91] S. Smale. Exchange processes of price adjustment. Journal of Mathematical
Economics, 3:211–226, 1976.

[92] R. Solov. A contribution to the theory of economic growth. Journal of Mathe-
matical Economics, 70:65–94, 1956.

[93] T.N. Srinivasan T.J. Kehoe and John Whalley. Frontiers in Applied General
Equilibrium Modelling. Cambridge University Press, 2005.

[94] R. J. Vanderbei. LOQO users’ manual: version 4.05, Technical Report. Oper-
ations Research and Financial Engineering, Princeton University, ., 2000.

[95] H. Varian. Microeconomic Analysis. W.W. Norton, 1992.

[96] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behav-
ior. John Wiley, 1944.

[97] A. Wald. On some systems of equations of mathematical economics. Econo-
metrica, 19:368–403, 1951.

[98] Leon Walras. Elements of Pure Economics, or The Theory of Social Wealth.
1874.

[99] M. Safra X. Deng, C. H. Papadimitriou. On the complexity of equilibria. In
Proceedings of the 34th annual ACM symposium on Theory of computing, pages
67–71, New York, NY, USA, 2002. ACM Press.

[100] Yinyu Ye. A path to the arrow-debreu competitive market equilibrium. Math.
Program., 111(1-2):315–348, 2008.

	University of Iowa
	Iowa Research Online
	Fall 2009

	Algorithmic game theory and the computation of market equilibria
	Benton John McCune
	Recommended Citation

	tmp.1271941803.pdf.e9iVy

