
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2009

Programming and self stabilization for wireless
sensor networks
Kajari Ghosh Dastidar
University of Iowa

Copyright 2009 Kajari Ghosh Dastidar

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/363

Follow this and additional works at: https://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Ghosh Dastidar, Kajari. "Programming and self stabilization for wireless sensor networks." PhD (Doctor of Philosophy) thesis,
University of Iowa, 2009.
https://ir.uiowa.edu/etd/363.

https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages


 

 

PROGRAMMING AND SELF STABILIZATION FOR WIRELESS SENSOR 

NETWORKS 

by 

Kajari Ghosh Dastidar 

An Abstract 

Of a thesis submitted in partial fulfillment 
of the requirements for the Doctor of 

Philosophy degree in Computer Science 
in the Graduate College of 

The University of Iowa 

December 2009 

Thesis Supervisor:   Professor Ted Herman 
 

 



 

 

1

ABSTRACT 

Ubiquitous computing has become a widespread phenomenon in today’s modern 

world, with the computing technology integrating with our daily life in an invisible 

manner. Embedded systems and wireless sensor networks are popular choices to achieve 

this.   Programming embedded and sensor network systems has always been a challenge 

for the programmers due to the lack of sufficient high-level programming support. To 

deal with this serious limitation, we have developed DESAL (Dynamic Embedded 

Sensing and Actuation Language) which is a user-friendly high-level programming 

language for wireless sensor networks with an integrated middleware, which hides the 

low-level detail from the programmers. In this thesis we present the design and 

development of DESAL.  

 We have made DESAL programs rule based. Programs are written in guard-

action format defined in terms of the program states. There are established formal 

correctness proving methods that can work on guard-action formats to mathematically 

check a program for errors. Also, there is no hidden control context like events or 

interrupts. Time synchronization has been developed as part of the middleware that lets 

DESAL programs to coordinate through synchronized actions throughout the network. 

This facilitates classic coordination algorithms like clock synchronization, spanning tree 

construction and consensus. Also, synchronized wake up saves energy. Neighborhood 

management, including node discovery and monitoring, is also provided by the 

middleware. DESAL programs communicate via state sharing. There is no network 

programming required. The middleware provides that automatically. Combining all these 

features DESAL provides major network management services, and yet presents the users 

with a simple high-level programming interface. We implemented the DESAL compiler 

to convert DESAL programs to NesC on TinyOS and to Java.  
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 Another novel feature we have introduced in DESAL is a variable of type ‘token’. 

The concept of token is commonly used in mutual exclusion algorithms. One of the case 

studies we have done uses the token variable to achieve increased lifetime of sensors in a 

ring topology. The working of token is hidden from the user. Another case study with 

tokens involves selective activation of RFID tags in a scenario where among the three 

RFID tags present only one can work at a time. 

 Struct is a new data structure introduced in DESAL. Sometimes we need to group 

together two or more variables. It is important to receive them at the same time. Hence, it 

is important to send these grouped data over the radio together. Struct does that. 

 Function is another newly added feature to DESAL. Function is added to group 

together repeated statements in a program. The unique feature of function is that, it uses 

only global variables. No new local variable is declared. This can significantly reduce the 

stack overhead of the program, thus saving memory and running time. 

 Case studies have been done to illustrate the features of DESAL and to find scope 

for improvement. 
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CHAPTER 1  

INTRODUCTION 

This dissertation presents a new programming language called DESAL (Dynamic 

Embedded Sensing and Actuation Language) for wireless sensor networks. DESAL is a 

high-level programming language with an integrated middleware hiding low-level detail 

from the user. The usual target audience using the sensor networks includes hydrologists, 

civil engineers and doctors. They are expected to program the sensor networks to 

customize them to cater to their own needs. But at present the widely used programming 

platforms are suited to expert programmers who can master low-level programming 

primitives, operating system components and network protocols. This makes 

programming very difficult for consumers.  This is where DESAL comes into play.  

DESAL provides the user with a friendly high-level programming interface where there 

is no need to write the codes for low-level operating systems and network protocols. In 

this chapter we discuss the motivation behind the development of the language, our 

contribution, and the organization of the subsequent chapters. 

1.1 Embedded Systems And Sensor Networks 

                 

Pervasive computing has become a widespread phenomenon in today’s modern 

world with the computing technology integrating with our daily life in an invisible 

manner. In most of our modern amenities, ranging from leisure technologies like cell 

phones, remote controls, home appliances to emergency life-saving technologies, we 

have underlying functioning computers. In the early years of the 20th century, Embedded 

Systems technology came into being to meet the demands of invisible integration of 

computing services to the day-to-day amenities.  

Embedded systems are constituted of specialized and application-specific 

computing systems usually integrated on small microchips, which are embedded in the 
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electronic devices. Programming embedded systems has always been a challenge for the 

embedded systems engineers and the computer science programmers due to the lack of 

sufficient high-level programming support. For each microprocessor, an application 

developer is expected to learn the system specifications given in the long detailed 

datasheets, know the intricacies of the circuit designs, bus protocols, and many more 

details. With the rapid advance in the field of embedded technology, we can presently 

boast of having thousands of different embedded systems catering to the modern human 

civilization in every sphere of life. At the same time, with the thousand different 

technologies, it becomes necessary for an application developer to gain detail knowledge 

of each of the different systems. To deal with this serious limitation, researchers have 

engaged in developing general-purpose software support for programming embedded 

systems.  

Considerable research work is going on in the area of the development of high-

level software support for embedded systems. The aim is to provide user-friendly 

software support to operate and manage the embedded device. By user-friendly we mean 

the software should hide the low-level hardware detail from the programmer, making 

application programming simpler. In addition to that, such software should ideally 

support various hardware platforms, so that there is no need for a programmer to learn 

different software for programming different systems.  Real-time operating systems like 

VxWorks, WinCE, PalmOS, QNX, etc were developed to provide users with an 

execution system similar to a desktop system. These are still popular for PDAs, cell 

phones, set-top boxes, etc. Though these operating systems are not the best in terms of 

minimal memory usage, they provide adaptive microkernel, multiprogramming support, 

reliability and memory protection. Smaller operating systems like Creem, pOSEK, Ariel, 

etc. were developed for more application specific purposes.  But, ground breaking 

research work in the hardware technologies have resulted in the development of smaller 
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embedded systems demanding more resource efficient operating systems and the 

supporting software tools [5].   

A significant breakthrough in the embedded world was the development of sensor 

devices. These are special types of devices, which can interact with its environment by 

sensing temperature, pressure, movement, etc. A sensor device comprises of sensors 

integrated on small chips, which can be programmed for various sensing applications 

like, setting up the fire alarm in case of fire, reporting abnormal temperature or pressure 

fluctuations, etc. For sensing over a wide area, sensor devices (termed as sensor node or 

mote in a network) are deployed in a network forming a Wired Sensor Network (also 

known as Sensor-Actuator Network). Such applications include, determining if a room is 

empty, detecting uniform heating of a room, etc. The sensor nodes are usually very cheap 

and small in size enabling deployment in a large number for more area coverage and 

accurate readings. 

The wired technology soon became a hindrance to the distribution of large 

number of sensor nodes, as it was very difficult and clumsy to set up a wired network just 

anywhere, especially outdoors. As an answer to this, wireless sensor network technology 

was developed. A wireless sensor network is comprised of multiple sensor motes, which 

can be deployed virtually anywhere on earth, including physically inaccessible places. 

The sensor nodes form an ad-hoc network, which can be monitored remotely.  

Research in sensor technology have seen major development in the hardware 

technologies, resulting in smaller and cheaper sensor nodes. This made possible the 

deployment of a large number of nodes in a network to cover a widespread area and get a 

huge amount of sensor readings for accurate calculation. The dense deployment has 

resulted in high precision of the data collected by these motes. But, at the same time, the 

sensor nodes have become significantly resource limited (in terms of memory, battery life 

and processing power). With increasing demand of sensor networks, applications have 

become more complex, and consequently it is becoming more and more challenging to 
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program these resource poor sensor motes to support the advanced applications. The 

current operating systems and the programming languages are too much application-

specific and low-level to support such dynamic and advanced programming. In an 

attempt to solve this problem, researchers are developing new operating systems and 

high-level middleware abstractions to make it easier for the application developers to 

write more complex and dynamic programs.  

1.2 Our Contribution  

 

Our contribution includes development of a high-level user friendly programming 

language called DESAL (Dynamic Embedded Sensing and Actuation Language), which 

addresses the above-mentioned challenges. This language hides the low-level details 

from the programmer making programming simple and therefore, less error prone. 

DESAL has an integrated middleware constituting of the low-level services like time 

synchronization, message communication, neighborhood management and dynamic 

binding. These services are automatically provided to the user. Thus, the user is not 

required to write low-level codes for operating systems and network protocols. This work 

is jointly done with Dalton and Hallstrom of Clemson University. We have taken the 

language grammar from Clemson, and created our own compiler in DParser for Python. 

We have integrated our compiler with Clemson’s Java program to convert a DESAL 

program to equivalent NesC code. Our work also includes writing codes in Python to 

convert a DESAL program to an equivalent Java program. The Java program can 

communicate with the sensor nodes via the SerialForwarder. One problem with directly 

using the serial port is that only one PC program can interact with the mote. Additionally, 

it requires one to run the application on the PC, which is physically connected to the 

mote. The SerialForwarder is a graphical tool, which can remove both of these 

limitations. More than one program running on the PC can send packets to the 
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SerialForwarder, which is displayed in its interface. This tool can connect to the attached 

mote via the serial port. [54]. A novel contribution to DESAL is the addition of token 

type variables. Tokens allow the users to achieve mutual exclusion in the network. We 

have shown two case studies to illustrate the usage of tokens. Structs and functions are 

also newly added features to DESAL. Structs allow grouping together two or more 

variables. Functions group together repeated statements. The DESAL approach cannot do 

everything.  It has some overhead. It cannot react in microseconds to events.  It is not in 

the style of programming language like TinyOS, which is event-based. 

1.3 Outline Of Thesis 

 

The thesis is organized as follows: In chapter 2 we discuss some related work in a 

chronological manner. In chapter 3 we talk about our language DESAL. In this chapter 

we discuss the underlying middleware features, the runtime architecture, and look at a 

sample DESAL program along with the language grammar. We have shown how the 

high-level programming interface makes writing program in DESAL simpler than that in 

NesC. It has been validated by comparing the Blink program written in NesC with that 

written in DESAL. We have added new language features to DESAL. They are structs, 

functions and tokens. The new inclusions are validated with case studies. In chapter 4 we 

present token type variables. In this chapter the usage of token is illustrated in detail with 

the help of two case studies. Structs and functions are discussed in Chapter 5 along with 

case studies. Chapter 5 also explains how DESAL is converted to Java. A DESAL 

program can compile to NesC and Java. The conversion to NesC has been done in 

collaboration with Dalton and Hallstrom of Clemson University. The files needed to 

convert DESAL programs to Java are written in Python. An example of a converted Java 

program from a DESAL program is given in the Appendix A.  The program given in 

Appendix A has been run in the lab where the Java program communicated with attached 
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base station via the SerialForwarder. We conclude the thesis in chapter 6 followed by 

suggested future work. The numbers given in brackets throughout the thesis refer to the 

papers having same numbers in the bibliography. 
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CHAPTER 2 

LITERATURE REVIEW 

The release of TinyOS and NesC in the year 2000 was the first significant step 

towards the development of a real time operating system and programming language for 

sensor networks. But, major limitation of this system is that, in order to maintain hard 

real time requirements, the programmers are required to do low-level component wiring. 

This makes complex application development difficult. TinyOS is very much event-

driven in its style of programming.  The event-driven nature and the lack of some context 

memory (like a stack for separate threads) necessitate a kind of "call back" style. In 

TinyOS this is called "split control".  For example, you call X.start(), and then later you 

receive an X.startDone() event. You cannot just call X.start() and expect the program to 

wait until the X.start() finishes.  This style can be very confusing to non-experts. Also, 

TinyOS/NesC allows only static wiring, thus making dynamic programming impossible. 

To overcome these limitations research have been done in developing various advanced 

programming support. The major research works done in this area can be categorized 

based on the different programming principles adopted. This has been illustrated in 

Figure 1. This categorization is built on the survey done by Hadim and Mohamed [39]. 

We have also reviewed a few additional papers for categorization. Literature review has 

been done in order to be aware of the past and present related research work and in that 

context understand the unique contribution of DESAL. In chapter 3 we will discuss 

DESAL in detail and show why it is different than the research work done before it. The 

different research work has been presented in a chronological order. We have shown how 

the research in this area has developed over time, what has been accomplished, and what 

needs to be done. In the following section we give a brief overview of the work done by 

the different researcher. In the next section we will look into some of the major papers in 

more detail.   
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Figure 1     This tree attempts to categorize the various research done in different areas of 
wireless sensor network programming .The different research papers have 
been referred to by short names, which are mentioned below with references. 
Against each research paper the year of publication is put in parenthesis. 

2.1 Brief Overview 

 

The following section gives a brief categorized overview of the papers listed in 

the category tree in Figure 1, followed by detailed discussion of some of the most 

relevant papers.  

To program in TinyOS/NesC, knowledge of low level detail is needed.  The first 

natural response to this drawback was the development of an efficient middleware on the 

top of existing platform. In 2002, Mate [8] was released. Mate is a tiny communication-

centric virtual machine built on top of TinyOS, which provides simpler programming 

interface and supports dynamic reprogramming of the network. Mate was followed by 

multiple projects in the development of dynamic reprogramming techniques. 

Rule 
Based 

 

MessageBased 
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In 2004, Incremental Programming technique [14] and Deluge [10] was 

introduced.  Both of these support frequent reprogramming of the sensor motes already 

deployed in large networks.   

In the same year (2004), Sensor Network Application Construction Kit (SNACK) 

[16] was developed in UCLA. This was a successful attempt towards the implementation 

of a new configuration language, component and service library, and compiler, making 

sensor network programming simpler and more efficient compared to TinyOS/NesC 

alone. Agilla [19], designed around the same time (2005), provided a higher level 

programming interface through mobile agent and tuple-space abstraction.  

During the same time (2004), microprogramming (local) techniques like Abstract 

Regions [15] and EnviroTrack [13] were developed with a goal to provide a simpler 

higher-level interface to the programmers.  Microprogramming means writing lowest 

machine-level code for programming microchips.  

The next year (2005) saw the implementation of a new operating system 

altogether, named as SOS [21]. A significant improvement over TinyOS was that SOS 

supported dynamic memory allocation resulting in network reprogramming along with 

offering reliability. Also, compared to Mate, it provided better higher level programming 

abstraction with more flexibility and less CPU overhead.  

Macroprogramming refers to high-level programming. Unlike 

microprogramming, in this case, a high-level programming language is used for coding, 

which hides all the low-level (machine-level) detail from the programmer. 

Macroprogramming languages, like Kairos [20] was developed in the same year (2005). 

Kairos provides a global view of the system to the programmer, hiding the low-level 

detail, making programming simpler. Development of another macro programming 

concept, Declarative Resource Naming (DRN) [35] followed closely in 2006.  

In the same year (2005), the embedded research group at Berkeley released 

TinyDB [17], a SQL based database management system tailored for the sensor network 



 

 

10

system. In 2001, another sensor network database system, named COUGAR [7], was 

developed. But TinyDB was a much-improved version, which instantly became popular 

because of its familiar SQL interface and compatibility with TinyOS.  

The same group then implemented TASK (Tiny Application Sensor Kit) [24] on 

TinyDB, providing a very user-friendly interface for non-programmers to deploy and 

manage sensor network applications.  

In 2005, an intermediate rule (embedded in tokens)-based language, Token 

Machine Language (TML) [18], was developed, which can be targeted by compilers for 

higher-level systems. A rule is a condition based on the state variables of the system 

and/or events. TML provides a layer of abstraction for lower-level runtime environment, 

such as TinyOS. Abstraction relieves the programmer from dealing with the low-level 

events, making programming simpler and less error-prone. The year 2006 saw more 

emphasis on the rule-based language development. Program codes in TENET [28] are 

deployed encapsulated in tasks. This also helps in code reusability increasing 

programming efficiency. Also, the main contribution of TENET was that it presented a 

tired architecture to increase the system manageability.  

Another middleware, FACTS [29], provided a rule-based language with an 

underlying event-based architecture making programming simpler while attempting to 

minimize resource utilization. A rule is a condition based on the state variables of the 

system and/or events. Action(s) against a rule gets executed when the rule evaluates to 

true. In FACTS, an action can change the state of the system, as well as trigger events. 

This makes FACTS a rule-based as well as an event-driven architecture. 

But the event-driven rule-based languages have a limitation. They allow external 

events to determine scheduling of the rules.  So, the programmers cannot be totally 

oblivious to the event management. The Rule-Based Language [34] was proposed as an 

improvement to the previous work. In addition to being a rule-based language, it is also 

state-based, so that the programmers are required only to deal with the system state, and 
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not worry about the events. Also, since the scheduling of rules is predictable in this case, 

it is possible to determine the program correctness during compilation, thus increasing 

the reliability of the program.  

2.2 Review In Detail 

 

The present need in the field of sensor network programming is to have a high-

level programming language to make the life easier for the programmers while 

attempting to minimize the limited resource utilization.  Since the development of 

TinyOS and NesC, several research efforts have been done in an attempt to design more 

and more sophisticated sensor network programming support.  Some researchers have 

focused on the development of high-level middleware, while some have designed 

intermediate high-level languages. Development of operating systems and macro and 

micro programming abstraction concepts also got significant attention. Some tools have 

been developed in the recent years to provide a high level interface to the non-

programmers for managing the sensor networks. This section of the report attempts to 

give a broad overview of the current state of the art in the development of high-level 

programming languages. Figure 2 shows a timeline diagram of the significant 

developments in the area of sensor network programming.  

2.2.1 Abstract Regions [15]  

 

Abstract Regions is an abstraction over the local functionality providing flexible 

control over resource consumption improving communication and data accuracy and at 

the same time simplifying application development by hiding the low-level detail from 

the programmer. 

Abstract Regions programming provides a local area communication abstraction 

to the application developer. For a node, the abstract region comprises of the neighbors of 
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the node. The abstraction hides the details of low-level communication among the 

neighbors of the nodes, and provides data aggregation and compression related services 

transparently. The abstraction provides a simple programming interface while local data 

processing increases the accuracy of the processed data, and significantly reduces the 

communication overhead of the entire network saving energy. 

 

Figure 2     This is a chronological diagram showing the major research works done in the 
past seven years, since the release of TinyOS/NesC. The arrows illustrate the 
platform dependence of the research. The dotted arrow signifies that the 
application can also support other platforms. 

The definition of neighbor is application-specific and is defined in the program as 

‘neighborhood relationship’. A set of implementations of regions with their associated 

data reduction algorithms (N-radio hop, k-nearest neighbor, etc) has already been 

provided, which the programmers can simply call in their program as a function.  
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Abstract region implements a blocking, synchronous interface using fibers. This 

interface makes application development simpler as there is no need to write different 

event handlers for a program. A fiber is a thread-like abstraction for an execution 

instance added to TinyOS. The enhanced TinyOS has a default system fiber, which is 

non-blocking and event-driven. The other fibers are for the application, which can be 

blocked.  An application fiber also has the option to be event-driven. Thus, a simple 

programming interface is presented retaining the goodness of the event-driven model.  

The abstract region supplies the programmer with four operators, hiding the 

implementation details:  

 Neighbor discovery: creates a set of neighbors based on the region definition. 

There is an option to update the set periodically.  

 Enumeration: returns the set of active neighbors in the region in order to access 

them. 

 Data Sharing: allows data sharing among the neighbors through the get (retrieve a 

remote variable value) and put (store the remote value to a local variable) 

functions. 

 Reduction: applies user specified data aggregation and compression algorithms on 

the shared variables.  

A tuning interface is provided to fine-tuning resource consumption based on the 

‘quality measure feedback’ generated by the above operator functions. This improves 

energy usage and reliability of the network.  

Abstract Regions programming model has been successfully implemented and 

deployed on the TinyOS platform. The authors analyzed the model based on four 

applications. The analysis satisfactorily validates the claim.  More regions need to be 

implemented to enrich the programming architecture. Implementation of tools for the 

programmers to understand resource usage and quality tradeoff can enable them to have 

more control over the fine-tuning.   
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2.2.2 TinyDB [17]  

 

TinyDB simplifies data-driven application development by hiding the low-level 

data management detail and providing the simple well-known SQL interface for data 

queries. TinyDB is a data query processing system for wireless sensor networks. The 

TinyDB architecture provides the sensor network user with a database file called 

‘sensor’, which stores the sensor values collected from the network. The user queries 

‘sensor’ using a user friendly SQL-like interface via a base-station. TinyDB uses 

resource-aware algorithms to collect and manage (aggregation, filtering, etc) sensor data 

and hides the associated low-level programming details from the users.  

TinyDB is a distributed query processor running on each node in the network. 

Users submit their queries to the network via a base-station. The queries are parsed and 

power optimized in the base-station before they are disseminated to the network through 

a power aware routing tree. The processed results are routed back to the base via the 

same tree, and the users are presented with the query results, which gets stored in the 

‘sensor’ table.  

Acquisitional Query Processing (ACQP) is adopted for TinyDB along with the 

traditional query features provided by SQL. ACQP determines when, where and in what 

order the data is to be collected to minimize power usage of the network and at the same 

time providing increased data accuracy, compared to the traditional SQL query 

processing methods. The ‘sensor’ table, thus, gets updated only when a query is 

generated to save resources, and at the same time presenting up-to-date values to the user.  

A user can specify the sample period of a query as a query parameter. Many 

queries, like, event-based, grouped aggregation and actuation queries, provides useful 

services to sensor network applications. TinyDB also supports data logging and network 

health monitoring through special queries. Queries can be prioritized. 
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TinyDB has been successfully implemented and deployed. At present, it is the 

most efficient and widely used query processing system for the wireless sensor networks. 

Sophisticated prioritization methods need to be designed to improve the real-time 

response.  

2.2.3 TML [18]  

 

Token Machine Language (TML) provides a framework for network coordination 

and hides the low-level detail from the programmers making sophisticated application 

development simpler, while economizing resource utilization.  

TML has been designed as an intermediate language on an abstract machine 

called Distributed Token Machine (DTM), providing a layer of abstraction on the 

underlying event-driven operating system, such as TinyOS. Tokens constitute the unit of 

computation and communication in the sensor network deploying DTM/TML. Tokens 

are small messages through which data and programs get communicated to the sensor 

nodes. A token handler is invoked upon the receipt of a token, which executes the token. 

Execution of a token atomically changes the state of the token, and the state of the 

system. DTM hides the low-level distributed execution and communication detail from 

the programmers. The TML compiler provides memory protection. A TML program, 

based on object oriented programming model, simply needs the programmer to write 

codes for tokens without worrying about their scheduling and coordination across the 

nodes, which are taken care of by the DTM. This provides a simple and expressive high-

level abstraction to the application developers, while taking care of resource utilization. 

DTM manages the tokens and their coordinated computation and communication 

in the network by specifying token handler, token scheduling and their storage (dynamic 

memory allocation for new tokens) in each node. Currently, TML/DTM supports only 

TinyOS/NesC. DTM is presented as a TinyOS module. Handlers are compiled into 
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corresponding NesC commands. A token is disseminated across the network over 

communication channel by encapsulating in a TinyOS Active Message. 

The scheduling algorithm chosen is usually implementation-specific. Prioritized 

scheduling (fast response to events) and static scheduling (improved runtime) is 

supported. The DTM specifies handler language, which is currently a simple C-based 

restricted language (TML). DTM provides reliable communication by taking care of 

message loss, and providing some fault-tolerance.  

DTM provides a collection of gradient network coordination operations through a 

gradient interface added to TML. Gradients can provide efficient general purpose 

breadth-first routing.  

TML specifies the token and the handlers. A token can have multiple 

instantiations termed as subtokens with separate private memory allocation, but the same 

handler.  A token execution may not be atomic, if it has a subroutine call inside it. Such a 

subroutine is called a subcall. A subcall is executed in implicit split-phase calls using a 

continuation passing style (CPS) transformation. The subcalls enable construction of 

complex token methods at the cost of efficiency provided by atomic execution.  

TML/DTM has been successfully implemented and deployed. The integrations of 

standard distributed services (gradients, leader election, etc) into the TML/DTM 

architecture were smooth and simple, validating the claims of the authors.  

The running time of atomic executions of token handlers is hard to estimate 

beforehand because of their dependence on TinyOS event handler. Improved execution 

model is needed to provide more precise timing. Explicit coding is required to ensure the 

subcalls’ computations finish quickly in a short bound time. More efficient memory 

management also needs attention to reduce the memory overhead due to the tokens and 

handlers.  
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2.2.4 KAIROS [20]  

 

Wireless Sensor Network programming abstraction (allowing the programmers to 

present the global behavior in a centralized fashion) makes the language more flexible 

(suitable for writing different types of application) and simplifies application 

development (hiding low-level detail from the programmers).  

Kairos presents a macroprogramming paradigm for sensor network programming. 

Kairos’ programming model uses a centralized approach to present the global view of a 

distributed application running on a sensor network. The abstraction hides from the 

programmer inter-node communication and program coordination across the nodes. As 

the abstraction is not node-specific, it focuses more on expressivity rather than 

performance tuning. Algorithms written in Kairos are compact and flexible resulting in 

the development of robust applications.  

In Kairos, program code is generated by a language pre-processor, which is then 

compiled by the architecture specific compiler. This makes Kairos language-independent. 

The compiler produces a node-specific version of the distributed program. The Kairos 

runtime library at each node provides local variable abstraction to the remote state 

variables.  

Kairos has adopted declarative programming model where the programmers are 

provided with three abstractions: 

 Node Abstraction: Any node across the network can be accessed through a local 

integer identifier. This abstraction hides the complexities of network topology 

discovery from the programmers.  

 Remote data access: The detail of underlying message communication is hidden 

from the programmers by making the remote and local variables appear as local in 

the program (shared memory abstraction). 
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 One-hop neighbors: The process of neighborhood discovery is hidden from the 

programmers, who can access all one-hop neighbors through a simple function 

call.  

Kairos guarantees eventual node state consistency. This allows nodes to become 

consistent over a period of time. This may result in a node having a stale value, but 

eventually, after a bound time interval, its value will be updated. Loose synchrony blocks 

a reading if the referenced remote variable is not valid.   

Kairos has been successfully implemented and deployed. Evaluations have been 

done based on experimentations with three different distributed applications. The results 

consistently validate the claims of Kairos. The middleware provided by Kairos is not yet 

equipped to control the underlying run-time resources, or to optimize any application 

specific communication pattern. 

2.2.5 TASK [24] 

 

TASK is a system designed for use by naïve end-users to deploy and manage 

sensor network applications with nodes running TinyDB. The TASK sensor kit is made 

for ‘turnkey’ sensornet applications for the Berkeley motes (mica2 or mica2dot). It is 

designed specifically for low data rate environmental monitoring application. This kit is 

meant for users who are not sophisticated computer users. Thus, the main focus of this kit 

is to make the deploying of the sensor network simple, as well as, it should be easy to 

configure, and easy to maintain.  

The TASK kit is a three-tier architecture.  

 The top layer consists of the TASK user tools, through which the users can 

interact with the sensor nodes in the network.  

 The middle tier is what is called a Sensor Network Appliance (SNA).  

 The bottom layer is the collection of sensor nodes running TinyDB.  
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TASK provides two client tools, one being a simple web based tool and the other, 

an advanced Visual Basic based tool. In addition to the services provided by the simple 

tool (client interaction activities as described above), the latter provides the user with a 

visualization of the deployed network with continuous health monitoring. Also, there are 

field tools, where a user can issue commands through a PDA in the mote neighborhood to 

check the health of the mote. TASK can also integrate with external tools like Matlab, 

Excel, etc. 

SNA acts as a portal between the clients and the nodes. SNA is a resource 

enriched base station (Stargate platform from Intel Research and Crossbow), consisting 

of a local DBMS and a TASK server. The DBMS collects data from the sensor nodes and 

store them locally. The TASK server provides a web interface to the clients for 

submitting commands and sensor data queries through the TinyDB interface, monitoring 

network health, and browsing the local database through a standard ODBC interface.  

TinyDB in the motes presents the network as a virtual database containing sensor 

data for all the sensor motes. The TASK server queries the database using TinySQL, and 

the client commands are processed by a command interface supported by TinyDB. One 

major contribution of this research is to add some improved features to TinyDB, which 

was then not ready to support real time network requirements. Efficient power 

management solutions to TinyDB have resulted in prolonging the lifetime of the network, 

which is often desired, for environment monitoring applications. Time synchronization 

features have been added to synchronize the node functionalities. The novel query 

sharing method guarantees that a node will not miss a query. Watchdog and data logging 

features along with query sharing increases network reliability by providing fault 

tolerance features. 

TASK has been successfully implemented and deployed and the authors had 

performed several experiments to analyze its features. The results were satisfactory, 

reflecting the improvements to TinyDB. Also, the interface provided by TASK was easy 
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to use by the naïve users.  The drawbacks of TASK include its limitation to low-data 

environmental monitoring applications and laborious and time-consuming process of 

calibrating the sensors individually. Also, though, TinyDB is a very advanced distributed 

query processor, even if with efficient power management it remains power hungry, 

which is a major limitation to the network longevity.  

2.2.6 TENET [28]  

 

Tiered architecture increases system manageability (by implementing multi-node 

data fusion functionality and multi-node application logic in the master tier) and ‘tasks’ 

simplifies application development (by allowing code reuse). This paper introduces 

TENET, two-tiered sensor network deployment architecture. The lower tire constitutes of 

sensor nodes, and relatively powerful 32-bit platform nodes constitute the masters. The 

masters send commands to the nodes for doing in-node computation on local sensor data. 

The masters then collect the processed data from all the sensor nodes and do resource 

intensive computation on them, e.g. data aggregation, multi-node application execution. 

This way, the sensor nodes are not needed to do the resource demanding executions, and 

the average lifetime of the network is thus, increased. The commands send by the masters 

are encapsulated in ‘tasks’. This supports code-reusability. Due to greater capacity of the 

masters, network coverage is considerably extended, supporting scalability. TENET also 

provides a reliable and efficient underlying networking for the communication between 

the nodes and the masters.  

TENET is a two-tired software architecture comprising of the Sensor nodes and 

Masters.The sensor nodes supported by Tenet are MicaZ and Tmotes. The motes cannot 

initiate computation on their own, but wait for tasks from the masters for execution. The 

motes run the TinyOS operating systems to take advantage of its reliable drivers, 

including timers, sensors, etc. The tasks are usually limited to small, simple applications 
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to reduce the computation overhead of the motes. Tenet scheduler dynamically schedules 

tasks in a mote and improves system efficiency by allowing on-demand memory 

allocation. The master nodes are fewer in number compared to the sensor nodes. Masters 

are powerful 32-bit nodes like Stargates or PCs. Masters can communicate among 

themselves to execute the multi-data and multi-node related programs. 

Tasks are small programs written in a language created by the Tenet researchers 

for this architecture. A task comprises of a sequence of smaller tasklets. Each tasklet is a 

program providing service as part of a task. The tasklets are stored in a task library. The 

task library comes with the Tenet architecture package. The different tasklets are 

composed to construct program for data acquisition, processing, filtering, management 

tasks, etc. These programs can be reused for different applications. This helps Tenet to 

run different applications in the network concurrently. Application development requires 

combining the tasklets to construct different tasks. Available task library, modular 

programming style, and the simple and expressive task language makes application 

development simpler for the programmers.  

Communication is message oriented comprising of two functions. (1) sending 

tasks to the nodes from the masters and (2) sending back task responses from the nodes to 

the masters. 

Tenet uses a robust, scalable, tiered, data-driven routing mechanism. In this 

mechanism, a node sends task response to the nearest master, which in turn sends the data 

to the rightful receiver. Three types of response mechanisms supports reliable delivery of 

data for low data rate applications, events and high data rate applications. The tasks are 

broadcasted to the nodes using a reliable flooding protocol. The subsystem supports 

diverse applications. 

Tenet has been successfully implemented and deployed. The novel features of 

Tenet have been evaluated through two application case studies. The evaluation proves 

the claims of Tenet but at the cost of communication overhead, delayed data processing, 
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and possible network congestion. Time needed for the masters to receive the task 

response may delay data processing, reducing real-time efficiency. As in-node data 

aggregation is not taking place, a large amount of raw sensor data in the network can 

result in congestion. But the contribution of Tenet overshadows these drawbacks. 

2.2.7 FACTS [29] 

 

FACTS is middleware programming providing a rule-based programming 

language, with an underlying event-centric architecture makes WSN programming 

simpler, while attempting to minimize resource utilization. In this paper the authors have 

introduced a middleware abstraction layer, named FACTS, which combines the 

advantages of both event-based model and the rule-based model.  

 Event-driven model is suitable for sensor network applications, as any change in 

the surrounding environment (events) requires prompt response.  

 Rule-based models cannot provide such real-time response, but can provide a 

high-level abstraction to the programmers by hiding the underlying event 

coordination complexities and the communication detail. This abstraction makes 

it easier for programmers to develop complex applications for diverse distributed 

sensor network systems.  

The main abstractions designed in FACTS are rules, facts and functions. Facts 

include sensor data and local and shared variables. The rules follow the guarded-

command model. A guard is a condition based on the facts. If the condition evaluates to 

true, its corresponding action is executed. The action is responsible for changing the facts 

in a process. Also, the rules can call system functions, which are event-based. Each node 

has its local set of rules, facts and functions. 

Rules are managed by an entity called the rule-engine. Rule engine is responsible 

for firing a rule or calling a function. A rule is said to be fired, if the guard condition is 
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evaluated to be true. Rules can have priorities assigned to them, and are executed in an 

event-driven style to achieve fast response to events (real-time response) while 

economizing energy and memory usage. In a rule, an action corresponding to a guard is 

executed only if the guard condition is evaluated to be true as well as there is a change in 

the value (compared to the value in the previous round) of one of the facts involved. The 

latter condition makes the rule execution event-driven. The modified facts appear as 

events to the programmers.  

Facts can be local or remote. An abstraction hides the sharing of facts (radio 

communication detail) from the programmer to whom both local and remote facts appear 

as local. Thus, the programmers are not required to deal with the complexities of sharing 

of information among the nodes, dynamic addition or updating of the facts, or the events 

triggered by modification of the facts.   

Rules can call system functions through rule engine. The functions implement 

resource-aware low-level event-driven algorithms for real-time sensor network 

applications. The middleware offers a rule-based interface to the programmers with an 

underlying event-centric architecture accessible to the programmer.  

The FACTS middleware has been successfully implemented. To illustrate the 

features of FACTS, the author has presented multiple examples covering major tasks 

typical to a sensor network system. The examples show how FACTS’ implementation is 

resource-aware while presenting a simple high-level interface to the programmers. The 

programming structure is not very modular (component-based), which affects the runtime 

performance of the FACTS rule engines.  

2.2.8 Rule-Based Programming Language [34] 

 

Rule-based wireless sensor network programming language makes application 

programming simpler (by hiding the low-level detail) and eases program correctness 
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proving, while being resource aware. In this paper the authors have proposed an 

intermediate programming language, which provides a high-level abstraction to the 

sensor network programmers. Unlike NesC, the language provides diverse high-level 

abstraction to the programmers, by hiding the low-level event detail. The compilation 

process provides reliability while economizing resource utilization. The code is compiled 

to an intermediate byte-code to be executed by any virtual machine, independent of the 

TinyOS/NesC platform. The paper also proposes an efficient communication protocol to 

exchange messages among sensor nodes. The applications supported by this language 

ranges from distributed data collection to reading sensor data for in-network computation 

and actuation.   

An important contribution of this language is it being a state-based language, as 

opposed to the event-based ones. This paper explains how state-based model 

considerably improves reliability and power utilization of a process.  In this state-based 

language, the guarded command execution style has been adopted. A set of rules and 

their corresponding actions are grouped together as a task. A rule is a condition based on 

the local and shared variables of a process, or the result of an event. When the condition 

is true, its corresponding action is executed. An action changes the state of the process by 

changing the variable values, but it does not directly trigger any event.  

Each task is executed periodically till the program ends, and in each task the rules 

are evaluated in a sequential manner. The duty cycle of each task is parsed to ensure no 

overlapping. Thus, there is a single workflow in the process at any time. This ensures 

there is no threaded concurrency or dynamic scheduling, and hence, the workflow 

schedule is predictable. This simplifies the execution model compared to the event-based 

ones and at the same time allows the compiler to reduce the power usage like an event-

driven model.  Since the schedule is known during compile time, Weakest Pre-Condition 

program correctness proving methods, as well as self-stabilizing verification algorithms 

can be applied during compilation to check the program for any errors.  This considerably 



 

 

25

increases the reliability of the program. Also, if task scheduling is violating any 

scheduling rule, like overlapping tasks, the compiler will inform the programmer about it.   

The language also incorporates some event-driven execution styles by assigning 

priorities to the tasks giving the highest priority to the task dealing with event results 

requiring fastest response.  

The communication model designed to support this programming is based on a 

shared memory model. The nodes are allowed to share data among its local tasks and 

with other nodes through shared memory termed as a ‘channel’. To support 

heterogeneous networks (different nodes having different sensors need to execute 

different rules), a network can have multiple channels, each channel having a different 

scope and type based on the type of a sensor node and the program running on it. A 

TDMA-like mechanism has been adopted where a process (node) needs to acquire a radio 

channel to send messages. This asynchronous communication economizes power 

utilization. Routing mechanisms may be deployed for multi-hop data transfer. The same 

message is sent multiple times to avoid communication loss. 

The authors have illustrated their language by designing programs for an 

application for a heterogeneous sensor network, involving land management and herding 

of livestock. The language has not been implemented yet to analyze the reliability and 

energy efficiency of the network.  

2.2.9 Declarative Resource Naming [35] 

 

Macroprogramming (resource abstraction and dynamic binding) simplifies 

application development while economizing resource utilization. Declarative Resource 

Naming (DRN) is designed as a macroprogramming language with an aim to allow the 

programmers to write a wireless embedded system application in a high-level language 

while being resource aware.  
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In the DRN philosophy, a sensor network application is centered around 

operations on variables and resources (e.g. cameras, light sensors, temperature sensors, 

etc). Traditionally, accessing resources locally or remotely can be very tedious, as 

resources are not referred to by the node ids, but by their runtime properties. This 

involves implementation of complex algorithms for resource access, resource discovery, 

and across the network communication, etc. To overcome this difficulty, DRN proposes 

an abstraction of resources to hide these details from the programmer, making application 

development simpler.  But at the same time, DRN supports imperative programming, 

letting programmers write complex algorithms for efficient software implementation.  

DRN allows programmers to access a resource through a variable abstraction. The 

variable mapping lets the programmer access a particular resource by simply referring to 

its different run-time properties (camera turned on or off, temperature greater than a 

certain value) as Boolean expressions. Thus, there is no need for an application developer 

to provide the algorithms related to resource management. These algorithms are in 

DRN’s supporting middleware. Other properties of DRN include tuning parameters such 

as time-out, energy budget (to improve energy usage), etc.  

To hide the low-level communication detail from the programmer, the network is 

programmed as a single abstract machine (macroprogramming) with all the local and 

remote resources appearing as local to the program. The resources can be accessed 

individually or a group depending on their properties. When more than one resource 

satisfy a given set of properties they are accessed in parallel, thus reducing the total 

access time. Also group access allows in-network processing like data-aggregation, thus 

reducing energy consumption.  

Mapping of each resource to a variable is called resource binding. Since sensor 

networks are reactive to environmental changes, the resource properties can change 

dynamically. Since a variable maps to a resource satisfying a fixed set of properties, the 

resource(s) for a particular variable changes over time resulting in dynamic binding. 
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DRN supports dynamic binding and hides the related details from the programmers. 

Sometimes static binding is also needed for cases where a particular resource needs to be 

accessed, which no longer satisfies some previously matched properties. DRN provides 

provision for such static bindings as well. If a resource is lost, or not accessible for some 

reason, an access timeout results raising an exception, which the programmer can access.  

DRN has been presented as a concept, which is yet to be implemented.  



 

 

28

CHAPTER 3 

DESAL (DYNAMIC EMBEDDED SENSING AND 
ACTUATION LANGUAGE) 

Our research work includes design and development of DESAL (Dynamic 

Embedded Sensing and Actuation) [42], an integrated programming language and 

middleware platform for developing wireless sensor-actuator network applications. 

DESAL is a state-based rule-based programming language built on the TinyOS/NesC 

platform. An important feature of DESAL is that it is a state based language with guard-

action commands. There are established formal correctness proving methods that can 

work on guard-action formats to mathematically check a program for errors. Also, there 

is no hidden control context like events or interrupts. DESAL also offers dynamic 

binding where processes communicate with each other through state sharing. This hides 

the detail of message communication from the user. Another novel feature we have 

introduced in DESAL is a variable of type ‘token’. The concept of token is commonly 

used in mutual exclusion algorithms, where a process with a token is allowed to do a 

certain job, while others wait for that process to get done, i.e. wait for the token. Struct 

and functions are also important features newly added to DESAL. 

DESAL is designed for applications, which do not have hard real time constraints, 

like natural habitat monitoring, etc. The reasons are (1) that time granularity is coarse (it 

can only schedule rules with seconds, not milliseconds), and (2) the timing of variable 

sharing is not precisely known, because messages can sometimes fail and need to be 

resent. Currently, there are two implementations of the DESAL platform differing in 

terms of the standard language and runtime. The first implementation is developed here, 

at University of Iowa. The second implementation is developed at Clemson University. 

Our contribution to the DESAL project includes, (1) addition of modules to the 

Iowa DESAL middleware implementation, (2) writing DESAL compiler based on 

Clemson’s grammar, (3) modifying Clemson’s package to produce low-level NesC 
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equivalent of DESAL program, (4) writing codes to convert a DESAL program to an 

equivalent Java program, (5) introduction of new features to DESAL (structs, functions 

and tokens).  

DESAL is an attempt to combine many services already implemented by the 

previous research works. Services like time synchronization, neighborhood management, 

message communication, providing high level interface and base station independent 

interaction are all integrated in a single middleware. 

Key features of DESAL include: (a) rule-based and state-based programming (b) 

synchronized action scheduling via timed execution (c) neighborhood management (d) 

communication via distributed state sharing (e) dynamic binding.  A brief overview of the 

features is given below. Later we compare a DESAL program with an equivalent NesC 

program to show how writing code in DESAL is much simpler. We also briefly compare 

the different features of these two platforms. In chapter 3 we have discussed DESAL 

language design in detail. It includes the grammar and syntax of the language followed 

by the explanation of the runtime architecture. DESAL production has been done through 

collaboration between Clemson University and University of Iowa. The two universities 

developed the same DESAL but their approach was different. They have the same 

runtime architecture, but implementation is different. In the last section we discuss the 

runtime architecture and the different implementations. The Clemson runtime 

architecture is implemented based on Java, whereas, the codes written for Iowa DESAL 

are in Python. 

3.1DESAL Features 

 

The important features of DESAL are: (1) State-based programming model (2) 

Timing and time synchronization (3) Neighborhood Management (4) Communication via 

distributed state sharing and (5) Dynamic Binding. 
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In the state-based programming model, an action taken is not event-triggered, but 

depends on the truth-value of a Boolean condition comprising of the state variables. The 

guarded-command syntax has been adopted here. A guard is a condition comprising of 

declared state variables. When a guard is evaluated to true, a single or a group of 

statements corresponding to that guard is executed. The execution of these statements 

changes the values of the declared variables, but do not invoke any events.  Thus, in this 

model, declared state variables decide the computation, and not the low-level events, or 

any other values stored in the memory. The guards are periodically evaluated in the body 

of the program, separated from the event-driven system functions, like sensor readings.  

Advantages are (a) High-level abstraction: Since, program computation involves 

only the declared variables, applications are written without any knowledge of the low-

level event scheduling (which is architecture specific). This presents a declarative style of 

programming providing a high-level abstraction, making program development much 

simpler compared to that in the event-driven models. (b) Predictable workflow: The 

periodic evaluation of guards (and not events) comprises of the execution workflow when 

a program is running in a mote. Since the guarded command execution involves only 

declared variable changes, the compiler can statically determine the workflow. This helps 

the compiler to improve the runtime of the program (best-effort scheduling) as well as 

check the correctness of the program (e.g. using weakest precondition).  

Programmers are allowed to fine-tune their application with user-defined periods 

for guard execution. This can provide the programmer with more control to write 

application-specific efficient codes.  

Time synchronization mechanism forms the backbone of the DESAL architecture. 

This mechanism provides a global synchronized clock. It allows the nodes to wake up at 

the same time, do synchronized computation and communication with sleeping in-

between. Advantages are (a) Power awareness:  Sleeps in-between executions result in 

low power consumption due to low duty cycles. (b) Coordinated Actuation: Synchronized 
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clock enables the same guard across the nodes to get evaluated at the same time (on a 

best-effort basis). (c) Data freshness:  Shared variable values could be time-stamped in a 

complete implementation (not done in present DESAL). 

DESAL programs have built-in access to the network neighborhood of the hosting 

device. Neighborhood management services, including node discovery and health 

monitoring, are performed automatically. Health monitoring provides added robustness to 

the network.  

In DESAL, communication is expressed by sharing of state variables. The nodes 

in the network share their states (declared state variable values) with each other through a 

soft-state abstraction. The soft-state makes the local as well as the remote variable values 

appear as local variables to a node. This is done by copying the remote variable values to 

their corresponding images (local variables) in the node. The soft-state store, termed as 

the best-effort cache, is updated periodically. Soft-state abstraction hides the low-level 

communication event management (writing the message construction and interpretation 

functions, and the message send/receive events) from the programmers. This makes 

application development simpler and less error-prone.  

For a particular node, binding mechanism (part of the supporting DESAL runtime 

middleware) maps the remote variables to their corresponding local images (variables) in 

the node. As a wireless sensor network is usually very dynamic in nature, the mapping 

may change frequently over time.  This change is periodically recorded by updating the 

soft-state cache, and accordingly the binding is updated. The dynamic binding feature 

takes care of the changes in the network topology due to the entry/exit of the sensor 

nodes, communication failure, etc. Before a binding is made or updated, a series of 

operations, like health monitoring, are executed to validate the binding.  Advantages are 

(a) Dynamic network support: Programming supports frequent changes in the network 

topology. (b) Abstraction: Dynamic binding keeps the dynamic nature of the network 
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transparent to the programmer. Hence, application development does not need writing of 

additional functions to take care of the network topology changes.  

Previous research works (discussed in the literature review) have investigated 

most of the above features. DESAL attempts to combine all these features to present a 

powerful and at the same time, a simple high-level sensor network programming 

language. The important feature of DESAL is that, it hides the implementation of these 

features from the programmers, which are automatically integrated in a program during 

compilation. The static construction of the above mechanisms can enable efficient usage 

of data structures and expert programming to exploit the advantages of NesC and 

TinyOS. This can result in efficient memory utilization and economic power usage.  

3.2 Comparing DESAL With NesC 

 

NesC is a sensor network programming language. It is an extension in C 

developed to program on TinyOS, supporting component-based and event-driven 

programming. The basic features of NesC include the following [6]: 

Different components are ‘wired’ together to form the whole program. The 

components are executed in tasks. Tasks execute sequentially (FIFO scheduling) in a 

non-blocking manner, and events can preempt tasks. 

The component interface is provided to present the list of functionalities (events 

and commands) offered by that component. The programmers access the interfaces in 

their program through those functions.  

A single interface presents the complex interaction of components through the 

commands (functions) and events. A command is posted as a task, and its completion is 

signaled as an event. Typically, commands call downwards, towards the hardware level, 

while the events call upwards to the interface level. Tasks are non-blocking, while events 

are triggered by hardware interrupts. 
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Static checking of TinyOS interfaces and variables (static wiring, static memory 

allocation, no function pointers) help prevent errors and economize resource utilization. 

Static compilation enables better code generation and analysis, including compile-time 

data race detection. 

Below we present the Blink application in NesC followed by the same program in 

DESAL. 

Blink is a basic application that toggles the LEDs on the mote on every clock 

interrupt.  The clock interrupt is scheduled to occur every second.  The initialization of 

the clock can be seen in the Blink initialization function, StdControl.start(). Figure 3 

shows the low-level wiring of the components.  

configuration Blink { 
} 
implementation { 
  components Main, BlinkM, SingleTimer, LedsC; 
  Main.StdControl -> SingleTimer.StdControl; 
  Main.StdControl -> BlinkM.StdControl; 
  BlinkM.Timer -> SingleTimer.Timer; 
  BlinkM.Leds -> LedsC;} 

Figure 3 Component Wiring 

It is obvious from Figure 3, 4 and 5 (given below) that code writing in DESAL is 

much simpler than that in NesC. 

3.3 DESAL Language Design 

 

Figure 6 shows a sample DESAL program. An abbreviated DESAL grammar is listed in 

Figure 7. Trivial productions are omitted.  
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This section discusses Binding, Time Synchronization, Message Sharing and 

Neighborhood Management implementations for Clemson and Iowa. A picture view of 

the common runtime architecture is shown in Figure 8. The DESAL compiler translates a 

DESAL program to an equivalent NesC program. This enables NesC compiler’s code 

optimizations and the usage of the low-level TinyOS drivers. 

/** 
* Implementation for Blink application.  Toggle the red LED when      
* a Timer fires. 

 **/ 
module BlinkM { 
  provides { 
    interface StdControl; 
  } 
  uses { 
    interface Timer; 
    interface Leds; 
  } 
} 
implementation { 
command result_t StdControl.init() { 
    call Leds.init();  
    return SUCCESS; 
  } 
command result_t StdControl.start() { 
    // Start a repeating timer that fires every 1000ms 
    return call Timer.start(TIMER_REPEAT, 1000); 
  } 
command result_t StdControl.stop() { 
    return call Timer.stop();} 
event result_t Timer.fired() 
  { 
    call Leds.redToggle(); 
    return SUCCESS; 
  }} 

Figure 4 Blink in NesC, taken from the application directory of TinyOS 

component Blink 
every 3s after 0s 
      true: 
          $redOn() 
every 3s after 1s 
      true: 
          $redOff() 
 

Figure 5 Blink in DESAL 
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Figure 6  A sample DESAL program 
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 1 program→ component <cid> <subcmpnts> 
  component is the entire DESAL program. <cid> is the name of the   
  component which is same as the file name.  
 
2 subcmpnt→ <vars> <bindings> <body> 
  subcomponent consists of variable declarations, binding   
  declarations and a body containing guarded actions.  
 
3 var→ [unshared|shared] <dec> 
  variables which are private to the node are declared as  
  unshared. The neighbors can read shared variables. Variables  
  are shared through bindings.  
  
4 dec→ <type> <id>  
  variables can be 8, 16 or 32 bytes. Small variable size helps  
  in saving memory.  
 
5 binding→ binding (sbinding|mbinding)  
  shared variables are bound to their corresponding image  
  variables in the neighbors. Binding can be of two types:  
  singleton binding and multiple binding.  
 
6 sbinding→ <dec> <- <nid>.<cid>.<vid>  
  Singleton binding is used when only one particular neighbor  
  reads a shared variable.  
  <dec> is the name of the local copy of the shared variable  
  <vid> in the component    
  <cid>. <nid> is the id of the neighbor whose <vid> copy is  
  read into <dec>.  
 
7 mbinding→ <dec> <- "*".<cid>.<vid>"["num"]"  
  Multiple binding or multi-binding is used when more than one 

neighbor reads the  
  shared variable <vid> in component <cid>. This is indicated by  
  “*”. <num> puts an upper limit to the number of neighbors to  
  avoid resource exhaustion. 
 
8 body→ every <num1><tunit> after <num2><tunit> <gactions> 
  body consists of the guarded action commands <gactions>. Body  
  is executed for <num1> time units after a delay of <num2> time  
  units. The execution of the body is synchronized with body  
  execution in other nodes with the help of underlying time  
  synchronization. 
 
9 tunit→ ms|s|m|h  
  time unit can be millisecond, second, minute, hour. 
 
10 gaction→ <guard> : <stmtlst> 
   A guarded statement <stmtlst> is executed when the <guard> is  
   enabled. 
11 guard→ <boolexpr>  

Figure 7 DESAL grammar rules 
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   When a guard is enabled, <boolexpr> is true. 
  
12 forstmt→ foreach <vid> in <bid> {<stmtlst>}  
   For each statement is used to iterate through the copies of  
   the shared variable <vid> in the multiple binding <bid>. The  
   order of iteration is non-deterministic. Values for the failed  
   neighbors are pruned automatically by the underlying  
   neighborhood management. 
 
13 bndfunc→ bound(<bid>)|src(<bid>)|age(<bid>)  
   bound() returns a Boolean value indicating whether the binding  
   end-point is healthy.  
   Src() returns a node identifier of a binding end point.  
   Age() is used to determine the freshness of a binding value. 
 
14 sensfunc→   
   $temp()|$humid()|$tsr()|$par()|$adc0()|$adc1()|$volt()  
   The sensor functions are provided to retrieve sensor data.   
 
15 actfunc→ $redOn()|$redOff()|$redToggle()| //..analogous   
   for blue, yellow..  
   Functions provided to control actuated components. The  
   functions shown here correspond to the standard LEDs.  

Figure 7 continued 

3.4 DESAL Runtime Architecture 

 

Figure 8     DESAL Runtime Architecture common to both Clemson and Iowa 
implementation 
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DESAL also provides a middleware, which takes care of the Binding, Time 

Synchronization, Message Sharing, Neighborhood Management, Body Execution and 

Sensor Readings.  

3.4.1 Clemson DESAL Runtime Architecture 

 

Figure 9 Clemson DESAL Runtime Architecture 

Figure 9 shows the visualization of Clemson DESAL runtime architecture. Blue 

modules (Activation Scheduler, Time Sync, part of Soft State Store, Binding Transport, 

Binding Manager, SSS Bridge, SSS Inspector) are common to all applications, yellow 

modules (part of Soft State Store, DESAL main) are compiler- generated, and the edges 

between them represent dependencies. The Binding Manager is a conceptual module 

introduced for the sake of exposition. Its functionality is implemented by the Soft State 

Store. The orange module (Base Station system) represents a Java application running on 

a serial-attached base station.  
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3.4.1.1 Binding, Message Sharing And Neighborhood Service 

 

The unshared DESAL variables are translated to corresponding NesC variables. 

The shared variables are not directly stored as NesC variables. Instead they are stored in 

the memory termed as the Soft State Store. The shared variables and bindings are 

translated to handles used to interact with the Store. The shared variables of a node are 

periodically broadcasted to the neighbors. The Soft State Store is updated regularly 

(When a variable is altered, the Soft State Transport is notified.) to reflect neighborhood 

changes, which includes the event of a neighbor leaving the network, a new neighbor 

joining the network, or a neighbor’s shared variable value getting modified. The Binding 

Manager implements the DESAL binding functions (i.e., bound(), src(), age()) using the 

end-point data maintained by the Store. The module is also responsible for pruning failed 

end-points from multi-bindings. To amortize the pruning expense, the end-point check is 

performed as part of the iteration process: Each time the current slot in a multi-binding is 

set to the next slot in an iteration, the age of the entry is compared to its allowable 

lifetime. The latter value specifies the maximum time an end-point should be considered 

active without receiving an update. (The value is set as a compile-time option.) When the 

age of a slot exceeds its lifetime, it is pruned. The Soft State Store Bridge provides a 

communication interface between a DESAL device and a serial-attached base station. 

The Bridge consists of a NesC module and a corresponding Java class library. The Java 

library provides base station services to inspect and modify the elements managed by the 

Store of the attached device. It can, for instance, be used to establish a virtual binding 

across the serial link. The Soft State Store Inspector is a simple graphical interface for 

debugging, constructed using the Bridge library. It enables developers to easily monitor 

the contents of the Store and to inject changes in variables and bindings.  
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3.4.1.2 Time Synchronization In The Implementation 

 

The time synchronization forms the backbone of the DESAL architecture. The 

time periods needed for the execution of the body (guards and sensors) and the Soft State 

Store (and Neighborhood service) are provided by the host’s clock. To synchronize 

activations across the network the time synchronization protocol uses a beaconing 

approach that converges to the lowest clock value in the network. Thus, all the different 

components of the runtime architecture are dependent on the Time Synchronization 

module. Synchronization is important for two main reasons: (a) this maintains the 

validity of the shared variables. e.g. for calculating the average temperature of the 

network, the temperatures from all the nodes in the network should be collected 

approximately at the same time to produce  the correct result. (b) Synchronization helps 

saving network energy. Nodes periodically go to sleep to conserve energy. For correct 

functioning of the network, the interacting nodes should wake up at the same time.  

3.4.1.3 Body Execution And Sensor Reading 

 

Each subcomponent body is translated into a function with the guards and actions 

as if-then blocks. A body is executed periodically according to the specified periodicity 

and delay provided in the DESAL function. The sensor values are also read periodically. 

Each body is executed as a separate thread using the Tiny Thread Library for TinyOS [4]. 

Using the Tiny Thread approach, each body/function is translated to a single blocking 

call on a wrapped driver. Threads are activated based on the periodicity and delay 

parameters specified by their corresponding subcomponent body. These activations are 

handled by the Activation Scheduler. The module provides an interface for requesting 

activation events at a specified periodicity, after some initial delay. At boot time, an 

activation schedule is requested for each thread. Internally, the module uses one-shot 
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timers tuned to the system clock. The timer delay for a given thread is set to 

(time+delay)%period, where time denotes the current value of the clock, delay represents 

the requested delay, and period represents the requested period. When the timer fires, the 

activation event is signaled on the body thread, and the one-shot timer is again set 

according to the same formula.  

3.4.2 Iowa DESAL Runtime Architecture 

3.4.2.1 Binding 

 

Sensor motes running DESAL program periodically share messages with its 

neighbors. The motes exchange messages through shared variables. There are two types 

of shared variables: internal and external. The external variables are writable, and only 

the host mote can write to it. The host periodically broadcasts the values of these external 

variables. The motes in need of those values receive and copy those variable values to 

their corresponding images. The images are actually shared variables to which those 

received values get copied. These variables are termed as internal shared variables. They 

can be thought of as internal images of some external variables whose value is received 

via the radio. These internal variables are readable only, as they are just images of some 

external variables. The bindings of the external variables to the corresponding internal 

ones are declared in the Binding section of the DESAL program. Below we discuss parts 

of the Binding Table. 

For each shared variable, the compiler creates a binding tuple as given in Figure 

10. All the tuple constitute a Binding table. The field Variable Address has the address of 

the variable. Variable Code is a unique integer number given to each shared variable. In 

the current version of the DESAL program, this code is actually the (incremental) serial 

number for a variable. Binding Code is assigned to an internal shared variable during 

runtime when it gets bound to the corresponding external variable (this happens when the 
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variable value is received for the first time). Next time onwards, the received value gets 

directly copied to this bound internal variable. As the name indicates, the Variable Size 

field contains the size of the shared variable. Binding index contains two types of 

information: the first three bits of the byte indicates whether the variable is Bound, 

Writable, or a System Variable. 

 

 

 

 

Figure 10   A Binding Tuple associates an internal variable to an external variable. All 
the tuple constitute of a Binding Table. The first variable address contains the 
address of the host/external variable. The first Binding Index is the index of 
the external variable, which is zero. The next (n-1) tuple corresponds to the 
internal variables from the (n-1) neighbors. 

If the variable is bound, the next 5 bits give the id of the neighbor to which it is 

bound. This is done during runtime when the binding is done for a particular variable.  

This table also gets modified during runtime to reflect the changes in the bindings when 

the neighbors leave or enter the system. How the Binding table is constructed is 

explained below with an example. 

Suppose in a sensor network of n motes, all the motes are running the same 

DESAL program. Each mote has a shared variable called x, which it shares with all its (n-

1) neighbors. Then, according to the program, x will be an external shared variable as its 

value is getting broadcasted to the other motes. Also, there will be another (n-1) internal 
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shared variables, which will be the corresponding images of the external variable x 

coming from each of the neighbors.  Thus, the Binding table will have n entries, the first 

tuple corresponding to the external variable, and each of the next (n-1) entries for the 

internal variables. Initially, before the motes start interacting, the Binding code 

correspond to each variable will be zero, which means it is not bound yet.  The compiler 

also builds a table called the Allowed Binding Map shown in Figure 11. Each (n-1) tuple 

in the table corresponds to an external variable. 

The first field contains the variable code. The next two fields store the variable 

codes of the shared variables specifying the range of the internal variables to which that 

external variable can be bound. How this mapping works can be explained with the 

previous example. The program contains a single external variable called x. The mote 

will be receiving (n-1) copies of this variable x, each coming from a neighbor. So we say 

the (n-1) values (images) received over the radio can get mapped to the corresponding (n-

1) images of the external variable x. 

 

 
 
 
 
 

Figure 11   Allowed Binding Map Table contains the external or the host variable code, 
and the allowed internal variable codes contain the range of the codes allowed 
for the variables from the neighbors. 
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These images get stored in the corresponding internal variables. The first field in 

the Allowed Binding Map table contains the name of the external variable, and the next 

two fields contain the variable codes of the first and the last internal variable specifying 

the range of the internal variables to which the value of the received x can be copied.  

Now we talk about the Binding Action. We need to specify which internal 

variable will contain the image from a particular neighbor. Since all the internal variables 

corresponding to x are identical, if we don’t fix a variable for a particular neighbor, each 

time a value is received from a neighbor, it can get copied to a different internal variable. 

So, for a particular neighbor, we need to fix one of the (n-1) different internal variables. 

This process is what is known as binding. When a value from a neighbor is received for 

the first time, it means the value is not yet bound to any of the allowed internal variables. 

At the same time, the Binding table will show binding information for internal variables 

which are bound to some different neighbors, as well as some unbound variables, one of 

which is allowed to get bound to the said neighbor. To determine the code of the internal 

variable to which it can bind to, the following steps will take place: (1) the allowed 

binding map table will be checked to find the allowable range of internal variables. (2) 

Among the internal variables an unbound internal variable will be chosen. (3) Then the 

binding code and the binding index will be updated. Thus, next time a value of that 

external variable is received from that same neighbor, the binding information is matched 

from the Binding table, and it gets copied to the same internal variable. 

The Figure 12 is showing a sensor network with four motes. Let MT denotes the 

allowed binding map table, and BT the binding table for the mote with id=1. Mote 1 has 

three neighbors with Ids – 2, 3 and 4. Each has a shared variable x which is getting shared 

with the neighbors. In BT the first filled column represents the internal variable codes, 

and the last column represents the neighbor Id to which that variable is bound. 
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The binding protocol does not allow overlapping of an existing binding. This 

means, if an internal variable is already bound to an external variable from another mote, 

the binding remains till the neighbor leaves the network.  

3.4.2.2 Message Sharing 

 

The program periodically broadcasts the shared variables. The period has been 

fixed at EXCHANGE_PERIOD (= CYCLE_PERIOD/3).  CYCLE_PERIOD is the 

guarded command period. The guards get executed every CYCLE_PERIOD. At the wake 

of the timer, a TOS_Msg is created. The payload part of that message is shown in Figure 

13. 

 

Figure 12   Binding Action: Here 1 is the host node with neighbors 2, 3, and 4. MT is 
allowed binding map table. BT is the binding table. In MT allowed binding 
range of the external variables is 2 to 4 as the internal variable codes range 
from 2 to 4. In BT the first index in the last column is 0, which is the binding 
index for the external variable. The rest of the indices correspond to the id of 
the neighbors. 
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Figure 13   Message Payload is the tuple, which is broadcasted over the radio. The first 
field contains the id of the sender. The rest of the entries contain the external 
variable values to be broadcasted. With each variable value (data) the variable 
code is also attached. 

The payload has two parts: the SendId of the sender, and the set of entries to be 

sent. Each entry consists of the Variable code, and the corresponding data. This code is 

the external variable code associated with that variable. If the variables are system 

variables they are not shared. In a round, it may happen that all the variable data do not 

get fitted in a single TOS_Msg. In that case, more TOS_Msgs are sent in a round till all 

the variable data are sent. These messages are sent at an interval of 1/8 sec. The entire set 

of TOS_Msgs is sent at an interval set at EXCHANGE_PERIOD. If sending a message 

fails, sending is retried after every ¼ sec. After a TOS_Msg is received, all the entries are 

processed one by one, and the data corresponding to each external variable code gets 

copied to the corresponding internal variable.  

The variables read by a neighbor through message sharing is accepted by binding 

the variables to the corresponding images, i.e. the internal variables. After receiving the 

variables the node cannot modify them. This way, the neighbors communicate with each 

other through state sharing. The mechanism of the message sharing is hidden from the 
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programmer. While writing the code the programmer works with only the internal and the 

external variables. 

We have worked with a network, which is dynamic in nature. Hence, neighbors 

can enter or leave the network anytime. This is reflected in the binding table. When a 

neighbor joins the network, a new tuple corresponding to the new neighbor is created. 

Also, the range in the allowed binding map table is modified. Similarly, when a neighbor 

leaves the network, the tables again get modified. Thus, we have dynamic binding. How 

the network changes are recorded is described in the neighbor service, which we discuss 

next. 

3.4.2.3 Neighborhood Service 

 

When a neighbor enters the system, an event is triggered in each of the motes 

already in the network. The event checks the neighbor Ids array to find if the neighbor 

already has an entry or not. If there is none, the neighbor Ids array is updated with the 

new entry. Neighbors joining the network cannot have Id=0, which is reserved for the 

Base. When a neighbor leaves the system, an event is triggered in each of the motes 

already in the network. The event look up the neighbor in the Binding table and sets the 

Binding Index to the default value zero. Then it clears the neighbor entry from the 

neighborIds array. Multiple messages are exchanged between two motes before they 

decide to become neighbors. The messages are exchanged to synchronize with the 

neighbor, to determine if the neighbor is stable and to determine if a neighbor has left the 

network. Each mote maintains a history table to store the messages from each neighbor (1 

byte in size). The values of the history table are checked to verify if a neighbor is healthy 

or not. A neighbor is declared unhealthy if it has become unreachable from the host, or if 

it has stopped sending any messages. The health of a neighbor is checked periodically 

based on the host’s clock. The Neighborhood functions are dependent on the Time 
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Synchronization module. The neighbor data structure (history table) is updated at a 

specific time interval, which reflects the changes in the network neighborhood.  

3.4.2.4 Body Execution And Sensor Reading 

 

In DESAL, guards are evaluated in the Body of a DESAL program. The Body is 

included in a task, called ruleExecute, in the corresponding NesC code, and the guards 

are evaluated in a switch statement. A guard- command pair is converted to an if-then 

block in NesC. In the NesC code, each guard has an index. Each index forms a case in the 

switch. When the task ruleExecute is posted, the cases are checked in a sequential 

manner. A counter called gindex holds the index of the current guard-command block 

being evaluated. This counter is the switch condition. The counter is incremented after 

the evaluation of each such block. If the value of the counter is less than the total number 

of guards, the task ruleExecute is posted again till all if-then blocks are evaluated one 

after the other sequentially. The time period between consecutive executions of the group 

of guards is an amount of time mentioned as a Body parameter (CYCLE_PERIOD). 

After the evaluation of all the guards in the sequential manner, the local time of the mote 

is synchronized with that of all other motes. 

If sensors are defined in the program, the task prepSensor() gets executed which 

invokes sensor reading. The sensors are read at an interval set at the CYCLE_PERIOD. 

In a round, the sensors are invoked once, one after the other, and the respective getData() 

methods are called to read the sensor values. There is a pause of 1/8 second between the 

invocations of two consecutive sensor readings. After one round, the ruleExecute() task is 

called to evaluate the guards. Thus, the sensor evaluation task, followed by the guard 

evaluation task is repeated at a specific interval. If there are no sensors declared in the 

program, only the guard evaluation task is executed at an interval set at the 

CYCLE_PERIOD. 
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3.4.2.5 Time Synchronization 

 

Time Synchronization module in the language is called after each round of sensor 

reading and guard evaluation. In one round the local clocks in the sensor nodes are 

expected to drift within the range of the CYCLE_PERIOD. So, during synchronization 

the local clocks of the motes are advanced to the start of the next CYCLE_PERIOD. This 

way, when the nodes wake up with the alarm clock, they are all synchronized to start the 

next round together at the same time.  

Time Synchronization in the implementation forms the backbone of the runtime 

architecture. Synchronization is important for two main reasons: (a) this maintains the 

validity of the shared variables. e.g. for calculating the average temperature of the 

network, the temperatures from all the nodes in the network should be collected 

approximately at the same time to produce  the correct result. (b) Synchronization helps 

saving network energy. Nodes periodically go to sleep to conserve energy. For correct 

functioning of the network, the interacting nodes should wake up at the same time.  

event(timeout):  
read global clock & prepare beacon message m ;  
local-broadcast(m) to neighborhood ;  

schedule next timeout in φ seconds 

event(receive beacon m):  
c = read global clock ;  
if m.timestamp > c then  

adjust global clock by + (m.timestamp − c) ; 

Figure 14 Convergence to Max time synchronization protocol 

For time synchronization, convergence to max protocol is used here. The idea is 

taken from the paper by Herman and Zhang [52]. The technique is presented here with 
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read and adjust interfaces of the global clock and assuming time stamping of the beacon 

messages. Each node executes the programs in Figure 14 concurrently with a sensor 

application. The system’s timeout mechanism is such that the timeout event eventually 

occurs every φ seconds, even for arbitrary initial state. 
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CHAPTER 4 

TOKEN TYPE VARIABLE IN DESAL  

A novel feature in DESAL is the introduction of token type variable. The concept 

of token is generally used in distributed mutual exclusion algorithms, where a process 

with a token can enter the critical section while others wait for their turn. A token travels 

around the network. Each process, when receives a token, changes its state, and then 

passes on the token to another process. This action goes on around the network. A classic 

example of token-based application is Leader Election in a distributed network. A token 

can act as a network health monitor [53]. It can go around the network monitoring the 

health of each process noticing if the process is working properly or not. If the process is 

malfunctioning, the token will move on to another process notifying it about the failure. 

In our work we have discussed a case study with tokens in a ring topology. Later we have 

also shown that this implementation can be applied to some other topologies as well. One 

important condition for a network with tokens is to self-stabilize, e.g. in the case of 

mutual exclusion algorithm, we need only one token to be present in the entire network. 

In an illegitimate state there can be more than one token present. The objective is to 

reduce the number of tokens to exactly one, and then maintain this legitimate state. If a 

fault occurs, the system should automatically revert back to a legitimate state. This can be 

achieved if the system is self-stabilizing. We have shown how a token ring, where a 

certain distance separates tokens, can self stabilize. In DESAL, the implementation of 

tokens is hidden from the programmer. The programmer will declare a token variable and 

use the token functions num(x) and pass(x) explained later. In our paper, Separation of 

Circulating Tokens [43], we have discussed tokens in detail. This is given in the next few 

sections in this chapter. The Separation of Circulating Tokens paper  [43] gives us a 

motivating example of using tokens. In a wireless sensor network if selectively some 

sensors are active at a certain time and sensors in other nodes are idle, that saves energy. 
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This paper shows how to achieve this with tokens. We have illustrated the working of the 

token with another case study with RFID tags. In this example, there are three tags, and 

only one of them can be active at a time. A token variable can be used to achieve this. 

The next section starts with the idea of rotating sentry. Rotating sentries are token 

abstractions moving around in a network to balance the power consumption. The nodes 

with the tokens will be awake, while the others will be in sleep mode, or will have their 

sensors in the idle condition. After this we consider a network with a ring topology and a 

rotating sentry protocol. This gives us a ring where energy consumption is balanced to 

increase the lifetime of the sensors. This is followed by the separation of circulating 

tokens paper [43], which talks about self-stabilization of a ring with tokens. 

4.1 Adding Lifetime To Sensors  

 

The organization of this section is as follows: 4.1.1 discusses the rotating sentry 

problem. This is followed by the literature survey. In the survey we discuss two papers, 

VigilNet [49] and R-Sentry [50]. In 4.1.2 we discuss how to increase the sensor lifetime 

in a ring topology. 4.1.3 discusses our paper Separation of Circulating Tokens [43]. 4.1.4 

shows DESAL program to increase lifetime of the sensors. 

4.1.1 Rotating Sentry Problem 

 

Design of a wireless sensor network heavily depends on the capacity of each 

sensor node, including memory, processor and power constraints. In this section we will 

discuss different research problems that have addressed the energy limitation or lifetime 

of a sensor network, most of them providing guaranteed coverage and connectivity and 

some providing robustness. An interesting question is how to make a wireless sensor 

network efficient in all aspects. Research have shown that it is not possible to take care of 

all the aspects to have an efficient wireless sensor network, which takes care of all the 
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limitations. e.g. if high data delivery ratio is wanted, the network should be strongly 

connected to make it robust. But this means that there should be redundant sensors 

working all the time. Again, if there are more sensors transmitting at the same time, we 

need to avoid data collision. If most of the sensors are always on, the network life will be 

limited. Hence, a network protocol is devised based on the application of the network.  

So, depending on different applications, different solutions have varied design 

assumptions and objectives. Wang and Xiao [44] have listed down different design 

objectives and assumptions. The major design assumptions include network structure, 

sensor deployment strategy, detection model, sensing area, transmission range, time 

synchronization and failure model. The main design objectives include maximizing 

network lifetime, balanced energy consumption, sensing coverage, network connectivity, 

data delivery ratio, quality of surveillance, scalability and robustness. But as we have 

discussed before, it is not possible to achieve all the objectives independently without 

compromising one for another. 

4.1.1.1 Literature Survey 

 

A wireless sensor network comprises of multiple sensor motes, which can be 

deployed virtually anywhere on earth including physically inaccessible places. The 

sensor nodes form an ad-hoc network, which can be monitored remotely. The energy 

supplied to the nodes is usually through batteries attached to them. But, since they are 

remotely deployed, it is not possible to recharge or replace their batteries. But, the nature 

of their applications demands from the sensor nodes to remain alive for a considerable 

time period. Unfortunately, this needs to be achieved with the severely limited energy 

supply. Researchers have and are still coming up with various solutions to this problem. 

Kumar et al [45] talk about using probability for each node to randomly decide whether 

to sleep or wake up for a certain time period, maintaining a specified coverage. This 
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solution works with minimum message exchange, but is not robust against failures. Tian 

and Georganas [46] talk about a sensor node which has all the information of its 

neighbor. If its coverage area, called the sponsored sector, is completely covered by its 

neighbors, a node goes to sleep. But, this mechanism underestimates the number of 

sensors that can be turned off. In its sponsored sector a node only considers the neighbors 

in its coverage area, and ignores the other nodes further away, but overlapping its 

coverage area. Ye et. al. [47] talk about PEAS (Probing Environment and Adaptive 

Sensing). This works well in a very unreliable network. This protocol maintains the 

active working nodes at a distance c. If a node finds out there are no neighbors at a 

distance c on all sides are sleeping, then it will go to sleep for a certain period of time. 

This is repeated at each round. The drawback of this mechanism is that a working node 

may never go to sleep resulting in unbalanced energy consumption. This protocol 

emphasizes more on network connectivity. The goal of ASCENT (Adaptive Self-

Configuring sEnsor Networks Topologies) [48] is to maintain a certain data delivery 

ratio. This means it focuses on connectivity and data loss rate. Based on these measures a 

node locally decides which neighboring node to activate, and when it can go to sleep. 

Like PEAS this protocol also does not guarantee uniform energy consumption, as 

working nodes may never go to sleep. 

Now we will talk about how to deploy the rotating sentry problem in a sensor 

network to achieve energy efficiency or increased network lifetime. Rotating sentry refers 

to a network design in which some nodes, or sentries, are selected to be on active duty 

while others are either idle (only listening over the radio) or in deep sleep (none of the 

sensing, processing or radio is working) for a specified time period. After that time period 

is over, some other non-sentry node takes up the role of the sentry. Hence, the sentry is 

rotating. This design claims to be energy efficient, and ensures balanced energy 

consumption. We discuss a couple of papers on rotating sentries with different design 

assumptions and objectives. The main objectives include network connectivity, coverage 
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and robustness. These two papers are carefully chosen to demonstrate how different 

protocols address different aspects of the network, and cannot address all. In sensor 

networks, due to the nature of the hardware, there exists a fundamental tradeoff between 

network lifetime and network service quality [50]. 

4.1.1.2 VigilNet 

 

He et. al. [49] designed a hierarchical energy efficient surveillance system called 

VigilNet. The rotating sentry mechanism focuses on the energy consumption, which 

takes care of the surveillance quality and stealthiness. At the beginning of each round the 

nodes are synchronized and a diffusion tree is created for routing. Then there is neighbor 

discovery. During that phase a neighbor sends to the host its ID, whether it is a sentry or 

not, number of sentries covering it, and its location. The next phase is sentry selection. A 

sensor node locally decides to become a sentry if it is an internal node of a diffusion tree 

or if it finds out that none of its neighbors is a sentry or is covered by a sentry. A sentry is 

active to monitor events while the non-sentry motes are in a low power state till an event 

occurs. When an event occurs the sentry wakes up the other nodes in the region, and they 

start collaborative target detection. To avoid contention of multiple nodes wanting to 

become a sentry, each node uses a random backoff delay to transmit its SENTRY 

DECLARE message. During that time if it gets such a message from a neighbor, it 

cancels its plan to become a sentry. The backoff delay of a node is set inversely 

proportional to its residual energy. This balances the energy dissipation of the network. 

The backoff delay is also inversely proportional to the number of neighbors that are not 

covered by the sentry. The sentry selection also ensures that there is at least one sentry in 

each sensing range. Here we can see how this protocol focuses more on sensing coverage 

than communication coverage. Each node makes the sentry decision locally. Hence, 

globally it can result in a non-optimal number of sentries. But, this local method reduces 
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extra message overhead (except neighbor discovery), which improves its stealthiness. In 

this paper the authors propose two different schemes, proactive control and reactive 

control, to control the sleep-wakeup cycle. In the proactive control the sentry node sends 

out sleep beacons periodically. A non-sentry node goes to sleep when it receives the 

beacon and stays asleep for a certain period of time. It wakes up after the sleep timer 

expires and repeats the same process. In the reactive control, the sentries do not send any 

sleep beacons to the non-sentry nodes. Instead they go to sleep and wake up according to 

a timer. The nodes also wake up when they receive a wake up beacon from a sentry. The 

reactive mode is stealthier as it avoids the sleep beacon overhead. But, the drawback of 

this mode is, due to a long period of no communication with the sentry, the non-sentry 

clocks may drift in course of time. This way the neighboring nodes may not sleep-wake 

in lock-step fashion. This will force a sentry to repeatedly send awake beacons to wake 

up a neighborhood. In their future work authors plan to design a more aggressive power 

management strategy with passive wake-up capabilities. 

4.1.1.3 R-Sentry 

 

Authors Yu and Zhang [50] claim to develop a sentry system, which can provide 

a continuous coverage through bound recoveries from frequent failures, while prolonging 

the lifetime of the sensor network. While on duty, the network has active nodes and 

redundant nodes, which are sleeping with their radios off. The redundant nodes wake up 

time to time to check the status of the active nodes. These redundant nodes are called 

sentries as they monitor the health of the active nodes. Now, to conserve energy, the 

redundant nodes should take turn among themselves to do the monitoring. Also, their 

taking turn should be synchronized since we do not want to have a long time gap between 

two wake ups which may mean no monitoring of the active node for that time period. To 

address this problem, the authors proposed a coordinated scheduling algorithm among all 
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the sentries, and hence they are called Rotating Sentries or R-Sentries. In this paper the 

authors have assumed the grid-based coverage model. The grid points that fall within a 

node’s sensing area are considered covered by that sensor node. Nodes exchange the list 

of grid points it can cover with their neighbors, called GridList. With sufficient node 

density, there is a high probability that, out of the uniformly randomly deployed nodes, 

there exists a set of nodes that could collectively cover all the grip points in the network 

field. The other nodes are the redundant nodes called sentries. Every sensor node has a 

group of neighbors with overlapping communication or sensing capabilities. The sensing 

redundant set (SRS) consists of nodes that can cover the same grid point(s). When an 

active node fails it can be replaced by a node in the SRS. An active node groups all the 

redundant nodes in its SRS and calls it a gang. This group decides the replacement of the 

active node in case it fails. The explanations in this paper assume a redundant node serves 

only one active node, and all sentries won’t fail before the active nodes do. The 

initialization phase has a high message overhead. This involves gang discovery and 

schedule bootstrapping. After presence announcement exchange phase, every node stays 

active and starts a random backoff timer, collecting presence announcements from its 

SRS members. Next, it locally determines if all the points in its GridList are covered by 

the non-redundant SRS members. If yes, it considers itself redundant and broadcasts 

redundancy announcement message. If not, it becomes active. At the end of the 

bootstrapping phase, the active nodes calculate their gangs’ schedules and send the 

message to the redundant nodes. This is needed to achieve coordinated sentry rotation. 

Thus, the sentries now have their wake up times. A sentry node periodically wakes up as 

scheduled, to probe the active node. If the active node fails, all the sentries become active 

and resume the initialization process. Otherwise, they go back to sleep. The active nodes 

continue communication with the sentries to keep them synchronized. Thus, there is 

always some extra message exchange is going on to keep the sentries coordinated, but 

still the energy saved during the sentry sleeps is more significant. This protocol replaces 
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an active node only when it fails and not because it is getting depleted of energy. Hence, 

the active nodes tend to die down quicker than the redundant nodes. This means, 

considering the active nodes also as part of the gang, the energy usage is not balanced. 

The larger the grid size, there are more sentries, and hence more energy is saved 

increasing the lifetime of the network. 

4.1.1.4 Discussion 

 

In the VigilNet [ 49], the main objective is to provide stealthiness and 

surveillance. So, the nodes are synchronized in each round with the base, and the 

connectivity of the network is maintained. Robustness is not a major factor here, 

assuming no frequent failures. That’s why, in one round or cycle, if a sentry fails it is not 

detected till the next cycle starts. Also, any other changes in the network are detected 

only at the beginning of each cycle.  In this model all the nodes can have the same role, 

and the job of the sentry rotates among the nodes to achieve uniform energy 

consumption. In R-Sentry [50], the main objective is to detect and repair failures. The 

protocol focuses on sensing coverage. The sentry nodes are always synchronized with the 

active nodes, to achieve coordinated rotation among sentries. This way energy 

consumption is balanced among the sentries. But the active nodes are replaced only when 

it fails. This way if an active node never fails it works till it is depleted of its energy. 

Energy depletion is recorded as a node failure, which wakes up the sentries to replace it. 

This way energy consumption is not uniformly distributed considering sentries and active 

nodes together.  This is not a concern here as the main objective is to maintain the 

sensing coverage all the time in spite of failures. This way, we can see that each proposed 

solution only addresses a subset of network issues. In reality it is not possible to address 

all the issues at once. This is what we are going to see in our proposed rotating sentry 

problem in a ring topology. 
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4.1.2 Increasing Sensor Lifetime In A Ring Topology 

 

Here we are considering a network with a ring topology and a rotating sentry 

protocol. The network has m tokens and n nodes. The objective is to balance the energy 

consumption of the network to increase its lifetime. To achieve that, we assume the nodes 

with the tokens will have their sensors active in a round (sentries), while all the other 

nodes will have their sensors in the idle condition waiting for the token. The notation and 

model is same as that in our paper ' Separation of Circulation Tokens' [43] discussed after 

this section. The tokens are always circulating with no deadlock. In each round a node 

receives a token. This way, the balanced energy consumption is ensured. Initially the 

tokens can be anywhere in the network, but the token distribution will eventually self-

stabilize with the tokens certain distance apart from each other. We present the self-

stabilization protocols with proofs. In this work we see that it is not possible to address 

all the aspects of the network as we have discussed before. So, our main focus will be to 

increase network lifetime by increasing the lifetime of the sensors. 

In each round, working nodes never go to sleep. Others also don't sleep, but 

certain sensor operations are turned off. The token communication and synchronization 

among the nodes go on continuously. Selective sensing saves energy. The solution is 

robust to changes in the topology due to failures or entry or leaving of nodes. If the ring 

size changes, it again stabilizes within a finite period of time, provided the failures are 

time limited and the network doesn't become disconnected. To ensure that failure of one 

node does not disconnect the ring, we assume here the transmission range of the nodes 

are strong enough to get connected to next two nodes. As the tokens reach a new node in 

each round, energy consumption is balanced. The nodes are only involved in receiving 

and passing the tokens. Hence, there is no need for back off mechanism (in many energy 

saving protocols a node needs to broadcast its intention of going to sleep, so that no one 

else covering the same area goes to sleep). At the initiation there is the overhead of 
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neighbor discovery message exchange. But, after that this protocol only needs to 

exchange time synchronization messages and tokens. There is no need to broadcast 

anything else. Since each node is only talking to its neighbors, it does not need to use 

strong transmission signals. This saves energy. Only when there is a failure, a node may 

need to use stronger signals to connect to new neighbors. This protocol has certain 

limitations. It does not handle failure of tokens. We have shown in our paper that the ring 

will self-stabilize. The idea is, each time a token passes through the node with a counter, 

it is separated from another token by at least a distance of C, where 0 to C is the range of 

the counter.  

4.1.2.1 Motivation 

 

One motivating application in our paper [43] is physical process control. As an 

example, one can imagine a closed network where some objects are conveyed from place 

to place, with some physical processing (loading, unloading, modifications to parts) done 

at each place. For the health of the machinery it may be useful to keep the objects at some 

distance apart, so that facilities at the different places have time to recharge resources 

between object visits. This can be formalized by Petri nets. The circuit of the moving 

objects is a ring for this example. With an unhealthy initial state more than one object can 

be together. The objective is to separate them by a certain distance. The token of a Petri 

net can represent physical objects. The formalism of Petri nets allows us to add additional 

places, tokens and transitions so that a self-stabilizing network can be constructed. 

Eventually, the objects of interest will be kept apart by some desired distance [43]. 

There is a simple case where separation of tokens can be enforced in an open 

network. Figure 15 shows how distance between tokens can be enforced almost trivially, 

by throttling the rate of tokens injected into the network. 
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4.1.3 Separation Of Circulating Tokens 

 

Self-stabilizing distributed control is often modeled by token abstractions. The 

problem in this paper [43] is to ensure that a synchronous system with m circulating 

tokens has at least d distance between them. This paper [43] explores a mechanism based 

on timing information in a synchronous model. The sensor nodes with tokens are enabled 

to sense while sensing in other nodes is turned off. The separation between the tokens 

enables a node to ‘rest’ a while before activating its sensors again. This arrangement can 

save a substantial amount of energy in the network where node power supply is limited. 

In the paper [43], the problem is first considered in a ring where d (distance between 

tokens) is given whilst m (number of tokens) and the ring size n in unknown. A second 

problem is to maximize d when m is given and n is unknown. The challenge, as with all 

self-stabilizing algorithms, is that tokens can be initially be located arbitrarily and the 

variables encoding timers or other variables may have unpredictable initial values. The 

protocols are expressed with Petri net formalism in a ring topology. 

Desired properties of a token circulation protocol are labeled as D1–D5 below.  

D1. At any time, m tokens are present in the system.  

D2. The minimum distance between any two tokens is at least d. 

D3. A token moves in each step, from one process to a neighboring process.  

D4. Every process has a token equally often, i.e., in an execution of k steps, for any 

process pi, there is a token at pi for k *m/n steps.  

D5. Following a transient failure that corrupts state variables of any number of 

processes, the system automatically recovers to behavior satisfying D1–D4.  

Failure may also change the ring size. This may happen if a sensor node fails to 

operate, i.e. in this problem stops sending messages, it means the node has left the 

ring network. As soon as a node leaves the ring, the ring changes its size. Our 

protocol is self stabilizing to that. 
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Figure 15   Illustrated on the left is an open system consisting of a chain of processes, 
p[1], p[2], …, with p[1] being the topmost process. Tokens arrive from 
outside the system to p1. Each process p[i] releases at most one token in each 
round to p[i+1]. The aim for this system is to ensure that, eventually, no two 
tokens are closer than some distance d in the sub chain from p[2] downwards 
(we cannot prevent the accumulation of tokens in p[1] in this open system). 
On the immediate right is a simple delay mechanism shown as a Petri net: the 
small sub ring and the joint transition between p[1] and p[2] ensures that the 
tokens do not arrive in each round to p[2]. By adjusting the size of the sub 
ring, the target distance d can be obtained.  

4.1.3.1 Notations And Model 

 

Consider a ring of n processes executing synchronously, in lock step. Each process 

perpetually executes steps of a program, which are called local steps. 
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In one global step, every process executes a local step. Programs are structured as 

infinite loops, where the body of a loop contains statements that correspond to local 

steps. 

We assume that all processes execute the local steps in a coordinated manner. For 

processes running the same program, all of them execute the first statement step in 

unison. Similarly, if two processes run distinct programs, we suppose they begin the body 

of the loop together, which may entail padding the loop of one program to be the same 

number of steps as the other program. The execution of all steps in the loop, from first to 

last statement, is called a round. The notion of distance between locations in the ring can 

be measured in either clockwise or counterclockwise direction. In program descriptions 

and proof arguments, it is convenient to refer to the clockwise (counterclockwise) 

neighbor of a process using subscript notation: process pi ’s clockwise neighbor is pi+1 

and its counterclockwise neighbor is pi−1. The distance from pi to itself is zero, the 

clockwise distance from pi to pi+1 is one, and the counterclockwise distance from pi to pi+1 

is n − 1; the counterclockwise distance from pi to pi−1 is one, and general definitions of 

distance between pi and pj for arbitrary ring locations can be defined inductively. The 

counterclockwise neighbor of pi is called the predecessor of p, and the clockwise 

neighbor is called the successor.  

4.1.3.2 Protocol With Known Separation 

 

This section presents a protocol to achieve and maintain a separation of at least C 

+ 1 links between tokens in the unidirectional ring. An implementation of the protocol 

uses four instantiation parameters, n, m, C, and the choice of which of two programs 

(delay and relay) are used for nodes in the ring. Only the separation parameter C is used 

in the protocol, as the domain of a counter, whereas the ring size n and the number of 



 

 

64

tokens m are unknown for the programs. The separation by C + 1 links cannot be realized 

for arbitrary n > 1 and m > 1; we require that  m(C + 1) ≤ n ….(1).  

A token in any node can be either resting (denoted by ri for process i) or enqueued 

(denoted by qi for process i). An enqueued token is passed on to the next node in the next 

round. The protocol consists of two programs: delay and relay. At least one process in the 

system executes the delay and any processes not running delay run the relay program. 

The nodes with the counter variable execute the delay program. The counter variable 

ranges from 0 to C. The variable starts its countdown from C (0, C is the range of the 

counter), and every time it becomes zero, it restarts the counting from C. A token cannot 

leave a node if the counter is nonzero. When it is zero, a token is enqueued to be passed 

on in the next round. In any round, both the relay and delay program starts with accepting 

an enqueued token from the previous node. The objective of the protocol is to circulate m 

tokens around the ring so that the distance from one token to the next (clockwise) token 

exceeds parameter C, and in each round every token moves from its current location to 

the successor.  

A legitimate state for the protocol is a global state predicate, defining constraints 

on values for variables. To define this predicate, let tokdist denote the minimum, taken 

over all i such that ri + qi > 0, of Rdisti (minimum clockwise distance to a token for pi. 

Ldisti is for the anticlockwise distance.). The predicate delayi is true for process pi 

running delay and false for the relay processes.  

Definition 1. A global state σ is legitimate iff  

iqi = m   iri = 0  (i :: qi ≤ 1) ………………………… (2)  

 tokdist > C ………………………………………………….(3)  

 (i : delayi  ci > 0  qi = 0 : Rdisti = C − ci ) …………....(4)  

 (i : delayi  qi = 0 : Ldisti > ci ) …………………………..(5)  

 (i : delayi  qi = 1 : ci = C ) ………………………………(6) 
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In an initial state, variables may have arbitrary values in their domains, subject to 

constraint (1). The protocol is self-stabilizing. For proof please refer to our paper [43]. 

4.1.3.3 Protocol With Unknown Ring Size 

 

Here we consider another design alternative, where the separation between tokens 

should be maximized, but the ring size is unknown. The technique is straightforward: 

building upon the delay program, additional variables are added to count the number of 

rounds needed to circulate a token, that is, the new program calculates n. Two extra 

assumptions are used for the new protocol: the value of m is known and the number of 

processes running the delay program is exactly one.  

The revised delay program is used here, which introduces timingi, ti , ignorei , and 

ClockBasei . The program uses ClockBasei in place of parameter C, which is periodically 

recalculated. The method of calculation relies upon knowing m and knowing that all 

other processes run relay. The program begins a timing phase, which starts a counter ti at 

zero, and calculates the number of tokens that are elsewhere in the ring, ignorei. 

Subsequently, it handles token arrival for purposes of calculating ring size; after ignorei 

arriving tokens are ignored, the next token is the one that was released when the timing 

phase began. Of course, this calculation can be incorrect in early rounds of an execution, 

but eventually each timing phase culminates in ti having the ring size. With the delay 

program at one process and relay at all other processes, the system is self-stabilizing to C 

= n/m − 1.  For proof please refer to our paper [43]. 

4.1.4 DESAL Program To Increase Lifetime Of The 
Sensors 

 

Figure 16 is the program to calculate average temperature in the sensor motes. 

Assuming only node zero has the counter, the program is designed based on the 

separation of circulating tokens paper [43].  The idea is, every node whose id is not zero 
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will record the temperature only if it has a token. Otherwise, it will turn off its 

temperature sensor. Once a temperature is recorded the node broadcasts the temperature 

and the base station receives it. Then, the base station calculates the average of the 

received temperatures. Now, the nodes with idle sensors will also continuously send 

messages to the base station. But those temperatures will be stale as no temperature 

recording is being done for sometime. Hence, along with the temperature the recording 

time is also send to the base in a struct data structure. The values in a struct are always 

send over the radio together (discussed in detail in chapter 5). Hence, the temperature and 

recording time will be sent together. The base station then decides depending on the 

current and received time difference which temperature to accept. The goal of this 

example is to selectively activate the sensors in the network. This way each node will be 

sensing temperature for a while and then due to the distance between the tokens it will 

rest its sensor for sometime. This will enable the node to save energy in the long run. If 

the node had its sensor active all the time it would deplete of its energy much sooner.  In 

the Figure 16 num(x) is the number of tokens in a node, and pass(x) is the action of 

passing a token from the host node to the next node clockwise. The implementation of 

num(x) and pass(x) are discussed after the figure. 

There are N processes or nodes and m token rings.  Figure 17 shows a system 

with 4 processes and 3 token rings. In a ring of sensor nodes/motes the objective is to 

balance the energy consumption of the network to increase its lifetime. To achieve this 

we assume that the nodes with the tokens will be active sensors in a round, while all the 

other nodes will have idle sensors waiting for the token. For certain applications this can 

be power efficient as we have seen in the above example. This will save energy. To 

achieve this, each token ring should have only one token, and the tokens in the processes 

should be a certain distance apart. In a faulty initial state, each token ring can have more 

than one token.   
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component MaxMinTemp 
  struct { uint16 temp, uint16 time }  myStruct 
    shared struct myStruct myS 
    unshared uint16 sum = 0     
    unshared uint16 count = 0     
    shared   uint16 avg =  0   
    unshared uint8 counter = 0 // range is 10 
    binding  myStruct mySRemote <- *.MaxMinTemp.myS[20]   
    every 1s after 1m 
       ID==0: 
      foreach n in MySRemote { 
  if(($time - n.time) < DIFF) { 
  sum = sum + n.temp 
                count = count+1 } } 
            avg = sum/count 
     sum=0 
    count=0 
   [] (ID==0 && counter>0): 
    counter=counter-1 
   [] (ID==0 && num(x) > 0 && counter==0):   
    pass(x) 
           counter=10 // C=10  
   []  (ID!=0 && num(x)>0): 
           myS.temp =$temp 
           myS.time =$time 
           pass(x)  

Figure 16   Program to calculate average temperature in the sensor motes. Each node has 
at most 20 neighbors. $temp records temperature, whereas $time records local 
time synchronized with others. In the base (node id =0) if the time difference 
is within acceptable range, the received temperature will be accepted in the 
calculation of the average.    

 
 

 

 

 

 

Figure 17 A ring with 3 token rings and 4 processes 
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The purpose, as explained above, is to eventually self-stabilize the system such 

that in each round, there is only one token in a single token ring and the tokens are 

separated by a certain distance. In one round a process can have up to m tokens, as there 

are m token rings.  Our goal here is to ensure that these m tokens are eventually separated 

by a certain distance in the legitimate state.  When a token is present in a process, certain 

guards of the process are enabled which modify the system state. Shared memory model 

of computation is considered here. A process i, in addition to reading its own state 

variable c[i] can also read the state variable c[i-1] of its predecessor process. 

We use the idea of Dijkstra's [51] unidirectional token ring self-stabilization 

algorithm to achieve stabilization where there is only one token per token ring. The 

algorithm to separate the token by a certain distance is described in the separation of 

circulating tokens paper [43]. 

4.1.4.1 Implementation Of Num(x) 

 

c[j] is a state variable for ring j. c[j][i] is a state variable for process i in the jth 

ring. x represents presence of a token which is denoted by c[j][i] != c[j][i-1]. A token is 

present, on ring j, at process i, if and only if c[j][i]!=c[j][i-1] (with the exception on node 

0), where j is the range of token rings, and i is the range of processes.  

For process i, num(x) counts true in 

 c[0][i] != c[0][i-1] \/ c[1][i] != c[1][i-1] \/ … \/ c[m-1][i] != c[m-1][i-1], 

where, m is the number of tokens and i is process i whose num(x) we are calculating.  

4.1.4.2 Implementation Of Pass(x) 

 

The variable c in pass(x) is the same as that in num(x). Consider a variable a  [0 

... m-1] so that c[a][i] != c[a][i+1]. At anytime a process with a positive number of tokens 
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passes one token to its successor. Now, how can we determine which token to pass if 

there are more than one in the process? The variable a determines that.  

Pass(x) does,  

(1) c[a][i] := c[a][i-1]   

      (2) a=a+j, where j gets to next token such that,  c[a][i] != c[a][i+1] 

4.1.5 Using RFID Tags In Flume 

 

Three programs are needed to implement the project.  

(1) To read water pressure in the flume. There are three RFID antennas containing the 

tags (RFID tags). The antennas need to be activated one at a time. The recorded 

pressure will be sent to the base station. 

(2) A program to load more marbles. This needs to be done at a specified interval. 

(3)  The base station with ID=0 will accumulate all the water pressure values and 

calculate the average. 

Since there are multiple DESAL programs running, the binding will have a 

different format. Instead of binding to the same variable in a process running the same 

program, here a shared variable will be bound to a different variable in a process running 

a different program. Figure 18 shows the three programs. 

Figure 19 explains how the three DESAL programs work. Antenna.desal is run by 

the three RFID tages attached to the Antennas in the flume. The tags record the pressure 

in the flume. Only one of the three tags are active at the time. This is achieved by using a 

token circulating between these three tags. The base station running AvgFlume.desal 

program, is reading the shared variable Pressure from Antenna program. After reading all 

the pressure values from the three RFID tags, the base station is calculating the average 

pressure. The paper by Nichols [55] deals with a similar problem where a RFID system is 

implemented to monitor the displacement of coarse particles. 
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Program (1): 
component Antenna 
  shared   uint16 pressure =  0    
   shared   token x  
 binding uint8 xRemote <-- *.Antenna.x  
 
     every 3s after 50s 
        (num(x)>0): 
    $redOn()  
    pressure = $flume_read()  
              $redOff() 
    pass(x) 

Program (2): 
component AddMarbles 
 
     every 3s after 200s 
  $blueOn()  
  $flume_add()  
            $blueOff() 
     
 

Program (3) for ID=0 (Base station): 
component AvgFlume 
    unshared  uint16 avg  =  0 
    unshared  uint16 sum  =  0 
    unshared  uint16 count  =  0 
    binding uint16 pressureRemote <- *.Antenna.pressure 
     
    every 8s after 50s 

  true: 
          foreach n in pressureRemote { 
                sum=sum+n 
      count = count+1 

} 
avg = sum/count 
sum=0 
count=0 
$toggleGreen() 

 

Figure 18 The three programs for the RFID Flume case study 
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Figure 19 The working of the DESAL programs for the flume project 

AddMarbles.desal 

All three motes running Antenna.desal 

AvgFlume.desal (base station) 

The token moves among these three programs 
(dotted line). 

Base station reads the pressure from the 
three Antenna programs. 
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CHAPTER 5 

DESAL TO JAVA CONVERSION 

In this package a DESAL program is converted to an equivalent Java program. A 

DESAL parse tree is generated as a python dictionary, which is fed into a couple of 

python programs, which generate the corresponding Java file. The Java file is then 

compiled with the Java compiler.  In the next section we have discussed role of DESAL 

compiler and explained the grammar file. After that we have given an example of a 

DESAL program converted to an equivalent Java program. The aim behind this work is 

to make DESAL compatible with the Java platform. This is a unique contribution of 

DESAL. By doing this Java program can communicate with the sensor nodes via 

SerialForwarder. This way we no longer have to depend on NesC and TinyOS for the 

communication.  

5.1 DESAL Compiler And Grammar 

 

The DESAL Compiler is written in Python version 2, using a parser module 

provided by the Dparser project (hence, both Python 2 and Dparser need to be installed to 

implement the DESAL Compiler). To convert DESAL program to NesC, our compiler 

generates a python dictionary after parsing, which is fed into the Clemson’s semantic 

checker. If there is no semantic error the DESAL program is converted to equivalent 

NesC code. To validate the correctness of our grammar rules, we have used Jython to 

feed the python dictionary into the semantic checker written in Java. Clemson has already 

verified the correctness of their compiler by converting the DESAL program to 

corresponding NesC code, which successfully ran on the motes giving the desired result. 

Therefore, replacing the Clemson compiler with ours and translating a DESAL program 

to equivalent correct NesC code validates the correctness of our compiler. 
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5.1.1 Compiler Components 

 

The grammar is specified in a file grammar.def. The program makeDparser.py 

converts grammar.def to the Dparser style of grammar specification. Constructing the 

AbstractSyntaxTree is done by invoking Dparser with the source of a DESAL program; 

as a result a tree (Python dictionary) representing the parsed input is created. The module 

Traverse.py is a central tool for analysis of the parse tree and generating code based on 

the tree. There is a "swap chains" function that transforms certain structures in the 

AbstractSyntaxTree. Codegen.py creates the objects (data architecture) of code 

generation. Java code is generated by CodeAssign.py. The codes generated are filled in 

Skeleton.java to create the final java file called Proto.java. 

5.1.2 DESAL Grammar 

 

The formal grammar rules of DESAL are specified in the grammar.def file.  

5.1.2.1 Explanation Of Grammar.def  

 

The entire file (omitting trivial rules) is given in Appendix B. We invented a 

small, abbreviated syntax to generate dparser grammar, which is a style of commented 

Python. Here, the abbreviated syntax has two basic forms, single rules and multiple 

rulesets. Each rule or ruleset starts with a string, in column 1, looking like #nn#, where 

'nn' is a number. The meaning of this number is taken from the Java Class numbering 

given by Dalton and Hallstrom, in their original Java compiler. An example is the 

following rule: 

              #2#  

                 componentDec: "component" var_id subComponentListNull  

if type(term2) == types.ListType:  
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term2=term2[0] 

               node["var_id"] = term1  

               node["subComponentListNull"] = term2 

               node["name"] = "component" 

Notice that the rule starts with #2#, which means this will generate a dparser 

pattern (the first line following the #2# is the pattern), which eventually will generate a 

node of type 2, when a DESAL program is compiled into an Abstract Syntax Tree. The 

remaining lines in the rule are Python statements executed after dparser matches to the 

pattern. Here, some conventions are: 

   1. numTerms is a Python local variable equal to the number of terms matched 

by the dparser pattern. This may be variable, because dparser rules can have optional 

matching expressions (so numTerms isn't always the same number). 

   2. term0, term1, term2, etc, refer to the terms matched by the dparser pattern. 

You can refer to these terms in string manipulation and comparison code, but sometimes 

the terms are not Strings, but are lists (this depends on how your grammar is defined). 

Notice above, the assignment: term2=term2[0]. This assignment is based on the 

assumption that term2 is a list prior to the assignment, and the first item of the list 

replaces local variable term2 (of course, this assumption is valid because of the "if" test 

on term2's type!). 

   3. The "output" of the rule is always a Python dictionary called, locally, 'node'. 

Here, you can add particular key/value things to this dictionary. Notice that above, the 

key "var_id" is added to the node. Some keys are standard, and be careful about these: 

         1. node["CaseNo"] -- automatically assigned, this will be the node's number 

(for the example above, it is 2). 

         2. node["LineNo"] -- automatically assigned, this is the line number of the 

DESAL program source for the matching program fragment. 

         3. node["ColumnNo"] -- like LineNo, but for column number. 
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         4. node["Name"] -- optional; used basically for debugging and pretty 

printing of the parse tree by some tools.  

For some cases, one dparser pattern could possible generate different node 

numbers, depending on inputs. To allow this, we have rulesets. A ruleset starts, like a 

rule, with a #xxx#-string in column 1, but the 'xxx' here will be a comma-separated list of 

numbers; these are the possible node numbers for the ruleset. Example: 

       #3,4#  

          subComponentListNull: subComponentList? 

              if not term0: 

                     #4# 

              else: 

                  if type(term0) == types.ListType: term0=term0[0] 

                  #3# 

                  node["subComponentList"] = term0 

       This example shows a ruleset for node types 3 and 4. Notice that we see 

Python code interwoven with #3# and #4#, which are indicators of the specific definitions 

for node types 3 and 4. In the example, node type 4 has no special dictionary key/value 

items added, whereas type 3 has one key/value item added. Our tool validates that the 

lines following a ruleset definition contain entries for all the rules that should be defined. 

Thus, following #3,4#, there has to be some line #3# and some line #4# (and, of course, 

no line #5# or other crazy numbers). 

If you look at the Dparser specification of the grammer, you see a mix of 

productions (rules to parse) and Python code. Associated with each rule is a snippet of 

code that initializes a tree node when the rule executes. For example, consider the 

following rule: 

         1   def d_Guard(t, s, nodes, this): 

         2    '''Guard: expr ':' stmntListNull ''' 
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         3    global term0, term1, term2, term3, term4, term5, term6, term7, term8, 

term9 

         4    numTerms = len(t) 

         5    assignTerms(t) 

         6    node = dict() 

         7    node["LineNo"] = nodes[0].start_loc.line-1 

         8    node["ColumnNo"] = nodes[0].start_loc.col+1 

         9    node["CaseNo"] = 29 

        10    if type(term2) == types.ListType: 

        11       term2=term0[0] 

        12    node["expr"] = term0 

        13    node["stmntListNull"] = term2 

        14    node["name"] = "Guard" 

        15    return node 

Intuitively, this production specifies that a guard statement is an expression 

followed by a colon followed by a statement list. The Python code associated with this 

rule creates a dictionary and returns that to Dparser, which is driving the parsing process. 

Some entries in the new dictionary are standard keys for all nodes: 

LineNo identifies the source code line number (useful for generating messages about the 

Desal program source later during code analysis or code production stages). ColumnNo 

identifies the column number where the guard statement begins. CaseNo is used to 

identify the type of node; this is crucial in later stages that analyze the tree, so it is simple 

to know what type of node and which dictionary keys and values it contains; hence, a 

node with CaseNo of 29 is a guard statement node. Name is for documentation purposes 

(we sometimes made a pretty formatted picture of a parse tree).  
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Other keys of the dictionary depend on the particular rule and node type. Thus, to 

make sense of parsing and code analysis/production, you need to arrange that the rule 

with associated Python snippet have what's needed when the tree is later analyzed. 

A node is a dictionary with a key that consists of the string "CaseNo". A child of a 

node is this: any key in a dictionary with an associated value that is also a dictionary is a 

child node. Thus if X is a node, and type(X["abc"]) == dict, then X has a child (which is 

associated with key "abc"). 

5.1.2.2 Traverse.py 

 

Traverse(V,Root,FilterDict) is a general higher-order function to traverse the 

nodes of a tree recursively. Traverse is designed to be the one template to satisfy all tree 

traversals for any reason; it can be either bottom-up or top-down in its processing, or 

even a mixture of these depending on node type (yes, this probably goes further than 

needed in its generalizing). The three arguments to Traverse are: 

 V is the code generation object. 

 Root is the tree root (or could even be any node) of the AbstractSyntaxTree. 

 FilterDict is a dictionary with entries of the form: 

      43 

          (M,c), where 43 is a CaseNo for a node that should be processed; M is an 

object that has a method called mutate that should be applied to a node of CaseNo 43. 

And c is a character, either 'b', 'p' -- which stand respectively for pre-order, or post-order.  

      -1 

          (M,c) is a wildcard that matches any nodetype.  

The idea is that FilterDict is essentially a list of things to do for selected nodes. 

You can have a FilterDict for only some types of nodes, selected by the node CaseNo, or 

you can have a wildcard selector. The mutate method is invoked on the node (we make it 
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a method so that M can have enough state for the mutate invocation to have a rich history 

and environment, for general programming purposes). A mutate invocation could change 

the node (remember, the node is a dictionary) by adding keys, assigning to current keys, 

or mutate might make no change but instead accumulate information in some component 

of the object M, such as a list. 

Traverse will look at every node in the tree, where a node is anything that has 

type 'dict' (dictionary in Python) and has a CaseNo attribute/key (other things are 

ignored). For each node inspected, Traverse will skip over the node if its CaseNo isn't in 

the FilterDict. For a node T that is in the FilterDict, Traverse will invoke M.mutate(V,T). 

Depending on whether c is 'b' or 'p', the invocation M.mutate(V,T) will be done before or 

after (respectively) Traverse recursively handles all children of T. 

   1 import Mobject  # for access to methods applied to nodes  

   2 import Codegen  # for access to the code generator object 

   3 def traverse(V,T,FilterDict): 

   4   if type(T) != dict:  return 

   5   if "CaseNo" in T and T["CaseNo"] in FilterDict: 

   6      # found a node to process, but only do it now if 

   7      # the modality is pre-order traversal for this FilterDict entry 

   8      (M,c) = FilterDict[T["CaseNo"]] 

   9      if c=='b':  M.mutate(V,T) 

  10   if -1 in FilterDict: 

  11     (M,c) = FilterDict[-1] 

  12     if c=='b':  M.mutate(V,T) 

  13   #  Part 2:  recursively take care of T's children  

  14   for e in T:  traverse(V,T[e],FilterDict) 

  15   #  Part 3:  do any post-order processing of the node  

  16   if "CaseNo" in T and T["CaseNo"] in FilterDict: 
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  17      # found a node to process, but only do it how if 

  18      # the modality is post-order traversal for this FilterDict entry 

  19      (M,c) = FilterDict[T["CaseNo"]] 

  20      if c=='p':  M.mutate(V,T) 

Notice above that the wildcard is only implemented for cases of pre-order 

application of mutate. This may be a bug or may be a feature which has not been 

exercised. Also, notice that the wildcard does not test whether CaseNo is a key; this 

might also be a bug. 

5.1.2.3 SwapChains.py 

 

The tree that Dparser produces isn't quite suited to some analysis and code 

generation. The problem turns out to be that some "linear chains" of nodes in the tree are 

backward for our purposes of tree traversal. To deal with this, we have a special 

transformation of the tree which reorders such chains. The module SwapChains.py does 

the chain reversal, using a kind of mark-and-sweep programming style (see wikipedia for 

references on this technique). 

   1 import sys 

   2 import Traverse 

   3 import Mobject 

   4 class remomark(Mobject.Mobject): 

   5    def mutate(self,v,t): 

   6       if "swapchain" in t:  del t["swapchain"] 

   7 def unmark(V,T): 

   8 Traverse.traverse(V,T, { -1:(remomark(),'b') } ) 

The class shown in Figure 20 gives us an object with a mutate method, suitable 

for using Traverse. The unmark function then invokes Traverse, passing a remomark 
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object. Notice that all that the mutate method does here is to remove any key named 

"swapchain" from every node. The unmark function is used later, after some marking and 

swapping has been done, essentially cleaning up things at the end of swapping chains. 

Above, you see that class swap is a specialized object (initialized with a CaseNo 

and the names of two types of node). The mutate method enumerates a subtree, reverses 

its order, and marks a chain. The actual source code in the Figure 20 has more 

informative comments. 

From the swap method in figure 21, we see that "swapchains" is just a sequence 

of chain reversals, each using the swap object and its mutate method to reverse a 

particular type of chain. 

   1    class swap(Mobject.Mobject): 
   2    def __init__(self,RecurseType,ElemKey,ChainKey): 
   3       self.RecurseType = RecurseType  # e.g., 32 for 

stmntList 
   4       self.ElemKey = ElemKey          # e.g., "stmnt"  
   5       self.ChainKey = ChainKey        # e.g., "stmntList"  
   6    def mutate(self,v,t): 
   7       if "swapchain" in t: return 
   8       chain = [ t ] 
   9       while True: 
  10          last = chain[-1] 
  11          if last[self.ChainKey]["CaseNo"] != 

self.RecurseType:  break 
  12          chain.append(last[self.ChainKey] 
  13       termChain = [ ] 
  14       for c in chain: termChain.append(c[self.ElemKey]) 
  15       termChain.append( chain[-

1][self.ChainKey][self.ElemKey] ) 
  16       for c in chain: 
  17           c[self.ElemKey] = termChain.pop() 
  18       chain[-1][self.ChainKey][self.ElemKey] = 

termChain.pop() 
  19       for c in chain: c["swapchain"] = True 
ERROR: EOF in multi-line statement 

Figure 20 Swap class in SwapChains.py  
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5.1.2.4 Objects For Compiling 

 

To produce code from the AbstractSyntaxTree, several conceptual objects are 

defined in Codegen.py: 

The Body object represents the body statement information in a Desal program, 

such as evaluation frequency, period, and a list of guarded statements contained in the 

body.  

BindingSpec object represents one binding specification, which has a type, target, 

source, and possibly a range for indexing in a node's neighborhood. Variable represents a 

declared variable: it has a name, type, and later is given binding and numeric codes. 

For a "struct" declaration, a Struct object is defined with things like size, name, 

values, and so on. Each function declaration has fields for name, parameters, and 

statements in the function's body.  Scopes are objects used during AbstractSyntaxTree 

analysis to have a context for nested "foreach" statements. Generated code for the foreach 

construct introduces an implicit loop variable, which has to be different from the 

variables used in nested foreach statements (hence, scoping is important). Finally, there is 

an object which handles all of the above and more, so that recursive processing of an 

AbstractSyntaxTree or subtree has access to variables, statements, bindings, and so on, 

represented by the objects described above. This is called CodeObject. The CodeObject 

has fields to contain information for all tables to be generated for the DESAL program; it 

also can collect generated code, counters used to build temporary names, and so on. 

In addition to these objects, Codegen.py also defines enumerated constants for 

variable types: uint8, uint16, uint32, bool, and struct. The basic theme for building the 

objects described above is to use Traverse.py on the AbstractSyntaxTree with appropriate 

filters, passing some handle to the CodeObject so that the various objects can be created 

and saved. The processing of the AbstractSyntaxTree for code production is preceded by 

some setup phases. 
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   1 def swapchain(V,T,ChainType,ElemKey,ChainKey): 
   2    unmark(V,T)    # unmark the tree initially 
   3    Traverse.traverse(V,T, { 

ChainType:(swap(ChainType,ElemKey,ChainKey),'b') } ) 
   4    unmark(V,T)    # unmark the tree afterwards  
   5 def swapchains(V,T): 
   6    # Problem setting:  each of the following grammar rules 

generates a tree with  
   7    # chains of nodes that are _backward_ from what the 

source DESAL input has  
         8    # 

   9    #   CaseNo: 5, 6 - '''subComponentList: subComponentList 
subComponent | subComponent ''' 

  10    # 
  11    #   CaseNo 9-14 - '''DecList:  DecList structDec | 

DecList stateDec | DecList bindingDec | structDec | stateDec | 
bindingDec ''' 

  12    # 
  13    #   CaseNo 17, 18 - '''bindingVarList: bindingVarList ',' 

bindingVar | bindingVar ''' 
  14    # 
  15    #   CaseNo 27, 28 - '''GuardList: GuardList '[' ']' Guard 

| Guard ''' 
  16    #   
  17    #   CaseNo 32 -34 - '''stmntList : stmntList stmnt | 

stmnt | "error" ''' 
  18    # 
  19    #   CaseNo 46, 47 - '''ElseIfList : ElseIfList ElseIf | 

ElseIf ''' 
  20    #    
  21    #   CaseNo 86, 87 - '''exprList : exprList ',' expr | 

expr ''' 
  22    # 
  23    #   CaseNo 95, 96 - '''varDecList: varDecList varDec | 

varDec ''' 
  24    #  
  25    #   CaseNo 106, 107 - '''varList: varList ',' var | var’’ 
  26    # 
  27    #   The swapchains() method mutates the tree so that 

these nodes are in an order 
  28    #   that matches our intuitive understanding of the DESAL 

program text. 
  29    # 
  30    #   NOTE:  currently, only these cases are handled;  but 

it is easy to generalize 
  31    #          32 - stmntList 
  32    #          27 - GuardList 
    33    #           5 - subComponentList 
  34    #         ( other cases not yet handled )   
  35    swapchain(V,T,32,"stmnt","stmntList") 
  36    swapchain(V,T,27,"Guard","GuardList") 
  37    swapchain(V,T,5, "subComponent","subComponentList") 

Figure 21 Swap method in SwapChains.py used to reverse a particular list. 
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This counts the number of variables, reverse some paths in the tree, and so on. 

The subsections below talk about modules that do this initial processing. 

Setvars.py module has the objects and functions needed to set up variable tables. 

The main function is setupVariables(V,T), where V is the CodeObject and T is a 

(subtree) of the AbstractSyntaxTree. An invocation of setupVariables uses Traverse.py 

recursively in several ways with mutate methods that set up fields within the CodeObject: 

namely, VList, VarCount, Vars, StructList, StructInitList. 

Setbinds.py module establishes the binding tables. This module contains the 

setupBindings(V,T) function, which should be invoked soon after the AST and Code 

Generation objects are constructed. An invocation of bindProcMobject uses Traverse.py 

recursively with mutate methods that iterate through all the binding variables 

declarations. This extract the variable names, binding scope, component name to which it 

is associated, shared variable name to which it is associated and target range. 

Setstruct.py module contains the setupStruct(V,T) function, which should be 

invoked soon after the AST and Code Generation objects are constructed.  It will 

establish struct tables. An invocation of structProcMobject uses Traverse.py recursively 

with mutate methods that iterate through all the structure declarations. This extracts the 

structure names, the data fields of the struct and the size of the struct. 

Setfunc.py module contains the setupFunction(V,T) function, which should be 

invoked soon after the AST and Code Generation objects are constructed.  It will 

establish function tables. An invocation of funcProcMobject uses Traverse.py recursively 

with mutate methods that iterate through all the function declarations. This extracts the 

function names, the parameters of the function, the statements in the function body and 

the return type of the function. 
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5.1.2.5 Generating Java Code 

 

The python file to generate the Java code from the AbstractSyntaxTree is 

CodeAssign.py. This module assigns Java code attributes to nodes of the 

AbstractSyntaxTree,that is, it makes the assignment  

node['java'] = ... some string containing Java ... 

The module contains different classes for different data structures and operations. 

Each class contains a mutate() method which is called in Traverse.py to convert each 

DESAL statement to the equivalent Java statement. Mobject is imported to provide 

access to methods applied to nodes. Mobject is a fake class, provided for traversing the 

AST. An instance of Mobject will provide a 'mutate' method, which is invoked on each 

relevant node of the AST during traversal to add fields or change fields of AST nodes, 

and possibly change the CodeObject (repository of state during the code generation 

phase).  

CodeAssign.py creates different classes to do the code conversion from DESAL 

to equivalent Java code. Before accessing any class methods, all the DESAL variables are 

converted to the objects of a class called DV. Then onwards all the operations on the 

variables are done with DV methods. E.g. for adding two DESAL variables a and b, the 

equivalent Java code will be DV.Add(a, b), where a and b are now DV objects. 

Below we show some example of code conversion by referring to the classes 

used. 

5.1.2.5.1 DESAL Code 

 

1. foreach n in nmax { 

 2.      if (n > max) { 

 4.             max = n 
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 5.      } 

 6. } 

5.1.2.5.2 Equivalent Java Code 

 

1. for(int n=1; n<num_of_neighbors; n++) { 

2.    DV.push(DV.Gt(nmax[i], max))  

3.    if(DV.Boolean(Dv.pop)) {  

4.      DV.set(max, nmax[i])  

5.     } 

6. } 

The ForEach() class reads in the scope of the binding variable from the for loop, 

which is n here. If a shared variable in DESAL is bound to N processes, in the equivalent 

Java code an array of size N is created, where the name of the array is the name of the 

remote variable. E.g. if the binding is, nmax <- *.funcTest.max, where * 

denotes the N remote process, in Java an array named nmax is created. In DESAL the 

line for n in nmax n denotes each remote process each time the loop is entered. In 

the equivalent Java code, a for loop is created with n as the scope of the loop, and it goes 

through the nmax array values. 

boolDyad (Dyad) class converts Boolean operation to DV method calls, which 

does the Boolean operation in the equivalent Java code. The Dyad() class contains a 

method called exprEval() which does the code conversion. E.g. n > max in DESAL 

code will be DV.Gt(n, max), where Gt stands for the Greater Than function.  

The ifS() class converts a DESAL if statement to an equivalent Java if statement. 

E.g. if (n > max) {will become DV.push(DV.Gt(nmax[i], max)) 

if(DV.Boolean(Dv.pop)) {.  
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AssignS() class converts an assignment expression to the equivalent DV method 

call. e.g. max = n becomes DV.set(max, n). 

pushEval() class: When there is an expression in parenthesis, the logic is to 

generate a Java push on the result of the expression. E.g. is we have, (expression), 

then the equivalent Java code will be DV.push(expression). The expression refers 

to a DV function call. The push is done because in a long expression with multiple 

parentheses, an expression is evaluated by solving the innermost parenthesis expression 

first. The expression will be then popped out into the longer expression. E.g. if (n > 

max) is converted to DV.push(DV.Gt(nmax[i], max)) 

if(DV.Boolean(Dv.pop)) {.  

Struct is a new data structure introduced in DESAL. In a struct we can group 

more than one element. E.g. suppose we have two variables to store temperatures. Say, 

one variable stores the maximum temperature and the other one stores the minimum 

temperature among the min and max temperatures recorded from neighbors. These two 

variable record different temperatures, but they are similar in functionality. It makes 

sense to have these two variables in a group. This group forms a struct. Figure 22 shows 

the program for calculating minimum and maximum temperatures using struct. It is 

important that we send the members of a structure together in a message. This is because, 

since they are similar kind of variables, another node should read struct member variables 

with the same timestamp. Otherwise, two values send at different times may not be 

useful. That’s why in DESAL we don’t allow struct members to get separated into 

different messages. This also means, struct variables cannot be bound individually. They 

need to be bound all together. In the above example, if the max and the min temperatures 

are read in different times, the min and max could have been recorded in different times. 

If one message payload is not long enough to accommodate the struct, we send the struct 

in the next payload. Hence, one limitation of struct is, its size should be less than or equal 
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to the message payload size. But having the struct members together in one payload is 

more important to maintain the relevance of the values. 

Setstruct() class converts a DESAL struct to an equivalent Java class. E.g. struct { 

uint8 v1, uint16 v2 }  myStruct will be converted to, 

  public static class structClass { 

  } 

  public static class myStruct extends structClass { 

  public DV v1 = new DV(0, "unshared", 0);  

  public DV v2 = new DV(1, "unshared", 0);  

     public myStruct ( DV v1copy, DV v2copy) {  

   v1 = v1copy; 

   v2 = v2copy 

     }} 

A super class named structClass is created from which all the structure classes are 

extended. A constructor in the structure class, here myStruct, initializes the value of the 

structure member variables. Another unique feature of DESAL is the inclusion of 

function in the language. A function in DESAL is declared in the program component 

before the bodies. We need a function to group together commands that can be repetitive. 

Or, to make the program more readable, we can move a bunch of inline codes to 

the function and then call the function instead of writing the multiple lines of code in the 

main body. The unique feature of function is the code inside uses only global variables. 

No new local variable is declared. This can significantly reduce the stack overhead of the 

program, thus saving memory and running time. When a function is called in the body, 

the current state of the body is pushed into the stack and the control transfers to the 

function subroutine. This stack is pretty small. It only stores the main program and the 

function information. No new stack is created to store the function local variables. This 

can significantly reduce the stack overhead. 
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After the execution of the function is done, the control returns to the main body 

where it has left off and pops out the state variables of the body stored before the function 

call. Let us consider an application where we calculate neighborhood average of average 

temperatures from the neighbors at two different time frequencies. Hence, we need to 

calculate the same average in two different bodies. So, we need to use the average 

function twice. Instead of writing inline code, we call a function that will do the work. 

The program is shown in Figure 23.  

component MaxMinTemp 
    struct { uint16 min, uint16 max }  myStruct 
    shared struct myStruct myS 
    binding myStruct mySRemote <- *.MaxMinTemp.myS[20]   
 
    every 5s after 50s 

true:   
    MyS.max=$temp() 

MyS.min=$temp() 
            foreach n in mySRemote { 
        if (n.max > MyS.max) { 
              MyS.max = n.max 
             } 
         if (n.min < MyS.min) { 
              MyS.min = n.min 
                  }      
            } 

Figure 22   DESAL program to calculate min and max of neighborhood temperatures. 
Each node is connected to 20 neighbors. Initially, local temperature is 
assigned to min and max. Then, the recorded min and max are compared to 
the min and max from the neighbors to calculate the neighborhood min and 
max. Here we can see that if the min and max from the neighbors are received 
at a different time, the calculation will give us wrong result, as we want to 
calculate min and max at the same time. 

A function in DESAL is converted to an equivalent Java function by the method 

in funcCall() class. E.g. DESAL function,  

uint8 test(){ 
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        sum=sum+$temp()  

   count=count+1   

   return count} 

is converted to a Java function as,  

  public static DV test(){ 

   DV.set(sum,DV.add(sum,Runf.temp( ))); 

   DV.set(count,DV.add(count,1)); 

   return count;  

 } 

component AvgTemp     
  unshared uint16 sum = 0     
  unshared uint16 count = 0     
  shared   uint16 avg =  0     
  binding  uint16 avgRemote <-*.AvgTemp.avg[20]     
  uint16 average () 
       { 
        sum=0 
        count=0  
        foreach n in avgRemote { 
  sum = sum + n 
                count = count+1 
        } 
        return sum/count 
       }  
   
  every 1s after 1m  
    true:        
         avg = average() 
 
  every 1s after 2m    
    true:      
        avg = average() 
 

Figure 23   This program calculates average temperature of averages from the neighbors 
twice at different time frequency. Instead of writing the same code for doing 
average two times, the program calls the average() function in the two bodies. 
This demonstrates how a function can make a program shorter and easy to 
read.  
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genJava() and exprList() classes create a filter  (an array) of all the functions from 

the different classes including the ones mentioned above to do the code conversion. In the 

exprList() class the functions in the filter are executed by the Traverse() function in 

Traverse.py. since, all the function calls for the different expressions in DESAL program 

are sent to Traverse(), Java code for all the DESAL expression are created by the 

exprList() class’ method. In genJava() the program is broken apart into variable 

declarations, bodies, and main sections. 

In BodyPrep() class, the body in DESAL is broken into guards and statements in 

pairs which are converted to the equivalent Java expressions as an if-then structure. 

In Copy() class, the converted Java codes are copied to a Java file called 

Skeleton.java. Skeleton.java contains the Java codes, which are common to all the Java 

files created from DESAL codes. E.g. the DV class, the Runf class for system variables, 

and so on are common to all the created Java classes. Copy() class fills in the gaps by 

inserting the Java code for a particular DESAL program to create the equivalent Java 

program. 

5.2 DESAL Application In Java 

 

In this section we will see a DESAL program and its equivalent Java program. 

Below is the program Blink in DESAL. 

component Blink 

    every 3s after 0s 

        true: 

            $redOn() 

    every 3s after 1s 

        true: 

            $redOff() 
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Equivalent Java Program is given in Appendix A. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

 

Previous research works (discussed in the literature review) have investigated 

many features like time synchronization, neighborhood management, high level 

programming interface etc, essential for developing a high-level user-friendly 

programming language for wireless sensor networks. DESAL attempts to combine all 

these features to present a simple high-level sensor network programming language. The 

integrated middleware hides all the low-level detail from the programmer. 

One unique feature of DESAL is its state based programming property. The 

programs are written in guarded-action format. Therefore, there is no hidden context like 

event or interrupts. The middleware services are automatically integrated in a program 

during compilation. The middleware offers services, such as, time synchronization, 

neighborhood management, dynamic binding and message communication. The static 

construction of these low-level features can enable efficient usage of data structures and 

expert programming to exploit the advantages of NesC and TinyOS. This can result in 

efficient memory utilization and economic power usage. DESAL can also be converted to 

Java, where the computer interacts with the sensor motes via the SerialForwarder.  

DESAL introduces a variable type called ‘token’. The idea is, when a process has 

a token it performs certain action and changes its state, while others wait for their turn. 

One of the case studies we have done uses token variables to achieve energy efficiency 

by separating the tokens in a ring by a certain distance. This has been discussed in detail 

in our paper Separation of Circulating Tokens [43]. Another case study with tokens 

involves selective activation of an RFID tags in a network. 
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Struct is a new data structure introduced in DESAL. In a struct we can group 

more than one element. It is important that we send the members of a structure together 

in a message. This is because, since they are similar kind of variables, another node 

should read struct member variables at the same time. Otherwise, two values send at 

different times may not be useful. That’s why in DESAL we don’t allow struct members 

to get separated into different messages. This way struct can be handy when it comes to 

dealing with similar kinds of variables. The functioning of the struct has been illustrated 

with a case study.   

Function is also newly introduced in DESAL. The unique feature of function is 

the code inside uses only global variables. No new local variable is declared. This can 

significantly reduce the stack overhead of the program, thus saving memory and running 

time. Function has been illustrated with a case study. 

Most of the research work shows that the program running in the base station is 

usually different from the program running on the sensor motes. Usually, high level 

language like Java runs in the base, while low level language like NesC is run on the 

motes. Since, DESAL can be converted to both NesC and Java, DESAL codes can be 

written for both the base station and the motes. There is no need to write programs in 

separate programming languages for them. This is an important contribution. 

6.2 Future Work 

 

The following improvements to DESAL have been proposed.   

DESAL Extensions: The DESAL development model is not well suited to low-

level programming task or tasks involving hard real time processing constraints. In the 

future, developers must be able to introduce new services using low-level primitives and 

be able to access those services from DESAL guards and actions [42]. 
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Multi-Hop bindings: A multi-hop binding implementation would enable a base 

station to establish a multi-binding to each cluster-head in the network, where all the 

cluster heads may not be a neighbor [42]. 

Running multiple programs: As discussed in the RFID flume case study, we need 

three different DESAL programs to run in the same network. At present DESAL cannot 

allow that. Currently DESAL can run identical programs in the sensor nodes in a 

network. In the future we could enhance DESAL to allow different programs to run in the 

same network. 

Token in Java: We have introduced variable of type token in DESAL. But token 

hasn’t been implemented in the Java program converted from a DESAL program. This 

can be done in the future. 

For the separation of circulating tokens an interesting question is whether there 

can be a hybrid or uniform protocol when the ring size and the separation constant are 

unknown. For the style of algorithm proposed in our paper [43] for unknown ring size, 

we conjecture the answer is negative. If one delay process pi has an accurate estimate for 

maximum separation d = ci + 1 and does not delay any arriving token, another process 

pj may have either a larger, inaccurate estimate, or may perceive that tokens are 

unaligned with its counter and therefore delay some arriving tokens. Such delay would 

lead to pi detecting an apparently larger ring size, since the measured traversal time 

around the ring would include pj ’s delays. Hence pi would raise its estimate for the 

separation value. Note that the problem may admit other types of algorithms: for 

example, if tokens are allowed to carry data, this would enable processes to 

communicate. Whether such increased communication power is useful is an open 

question. Another direction would be to use randomized timing, so that different delay 

processes do not interfere. An obvious direction for future research is to move beyond 

rings to other topologies. Figure 24 below suggests how a virtual ring can be mapped 

upon a network, which could provide separated token circulation. Another possibility is 
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to map distinct rings upon a network to cover all nodes and attempt to coordinate the 

timing of token circulation in these rings where they intersect [43]. 

 

 

 

Figure 24 Virtual ring can be mapped upon a network, which could provide separated 
token circulation. 
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APPENDIX A 

EQUIVALENT JAVA PROGRAM FOR BLINK.DESAL 

The figure A1 shows equivalent java program for Blink.desal. The figure starts in 

the next page. 
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// import tinyos message to enable message communication with the base  
// station via the SerialForwarder 
import java.util.*; 
import java.lang.Thread; 
import java.lang.Object; 
import java.util.concurrent.TimeUnit;  
import java.lang.System;  
import net.tinyos.message.*; 
import net.tinyos.util.*; 
import java.io.*; 
 
// the name of the java file is Proto.java 
public class Proto extends net.tinyos.message.Message implements 

MessageListener 
{  
// No variables declared for the Blink application 
// ID is a constant giving the identity code for a sensor node 
 static DV ID = new DV(); 
 //Declare shared and unshared variables public static 
 public static class structClass { 
 } 
// class RunF Declare System Variables 
 public static class Runf { 
   
  public static DV moteId() { 
   DV val = new DV(0, "shared", 0); 
   return val; 
  } 
  public static DV tsr() { 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
  public static DV temp(){ 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
// redON() and redOff() will be called from the two bodies as per the   
   code: very 3s after 0s 

        true: 
            $redOn() 
 
    every 3s after 1s 
        true: 
            $redOff()  

  public static DV redOn(){ 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
  public static DV redOff(){ 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
  public static DV blueOn(){ 
   DV val = new DV(0, "unshared", 0); 
   return val;} 
  public static DV blueOff(){ 
   DV val = new DV(0, "unshared", 0); 
   return val;} 

Figure A1 Java program Proto.java equivalent to Blink.desal 
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  public static DV greenOn(){ 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
  public static DV greenOff(){ 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
  public static DV toggleRed(){ 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
  public static DV toggleBlue(){ 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
  public static DV toggleGreen(){ 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  }  
  public static DV source(DV a){ 
 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
  public static DV bound(DV a){ 
 
   DV val = new DV(3, "unshared", 0); 
   return val; 
  } 
  public static DV age(DV a){ 
 
   DV val = new DV(0, "unshared", 0); 
   return val; 
  } 
   
 } 
  
 //Declare Bodies 
  
      // first Body: every 3s after 0s 
public static class Body0 implements Runnable { 
  public static DV DV = new DV(); 
  public static Runf Runf = new Runf(); 
  private int frequency = 3 ; 
  private String frequencyUnit = "sec" ; 
  private int period = 0 ; 
  private String periodUnit = "sec" ; 
 
  private long freq = 0 ; 
 
  private long perd = 0 ; 
 
  public void run() {  
   while(true) {  
   int num_guards = 1 ; 
   long starttime = System.currentTimeMillis();  
   int gindex =0; // guard index  

Figure A1 continued 
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   if(frequencyUnit.equals("sec")) {freq = 
frequency*1000; } 

   if(frequencyUnit.equals("min")) {freq = 
frequency*60*1000; } 

   if(frequencyUnit.equals("hour")) {freq = 
frequency*60*60*1000; } 

   while (starttime < freq) { 
    switch (gindex) {  
 
// true: $redOn() 
 
     
 case 0:  
     if(DV.getBoolean(DV.ConstBool(true))){  
      Runf.redOn( ); 
       } 
    default: System.out.println("invalid guard 

number"); 
     }  
   if (gindex < num_guards) {gindex ++ ;} else {gindex 

=0 ;}  
   starttime = System.currentTimeMillis() - starttime;  
   }  
   if( periodUnit.equals("sec")) {perd = frequency*1000; 

} 
   if( periodUnit.equals("min")) {perd = 

frequency*60*1000; } 
   if( periodUnit.equals("hour")) {perd = 

frequency*60*60*1000; } 
   try{ Thread.sleep(period*perd); } catch 

(InterruptedException e) {}  
   } 
  }  
  } 
// second body: every 3s after 1s 
public static class Body1 implements Runnable { 
  public static DV DV = new DV(); 
  public static Runf Runf = new Runf(); 
  private int frequency = 3 ; 
  private String frequencyUnit = "sec" ; 
  private int period = 1 ; 
  private String periodUnit = "sec" ; 
 
  private long freq = 0 ; 
 
  private long perd = 0 ; 
 
  public void run() {  
   while(true) {  
   int num_guards = 1 ; 
   long starttime = System.currentTimeMillis();  
   int gindex =0; // guard index  
   if(frequencyUnit.equals("sec")) {freq = 

frequency*1000; } 
   if(frequencyUnit.equals("min")) {freq = 

frequency*60*1000; } 
   if(frequencyUnit.equals("hour")) {freq = 

frequency*60*60*1000; } 

Figure A1 continued 
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   while (starttime < freq) { 
 
    switch (gindex) {  
//true: $redOff() 
     
 case 0:  
     if(DV.getBoolean(DV.ConstBool(true))){  
      Runf.redOff( ); 
       } 
    default: System.out.println("invalid guard 

number"); 
     }  
   if (gindex < num_guards) {gindex ++ ;} else {gindex 

=0 ;}  
   starttime = System.currentTimeMillis() - starttime;  
   }  
   if( periodUnit.equals("sec")) {perd = frequency*1000; 

} 
   if( periodUnit.equals("min")) {perd = 

frequency*60*1000; } 
   if( periodUnit.equals("hour")) {perd = 

frequency*60*60*1000; } 
   try{ Thread.sleep(period*perd); } catch 

(InterruptedException e) {}  
   } 
  }  
  } 
   
 // Declare Message 
 
  /** The default size of this message type in bytes. */ 
     //public static final int DEFAULT_MESSAGE_SIZE = 28; 
 
     /** The Active Message type associated with this message. */ 
     public static final int AM_TYPE = 147; 
      
     /** Create a new ProtoMsg of size (variable). */ 
 
 public Proto() {} 
  
 public Proto(int size){  
   super(size);  
  amTypeSet(AM_TYPE);  
   } 
  
 // Declare Message Communication 
 
         MoteIF mote; 
  void run() { 
       
     mote = new MoteIF(PrintStreamMessenger.err); 
      
  } 
  public synchronized void messageReceived(int dest_addr, 

Message msg)  
  { 
        
       } 

Figure A1 continued 
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// send data to the SerialForwarder 
  void sendMsg() { 
       
       
              
     System.out.println("message sent"); 
        
 } 
  
  
 // DESAL Methods 
  
 public static class DV{ 
  private int vartype; // uint, bool, structtype  
  private boolean shared = false, unshared = false, constant 

= false;  
  private long varvalue; // actual value 
  private boolean varvaluebool; 
  private String sourceId; // declare binding type and 

parameters 
  private DV sourceVar; 
  private int targetRange; 
  private boolean bound;  
  private int mote_id; 
  private structClass DVStructVal; 
  private static Stack<DV> valD = new Stack<DV>(); 
 
  public DV() {} 
   
  public DV(int vtype, String scope, long value) { // for 

local variables 
  varvalue = 0; // default  
  vartype = vtype; 
  if (scope.equals("shared")) { shared = true; } 
  if (scope.equals("unshared")) { unshared = true; } 
  if (scope.equals("const")) { constant = true; } 
  varvalue = type(vtype, value); 
  } 
   
  public DV(int vtype, String scope, boolean value) { // for 

local variables 
  varvaluebool = false; // default  
  vartype = vtype; 
  if (scope.equals("shared")) { shared = true; } 
  if (scope.equals("unshared")) { unshared = true; } 
  if (scope.equals("const")) { constant = true; } 
  varvaluebool = value; 
  } 
   
  public DV(int vtype, String scope, String value) { // for 

local variables 
   varvalue = 0; // default  
   vartype = vtype; 
   if (scope.equals("shared")) { shared = true; } 
   if (scope.equals("unshared")) { unshared = true; } 
   if (scope.equals("const")) { constant = true; } 
   if (value.equals("ID")) {varvalue = 

DV.getLong(Runf.moteId());} } 

Figure A1 continued 
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  public DV(int vtype, String scope, structClass value) { // 
for local variables 

      varvalue = 0; // default  
   vartype = vtype; 
   if (scope.equals("shared")) { shared = true; } 
   if (scope.equals("unshared")) { unshared = true; } 
   if (scope.equals("const")) { constant = true; } 
   if (vtype==4) {  
    DVStructVal = new structClass(); 
    DVStructVal = value;}  
  } 
   
  public DV(String sourceId1, DV sourceVar1, int 

targetRange1) { // for binding variables 
  varvalue = 0; // default 
  sourceId = sourceId1; 
  sourceVar = sourceVar1; 
  targetRange = targetRange1; 
  //bound = false; 
  //mote_id = -99; 
  } 
   
  public void push(DV x) { 
   valD.push(x); 
  } 
   
  public DV pop() { 
   DV vald = new DV(0, "unshared", 0); 
   if (!valD.isEmpty()) {vald = valD.pop(); return 

vald;} 
   else {System.out.println("Stack is Empty!"); 

System.exit(0); return vald;} 
  } 
 
  public static boolean getBoolean(DV a) { 
   if (a.varvalue == 0) {return false;} 
   if (a.varvalue == 1) {return true; } 
   else {System.out.println("Not a Boolean!"); 

System.exit(0); return false;} 
  } 
   
  public static long getLong(DV a) { 
   return a.varvalue; 
  } 
   
  public static long type (int vtype, long value) { 
   if (vtype == 0) {return (long)value & 0xff; } 
   if (vtype == 1) {return (long)value & 0xffff; } 
   if (vtype == 2) {return (long)value & 0xffffffff; } 
   if (vtype == 3) {return (long)value & 0xff; } 
   return (long)value; 
  } 
   
  public static DV Constant(long a) { 
   DV val = new DV(0, "unshared", a); 
   return val; 
  } 
  public static DV ConstBool(boolean a) { 

Figure A1 continued 
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   DV val = new DV(3, "unshared", 0); 
   if (a == false) {val.varvalue = 0; } 
   if (a == true) {val.varvalue = 1; } 
   return val; 
  } 
   
  public static DV add(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
    long value; 
    int size; 
    String scope; 
     
    if (a.vartype > b.vartype) {size = a.vartype;} 
    else {size = b.vartype;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 + val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
    
  public static DV minus(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
    int size; 
    long value; 
    String scope; 
     
    if (a.vartype > b.vartype) {size = a.vartype;} 
    else {size = b.vartype;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 - val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV mult(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
    int size; 
    long value; 
    String scope; 
     
    if (a.vartype > b.vartype) {size = a.vartype;} 
    else {size = b.vartype;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 * val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV div(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
    int size; 

Figure A1 continued 
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    long value; 
    String scope; 
     
    if (a.vartype > b.vartype) {size = a.vartype;} 
    else {size = b.vartype;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 / val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV mod(DV a, DV b) { 
     long val1 = a.varvalue; 
     long val2 = b.varvalue; 
     int size; 
     long value; 
     String scope; 
      
     if (a.vartype > b.vartype) {size = a.vartype;} 
     else {size = b.vartype;} 
     scope = "unshared"; 
     DV result = new DV(size, scope, 0); 
     value = val1 % val2; 
  
     result.varvalue = type(size, value); 
     return result; 
   }        
   
  public static DV Eq(DV a, DV b) { 
     long val1 = a.varvalue; 
     long val2 = b.varvalue; 
     DV result = new DV(3, "unshared", 0); 
      
     if (val1 == val2) { 
      result.varvalue = 1;} 
     return result; 
   } 
   
  public static DV Gt(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 > val2) { 
    result.varvalue = 1; } 
     
    return result; 
  } 
   
  public static DV Gte(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
          DV result = new DV(3, "unshared", 0); 
     
    if (val1 >= val2) { 
    result.varvalue = 1; } 
    return result;} 

Figure A1 continued 
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  public static DV Lt(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 < val2) { 
    result.varvalue = 1; } 
    return result; 
  } 
 
  public static DV Lte(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 <= val2) { 
    result.varvalue = 1; } 
    return result; 
  }  
   
  /*************************(int a, DV 

b)**********************/ 
   
  public static DV add(int a, DV b) { 
    long val1 = a; 
    long val2 = b.varvalue; 
    int size; 
    long value; 
    String scope; 
     
    if (4 > b.vartype) {size = 4;} 
    else {size = b.vartype;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 + val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
  
  public static DV minus(int a, DV b) { 
    long val1 = a; 
    long val2 = b.varvalue; 
    int size; 
    long value; 
    String scope; 
     
    if (4 > b.vartype) {size = 4;} 
    else {size = b.vartype;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 - val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV mult(int a, DV b) { 
    long val1 = a; 
    long val2 = b.varvalue; 

Figure A1 continued 
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    int size; 
    long value; 
    String scope; 
     
    if (4 > b.vartype) {size = 4;} 
    else {size = b.vartype;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 * val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV div(int a, DV b) { 
    long val1 = a; 
    long val2 = b.varvalue; 
    int size; 
    long value; 
    String scope; 
     
    if (4 > b.vartype) {size = 4;} 
    else {size = b.vartype;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 / val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV mod(int a, DV b) { 
     long val1 = a; 
     long val2 = b.varvalue; 
     int size; 
     long value; 
     String scope; 
      
     if (4 > b.vartype) {size = 4;} 
     else {size = b.vartype;} 
     scope = "unshared"; 
     DV result = new DV(size, scope, 0); 
     value = val1 % val2; 
  
     result.varvalue = type(size, value); 
     return result; 
   }        
   
  public static DV Eq(int a, DV b) { 
     long val1 = a; 
     long val2 = b.varvalue; 
     DV result = new DV(3, "unshared", 0); 
      
     if (val1 == val2) { 
      result.varvalue = 1;} 
     return result; 
   } 
   
  public static DV Gt(int a, DV b) { 
    long val1 = a; 

Figure A1 continued 
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    long val2 = b.varvalue; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 > val2) { 
    result.varvalue = 1; } 
     
    return result; 
  } 
   
  public static DV Gte(int a, DV b) { 
    long val1 = a; 
    long val2 = b.varvalue; 
          DV result = new DV(3, "unshared", 0); 
     
    if (val1 >= val2) { 
    result.varvalue = 1; } 
    return result; 
  } 
   
  public static DV Lt(int a, DV b) { 
    long val1 = a; 
    long val2 = b.varvalue; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 < val2) { 
    result.varvalue = 1; } 
    return result; 
  } 
 
  public static DV Lte(int a, DV b) { 
    long val1 = a; 
    long val2 = b.varvalue; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 <= val2) { 
    result.varvalue = 1; } 
    return result; 
  }  
   
   
   
 

 /************************************************************/ 
   
  /*************************(DV a, int 

b)**********************/ 
   
   
  public static DV add(DV a, int b) { 
    long val1 = a.varvalue; 
    long value; 
    int size; 
    String scope; 
     
    if (a.vartype > 4) {size = a.vartype;} 
    else {size = 4;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
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    value = val1 + b; 
    result.varvalue = type(size, value); 
    return result; 
  }  
  public static DV minus(DV a, int b) { 
    long val1 = a.varvalue; 
    long value; 
    int size; 
    String scope; 
     
    if (a.vartype > 4) {size = a.vartype;} 
    else {size = 4;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 - b; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV mult(DV a, int b) { 
    long val1 = a.varvalue; 
    long value; 
    int size; 
    String scope; 
     
    if (a.vartype > 4) {size = a.vartype;} 
    else {size = 4;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 * b; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV div(DV a, int b) { 
    long val1 = a.varvalue; 
    long value; 
    int size; 
    String scope; 
     
    if (a.vartype > 4) {size = a.vartype;} 
    else {size = 4;} 
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 / b; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV mod(DV a, int b) { 
    long val1 = a.varvalue; 
    long val2 = b; 
    long value; 
    int size; 
    String scope; 
     
    if (a.vartype > 4) {size = a.vartype;} 
    else {size = 4;} 
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    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 % val2; 
  
    result.varvalue = type(size, value); 
    return result; 
   }        
   
  public static DV Eq(DV a, int b) { 
     long val1 = a.varvalue; 
     long val2 = b; 
     DV result = new DV(3, "unshared", 0); 
      
     if (val1 == val2) { 
     result.varvalue = 1;} 
     return result; 
   } 
   
  public static DV Gt(DV a, int b) { 
    long val1 = a.varvalue; 
    long val2 = b; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 > val2) { 
    result.varvalue = 1; } 
     
    return result; 
  } 
   
  public static DV Gte(DV a, int b) { 
    long val1 = a.varvalue; 
    long val2 = b; 
          DV result = new DV(3, "unshared", 0); 
     
    if (val1 >= val2) { 
    result.varvalue = 1; } 
    return result; 
  } 
   
  public static DV Lt(DV a, int b) { 
    long val1 = a.varvalue; 
    long val2 = b; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 < val2) { 
    result.varvalue = 1; } 
    return result; 
  } 
 
  public static DV Lte(DV a, int b) { 
    long val1 = a.varvalue; 
    long val2 = b; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 <= val2) { 
    result.varvalue = 1; } 
    return result; 
  }  

Figure A1 continued 
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 /************************************************************/ 
   
  public static DV add(int a, int b) { 
    long val1 = a; 
    long val2 = b; 
    long value; 
    int size =4; 
    String scope; 
     
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 + val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
    
  public static DV minus(int a, int b) { 
    long val1 = a; 
    long val2 = b; 
    long value; 
    int size =4; 
    String scope; 
     
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 - val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV mult(int a, int b) { 
    long val1 = a; 
    long val2 = b; 
    long value; 
    int size =4; 
    String scope; 
     
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 * val2; 
    result.varvalue = type(size, value); 
    return result; 
  } 
   
  public static DV div(int a, int b) { 
    long val1 = a; 
    long val2 = b; 
    long value; 
    int size =4; 
    String scope; 
     
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 / val2; 
    result.varvalue = type(size, value); 
    return result;  } 
   
  public static DV mod(int a, int b) { 
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    long val1 = a; 
    long val2 = b; 
    long value; 
    int size =4; 
    String scope; 
     
    scope = "unshared"; 
    DV result = new DV(size, scope, 0); 
    value = val1 % val2; 
  
    result.varvalue = type(size, value); 
    return result; 
   }    
   
  public static DV Eq(int a, int b) { 
     long val1 = a; 
     long val2 = b; 
     DV result = new DV(3, "unshared", 0); 
      
     if (val1 == val2) { 
     result.varvalue = 1;} 
     return result; 
   } 
   
  public static DV Gt(int a, int b) { 
    long val1 = a; 
    long val2 = b; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 > val2) { 
    result.varvalue = 1; } 
     
    return result; 
  } 
   
  public static DV Gte(int a, int b) { 
    long val1 = a; 
    long val2 = b; 
          DV result = new DV(3, "unshared", 0); 
     
    if (val1 >= val2) { 
    result.varvalue = 1; } 
    return result; 
  } 
   
  public static DV Lt(int a, int b) { 
    long val1 = a; 
    long val2 = b; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 < val2) { 
    result.varvalue = 1; } 
    return result; 
  } 
 
  public static DV Lte(int a, int b) { 
    long val1 = a; 
    long val2 = b; 
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    DV result = new DV(3, "unshared", 0); 
     
    if (val1 <= val2) { 
    result.varvalue = 1; } 
    return result; 
  }  
   
   
   
 

 /************************************************************/ 
   
  public static DV And(DV a, DV b) { 
   DV result = new DV(3, "unshared", 0);  
   boolean val1 = false;  
   boolean val2 = false; 
    
   if (a.vartype == 3) {if (a.varvalue == 1) {val1 = 

true; } else {val1 = false; } } 
   if (b.vartype == 3) {if (b.varvalue == 1) {val2 = 

true; } else {val2 = false; } } 
      
     if (val1 & val2) { 
     result.varvalue = 1; } 
   return result; 
   } 
   
  public static DV Or(DV a, DV b) { 
   DV result = new DV(3, "unshared", 0); 
   boolean val1 = false;  
   boolean val2 = false; 
    
   if (a.vartype == 3) {if (a.varvalue == 1) {val1 = 

true; } else {val1 = false; } } 
   if (b.vartype == 3) {if (b.varvalue == 1) {val2 = 

true; } else {val2 = false; } } 
  
   if (val1 || val2) { 
      result.varvalue = 1; } 
   return result; 
  } 
   
  public static DV Ne(DV a, DV b) { 
    long val1 = a.varvalue; 
    long val2 = b.varvalue; 
    DV result = new DV(3, "unshared", 0); 
     
    if (val1 != val2) { 
     result.varvalue = 1; } 
    return result; 
  } 
   
  public static DV Not(DV a) { 
     boolean val = false; 
     DV result = new DV(3, "unshared", 0);  
     if (a.vartype == 3) {if (a.varvalue == 1) {val = 

true; } else {val = false; } } 
     if( !val) { 

Figure A1 continued 



 

 

113

    result.varvalue = 1;   
     } 
     return result; 
   } 
  public static void set(DV a, DV b) { 
    int size; 
     
    if (a.vartype > b.vartype) {size = a.vartype;} 
    else {size = b.vartype;} 
    a.varvalue = b.varvalue; 
  }  
  public static void set(DV a, int b) { 
    a.varvalue = b; 
  }  
  public static void set(int a, int b) { 
    a = b; 
  } 
  public static void set(long a, DV b) { 
    a = b.varvalue; 
  } 
   
  public static void set(DV a, boolean b) { 
    a.varvaluebool = b; 
  }  
   
} 
 //Declare Main 
 public static void main(String[] args) 
   { 
  Thread t0= new Thread(new Body0() ); 
  t0.start(); 
  Thread t1= new Thread(new Body1() ); 
  t1.start(); 
   
         
   } 
} 

Figure A1 continued 
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APPENDIX B 

DESAL GRAMMAR (GRAMMAR.DEF FILE) 

The figure B1 shows some of the grammar rules in the grammar.def file. We 

invented a small, abbreviated syntax to generate dparser grammar, which is a style of 

commented Python. Here, the abbreviated syntax has two basic forms, single rules and 

multiple rulesets. Each rule or ruleset starts with a string, in column 1, looking like #nn#, 

where 'nn' is a number. The meaning of this number is taken from the Java Class 

numbering given by Dalton and Hallstrom, in their original Java compiler. An example is 

the following rule: 

              #2#  

                 componentDec: "component" var_id subComponentListNull  

if type(term2) == types.ListType:  

term2=term2[0] 

               node["var_id"] = term1  

               node["subComponentListNull"] = term2 

               node["name"] = "component" 

Notice that the rule starts with #2#, which means this will generate a dparser 

pattern (the first line following the #2# is the pattern), which eventually will generate a 

node of type 2, when a DESAL program is compiled into an Abstract Syntax Tree. The 

remaining lines in the rule are Python statements executed after dparser matches to the 

pattern. Here, some conventions are: 

   1. numTerms is a Python local variable equal to the number of terms matched 

by the dparser pattern. This may be variable, because dparser rules can have optional 

matching expressions (so numTerms isn't always the same number). 

   2. term0, term1, term2, etc, refer to the terms matched by the dparser pattern. 

You can refer to these terms in string manipulation and comparison code, but sometimes 
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the terms are not Strings, but are lists (this depends on how your grammar is defined). 

Notice above, the assignment: term2=term2[0]. This assignment is based on the 

assumption that term2 is a list prior to the assignment, and the first item of the list 

replaces local variable term2 (of course, this assumption is valid because of the "if" test 

on term2's type!). 

   3. The "output" of the rule is always a Python dictionary called, locally, 'node'. 

Here, you can add particular key/value things to this dictionary. Notice that above, the 

key "var_id" is added to the node. Some keys are standard, and be careful about these: 

         1. node["CaseNo"] -- automatically assigned, this will be the node's number 

(for the example above, it is 2). 

         2. node["LineNo"] -- automatically assigned, this is the line number of the 

DESAL program source for the matching program fragment. 

         3. node["ColumnNo"] -- like LineNo, but for column number. 

         4. node["Name"] -- optional; used basically for debugging and pretty 

printing of the parse tree by some tools.  

For some cases, one dparser pattern could possible generate different node 

numbers, depending on inputs. To allow this, we have rulesets. A ruleset starts, like a 

rule, with a #xxx#-string in column 1, but the 'xxx' here will be a comma-separated list of 

numbers; these are the possible node numbers for the ruleset. Example: 

       #3,4#  

          subComponentListNull: subComponentList? 

              if not term0: 

                     #4# 

              else: 

                  if type(term0) == types.ListType: term0=term0[0] 

                  #3# 

                  node["subComponentList"] = term0 



 

 

116

       This example shows a ruleset for node types 3 and 4. Notice that we see 

Python code interwoven with #3# and #4#, which are indicators of the specific definitions 

for node types 3 and 4. In the example, node type 4 has no special dictionary key/value 

items added, whereas type 3 has one key/value item added. Our tool validates that the 

lines following a ruleset definition contain entries for all the rules that should be defined. 

Thus, following #3,4#, there has to be some line #3# and some line #4# (and, of course, 

no line #5# or other crazy numbers). 
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#0#  
   program: Dispatch   
   node["Dispatch"] = term0 
   node["name"] = "program" 
 
#1#  
   Dispatch: componentDec  
   node["componentDec"] = term0 
   node["name"] = "Dispatch" 
 
#2#  
   componentDec: "component" var_id subComponentListNull  
   if type(term2) == types.ListType: term2=term2[0] 
   node["var_id"] = term1  
   node["subComponentListNull"] = term2 
   node["name"] = "componentDec" 
 
#3,4#  
   subComponentListNull: subComponentList? 
   if not term0: 
       #4# 
       node["name"] = "subComponentListNull" 
   else: 
       if type(term0) == types.ListType: term0=term0[0] 
       #3# 
       node["subComponentList"] = term0 
       node["name"] = "subComponent" 
 
#5,6#  
   subComponentList: subComponentList subComponent | subComponent 
   if numTerms == 2: 
      if type(term0) == types.ListType:  
        term0=term0[0] 
      #5# 
      node["subComponentList"] = term0 
      node["subComponent"] = term1 
      node["name"] = "subComponentList" 
   elif numTerms == 1: 
      #6# 
      node["subComponent"] = term0 
      node["name"] = "subComponent" 
 
#7,8#  
   subComponent: DecList Body | Body  
   if numTerms == 2: 
       #7#  
       node["DecList"] = term0 
       node["Body"] = term1 
       node["name"] = "DecList" 
   else: 
       #8#  
       node["Body"] = term0 
       node["name"] = "Body" 
 
#9,10,11,114,118,12,13,14,115,119#   
   DecList:  DecList StructInit | DecList structDec | DecList stateDec | 

DecList bindingDec | DecList funcDec | StructInit  | structDec | stateDec | 
bindingDec | funcDec 

Figure B1 Grammar.def file containing the DESAL grammar rules. 
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   if numTerms == 2: 
     if type(term0) == types.ListType:  
        term0=term0[0] 
     if  term1["CaseNo"] == 94: 
       #print "\n\n " 
       #print "struct Dec in DecList is: ", term1 
       #print "\n\n "      
       #9# 
       node["DecList"] = term0 
       node["strucDec"] = term1 
       node["name"] = "DecList"          
     if  term1["CaseNo"] == 15: 
       #10# 
       node["DecList"] = term0 
       node["stateDec"] = term1 
       node["name"] = "DecList" 
     if  term1["CaseNo"] == 16: 
       #11# 
       node["DecList"] = term0 
       node["bindingDec"] = term1 
       node["name"] = "DecList" 
     if  term1["CaseNo"] == 112: 
       #114# 
       node["DecList"] = term0 
       node["funcDec"] = term1 
       node["name"] = "DecList"     
     if  term1["CaseNo"] == 85: 
         #118# 
         node["DecList"] = term0 
         node["structInit"] = term1 
         node["name"] = "DecList"      
   if numTerms == 1: 
     if  term0["CaseNo"] == 94: 
       #12# 
       #print "\n\n " 
       #print "struct Dec is: ", term0 
       #print "\n\n " 
       node["structDec"] = term0 
       node["name"] = "strucDec" 
     if  term0["CaseNo"] == 15: 
       #13# 
       node["stateDec"] = term0 
       node["name"] = "stateDec" 
     if  term0["CaseNo"] == 16: 
       #14# 
       node["bindingDec"] = term0 
       node["name"] = "bindingDec" 
     if  term0["CaseNo"] == 112: 
       #115# 
       node["funcDec"] = term0 
       node["name"] = "funcDec"   
     if  term0["CaseNo"] == 85: 
       #119# 
       node["structInit"] = term0 
       node["name"] = "structInit"     
 
#15# 
   stateDec: varClass varDec  

Figure B1 continued 
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   node["varClass"] = term0 
   node["varDec"] = term1 
   node["name"] = "stateDec" 
 
#16# 
   bindingDec: "binding" VarType bindingVarList  
   node["VarType"] = term1 
   node["bindingVarList"] = term2 
   node["name"] = "bindingDec" 
 
#17,18# 
   bindingVarList: bindingVarList ',' bindingVar | bindingVar 
   if numTerms == 3: 
     if type(term0) == types.ListType:  
       term0=term0[0] 
       #17# 
       node["bindingVarList"] = term0 
       node["bindingVar"] = term2 
       node["name"] = "bindingVarList" 
   if numTerms == 1: 
     #18# 
     node["bindingVar"] = term0 
     node["name"] = "bindingVar" 
 
#19# 
   bindingVar: var_id bindingExp 
   node["var_id"] = term0  
   node["bindingExp"] = term1 
   node["name"] = "bindingVar" 
 
#20# 
   bindingExp: bindingType bindingScope '.' var_id '.' var_id 

bindingLimitExp 
   node["bindingType"] = term0  
   node["bindingScope"] = term1  
   node["var_id"] = term3  
   node["var_id1"] = term5  
   node["bindingLimitExp"] = term6 
   node["name"] = "bindingExp" 
 
#21# 
   bindingType: "<-"  
   node["name"] = "<-" 
 
#22,23# 
   bindingScope: '*' | var_int  
   if  term0 == '*': 
      #22# 
      node["name"] = "*" 
   else: 
      #23# 
      #node[''expr''] = term0[''name''] 
      node["name"] = term0["name"] 
 
#24,25# 
   bindingLimitExp: ('[' var_int ']')? 
   if not  term0: 
        #25#  

Figure B1 continued 
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        node["name"] = "bindingLimitExpNull" 
   else: 
        #24# 
        node["expr"] = term0[1]["name"] 
        node["name"] = "bindingLimitExp" 
 
#26# 
   Body: "every" expr TimeUnit "after" expr TimeUnit GuardList 
   node["expr"] = term1 
   node["TimeUnit"] = term2 
   node["expr1"] = term4 
   node["TimeUnit1"] = term5  
   node["GuardList"] = term6 
   node["name"] = "Body" 
 
#27,28# 
   GuardList: GuardList '[' ']' Guard | Guard   
   if numTerms == 4: 
       if type(term0) == types.ListType:  
          term0=term0[0] 
       #27# 
       node["GuardList"] = term0  
       node["Guard"] = term3 
       node["name"] = "GuardList" 
   else:  
       #28# 
       node["Guard"] = term0 
       node["name"] = "Guard" 
 
#29# 
   Guard: expr ':' stmntListNull 
   if type(term2) == types.ListType:  
      term2=term0[0] 
   node["expr"] = term0 
   node["stmntListNull"] = term2 
   node["name"] = "Guard" 
 
#30,31# 
   stmntListNull : stmntList?   
   if not  term0: 
        #31#        
        node["name"] = "stmntListNull" 
   else: 
        if type(term0) == types.ListType:  
          term0=term0[0] 
        #30# 
        node["stmntList"] = term0 
        node["name"] = "stmntList" 
 
#32,33,34# 
   stmntList : stmntList stmnt | stmnt | "error"   
   if numTerms == 2: 
       #32# 
       node["stmntList"] = term0 
       node["stmnt"] = term1 
       node["name"] = "stmntList" 
   if numTerms == 1: 
        if t != "error": 
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         #33# 
         node["stmnt"] = term0 
         node["name"] = "stmnt" 
        else: 
         #34# 
         node["name"] = "error" 
 
 
#35,36,37,38,117# 
   stmnt : AssignS | ForEachS | IfS | FuncCallstmnt | funcCall 
   if  term0["CaseNo"] == 40: 
       #35# 
       node["AssignS"] = term0 
       node["name"] = "AssignS" 
   if  term0["CaseNo"] == 41: 
       #36# 
       node["ForEachS"] = term0 
       node["name"] = "ForEachS" 
   if  term0["CaseNo"] >= 42 and  term0["CaseNo"]<=45: 
       #37# 
       node["IfS"] = term0 
       node["name"] = "IfS" 
   if  term0["CaseNo"] == 39: 
       #38# 
       node["FuncCallstmnt"] = term0 
       node["name"] = "FuncCallstmnt" 
   if  term0["CaseNo"] == 113: 
       #117# 
       node["FuncCall"] = term0 
       node["name"] = "FuncCall"    
 
#39# 
   FuncCallstmnt : FuncCall   
   node["FuncCall"] = term0 
   node["name"] = "FuncCallstmnt" 

 
#42,43,44,45# 
   IfS :  "if"  expr  '{' stmntList '}' | "if"  expr  '{' stmntList '}' 

Else | "if"  expr  '{' stmntList '}' ElseIfList | "if"  expr  '{' stmntList '}' 
ElseIfList Else 

   if numTerms == 5: 
        #42# 
        node["if"] = term0  
        node["expr"] = term1 
        node["stmntList"] = term3 
        node["name"] = "If" 
   if numTerms == 6: 
           if term5["CaseNo"] == 49: 
               #43# 
               node["if"] = term0 
               node["expr"] = term1 
               node["stmntList"] = term3  
               node["Else"] = term5 
               node["name"] = "If" 
           elif (term5["CaseNo"] == 46) or(term5["CaseNo"] == 47): 
               #44# 
               node["if"] = term0 
               node["expr"] = term1 
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               node["stmntList"] = term3  
               node["ElseIfList"] = term5 
               node["name"] = "If" 
   if numTerms == 7: 
        #45# 
        node["if"] = term0  
        node["expr"] = term1  
        node["stmntList"] = term3 
        node["ElseIfList"] = term5  
        node["Else"] = term6 
        node["name"] = "If" 
 
#52,53,54,55,56,57,58,59,60,61,62,63,115,64,65,66,67,68,69,70,71,72,73,74

,75,76,77# 
   expr  : "ID" | SrcExpr | AgeExpr | BoundExpr | compoundvarName | 

CastExpr | FuncCall | funcCall | BoolLit | var_int | var_id var_init | expr 
'&&' expr $binary_left 2 | expr '||' expr  $binary_left 1 |'!' expr 
$unary_right 7 | expr '<' expr $binary_left 4  | expr '>' expr $binary_left 4 | 
expr '<=' expr $binary_left 4  | expr '>=' expr $binary_left 4 | expr '==' expr 
$binary_left 3 | expr '+' expr $binary_left 5 | expr '-' expr $binary_left 5 | 
expr '*' expr  $binary_left 6 | expr '/' expr  $binary_left 6 | expr '%'  expr  
$binary_left 6 | '('  expr ')' $left 8 | AssignS | "error" 

   if numTerms == 1: 
        if  term0 == "ID": 
                #52# 
                node["expr_res"] = term0 
                node["name"] = "ID" 
        elif  term0["CaseNo"] == 78: 
                #53# 
                node["expr_res"] = term0 
                node["name"] = "expr_res" 
        elif  term0["CaseNo"] == 79: 
                #54# 
                node["expr_res"] = term0 
                node["name"] = "expr_res" 
        elif  term0["CaseNo"] == 80: 
                #55# 
                node["expr_res"] = term0 
                node["name"] = "expr_res" 
        elif  term0["CaseNo"] == 50 or  term0["CaseNo"] == 51 : 
                #56# 
                node["expr_res"] = term0 
                node["name"] = "expr_res" 
        elif  term0["CaseNo"] == 82: 
                #57# 
                node["expr_res"] = term0 
                node["name"] = "cast" 
        elif  term0["CaseNo"] == 81: 
                #58# 
                node["expr_res"] = term0 
                node["name"] = term0      
        elif  term0["CaseNo"] == 88 or  term0["CaseNo"] == 89 : 
                #59# 
                node["expr_res"] = term0 
                #node["name"] = "Bool" 
        elif  term0["CaseNo"] == 85: 
                #75# 
                node["expr_res"] = term0 
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                #node["name"] = "exprList" 
        elif  term0["CaseNo"] == 40: 
                #76# 
                node["expr_res"] = term0 
                node["name"] = "=" 
        elif  term0 == "error": 
                #77# 
                node["name"] = "error"                 
        elif term0["CaseNo"] == 445: 
                #60# 
                node["expr_res"] = term0["var_int"] 
                node["name"] = term0["var_int"] 
   if numTerms == 3: 
        if  term1 == "&&": 
                #61# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "&&" 
        elif  term1 == "||": 
                #62# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "||" 
   if (numTerms == 2) and ( term0 == "!"): 
        #63# 
        node["expr"] = term1 
        node["name"] = "!" 
   if (numTerms == 2) and ( type(term0) == dict): 
        #115# 
        node["var_id"] = term0 
        node["var_init"] = term1       
   if numTerms == 3: 
        if  term1 == "<": 
                #64# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "<" 
        elif  term1 == ">": 
                #65# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = ">" 
        elif  term1 == "<=": 
                #66# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "<=" 
        elif  term1 == ">=": 
                #67# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = ">=" 
        elif  term1 == "==": 
                #68# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "==" 
        elif  term1 == "+": 

Figure B1 continued 
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                #69# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "+" 
        elif  term1 == "-": 
                #70# 
                node["expr"] = term0 
                node["expr1"] = term2 
                node["name"] = "-" 
        elif  term1 == "*": 
                #71# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "*" 
        elif  term1 == "/": 
                #72# 
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "/" 
        elif  term1 == "%": 
                #73#    
                node["expr"] = term0  
                node["expr1"] = term2 
                node["name"] = "%" 
   if numTerms == 3 and  term0 == "(": 
                #74# 
                node["lp"] = term0 
                node["expr"] = term1 
                node["name"] = "( )" 
 
#78# 
   SrcExpr : "src" '(' var ')'  
   node["var"] = term2 
   node["name"] = term2["var_id"]["var_id"] 
 

 
#81# 
   FuncCall :  "$" var_id ParmList   
   node["var_id"] = term1 
   node["ParmList"] = term2 
   node["name"] = "Function Call" 
 
#117,118# 
   structVarList: structVarList ',' structVar | structVar 
   #print " structVar is ", term0 
   if numTerms == 3: 
        if type(term0) == types.ListType:  
           term0=term0[0] 
        #117# 
        node["structVarList"] = term0  
        node["structVar"] = term2 
        node["name"] = "structVarList" 
   else: 
        #118# 
        node["structVar"] = term0 
        node["name"] = "structVar"    
#111# 
   structType: var_id 

Figure B1 continued 



 

 

125

   node["structType"] = term0 
#444# 
   var_id : "[a-zA-Z_][a-zA-Z0-9_]*"  
   node["var_id"] = term0  
   node["name"] = term0 
      
#446# 
   itr_id : "[a-zA-Z_][a-zA-Z0-9_]*"  
   node["itr_id"] = term0  
   node["name"] = term0 
    
#445# 
   var_int : "0" | "[1-9][0-9]*"  
   node["var_int"] = term0 
   node["name"] = term0 

Figure B1 continued 
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