
University of Iowa
Iowa Research Online

Theses and Dissertations

Fall 2009

Programming and self stabilization for wireless
sensor networks
Kajari Ghosh Dastidar
University of Iowa

Copyright 2009 Kajari Ghosh Dastidar

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/363

Follow this and additional works at: https://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Ghosh Dastidar, Kajari. "Programming and self stabilization for wireless sensor networks." PhD (Doctor of Philosophy) thesis,
University of Iowa, 2009.
https://ir.uiowa.edu/etd/363.

https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F363&utm_medium=PDF&utm_campaign=PDFCoverPages

PROGRAMMING AND SELF STABILIZATION FOR WIRELESS SENSOR

NETWORKS

by

Kajari Ghosh Dastidar

An Abstract

Of a thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Computer Science
in the Graduate College of

The University of Iowa

December 2009

Thesis Supervisor: Professor Ted Herman

1

ABSTRACT

Ubiquitous computing has become a widespread phenomenon in today’s modern

world, with the computing technology integrating with our daily life in an invisible

manner. Embedded systems and wireless sensor networks are popular choices to achieve

this. Programming embedded and sensor network systems has always been a challenge

for the programmers due to the lack of sufficient high-level programming support. To

deal with this serious limitation, we have developed DESAL (Dynamic Embedded

Sensing and Actuation Language) which is a user-friendly high-level programming

language for wireless sensor networks with an integrated middleware, which hides the

low-level detail from the programmers. In this thesis we present the design and

development of DESAL.

 We have made DESAL programs rule based. Programs are written in guard-

action format defined in terms of the program states. There are established formal

correctness proving methods that can work on guard-action formats to mathematically

check a program for errors. Also, there is no hidden control context like events or

interrupts. Time synchronization has been developed as part of the middleware that lets

DESAL programs to coordinate through synchronized actions throughout the network.

This facilitates classic coordination algorithms like clock synchronization, spanning tree

construction and consensus. Also, synchronized wake up saves energy. Neighborhood

management, including node discovery and monitoring, is also provided by the

middleware. DESAL programs communicate via state sharing. There is no network

programming required. The middleware provides that automatically. Combining all these

features DESAL provides major network management services, and yet presents the users

with a simple high-level programming interface. We implemented the DESAL compiler

to convert DESAL programs to NesC on TinyOS and to Java.

2

 Another novel feature we have introduced in DESAL is a variable of type ‘token’.

The concept of token is commonly used in mutual exclusion algorithms. One of the case

studies we have done uses the token variable to achieve increased lifetime of sensors in a

ring topology. The working of token is hidden from the user. Another case study with

tokens involves selective activation of RFID tags in a scenario where among the three

RFID tags present only one can work at a time.

 Struct is a new data structure introduced in DESAL. Sometimes we need to group

together two or more variables. It is important to receive them at the same time. Hence, it

is important to send these grouped data over the radio together. Struct does that.

 Function is another newly added feature to DESAL. Function is added to group

together repeated statements in a program. The unique feature of function is that, it uses

only global variables. No new local variable is declared. This can significantly reduce the

stack overhead of the program, thus saving memory and running time.

 Case studies have been done to illustrate the features of DESAL and to find scope

for improvement.

Abstract Approved: ____________________________________
 Thesis Supervisor

 Title and Department

 Date

PROGRAMMING AND SELF STABILIZATION FOR WIRELESS SENSOR

NETWORKS

by

Kajari Ghosh Dastidar

A thesis submitted in partial fulfillment
of the requirements for the Doctor of

Philosophy degree in Computer Science
in the Graduate College of

The University of Iowa

December 2009

Thesis Supervisor: Professor Ted Herman

Copyright by

KAJARI GHOSH DASTIDAR

2009

All Rights Reserved

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Kajari Ghosh Dastidar

has been approved by the Examining Committee
for the thesis requirement for the Doctor of Philosophy
degree in Computer Science at the December 2009 graduation.

Thesis Committee: ___________________________________
 Ted Herman, Thesis Supervisor

 Sukumar Ghosh

 Steve Bruell

 EJ Jung

 Geb Thomas

 ii

ACKNOWLEDGMENTS

I would like to acknowledge my Ph.D. advisor Prof. Ted Herman for his help at

every step of my study and his guidance and support. I would also like to thank Prof.

Sukumar Ghosh for his moral support and kind advice throughout my stay in this

university. Thanks are also due to my other Ph.D. committee members Prof. Steve Bruell,

Assistant Prof. EJ Jung and Prof. Geb Thomas for their valuable inputs in shaping my

thesis. I would like to acknowledge the emotional support and constant encouragement

given to me by my family.

 iii

TABLE OF CONTENTS

LIST OF FIGURES ...v

CHAPTER 1 INTRODUCTION ...1

 1.1.Embedded Systems And Sensor Networks ..1
 1.2 .Our Contribution ...4
 1.3 .Outline Of Thesis ..5

CHAPTER 2 LITERATURE REVIEW ..7

 2.1.Brief Overview...8

 2.2.Review In Detail ..11
 2.2.1. Abstract Regions [15] ..11
 2.2.2. TinyDB [17] ..14
 2.2.3. TML [18] ...15
 2.2.4. KAIROS [20] ...17
 2.2.5. TASK [24] ...18
 2.2.6. TENET [28] ...20
 2.2.7. FACTS [29] ...22
 2.2.8. Rule-Based Programming Language [34]23
 2.2.9. Declarative Resource Naming [35]25

CHAPTER 3 DESAL (DYNAMIC EMBEDDED SENSING AND
ACTUATION LANGUAGE) ...28

 3.1. DESAL Features ...29
 3.2. Comparing DESAL With NesC ..32
 3.3. DESAL Language Design ..33
 3.4. DESAL Runtime Architecture ..37

 3.4.1. Clemson DESAL Runtime Architecture38
 3.4.2. Iowa DESAL Runtime Architecture41

CHAPTER 4 TOKEN TYPE VARIABLE IN DESAL ..51

 4.1.Adding Lifetime To Sensors ..52

 4.1.1. Rotating Sentry Problem ...52
 4.1.2. Increasing Sensor Lifetime In A Ring Topology59
 4.1.3. Separation Of Circulating Tokens ..61
 4.1.4. DESAL Program To Increase Lifetime Of The Sensors65
 4.1.5. Using RFID Tags In Flume ...69

CHAPTER 5 DESAL TO JAVA CONVERSION ..72

 5.1. DESAL Compiler And Grammar ...72
 5.1.1. Compiler Components ..73
 5.1.2. DESAL Grammar ...73

 5.2. DESAL Application In Java ...90

CHAPTER 6 CONCLUSION AND FUTURE WORK ..92

 iv

 6.1. Conclusion ..92
 6.2. Future Work ..93

APPENDIX A EQUIVALENT JAVA PROGRAM FOR BLINK.DESAL96

APPENDIX B DESAL GRAMMAR (GRAMMAR.DEF FILE)114

BIBLIOGRAPHY ..126

 v

LIST OF FIGURES

Figure 1 This tree attempts to categorize the various research done in different
areas of wireless sensor network programming. The different research papers
have been referred to by short names, which are mentioned below with
references. Against each research paper the year of publication is put in
parenthesis. ...8

Figure 2 This is a chronological diagram showing the major research works done
in the past seven years, since the release of TinyOS/NesC. The arrows
illustrate the platform dependence of the research. The dotted arrow signifies
that the application can also support other platforms. ..12

Figure 3 Component Wiring ..33

Figure 4 Blink in NesC, taken from the application directory of TinyOS34

Figure 5 Blink in DESAL ..34

Figure 6 A sample DESAL program ..35

Figure 7 DESAL grammar rules. ...36

Figure 8 DESAL Runtime Architecture common to both Clemson and Iowa
implementation ...37

Figure 9 Clemson DESAL Runtime Architecture ...38

Figure 10 A Binding Tuple associates an internal variable to an external variable.
All the tuple constitute of a Binding Table. The first variable address contains
the address of the host/external variable. The first Binding Index is the index
of the external variable, which is zero. The next (n-1) tuple corresponds to the
internal variables from the (n-1) neighbors. ...42

Figure 11 Allowed Binding Map Table contains the external or the host variable
code, and the allowed internal variable codes contain the range of the codes
allowed for the variables from the neighbors. ..43

Figure 12 Binding Action: Here 1 is the host node with neighbors 2, 3, and 4. MT
is allowed binding map table. BT is the binding table. In MT allowed binding
range of the external variables is 2 to 4 as the internal variable codes range
from 2 to 4. In BT the first index in the last column is 0, which is the binding
index for the external variable. The rest of the indices correspond to the id of
the neighbors. ..45

Figure 13 Message Payload is the tuple, which is broadcasted over the radio. The
first field contains the id of the sender.The rest of the entries contains the
external variable values to be broadcasted.With each variable value (data) the
variable code is also attached. ..46

Figure 14 Convergence to Max time synchronization protocol...49

 vi

Figure 15 Illustrated on the left is an open system consisting of a chain of
processes, p[1], p[2], …, with p[1] being the topmost process. Tokens arrive
from outside the system to p1. Each process p[i] releases at most one token in
each round to p[i+1]. The aim for this system is to ensure that, eventually, no
two tokens are closer than some distance d in the sub chain from p[2]
downwards (we cannot prevent the accumulation of tokens in p[1] in this
open system). On the immediate right is a simple delay mechanism shown as
a Petri net: the small sub ring and the joint transition between p[1] and p[2]
ensures that the tokens do not arrive in each round to p[2]. By adjusting the
size of the sub ring, the target distance d can be obtained62

Figure 16 Program to calculate average temperature in the sensor motes. Each node
has at most 20 neighbors. $temp records temperature, whereas $time records
local time synchronized with others. In the base (node id =0) if the time
difference is within acceptable range, the received temperature will be
accepted in the calculation of the average. ...67

Figure 17 A ring with 3 token rings and 4 processes ...67

Figure 18 The three programs for the RFID Flume case study ...70

Figure 19 The working of the DESAL programs for the flume project71

Figure 20 Swap class in SwapChains.py ...80

Figure 21 Swap method in SwapChains.py used to reverse a particular list.82

Figure 22 DESAL program to calculate min and max of neighborhood
temperatures. Each node is connected to 20 neighbors. Initially, local
temperature is assigned to min and max. Then, the recorded min and max are
compared to the min and max from the neighbors to calculate the
neighborhood min and max. Here we can see that if the min and max from the
neighbors are received at a different time, the calculation will give us wrong
result, as we want to calculate min and max at the same time.88

Figure 23 This program calculates average temperature of averages form the
neighbors twice at different time frequency. Instead of writing the same code
for doing average two times, the program calls the average() function in the
two bodies. This demonstrates how a function can make a program shorter
and easy to read...89

Figure 24 Virtual ring can be mapped upon a network, which could provide
separated token circulation. ..95

Figure A1 Java program Proto.java equivalent to Blink.desal ..97

Figure B1 Grammar.def file containing the DESAL grammar rules.117

1

CHAPTER 1

INTRODUCTION

This dissertation presents a new programming language called DESAL (Dynamic

Embedded Sensing and Actuation Language) for wireless sensor networks. DESAL is a

high-level programming language with an integrated middleware hiding low-level detail

from the user. The usual target audience using the sensor networks includes hydrologists,

civil engineers and doctors. They are expected to program the sensor networks to

customize them to cater to their own needs. But at present the widely used programming

platforms are suited to expert programmers who can master low-level programming

primitives, operating system components and network protocols. This makes

programming very difficult for consumers. This is where DESAL comes into play.

DESAL provides the user with a friendly high-level programming interface where there

is no need to write the codes for low-level operating systems and network protocols. In

this chapter we discuss the motivation behind the development of the language, our

contribution, and the organization of the subsequent chapters.

1.1 Embedded Systems And Sensor Networks

Pervasive computing has become a widespread phenomenon in today’s modern

world with the computing technology integrating with our daily life in an invisible

manner. In most of our modern amenities, ranging from leisure technologies like cell

phones, remote controls, home appliances to emergency life-saving technologies, we

have underlying functioning computers. In the early years of the 20th century, Embedded

Systems technology came into being to meet the demands of invisible integration of

computing services to the day-to-day amenities.

Embedded systems are constituted of specialized and application-specific

computing systems usually integrated on small microchips, which are embedded in the

2

electronic devices. Programming embedded systems has always been a challenge for the

embedded systems engineers and the computer science programmers due to the lack of

sufficient high-level programming support. For each microprocessor, an application

developer is expected to learn the system specifications given in the long detailed

datasheets, know the intricacies of the circuit designs, bus protocols, and many more

details. With the rapid advance in the field of embedded technology, we can presently

boast of having thousands of different embedded systems catering to the modern human

civilization in every sphere of life. At the same time, with the thousand different

technologies, it becomes necessary for an application developer to gain detail knowledge

of each of the different systems. To deal with this serious limitation, researchers have

engaged in developing general-purpose software support for programming embedded

systems.

Considerable research work is going on in the area of the development of high-

level software support for embedded systems. The aim is to provide user-friendly

software support to operate and manage the embedded device. By user-friendly we mean

the software should hide the low-level hardware detail from the programmer, making

application programming simpler. In addition to that, such software should ideally

support various hardware platforms, so that there is no need for a programmer to learn

different software for programming different systems. Real-time operating systems like

VxWorks, WinCE, PalmOS, QNX, etc were developed to provide users with an

execution system similar to a desktop system. These are still popular for PDAs, cell

phones, set-top boxes, etc. Though these operating systems are not the best in terms of

minimal memory usage, they provide adaptive microkernel, multiprogramming support,

reliability and memory protection. Smaller operating systems like Creem, pOSEK, Ariel,

etc. were developed for more application specific purposes. But, ground breaking

research work in the hardware technologies have resulted in the development of smaller

3

embedded systems demanding more resource efficient operating systems and the

supporting software tools [5].

A significant breakthrough in the embedded world was the development of sensor

devices. These are special types of devices, which can interact with its environment by

sensing temperature, pressure, movement, etc. A sensor device comprises of sensors

integrated on small chips, which can be programmed for various sensing applications

like, setting up the fire alarm in case of fire, reporting abnormal temperature or pressure

fluctuations, etc. For sensing over a wide area, sensor devices (termed as sensor node or

mote in a network) are deployed in a network forming a Wired Sensor Network (also

known as Sensor-Actuator Network). Such applications include, determining if a room is

empty, detecting uniform heating of a room, etc. The sensor nodes are usually very cheap

and small in size enabling deployment in a large number for more area coverage and

accurate readings.

The wired technology soon became a hindrance to the distribution of large

number of sensor nodes, as it was very difficult and clumsy to set up a wired network just

anywhere, especially outdoors. As an answer to this, wireless sensor network technology

was developed. A wireless sensor network is comprised of multiple sensor motes, which

can be deployed virtually anywhere on earth, including physically inaccessible places.

The sensor nodes form an ad-hoc network, which can be monitored remotely.

Research in sensor technology have seen major development in the hardware

technologies, resulting in smaller and cheaper sensor nodes. This made possible the

deployment of a large number of nodes in a network to cover a widespread area and get a

huge amount of sensor readings for accurate calculation. The dense deployment has

resulted in high precision of the data collected by these motes. But, at the same time, the

sensor nodes have become significantly resource limited (in terms of memory, battery life

and processing power). With increasing demand of sensor networks, applications have

become more complex, and consequently it is becoming more and more challenging to

4

program these resource poor sensor motes to support the advanced applications. The

current operating systems and the programming languages are too much application-

specific and low-level to support such dynamic and advanced programming. In an

attempt to solve this problem, researchers are developing new operating systems and

high-level middleware abstractions to make it easier for the application developers to

write more complex and dynamic programs.

1.2 Our Contribution

Our contribution includes development of a high-level user friendly programming

language called DESAL (Dynamic Embedded Sensing and Actuation Language), which

addresses the above-mentioned challenges. This language hides the low-level details

from the programmer making programming simple and therefore, less error prone.

DESAL has an integrated middleware constituting of the low-level services like time

synchronization, message communication, neighborhood management and dynamic

binding. These services are automatically provided to the user. Thus, the user is not

required to write low-level codes for operating systems and network protocols. This work

is jointly done with Dalton and Hallstrom of Clemson University. We have taken the

language grammar from Clemson, and created our own compiler in DParser for Python.

We have integrated our compiler with Clemson’s Java program to convert a DESAL

program to equivalent NesC code. Our work also includes writing codes in Python to

convert a DESAL program to an equivalent Java program. The Java program can

communicate with the sensor nodes via the SerialForwarder. One problem with directly

using the serial port is that only one PC program can interact with the mote. Additionally,

it requires one to run the application on the PC, which is physically connected to the

mote. The SerialForwarder is a graphical tool, which can remove both of these

limitations. More than one program running on the PC can send packets to the

5

SerialForwarder, which is displayed in its interface. This tool can connect to the attached

mote via the serial port. [54]. A novel contribution to DESAL is the addition of token

type variables. Tokens allow the users to achieve mutual exclusion in the network. We

have shown two case studies to illustrate the usage of tokens. Structs and functions are

also newly added features to DESAL. Structs allow grouping together two or more

variables. Functions group together repeated statements. The DESAL approach cannot do

everything. It has some overhead. It cannot react in microseconds to events. It is not in

the style of programming language like TinyOS, which is event-based.

1.3 Outline Of Thesis

The thesis is organized as follows: In chapter 2 we discuss some related work in a

chronological manner. In chapter 3 we talk about our language DESAL. In this chapter

we discuss the underlying middleware features, the runtime architecture, and look at a

sample DESAL program along with the language grammar. We have shown how the

high-level programming interface makes writing program in DESAL simpler than that in

NesC. It has been validated by comparing the Blink program written in NesC with that

written in DESAL. We have added new language features to DESAL. They are structs,

functions and tokens. The new inclusions are validated with case studies. In chapter 4 we

present token type variables. In this chapter the usage of token is illustrated in detail with

the help of two case studies. Structs and functions are discussed in Chapter 5 along with

case studies. Chapter 5 also explains how DESAL is converted to Java. A DESAL

program can compile to NesC and Java. The conversion to NesC has been done in

collaboration with Dalton and Hallstrom of Clemson University. The files needed to

convert DESAL programs to Java are written in Python. An example of a converted Java

program from a DESAL program is given in the Appendix A. The program given in

Appendix A has been run in the lab where the Java program communicated with attached

6

base station via the SerialForwarder. We conclude the thesis in chapter 6 followed by

suggested future work. The numbers given in brackets throughout the thesis refer to the

papers having same numbers in the bibliography.

7

CHAPTER 2

LITERATURE REVIEW

The release of TinyOS and NesC in the year 2000 was the first significant step

towards the development of a real time operating system and programming language for

sensor networks. But, major limitation of this system is that, in order to maintain hard

real time requirements, the programmers are required to do low-level component wiring.

This makes complex application development difficult. TinyOS is very much event-

driven in its style of programming. The event-driven nature and the lack of some context

memory (like a stack for separate threads) necessitate a kind of "call back" style. In

TinyOS this is called "split control". For example, you call X.start(), and then later you

receive an X.startDone() event. You cannot just call X.start() and expect the program to

wait until the X.start() finishes. This style can be very confusing to non-experts. Also,

TinyOS/NesC allows only static wiring, thus making dynamic programming impossible.

To overcome these limitations research have been done in developing various advanced

programming support. The major research works done in this area can be categorized

based on the different programming principles adopted. This has been illustrated in

Figure 1. This categorization is built on the survey done by Hadim and Mohamed [39].

We have also reviewed a few additional papers for categorization. Literature review has

been done in order to be aware of the past and present related research work and in that

context understand the unique contribution of DESAL. In chapter 3 we will discuss

DESAL in detail and show why it is different than the research work done before it. The

different research work has been presented in a chronological order. We have shown how

the research in this area has developed over time, what has been accomplished, and what

needs to be done. In the following section we give a brief overview of the work done by

the different researcher. In the next section we will look into some of the major papers in

more detail.

8

Figure 1 This tree attempts to categorize the various research done in different areas of
wireless sensor network programming .The different research papers have
been referred to by short names, which are mentioned below with references.
Against each research paper the year of publication is put in parenthesis.

2.1 Brief Overview

The following section gives a brief categorized overview of the papers listed in

the category tree in Figure 1, followed by detailed discussion of some of the most

relevant papers.

To program in TinyOS/NesC, knowledge of low level detail is needed. The first

natural response to this drawback was the development of an efficient middleware on the

top of existing platform. In 2002, Mate [8] was released. Mate is a tiny communication-

centric virtual machine built on top of TinyOS, which provides simpler programming

interface and supports dynamic reprogramming of the network. Mate was followed by

multiple projects in the development of dynamic reprogramming techniques.

Rule
Based

MessageBased

9

In 2004, Incremental Programming technique [14] and Deluge [10] was

introduced. Both of these support frequent reprogramming of the sensor motes already

deployed in large networks.

In the same year (2004), Sensor Network Application Construction Kit (SNACK)

[16] was developed in UCLA. This was a successful attempt towards the implementation

of a new configuration language, component and service library, and compiler, making

sensor network programming simpler and more efficient compared to TinyOS/NesC

alone. Agilla [19], designed around the same time (2005), provided a higher level

programming interface through mobile agent and tuple-space abstraction.

During the same time (2004), microprogramming (local) techniques like Abstract

Regions [15] and EnviroTrack [13] were developed with a goal to provide a simpler

higher-level interface to the programmers. Microprogramming means writing lowest

machine-level code for programming microchips.

The next year (2005) saw the implementation of a new operating system

altogether, named as SOS [21]. A significant improvement over TinyOS was that SOS

supported dynamic memory allocation resulting in network reprogramming along with

offering reliability. Also, compared to Mate, it provided better higher level programming

abstraction with more flexibility and less CPU overhead.

Macroprogramming refers to high-level programming. Unlike

microprogramming, in this case, a high-level programming language is used for coding,

which hides all the low-level (machine-level) detail from the programmer.

Macroprogramming languages, like Kairos [20] was developed in the same year (2005).

Kairos provides a global view of the system to the programmer, hiding the low-level

detail, making programming simpler. Development of another macro programming

concept, Declarative Resource Naming (DRN) [35] followed closely in 2006.

In the same year (2005), the embedded research group at Berkeley released

TinyDB [17], a SQL based database management system tailored for the sensor network

10

system. In 2001, another sensor network database system, named COUGAR [7], was

developed. But TinyDB was a much-improved version, which instantly became popular

because of its familiar SQL interface and compatibility with TinyOS.

The same group then implemented TASK (Tiny Application Sensor Kit) [24] on

TinyDB, providing a very user-friendly interface for non-programmers to deploy and

manage sensor network applications.

In 2005, an intermediate rule (embedded in tokens)-based language, Token

Machine Language (TML) [18], was developed, which can be targeted by compilers for

higher-level systems. A rule is a condition based on the state variables of the system

and/or events. TML provides a layer of abstraction for lower-level runtime environment,

such as TinyOS. Abstraction relieves the programmer from dealing with the low-level

events, making programming simpler and less error-prone. The year 2006 saw more

emphasis on the rule-based language development. Program codes in TENET [28] are

deployed encapsulated in tasks. This also helps in code reusability increasing

programming efficiency. Also, the main contribution of TENET was that it presented a

tired architecture to increase the system manageability.

Another middleware, FACTS [29], provided a rule-based language with an

underlying event-based architecture making programming simpler while attempting to

minimize resource utilization. A rule is a condition based on the state variables of the

system and/or events. Action(s) against a rule gets executed when the rule evaluates to

true. In FACTS, an action can change the state of the system, as well as trigger events.

This makes FACTS a rule-based as well as an event-driven architecture.

But the event-driven rule-based languages have a limitation. They allow external

events to determine scheduling of the rules. So, the programmers cannot be totally

oblivious to the event management. The Rule-Based Language [34] was proposed as an

improvement to the previous work. In addition to being a rule-based language, it is also

state-based, so that the programmers are required only to deal with the system state, and

11

not worry about the events. Also, since the scheduling of rules is predictable in this case,

it is possible to determine the program correctness during compilation, thus increasing

the reliability of the program.

2.2 Review In Detail

The present need in the field of sensor network programming is to have a high-

level programming language to make the life easier for the programmers while

attempting to minimize the limited resource utilization. Since the development of

TinyOS and NesC, several research efforts have been done in an attempt to design more

and more sophisticated sensor network programming support. Some researchers have

focused on the development of high-level middleware, while some have designed

intermediate high-level languages. Development of operating systems and macro and

micro programming abstraction concepts also got significant attention. Some tools have

been developed in the recent years to provide a high level interface to the non-

programmers for managing the sensor networks. This section of the report attempts to

give a broad overview of the current state of the art in the development of high-level

programming languages. Figure 2 shows a timeline diagram of the significant

developments in the area of sensor network programming.

2.2.1 Abstract Regions [15]

Abstract Regions is an abstraction over the local functionality providing flexible

control over resource consumption improving communication and data accuracy and at

the same time simplifying application development by hiding the low-level detail from

the programmer.

Abstract Regions programming provides a local area communication abstraction

to the application developer. For a node, the abstract region comprises of the neighbors of

12

the node. The abstraction hides the details of low-level communication among the

neighbors of the nodes, and provides data aggregation and compression related services

transparently. The abstraction provides a simple programming interface while local data

processing increases the accuracy of the processed data, and significantly reduces the

communication overhead of the entire network saving energy.

Figure 2 This is a chronological diagram showing the major research works done in the
past seven years, since the release of TinyOS/NesC. The arrows illustrate the
platform dependence of the research. The dotted arrow signifies that the
application can also support other platforms.

The definition of neighbor is application-specific and is defined in the program as

‘neighborhood relationship’. A set of implementations of regions with their associated

data reduction algorithms (N-radio hop, k-nearest neighbor, etc) has already been

provided, which the programmers can simply call in their program as a function.

13

Abstract region implements a blocking, synchronous interface using fibers. This

interface makes application development simpler as there is no need to write different

event handlers for a program. A fiber is a thread-like abstraction for an execution

instance added to TinyOS. The enhanced TinyOS has a default system fiber, which is

non-blocking and event-driven. The other fibers are for the application, which can be

blocked. An application fiber also has the option to be event-driven. Thus, a simple

programming interface is presented retaining the goodness of the event-driven model.

The abstract region supplies the programmer with four operators, hiding the

implementation details:

 Neighbor discovery: creates a set of neighbors based on the region definition.

There is an option to update the set periodically.

 Enumeration: returns the set of active neighbors in the region in order to access

them.

 Data Sharing: allows data sharing among the neighbors through the get (retrieve a

remote variable value) and put (store the remote value to a local variable)

functions.

 Reduction: applies user specified data aggregation and compression algorithms on

the shared variables.

A tuning interface is provided to fine-tuning resource consumption based on the

‘quality measure feedback’ generated by the above operator functions. This improves

energy usage and reliability of the network.

Abstract Regions programming model has been successfully implemented and

deployed on the TinyOS platform. The authors analyzed the model based on four

applications. The analysis satisfactorily validates the claim. More regions need to be

implemented to enrich the programming architecture. Implementation of tools for the

programmers to understand resource usage and quality tradeoff can enable them to have

more control over the fine-tuning.

14

2.2.2 TinyDB [17]

TinyDB simplifies data-driven application development by hiding the low-level

data management detail and providing the simple well-known SQL interface for data

queries. TinyDB is a data query processing system for wireless sensor networks. The

TinyDB architecture provides the sensor network user with a database file called

‘sensor’, which stores the sensor values collected from the network. The user queries

‘sensor’ using a user friendly SQL-like interface via a base-station. TinyDB uses

resource-aware algorithms to collect and manage (aggregation, filtering, etc) sensor data

and hides the associated low-level programming details from the users.

TinyDB is a distributed query processor running on each node in the network.

Users submit their queries to the network via a base-station. The queries are parsed and

power optimized in the base-station before they are disseminated to the network through

a power aware routing tree. The processed results are routed back to the base via the

same tree, and the users are presented with the query results, which gets stored in the

‘sensor’ table.

Acquisitional Query Processing (ACQP) is adopted for TinyDB along with the

traditional query features provided by SQL. ACQP determines when, where and in what

order the data is to be collected to minimize power usage of the network and at the same

time providing increased data accuracy, compared to the traditional SQL query

processing methods. The ‘sensor’ table, thus, gets updated only when a query is

generated to save resources, and at the same time presenting up-to-date values to the user.

A user can specify the sample period of a query as a query parameter. Many

queries, like, event-based, grouped aggregation and actuation queries, provides useful

services to sensor network applications. TinyDB also supports data logging and network

health monitoring through special queries. Queries can be prioritized.

15

TinyDB has been successfully implemented and deployed. At present, it is the

most efficient and widely used query processing system for the wireless sensor networks.

Sophisticated prioritization methods need to be designed to improve the real-time

response.

2.2.3 TML [18]

Token Machine Language (TML) provides a framework for network coordination

and hides the low-level detail from the programmers making sophisticated application

development simpler, while economizing resource utilization.

TML has been designed as an intermediate language on an abstract machine

called Distributed Token Machine (DTM), providing a layer of abstraction on the

underlying event-driven operating system, such as TinyOS. Tokens constitute the unit of

computation and communication in the sensor network deploying DTM/TML. Tokens

are small messages through which data and programs get communicated to the sensor

nodes. A token handler is invoked upon the receipt of a token, which executes the token.

Execution of a token atomically changes the state of the token, and the state of the

system. DTM hides the low-level distributed execution and communication detail from

the programmers. The TML compiler provides memory protection. A TML program,

based on object oriented programming model, simply needs the programmer to write

codes for tokens without worrying about their scheduling and coordination across the

nodes, which are taken care of by the DTM. This provides a simple and expressive high-

level abstraction to the application developers, while taking care of resource utilization.

DTM manages the tokens and their coordinated computation and communication

in the network by specifying token handler, token scheduling and their storage (dynamic

memory allocation for new tokens) in each node. Currently, TML/DTM supports only

TinyOS/NesC. DTM is presented as a TinyOS module. Handlers are compiled into

16

corresponding NesC commands. A token is disseminated across the network over

communication channel by encapsulating in a TinyOS Active Message.

The scheduling algorithm chosen is usually implementation-specific. Prioritized

scheduling (fast response to events) and static scheduling (improved runtime) is

supported. The DTM specifies handler language, which is currently a simple C-based

restricted language (TML). DTM provides reliable communication by taking care of

message loss, and providing some fault-tolerance.

DTM provides a collection of gradient network coordination operations through a

gradient interface added to TML. Gradients can provide efficient general purpose

breadth-first routing.

TML specifies the token and the handlers. A token can have multiple

instantiations termed as subtokens with separate private memory allocation, but the same

handler. A token execution may not be atomic, if it has a subroutine call inside it. Such a

subroutine is called a subcall. A subcall is executed in implicit split-phase calls using a

continuation passing style (CPS) transformation. The subcalls enable construction of

complex token methods at the cost of efficiency provided by atomic execution.

TML/DTM has been successfully implemented and deployed. The integrations of

standard distributed services (gradients, leader election, etc) into the TML/DTM

architecture were smooth and simple, validating the claims of the authors.

The running time of atomic executions of token handlers is hard to estimate

beforehand because of their dependence on TinyOS event handler. Improved execution

model is needed to provide more precise timing. Explicit coding is required to ensure the

subcalls’ computations finish quickly in a short bound time. More efficient memory

management also needs attention to reduce the memory overhead due to the tokens and

handlers.

17

2.2.4 KAIROS [20]

Wireless Sensor Network programming abstraction (allowing the programmers to

present the global behavior in a centralized fashion) makes the language more flexible

(suitable for writing different types of application) and simplifies application

development (hiding low-level detail from the programmers).

Kairos presents a macroprogramming paradigm for sensor network programming.

Kairos’ programming model uses a centralized approach to present the global view of a

distributed application running on a sensor network. The abstraction hides from the

programmer inter-node communication and program coordination across the nodes. As

the abstraction is not node-specific, it focuses more on expressivity rather than

performance tuning. Algorithms written in Kairos are compact and flexible resulting in

the development of robust applications.

In Kairos, program code is generated by a language pre-processor, which is then

compiled by the architecture specific compiler. This makes Kairos language-independent.

The compiler produces a node-specific version of the distributed program. The Kairos

runtime library at each node provides local variable abstraction to the remote state

variables.

Kairos has adopted declarative programming model where the programmers are

provided with three abstractions:

 Node Abstraction: Any node across the network can be accessed through a local

integer identifier. This abstraction hides the complexities of network topology

discovery from the programmers.

 Remote data access: The detail of underlying message communication is hidden

from the programmers by making the remote and local variables appear as local in

the program (shared memory abstraction).

18

 One-hop neighbors: The process of neighborhood discovery is hidden from the

programmers, who can access all one-hop neighbors through a simple function

call.

Kairos guarantees eventual node state consistency. This allows nodes to become

consistent over a period of time. This may result in a node having a stale value, but

eventually, after a bound time interval, its value will be updated. Loose synchrony blocks

a reading if the referenced remote variable is not valid.

Kairos has been successfully implemented and deployed. Evaluations have been

done based on experimentations with three different distributed applications. The results

consistently validate the claims of Kairos. The middleware provided by Kairos is not yet

equipped to control the underlying run-time resources, or to optimize any application

specific communication pattern.

2.2.5 TASK [24]

TASK is a system designed for use by naïve end-users to deploy and manage

sensor network applications with nodes running TinyDB. The TASK sensor kit is made

for ‘turnkey’ sensornet applications for the Berkeley motes (mica2 or mica2dot). It is

designed specifically for low data rate environmental monitoring application. This kit is

meant for users who are not sophisticated computer users. Thus, the main focus of this kit

is to make the deploying of the sensor network simple, as well as, it should be easy to

configure, and easy to maintain.

The TASK kit is a three-tier architecture.

 The top layer consists of the TASK user tools, through which the users can

interact with the sensor nodes in the network.

 The middle tier is what is called a Sensor Network Appliance (SNA).

 The bottom layer is the collection of sensor nodes running TinyDB.

19

TASK provides two client tools, one being a simple web based tool and the other,

an advanced Visual Basic based tool. In addition to the services provided by the simple

tool (client interaction activities as described above), the latter provides the user with a

visualization of the deployed network with continuous health monitoring. Also, there are

field tools, where a user can issue commands through a PDA in the mote neighborhood to

check the health of the mote. TASK can also integrate with external tools like Matlab,

Excel, etc.

SNA acts as a portal between the clients and the nodes. SNA is a resource

enriched base station (Stargate platform from Intel Research and Crossbow), consisting

of a local DBMS and a TASK server. The DBMS collects data from the sensor nodes and

store them locally. The TASK server provides a web interface to the clients for

submitting commands and sensor data queries through the TinyDB interface, monitoring

network health, and browsing the local database through a standard ODBC interface.

TinyDB in the motes presents the network as a virtual database containing sensor

data for all the sensor motes. The TASK server queries the database using TinySQL, and

the client commands are processed by a command interface supported by TinyDB. One

major contribution of this research is to add some improved features to TinyDB, which

was then not ready to support real time network requirements. Efficient power

management solutions to TinyDB have resulted in prolonging the lifetime of the network,

which is often desired, for environment monitoring applications. Time synchronization

features have been added to synchronize the node functionalities. The novel query

sharing method guarantees that a node will not miss a query. Watchdog and data logging

features along with query sharing increases network reliability by providing fault

tolerance features.

TASK has been successfully implemented and deployed and the authors had

performed several experiments to analyze its features. The results were satisfactory,

reflecting the improvements to TinyDB. Also, the interface provided by TASK was easy

20

to use by the naïve users. The drawbacks of TASK include its limitation to low-data

environmental monitoring applications and laborious and time-consuming process of

calibrating the sensors individually. Also, though, TinyDB is a very advanced distributed

query processor, even if with efficient power management it remains power hungry,

which is a major limitation to the network longevity.

2.2.6 TENET [28]

Tiered architecture increases system manageability (by implementing multi-node

data fusion functionality and multi-node application logic in the master tier) and ‘tasks’

simplifies application development (by allowing code reuse). This paper introduces

TENET, two-tiered sensor network deployment architecture. The lower tire constitutes of

sensor nodes, and relatively powerful 32-bit platform nodes constitute the masters. The

masters send commands to the nodes for doing in-node computation on local sensor data.

The masters then collect the processed data from all the sensor nodes and do resource

intensive computation on them, e.g. data aggregation, multi-node application execution.

This way, the sensor nodes are not needed to do the resource demanding executions, and

the average lifetime of the network is thus, increased. The commands send by the masters

are encapsulated in ‘tasks’. This supports code-reusability. Due to greater capacity of the

masters, network coverage is considerably extended, supporting scalability. TENET also

provides a reliable and efficient underlying networking for the communication between

the nodes and the masters.

TENET is a two-tired software architecture comprising of the Sensor nodes and

Masters.The sensor nodes supported by Tenet are MicaZ and Tmotes. The motes cannot

initiate computation on their own, but wait for tasks from the masters for execution. The

motes run the TinyOS operating systems to take advantage of its reliable drivers,

including timers, sensors, etc. The tasks are usually limited to small, simple applications

21

to reduce the computation overhead of the motes. Tenet scheduler dynamically schedules

tasks in a mote and improves system efficiency by allowing on-demand memory

allocation. The master nodes are fewer in number compared to the sensor nodes. Masters

are powerful 32-bit nodes like Stargates or PCs. Masters can communicate among

themselves to execute the multi-data and multi-node related programs.

Tasks are small programs written in a language created by the Tenet researchers

for this architecture. A task comprises of a sequence of smaller tasklets. Each tasklet is a

program providing service as part of a task. The tasklets are stored in a task library. The

task library comes with the Tenet architecture package. The different tasklets are

composed to construct program for data acquisition, processing, filtering, management

tasks, etc. These programs can be reused for different applications. This helps Tenet to

run different applications in the network concurrently. Application development requires

combining the tasklets to construct different tasks. Available task library, modular

programming style, and the simple and expressive task language makes application

development simpler for the programmers.

Communication is message oriented comprising of two functions. (1) sending

tasks to the nodes from the masters and (2) sending back task responses from the nodes to

the masters.

Tenet uses a robust, scalable, tiered, data-driven routing mechanism. In this

mechanism, a node sends task response to the nearest master, which in turn sends the data

to the rightful receiver. Three types of response mechanisms supports reliable delivery of

data for low data rate applications, events and high data rate applications. The tasks are

broadcasted to the nodes using a reliable flooding protocol. The subsystem supports

diverse applications.

Tenet has been successfully implemented and deployed. The novel features of

Tenet have been evaluated through two application case studies. The evaluation proves

the claims of Tenet but at the cost of communication overhead, delayed data processing,

22

and possible network congestion. Time needed for the masters to receive the task

response may delay data processing, reducing real-time efficiency. As in-node data

aggregation is not taking place, a large amount of raw sensor data in the network can

result in congestion. But the contribution of Tenet overshadows these drawbacks.

2.2.7 FACTS [29]

FACTS is middleware programming providing a rule-based programming

language, with an underlying event-centric architecture makes WSN programming

simpler, while attempting to minimize resource utilization. In this paper the authors have

introduced a middleware abstraction layer, named FACTS, which combines the

advantages of both event-based model and the rule-based model.

 Event-driven model is suitable for sensor network applications, as any change in

the surrounding environment (events) requires prompt response.

 Rule-based models cannot provide such real-time response, but can provide a

high-level abstraction to the programmers by hiding the underlying event

coordination complexities and the communication detail. This abstraction makes

it easier for programmers to develop complex applications for diverse distributed

sensor network systems.

The main abstractions designed in FACTS are rules, facts and functions. Facts

include sensor data and local and shared variables. The rules follow the guarded-

command model. A guard is a condition based on the facts. If the condition evaluates to

true, its corresponding action is executed. The action is responsible for changing the facts

in a process. Also, the rules can call system functions, which are event-based. Each node

has its local set of rules, facts and functions.

Rules are managed by an entity called the rule-engine. Rule engine is responsible

for firing a rule or calling a function. A rule is said to be fired, if the guard condition is

23

evaluated to be true. Rules can have priorities assigned to them, and are executed in an

event-driven style to achieve fast response to events (real-time response) while

economizing energy and memory usage. In a rule, an action corresponding to a guard is

executed only if the guard condition is evaluated to be true as well as there is a change in

the value (compared to the value in the previous round) of one of the facts involved. The

latter condition makes the rule execution event-driven. The modified facts appear as

events to the programmers.

Facts can be local or remote. An abstraction hides the sharing of facts (radio

communication detail) from the programmer to whom both local and remote facts appear

as local. Thus, the programmers are not required to deal with the complexities of sharing

of information among the nodes, dynamic addition or updating of the facts, or the events

triggered by modification of the facts.

Rules can call system functions through rule engine. The functions implement

resource-aware low-level event-driven algorithms for real-time sensor network

applications. The middleware offers a rule-based interface to the programmers with an

underlying event-centric architecture accessible to the programmer.

The FACTS middleware has been successfully implemented. To illustrate the

features of FACTS, the author has presented multiple examples covering major tasks

typical to a sensor network system. The examples show how FACTS’ implementation is

resource-aware while presenting a simple high-level interface to the programmers. The

programming structure is not very modular (component-based), which affects the runtime

performance of the FACTS rule engines.

2.2.8 Rule-Based Programming Language [34]

Rule-based wireless sensor network programming language makes application

programming simpler (by hiding the low-level detail) and eases program correctness

24

proving, while being resource aware. In this paper the authors have proposed an

intermediate programming language, which provides a high-level abstraction to the

sensor network programmers. Unlike NesC, the language provides diverse high-level

abstraction to the programmers, by hiding the low-level event detail. The compilation

process provides reliability while economizing resource utilization. The code is compiled

to an intermediate byte-code to be executed by any virtual machine, independent of the

TinyOS/NesC platform. The paper also proposes an efficient communication protocol to

exchange messages among sensor nodes. The applications supported by this language

ranges from distributed data collection to reading sensor data for in-network computation

and actuation.

An important contribution of this language is it being a state-based language, as

opposed to the event-based ones. This paper explains how state-based model

considerably improves reliability and power utilization of a process. In this state-based

language, the guarded command execution style has been adopted. A set of rules and

their corresponding actions are grouped together as a task. A rule is a condition based on

the local and shared variables of a process, or the result of an event. When the condition

is true, its corresponding action is executed. An action changes the state of the process by

changing the variable values, but it does not directly trigger any event.

Each task is executed periodically till the program ends, and in each task the rules

are evaluated in a sequential manner. The duty cycle of each task is parsed to ensure no

overlapping. Thus, there is a single workflow in the process at any time. This ensures

there is no threaded concurrency or dynamic scheduling, and hence, the workflow

schedule is predictable. This simplifies the execution model compared to the event-based

ones and at the same time allows the compiler to reduce the power usage like an event-

driven model. Since the schedule is known during compile time, Weakest Pre-Condition

program correctness proving methods, as well as self-stabilizing verification algorithms

can be applied during compilation to check the program for any errors. This considerably

25

increases the reliability of the program. Also, if task scheduling is violating any

scheduling rule, like overlapping tasks, the compiler will inform the programmer about it.

The language also incorporates some event-driven execution styles by assigning

priorities to the tasks giving the highest priority to the task dealing with event results

requiring fastest response.

The communication model designed to support this programming is based on a

shared memory model. The nodes are allowed to share data among its local tasks and

with other nodes through shared memory termed as a ‘channel’. To support

heterogeneous networks (different nodes having different sensors need to execute

different rules), a network can have multiple channels, each channel having a different

scope and type based on the type of a sensor node and the program running on it. A

TDMA-like mechanism has been adopted where a process (node) needs to acquire a radio

channel to send messages. This asynchronous communication economizes power

utilization. Routing mechanisms may be deployed for multi-hop data transfer. The same

message is sent multiple times to avoid communication loss.

The authors have illustrated their language by designing programs for an

application for a heterogeneous sensor network, involving land management and herding

of livestock. The language has not been implemented yet to analyze the reliability and

energy efficiency of the network.

2.2.9 Declarative Resource Naming [35]

Macroprogramming (resource abstraction and dynamic binding) simplifies

application development while economizing resource utilization. Declarative Resource

Naming (DRN) is designed as a macroprogramming language with an aim to allow the

programmers to write a wireless embedded system application in a high-level language

while being resource aware.

26

In the DRN philosophy, a sensor network application is centered around

operations on variables and resources (e.g. cameras, light sensors, temperature sensors,

etc). Traditionally, accessing resources locally or remotely can be very tedious, as

resources are not referred to by the node ids, but by their runtime properties. This

involves implementation of complex algorithms for resource access, resource discovery,

and across the network communication, etc. To overcome this difficulty, DRN proposes

an abstraction of resources to hide these details from the programmer, making application

development simpler. But at the same time, DRN supports imperative programming,

letting programmers write complex algorithms for efficient software implementation.

DRN allows programmers to access a resource through a variable abstraction. The

variable mapping lets the programmer access a particular resource by simply referring to

its different run-time properties (camera turned on or off, temperature greater than a

certain value) as Boolean expressions. Thus, there is no need for an application developer

to provide the algorithms related to resource management. These algorithms are in

DRN’s supporting middleware. Other properties of DRN include tuning parameters such

as time-out, energy budget (to improve energy usage), etc.

To hide the low-level communication detail from the programmer, the network is

programmed as a single abstract machine (macroprogramming) with all the local and

remote resources appearing as local to the program. The resources can be accessed

individually or a group depending on their properties. When more than one resource

satisfy a given set of properties they are accessed in parallel, thus reducing the total

access time. Also group access allows in-network processing like data-aggregation, thus

reducing energy consumption.

Mapping of each resource to a variable is called resource binding. Since sensor

networks are reactive to environmental changes, the resource properties can change

dynamically. Since a variable maps to a resource satisfying a fixed set of properties, the

resource(s) for a particular variable changes over time resulting in dynamic binding.

27

DRN supports dynamic binding and hides the related details from the programmers.

Sometimes static binding is also needed for cases where a particular resource needs to be

accessed, which no longer satisfies some previously matched properties. DRN provides

provision for such static bindings as well. If a resource is lost, or not accessible for some

reason, an access timeout results raising an exception, which the programmer can access.

DRN has been presented as a concept, which is yet to be implemented.

28

CHAPTER 3

DESAL (DYNAMIC EMBEDDED SENSING AND
ACTUATION LANGUAGE)

Our research work includes design and development of DESAL (Dynamic

Embedded Sensing and Actuation) [42], an integrated programming language and

middleware platform for developing wireless sensor-actuator network applications.

DESAL is a state-based rule-based programming language built on the TinyOS/NesC

platform. An important feature of DESAL is that it is a state based language with guard-

action commands. There are established formal correctness proving methods that can

work on guard-action formats to mathematically check a program for errors. Also, there

is no hidden control context like events or interrupts. DESAL also offers dynamic

binding where processes communicate with each other through state sharing. This hides

the detail of message communication from the user. Another novel feature we have

introduced in DESAL is a variable of type ‘token’. The concept of token is commonly

used in mutual exclusion algorithms, where a process with a token is allowed to do a

certain job, while others wait for that process to get done, i.e. wait for the token. Struct

and functions are also important features newly added to DESAL.

DESAL is designed for applications, which do not have hard real time constraints,

like natural habitat monitoring, etc. The reasons are (1) that time granularity is coarse (it

can only schedule rules with seconds, not milliseconds), and (2) the timing of variable

sharing is not precisely known, because messages can sometimes fail and need to be

resent. Currently, there are two implementations of the DESAL platform differing in

terms of the standard language and runtime. The first implementation is developed here,

at University of Iowa. The second implementation is developed at Clemson University.

Our contribution to the DESAL project includes, (1) addition of modules to the

Iowa DESAL middleware implementation, (2) writing DESAL compiler based on

Clemson’s grammar, (3) modifying Clemson’s package to produce low-level NesC

29

equivalent of DESAL program, (4) writing codes to convert a DESAL program to an

equivalent Java program, (5) introduction of new features to DESAL (structs, functions

and tokens).

DESAL is an attempt to combine many services already implemented by the

previous research works. Services like time synchronization, neighborhood management,

message communication, providing high level interface and base station independent

interaction are all integrated in a single middleware.

Key features of DESAL include: (a) rule-based and state-based programming (b)

synchronized action scheduling via timed execution (c) neighborhood management (d)

communication via distributed state sharing (e) dynamic binding. A brief overview of the

features is given below. Later we compare a DESAL program with an equivalent NesC

program to show how writing code in DESAL is much simpler. We also briefly compare

the different features of these two platforms. In chapter 3 we have discussed DESAL

language design in detail. It includes the grammar and syntax of the language followed

by the explanation of the runtime architecture. DESAL production has been done through

collaboration between Clemson University and University of Iowa. The two universities

developed the same DESAL but their approach was different. They have the same

runtime architecture, but implementation is different. In the last section we discuss the

runtime architecture and the different implementations. The Clemson runtime

architecture is implemented based on Java, whereas, the codes written for Iowa DESAL

are in Python.

3.1DESAL Features

The important features of DESAL are: (1) State-based programming model (2)

Timing and time synchronization (3) Neighborhood Management (4) Communication via

distributed state sharing and (5) Dynamic Binding.

30

In the state-based programming model, an action taken is not event-triggered, but

depends on the truth-value of a Boolean condition comprising of the state variables. The

guarded-command syntax has been adopted here. A guard is a condition comprising of

declared state variables. When a guard is evaluated to true, a single or a group of

statements corresponding to that guard is executed. The execution of these statements

changes the values of the declared variables, but do not invoke any events. Thus, in this

model, declared state variables decide the computation, and not the low-level events, or

any other values stored in the memory. The guards are periodically evaluated in the body

of the program, separated from the event-driven system functions, like sensor readings.

Advantages are (a) High-level abstraction: Since, program computation involves

only the declared variables, applications are written without any knowledge of the low-

level event scheduling (which is architecture specific). This presents a declarative style of

programming providing a high-level abstraction, making program development much

simpler compared to that in the event-driven models. (b) Predictable workflow: The

periodic evaluation of guards (and not events) comprises of the execution workflow when

a program is running in a mote. Since the guarded command execution involves only

declared variable changes, the compiler can statically determine the workflow. This helps

the compiler to improve the runtime of the program (best-effort scheduling) as well as

check the correctness of the program (e.g. using weakest precondition).

Programmers are allowed to fine-tune their application with user-defined periods

for guard execution. This can provide the programmer with more control to write

application-specific efficient codes.

Time synchronization mechanism forms the backbone of the DESAL architecture.

This mechanism provides a global synchronized clock. It allows the nodes to wake up at

the same time, do synchronized computation and communication with sleeping in-

between. Advantages are (a) Power awareness: Sleeps in-between executions result in

low power consumption due to low duty cycles. (b) Coordinated Actuation: Synchronized

31

clock enables the same guard across the nodes to get evaluated at the same time (on a

best-effort basis). (c) Data freshness: Shared variable values could be time-stamped in a

complete implementation (not done in present DESAL).

DESAL programs have built-in access to the network neighborhood of the hosting

device. Neighborhood management services, including node discovery and health

monitoring, are performed automatically. Health monitoring provides added robustness to

the network.

In DESAL, communication is expressed by sharing of state variables. The nodes

in the network share their states (declared state variable values) with each other through a

soft-state abstraction. The soft-state makes the local as well as the remote variable values

appear as local variables to a node. This is done by copying the remote variable values to

their corresponding images (local variables) in the node. The soft-state store, termed as

the best-effort cache, is updated periodically. Soft-state abstraction hides the low-level

communication event management (writing the message construction and interpretation

functions, and the message send/receive events) from the programmers. This makes

application development simpler and less error-prone.

For a particular node, binding mechanism (part of the supporting DESAL runtime

middleware) maps the remote variables to their corresponding local images (variables) in

the node. As a wireless sensor network is usually very dynamic in nature, the mapping

may change frequently over time. This change is periodically recorded by updating the

soft-state cache, and accordingly the binding is updated. The dynamic binding feature

takes care of the changes in the network topology due to the entry/exit of the sensor

nodes, communication failure, etc. Before a binding is made or updated, a series of

operations, like health monitoring, are executed to validate the binding. Advantages are

(a) Dynamic network support: Programming supports frequent changes in the network

topology. (b) Abstraction: Dynamic binding keeps the dynamic nature of the network

32

transparent to the programmer. Hence, application development does not need writing of

additional functions to take care of the network topology changes.

Previous research works (discussed in the literature review) have investigated

most of the above features. DESAL attempts to combine all these features to present a

powerful and at the same time, a simple high-level sensor network programming

language. The important feature of DESAL is that, it hides the implementation of these

features from the programmers, which are automatically integrated in a program during

compilation. The static construction of the above mechanisms can enable efficient usage

of data structures and expert programming to exploit the advantages of NesC and

TinyOS. This can result in efficient memory utilization and economic power usage.

3.2 Comparing DESAL With NesC

NesC is a sensor network programming language. It is an extension in C

developed to program on TinyOS, supporting component-based and event-driven

programming. The basic features of NesC include the following [6]:

Different components are ‘wired’ together to form the whole program. The

components are executed in tasks. Tasks execute sequentially (FIFO scheduling) in a

non-blocking manner, and events can preempt tasks.

The component interface is provided to present the list of functionalities (events

and commands) offered by that component. The programmers access the interfaces in

their program through those functions.

A single interface presents the complex interaction of components through the

commands (functions) and events. A command is posted as a task, and its completion is

signaled as an event. Typically, commands call downwards, towards the hardware level,

while the events call upwards to the interface level. Tasks are non-blocking, while events

are triggered by hardware interrupts.

33

Static checking of TinyOS interfaces and variables (static wiring, static memory

allocation, no function pointers) help prevent errors and economize resource utilization.

Static compilation enables better code generation and analysis, including compile-time

data race detection.

Below we present the Blink application in NesC followed by the same program in

DESAL.

Blink is a basic application that toggles the LEDs on the mote on every clock

interrupt. The clock interrupt is scheduled to occur every second. The initialization of

the clock can be seen in the Blink initialization function, StdControl.start(). Figure 3

shows the low-level wiring of the components.

configuration Blink {
}
implementation {
 components Main, BlinkM, SingleTimer, LedsC;
 Main.StdControl -> SingleTimer.StdControl;
 Main.StdControl -> BlinkM.StdControl;
 BlinkM.Timer -> SingleTimer.Timer;
 BlinkM.Leds -> LedsC;}

Figure 3 Component Wiring

It is obvious from Figure 3, 4 and 5 (given below) that code writing in DESAL is

much simpler than that in NesC.

3.3 DESAL Language Design

Figure 6 shows a sample DESAL program. An abbreviated DESAL grammar is listed in

Figure 7. Trivial productions are omitted.

34

This section discusses Binding, Time Synchronization, Message Sharing and

Neighborhood Management implementations for Clemson and Iowa. A picture view of

the common runtime architecture is shown in Figure 8. The DESAL compiler translates a

DESAL program to an equivalent NesC program. This enables NesC compiler’s code

optimizations and the usage of the low-level TinyOS drivers.

/**
* Implementation for Blink application. Toggle the red LED when
* a Timer fires.

 **/
module BlinkM {
 provides {
 interface StdControl;
 }
 uses {
 interface Timer;
 interface Leds;
 }
}
implementation {
command result_t StdControl.init() {
 call Leds.init();
 return SUCCESS;
 }
command result_t StdControl.start() {
 // Start a repeating timer that fires every 1000ms
 return call Timer.start(TIMER_REPEAT, 1000);
 }
command result_t StdControl.stop() {
 return call Timer.stop();}
event result_t Timer.fired()
 {
 call Leds.redToggle();
 return SUCCESS;
 }}

Figure 4 Blink in NesC, taken from the application directory of TinyOS

component Blink
every 3s after 0s
 true:
 $redOn()
every 3s after 1s
 true:
 $redOff()

Figure 5 Blink in DESAL

35

Figure 6 A sample DESAL program

36

 1 program→ component <cid> <subcmpnts>
 component is the entire DESAL program. <cid> is the name of the
 component which is same as the file name.

2 subcmpnt→ <vars> <bindings> <body>
 subcomponent consists of variable declarations, binding
 declarations and a body containing guarded actions.

3 var→ [unshared|shared] <dec>
 variables which are private to the node are declared as
 unshared. The neighbors can read shared variables. Variables
 are shared through bindings.

4 dec→ <type> <id>
 variables can be 8, 16 or 32 bytes. Small variable size helps
 in saving memory.

5 binding→ binding (sbinding|mbinding)
 shared variables are bound to their corresponding image
 variables in the neighbors. Binding can be of two types:
 singleton binding and multiple binding.

6 sbinding→ <dec> <- <nid>.<cid>.<vid>
 Singleton binding is used when only one particular neighbor
 reads a shared variable.
 <dec> is the name of the local copy of the shared variable
 <vid> in the component
 <cid>. <nid> is the id of the neighbor whose <vid> copy is
 read into <dec>.

7 mbinding→ <dec> <- "*".<cid>.<vid>"["num"]"
 Multiple binding or multi-binding is used when more than one

neighbor reads the
 shared variable <vid> in component <cid>. This is indicated by
 “*”. <num> puts an upper limit to the number of neighbors to
 avoid resource exhaustion.

8 body→ every <num1><tunit> after <num2><tunit> <gactions>
 body consists of the guarded action commands <gactions>. Body
 is executed for <num1> time units after a delay of <num2> time
 units. The execution of the body is synchronized with body
 execution in other nodes with the help of underlying time
 synchronization.

9 tunit→ ms|s|m|h
 time unit can be millisecond, second, minute, hour.

10 gaction→ <guard> : <stmtlst>
 A guarded statement <stmtlst> is executed when the <guard> is
 enabled.
11 guard→ <boolexpr>

Figure 7 DESAL grammar rules

37

 When a guard is enabled, <boolexpr> is true.

12 forstmt→ foreach <vid> in <bid> {<stmtlst>}
 For each statement is used to iterate through the copies of
 the shared variable <vid> in the multiple binding <bid>. The
 order of iteration is non-deterministic. Values for the failed
 neighbors are pruned automatically by the underlying
 neighborhood management.

13 bndfunc→ bound(<bid>)|src(<bid>)|age(<bid>)
 bound() returns a Boolean value indicating whether the binding
 end-point is healthy.
 Src() returns a node identifier of a binding end point.
 Age() is used to determine the freshness of a binding value.

14 sensfunc→
 $temp()|$humid()|$tsr()|$par()|$adc0()|$adc1()|$volt()
 The sensor functions are provided to retrieve sensor data.

15 actfunc→ $redOn()|$redOff()|$redToggle()| //..analogous
 for blue, yellow..
 Functions provided to control actuated components. The
 functions shown here correspond to the standard LEDs.

Figure 7 continued

3.4 DESAL Runtime Architecture

Figure 8 DESAL Runtime Architecture common to both Clemson and Iowa
implementation

38

DESAL also provides a middleware, which takes care of the Binding, Time

Synchronization, Message Sharing, Neighborhood Management, Body Execution and

Sensor Readings.

3.4.1 Clemson DESAL Runtime Architecture

Figure 9 Clemson DESAL Runtime Architecture

Figure 9 shows the visualization of Clemson DESAL runtime architecture. Blue

modules (Activation Scheduler, Time Sync, part of Soft State Store, Binding Transport,

Binding Manager, SSS Bridge, SSS Inspector) are common to all applications, yellow

modules (part of Soft State Store, DESAL main) are compiler- generated, and the edges

between them represent dependencies. The Binding Manager is a conceptual module

introduced for the sake of exposition. Its functionality is implemented by the Soft State

Store. The orange module (Base Station system) represents a Java application running on

a serial-attached base station.

39

3.4.1.1 Binding, Message Sharing And Neighborhood Service

The unshared DESAL variables are translated to corresponding NesC variables.

The shared variables are not directly stored as NesC variables. Instead they are stored in

the memory termed as the Soft State Store. The shared variables and bindings are

translated to handles used to interact with the Store. The shared variables of a node are

periodically broadcasted to the neighbors. The Soft State Store is updated regularly

(When a variable is altered, the Soft State Transport is notified.) to reflect neighborhood

changes, which includes the event of a neighbor leaving the network, a new neighbor

joining the network, or a neighbor’s shared variable value getting modified. The Binding

Manager implements the DESAL binding functions (i.e., bound(), src(), age()) using the

end-point data maintained by the Store. The module is also responsible for pruning failed

end-points from multi-bindings. To amortize the pruning expense, the end-point check is

performed as part of the iteration process: Each time the current slot in a multi-binding is

set to the next slot in an iteration, the age of the entry is compared to its allowable

lifetime. The latter value specifies the maximum time an end-point should be considered

active without receiving an update. (The value is set as a compile-time option.) When the

age of a slot exceeds its lifetime, it is pruned. The Soft State Store Bridge provides a

communication interface between a DESAL device and a serial-attached base station.

The Bridge consists of a NesC module and a corresponding Java class library. The Java

library provides base station services to inspect and modify the elements managed by the

Store of the attached device. It can, for instance, be used to establish a virtual binding

across the serial link. The Soft State Store Inspector is a simple graphical interface for

debugging, constructed using the Bridge library. It enables developers to easily monitor

the contents of the Store and to inject changes in variables and bindings.

40

3.4.1.2 Time Synchronization In The Implementation

The time synchronization forms the backbone of the DESAL architecture. The

time periods needed for the execution of the body (guards and sensors) and the Soft State

Store (and Neighborhood service) are provided by the host’s clock. To synchronize

activations across the network the time synchronization protocol uses a beaconing

approach that converges to the lowest clock value in the network. Thus, all the different

components of the runtime architecture are dependent on the Time Synchronization

module. Synchronization is important for two main reasons: (a) this maintains the

validity of the shared variables. e.g. for calculating the average temperature of the

network, the temperatures from all the nodes in the network should be collected

approximately at the same time to produce the correct result. (b) Synchronization helps

saving network energy. Nodes periodically go to sleep to conserve energy. For correct

functioning of the network, the interacting nodes should wake up at the same time.

3.4.1.3 Body Execution And Sensor Reading

Each subcomponent body is translated into a function with the guards and actions

as if-then blocks. A body is executed periodically according to the specified periodicity

and delay provided in the DESAL function. The sensor values are also read periodically.

Each body is executed as a separate thread using the Tiny Thread Library for TinyOS [4].

Using the Tiny Thread approach, each body/function is translated to a single blocking

call on a wrapped driver. Threads are activated based on the periodicity and delay

parameters specified by their corresponding subcomponent body. These activations are

handled by the Activation Scheduler. The module provides an interface for requesting

activation events at a specified periodicity, after some initial delay. At boot time, an

activation schedule is requested for each thread. Internally, the module uses one-shot

41

timers tuned to the system clock. The timer delay for a given thread is set to

(time+delay)%period, where time denotes the current value of the clock, delay represents

the requested delay, and period represents the requested period. When the timer fires, the

activation event is signaled on the body thread, and the one-shot timer is again set

according to the same formula.

3.4.2 Iowa DESAL Runtime Architecture

3.4.2.1 Binding

Sensor motes running DESAL program periodically share messages with its

neighbors. The motes exchange messages through shared variables. There are two types

of shared variables: internal and external. The external variables are writable, and only

the host mote can write to it. The host periodically broadcasts the values of these external

variables. The motes in need of those values receive and copy those variable values to

their corresponding images. The images are actually shared variables to which those

received values get copied. These variables are termed as internal shared variables. They

can be thought of as internal images of some external variables whose value is received

via the radio. These internal variables are readable only, as they are just images of some

external variables. The bindings of the external variables to the corresponding internal

ones are declared in the Binding section of the DESAL program. Below we discuss parts

of the Binding Table.

For each shared variable, the compiler creates a binding tuple as given in Figure

10. All the tuple constitute a Binding table. The field Variable Address has the address of

the variable. Variable Code is a unique integer number given to each shared variable. In

the current version of the DESAL program, this code is actually the (incremental) serial

number for a variable. Binding Code is assigned to an internal shared variable during

runtime when it gets bound to the corresponding external variable (this happens when the

42

variable value is received for the first time). Next time onwards, the received value gets

directly copied to this bound internal variable. As the name indicates, the Variable Size

field contains the size of the shared variable. Binding index contains two types of

information: the first three bits of the byte indicates whether the variable is Bound,

Writable, or a System Variable.

Figure 10 A Binding Tuple associates an internal variable to an external variable. All
the tuple constitute of a Binding Table. The first variable address contains the
address of the host/external variable. The first Binding Index is the index of
the external variable, which is zero. The next (n-1) tuple corresponds to the
internal variables from the (n-1) neighbors.

If the variable is bound, the next 5 bits give the id of the neighbor to which it is

bound. This is done during runtime when the binding is done for a particular variable.

This table also gets modified during runtime to reflect the changes in the bindings when

the neighbors leave or enter the system. How the Binding table is constructed is

explained below with an example.

Suppose in a sensor network of n motes, all the motes are running the same

DESAL program. Each mote has a shared variable called x, which it shares with all its (n-

1) neighbors. Then, according to the program, x will be an external shared variable as its

value is getting broadcasted to the other motes. Also, there will be another (n-1) internal

43

shared variables, which will be the corresponding images of the external variable x

coming from each of the neighbors. Thus, the Binding table will have n entries, the first

tuple corresponding to the external variable, and each of the next (n-1) entries for the

internal variables. Initially, before the motes start interacting, the Binding code

correspond to each variable will be zero, which means it is not bound yet. The compiler

also builds a table called the Allowed Binding Map shown in Figure 11. Each (n-1) tuple

in the table corresponds to an external variable.

The first field contains the variable code. The next two fields store the variable

codes of the shared variables specifying the range of the internal variables to which that

external variable can be bound. How this mapping works can be explained with the

previous example. The program contains a single external variable called x. The mote

will be receiving (n-1) copies of this variable x, each coming from a neighbor. So we say

the (n-1) values (images) received over the radio can get mapped to the corresponding (n-

1) images of the external variable x.

Figure 11 Allowed Binding Map Table contains the external or the host variable code,
and the allowed internal variable codes contain the range of the codes allowed
for the variables from the neighbors.

44

These images get stored in the corresponding internal variables. The first field in

the Allowed Binding Map table contains the name of the external variable, and the next

two fields contain the variable codes of the first and the last internal variable specifying

the range of the internal variables to which the value of the received x can be copied.

Now we talk about the Binding Action. We need to specify which internal

variable will contain the image from a particular neighbor. Since all the internal variables

corresponding to x are identical, if we don’t fix a variable for a particular neighbor, each

time a value is received from a neighbor, it can get copied to a different internal variable.

So, for a particular neighbor, we need to fix one of the (n-1) different internal variables.

This process is what is known as binding. When a value from a neighbor is received for

the first time, it means the value is not yet bound to any of the allowed internal variables.

At the same time, the Binding table will show binding information for internal variables

which are bound to some different neighbors, as well as some unbound variables, one of

which is allowed to get bound to the said neighbor. To determine the code of the internal

variable to which it can bind to, the following steps will take place: (1) the allowed

binding map table will be checked to find the allowable range of internal variables. (2)

Among the internal variables an unbound internal variable will be chosen. (3) Then the

binding code and the binding index will be updated. Thus, next time a value of that

external variable is received from that same neighbor, the binding information is matched

from the Binding table, and it gets copied to the same internal variable.

The Figure 12 is showing a sensor network with four motes. Let MT denotes the

allowed binding map table, and BT the binding table for the mote with id=1. Mote 1 has

three neighbors with Ids – 2, 3 and 4. Each has a shared variable x which is getting shared

with the neighbors. In BT the first filled column represents the internal variable codes,

and the last column represents the neighbor Id to which that variable is bound.

45

The binding protocol does not allow overlapping of an existing binding. This

means, if an internal variable is already bound to an external variable from another mote,

the binding remains till the neighbor leaves the network.

3.4.2.2 Message Sharing

The program periodically broadcasts the shared variables. The period has been

fixed at EXCHANGE_PERIOD (= CYCLE_PERIOD/3). CYCLE_PERIOD is the

guarded command period. The guards get executed every CYCLE_PERIOD. At the wake

of the timer, a TOS_Msg is created. The payload part of that message is shown in Figure

13.

Figure 12 Binding Action: Here 1 is the host node with neighbors 2, 3, and 4. MT is
allowed binding map table. BT is the binding table. In MT allowed binding
range of the external variables is 2 to 4 as the internal variable codes range
from 2 to 4. In BT the first index in the last column is 0, which is the binding
index for the external variable. The rest of the indices correspond to the id of
the neighbors.

46

Figure 13 Message Payload is the tuple, which is broadcasted over the radio. The first
field contains the id of the sender. The rest of the entries contain the external
variable values to be broadcasted. With each variable value (data) the variable
code is also attached.

The payload has two parts: the SendId of the sender, and the set of entries to be

sent. Each entry consists of the Variable code, and the corresponding data. This code is

the external variable code associated with that variable. If the variables are system

variables they are not shared. In a round, it may happen that all the variable data do not

get fitted in a single TOS_Msg. In that case, more TOS_Msgs are sent in a round till all

the variable data are sent. These messages are sent at an interval of 1/8 sec. The entire set

of TOS_Msgs is sent at an interval set at EXCHANGE_PERIOD. If sending a message

fails, sending is retried after every ¼ sec. After a TOS_Msg is received, all the entries are

processed one by one, and the data corresponding to each external variable code gets

copied to the corresponding internal variable.

The variables read by a neighbor through message sharing is accepted by binding

the variables to the corresponding images, i.e. the internal variables. After receiving the

variables the node cannot modify them. This way, the neighbors communicate with each

other through state sharing. The mechanism of the message sharing is hidden from the

47

programmer. While writing the code the programmer works with only the internal and the

external variables.

We have worked with a network, which is dynamic in nature. Hence, neighbors

can enter or leave the network anytime. This is reflected in the binding table. When a

neighbor joins the network, a new tuple corresponding to the new neighbor is created.

Also, the range in the allowed binding map table is modified. Similarly, when a neighbor

leaves the network, the tables again get modified. Thus, we have dynamic binding. How

the network changes are recorded is described in the neighbor service, which we discuss

next.

3.4.2.3 Neighborhood Service

When a neighbor enters the system, an event is triggered in each of the motes

already in the network. The event checks the neighbor Ids array to find if the neighbor

already has an entry or not. If there is none, the neighbor Ids array is updated with the

new entry. Neighbors joining the network cannot have Id=0, which is reserved for the

Base. When a neighbor leaves the system, an event is triggered in each of the motes

already in the network. The event look up the neighbor in the Binding table and sets the

Binding Index to the default value zero. Then it clears the neighbor entry from the

neighborIds array. Multiple messages are exchanged between two motes before they

decide to become neighbors. The messages are exchanged to synchronize with the

neighbor, to determine if the neighbor is stable and to determine if a neighbor has left the

network. Each mote maintains a history table to store the messages from each neighbor (1

byte in size). The values of the history table are checked to verify if a neighbor is healthy

or not. A neighbor is declared unhealthy if it has become unreachable from the host, or if

it has stopped sending any messages. The health of a neighbor is checked periodically

based on the host’s clock. The Neighborhood functions are dependent on the Time

48

Synchronization module. The neighbor data structure (history table) is updated at a

specific time interval, which reflects the changes in the network neighborhood.

3.4.2.4 Body Execution And Sensor Reading

In DESAL, guards are evaluated in the Body of a DESAL program. The Body is

included in a task, called ruleExecute, in the corresponding NesC code, and the guards

are evaluated in a switch statement. A guard- command pair is converted to an if-then

block in NesC. In the NesC code, each guard has an index. Each index forms a case in the

switch. When the task ruleExecute is posted, the cases are checked in a sequential

manner. A counter called gindex holds the index of the current guard-command block

being evaluated. This counter is the switch condition. The counter is incremented after

the evaluation of each such block. If the value of the counter is less than the total number

of guards, the task ruleExecute is posted again till all if-then blocks are evaluated one

after the other sequentially. The time period between consecutive executions of the group

of guards is an amount of time mentioned as a Body parameter (CYCLE_PERIOD).

After the evaluation of all the guards in the sequential manner, the local time of the mote

is synchronized with that of all other motes.

If sensors are defined in the program, the task prepSensor() gets executed which

invokes sensor reading. The sensors are read at an interval set at the CYCLE_PERIOD.

In a round, the sensors are invoked once, one after the other, and the respective getData()

methods are called to read the sensor values. There is a pause of 1/8 second between the

invocations of two consecutive sensor readings. After one round, the ruleExecute() task is

called to evaluate the guards. Thus, the sensor evaluation task, followed by the guard

evaluation task is repeated at a specific interval. If there are no sensors declared in the

program, only the guard evaluation task is executed at an interval set at the

CYCLE_PERIOD.

49

3.4.2.5 Time Synchronization

Time Synchronization module in the language is called after each round of sensor

reading and guard evaluation. In one round the local clocks in the sensor nodes are

expected to drift within the range of the CYCLE_PERIOD. So, during synchronization

the local clocks of the motes are advanced to the start of the next CYCLE_PERIOD. This

way, when the nodes wake up with the alarm clock, they are all synchronized to start the

next round together at the same time.

Time Synchronization in the implementation forms the backbone of the runtime

architecture. Synchronization is important for two main reasons: (a) this maintains the

validity of the shared variables. e.g. for calculating the average temperature of the

network, the temperatures from all the nodes in the network should be collected

approximately at the same time to produce the correct result. (b) Synchronization helps

saving network energy. Nodes periodically go to sleep to conserve energy. For correct

functioning of the network, the interacting nodes should wake up at the same time.

event(timeout):
read global clock & prepare beacon message m ;
local-broadcast(m) to neighborhood ;

schedule next timeout in φ seconds

event(receive beacon m):
c = read global clock ;
if m.timestamp > c then

adjust global clock by + (m.timestamp − c) ;

Figure 14 Convergence to Max time synchronization protocol

For time synchronization, convergence to max protocol is used here. The idea is

taken from the paper by Herman and Zhang [52]. The technique is presented here with

50

read and adjust interfaces of the global clock and assuming time stamping of the beacon

messages. Each node executes the programs in Figure 14 concurrently with a sensor

application. The system’s timeout mechanism is such that the timeout event eventually

occurs every φ seconds, even for arbitrary initial state.

51

CHAPTER 4

TOKEN TYPE VARIABLE IN DESAL

A novel feature in DESAL is the introduction of token type variable. The concept

of token is generally used in distributed mutual exclusion algorithms, where a process

with a token can enter the critical section while others wait for their turn. A token travels

around the network. Each process, when receives a token, changes its state, and then

passes on the token to another process. This action goes on around the network. A classic

example of token-based application is Leader Election in a distributed network. A token

can act as a network health monitor [53]. It can go around the network monitoring the

health of each process noticing if the process is working properly or not. If the process is

malfunctioning, the token will move on to another process notifying it about the failure.

In our work we have discussed a case study with tokens in a ring topology. Later we have

also shown that this implementation can be applied to some other topologies as well. One

important condition for a network with tokens is to self-stabilize, e.g. in the case of

mutual exclusion algorithm, we need only one token to be present in the entire network.

In an illegitimate state there can be more than one token present. The objective is to

reduce the number of tokens to exactly one, and then maintain this legitimate state. If a

fault occurs, the system should automatically revert back to a legitimate state. This can be

achieved if the system is self-stabilizing. We have shown how a token ring, where a

certain distance separates tokens, can self stabilize. In DESAL, the implementation of

tokens is hidden from the programmer. The programmer will declare a token variable and

use the token functions num(x) and pass(x) explained later. In our paper, Separation of

Circulating Tokens [43], we have discussed tokens in detail. This is given in the next few

sections in this chapter. The Separation of Circulating Tokens paper [43] gives us a

motivating example of using tokens. In a wireless sensor network if selectively some

sensors are active at a certain time and sensors in other nodes are idle, that saves energy.

52

This paper shows how to achieve this with tokens. We have illustrated the working of the

token with another case study with RFID tags. In this example, there are three tags, and

only one of them can be active at a time. A token variable can be used to achieve this.

The next section starts with the idea of rotating sentry. Rotating sentries are token

abstractions moving around in a network to balance the power consumption. The nodes

with the tokens will be awake, while the others will be in sleep mode, or will have their

sensors in the idle condition. After this we consider a network with a ring topology and a

rotating sentry protocol. This gives us a ring where energy consumption is balanced to

increase the lifetime of the sensors. This is followed by the separation of circulating

tokens paper [43], which talks about self-stabilization of a ring with tokens.

4.1 Adding Lifetime To Sensors

The organization of this section is as follows: 4.1.1 discusses the rotating sentry

problem. This is followed by the literature survey. In the survey we discuss two papers,

VigilNet [49] and R-Sentry [50]. In 4.1.2 we discuss how to increase the sensor lifetime

in a ring topology. 4.1.3 discusses our paper Separation of Circulating Tokens [43]. 4.1.4

shows DESAL program to increase lifetime of the sensors.

4.1.1 Rotating Sentry Problem

Design of a wireless sensor network heavily depends on the capacity of each

sensor node, including memory, processor and power constraints. In this section we will

discuss different research problems that have addressed the energy limitation or lifetime

of a sensor network, most of them providing guaranteed coverage and connectivity and

some providing robustness. An interesting question is how to make a wireless sensor

network efficient in all aspects. Research have shown that it is not possible to take care of

all the aspects to have an efficient wireless sensor network, which takes care of all the

53

limitations. e.g. if high data delivery ratio is wanted, the network should be strongly

connected to make it robust. But this means that there should be redundant sensors

working all the time. Again, if there are more sensors transmitting at the same time, we

need to avoid data collision. If most of the sensors are always on, the network life will be

limited. Hence, a network protocol is devised based on the application of the network.

So, depending on different applications, different solutions have varied design

assumptions and objectives. Wang and Xiao [44] have listed down different design

objectives and assumptions. The major design assumptions include network structure,

sensor deployment strategy, detection model, sensing area, transmission range, time

synchronization and failure model. The main design objectives include maximizing

network lifetime, balanced energy consumption, sensing coverage, network connectivity,

data delivery ratio, quality of surveillance, scalability and robustness. But as we have

discussed before, it is not possible to achieve all the objectives independently without

compromising one for another.

4.1.1.1 Literature Survey

A wireless sensor network comprises of multiple sensor motes, which can be

deployed virtually anywhere on earth including physically inaccessible places. The

sensor nodes form an ad-hoc network, which can be monitored remotely. The energy

supplied to the nodes is usually through batteries attached to them. But, since they are

remotely deployed, it is not possible to recharge or replace their batteries. But, the nature

of their applications demands from the sensor nodes to remain alive for a considerable

time period. Unfortunately, this needs to be achieved with the severely limited energy

supply. Researchers have and are still coming up with various solutions to this problem.

Kumar et al [45] talk about using probability for each node to randomly decide whether

to sleep or wake up for a certain time period, maintaining a specified coverage. This

54

solution works with minimum message exchange, but is not robust against failures. Tian

and Georganas [46] talk about a sensor node which has all the information of its

neighbor. If its coverage area, called the sponsored sector, is completely covered by its

neighbors, a node goes to sleep. But, this mechanism underestimates the number of

sensors that can be turned off. In its sponsored sector a node only considers the neighbors

in its coverage area, and ignores the other nodes further away, but overlapping its

coverage area. Ye et. al. [47] talk about PEAS (Probing Environment and Adaptive

Sensing). This works well in a very unreliable network. This protocol maintains the

active working nodes at a distance c. If a node finds out there are no neighbors at a

distance c on all sides are sleeping, then it will go to sleep for a certain period of time.

This is repeated at each round. The drawback of this mechanism is that a working node

may never go to sleep resulting in unbalanced energy consumption. This protocol

emphasizes more on network connectivity. The goal of ASCENT (Adaptive Self-

Configuring sEnsor Networks Topologies) [48] is to maintain a certain data delivery

ratio. This means it focuses on connectivity and data loss rate. Based on these measures a

node locally decides which neighboring node to activate, and when it can go to sleep.

Like PEAS this protocol also does not guarantee uniform energy consumption, as

working nodes may never go to sleep.

Now we will talk about how to deploy the rotating sentry problem in a sensor

network to achieve energy efficiency or increased network lifetime. Rotating sentry refers

to a network design in which some nodes, or sentries, are selected to be on active duty

while others are either idle (only listening over the radio) or in deep sleep (none of the

sensing, processing or radio is working) for a specified time period. After that time period

is over, some other non-sentry node takes up the role of the sentry. Hence, the sentry is

rotating. This design claims to be energy efficient, and ensures balanced energy

consumption. We discuss a couple of papers on rotating sentries with different design

assumptions and objectives. The main objectives include network connectivity, coverage

55

and robustness. These two papers are carefully chosen to demonstrate how different

protocols address different aspects of the network, and cannot address all. In sensor

networks, due to the nature of the hardware, there exists a fundamental tradeoff between

network lifetime and network service quality [50].

4.1.1.2 VigilNet

He et. al. [49] designed a hierarchical energy efficient surveillance system called

VigilNet. The rotating sentry mechanism focuses on the energy consumption, which

takes care of the surveillance quality and stealthiness. At the beginning of each round the

nodes are synchronized and a diffusion tree is created for routing. Then there is neighbor

discovery. During that phase a neighbor sends to the host its ID, whether it is a sentry or

not, number of sentries covering it, and its location. The next phase is sentry selection. A

sensor node locally decides to become a sentry if it is an internal node of a diffusion tree

or if it finds out that none of its neighbors is a sentry or is covered by a sentry. A sentry is

active to monitor events while the non-sentry motes are in a low power state till an event

occurs. When an event occurs the sentry wakes up the other nodes in the region, and they

start collaborative target detection. To avoid contention of multiple nodes wanting to

become a sentry, each node uses a random backoff delay to transmit its SENTRY

DECLARE message. During that time if it gets such a message from a neighbor, it

cancels its plan to become a sentry. The backoff delay of a node is set inversely

proportional to its residual energy. This balances the energy dissipation of the network.

The backoff delay is also inversely proportional to the number of neighbors that are not

covered by the sentry. The sentry selection also ensures that there is at least one sentry in

each sensing range. Here we can see how this protocol focuses more on sensing coverage

than communication coverage. Each node makes the sentry decision locally. Hence,

globally it can result in a non-optimal number of sentries. But, this local method reduces

56

extra message overhead (except neighbor discovery), which improves its stealthiness. In

this paper the authors propose two different schemes, proactive control and reactive

control, to control the sleep-wakeup cycle. In the proactive control the sentry node sends

out sleep beacons periodically. A non-sentry node goes to sleep when it receives the

beacon and stays asleep for a certain period of time. It wakes up after the sleep timer

expires and repeats the same process. In the reactive control, the sentries do not send any

sleep beacons to the non-sentry nodes. Instead they go to sleep and wake up according to

a timer. The nodes also wake up when they receive a wake up beacon from a sentry. The

reactive mode is stealthier as it avoids the sleep beacon overhead. But, the drawback of

this mode is, due to a long period of no communication with the sentry, the non-sentry

clocks may drift in course of time. This way the neighboring nodes may not sleep-wake

in lock-step fashion. This will force a sentry to repeatedly send awake beacons to wake

up a neighborhood. In their future work authors plan to design a more aggressive power

management strategy with passive wake-up capabilities.

4.1.1.3 R-Sentry

Authors Yu and Zhang [50] claim to develop a sentry system, which can provide

a continuous coverage through bound recoveries from frequent failures, while prolonging

the lifetime of the sensor network. While on duty, the network has active nodes and

redundant nodes, which are sleeping with their radios off. The redundant nodes wake up

time to time to check the status of the active nodes. These redundant nodes are called

sentries as they monitor the health of the active nodes. Now, to conserve energy, the

redundant nodes should take turn among themselves to do the monitoring. Also, their

taking turn should be synchronized since we do not want to have a long time gap between

two wake ups which may mean no monitoring of the active node for that time period. To

address this problem, the authors proposed a coordinated scheduling algorithm among all

57

the sentries, and hence they are called Rotating Sentries or R-Sentries. In this paper the

authors have assumed the grid-based coverage model. The grid points that fall within a

node’s sensing area are considered covered by that sensor node. Nodes exchange the list

of grid points it can cover with their neighbors, called GridList. With sufficient node

density, there is a high probability that, out of the uniformly randomly deployed nodes,

there exists a set of nodes that could collectively cover all the grip points in the network

field. The other nodes are the redundant nodes called sentries. Every sensor node has a

group of neighbors with overlapping communication or sensing capabilities. The sensing

redundant set (SRS) consists of nodes that can cover the same grid point(s). When an

active node fails it can be replaced by a node in the SRS. An active node groups all the

redundant nodes in its SRS and calls it a gang. This group decides the replacement of the

active node in case it fails. The explanations in this paper assume a redundant node serves

only one active node, and all sentries won’t fail before the active nodes do. The

initialization phase has a high message overhead. This involves gang discovery and

schedule bootstrapping. After presence announcement exchange phase, every node stays

active and starts a random backoff timer, collecting presence announcements from its

SRS members. Next, it locally determines if all the points in its GridList are covered by

the non-redundant SRS members. If yes, it considers itself redundant and broadcasts

redundancy announcement message. If not, it becomes active. At the end of the

bootstrapping phase, the active nodes calculate their gangs’ schedules and send the

message to the redundant nodes. This is needed to achieve coordinated sentry rotation.

Thus, the sentries now have their wake up times. A sentry node periodically wakes up as

scheduled, to probe the active node. If the active node fails, all the sentries become active

and resume the initialization process. Otherwise, they go back to sleep. The active nodes

continue communication with the sentries to keep them synchronized. Thus, there is

always some extra message exchange is going on to keep the sentries coordinated, but

still the energy saved during the sentry sleeps is more significant. This protocol replaces

58

an active node only when it fails and not because it is getting depleted of energy. Hence,

the active nodes tend to die down quicker than the redundant nodes. This means,

considering the active nodes also as part of the gang, the energy usage is not balanced.

The larger the grid size, there are more sentries, and hence more energy is saved

increasing the lifetime of the network.

4.1.1.4 Discussion

In the VigilNet [49], the main objective is to provide stealthiness and

surveillance. So, the nodes are synchronized in each round with the base, and the

connectivity of the network is maintained. Robustness is not a major factor here,

assuming no frequent failures. That’s why, in one round or cycle, if a sentry fails it is not

detected till the next cycle starts. Also, any other changes in the network are detected

only at the beginning of each cycle. In this model all the nodes can have the same role,

and the job of the sentry rotates among the nodes to achieve uniform energy

consumption. In R-Sentry [50], the main objective is to detect and repair failures. The

protocol focuses on sensing coverage. The sentry nodes are always synchronized with the

active nodes, to achieve coordinated rotation among sentries. This way energy

consumption is balanced among the sentries. But the active nodes are replaced only when

it fails. This way if an active node never fails it works till it is depleted of its energy.

Energy depletion is recorded as a node failure, which wakes up the sentries to replace it.

This way energy consumption is not uniformly distributed considering sentries and active

nodes together. This is not a concern here as the main objective is to maintain the

sensing coverage all the time in spite of failures. This way, we can see that each proposed

solution only addresses a subset of network issues. In reality it is not possible to address

all the issues at once. This is what we are going to see in our proposed rotating sentry

problem in a ring topology.

59

4.1.2 Increasing Sensor Lifetime In A Ring Topology

Here we are considering a network with a ring topology and a rotating sentry

protocol. The network has m tokens and n nodes. The objective is to balance the energy

consumption of the network to increase its lifetime. To achieve that, we assume the nodes

with the tokens will have their sensors active in a round (sentries), while all the other

nodes will have their sensors in the idle condition waiting for the token. The notation and

model is same as that in our paper ' Separation of Circulation Tokens' [43] discussed after

this section. The tokens are always circulating with no deadlock. In each round a node

receives a token. This way, the balanced energy consumption is ensured. Initially the

tokens can be anywhere in the network, but the token distribution will eventually self-

stabilize with the tokens certain distance apart from each other. We present the self-

stabilization protocols with proofs. In this work we see that it is not possible to address

all the aspects of the network as we have discussed before. So, our main focus will be to

increase network lifetime by increasing the lifetime of the sensors.

In each round, working nodes never go to sleep. Others also don't sleep, but

certain sensor operations are turned off. The token communication and synchronization

among the nodes go on continuously. Selective sensing saves energy. The solution is

robust to changes in the topology due to failures or entry or leaving of nodes. If the ring

size changes, it again stabilizes within a finite period of time, provided the failures are

time limited and the network doesn't become disconnected. To ensure that failure of one

node does not disconnect the ring, we assume here the transmission range of the nodes

are strong enough to get connected to next two nodes. As the tokens reach a new node in

each round, energy consumption is balanced. The nodes are only involved in receiving

and passing the tokens. Hence, there is no need for back off mechanism (in many energy

saving protocols a node needs to broadcast its intention of going to sleep, so that no one

else covering the same area goes to sleep). At the initiation there is the overhead of

60

neighbor discovery message exchange. But, after that this protocol only needs to

exchange time synchronization messages and tokens. There is no need to broadcast

anything else. Since each node is only talking to its neighbors, it does not need to use

strong transmission signals. This saves energy. Only when there is a failure, a node may

need to use stronger signals to connect to new neighbors. This protocol has certain

limitations. It does not handle failure of tokens. We have shown in our paper that the ring

will self-stabilize. The idea is, each time a token passes through the node with a counter,

it is separated from another token by at least a distance of C, where 0 to C is the range of

the counter.

4.1.2.1 Motivation

One motivating application in our paper [43] is physical process control. As an

example, one can imagine a closed network where some objects are conveyed from place

to place, with some physical processing (loading, unloading, modifications to parts) done

at each place. For the health of the machinery it may be useful to keep the objects at some

distance apart, so that facilities at the different places have time to recharge resources

between object visits. This can be formalized by Petri nets. The circuit of the moving

objects is a ring for this example. With an unhealthy initial state more than one object can

be together. The objective is to separate them by a certain distance. The token of a Petri

net can represent physical objects. The formalism of Petri nets allows us to add additional

places, tokens and transitions so that a self-stabilizing network can be constructed.

Eventually, the objects of interest will be kept apart by some desired distance [43].

There is a simple case where separation of tokens can be enforced in an open

network. Figure 15 shows how distance between tokens can be enforced almost trivially,

by throttling the rate of tokens injected into the network.

61

4.1.3 Separation Of Circulating Tokens

Self-stabilizing distributed control is often modeled by token abstractions. The

problem in this paper [43] is to ensure that a synchronous system with m circulating

tokens has at least d distance between them. This paper [43] explores a mechanism based

on timing information in a synchronous model. The sensor nodes with tokens are enabled

to sense while sensing in other nodes is turned off. The separation between the tokens

enables a node to ‘rest’ a while before activating its sensors again. This arrangement can

save a substantial amount of energy in the network where node power supply is limited.

In the paper [43], the problem is first considered in a ring where d (distance between

tokens) is given whilst m (number of tokens) and the ring size n in unknown. A second

problem is to maximize d when m is given and n is unknown. The challenge, as with all

self-stabilizing algorithms, is that tokens can be initially be located arbitrarily and the

variables encoding timers or other variables may have unpredictable initial values. The

protocols are expressed with Petri net formalism in a ring topology.

Desired properties of a token circulation protocol are labeled as D1–D5 below.

D1. At any time, m tokens are present in the system.

D2. The minimum distance between any two tokens is at least d.

D3. A token moves in each step, from one process to a neighboring process.

D4. Every process has a token equally often, i.e., in an execution of k steps, for any

process pi, there is a token at pi for k *m/n steps.

D5. Following a transient failure that corrupts state variables of any number of

processes, the system automatically recovers to behavior satisfying D1–D4.

Failure may also change the ring size. This may happen if a sensor node fails to

operate, i.e. in this problem stops sending messages, it means the node has left the

ring network. As soon as a node leaves the ring, the ring changes its size. Our

protocol is self stabilizing to that.

62

Figure 15 Illustrated on the left is an open system consisting of a chain of processes,
p[1], p[2], …, with p[1] being the topmost process. Tokens arrive from
outside the system to p1. Each process p[i] releases at most one token in each
round to p[i+1]. The aim for this system is to ensure that, eventually, no two
tokens are closer than some distance d in the sub chain from p[2] downwards
(we cannot prevent the accumulation of tokens in p[1] in this open system).
On the immediate right is a simple delay mechanism shown as a Petri net: the
small sub ring and the joint transition between p[1] and p[2] ensures that the
tokens do not arrive in each round to p[2]. By adjusting the size of the sub
ring, the target distance d can be obtained.

4.1.3.1 Notations And Model

Consider a ring of n processes executing synchronously, in lock step. Each process

perpetually executes steps of a program, which are called local steps.

.. .

. . .

P[1]

P[2]

P[3]

P[4]

P[5]

63

In one global step, every process executes a local step. Programs are structured as

infinite loops, where the body of a loop contains statements that correspond to local

steps.

We assume that all processes execute the local steps in a coordinated manner. For

processes running the same program, all of them execute the first statement step in

unison. Similarly, if two processes run distinct programs, we suppose they begin the body

of the loop together, which may entail padding the loop of one program to be the same

number of steps as the other program. The execution of all steps in the loop, from first to

last statement, is called a round. The notion of distance between locations in the ring can

be measured in either clockwise or counterclockwise direction. In program descriptions

and proof arguments, it is convenient to refer to the clockwise (counterclockwise)

neighbor of a process using subscript notation: process pi ’s clockwise neighbor is pi+1

and its counterclockwise neighbor is pi−1. The distance from pi to itself is zero, the

clockwise distance from pi to pi+1 is one, and the counterclockwise distance from pi to pi+1

is n − 1; the counterclockwise distance from pi to pi−1 is one, and general definitions of

distance between pi and pj for arbitrary ring locations can be defined inductively. The

counterclockwise neighbor of pi is called the predecessor of p, and the clockwise

neighbor is called the successor.

4.1.3.2 Protocol With Known Separation

This section presents a protocol to achieve and maintain a separation of at least C

+ 1 links between tokens in the unidirectional ring. An implementation of the protocol

uses four instantiation parameters, n, m, C, and the choice of which of two programs

(delay and relay) are used for nodes in the ring. Only the separation parameter C is used

in the protocol, as the domain of a counter, whereas the ring size n and the number of

64

tokens m are unknown for the programs. The separation by C + 1 links cannot be realized

for arbitrary n > 1 and m > 1; we require that m(C + 1) ≤ n ….(1).

A token in any node can be either resting (denoted by ri for process i) or enqueued

(denoted by qi for process i). An enqueued token is passed on to the next node in the next

round. The protocol consists of two programs: delay and relay. At least one process in the

system executes the delay and any processes not running delay run the relay program.

The nodes with the counter variable execute the delay program. The counter variable

ranges from 0 to C. The variable starts its countdown from C (0, C is the range of the

counter), and every time it becomes zero, it restarts the counting from C. A token cannot

leave a node if the counter is nonzero. When it is zero, a token is enqueued to be passed

on in the next round. In any round, both the relay and delay program starts with accepting

an enqueued token from the previous node. The objective of the protocol is to circulate m

tokens around the ring so that the distance from one token to the next (clockwise) token

exceeds parameter C, and in each round every token moves from its current location to

the successor.

A legitimate state for the protocol is a global state predicate, defining constraints

on values for variables. To define this predicate, let tokdist denote the minimum, taken

over all i such that ri + qi > 0, of Rdisti (minimum clockwise distance to a token for pi.

Ldisti is for the anticlockwise distance.). The predicate delayi is true for process pi

running delay and false for the relay processes.

Definition 1. A global state σ is legitimate iff

iqi = m iri = 0 (i :: qi ≤ 1) ………………………… (2)

 tokdist > C ………………………………………………….(3)

 (i : delayi ci > 0 qi = 0 : Rdisti = C − ci) …………....(4)

 (i : delayi qi = 0 : Ldisti > ci) …………………………..(5)

 (i : delayi qi = 1 : ci = C) ………………………………(6)

65

In an initial state, variables may have arbitrary values in their domains, subject to

constraint (1). The protocol is self-stabilizing. For proof please refer to our paper [43].

4.1.3.3 Protocol With Unknown Ring Size

Here we consider another design alternative, where the separation between tokens

should be maximized, but the ring size is unknown. The technique is straightforward:

building upon the delay program, additional variables are added to count the number of

rounds needed to circulate a token, that is, the new program calculates n. Two extra

assumptions are used for the new protocol: the value of m is known and the number of

processes running the delay program is exactly one.

The revised delay program is used here, which introduces timingi, ti , ignorei , and

ClockBasei . The program uses ClockBasei in place of parameter C, which is periodically

recalculated. The method of calculation relies upon knowing m and knowing that all

other processes run relay. The program begins a timing phase, which starts a counter ti at

zero, and calculates the number of tokens that are elsewhere in the ring, ignorei.

Subsequently, it handles token arrival for purposes of calculating ring size; after ignorei

arriving tokens are ignored, the next token is the one that was released when the timing

phase began. Of course, this calculation can be incorrect in early rounds of an execution,

but eventually each timing phase culminates in ti having the ring size. With the delay

program at one process and relay at all other processes, the system is self-stabilizing to C

= n/m − 1. For proof please refer to our paper [43].

4.1.4 DESAL Program To Increase Lifetime Of The
Sensors

Figure 16 is the program to calculate average temperature in the sensor motes.

Assuming only node zero has the counter, the program is designed based on the

separation of circulating tokens paper [43]. The idea is, every node whose id is not zero

66

will record the temperature only if it has a token. Otherwise, it will turn off its

temperature sensor. Once a temperature is recorded the node broadcasts the temperature

and the base station receives it. Then, the base station calculates the average of the

received temperatures. Now, the nodes with idle sensors will also continuously send

messages to the base station. But those temperatures will be stale as no temperature

recording is being done for sometime. Hence, along with the temperature the recording

time is also send to the base in a struct data structure. The values in a struct are always

send over the radio together (discussed in detail in chapter 5). Hence, the temperature and

recording time will be sent together. The base station then decides depending on the

current and received time difference which temperature to accept. The goal of this

example is to selectively activate the sensors in the network. This way each node will be

sensing temperature for a while and then due to the distance between the tokens it will

rest its sensor for sometime. This will enable the node to save energy in the long run. If

the node had its sensor active all the time it would deplete of its energy much sooner. In

the Figure 16 num(x) is the number of tokens in a node, and pass(x) is the action of

passing a token from the host node to the next node clockwise. The implementation of

num(x) and pass(x) are discussed after the figure.

There are N processes or nodes and m token rings. Figure 17 shows a system

with 4 processes and 3 token rings. In a ring of sensor nodes/motes the objective is to

balance the energy consumption of the network to increase its lifetime. To achieve this

we assume that the nodes with the tokens will be active sensors in a round, while all the

other nodes will have idle sensors waiting for the token. For certain applications this can

be power efficient as we have seen in the above example. This will save energy. To

achieve this, each token ring should have only one token, and the tokens in the processes

should be a certain distance apart. In a faulty initial state, each token ring can have more

than one token.

67

component MaxMinTemp
 struct { uint16 temp, uint16 time } myStruct
 shared struct myStruct myS
 unshared uint16 sum = 0
 unshared uint16 count = 0
 shared uint16 avg = 0
 unshared uint8 counter = 0 // range is 10
 binding myStruct mySRemote <- *.MaxMinTemp.myS[20]
 every 1s after 1m
 ID==0:
 foreach n in MySRemote {
 if(($time - n.time) < DIFF) {
 sum = sum + n.temp
 count = count+1 } }
 avg = sum/count
 sum=0
 count=0
 [] (ID==0 && counter>0):
 counter=counter-1
 [] (ID==0 && num(x) > 0 && counter==0):
 pass(x)
 counter=10 // C=10
 [] (ID!=0 && num(x)>0):
 myS.temp =$temp
 myS.time =$time
 pass(x)

Figure 16 Program to calculate average temperature in the sensor motes. Each node has
at most 20 neighbors. $temp records temperature, whereas $time records local
time synchronized with others. In the base (node id =0) if the time difference
is within acceptable range, the received temperature will be accepted in the
calculation of the average.

Figure 17 A ring with 3 token rings and 4 processes

4 processes

3 token rings

68

The purpose, as explained above, is to eventually self-stabilize the system such

that in each round, there is only one token in a single token ring and the tokens are

separated by a certain distance. In one round a process can have up to m tokens, as there

are m token rings. Our goal here is to ensure that these m tokens are eventually separated

by a certain distance in the legitimate state. When a token is present in a process, certain

guards of the process are enabled which modify the system state. Shared memory model

of computation is considered here. A process i, in addition to reading its own state

variable c[i] can also read the state variable c[i-1] of its predecessor process.

We use the idea of Dijkstra's [51] unidirectional token ring self-stabilization

algorithm to achieve stabilization where there is only one token per token ring. The

algorithm to separate the token by a certain distance is described in the separation of

circulating tokens paper [43].

4.1.4.1 Implementation Of Num(x)

c[j] is a state variable for ring j. c[j][i] is a state variable for process i in the jth

ring. x represents presence of a token which is denoted by c[j][i] != c[j][i-1]. A token is

present, on ring j, at process i, if and only if c[j][i]!=c[j][i-1] (with the exception on node

0), where j is the range of token rings, and i is the range of processes.

For process i, num(x) counts true in

 c[0][i] != c[0][i-1] \/ c[1][i] != c[1][i-1] \/ … \/ c[m-1][i] != c[m-1][i-1],

where, m is the number of tokens and i is process i whose num(x) we are calculating.

4.1.4.2 Implementation Of Pass(x)

The variable c in pass(x) is the same as that in num(x). Consider a variable a [0

... m-1] so that c[a][i] != c[a][i+1]. At anytime a process with a positive number of tokens

69

passes one token to its successor. Now, how can we determine which token to pass if

there are more than one in the process? The variable a determines that.

Pass(x) does,

(1) c[a][i] := c[a][i-1]

 (2) a=a+j, where j gets to next token such that, c[a][i] != c[a][i+1]

4.1.5 Using RFID Tags In Flume

Three programs are needed to implement the project.

(1) To read water pressure in the flume. There are three RFID antennas containing the

tags (RFID tags). The antennas need to be activated one at a time. The recorded

pressure will be sent to the base station.

(2) A program to load more marbles. This needs to be done at a specified interval.

(3) The base station with ID=0 will accumulate all the water pressure values and

calculate the average.

Since there are multiple DESAL programs running, the binding will have a

different format. Instead of binding to the same variable in a process running the same

program, here a shared variable will be bound to a different variable in a process running

a different program. Figure 18 shows the three programs.

Figure 19 explains how the three DESAL programs work. Antenna.desal is run by

the three RFID tages attached to the Antennas in the flume. The tags record the pressure

in the flume. Only one of the three tags are active at the time. This is achieved by using a

token circulating between these three tags. The base station running AvgFlume.desal

program, is reading the shared variable Pressure from Antenna program. After reading all

the pressure values from the three RFID tags, the base station is calculating the average

pressure. The paper by Nichols [55] deals with a similar problem where a RFID system is

implemented to monitor the displacement of coarse particles.

70

Program (1):
component Antenna
 shared uint16 pressure = 0
 shared token x
 binding uint8 xRemote <-- *.Antenna.x

 every 3s after 50s
 (num(x)>0):
 $redOn()
 pressure = $flume_read()
 $redOff()
 pass(x)

Program (2):
component AddMarbles

 every 3s after 200s
 $blueOn()
 $flume_add()
 $blueOff()

Program (3) for ID=0 (Base station):
component AvgFlume
 unshared uint16 avg = 0
 unshared uint16 sum = 0
 unshared uint16 count = 0
 binding uint16 pressureRemote <- *.Antenna.pressure

 every 8s after 50s

 true:
 foreach n in pressureRemote {
 sum=sum+n
 count = count+1

}
avg = sum/count
sum=0
count=0
$toggleGreen()

Figure 18 The three programs for the RFID Flume case study

71

Figure 19 The working of the DESAL programs for the flume project

AddMarbles.desal

All three motes running Antenna.desal

AvgFlume.desal (base station)

The token moves among these three programs
(dotted line).

Base station reads the pressure from the
three Antenna programs.

72

CHAPTER 5

DESAL TO JAVA CONVERSION

In this package a DESAL program is converted to an equivalent Java program. A

DESAL parse tree is generated as a python dictionary, which is fed into a couple of

python programs, which generate the corresponding Java file. The Java file is then

compiled with the Java compiler. In the next section we have discussed role of DESAL

compiler and explained the grammar file. After that we have given an example of a

DESAL program converted to an equivalent Java program. The aim behind this work is

to make DESAL compatible with the Java platform. This is a unique contribution of

DESAL. By doing this Java program can communicate with the sensor nodes via

SerialForwarder. This way we no longer have to depend on NesC and TinyOS for the

communication.

5.1 DESAL Compiler And Grammar

The DESAL Compiler is written in Python version 2, using a parser module

provided by the Dparser project (hence, both Python 2 and Dparser need to be installed to

implement the DESAL Compiler). To convert DESAL program to NesC, our compiler

generates a python dictionary after parsing, which is fed into the Clemson’s semantic

checker. If there is no semantic error the DESAL program is converted to equivalent

NesC code. To validate the correctness of our grammar rules, we have used Jython to

feed the python dictionary into the semantic checker written in Java. Clemson has already

verified the correctness of their compiler by converting the DESAL program to

corresponding NesC code, which successfully ran on the motes giving the desired result.

Therefore, replacing the Clemson compiler with ours and translating a DESAL program

to equivalent correct NesC code validates the correctness of our compiler.

73

5.1.1 Compiler Components

The grammar is specified in a file grammar.def. The program makeDparser.py

converts grammar.def to the Dparser style of grammar specification. Constructing the

AbstractSyntaxTree is done by invoking Dparser with the source of a DESAL program;

as a result a tree (Python dictionary) representing the parsed input is created. The module

Traverse.py is a central tool for analysis of the parse tree and generating code based on

the tree. There is a "swap chains" function that transforms certain structures in the

AbstractSyntaxTree. Codegen.py creates the objects (data architecture) of code

generation. Java code is generated by CodeAssign.py. The codes generated are filled in

Skeleton.java to create the final java file called Proto.java.

5.1.2 DESAL Grammar

The formal grammar rules of DESAL are specified in the grammar.def file.

5.1.2.1 Explanation Of Grammar.def

The entire file (omitting trivial rules) is given in Appendix B. We invented a

small, abbreviated syntax to generate dparser grammar, which is a style of commented

Python. Here, the abbreviated syntax has two basic forms, single rules and multiple

rulesets. Each rule or ruleset starts with a string, in column 1, looking like #nn#, where

'nn' is a number. The meaning of this number is taken from the Java Class numbering

given by Dalton and Hallstrom, in their original Java compiler. An example is the

following rule:

 #2#

 componentDec: "component" var_id subComponentListNull

if type(term2) == types.ListType:

74

term2=term2[0]

 node["var_id"] = term1

 node["subComponentListNull"] = term2

 node["name"] = "component"

Notice that the rule starts with #2#, which means this will generate a dparser

pattern (the first line following the #2# is the pattern), which eventually will generate a

node of type 2, when a DESAL program is compiled into an Abstract Syntax Tree. The

remaining lines in the rule are Python statements executed after dparser matches to the

pattern. Here, some conventions are:

 1. numTerms is a Python local variable equal to the number of terms matched

by the dparser pattern. This may be variable, because dparser rules can have optional

matching expressions (so numTerms isn't always the same number).

 2. term0, term1, term2, etc, refer to the terms matched by the dparser pattern.

You can refer to these terms in string manipulation and comparison code, but sometimes

the terms are not Strings, but are lists (this depends on how your grammar is defined).

Notice above, the assignment: term2=term2[0]. This assignment is based on the

assumption that term2 is a list prior to the assignment, and the first item of the list

replaces local variable term2 (of course, this assumption is valid because of the "if" test

on term2's type!).

 3. The "output" of the rule is always a Python dictionary called, locally, 'node'.

Here, you can add particular key/value things to this dictionary. Notice that above, the

key "var_id" is added to the node. Some keys are standard, and be careful about these:

 1. node["CaseNo"] -- automatically assigned, this will be the node's number

(for the example above, it is 2).

 2. node["LineNo"] -- automatically assigned, this is the line number of the

DESAL program source for the matching program fragment.

 3. node["ColumnNo"] -- like LineNo, but for column number.

75

 4. node["Name"] -- optional; used basically for debugging and pretty

printing of the parse tree by some tools.

For some cases, one dparser pattern could possible generate different node

numbers, depending on inputs. To allow this, we have rulesets. A ruleset starts, like a

rule, with a #xxx#-string in column 1, but the 'xxx' here will be a comma-separated list of

numbers; these are the possible node numbers for the ruleset. Example:

 #3,4#

 subComponentListNull: subComponentList?

 if not term0:

 #4#

 else:

 if type(term0) == types.ListType: term0=term0[0]

 #3#

 node["subComponentList"] = term0

 This example shows a ruleset for node types 3 and 4. Notice that we see

Python code interwoven with #3# and #4#, which are indicators of the specific definitions

for node types 3 and 4. In the example, node type 4 has no special dictionary key/value

items added, whereas type 3 has one key/value item added. Our tool validates that the

lines following a ruleset definition contain entries for all the rules that should be defined.

Thus, following #3,4#, there has to be some line #3# and some line #4# (and, of course,

no line #5# or other crazy numbers).

If you look at the Dparser specification of the grammer, you see a mix of

productions (rules to parse) and Python code. Associated with each rule is a snippet of

code that initializes a tree node when the rule executes. For example, consider the

following rule:

 1 def d_Guard(t, s, nodes, this):

 2 '''Guard: expr ':' stmntListNull '''

76

 3 global term0, term1, term2, term3, term4, term5, term6, term7, term8,

term9

 4 numTerms = len(t)

 5 assignTerms(t)

 6 node = dict()

 7 node["LineNo"] = nodes[0].start_loc.line-1

 8 node["ColumnNo"] = nodes[0].start_loc.col+1

 9 node["CaseNo"] = 29

 10 if type(term2) == types.ListType:

 11 term2=term0[0]

 12 node["expr"] = term0

 13 node["stmntListNull"] = term2

 14 node["name"] = "Guard"

 15 return node

Intuitively, this production specifies that a guard statement is an expression

followed by a colon followed by a statement list. The Python code associated with this

rule creates a dictionary and returns that to Dparser, which is driving the parsing process.

Some entries in the new dictionary are standard keys for all nodes:

LineNo identifies the source code line number (useful for generating messages about the

Desal program source later during code analysis or code production stages). ColumnNo

identifies the column number where the guard statement begins. CaseNo is used to

identify the type of node; this is crucial in later stages that analyze the tree, so it is simple

to know what type of node and which dictionary keys and values it contains; hence, a

node with CaseNo of 29 is a guard statement node. Name is for documentation purposes

(we sometimes made a pretty formatted picture of a parse tree).

77

Other keys of the dictionary depend on the particular rule and node type. Thus, to

make sense of parsing and code analysis/production, you need to arrange that the rule

with associated Python snippet have what's needed when the tree is later analyzed.

A node is a dictionary with a key that consists of the string "CaseNo". A child of a

node is this: any key in a dictionary with an associated value that is also a dictionary is a

child node. Thus if X is a node, and type(X["abc"]) == dict, then X has a child (which is

associated with key "abc").

5.1.2.2 Traverse.py

Traverse(V,Root,FilterDict) is a general higher-order function to traverse the

nodes of a tree recursively. Traverse is designed to be the one template to satisfy all tree

traversals for any reason; it can be either bottom-up or top-down in its processing, or

even a mixture of these depending on node type (yes, this probably goes further than

needed in its generalizing). The three arguments to Traverse are:

 V is the code generation object.

 Root is the tree root (or could even be any node) of the AbstractSyntaxTree.

 FilterDict is a dictionary with entries of the form:

 43

 (M,c), where 43 is a CaseNo for a node that should be processed; M is an

object that has a method called mutate that should be applied to a node of CaseNo 43.

And c is a character, either 'b', 'p' -- which stand respectively for pre-order, or post-order.

 -1

 (M,c) is a wildcard that matches any nodetype.

The idea is that FilterDict is essentially a list of things to do for selected nodes.

You can have a FilterDict for only some types of nodes, selected by the node CaseNo, or

you can have a wildcard selector. The mutate method is invoked on the node (we make it

78

a method so that M can have enough state for the mutate invocation to have a rich history

and environment, for general programming purposes). A mutate invocation could change

the node (remember, the node is a dictionary) by adding keys, assigning to current keys,

or mutate might make no change but instead accumulate information in some component

of the object M, such as a list.

Traverse will look at every node in the tree, where a node is anything that has

type 'dict' (dictionary in Python) and has a CaseNo attribute/key (other things are

ignored). For each node inspected, Traverse will skip over the node if its CaseNo isn't in

the FilterDict. For a node T that is in the FilterDict, Traverse will invoke M.mutate(V,T).

Depending on whether c is 'b' or 'p', the invocation M.mutate(V,T) will be done before or

after (respectively) Traverse recursively handles all children of T.

 1 import Mobject # for access to methods applied to nodes

 2 import Codegen # for access to the code generator object

 3 def traverse(V,T,FilterDict):

 4 if type(T) != dict: return

 5 if "CaseNo" in T and T["CaseNo"] in FilterDict:

 6 # found a node to process, but only do it now if

 7 # the modality is pre-order traversal for this FilterDict entry

 8 (M,c) = FilterDict[T["CaseNo"]]

 9 if c=='b': M.mutate(V,T)

 10 if -1 in FilterDict:

 11 (M,c) = FilterDict[-1]

 12 if c=='b': M.mutate(V,T)

 13 # Part 2: recursively take care of T's children

 14 for e in T: traverse(V,T[e],FilterDict)

 15 # Part 3: do any post-order processing of the node

 16 if "CaseNo" in T and T["CaseNo"] in FilterDict:

79

 17 # found a node to process, but only do it how if

 18 # the modality is post-order traversal for this FilterDict entry

 19 (M,c) = FilterDict[T["CaseNo"]]

 20 if c=='p': M.mutate(V,T)

Notice above that the wildcard is only implemented for cases of pre-order

application of mutate. This may be a bug or may be a feature which has not been

exercised. Also, notice that the wildcard does not test whether CaseNo is a key; this

might also be a bug.

5.1.2.3 SwapChains.py

The tree that Dparser produces isn't quite suited to some analysis and code

generation. The problem turns out to be that some "linear chains" of nodes in the tree are

backward for our purposes of tree traversal. To deal with this, we have a special

transformation of the tree which reorders such chains. The module SwapChains.py does

the chain reversal, using a kind of mark-and-sweep programming style (see wikipedia for

references on this technique).

 1 import sys

 2 import Traverse

 3 import Mobject

 4 class remomark(Mobject.Mobject):

 5 def mutate(self,v,t):

 6 if "swapchain" in t: del t["swapchain"]

 7 def unmark(V,T):

 8 Traverse.traverse(V,T, { -1:(remomark(),'b') })

The class shown in Figure 20 gives us an object with a mutate method, suitable

for using Traverse. The unmark function then invokes Traverse, passing a remomark

80

object. Notice that all that the mutate method does here is to remove any key named

"swapchain" from every node. The unmark function is used later, after some marking and

swapping has been done, essentially cleaning up things at the end of swapping chains.

Above, you see that class swap is a specialized object (initialized with a CaseNo

and the names of two types of node). The mutate method enumerates a subtree, reverses

its order, and marks a chain. The actual source code in the Figure 20 has more

informative comments.

From the swap method in figure 21, we see that "swapchains" is just a sequence

of chain reversals, each using the swap object and its mutate method to reverse a

particular type of chain.

 1 class swap(Mobject.Mobject):
 2 def __init__(self,RecurseType,ElemKey,ChainKey):
 3 self.RecurseType = RecurseType # e.g., 32 for

stmntList
 4 self.ElemKey = ElemKey # e.g., "stmnt"
 5 self.ChainKey = ChainKey # e.g., "stmntList"
 6 def mutate(self,v,t):
 7 if "swapchain" in t: return
 8 chain = [t]
 9 while True:
 10 last = chain[-1]
 11 if last[self.ChainKey]["CaseNo"] !=

self.RecurseType: break
 12 chain.append(last[self.ChainKey]
 13 termChain = []
 14 for c in chain: termChain.append(c[self.ElemKey])
 15 termChain.append(chain[-

1][self.ChainKey][self.ElemKey])
 16 for c in chain:
 17 c[self.ElemKey] = termChain.pop()
 18 chain[-1][self.ChainKey][self.ElemKey] =

termChain.pop()
 19 for c in chain: c["swapchain"] = True
ERROR: EOF in multi-line statement

Figure 20 Swap class in SwapChains.py

81

5.1.2.4 Objects For Compiling

To produce code from the AbstractSyntaxTree, several conceptual objects are

defined in Codegen.py:

The Body object represents the body statement information in a Desal program,

such as evaluation frequency, period, and a list of guarded statements contained in the

body.

BindingSpec object represents one binding specification, which has a type, target,

source, and possibly a range for indexing in a node's neighborhood. Variable represents a

declared variable: it has a name, type, and later is given binding and numeric codes.

For a "struct" declaration, a Struct object is defined with things like size, name,

values, and so on. Each function declaration has fields for name, parameters, and

statements in the function's body. Scopes are objects used during AbstractSyntaxTree

analysis to have a context for nested "foreach" statements. Generated code for the foreach

construct introduces an implicit loop variable, which has to be different from the

variables used in nested foreach statements (hence, scoping is important). Finally, there is

an object which handles all of the above and more, so that recursive processing of an

AbstractSyntaxTree or subtree has access to variables, statements, bindings, and so on,

represented by the objects described above. This is called CodeObject. The CodeObject

has fields to contain information for all tables to be generated for the DESAL program; it

also can collect generated code, counters used to build temporary names, and so on.

In addition to these objects, Codegen.py also defines enumerated constants for

variable types: uint8, uint16, uint32, bool, and struct. The basic theme for building the

objects described above is to use Traverse.py on the AbstractSyntaxTree with appropriate

filters, passing some handle to the CodeObject so that the various objects can be created

and saved. The processing of the AbstractSyntaxTree for code production is preceded by

some setup phases.

82

 1 def swapchain(V,T,ChainType,ElemKey,ChainKey):
 2 unmark(V,T) # unmark the tree initially
 3 Traverse.traverse(V,T, {

ChainType:(swap(ChainType,ElemKey,ChainKey),'b') })
 4 unmark(V,T) # unmark the tree afterwards
 5 def swapchains(V,T):
 6 # Problem setting: each of the following grammar rules

generates a tree with
 7 # chains of nodes that are _backward_ from what the

source DESAL input has
 8 #

 9 # CaseNo: 5, 6 - '''subComponentList: subComponentList
subComponent | subComponent '''

 10 #
 11 # CaseNo 9-14 - '''DecList: DecList structDec |

DecList stateDec | DecList bindingDec | structDec | stateDec |
bindingDec '''

 12 #
 13 # CaseNo 17, 18 - '''bindingVarList: bindingVarList ','

bindingVar | bindingVar '''
 14 #
 15 # CaseNo 27, 28 - '''GuardList: GuardList '[' ']' Guard

| Guard '''
 16 #
 17 # CaseNo 32 -34 - '''stmntList : stmntList stmnt |

stmnt | "error" '''
 18 #
 19 # CaseNo 46, 47 - '''ElseIfList : ElseIfList ElseIf |

ElseIf '''
 20 #
 21 # CaseNo 86, 87 - '''exprList : exprList ',' expr |

expr '''
 22 #
 23 # CaseNo 95, 96 - '''varDecList: varDecList varDec |

varDec '''
 24 #
 25 # CaseNo 106, 107 - '''varList: varList ',' var | var’’
 26 #
 27 # The swapchains() method mutates the tree so that

these nodes are in an order
 28 # that matches our intuitive understanding of the DESAL

program text.
 29 #
 30 # NOTE: currently, only these cases are handled; but

it is easy to generalize
 31 # 32 - stmntList
 32 # 27 - GuardList
 33 # 5 - subComponentList
 34 # (other cases not yet handled)
 35 swapchain(V,T,32,"stmnt","stmntList")
 36 swapchain(V,T,27,"Guard","GuardList")
 37 swapchain(V,T,5, "subComponent","subComponentList")

Figure 21 Swap method in SwapChains.py used to reverse a particular list.

83

This counts the number of variables, reverse some paths in the tree, and so on.

The subsections below talk about modules that do this initial processing.

Setvars.py module has the objects and functions needed to set up variable tables.

The main function is setupVariables(V,T), where V is the CodeObject and T is a

(subtree) of the AbstractSyntaxTree. An invocation of setupVariables uses Traverse.py

recursively in several ways with mutate methods that set up fields within the CodeObject:

namely, VList, VarCount, Vars, StructList, StructInitList.

Setbinds.py module establishes the binding tables. This module contains the

setupBindings(V,T) function, which should be invoked soon after the AST and Code

Generation objects are constructed. An invocation of bindProcMobject uses Traverse.py

recursively with mutate methods that iterate through all the binding variables

declarations. This extract the variable names, binding scope, component name to which it

is associated, shared variable name to which it is associated and target range.

Setstruct.py module contains the setupStruct(V,T) function, which should be

invoked soon after the AST and Code Generation objects are constructed. It will

establish struct tables. An invocation of structProcMobject uses Traverse.py recursively

with mutate methods that iterate through all the structure declarations. This extracts the

structure names, the data fields of the struct and the size of the struct.

Setfunc.py module contains the setupFunction(V,T) function, which should be

invoked soon after the AST and Code Generation objects are constructed. It will

establish function tables. An invocation of funcProcMobject uses Traverse.py recursively

with mutate methods that iterate through all the function declarations. This extracts the

function names, the parameters of the function, the statements in the function body and

the return type of the function.

84

5.1.2.5 Generating Java Code

The python file to generate the Java code from the AbstractSyntaxTree is

CodeAssign.py. This module assigns Java code attributes to nodes of the

AbstractSyntaxTree,that is, it makes the assignment

node['java'] = ... some string containing Java ...

The module contains different classes for different data structures and operations.

Each class contains a mutate() method which is called in Traverse.py to convert each

DESAL statement to the equivalent Java statement. Mobject is imported to provide

access to methods applied to nodes. Mobject is a fake class, provided for traversing the

AST. An instance of Mobject will provide a 'mutate' method, which is invoked on each

relevant node of the AST during traversal to add fields or change fields of AST nodes,

and possibly change the CodeObject (repository of state during the code generation

phase).

CodeAssign.py creates different classes to do the code conversion from DESAL

to equivalent Java code. Before accessing any class methods, all the DESAL variables are

converted to the objects of a class called DV. Then onwards all the operations on the

variables are done with DV methods. E.g. for adding two DESAL variables a and b, the

equivalent Java code will be DV.Add(a, b), where a and b are now DV objects.

Below we show some example of code conversion by referring to the classes

used.

5.1.2.5.1 DESAL Code

1. foreach n in nmax {

 2. if (n > max) {

 4. max = n

85

 5. }

 6. }

5.1.2.5.2 Equivalent Java Code

1. for(int n=1; n<num_of_neighbors; n++) {

2. DV.push(DV.Gt(nmax[i], max))

3. if(DV.Boolean(Dv.pop)) {

4. DV.set(max, nmax[i])

5. }

6. }

The ForEach() class reads in the scope of the binding variable from the for loop,

which is n here. If a shared variable in DESAL is bound to N processes, in the equivalent

Java code an array of size N is created, where the name of the array is the name of the

remote variable. E.g. if the binding is, nmax <- *.funcTest.max, where *

denotes the N remote process, in Java an array named nmax is created. In DESAL the

line for n in nmax n denotes each remote process each time the loop is entered. In

the equivalent Java code, a for loop is created with n as the scope of the loop, and it goes

through the nmax array values.

boolDyad (Dyad) class converts Boolean operation to DV method calls, which

does the Boolean operation in the equivalent Java code. The Dyad() class contains a

method called exprEval() which does the code conversion. E.g. n > max in DESAL

code will be DV.Gt(n, max), where Gt stands for the Greater Than function.

The ifS() class converts a DESAL if statement to an equivalent Java if statement.

E.g. if (n > max) {will become DV.push(DV.Gt(nmax[i], max))

if(DV.Boolean(Dv.pop)) {.

86

AssignS() class converts an assignment expression to the equivalent DV method

call. e.g. max = n becomes DV.set(max, n).

pushEval() class: When there is an expression in parenthesis, the logic is to

generate a Java push on the result of the expression. E.g. is we have, (expression),

then the equivalent Java code will be DV.push(expression). The expression refers

to a DV function call. The push is done because in a long expression with multiple

parentheses, an expression is evaluated by solving the innermost parenthesis expression

first. The expression will be then popped out into the longer expression. E.g. if (n >

max) is converted to DV.push(DV.Gt(nmax[i], max))

if(DV.Boolean(Dv.pop)) {.

Struct is a new data structure introduced in DESAL. In a struct we can group

more than one element. E.g. suppose we have two variables to store temperatures. Say,

one variable stores the maximum temperature and the other one stores the minimum

temperature among the min and max temperatures recorded from neighbors. These two

variable record different temperatures, but they are similar in functionality. It makes

sense to have these two variables in a group. This group forms a struct. Figure 22 shows

the program for calculating minimum and maximum temperatures using struct. It is

important that we send the members of a structure together in a message. This is because,

since they are similar kind of variables, another node should read struct member variables

with the same timestamp. Otherwise, two values send at different times may not be

useful. That’s why in DESAL we don’t allow struct members to get separated into

different messages. This also means, struct variables cannot be bound individually. They

need to be bound all together. In the above example, if the max and the min temperatures

are read in different times, the min and max could have been recorded in different times.

If one message payload is not long enough to accommodate the struct, we send the struct

in the next payload. Hence, one limitation of struct is, its size should be less than or equal

87

to the message payload size. But having the struct members together in one payload is

more important to maintain the relevance of the values.

Setstruct() class converts a DESAL struct to an equivalent Java class. E.g. struct {

uint8 v1, uint16 v2 } myStruct will be converted to,

 public static class structClass {

 }

 public static class myStruct extends structClass {

 public DV v1 = new DV(0, "unshared", 0);

 public DV v2 = new DV(1, "unshared", 0);

 public myStruct (DV v1copy, DV v2copy) {

 v1 = v1copy;

 v2 = v2copy

 }}

A super class named structClass is created from which all the structure classes are

extended. A constructor in the structure class, here myStruct, initializes the value of the

structure member variables. Another unique feature of DESAL is the inclusion of

function in the language. A function in DESAL is declared in the program component

before the bodies. We need a function to group together commands that can be repetitive.

Or, to make the program more readable, we can move a bunch of inline codes to

the function and then call the function instead of writing the multiple lines of code in the

main body. The unique feature of function is the code inside uses only global variables.

No new local variable is declared. This can significantly reduce the stack overhead of the

program, thus saving memory and running time. When a function is called in the body,

the current state of the body is pushed into the stack and the control transfers to the

function subroutine. This stack is pretty small. It only stores the main program and the

function information. No new stack is created to store the function local variables. This

can significantly reduce the stack overhead.

88

After the execution of the function is done, the control returns to the main body

where it has left off and pops out the state variables of the body stored before the function

call. Let us consider an application where we calculate neighborhood average of average

temperatures from the neighbors at two different time frequencies. Hence, we need to

calculate the same average in two different bodies. So, we need to use the average

function twice. Instead of writing inline code, we call a function that will do the work.

The program is shown in Figure 23.

component MaxMinTemp
 struct { uint16 min, uint16 max } myStruct
 shared struct myStruct myS
 binding myStruct mySRemote <- *.MaxMinTemp.myS[20]

 every 5s after 50s

true:
 MyS.max=$temp()

MyS.min=$temp()
 foreach n in mySRemote {
 if (n.max > MyS.max) {
 MyS.max = n.max
 }
 if (n.min < MyS.min) {
 MyS.min = n.min
 }
 }

Figure 22 DESAL program to calculate min and max of neighborhood temperatures.
Each node is connected to 20 neighbors. Initially, local temperature is
assigned to min and max. Then, the recorded min and max are compared to
the min and max from the neighbors to calculate the neighborhood min and
max. Here we can see that if the min and max from the neighbors are received
at a different time, the calculation will give us wrong result, as we want to
calculate min and max at the same time.

A function in DESAL is converted to an equivalent Java function by the method

in funcCall() class. E.g. DESAL function,

uint8 test(){

89

 sum=sum+$temp()

 count=count+1

 return count}

is converted to a Java function as,

 public static DV test(){

 DV.set(sum,DV.add(sum,Runf.temp()));

 DV.set(count,DV.add(count,1));

 return count;

 }

component AvgTemp
 unshared uint16 sum = 0
 unshared uint16 count = 0
 shared uint16 avg = 0
 binding uint16 avgRemote <-*.AvgTemp.avg[20]
 uint16 average ()
 {
 sum=0
 count=0
 foreach n in avgRemote {
 sum = sum + n
 count = count+1
 }
 return sum/count
 }

 every 1s after 1m
 true:
 avg = average()

 every 1s after 2m
 true:
 avg = average()

Figure 23 This program calculates average temperature of averages from the neighbors
twice at different time frequency. Instead of writing the same code for doing
average two times, the program calls the average() function in the two bodies.
This demonstrates how a function can make a program shorter and easy to
read.

90

genJava() and exprList() classes create a filter (an array) of all the functions from

the different classes including the ones mentioned above to do the code conversion. In the

exprList() class the functions in the filter are executed by the Traverse() function in

Traverse.py. since, all the function calls for the different expressions in DESAL program

are sent to Traverse(), Java code for all the DESAL expression are created by the

exprList() class’ method. In genJava() the program is broken apart into variable

declarations, bodies, and main sections.

In BodyPrep() class, the body in DESAL is broken into guards and statements in

pairs which are converted to the equivalent Java expressions as an if-then structure.

In Copy() class, the converted Java codes are copied to a Java file called

Skeleton.java. Skeleton.java contains the Java codes, which are common to all the Java

files created from DESAL codes. E.g. the DV class, the Runf class for system variables,

and so on are common to all the created Java classes. Copy() class fills in the gaps by

inserting the Java code for a particular DESAL program to create the equivalent Java

program.

5.2 DESAL Application In Java

In this section we will see a DESAL program and its equivalent Java program.

Below is the program Blink in DESAL.

component Blink

 every 3s after 0s

 true:

 $redOn()

 every 3s after 1s

 true:

 $redOff()

91

Equivalent Java Program is given in Appendix A.

92

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Previous research works (discussed in the literature review) have investigated

many features like time synchronization, neighborhood management, high level

programming interface etc, essential for developing a high-level user-friendly

programming language for wireless sensor networks. DESAL attempts to combine all

these features to present a simple high-level sensor network programming language. The

integrated middleware hides all the low-level detail from the programmer.

One unique feature of DESAL is its state based programming property. The

programs are written in guarded-action format. Therefore, there is no hidden context like

event or interrupts. The middleware services are automatically integrated in a program

during compilation. The middleware offers services, such as, time synchronization,

neighborhood management, dynamic binding and message communication. The static

construction of these low-level features can enable efficient usage of data structures and

expert programming to exploit the advantages of NesC and TinyOS. This can result in

efficient memory utilization and economic power usage. DESAL can also be converted to

Java, where the computer interacts with the sensor motes via the SerialForwarder.

DESAL introduces a variable type called ‘token’. The idea is, when a process has

a token it performs certain action and changes its state, while others wait for their turn.

One of the case studies we have done uses token variables to achieve energy efficiency

by separating the tokens in a ring by a certain distance. This has been discussed in detail

in our paper Separation of Circulating Tokens [43]. Another case study with tokens

involves selective activation of an RFID tags in a network.

93

Struct is a new data structure introduced in DESAL. In a struct we can group

more than one element. It is important that we send the members of a structure together

in a message. This is because, since they are similar kind of variables, another node

should read struct member variables at the same time. Otherwise, two values send at

different times may not be useful. That’s why in DESAL we don’t allow struct members

to get separated into different messages. This way struct can be handy when it comes to

dealing with similar kinds of variables. The functioning of the struct has been illustrated

with a case study.

Function is also newly introduced in DESAL. The unique feature of function is

the code inside uses only global variables. No new local variable is declared. This can

significantly reduce the stack overhead of the program, thus saving memory and running

time. Function has been illustrated with a case study.

Most of the research work shows that the program running in the base station is

usually different from the program running on the sensor motes. Usually, high level

language like Java runs in the base, while low level language like NesC is run on the

motes. Since, DESAL can be converted to both NesC and Java, DESAL codes can be

written for both the base station and the motes. There is no need to write programs in

separate programming languages for them. This is an important contribution.

6.2 Future Work

The following improvements to DESAL have been proposed.

DESAL Extensions: The DESAL development model is not well suited to low-

level programming task or tasks involving hard real time processing constraints. In the

future, developers must be able to introduce new services using low-level primitives and

be able to access those services from DESAL guards and actions [42].

94

Multi-Hop bindings: A multi-hop binding implementation would enable a base

station to establish a multi-binding to each cluster-head in the network, where all the

cluster heads may not be a neighbor [42].

Running multiple programs: As discussed in the RFID flume case study, we need

three different DESAL programs to run in the same network. At present DESAL cannot

allow that. Currently DESAL can run identical programs in the sensor nodes in a

network. In the future we could enhance DESAL to allow different programs to run in the

same network.

Token in Java: We have introduced variable of type token in DESAL. But token

hasn’t been implemented in the Java program converted from a DESAL program. This

can be done in the future.

For the separation of circulating tokens an interesting question is whether there

can be a hybrid or uniform protocol when the ring size and the separation constant are

unknown. For the style of algorithm proposed in our paper [43] for unknown ring size,

we conjecture the answer is negative. If one delay process pi has an accurate estimate for

maximum separation d = ci + 1 and does not delay any arriving token, another process

pj may have either a larger, inaccurate estimate, or may perceive that tokens are

unaligned with its counter and therefore delay some arriving tokens. Such delay would

lead to pi detecting an apparently larger ring size, since the measured traversal time

around the ring would include pj ’s delays. Hence pi would raise its estimate for the

separation value. Note that the problem may admit other types of algorithms: for

example, if tokens are allowed to carry data, this would enable processes to

communicate. Whether such increased communication power is useful is an open

question. Another direction would be to use randomized timing, so that different delay

processes do not interfere. An obvious direction for future research is to move beyond

rings to other topologies. Figure 24 below suggests how a virtual ring can be mapped

upon a network, which could provide separated token circulation. Another possibility is

95

to map distinct rings upon a network to cover all nodes and attempt to coordinate the

timing of token circulation in these rings where they intersect [43].

Figure 24 Virtual ring can be mapped upon a network, which could provide separated
token circulation.

96

APPENDIX A

EQUIVALENT JAVA PROGRAM FOR BLINK.DESAL

The figure A1 shows equivalent java program for Blink.desal. The figure starts in

the next page.

97

// import tinyos message to enable message communication with the base
// station via the SerialForwarder
import java.util.*;
import java.lang.Thread;
import java.lang.Object;
import java.util.concurrent.TimeUnit;
import java.lang.System;
import net.tinyos.message.*;
import net.tinyos.util.*;
import java.io.*;

// the name of the java file is Proto.java
public class Proto extends net.tinyos.message.Message implements

MessageListener
{
// No variables declared for the Blink application
// ID is a constant giving the identity code for a sensor node
 static DV ID = new DV();
 //Declare shared and unshared variables public static
 public static class structClass {
 }
// class RunF Declare System Variables
 public static class Runf {

 public static DV moteId() {
 DV val = new DV(0, "shared", 0);
 return val;
 }
 public static DV tsr() {
 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV temp(){
 DV val = new DV(0, "unshared", 0);
 return val;
 }
// redON() and redOff() will be called from the two bodies as per the
 code: very 3s after 0s

 true:
 $redOn()

 every 3s after 1s
 true:
 $redOff()

 public static DV redOn(){
 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV redOff(){
 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV blueOn(){
 DV val = new DV(0, "unshared", 0);
 return val;}
 public static DV blueOff(){
 DV val = new DV(0, "unshared", 0);
 return val;}

Figure A1 Java program Proto.java equivalent to Blink.desal

98

 public static DV greenOn(){
 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV greenOff(){
 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV toggleRed(){
 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV toggleBlue(){
 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV toggleGreen(){
 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV source(DV a){

 DV val = new DV(0, "unshared", 0);
 return val;
 }
 public static DV bound(DV a){

 DV val = new DV(3, "unshared", 0);
 return val;
 }
 public static DV age(DV a){

 DV val = new DV(0, "unshared", 0);
 return val;
 }

 }

 //Declare Bodies

 // first Body: every 3s after 0s
public static class Body0 implements Runnable {
 public static DV DV = new DV();
 public static Runf Runf = new Runf();
 private int frequency = 3 ;
 private String frequencyUnit = "sec" ;
 private int period = 0 ;
 private String periodUnit = "sec" ;

 private long freq = 0 ;

 private long perd = 0 ;

 public void run() {
 while(true) {
 int num_guards = 1 ;
 long starttime = System.currentTimeMillis();
 int gindex =0; // guard index

Figure A1 continued

99

 if(frequencyUnit.equals("sec")) {freq =
frequency*1000; }

 if(frequencyUnit.equals("min")) {freq =
frequency*60*1000; }

 if(frequencyUnit.equals("hour")) {freq =
frequency*60*60*1000; }

 while (starttime < freq) {
 switch (gindex) {

// true: $redOn()

 case 0:
 if(DV.getBoolean(DV.ConstBool(true))){
 Runf.redOn();
 }
 default: System.out.println("invalid guard

number");
 }
 if (gindex < num_guards) {gindex ++ ;} else {gindex

=0 ;}
 starttime = System.currentTimeMillis() - starttime;
 }
 if(periodUnit.equals("sec")) {perd = frequency*1000;

}
 if(periodUnit.equals("min")) {perd =

frequency*60*1000; }
 if(periodUnit.equals("hour")) {perd =

frequency*60*60*1000; }
 try{ Thread.sleep(period*perd); } catch

(InterruptedException e) {}
 }
 }
 }
// second body: every 3s after 1s
public static class Body1 implements Runnable {
 public static DV DV = new DV();
 public static Runf Runf = new Runf();
 private int frequency = 3 ;
 private String frequencyUnit = "sec" ;
 private int period = 1 ;
 private String periodUnit = "sec" ;

 private long freq = 0 ;

 private long perd = 0 ;

 public void run() {
 while(true) {
 int num_guards = 1 ;
 long starttime = System.currentTimeMillis();
 int gindex =0; // guard index
 if(frequencyUnit.equals("sec")) {freq =

frequency*1000; }
 if(frequencyUnit.equals("min")) {freq =

frequency*60*1000; }
 if(frequencyUnit.equals("hour")) {freq =

frequency*60*60*1000; }

Figure A1 continued

100

 while (starttime < freq) {

 switch (gindex) {
//true: $redOff()

 case 0:
 if(DV.getBoolean(DV.ConstBool(true))){
 Runf.redOff();
 }
 default: System.out.println("invalid guard

number");
 }
 if (gindex < num_guards) {gindex ++ ;} else {gindex

=0 ;}
 starttime = System.currentTimeMillis() - starttime;
 }
 if(periodUnit.equals("sec")) {perd = frequency*1000;

}
 if(periodUnit.equals("min")) {perd =

frequency*60*1000; }
 if(periodUnit.equals("hour")) {perd =

frequency*60*60*1000; }
 try{ Thread.sleep(period*perd); } catch

(InterruptedException e) {}
 }
 }
 }

 // Declare Message

 /** The default size of this message type in bytes. */
 //public static final int DEFAULT_MESSAGE_SIZE = 28;

 /** The Active Message type associated with this message. */
 public static final int AM_TYPE = 147;

 /** Create a new ProtoMsg of size (variable). */

 public Proto() {}

 public Proto(int size){
 super(size);
 amTypeSet(AM_TYPE);
 }

 // Declare Message Communication

 MoteIF mote;
 void run() {

 mote = new MoteIF(PrintStreamMessenger.err);

 }
 public synchronized void messageReceived(int dest_addr,

Message msg)
 {

 }

Figure A1 continued

101

// send data to the SerialForwarder
 void sendMsg() {

 System.out.println("message sent");

 }

 // DESAL Methods

 public static class DV{
 private int vartype; // uint, bool, structtype
 private boolean shared = false, unshared = false, constant

= false;
 private long varvalue; // actual value
 private boolean varvaluebool;
 private String sourceId; // declare binding type and

parameters
 private DV sourceVar;
 private int targetRange;
 private boolean bound;
 private int mote_id;
 private structClass DVStructVal;
 private static Stack<DV> valD = new Stack<DV>();

 public DV() {}

 public DV(int vtype, String scope, long value) { // for

local variables
 varvalue = 0; // default
 vartype = vtype;
 if (scope.equals("shared")) { shared = true; }
 if (scope.equals("unshared")) { unshared = true; }
 if (scope.equals("const")) { constant = true; }
 varvalue = type(vtype, value);
 }

 public DV(int vtype, String scope, boolean value) { // for

local variables
 varvaluebool = false; // default
 vartype = vtype;
 if (scope.equals("shared")) { shared = true; }
 if (scope.equals("unshared")) { unshared = true; }
 if (scope.equals("const")) { constant = true; }
 varvaluebool = value;
 }

 public DV(int vtype, String scope, String value) { // for

local variables
 varvalue = 0; // default
 vartype = vtype;
 if (scope.equals("shared")) { shared = true; }
 if (scope.equals("unshared")) { unshared = true; }
 if (scope.equals("const")) { constant = true; }
 if (value.equals("ID")) {varvalue =

DV.getLong(Runf.moteId());} }

Figure A1 continued

102

 public DV(int vtype, String scope, structClass value) { //
for local variables

 varvalue = 0; // default
 vartype = vtype;
 if (scope.equals("shared")) { shared = true; }
 if (scope.equals("unshared")) { unshared = true; }
 if (scope.equals("const")) { constant = true; }
 if (vtype==4) {
 DVStructVal = new structClass();
 DVStructVal = value;}
 }

 public DV(String sourceId1, DV sourceVar1, int

targetRange1) { // for binding variables
 varvalue = 0; // default
 sourceId = sourceId1;
 sourceVar = sourceVar1;
 targetRange = targetRange1;
 //bound = false;
 //mote_id = -99;
 }

 public void push(DV x) {
 valD.push(x);
 }

 public DV pop() {
 DV vald = new DV(0, "unshared", 0);
 if (!valD.isEmpty()) {vald = valD.pop(); return

vald;}
 else {System.out.println("Stack is Empty!");

System.exit(0); return vald;}
 }

 public static boolean getBoolean(DV a) {
 if (a.varvalue == 0) {return false;}
 if (a.varvalue == 1) {return true; }
 else {System.out.println("Not a Boolean!");

System.exit(0); return false;}
 }

 public static long getLong(DV a) {
 return a.varvalue;
 }

 public static long type (int vtype, long value) {
 if (vtype == 0) {return (long)value & 0xff; }
 if (vtype == 1) {return (long)value & 0xffff; }
 if (vtype == 2) {return (long)value & 0xffffffff; }
 if (vtype == 3) {return (long)value & 0xff; }
 return (long)value;
 }

 public static DV Constant(long a) {
 DV val = new DV(0, "unshared", a);
 return val;
 }
 public static DV ConstBool(boolean a) {

Figure A1 continued

103

 DV val = new DV(3, "unshared", 0);
 if (a == false) {val.varvalue = 0; }
 if (a == true) {val.varvalue = 1; }
 return val;
 }

 public static DV add(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 long value;
 int size;
 String scope;

 if (a.vartype > b.vartype) {size = a.vartype;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 + val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV minus(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 int size;
 long value;
 String scope;

 if (a.vartype > b.vartype) {size = a.vartype;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 - val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV mult(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 int size;
 long value;
 String scope;

 if (a.vartype > b.vartype) {size = a.vartype;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 * val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV div(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 int size;

Figure A1 continued

104

 long value;
 String scope;

 if (a.vartype > b.vartype) {size = a.vartype;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 / val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV mod(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 int size;
 long value;
 String scope;

 if (a.vartype > b.vartype) {size = a.vartype;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 % val2;

 result.varvalue = type(size, value);
 return result;
 }

 public static DV Eq(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 == val2) {
 result.varvalue = 1;}
 return result;
 }

 public static DV Gt(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 > val2) {
 result.varvalue = 1; }

 return result;
 }

 public static DV Gte(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 >= val2) {
 result.varvalue = 1; }
 return result;}

Figure A1 continued

105

 public static DV Lt(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 < val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Lte(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 <= val2) {
 result.varvalue = 1; }
 return result;
 }

 /*************************(int a, DV

b)**********************/

 public static DV add(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;
 int size;
 long value;
 String scope;

 if (4 > b.vartype) {size = 4;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 + val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV minus(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;
 int size;
 long value;
 String scope;

 if (4 > b.vartype) {size = 4;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 - val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV mult(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;

Figure A1 continued

106

 int size;
 long value;
 String scope;

 if (4 > b.vartype) {size = 4;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 * val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV div(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;
 int size;
 long value;
 String scope;

 if (4 > b.vartype) {size = 4;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 / val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV mod(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;
 int size;
 long value;
 String scope;

 if (4 > b.vartype) {size = 4;}
 else {size = b.vartype;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 % val2;

 result.varvalue = type(size, value);
 return result;
 }

 public static DV Eq(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 == val2) {
 result.varvalue = 1;}
 return result;
 }

 public static DV Gt(int a, DV b) {
 long val1 = a;

Figure A1 continued

107

 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 > val2) {
 result.varvalue = 1; }

 return result;
 }

 public static DV Gte(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 >= val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Lt(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 < val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Lte(int a, DV b) {
 long val1 = a;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 <= val2) {
 result.varvalue = 1; }
 return result;
 }

 /**/

 /*************************(DV a, int

b)**********************/

 public static DV add(DV a, int b) {
 long val1 = a.varvalue;
 long value;
 int size;
 String scope;

 if (a.vartype > 4) {size = a.vartype;}
 else {size = 4;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);

Figure A1 continued

108

 value = val1 + b;
 result.varvalue = type(size, value);
 return result;
 }
 public static DV minus(DV a, int b) {
 long val1 = a.varvalue;
 long value;
 int size;
 String scope;

 if (a.vartype > 4) {size = a.vartype;}
 else {size = 4;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 - b;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV mult(DV a, int b) {
 long val1 = a.varvalue;
 long value;
 int size;
 String scope;

 if (a.vartype > 4) {size = a.vartype;}
 else {size = 4;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 * b;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV div(DV a, int b) {
 long val1 = a.varvalue;
 long value;
 int size;
 String scope;

 if (a.vartype > 4) {size = a.vartype;}
 else {size = 4;}
 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 / b;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV mod(DV a, int b) {
 long val1 = a.varvalue;
 long val2 = b;
 long value;
 int size;
 String scope;

 if (a.vartype > 4) {size = a.vartype;}
 else {size = 4;}

Figure A1 continued

109

 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 % val2;

 result.varvalue = type(size, value);
 return result;
 }

 public static DV Eq(DV a, int b) {
 long val1 = a.varvalue;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 == val2) {
 result.varvalue = 1;}
 return result;
 }

 public static DV Gt(DV a, int b) {
 long val1 = a.varvalue;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 > val2) {
 result.varvalue = 1; }

 return result;
 }

 public static DV Gte(DV a, int b) {
 long val1 = a.varvalue;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 >= val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Lt(DV a, int b) {
 long val1 = a.varvalue;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 < val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Lte(DV a, int b) {
 long val1 = a.varvalue;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 <= val2) {
 result.varvalue = 1; }
 return result;
 }

Figure A1 continued

110

 /**/

 public static DV add(int a, int b) {
 long val1 = a;
 long val2 = b;
 long value;
 int size =4;
 String scope;

 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 + val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV minus(int a, int b) {
 long val1 = a;
 long val2 = b;
 long value;
 int size =4;
 String scope;

 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 - val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV mult(int a, int b) {
 long val1 = a;
 long val2 = b;
 long value;
 int size =4;
 String scope;

 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 * val2;
 result.varvalue = type(size, value);
 return result;
 }

 public static DV div(int a, int b) {
 long val1 = a;
 long val2 = b;
 long value;
 int size =4;
 String scope;

 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 / val2;
 result.varvalue = type(size, value);
 return result; }

 public static DV mod(int a, int b) {

Figure A1 continued

111

 long val1 = a;
 long val2 = b;
 long value;
 int size =4;
 String scope;

 scope = "unshared";
 DV result = new DV(size, scope, 0);
 value = val1 % val2;

 result.varvalue = type(size, value);
 return result;
 }

 public static DV Eq(int a, int b) {
 long val1 = a;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 == val2) {
 result.varvalue = 1;}
 return result;
 }

 public static DV Gt(int a, int b) {
 long val1 = a;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 > val2) {
 result.varvalue = 1; }

 return result;
 }

 public static DV Gte(int a, int b) {
 long val1 = a;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 >= val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Lt(int a, int b) {
 long val1 = a;
 long val2 = b;
 DV result = new DV(3, "unshared", 0);

 if (val1 < val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Lte(int a, int b) {
 long val1 = a;
 long val2 = b;

Figure A1 continued

112

 DV result = new DV(3, "unshared", 0);

 if (val1 <= val2) {
 result.varvalue = 1; }
 return result;
 }

 /**/

 public static DV And(DV a, DV b) {
 DV result = new DV(3, "unshared", 0);
 boolean val1 = false;
 boolean val2 = false;

 if (a.vartype == 3) {if (a.varvalue == 1) {val1 =

true; } else {val1 = false; } }
 if (b.vartype == 3) {if (b.varvalue == 1) {val2 =

true; } else {val2 = false; } }

 if (val1 & val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Or(DV a, DV b) {
 DV result = new DV(3, "unshared", 0);
 boolean val1 = false;
 boolean val2 = false;

 if (a.vartype == 3) {if (a.varvalue == 1) {val1 =

true; } else {val1 = false; } }
 if (b.vartype == 3) {if (b.varvalue == 1) {val2 =

true; } else {val2 = false; } }

 if (val1 || val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Ne(DV a, DV b) {
 long val1 = a.varvalue;
 long val2 = b.varvalue;
 DV result = new DV(3, "unshared", 0);

 if (val1 != val2) {
 result.varvalue = 1; }
 return result;
 }

 public static DV Not(DV a) {
 boolean val = false;
 DV result = new DV(3, "unshared", 0);
 if (a.vartype == 3) {if (a.varvalue == 1) {val =

true; } else {val = false; } }
 if(!val) {

Figure A1 continued

113

 result.varvalue = 1;
 }
 return result;
 }
 public static void set(DV a, DV b) {
 int size;

 if (a.vartype > b.vartype) {size = a.vartype;}
 else {size = b.vartype;}
 a.varvalue = b.varvalue;
 }
 public static void set(DV a, int b) {
 a.varvalue = b;
 }
 public static void set(int a, int b) {
 a = b;
 }
 public static void set(long a, DV b) {
 a = b.varvalue;
 }

 public static void set(DV a, boolean b) {
 a.varvaluebool = b;
 }

}
 //Declare Main
 public static void main(String[] args)
 {
 Thread t0= new Thread(new Body0());
 t0.start();
 Thread t1= new Thread(new Body1());
 t1.start();

 }
}

Figure A1 continued

114

APPENDIX B

DESAL GRAMMAR (GRAMMAR.DEF FILE)

The figure B1 shows some of the grammar rules in the grammar.def file. We

invented a small, abbreviated syntax to generate dparser grammar, which is a style of

commented Python. Here, the abbreviated syntax has two basic forms, single rules and

multiple rulesets. Each rule or ruleset starts with a string, in column 1, looking like #nn#,

where 'nn' is a number. The meaning of this number is taken from the Java Class

numbering given by Dalton and Hallstrom, in their original Java compiler. An example is

the following rule:

 #2#

 componentDec: "component" var_id subComponentListNull

if type(term2) == types.ListType:

term2=term2[0]

 node["var_id"] = term1

 node["subComponentListNull"] = term2

 node["name"] = "component"

Notice that the rule starts with #2#, which means this will generate a dparser

pattern (the first line following the #2# is the pattern), which eventually will generate a

node of type 2, when a DESAL program is compiled into an Abstract Syntax Tree. The

remaining lines in the rule are Python statements executed after dparser matches to the

pattern. Here, some conventions are:

 1. numTerms is a Python local variable equal to the number of terms matched

by the dparser pattern. This may be variable, because dparser rules can have optional

matching expressions (so numTerms isn't always the same number).

 2. term0, term1, term2, etc, refer to the terms matched by the dparser pattern.

You can refer to these terms in string manipulation and comparison code, but sometimes

115

the terms are not Strings, but are lists (this depends on how your grammar is defined).

Notice above, the assignment: term2=term2[0]. This assignment is based on the

assumption that term2 is a list prior to the assignment, and the first item of the list

replaces local variable term2 (of course, this assumption is valid because of the "if" test

on term2's type!).

 3. The "output" of the rule is always a Python dictionary called, locally, 'node'.

Here, you can add particular key/value things to this dictionary. Notice that above, the

key "var_id" is added to the node. Some keys are standard, and be careful about these:

 1. node["CaseNo"] -- automatically assigned, this will be the node's number

(for the example above, it is 2).

 2. node["LineNo"] -- automatically assigned, this is the line number of the

DESAL program source for the matching program fragment.

 3. node["ColumnNo"] -- like LineNo, but for column number.

 4. node["Name"] -- optional; used basically for debugging and pretty

printing of the parse tree by some tools.

For some cases, one dparser pattern could possible generate different node

numbers, depending on inputs. To allow this, we have rulesets. A ruleset starts, like a

rule, with a #xxx#-string in column 1, but the 'xxx' here will be a comma-separated list of

numbers; these are the possible node numbers for the ruleset. Example:

 #3,4#

 subComponentListNull: subComponentList?

 if not term0:

 #4#

 else:

 if type(term0) == types.ListType: term0=term0[0]

 #3#

 node["subComponentList"] = term0

116

 This example shows a ruleset for node types 3 and 4. Notice that we see

Python code interwoven with #3# and #4#, which are indicators of the specific definitions

for node types 3 and 4. In the example, node type 4 has no special dictionary key/value

items added, whereas type 3 has one key/value item added. Our tool validates that the

lines following a ruleset definition contain entries for all the rules that should be defined.

Thus, following #3,4#, there has to be some line #3# and some line #4# (and, of course,

no line #5# or other crazy numbers).

117

#0#
 program: Dispatch
 node["Dispatch"] = term0
 node["name"] = "program"

#1#
 Dispatch: componentDec
 node["componentDec"] = term0
 node["name"] = "Dispatch"

#2#
 componentDec: "component" var_id subComponentListNull
 if type(term2) == types.ListType: term2=term2[0]
 node["var_id"] = term1
 node["subComponentListNull"] = term2
 node["name"] = "componentDec"

#3,4#
 subComponentListNull: subComponentList?
 if not term0:
 #4#
 node["name"] = "subComponentListNull"
 else:
 if type(term0) == types.ListType: term0=term0[0]
 #3#
 node["subComponentList"] = term0
 node["name"] = "subComponent"

#5,6#
 subComponentList: subComponentList subComponent | subComponent
 if numTerms == 2:
 if type(term0) == types.ListType:
 term0=term0[0]
 #5#
 node["subComponentList"] = term0
 node["subComponent"] = term1
 node["name"] = "subComponentList"
 elif numTerms == 1:
 #6#
 node["subComponent"] = term0
 node["name"] = "subComponent"

#7,8#
 subComponent: DecList Body | Body
 if numTerms == 2:
 #7#
 node["DecList"] = term0
 node["Body"] = term1
 node["name"] = "DecList"
 else:
 #8#
 node["Body"] = term0
 node["name"] = "Body"

#9,10,11,114,118,12,13,14,115,119#
 DecList: DecList StructInit | DecList structDec | DecList stateDec |

DecList bindingDec | DecList funcDec | StructInit | structDec | stateDec |
bindingDec | funcDec

Figure B1 Grammar.def file containing the DESAL grammar rules.

118

 if numTerms == 2:
 if type(term0) == types.ListType:
 term0=term0[0]
 if term1["CaseNo"] == 94:
 #print "\n\n "
 #print "struct Dec in DecList is: ", term1
 #print "\n\n "
 #9#
 node["DecList"] = term0
 node["strucDec"] = term1
 node["name"] = "DecList"
 if term1["CaseNo"] == 15:
 #10#
 node["DecList"] = term0
 node["stateDec"] = term1
 node["name"] = "DecList"
 if term1["CaseNo"] == 16:
 #11#
 node["DecList"] = term0
 node["bindingDec"] = term1
 node["name"] = "DecList"
 if term1["CaseNo"] == 112:
 #114#
 node["DecList"] = term0
 node["funcDec"] = term1
 node["name"] = "DecList"
 if term1["CaseNo"] == 85:
 #118#
 node["DecList"] = term0
 node["structInit"] = term1
 node["name"] = "DecList"
 if numTerms == 1:
 if term0["CaseNo"] == 94:
 #12#
 #print "\n\n "
 #print "struct Dec is: ", term0
 #print "\n\n "
 node["structDec"] = term0
 node["name"] = "strucDec"
 if term0["CaseNo"] == 15:
 #13#
 node["stateDec"] = term0
 node["name"] = "stateDec"
 if term0["CaseNo"] == 16:
 #14#
 node["bindingDec"] = term0
 node["name"] = "bindingDec"
 if term0["CaseNo"] == 112:
 #115#
 node["funcDec"] = term0
 node["name"] = "funcDec"
 if term0["CaseNo"] == 85:
 #119#
 node["structInit"] = term0
 node["name"] = "structInit"

#15#
 stateDec: varClass varDec

Figure B1 continued

119

 node["varClass"] = term0
 node["varDec"] = term1
 node["name"] = "stateDec"

#16#
 bindingDec: "binding" VarType bindingVarList
 node["VarType"] = term1
 node["bindingVarList"] = term2
 node["name"] = "bindingDec"

#17,18#
 bindingVarList: bindingVarList ',' bindingVar | bindingVar
 if numTerms == 3:
 if type(term0) == types.ListType:
 term0=term0[0]
 #17#
 node["bindingVarList"] = term0
 node["bindingVar"] = term2
 node["name"] = "bindingVarList"
 if numTerms == 1:
 #18#
 node["bindingVar"] = term0
 node["name"] = "bindingVar"

#19#
 bindingVar: var_id bindingExp
 node["var_id"] = term0
 node["bindingExp"] = term1
 node["name"] = "bindingVar"

#20#
 bindingExp: bindingType bindingScope '.' var_id '.' var_id

bindingLimitExp
 node["bindingType"] = term0
 node["bindingScope"] = term1
 node["var_id"] = term3
 node["var_id1"] = term5
 node["bindingLimitExp"] = term6
 node["name"] = "bindingExp"

#21#
 bindingType: "<-"
 node["name"] = "<-"

#22,23#
 bindingScope: '*' | var_int
 if term0 == '*':
 #22#
 node["name"] = "*"
 else:
 #23#
 #node[''expr''] = term0[''name'']
 node["name"] = term0["name"]

#24,25#
 bindingLimitExp: ('[' var_int ']')?
 if not term0:
 #25#

Figure B1 continued

120

 node["name"] = "bindingLimitExpNull"
 else:
 #24#
 node["expr"] = term0[1]["name"]
 node["name"] = "bindingLimitExp"

#26#
 Body: "every" expr TimeUnit "after" expr TimeUnit GuardList
 node["expr"] = term1
 node["TimeUnit"] = term2
 node["expr1"] = term4
 node["TimeUnit1"] = term5
 node["GuardList"] = term6
 node["name"] = "Body"

#27,28#
 GuardList: GuardList '[' ']' Guard | Guard
 if numTerms == 4:
 if type(term0) == types.ListType:
 term0=term0[0]
 #27#
 node["GuardList"] = term0
 node["Guard"] = term3
 node["name"] = "GuardList"
 else:
 #28#
 node["Guard"] = term0
 node["name"] = "Guard"

#29#
 Guard: expr ':' stmntListNull
 if type(term2) == types.ListType:
 term2=term0[0]
 node["expr"] = term0
 node["stmntListNull"] = term2
 node["name"] = "Guard"

#30,31#
 stmntListNull : stmntList?
 if not term0:
 #31#
 node["name"] = "stmntListNull"
 else:
 if type(term0) == types.ListType:
 term0=term0[0]
 #30#
 node["stmntList"] = term0
 node["name"] = "stmntList"

#32,33,34#
 stmntList : stmntList stmnt | stmnt | "error"
 if numTerms == 2:
 #32#
 node["stmntList"] = term0
 node["stmnt"] = term1
 node["name"] = "stmntList"
 if numTerms == 1:
 if t != "error":

Figure B1 continued

121

 #33#
 node["stmnt"] = term0
 node["name"] = "stmnt"
 else:
 #34#
 node["name"] = "error"

#35,36,37,38,117#
 stmnt : AssignS | ForEachS | IfS | FuncCallstmnt | funcCall
 if term0["CaseNo"] == 40:
 #35#
 node["AssignS"] = term0
 node["name"] = "AssignS"
 if term0["CaseNo"] == 41:
 #36#
 node["ForEachS"] = term0
 node["name"] = "ForEachS"
 if term0["CaseNo"] >= 42 and term0["CaseNo"]<=45:
 #37#
 node["IfS"] = term0
 node["name"] = "IfS"
 if term0["CaseNo"] == 39:
 #38#
 node["FuncCallstmnt"] = term0
 node["name"] = "FuncCallstmnt"
 if term0["CaseNo"] == 113:
 #117#
 node["FuncCall"] = term0
 node["name"] = "FuncCall"

#39#
 FuncCallstmnt : FuncCall
 node["FuncCall"] = term0
 node["name"] = "FuncCallstmnt"

#42,43,44,45#
 IfS : "if" expr '{' stmntList '}' | "if" expr '{' stmntList '}'

Else | "if" expr '{' stmntList '}' ElseIfList | "if" expr '{' stmntList '}'
ElseIfList Else

 if numTerms == 5:
 #42#
 node["if"] = term0
 node["expr"] = term1
 node["stmntList"] = term3
 node["name"] = "If"
 if numTerms == 6:
 if term5["CaseNo"] == 49:
 #43#
 node["if"] = term0
 node["expr"] = term1
 node["stmntList"] = term3
 node["Else"] = term5
 node["name"] = "If"
 elif (term5["CaseNo"] == 46) or(term5["CaseNo"] == 47):
 #44#
 node["if"] = term0
 node["expr"] = term1

Figure B1 continued

122

 node["stmntList"] = term3
 node["ElseIfList"] = term5
 node["name"] = "If"
 if numTerms == 7:
 #45#
 node["if"] = term0
 node["expr"] = term1
 node["stmntList"] = term3
 node["ElseIfList"] = term5
 node["Else"] = term6
 node["name"] = "If"

#52,53,54,55,56,57,58,59,60,61,62,63,115,64,65,66,67,68,69,70,71,72,73,74

,75,76,77#
 expr : "ID" | SrcExpr | AgeExpr | BoundExpr | compoundvarName |

CastExpr | FuncCall | funcCall | BoolLit | var_int | var_id var_init | expr
'&&' expr $binary_left 2 | expr '||' expr $binary_left 1 |'!' expr
$unary_right 7 | expr '<' expr $binary_left 4 | expr '>' expr $binary_left 4 |
expr '<=' expr $binary_left 4 | expr '>=' expr $binary_left 4 | expr '==' expr
$binary_left 3 | expr '+' expr $binary_left 5 | expr '-' expr $binary_left 5 |
expr '*' expr $binary_left 6 | expr '/' expr $binary_left 6 | expr '%' expr
$binary_left 6 | '(' expr ')' $left 8 | AssignS | "error"

 if numTerms == 1:
 if term0 == "ID":
 #52#
 node["expr_res"] = term0
 node["name"] = "ID"
 elif term0["CaseNo"] == 78:
 #53#
 node["expr_res"] = term0
 node["name"] = "expr_res"
 elif term0["CaseNo"] == 79:
 #54#
 node["expr_res"] = term0
 node["name"] = "expr_res"
 elif term0["CaseNo"] == 80:
 #55#
 node["expr_res"] = term0
 node["name"] = "expr_res"
 elif term0["CaseNo"] == 50 or term0["CaseNo"] == 51 :
 #56#
 node["expr_res"] = term0
 node["name"] = "expr_res"
 elif term0["CaseNo"] == 82:
 #57#
 node["expr_res"] = term0
 node["name"] = "cast"
 elif term0["CaseNo"] == 81:
 #58#
 node["expr_res"] = term0
 node["name"] = term0
 elif term0["CaseNo"] == 88 or term0["CaseNo"] == 89 :
 #59#
 node["expr_res"] = term0
 #node["name"] = "Bool"
 elif term0["CaseNo"] == 85:
 #75#
 node["expr_res"] = term0

Figure B1 continued

123

 #node["name"] = "exprList"
 elif term0["CaseNo"] == 40:
 #76#
 node["expr_res"] = term0
 node["name"] = "="
 elif term0 == "error":
 #77#
 node["name"] = "error"
 elif term0["CaseNo"] == 445:
 #60#
 node["expr_res"] = term0["var_int"]
 node["name"] = term0["var_int"]
 if numTerms == 3:
 if term1 == "&&":
 #61#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "&&"
 elif term1 == "||":
 #62#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "||"
 if (numTerms == 2) and (term0 == "!"):
 #63#
 node["expr"] = term1
 node["name"] = "!"
 if (numTerms == 2) and (type(term0) == dict):
 #115#
 node["var_id"] = term0
 node["var_init"] = term1
 if numTerms == 3:
 if term1 == "<":
 #64#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "<"
 elif term1 == ">":
 #65#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = ">"
 elif term1 == "<=":
 #66#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "<="
 elif term1 == ">=":
 #67#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = ">="
 elif term1 == "==":
 #68#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "=="
 elif term1 == "+":

Figure B1 continued

124

 #69#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "+"
 elif term1 == "-":
 #70#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "-"
 elif term1 == "*":
 #71#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "*"
 elif term1 == "/":
 #72#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "/"
 elif term1 == "%":
 #73#
 node["expr"] = term0
 node["expr1"] = term2
 node["name"] = "%"
 if numTerms == 3 and term0 == "(":
 #74#
 node["lp"] = term0
 node["expr"] = term1
 node["name"] = "()"

#78#
 SrcExpr : "src" '(' var ')'
 node["var"] = term2
 node["name"] = term2["var_id"]["var_id"]

#81#
 FuncCall : "$" var_id ParmList
 node["var_id"] = term1
 node["ParmList"] = term2
 node["name"] = "Function Call"

#117,118#
 structVarList: structVarList ',' structVar | structVar
 #print " structVar is ", term0
 if numTerms == 3:
 if type(term0) == types.ListType:
 term0=term0[0]
 #117#
 node["structVarList"] = term0
 node["structVar"] = term2
 node["name"] = "structVarList"
 else:
 #118#
 node["structVar"] = term0
 node["name"] = "structVar"
#111#
 structType: var_id

Figure B1 continued

125

 node["structType"] = term0
#444#
 var_id : "[a-zA-Z_][a-zA-Z0-9_]*"
 node["var_id"] = term0
 node["name"] = term0

#446#
 itr_id : "[a-zA-Z_][a-zA-Z0-9_]*"
 node["itr_id"] = term0
 node["name"] = term0

#445#
 var_int : "0" | "[1-9][0-9]*"
 node["var_int"] = term0
 node["name"] = term0

Figure B1 continued

126

BIBLIOGRAPHY

1 Maurer , S.S.: A survey of embedded systems programming languages, Potentials,
IEEE, Publication Date: Apr/May 2002, Volume: 21, Issue: 2, page(s): 30-34, ISSN:
0278-6648

2 Thomas, Philippe, Programming Embedded Systems: Seminar, WS 2006, Institute of
Computer Science, University of Innsbruck

3 Bingham, Jeff and Lee Magnusson, H8/3664 based inertial rolling robot: Circuit
Cellar feature article, Issue 200, March 2007

4 “Embedded Systems, from Wikipedia, the free encyclopedia”.
http://en.wikipedia.org/wiki/Embedded_system (accessed Nov.30, 2009)

5 Hill, J., R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister: “System
Architecture Directions for Networked Sensors,” ASPLOS, 2000

6 Gay, David, Phil Levis, Rob von Behren, Matt Welsh, Eric Brewer, and David Culler:
The nesC Language: A Holistic Approach to Networked Embedded Systems, In
Proceedings of Programming Language Design and Implementation (PLDI) 2003,
June 2003.

7 Yao, Y., and J. Gehrke: "The Cougar Approach to In-Network Query Processing in
Sensor Networks," SIGMOD, 2002

8 Levis, Philip, and David E. Culler: Maté: a tiny virtual machine for sensor networks.
ASPLOS 2002: 85-95

9 Liu, Jie, Maurice Chu, Juan Liu, James Reich, and Feng Zhao: “State-Centric
Programming for Sensor-Actuator Network Systems.” in IEEE Pervasive Computing,
October, 2003, pp.50-62.

10 Jonathan W. Hui and David Culler: The Dynamic Behavior of a Data Dissemination
Protocol for Network Programming at Scale. The 2nd ACM Conference on
Embedded Networked Sensor Systems (SenSys'04), November 3-5, 2004.

11 Klavins, Eric and Richard M. Murray: "Distributed Algorithms for Cooperative
Control," IEEE Pervasive Computing, vol. 03, no. 1, pp. 56-65, Jan-Mar, 2004.

12 Zoumboulakis, M., Roussos, G., and Poulovassilis: A. Active rules for sensor
databases. In Proceeedings of the 1st international Workshop on Data Management
For Sensor Networks: in Conjunction with VLDB 2004 (Toronto, Canada, August 30
- 30, 2004). DMSN '04, vol. 72. ACM Press, New York, NY, 98-103.

13 Abdelzaher, Tarek F., Brian M. Blum, Qing Cao, Y. Chen, D. Evans, J. George, S.
George, Lin Gu, Tian He, Sudha Krishnamurthy, Liqian Luo, Sang Hyuk Son, Jack
Stankovic, Radu Stoleru, and Anthony D. Wood: EnviroTrack: Towards an
Environmental Computing Paradigm for Distributed Sensor Networks. ICDCS 2004:
582-589

127

14 Jaein Jeong; and D. Culler: Incremental Network Programming for Wireless Sensors,
IEEE SECON 2004, October 2004

15 Welsh Matt and Geoff Mainland: Programming Sensor Networks Using Abstract
Regions. NSDI 2004: 29-42

16 Greenstein, B., E. Kohler, and D. Estrin: A sensor network application construction
kit (SNACK). In Proceedings of the 2nd international Conference on Embedded
Networked Sensor Systems (Baltimore, MD, USA, November 03 - 05, 2004). SenSys
'04. ACM Press, New York, NY, 69-80.

17 Madden, S. R., M. J. Franklin, J. M.Hellerstein, and W. Hong: TinyDB: an
acquisitional query processing system for sensor networks. ACM Trans. Database
Syst. 30, 1(Mar.2005), 122-173.

18 Newton, R., Arvind, and M. Welsh: Building up to macroprogramming: an
intermediate language for sensor networks. In Proceedings of the 4th international
Symposium on information Processing in Sensor Networks (Los Angeles, California,
April 24 - 27, 2005). Information Processing In Sensor Networks. IEEE Press,
Piscataway, NJ, 6.

19 Fok, Chien-Liang, Gruia-Catalin Roman and Chenyang Lu: Rapid Development and
Flexible Deployment of Adaptive Wireless Sensor Network Applications. ICDCS
2005: 653-662

20 Gummadi, Ramakrishna, Omprakash Gnawali and Ramesh Govindan: Macro-
programming Wireless Sensor Networks Using Kairos. DCOSS 2005: 126-140

21 Han, Chih-Chieh, Ram Kumar, Roy Shea, Eddie Kohler and Mani B. Srivastava: A
dynamic operating system for sensor nodes. MobiSys 2005: 163-176

22 Eswaran, Anand, Anthony Rowe, and Raj Rajkumar: Nano-RK: An Energy-Aware
Resource-Centric RTOS for Sensor Networks. RTSS 2005: 256-265

23 Han, Chih-Chieh, Ram Kumar, Roy Shea, and Mani Srivastava: Sensor Network
Software Update Management: A Survey in International Journal of Network
Management, vol:15 , no:1099-1190 , pp:283-294 , 26 pages , John Wiley & Sons,
Inc. , New York, NY, USA , July 2005. NESL Technical Report #: TR-UCLA-
NESL-200503-09

24 Buonadonna, Phil, Joseph Hellerstein, Wei Hong, David Gay, Samuel Madden:
TASK: Sensor Network in a Box. In Proceedings of European Workshop on Sensor
Networks, 2005.

25 Liu, Jie, Elaine Cheong, and Feng Zhao: Semantics-Based Optimization Across
Uncoordinated Tasks in Networked Embedded Systems. 5th ACM Conference on
Embedded Software (EMSOFT 2005), EMSOFT '05, September 2005.

26 Whitehouse, K., F. Zhao, and J. Liu: Semantic Streams: a framework for declarative
queries and automatic data interpretation. Technical Report MSR-TR-2005-45,
Microsoft Research, 1 Microsoft Way, Redmond, WA 98052, April 2005.

128

27 Kwon, YoungMin, Sameer Sundresh, Kirill Mechitov, Gul Agha: "ActorNet: An
Actor Platform for Wireless Sensor Networks," Fifth International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2006.

28 Gnawali, Omprakash, Ben Greenstein, Ki-Young Jang, August Joki, Jeongyeup Paek,
Marcos Vieira, Deborah Estrin, Ramesh Govindan and Eddie Kohler: The TENET
Architecture for Tiered Sensor Networks, In Proceedings of the ACM Conference on
Embedded Networked Sensor Systems (Sensys), November 2006.

29 Terfloth, K, G. Wittenburg, and J. Schiller.: FACTS - A Rule-Based Middleware
Architecture for Wireless Sensor Networks, First IEEE International Conference on
Communication System Software and Middleware (COMSWARE 2006), New Delhi,
India, January 2006

30 Gu, L. and J. A. Stankovic: t-kernel: Providing Reliable OS Support for Wireless
Sensor Networks. In Proc. of the 4th ACM Conf. on Embedded Networked Sensor
Systems (SenSys'06), Nov, 2006.

31 Terfloth, K., G. Wittenburg, and J. Schiller: Rule-oriented Programming for Wireless
Sensor Networks,International Conference on Distributed Computing in Sensor
Networks (DCOSS) EAWMS Workshop, San Francisco, USA, June 2006

32 Razavi, Reza, Kirill Mechitov, Sameer Sundresh, Gul Agha and Jean-Francois Perrot:
"Ambiance: Adaptive Object Model-based Platform for Macroprogramming Sensor
Networks," ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), 2006.

33 McCartney, William P. and Nigamanth Sridhar: Abstractions for Safe Concurrent
Programming in Networked Embedded Ssytems. Proceedings of SenSys '06: 4th
ACM Conference on Embedded Networked Sensor Systems, November 1--3 2006.
Pages 167--180.

34 Sen, Shondip and Rachel Cardell-Oliver: A Rule-Based Language for Programming
Wireless Sensor Actuator Networks using Frequency and Communication. In
proceedings of the third IEEE Workshop on Embedded Networked Sensors,
Cambridge, MA. May 2006

35 Intagonwiwat, R. Gupta and A. Vahdat: "Declarative Resource Naming for
Macroprogramming Wireless Networks of Embedded Systems", C. To appear in
International Workshop on Algorithmic Aspects of Wireless Sensor Networks
(ALGOSENSORS), Venice, Italy, July 15 2006.

36 Kwon, YoungMin and Gul Agha: "Scalable Modeling and Performance Evaluation of
Wireless Sensor Networks," to appear in Real-Time and Embedded Technology and
Applications Symposium (RTAS), IEEE, 2006.

37 Woo, A., S. Seth, T. Olson, J. Liu, and F. Zhao: A spreadsheet approach to
programming and managing sensor networks. In Proceedings of the Fifth
international Conference on information Processing in Sensor Networks (Nashville,
Tennessee, USA, April 19 - 21, 2006). IPSN '06. ACM Press, New York, NY, 424-
431.

129

38 Razavi, Reza, Kirill Mechitov, Gul Agha and Jean-Francois Perrot: "Dynamic
Macroprogramming of Wireless Sensor Networks with Mobile Agents," 2nd
Workshop on Artificial Intelligence Techniques for Ambient Intelligence (AITAmI),
2007.

39 Hadim Salem and Nader Mohamed: "Middleware Challenges and Approaches for
Wireless Sensor Networks," IEEE Distributed Systems Online, vol. 7, no. 3, 2006,
art. no. 0603-o3001.

40 Arora, Anish, Mohamed Gouda, Jason Hallstrom, Ted Herman, Bill Leal, and
Nigamanth Sridhar: A State-Based Language for Sensor-Actuator Networks, To
appear, WWSNA 2007 (ACM/IEEE Workshop of IPSN 2007).

41 Prechelt, L: An Empirical Comparison of Seven Programming Languages. Computer
33, 10 (Oct. 2000), 23-29.

42 Dalton, Andy R., William P. McCartney, Kajari Ghosh-Dastidar, Jason O. Hallstrom,
Nigamanth Sridhar, Ted Herman, William Leal, Anish Arora, and Mohamed Gouda:
DESAL-a: An Implementation of the Dynamic Embedded Sensor-Actuator
Language. In Proceedings of the International Conference on Computer
Communications Networks (ICCCN 2008), US Virgin Islands, USA, August 2008.

43 GhoshDastidar, Kajari and Ted Herman: Separation of Circulating tokens, CoRR
abs/0908.1797: (2009), SSS 2009.

44 Wang, L., and Y. Xiao: "A Survey of Energy-Efficient Scheduling Mechanisms in
Sensor Networks", Mobile Network and Applications (MONET), 11(5), pp. 723-740,
Oct. 2006.

45 Kumar, S., T. H. Lai, and J. Balogh: On k-coverage in a mostly sleeping sensor
network. In Proceedings of the 10th Annual International Conference on M144–158,
2004.

46 Tian, D. and N. D. Georganas: A coverage-preserving node scheduling scheme for
large wireless sensor networks. In Proceedings of the 1st ACM International
Workshop on Wireless Applications (WSNA ’02), pages 32–41, 2002.

47 Ye, F., G. Zhong, J. Cheng, S. Lu, and L. Zhang: Peas: A robust energy conserving
protocol for long-lived sensor networks. In Proceedings of the 23rd International
Conference (ICDCS ’03), pages 28–37, 2003.

48 Cerpa and D. Estrin: Ascent: Adaptive self-configuring sensor networks topologies.
In Proceedings of IEEE INFOCOM 2002, New York, NY, June 2002.

49 He, T., S. Krishnamurthy, L. Luo, T. Yan, L. Gu., R. Stoleru, G. Zhou, Q. Cao, P. , P.
Stankovic,, T. Abdelzaher, J. Hui, and B. Krogh: VigilNet: An integrated sensor
network system for energy-efficient surveillance. ACM Trans. Sen. Netw. 2, 1 (Feb.
2006), 1-38.

50 Yu, S. and Zhang, Y.: R-Sentry: Providing Continuous Sensor Services against
Random Node Failures. In Proceedings of the 37th Annual IEEE/IFIP international
Conference on Dependable Systems and Networks (June 25 - 28, 2007). DSN. IEEE
Computer Society, Washington, DC, 235-244.

130

51 Dijkstra, E. W.: Self-Stabilizing Systems in Spite of Distributed Control, volume 17,
pages 643–644. Communications of the ACM, 1974. 42

52 Herman, Ted, Chen Zhang: Best Paper: Stabilizing Clock Synchronization for
Wireless Sensor Networks. SSS 2006: 335-349

53 Bapat, S., Leal, W., Kwon, T., Wei, P., and Arora, A. 2009. Chowkidar: Reliable and
scalable health monitoring for wireless sensor network testbeds. ACM Trans. Auton.
Adapt. Syst. 4, 1 (Jan. 2009), 1-32.

54 “TinyOS Tutorial”. www.tinyos.net/tinyos-1.x/doc/tutorial/ (accessed Nov.30, 2009)

55 Nichols, M.H., A radio frequency identification system for monitoring coarse
sediment particle displacement. Applied engineering in agriculture. 2004 Nov., v. 20,
no. 6, p. 783-787.

	University of Iowa
	Iowa Research Online
	Fall 2009

	Programming and self stabilization for wireless sensor networks
	Kajari Ghosh Dastidar
	Recommended Citation

	Microsoft Word - DoctoralAbstract-Kajari

