
University of Iowa
Iowa Research Online

Theses and Dissertations

2007

Chromatic scheduling
Rajiv Raman
University of Iowa

Copyright 2007 Rajiv Raman

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/156

Follow this and additional works at: https://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Raman, Rajiv. "Chromatic scheduling." PhD (Doctor of Philosophy) thesis, University of Iowa, 2007.
https://ir.uiowa.edu/etd/156.

https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F156&utm_medium=PDF&utm_campaign=PDFCoverPages

CHROMATIC SCHEDULING

by

Rajiv Raman

An Abstract

Of a thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

July 2007

Thesis Supervisor: Associate Professor Sriram Pemmaraju

1

ABSTRACT

A classical problem in combinatorics and combinatorial optimization is the

graph coloring problem, which asks for the smallest number of colors required to

color the vertices of a graph so that adjacent vertices receive distinct colors. Graph

coloring arises in several applications of scheduling and resource allocation. However,

problems arising in these applications are more general than classical coloring. In this

thesis, we present several approximation algorithms and complexity results for such

generalized coloring problems.

We deal with the class of perfect graphs and sub-classes of perfect graphs on

which the classical coloring problem can be solved in polynomial time. However,

the coloring problems we consider are NP-hard even on very restricted sub-classes of

perfect graphs. The contributions of this thesis are :

• The first constant factor approximation algorithms and complexity results for

the max-coloring problem on bipartite graphs, interval graphs and an any hered-

itary class of graphs.

• An improved analysis of the well studied first-fit coloring algorithm for interval

graphs.

• An experimental evaluation of new heuristics for the max-coloring and interval

coloring problem on chordal graphs.

2

Abstract Approved:
Thesis Supervisor

Title and Department

Date

CHROMATIC SCHEDULING

by

Rajiv Raman

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

July 2007

Thesis Supervisor: Associate Professor Sriram Pemmaraju

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Rajiv Raman

has been approved by the Examining Committee for the thesis requirement for the
Doctor of Philosophy degree in Computer Science at the July 2007 graduation.

Thesis Committee:

Sriram Pemmaraju, Thesis Supervisor

Samuel A. Burer

Suely Oliveira

Alberto M. Segre

Kasturi R. Varadarajan

“To” my mother, for all that she has given me.

ii

ACKNOWLEDGEMENTS

This thesis, and all the results herein would not have been possible without

the guidance of Professor Sriram Pemmaraju. I first met Sriram when he was at IIT

Bombay, and his courses on Discrete Algorithms and Automata Theory were what

got me interested in Theoretical Computer Science. I have greatly benefited from

Sriram’s generous and sage advise over the years, and I am deeply indebted to him

for my growth, both as a researcher and as a person. Sriram has always been there,

spending countless hours discussing research ideas, honing my technical presentations,

proof-reading my manuscripts, guiding me on job applications, and inviting me to his

house for some wonderful dinners. Thank you Sriram.

I would also like to thank Kasturi Varadarajan, whose courses in Computa-

tional Geometry were some of the best courses I’ve taken at the University of Iowa.

Kasturi was always there with kind words of encouragement, and sharing his excite-

ment and enthusiasm for research. I have also learnt a lot from Bruno Codenotti,

who spent a year visiting the University of Iowa and whose course on Game Theory

got me interested in Computational Economics. Bruno’s enthusiasm, and friendliness

were a great source of inspiration.

I would also thank my committee members: Sam Burer, Suely Oliveira, Al-

berto Segre, and Kasturi Varadarajan. I would especially like to thank Alberto for

carefully reading my manuscript and suggesting changes to Chapter 4 which greatly

improved the presentation.

I spent two summers and a semester working at Los Alamos National Labs.

iii

I would like to thanks Anders Hansson, Gabriel Istrate and Stephan Eidenbenz, for

providing me with the opportunity to work at the labs, and all the students and

interns at the lab for providing an exciting research environment.

I met a great bunch of people at Iowa without whom, life would have been

a lot less interesting. I would like to thank, in no particular order, Allison, Amit,

Jenelle, Imran, John, Swati, Eli, Sandeep, Ben, Jennifer, Shouxi, Chetan, Aditya,

Varsha, Soumik, Hari and Shiv. I apologise in advance to those whose names I forget

to mention here, but Thank you.

Going back further in time, I would like to thank Shobana, Kurosh and Iris

for encouraging me to leave a cushy job to pursue a graduate degree.

Finally, I would like to thank my brother and my mother for their constant

love, support and encouragement.

iv

ABSTRACT

A classical problem in combinatorics and combinatorial optimization is the

graph coloring problem, which asks for the smallest number of colors required to

color the vertices of a graph so that adjacent vertices receive distinct colors. Graph

coloring arises in several applications of scheduling and resource allocation. However,

problems arising in these applications are more general than classical coloring. In this

thesis, we present several approximation algorithms and complexity results for such

generalized coloring problems.

We deal with the class of perfect graphs and sub-classes of perfect graphs on

which the classical coloring problem can be solved in polynomial time. However,

the coloring problems we consider are NP-hard even on very restricted sub-classes of

perfect graphs. The contributions of this thesis are :

• The first constant factor approximation algorithms and complexity results for

the max-coloring problem on bipartite graphs, interval graphs and an any hered-

itary class of graphs.

• An improved analysis of the well studied first-fit coloring algorithm for interval

graphs.

• An experimental evaluation of new heuristics for the max-coloring and interval

coloring problem on chordal graphs.

v

TABLE OF CONTENTS

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Applications . 3
1.1.1 Scheduling Conflicting Jobs 3
1.1.2 Dynamic Storage Allocation 3
1.1.3 Buffer Minimization . 4

1.2 Background and Notation . 5
1.2.1 Approximation Algorithms 5
1.2.2 Online Algorithms . 7
1.2.3 Graph Theory . 9
1.2.4 Perfect Graphs and Sub-Classes of Perfect Graphs 11
1.2.5 Non-perfect Graph Classes 14

1.3 Organization and Overview of Contributions 16
1.3.1 First-fit Coloring . 16
1.3.2 Max-Coloring . 19
1.3.3 Interval Coloring . 25
1.3.4 Experimental Evaluation 26

2 FIRST-FIT COLORING . 28

2.1 Introduction . 28
2.1.1 First-Fit Coloring of Interval Graphs 28
2.1.2 Online Coloring of Intervals with Bandwidth 31

2.2 Column Construction . 36
2.2.1 Column Construction . 37

2.3 Interval Coloring with Bandwidths 46
2.3.1 Improved Analysis . 47
2.3.2 Column Construction for Intervals with Bandwidth 49
2.3.3 Some Columns are Tall 50
2.3.4 Some Tall Columns are Dense 51

2.4 Future Work . 52

3 APPROXIMATION ALGORITHMS FOR MAX-COLORING 53

3.1 Introduction . 53
3.1.1 Buffer Minimization . 53
3.1.2 Batch scheduling . 55

vi

3.2 Related Work . 56
3.3 Interval Graphs . 58

3.3.1 A 2-approximation algorithm 60
3.3.2 NP-hardness . 66

3.4 Max-Coloring Trees and Bipartite Graphs 69
3.4.1 Max-Coloring Trees . 69
3.4.2 Max-Coloring Bipartite Graphs. 77
3.4.3 An (8

7
− ε)-hardness reduction 84

3.5 Max-Coloring on Hereditary Graphs 88
3.5.1 The Weight Partitioning Algorithm 89
3.5.2 Chromatic Partitioning 96

3.6 Future Work . 110

4 EXPERIMENTAL EVALUATION . 112

4.1 Introduction . 112
4.2 The Algorithms . 117

4.2.1 Algorithm 1: Chromatic Partitioning(Geomfit) 117
4.2.2 Algorithm 2: First-fit in weight order 118
4.2.3 Algorithm 3: Best-fit in reverse perfect elimination order 121
4.2.4 Algorithm 4: Weight Partitioning (WtPartition) 125

4.3 Overview of the Experiments . 127
4.3.1 How chordal graphs are generated 127
4.3.2 How Weights are Assigned 128
4.3.3 Main Observations . 129
4.3.4 Interval Coloring . 138

4.4 Conclusion . 141

BIBLIOGRAPHY . 143

vii

LIST OF TABLES

Table

1.1 Summary of results for the max-coloring problem 25

4.1 Clique size distribution in Mode 1 and Mode 2 Graphs 130

4.2 Performance of the heuristics for the Max-Coloring problem 132

4.3 Performance of the heuristics for the Interval Coloring Problem 139

viii

LIST OF FIGURES

Figure

1.1 An example for Classical Coloring . 10

1.2 An interval graph and an interval representation 12

1.3 A chordal graph with a perfect elimination order 13

1.4 An example of a circular-arc graph and its representation as arcs of a circle 15

1.5 An example of a disk graph and its representation as an intersection of disks 16

1.6 An instance of a problem where fist-fit is forced to use more colors than
the chromatic number . 18

1.7 An example where the optimum max-coloring uses more colors than the
chromatic number . 20

1.8 Interval Coloring and Max-Coloring on Interval Graphs as Rectangle Packing 23

2.1 An instance of a problem where fist-fit is forced to use more colors than
the chromatic number . 29

2.2 An instance of online Interval Coloring with Bandwidths 33

2.3 An instance of intervals with bandwidth showing that First-Fit can per-
form arbitrarily badly. 35

2.4 A possible result of the column construction procedure 39

2.5 A snapshot in the column construction procedure 41

2.6 The columns at the end of the construction procedure 44

3.1 An example of a weighted interval graph for which OPTM = Ω(LOAD·log n). 60

3.2 Color classes of OPTM and MCA . 63

3.3 A circular-arc graph with k = 4 arcs crossing the ray from the center . . 68

3.4 The interval graph obtained from the circular-arc graph 68

3.5 A tight example for Max-Coloring trees 74

3.6 An instance of Max-Coloring on bipartite graphs that requires O(n) colors 78

ix

3.7 Hardness of approximation construction for Max-Coloring bipartite graphs 86

4.1 The family of tight examples for FFI and FFM. 120

4.2 The best-fit heuristic in action for interval coloring. 123

4.3 A bad example for the best-fit heuristic. 124

4.4 Graphs showing deviations from OPT of the four heuristics for Max-Coloring133

4.5 Graphs showing deviations from the lower bound of the four heuristics for
Max-Coloring . 134

4.6 Graphs showing deviations from OPT of the four heuristics for Interval
Coloring . 135

4.7 Graphs showing deviations from the lower bound of the four heuristics for
Interval Coloring . 136

x

1

CHAPTER 1
INTRODUCTION

In this dissertation, we study several graph coloring problems and present

approximation algorithms, online algorithms and hardness results for these problems.

In the classical graph coloring problem, we are given a graph G = (V, E) and the

objective is to partition the vertex set V of G into the fewest number of independent

sets. The general model of the problems we study in this dissertation are as follows:

We are given a graph G = (V, E), along with a weight function on the vertices

w : V → N. We wish to partition the vertex set of this graph into color classes (i.e.,

independent sets) while minimizing a certain global objective function that depends

on the vertex weights. For example, in the max-coloring problem the input is a graph

G = (V, E), along with vertex weights w : V → N. The task is to partition the vertex

set V of G into independent sets S1, · · · , Sk, that minimizes the sum of the maximum

weight of a vertex in each Si. In other words, if S = {S1, · · · , Sk} is a partition of V

into color classes, then the cost of this partition, cost(S) is

cost(S) =
k∑

i=1

maxv∈Si
w(v)

The objective is to find a feasible partition that has minimum cost.

Graph coloring is a fundamental combinatorial optimization problem arising

in several applications. The problem has been traditionally motivated by applications

in time-tabling, scheduling, resource allocation, etc. but also arises in diverse areas

2

such as information theory and statistical physics. The problems in this disserta-

tion are motivated by applications in resource allocation and scheduling. For both

problems, the vertices of a graph correspond to jobs. Each job requires some non-

sharable resource to run, and if two jobs require the same resource, they cannot be

run simultaneously and hence are in conflict. This pairwise conflict relation is given

by the edges of the graph. Since a coloring partitions the jobs into independent sets,

the set of jobs in each color class can be run simultaneously. Although the classical

graph coloring problem is well studied, and is hopelessly hard to approximate [28], the

graphs arising in applications tend to have special structure that makes the coloring

problem relatively easy. However, we are not interested in just solving the classical

coloring problem that requires the use of fewest number of color classes; we are in-

terested in obtaining a coloring whose cost is a function of vertex weights, as in the

case of max-coloring. As we will show in later chapters, such problems are hard even

for graph classes for which classical coloring is easy. Our approach to solving these

coloring problems are through the development of approximation algorithms, online

algorithms and efficient heuristics. Approximation algorithms are algorithms that

are guaranteed to produce solutions close to the optimum, while online algorithms

produce solutions without knowing future inputs. However, both approximation and

online algorithms give bounds on the worst case behavior of the algorithm and say

nothing about the performance of the algorithm on real-life instances. In order to

gain insight into the practical performance of the algorithms, we empirically study

the performance of our algorithms.

3

In Section 1.1, we present some of the applications that motivate our work. In

Section 1.2, we present some of the basic terminology used throughout this disserta-

tion. Finally in Section 1.3 we present the main contributions of this dissertation.

1.1 Applications

1.1.1 Scheduling Conflicting Jobs

In several scheduling applications, jobs that need to be scheduled require some

non-sharable resource to run. For example, processes in a distributed operating sys-

tem that need access to the same file or device cannot be scheduled simultaneously.

As described earlier, such a scheduling problem can naturally be modeled as a graph

coloring problem. However, not all jobs or processes are the same and each process

may have different running times. This gives rise to more general coloring problems

where each vertex has weight corresponding to its running time and we are interested

in minimizing the average completion time of the jobs or the time by which the last

job completes, etc. Further options such as whether jobs can be pre-empted, whether

jobs have to be executed in batches, etc. give rise to other variants.

1.1.2 Dynamic Storage Allocation

Static variables in a program are assigned memory during compilation. A simple way

to do this is to assign to each variable a separate location. However, this is extremely

wasteful since not all variables may be alive at the same time. Modern compilers

construct a conflict graph of the variables and use this graph to assign memory regions

to variables such that variables alive at the same time have non-intersecting memory

4

regions. Fabri [27] and Ershov [25] modeled the problem of compile-time memory

allocation as a coloring problem on graphs. Consider a simple program without loops

or branching statements. Each variable has a start-time and an end-time, and a

certain memory size requested. This can be modeled as an intersection graph of

intervals on the real line, or an interval graph where intervals correspond to variable

life times and weights on the vertices correspond to the requested size. Memory is

modeled as a linear array. The objective is to assign each vertex a contiguous region

in the memory array, whose length is equal to the weight of the vertex, such that

adjacent vertices(i.e., variables alive simultaneously) are assigned non-intersecting

regions. The objective is to minimize the total memory used to assign space to all

the variables.

1.1.3 Buffer Minimization

Programs that run with stringent memory or timing constraints use a dedicated

memory manager that provides better performance than the general purpose memory

management of the operating system. The buffer minimization problem arises in the

context of designing memory managers for wireless protocol stacks like GPRS or 3G.

With the rapid growth of wireless communication devices, many telecommunication

companies now license their wireless protocol stacks to vendors of mobile devices.

These protocols stacks have stringent memory requirements as well as soft real-time

constraints and a dedicated memory manager is a natural design choice. A dedicated

memory manager for these stacks must have deterministic response times and use as

little memory as possible. The most commonly used memory manager design for this

5

purpose is the segregated buffer pool [69]. This consists of a fixed set of buffers of

various sizes with buffers of the same size linked together in a linked list. As each

memory request arrives, it is satisfied by a buffer whose size is large enough.

The assignment of buffers to memory requests can be viewed as an assignment

of colors to the requests – all requests that are assigned the same buffer are colored

identically. In the on-line version, buffers have to be allocated to requests as they

arrive and without knowledge of future requests. The off-line version is also useful

because designers of protocol stacks would like to estimate the size of the total mem-

ory block needed by extracting large traces of memory requests and running off-line

algorithms on these traces. This buffer minimization problem was studied by Pem-

maraju, et al. [63], and also by Govindarajan , et al. [36] in the context of Digital

Signal Processing applications.

1.2 Background and Notation

1.2.1 Approximation Algorithms

As stated before, most of the problems we consider in this dissertation are

NP-hard and we develop approximation algorithms for these problems. An NP-

optimization problem Π is either a maximization or a minimization problem. Each

valid instance I of Π comes with a non-empty set of feasible solutions, each of which

is assigned a non-negative rational number called the objective function value. A

feasible solution that achieves the optimal objective function value is called an optimal

solution, denoted OPTΠ(I) for instance I. We will shorten this to OPT (I), or OPT ,

when there is no ambiguity. For example, the valid instances for the graph coloring

6

problem are all graphs G = (V, E). A feasible solution is a partition of the vertex

set V of G into independent sets, and the objective function value is the number of

independent sets in our solution. Since graph coloring is a minimization problem,

the objective is to minimize the number of independent sets required to partition the

vertex set of G. An algorithm is an approximation algorithm if it runs in polynomial

time, and is guaranteed to produce a solution that is “close” to the optimal objective

value. The precise definition is below.

Definition 1.2.1 An approximation algorithm A for a minimization problem Π is

called an α-approximation algorithm if for any instance I of Π, A runs in polynomial

time, and produces a solution whose value is at most α ·OPT (I) for problem instance

I, where α > 1. For a maximization problem Π, an algorithm A is called an α-

approximation algorithm if on any instance I of Π, A runs in polynomial time and

produces a solution whose value is at least OPT (I)/α, where α > 1.

For some NP-optimization problems, even computing an approximate solu-

tion can be hard, i.e., computing a sufficiently small approximation to the objective

function implies P=NP (or some other well known complexity conjecture believed to

be unlikely). More precisely, a minimization problem Π is inapproximable beyond

a threshold α if the existence of a β-approximation algorithm, with β < α implies

P=NP. Combinatorial optimization problems vary widely with respect to approx-

imability. Some problems admit approximations that are very close to the optimum

objective function value. For example the Knapsack Problem can be approximated

to a (1 + ε) factor for any ε > 0 by an algorithm that runs in time that is polynomial

7

in both the input size and 1/ε [60]. Such approximation algorithms are called a fully

polynomial time approximation scheme, or FPTAS. Some problems are not so well

behaved and admit a (1 + ε) factor approximation, for any ε > 0, but only with

an algorithm that runs in time that is polynomial in the input size and exponential

in 1/ε. For example the problem of machine scheduling to minimize makespan [45].

Such problems are called a polynomial time approximation scheme, or PTAS.

Other problems, such as Vertex Cover have approximation algorithms that

guarantee a constant factor approximation, but it is unlikely that they can do any

better approximation. For Vertex Cover, there is an easy 2-approximation algorithm,

while the problem is NP-hard to approximate beyond a threshold of 1.36 [18]. For

problems like Set Cover however, even a constant factor approximation is unlikely to

exist. The best approximation algorithms guarantee a lg n approximation, and the

problem is inapproximable beyond lg n [29].

Still other problems turn out to be even harder to approximate than Set Cover.

Graph Coloring, for example, is inapproximable beyond a threshold of n1−ε for any

ε > 0 [28]. For further results and definitions on approximation algorithms and

inapproximability results, see [3, 68].

1.2.2 Online Algorithms

In many applications, all the data are not available at the start of the al-

gorithm, and the algorithm must make decisions as and when data items arrive.

Algorithms that operate without making any assumptions about the future data el-

ements, but make decisions using only the information about the current and past

8

data items are called online algorithms. Online algorithms are usually required to

run in polynomial time. The performance of an online algorithm for an optimization

problem is typically measured by its competitive ratio. For example, consider the

Online Dynamic Storage Allocation problem. In this problem, we have a linear size

array W in which we wish to allocate space to the variables of a program as and when

they arrive. When a variable v arrives, it requests a contiguous space of size w(v) in

the array. The algorithm must allocate this space for the variable before satisfying

future requests, such that variables alive at the same point in time are never assigned

overlapping spaces in the array. Once a variable has been allocated space in W , it

cannot be reassigned. The objective of the algorithm is to satisfy all requests while

using the smallest size array W [55].

Definition 1.2.2 An online algorithm A is said to be c-competitive for a minimiza-

tion problem Π, if for any instance I of Π,

A(I) ≤ c ·OPT (I)

Notice that here the performance of the online algorithm is being compared

to the optimal “offline” cost. We usually have the restriction that algorithm A runs

in polynomial time. For the Online Dynamic Storage Allocation problem (DSA), the

competitive ratio of an algorithm A is the ratio of the size of the array, W , used by

the online algorithm A to the optimum space required by an offline algorithm that

has all the variable requests at the start of the algorithm. As we shall see in Chapter

9

2, if all the requests are 1, then the problem reduces to the online interval graph

coloring problem, which has a 3-competitive algorithm. However, Online DSA has

only an O(log n)-competitive algorithm. See the book by Borodin and El-Yaniv [9]

for more on online algorithms.

1.2.3 Graph Theory

A graph G = (V, E), in this dissertation refers to a simple, and finite graph.

We typically use n to denote the number of vertices, and m to denote the number

of edges. All graph classes in this dissertation are hereditary. A class G of graphs is

hereditary if for any G ∈ G, and any vertex induced subgraph G′ of G, G contains

G′. Given a collection S of subsets of a ground set S, the intersection graph of S is

a graph whose vertex set is S and two sets A, B ∈ S are adjacent if A ∩B 6= ∅.

A coloring of a graph is a map c : V → S, where S is some discrete set such

that if {u, v} ∈ E, then c(u) 6= c(v). The classical graph coloring problem seeks to

find a map c such that |{s ∈ S | c(v) = s}| is minimized. Figure 1.1 shows a cycle

of size 5, colored with 3 colors. The chromatic number of a graph, denoted χ(G) is

the smallest size of the set S such that a feasible coloring exists. i.e., the set of colors

used is minimized. A clique in a graph is a subset C ⊆ V such that all vertices in

C are adjacent to each other. The clique number of a graph, denoted ω(G) is the

largest size of any clique C ⊆ V . An independent set of a graph is a collection of

vertices S ⊆ V such that no vertices in S are adjacent to each other. The maximum

independent set is a set S ⊆ V of maximum cardinality. The stability number or

independence number, denoted α(G) is the cardinality of the maximum independent

10

set.

�� ��

��� ��

Figure 1.1: The graph C5 and a vertex coloring. χ(C5) = 3, although ω(C5) = 2

It is easy to see that for that for all graphs G, ω(G) ≤ χ(G) holds, since all the

vertices in a clique must be colored with distinct colors. However, ω(G) in general

does not provide a good lower bound for coloring. Indeed, Erdös showed that for

every k ∈ N, there is a graph such that ω(G) = 2 and χ(G) > k [24].

Algorithms to compute the chromatic number, or a coloring of a graph have

been studied by several researchers. Graph Coloring was one of the 21 problems

shown NP-complete in the celebrated paper of Karp [48]. Graph Coloring is also

hopelessly hard to approximate. Feige and Kilian [28] showed that no approximation

algorithm for Graph Coloring exists with approximation ratio better than n1−ε, for

any ε > 0, assuming NP 6⊆ ZPP 1. The best known approximation algorithm for

1ZPP is the class of problems solvable by randomized algorithms that always returns the
correct answer, and whose expected running time is polynomial

11

general graphs is by Karger, Motwani and Sudan [47]. Infact, even for 3-colorable

graphs, the best known approximation algorithms only guarantee an approximation

factor of n0.2111 [2].

1.2.4 Perfect Graphs and Sub-Classes of Perfect Graphs

An important class of graphs on which coloring can be solved in polynomial

time is the class of perfect graphs. Perfect graphs were introduced by Berge [7] in

1960 in studying a problem related to information theory. Since then, perfect graphs

have become an important object of study in mathematics, finding applications in

several diverse areas, and are intimately connected to integer programming. There

are several characterizations of perfect graphs, among which the one that we will use

is the following.

Definition 1.2.3 A graph G is perfect if and only if for all vertex induced subgraphs

G′ of G, we have χ(G′) = ω(G′).

For example, the graph in Figure 1.1 is not perfect since χ(G) = 3, but ω(G) = 2.

Perfect graphs contain many important and interesting sub-classes of graphs that arise

in several applications. Trees and bipartite graphs clearly satisfy the characterization

of perfect graphs described above. We now define some other graph classes that are

also perfect. Further definitions and properties of these sub-classes of perfect graphs

can be found in the book by Golumbic [35].

Definition 1.2.4 A graph G is an interval graph if the vertices of G can be placed

in one-to-one correspondence with finite segments on the real line so that two vertices

12

are adjacent if and only if the corresponding intervals intersect. Such a representation

as an intersection graph of line segments is called the interval representation of the

graph.

Figure 1.2 shows an interval graph along with its interval representation. In-

tervals can be recognized in linear time. i.e., given a graph G as input, we can test

whether the graph is an interval graph, and if it is, produce its interval representa-

tion [17]. Coloring interval graphs can also be solved in polynomial time by processing

the intervals in order of their left end-points and assigning the smallest available color

to each interval [35].

A generalization of interval graphs are chordal graphs, which are defined as

follows.

a

b

c

d

e
f

g

h

a c f

b g h

e
d

Interval RepresentationInterval Graph

Figure 1.2: An interval graph and an interval representation

Definition 1.2.5 A graph G is chordal if and only if it does not contain a chordless

cycle of length 4 or more as an induced subgraph.

13

The fact that interval graphs are a generalization of chordal graphs becomes

clear from the following characterization of chordal graphs.

Definition 1.2.6 A graph G is a chordal graph if it is an intersection graph of a

family of subtrees of a tree.

If the underlying tree were a path, then the corresponding graph is an interval

graph. However, a characterization that is more useful to us is the characterization

in terms of a perfect elimination order.

1

6

2 3

54

Figure 1.3: A chordal graph with a perfect elimination order

Definition 1.2.7 A perfect elimination order is an ordering of the vertices of G into

(v1, · · · , vn) such that for each vi the vertices adjacent to vi in (vi+1, · · · , vn) form a

clique.

Chordal graphs are exactly the class of graphs that possess a perfect elimi-

nation order. Furthermore, since perfect elimination orders can be computed for a

14

chordal graph, it is easy to recognize chordal graphs. We can compute a coloring

of a chordal graph in polynomial time by processing the vertices in reverse perfect

elimination order, and assigning to a vertex the smallest available color [35]. Figure

1.3 shows a chordal graph with its vertices numbered in a perfect elimination order.

To see that every interval graph G is a chordal graph, note that ordering the vertices

of G in “left-to-right” order of the right end-points of the corresponding intervals

yields a perfect elimination ordering of G.

For perfect graphs in general, the recognition problem was solved in the break-

through result of Chudnovsky et al. [15]. Perfect graphs can be colored in polynomial

time using the ellipsoid algorithm. Grötschel, Lovász and Schrijver [38] showed the

first and only polynomial time algorithm to color perfect graphs. However, since the

algorithm is based on the ellipsoid method, it is too slow to be used in practice.

Theorem 1.2.8 ([38]) Given a graph G = (V, E) that is perfect, we can compute

a minimum coloring of G in polynomial time.

1.2.5 Non-perfect Graph Classes

In this section, we define some classes of graphs encountered in this dissertation

that are not perfect. However, all the graphs in this section satisfy the hereditary

property. The classical Graph Coloring problem on the classes of graphs defined in

this section are NP-hard, but these classes of graphs enjoy approximation algorithms

with a constant approximation ratio.

Similar to the definition of interval graphs that are intersection graphs of

intervals on the real line, we can define intersection graphs of arcs of a circle. Such

15

graphs are called circular-arc graphs. Figure 1.4 shows a circular-arc graph and its

representation in the form of arcs of a circle.

e

a

c

f

e

d

b

d

c

f

a

b

Figure 1.4: An example of a circular-arc graph and its representation as arcs of a
circle

Definition 1.2.9 A graph G = (V, E) is called a circular-arc graph if it can be

represented as an intersection graph of arcs of a circle.

It is easy to see that circular-arc graphs are not perfect, since circular-arc

graphs contain the odd-cycle graphs C2k+1, k = 2, · · · . Inspite of their apparent

simplicity, the classical coloring problem on circular-arc graphs is NP-complete [32].

Circular-arc graphs contain interval graphs, since any interval graph can be repre-

sented as arcs of a circle such that there is some point on the circumference of the

circle not contained in any arc. Hsu and Shih [66] gave a 5/3-approximation algorithm

for coloring circular-arc graphs. However, circular-arc graphs can be recognized in

linear time [56].

16

a

d

b

c
e

a

b

c
d

e

Figure 1.5: An example of a disk graph and its representation as an intersection of
disks

A graph is a disk graph if can be represented as an intersection graph of closed

disks in the plane. The special case, where each disk has the same radius is called

a unit disk graph. Figure 1.5 shows a graph and its representation as a collection

of disks. The classical graph coloring problem remains NP-hard even on unit disk

graphs [8]. Gräf [37] gave a 5-approximation algorithm to color disk graphs. However,

the recognition problem for disk graphs and unit disk graphs is NP-hard [10,44].

1.3 Organization and Overview of

Contributions

In this section, we describe the main contributions of this dissertation.

1.3.1 First-fit Coloring

In an online graph coloring problem, vertices of a graph are presented one by

one to the algorithm. When a vertex is presented the edges to the vertices previously

presented are also revealed to the algorithm. The algorithm must assign a color to a

17

vertex, before the next vertex is presented. A color once assigned to a vertex cannot

be changed. A natural algorithm to solve the online coloring problem is first-fit. The

first-fit coloring algorithm is simply to assign the smallest available color to a vertex

when it is presented.

The online coloring problem for interval graphs was first studied in the context

of the Dynamic Storage Allocation problem. Chrobak and Slusarek [14] introduced

an algorithm, called Buddy Decreasing Size (BDS) to solve the Dynamic Storage

Allocation problem, that used first-fit coloring of interval graphs as a subroutine.

They also showed that if first-fit coloring of interval graphs is c-competitive, then BDS

is a 2c-approximation algorithm for DSA. The online coloring problem for interval

graphs can be seen as a geometric packing problem as follows. Think of each interval

as marking off a segment of the x-axis; furthermore view each interval as a unit height

rectangle with height dimension parallel to the y-axis. When a rectangle arrives, the

algorithm must assign y-coordinates to the rectangle, while the x-coordinates of the

rectangle cannot be altered. In other words, the algorithm can only slide each given

interval up or down in the vertical strip defined by the endpoints of the interval. The

first-fit algorithm assigns the smallest possible y-coordinate when an interval arrives.

The objective is to minimize the maximum y-coordinate assigned to any rectangle. As

Figure 2.1 shows, first-fit can be easily forced to use more colors than the chromatic

number of the graph.

First-fit is widely used in practice since it is easy to implement and works

extremely well on instances arising in practice. However, a tight analysis of the

18

y

1 2

3

x

4

Figure 1.6: An instance of a problem where fist-fit is forced to use more colors than
the chromatic number

performance of first-fit has proved to be elusive, despite efforts by several researchers.

Woodall [70] in 1974 presented the first upper bounds on the performance of first-

fit. He showed that first-fit is O(log n) competitive. Then, Kierstead [50] in 1988

showed that the competitive ratio of first-fit is a constant. He showed that first-fit

is 40-competitive. Kierstead and Qin [52] in 1995, improved the bound to 26. In

Chapter 2, we present a new analysis that proves that first-fit is 8-competitive, using

a much simpler analysis. We then use this new analysis for a related problem of

online coloring intervals with bandwidth, introduced by Adamy and Erlebach [1]. The

problem of online coloring of intervals with bandwidths is motivated by the problem

of allocating bandwidth in an all optical WDM (wavelength-division-multiplexing)

network, minimizing total duration in a call scheduling problem, and minimizing

19

the number of machines used in a job scheduling problem in which each bandwidth

represents the fraction of a machine that can be used by a job. We present an 30-

competitive algorithm, in comparison to the 195-competitive algorithm presented by

Adamy and Erlebach [1].

1.3.2 Max-Coloring

The max-coloring problem is a generalization of the classical vertex coloring

problem. The input to the max-coloring problem is a graph G = (V, E) along with a

weight function on the vertices, w : V → N. The task is to compute a proper vertex

coloring of G that minimizes the sum of the costs of the color classes, where the cost

of a color class is the weight of a maximum weight vertex in the color class. More

precisely, if S is the collection of all valid colorings of the vertex set of G, then the

objective is to find a coloring S = {S1, · · · , Sk} ∈ S, that minimizes the following

objective function

cost(S) =
k∑

i=1

maxv∈Si
w(v)

Notice that if all vertex weights are 1, then the max-coloring problem reduces

to classical coloring. However, if the weights are not all equal, then the max-coloring

problem may use more colors than the chromatic number to minimize the cost of the

coloring. Figure 1.7 shows such an example. The path clearly admits a coloring with

2 colors, namely {{a, c}, {b, d}}. However, this coloring has a cost of 6, while using

a coloring with 3 colors, namely {{a, d}, {b}, {c}}, we can decrease the cost of the

20

coloring to 5. In fact, there are examples of graphs where χ(G) = 2 and the number

of colors used in a minimum cost max-coloring is n/2 (See Figure 3.6 in Chapter 3).

da b c

1 313

da b c

1 313

Figure 1.7: An example where the optimum max-coloring uses more colors than the
chromatic number of the graph. The weights of the vertices are shown above the
corresponding vertices. On the left is a coloring with 2 colors that has a max-coloring
cost of 6. On the right is the same graph, colored with 3 colors, whose max-coloring
cost is 5.

The max-coloring problem was originally motivated by the problem of buffer

allocation described in Section 1.1. Recall that the buffer allocation problem is the

problem of estimating the smallest size of a segregated buffer pool required to allocate

all variables of a program. A segregated buffer pool consists of a fixed set of buffers

of various sizes with buffers of the same size linked together in a linked list. As each

memory request arrives, it is satisfied by a buffer whose size is large enough to satisfy

the request.

The assignment of buffers to memory requests can be viewed as an assignment

of colors to the requests – all requests that are assigned a buffer are colored identically.

Thus the problem of determining whether a given segregated buffer pool suffices for a

particular sequence of allocation requests can be formalized as follows. Let G = (V, E)

be a graph whose vertices are objects that need memory and whose edges connect pairs

of objects that are alive at the same time. Let w : V → N be a weight function that

21

assigns a natural number weight to each vertex in V . For any object v, w(v) denotes

the size of memory it needs. Suppose the segregated buffer pool contains k buffers

with weights w1, w2, . . . , wk. The problem is to determine if there is a k-coloring of G

into color classes C1, C2, . . . , Ck such that for each i, 1 ≤ i ≤ k, maxv∈Ci
w(v) ≤ wi.

The optimization version of this problem is the max-coloring problem.

Solving the max-coloring problem and selecting k buffers of sizes maxv∈Ci
{w(v)},

for i = 1, 2, . . . , k, leads to a segregated buffer pool that uses minimum amount of

total memory. Note that this is an off-line problem. In the on-line version, buffers

have to be allocated to requests as they arrive and without knowledge of future re-

quests. The off-line version is also useful because designers of protocol stacks would

like to estimate the size of the total memory block needed by extracting large traces

of memory requests and running off-line algorithms on these traces. If we restrict our

attention to memory allocation requests from straight-line programs, (i.e., programs

without loops or branching statements), each memory allocation request is made for

a specific duration of time and thus these requests can be viewed as intervals on a real

line. Requests which are live at the same time have to be satisfied by different buffers.

In this restriction to straight-line programs, the underlying graph is an interval graph.

The max-coloring problem for interval graphs, is related to the dynamic storage

allocation problem (DSA) described in Section 1.1, or the interval coloring of interval

graphs (See Section 1.3.3). An instance of this problem consists of an interval graph

G = (V, E) and a weight function w : V → N. A feasible solution to this problem

in an assignment of an interval I(v) to each vertex v such that |I(v)| = w(v) and

22

I(u)∩ I(v) = ∅ if u and v are adjacent vertices. The goal is to minimize | ∪v∈V I(v)|.

The similarity between the interval coloring problem and the max-coloring

problem can be best understood by casting these problems into a geometric setting as

rectangle packing problems. Start with an interval representation {Iv | v ∈ V } of the

given interval graph G = (V, E). Interpret each weight w(v) as the height of interval

Iv. In other words, the instance of the problem consists of axis-parallel rectangles

{Rv | v ∈ V }, such that the projection of Rv on the x-axis is Iv and the height of Rv

is w(v). Each rectangle can be slid up or down but not sideways; all rectangles have

to occupy the positive quadrant; and the regions of the plane they occupy have to be

pairwise disjoint. Given these constraints, the interval coloring problem is equivalent

to the problem of packing these rectangles so as to minimize the y-coordinate of the

highest point contained in any rectangle. The max-coloring problem seeks a packing

of the rectangles into disjoint horizontal strips Si = {(x, y) | x ≥ 0, `i ≤ y ≤ ui},

denoted by [`i, ui]. The constraints are that every rectangle is completely contained

in some strip and for any two rectangles Ru and Rv in a strip, their projections on

the x-axis Iu and Iv are disjoint. Given these constraints, the max-coloring problem

seeks a packing of the rectangles into strips so that the total height
∑

(ui− `i) of the

strips is minimized. Figure 1.8 shows two rectangle packings of a set of rectangles;

the packing on the left is optimal for the interval coloring problem and the packing

on the right is optimal for the max-coloring problem.

Stated as rectangle packing problems, interval coloring and max-coloring seem

similar. However, as we show in Chapter 3, the weights of optimal solutions for the

23

0 1 2 3 4 5

1

2

4

5

3

A

B

C

D

E

F

G

H

0 1 2 3 4 5

1

2

4

5

3

A
C

H

E
G

F

D

B

6

Figure 1.8: On the left is a rectangle packing corresponding to an optimal interval
coloring, with weight 5. On the right is a rectangle packing corresponding to an
optimal max-coloring. In the packing on the right the rectangles are packed into 4
strips: S1 = (0, 3), S2 = (3, 4), S3 = (4, 5), and S4 = (5, 6), for a total weight of 6.

two problems on the same input can be quite different. For DSA, Buchsbaum, et.

al. [12],et. al. show that the optimum value is at most a factor (2 + ε) times the

weight of the maximum weight clique, while for max-coloring it is easy to construct

examples (See Figure 3.1) where the optimum cost is a factor Ω(log n) away from the

weight of the maximum weight clique.

Another motivation for studying the max-coloring problem comes from schedul-

ing theory; namely the problem of scheduling conflicting jobs in batches. Suppose

we are given a set J = {J1, · · · , Jn} of jobs, their processing times pj, and a conflict

graph G = (J , E). We want to schedule these jobs on an arbitrary number of ma-

chines. For example, the jobs may be processes in a distributed operating system.

The conflict relation between the jobs is given as a graph G = (J , E), where the

24

edges represent a pair-wise conflict. For example, processes in a distributed system

may require access to the same files or devices and hence cannot be run together.

Our task is to compute a batch schedule on this set of jobs to minimize the

makespan, or the completion time of all the jobs in the schedule. It follows that each

subset of jobs in a batch must be conflict-free, and hence must be an independent set.

Thus, a feasible schedule is a coloring of the conflict graph. The time taken to process

a batch is the time taken by a job with the longest processing time. The problem

of computing a batch schedule to minimize makespan, is precisely the max-coloring

problem on the conflict graph of the jobs.

Motivated by the buffer allocation problem, we began our study of the max-

coloring problem on interval graphs and showed that the problem is NP-hard. We

also developed a 2-approximation algorithm for the max-coloring problem on interval

graphs. Prior to our work, the problem was considered by Guan and Zhu [40] who were

motivated by a problem of scheduling communication slots for a metropolitan area

network. In their paper, they studied the max-coloring problem for trees, and present

results on the number of colors required to achieve a minimum max-coloring cost. The

max-coloring problem has also been studied by Govindarajan and Rengarajan [36]

who, like us, were motivated by the problem of allocating a small buffer, but in the

context of digital signal processing applications. We then studied the max-coloring

problem on other graph classes. The problem turns out to be surprisingly difficult

to solve even on trees and bipartite graphs. For trees, we show a PTAS and a sub-

exponential time algorithm, while for bipartite graphs, we show that the max-coloring

25

problem is inapproximable beyond a threshold of 8/7−ε for any ε > 0 and also present

an approximation algorithm with an approximation ratio of 8/7. The results for trees

and bipartite graphs were also independently obtained by Escoffier, et al [26, 57] For

more general graph classes, we show that if for a hereditary class of graphs, the

classical coloring problem has a c-approximation algorithm, then the max-coloring

problem on this class of graphs admits an e · c-approximation algorithm, where e is

the base of the natural logarithm. This implies an e-approximation algorithm for the

max-coloring problem on perfect graphs. Our results are presented in Table 1.3.2,

where we show the best approximation ratios achieved by our algorithms, and the

best known lower bounds.

Our Results for Max-Coloring

Graph Lower Bound. Upper Bound

Interval Graph NP-Hard 2
Trees – (1 + ε), for any ε > 0

Bipartite Graphs 8
7
− ε, ∀ε > 0 8

7

Perfect Graphs 8
7
− ε, ∀ε > 0 e

Hereditary Graphs 8
7
− ε, ∀ε > 0 e · c

Table 1.1: Summary of results for the Max-
Coloring problem

1.3.3 Interval Coloring

In the interval coloring problem, we are given a graph G = (V, E) and a weight

function w : V → N. The problem is to assign to each vertex an interval I(v) on

26

the real line, such that |I(v)| = w(v) and such that adjacent vertices receive disjoint

intervals. i.e, |I(u)∩ I(v)| = ∅, for each {u, v} ∈ E. The objective is to minimize the

span | ∪v∈V I(v)| of the intervals.

The interval coloring problem, restricted to interval graphs is the dynamic

storage allocation problem defined in Section 1.1, or as the shipbuilding problem [35].

The interval coloring problem also models the scheduling of conflicting jobs that need

to be scheduled non-preemptively to minimize makespan.

1.3.4 Experimental Evaluation

Since the max-coloring and interval coloring problems are motivated by real-life

applications, we also studied the max-coloring and interval coloring problems empir-

ically. We evaluated the performance of our approximation algorithms and heuristics

for both the max-coloring and interval coloring problems on chordal graphs. We fo-

cus on the class of chordal graphs for several reasons. One of our motivations is to

determine if the constant-factor algorithms for interval coloring interval graphs can

be extended to chordal graphs. Another motivation for considering chordal graphs

is that the way certain kinds of compilers such as algebraic compilers process source

code, the interference graph of source objects ends up being a chordal graph [65].

We generated two kinds of chordal graphs with widely different structure and eval-

uated the performance of two approximation algorithms, WtPartition and Geomfit,

described in Chapter 3, as well as two simple heuristics, namely first-fit and best-fit.

We ran two kinds of experiments. In one, we assigned weights for the random graphs

generated so that the optimum max-coloring cost can be easily computed. In an-

27

other set of experiments, we assign random weights to the vertices and compared the

performance of our algorithms against the weight of the maximum weight clique.

We then study the interval coloring problem on the chordal graphs generated.

We use four heuristics similar to the ones for max-coloring. However, the algorithms

for interval coloring do not enjoy a constant factor guarantee. We show in Chapter

4 that for the max-coloring problem, the algorithm Geomfit, described in Chapter

3 performs better than all algorithms. For the interval coloring problem, again the

algorithm similar to Geomfit has the best performance guarantee consistently.

28

CHAPTER 2
FIRST-FIT COLORING

2.1 Introduction

This chapter1 deals with algorithms and analysis for two online coloring prob-

lems. Recall from Chapter 1 that an online algorithm for a problem must process the

data elements when they arrive without any knowledge of the future arrivals of data

elements. The performance of an online algorithm is measured by the competitive

ratio, defined in Chapter 1.

In online coloring, the vertices of a graph are presented one by one to an

algorithm. When a vertex is presented, the adjacency to the vertices previously

presented is also revealed to the algorithm. The algorithm must assign a color to

the vertex before the next vertex is presented. Once a vertex is assigned a color,

it cannot change. It is easy to see that any online graph coloring algorithm can be

forced to use more colors than the chromatic number even when the off-line graph

coloring problem can be solved optimally in polynomial time.

2.1.1 First-Fit Coloring of Interval Graphs

A natural and simple heuristic for online coloring interval graphs is First-fit,

which simply assigns the smallest available color to each vertex. The first-fit algorithm

is both simple to implement and provides excellent performance in practice. However,

as the example in Figure 2.1 shows, the first-fit algorithm can be forced to use more

1The results of this chapter are joint work with Sriram Pemmaraju and Kasturi Varadara-
jan, and appeared in [63] and [61]

29

colors than the chromatic number of a graph. Suppose the vertices are presented to

the algorithm in the order of the number inscribed in each rectangle. Then, first-fit

places vertices 1 and 2 in the first color class. Now when vertex 3 arrives, it must be

placed in the second color class. However, when vertex 4 arrives, since it is adjacent

to a vertex in both the first and second color classes, First-fit is forced to assign it a

third color. It is clear that the chromatic number of the graph is 2.

y

1 2

3

x

4

Figure 2.1: An instance of a problem where fist-fit is forced to use more colors than
the chromatic number

A natural question that arises is bounds on the lower and upper bounds on

the first-fit coloring of interval graphs. However, this problem has turned out to

be notoriously hard. The problem first arose in connection to the dynamic storage

allocation problem (DSA) described in Chapter 1. In [14], Chrobak and Slusarek made

30

the connection between dynamic storage allocation and first-fit coloring in a quest

for finding approximation algorithms for DSA. They presented an algorithm, called

BUDDY DECREASING SIZE (BDS), which uses the first-fit coloring of interval

graphs as a sub-routine. BDS has the property that if first-fit is c-competitive, then

BDS is a 2c-approximation algorithm. Woodall [70] in 1974, presented the first upper

bounds on the number of colors required by first-fit. He showed that for any interval

graph G with chromatic number χ(G), first-fit uses at most χ(G) log χ(G) colors.

Kierstead was the first to show that the number of colors used by first-fit is linearly

bounded by the chromatic number. In [50], he showed that first-fit uses at most

40 · χ(G) colors. In a later paper, Kierstead and Qin [52] improved this bound

and showed that first-fit is at most 25.72-competitive. In [63] we presented a new

analysis that improved the bounds to 20/9. Kierstead, Trotter and Brightwell [11],

and independently Narayanswamy and Babu [58] presented a slight modification of

this analysis to show that first fit is infact 8-competitive. In this chapter we present

this improved analysis of Narayanswamy and Babu. For the special case of proper

interval graphs, i.e., interval graphs where no interval is properly contained in any

other interval, Chrobak and Slusarek [14] showed that first-fit is 2 ·χ(G)-competitive,

and this analysis is tight.

The best known lower bounds for the first-fit coloring problem were presented

by Chrobak and Slusarek [14], who showed that first-fit uses at least 4.4χ(G) colors

in the worst case. In recent work, Kierstead and Trotter [49] have improved this for

interval graphs with large enough chromatic number. They show that first-fit uses at

31

least (5− ε)χ(G) colors, where ε→ 0 as χ(G)→∞. Further, they also show that all

tree-like interval graphs used in the analysis cannot give a lower bound better than 5.

The first-fit heuristic has also been studied for more general graphs. Irani [46]

proved that for d-inductive graphs, first-fit uses at most d colors. The number of

colors used by the first-fit algorithm has also been studied as a graph parameter,

called the Graph Grundy Number, denoted χFF (G). This is defined as the maximum

number of colors used by first-fit over all permutations of the vertices of a graph.

The graph grundy number was first studied by Grundy in [39], where he used them

in the study of kernels of directed graphs. Christen and Selkov [13] were the first to

study the graph grundy number as a graph parameter. In [4], Balogh, et. al. study

the first-fit chromatic number of planar graphs and Erdös Rènyi random graphs with

p = 1/2.

For interval graphs, Chrobak and Slusarek [14] proved that there is no algo-

rithm that can give a competitive ratio better than 3. Kierstead and Trotter [53]

presented an algorithm that is a slight modification of first-fit that achieves this

bound.

2.1.2 Online Coloring of Intervals with Bandwidth

In an instance of the problem of online coloring of intervals with bandwidth,

intervals are presented one at a time, with each interval i being associated with a

bandwidth b(i) ∈ (0, 1]. Each interval must be assigned a color immediately after it

has been presented (and before the next interval is presented) and a color assigned to

an interval cannot be changed later. An algorithm for this problem assigns colors to

32

intervals in the manner described above, so that for any color c and any real r, the

sum of bandwidths of intervals containing r and colored c is at most 1. The goal is

to minimize the number of colors used. This problem was introduced by Adamy and

Erlebach in [1]. Their study was motivated by problems in resource allocation such as

channel allocation in an all optical WDM (wavelength-division-multiplexing) network,

minimizing total duration in a call scheduling problem, and minimizing the number

of machines used in a job scheduling problem in which each bandwidth represents the

fraction of a machine that can be used by a job.

In [22], Epstein and Levy showed a lower bound of 3.2609 for interval coloring

with bandwidths, slightly improving the lower bound of 3 that follows from online

coloring interval graphs. They studied resource augmented versions of the interval

coloring problem with and without bandwidths. Specifically, they presented an online

algorithm with competitive ratio 3 when each color class has a capacity of 2, instead

of 1. They also studied the problem of online coloring with bandwidths for unit

interval graphs, where they presented an algorithm with competitive ratio 7/2 and

give a lower bound of 2. In [23], Epstein, et. al. continued their study on online

coloring with bandwidths, where they presented an improved lower bound of 24/7

and studied several variants of online coloring with bandwidths. In [20], Epstein,

et. al. studied the variant where each color class has variable capacity. When the

algorithm opens a color class, it chooses a capacity and cannot change it once chosen.

They studied the bounded model where each capacity is in the range (0, 1], and the

unbounded case, where the algorithm may use any capacity for the color class. They

33

gave upper and lower bounds of 14 and 4.59 for the bounded model, and matching

upper and lower bounds of 4 for the unbounded model. They also studied the off-line

problem and proved that the bounded model is polynomial-time solvable, while the

unbounded model is NP-complete. They presented a 3.6-approximation algorithm for

the bounded case.

An instance of this problem is shown in Figure 2.2. For any real r, define

density(r) =
∑

i:r∈i b(i). Clearly, dmaxr density(r)e is a lower bound on the number

of colors needed. In the instance shown in Figure 2.2, maxr density(r) = 13
8

and

therefore at least 2 colors are needed for this instance. It is easy to check that

{A, E, D}, {C, B} is a feasible coloring for this instance and is therefore optimal.

A
E

C

D

B

1/8

1

1/4

3/4

1/3

Figure 2.2: An instance of the problem of online interval coloring with bandwidths.
The numbers shown above the intervals correspond to their bandwidths.

Note that if all the bandwidths are 1, then we have the well-studied problem

of the online coloring of interval graphs.

As mentioned by Adamy and Erlebach [1] , the problem of online coloring

34

of intervals with bandwidth is a simultaneous generalization of online coloring of

intervals and online bin packing. The First-Fit algorithm for online coloring of inter-

vals without bandwidths naturally extends to the current problem, with bandwidth

constraints. Given a coloring of a subset S ⊆ I of the intervals, we define

densityc(r) =
∑

x∈S:r∈x,color(x)=c

b(x)

for each color c and real r. Then the First-Fit algorithm for the online interval

coloring problem with bandwidths uses the following first-fit rule: for each interval

x that arrives, color x with the smallest color c such that b(x) + densityc(r) ≤ 1

for all r ∈ x. If intervals in the instance shown in Figure 2.2 arrive in the order

A, B, C,D, E, then the First-Fit algorithm uses 3 colors because it colors A and B

with color 1, C and D with color 2, and E with color 3.

The performance of First-Fit algorithm for the problem of online coloring of

intervals with bandwidths differs in a fundamental way from the First-Fit algorithm

for the usual problem of online coloring of intervals . We have noted the existence

of an upper bound 8 · χ(I) on the number of colors used by First-Fit for the usual

problem. However, as pointed out in [1], for the problem with bandwidths the First-

Fit algorithm can be forced to do arbitrarily poorly. We present a bad example in

Figure 2.3. Pick an integer k > 1 and a real ε ∈ (0, 1). Corresponding to each pair

(k, ε) of values we construct an instance that contains intervals with bandwidth ε and

intervals with bandwidth 1. Figure 2.3 shows an instance with k = 5. The long (and

35

thin) intervals all have bandwidth ε > 0 and the short (and thick) intervals all have

bandwidth 1. A k-coloring of this instance produced by the First-Fit algorithm is

shown, where the intervals in color 1 are provided first to the algorithm, followed by all

the intervals in color 2, and so on. Notice that for each interval of bandwidth ε, there

is an interval with bandwidth 1 in each of the previous color classes. Similarly, for each

interval of bandwidth 1, there is an interval of bandwidth ε in each of the previous

color classes. This justifies the first-fit coloring shown in the figure. Also notice that

lower bound on the optimal number of colors needed is maxr density(r) = 1+(k−1)·ε.

Choosing ε = 1/(k−1), we get a lower bound of 2. A 2-coloring of this instance can be

obtained by using color 1 for all intervals with bandwidth 1 and for the interval with

bandwidth ε with the rightmost right endpoint. It is easy to see that the remaining

intervals, all of which have bandwidths ε, can be colored with color 2.

Color 5

Color 1

Color 2

Color 3

Color 4

Figure 2.3: An instance of intervals with bandwidth showing that First-Fit can per-
form arbitrarily badly.

In our main result for online coloring with bandwidths, we show that such bad

examples can exist only in the “limiting case” where bandwidths are arbitrarily close

to 1. As long as the maximum bandwidth of every interval in the input is bounded

36

above by a constant strictly smaller than 1, the First-Fit algorithm uses a constant

times the optimal number of colors.

We consider the problem of online coloring of interval graphs with bandwidths.

In Section 2.3.1 we show that the Adamy-Erlebach algorithm is 30-competitive. This

requires an extension of the analysis of First-fit in Section 2.2 to the case of intervals

with bandwidths. The extended analysis is presented in Section 2.3.2. We conclude

with final remarks and open questions in Section 2.4.

2.2 Column Construction

For interval graphs, it is convenient to work with a representation of G in

terms of a set of intervals S. We assume without loss of generality that each interval

in the set S of input intervals is of the form [i, j], where 0 ≤ i < j ≤ N are integers,

and N is a sufficiently large positive integer.

We denote by E the set of elementary intervals {[i − 1, i]|1 ≤ i ≤ N}. We

will refer to the ordering of the intervals in E according to increasing order of the left

endpoints as their natural ordering. Thus each input interval is a union of consecutive

elementary intervals; two input intervals intersect if they both contain a common

elementary interval. The leftmost (resp. rightmost) elementary interval of an interval

I ∈ S is the first (resp. last) elementary interval in the natural ordering that is

contained in I.

We briefly review the first-fit algorithm for coloring intervals in S. The in-

tervals are presented to the algorithm in some arbitrary order. The first interval is

assigned to color class 1. Each subsequent interval is then assigned to the lowest

37

color class that will accept it. That is, assume that the algorithm has seen intervals

S ′ ⊆ S and assigned them to color classes 1, . . . , j. When a new interval I arrives,

the first-fit algorithm finds the smallest value of i, for 1 ≤ i ≤ j + 1, such that I

does not intersect any interval in S ′ that was assigned to the i’th color class. Such

an i must exist because no interval in S ′ is assigned to the (j + 1)’th color class. The

algorithm then assigns I to the i’th color class.

Clearly, the first-fit algorithm yields a proper coloring of the intervals in S

(more precisely, of the interval graph corresponding to S). Suppose that first-fit

uses colors 1, . . . ,m. We will now argue that there is an elementary interval that is

contained in at least m/8 input intervals. Note that this corresponds to a clique of size

at least m/8 in the corresponding interval graph, which means m/8 is a lower bound

on the size of any proper coloring of the interval graph. A useful way to visualize the

coloring generated by first-fit is to imagine an interval [l, r] that is assigned to color

class k as a rectangle {(x, y)|l ≤ x ≤ r, k − 1 ≤ y ≤ k} of height one.

2.2.1 Column Construction

The key property of the first-fit coloring that will be needed in the proof is

that if an interval I ∈ S is assigned to color class k, then for each 1 ≤ i ≤ k − 1

there is an interval I ′ assigned to color class i such that I intersects I ′. The proof is

based on a construction of a set of “columns” corresponding to the first-fit coloring.

A column corresponds to a unique elementary interval e, and with some abuse of

notation is referred to as column e. There may be elementary intervals that have

no corresponding columns. A column has a positive integral height associated with

38

it. If a column has height t, we say that it is active at heights 1, . . . , t and inactive

at heights t + 1, . . . ,∞. A column of height t is labeled, at each height i between

1 and t, with one symbol which is either “R”, “$”, or “F”. A column e of height t

is labeled “R” at some height 1 ≤ i ≤ t if and only if some interval I ∈ S that is

assigned to the i’th color class contains the elementary interval e. However, it could

be the case that an elementary interval e is contained in an interval that is assigned

to the i’th color class and there is either no column corresponding to e or the column

e is inactive at height i. It is useful to visualize a column e of height t as a rectangle

{(x, y)|l(e) ≤ x ≤ r(e), 1 ≤ y ≤ t} of width 1, where l(e) and r(e) are the left and

right endpoints of elementary interval e; the box {(x, y)|l(e) ≤ x ≤ r(e), i−1 ≤ y ≤ i}

contains the label of the column at height i, for 1 ≤ i ≤ t. See Figure 2.4 for an

example. It is worth pointing out that the goal of the column construction procedure

is to find a column with at least m/8 “R” labels in it.

The column construction procedure works by starting with a set of columns

that are active at height 1 and, for i ≥ 2, choosing a subset of the active columns at

height i−1 to be the active columns at height i. If the set of active columns at height

i is empty, the procedure stops. For any set of columns, there is a natural ordering

that is induced by the natural ordering of the corresponding elementary intervals. Let

Ci denote the set of columns active at height i. For any e ∈ Ci, the left (resp. right)

neighbor of e in Ci is the column in Ci immediately preceding (resp. succeeding) e

in the natural ordering; if no such column exists, the left (resp. right) neighbor is

undefined.

39

0 1 2 3 4 5

R$$R

R R $

R R$

Figure 2.4: A possible result of the column construction procedure. The columns
correspond to elementary intervals [0, 1], [1, 2], [3, 4], and [4, 5]. Column [1, 2] has
has height 3 and has labels $ “R”, and “R” associated with heights 1, 2, and 3
respectively. Note that C1 = {[0, 1], [1, 2], [3, 4], [4, 5]}, C2 = {[0, 1], [1, 2], [3, 4]}, and
C3 = {[0, 1], [1, 2], [3, 4]}.

40

We are now ready to describe the column construction procedure. If an ele-

mentary interval e is contained in an interval assigned to the first color class, then e

is added to C1 and is assigned the label “R” at height 1. These are the only columns

in C1. For i ≥ 2, the following rules specify which columns from Ci−1 are picked in

Ci.

1. For each e ∈ Ci−1, if e is contained in some interval assigned to color class i,

then e is added to Ci and is assigned a label “R”.

2. For each remaining e ∈ Ci−1, if e is the left neighbor in Ci−1 of some column e′

added to Ci by Rule 1, then e is added to Ci with a label “$” at height i. For

accounting purposes, we say that e′ contributes a $ to e at height i. Note that

e is the left-neighbor of e′ in Ci. For each remaining e ∈ Ci−1, if e is the right

neighbor in Ci−1 of some column e′ added to Ci by Rule 1, then e is added to Ci

with a label “$” at height i. For accounting purposes, we say that e′ contributes

a $ to e at height i. Note that e is the right neighbor of e′ in Ci.

3. For each remaining e ∈ Ci−1, let e′ be the left-neighbor of e in Ci−1. If undefined,

we proceed to inspect the right neighbor of e in Ci−1. Suppose that e′ is the left

neighbor of e in Cj, . . . , Ci−1, and is not the left neighbor of e in C1, . . . , Cj−1;

note that such a j does exist. If the number of “R” labels of e at heights

j, . . . , i − 1 is greater than (i − j)/4, then e is added to Ci with a label “F”

at height i. If not, let e′′ be the right neighbor of e in Ci−1. If undefined, e

is not added to Ci. Otherwise, suppose that e′′ is the right neighbor of e in

41

Ck, . . . , Ci−1, and is not the left neighbor of e in C1, . . . , Ck−1. If the number of

“R” labels of e at heights k, . . . , i− 1 is greater than (i− k)/4, then e is added

to Ci with a label “F” at height i. If not, e is not added to Ci. See figure 2.5

for an example.

4

ba c d e f p q r s t u

9

8

(i)

7

(ii)

6

5

4

R R

9

8

7

6

5

$$

Figure 2.5: (i) A snapshot in the construction of C8 after Rule 1 has been applied.
Columns b and e will get added to C8 with $ labels at height 8 due to Rule 2. (ii)
Snapshot after Rule 2 has been applied. Column p is the left neighbor of r in C6, C7

and t is the right neighbor of r in C5, C6, C7. r is added to C8 (with a label F at
height 8) iff the number of its R labels at heights 6, 7 is greater than 2 · 1/4 or the
number of its R labels at heights 5, 6, 7 is greater than 3 · 1/4.

The construction proceeds until round m′, after which no column is active.

i.e, Cm′+1 = ∅. Note that if m′ > m, then at heights m + 1, · · · , m′, only Rule 3

applies and the only symbols added are F’s. The construction procedure maintains

the following important invariant. Abusing notation, we say that interval I intersects

a column e if it contains elementary interval e.

Lemma 2.2.1 Let 1 ≤ i < j ≤ m, for any interval I ∈ S that is assigned to color

class j, there is a column e ∈ Ci such that I intersects e.

42

Proof: By induction on i. The lemma holds for i = 1 because of the key property of

the first-fit coloring. For the inductive step, assume i ≥ 2 and the lemma holds for

i− 1. Let I be an interval that is assigned to color class j > i. By the key property,

there is an I ′ ∈ S that is assigned to the i’th color class such that I ′ intersects I.

By the induction hypothesis, I ′ (resp. I) intersects a non-empty set C ′ (resp. C) of

consecutive columns (natural ordering) in Ci−1. If C ∩ C ′ 6= ∅, we are done since

all columns in C ′ are added to Ci by Rule 1. If some column e ∈ Ci−1 lies between

the columns in C ′ and the columns in C, then I and I ′ cannot intersect because the

elementary interval e lies between I and I ′. So it must be that some f ∈ C is either

the left neighbor or right neighbor in Ci−1 of some column in C ′. The column f is

added to Ci by Rule 2 if it is not already added by Rule 1, completing the proof.

The invariant implies that C1, . . . , Cm are non-empty, and thus m′ ≥ m. For

a column e with height at least j and 1 ≤ i ≤ j, let ρe(i, j), δe(i, j), and φe(i, j)

denote, respectively, the number of R, $, and F labels of e between heights i and

j (inclusive). Let ρe(j) = ρe(1, j), δe(j) = δe(1, j), and φe(j) = φe(1, j). Define

ρe(0) = δe(0) = φe(0) = 0.

Lemma 2.2.2 For any column e ∈ Ci, and any integer 1 ≤ i ≤ m′, ρe(i) ≥ 1
4
(ρe(i)+

φe(i)).

Proof: The proof is by induction on i. The base cases i = 0, 1 are easily

verified. Suppose i ≥ 2 and the lemma is true for all 0 ≤ i′ < i. If e is not labeled

with F at height i, then the induction step goes through easily. So let us assume

43

that e is labeled F at height i. So e was added to Ci by Rule 3 and so there exists a

1 ≤ j ≤ i−1 such that ρe(j, i−1) > (i−j)/4. This implies that ρe(j, i) ≥ (i−j+1)/4.

From this and the induction hypothesis, it follows that

ρe(i) = ρe(j, i) + ρe(j − 1)

≥ 1

4
(i− j + 1) +

1

4
(ρe(j − 1) + φe(j − 1))

≥ 1

4
(ρe(j, i) + φe(j, i)) +

1

4
(ρe(j − 1) + φe(j − 1))

=
1

4
(ρe(i) + φe(i))

We are now ready to obtain our main result.

Theorem 2.2.3 Let m denote the number of colors used by first-fit to color the set

of intervals S. There is a clique of size at least m/8 in the corresponding interval

graph.

Proof: We will show that there is a column e ∈ Cm′ such that ρe(m
′) ≥ m/8.

Let e be any column in Cm′ , and assume that e has both a left and right neighbor in

Cm′ . The case when either neighbor is absent is infact easier. Let f1, · · · , fa be the

left neighbors of e, where fi is the left neighbor of e in Cti−1+1, · · · , Cti , i = 1, · · · , a,

where t0 = 0 < t1 < · · · < ta = m′. Similarly, let g1, · · · , gb be the right neighbors of

e, with gi being a right neighbor of e at Cni−1+1, · · · , Cni
for i = 1, · · · , b. n0 = 0 <

44

e

Figure 2.6: The columns at the end of the construction procedure. The number
of $ labels in column e is bounded by the number of “R” labels in all the shaded
rectangles.

n1 < · · · < nb = m′. Now we claim that

δe(m
′) ≤

a∑
1

ρfi
(ti−1 + 1, ti) +

b∑
1

ρgi
(ni−1 + 1, ni).

The claim follows from the observation that Ce(i) is a “$” if and only if it

is supported by either of its neighbors. i.e., a “$” is added to e at level i by Rule

2. See figure 2.6. Since each fi and gi become inactive beyond a height of ti and ni

respectively, by Rule 3 we have

ρfi
(ti−1 + 1, ti) ≤

1

4
(ti − ti−1).

45

By an identical argument, we have that

ρgi
(ni−1 + 1, ni) ≤

1

4
(ni − ni−1).

Hence,

δe(m
′) ≤

a∑
1

1

4
(ti − ti−1) +

b∑
1

1

4
(ni − ni−1) ≤

1

4
(ta + nb) =

m′

2

Since

ρe(m
′) + φe(m

′) + δe(m
′) = m′,

and

ρe(m
′) + φe(m

′) = m′ − δe(m
′) ≥ m′ − m′

2
=

m′

2
,

we can apply Lemma 2.2.2 to get

4ρe(m
′) ≥ m′

2

or

ρe(m
′) ≥ m′

8

Since no “R” labels are added after level m, ρe(m) = ρe(m
′). Hence,

ρe(m) = ρe(m
′) ≥ m′

8
≥ m

8

46

By a similar argument, we can show that ρe(m) ≥ m/8 in the cases where e

has no left-neighbor or right-neighbor.

From Theorem 2.2.3 we directly obtain our main result.

Theorem 2.2.4 For any interval graph G, the first-fit strategy for on-line coloring

of G uses at most 8 · χ(G) colors.

2.3 Interval Coloring with Bandwidths

In this section, we consider the problem of online coloring interval graphs with

bandwidth. We start with a description of the algorithm due to Adamy and Erlebach

in [1], and give an improved analysis. Narayanswamy [59] presented an algorithm

that is 10-competitive for this problem, which is the best bound known.

For any instance I of the interval coloring problem with bandwidths, let

OPT (I) denote the fewest number of colors needed to color the intervals in I such

that the bandwidth constraints are satisfied. Whenever I is obvious from the context,

we simply use OPT . Adamy and Erlebach [1] present an online algorithm for solving

the interval coloring problem with bandwidths that uses at most 195 · OPT colors.

The Adamy-Erlebach algorithm is a combination of the First-Fit algorithm and the

Kierstead-Trotter algorithm. When an interval x arrives, if b(x) ≤ 1/2, use the First-

Fit rule to assign a color to x from a set C1 of colors. Otherwise, if b(x) > 1/2, ignore

the bandwidth of x and use the Kierstead-Trotter algorithm to assign a color to x

from a set C2 of colors. Here C1 and C2 are disjoint.

Adamy and Erlebach derive their approximation factor of 195 as follows. Let

I1 = {x ∈ I | b(x) ≤ 1/2} and I2 = {x ∈ I | b(x) > 1/2}. No two intersecting

47

intervals in I2 can be assigned the same color. Therefore, OPT (I2) = χ(I2). As

mentioned above, the Kierstead-Trotter algorithm will use at most 3 · χ(I2) colors

and therefore the number of colors used, |C2| ≤ 3 · OPT (I2) ≤ 3 · OPT (I). Most

of the Adamy-Erlebach paper is devoted to showing that the First-Fit algorithm

uses at most 192 · OPT (I1) colors. The fact that |C1| ≤ 192 · OPT (I) implies that

|C1|+ |C2| ≤ 195 ·OPT (I).

2.3.1 Improved Analysis

In the following, we analyze the family of algorithms obtained by using a

threshold α ∈ (0, 1) instead of 1/2 in the Adamy-Erlebach algorithm. For each

α ∈ (0, 1) we call the corresponding instance of the algorithm, the α-Adamy-Erlebach

algorithm. (The α-Adamy-Erlebach algorithm colors an interval with the First-Fit

algorithm if its bandwidth is at most α.) Our main result, proved in Section 2.3.2, is

the following.

Theorem 2.3.1 For any set I of intervals whose maximum bandwidth is α ∈ (0, 1),

the First-Fit algorithm uses at most

16

(1− α)
·OPT (I) + 1

number of colors.

Using this result we show the following.

48

Theorem 2.3.2 The α-Adamy-Erlebach algorithm uses at most

(
16

(1− α)
+ 3(d 1

α
e − 1)

)
·OPT (I) + 1

colors.

Proof: Let I1 = {x ∈ I | b(x) ≤ α} and I2 = {x ∈ I | b(x) > α}. For intervals in

I2 the α-Adamy-Erlebach algorithm ignores bandwidths and produces a coloring by

using the Kierstead-Trotter algorithm. Hence, |C2| ≤ 3 · χ(I2). Since b(x) > α for

all x ∈ I2, in any coloring of I2 that satisfies the bandwidth constraint, a clique of

size at most d1/αe − 1 can be colored using one color. Since I2 contains a clique of

size χ(I2), any coloring of I2 that satisfies the bandwidth constraints, uses at least

χ(I2)/(d1/αe − 1) colors. Therefore, we have

χ(I2) ≤ (d1/αe − 1) ·OPT (I2)

and therefore

|C2| ≤ 3 · (d1/αe − 1) ·OPT (I2).

Substituting α = 1/2 in the above expression we get an upper bound of 35 ·

OPT + 1 on the number of colors used by the Adamy-Erlebach algorithm.

Corollary 2.3.3 The Adamy-Erlebach algorithm uses at most 35 ·OPT + 1 colors.

49

The function
(

16
(1−α)

+ 3(d 1
α
e − 1)

)
has a minimum at roughly α = 1/3 in the range

(0, 1). Substituting α = 1/3 in this expression we get an upper bound of 30 ·OPT +1

on the number of colors used by the 1/3-Adamy-Erlebach algorithm.

Corollary 2.3.4 The 1/3-Adamy-Erlebach algorithm uses at most 30·OPT+1 colors.

2.3.2 Column Construction for Intervals with Bandwidth

In this section, we present a proof of Theorem 2.3.1 by showing that the col-

umn construction procedure of section 2.2 and the analysis can be extended for use in

the case of intervals with bandwidths as well. This parallels the work Adamy and Er-

lebach, whose analysis of the First-Fit algorithm for coloring intervals with bandwidth

at most 1/2 is a modification of the “centrality approach”used by Kierstead [50,52].

Without loss of generality, we assume that there is a positive integer N such

that each interval in I is [x, y] for some integers x and y, 0 ≤ x, y ≤ N . As before, we

denote by E the set of elementary intervals {[x−1, x] | 1 ≤ i ≤ N}. Suppose the First-

fit algorithm uses colors 1, 2, . . . ,m to color the intervals in I. In the following we

will show that there is an elementary interval e and a set of colors C ⊆ {1, 2, . . . ,m}

such that |C| ≥ (m − 1)/8 and for each color c ∈ C, densityc(e) ≥ (1− α)/2, where

densityc(e) is the sum of the bandwidths of intervals in I that contain e and are

colored c. This implies that density(e) =
∑

c∈C densityc(e) ≥ (m− 1)(1−α)/16. The

key property of the first-fit coloring that we will repeatedly use in the analysis is:

First-Fit Property

If an interval x is colored j ≥ 1, then for any color i, 1 ≤ i < j, there is

50

an elementary interval e contained in x such that densityi(e) ≥ (1− α).

Now we describe the column construction procedure for intervals with band-

width. The construction procedure is similar to the one described in Section 2.2, with

a key difference. Rules 2 and 3 are identical to the corresponding rules in Section 2.2,

while Rule 1 is modified to take into consideration the density of the intervals. The

new Rule 1 is as follows.

For notational convenience, let C0 = E .

Rule 1 For each e ∈ Ci−1, if densityi(e) ≥ (1 − α)/2, then e is added to Ci with a

label “R” at height i.

The rest of the analysis consists of two parts. In the first part we show that

there is at least one column that grows to a height of (m − 1). In the second part,

we show that among columns of height (m − 1), there is one, say e, that contains

at least (m − 1)/8 “R” labels. Each “R” corresponds to a distinct color i such that

densityi(e) ≥ (1 − α)/2, implying that density(e) ≥ (m − 1)(1 − α)/8. This part of

the proof is similar to the corresponding part in Section 2.2 and is only sketched in

what follows.

2.3.3 Some Columns are Tall

We first establish the equivalent of Lemma 2.2.1 in the current setting.

Lemma 2.3.5 For 0 ≤ i < j ≤ m, and any interval I ∈ S that is assigned color j,

there is a column e ∈ Ci that I intersects.

51

Proof: By induction on i. The base case i = 0 is straightforward. For the

induction step, suppose k ≥ 1, and the lemma holds for i ≤ k − 1. Consider an

interval I that is colored j > k. By the First-Fit property, I contains an elementary

interval e such that densityk(e) ≥ 1−α. The induction hypothesis implies that Ck−1

is non-empty. If e ∈ Ck−1, then e ∈ Ck by Rule 1 and the induction step is complete.

Suppose therefore that e 6∈ Ck−1, and that a and b are the left and right neighbors of

e in Ck−1. (The case where one of the neighbors is absent is handled similarly.) By

the induction hypothesis, each interval that is colored k and contains e must contain

either a or b. Thus, either densityk(a) ≥ (1 − α)/2, or densityk(b) ≥ (1 − α)/2.

Suppose the former holds. Then a ∈ Ck by Rule 1 and b ∈ Ck either by Rule 1 or

Rule 2. Now the induction hypothesis (applied to i = k − 1 and j) tells us that I

contains either a or b. Thus the induction step is complete.

Lemma 2.3.5 implies that Cm−1 6= ∅.

2.3.4 Some Tall Columns are Dense

In this section we sketch an argument that shows that among the columns of

height m − 1, there is a column that contains at least (m − 1)/8 “R” labels. The

argument is similar to the argument in Section 2.2. We can show that no column

contains too many “$” and “F” labels. The upper bound on the number of “F” labels

follows from the fact that if column e is labeled “F” at height i, there must be a j,

1 ≤ j < i, such that the number of “R” labels in column e at heights j, j + 1, . . . , i

is at least (i− j)/4. Hence, lemma 2.2.2 holds. From lemma 2.2.2 it follows that the

number of “F” labels is at most 3 times the number of “R” labels in any column. The

52

rest of the analysis is identical to that in Section 2.2, and this proves Theorem 2.3.1.

2.4 Future Work

The biggest open problem is a tight analysis of the first-fit algorithm. In

general it would be interesting to improve the lower bounds for the problem of online

coloring with bandwidths. The current lower bounds use small variations of the

Chrobak-Slusarek lower bound technique, but it may be interesting to look for other

techniques.

Another question of interest is tight bounds for the online coloring problem for

unit interval graphs. First-fit is (2 · χ(G)− 1)-competitive, but the best lower bound

is only 3/2 by Epstein and Levy [22].

53

CHAPTER 3
APPROXIMATION ALGORITHMS FOR MAX-COLORING

3.1 Introduction

In this chapter1, we present the first approximation algorithms and inapprox-

imability results for the max-coloring problem on various classes of graphs. As de-

scribed in the introduction, the max-coloring problem arises in two distinct appli-

cations. In the first application, which originally motivated our work, the problem

models the allocation of buffers to variables in a straight-line program. The second

motivation for studying this problem comes from scheduling theory; specifically, the

problem of scheduling a set of conflicting jobs in batches. We start this section with a

more detailed description of the motivation. In Section 3.2, we present previous work

on the max-coloring problem. In Sections 3.3, 3.4, and 3.5, we present our results on

the max-coloring problem. We conclude with some open questions and future work

in Section 3.6.

3.1.1 Buffer Minimization

Programs that run with stringent memory or timing constraints use a dedi-

cated memory manager that provides better performance than the general purpose

memory management of the operating system. An example of such programs are

protocol stacks like GPRS and 3G that run on mobile devices. These protocol stacks

have stringent memory requirements as well as soft real-time constraints and a ded-

1This is joint work with Sriram Pemmaraju and Kasturi Varadarajan, and appeared
in [63] and [62]

54

icated memory manager is a natural design choice. A dedicated memory manager

for these stacks must have deterministic response times and use as little memory as

possible. The most commonly used memory manager design for this purpose is the

segregated buffer pool. This consists of a fixed set of buffers of various sizes with

buffers of the same size linked together in a linked list. As each memory request

arrives, it is satisfied by a buffer whose size is large enough.

The assignment of buffers to memory requests can be viewed as an assignment

of colors to the requests – all requests that are assigned a buffer are colored identically.

Thus the problem of determining whether a given segregated buffer pool suffices for a

particular sequence of allocation requests can be formalized as follows. Let G = (V, E)

be a graph whose vertices are objects that need memory and whose edges connect pairs

of objects that are alive at the same time. Let w : V → N be a weight function that

assigns a natural number weight to each vertex in V . For any object v, w(v) denotes

the size of memory it needs. Suppose the segregated buffer pool contains k buffers

with weights w1, w2, . . . , wk. The problem is to determine if there is a k-coloring of G

into color classes C1, C2, . . . , Ck such that for each i, 1 ≤ i ≤ k, maxv∈Ci
w(v) ≤ wi.

The optimization version of this problem is the max-coloring problem. Given a graph

G = (V, E) and a weight function w : V → N the problem is to find a proper

vertex coloring C1, C2, . . . , Ck of G that minimizes
∑k

i=1 maxv∈Ci
{w(v)}. Note that

the special case of this problem in which w(v) = 1 for all v ∈ V is simply the problem

of coloring a graph with fewest colors. Solving the max-coloring problem and selecting

k buffers of sizes maxv∈Ci
{w(v)}, for i = 1, 2, . . . , k, leads to a segregated buffer pool

55

that uses minimum amount of total memory. Note that this is an off-line problem. In

the on-line version, buffers have to be allocated to requests as they arrive and without

knowledge of future requests. The off-line version is also useful because designers of

protocol stacks would like to estimate the size of the total memory block needed by

extracting large traces of memory requests and running off-line algorithms on these

traces.

If we restrict our attention to memory allocation requests from straight-line

programs, (i.e., programs without loops or branching statements), each memory allo-

cation request is made for a specific duration of time and thus these requests can be

viewed as intervals on a real line. Requests which are live at the same time have to

be satisfied by different buffers. In this restriction to straight-line programs, the un-

derlying graph is an interval graph (See Chapter 1 for a definition of interval graphs).

3.1.2 Batch scheduling

In several scenarios involving the scheduling of a set of jobs on a set of ma-

chines, the jobs are partitioned into batches and jobs in a batch are processed si-

multaneously. Processing of the next batch of jobs starts only after all the jobs in

the current batch complete. Batched scheduling is used, especially in manufacturing

processes where a machine is capable of handling several types of jobs, but requires a

different set up for each job. In this case, all jobs of the same type can be scheduled

on the machine, before changing the set up for a different type of job. For example,

materials in a factory may have to be processed in a kiln, where all materials that

need to be processed at the same temperature can be processed simultaneously, before

56

starting a next batch with a different temperature. Batching thus leads to a higher

utilization of the machine and hence more efficient schedules. Another application

where batch scheduling is used is in scheduling jobs on a cluster machine, where jobs

that need to communicate to accomplish a task are scheduled together. A recent

paper by Potts and Kovalyov [64] surveys recent results in batch scheduling. Batch

scheduling problems with conflicting jobs can be modeled as a max-coloring problem

as follows. The input to a batch scheduling problem is a set of jobs J = {J1, · · · , Jn}

and a processing time w : J → N. We are also given a graph G, whose vertex set

is the set of jobs and and edge between a pair of jobs implies the two jobs are not

compatible and hence cannot be scheduled simultaneously. A proper vertex coloring

of this graph corresponds to a schedule where each color class constitutes a batch.

The processing time for a batch is the maximum processing time of any job in this

batch, and the processing time for the entire set of jobs is the sum of processing times

of the batches. Thus, if S1, · · · , Sk are the independent sets in a coloring, the weight

of an independent set w(Si) = maxv∈Si
w(v), and the cost of this coloring is the sum

of the weights of the independent sets. i.e.,
∑k

i=1 w(Si). The problem of minimizing

the makespan of this batched schedule is precisely the max-coloring problem.

3.2 Related Work

The max-coloring problem was first studied by Gaun and Zhu [40], who moti-

vate the problem by an application that involves the transmission of wireless messages

in a metropolitan network. They study the maximum number of colors needed by

an optimal max-coloring for various special classes of graphs, and also show that

57

the max-coloring problem can be solved in polynomial time for graphs of bounded

path-width. The max-coloring problem has also been studied by Govindarajan and

Rengarajan [36] who, like us, are motivated by the problem of allocating a small

buffer, but in the context of digital signal processing applications. The authors ex-

perimentally evaluate a first-fit strategy for max-coloring on circular arc graphs; in

their experiments the first-fit strategy produces a solution with weight within 2.1% of

the optimal weight. We point out later that using our algorithm for interval graphs,

a 3-approximation for circular arc graphs is easily obtained. The max-coloring prob-

lem was also investigated by Demange, et al. [57], where they study the complexity

of max-coloring and present approximation algorithms for various classes of graphs.

They analyze their algorithms both under the standard approximation ratio described

in Chapter 1, and the differential approximation ratio2. Specifically, in [57], the au-

thors present polynomial time algorithms for co-graphs, bipartite graphs with weights

{1, t}, and line graphs of bipartite graphs with weights {1, t}. They show NP-hardness

of max-coloring for bipartite graphs, split graphs and line graphs of k-regular bipartite

graphs. For bipartite graphs, they present a 4rw/(3rw + 2)-approximation algorithm,

where rw is the ratio of the maximum to minimum weights of the vertices. In [26],

the authors study the max-coloring problem on planar, bipartite and split graphs.

2The differential approximation ratio measures how the value of an approximation is
placed in the interval between the worst and optimal solutions. More precisely, for a mini-
mization problem Π, and instance I of Π, let worst(I), costA(I), OPT (I) denote the worst
possible solution for the instance I, the cost of the solution produced by algorithm A and
the optimum solution for the instance. Then the differential approximation ratio is defined
as |worst(I)−costA(I)|

|worst(I)−OPT (I)|

58

They show that the max-coloring problem is NP-hard on triangle-free planar graphs.

Further, they also present a 7/6− ε hardness of approximation for the edge-coloring

version on bipartite graphs.

The problem of scheduling a set of conflicting jobs in batches has also been

studied by Epstein, et al. [19], where they study the problem with the objective of

minimizing the average completion time of the jobs. They present a 4-approximation

algorithm for perfect graphs.

3.3 Interval Graphs

In this section, we show that the max-coloring problem on interval graphs is

NP-Complete and present a 2-approximation algorithm. The max-coloring problem

on interval graphs is related to the well-studied dynamic storage allocation prob-

lem(DSA), described in Chapter 1. Recall that an instance of DSA consists of an

interval graph G = (V, E) and a weight function w : V → N. A feasible solu-

tion to this problem in an assignment of an interval I(v) to each vertex v such that

|I(v)| = w(v) and I(u)∩I(v) = ∅ if u and v are adjacent vertices. The goal is to mini-

mize |∪v∈V I(v)|. Stockmeyer proved this problem NP-complete in 1976 (see problem

SR2 in Garey and Johnson [31]) and Kierstead [50] presented the first constant-factor

approximation algorithm in 1988. This was an 80-approximation algorithm that used

a first-fit strategy to perform on-line coloring of unweighted interval graphs. Kier-

stead [51] subsequently improved this to a 6-approximation algorithm, which was

then improved by Gergov [33, 34] to a 5-approximation and then a 3-approximation

algorithm. Recently, Buchsbaum et al. [12] presented a (2+ε)-approximation for this

59

problem.

In Chapter 1 we showed how the max-coloring problem and interval coloring

problems are similar when stated as rectangle packing problems. However, as we show

below, the weights of optimal solutions for the two problems on the same input can

be quite different. Let OPTI denote the weight of an optimal interval coloring and let

OPTM denote the weight of an optimal max-coloring for a given instance. Since any

feasible solution of the max-coloring problem is also a feasible solution to the interval

coloring problem, it follows that OPTI ≤ OPTM . For any clique Q in the given graph,

every vertex in the clique needs to have a distinct color and therefore
∑

v∈Q w(v) is

a lower bound on both OPTI and OPTM . Let LOAD denote the maximum over

all cliques Q in G of
∑

v∈Q w(v). Equivalently, in the context of rectangle packings,

LOAD is the maximum sum of heights of rectangles that intersect any vertical line.

Clearly, LOAD ≤ OPTI ≤ OPTM and Gergov [34] shows that OPTI ≤ 3 · LOAD.

Buchsbaum et al. [12] further investigate the relationship between LOAD and OPTI

and show that OPTI ≤ (2 + ε)LOAD.

It is easy to construct an instance for which LOAD and OPTI are poor lower

bounds on OPTM . Consider the weighted intervals shown in Figure 3.1. These form n

disjoint cliques, Q1, Q2, . . . , Qn, where clique Qi contains i intervals each with weight

dW/ie, where W ≥ n is an integer. Letting w(Qi) denote
∑

v∈Qi
w(v) we see that

w(Qi) = i ·dW/ie ≤ W +(i−1). From this it follows that LOAD ≤ W +(n−1). Also

note that for this instance LOAD = OPTI . It can be verified that the optimal solution

for max-coloring is an n-coloring C1, C2, . . . , Cn, where Ci contains exactly one interval

60

each from Qn, Qn−1, . . . , Qi. Letting w(Ci) denote maxv∈Ci
w(v) we see that w(Ci) =

dW/ie. This implies that OPTM =
∑n

i=1dW/ie ≥ W · Hn, where Hn is the nth

harmonic number. The upper bound on LOAD along with the above lower bound on

OPTM together imply that for this family of instances OPTM = Ω(LOAD · log n).

Despite the fact that the obvious lower bound on OPTM , namely LOAD can be

rather loose, we are able to develop several O(1)-approximation algorithms for the

max-coloring problem.

W/n

W/n W/(n−1)
W/(n−1)

(n−2)

W/(n−2)

W/(n−2)
W/(n−2)

Q
1

Q

W/n

Q
n

W/(n−1)

Q
n−1 n−2

(n−1)n

Figure 3.1: An example of a weighted interval graph for which OPTM = Ω(LOAD ·
log n).

3.3.1 A 2-approximation algorithm

To develop the 2-approximation algorithm, we use a reduction to online col-

oring. Recall that in an instance of the on-line graph coloring problem, vertices of

a graph are presented one at a time and when a vertex is presented, all edges con-

necting that vertex to previously presented vertices are also revealed. Each vertex

must be assigned a color immediately after it has been presented (and before the

next vertex is presented), and a color assigned to a vertex cannot be changed later.

An algorithm for the on-line graph coloring problem assigns colors to vertices in the

61

manner described above, so as to construct a proper vertex coloring of the graph. We

say that an algorithm A for the on-line graph coloring problem k-colors a graph G,

if no matter which order the vertices of G are presented A uses at most k colors to

color G.

Let A be an algorithm for the on-line graph coloring problem. We use A

as a “black-box” to devise a simple algorithm for the max-coloring problem. The

algorithm, called MCA (short for max-coloring algorithm) is given below.

Algorithm 1 MCA(G,w)

1:Sort vertices of G in non-increasing order of weights.
(Let (v1, · · · , vn) be this ordering).
2:Present the vertices in this order to A.
3:Return the coloring produced by A.

We will now make a connection between the number of colors used by A

and the weight of the coloring produced by MCA. This connection, along with known

results on on-line coloring of interval graphs will lead to constant factor approximation

algorithms for max-coloring for interval graphs.

Theorem 3.3.1 Let C be a hereditary class of graphs and let A be an algorithm for

on-line graph coloring such that for some integer constant c > 0 and for any graph

G ∈ C, A k-colors G for some k ≤ c · χ(G). Then, for any G ∈ C and for any

weight function w : V (G) → N, MCA produces a coloring for G whose weight is at

most c ·OPTM(G).

62

Proof: Let C1, C2, . . . , Ck be a coloring of G that is optimal for the max-coloring prob-

lem. Let wi = maxv∈Ci
w(v) and without loss of generality assume that w1 ≥ w2 ≥

· · · ≥ wk. Now note that k ≥ χ(G) and OPTM(G) =
∑k

i=1 wi. Let A1, A2, . . . , At

be the coloring of G produced by MCA. Let ai = maxv∈Ai
w(v) and without loss of

generality assume that a1 ≥ a2 ≥ · · · ≥ at. From our hypothesis it follows that

t ≤ c · χ(G) ≤ c · k. For notational convenience, define sets At+1 = At+2 = . . . =

Ac·χ(G) = ∅ and let ai = 0 for i, t < i ≤ c · χ(G). We will now claim that for each i,

1 ≤ i ≤ χ(G), and each j, c(i− 1) < j ≤ c · i, we have wi ≥ aj. Showing this would

imply the result we seek because the coloring produced by MCA has weight

c·χ(G)∑
`=1

a` =

χ(G)∑
i=1

c·i∑
j=c(i−1)+1

aj

≤
χ(G)∑
i=1

c · wi

≤ c ·OPTM(G).

Since w1 is the maximum weight of any vertex in G, the claim is trivially true

for i = 1. For any i ≥ 2, let Vi ⊆ V be defined as Vi = {v | w(v) > wi}. The coloring

C1, C2, . . . , Ci−1 is an i− 1 coloring of G[Vi].

Because of the order in which vertices are presented to A, all vertices in Vi

are presented to A before any vertex with weight wi. Therefore, by our hypothesis,

algorithm A colors G[Vi] with no more than c · (i − 1) colors. Therefore, the weight

of the heaviest vertex in color classes Aj for j, c(i− 1) < j ≤ c · i− 1 is at most wi.

63

See Figure 3.2

A_ci

C_1

C_2

C_3

A_1

A_3

A_2

C_i

Figure 3.2: The figure shows the color classes of OPTM on the left, and the color
classes of MCA on the right. We show that the weight of the (c · i)th color class
produced by MCA is at most the weight of the ith color class of OPTM .

From the results in Chapter 2, it follows from Theorem 3.3.1 that if we use

the first-fit algorithm for on-line coloring the interval graph, then max-coloring has

an 8-approximation. However, as noted in Chapter 2, Kierstead and Trotter [53]

presented a simple algorithm for on-line coloring of interval graphs that is 3k − 2-

competitive, where χ(G) = k. From this result, and Theorem 3.3.1, a 3-approximation

algorithm for max-coloring interval graphs follows, after noting that interval graphs

are a hereditary class of graphs.

Theorem 3.3.2 There is a 3-approximation algorithm for solving the max-coloring

64

problem on interval graphs.

Rather than use the Kierstead-Trotter algorithm as a black box, if we make

a simple modification to one of the steps in the Kierstead-Trotter algorithm, we

can reduce the approximation factor from 3 to 2. The Kierstead-Trotter algorithm

maintains sets S1, S2, . . . such that when a vertex u is presented, it finds the smallest

i such that S1∪S2∪ . . .∪ (Si∪{u}) does not contain an (i+1)-clique. The vertex u is

then inserted into Si. Kierstead and Trotter show that each induced subgraph G[Si]

is the union of disjoint paths. Therefore G[Si] can be 3-colored using the “first-fit”

on-line algorithm that assigns to each presented vertex the smallest available color.

The new algorithm for max-coloring is given below.

Algorithm 2 BETTER-MCA(G,w)

1:Sort the vertices of G in non-increasing order of weights.
(Let (v1, · · · , vn) be this ordering of the vertices of G).
2:Let k ← 1; Sk ← ∅.
3:for j ← 1 to n do

4:Insert vj into set Si

5:where i ≤ k is the smallest value such that
6:S1 ∪ S2 ∪ . . . ∪ (Si ∪ {u}) does not contain an (i + 1)-clique.
7:If no such i exists,
8:set k ← k + 1 and insert vj into Sk

9:end for
10:Use color 1 to color vertices in S1

11:for i← 2 to k do
12:Use colors 2i− 2 and 2i− 1 to 2-color the vertices in Si

13:end for
14:Return the coloring.

Steps (2) and (3) come from the Kierstead-Trotter algorithm. The modifica-

65

tion we make to the Kierstead-Trotter algorithm is that instead of coloring Si on-line

with 3 colors, we just color Si off-line using two colors. This is possible because, as

mentioned above, G[Si] is a union of disjoint paths [53].

Theorem 3.3.3 BETTER-MCA is a 2-approximation algorithm for the max-coloring

problem on interval graphs.

Proof: Let C1, C2, . . . , Ck be a coloring of G that is optimal for the max-coloring

problem. Let wi = maxv∈Ci
w(v) and without loss of generality assume that w1 ≥

w2 ≥ · · · ≥ wk. Now note that k ≥ χ(G) and OPTM(G) =
∑k

i=1 wi.

Suppose that at the end of Step (3) in BETTER-MCA, we have sets S1, S2, . . . , St.

An element is inserted into St only because S1 ∪S2 ∪ . . .∪ (St−1 ∪{u}) has a t-clique.

Therefore, χ(G) ≥ t and it follows that t ≤ k. Let si = maxv∈Si
w(v). We now claim

that for each i, 1 ≤ i ≤ t, si ≤ wi.

It is clear that s1 = w1. To obtain a contradiction, suppose that for some i,

si > wi and let i be the smallest such value. This implies any vertex x with weight

si or larger is in an earlier color class, Cj, for some j < i in the optimal coloring.

Therefore, vertices with weight si or larger are (i − 1)-colorable, so they induce a

clique of size at most i− 1 and therefore in Step (3) no vertex with weight si will get

inserted into Si - a contradiction.

In Steps (4) and (5) we convert the vertex partition S1, S2, . . . , St into a col-

oring whose weight is at most s1 + 2 ·
∑t

i=2 si. The following inequalities

s1 + 2 ·
t∑

i=2

si ≤ w1 + 2 ·
t∑

i=2

wi ≤ 2 ·OPTM(G)

66

give the result we seek.

3.3.2 NP-hardness

In this section, we show that the problem of max-coloring interval graphs is

NP-hard. Our proof is considerably simpler than the one presented in the preliminary

version [63]. We show that the decision problem for max-coloring interval graphs is

NP-complete. The decision problem is defined as follows.

MAX-COLORING INTERVAL GRAPHS

INPUT: An interval graph G = (V, E) with weight function w : V → N, and an

integer k

QUESTION : Does G have a max-coloring of cost at most k

The reduction is from coloring circular-arc graphs. Recall from Chapter 1

that a graph G = (V, E) is a circular-arc graph if its vertices can be placed in one-

to-one correspondence with open arcs on the circumference of a circle such that two

arcs intersect if and only if the corresponding vertices are adjacent. The decision

version of the problem, whether there exists a k-coloring for a given circular-arc

graph G = (V, E) was proved NP-complete by Garey, et al. in [32]. We now describe

the problem and the reduction.

CIRCULAR-ARC GRAPH COLORING

INPUT : A circular-arc graph G = (V, E) and an integer k.

QUESTION : Does G have a coloring with ≤ k colors ?

We may assume that a circular arc representation of G is given to us, since

67

there exist algorithms for recognizing circular-arc graphs, that produce a circular-

arc representation of the graph [56]. Without loss of generality, we can assume that

there exists a point on the circle that is contained in precisely k circular arcs. If not,

consider a sector that does not contain any end-points of any of the arcs. Assume

that this sector is contained in l < k arcs. We can introduce k − l arcs that are

contained only in this sector. The modified graph is k-colorable if and only if the

original graph is k-colorable. This is because any coloring of the original graph that

uses at least k colors can be extended to the modified graph as the newly added arcs

have at least k − l available colors. (Note that if the sector was contained in at least

k + 1 arcs, then G is not k-colorable, and the reduction can be trivially completed.)

Theorem 3.3.4 MAX-COLORING INTERVAL GRAPHS is NP-complete.

Proof: Given a circular-arc graph, G = (V, E), consider a ray r from the

center of the circle that intersects precisely k circular arcs. For each such arc vi,

i = 1, · · · , k, partition vi into two arcs li and ri, where li has the same left end-point

as vi (in a clockwise direction), and has as right end-point, the point of intersection

of r and vi. ri has left end-point the intersection point of r and vi, and it’s right

end-point is that of vi. This gives an interval graph G′ = (V ′, E ′). The weights of the

vertices V ′ are as follows. For each li, ri, let w(li) = w(ri) = i. For all other vertices

v, let w(v) = 1. See Figures 3.3 and 3.4.

If the circular-arc graph G has a k-coloring then, assigning colorG′(v) =

colorG(v), for all v 6∈ {li, ri, i = 1, · · · , k}, and colorG′(li) = colorG′(ri) = colorG(vi),

i = 1, · · · , k gives a max-coloring of G′ of cost k(k + 1)/2.

68

v_1

v_3

v_4

v_2

Figure 3.3: A circular-arc graph with k = 4 arcs crossing the ray from the center

r_2(2)

l_3(3)

l_2(2)
l_1(1) l_4(4)

r_4(4)

r_3(3)

r_1(1)

Figure 3.4: The 4 arcs crossing the ray are split into rays li and ri for i = 1, · · · , 4.
The ith arc is assigned a cost of i. The weight of new arcs are shown in brackets.

69

Note that the intervals li and the intervals ri each form a clique of weight

k(k + 1)/2. This is a lower bound on the max-coloring cost of G′. If G′ has a

max-coloring of cost k(k + 1)/2, then we must have (1) colorG′(li) = colorG′(ri), for

i = 1, · · · k, and (2) the number of colors used in the max-coloring is k. Thus by

setting colorG(vi) = colorG′(li) = colorG′(ri), and colorG(v) = colorG′(v) for all other

vertices v, we get a k-coloring of G.

3.4 Max-Coloring Trees and Bipartite

Graphs

3.4.1 Max-Coloring Trees

In this section, we present results on the max-coloring problem for trees and

bipartite graphs. The results on bipartite graphs were also obtained independently

by de Werra, et al. [57]. The max-coloring problem has turned out to be surprisingly

hard even for trees. For trees, we don’t know if the max-coloring problem can be

solved in polynomial time. We present (i) a sub-exponential exact algorithm and (ii)

a PTAS. We start with an observation on the distribution of weights of color classes

in an optimal max-coloring of bipartite graphs.

Lemma 3.4.1 Let G be a bipartite graph. In any optimal max-coloring {C1, C2, . . . , Ck}

of G with wi = weight(Ci) and w1 ≥ w2 ≥ · · · ≥ wk, we have that wi ≥
∑k

j=i+1 wj,

i = 1, · · · , k − 1.

Proof: If wi <
∑k

j=i+1 wj, then the subgraph induced by vertices in ∪k
j=iCj can be

colored with two colors with weight at most 2wi. This coloring has weight less than

70

the weight of {C1, C2, . . . , Ck}, a contradiction.

Corollary 3.4.2 Let G be a bipartite graph. In any optimal max-coloring {C1, C2, . . . , Ck}

of G with wi = weight(Ci) and w1 ≥ w2 ≥ · · · ≥ wk, we have that wi

2
≥ wi+2, for

i = 1, · · · , k − 2, and hence, w1 ≥ 2b(i−1)/2c · wi.

Since the weights of the color classes decrease rapidly, we can expect that the max-

color number of a tree may not be too high. We now state three upper bounds on

χmc of trees, the first of which applies to arbitrary graphs as well.

Lemma 3.4.3 Let G be a vertex-weighted graph with maximum vertex degree ∆.

Then χmc(G) ≤ ∆ + 1.

Proof: Let k = χmc(G) and let C1, C2, . . . , Ck be an optimal max-coloring of G. Let

wi = weight(Ci) and without loss of generality assume that w1 ≥ w2 ≥ · · · ≥ wk. If

k > ∆ + 1, then for each vertex v ∈ Ck, there is a color class Ci, i < k, such that v

has no neighbors in Ci. Note that since wi ≥ wk, when v is moved into Ci, the weight

of the coloring does not increase. Furthermore, when Ck becomes empty, the weight

of the coloring decreases, contradicting the optimality of C1, C2, . . . , Ck.

Lemma 3.4.4 Let T be a vertex-weighted tree on n vertices. Then, χmc(T) ≤

blog2 nc+ 1.

Proof: Let k = χmc(G) and let C1, C2, . . . , Ck be an optimal max-coloring of G. Let

wi = weight(Ci) and without loss of generality assume that w1 ≥ w2 ≥ · · · ≥ wk. For

each i > 1, we can assume without loss of generality that every vertex v ∈ Ci has a

neighbor in Cj, for every j < i.

71

For each vertex v ∈ C1, let T (v) denote the rooted tree with one vertex,

namely v. For each v ∈ Ci, i > 1, define T (v) as the tree rooted at v, such that

(i) the children of v in T (v) are exactly the neighbors of v in T belonging to color

classes C1, C2, . . . , Ci−1, and (ii) for each child u of v, the subtree of T (v) rooted at u

is simply T (u). For each i, 1 ≤ i ≤ k, let Si = min{|T (v)| | v ∈ Ci}. In other words,

Si is the size of a smallest tree T (v) rooted at a vertex v in Ci. Then,

S1 = 1

Si ≥
i−1∑
j=1

Sj + 1, for each i > 1

This implies that Si ≥ 2i−1, 1 ≤ i ≤ k. Using the fact that Sk ≤ n, we get

χmc = k ≤ blog2 nc+ 1.

Lemma 3.4.5 Let T be a vertex-weighted tree on n vertices, and let W be the ratio of

the weight of heaviest vertex to the weight of the least heavy vertex. Then, χmc(T) ≤

dlog2 W e+ 1.

Proof: Let k = χmc(T) and let C1, C2, . . . , Ck be an optimal max-coloring of T .

For 1 ≤ i ≤ k, let wi = weight(Ci) and without loss of generality assume that

w1 ≥ w2 ≥ · · · ≥ wk. Thus w1 is the weight of the heaviest vertex in the tree. Let

` = min{t ∈ N | for all v ∈ V (T), w(v) ≥ w1/2
t}. Therefore, ` = dlog2 W e.

Consider the collection of disjoint intervals I = {I0, I1, . . . , I`−1}, where Ii =

[w1

2i+1 ,
w1

2i), for i = 1, . . . , ` − 1 and let I0 = [w1

2
, w1]. Because of the choice of `, for

each vertex v ∈ V (T), w(v) belongs to exactly one interval Ij. Let Vj = {v ∈ V (T) |

72

w(v) ∈ Ij}, j = 0, 1, . . . , `− 1. We say that a vertex v contributes to a color class Ci

if v ∈ Ci, and w(v) = max{w(u) | u ∈ Ci}. The contribution of an interval Ij is the

maximum number of vertices in Vj that contribute to distinct color classes.

Corollary 3.4.2 tells us that wi ≥ 2 ·wi+2 for i = 1, · · · k− 2. This immediately

implies that no interval Ij, j = 1, 2, . . . , `− 1 has a contribution of more than two. If

the contribution of I0 is three or more, then it must be the case that we can construct

a 2-coloring with the same or smaller weight, compared to {C1, C2, . . . , Ck}. This

contradicts the fact that k = χmc(T) and C1, C2, . . . , Ck is an optimal max-coloring

of T .

Now suppose that intervals Ii1 , Ii2 , . . . , Iit , 0 ≤ i1 < i2 < · · · < it ≤ ` − 1, is

the sequence of all intervals in I, each of whose contribution is two. We now prove

the following claim:

Claim: For any pair of consecutive intervals Ip, p = ij and Iq, q = ij+1,

where j < t, it is the case that there is an interval in {Ip+1, Ip+2, . . . , Iq−1}

with contribution zero.

If we can show this claim, then we can charge the “extra” contribution of each Iij to

an interval between Iij and Iij+1
, whose contribution is zero. This implies that the

contributing vertices in all intervals except It can be reassigned to a distinct interval.

Since there are ` intervals and since the contribution of It is at most two, there is a

total contribution of at most `+1, implying that there are at most `+1 color classes.

We prove the above claim by contradiction, assuming that the contribution

of every interval in {Ip+1, Ip+2, . . . , Iq−1} is one. Let {xp, xp+1, . . . , xq} ∪ {yp, yq} be

73

vertices such that (i) for each j = p, p + 1, . . . , q, xj ∈ Vj and xj contributes to some

color class and (ii) for each j ∈ {p, q}, yj ∈ Vj and xj and yj contribute to distinct

color classes. Since xj ∈ Vj, w(xj) ≥ w1

2j+1 , j = p, p + 1, . . . , q. Also, since yq ∈ Vq,

w(yq) ≥ w1

2q+1 . Therefore,

q∑
j=p

w(xj) + w(yq) ≥
q∑

j=p

w1

2j+1
+

w1

2q+1

= w1
2q−p+1 − 1

2q+1
+

w1

2q+1

=
w1

2p
> w(yp)

This contradicts Lemma 3.4.1 and proves the claim.

The upper bounds in the three preceding lemmas are all tight, as the fol-

lowing example will show. Let T0, T1, T2, . . . be a sequence of trees where T0 is a

single vertex, with weight 1, and Ti, i > 0, is constructed from Ti−1 as follows. Let

V (Ti−1) = {u1, u2, . . . , uk}. To construct Ti, start with Ti−1 and add a set of new

vertices {v1, v2, . . . , vk}, each with weight 2i, and edges {ui, vi} for all i = 1, 2, . . . , k.

Thus the leaves of Ti are {v1, v2, . . . , vk} and every other vertex in Ti has a neighbor

vj for some j. Now consider a tree Tn in this sequence. Clearly, |V (Tn)| = 2n and the

maximum vertex degree of Tn, ∆(Tn) = n − 1. See Figure 4.1 for T0, T1, T2, and T3.

Now consider the coloring of Tn defined by Ci = { leaves of Tn+1−i}, 1 ≤ i ≤ n + 1.

Note that weight(Ci) = 2n+1−i and therefore the weight of the coloring is 2n+1−1. It

is not hard to see that any coloring using fewer than n + 1 colors has weight at least

74

2n+1. Therefore,

χmc = n + 1 = log2 |V (Tn)|+ 1 = ∆ + 1 = log2

(
2n

1

)
+ 1.

1 1

2

1

2

4

4

1

2

4

8

8
8

8

4

Figure 3.5: Sequence of trees which show that the upper bounds of Lemmas 3.4.3,
3.4.4 and 3.4.5 are all tight. The figure above shows the trees T0, · · · , T3.

Now we show that if the tree has a constant number of distinct weights, we

can find an optimal max-coloring in polynomial time. Later this will turn out to be

critical for our PTAS. We deal with the case of constant number of distinct weights

via the solution to a problem called FEASIBLE k-COLORING.

FEASIBLE k-COLORING

INPUT: A tree T with weight function w : V → N, and a sequence (W1, W2, · · · , Wk)

of positive integers, satisfying W1 ≥ W2 ≥ · · · ≥ Wk.

OUTPUT: Either a coloring of the tree into color classes A1, · · · , Ak, such that for

all v ∈ Ai, w(v) ≤ Wi or if such a coloring does not exist, a report that no such

75

feasible coloring exists.

Here is a simple dynamic programming algorithm for solving FEASIBLE k-COLORING

on trees in O(nk) time. Let T be rooted at an arbitrary vertex r. Let ch(v) denote

the set of children of v, and let parent(v) denote the parent of v. For a vertex v, let

T (v) denote the sub-tree of T rooted at v. Let [k] denote the set of colors {1, · · · , k}.

For a vertex v, let F (v) = {j | w(v) > Wj} be the set of forbidden colors, and let

S(v) = {i | there exists a feasible coloring of T (v) with color(v) = i}. The algo-

rithm to compute a feasible coloring, if one exists is as follows. The correctness of

the algorithm and the running time are easy to established and this is summarized

in the lemma below.

Algorithm 3 FKC

1:Let S(v) = φ, ∀ v ∈ T
2:for Each vertex v in a post-order traversal of T do

3:for each color i ∈ [k]− F (v) do
4:if S(u)− {i} 6= φ ,∀u ∈ ch(v) then

5:Set S(v) = S(v) ∪ {i}.
6:end if

7:end for
8:end for
9:if S(r) = φ, return NULL then

10:Pick an arbitrary i ∈ S(r) and set color(r) = i
11:end if
12:Pick an arbitrary i ∈ S(r) and set color(r) = i.
13:for each v in a pre-order traversal of T do

14:Pick an arbitrary j ∈ S(v)− color(parent(v)) and set color(v) = j
15:end for

Lemma 3.4.6 Algorithm FKC solves the FEASIBLE k-COLORING problem in O(nk)

76

time.

The main idea underlying our PTAS is the reduction of the number of dis-

tinct weights of the vertices down to a constant. We then pick candidates for the

weights of the color classes and for each such choice, using the algorithm for FEASIBLE

k-COLORING, we test if there is a legal coloring of the tree with the chosen weights

for the color classes.

We are given a tree T , with weight function w : V → N and an ε > 0. Let

c > 0 be an integer such that (2 log c + 3)/c ≤ ε, and let α = (w1 − 1)/c. Let

I1, I2, · · · , Ic be a partition of the range [1, w1), where Ii = [1 + (i − 1)α, 1 + i · α),

1 ≤ i ≤ c. Let T ′ be a tree that is identical to T , except in its vertex weights. The tree

T ′ has vertex weights w′ : V → N defined by the rule: for any v ∈ V , if w(v) ∈ Ij

then w′(v) = 1 + (j − 1) · α and if w(v) = w1, then w′(v) = w1. In other words,

except for vertices with maximum weight w1, all other vertices have their weights

“rounded” down. As a result T ′ has c + 1 distinct vertex weights. Now let OPT ′

denote the weight of an optimal max-coloring of T ′ and let C ′ = C ′
1, C

′
2, . . . , C

′
k be

the color classes corresponding to OPT ′
M . Since the weights of vertices have fallen

in going from T to T ′, clearly OPT ′
M ≤ OPTM . If we use the coloring C ′ for T , we

get a coloring whose weight is at most OPT ′
M + kα. Substituting (w1 − 1)/c for α

and noting that w1 ≤ OPT ′
M , we obtain that weight of C ′ used as a coloring for T ′ is

at most (1 + k
c
)OPT ′

M We now show that given the distribution of vertex weights of

T ′, k = O(log c). To see this first observe that the weights of last three color classes

C ′
k, C ′

k−1, and C ′
k−2 cannot all be identical, by Lemma 3.4.1. Also, observe that the

77

possible vertex weights of T ′ are 1, 1+α, 1+2α, Therefore, weight(C ′
k−2) ≥ 1+α.

From Corollary 3.4.2, we obtain

1 + α ≤ w(Ck−2) ≤
w1

2b(k−3)/2c .

Solving this for k yields k ≤ 2 log2(c) + 3. Therefore, by our choice of c, we have

k

c
≤ 2 log2(c) + 3

c
≤ ε.

Thus (1 + ε)OPT ′
M is an upper bound on the weight of C ′ used as a coloring for T .

Since OPT ′
M ≤ OPTM , we see that the weight of OPT ′

M used as a coloring for T is

at most (1 + ε)OPTM .

To construct OPT ′
M in polynomial time, for each k = 1, . . . , 2 log c+3, we gen-

erate all O(ck) possible sequences of weights and call algorithm FEASIBLE k-COLORING

for each subsequence and pick the coloring with the minimum weight. This gives

OPT ′
M . Each solution to FEASIBLE k-COLORING takes O(nk) time, and we have

O(ck) sequences, for k = 1, . . . , 2 log c + 3. Using the fact that (2 log2 c + 3)/c ≤ ε, a

little bit of algebra yields a running time that is linear in n and exponential in 1/ε.

3.4.2 Max-Coloring Bipartite Graphs.

This section presents an 8
7
-approximation algorithm for the max-coloring prob-

lem on bipartite graphs, followed by a hardness of approximation result that shows

that for any ε > 0, there is no (8
7
−ε)-approximation algorithm unless P = NP . Thus

78

our approximation algorithm produces an optimal approximation ratio.

One feature of our approximation algorithm is that it uses at most 4 colors,

even though though an optimal max-coloring of a bipartite graph may need an un-

bounded number of colors. Our PTAS for the max-coloring problem on trees relied on

the fact that the FEASIBLE k-COLORING problem on trees can be solved in polynomial

time for any k. However, FEASIBLE k-COLORING is NP-complete for bipartite graphs

for k ≥ 3 [54]. This has forced us to use a different approach for bipartite graphs.

Another difference is that in contrast to the O(log n) upper bound on the number of

colors used by an optimal max-coloring for an n-vertex tree, there are simple exam-

ples of n-vertex bipartite graphs G with χmc(G) ≥ n/2. One such example is shown

in Figure 3.6.

n
2

n
2

n−1
2

n−1
2

n−2
2

n−2
2

n−3
2

n−3
2

0
2 0

2

Figure 3.6: An instance of max-coloring of a bipartite graph on 2n vertices that
requires n colors in an optimal max-coloring. The weights of the vertices are powers
of 2 and are shown next to the vertices. A k-coloring for any k < n has weight at
least 2n, while a coloring with n colors has weight 2n − 1.

79

First note that since bipartite graphs are 2-colorable, Lemma 3.4.1 holds and

hence if an optimal max-coloring of a bipartite graph uses a large number of colors,

the contribution of all but the first few color classes must be quite small. We can use

this to our advantage and develop an algorithm that tries to find a good approximation

to the weights of the first few color classes. We run three algorithms, A2, A3, and

A4, that use 2, 3 and 4 colors respectively. The color classes produced by algorithm

Ai, 2 ≤ i ≤ 4, are denoted {Ai
1, A

i
2, · · · }, and the weights of the corresponding color

classes are denoted {ai
1, a

i
2, · · · }. We start with a description of algorithm A2.

Algorithm 4 A2(G, w)

1:for each connected component Gi of G do
2:Color Gi with colors 1 and 2, such that a vertex with maximum weight is colored
1.

3:end for

The fact that A2 is a 2-approximation immediately follows from the fact that

weight(A2) ≤ 2w1, and w1 ≤ OPTM . We encode this result in the following lemma.

Lemma 3.4.7 weight(A2) ≤ 2w1

In an optimum coloring, the weight of the first color class, w1 is fixed. By

using more colors, OPTM may gain an advantage because it can then push heavy

vertices into lower color classes. We now introduce algorithm A3 which constructs a

3-coloring of G such that the weight of the second color class is minimized.

80

Algorithm 5 A3(G, w)

1:Let S be a maximal independent set of G picked
by examining vertices in non-increasing weight order.
2:Use Algorithm A2 to color G \ S.
3:Rename colors 1 and 2 (used by Algorithm A3), as colors 2 and 3 respectively.
4:Color S with color 1.

Lemma 3.4.8 weight(A3) ≤ w1 + 2w2. If w2 ≤ 1
2
w1, then weight(A3) ≤ 3

2
w1 + w2.

Proof: In algorithm A3, a3
1 = w1. Since S is a maximal independent set selected in

non-increasing weight order, the weight of the second color class of OPTM , w2 cannot

be smaller than the weight of any vertex in G \ S. Hence, w2 ≥ a3
2. Since a3

3 ≤ a3
2,

it follows that weight(A3) = a3
1 + a3

2 + a3
3 ≤ w1 + w2 + w2 = w1 + 2w2. If w2 ≤ 1

2
w1,

then by plugging this inequality into the above upper bound for weight(A3), we get

the second inequality.

As a warm-up to our main result, we now show that running A2 and A3

together and selecting a coloring with smaller weight gives a 4/3-approximation.

Theorem 3.4.9 Let A be the algorithm that runs A2 and A3 and returns, from among

the two colorings produced, a coloring with smaller weight. Algorithm A is a 4/3-

approximation algorithm for max-coloring bipartite graphs.

Proof: There are two cases depending on the relative values of weight(A2) and

w1 + 2w2. If weight(A2) ≤ w1 + 2w2, then combining this with the bound from

Lemma 3.4.7 we get that weight(A2) ≤ min{2w1, w1 + 2w2}. Thus,

81

weight(A2) ≤ 2 · w1, and

weight(A2) ≤ w1 + 2 · w2

Adding the first inequality to twice the second, we get,

3 · weight(A2) ≤ 4 · w1 + 4 · w2

Since OPTM ≥ w1 + w2, we get

3 · weight(A2) ≤ 4 ·OPTM

If weight(A2) > w1 + 2w2, then using Lemma 3.4.8, we derive the inequality

weight(A3) ≤ w1 + 2w2 < weight(A2) ≤ 2w1. Thus w2 ≤ w1/2. Hence from Lemma

3.4.8 we get weight(A3) ≤ min{w1 + 2w2,
3
2
w1 + w2}.

weight(A3) ≤ w1 + 2 · w2

weight(A3) ≤
3

2
w1 + w2

Adding the first inequality to twice the second gives

3 · weight(A3) ≤ 4 · w1 + 4 · w2

82

Using the lower bound of w1 + w2 on OPTM , we get

3 · weight(A3) ≤ 4 ·OPTM

We can improve this ratio, by using a fourth color. The greedy strategy

employed by algorithm A3 in selecting the first color class causes a3
2 to be no larger

than w2. However, it might cause a3
3 to be significantly larger than w3. We rectify

this situation by introducing algorithm A4 that uses four colors to color G.

Algorithm 6 A4(G, w)

1:for all w∗ such that there is a u ∈ V , with w(u) = w∗ do
2:Partition the vertices of G into two parts
3:P1 = {v ∈ V | w(v) > w∗}, and
4:P2 = {v ∈ V | w(v) ≤ w∗}.
5:Use algorithm A2 to color P2

6:Rename colors 1 and 2 as 3 and 4 respectively.
7:Use algorithm A2 to color P1.

8:end for
9:Return the coloring with minimum weight, over all choices of w∗.

Lemma 3.4.10 weight(A4) < w1 + w2 + 2w3

Proof: Since the weight of every vertex in G is used for the threshold w∗, in some

iteration of A4, w∗ = w3. At this point, A4 partitions the vertex set such that

P1 = {v | w(v) > w3} and P2 = {v | w(v) ≤ w3}. In this iteration, A4 colors

P1 with weight at most w1 + w2, and colors P2 with weight at most 2w3. Since A4

83

returns the coloring with minimum weight, over all choices of w∗, it follows that

weight(A4) ≤ w1 + w2 + 2w3.

The final algorithm, which we call Bipartite Max-Color runs A2, A3, A4, and returns

the minimum weight coloring.

Algorithm 7 Bipartite Max-Color(G, w)

1:Run algorithms A2, A3, A4

2:Return the coloring of minimum weight.

Theorem 3.4.11 Algorithm Bipartite Max-Color is a 8
7
-approximation for the max-

coloring problem on bipartite graphs.

Proof: Let w(B) denote the weight of the coloring produced by algorithm

Bipartite Max-Color. From Lemmas 3.4.10, 3.4.8, and 3.4.7, we get the following

upper bounds on B.

w(B) ≤ 2w1 (3.1)

w(B) ≤ w1 + 2w2 (3.2)

w(B) ≤ w1 + w2 + 2w3 (3.3)

Now, multiplying the inequality (3.3) by 4, inequality (3.3) by 2, and adding

all three, we get

84

7 · w(B) ≤ 8 · (w1 + w2 + w3) ≤ 8 ·OPTM

3.4.3 An (8
7
− ε)-hardness reduction

We now show that the 8/7-approximation produced by the above algorithm

is optimal. We do this by showing a matching hardness result via a reduction

from the PRE-COLORING EXTENSION problem on bipartite graphs. The PRE-COLORING

EXTENSION problem for general graphs is defined below.

PRE-COLORING EXTENSION

Input: A graph G = (V, E), with chromatic number χ(G) = r, a subset P ⊆ V , and

a proper assignment c : P → {1, · · · , r} of colors to vertices in P .

Question: Is there an extension of the proper vertex coloring of P to a proper vertex

coloring of G, using colors from {1, · · · , r}?

In [54], Kratochvil proved that PRE-COLORING EXTENSION is NP-complete for planar

bipartite graphs even when the color bound r = 3. We now show a simple gap

introducing reduction from PRE-COLORING EXTENSION on bipartite graphs with r = 3

to max-coloring on bipartite graphs.

Theorem 3.4.12 For any ε > 0, there is no (8/7 − ε)-approximation algorithm for

max-coloring on bipartite graphs, unless P=NP.

Proof: The reduction is from PRE-COLORING EXTENSION on bipartite graphs. Let

85

the given instance of PRE-COLORING EXTENSION consist of a bipartite graph G =

(V1, V2, E), a subset P ⊆ V1∪V2, and a proper assignment c : P → {1, 2, 3} of colors to

vertices in P . We transform G into a vertex-weighted bipartite graph G′ = (V ′
1 , V

′
2 , E

′)

as follows. Add four new vertices, x1, x2, y1, and y2 to G. Let X = {x1, x2},

Y = {y1, y2}, V ′
1 = V1 ∪X, and V ′

2 = V2 ∪ Y . To each vertex v ∈ P , assign a weight

w(v) using the rule: w(v) = 23−i if c(v) = i, for each i ∈ {1, 2, 3}. If v ∈ (V1∪V2)−P ,

set w(v) = 1. The new vertices are assigned weights as follows: w(x1) = w(y1) = 4

and w(x2) = w(y2) = 2. The edge set of G′ contains some additional edges between

the new vertices and the old.

E ′ = E ∪ {{xi, y}|y ∈ P ∩ V ′
2 , and w(y) < w(xi)} ∪

{{yi, x}|x ∈ P ∩ V ′
1 and w(x) < w(yi)} ∪ {{x1, y2}} ∪ {{x2, y1}}.

This completes the description of G′. Figure 3.7 illustrates this construction.

Now suppose that the coloring of P can be extended to a proper 3-coloring

c : V1∪V2 → {1, 2, 3} of G. Start with the coloring c and extend this to a proper vertex

coloring of G′ by assigning colors to the new vertices as follows: c(x1) = c(y1) = 1 and

c(x2) = x(y2) = 2. To see that this coloring of G′ is proper, observe that all neighbors

of x1 have weights 1 or 2 and are in P ∪ {y2}. By our construction of G′ from G, all

such neighbors, with the exception of y2, were colored in the given pre-coloring of P

with some color distinct from 1. Furthermore, c(y2) = 2 6= c(x1). A similar argument

shows that the colors assigned to y1, y2, and x2 are all proper.

86

V1 V2
V1 V2

4

4

1

2

2

4

2

1

4

1

1

1

1

1

G G’

1

12

2 2

3 3

X
Y

P P

Figure 3.7: On the left is an instance G of PRE-COLORING EXTENSION for bipartite
graphs, with r = 3. Vertices in the set P are “pre-colored” with colors from {1, 2, 3}.
On the right is the bipartite instance G′ of max-coloring, constructed from G. The
new vertices in X ∪ Y , the assignment of weights to vertices, and the edges from the
new vertices to the old vertices, are all shown.

Now we show that the coloring c has weight at most 7. Since the maximum

weight of any vertex in G′ is 4, the weight of color class 1 is at most 4. Also, no

vertex with weight 4 is in color class 2. This is because our construction was such

that any vertex in P assigned weight 4 has a pre-coloring of 1. The only other vertices

with weight 4 are x1 and y1. These have been explicitly colored 1. Therefore, the

maximum weight of a vertex in color class 2 is 2. A similar argument shows that no

vertex with weight 2 or more is in color class 3, thereby showing that the weight of

color class 3 is at most 1. This shows that the coloring c has weight at most 7.

Now suppose that G does not have a pre-coloring extension. We show by

contradiction that in this case G′ does not have a proper vertex coloring of weight

87

less than 8. So suppose that there is a proper vertex coloring c′ : V ′
1 ∪V ′

2 → {1, 2, . . .}

of weight less than 8. Without loss of generality, assume that in this coloring, the

color classes are labeled in non-increasing order of their weight. Therefore, all vertices

of weight 4 are in color class 1. This includes vertices x1 and y1 and this forces all

vertices of weight 2 to be excluded from color class 1. Since color class 1 has weight

4, to prevent the total weight of the coloring from reaching 8, all vertices of weight

2 have to be included in color class 2. This includes vertices x2 and y2, and so this

color class is also non-empty. Therefore the total weight of color classes 1 and 2 is 6.

Since c′ is a coloring of G′ of weight less than 8, it must be the case that color class k,

for each k ≥ 4, is empty. This means that c′ is a 3-coloring of G′. Furthermore, it is a

3-coloring of G that respects the pre-coloring of P . This contradicts the assumption

that G has no pre-coloring extension and therefore we have that any proper vertex

coloring of G′ has weight at least 8.

If for some ε > 0, there were an (8
7
− ε)-approximation algorithm for max-

coloring bipartite graphs, then using the above polynomial time transformation from

G to G′, we could distinguish between positive and negative instances of PRE-COLORING

EXTENSION. This is not possible unless P = NP .

Note that PRE-COLORING EXTENSION was proved NP-complete for bipartite,

planar graphs for r = 3. We can modify the above reduction to maintain planarity of

the input bipartite graph, by introducing a pair of vertices, one of weight 4 and one of

weight 2, to connect to each vertex in P . This shows that max-coloring is impossible

to approximate to a factor better than 8/7, even on planar bipartite graphs.

88

3.5 Max-Coloring on Hereditary Graphs

Let G be a hereditary class of graphs for which the minimum vertex coloring

problem has a c-approximation. In other words, there is a polynomial time algorithm

A that takes a graph G ∈ G as input and returns a proper vertex coloring of G using

at most c ·χ(G) colors. In this section, we present two constant factor approximation

algorithms for the max-coloring problem. Both algorithms achieve an approximation

ratio of 4c. Both algorithms are based on partitioning the vertex set into disjoint

subsets, and solving the ordinary coloring problem in each subset separately. The first

algorithm is based on partitioning the vertices into sets of nearly equal weight and

solving the ordinary coloring problem on this set. We call this algorithm WtPartition.

We then present a randomized version of WtPartition, called RandWtPartition,

using which we can improve the approximation ratio to e, the base of the natural

logarithm. The second algorithm, Geomfit is based on iteratively selecting maximal

k-colorable subgraphs, with geometrically increasing k, and coloring each subgraph

optimally using the fewest number of colors. Next, we show how we can introduce

randomization into GeomFit to improve the approximation ratio from 4 to 3. We

call this randomized algorithm RandGeomFit. The randomized algorithm can be

derandomized to give a deterministic algorithm with approximation ratio 3. In both

the algorithms in this section, we consider subgraphs of the input graph and color each

subgraph optimally. If the underlying class of graphs is hereditary then a coloring

algorithm for the class of graphs can be used for vertex induced subgraphs of the

input graph, and hence we require the input graph to belong to a hereditary class.

89

Recall from Chapter 1 that perfect graphs can be optimally colored in polyno-

mial time via the ellipsoid algorithm of Grötschel, Lovász and Schirjver [38]. There-

fore, for the class of perfect graphs, both WtPartition and GeomFit provide a 4-

approximation algorithm for max-coloring. These are the first known constant-factor

approximation algorithm for perfect graphs. The class of perfect graphs includes many

well-known subclasses such as bipartite graphs, interval graphs, chordal graphs, and

permutation graphs. For bipartite graphs and interval graphs, we have presented a

better approximation algorithm earlier in this chapter, but for chordal graphs and

permutations graphs these are the first constant-factor approximation algorithm for

max-coloring. In Section 3.3.1, we showed that max-coloring on interval graphs is

NP-complete and from this, it follows that max-coloring on perfect graphs is NP-

complete as well. In addition, there are well-known classes of graphs that are not

perfect, but have constant-factor approximation algorithms for solving the minimum

vertex coloring problem. These classes include circle graphs , circular arc graphs , and

unit disk graphs . Thus WtPartition and GeomFit provide an O(1)-approximation for

all of these classes of graphs.

3.5.1 The Weight Partitioning Algorithm

In this section, we present a simple 4-approximation algorithm for max-coloring.

We then show how randomization can help in reducing the approximation factor to e,

the base of the natural logarithm. In the next section, we present a second algorithm,

whose approximation ratio is also 4. We then show how this approximation ratio can

be reduced to 3 using randomization. We state our results for the case where the

90

classical coloring problem can be solved optimally. The extension to the case where

the coloring problem has only a c-approximation algorithm is immediate.

First note that if for a given graph G = (V, E), if we round up the weights

of the vertices to the nearest power of 2 and solve the max-coloring problem on this

rounded instance, we lose at most a factor of 2, since rounding up the weights of an

optimal max-coloring solution is feasible for this rounded instance. Let OPTR denote

the optimum of this rounded instance.

Lemma 3.5.1 OPTR ≤ 2 ·OPTM

We solve the max-coloring problem on this rounded instance as follows. Let

the weight of the maximum weight vertex in G be denoted Wmax. Since we are dealing

with an instance whose weights are all integral powers of 2, let Wmax = 2k, for some

k ≥ 1. Partition the vertices into subsets of disjoint weights R1, · · · , Rk+1, where Ri =

{v ∈ V | w(v) = Wmax/2
i−1}. Color each Ri with the fewest number of colors, using a

fresh palette for each Ri, and return the union of these color classes as a solution to

the max-coloring problem. This is encoded in the algorithm WtPartition(G,w). Let

WtPartition denote the solution returned by the algorithm.

Algorithm 8 WtPartition(G, w)

1:Round up the vertex weights to the nearest power of 2.
2:for i = 1, · · · , k + 1 do

3:Let Ri = {v ∈ V |w(v) = Wmax/2i−1}
4:end for
5:Color each Ri with the fewest number of colors.
6:Return the union of the colors.

91

Theorem 3.5.2 WtPartition ≤ 4 ·OPTM

Proof: Let ri denote the minimum number of colors required to color the set Ri.

Since WtPartition colors each set using the fewest number of colors, and each vertex

in Ri has weight Wmax/2
i−1, the cost of the solution produced can be written as

WtPartition =
k+1∑
i=1

ri ·Wmax/2
i−1 (3.4)

Each color class of OPTR has weight Wmax/2
i−1 for some i = 1, · · · , k+1. Let

Si denote the color classes of OPTR of weight Wmax/2
i−1 and let si = |Si|, for each

i = 1, · · · , k +1. Then, the cost of the optimum solution to the rounded instance can

be written as

OPTR =
k+1∑
i=1

si ·
Wmax

2i−1
(3.5)

Since the vertices of weight Wmax/2
i−1 only occupy color classes S1, · · · , Si of

OPTR, Ri ⊆ ∪i
j=1Sj for each i = 1, · · · , k + 1. Since WtPartition colors each set Ri

using the fewest number of colors, it follows that

92

ri ≤
i∑

j=1

sj, i = 1, · · · , k + 1. (3.6)

Applying the inequality 3.6 in Equation 3.4, we get

WtPartition =
k+1∑
i=1

ri ·
Wmax

2i−1

≤
k+1∑
i=1

(i∑
j=1

si

)
· Wmax

2i−1
Changing the order of summation,

=
k+1∑
j=1

sj ·
(k+1∑

i=j

Wmax

2i−1

)

≤
k+1∑
j=1

sj ·
Wmax

2j−1
·
(k+2−j∑

i=1

1

2i−1

)
From Inequality 3.5,

≤ 2 ·OPTR Now, applying Lemma 3.5.1,

≤ 4 ·OPTM

If the class of graphs we consider have only a c-approximation algorithm for

coloring, then WtPartition in Line 5 uses the c-approximate coloring algorithm. We

can then claim that for each i, WtPartition uses at most c times the number of colors

used by OPTR to color the sets ∪i
j=1Si, to color the set Ri. Hence, inequality 3.6 is

93

replaced by the following inequality

ri ≤ c ·
i∑

j=1

si

The rest of the analysis goes through, leaving us with a multiplier 4 · c instead

of 4. Hence,

Theorem 3.5.3 For a hereditary class of graphs G if the classical coloring problem

has a c-approximation algorithm, then on this class of graphs, max-coloring has a

4 · c-approximation algorithm.

Randomized Weight Partition

We can see the algorithm WtPartition in another light. Consider any weight

class C of OPT , the original instance. Let w(C) denote the weight of the color class

C. Partition the range [1, w(C)] into disjoint ranges

{[w(C), w(C)/2), [w(C)/2, w(C)/4), · · · , [w(C)/2k, 1]}

We can now group vertices of C into those that lie in the same weight range and

place each such group in a different color class. The cost of this new coloring is

at most 2 · w(C), since the newly created color classes have total weight at most∑k
i=1 w(C)/2i−1. However, we lose another factor of 2 in rounding the weights to the

nearest power of 2, since we don’t know the weight w(C) of each color class of OPT .

The worst case is when the weights of each color class are of the form 2i + 1 for some

94

i and we end up paying a factor of 2 for each color class. However, we can search for

the right partition by randomization and hence decrease the approximation ratio in

expectation.

We now show how we can randomize the above WtPartition algorithm to

reduce the approximation ratio to e. The randomization technique and approximation

ratio essentially follows the work of Halldórsson, et al. [21].

Algorithm 9 RandWtPartition(G, w)

1:Choose α uniformly at random from [0, 1).
2:for i = 0, 1, · · · , l do

3:Let Ri = {v|Wmax/qi−1+α ≥ w(v) > qi+α}.
4:Color each Ri optimally using fewest colors.

5:end for
6:Return the union of the colors.

In the algorithm above l = dlogq Wmaxe, where Wmax is the maximum weight

of any vertex in G.

Theorem 3.5.4 Algorithm RandWtPartition is an e-approximation algorithm for

max-coloring perfect graphs.

Proof: Let C1, · · · , Ck denote the color classes of OPTM . Then, OPTM =∑k
i=1 w(Ci). For a fixed color class C of OPTM , let Di = C ∩Ri, i = 0, 1, · · · , l. Let

v be the maximum weight vertex in color class C, and let w(v) = Wmax/q
x for some

95

real number x. Suppose v is in Ri, then

Wmax/q
i−1+α ≥ w(v) > Wmax/q

i+α, or,

Wmax/q
i−1+α ≥ Wmax/q

x > Wmax/q
i+α

Hence, i−1 ≤ x−α < i, and for all j ≤ bx−αc, C∩Rj = ∅. Let im = bx−αc.

We now partition C into color classes Dim+1, · · · , Dl. The sum of weights of

the color classes Dim+1, · · · , Dl is

l∑
i=im+1

weight(Di) ≤
l∑

i=im+1

Wmax/q
i−1+α

<
Wmax

qα−1

(1

qim+1
− 1

ql+1

)
<

q

q − 1

Wmax

qx
· (qx−α−im)

=
q

q − 1
weight(C) · q(x−α)−bx−αc

Since α is chosen uniformly in U [0, 1), y = (x−α)−bx−αc is also distributed

uniformly in [0, 1). Thus, taking expectation,

E[
l∑

i=im+1

weight(Di)] <
q

q − 1
· weight(C) ·

∫ 1

0

qydy

=
q

q − 1
· weight(C) · q − 1

ln q

=
q

ln q
· weight(C)

96

The function q/ ln q is minimized at q = e. Hence,

E[
imax∑
i=0

weight(Di)] < e · weight(C)

Thus E[OPT (α)] ≤ e ·OPTM .

For any hereditary class of graphs for which we have a c-approximation algo-

rithm, it is easy to see that we get an e · c-approximation algorithm. Thus,

Theorem 3.5.5 Algorithm RandWtPartition is an e · c-approximation algorithm for

max-coloring any hereditary class of graphs G for which classical coloring has a c-

approximation algorithm.

We next present a second 4-approximation algorithm, but this time we select

maximally k-colorable subgraphs of the graph iteratively and color each set optimally.

3.5.2 Chromatic Partitioning

For ease of exposition, below we first describe GeomFit assuming that c = 1.

In other words, we assume that a minimum vertex coloring of the input graph can

be computed in polynomial time. To obtain a 4c-approximation for arbitrary c >

1, GeomFit needs to be modified very slightly and the analysis that shows the 4c

approximation factor is quite similar to the analysis in the c = 1 case. The modified

GeomFit and the modified analysis are presented subsequently.

97

Algorithm 10 GeomFit(G, w)

1:Let i = 0, li = 0
2:while G 6= φ do

3:Set ci = 2i

4:Let Gi = mkc(G, ci)
5:Color Gi optimally using colors li + 1, · · · , li + ci

6:Set li+1 = li + ci, i = i + 1.
7:Set G = G \Gi.

8:end while

A round of the algorithm corresponds to an iteration of the while loop. Suppose

that each round is labeled with the value of i at the beginning of that round. For

some integer t > 0, suppose that the algorithm executes rounds 0, 1, · · · , t− 1, after

which the graph is entirely colored. In each round i, 0 ≤ i < t, the algorithm calls the

subroutine mkc(G, ci), that returns a maximal ci-colorable subgraph of G, obtained

by examining vertices in non-increasing order of weight. Here G is the subgraph of

the input graph induced by the not yet colored vertices and ci = 2i. When called,

the subroutine mkc(G, ci) starts with an empty set S and processes each vertex v

of G, in non-increasing order of weight. The subroutine tests if G[S ∪ {v}] is ci-

colorable or not and if it is, it adds v to S, and proceeds to the next vertex in G.

To perform this test, mkc(G, ci) calls the algorithm A that returns a minimum vertex

coloring of G. Assuming that A runs in polynomial time, each call to the subroutine

mkc(G, ci) also runs in polynomial time. Step (5) of the above algorithm is also

executed in polynomial time by calling the algorithm A. Since the number of rounds

t = O(log(n)), the entire algorithm runs in polynomial time. We start our analysis

98

of with a simple observation.

Lemma 3.5.6 If GeomFit uses t rounds to color G, then χ(G) > ct−2.

Proof: In round t− 2, the algorithm picks a maximal ct−2 colorable subgraph of G.

If G were ct−2-colorable, then all of it would have been picked up in round t − 2 or

earlier. Since we used one more round to color G, it must mean that χ(G) > ct−2.

Without loss of generality, suppose that OPT uses numbers 1, 2, . . . for colors

such that color classes are numbered in non-increasing order of weight. Now observe

that color classes created in round i by GeomFit are all heavier than color classes

created in round i + 1. Without loss of generality, assume that the color classes

created in each round of GeomFit are numbered in non-increasing order of weight. Let

colorOPT (v) denote the color assigned to vertex v in OPT , Now using the color classes

of OPT we define a pairwise disjoint collection of vertex subsets of G, {V0, · · · , Vt−1},

where Vi = {v ∈ G|ci−1 < colorOPT (v) ≤ ci}, i = 0, · · · , t − 1. For the definition

to make sense, we assume that c−1 = 0. Since Vt−1 contains vertices colored ct−2 +

1, ct−2+2, . . . , ct−1 by OPT , from Lemma 3.5.6, it follows that Vt−1 6= φ. Now we state

and prove a critical observation that follows from the greedy choice of a subgraph in

each round of GeomFit. Let Wi denote the weight of color class ci−1 + 1 in OPT .

Note that color class ci−1 + 1 is a subset of Vi and by our labeling convention, it is

a heaviest color class in Vi. Similarly, let Ri denote the weight of color class li + 1

created by GeomFit. Note that this is a heaviest color class created in round i be

GeomFit. Also note that li =
∑i−1

j=0 cj = ci−1 and therefore color class li +1 is simply

99

color class ci.

Lemma 3.5.7 Ri ≤ Wi, for i = 0, 1, · · · , t− 1.

Proof: Since R0 and W0 are equal to the maximum weight vertex in G, the lemma

holds for i = 0. By the greedy choice employed in selecting G0, we ensure that for

any other independent set S of G, the maximum weight of a vertex in G\S is at least

as large as the maximum weight vertex in G \ G0. This ensures that R1 ≤ W1. By

the same reasoning, since in round i− 1, we greedily select a maximal ci−1 colorable

subgraph of OPT , and V1 ∪ V2 ∪ · · ·Vi−1 is ci−1 colorable, it follows that Ri ≤ Wi.

Theorem 3.5.8 Let G be a hereditary class of graphs on which the minimum ver-

tex coloring problem can be solved in polynomial time. Algorithm GeomFit is a 4-

approximation algorithm for the max-coloring problem on G.

Proof: The weight of the max-coloring produced by GeomFit is bounded above by

wt(GeomFit) ≤
t−1∑
i=0

ci ·Ri ≤
t−1∑
i=0

ci ·Wi

The first inequality follows from the fact that in each round i, GeomFit uses at most

ci colors and a heaviest color class in round i has weight Ri. The second inequality

follows from Lemma 3.5.7.

We obtain a lower bound on OPT as follows. The set V0 contains one color

class and this has weight W0. Now consider a set Vi, 1 ≤ i ≤ t − 2. It contains

100

one color class of weight Wi and the remaining color classes have weight at least

Wi+1. Recall that Vi has color classes labeled ci−1 + 1, ci−1 + 2, . . . , ci and therefore

weight(Vi) ≥ Wi + (ci−1 − 1)Wi+1.

OPT ≥
t−1∑
i=0

weight(Vi) ≥ W0 +
t−2∑
i=1

(Wi + (ci−1 − 1)Wi+1) + Wt−1

= W0 + W1 +
t−3∑
i=0

ciWi+2.

Therefore,

4 ·OPT ≥ 4W0 + 4W1 +
t−3∑
i=0

4ciWi+2 = 4W0 + 4W1 +
t−1∑
i=2

ciWi.

This lower bound on 4 · OPT is larger than the upper bound on weight(GeomFit)

above. Therefore, weight(GeomFit) ≤ 4 ·OPT .

It is worth pointing out a slight strengthening of the above analysis. In the

above proof, the upper bound on weight(GeomFit) and the lower bound on 4 ·OPT ,

can be combined to yield

4 ·OPT ≥ 3W0 + 2W1 + weight(GeomFit).

Let k denote the chromatic number of the input graph G. Then k ·W0 ≥ OPT and

therefore we have weight(GeomFit) ≤ (4− 3
k
)OPT .

We now assume that G is a hereditary class of graphs that has a c-approximation

algorithm A for the minimum vertex color problem. We modify GeomFit so that in

101

round i, in Step (4), the algorithm computes a maximal bc · cic-colorable subgraph.

Correspondingly, in Step (5), Gi is colored using colors li + 1, li + 2, . . . , li + bc · cic.

The analysis proceeds in a manner similar to the analysis for the c = 1 case.

Suppose that GeomFit finishes coloring G in t rounds, 0, 1, . . . , t − 1. In round (t −

2), GeomFit finds a maximal bc · ct−2c-colorable subgraph and there is at least one

uncolored vertex left over for round t − 1. This implies that algorithm A needs at

least bc · ct−2c + 1 colors for the input graph G. Since A is a c-approximation for

the minimum vertex coloring problem, χ(G) > ct−2. So OPT has to use more than

ct−2 colors for G. Partition the vertex set V of G according to the coloring used

by OPT , exactly as before. For i = 0, 1, . . ., Vi = {v | ci−1 < colorOPT (v) ≤ ci}.

Then since χ(G) > ct−2, Vt−1 6= ∅. As before, let Wi be the weight of color class

ci−1 + 1 in OPT . Recall our assumption that OPT numbers color classes 1, 2, . . . in

non-increasing order of weight. Similarly, let Ri denote the weight of a heaviest color

class created in round i, by GeomFit. Using the same reasoning as in Lemma 3.5.7,

we obtain that Ri ≤ Wi for all i = 0, 1, . . . , t− 1. As before, a lower bound on OPT

is

OPT ≥ W0 + W1 +
t−3∑
i=0

ci ·Wi+2.

As upper bound on weight(GeomFit) is

weight(GeomFit) ≤
t−1∑
i=0

b2iccRi.

It follows that weight(GeomFit) ≤ 4c ·OPT and we obtain the following theorem.

102

Theorem 3.5.9 Let G be a hereditary class of graphs on which the minimum ver-

tex coloring problem has a c-approximation algorithm. Algorithm GeomFit is a 4c-

approximation algorithm for the max-coloring problem on G.

Randomized GeomFit

We now show how we can use randomization to improve the approximation ratio from

4 to 3. The only change is now to use a value q as the multiplier. Pick a value of

α uniformly at random from [1, q), and multiply this by α to get a new value for ci.

The algorithm is presented below.

Algorithm 11 RandGeomFit(G, w, α)

1:Pick α uniformly at random from [1, q).
2:Let i = 0, li = 0
3:while G 6= φ do

4:Set ci = bα · qic
5:Let Gi = mkc(G, c · ci)
6:Color Gi optimally using colors li + 1, · · · , li + c · ci

7:Set li+1 = li + ci, i = i + 1.
8:Set G = G \Gi.

9:end while

The algorithm initially picks a value for α uniformly at random from [1, q).

Then, the algorithm proceeds in rounds, in each round setting ci = bα · qic. Here,

q > 1 is an integer that will be found later from the analysis. In each round, the

algorithm calls mkc(G, c · ci), which returns a maximal c · ci colorable subgraph of

G in non-increasing weight order. For perfect graphs, c = 1, and mkc(G, ci) can

103

be implemented to run in polynomial time as follows. Order the vertices in non-

increasing weight order, and start with a set S, initially empty. When a vertex v is

encountered, test whether the graph induced by v∪S has a ci +1 clique. If there is a

ci+1 clique, don’t add v to S, else add v to S. For perfect graphs, since χ(G) = ω(G),

this ensures that at the end of this iteration, S is ci-colorable. We make at most n

calls to a maximum clique computation algorithm, and hence mkc runs in polynomial

time. For graphs that are not perfect, but for which we have a c-approximate coloring

algorithm, we compute such a coloring for each v ∪ S instead of finding a maximum

clique (If the algorithm is a c approximation algorithm, we know that the chromatic

number of the graph returned by mkc(G, c · ci) is at least ci/c). We again make

at most n calls to a polynomial time coloring algorithm and mkc(G, c · ci) runs in

polynomial time. Finally, since ci increases geometrically, the number of rounds is at

most O(log n). Hence, RandGeomFit(G, w, α) runs in polynomial time.

For a fixed α ∈ [1, q), let t(α) be the number of rounds used by RandGeomFit

to color the graph. Let the rounds be numbered 0, 1, · · · , t(α) − 1. The analysis

proceeds by partitioning the color classes of OPT corresponding to the rounds of

RandGeomFit and bounding the costs of each such partition. The following lemma

follows just as in the earlier section.

Lemma 3.5.10 If RandGeomFit uses t(α) rounds to color a graph G, then χ(G) >

ct(α)−2.

Proof: In the penultimate round, namely round t(α) − 2, mkc is given c · ct(α)−2

colors to color G. If G cannot be completely colored with c · ct(α)−2 colors, and since

104

we have a c-approximation for coloring G, it follows that c · ct(α)−2 < c · χ(G), or

χ(G) > ct(α)−2.

Now, we partition the vertices of OPT to correspond to the color classes

produced by RandGeomFit in each round. Let OPT use p colors, and let the color

classes be labeled C1, C2, · · · , Cp. Also assume that the color classes are labeled in

non-increasing order of their weights. Thus w(C1) ≥ w(C2) ≥ · · · ≥ w(Cp). For

1 ≤ i ≤ p, let Xi = w(Ci). Also, let color(v) denote the color assigned to vertex v by

OPT . Define

Vi(α) = {v ∈ V |ci−1(α) < color(v) ≤ ci(α)}, for each i = 0, 1, · · · , t(α)− 1

For the above definition, we also assume that c−1(α) = 0. Let Wi(α) =

max{w(v)|v ∈ Vi(α)}. Note that Wi(α) = Xci−1(α)+1, for each i = 0, 1, · · · , t(α)− 1.

Let Ri(α) be the maximum weight of any color class created in the ith round of

RandGeomFit. Then,

Lemma 3.5.11 For each i = 0, 1, · · · , t(α)− 1, Ri(α) ≤ Wi(α).

Proof: For i = 0, the lemma clearly holds. R0(α) = W0(α) = maxv∈V w(v). Let vi be

the first vertex in non-increasing weight order not selected by mkc in round 0. By the

greedy choice made by mkc in selecting subgraphs of G, it follows that {v0, · · · , vi−1}

is maximal c · c0 colorable, and the chromatic number of the graph induced by the

vertices {v0, · · · , vi} is greater than c0. Thus, the first c0 color classes of OPT cannot

cover all vertices of weight larger than or equal to vi. Hence the heaviest vertex in V1

105

would have weight at least as large as R1. By a similar argument, since V0∪· · ·∪Vi−1

is ci−1-colorable, and the i− 1th round uses c · ci−1 colors, it follows that Ri ≤ Wi.

Before we state the main theorem, we prove a technical lemma that is useful in the

proof.

Lemma 3.5.12 Let Y1 ≥ Y2 ≥ . . . ≥ Yk and a1 ≤ a2 ≤ . . . ≤ ak. Then,

k∑
i=1

ai · Yi ≤
(∑k

j=1 ai

k

) k∑
i=1

Yi.

Proof: This can be proved by induction on k. For k = 1, the lemma clearly holds.

Assume the lemma is true for all k′ ≤ k. Assume k is even. For odd k, we can add

an extra term Yk+1 = 0 and get a slightly sharper inequality.

k∑
i=1

ai · Yi =

k/2∑
i=1

ai · Yi +
k∑

i=k/2+1

ai · Yi

≤
∑k/2

i=1 ai

k/2

k/2∑
i=1

Yi +

∑k
i=k/2+1 ai

k/2
·

k∑
i=k/2+1

Yi

≤

Pk/2
i=1 ai

k/2
+

Pk
i=k/2+1 ai

k/2

2

(k/2∑
i=1

Yi +
k∑

i=k/2+1

Yi

)

= (
k∑

i=1

ai)/k ·
(k∑

i=1

Yi

)

The first inequality follows from the inductive hypothesis. The second inequality

again follows from the inductive hypothesis, setting k = 2.

106

Now, we are ready to state the main theorem.

Theorem 3.5.13 Let G be a hereditary class of graphs on which the minimum vertex

coloring problem has a c-approximation algorithm. Then, algorithm RandGeomFit

is a randomized 3c-approximation algorithm for the max-coloring problem on G.

Proof: Let A(α) denote the weight of the coloring returned by RandGeomFit. Then,

A(α) ≤
t(α)−1∑

i=0

Ri(α) · c · ci(α),

where Ri(α) is the weight of the heaviest color class created in round i.

From Lemma 3.5.10 and 3.5.11, we get

A(α) ≤ c ·
t(α)−1∑

i=0

Wi(α) · ci(α) ≤ c ·
t(α)−1∑

i=0

Xci−1(α)+1 · ci(α).

This means that each term in E[A(α)] is of the form Xj+1 · k times the probability

that ci−1(α) = j and ci(α) = k for some i. Note that when j = 0, that is, when

ci−1(α) = 0, it implies that i = 0. As a result, we get that k = c0(α) = bαc. This

means that depending on the value chosen for α, k can take on any integer value in

{1, 2, . . . , q − 1}. Furthermore, it can take on each of these values with probability

1/(q − 1). Therefore, in E[A(α)], the term X1 appears as

X1

(1

(q − 1)
+

2

(q − 1)
+ · · ·+ (q − 1)

(q − 1)

)
= X1 ·

q

2
.

Now we consider terms in E[A(α)] containing Xj+1 · k for j = 1, 2, The

107

contribution of each such term to E[A(α)] is:

Xj+1 · k · Prob[(ci−1(α) = j) ∧ (ci(α) = k) for some i]

≤ Xj+1 · k ·
∑

i

Prob[(ci−1(α) = j) ∧ (ci(α) = k)]

= Xj+1 · k ·
∑

i

Prob[(ci−1(α) = j] · Prob[(ci(α) = k) | (ci−1(α) = j)]

Assuming that ci−1(α) = j, we get j ≤ qi−1α < j +1 and therefore qj ≤ qiα < qj + q.

This implies that

Prob[(ci(α) = k) | (ci−1(α) = j] =
1

q
,

when k ∈ {qj, qj + 1, qj + 2, . . . , qj + (q− 1)} (and this probability equals 0 for other

values of k). Therefore, the contribution to E[A(α)] of all the terms containing Xj+1

is

1

q
·Xj+1 ·

∑
i

Prob[(ci−1(α) = j] ·
qj+(q−1)∑

k=qj

k

= Xj+1 ·
(
qj +

q − 1

2

) ∑
i

Prob[(ci−1(α) = j]

< Xj+1 · q(j + 1/2)
∑

i

Prob[(ci−1(α) = j].

108

We now evaluate the probability
∑

i Prob[(ci−1(α) = j].

∑
i

Prob[j = ci−1(α)] =
∑

i

Prob[j = bqi−1αc]

=
∑

i

Prob[j ≤ qi−1α < (j + 1)]

=
∑

i

Prob[
j

qi−1
≤ α <

(j + 1)

qi−1
]

Given that q > 1 is an integer, there are three cases dealing with the relative values

of j and qi. These are:

(A) qi−1 ≤ j < j + 1 ≤ qi.

(B) j < j + 1 ≤ qi−1.

(C) qi ≤ j < j + 1.

In Case (B), (j + 1)/qi−1 ≤ 1 and since α is chosen from [1, q), the probability in this

case is 0. In Case (C), j/qi−1 ≥ q and since α is chosen from [1, q), the probability in

this case is also 0. This leaves Case (A) and there is exactly one value of i satisfying

qi−1 ≤ j < j + 1 ≤ qi. Therefore we get that

∑
i

Prob[j = ci−1(α)] ≤ 1

(q − 1) · qi−1
,

where i is the unique value satisfying qi−1 ≤ j < j + 1 ≤ qi. Thus we get that

E[A(α)] ≤ c ·X1 ·
q

2
+ c · q

(q − 1)

p−1∑
j=1

Xj+1 ·
(j + 1/2)

qi−1
(3.7)

109

where i is such that qi−1 ≤ j < j + 1 ≤ qi. Note that for all j satisfying qi−1 ≤ j ≤

qi − 1, the same term 1/qi−1 occurs as a coefficient of Xj+1 · (j + 1/2) in the above

summation. So this summation can be rewritten as

E[A(α)] ≤ c ·X1 ·
q

2
+ c · q

(q − 1)

∑
i≥1

1

qi−1

qi−1∑
j=qi−1

Xj+1 · (j + 1/2). (3.8)

Since we have that

Xqi−1+1 ≥ Xqi−1+2 ≥ · · · ≥ Xqi−1,

we can use Lemma 3.5.12 to simplify the summation. Applying the lemma, we get :

qi−1∑
j=qi−1

Xj+1 · (j + 1/2) ≤ (qi−1 + qi)

2

qi−1∑
j=qi−1

Xj+1.

Substituting this upper bound in Eqn (3.7) and letting OPTi denote
∑qi−1

j=qi−1 Xj+1,

we get

E[A(α)] ≤ c ·X1 ·
q

2
+ c · q

(q − 1)

∑
i≥1

(qi−1 + qi)

2qi−1
·OPTi

= c ·X1 ·
q

2
+ c · q(q + 1)

2(q − 1)
·
∑
i≥1

OPTi

To get a specific approximation ratio, let us set q = 2. Then,

E[A(α)] ≤ c ·X1 + 3 · c ·
∑
i≥1

OPTi ≤ 3 · c ·OPT.

110

Derandomization: The theorem above shows that there exists a value of α ∈ [1, q)

such that RandGeomFit produces a solution that is at most 3c·OPT . For a graph that

is k-colorable, there are at most O(k) distinct values of α that results in a different

coloring. Since the number of colors in an optimal max-coloring requires at most

O(n) colors, we can use at most O(n) distinct values of α and pick the best solution

found. This gives a deterministic 3c-approximation algorithm for max-coloring.

Theorem 3.5.14 For a hereditary class of graphs G that has a c-approximation al-

gorithm for minimum vertex coloring, there is a deterministic 3c-approximation al-

gorithm for max-coloring on G.

3.6 Future Work

The constant factor approximation algorithms for max-coloring, namely Geom-

fit and WtPartition show that despite the non-local nature of the objective function.

i.e., the weight of a color class is defined by a single heavy weight vertex, we can

do almost as well as classical coloring by appropriately partitioning the graph and

using a classical coloring algorithm for each partition. On the other hand, the only

hardness of approximation result for max-coloring is the 8/7−ε hardness for bipartite

graphs. Hence, it would be interesting to try to improve the approximation ratio for

max-coloring on perfect graphs to below a factor of e, or obtain better hardness of

approximation results for perfect graphs.

For interval graphs, the best approximation algorithm known is the factor 2

111

approximation guaranteed by BETTER-MCA. It would be interesting to show APX-

hardness of max-coloring and obtain a better approximation ratio.

Halldòrsson, et al. [19] have recently studied the problem of batch scheduling

conflicting conflicting jobs with the objective of minimizing the average completion

time. They present algorithms with an approximation ratio of 4 for perfect graphs,

again by partitioning the graph into weight classes and then applying a bin-packing

algorithm for each weight class. Again, no hardness of approximation results are

known for this problem on perfect graphs.

Several researchers [5, 6, 30, 41–43] have studied the problem of scheduling

conflicting jobs with preemption. While the preemptive and batch scheduling versions

of scheduling with conflicts seem to be well understood, the situation as regards non-

preemptive scheduling is unclear. Halldorsson, et al. [41] present a PTAS for non-

preemptive scheduling on planar graphs and partial k-trees. However, the best known

approximations for non-preemptive scheduling are only O(log n) on perfect graphs.

Finally, in all our models, we have assumed that we have an arbitrarily large

number of machines, while in many real applications, we only have a finite set of

machines. For example, in the problem of scheduling jobs on a multiprocessor machine

so that jobs requiring access to the same file are not scheduled simultaneously, we

only have a fixed number of machines. It would be interesting to study the max-

coloring problem, and other scheduling problems with conflicts when we have only a

fixed number of machines.

112

CHAPTER 4
EXPERIMENTAL EVALUATION

4.1 Introduction

The max-coloring and interval coloring problems, as described in Chapter 3

were motivated by problems of buffer allocation and storage allocation for computer

programs. In Chapter 3, we developed a set of approximation algorithms for the

max-coloring problem on various classes of graphs. In this chapter, we experimentally

evaluate some of the constant-factor approximation algorithms in the previous chapter

as well as two simple heuristics for both problems on chordal graphs. Our main result

is that the Geomfit algorithm, described in Chapter 3 is not only a good approximation

algorithm in theory, it also works extremely well in practice. It works better than

the first-fit algorithm for the max-coloring problem, while a small modification of

Geomfit works better than the other heuristics for the interval coloring problem.

The WtPartition algorithm however, works poorly compared to all other algorithms,

despite the constant-factor guarantee. We start with the definitions of the max-

coloring and interval coloring problems again.

Interval coloring. Given a graph G = (V, E) and positive integral vertex weights

w : V → N, the interval coloring problem seeks to find an assignment of an interval

I(u) to each vertex u ∈ V such that two constraints are satisfied: (i) for every

vertex u ∈ V , |I(u)| = w(u) and (ii) for every pair of adjacent vertices u and v,

I(u) ∩ I(v) = ∅. The goal is to minimize the span | ∪v I(v)|.

113

Max-coloring. Like interval coloring, the max-coloring problem takes as input a

vertex-weighted graph G = (V, E) with weight function w : V → N. The problem

requires that we find a proper vertex coloring of G whose color classes C1, C2, . . . , Ck,

minimize the sum of the weights of the heaviest vertices in the color classes, that is,∑k
i=1 maxv∈Ci

w(v).

Connections between interval coloring and max-coloring. Given a coloring

of a vertex weighted graph G = (V, E) with color classes C1, C2, . . . , Ck, we can

construct an assignment of intervals to the vertices as follows. For each i, 1 ≤ i ≤ k,

let vi ∈ Ci be the vertex with maximum weight in Ci. Let H(1) = 0, and for

each i, 2 ≤ i ≤ k, let H(i) =
∑i−1

j=1 w(vj). For each vertex v ∈ Ci, we set I(v) =

(H(i), H(i)+w(v)). Clearly, no two vertices in distinct color classes have overlapping

intervals and therefore this is a valid interval coloring of G. We say that this is the

interval coloring induced by the coloring C1, C2, . . . , Ck. The span of this interval

coloring is
∑k

i=1 w(vi), which is the same as the weight of the coloring C1, C2, . . . , Ck

viewed as a max-coloring. In other words, if there is a max-coloring of weight W for

a vertex weighted graph G, then there is an interval coloring of G of the same weight.

However, in Chapter 3 we show an instance of a vertex weighted interval graph

on n vertices for which the weight of an optimal max-coloring is Ω(log n) times the

weight of the heaviest clique. This translates into an Ω(log n) gap between the weight

of an optimal max-coloring and the span of an optimal interval coloring because an

optimal interval coloring of an interval graph has span that is within O(1) of the weight

of a heaviest clique. In general, algorithms for max-coloring can be used for interval

114

coloring with minor modifications to make the interval assignment more “compact”.

While the worst case performance of these algorithms can be bad for interval coloring,

our experiments show that in practice, algorithms that do well for max-coloring do

well for interval coloring as well. For example, the performance of GeomFit for the

interval coloring provides strong evidence of this phenomenon. These connections

motivate us to study interval coloring and max-coloring in the same framework.

Chordal graphs. For both the interval coloring and max-coloring problems, the

assumption that the underlying graph is an interval graph is somewhat restrictive.

As mentioned before, in memory allocation applications, if the underlying program

is straight-line, then the corresponding conflicts can be modeled as an interval graph.

However, most programs contain conditional statements and loops. We consider a

natural generalization of interval graphs called chordal graphs. A graph is a chordal

graph if it has no induced cycles of length 4 or more. Alternately, every cycle of length

4 or more in a chordal graph has a chord.

There are many alternate characterizations of chordal graphs. One that will be

useful for our purposes is the existence of a perfect elimination ordering of the vertices

of any chordal graph. An ordering vn, vn−1, . . . , v1 of the vertex set of a graph is said

to be a perfect elimination ordering if when vertices are deleted in this order, for

each i, the neighbors of vertex vi in the remaining graph, G[{v1, v2, . . . , vi}] form a

clique. A graph is a chordal graph iff it has a perfect elimination ordering. Tarjan and

Yannakakis [67] describe a simple linear-time algorithm called maximum cardinality

search that can be used to determine if a given graph has a perfect elimination

115

ordering and to construct such an ordering if it exists. Given a perfect elimination

ordering of a graph G, the graph can be colored by considering vertices in reverse

perfect elimination order and assigning to each vertex the minimum available color.

It is easy to see that this greedy coloring algorithm uses exactly as many colors as

the size of the largest clique in the graph and therefore produces an optimal vertex

coloring.

Every interval graph is also a chordal graph (but not vice versa). To see this,

take an interval representation of an interval graph and order the intervals in left-

to-right order of their left endpoints. It is easy to verify that this gives a perfect

elimination ordering of the interval graph. Thus chordal graphs generalize interval

graphs and one of our motivations in considering chordal graphs is to determine if

the constant-factor algorithms for interval coloring interval graphs can be extended

to chordal graphs. Another motivation for considering chordal graphs is that the way

certain kinds of compilers such as algebraic compilers process source code, the inter-

ference graph of source objects ends up being a chordal graph [65]. A final motivation

is that others have considered the problem of finding approximation algorithms for

interval coloring chordal graphs, but with limited success. For example, [16] shows

a 2-approximation algorithm for the interval coloring problem on claw-free chordal

graphs, leaving the problem open for chordal graphs in general.

In this chapter, we consider four simple heuristics and evaluate their perfor-

mance on chordal graphs for both the max-coloring and interval coloring problems.

These heuristics are:

116

• Chromatic Partitioning (Geomfit). Vertices are colored in rounds. In each

round, a subgraph of the graph is chosen and colored optimally. The subgraph

in each round is chosen in non-increasing weight order, such that its chromatic

number is determined by the round number.

• First fit. Vertices are considered in decreasing order of weight and each vertex

is assigned the first available color or interval.

• Best fit. Vertices are considered in reverse perfect elimination order and each

vertex is assigned the color class or interval it “fits” in best.

• Weight partitioning (WtPartition). Vertices are partitioned into groups

where each group consists of vertices of similar weight. Each subgraph induced

by vertices of a group are colored optimally. The interval assignment induced

by this coloring is returned as the solution to the interval coloring problem.

In Chapter 3, we showed that GeomFit and WtPartition are both 4-approximation

algorithms for max-coloring on perfect graphs. GeomFit as is, is known to do badly

for interval coloring, since OPT for max-coloring can be much larger than OPT for

interval coloring. First fit and Best-fit are fairly standard heuristics for many resource

allocation problems and have been analyzed extensively for problems such as the bin

packing problem. Using old results and a few new observations, we point out that

First-fit provides an O(log n) approximation guarantee. Best-fit provides no such

guarantee and we provide an example of a vertex weighted interval graph for which

Best-fit returns a solution to the max-coloring problem whose weight is Ω(
√

n) times

117

the weight of the optimal solution.

Our experiments show that in general GeomFit performs better than the rest

of the heuristics and is typically very close to OPT, deviating by about 1.5% on

average for max-coloring as well as for interval coloring. First-fit also performs well

on average, deviating from OPT by about 6% for both problems. Best-fit comes

third and WtPartition performs significantly worse than the other heuristics. Our

basic data comes from about 10000 runs of each of the three heuristics for each of the

two problems on randomly generated chordal graphs of various sizes, sparsity, and

structure.

Our experiments also reveal that Best-fit performs better on chordal graphs

that are “irregular”. Here, “regularity” refers to the variance in the sizes of maximal

cliques – the greater this variance, the more irregular the graph.

4.2 The Algorithms

In this section we describe four simple algorithms for the interval coloring and

max-coloring problems.

4.2.1 Algorithm 1: Chromatic Partitioning(Geomfit)

For the max-coloring problem, we described and analyzed GeomFit in Chapter

3. For the interval coloring problem, GeomFit works as follows. This algorithm

constructs a coloring in rounds, using a fresh set of colors in each round. In round i, a

maximal ci colorable subgraph of the graph is chosen in non-increasing weight order,

and colored with the fewest possible colors. For the interval coloring problem, we

118

return the solution induced by Geomfit for max-coloring. i.e., if a vertex v is assigned

a color i by Geomfit, then we assign the interval (
∑i−1

j=1 w(Cj),
∑i−1

j=1 w(Cj) + w(v))

to v. We denote GeomFit for max-coloring and interval coloring by GFM and GFI

respectively.

4.2.2 Algorithm 2: First-fit in weight order

For the interval coloring problem, we preprocess the vertices and “round up”

their weights to the nearest power of 2. Then, for both problems we order the vertices

of the graph in non-increasing order of weights. Let v1, v2, . . . , vn be this ordering.

We process vertices in this order and use a “first-fit heuristic” to assign intervals and

colors to vertices to solve the interval coloring and max-coloring problem respectively.

We round up the weights to ensure an O(log n) approximation guarantee for interval

coloring, as described in Theorem 4.2.1.

The algorithm for interval coloring is as follows. To each vertex we assign a

real interval with non-negative endpoints. To vertex v1, we assign (0, w(v1)). When

we get to vertex vi, i > 1, each vertex vj, 1 ≤ j ≤ i− 1 has been assigned an interval

I(vj). Let Ui be the union of the intervals already assigned to neighbors of vi. Then

(0,∞) − Ui is a non-empty collection of disjoint intervals. Because the weights are

powers of 2 and vertices are considered in non-increasing order of weights, every

interval in (0,∞)− Ui has length at least w(vi). Of these, pick an interval I = (a, b)

with smallest right endpoint and assign the interval (a, a+w(vi)) to vi. This is I(vi).

For a solution to the max-coloring problem, we assume that the colors to be

assigned to vertices are natural numbers, and assign to each vertex vi the smallest

119

color not already assigned to a neighbor of vi. We denote the two algorithms described

above by FFI (short for first-fit for interval coloring) and FFM (short for first-fit for

max-coloring) respectively.

We now observe that both algorithms provide an O(log(n))-approximation

guarantee. The following result is a generalization of the result from [14].

Theorem 4.2.1 Let C be a class of graphs that is closed under duplication of vertices

and suppose there is a function α(n) such that the first-fit on-line graph coloring

algorithm colors any n-vertex graph G in C with at most α(n) · χ(G) colors. Then,

for any n-vertex graph G in C the FFI algorithm produces a solution with span at most

2α(n) · OPTI(G), where OPTI(G) is the optimal span of any feasible assignment of

intervals to vertices.

Note that perfect graphs are closed under vertex duplication [38], and since chordal

graphs are a sub-class of perfect graphs, Theorem 4.2.1 holds for chordal graphs.

Irani [46] has shown that the first-fit graph coloring algorithm uses at most

O(log(n)) · χ(G) colors for any n-vertex chordal graph G. This fact together with

Theorem 4.2.1 implies that FFI provides an O(log n) approximation guarantee for

interval coloring. Recall from Chapter 3, Theorem 3.3.1, that if a hereditary class

of graphs G, has an α-competitive algorithm for online coloring, then there exists

an α-approximation for interval coloring on this class of graphs. Using this theo-

rem along with the theorem of Irani on the performance of First-fit for online color-

ing chordal graphs shows that FFM is an O(log n)-approximation algorithm for max-

coloring chordal graphs.

120

An example that is tight for both algorithms is easy to construct. Let T0, T1, T2, . . .

be a sequence of trees where T0 is a single vertex and Ti, i > 0, is constructed from

Ti−1 as follows. Let V (Ti−1) = {u1, u2, . . . , uk}. To construct Ti, start with Ti−1 and

add vertices {v1, v2, . . . , vk} and edges {ui, vi} for all i = 1, 2, . . . , k. Thus the leaves

of Ti are {v1, v2, . . . , vk} and every other vertex in Ti has a neighbor vj for some j.

Now consider a tree Tn in this sequence. Clearly, |V (Tn)| = 2n. Assign to each vertex

in Tn a unit weight. To construct an ordering on the vertices of Tn first delete the

leaves of Tn. This leaves the tree Tn−1. Recursively construct the ordering on vertices

of Tn−1, and prepend to this the leaves of Tn in some order. It is easy to see that

first-fit coloring algorithm that considers the vertices of Tn in this order uses n colors.

As a result, both FFI and FFM have weight n, whereas OPT in both cases is 2. See

Figure 4.1 for T0, T1, T2, and T3.

1 1

2

1

2

4

4

1

2

4

8

8
8

8

4

Figure 4.1: The family of tight examples for FFI and FFM.

121

4.2.3 Algorithm 3: Best-fit in reverse perfect elimination order

The third of the algorithms that we experiment with are obtained by consid-

ering vertices in reverse perfect elimination order and using a “best-fit” heuristic to

assign intervals or colors. Let v1, v2, . . . , vn be the reverse of a perfect elimination

ordering of the vertices of G. Recall that if vertices are considered in reverse perfect

elimination order and colored, using the smallest color at each step, we get an optimal

coloring of the given chordal graph. This essentially implies that the example of a

tree with unit weights that forced FFI and FFM into worst case behavior will not be

an obstacle for this pair of algorithms.

The algorithm for interval coloring is as follows. As before, to each vertex

we assign a real interval with non-negative endpoints and to vertex v1, we assign

(0, w(v1)). When we get to vertex vi, i > 1, each vertex vj, 1 ≤ j ≤ i − 1 has been

assigned an interval I(vj). Let M = | ∪i−1
j=1 I(vj)| and let Ui be the union of the

intervals I(vj), where 1 ≤ j ≤ i− 1 and vj is a neighbor of vi. If Ui = (0, M), then vi

is assigned the interval (M, M + w(vi)). Otherwise, if Ui 6= (0, M), then (0, M)− Ui

is a non-empty collection of disjoint intervals. However, since the vertices were not

processed in weight order, we are no longer guaranteed that there is any interval in

(0, M)− Ui with length at least w(vi). There are two cases.

Case 1. If there is an interval in (0, M) − Ui of length at least w(vi), then pick an

interval I ∈ (0, M) − Ui of smallest length such that |I| ≥ w(vi). Suppose

I = (a, b). Then assign the interval (a, a + w(vi))to vi.

Case 2. Otherwise, if all intervals in (0, M)−Ui have length less than w(vi), pick the

122

largest interval I = (a, b) in (0, M) − Ui (breaking ties arbitrarily) and assign

(a, a + w(vi)) to vi. Note that this assignment of an interval to vi causes the

interval assignment to become infeasible. This is because there is some neighbor

of vi that has been assigned an interval with left endpoint b and (a, a + w(vi))

intersects this interval. To restore feasibility, we lift all intervals “above” b by

∆ = (a+w(vi))−b. In other words, for every vertex vj, 1 ≤ j ≤ i, I(vj) = (c, d),

if c ≥ b, then set I(vj) = (c + ∆, d + ∆). It is easy to see that this restores

feasibility to the interval assignment.

Best-fit tries to minimize the increase in span of the intervals at each instance. Con-

sider the chordal graph shown in Figure 4.2. The numbers next to vertices are vertex

weights and the letters are vertex labels. The ordering of vertices A, B, C,D, E is a

reverse perfect elimination ordering. By the time we get to processing vertex E, the

assignment of intervals to vertices is as shown in the middle in Figure 4.2. When E

is processed, we look for “space” to fit it in and find the interval (10, 15), which is

not large enough for E. So we move the interval I(D) up by 5 units to make space

for I(E) and obtain the assignment shown on the right.

A similar “best-fit” solution to the max-coloring problem is obtained as follows.

Let k be the size of a maximum clique in G. Start with a palette of colors C =

{1, 2, . . . , k} and an assignment of color 1 to vertex v1. Let AC(vi) ⊆ C be the colors

available for vi. For each color j, let Wj denote the maximum weight among all

vertices colored j; for an empty color class j, Wj = 0. Color vertex vi with a color

j ∈ AC that maximizes Wj, with ties broken arbitrarily. This ensures that the color

123

B

CA

D

C

D

E
B

A
10

5

10

10

10

B

CA

D

E

Figure 4.2: The best-fit heuristic in action for interval coloring.

we assign to vi minimizes the increase in the weight of the coloring.

We will call these “best-fit” algorithms for interval coloring and max-coloring,

BFI and BFM respectively.

An example that forces the best-fit algorithms, BFI and BFM to perform badly

is the following. Consider a graph G with m disjoint cliques, each clique containing

m vertices. Let the cliques be labeled Q1, Q2, . . . , Qm. For each i, 1 ≤ i ≤ m, the

distribution of weights of vertices in Qi is as follows: there are (i − 1) vertices with

weight 2, one vertex with weight W , and (m− i) vertices with weight 1. Any ordering

of vertices is a perfect elimination ordering of G. So suppose that BFM processes

vertices in the following order: vertices of Q1, followed by vertices of Q2, followed

by vertices of Q3, etc. The vertices of each Qi are ordered as follows: vertices with

124

weight 2 come first, followed by the vertex of weight W , followed by the vertices of

weight 1. It is easy to check that if vertices are processed in this order then BFM will

produce a coloring with m color classes, such that each color class contains a vertex

of weight W . This solution has weight m ·W as compared to OPT which has weight

W + 2(m − 1) and thus this is an example that forces BFM to produce a solution at

least Ω(m) times OPT. This is Ω(
√

n), since the number of vertices n = m2. In Figure

4.3, this example is shown as a set of intervals with m = 4. The intervals correspond

to vertices and pairwise intersection of intervals corresponds to edges. Each row of

intervals corresponds to a color class chosen by BFM. The optimal coloring in this

instance would put the intervals with weight W in one row.

W

W

W

W

1

1

1

1

1 1

2 2

2 2

2

2

1 2 3 4Q Q Q Q

Figure 4.3: A bad example for the best-fit heuristic.

125

4.2.4 Algorithm 4: Weight Partitioning (WtPartition)

Another pair of algorithms for interval coloring and max-coloring can be ob-

tained by partitioning the vertices of the given graph into groups with similar weight.

Let W be the maximum vertex weight. Fix an integer k ≥ 1 and partition the range

[1, W] into (k + 1) subranges:

[
1,

W

2k

]
,
(W

2k
,

W

2k−1

]
, . . . ,

(W

22
,
W

2

](W

2
, W

]
.

For i, 1 ≤ i ≤ k, let Ri = (W/2i, W/2i−1] and let Rk+1 = [1, W/2k]. Partition

the vertex set V into subsets Vi, 1 ≤ i ≤ (k +1) defined as Vi = {v ∈ V | w(v) ∈ Ri}.

For each i, 1 ≤ i ≤ (k + 1) let Gi be the induced subgraph G[Vi]. We ignore the

weights and color each subgraph Gi with the fewest number of colors, using a fresh

palette of colors for each subgraph Gi. For the max-coloring problem, we simply use

this coloring as the solution.

For the interval coloring problem, we turn the coloring into an assignment of in-

tervals to vertices as follows. Let Q1, Q2, . . . , Qt be color classes produced by the above

algorithm. For each i, 1 ≤ i ≤ t, let Wi be the maximum vertex weight of a vertex in

Qi. Let W0 = 0. For each v ∈ Ci, we assign the interval
(∑i−1

s=0 Ws,
∑i−1

s=0 Ws+w(v)
)
.

This is an interval coloring of G because vertices in distinct color classes are assigned

disjoint intervals. The span of this interval assignment is
∑t

s=1 Wi. This is identical

to the total weight of the solution to max-coloring as well.

We will call these graph partitioning based algorithms for interval coloring

126

and max-coloring, WPI and WPM respectively. In Chapter 3 we showed that WPM is a

4-approximation algorithm for max-coloring. We now show that WPI is an O(log n)

approximation algorithm for interval coloring

Theorem 4.2.2 If we set k = 2 log(n), then WPI produces a (4 · log(n) + o(1))-

approximation to the interval coloring problem on perfect graphs.

Proof: We show the proof in two stages. For i, 1 ≤ i ≤ k, let αi be the weight of

the heaviest clique in G[Vi]. Let χi = χ(G[Vi]). Clearly, αi ≥ χi ·W/2i. Let OPT

refer to the weight of an optimal interval coloring and let OPTi refer to the weight

of an optimal interval coloring restricted to vertices in Vi. Note that OPTi ≥ αi.

Since WPI colors each Vi with exactly χi colors and since the weight of each vertex

in Vi is at most W/2i−1, the weight of the coloring that WPI assigns to Vi is at most

χi ·W/2i−1 ≤ 2 · αi ≤ 2 · OPTi. Since WPI uses a fresh palette of colors for each Vi,

the weight of the coloring of ∪k
i=1Vi is at most

2 ·
k∑

i=1

OPTi ≤ 2 ·
k∑

i=1

OPT = 4 log(n) ·OPT.

Since k = 2 log(n), W/2k = W/n2. Therefore, any coloring of Vk+1 adds a

weight of at most W/n to the coloring of the rest of the graph. Since W ≤ OPT , WPI

colors the entire graph with weight at most (4 · log(n) + 1/n)OPT .

127

4.3 Overview of the Experiments

4.3.1 How chordal graphs are generated

We have implemented an algorithm that takes in parameters n (a positive

integer) and α (a real number in [0, 1]) and generates a random chordal graph with

n vertices, whose sparsity is characterized by α. The smaller the value of α the more

sparse the graph. In addition, the algorithm can run in two modes; in Mode 1 it

generates somewhat “regular” chordal graphs and in Mode 2 it generates somewhat

“irregular” chordal graphs.

The algorithm generates chordal graphs with n, (n − 1), . . . , 2, 1 as a perfect

elimination ordering. In the ith iteration of the algorithm vertex i is connected to

some subset of the vertices in {1, 2, . . . , i − 1}. Let Gi−1 be the graph containing

vertices 1, 2, . . . , (i− 1), generated after iteration (i− 1). Let {C1, C2, . . . , Ct} be the

set of maximal cliques in Gi−1. It is well known that any chordal graph on n vertices

has at most n maximal cliques. So we explicitly maintain the list of maximal cliques

in Gi−1. We pick a maximal clique Cj and a random subset S ⊆ Cj and connect i

to the vertices in S. This ensures that the neighbors of i in {1, 2, . . . , i − 1} form a

clique, thereby ensuring that n, (n− 1), . . . , 2, 1 is a perfect elimination ordering.

We use the parameter α in order to pick the random subset S. For each

v ∈ Cj, we independently add v to set S with probability α. This makes the expected

size of S equal α · |Cj|. The algorithm also has a choice to make on how to pick

Cj. One approach is to choose Cj uniformly at random from the set {C1, C2, . . . , Ct}.

This is Mode 1 and it leads to “regular” random chordal graphs, that is, random

128

chordal graphs in which the sizes of maximal cliques show small variance. Another

approach is to choose a maximal clique with largest size from among {C1, C2, . . . , Ct}.

This is Mode 2 and it leads to more “irregular” random chordal graphs, that is,

random chordal graphs in which there are a small number of very large maximal

cliques and many very small maximal cliques. Graphs generated in the two modes

seem to be structurally quite different. This is illustrated in Table 4.3.2, where we

show information associated with 10 instances of graphs with n = 250 and α = 0.9

generated in Mode 1 and in Mode 2. Each column corresponds to one of the 10

instances and comparing corresponding Mode 1 and Mode 2 rows easily reveals the

fairly dramatic difference in these graphs. For example, the mean clique size in Mode

1 is about 8.5, while it is about 22 in Mode 2. Even more dramatic is the large

difference in the variance of the clique sizes and this justifies our earlier observation

that Mode 2 chordal graphs tend to have a few large cliques and many very small

cliques, relative to Mode 1 chordal graphs.

4.3.2 How Weights are Assigned

Once we have generated a chordal graph G we assign weights to the vertices

as follows. This process is parameterized by W, the maximum possible weight of a

vertex. Let k be the chromatic number of G and let {C1, C2, . . . , Ck} be a k-coloring

of G. Since G is a chordal graph, it contains a clique of size k. Let Q = {v1, v2, . . . , vk}

be a clique in G with vi ∈ Ci. For each vi, pick w(vi) uniformly at random from the

set of integers {1, 2, . . . ,W}. Thus the weight of Q is
∑k

i=1 w(vi). For each vertex

v ∈ Ci − {vi}, pick w(v) uniformly at random from {1, 2, . . . , w(vi)}. This ensures

129

that {C1, C2, . . . , Ck} is a solution to max-coloring with weight
∑k

i=1 w(vi) and the

interval assignment induced by this coloring is an interval coloring of span
∑k

i=1 w(vi).

Since
∑k

i=1 w(vi) is also the weight of the clique Q, which is a lower bound on OPT

in both cases, we have that OPT =
∑k

i=1 w(vi) in both cases. The advantage of

this method of assigning weights is that it is simple and gives us the value of OPT

for both problems. The disadvantage is that, in general OPT for both problems can

be strictly larger than the weight of the heaviest clique and thus by generating only

those instances for which OPT equals the weight of the heaviest clique, we might be

missing a rich class of problem instances. So we additionally tested our algorithms

on instances of chordal graphs for which the weights were assigned at random. For

these algorithms, we use the maximum weighted clique as a lower bound for OPT

and as a consequence, the deviations reported for the algorithms are an overestimate

of the real deviations.

4.3.3 Main Observations

For our main experiment we generated instances of random chordal graphs

with number of vertices n = 10, 20, 30, . . . , 550. For each value of n, we used values

of α = 0.1, 0.2, . . . , 0.9. For each of the 55× 9 (n, α) pairs, we generated 10 random

vertex weighted chordal graphs in Mode 1 and 10 random vertex weighted chordal

graphs in Mode 2. The vertex weights are assigned as described above, with the

maximum weight W fixed at 1000. We ran each of the four heuristics for each of

the two problems and averaged the weight and span of the solutions over the 10

instances for each (n, α) pairs separately for Mode 1 and Mode 2 graphs. Thus each

130

M
O

D
E

1
N

o.
of

m
ax

im
al

cl
iq

ue
s

14
9

12
6

11
0

12
6

14
7

11
6

11
9

11
9

12
8

14
9

Si
ze

of
la

rg
es

t
cl

iq
ue

13
14

12
12

14
11

12
12

12
14

Si
ze

of
sm

al
le

st
cl

iq
ue

4
3

5
3

5
4

4
4

3
5

M
ea

n
cl

iq
ue

si
ze

8.
58

7.
35

8.
35

7.
83

9.
41

7.
51

7.
10

7.
31

7.
98

9.
53

V
ar

ia
nc

e
4.

06
3.

83
3.

23
2.

35
3.

32
1.

99
2.

36
2.

82
3.

61
3.

23

M
O

D
E

2
N

o.
of

m
ax

im
al

cl
iq

ue
s

22
0

21
6

21
6

21
8

21
8

21
9

21
3

21
6

21
9

21
9

Si
ze

of
la

rg
es

t
cl

iq
ue

29
33

33
31

14
31

30
36

30
30

Si
ze

of
sm

al
le

st
cl

iq
ue

5
3

5
7

4
5

7
5

4
4

M
ea

n
cl

iq
ue

si
ze

20
.1

3
22

.3
4

22
.3

7
24

.0
0

21
.1

5
21

.8
3

25
.1

7
23

.7
0

22
.8

0
20

.8
9

V
ar

ia
nc

e
28

.4
3

30
.0

2
30

.6
9

29
.5

5
33

.9
8

31
.7

3
48

.7
2

32
.6

6
25

.8
1

29
.6

8

T
ab

le
4.

1:
P

ro
p
er

ti
es

of
20

in
st

an
ce

s
of

gr
ap

h
s

w
it
h

n
=

25
0

an
d

α
=

0.
9.

T
en

of
th

es
e

w
er

e
ge

n
er

at
ed

in
M

o
d
e

1
an

d
th

e
ot

h
er

te
n

in
M

o
d
e

2.

131

heuristic was evaluated on 4950 instances of each Mode, for each problem. We then

generated the same number of instances, with n, α, and the modes varying just as

before, but this time assigning to each vertex, a weight chosen uniformly at random

from [0, 1000]. We repeated all eight algorithms on these random instances, and used

the maximum weighted clique as a lower bound for OPT.

For the max-coloring problem on interval graphs, the gap between the maximum-

weight clique and OPT can be unbounded. We can construct examples where the

gap is as large as Ω(log n). For the interval coloring problem, the gap between OPT

and the maximum-weight clique is known to be a constant, while for chordal graphs

it is unknown. This gap may affect the reported deviations in ways that are hard to

determine.

4.3.3.1 Max-coloring

The data for the max-coloring problem is presented in the following tables1

and graphs. Table 2 summarizes the performance of the four heuristics for the max-

coloring problem for both Mode 1 and Mode 2 chordal graphs. Graphs showing the

performance of the four heuristics for the max-coloring problem on Mode 1 and Mode

2 chordal graphs are shown in Figures 4.4 and 4.5.

Based on our results we make the following observations regarding the max-

coloring problem.

1All the raw data and code for the experiments is available at
http://www.cs.uiowa.edu/∼rraman/chordalExp.html

132

MODE 1 MODE 2
BFM FFM WPM GFM BFM FFM WPM GFM

Equals OPT 936 3170 0 3580 3693 3451 0 3820
Equals χ 4950 3539 0 4019 4950 3451 0 3820

% Deviation 14.40 1.627 58.26 1.31 2.45 1.94 29.99 1.53
% Max Deviation 157.12 30.38 127.67 30.38 54.99 28.88 82.78 28.88
Equals LB (R) 90 111 0 121 101 111 0 121
Equals χ(R) 4950 2712 20 3232 4950 588 0 707

% Deviation (R) 24.79 17.08 74.69 16.08 24.90 12.88 44.08 12.74
% Max Deviation (R) 74.88 62.52 129.8 47.03 141.16 63.29 122.9 63.29

Table 4.2: This table shows aggregate performance over all 4950 runs of the four
heuristics for max-coloring, separately for Mode 1 and Mode 2 graphs. The first four
rows show the case when the weights are chosen so that OPT equals the weight of
the maximum weight clique. The next four rows show the case when the weights are
chosen randomly. In this case, the algorithms are compared against the weight of
the maximum weight clique. The row “Equals OPT” lists the number of times each
heuristic produces a coloring with weight equal to OPT, the row “Equals χ” lists the
number of times each heuristic produces a coloring using minimum number of colors,
and the row “Deviation” lists the percentage deviation of the weight of the solution
produced from OPT or the lower bound on OPT, averaged over the 4950 runs. The
row “Max Deviation” lists the maximum percentage deviation of the four algorithms
from OPT or the lower bound.

133

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Number of Vertices

Mode 1 Graphs : Max-Coloring

FFM
BFM

WPM
GFM

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Number of Vertices

Mode 2 Graphs: Max-Coloring

FFM
BFM

WPM
GFM

Figure 4.4: Graphs showing values for max-coloring Mode 1 and Mode 2 chordal
graphs. The x-axis corresponds to the number of vertices in the graph, and the y-axis
corresponds to the percentage deviation from OPT.

134

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Number of Vertices

Mode 1 Graphs, Random Weights: Max-Coloring

FFM
BFM

WPM
GFM

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Number of Vertices

Mode 2 Graphs, Random Weights: Max-Coloring

FFM
BFM

WPM
GFM

Figure 4.5: Graphs showing values for max-coloring Mode 1 and Mode 2 chordal
graphs with randomly assigned weights. The x-axis corresponds to the number of
vertices in the graph, and the y-axis corresponds to the percentage deviation from
the weight of the maximum weight clique.

135

 0

 5

 10

 15

 20

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Number of Vertices

Mode 1 Graphs : Interval Coloring

FFI
BFI

WPI
GFI

 0

 5

 10

 15

 20

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Number of Vertices

Mode 2 Graphs: Interval Coloring

FFI
BFI

WPI
GFI

Figure 4.6: Graph showing values for interval coloring Mode 1 and Mode 2 chordal
graphs. The x-axis corresponds to the number of nodes in the graph, and the y-axis
corresponds to the percentage deviation from OPT for interval coloring.

136

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Number of Vertices

Mode 1 Graphs, Random Weights: Interval Coloring

FFI
BFI

WPI
GFI

 0

 5

 10

 15

 20

 25

 30

 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550

Pe
rc

en
ta

ge
 D

ev
ia

tio
n

Number of Vertices

Mode 2 Graphs, Random Weights: Interval Coloring

FFI
BFI

WPI
GFI

Figure 4.7: Graph showing values for interval coloring Mode 1 and Mode 2 chordal
graphs with randomly assigned weights. The x-axis corresponds to the number of
nodes in the graph, and the y-axis corresponds to the percentage deviation from the
weight of the maximum weight clique.

137

1. Algorithm Geomfit consistently outperforms other algorithms for max-coloring

deviating only by about 1.5% on average for both Mode 1 and Mode 2 graphs.

Although the constant-factor guarantee for Geomfit holds only in the worst

case, this by itself does not give much indication regarding the performance of

Geomfit in practice.

2. Although first-fit’s performance is not as good as Geomfit, its performance is

only slightly worse than Geomfit, deviating only about 2% on both Mode 1 and

Mode 2 graphs.

3. In the case with random weights, although the average deviation of Geomfit

and first-fit improves as we move from Mode 1 to Mode 2 graphs, the maximum

percentage deviation deteriorates significantly for Geomfit and the maximum

percentage deviation deteriorates only slightly for first-fit. However, the perfor-

mance of first-fit is almost as good as Geomfit for Mode 1 and Mode 2 graphs

with random weights.

4. The best-fit heuristic seems to be at a disadvantage because it is constrained to

always use as many colors as the chromatic number. In general, it does worse

than the first-fit heuristic. However, the performance of best-fit improves as we

move from Mode 1 to Mode 2 graphs. The first-fit and Geomfit heuristics use

more colors than the chromatic number a fair number of times. 28% and 30%

of the time for Mode 1 and Mode 2 graphs respectively.

5. The weight partitioning heuristic, WtPartition, despite providing a constant

138

factor approximation in the worst case, is not competitive at all relative to

best-fit and first fit. A possible explanation is that WtPartition ends up using

too many colors, while Geomfit strikes the right balance between grouping heavy

weight vertices into the same color class, and simultaneously not using too many

colors. As rows 2 and 6 of Table 4.3.3 show, Geomfit only uses as many colors as

the chromatic number a large number of times, while WtPartition almost always

ends up using far more colors than the chromatic number. In fact, it follows

from Lemma 3.5.6 in Chapter 3 that Geomfit uses at most 4 · χ(G) colors to

achieve an approximation ratio of 4, while WtPartition might end up using an

unbounded number of colors, compared to the chromatic number of the graph.

4.3.4 Interval Coloring

We now present the data for the interval coloring problem on chordal graphs.

We summarize our results in Table 3 , which shows the average deviation of the

four algorithms over all the runs, for both modes. The graphs showing the perfor-

mance of the algorithms are presented in Figures 4.6 and 4.7. We make the following

observations.

1. For Mode 1 and Mode 2 graphs where the value of OPT is known, Geomfit

consistently outperforms the other algorithms for interval coloring, deviating

only about 1.5% on average.

2. Mode 2 graphs are significantly harder for all heuristics, except best-fit. Al-

though all heuristics equal OPT fewer times on Mode 2 graphs than on Mode

139

MODE 1 MODE 2
BFI FFI WPI GFI BFI FFI WPI GFI

Equals OPT 2959 3330 1874 4450 2738 1971 240 3820
% Deviation 7.52 2.63 7.99 0.399 5.64 5.95 14.76 1.54

% Max Deviation 75.72 28.15 45.67 24.64 50.47 54.45 52.32 28.89
Equals LB (R) 1820 1741 958 1882 407 291 91 272

% Deviation (R) 22.75 11.99 14.75 7.34 18.11 11.26 23.76 11.72
% Max Deviation (R) 191.13 52.94 57.23 43.24 102 52.14 70.04 52.14

Table 4.3: This table shows aggregate performance over all 4950 runs of the four
heuristics for interval coloring, separately for Mode 1 and Mode 2 graphs. The first
three rows are for the case when the weights are chosen so that OPT is equal to
the maximum weight clique, and the next three rows are the case when the weights
are chosen randomly. For the case with random weights, the performance of the
algorithms is compared against the weight of the maximum weight clique. The row
“Equals OPT” lists the number of times each heuristic produces a coloring with
weight equal to OPT, the row “% Deviation” lists the percentage deviation of the
weight of the solution produced from OPT or the lower bound on OPT, averaged over
the 4950 runs, and the row “Max Deviation” lists maximum percentage deviation of
any algorithm from OPT or the lower bound.

140

1 graphs, the average and maximum percentage deviations for best-fit improve

as we move from Mode 1 to Mode 2 graphs in contrast with the other three

heuristics.

3. For Mode 1 and Mode 2 graphs with random weights however, the situation

is less clear. Although Geomfit performs better than the other algorithms for

Mode 1 graphs with random weights, first-fit has the smallest average deviation

for Mode 2 graphs with random weights. Further, best-fit equals OPT more

often than any other heuristic for Mode 2 graphs with random weights.

4. The weights in first-fit were rounded up to the nearest power of 2 in order

to ensure the O(log n) bound on the approximation factor. In fact, there are

simple examples where first-fit can be made to perform worse if the weights of

the vertices are not raised to the nearest power of 2. However, in practice the

performance of first-fit improves for interval coloring of Mode 2 graphs if we use

the original weights. The deviation is at most 0.54% on Mode 1 graphs and at

most 1.39% for Mode 2 graphs, compared to 2.63% and 5.95% for Mode 1 and

Mode 2 graphs respectively with the weights rounded up to the nearest power

of 2.

5. For the case with random weights as well, the performance of best-fit improves

as we move from Mode 1 to Mode 2 graphs.

141

4.4 Conclusion

Our goal was to evaluate algorithms for max-coloring and interval coloring of

chordal graphs. For both problems, the new Geomfit heuristic works as well if not

better than first-fit. The other heuristics seem to be significantly worse for both prob-

lems. More generally, our experiments indicate that for the max-coloring problem,

Geomfit, first-fit, best-fit, and WtPartition is the ordering of the algorithms in wors-

ening order of performance. However, for the interval coloring problem, both Geomfit

and first-fit perform better than the other heuristics. While Geomfit performs better

on Mode 1 graphs, first-fit performs better on Mode 2 graphs with random weights.

From an implementation point of view, first-fit may be better than Geomfit. First-fit

is a simple heuristic to implement irrespective of the underlying graph structure. Ge-

omfit relies on the procedure mkc(G, ci) to compute the optimum coloring of a graph.

For classes of graphs that have less structure than chordal graphs, there is typically no

efficient algorithm to find an optimal coloring or even approximate it. For example,

the only known algorithm to compute a coloring of a perfect graph uses the ellipsoid

algorithm of Grötschel, Lovász and Schrijver [38], and this is prohibitively expensive

in practice. However, for special classes of perfect graphs, like chordal graphs and

interval graphs, we can compute a minimum coloring efficiently. Best-fit exhibits

a performance that is different from the other algorithms in going from Mode 1 to

Mode 2 graphs. While the performance of the three heuristics becomes worse as we

move from Mode 1 to Mode 2 graphs, the performance of best-fit improves. This

may suggest best-fit as a candidate of choice for highly irregular graphs, though this

142

issue needs further exploration. The performance of Geomfit for interval coloring on

instances of Mode 1 and Mode 2 chordal graphs is surprisingly good, leading us to

conjecture that an algorithm similar to Geomfit might indeed lead to a constant factor

approximation algorithm for interval coloring as well.

143

BIBLIOGRAPHY

[1] U. Adamy and T. Erlebach. Online coloring of intervals with bandwidth. In
Klaus Jansen and Roberto Solis-Oba, editors, First International Workshop on
Approximation and Online Algorithms, (WAOA 2003), volume 2909 of Lecture
Notes in Computer Science, pages 1–12. Springer, 2004.

[2] Sanjeev Arora, Eden Chlamtac, and Moses Charikar. New approximation guar-
antees for the chromatic number. Theoretical Computer Science, 341(1):22–38,
2007.

[3] Sanjeev Arora and Carsten Lund. Hardness of approximations. In Approximation
Algorithms for NP-hard problems, Dorit Hochbaum, ed., 1996.

[4] J. Balogh, S.G. Hartke, Q. Liu, and G. Yu. First-fit chromatic number of planar
and random graphs. submitted.

[5] A. Bar-Noy, M. Bellare, M. Halldorsson, H. Shachnai, and T. Tamir. On chro-
matic sums and distributed resource allocation. Information and Computation,
140:183–202, 1998.

[6] A. Bar-Noy, M. Halldorsson, G. Kortsarz, R. Salman, and H. Shachnai. Sum
multicoloring of graphs. Journal of Algorithms, 37(2):422–450, 2000.

[7] C. Berge. Motivation and history of some of my conjectures. Discrete Mathe-
matics, 165:61–70, 1997.

[8] B.N.Clark, C.J.Colbourn, and D.S.Johnson. Unit disk graphs. Discrete Mathe-
matics, 86:165–177, 1990.

[9] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive Analysis.
Cambridge University Press, 2005.

[10] H. Breu and D.G. Kirkpatrick. Unit disk graph recognition is np-hard. Compu-
tational Geometry: Theory and Applications, 9(1):3–24, 1998.

[11] G. Brightwell, H. Kierstead, and T. Trotter. First-fit coloring of interval graphs.
Personal communication, 2003.

[12] A.L. Buchsbaum, H. Karloff, C. Kenyon, N. Reingold, and M. Thorup. OPT
versus LOAD in dynamic storage allocation. In Proceedings of the 35th Annual
ACM Symposium on Theory of Computing (STOC), 2003.

[13] C.A.Christen and S.M. Selkow. Some perfect coloring properties of graphs. J.
Combin. Theory Ser. B, 27:49–59, 1979.

[14] M. Chrobak and M. Ślusarek. On some packing problems related to dynamic
storage allocation. Informatique théorique et Applications/Theoretical Informat-
ics and Applications, 22(4):487–499, 1988.

144

[15] M. Chudnovsky, G. Cornuejols, X. Liu, P.Seymour, and K. Vuskovic. Recognizing
berge graphs. Combinatorica, 25:143–187, 2005.

[16] G. Confessore, P. Dell’Olmo, and S. Giordani. An approximation result for the
interval coloring problem on claw-free chordal graphs. Discrete Applied Mathe-
matics, 120:71–88, 2002.

[17] D.G. Corneil, S. Olariu, and L. Stewart. The ultimate interval graph recog-
nition algorithm? (extended abstract). In Proceedings of the 9th ACM-SIAM
Symposium on Discrete Algorithms, pages 175–180, 1998.

[18] Irit Dinur and Shmuel Safra. On the hardness of approximating minimum vertex
cover. Annals of Mathematics, 135:439–485, 2005.

[19] Epstein, M. M. Halldorsson, A. Levin, and H. Shachnai. Weighted sum coloring
in batch scheduling of conflicting jobs. APPROX’06, to appear.

[20] Leah Epstein, Thomas Erlebach, and Asaf Levin. Variable sized online interval
coloring with bandwidth. In SWAT, pages 29–40, 2006.

[21] Leah Epstein, Magnús Halldórsson, Asaf Levin, and Hadas Shachnai. Weighted
sum coloring in batch scheduling of conflicting jobs. In 9th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX), pages 116–127, 2006.

[22] Leah Epstein and Meital Levy. Online interval coloring and variants. In ICALP,
pages 602–613, 2005.

[23] Leah Epstein and Meital Levy. Online interval coloring with packing constraints.
In MFCS, pages 295–307, 2005.

[24] P. Erdös. Graph theory and probability. Canad. J. Math, 11:34–38, 1959.

[25] A.P. Ershov. Alpha - an automatic programming system of high efficiency. Jour-
nal of the ACM, 13(1), 1966.

[26] Bruno Escoffier, Jérôme Monnot, and Vangelis Th. Paschos. Weighted coloring:
further complexity and approximability results. Inf. Process. Lett., 97(3):98–103,
2006.

[27] J. Fabri. Automatic storage optimization. ACM SIGPLAN Notices: Proceedings
of the ACM SIGPLAN ’79 on Compiler Construction, 14(8):83–91, 1979.

[28] U. Feige and J. Killian. Zero knowledge and the chromatic number. Journal of
Computer and System Sciences, 57(2):187–199, 1998.

[29] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM,
45(4):634–652, 1998.

145

[30] R. Gandhi, M. Halldorsson, G. Kortsarz, and H. Shachnai. Improved bounds
for sum multicoloring and scheduling dependent jobs with minsum criteria. In
WAOA, 2004.

[31] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
theory of NP-completeness. W.H. Freeman and Company, San Fransisco, 1979.

[32] M.R. Garey, D.S. Johnson, G.L.Miller, and C.H. Papadimitriou. The complexity
of coloring circular arcs and chords. SIAM Journal Alg. Disc. Methods, 1:185–
200, 1980.

[33] J. Gergov. Approximation algorithms for dynamic storage allocation. In Proceed-
ings of the 4th European Symposium on Algorithms: Lecture Notes in Computer
Science 1136, pages 52–61, 1996.

[34] J. Gergov. Algorithms for compile-time memory optimization. In Proceedings
of the 10th ACM-SIAM Symposium on Discrete Algorithms, pages S907–S908,
1999.

[35] M.C. Golumbic. Algorithmic graph theory and perfect graphs. Academic Press,
NY, 1980.

[36] R. Govindarajan and S. Rengarajan. Buffer allocation in regular dataflow net-
works: An approach based on coloring circular-arc graphs. In Proceedings of the
2nd International Conference on High Performance Computing, 1996.

[37] A. Gräf. Coloring and recognizing special graph classes. Technical Report, Musik-
informatik und Medientechnik Berict 20/95, Johannes Gutenbuerg Universität
Mainz, 1995.

[38] M. Grötschel, L. Lovasz, and A. Schrijver. Geometric Algorithms and Combina-
torial Optimization. Springer Verlag, 1988.

[39] P.M. Grundy. Mathematics and games. Eureka, 2:6C–8, 1938.

[40] D. J. Guan and Xuding Zhu. A coloring problem for weighted graphs. Informa-
tion Processing Letters, 61(2):77–81, 1997.

[41] M. Halldorsson and G.Kortsarz. Tools for multicoloring with applications to
planar graphs and partial k-trees. Journal of Algorithms, 42(2):334–366, 2002.

[42] M. Halldorsson, G. Kortsarz, A. Proskurowski, R. Salman, H. Shachnai, and
J.A. Telle. Multicoloring trees. Information and Computation, 180(2):113–129,
2003.

[43] M. Halldorsson, G. Kortsarz, and H. Shachnai. Sum coloring interval and k-
claw free graphs with application to scheduling dependent jobs. Algorithmica,
37(3):187–209, 2003.

146

[44] P. Hlinéný and J. Kratochvil. Representing graphs by disks and balls. Discrete
Mathematics, 229:101–124, 2001.

[45] D.S. Hochbaum and D.B.Shmoys. Using dual approximation algorithms for
scheduling problems: theoretical and practical results. Journal of the ACM,
34:144–162, 1987.

[46] S. Irani. Coloring inductive graphs on-line. Algorithmica, 11(1):53–72, 1994.

[47] David.R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph col-
oring by semidefinite programming. Journal of the ACM, 45(2):246–265, 1998.

[48] Richard Karp. Reducibility among combinatorial problems. Plenum Press, New
York, NY, 1972.

[49] H. Kierstead and T. Trotter. First-fit coloring of interval graphs. Personal
Communication, 2005.

[50] H.A. Kierstead. The linearity of first-fit coloring of interval graphs. SIAM J.
Discrete Math, 1:526–530, 1988.

[51] H.A. Kierstead. A polynomial time approximation algorithm for dynamic storage
allocation. Discrete Mathematics, 88:231–237, 1991.

[52] H.A. Kierstead and J. Qin. Coloring interval graphs with first-fit. Discrete
Mathematics, 144:47–57, 1995.

[53] H.A. Kierstead and W.T. Trotter. An extremal problem in recursive combina-
torics. Congressus Numerantium, 33:143–153, 1981.

[54] J. Kratochvil. Precoloring extensions with a fixed color bound. Acta Mathematica
Universitatsis Comenianae, 62:139–153, 1993.

[55] Michael.G. Luby, Joseph (Steffi) Naor, and Ariel Orda. Tight bounds for dynamic
storage allocation. SIAM Journal on Discrete Mathematics, 9:155–166, 1996.

[56] Ross.M. McConnell. Linear-time recognition of circular-arc graphs. Algorithmica,
37(2):93–147, 2003.

[57] Jérôme Monnot, Vangelis Th. Paschos, Dominique de Werra, Marc Demange,
and Bruno Escoffier. Weighted coloring on planar, bipartite and split graphs:
Complexity and improved approximation. In ISAAC, pages 896–907, 2004.

[58] N.S. Narayanswamy and S. Babu. First-fit coloring of interval graphs. Personal
Communication, 2004.

[59] N.S. Naryanswamy. Dynamic storage allocation and on-line coloring interval
graphs. In Tenth International Computing and Combinatorics Conference, (CO-
COON), 2004.

147

[60] O.B.Ibarra and C.E.Kim. Fast approximation algorithms for the knapsack and
sum of subset problems. Journal of the ACM, 22:463–468, 1975.

[61] S. Pemmaraju and R. Raman. Improved analysis of interval coloring with band-
widths. Unpublished Manuscript.

[62] S.V. Pemmaraju and R. Raman. An improved algorithm for max-coloring hered-
itary graphs. Unpublished Manuscript, 2005.

[63] S.V. Pemmaraju, R. Raman, and K. Varadarajan. Buffer minimization using
max-coloring. In Proceedings of The ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 562–571, 2004.

[64] C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review. European
Journal of Operations Research, 120:228–249, 2000.

[65] T. Rus and S.V. Pemmaraju. Using graph coloring in an algebraic compiler.
Acta Informatica, 34(3):191–209, 1997.

[66] Wei-Kuan Shih and Wen-Lian Hsu. An approximation algorithm for coloring
circular-arc graphs. In SIAM Conference on Discrete Mathematics, San Fran-
cisco, 1990.

[67] R.E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test chordality
of graphs, test acyclicity of hypergraphs, amd selectively reduce acyclic hyper-
graphs. SIAM Journal on Computing, 13:566–579, 1984.

[68] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

[69] Paul.R. Wilson, Mark.S. Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation : A survey and critical review. In Proceedings of the Interna-
tional Workshop on Memory Management (IWMM), pages 1–116, 1995.

[70] D.R. Woodall. Problem no. 4. Cambridge University Press, Cambridge, UK,
1974.

	University of Iowa
	Iowa Research Online
	2007

	Chromatic scheduling
	Rajiv Raman
	Recommended Citation

	tmp.1232138404.pdf.idaYK

