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ABSTRACT

Satisfiability (SAT) and satisfiability modulo theories (SMT) solvers are high-

performance automated propositional and first-order theorem provers, used as un-

derlying tools in many formal verification and artificial intelligence systems. Theo-

retic and engineering advancement of solver technologies improved the performance

of modern solvers; however, the increased complexity of those solvers calls for formal

verification of those tools themselves. This thesis discusses two methods to formally

certify SAT/SMT solvers. The first method is generating proofs from solvers and

certifying those proofs. Because new theories are constantly added to SMT solvers,

a flexible framework to safely add new inference rules is necessary. The proposal is

to use a meta-language called LFSC, which is based on Edinburgh Logical Frame-

work. SAT/SMT logics have been encoded in LFSC, and the encoding can be easily

and modularly extended for new logics. It is shown that an optimized LFSC checker

can certify SMT proofs efficiently. The second method is using a verified program-

ming language to implement a SAT solver and verify the code statically. Guru is a

pure functional programming language with support for dependent types and theorem

proving; Guru also allows for efficient code generation by means of resource typing. A

modern SAT solver, called versat, has been implemented and verified to be correct in

Guru. The performance of versat is shown to be comparable with that of the current

proof checking technology.
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CHAPTER 1

INTRODUCTION

Formal verification is an engineering practice to prove the correctness of soft-

ware or hardware systems using machine checkable methods, which are based on

mathematical logics. In other words, all system correctness should be mechanically

proved. This is a computer science incarnation of Russell’s Logicism – “all mathe-

matical truths are logical truths”. Formal verification is often compared to test-based

verification. Several studies demonstrated that ultra-high dependability is infeasible

to achieve through testing alone [24, 52]. And Steven Miller at Rockwell Collins

reported a formal verification method detected more errors in a flight control sys-

tem than the traditional verification techniques, including inspection and simulation,

did [56]. So, formal methods can provide greater confidence in system implementa-

tions. However, the trustworthiness of a formal method depends on the verification

tool used. The definition of formal verification above is recursive, because the checker

itself is another system. So, the checker also needs to be verified using another checker,

and so forth. This chain of verification must stop at some point.

1.1 Theorem Provers

Theorem provers are software tools used to prove mathematical theorems, and

those tools are often used at the end of the verification chain. There are two categories

of theorem provers: automated theorem provers and interactive theorem provers.

First, automated theorem provers are designed to verify theorems without user
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intervention. They are often based on traditional logics, like propositional logic or

first order (predicate) logic. Propositional logic is decidable and its decision proce-

dures have been studied under the name of the satisfiability (SAT) problem. SAT

solvers search for an interpretation of the propositional symbols that makes the given

formula true and report whether or not there exists such an interpretation. Because

the validity of a formula can also be deduced from the unsatisfiability of its negation,

a SAT solver can be used as a propositional theorem prover. For first order logics,

although they are generally undecidable, there are numerous approaches for automat-

ing first order theorem proving. Some provers, including Prover9 [54], search for a

proof of a given theorem, although that procedure may not terminate. These provers

allow users to define their own axioms. Other provers try to restrict the language and

find an efficiently decidable subset of first-order logics. For example, ground formulas

with linear/real integer arithmetics are decidable. Thus, theorem proving in such

logics can be fully automated. The field of satisfiability modulo theories (SMT) [13]

represents such efforts to define decidable fragment of first order logics and develop

efficient decision procedures. SMT is a first order logic version of the satisfiability

problem. A SMT logic is a first order logic with equality and a combination of certain

theories such as linear integer/real arithmetic, bit-vectors, and arrays. SMT solvers

are based on the theory that independent decision procedures for individual theories

can collectively build a decision procedure for the whole logic with those theories

combined [60]. Thus, SMT solvers can be easily extended with new theories. The

performance of SAT/SMT solvers has been improved greatly in the last decade, and
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they are critical components of verification methods like model checking [25, 45] and

symbolic execution [48].

Second, interactive theorem provers are essentially proof checkers of inductive

calculi. They are designed to prove properties of mathematical functions and can also

be used to verify software and hardware systems. Interactive theorem provers are also

called proof assistants, because they provide some level of automation to help with

proof construction. Proof construction is interactive because the underlying logics

are undecidable and inductive proofs usually require human’s intervention. Although

those theorem provers are equipped with some automated proof generation features

(called “tactics”), the human creativity seems to be the key of theorem proving.

Recent works showed that interactive theorem provers can be used to verify important

properties of complex software systems. CompCert is an optimizing compiler for a

subset of the C programming language, for which semantics preservation has been

proved in the Coq theorem prover [50, 20]. The seL4 microkernel verification effort

uses the Isabelle theorem prover to prove that the microkernel implementation in

C and assembly follows a high-level non-deterministic model expressing the desired

system properties [47].

1.2 De Bruijn Criterion

Some theorem provers were constructed in a principled way to increase the

trustworthiness of the provers. The De Bruijn criterion characterizes verification

systems producing proof objects that can be independently checked using a simple

checker[11]. The original Automath system, invented by De Bruijn, in the late 60’s
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was a proof checker and had a small kernel. The kernel essentially implements a proof

checker of the underlying logic. This piece of software is often called the trusted core

or trusted base, and it is the ultimate authority on logical truths upon which various

theories and theorems can be expressed and proved. If the core is small enough, it

can be peer reviewed and verified manually by inspection. The Automath systems

are based on the idea that type checking is equivalent to proof checking [39]. Pop-

ular systems following the same idea include LF [46], Twelf [8], Nuprl [26], Coq [2],

and Agda [1]. Also, there is another important method that meets the De Bruijn

criterion, called the LCF approach. Robin Milner implemented his Logic for Com-

putable Functions (LCF) [44]. LCF is well known for its use of a new programing

language, called ML (for “meta language”), to define the logic and implement tac-

tics altogether. In LCF, theorems are objects (of the thm type), and those theorems

can be built only by applying certain functions, which correspond to the proof rules.

Thus, even though tactics are implemented in the same language and can be arbi-

trarily complex, they cannot harm the soundness of the whole system, and thus are

outside of the trusted core. The HOL [3] and Isabelle [4] theorem provers are based

on the LCF approach [43].

1.3 Correctness of Satisfiability Solvers

Unlike the LCF and its descendants, mainstream SAT/SMT solvers are not

built on small foundations. Instead, they are tested against each other over a large set

of formulas. The usefulness of a SAT/SMT solver depends on its sheer performance

solving large formulas. So, they are implemented in conventional programming lan-
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guages like C++ with emphasis on performance. Although the correctness of solver

algorithms is proved on paper, the implementations are mostly unverified. Popu-

lar SAT solvers are relatively small in size (about 2500 lines of C++) and believed

to be correct. However, the internal engineering of those SAT solvers is very so-

phisticated, and it is not practical to verify the code just by inspection. Indeed,

Brummayer discovered incorrect answers from the top solvers which participated in

the SAT competition 2006 and 2008 [23]. Thus, formal verification techniques for

SAT/SMT solvers themselves are highly desired. Currently, there are two distinct

approaches for verified SAT/SMT solving. One is to verify the certificates generated

from solvers. The other is to verify the code of solvers.

Proof checking. The advantages of certificate generation are: 1) it requires min-

imal changes to existing solvers, 2) certificates can be used for other purposes such

as counterexample presentation and interpolant generation [66]. The disadvantage

of proof generation is time and space costs for generating and checking certificates.

For satisfiable formulas, models can be generated as certificates and checked by a

simple trusted evaluator. For unsatisfiable formulas, certificates are in the form of

refutational proof. SAT is well known as the first NP-hard problem identified [27].

Instances of the SAT problem have small positive certificates (models), but not neces-

sarily small negative certificates (proofs). So, the size of proofs and the performance

of proof checking can be an issue in adopting a certificate-based verification method.

On the other hand, first order formulas do not have simple certificates in general.

However, quantifier-free formulas with a limited use of function symbols may have



6

simple models, which can then be checked.

Verifying the code. Statically verified solvers can solve and certify formula with-

out a proof checking overhead. However, modern SAT solvers, setting aside SMT

solvers, are quite sophisticated software, thus it is challenging to verify their code.

The usual approach is to implement the solver in a interactive theorem prover and

prove the answer is always correct according to the definition of satisfiability.

1.4 Contributions

As discussed in Section 1.3, proof checking and verifying the solver’s code are

two main approches for formally certified satisfiability solving. This dissertation re-

ports on the two novel implementations: 1) a SAT/SMT proof checking system using a

logical framework; 2) a statically verified SAT solver in a dependently typed program-

ming language. Our proof checking method uses a logical framework called LFSC,

which is distinguished from other solutions. LFSC is designed and implemented by

my advisor, Aaron Stump and his former students. This dissertation suggests an ef-

ficient proof certification method using the LFSC language and the optimized LFSC

type checker. Aaron Stump, Andrew Reynolds and I worked together on the encod-

ing of SAT reasoning, namely the efficient resolution rule (discussed in Section 4.2).

I encoded the QF IDL SMT logic (discussed in Section 4.3). I also implemented a

SAT/SMT solver, called clsat, which produces proofs in the proposed format. 1

1 Although clsat started as a class project with other students at Washington University
in St. Louis, I have rewritten most of the code, except for the parser code for reading SMT
formula files, which is mainly written by Timothy Simpson.
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Our statically verified SAT solver, called versat, implements modern SAT solver

features and low-level optimizations. versat is written in the Guru programming

language, which is a functional programming language with support for dependent

types. The Guru language and the compiler have been designed and implemented

by Aaron Stump with his former students. I wrote the SAT-specific code/proofs of

versat. Aaron Stump, Corey Oliver, and Kevin Clancy helped me to prove theo-

rems about general data structures like machine words, lists and vectors. Because

SAT/SMT solvers have gained its popularity for their performance and scalability to

solve large formulas, the performance of certified SAT/SMT solvers are crucial for

any practical applications. Thus, the focus of our research was on the performance

of our implementations.

This dissertation is organized as following: Chapter 2 reviews the basics of

SAT/SMT solver algorithms and features. Chapter 3 surveys the related work on

certifying SAT/SMT solvers. Chapter 4 is based on our previously published work-

shop papers [74, 64] and recently accepted journal paper, and it reports on our proof

checking method. Chapter 5 extends our recently published conference paper [65]

and reports on the verified SAT solver we implemented.
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CHAPTER 2

BACKGROUND: SATISFIABILITY SOLVING

Mainstream SAT solvers, including the state-of-the-art SAT solvers MiniSAT [33]

and PicoSAT [19], are based on the Davis-Putnam-Logemann-Loveland (DPLL) al-

gorithm [30]. Also most SMT solvers use SAT solvers internally as propositional

reasoning engines, which interact with the decision procedures for theories.

2.1 The Classical DPLL Algorithm

Figure 2.1 shows the classical DPLL algorithm. The input formula Φ is in

conjunctive normal form (CNF), and the partial model M is represented as a set of

consistent literals (never having both v and ¬v), where the polarity of each literal

means the truth-value assigned to the variable. Initially, M is empty and the DPLL

function returns true if the formula is satisfiable, or false, otherwise. The variable

M is a partial model, represented as a set of literals. A clause with only one literal

is called unit. A clause is also called unit when it has only one literal that is not

assigned in the partial model M and all the other literals are false under M. The unit-

propagation procedure repeatedly extends the current partial model M by adding the

literal from a unit clause. The existence of the empty clause under M means the

formula is falsified by M. So, when the algorithm finds a contradiction under M ∪ d

—DPLL(Φ, M∪ d) returns false—, the algorithm backtracks past the last literal and

tries the other polarity d̄. If DPLL returns false on both M ∪ d and M ∪ d̄, then any

model containing M cannot satisfy the formula. Especially, if DPLL returns false and
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function DPLL(Φ,M)
for every unit clause l in Φ under M unit-propagation

M := M ∪ l;
if a clause in Φ is false under M then conflict

return false;
if M contains all variables in Φ then

return true;
d := choose-literal(Φ,M);
return DPLL(Φ,M ∪ d) or DPLL(Φ,M ∪ d̄);

Figure 2.1. The classical DPLL algorithm (simplified). Φ is the input formula, and
M is a partial model. The choose-literal function returns an arbitrary literal from Φ
that is not defined under M. l̄ means the opposite polarity of l.

M is empty, the formula is unsatisfiable. On the other hand, if Φ has no conflicts and

M is a complete model, then Φ is satisfiable. The algorithm in Figure 2.1 does not

return the found model, though it can be easily modified to return the model M. The

classical DPLL algorithm is fairly straightforward. Below is an informal analysis of

the algorithm:

Soundness. DPLL returns true only if the model M contains all the variables in Φ

and there is no conflict. That means the formula can be fully evaluated under the

model and the truth-value of the formula is true. Also, the function returns false

only if the formula has no model. This can be proved by induction on the number

of variables in the formula unassigned under M. Thus, the algorithm returns correct

answers.

Completeness. The number of variables in the formula is finite. Each recursive

call reduces the number of unassigned variable by one, and the function returns when
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function Modern-DPLL(Φ)
M := ∅ partial model
level := 0
repeat

for every unit clause l in Φ under M unit-propagation
M := M ∪ l;

if a clause in Φ is false under M then
if level = 0 then

return false;
c := analyze() conflict analysis
level := calc-level(c)
d := uip-lit(c)
M := backtrack(M, level)
M := M ∪ d
Φ := Φ ∧ c clause learning

else
if M contains all variables in Φ then

return true;
level := level + 1
d := choose-literal(Φ,M);
M := M ∪ d

Figure 2.2. The modern DPLL algorithm. The analyze function deduces a clause
from Φ as a lemma, and the calc-level function calculates the new decision level to
backtrack. And the uip-lit function returns the only literal in c that assigned on and
after the last decision point.

all variables are assigned. Thus, the depth of recursive call is limited by the number

of variables. Therefore, the algorithm is terminating.

2.2 The Modern DPLL Algorithm

Figure 2.2 shows the modern version of the DPLL algorithm. It has a top-level

loop (repeat), instead of a primitive recursion as in the classical algorithm, which

makes the execution flow more complex. The variable level keeps track of how many

chosen literals are in the current model M at any given time. Every time a literal is
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chosen (choose-literal) and added to the model M, the level gets increased by one. The

level value corresponds to the recursion depth in the classical version. The biggest

difference from the classical DPLL is how conflicts are handled.

Conflict Analysis. Under the current partial assignment, if a clause is falsified,

the analyze function deduces a new clause, called a conflict clause, from the existing

set of clauses, with a very small cost of performance [70]. Conflict analysis performs

a series of resolutions, where the (propositional) resolution rule is:

x ∨ C ¬x ∨D
C ∨D resolution

During the analysis, the SAT solver repeatedly resolves out recently assigned literals,

though it can add more literals. The idea is that the SAT solver wants to compute

a new clause with fewer literals that are assigned recently. This process stops when

it deduce a clause with only one literal assigned at the current level, which is called

the first unique implication point (UIP) literal. Sometimes, a conflict clause may

imply that the current conflict stems from a far earlier branching choice, instead of

the last choice. Then, the new clause may instruct the solver to backtrack multiple

choices (backjumping), so more search space is pruned. Also, this part of the SAT

solver is the main target of soundness verification, because it is where deduction is

performed. Compared to the fact that the classical DPLL performs purely semantic

exploration, the modern DPLL is a combination of semantic exploration and syntactic

manipulation applying deduction rules.
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Backjumping. Once a conflict clause c is derived, the new level is calculated from

the clause. The calc-level function compares the levels at which variables in the

conflict clause are assigned, and returns the second highest level. (The highest level

is always the current level, because of the UIP literal.) In fact, the algorithm implicitly

records the level at which each variable is assigned. Then, the current level is updated

and the backtrack function removes literals that are assigned above the new level. This

is called backjumping, because the level may decrease by more than one, depending

on the conflict clause. Also, because the conflict clause is always unit under the new

M, the UIP literal d is assigned.

Clause Learning. Finally, and also optionally, the conflict clauses can be stored in

the clause database to prune out even more search space later on. However, it is also

possible that the increasing size of the clause database slows down unit propagation.

Thus, clause learning is used with heuristics about what kind of clauses should be

added, and when to drop them.

Correctness. Due to the dynamic nature of the modern DPLL algorithm, it is

much more complicated to analyze the correctness of the algorithm. Nieuwenhuis

et al. formalized the DPLL procedure as a state transition system, called Abstract

DPLL, and showed that the abstract system is sound and complete [62, 61]. Abstract

DPLL captures the core state of a SAT solver and represents it as a pair of a partial

assignment sequence and the set of clauses. It also defines transition rules that reflect

the operations performed in SAT solvers. Using the abstract DPLL framework, it is
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easy to see that the classical and modern algorithms follow the abstract system and

thus are correct.

2.3 SAT Solver Engineering

Some important SAT solver features are abstracted away in the algorithms

above.

Efficient Unit Propagation. Unit-propagation, also called Boolean Constraint

Propagation (BCP), is a procedure to assign the truth values for certain literals when

each of those literals is the only literal in a clause left unassigned. So, there is only

one choice of assignment to make that clause true. To perform unit-propagation

efficiently, SAT solvers need to index the occurrences of each literal. The common

technique is using the two-literal watch lists where only two literals of each clause are

indexed [58, 83, 82].

Decision Heuristics. Deciding which variable to assign at the given point is an

important heuristic of SAT solvers. SAT solvers use some variations of the VSIDS (for

Variable State Independent Decaying Sum) method [58]. VSIDS maintains a score

board of all the variables, showing how active they are in the current search branch.

The definition of activity is different from solver to solver. The usual heuristic is to

decide the most active variable, but the activity value decays to emphasize recent

activities.
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Restarts. The usual decision heuristics try to stay in the same search branch, which

can be very deep and not promising. The restarts technique [42] monitors the solver’s

activity and, if the solver is spending too much time in a particular search branch, it

forces the solver to backtrack all the way up to the search root. This helps solvers

escape out of a deep branch and try another branch, which might lead to an early

conclusion. This is also a heuristic and its utility depends on the characteristics of

the formula.

Conflict Clause Minimization. This is an extension of conflict analysis and tries

to minimize the size of the conflict clause by applying the self-subsumption rule [71].

When the conflict clause looks like x∨C ∨D and there is another clause like ¬x∨C,

x can be dropped from the conflict clause:

x ∨ C ∨D ¬x ∨ C
C ∨D self subsumption

A typical SAT solver has a log of clauses that may allow self-subsumptions. But,

different solvers have different heuristics for how much time they will spend searching

for such clauses. If successful, this search time can be rewarded with a shorter conflict

clause. Shorter clauses are stronger and can prune even more search space.

2.4 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) refers to the satisfiability of a first order

formula in a theory or a combination of theories [13]. Many applications of formal

methods translate verification conditions into first-order logic formulas with some

theory, which fixes the interpretations of certain predicates and function symbols; for
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example, inequalities and arithmetic operators. General first-order theorem proving

with additional axioms is not realistic for large formulas. Instead, using specialized

reasoning methods for the specific theory turns out to be a more successful alternative.

Many theories of integers and real numbers are in fact decidable and they have efficient

decision procedures. And more and more decision procedures have been discovered

for other data types such as arrays, strings and bit vectors. Nelson and Oppen showed

that decision procedures for individual theories can cooperate to solve formulas in the

combined theory [60]. This makes it easier to design SMT solvers supporting logics

with multiple theories combined.

A common SMT solver design is based on a SAT solver integrated with a

decision procedure for a first order theory (or “theory solver”) [35]. The SAT and

theory solvers are clearly separated inside the SMT solver, and interact with each

other in the following way:

1. The internal SAT solver solves the formula as if atomic formulas are just propo-

sitional variables, ignoring any meaning of those atomic formulas. For example,

a formula, (0 < x) ∧ (x < 0) is treated as though it is P ∧Q.

2. If the SAT solver reports unsatisfiable, the original formula is reported un-

satisfiable. That is because the formula is refutable only using propositional

deduction rules, without any theory axioms. On the other hand, if the SAT

solver reports satisfiable, then there will be a model, which includes (possibly

negated) atomic formulas. Because the SAT solver did not consider the meaning

of the atomic formulas, the model can be inconsistent. For the same example
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above, {0 < x, x < 0} can be a model reported from the SAT solver, which

happens to be inconsistent with respect to the theory of integer/real numbers.

3. This model has to be checked against the desired theory. The theory solver

tries to find an inconsistency among theory formulas in the model. If there is no

inconsistency, the original formula is reported SAT. If there is an inconsistency

among some of the theory formulas, φ1, φ2, · · ·φn (where φi are atomic formulas

or negated ones), the theory solver gives the SAT solver a new clause, ¬φ1 ∨

¬φ2 ∨ · · · ∨ ¬φn (called a “theory lemma”). Theory lemmas are necessary to

eliminate the inconsistent models found by the SAT solver. From the SAT

solver’s point of view, theory lemmas are just new constraints to satisfy. For

the example model above, the theory lemma will be 0 6< x ∨ x 6< 0. And the

solver goes back to the step (1) and repeats.

This approach is called lazy theory reasoning, because the theory solver pas-

sively reacts to the SAT solver. Popular SMT solvers, including including CVC3 [15]

and Z3 [32], are based on this approach.

Satisfiability certificates are usually semantic models of formulas. For SAT

formulas, a certificate of satisfiability is a set of truth-value assignments to the propo-

sition variables in the given formula. For SMT formulas, a satisfiability certificate is a

model for the constant and function symbols of the formula. Mainstream SAT/SMT

solvers have support for producing models for satisfiable formulas. For SAT, models

can be efficiently verified by a simple trusted evaluator. In fact, the SAT compe-

tition requires all participants to generate models for satisfiable formulas [5]. For



17

SMT, describing and checking models can be complicated, due to infinite domains

and function interpretations. However, the SMT-LIB initiative is trying to define a

standard model format as well as the SMT formula format and standard logics [14].

Using models generated from solvers is also a common practice. When verification

conditions of a software and hardware system are formulated in the propositional

logic or a first order logic, a SAT/SMT solver is used to check the conditions. If the

solver answers “yes” (satisfiable), it means the condition is not valid and the model

generated from the solver is a counterexample.
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CHAPTER 3

RELATED WORK

3.1 SAT Proof Checking

The SAT competition is a bi-yearly event where the best SAT solvers compete

against each other [5]. As a part of the competition, there is a separate category, called

certified UNSAT, where solvers are required to generate proofs of unsatisfiability. For

the certified track, several proof formats have been proposed over time. The RES

and RUP formats are the two recent standard formats accepted at the competition,

and the TraceCheck format is gaining popularity. In this section, I discuss SAT/SMT

proof systems and static verification of SAT solvers.

3.1.1 Resolution-based Proof Formats

The resolution rule is refutation complete by itself. And resolution is used

during clause learning in state-of-the-art SAT and solvers [84]. The resolution proof

format (RES), used at the SAT competition 2005, is based directly on the resolution

rule [37]. A RES proof is a sequence of resolution steps. Each resolution step records

two premises to resolve, the pivot literal, and the resolvent. Each step is given a

reference number and the number can be used to mention the clause proved at that

step. For an input formula with n clauses, the clauses in the input formula are named

from 1 to n, and reference numbers in its proof start from n + 1. Those reference

numbers are used to record the premises of each resolution step. In every proof, the

last step is supposed to prove the empty clause.
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For example, consider this CNF formula, (p1 ∨ p2) ∧ (p1 ∨ ¬p2) ∧ (¬p1 ∨ p2) ∧

(¬p1 ∨ ¬p2). And an example refutation proof is below.

5 p1 1 2 p2
6 ¬p1 3 4 p2
7 · 5 6 p1

In this proof, the four input clauses are implicitly numbered from 1 through 4. Let

Ci be the clause numbered i. The first line gives a singleton clause p1 the number 5

and justifies the deduction of that clause by resolving the clause C1 and C2 over the

literal p2. Similarly, the clause C6, which is ¬p1, is proved. Finally, the empty clause

(·) is proved by resolving the clauses C5 and C6.

The RES format is simple and easy to understand. Also, because proofs

contain both the clauses to prove and their justifications, it is easy to find bugs in

the solver and the checker. However, for the same reason, the sizes of proofs can be

very large. So, to shrink the sizes of proofs, an alternative format, called resolution

proof trace (RPT), was proposed, where the resolvents (clauses) are omitted.

The advantage of the RES format is that checking a RES proof does not take

additional memory space beside the proof itself. There is no need to compute and

store anything additionally. However, the RES/RPT formats are considered too fine-

grained and hard to instrument existing solvers to generate proofs. How to generate

resolution proofs from SAT solvers is discussed in [76].

3.1.2 Linear Resolution-based Proof Formats

Most modern SAT solvers implements a feature called conflict analysis to de-

duce a new clause, called conflict clause, as a lemma. It is well known that conflict

analysis can be represented as a series of (linear) resolution steps [41, 85, 17]. Res-
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olution steps performed during conflict analysis are identified as linear resolutions,

where at least one premise of each resolution is an input clause or a previous lemma.

So, the resolution proof for each lemma is a linear sequence of resolutions, rather

than an arbitrary resolution tree. For example, suppose C1 . . . Cn be input clauses

and previous lemmas, and a linear resolution proof is in this form:

C0 C1

D1 C2

D2
...

Dn−1 Cn

Dn

Di(1 ≤ i < n) are intermediate resolvents, and only the final resolvent Dn is stored

as a lemma and may be used later in the proof.

Zhang and Malik reported a proof format based on linear resolution for their

SAT solver zchaff [85]. In that format, a proof is a sequence of lemmas. And each

lemma states the the new clause’s unique ID number (as in the RES format), the

conflict clause and the ID numbers of the clauses involved in generating the conflict

clause. The example proof above is recorded as a lemma below:

m I0, I1, I2, . . . , In

The m is the unique ID number for the lemma and it can be used to refer Dn in

the rest of the proof. Each Ii is the clause ID for Ci. The clause IDs are reported

in the exact order of resolutions. A proof checker can simply apply resolution to the

first two clauses and keep resolving the result of the previous resolution with the next

clause.
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PicoSAT is one of the state-of-the-art SAT solvers. The PicoSAT developers

designed their own proof format, called TraceCheck. TraceCheck is very similar to

the zchaff’s proof trace. But, TraceCheck can optionally report Dn along with the

clause IDs, which is useful for debugging. When not reported, Dn is abbreviated with

a wildcard symbol ∗. For example, the same lemma above can be stated as:

m Dn I0, I1, I2, . . . , In
or

m ∗ I0, I1, I2, . . . , In

Unlike zchaff’s trace format, TraceCheck format allows the clause IDs to be reported

in an arbitrary order. That makes it considerably easier to instrument existing SAT

solvers to report proofs. Any TraceCheck checker should be able to calculate the

correct order of resolutions.

These linear resolution-based formats can shrink proofs even further compared

to the RES/RPT formats. Linear resolution is known to be refutation complete [38].

So, it is true that any solver can report a linear resolution proof. Moreover, it is

also easier for most mainstream SAT solvers to report using these formats, especially

TraceCheck [19].

3.1.3 Reverse Unit Propagation

The Reverse Unit Propagation (RUP) proof format has been proposed by Van

Gelder as an efficient propositional proof representation scheme [38]. RUP is an infer-

ence rule that concludes F ` C when (F ∪¬C) is refutable using only unit resolution,

which is similar to standard binary resolution except that one of the two resolved

clauses is required to be a unit clause. Unit resolution is not refutation complete in

general, but it has been shown that conflict clauses generated from standard conflict-



22

analysis algorithms are indeed RUP inferences [38]. If a clause is a RUP inference,

a unit-resolution proof deriving the clause can be calculated from that clause itself.

Potentially, a long resolution proof of a RUP inference can be compressed to the

concluded clause. Also, an efficient RUP inference checker can be implemented using

the two-literal watch lists, a standard unit propagation algorithm used in most SAT

solvers [41]. A complete RUP proof is a sequence of clauses (lemmas) with the last

one being the empty clause. The clauses are checked one clause at a time. Each

clause C is checked with respect to the RUP inference rule, where F is the original

formula and the clauses that have been checked previously. Even though all cor-

rect lemmas are logically true in the input formula, RUP inference is so weak that

intermediate clauses are necessary as stepping stones leading to the empty clause.

For example, here is an unsatisfiable formula in Conjunctive Normal Form (CNF):

(p∨q)∧ (p∨¬q)∧ (¬p∨q)∧ (¬p∨¬q). That formula can be encoded in the DIMACS

format, a standard input format used at the SAT competition, as below:

1 2 0

1 -2 0

-1 2 0

-1 -2 0

Positive numbers represent propositional variables and negative numbers are negated

variables. The variables p and q are renamed as 1 and 2, respectively. A zero indicates

the end of each clause. Now, consider this RUP proof of the formula:

1 0

0
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An equivalent TraceCheck proof would be:

5 p 1, 2
6 ⊥ 3, 4, 5

The RUP proof format has a similar syntax as the DIMACS format. The proof

above has two clauses (RUP inferences). Essentially, it is the same as the TraceCheck

version above, except that all the proof annotations are missing in the RUP proof.

Because the input formula does not have a unit clause, the empty clause cannot be a

RUP inference directly from the input formula. So, at least one intermediate clause is

necessary. The first proof clause is a unit clause 1. Assume the negation of the clause,

which is -1. The assumed clause -1 and the first clause of the formula concludes 2 by

unit resolution, and similarly, -1 and the second clause concludes -2. Finally, 2 and

-2 are contradictory. So, 1 is a RUP inference. Once a clause is verified, it is kept

as a lemma and may be used in the later inferences. Using the clause just verified,

the empty clause can be checked in a similar fashion, resolving 1 with the third and

fourth input clauses.

Almost all mainstream SAT solvers are clause learning SAT solvers with a

form of conflict analysis. Because such learned clauses are RUP inferences, the RUP

format is even easier to instrument in existing SAT solvers than TraceCheck. Thus,

the RUP format is the most popular format used at the SAT competition.

3.1.4 Trustworthiness of the Proof Checker

The official proof checker, checker3 for the SAT competition, is 1,538 lines

of C. It supports RES and RPT formats. An efficient RUP proof checker would be

more complex, because RUP proof checking requires a quite sophisticated algorithm
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to achieve desired performance. In the SAT competition, RUP proofs are converted

to RES format first. Then, the RES version is checked. This conversion, however,

does not need verification. It’s considered an immediate step of proof construction,

and the final RES proofs are used to certify the unsatisfiability of the formula. The

disadvantage is, due to this conversion process the official RUP checker failed to

check many proofs at the competitions. The PicoSAT developers’ own proof checker,

tracecheck is very efficient, but the size of trusted base is quite huge (2,989 lines of

C++ and the boolforce library), considering the best SAT solver minisat is about

2,500 lines of C++. To construct more trustworthy proof checkers, two methods have

been proposed:

Proof reconstruction in theorem provers. Weber implemented a proof checker

in the Isabelle theorem prover [79, 78, 80]. Any SAT solver can be used as an ex-

ternal oracle, and his checker translates the propositional proofs generated from the

SAT solver to the theorem prover’s own proof objects so that the theorem φ ` ⊥ is

justified by the theorem prover’s kernel. This kind of proof checking is called proof

reconstruction. Proof reconstruction-based checkers can also be used as tactics within

the theorem prover, not just as proof checkers.

Verifying proof checker Darbari et al. implemented an efficient TraceCheck proof

checker and verified its soundness (it only accepts correct proofs) in the Coq theorem

prover [29]. This technique does not translate proofs, instead it checks proofs directly.

They can also extract a certified OCaml code, which is executable independently of
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the theorem prover.

3.2 SMT Proof Checking

Considering the size and complexity of modern SMT solvers, it seems much

more difficult to verify their code. Instead, it may be more cost-effective to verify

their proofs. CVC3 [55, 36], Fx7 [57], Z3 [31], and veriT [22] are example SMT solvers

that have the ability to produce refutation proofs. Unlike SAT, there is no de facto

standard format for SMT proofs. Those solvers defined their own proof formats, and

there are no separate authorities or official formats, yet.

CVC3. CVC3’s proofs are in the format of the HOL Light theorem prover (a LCF-

style theorem prover), while others use their own custom proof formats. CVC3’s

proofs are translated to HOL Light’s proofs and construct theorems in the theorem

prover (proof reconstruction).

Fx7. Moskal’s Fx7 uses a custom rewriting-based meta-language to enable concise

and understandable expression of proof rules, to increase trust. He also implemented

a meta-language checker, Trew, which is shown to be very efficient for the AUFLIA

(Linear Integer Arithmetic with Uninterpreted Functions and Arrays) logic bench-

marks in the SMT-LIB database. Trew’s code is 1,500 lines of C, which is small, but

still less trustworthy than small-core theorem provers written in functional program-

ming languages.
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Z3. Z3 uses a particular natural deduction proof system. At first, a custom proof

checker was used mostly for debugging of Z3 itself. Recently, Böhme et al. imple-

mented a proof reconstruction-based checker in Isabelle [21].

veriT. The proof format of veriT has its own natural deduction rules with a linear

layout, in which each deduction step makes a new line with a line number. Armand et

al. implemented a verified proof checker for veriT’s proofs in Coq [10]. They showed

that proof checking is more efficient than compared to Böhme et al’s method because

they do not reconstruct Coq proofs from veriT’s proofs. Previously, Fontaine et al.

also showed a proof reconstruction method in Isabelle with the previous version of

veriT, called haRVey [34]. They report that proof reconstruction (proof checking in

Isabelle) takes exceedingly longer time compared to proof-searching time taken by

the haRVey prover.

3.3 Statically Verified SAT Solvers

Verifying the SAT solver’s code means proving some of these theorems about

it.

1. If solve(φ) = SAT , then ∃M.M � φ.

2. If solve(φ) = UNSAT , then ∀M.M 2 φ.

3. solve is a total function (always terminates).

The properties 1 and 2 are the soundness (answers are correct) of the algo-

rithm. The property 3 is the completeness (questions are eventually answered) of the
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algorithm.

3.3.1 Verified SAT Solvers

Noteworthy efforts have been made to apply formal verification techniques to

SAT solver algorithms, using interactive theorem provers. Following researchers have

proved their solvers are sound and complete.

1. Lescuyer implemented and verified the classical DPLL algorithm in Coq [51].

He proved that the algorithm is sound and complete according to the standard

semantics of propositional logic. His work is an effort to bring the DPLL proce-

dure directly into Coq as a fully automated propositional reasoning tactic. His

implementation can also be extracted into the OCaml programming language

and compiled to machine code. However, the classical DPLL algorithm is not

as efficient as the modern DPLL implementations, setting aside the overhead of

the OCaml runtime environment due to garbage collection.

2. Marić implemented a modern style DPLL algorithm in Isabelle, including con-

flict analysis, clause learning and backjumping features [53]. He also imple-

mented one of the low-level features: the two-literal watch lists. Marić verified

that the algorithm is sound and complete. The specification of correct SAT

solver is based on the abstract DPLL state transition rules [61]. Abstract DPLL

is a formalization of the SAT algorithm in terms of a state transition system,

instead of imperative pseudocode as in the classical DPLL. It is a more gen-

eralized framework that accommodates new features and deduction methods
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of modern solvers. Even though he implemented some low-level details, this

implementation is not executable outside the theorem prover and it serves as a

model of the actual C++ implementation.

3. Shankar et al. also proved a modern DPLL algorithm in the PVS theorem

prover [69]. This implementation has modern features like clause learning and

backjumping, and it is also verified to be sound and complete according to the

abstract DPLL state transition rules. Compared to Marić’s implementation, it

lacks a low-level detail like the two-literal watch lists.

These SAT solvers are verified in various theorem provers. Lescuyer’s imple-

mentation can also be used as a trusted tactic for the Coq theorem prover because

this implementation is executable and certified. The other implementations did not

implement decision heuristics, because such heuristics do not affect the correctness of

the solvers. Their decision heuristics are left as abstract choice functions. Although

any simple heuristic can replace the abstract functions, a more realistic heuristic will

call for a feedback mechanism from the other parts of the solver, and thus significant

refactoring of the solver may be necessary.

3.3.2 Limitations

The biggest limitation of the verified SAT solvers is the performance. None of

these SAT solvers are intended to match the performance of unverified SAT solvers.

Those verified SAT solvers above either use inefficient data structures or omit low-

level details to simplify verification. For example, Peano numbers or abstract data



29

type are used to represent propositional variables of the input formula, where as

mainstream SAT solvers use machine words for efficiency. An abstract data type can

be replaced with machine words during compilation of such a verified SAT solver;

however the details related to bit/arithmetic operations and overflow situations are

hidden and abstracted away from the solver implementation. Marić’s implementation

uses a list (instead of an array) to represent the entire clause database and perform

sequential access to individual clauses. Shankar’s implementation is more optimized

using an array data structure for the clause database and perform random access

to clauses. Mainstream SAT solvers use low-level data structures such as machine

words, bit operations, mutable arrays and pointers. Also, they are highly optimized

using various engineering techniques, such as splitting, duplicating, and reorganizing

data in memory for faster access. Most of these engineering techniques do not appear

in the verified solvers, and they can not be easily implemented in the programming

language of theorem provers. For example:

• Because each clause is referenced by several pointers in the two-literal watch

lists and other data structures, the whole data structure becomes a graph

(rather than a tree), which makes it difficult to implement in such program-

ming languages In the Marić and Shankar’s implementations, clauses in the

clause database are accessed indirectly through their position numbers in the

list (or array) of all clauses. On the other hand, in mainstream SAT solvers,

clauses are not numbered; instead, they are directly referenced. Thus, there is

no single list or array referencing all the clauses. Directly referencing clauses is
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an important low-level optimization that significantly affects the performance.

• Mutable arrays are critical to the performance of SAT solvers. The two-literal

watch lists are a collection of arrays that change dynamically. Also, solvers use

a variety of lookup tables for bookkeeping purposes. Therefore, the support for

efficient mutable arrays is important for implementing high-performance SAT

solvers.
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CHAPTER 4

SAT/SMT PROOF CHECKING USING A LOGICAL FRAMEWORK

There are many different SMT logics depending on the theories built into the

logics. The SMT-LIB initiative provides a library of formulas divided into several

different logics. Even though SMT-LIB defines a set of standard theories and logics,

solvers may support for novel logics by adding their own theories. Also, different SMT

solvers may use different sets of inference rules depending on the solver’s algorithms.

So, a flexible and extensible proof system is highly desirable for a standard SMT

proof checker. As shown in Section 3.2, Both CVC3 and Fx7 use meta-languages as

the bases of their proof format. CVC3 generates proofs in the HOL Light’s proof

language. Because HOL Light can be extended with new theories, the logic of HOL

Light can be considered a meta-language to encode inference rules (a logic) and

proofs. Fx7 uses its own meta-language, called Trew, which is specifically designed

for encoding logics and efficient proof checking. Trew is based on a term-rewriting

calculus. In Trew, inference rules (at the logic level) are encoded as rewrite rules (at

the meta-language level). The advantage of using a meta-language is that the proof

checker can be easily extended. Usually inference rules are defined declaratively and

modularly, thus it is easy to understand and verify the existing rules, and add new

rules. If we compare that to the program code for a proof checker, the code may

be obscure to understand and adding new rules may change the meaning of the old

code for the existing rules, which can break the correctness of the old code. For
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the other proof formats discussed in Section 3.2, theorem provers are still used to

validate proofs. Böhme et al. essentially implemented a proof translator from an

ad-hoc proof language to the proof language of the Isabelle/HOL theorem prover.

Besides the translation part, everything is the same as CVC3 proofs in HOL Light.

Armand et al. verified their proof checker is correct in the Coq theorem prover. This

proof checker does not translate proofs, instead they proved that the proof checker’s

computation is sound w.r.t the encoding of the logic. As we can see, all of the SMT

proof systems above rely on meta-languages one way or another to encode the subject

logic and ensure the correctness of the proof checkers. In this chapter, we describe a

novel SMT proof system based on another meta-language, called Edinburgh Logical

Framework.

4.1 The LFSC Language

In this chapter we propose and describe a meta-logic, called LFSC, for “Log-

ical Framework with Side Conditions”, which we have developed explicitly with the

goal of supporting the description of several proof systems for SMT, and enabling the

implementation of very fast proof checkers. In LFSC, solver implementors can de-

scribe their proof rules using a compact declarative notation which also allows the use

of computational side conditions. These conditions, expressed in a small functional

programming language, enable some parts of a proof to be established by computa-

tion. The flexibility of LFSC facilitates the design of proof systems that reflect closely

the sort of high-performance inferences made by SMT solvers. The side conditions

feature offers a continuum of possible LFSC encodings of proof systems, from com-
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pletely declarative at one extreme, using rules with no side conditions, to completely

computational at the other, using a single rule with a huge side condition. We argue

that supporting this continuum is a major strength of LFSC. Solver implementors

have the freedom to choose the amount of computational inference when devising

proof systems for their solver. This freedom cannot be abused since any decision is

explicitly recorded in the LFSC formalization and becomes part of the proof system’s

trusted computing base. Moreover, the ability to create with a relatively small effort

different LFSC proof systems for the same solver provides an additional level of trust

even for proof systems with a substantial computational component—since at least

during the developing phase one could also produce proofs in a more declarative, if

less efficient, proof system.

We have put considerable effort in developing a full blown, highly efficient proof

checker for LFSC proofs. Instead of developing a dedicated LFSC checker, one could

imagine embedding LFSC in declarative languages such as Maude or Haskell. While

the advantages of prototyping symbolic tools in these languages are well known, in our

experience their performance lags too far behind carefully engineered imperative code

for high-performance proof checking. This is especially the case for the sort of proofs

generated by SMT solvers which can easily reach sizes measured in megabytes or

even gigabytes. Based on previous experimental results by others, a similar argument

could be made against the use of interactive theorem provers (such as Isabelle [63] or

Coq [18]), which have a very small trusted core, for SMT-proof checking. By allowing

the use of computational side conditions and relying on a dedicated proof checker,
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our solution seeks to strike a pragmatic compromise between trustworthiness and

efficiency.

4.1.1 Notational Conventions

LFSC is a direct extension of Edinburgh Logical Framework (LF, for short) [46],

a type-theoretic logical framework based on the λΠ calculus, in turn an extension of

the simply typed λ-calculus. A logical framework in the general sense is a language (or

a system) that allows for encoding axioms and inference rules, and checking proofs.

LF influenced the early theorem prover, Automath and others like Coq and Twelf. LF

has been used successfully for representing proofs in applications like proof-carrying

code [59].

The λΠ calculus has three levels of entities: values ; types, understood as

collections of values; and kinds, families of types. Its main feature is the support

for dependent types which are types parametrized by values.1 Informally speaking, if

τ2[x] is a dependent type with value parameter x, and τ1 is a non-dependent type,

the expression Πx:τ1.τ2[x] denotes in the calculus the type of functions that return a

value of type τ2[v] for each value v of type τ1 for x. When τ2 is itself a non-dependent

type, the type Πx:τ1.τ2 is just the arrow type τ1 → τ2 of simply typed λ-calculus.

The current concrete syntax of LFSC is based on Lisp-style S-expressions,

with all operators in infix format. For improved readability, we will often write LFSC

expressions in abstract syntax instead. We will write concrete syntax expressions in

1 A simple example of dependent types is the type of bit vectors of (positive integer)
size n.



35

typewriter font. In abstract syntax expressions, we will write variables and meta-

variables in italics font, and constants in sans serif font. Predefined keywords in the

LFSC language will be in bold sans serif font.

4.1.2 Introducing LF with Side Conditions

LFSC is based on the Edinburgh Logical Framework (LF) [46]. LF has been

used extensively as a meta-language for encoding deductive systems including logics,

semantics of programming languages, as well as many other applications [49, 16,

59]. In LF, proof systems can be encoded as signatures, which are collections of

typing declarations. Each proof rule is a constant symbol whose type represents the

inferences allowed by the rule. For example, the following transitivity rule for equality

t1 = t2 t2 = t3
t1 = t3

eq trans

can be encoded in LF as a constant eq trans of type

Πt1:term. t2:term. t3:term.Πu1:holds (t1 = t2).Πu2:holds (t2 = t3). holds (t1 = t3) .

The encoding can be understood intuitively as saying: for any terms t1, t2 and t3, and

any proofs u1 of the equality t1 = t2 and u2 of t2 = t3, eq trans constructs a proof of

t1 = t3. In the concrete, Lisp-style syntax of LFSC, the declaration of the rule would

look like

(declare eq_trans (! t1 term (! t2 term (! t3 term

(! u1 (holds (= t1 t2)) (! u2 (holds (= t2 t3))

(holds (= t1 t3))))))))

where ! represents LF’s Π binder, for the dependent function space, term and holds

are previously declared type constructors, and = is a previously declared constant of
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type Πt1:term. t2:term. term (i.e., term→ term→ term).

Now, pure LF is not well suited for encoding large proofs from SMT solvers,

due to the computational nature of many SMT inferences. For example, consider

trying to prove the following simple statement in a logic of arithmetic:

(t1 + (t2 + (. . .+ tn) . . .))− ((ti1 + (ti2 + (. . .+ tin) . . .) = 0 (4.1)

where ti1 . . . tin is a permutation of the terms t1, . . . , tn. A purely declarative proof

would need Ω(n log n) applications of an associativity and a commutativity rule for

+, to bring opposite terms together before they can be pairwise reduced to 0.

Producing, and checking, purely declarative proofs in SMT, where input for-

mulas alone are often measured in megabytes, is unfeasible in many cases. To address

this problem, LFSC extends LF by supporting the definition of rules with side con-

ditions, computational checks written in a small but expressive first-order functional

language. The language has built-in types for arbitrary precision integers and ratio-

nals, inductive datatypes, ML-style pattern matching, recursion, and a very restricted

set of imperative features. When checking the application of an inference rule with a

side condition, an LFSC checker computes actual parameters for the side condition

and executes its code. If the side condition fails, because it is not satisfied or because

of an exception caused by a pattern-matching failure, the LFSC checker rejects the

rule application. In LFSC, a proof of statement (4.1) could be given by a single

application of a rule of the form:

(declare eq_zero (! t term (^ (normalize t) 0) (holds (= t 0))))

where normalize is the name of a separately defined function in the side condition
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(Kinds) κ ::= type | kind | Πx:τ. κ

(Types) τ ::= k | τ t | Πx:τ1[{s t}]. τ2
(Terms) t ::= x | c | t:τ | λx[:τ ]. t | t1 t2
(Patterns) p ::= c | c x1 · · ·xn+1

(Programs) s ::= x | c | c s1 · · · sn+1 | match s (p1 s1) · · · (pn+1 sn+1) |
let x s1 s2 | fail τ | −s | s1 + s2 | s1 × s2 | ifneg s1 s2 s3 |
markvar s | ifmarked s1 s2 s3

Figure 4.1. Main syntactical categories of LFSC. Letter c denotes term constants
(including integer/rational ones), x denotes term variables, k denotes type constants.
The square brackets are grammar meta-symbols enclosing optional subexpressions.

language that takes an arithmetic term and returns a normal form for it. The expres-

sion (^ (normalize t) 0) defines the side condition of the eq zero rule, with the

condition succeeding if and only if the expression (normalize t) evaluates to 0.

4.1.3 Abstract Syntax and Informal Semantics

In this section, we informally describe the LFSC language in abstract syntax

and its informal semantics. The formal typing rules and semantics of LFSC is dis-

cussed in Appendices A.1 and A.2. Well-typed value, type, kind and side-condition

expressions are drawn from the syntactical categories defined in Figure 4.1 in BNF

format. The syntax for kinds, types, and terms is the same as the orignal LF, except

for the optional side condition expression in the Π-abstraction. And the syntax for

patterns and programs is added to express side condition programs. Programs can be

defined and given names so that they can be called from side condition expressions.

Also, note that programs can be called recursively within the program itself without
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restriction, which permits general recursion. Currently, we do not enforce termination

of side condition programs, nor do we attempt to provide facilities to reason formally

about the behavior of such programs.

Program expressions s are used in side condition code. There, we also make use

of the syntactic sugar (do s1 · · · sn s) for the expression (let x1 s1 · · · let xn sn s) where

x1 through xn are fresh variables. Side condition programs in LFSC are monomorphic,

simply typed, first-order, recursive functions with pattern matching, inductive data

types and two built-in basic types: arbitrary precision integers and rationals. In

practice, our implementation is a little more permissive, allowing side-condition code

to pattern-match also over dependently typed data. For simplicity, we restrict our

attention here to the formalization for simple types only.

The operational semantics of the main constructs in the side condition lan-

guage could be described informally as follows. Expressions of the form {s t} is a

restrictive form of equality predicates, meaning that the expression s evaluates to

the term t. Expressions of the form (c s1 · · · sn+1) are applications of either term

constants or program constants (i.e., declared functions) to arguments. In the former

case, the application constructs a new value; in the latter, it invokes a program. The

expressions (match s (p1 s1) · · · (pn+1 sn+1)) and (let x s1 s2) behave exactly as their

corresponding matching and let-binding constructs in ML-like languages. The expres-

sion (fail τ) always raises that exception, for any type τ . The expression (markvar s)

evaluates to the value of s if this value is a variable. In that case, the expression has
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also the side effect of toggling a Boolean mark on that variable. 2 The expression

(ifmarked s1 s2 s3) evaluates to the value of s2 or of s3 depending on whether s1

evaluates to a marked or an unmarked variable. Both markvar and ifmarked raise

a failure exception if their arguments do not evaluate to a variable. We support

marking just variables instead of arbitrary terms, because it is convenient to map all

occurrences of the same (as determined by scoping) variable to the same in-memory

representation. The same is not true for arbitrary terms, particularly in the presence

of a non-trivial definitional equality: an indexing structure would then be needed,

imposing additional implementation complexity and runtime performance penalty.

Type checking also fails when evaluating the fail construct (fail τ), or when pattern

matching fails.

LFSC has two built-in numeric types: mpz and mpr. The mpz type is for

arbitrary precision integer type (the name comes from the underlying GNU Multiple

Precision Arithmetic Library, gmp); the mpr type is similarly for rationals. Also,

LFSC provides built-in arithmetic functions overloaded for those types: −(unary),

+, ×, and ifneg. The arguments to these functions must be numeric expressions of

the same type. The first three functions operates on numeric constants as expected;

(ifneg x y z) evaluates to y or z depending on whether the mpz number x is negative

or not.

Our implementation of LFSC supports the use of the wildcard symbol in

2 For simplicity, we limit the description here to a single mark per variable. In reality,
there are 32 such marks, each with its own markvar command.
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place of an actual argument of an application when the value of this argument is

determined by the types of later arguments. This feature, which is analogous to

implicit arguments in theorem provers such as Coq and programming languages such

as Scala, is crucial to avoid bloating proofs with redundant information. In a similar

vein, the syntax allows a form of lambda abstraction that does not annotate the bound

variable with its type when that type can be computed efficiently from context.

4.2 Encoding Propositional Reasoning

In this section and the next, we illustrate the power and flexibility of LFSC for

SMT proof checking by discussing a number of proof systems relevant to SMT, and

their possible encodings in LFSC. Our goal is not to be exhaustive, but to provide

representative examples of how LFSC allows one to encode a variety of logics and

proof rules while paying attention to proof checking performance issues. Section 4.4

focuses on the latter by reporting on our initial experimental results.

Roughly speaking, proofs generated by SMT solvers, especially those based on

the DPLL(T ) architecture [62], are two-tiered refutation proofs, with a propositional

skeleton filled with several theory-specific subproofs [40]. The conclusion, a trivially

unsatisfiable formula, is reached by means of propositional inferences applied to a set

of input formulas and a set of theory lemmas. These are disjunctions of theory literals

proved from no assumptions mostly with proof rules specific to the theory or theories

in question—the theory of real arithmetic, of arrays, etc.

Large portions of the proof’s propositional part consist typically of applications

of some variant of the resolution rule. These subproofs are generated similarly to what
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is done by proof-producing SAT solvers, where resolution is used for conflict analysis

and lemma generation [84, 40]. A proof format proposed in 2005 by Van Gelder for

SAT solvers is based directly on resolution [75]. Input formulas in SMT differ from

those given to SAT solvers both for being not necessarily in Conjunctive Normal

Form and for having non-propositional atoms. As a consequence, the rest of the

propositional part of SMT proofs involve CNF conversion rules as well as abstraction

rules that uniformly replace theory atoms in input formulas and theory lemmas with

Boolean variables. While SMT solvers usually work just with quantifier-free formulas,

some of them can reason about quantifiers as well, by generating and using selected

ground instances of quantified formulas. In these cases, output proofs also contain

applications of rules for quantifier instantiation.

In the following, we demonstrate different ways of representing propositional

clauses and SMT formulas and lemmas in LFSC, and of encoding proof systems for

them with various degrees of support for efficient proof checking. For simplicity and

space constraints, we consider only a couple of individual theories, and restrict our

attention to quantifier-free formulas. We note that encoding proofs involving com-

binations of theories is more laborious but not qualitatively more difficult; encoding

SMT proofs for quantified formulas is straightforward thanks to LFSC’s support for

higher-order abstract syntax which allows one to represent and manipulate quantifiers

as higher-order functions, in a completely standard way.3

3 For instance ∀x:τ. φ can be represented as (forall λx:τ. φ) where forall is a constant of
type (τ → formula) → formula. Then, quantifier instantiation reduces to (lambda-term)
application.
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(declare var type)

(declare lit type)

(declare pos (! x var lit))

(declare neg (! x var lit))

(declare clause type)

(declare cln clause)

(declare clc (! l lit (! c clause clause)))

Figure 4.2. Definition of propositional clauses in LFSC concrete syntax

4.2.1 Encoding Propositional Resolution

The first step in encoding any proof system in LFSC (or LF for that matter)

is to encode its formulas. In the case of propositional resolution, this means encoding

propositional clauses. Figure 4.2 presents a possible encoding, with type and type

constructor declarations in LFSC’s concrete syntax. We first declare an LFSC type

var for propositional variables and then a type lit for propositional literals. Type lit

has two constructors, pos and neg, both of type Πx:var. lit4 which turn a variable into

a literal of positive, respectively negative, polarity. We use these to represent positive

and negative occurrences of a variable in a clause. The type clause, for propositional

clauses, is endowed with two constructors that allow the encoding of clauses as lists of

literals. The constant cln represents the empty clause (�). The function clc intuitively

takes a literal l and a clause c, and returns a new clause consisting of l followed by

the literals of c. For an example, a clause like P ∨ ¬Q can be encoded as the term

(clc (pos P ) (clc (neg Q) cln)).

4 Recall that the ! symbol in the concrete syntax stands for Π-abstraction.



43

(declare holds (! c clause type))

(program resolve ((c1 clause) (c2 clause) (v var)) clause

(let pl (pos v) (let nl (neg v)

(do (in pl c1) (in nl c2)

(let d (append (remove pl c1) (remove nl c2))

(drop_dups d))))))

(declare R (! c1 clause (! c2 clause (! c3 clause

(! u1 (holds c1) (! u2 (holds c2)

(! v var (^ (resolve c1 c2 v) c3)

(holds c3))))))))

Figure 4.3. Propositional resolution calculus in LFSC concrete syntax

Figure 4.3 provides LFSC declarations that model binary propositional reso-

lution with factoring. The type holds, indexed by values of type clause, represents

the type of proofs for clauses. Intuitively, for any clause c, values of type (holds c)

are proofs of c. The side-condition function resolve takes two clauses and a variable

v, and returns the result of resolving the two clauses together with v as the pivot5,

after eliminating any duplicate literals in the resolvent. The constructor R encodes

the resolution inference rule. Its type

Πc1:clause.Πc2:clause.Πc3:clause.
Πu1:holds c1.Πu2:holds c2.Πv:var {(resolve c1 c2 v) c3}. holds c3

can be paraphrased as follows: for any clauses c1, c2, c3 and variables v, the rule R

returns a proof of c3 from a proof of c1 and a proof of c2 provided that c3 is the result of

successfully applying the resolve function to c1, c2 and v. The side condition function

5 A variable v is the pivot of a resolution application with resolvent c1 ∨ c2 if the clauses
resolved upon are c1 ∨ v and ¬v ∨ c2.
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resolve is defined as follows (using a number of auxiliary functions whose definition

can be found in the appendix). To resolve clauses c1 and c2 with pivot v, v must occur

in a positive literal of c1 and a negative literal of c2 (checked with the in function).

If that case, the resolvent clause is computed by removing (with remove) all positive

occurrences of v from c1 and all negative ones from c2, concatenating the resulting

clauses (with append), and finally dropping any duplicates from the concatenation

(with drop dups); otherwise, resolve, and consequently the side condition of R, fails.

In proof terms containing applications of the R rule, the values of its input

variables c1, c2 and c3 can be determined from later input values, namely the concrete

types of u1, u2 and v, respectively. Hence, in those applications c1, . . . , c3 can be

replaced by the wildcard , as mentioned in Section 4.1 and shown in Figure 4.4.

The single rule above is enough to encode proofs in the propositional resolution

calculus. This does not appear to be possible in LF. Without side conditions one also

needs auxiliary rules, for instance, to move a pivot to the head of the list representing

the clause and to perform factoring on the resolvent. The upshot of this is a more

complex proof system and bigger proofs. Other approaches to checking resolution

proofs avoid the need for those auxiliary rules by hard coding the clause type in

the proof checker and implementing it as a set of literals. An example is work by

Weber and Amjad on reconstructing proofs produced by an external SAT solver in

Isabelle/HOL [81]. They use several novel encoding techniques to take advantage

of the fact that the native sequents of the Isabelle/HOL theorem prover are of the

form Γ ` φ, where Γ is interpreted as a set of literals. They note the importance of



45

V1 ∨ V2 ¬V1 ∨ V2
V2

¬V2 ∨ V3 ¬V3 ∨ ¬V2
¬V2

�

λv1:var. λv2:var. λv2:var.

λp1:holds (v1 ∨ v2). λp2:holds (¬v1 ∨ v2).
λp3:holds (¬v2 ∨ v3). λp4:holds (¬v3 ∨ ¬v2).

(R (R p1 p2 v1) (R p3 p4 v3) v2) : holds �)

(check

(% v1 var (% v2 var (% v3 var

(% p1 (holds (clc (pos v1) (clc (pos v2) cln)))

(% p2 (holds (clc (neg v1) (clc (pos v2) cln)))

(% p3 (holds (clc (neg v2) (clc (pos v3) cln)))

(% p4 (holds (clc (neg v3) (clc (neg v2) cln)))

(: (holds cln) (R _ _ _ (R _ _ _ p1 p2 v1)

(R _ _ _ p3 p4 v3) v2))))))))))

Figure 4.4. An example refutation and its LFSC encoding, respectively in abstract
and in concrete syntax (as argument of the check command). In the concrete syntax,
(% x τ t) stands for λx:τ. t; for convenience, the ascription operator : takes first a
type and then a term.

these techniques for achieving acceptable performance over their earlier work, where

rules for reordering literals in a clause, for example, were required. Their focus is on

importing external proofs into Isabelle/HOL, not trustworthy efficient proof-checking

in its own right. But we point out that it would be wrong to conclude that their

approach is intrinsically more declarative than the LFSC approach: in their case, the

computational side-conditions needed to maintain the context Γ as a set have simply

been made implicit, as part of the core inference system of the theorem prover. In

contrast, the LFSC approach makes such side conditions explicit, and user-definable.

Example 1. For a simple example of a resolution proof, consider a propositional
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clause set containing the clauses c1 := ¬V1 ∨V2, c2 := ¬V2 ∨V3, c3 := ¬V3 ∨¬V2, and

c4 := V1 ∨ V2. A resolution derivation of the empty clause from these clauses is given

in Figure 4.4. The proof can be represented in LFSC as the lambda term below the

proof tree. Ascription is used to assign type (holds �) to the main subterm (R . . . v2)

under the assumption that all four input clauses hold. This assumption is encoded

by using the input (i.e., lambda) variables p1, . . . , p4 of type (holds c1), . . . , (holds c4),

respectively. Checking the correctness of the original proof in the resolution calculus

then amounts to checking that the lambda term is well-typed in LFSC when its holes

are filled in as prescribed by the definition of R. In the concrete syntax, this is achieved

by passing the proof term to the check command. �

The use of lambda abstraction in the example above comes from standard LF

encoding methodology. In particular, note how object-language variables (the Vi’s)

are represented by LFSC meta-variables (the λ-variables v1, . . . , v4). This way, safe

renaming and safe substitution of bound variables at the object level are inherited for

free from the meta-level. In LFSC, an additional motivation for using meta-variables

for object language variables is that we can efficiently test the former for equality in

side conditions using variable marking. In the resolution proof system described here,

this is necessary in the side condition of the R rule—for instance, to check that the

pivot occurs in the clauses being resolved upon (see Appendix A.3).

4.2.2 Deferred Resolution

The single rule resolution calculus presented above can be further improved in

terms of proof checking performance by delaying the side condition tests, as done in
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(declare clr (! l lit (! c clause clause)))

(declare con (! c1 clause (! c2 clause clause)))

(declare DR (! c1 clause (! c2 clause

(! u1 (holds c1) (! u2 (holds c2) (!v var

(holds (con (clr (pos v) c1) (clr (neg v) c2)))))))))

(declare S (! c1 clause (! c2 clause

(! u (holds c1) (^ (simplify c1) c2)

(holds c2)))))

Figure 4.5. New constructors for the clause type and rules for deferred resolution

function simplify (x : clause) : clause =
match x with

cln → cln
con c1 c2 → append (simplify c1) (simplify c2)
clc l c →

if l is marked for deletion then (simplify c)
else mark l for deletion; d = clc l (simplify c); unmark l; d

clr l c →
if l is marked for deletion then d = simplify c
else mark l for deletion; d = simplify c; unmark l;
if l was deleted from c then d else fail

Figure 4.6. Pseudo-code for side condition function used by the S rule

constrained resolution approaches [67]. One can modify the clause data structure so

that it includes constraints representing those conditions. Side condition constraints

are accumulated in resolvent clauses and then checked periodically, possibly just at

the very end, once the final clause has been deduced. The effect of this approach

is that (i) checking resolution applications becomes a constant time operation, and

(ii) side condition checks can be deferred, accumulated, and then performed more
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efficiently in a single sweep using a new rule that converts a constrained clause to a

regular one after discharging its attached constraint.

There are many ways to implement this general idea. We present one in Fig-

ure 4.5, based on extending the clause type of Figure 4.2 with two more constructors:

clr and con. The term (clr l c) denotes the clause consisting of all the literals of

c except l, assuming that l indeed occurs in c. The expression (con c1 c2) denotes

the clause consisting of all the literals that are in c1 or in c2. Given two clauses c1

and c2 and a pivot variable v, the new resolution rule DR, with no side conditions,

produces the resolvent (con (clr (pos v) c1) (clr (neg v) c2)) which carries within itself

the resolution constraint that (pos v) must occur in c1 and (neg v) in c2. Applications

of the resolution rule can alternate with applications of the rule S, which converts a

resolvent clause into a regular clause (constructed with just cln and clc) while also

checking that the resolvent’s resolution constraints are satisfied. A sensible strategy

is to apply S both to the final resolvent and to any intermediate resolvent that is used

more than once in the overall proof—to avoid unnecessary duplication of constraints.

The side condition function for S is provided in pseudo-code (for improved

readability) in Figure 4.6. The pseudo-code should be self-explanatory. The aux-

iliary function append, defined only on regular clauses, works like a standard list

append function. Since the cost of append is linear in the first argument, simplify

executes more efficiently with linear resolution proofs, where at most one of the two

premises of each resolution step is a previously proved (and simplified) lemma. Such

proofs are naturally generated by SMT solvers with a propositional engine based
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on conflict analysis and lemma learning—which means essentially all SMT solvers

available today. In some cases, clauses returned by simplify may contain duplicate lit-

erals. However, such literals will be removed by subsequent calls to simplify, thereby

preventing any significant accumulation in the clauses we produce.

Our experiments show that deferred resolution leads to significant performance

improvements at proof checking time: checking deferred resolution proofs is on aver-

age 5 times faster than checking proofs using the resolution rule R [64]. The increased

speed does come here at the cost of increased size and complexity of the side condi-

tion code, and so of the trusted base. The main point is again that LFSC gives users

the choice of how big they want the trusted base to be, while also documenting that

choice explicitly in the side condition code.

4.3 Encoding Quantifier-Free Integer Difference Logic

This section explains our encoding of a sample SMT logic, called Quantifier-

Free Integer Difference Logic (QF IDL, for short). Although QF IDL is one of the

simplest SMT logics, our encoding provides the core infrastructure for all other SMT

logics.

4.3.1 CNF Conversion

Most SMT solvers accept as input quantifier-free formulas (from now on simply

formulas) but do the bulk of their reasoning on a set of clauses derived from the input

via a conversion to CNF or, equivalently, clause form. For proof checking purposes, it

is then necessary to define proof rules that account for this conversion. Defining a good

set of such proof rules is challenging because of the variety of CNF transformations



50

used in practice. Additional difficulties, at least when using logical frameworks, come

from more mundane but nevertheless important problems such as how to encode

with proof rules, which have a fixed number of premises, transformations that treat

operators like logical conjunction and disjunction as multiarity symbols, with an

arbitrary number of arguments.

To show how these difficulties can be addressed in LFSC we discuss now a

hybrid data structure we call partial clauses that mixes formulas and clauses and

supports the encoding of many CNF conversion methods as small step transformations

on partial clauses. Partial clauses represent intermediate states between an initial

formula to be converted to clause form and its final clause form. We then present

a general set of rewrite rules on partial clauses that can be easily encoded as LFSC

proof rules. Abstractly, a partial clause is simply a pair

(φ1, . . . , φm; l1 ∨ · · · ∨ ln)

consisting of a (possibly empty) sequence of formulas and a clause. Semantically, it

is just the disjunction φ1 ∨ · · · ∨ φm ∨ l1 ∨ · · · ∨ ln of all the formulas in the sequence

with the clause. A set {φ1, . . . , φk} of input formulas, understood conjunctively, can

be represented as the sequence of partial clauses (φ1; ), . . . , (φk; ). A set of rewrite

rules can be used to turn this sequence into an equisatisfiable sequence of partial

clauses of the form ( ; c1), . . . , ( ; cn), which is in turn equisatisfiable with c1∧· · ·∧cn.

Figure 4.7 describes some of the rewrite rules for partial clauses. We defined 31 CNF

conversion rules to transform partial clauses. Most rules eliminate logical connectives

and let-bindings in a similar way as the ones shown in Figure 4.7. Several kinds of
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dist pos (φ1 ∧ φ2,Φ; c) =⇒ (φ1,Φ; c), (φ2,Φ; c)
dist neg (¬(φ1 ∧ φ2),Φ; c) =⇒ (¬φ1,¬φ2,Φ; c)

flat pos (φ1 ∨ φ2,Φ; c) =⇒ (φ1, φ2,Φ; c)

flat neg (¬(φ1 ∨ φ2),Φ; c) =⇒ (¬φ1,Φ; c), (¬φ2,Φ; c)

rename (φ,Φ; c) =⇒ (Φ; v, c), (φ; ¬v), (¬φ; v) (v is a fresh var)

Figure 4.7. Sample CNF conversion rules for partial clauses (shown as a rewrite
system). Φ is a sequence of formulas and c is a sequence of literals (a clause).

popular CNF conversion algorithms can be realized as particular application strategies

for this set of rewrite rules (or a subset thereof).

Formulating the rewrite rules of Figure 4.7 into LFSC proof rules is not diffi-

cult. The only challenge is that conversions based on them and including rename are

only satisfiability preserving, not equivalence preserving. To guarantee soundness in

those cases we use natural-deduction style proof rules of the following general form

for each rewrite rule p =⇒ p1, . . . , pn in Figure 4.7: derive �, the empty clause,

from (i) a proof of the partial clause p and (ii) a proof of � from the partial clauses

p1, . . . , pn. We provide one example of these proof rules in Figure 4.8, namely the

one for rename; the other proof rules are similar. In the figure, the type formSeq

for sequences of formulas has two constructors, analogous to the usual ones for lists.

The constructor pc holds is the analogous of holds, but for partial clauses—it denotes

a proof of the partial clause (Φ; c) for every sequence Φ of formulas and clause c.

Note how the requirement in rename that the variable v be fresh is achieved at the

meta-level in the LFSC proof rule with the use of a Π-bound variable.
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(declare formula type)

(declare not (! phi formula formula)

(declare and (! phi formula (! phi formula formula))

(declare or (! phi formula (! phi formula formula))

(declare formSeq type)

(declare empty formSeq)

(declare ins (! phi formula (! Phi formSeq formSeq)))

(declare pc_holds (! Phi formSeq (! c clause type)))

(declare rename (! phi formula (! Phi formSeq (! c clause

(! q (pc_holds (ins phi Phi) c)

(! r (! v var (! r1 (pc_holds Phi (clc (pos v) c))

(! r2 (pc_holds (ins phi empty) (clc (neg v) cln))

(! r3 (pc_holds (ins (not phi) empty) (clc (pos v) cln))

(holds cln)))))

(holds cln)))))))

Figure 4.8. LFSC proof rule for rename transformation in Figure 4.7

4.3.2 Converting Theory Lemmas to Propositional Clauses

When converting input formulas to clause form, SMT solvers also abstract

each theory atom φ (e.g., s = t, s < t, etc.) occurring in the input with a unique

propositional variable v, and store the corresponding mapping internally. This opera-

tion can be encoded in LFSC using a proof rule similar to rename from Figure 4.8, but

also incorporating the mapping between v and φ. Figure 4.9 shows the literal rule and

its LFSC encoding. In particular, SMT solvers based on the lazy approach [68, 13] ab-

stract theory atoms with propositional variables to separate propositional reasoning,

done by a SAT engine which works with a set of propositional clauses, from theory

reasoning proper, done by an internal theory solver which works only with sets of the-
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literal (l,Φ; c) =⇒ (Φ; v, c) (v is a fresh var)

(declare literal (! l formula (! Phi formSeq (! c clause

(! r (pc_holds (ins l Phi) c)

(! u (! v var (! a (atom v l) (! o (pc_holds Phi (clc (pos v) c))

(holds cln))))

(holds cln)))))))

Figure 4.9. The literal rule for partial clauses (shown as a rewrite rule) and its LFSC
encoding. The bound variable a of the type “(atom v l)” records the relationship be-
tween the (atomic) formula l and the propositional symbol v abstracting the formula.

(declare th_holds (! phi formula type))

(declare assume_true

(! v var (! phi formula (! c clause

(! r (atom v phi)

(! u (! o (th_holds phi) (holds c))

(holds (clc (neg v) c))))))))

(declare assume_false

(! v var (! phi formula (! c clause

(! r (atom v phi)

(! u (! o (th_holds (not phi)) (holds c))

(holds (clc (pos v) c))))))))

Figure 4.10. Assumption rules for theory lemmas in LFSC concrete syntax

ory literals, theory atoms and their negations. At the proof level, the communication

between the theory solver and the SAT engine is established by having the theory

solver prove some theory lemmas, in the form of disjunctions of theory literals, whose

abstraction is then used by the SAT engine as if it was an additional input clause. A

convenient way to produce proofs that connect proofs of theory lemmas with Boolean

refutations, which use abstractions of theory lemmas and of clauses derived from the
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input formulas, is again to use natural deduction-style proof rules.

Figure 4.10 shows two rules used for this purpose. The rule assume true de-

rives the propositional clause ¬v ∨ c from the assumptions that (i) v abstracts a

formula φ (expressed by the type (atom v φ)) and (ii) c is provable from φ. Similarly,

assume false derives the clause v ∨ c from the assumptions that v abstracts a formula

φ and c is provable from ¬φ. Suppose ψ1 ∨ · · · ∨ ψn is a theory lemma. A proof-

producing theory solver can be easily instrumented to prove the empty clause from

the assumptions ψ1, . . . , ψn, where ψi denotes the complement of the literal ψi. This

proof can be expressed by the theory solver with nested applications of assume true

and assume false, and become a proof of the propositional clause l1 ∨ · · · ∨ ln, where

each li is the propositional literal corresponding to ψi.

Example 2. Consider a theory lemma such as ¬(s = t)∨ t = s, say, for some terms

s and t. Staying at the abstract syntax level, let P be a proof term encoding a proof

of � from the assumptions s = t and ¬(t = s). By construction, this proof term

has type (holds �). Suppose a1, a2 are meta-variables of type (atom v1 (s = t)) and

(atom v2 (t = s)), respectively, for some meta-variables v1 and v2 of type var. Then,

the proof term

(assume true a1 (λh1.
(assume false a2 (λh2. P )))

has type holds (¬v1∨v2) and can be included in larger proof terms declaring v1, v2, a1,

and a2 as above. Note that the λ-variables h1 and h2 do not need a type annotation

here as their types can be inferred from the types of a1 and a2. �
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x− x ≤ c {c < 0}
� idl contra

x− y < c {c− 1 = d}
x− y ≤ d

lt to leq

x− y ≤ a y − z ≤ b {a+ b = c}
x− z ≤ c idl trans

Figure 4.11. Sample QF IDL rules and LFSC encodings. The variables x, y, z are
declared SMT constant symbols and a, b, c, d are mpz numerals.

(declare int type) (declare as_int (! x mpz int))

(declare idl_contra (! x int (! c mpz

(! u (th_holds (<= (- x x) (as_int c))) (^ (ifneg c tt ff) tt)

(holds cln)))))

Figure 4.12. LFSC encoding of the idl contra rule. The as int builds a term of the
SMT integer type int from a mpz number; tt and ff are the constructors of the bool

predefined type for Booleans.

4.3.3 Encoding Integer Difference Logic

The logic QF IDL, for quantifier-free integer difference logic, consists of for-

mulas interpreted over the integer numbers and restricted (in essence) to Boolean

combinations of atoms of the form x − y ≤ c where x and y are integer variables

(equivalently, free constants) and c is an integer value, i.e., a possibly negated nu-

meral. Some QF IDL rules for reasoning about the satisfiability of sets of literals in

this logic are shown in Figure 4.11, in conventional mathematical notation. Rule side

conditions are provided in braces, and are to be read as semantic expressions; for

example, a+ b = c in a side condition should be read as “c is the result of adding a

and b.” Note that the side conditions involve only values, and so can be checked by

(simple) computation. The actual language QF IDL contains additional atoms be-
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sides those of the form of x− y ≤ c. For instance, atoms such as x < y and x− y ≥ c

are also allowed. Typical solvers for this logic use then a number of normalization

rules to reduce these additional atoms to the basic form. An example would be rule

lt to leq in Figure 4.11.

Encoding typical QF IDL proof rules in LFSC is straightforward thanks to

the built-in support for side conditions and for arbitrary precision integers in the side

condition language. As an example, Figure 4.12 shows the idl contra rule. Also, a

complete example QF IDL proof is explained in Appendix A.4.

4.4 Results for QF IDL Proof Checking

In this section we provide some empirical results on LFSC proof checking for

the logics presented in the previous section. These results were obtained with an

LFSC proof checker that we have developed to be both general (i.e., supporting the

whole LFSC language) and fast. The tool, which we will refer to as lfsc here, is

more accurately described as a proof checker generator : given an LFSC signature,

a text file declaring a proof system in LFSC format, it produces a checker for that

proof system. Some of its notable features in support of high performance proof

checking are the compilation of side conditions, as opposed to the incorporation of a

side condition language interpreter in the proof checker, and the generation of proof

checkers that check proof terms on the fly, as they parse them.

In separate work, we developed an SMT solver for the QF IDL logic, mostly to

experiment with proof generation in SMT. This solver, called clsat, can solve moder-

ately challenging QF IDL benchmarks from the SMT-LIB library, namely those clas-
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sified with difficulty 0 through 3. 6 We ran clsat on the unsatisfiable QF IDL bench-

marks in SMT-LIB, and had it produce proofs in the LFSC proof system sketched in

Section 4.3.3 optimized with the deferred resolution rule described in Section 4.2.2.

Then we checked the proofs using the lfsc checker. The experiments were performed

on the SMT-EXEC solver execution service. 7 A timeout of 1,800 seconds was used

for each of the 622 benchmarks. 8 Table 4.1 summarizes those results for two configu-

rations: clsat (r453 on SMT-EXEC), in which clsat is run with proof-production off;

and clsat+lfsc (r591 on SMT-EXEC), in which clsat is run with proof-production

on, followed by a run of lfsc on the produced proof.

Table 4.1. Summary of results for QF IDL (timeout: 1,800 seconds)

Configuration Solved Unsolved Timeouts Time

clsat (without proofs) (r453) 542 50 30 29,507.7s
clsat+lfsc (r591) 539 51 32 38,833.6s

The Solved column gives the number of benchmarks each configuration com-

pleted successfully. The Unsolved column gives the number of benchmarks each

configuration failed to solve before timeout due to clsat’s incomplete CNF conver-

sion implementation and lack of arbitrary precision arithmetic. The first configuration

6 The difficulty values of SMT benchmarks in SMT-LIB range from 0 to 5.

7 The results are publicly available at the SMT-EXEC service [6] under the job name
clsat-lfsc-2009.8.

8 The SMT-LIB library contains 692 benchmarks known to be unsatisfiable. 70 of them
have difficulty level 4 or 5, and are excluded in this experiment.
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solved all benchmarks solved by the second. The one additional unsolved answer for

clsat+lfsc is diamonds.18.10.i.a.u.smt, the proof of which is bigger than 2GB in

size and the proof checker failed on due to a memory overflow. The Time column

gives the total times taken by each configuration to solve the 539 benchmarks solved

by both. Those totals show that the overall overhead of proof generation and proof

checking over just solving for those benchmarks was 31.6%, which we consider rather

reasonable.

For a more detailed picture on the overhead incurred with proof-checking,

Figure 4.13 compares proof checking times by clsat+lfsc with clsat’s solve-only times.

Each dot represents one of the 542 benchmarks that clsat could solve. The horizontal

axis is for solve-only times (without proof production) while the vertical axis is for

proof checking times. Both are in seconds on a log scale. It turned out that the

proofs from certain families of benchmarks, namely fischer, diamonds, planning

and post office, are much more difficult to verify than those for other families. In

particular, for those benchmarks proof checking took longer than solving. The worst

offender is benchmark diamonds.11.3.i.a.u.smt whose proof checking time was

2.30s vs 0.2s of solving time. However, the figure also shows that as these benchmarks

get more difficult, the relative proof overheads appear to converge towards 100%, as

indicated by the dotted line.9

9 The outlier above the dotted line is diamonds.18.10.i.a.u.smt.
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Figure 4.13. Solve-only times versus proof checking times for QF IDL

4.5 Conclusion

We have argued how efficient and highly customizable proof checking can be

supported with the Logical Framework with Side Conditions, LFSC. We have shown

how diverse proof rules, from purely propositional to core SMT inferences, can be sup-

ported naturally and efficiently using LFSC. Thanks to an optimized implementation,

LFSC proof checking times compare very favorably to solving times.
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CHAPTER 5

VERIFYING MODERN SAT SOLVER USING DEPENDENT TYPES

In this chapter, we report on a verified modern SAT solver, called versat. The

versat program was written in a functional programming language, called Guru.

The Guru programming language is designed for verified programming by combin-

ing features of general programming languages and interactive theorem provers. Ver-

ifying SAT solver’s code requires a logic that is completely different from verifying

SAT/SMT proofs: a logic for general computations. Interactive theorem provers

have sought for logics for computation. Since Scott’s logic used λ-calculus to reason

about computation, functional programming languages have been used for defining

mathematical functions and used in many theorem provers. Beyond mathematics

and abstract algorithms, recent studies have applied interactive theorem provers to

verify complex properties of large software, such as compilers [50] and operating sys-

tems [47].

5.1 The Guru Programming Language

By way of background for the sections on the specification and implemen-

tation of versat below, we begin with a quick introduction to Guru. Guru is a

functional programming language with support for dependent types [12], inductive

data types [28], partial functions and resource types [73, 72]. Guru is inspired by

the Coq theorem prover for easy type-declaration with inductive data types and rich

expressiveness for describing strong software properties with dependent types. In ad-
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dition to that, Guru allows for reasoning about partial functions (possibly diverging

computations), and efficient code generation by means of resource types.

Functional programming language. Guru is a functional programming lan-

guage, in which λ-abstraction (and µ-abstraction for recursive counterpart) is used

as the principle of function definition, and reductions (substitution of the λ/µ-bound

variables with a given term) as the principle of function application (call) and eval-

uation (computation). Reduction steps for applications of the λ and µ abstractions

are shown below:

(λx.t) u ⇒ [u/x]t
(µf. t) u ⇒ [(µf. t)/f ]t u

The bracket expression [u/x]t means that every free occurrence of variable x of the

term t is replaced with the term u. The µ-abstraction above represents a recursive

function, in which the variable f represents the function itself. So, the reduction step

replicates the function in place of all the occurrences of f .

Like Coq, Guru supports inductive data types. An inductive data type defines

the symbols and grammar of terms that belong to the type. With inductive type

definitions, programs can pattern-match on first-order variables, which is essentially

the same as case-splitting on the possible top-level symbols of any term in place of

the variables.

Operational semantics. Guru has a deterministic operational semantics, namely

call-by-value (CBV, for short) semantics, in which function arguments are evaluated

first before the function is applied. Guru is a pure functional language in the sense
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that program execution is not affected by any implicit states like memory content or

I/O states, other than the program term itself. Thus, any evaluations of the given

term always yields the same value.

Dependent types. As in the LFSC language, Guru is based on the λΠ-calculus

and supports dependent types. Π-abstracted types create type families indexed by

types (i.e. Πx : type. T [x]) or terms (i.e. Πx : T ′. T [x]), which are called polymorphic

and dependently typed, respectively. A type defines a set of terms/functions, and

various properties of terms and functions can be described using types. Dependent

type systems are very expressive, because one can use the same syntax for terms,

like inductive data types and pattern matching, to define types. So, dependent type

system brings together the language for terms and types.

Logic. The logic (the inference rules) of Guru is a first order logic with equality.

Guru provides a nice syntax for equality atoms and quantifiers (universal and exis-

tential). In addition to the usual reflexivity, transitivity and congruence rules, Guru

adds a provable equality over evaluation. A term is provably equal to the evaluated

term. 1 Thus, evaluating a term not only results in a value, but also admits the

fact that the term is equal to the resulting value. Guru’s induction rule allows for

reasoning about recursive functions by induction on the first-order input arguments

1 In fact, each step of evaluation is equal to the previous step, not just fully evaluated
term. Thus, the sequence of evaluations is a chain of equal terms, just like simplification
steps in Mathematics.
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of functions. Note that every function argument is considered a finite value 2, which

is always true because function arguments are evaluated before their evaluated terms

(values) are passed to the function. 3

Partial functions. Unlike Coq, which systematically restricts all functions to be

total, Guru allows for general recursion (arbitrary µ-abstraction without any syn-

tactic restrictions). Thus, one can express looping (or diverging) terms and partial

functions. The advantage is that writing programs in Guru is easier than in Coq.

It is often very hard to show a function is total, which can be too costly for proto-

typing purposes and simple scripting needs. Also, termination may not be the most

important aspect of software, depending on the type of software. A SAT solver is a

good example: the SAT solver’s algorithm is terminating in theory; however, SAT

solvers are not expected to solve every formula in practice. Statistical evidence of the

performance will be more meaningful for this kind of software than the guarantee of

termination. On the other hand, partial functions make typing and inference rules

more complicated. Notably, indexed types and quantifier instantiations only allow

values (fully evaluated finite terms) to apply. Guru checks if each term being used

as an argument in such situations is indeed a value. One may prove a given term is

a value, using a termination proof. Also, a function may be proved to be total by

inductively showing that for all inputs, the function always returns a value. Once

2 A value is a term that cannot be evaluated any further

3 Because Guru supports partial function and the evaluation of term may not termi-
nate, properties of functions are valid under the condition that their arguments are indeed
terminating.
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functions are proved to be total and registered with Guru, any applications of those

functions to values are automatically accepted as values. Thus, even though not re-

quired, it is often convenient to prove some functions to be total, especially, if they

are used in the context of types and proofs.

Resource types. Guru’s resource type system [72] is a separate typing system

from the regular type system mentioned above. It is a static analysis designed to

define resource (memory) management policies and direct the Guru compiler to

optimize the generated machine code. 4 One good example is a linear typing-like

policy with separate reader/writer references. With this policy, a memory object

can have at most one writer reference, and the object can be destructively updated

with the writer reference. Any number of reader references to the same object can

be created (for example, passing the object to other functions); however, the writer

reference will be locked until all the reader references are disposed. Such a policy is

encoded as a resource type in the Guru standard library, and prominently used in

versat to efficiently manage its data structures.

5.1.1 The Guru Syntax

In this section, we explain the Guru syntax by example. More detailed defi-

nition of the syntax is presented in Appendix B.1. Figure 5.1 shows the definitions of

natural numbers (Peano numbers) as an inductive type, and the isZ and plus function

4 Guru compiles programs into the C programming language, and then into the machine
code by a standard C compiler. Guru also features some basic optimizations including tail-
recursion.
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Inductive nat : type :=

Z : nat

| S : Fun(x:nat). nat

Define isZ := fun(x:nat).

match x with

Z => tt

| S x’ => ff

end

Define plus := fun f(n m : nat) : nat.

match n with

Z => m

| S n’ => (S (f n’ m))

end

Figure 5.1. Sample Guru definitions

in the Guru’s concreate syntax. The Inductive command declares a new type (in

this case, nat, which is a type – thus, it has the type type). The Z and S are the

two symbols (or constructors) for the terms of the nat type. Z is a constant symbol

and S is a unary function symbol, indicated by the type Fun(x:nat).nat, which is

Πx : nat. nat in the abstract syntax. And the Define command defines a new sym-

bol. In the example above, isZ is defined as a non-recursive function, and plus is

defined as a recursive function. The fun keyword stands for the λ-abstraction in the

concrete syntax with multiple λs (with the same type of variables) compressed with

one fun. For example, λx : nat. λy : nat. t can be written as fun(x y:nat). t . The

match. . . with expression is used for case-splitting on a first-order variable with the

cases corresponding to each of the variable type’s constructors. The match. . . with

expression is followed by a series of case-expressions separated by the bar (|) character
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and the end keyword. Each case starts with a constructor symbol. If the constructor

has a function type, variables representing the arguments to the constructor should

follow the constructor symbol. The arguments to constructors are also called subdata

of the term being matched on (or the scrutinee). Then, an arrow symbol (=>) and

the subprogram for the case follow. The constructors tt and ff are for the bool

(Boolean) type, defined in the Guru standard library. For recursive functions, a

name follows the fun keyword (like f for the plus definition), and the return type of

the function should be stated (like : nat for plus), which is necessary for decidable

type checking. The name following fun is the µ bound variable and used for the

recursive reference of the function itself. Finally, function applications t u are written

as (t u), where parentheses are strictly required. Also, type-level applications are

written as <t u>, where the type of t is a Π-abstraction.

5.1.2 Verified Programming in Guru

In Guru, programs can be verified both externally (as in traditional theorem

provers), and internally (cf [9]). For a standard example of the difference, suppose

we wish to prove that the result of appending two lists has length equal to the sum

of the input lengths.

External verification of this property may proceed like this. First, we define

the type of append function on lists. In Guru syntax, the typing for this append

function is:

append : Fun(A:type)(l1 l2 : <list A>). <list A>

This says that append accepts a type A, and lists l1 and l2 holding elements of type
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A, and produces another such list. To verify the desired property, we write a proof in

Guru’s proof syntax of the following formula:

Forall(A:type)(l1 l2:<list A>).

{ (length (append l1 l2)) = (plus (length l1) (length l2)) }

The equality listed expresses, in Guru’s semantics, that the term on the left-hand

side evaluates to the same value as the term on the right-hand side. So the formula

states that for all types A, for all lists l1 and l2 holding elements of that type, calling

the length function on the result of appending l1 and l2 gives the same result as

adding the lengths of l1 and l2. This is the external approach.

With internal verification, we first define an alternative indexed datatype for

lists. A type index is a program value occurring in the type, in this case the length

of the list. We define the type <vec A n> to be the type of lists storing elements of

type A, and having length n, where n is a natural number:

Inductive vec : Fun(A:type)(n:nat).type :=

vecn : Fun(A:type). <vec A Z>

| vecc : Fun(A:type)(spec n:nat)(a:A)(l:<vec A n>). <vec A (S n)>

This states that vec is inductively defined with constructors vecn and vecc (for nil

and cons, respectively). The return type of vecc is <vec A (S n)>, where S is the

successor function. So the length of the list returned by the constructor vecc is one

greater than the length of the sublist l. Note that the argument n (of vecc) is labeled

“spec”, which means specificational. Guru will enforce that no run-time results will

depend on the value of this argument, thus enabling the compiler to erase all values

for that parameter in compiled code.

We can now define the type of vec append function on vectors:
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vec_append : Fun(A:type)(spec n m:nat)

(l1:<vec A n>)(l2:<vec A m>). <vec A (plus n m)>

This type states that append takes in a type A, two specificational natural numbers n

and m, and vectors l1 and l2 of the corresponding lengths, and returns a new vector

of length (plus n m). This is how internal verification expresses the relationship

between lengths which we proved externally above. Type-checking code like this may

require the programmer to prove that two types are equivalent. For example, a proof

of commutativity of addition is needed to prove <vec A (plus n m)> equivalent

to <vec A (plus m n)>. Currently, these proofs must mostly be written by the

programmer, using special proof syntax, including syntax for inductive proofs.

5.2 Formalizing Correct SAT Solvers

The main property of versat is the soundness of the solver on top of the

basic requirements of Guru, such as memory safety and array-bounds checking. We

encoded the underlying logic of SAT in Guru to reason about the behavior of the

SAT solver. That encoding includes the representation of formulas and the deduction

rules. For a “UNSAT” answer, our specification requires that there exists a derivation

proof of the empty clause from the input formula. Note that most solvers can generate

a model with a “SAT” answer and those models can be checked very efficiently. So,

we do not think there is a practical advantage for statically verifying the soundness

of “SAT” answers. Also, it is important to note that the specification is the only part

we need to trust. So, it should be clear and concise. The specification of versat is

only 259 lines of Guru code. The rest of versat is the actual implementation and
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the proof that the implementation follows the specification, which will be checked by

the Guru type system.

5.2.1 Representation of CNF Formulas

The representation of formulas in DPLL-style SAT algorithms is in Conjunc-

tive Normal Form (CNF). The DIMACS benchmark format for the SAT competition

is also in CNF. A CNF propositional formula is a conjunction of clauses, where clauses

are disjunction of literals, and literals are just variables or the negations of variables.

The formula type represents CNF formulas, and it is defined using simple data struc-

tures: 32 bit unsigned integers for literals and lists for clauses and formulas. The lower

31 bits of the literal represent the variable number, and the most significant bit repre-

sents the polarity (whether or not the variable is negated). Mainstream SAT solvers

written in C/C++ use the int (32-bit signed machine integer) type, where negative

numbers represent negated variables. The definition of lit in versat closely models

the behavior of mainstream SAT solvers. 5 The Guru definitions of those types are

listed below:

Define lit := word

Define clause := <list lit>

Define formula := <list clause>

The word type is defined in the Guru standard library and represents 32 bit unsigned

integers (see Appendix B.2 for the definitions of word and list). Clauses are lists of

literals. Formulas are lists of clauses. We emphasize that these simple data structures

5 Negating literals performed by versat is flipping the most significant bit of machine
word (unsigned integer). On the other hand, the negation of signed integer as performed
in mainstream SAT solvers is two’s complement.
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are only for specification. Section 5.3 describes how our verification relates them to

efficient data structures in the actual implementation.

5.2.2 Deduction Rules

There are different ways to specify the unsatisfiability of formulas. One is

a model theoretic (semantic) definition, saying no model satisfies the formula, or

Φ � ⊥. Another is a proof theoretic (syntactic) one, saying the empty clause (False)

can be deduced from the formula or Φ ` ⊥. In propositional logic, the above two

definitions are equivalent. In versat, we have taken a weaker variant of the proof

theoretic definition, Φ `res ⊥ where only the resolution rule is used to refute the

formula. Because `res is strictly weaker than `, Φ `res ⊥ still implies Φ � ⊥. So,

even though our formalization is proof theoretic, it should be possible to prove that

our formalization satisfies a model theoretic formalization.

The pf type encodes the deduction rules of propositional logic, and pf objects

represents proofs. Figure 5.2 shows the definition of pf type and its helper functions.

cl subsume is a predicate that means c1 subsumes c2, expressed using just a subset

function on lists defined in Guru’s standard library. And is resolvent is a predicate

that means r is a resolvent of c1 and c2 over the literal l. Additionally, cl has checks

that the clause contains the given literal, and cl erase removes all the occurrences

of the literal in the clause. Also, tt and ff are Boolean values defined in the library.

The <pf F C> type stands for the set of proofs that the formula F implies the clause

C. Members of this type are constructed as derivation trees for the clause. Because

this proof tree will not be generated and checked at run-time, the type requires the
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Define eq_lit := eqword

Define eq_clause := (eqlist lit eqword)

Define cl_has := fun(c:clause)(l:lit). (member lit l c eq_lit)

Define cl_erase := fun(c:clause)(l:lit). (erase lit eq_lit l c)

Define cl_subsume := fun(c1:clause)(c2:clause).

(list_subset lit eq_lit c1 c2)

Define is_resolvent := fun(r:clause)(c1:clause)(c2:clause)(l:lit).

(and (and (cl_has c1 (negated l))

(cl_has c2 l))

(and (cl_subsume (cl_erase c1 (negated l)) r)

(cl_subsume (cl_erase c2 l) r)))

Inductive pf : Fun(F : formula)(C : clause).type :=

pf_asm : Fun(F : formula)(C:clause)

(u : { (member C F eq_clause) = tt }). <pf F C>

| pf_sub : Fun(F : formula)(C C’ : clause)

(d : <pf F C’>)

(u : { (cl_subsume C’ C) = tt }). <pf F C>

| pf_res : Fun(F : formula)(C C1 C2 : clause)(l : lit)

(d1 : <pf F C1>)(d2 : <pf F C2>)

(u : { (is_resolvent C C1 C2 l) = tt }). <pf F C>

Figure 5.2. Encoding of the inference system (pf) and its helper functions

proper preconditions at each constructor. Guru’s type system ensures that those

proof objects are valid by construction.

The eqword, member, and erase functions are defined in the Guru standard

library (see Appendix B.2 for their definitions). The pf asm constructor stands for the

assumption rule, which proves any clause in the input formula. The member function

looks for the clause C in the formula, returning tt if so. The pf sub constructor

stands for the subsumption rule. This rule allows to remove duplicated literals or

change the order of literals in a proven clause. Note that the constructor requires a



72

Inductive answer : Fun(F:formula).type :=

sat : Fun(spec F:formula).<answer F>

| unsat : Fun(spec F:formula)(spec p:<pf F (nil lit)>).<answer F>

Figure 5.3. Definition of the answer type

proof d of C’ and a precondition u that C’ subsumes C. Finally, pf res stands for

the resolution rule. It requires two clauses (C1 and C2) along with their proofs (d1

and d2) and the precondition u that C is a resolvent of C1 and C2 over the literal l.

5.2.3 The answer Type

In order to enforce soundness, the implementation is required to have a partic-

ular return type, called answer. So, if the implementation type checks, it is considered

valid under our specification. Figure 5.3 shows the definition of the answer type. The

answer type has two constructors (or values): sat and unsat. The unsat construc-

tor holds two subdata: the input formula F and a proof p of the empty clause. The

formula F is required to make sure the proof indeed proves the input formula. The

term (nil lit) means the empty list of literals, meaning the empty clause. By con-

structing a value of the type <pf F (nil lit)>, we know that the empty clause is

derivable from the original formula. Note that the proof p is marked as specificational

using the spec keyword. The type checker still requires the programmer to supply

the spec arguments. However, those arguments will be erased during compilation.

We only care about the existence of such data, not the actual value. By constructing

proofs only from the invariants of the solver, Guru’s type system confirms that such

proofs could always be constructed without fail. So, making them specificational,
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hence not computing them at run-time, is sound. Now, the typing of the SAT solver

implementation, solve using the answer type is following:

solve : Fun(nv:word)(F:formula). <answer F>

The extra argument nv stands for the number of variables in the formula, which is

stated in the given DIMACS benchmark file. This number is used for determining

the size of various data structures such as look-up tables in versat. Also, note that

the dependent typing makes sure that the formula that the answer type is talking

about is indeed the input formula, not just any formula.

5.2.4 Parser and Entry Point

The formula type above is still in terms of integer and list data structures, not

a stream of characters as stored in a benchmark file. The benchmark file has to be

translated to Guru data structure before it can be reasoned about. So, we include a

simple recursive parser for the DIMACS standard benchmark format, which amounts

to 145 lines of Guru code, as a part of our specification. It might be possible to

reduce this using a verified parser generator, but we judge there to be more important

targets of further verification. Similarly, the main function is considered a part of the

specification, as the outcome of the solve function is an answer value, not the action

of printing ”SAT” or ”UNSAT”. The main function simply calls the parser, passes

the output to the solve function, and prints the answer as a string of characters.
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5.3 Implementation and Invariants

The specification in Section 5.2 does not constrain the details of the imple-

mentation very much. For a trivial example, a solver that just aborted immediately

on every input formula would satisfy the specification. So would a solver that used

the naive data structures for formulas, or a naive solving algorithm. Therefore, we

have imposed an additional informal constraint on versat, which is that it should

use efficient low-level data structures, and should implement a number of the essen-

tial features of modern SAT solvers. The features implemented in versat are conflict

analysis, clause learning, backjumping, watched literals, and basic decision heuristics.

Also, each of these features is implemented using the same efficient data structures

that can be found in a C-language implementation like tinisat or minisat. How-

ever, implementing more features and optimizations make it more difficult to prove

the soundness property.

Modern SAT solvers are driven by conflict analysis, during which a new clause

is deduced and recorded to guide the search. Thus, the critical component for sound-

ness is the conflict analysis module, which can be verified, to some extent, in isolation

from the rest of the solver. Verifying that every learned clause is a consequence of

the input clauses ensures the correctness of UNSAT answers from the solver, in the

special case of the empty clause. Using the internal-verification approach described

in the previous section, the conflict analysis module enforces soundness by requiring

that with each learned clause added to the clause database, there is an accompanying

specificational proof (the pf datatype described in Section 5.2). In this section, we
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Inductive aclause : Fun(nv:word)(F:formula).type :=

mk_aclause : Fun(spec n:word)(l:<array lit n>)

(spec nv:word)(spec F:formula)

(u1:{ (array_in_bounds nv l) = tt })

(spec c:clause)(spec pf_c:<pf F c>)

(u2:{ c = (to_cl l) }).

<aclause nv F>

Figure 5.4. Definition of the array-based clauses and invariants (aclause)

explain some of the run-time clause data structure along with the invariants, and the

conflict analysis implementation.

5.3.1 Array-based Clauses and Invariants

In the specification, the data structure for clauses is (singly linked) list, which

is straightforward to reason about. However, accessing elements in a list is not as

efficient as an array. The elements of an array are more likely in the same cache line,

which leads to a faster sequential access, as elements in a linked list are not. Also

arrays will use less memory than lists because of the extra storage for pointers. So, at

the implementation level, versat uses array-based clauses with invariants as defined

in Figure 5.4. An <array lit n> object stands for an array of literals of size n, where

n has the type word. The variable nv represents the number of different variables in

the formula F. It is also the maximum possible value for variable numbers as defined

in the DIMACS file format (variables are named from 1 up to nv). The predicate

(array in bounds nv l) used in the invariant u1 means every variable in the array

l is less than or equal to nv and not equal to zero. The invariant u1 is used to avoid

run-time checks for array bounds when accessing a number of look-up tables indexed
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by the variable number, such as the current assignment value, the reference to the

antecedent clauses, and the decision level for a given variable.

The array l is implicitly null-terminated. The word value zero (the null literal)

is used as the termination marker of a given array. The null literal should be present

within the bounds of the array, and only the literals up to the null literal make up

the clause. 6 Null-terminated arrays are used in most of mainstream SAT solvers

to store clauses for simplicity and performance of accessing clauses. By having an

array null-terminated, the end of the array can be detected during sequential access,

without a separate variable storing the length of the array. Note that the variable

n is marked as specification, so the length of the array l is not traced at runtime.

Interestingly, the null-termination property of the array l is implied by the invariant

u1. The array_in_bounds function is a partial function that returns a boolean value

only for properly null-terminated arrays; otherwise, the return values is undefined.

Thus, from the invariant u1, which states that the function returned the tt value,

it can be proved that the array l is null-terminated.7 The difficulty of using a null-

terminated array is that we need to prove array accesses up to the null literal are

indeed within bounds of the array. The following lemma (proved in Guru) states

that if an array-based clause has the invariant u1, its length is strictly greater than

zero.

6 The rest of the array after the null literal is ignored, if any. In fact, versat always
allocate an array just big enough to contain the clause and the null literal.

7 In fact, the null-termination is also implied by u2 as well, because the to cl function
is a partial function only defined for null-terminated arrays.
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Forall(nv:word)

(n:word)(l:<array lit n>)

(u1:{ (array_in_bounds nv l) = tt }).

{ (ltword word0 n) = tt }

The word0 value stands for the machine word zero (of the word type). The ltword is

the less-than predicate (a Boolean function in Guru) for machine words. According

to this theorem, accessing the first item (indexed by zero) of an array-based clause

is always within bounds. In versat, we also proved that (informally speaking) “if

the first item of a null-terminated array is not null, the rest of the array is also null-

terminated.” Thus, we can access the second item as long as the first item is not

null, and so on. The second invariant u2 states that the clause c, which is proved by

pf c, is the same as the interpretation of l, where to cl is our interpretation of a

null-terminated sequence from the beginning of an array as a list.

At the beginning of execution, versat converts all input clauses into <aclause

nv F> objects. In order to satisfy the invariants, the conversion function checks that

every variable is within bounds and internally proves that the interpretation of the

output array is exactly the same as the input list-based clause. Then, every time

a new clause is learned, a new <aclause nv F> object is created and stored in the

clause database. Remember the soundness of the whole solver requires a <pf F (nil

lit)> object, which is a proof of the list-based empty clause. Assume we derived the

empty array-based clause at run-time. From the invariant u2, we know that there

exists an interpretation of the array clause. The following theorem states that the

only possible interpretation of the empty array is the empty list, (nil lit).
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C ∨ l̄1

D1 ∨ l1

./

l1

D2 ∨ l2

./

l2

...

Dn ∨ ln

./

ln

C ′

Figure 5.5. Conflict analysis — a linear sequence of resolutions. The ./ symbol
represent the operation of resolution, and li are the pivot literals to be resolved out.
C ∨ l̄1 is the initial input to conflict analysis (the conflicting clause). Di ∨ li clauses
are clauses from the clause database. C ′ is the result of conflict analysis, called the
conflict clause.

Forall(n:word)(l:<array lit n>)

(u:{ (eq_lit (array_get l word0) lit_null) = tt }).

{ (to_cl l) = nil }

Now, we can conclude that the interpretation is indeed the empty list-based clause,

which is valid according to another invariant pf c. Thus, it suffices to compute the

empty array-based clause (with all its invariants preserved) to prove the empty list-

based clause as required for creating the unsat value of the answer type.

5.3.2 Conflict Analysis with Optimized Resolution

The conflict analysis is where a SAT solver deduces a new clause from the ex-

isting set of clauses by resolution. Essentially, a series of resolutions are applied until

the first unique implication point (UIP) clause is derived as shown in Figure 5.5.

In order to speed up the resolution sequence, advanced solvers like minisat use a

number of related data structures to represent the intermediate conflict clauses and

perform resolutions efficiently. In versat, we implemented this optimized resolu-

tion and proved the implementation is sound according to the simple definition of
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¬lC lD

n m

./

l

C ′

Figure 5.6. Naive implementation of resolution. The resolvent C ′ is computed by
copying the literals from C except for ¬l and copying the literals from D except for
l. n and m are the lengths of C and D. The time complexity is linear in n+m.

is resolvent in the specification.

Figure 5.6 shows a naive implementation of resolvent computation. The time

complexity of this implementation is linear in the lengths of the two input clauses,

O(n + m). Mainstream SAT solvers improve the time complexity to O(m) using a

combination of techniques. In addition to the speed-up, we want to avoid duplicated

literals in the resolvent C ′. Otherwise, the result of conflict analysis will contain many

duplicate literals, which take up memory space and processing time. Duplication

removal can be easily achieved by using a look-up table shown in Figure 5.7. The

look-up table L indexes the content of C ′, and effectively duplicates the content of of

C ′ in a different layout in memory. 8 Whenever a literal is inserted to the resolvent

C ′, we use the table L to see if the literal is already present in C ′, so that we can

avoid adding duplicate literals to C ′. To prove this resolvent computation is correct,

8 Indirection(indexing) and duplication are common in many software engineering tech-
niques.
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liC ′

i Assignment
1 p1
2 p2
...
i pi
...

L

Figure 5.7. Avoiding duplicated literals using a look-up table. The table L is an
array of size nv (the number of variables), and indexes the content of C ′ by the
variable number i. The variables pi are three-state values of postive, negative, or
unassigned. The first two values indicate the polarities of a variable appearing in C ′

(assuming v and ¬v never appear in a clause at the same time). If pi is unassigned,
the variable i does not appear in the clause C ′ neither positively nor negatively.

liC1

liC2

x

i Assignment
1 p1
2 p2
...
i pi
...

L

Figure 5.8. Data structure for optimized resolution. C ′ is split into two separate
parts C1 and C2. C1 only contains the literals assigned at the current decision level
(since the last decision literal is assigned). C2 contains the rest of the literals from C ′.
Note that C2 is specificational and not created at run-time. x is a run-time variable
containing the length of C2.
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we need an invariant that the contents of C ′ and L are coherent. An important

property of conflict analysis is that the pivot literals (in Figure 5.5) are always the

literals that are assigned after the last decision literal. When a SAT solver explores

the search space finding a model, it incrementally build partial models by asserting

certain literals. There are two different kinds of asserted literals: decision literals and

deduced literals. Decision literals are speculatively asserted literals by the SAT solver

to find a candidate model. Deduced literals are asserted because they are inferred

from the input formula and the other asserted literals. In other words, conflict analysis

is a procedure to resolve out the literals asserted since the last decision. That means

the SAT solver knows which literals may be removed during conflict analysis at the

beginning. Using this property, we can achieve the improved complexity of O(m).

Figure 5.8 shows the abstract data structure for the optimized resolution. This

data structure represents intermediate clauses deduced by resolution steps. Also, the

data structure is reused for the next resolution by destructively updating it, instead

of creating a new one. In this version, C ′ is split into C1 and C2. C1 contains the

literals assigned before the last decision, C2 contains the rest of C ′. Only the literals

in C2 may be removed during conflict analysis, and C1 will only grow. Note that C2

is specificational data and not created at run-time. Instead, a new run-time variable

x keeps track of the supposed length of C2. The length of C2 is used to check for early

termination of conflict analysis. Conflict analysis terminates when it deduces the first

UIP clause. A UIP clause has only one literal assigned since the last decision. Thus,

as soon as the length of C2 becomes 1 at the end of resolution, conflict analysis stops.
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That is the reason why we monitor the length of C2, even though we do not need the

content of C2 at run-time.

Figure 5.9 shows the concrete data structure ResState representing interme-

diate conflict clauses and their invariants, which are maintained after each resolution

step over the course of conflict analysis. Those invariants are sufficient to prove the

soundness of versat’s conflict analysis. Table 5.1 summarizes the variables used in

the ResState type. The conflict clause is split into the literals assigned at the pre-

vious decision levels (c1) and the literals assigned at the current level (c2) according

to the invariant u5. So, the complete conflict clause at the time is (append c1 c2).

Notice that c2 is declared as a specificational data with the spec keyword. Dur-

ing conflict analysis, versat does not build each intermediate conflict clause as a

single complete clause. Instead, the whole conflict clause is duplicated in a look-up

table (vt), and it keeps track of the number of literals assigned at the current level,

which is the c2l, as stated by the invariants u1, u2 and u3. The u2 and u3 ensure

that the conflict clause and the table contain exactly the same set of literals. The

look-up table vt enables a constant time check whether a literal is in the conflict

clause, which makes duplication removal and other operations efficient. And it also

enables a constant time removal of a literal assigned at the current level, which can

be done by unmarking the literal on the vt and decrementing the value of c2l by

one. That also requires all literals in the list c2 to be distinct (u4), so that removing

all occurrences of a literal (as in the specification) will decrease the length only by

one (in the implementation). Note that, although the type of c2l is nat (the Peano
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Inductive ResState : Fun(nv:word)(dl:word).type :=

res_state : Fun

(spec nv:word)

(spec dl:word)

(dls:<array word nv>)

(vt:<array assignment nv>)

(c1:clause)

(spec c2:clause)

(c2l:nat)

(u1:{ c2l = (length c2) })

(u2:{ (all_lits_are_assigned vt (append c2 c1)) = tt })

(u3:{ (cl_has_all_vars (append c2 c1) vt) = tt })

(u4:{ (cl_unique c2) = tt })

(u5:{ (cl_set_at_prev_levels dl dls c1) = tt })

.<ResState nv dl>

Figure 5.9. Definition of conflict analysis state (ResState)

number), incrementing/decrementing by one and zero testing are constant time op-

erations just like the machine integer operations. Also, note that, some invariants —

e.g. all variables are within bounds — are omitted in the figure for clarity.

For the resolution function, we have proved that the computation of the re-

solvent between the previous conflict clause and the antecedent clause follows the

specification of is resolvent, so that a new pf object for the resolvent can be con-

structed. At the end of the conflict analysis, versat will find the Unique Implication

Point (UIP) literal, say l, and the ResState value will have one as the value of c2l.

Because the UIP literal must be assigned at the current decision level, it should be in

c2 and the length of c2 is one due to the invariant u1. That means actually c2 is a sin-

gleton list that consists of l. Thus, the complete conflict clause is (cons lit l c1).

Then, an array-base clause can be constructed and stored in the clause database, just
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Table 5.1. Summary of variables used in ResState

Var Description

nv the number of variables in the formula
dl the current decision level
dls a table of the decision levels at which each variable is assigned
vt a look-up table for the variables in the conflict clause
c1 the literals of the conflict clause assigned at the previous decision levels
c2 the literals of the conflict clause assigned at the current decision level
c2l the length of c2
u1 the length of the list c2 is the same as the value of c2l
u2 all the literals in the conflict clause are marked on the table
u3 all the literals marked on the table are in the conflict clause
u4 all literals in the list c2 are unique
u5 all variables in c1 are assigned at the previous decision levels

as the input list-based clauses are processed at the beginning of execution. Finally,

versat clears up the table vt by unmarking all the literals to recycle for the next

analysis. Instead of sweeping through the whole table, versat only unmarks those

literals in the conflict clause. It can be proved that after unmarking those literals,

the table is clean as new using the invariant u3 above. Correctness of this clean-up

process is proved in around 400 lines of lemmas, culminating in the theorem in Fig-

ure 5.10, which states that the efficient table-clearing code (clear_vars) returns a

table which is indistinguishable from a brand new array (created with array_new).

5.3.3 Summary of Implementation

The source code of versat totals 9884 lines, including proofs. It is hard to

separate proofs from code because they can be intermixed within a function. Roughly

speaking, auxiliary code (to formulate invariants) and proofs take up 80% of the entire

program. The generated C code weighs in at 12712 lines. The C code is self-contained
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Forall (nv:word)

(vt:<array assignment nv>)

(c:clause)

(u:{ (cl_valid nv c) = tt })

(r:{ (cl_has_all_vars c vt) = tt })

.{ (clear_vars vt c) = (array_new nv UN) }

Figure 5.10. Correctness theorem for table-clearing code

and includes the translations of Guru’s library functions being used. All lemmas used

by versat have been machine-checked by the Guru compiler.

Properties not proved. First, we do not prove termination for versat. It

could (a priori) be the case that the solver diverges on some inputs, and it could

also be the case that certain run-time checks we perform (discussed in Section 5.5)

fail. These termination properties have not been formally verified. However, what

users want is to solve problems in a reasonable amount of time. A guarantee of

termination does not satisfy users’ expectations. It is more important to evaluate

the performance over real problems as we show in Section 5.4. Second, we have not

verified completeness of versat. It is (again a priori) possible that versat reports

satisfiable, but the formula is actually unsatisfiable. In fact, we include a run-time

check at the end of execution, to ensure that when versat reports SAT, the formula

does have a model. But it would take substantial additional verification to ensure

that this run-time check never fails.
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5.4 Results: versat Performance

We compared versat to picosat-936 with proof generation and checking

for certified UNSAT answers. picosat [19] is one of the best SAT solvers and can

generate proofs in the RUP and TraceCheck formats. The RUP proof format [75] is

the official format for the certified track of the SAT competition, and checker3 is

used as the trusted proof checker. The TraceCheck format [7] is picosat’s preferred

proof format, and the format and checker are made by the developers of picosat.

We measured the runtime of the whole workflow of solving, proof generation, and

checking in both of the formats over the benchmarks used for the certified track of

the SAT competition 2007. The certified track has not been updated since then.

Table 5.2 shows the performance comparison. The “versat” column shows the

solving times of versat. The “picosat(R)” and “picosat(T)” columns shows the solv-

ing and proof generation times of picosat in the RUP format and TraceCheck format,

respectively. Since checker3 does not accept the RUP format directly, rupToRes is

used to convert RUP proofs into the RES format, which checker3 accepts. The

“rupToRes” column shows the conversion times, and the “checker3” column shows

the times for checking the converted proofs. The “tracecheck” column shows the

checking times for the proofs in the TraceCheck format. The “Total(R)” and “To-

tal(T)” shows the total times for solving, proof generation, conversion (if needed),

and checking in the RUP format and TraceCheck format, respectively. The unit of

the values is in seconds. “T” means a timeout and “E” means a runtime error before

timeout. The machine used for the test was equipped with an Intel Core2 Duo T8300
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running at 2.40GHz and 3GB of memory. The time limits for solving, conversion,

and checking were all 3600 seconds, individually.

versat solved 6 out of 16 benchmarks. Since UNSAT answers of versat are

verified by construction, versat was able to certify the unsatisfiability of those 6

benchmarks. picosat could solve 14 of them and generated proofs in both of the

formats. However, the RUP proof checking tool chain could only verify 4 of the

RUP proofs within additional 2 hour timeouts (1 hour for conversion and 1 hour for

checking). So, versat was able to certify the two more benchmarks that could not

be certified using picosat and the official RUP proof checking tools. On the other

hand, tracecheck could verify 12 of 14 TraceCheck proofs. Note that the maximum

proof size was about 4GB and the disk space was enough to store the proofs.

When comparing the trusted base of those systems, versat’s trusted base is

the Guru compiler, some basic datatypes and functions in the Guru library, and 259

lines of specification written in Guru. checker3 is 1538 lines of C code. tracecheck

is 2989 lines of C code along with 7857 lines of boolforce library written in C.

Even though tracecheck is the most efficient system, the trusted base is also very

large. One could argue that Guru compiler is also quite large (19175 lines of Java).

However, because the Guru compiler is a generic system, it is unlikely to generate

an unsound SAT solver from the code that it checked, and the verification cost of

Guru compiler itself, if needed, should be amortized across multiple applications.

General performance. We measured the solving times of versat, minisat-2.2.0,

picosat-936 and tinisat-0.22 over the SAT Race 2008 Test Set 1, which was used
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for the qualification round for the SAT Race 2008. The machine used for the mea-

surement was equipped with an Intel Xeon X5650 running at 2.67GHz and 12GB of

memory. The time limit was 900 seconds. In summary, versat solved 19 out of 50

benchmarks in the set. minisat solved 47. picosat solved 46. tinisat solved 49.

versat is not quite comparable with those state-of-the-art solvers, yet. However, to

our best knowledge, versat is the only verified solver at the actual code level that

could solve those competition benchmarks.

5.5 Discussion

The idea for the specification was clear, and the specification did not change

much since the beginning of the project. However, the hard part was formalizing

invariants of the conflict analysis all the way down to the data structures and ma-

chine words, let alone actually proving them. Modern SAT solvers are usually small,

but highly optimized as several data structures are cleverly coupled with strong in-

variants. The source code of minisat and tinisat does not tell what invariants it

assumes. As we discovered new invariants, we had to change our verification strat-

egy several times along the development. Sometimes, we compromised and slightly

modified our implementation. For example, the look-up table vt, used for resolution

to test the membership of variable in the current conflict clause, could be an array

of booleans. Instead, we used an array of assignment, which has three states of

positive, negative, and unassigned. The other solvers assume the current assignment

table already contains the polarity of each variable, which is an additional invariant.

In versat, the table marks variables with the polarity, which duplicates information
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in the assignment table, avoiding the invariant above.

Unimplemented features. Some features not implemented in versat in-

cludes conflict clause simplification and restart. Conflict clause simplification feature

requires to prove that there exists a certain sequence of resolutions that derives the

simplified clause. Although the sequence can be computed by topologically sorting

the removed literals at run-time, additional invariants would be required to prove it

statically.

Run-time checks. Certain properties of versat’s state are checked at run-

time, like assert in C. We tried to keep a minimal set of invariants and it is simply not

strong enough to prove some properties. Run-time checks makes the solver incom-

plete, because it may abort. Also, it costs execution time to perform such a check.

In principle, all of these properties could be proved statically so that those run-time

checks could be avoided. However, stronger invariants are harder to prove. Some

would require a much longer development time and may not speed up the solver very

much. Thus, the priority is the tight loops in the unit propagation and resolution.

However, one-time procedures like initialization and the final conflict analysis are

considered a lower priority. We did not measure how much those run-time checks

cost, however, gprof time profiler showed that they are not bottlenecking versat.

Verified programming in Guru. Guru is a great tool to implement effi-

cient verified software, and the generated C code can be plugged into other programs.

Optimizing software always raises the question of correctness, where the source code

can get complicated as machine code. In those situations, Guru can be used to assure
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the correctness. However, some automated proving features are desired for general

usage. Because versat heavily uses arrays, array-bounds checking proliferates, which

requires a fair amount of arithmetic reasoning. At the same time, when code changes

over the course of development, those arithmetic reasonings are the most affected and

need to be updated or proved again. So, automated reasoning of integer arithmetic

would be one of the most desired feature of Guru, allowing the programmer to focus

on more higher level reasonings.

5.6 Conclusion

In our best knowledge, versat is the first modern SAT solver that is stati-

cally verified to be sound all the way down to machine words and data structures.

And the generated C code can be compiled to binary code without modifications or

incorporated into other software. We have shown that the sophisticated invariants

of the efficient data structures used in modern SAT solvers can be formalized and

proved in Guru. Future work includes improving the performance of versat by

implementing/verifying more advanced SAT solver features, such as conflict clause

minimization. And we envision that the code and lemmas in versat can be applied

to other SAT-related applications, such as an verified efficient RUP proof checker and

a verified efficient SMT solver.
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APPENDIX A

APPENDICES FOR LFSC ENCODINGS

A.1 Typing Rules of LFSC

· Ok
Γ Ok Γ ` τ ⇒ κ

Γ, y : τ Ok

Γ, x1 : τ1, . . . , xn : τn, f : k1 → · · · → kn → k Ok
Γ, x1 : τ1, . . . , xn : τn, f : k1 → · · · → kn → k ` s⇒ k

Γ, f(x1 : k1 · · · xn : kn) : k = s Ok

Γ Ok
Γ ` type⇒ kind

Γ Ok
Γ ` typec ⇒ kind

Γ Ok y : τ ∈ Γ

Γ ` y ⇒ τ
Γ ` t⇐ τ

Γ ` t : τ ⇒ τ

Γ ` τ ⇐ type Γ, x : τ ` T ⇒ α α ∈ {type, typec, kind}
Γ ` Πx:τ. T ⇒ α

Γ ` τ ⇒ Πx:τ1. κ Γ ` t⇐ τ1
Γ ` (τ t)⇒ [t/x]κ

Γ ` τ1 ⇐ type Γ, x : τ1 ` τ2 ⇒ type Γ, x : τ1 ` s⇒ τ Γ, x : τ1 ` t⇒ τ

Γ ` Πx:τ1{s t}. τ2 ⇒ typec

Γ ` t1 ⇒ Πx:τ1. τ2 Γ ` t2 ⇐ τ1
Γ ` (t1 t2)⇒ [t2/x]τ2

Γ ` τ1 ⇒ type Γ, x : τ1 ` t⇒ τ2
Γ ` λx:τ1. t⇒ Πx:τ1. τ2

Γ ` t1 ⇒ Πx:τ1{s t}. τ2 Γ ` t2 ⇐ τ1 |Γ| ` ε; [t2/y]s ↓ [t2/y]t; σ

Γ ` (t1 t2)⇒ [t2/x]τ2

Γ, x : τ1 ` t⇒ τ2
Γ ` λx. t⇐ Πx:τ1. τ2

Figure A.1. Bidirectional typing rules and context rules for LFSC. Letter y denotes
variables and constants declared in context Γ, letter T denotes types or kinds. Letter
ε denotes the state in which every variable is unmarked. The kinds typec and type
are used to distinguish types with side conditions in them from types without.

The typing rules for terms and types, given in Figure A.1, are based on the

rules of canonical forms LF [77]. They include judgments of the form Γ ` e⇐ T for

checking that expression e has type/kind T in context Γ, where Γ, e, and T are inputs

to the judgment; and judgments of the form Γ ` e⇒ T for computing a type/kind T

for expression e in context Γ, where Γ and e are inputs and T is output. The contexts Γ
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map variables and constants to types or kinds, and map constants f for side condition

functions to (possibly recursive) definitions of the form (x1 : τ1 · · · xn : τn) : τ = s,

where s is a term with free variables x1, . . . , xn, the function’s formal parameters.

The three top rules of Figure A.1 define well-formed contexts. The other rules,

read from conclusion to premises, induce deterministic type/kind checking and type

computation algorithms. They work up to a standard definitional equality, namely

βη-equivalence; and use standard notation for capture-avoiding substitution ([t/x]T

is the result of simultaneously replacing every free occurrence of x in T by t, and

renaming any bound variable in T that occurs free in t). Side conditions occur in

type expressions of the form Πy:τ1{s t}. τ2, constructing types of kind typec. The

premise of the last rule, defining the well-typedness of applications involving such

types, contains a judgement of the form ∆ ` σ; s ↓ s′; σ′ where ∆ is a context

consisting only of definitions for side condition functions, and σ and σ′ are states, i.e.,

mappings from variables to their mark. Such judgment states that, under the context

∆, evaluating the expression s in state σ results in the expression s′ and state σ′. In

the application rule, ∆ is |Γ| defined as the collection of all the function definitions in

Γ. Note that the rules of Figure A.1 enforce that bound variables do not have types

with side conditions in them—by requiring those types to be of kind type, as opposed

to kind typec. An additional requirement is not formalized in the figure. Suppose Γ

declares a constant d with type Πx1:τ1. · · ·Πxn:τn. τ of kind typec, where τ is either k

or (k t1 · · · tm). Then neither k nor an application of k may be used as the domain

of a Π-type. This is to ensure that applications requiring side condition checks never
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appear in types. Similar typing rules, included in the appendix, define well-typedness

for side condition terms, in a fairly standard way.

The completely standard type-computation rules for code terms are given in

Figure A.2. Code terms are monomorphically typed. We write N for any arbitrary

precision integer, and use several arithmetic operations on these; others can be easily

modularly added. Function applications are required to be simply typed. In the

typing rule for pattern matching expressions, patterns P must be of the form c or

(c x1 · · ·xm), where c is a constructor, not a bound variable (we do not formalize the

machinery to track this difference). In the latter case, ctxt(P ) = {x1 : T1, . . . xn : Tn},

where c has type Πx1 : T1. · · ·xn : Tn.T . We sometimes write (do C1 C2) as an

abbreviation for (let x C1 C2), where x 6∈ FV(C2).

Γ(x) = T

Γ ` x⇒ T Γ ` N ⇒ mpz

Γ ` t1 ⇒ mpz Γ ` t2 ⇒ mpz

Γ ` t1 + t2 ⇒ mpz

Γ ` t⇒ mpz

Γ ` − t⇒ mpz

Γ ` C1 ⇒ T ′ Γ, x : T ′ ` C2 ⇒ T

Γ ` (let x C1 C2)⇒ T

Γ ` C1 ⇒ mpz Γ ` C2 ⇒ T Γ ` C3 ⇒ T

Γ ` (ifneg C1 C2 C3)⇒ T

Γ ` C ⇒ T
Γ ` (markvar C)⇒ T

Γ ` t1 ⇒ Πx:T1. T2 Γ ` t2 ⇒ T1 x 6∈ FV(T2)

Γ ` (t1 t2)⇒ T2

Γ ` T ⇒ type

Γ ` (fail T )⇒ T

Γ ` C1 ⇒ T ′ Γ ` C2 ⇒ T Γ ` C3 ⇒ T

Γ ` (ifmarked C1 C2 C3)⇒ T

Γ ` C ⇒ T ∀i ∈ {1, . . . , n}.(Γ ` Pi ⇒ T Γ, ctxt(Pi) ` Ci ⇒ T ′)

Γ ` (match C (P1 C1) · · · (Pn Cn))⇒ T ′

Figure A.2. Typing Rules for Code Terms. Rules for the built-in rational type are
similar to those for the the integer type, and so are omitted.
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A.2 Formal Semantics of Side Condition Programs

σ1; c ↓ c; σ1 σ1; x ↓ x; σ1

σ1; s ↓ x; σ2
σ1; (markvar s) ↓ x; σ2[x 7→ ¬σ2(x)]

σ1; s1 ↓ r; σ2 r < 0 σ2; s2 ↓ s′2; σ3
σ1; (ifneg s1 s2 s3) ↓ s′2; σ3

σ1; s1 ↓ r; σ2 r ≥ 0 σ2; s3 ↓ s′3; σ3
σ1; (ifneg s1 s2 s3) ↓ s′3; σ3

σ1; s1 ↓ x; σ2 σ2(x) σ2; s2 ↓ s′2; σ3
σ1; (ifmarked s1 s2 s3) ↓ s′2; σ3

σ1; s1 ↓ x; σ2 ¬σ2(x) σ2; s3 ↓ s′3; σ3
σ1; (ifmarked s1 s2 s3) ↓ s′3; σ3

σ1; s1 ↓ s′1; σ2 σ2; [s′1/x]s2 ↓ s′2; σ3
σ1; (let x s1 s2) ↓ s′2; σ3

∀i ∈ {1, . . . , n}, (σi; si ↓ s′i; σi+1)

σ1; (c s1 · · · sn) ↓ (c s′1 · · · s′n); σn+1

σ1; s ↓ (c s′1 · · · s′n); σ2 ∃i pi = (c x1 · · · xn) σ2; [s′1/x1, . . . , s
′
n/xn]si ↓ s′; σ3

σ1; (match s (p1 s1) · · · (pm sm)) ↓ s′; σ3

∀i ∈ {1, . . . , n} (∆ ` σi; si ↓ s′i; σi+1)

(f(x1 : τ1 · · · xn : τn) : τ = s) ∈ ∆ ∆ ` σn+1; [s′1/x1, . . . , s
′
n/xn]s ↓ s′; σn+2

∆ ` σ1; (f s1 · · · sn) ↓ s′; σn+2

Figure A.3. Operational semantics of side condition programs. We omit the straight-
forward rules for the rational operators − and +.

A big-step operational semantics of side condition programs is provided in Fig-

ure A.3 using ∆ ` σ; s ↓ s′; σ′ judgements. For brevity, we elide “∆ `” from the rules

when ∆ is unused. Note that side condition programs can contain unbound variables,

which evaluate to themselves. States σ (updated using the notation σ[x 7→ v]) map

such variables to the value of their Boolean mark. If no rule applies when running a

side condition, program evaluation and hence checking of types with side conditions

fails. This also happens when evaluating the fail construct (fail τ), or when pattern
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matching fails. Currently, we do not enforce termination of side condition programs,

nor do we attempt to provide facilities to reason formally about the behavior of such

programs.

A.3 Helper Code for Resolution

The helper code called by the side condition program resolve of the encoded

resolution rule R is given in Figures A.4 and A.5. We can note the frequent uses

of match, for decomposing or testing the form of data. The program eqvar of Fig-

ure A.4 uses variable marking to test for equality of LF variables. The code assumes a

datatype of Booleans tt and ff. It marks the first variable, and then tests if the second

variable is marked. Assuming all variables are unmarked except during operations

such as this, the second variable will be marked iff it happens to be the first variable.

The mark is then cleared (recall that markvar toggles marks), and the appropriate

Boolean result returned. Marks are also used by dropdups to drop duplicate literals

from the resolvent.

A.4 Small Example Proof

Figure A.6 shows a small QF IDL proof. This proof derives a contradiction

from the assumed formula

(and (<= (- x y) (as_int (~ 1)))

(and (<= (- y z) (as_int (~ 2)))

(<= (- z x) (as_int (~ 3)))))

The proof begins by introducing the variables x, y, and z, and the assumption (named

f) of the formula above. Then it uses CNF conversion rules to put that formula into

CNF. CNF conversion starts with an application of the start rule, which turns the hy-
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(program eqvar ((v1 var) (v2 var)) bool

(do (markvar v1)

(let s (ifmarked v2 tt ff)

(do (markvar v1) s))))

(program litvar ((l lit)) var

(match l ((pos x) x) ((neg x) x)))

(program eqlit ((l1 lit) (l2 lit)) bool

(match l1 ((pos v1) (match l2 ((pos v2) (eqvar v1 v2))

((neg v2) ff)))

((neg v1) (match l2 ((pos v2) ff)

((neg v2) (eqvar v1 v2))))))

Figure A.4. Variable and literal comparison

pothesis of the input formula (th hold φ) to a proof of the partial clause (pc hold (φ; )).

The dist_pos, mentioned also in Section 4.3.1 above, breaks a conjunctive partial

clause into conjuncts. The decl_atom_pos proof rule introduces new propositional

variables for positive occurrences of atomic formulas. The new propositional vari-

ables introduced this way are v0, v1, and v2, corresponding to the atomic formulas

(let us call them φ0, φ1, and φ2) in the original assumed formula, in order. The

decl_atom_pos rule is similar to rename (discussed in Section 4.3.1 above), but it also

binds additional meta-variables of type (atom v φ) to record the relationships between

variables and abstracted formulas. So for example, a0 is of type (atom v0 φ0). The

clausify rule turns the judgements of partial clauses with the empty formula sequence

(pc holds (; c)) to the judgements of pure propositional clauses (holds c). Here, this

introduces variables x0, x1, and x2 as names for the asserted unit clauses φ0, φ1, and

φ2, respectively.
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(declare Ok type)

(declare ok Ok)

(program in ((l lit) (c clause)) Ok

(match c ((clc l’ c’) (match (eqlit l l’) (tt ok) (ff (in l c’))))

(cln (fail Ok))))

(program remove ((l lit) (c clause)) clause

(match c (cln cln)

((clc l’ c’)

(let u (remove l c’)

(match (eqlit l l’) (tt u) (ff (clc l’ u)))))))

(program append ((c1 clause) (c2 clause)) clause

(match c1 (cln c2) ((clc l c1’) (clc l (append c1’ c2)))))

(program dropdups ((c1 clause)) clause

(match c1 (cln cln)

((clc l c1’)

(let v (litvar l)

(ifmarked v

(dropdups c1’)

(do (markvar v)

(let r (clc l (dropdups c1’))

(do (markvar v) ; clear the mark

r))))))))

Figure A.5. Operations on clauses
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(% x int (% y int (% z int

(% f (th_holds (and (<= (- x y) (as_int (~ 1)))

(and (<= (- y z) (as_int (~ 2)))

(<= (- z x) (as_int (~ 3))))))

(: (holds cln)

(start _ f

(\ f0

(dist_pos _ _ _ _ f0

(\ f1 (\ f2

(decl_atom_pos _ _ _ f1

(\ v0 (\ a0 (\ f3

(clausify _ f3

(\ x0

(dist_pos _ _ _ _ f2

(\ f4 (\ f5

(decl_atom_pos _ _ _ f4

(\ v1 (\ a1 (\ f6

(clausify _ f6

(\ x1

(decl_atom_pos _ _ _ f5

(\ v2 (\ a2 (\ f7

(clausify _ f7

(\ x2

(R _ _ _ x0

(R _ _ _ x1

(R _ _ _ x2

(assume_true _ _ _ a0 (\ h0

(assume_true _ _ _ a1 (\ h1

(assume_true _ _ _ a2 (\ h2

(idl_contra _ _

(idl_trans _ _ _ _ _ _ h0

(idl_trans _ _ _ _ _ _ h1

h2)))))))))

v2) v1) v0)

)))))))))))))))))))))))))))))))

Figure A.6. A small QF IDL proof
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After CNF conversion is complete, the proof derives a contradiction from

those asserted unit clauses and a theory clause derived using assume_true (see Sec-

tion 4.3.2) from a theory contradiction. The theory contradiction is obtained with

idl_trans and idl_contra (Section 4.3.3).
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APPENDIX B

APPENDICES FOR versat

B.1 Formal Syntax of Guru

Terms and types. Figure B.1 shows the syntax for terms and types in Guru.

We use a number of meta-variables to denote terms from different syntactic classes.

We use x and y for variables, c for term constructors, d for type constructors, and

o for resource types. The bracket expression [t] means t is optional. We write t̄

for a sequence t1 t2 · · · tn (for some n > 0). For the case of (x̄ [: Ā]), we mean

(x1 [: A1])(x2 [: A2]) · · · (xn [: An]). The let term defines x to be t within the context

of t′. Unlike variables defined with the Define command, x and t are not definitionally

equal in Guru. Instead, the by-bound variable y is provided as a proof of x = t,

hence the typing is y : { x = t }. The by clause of match is similar. The difference

is x and y for match take different classifier in each case ci x̄i => ti, where x has a

formula type { t = (ci x̄i) } and y has a formula type proving the type of t is equal

to the type of (ci x̄i).

Formulas. Figure B.2 shows the syntax for formulas in Guru. It provides a lan-

guage for first-order formulas with equality. Negation is provided in the form of the

disequality predicate(!=).

Commands. A Guru program is a sequence of commands, shown in Figure B.3.

Here, G ranges over terms, types and type families, formulas, and proofs. K is for
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t ::= x ‖ c ‖ fun x(x̄ [: Ā])[: T ]. t ‖ (t X) ‖
cast t by P ‖ abort T ‖
let x = t [by y] in t′ ‖
match t [by x y] with c1 x̄1 => t1 | · · · | cn x̄n => tn end ‖
existse term P t

X ::= t ‖ T ‖ P

A ::= T ‖ type ‖ F

T ::= x ‖ d ‖ Fun(x : A). T ‖ 〈T Y 〉

Y ::= t ‖ T

Figure B.1. Syntax for Guru terms (t) and types (T ) from the Stump et al.’s pa-
per [72] (slightly simplified).

F ::= Quant(x : A). F ‖ {Y1
?
= Y2} ‖ True ‖ False

Quant ∈ {Forall, Exists}
?
= ∈ {=, !=}

Figure B.2. Syntax for Guru Formulas (F )

Define c : A := G.

Inductive d : K := c1 : D1 | . . . | ck : Dk .

where
D ::= Fun(ȳ : Ā).〈d Y1 . . . Yn〉

K ::= type ‖ Fun(x : B). K

B ::= type ‖ T

Figure B.3. Syntax for Guru commands from the Stump et al.’s paper [73].
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kinds. Type and term constructors are introduced by the Inductive command, and

defined constants by the Define command.

B.2 Helper Code in the Guru Standard Library

Inductive bool : type :=

ff : bool

| tt : bool

Define primitive word := <vec bool wordlen>

Inductive list : Fun(A:type).type :=

nil : Fun(A:type). <list A>

| cons : Fun(A:type)(a:A)(l:<list A>). <list A>

Define eqlist :=

fun eqlist(A:type)(eqA:Fun(x y:A).bool)(l m:<list A>):bool.

match l with

nil _ =>

match m with

nil _ => tt

| cons _ _ m’ => ff

end

| cons _ a l’ =>

match m with

nil _ => ff

| cons _ b m’ => (and (eqA a b) (eqlist A eqA l’ m’))

end

end

Define member :=

fun member(A:type)(x:A)(l:<list A>)

(eqA:Fun(x1 x2:A).bool) : bool.

match l with

nil _ => ff

| cons _ h t => (or (eqA x h) (member A x t eqA))

end

Define list_all :=

fun list_all(A:type)(f:Fun(a:A).bool)(l:<list A>) : bool.

match l with

nil _ => tt

| cons _ a l’ => match (f a) with

ff => ff

| tt => (list_all A f l’)

end

end
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Define list_subset :=

fun list_subset(A:type)(eqA:Fun(a b:A).bool)(l1 l2:<list A>) : bool.

(list_all A fun(a:A).(member A a l2 eqA) l1)

Define erase :=

fun erase(A:type)(eqA:Fun(x1 x2:A).bool)

(x:A)(l:<list A>) : <list A>.

match l with

nil _ => l

| cons _ y l’ =>

match (eqA x y) with

ff => (cons A y (erase A eqA x l’))

| tt => (erase A eqA x l’)

end

end
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and C. Flanagan, editors, Proceedings of the 4th ACM Workshop Programming
Languages meets Program Verification, PLPV 2010, Madrid, Spain, January 19,
2010, pages 27–38. ACM, 2010.

[73] Aaron Stump, Morgan Deters, Adam Petcher, Todd Schiller, and Timothy Simp-
son. Verified programming in Guru. In Thorsten Altenkirch and Todd D.
Millstein, editors, Programming Languges meets Program Verification (PLPV).
ACM, 2009.

[74] Aaron Stump and Duckki Oe. Towards an SMT proof format. Proceedings of
the Joint Workshops of the 6th International Workshop on Satisfiability Modulo
Theories and 1st International Workshop on Bit-Precise Reasoning (SMT), pages
27–32, 2008.

[75] Allen Van Gelder. Proof checker file format. http://users.soe.ucsc.edu/

~avg/ProofChecker/ProofChecker-fileformat.txt, 2004.

[76] Allen Van Gelder. Verifying propositional unsatisfiability: Pitfalls to avoid. In
Tenth International Conference on Theory and Applications of Satisfiability Test-
ing, Lisboa, Portugal, 2007.

http://users.soe.ucsc.edu/~avg/ProofChecker/ProofChecker-fileformat.txt
http://users.soe.ucsc.edu/~avg/ProofChecker/ProofChecker-fileformat.txt


112

[77] Kevin Watkins, Iliano Cervesato, Frank Pfenning, and David Walker. A concur-
rent logical framework I: Judgments and properties. Technical Report CMU-CS-
02-101, Carnegie Mellon University, 2002.

[78] Tjark Weber. Integrating a SAT solver with an LCF-style theorem prover.
PDPAR, Jan 2005.

[79] Tjark Weber. Using a SAT solver as a fast decision procedure for propositional
logic in an LCF-style theorem prover. Theorem Proving in Higher Order Logics
(TPHOLs), 2005.

[80] Tjark Weber. Efficiently checking propositional resolution proofs in Is-
abelle/HOL. In Chris Benzmüller, Bernd Fischer, and Geoff Sutcliffe, editors,
Proceedings of the 6th International Workshop on the Implementation of Logics,
volume 212 of CEUR Workshop Proceedings, pages 44–62, November 2006.

[81] Tjark Weber and Hasan Amjad. Efficiently checking propositional refutations in
HOL theorem provers. Journal of Applied Logic, 7(1):26 – 40, 2009.

[82] Hantao Zhang. SATO: An efficient propositional prover. In William McCune,
editor, CADE, volume 1249 of Lecture Notes in Computer Science, pages 272–
275. Springer, 1997.

[83] Hantao Zhang and Mark E. Stickel. An efficient algorithm for unit propagation.
In In Proceedings of the Fourth International Symposium on Artificial Intelli-
gence and Mathematics (AI-MATH’96), Fort Lauderdale (Florida USA, pages
166–169, 1996.

[84] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability
solvers. In Ed Brinksma and Kim Guldstrand Larsen, editors, CAV, volume
2404 of Lecture Notes in Computer Science, pages 17–36. Springer, 2002.

[85] Lintao Zhang and Sharad Malik. Validating SAT solvers using an independent
resolution-based checker: Practical implementations and other applications. In
Design, Automation and Test in Europe Conference and Exposition (DATE),
pages 10880–10885. IEEE Computer Society, 2003.


	University of Iowa
	Iowa Research Online
	Summer 2012

	Formally certified satisfiability solving
	Duck Ki Oe
	Recommended Citation


	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER
	Introduction
	Theorem Provers
	De Bruijn Criterion
	Correctness of Satisfiability Solvers
	Contributions

	Background: Satisfiability Solving
	The Classical DPLL Algorithm
	The Modern DPLL Algorithm
	SAT Solver Engineering
	Satisfiability Modulo Theories

	Related Work
	SAT Proof Checking
	Resolution-based Proof Formats
	Linear Resolution-based Proof Formats
	Reverse Unit Propagation
	Trustworthiness of the Proof Checker

	SMT Proof Checking
	Statically Verified SAT Solvers
	Verified SAT Solvers
	Limitations


	SAT/SMT Proof Checking Using a Logical Framework
	The LFSC Language
	Notational Conventions
	Introducing LF with Side Conditions
	Abstract Syntax and Informal Semantics

	Encoding Propositional Reasoning
	Encoding Propositional Resolution
	Deferred Resolution

	Encoding Quantifier-Free Integer Difference Logic
	CNF Conversion
	Converting Theory Lemmas to Propositional Clauses
	Encoding Integer Difference Logic

	Results for QF_IDL Proof Checking
	Conclusion

	Verifying Modern SAT Solver Using Dependent Types
	The Guru Programming Language
	The Guru Syntax
	Verified Programming in Guru

	Formalizing Correct SAT Solvers
	Representation of CNF Formulas
	Deduction Rules
	The answer Type
	Parser and Entry Point

	Implementation and Invariants
	Array-based Clauses and Invariants
	Conflict Analysis with Optimized Resolution
	Summary of Implementation

	Results: versat Performance
	Discussion
	Conclusion

	APPENDIX
	Appendices for LFSC Encodings
	Typing Rules of LFSC
	Formal Semantics of Side Condition Programs
	Helper Code for Resolution
	Small Example Proof

	Appendices for versat
	Formal Syntax of Guru
	Helper Code in the Guru Standard Library

	REFERENCES

