
University of Iowa
Iowa Research Online

Theses and Dissertations

Spring 2017

Multi-covering problems and their variants
Santanu Bhowmick
University of Iowa

Copyright © 2017 Santanu Bhowmick

This dissertation is available at Iowa Research Online: https://ir.uiowa.edu/etd/5418

Follow this and additional works at: https://ir.uiowa.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
Bhowmick, Santanu. "Multi-covering problems and their variants." PhD (Doctor of Philosophy) thesis, University of Iowa, 2017.
https://ir.uiowa.edu/etd/5418.

https://ir.uiowa.edu?utm_source=ir.uiowa.edu%2Fetd%2F5418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F5418&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.uiowa.edu/etd?utm_source=ir.uiowa.edu%2Fetd%2F5418&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=ir.uiowa.edu%2Fetd%2F5418&utm_medium=PDF&utm_campaign=PDFCoverPages

MULTI-COVERING PROBLEMS AND THEIR VARIANTS

by

Santanu Bhowmick

A thesis submitted in partial fulfillment of the
requirements for the Doctor of Philosophy

degree in Computer Science
in the Graduate College of

The University of Iowa

May 2017

Thesis Supervisor: Professor Kasturi Varadarajan

Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Santanu Bhowmick

has been approved by the Examining Committee for the thesis
requirement for the Doctor of Philosophy degree in Computer
Science at the May 2017 graduation.

Thesis Committee:

Kasturi Varadarajan, Thesis Supervisor

Sriram Pemmaraju

Sukumar Ghosh

Samuel Burer

Aaron Stump

ACKNOWLEDGEMENTS

Working on my Ph.D. has been one of the most rewarding experiences of my

life. I’m indebted to many people for making this journey an unforgettable one.

First and foremost, I’d like to thank my advisor, Professor Kasturi Varadara-

jan, for his guidance and encouragement. His endless patience and didactic attitude,

combined with his wide knowledge, makes him a wonderful advisor. It has been a

great honor to have Professor Varadarajan as my advisor, without whose expertise

and persistent help this dissertation would not have been possible.

I would like to thank my co-authors, Sayan Bandyapadhyay and Tanmay In-

amdar, for their invaluable insights into the problems that we worked on together.

Life at the university would have been significantly less interesting without the dis-

cussions we had about algorithms and theory, both in the Algorithms Reading Group

that we had and otherwise.

I owe a debt of gratitude to the faculty at Indian Statistical Institute, Kolkata,

who played a crucial role in my academic career and kindled the desire to embark on

my doctoral journey.

I would like to thank my parents for their invaluable support throughout my

life, without which I would not be here. Last but not the least, I’m grateful to my

lovely wife, Sanchita, who has been with me all these years and has made them the

best years of my life.

ii

ABSTRACT

In combinatorial optimization, covering problems are those problems where

given a ground set and a family of subsets of the ground set, the objective is to find

a minimum cost set of subsets whose union contains the ground set. We consider

covering problems in the context of Computational Geometry, which is a subfield

of Computer Science that deals with problems associated with geometric objects

such as points, lines, disks, polygons etc. In particular, geometric covering is an

active research area, where the ground set and the family of subsets are induced by

geometric objects. Covering problems in combinatorial optimizations often have a

geometric analogue that arises naturally, and though such problems remain NP-hard,

it is often possible to exploit the geometric properties of the set system to obtain

better approximation algorithms.

In this work, the fundamental problem that we consider is a generalization of

geometric covering, where each element in the ground set may need to covered by

more than one subset. To be precise, the problem is defined as follows: given two sets

of points X, Y and a coverage function κ : X → Z+ ∪ {0}, construct balls centered

on the points in Y such that each point in X is covered by at least κ(x) distinct balls.

The objective in this problem is to minimize the total cost, which is a function of the

radii of the balls. This problem is termed as the metric multi-cover (MMC) problem.

We first consider version of the MMC problem where κ(x) = 1 for all clients,

i.e. the 1-covering case. The known results that give a constant factor approximation

iii

for this problem are variations of LP-based primal-dual algorithm. We use a modified

local search technique, motivated by geometric idea, to derive a simple, constant-

factor approximation for this problem in Chapter 2.

We then look at the MMC problem where the point sets X, Y are in the

Euclidean plane, and each client x ∈ X needs to be covered by at least κ(x) distinct

disks centered on the points in Y . In Chapter 4, we give the first polynomial time

constant factor approximation for this problem, in which the constant is independent

of the coverage function κ. Our solution also has an incremental property, which

allows the algorithm to handle increases in the coverage requirement by increasing

the radii of the current server disks, without affecting the approximation factor.

In the next problem, we move from the Euclidean plane to arbitrary metric

spaces where we consider the uniform MMC problem. In this problem, each client x

has the demand κ(x) = k, where k > 0 is an integer. We give the first constant factor

approximation (independent of k) for this problem. The key contribution that led to

this result is the formulation of a partitioning scheme of the servers in the uniform

MMC problem, that reduces the uniform MMC problem to k instances of 1-covering

problem, while preserving the optimality of the solution to a constant multiplicative

factor. We present the partitioning scheme as an independent result in Chapter 5,

which we then use to solve the uniform MMC problem in Chapter 6.

The MMC problem with arbitrary coverage function κ is then considered

in Chapter 7. The key challenge that the non-uniform version presents is that the

symmetry of the server partitioning scheme breaks down as the coverage demands of

iv

clients are independent of each other. We present a constant factor algorithm for this

problem in Chapter 7.

The last problem that we consider is the t-MMC problem, which is a restricted

version of the uniform MMC problem. The objective is to compute a cover in which

each client is covered by at least k distinct server disks, using atmost t server disks

in total. This problem is a generalization of the clustering problem (where k = 1),

and to our knowledge this is the first time this generalization has been considered.

We give a constant factor approximation for this problem in Chapter 8.

v

PUBLIC ABSTRACT

In this dissertation, we examine the metric multi-cover (MMC) problem and

its variants. We are given two point sets X (clients) and Y (servers) in a metric

space and a non-negative integer k. The goal is to find an assignment of radii to the

servers, such that each client is covered by at least k disks centered at the servers,

while minimizing the sum of the area of the disks. The MMC problem arises in the

design of wireless sensor networks, where each sensor has a limited energy source. The

energy consumed is considered to be linear in the area of the region covered by each

sensor. Some applications may require multiple sensors monitoring an area for event

detection, whereas in other applications, security or fault-tolerance requirements may

mandate a multi-cover of the clients. Prior works described algorithms that gave an

O(k) approximation to the problem, i.e., the cost of the solutions obtained increased

linearly with k, making them impractical for high values of k.

In this work, we derive constant-factor approximations for the MMC problem,

in which the constant factor guarantee is independent of the demand k. We extend

the same approximation guarantee for some variants of the MMC problem, which

include a version having non-uniform coverage requirement of the clients, and one

in which there is a restriction in the number of servers that can be used. We also

give a simple geometric constant-factor approximation for regular covering, in order

to facilitate deeper understanding of metric covering problems.

vi

TABLE OF CONTENTS

LIST OF FIGURES . ix

CHAPTER

1 INTRODUCTION . 1

1.1 Background . 1
1.1.1 Thesis Structure . 9

1.2 A Local Search Algorithm for the MCC Problem 10
1.2.1 Previous Work . 12
1.2.2 Our Contribution . 13

1.3 The Planar Multi Covering (PMC) Problem 16
1.3.1 Previous Work . 16
1.3.2 Our Contribution . 17

1.4 The Metric Multi-Cover Problem 18
1.4.1 Previous Work . 18
1.4.2 Our Contribution . 19

1.5 The t-MMC Problem . 22
1.5.1 Our Contribution . 23

2 A LOCAL SEARCH ALGORITHM FOR THE MCC PROBLEM . . 24

2.1 A Directed Local Search Algorithm 24
2.2 Approximation Guarantee . 28

3 OUTERCOVER . 33

3.1 The Outer Cover Lower Bound for the MMC Problem 35
3.2 OuterCover: Algorithm to Generate a Preliminary Cover 38

3.2.1 Linear Programming Formulation 38
3.2.2 A Primal Dual Algorithm 40
3.2.3 Approximation Ratio . 41

4 MULTI-COVERING IN THE PLANE 43

4.1 Preliminaries . 44
4.2 Computing a Covering for the PMC Problem 45
4.3 Approximation Ratio . 48
4.4 Concluding Remarks . 52

vii

5 PARTITIONING SERVERS IN METRIC SPACE 53

5.1 Overview . 53
5.2 Computing Disjoint Server Subsets 56
5.3 Server Availability . 61

6 THE UNIFORM MMC PROBLEM 68

6.1 Algorithm . 68
6.2 Approximation Guarantee . 69

7 THE NON-UNIFORM MMC PROBLEM 73

7.1 Partitioning Servers . 74
7.2 Forming Nets From Filtered Clients 75
7.3 Computing Disjoint Server Subsets 77
7.4 Server Availability . 80
7.5 Solving the Non-uniform MMC Problem 83
7.6 Approximation Guarantee . 84

8 THE t-MMC PROBLEM . 87

8.1 Algorithm . 87
8.2 Approximation Guarantee . 88
8.3 The Outer Cover Lower Bound for the t-MMC Problem 91

9 CONCLUSION AND OPEN PROBLEMS 95

9.1 APX-Hardness of the MMC Problem 95
9.2 An O(1) Approximation for the Capacitated MCC Problem . . . 96

REFERENCES . 101

viii

LIST OF FIGURES

Figure

1.1 Clients are filled (blue) circles, servers are (red) crosses, and the labels
represent inter-point distances, where r ∈ R ∪ {0}, ε > 0. If a feasible
solution includes the ball centered on the server in the middle, then an
improvement to that solution can only be made if the local search algo-
rithm considers all balls of radius ε centered on the remaining servers in a
single improvement step. 15

3.1 An example of OuterCover of level 2. The (blue) circles represent clients
in X, the (red) squares represent servers in Y . The disk covering each
client in X has a radius that is at least as large is its distance to its second
nearest server in Y . 34

5.1 Let k = 2, and suppose there are two clients at distance 1 from each other,
one server that is co-located with the first client, and a second server that
is co-located with the second client. In this example, both servers would
have to be in Y1, leaving no server for Y2. 55

6.1 Illustration for the proof of Claim 6.2. For the client x ∈ X, the dashed
edges correspond to a path π in Gi from x to x̄. Here, y1 ∈ Ni(x)∩Ni(x1),
y2 ∈ Ni(x1) ∩ Ni(x̄), and ȳ ∈ Yi ∩ Ni(x̄). The ball δ(y, ρi(y)) serves x̂.
Here, x̂ happens to be x̄. Note that we can get from y to x using 5 edges
of the figure, and from y to ȳ using 2 edges. Therefore, expanding the ball
at y by a factor of 6 will cover both x and ȳ. (In this example, even a
factor of 5 suffices.) . 71

ix

1

CHAPTER 1
INTRODUCTION

1.1 Background

This dissertation examines certain fundamental geometric optimization prob-

lems that lie in the intersection of the areas of clustering and covering. An example

of a clustering problem is the following: given a set X of points in an arbitrary metric

space and an integer k, and the goal is to cover the points by k balls so as to minimize

the sum of radii of the balls. In a typical covering problem, we are given a set P of

points in the plane and a set D of geometric objects (e.g. disks, rectangles or trian-

gles) that contain the points in P , and the objective is to find a minimum cardinality

subset of D whose union contains P . Clustering is used for inferring useful patterns

from data in fields as diverse as natural sciences, psychology, medicine, engineering,

economics and marketing. Geometric covering problems arise in many contexts, such

as wireless and sensor networks and surveillance of a set of objects or an area. Most

versions of clustering and covering problems are NP-hard i.e. under widely believed

assumptions, it is not possible to obtain an optimal solution for every instance of the

problem efficiently. Hence, in this dissertation, we examine clustering and covering

problems with the focus being on obtaining efficient approximation algorithms. (An

f -approximation algorithm gives a solution whose cost is at most f times the cost of

an optimal solution).

Before proceeding further, we define some basic concepts pertaining to combi-

2

natorial optimization problems. An instance of an optimization problem has a set of

valid solutions, known as its feasible solutions. Associated with each feasible solution

is a numeric value known as its weight. In a minimization problem (which is what we

confine ourselves to in this thesis), the objective is to find a feasible solution that has

minimum weight, which is denoted as its optimal solution. For example, an instance

of the Set Cover problem consists of a ground set X and a set of subsets F of X .

Each set S ∈ F has a non-negative weight w(S) associated with it - if w(S) = 1 for all

S ∈ F , we have the unweighted Set Cover Problem. A feasible solution to a set cover

instance is a collection of sets T ⊆ F such that ∪S∈TS = X . Such a feasible solution

is called a set cover, whose weight is the sum of the weights of the sets in the cover.

The objective is to find a minimum weight set cover for any instance (X ,F , w). If the

problem is NP-hard, then an optimal solution cannot be determined in polynomial

time unless P = NP. In such cases, we seek efficient algorithms that compute near

optimal solutions, known as approximation algorithms. A c-approximation algorithm

for a minimization problem returns a feasible solution whose weight is at most c

times that of an optimum solution. An algorithm that for any ε > 0, computes a

(1 + ε) approximation for an optimization problem is termed as a Polynomial Time

Approximation Scheme (PTAS).

We begin with a brief description of the history and origins of the Set Cover

problem, leading to its consideration in the geometric setting.

Set Cover is one of the 21 NP-complete problems presented in [49], and its

study has led to the development of fundamental techniques for the entire field of

3

approximation algorithms [64]. The standard greedy heuristic for set cover was shown

to have an O(log n) approximation (where n = |X |) [48]. A series of subsequent

results [14, 33, 57, 59] have established that Set Cover is hard to approximate to

better than a log-factor (under standard complexity-theoretic assumptions) i.e. the

set cover problem cannot be approximated to within a o(log n) factor unless P = NP,

thus settling the computational complexity for the set cover problem.

The Set Cover problem becomes more tractable in geometric settings i.e. when

the the family of subsets F are induced by geometric objects (such as disks, half-

planes, triangles etc) - for example, covering points using disks in the Euclidean

plane. Most geometric set cover problems remain NP-hard, and there are instances

in which it is hard to approximate as well [30, 42]. However, it is possible to get a

better approximation factor for several versions of the geometric set cover. Some of

these improved results have been achieved by exploiting the combinatorial properties

that are specific to the set system [15, 53]. Several other results have relied on more

generic properties of the geometric set system (such as low VC dimension or small

union complexity). A sequence of results [20, 27, 31, 44] led to the formulation of

O(log |OPT |) approximation algorithms for (unweighted) geometric set cover using

objects such as disks, triangles and axis-parallel rectangles, where |OPT | denotes

the cardinality of an optimal solution. Clarkson and Varadarajan [28] subsequently

proved that exploiting the union complexity of the set system gives improved ap-

proximation bounds for covering using fat objects (fat objects are objects for which

ratio of its smallest enclosing circle and largest enclosed circle is bounded by a con-

4

stant). Specifically, they gave a O(log log |OPT |) approximation guarantee for fat

triangles and a constant factor approximation for pseudodisks. For fat triangles, a

series of improvements [5, 62]) followed, culminating in the current best approxima-

tion guarantee of O(log log∗ |OPT |) given by Ezra et al. [32]. For covering points

using minimum number of disks in the plane, the approximation guarantee had been

improved recently by Mustafa and Ray [58], who showed that a simple local search

based PTAS exists for the problem.

A generalization of the Set Cover problem is the Set Multi-cover problem, in

which each element x in the ground set X has a positive demand κ(x). A subset S ∈ F

is a feasible multi-cover if each x ∈ X is covered by at least κ(x) distinct sets in F . It

is well known that the natural greedy algorithm yields a logarithmic approximation

for Set Multi-cover problem as well. For the case of unweighted Set Multi-Cover

Problem using geometric objects of finite VC-dimension, Chekuri et al. [24] gave

a O(log |OPT |) approximation. They also gave constant factor approximations for

multi-covering points in the plane using (unweighted) pseudo-disks and other fat

objects. Bansal and Pruhs [10] built on the techniques in [22, 63] to give an O(1)

approximation for the weighted Set Multi-Cover Problem for covering points using

disks on the plane (and other set systems having low union complexity).

In the geometric covering problems discussed so far, the family of subsets

are “immutable”, and the complexity of the problem stems from the combinatorial

geometry of the objects. Har-Peled and Lee [43] consider a version of covering points

using disks in the plane, where the disks are allowed to expand by a fixed fraction

5

specified as an input parameter. The authors give a PTAS for this problem. A more

“flexible” covering problem (in terms of flexibility to alter the size of the subsets in

the family F) is the minimum cost covering (MCC) problem, which is described as

follows.

Before defining the MCC problem formally, we briefly define some of the as-

sociated terminology. A metric space on a set of points P is the ordered pair (P, d)

where d : P×P → R∪{0} is a metric i.e. for any x, x′, z ∈ P , the following holds: (1)

d(x, x′) = d(x′, x), and (2) d(x, z) ≤ d(x, x′)+d(x′, z). A ball δ(x, r) is the subset of a

set of points P whose distance from x is at most r i.e. δ(x, r) = {x′ ∈ P | d(x, x′) ≤ r},

where x is denoted as the center of the ball and r is the radius of the ball. The input

to the MCC problem are two point sets, X (clients) and Y (servers) and a metric d on

X ∪Y . For z ∈ X ∪Y and r > 0, the ball δ(z, r) is the set {z′ ∈ X ∪Y | d(z, z′) ≤ r}.

A cover for X is a set of balls centered on the points in Y (servers), the union of

which contains X. The cost of a ball δ(y, r) is rα, where α ≥ 1 is a parameter of the

MCC problem (but not of a problem instance). The objective of the MCC problem

is to find a cover whose cost is minimum.

Motivation for studying the MCC problem lies in the domain of wireless net-

work design. The servers i.e points in Y can be considered to be the locations of

mobile towers, and the points in X can represent (possible) locations of clients. Each

tower y ∈ Y can be configured such that it covers all clients within a certain distance

r(y), and the service cost r(y)α increases with the distance - this corresponds to the

additional transmission energy needed to serve more distant points. For modeling

6

realistic wireless networks, the value of α is usually considered to be at least 1.

The MCC problem has been extensively studied [3, 8, 19, 54] - we would discuss

the results in detail in Section 1.2. A natural extension to the MCC problem lies in

the domain of fault-tolerant wireless network design. Assume that a set of mobile

users need to have access to a cellular network. A communications company has a set

of potential locations where it can place its base stations. Each base station has an

operational cost that is proportional to the area covered by that station. Further, each

client may need to be covered more than once, the coverage requirement of each client

being representative of its priority or level of service desired. Establishment of base

stations that minimizes the operating cost while providing adequate coverage to the

users leads to the formulation of the fundamental optimization problem considered

in this thesis, which we formally define as follows.

Definition 1. Given are a set of points X (clients), a set of points Y (servers), a metric

d on the set X ∪Y , a coverage function κ : X → Z+∪{0} and α ≥ 1. An assignment

r : Y → R+ corresponds to “building” a disk of radius ry centered at each y ∈ Y .

For any positive integer j, we say a client x ∈ X is j-covered if x is contained in at

least j server disks i.e.

|{y ∈ Y | d(y, x) ≤ r(y)}| ≥ j.

The goal is to find an assignment r that κ(x) covers each client x ∈ X and minimizes∑
y∈Y r

α
y . We call this the Metric Multi-Cover (MMC) problem.

Notice that the MCC problem is a special case of the MMC problem, where

κ(x) = 1 for each client x ∈ X. The MMC problem also arises naturally in the design

7

of wireless sensor networks, where the energy source of each sensor is often limited

to an attached battery cell. The energy consumed can be considered to be linear

in the area of the region covered by the corresponding sensor. Some applications of

such networks may require multiple sensors monitoring an area for event detection,

whereas in other applications, security or fault-tolerance requirements may mandate

a multi-cover of the client set. The MMC problem was shown to be NP-hard even for

κ(x) = 1,∀x ∈ X, α > 1, the set of clients and servers being points on the Euclidean

plane R2 [3, 19].

It would seem that the MMC problem is a special case of the Set Multi-Cover

problem, using the following reduction from MMC to the Set Multi-Cover problem:

for each y ∈ Y and x ∈ X, add a ball centered at y with radius d(x, y)α, and let X

be the set of points that need to be covered. The reason this reduction does not work

is that we have to add an additional constraint saying that we can use only one ball

centered at each y ∈ Y . Notice that this additional constraint is not an issue for the

case k = 1, since here if the returned solution uses two disks centered at the same

y ∈ Y , we can simply discard the smaller one. Since MMC is not a case of the Set

Multi-Cover, we cannot use the result of Bansal and Pruhs [10] for multi-covering

using disks in the plane for the MMC problem in the plane.

We consider multiple variants of the MMC problem, in increasing order of

complexity. We first look at the MMC problem where the underlying metric space is

the plane i.e. the point sets X, Y are points on the Euclidean plane, and the distance

between any two points is the Euclidean distance between two points. We refer to

8

this version of the problem as the planar multi-covering problem (PMC), for which

we give the first constant factor algorithm in which the constant is independent of

the coverage function κ. Our approximation algorithm has an interesting property

as well, in that it can handle incremental increases in the coverage requirement by

simply increasing the radii of one or more disks in the erstwhile cover, while staying

with the approximation guarantee.

The next version of the MMC problem that we consider is the uniform MMC

problem, in which each client has a demand of k, the latter being a positive integer.

We give a constant factor approximation for this problem, the crux of our contribution

being the formulation of a partitioning scheme that reduces the problem to several

instances of the MCC problem while preserving optimality up to a multiplicative

constant factor. Our approach is robust enough to generalize to the MMC problem,

where each client has a possibly different demand. Using some additional ideas, we

obtain an O(1) approximation for this problem as well.

We also consider a variant of the MMC problem that shares some key features

with clustering problems, which we discuss next. Clustering is a ubiquitous problem

that arises naturally in applications as diverse as data mining, image processing,

machine learning and bioinformatics. The input to a clustering problem instance is

a set X of n points in a metric space (X, d) and a positive integer t. The objective is

to cover the points of X using at most t balls centered on points in X, such that the

cost of the cover is minimized. The cost of a cover is sum of the cost of the balls in

the cover, where the cost of a ball is defined in exactly the same way as in the case

9

of MCC i.e, if the radius of a ball is r, its cost is rα, where α ≥ 1. This problem is

known as the t-clustering problem, and it is one of the most well-studied optimization

problems both from theoretical and practical perspectives [8, 19, 23, 29, 37, 38]. The

t-clustering problem can be seen as a variant of the MCC problem, where the set of

servers Y is the same as the set of clients X, with the added restriction of using at

most t balls in the solution. Motivated by this problem, we consider the following

generalization in the multi-covering domain.

Definition 2. Given are a set of points X (clients), a set of points Y (servers), a

metric d on the set X ∪ Y , a coverage function κ : X → Z+ ∪ {0}, a positive integer

t and a constant α ≥ 1. The goal is to find an assignment r that κ(x) covers each

client x ∈ X and minimizes
∑

y∈Y r
α
y , using at most t balls. We call this the t-MMC

problem.

Finally, we re-visit the MCC problem from the standpoint of techniques used

to give an approximate solution. For arbitrary metric spaces, the constant factor

algorithms that are known are based on the primal-dual scheme [12, 13, 23]. Motivated

by geometric ideas, we give a constant factor approximation for the MCC problem

using an adaptation of the Local Search technique.

We now give an overview of the thesis structure as a roadmap for the reader.

1.1.1 Thesis Structure

In this document, we look at approximation algorithms for the MMC problem

and its variants. We first provide a local search algorithm for the MCC problem

10

in Chapter 2 as an alternative to the LP relaxation based approach that is known in

the literature. We consider the multi-covering problems next. An important concept

for multi-covering problems is the concept of an outer-cover, which is a 1-cover in

which the balls used to cover clients have additional constraints. We discuss this

concept in Chapter 3. We consider the problem of multi-covering in the plane (Pla-

nar Multi-Covering) in Chapter 4, which uses the concept of an outercover. For

multi-covering in an arbitrary metric space, we introduce the concept of partitioning

a multi-covering problem into several instances of the MCC problem while staying

within a constant multiplicative factor of the optimal cover. Chapter 5 describes the

partitioning algorithm in detail, while Chapter 6 and Chapter 7 use the partitioning

algorithm to give constant factor approximations for the uniform and non-uniform

multi-cover problem, respectively. The t-MMC problem is considered in Chapter 8,

where we give the first constant factor approximation for it by using ideas presented

in Chapter 5 and deriving a modified outer-cover bound. Finally, we give a summary

of the open problems posed by our thesis in Chapter 9.

In the rest of this chapter, we look at the problems considered in this thesis. For

each problem, we provide additional background, review previous work and describe

our contributions to the problem.

1.2 A Local Search Algorithm for the MCC Problem

We look at the MCC problem from the point of view of techniques used to solve

the problem. Specifically, our objective is to find a constant factor approximation

11

for the MCC problem using a simple geometric approach, without using LP-based

methods. To understand why we look for a combinatorial algorithm for the MCC

problem, let us consider the closely related problem of metric facility location (MFL),

that is defined as follows.

Definition 3. We are given two point sets F (facilities) and C (clients). Each facility

f ∈ F has an opening cost cost(y) and connecting a client c ∈ C to an open facility f

incurs a cost d̄(c, f). A feasible solution consists of a subset of open facilities O ⊆ F ,

in which each client is connected to the nearest open facility in O. The cost of any

feasible solution O is the sum of opening costs of the facilities in O and the connection

costs of each client c ∈ C. The objective is to find a feasible solution of minimum

cost. When the connection costs of the clients form a metric, this problem is known

as the metric facility location problem.

The metric facility location (MFL) problem is a classical NP-hard optimiza-

tion problem that has been extensively studied [64]. Under standard complexity as-

sumptions, Guha and Khuller [39] showed that MFL cannot have an approximation

guarantee of 1.463 or better.

The main distinction between the two problems is in the nature of the connec-

tion costs - for MFL problem, the connection cost incurred by each server is the sum

of the connection costs of the individual clients connected to it, whereas for the MCC

problem, the connection cost charged to a server is the maximum connection cost

amongst the clients connected to that server. Informally, while each open facility is

compelled to pay the connection costs for each client that it serves, the servers in the

12

MCC problem only pay for the connection cost of the farthest client that it serves.

This aspect of the MFL problem influences the algorithmic techniques that can be

used to derive approximations for it.

1.2.1 Previous Work

For MFL problem, the two main algorithmic paradigms that have been used

to derive constant factor approximations are (a) standard linear programming (LP)

relaxation techniques, such as filtering [56], randomized rounding [25, 60], primal-dual

framework [46], and dual fitting [47], culminating in the current best approximation

guarantee of 1.488 [55], and (b) combinatorial techniques such as Local Search [7, 52].

Both these approaches have yielded constant factor polynomial time approximations

for the MFL problem.

We focus on the Local Search technique, which has proved to be a popular

heuristic for hard combinatorial problems due to their simplicity. Such a heuristic

starts out with a initial feasible solution, then iteratively improves it by “simple”

changes to the existing solution till no further improvement is possible. If I be

an instance of the minimization problem, let global(I) denote the cost of the global

optimum solution whereas the cost of the solution returned by a local search heuristic

be denoted by local(I). The supremum of the ratio local(I)/global(I) is termed as

the locality gap of the local search procedure.

In the context of the MFL problem, an example of an operation that alters

the existing solution is addition, deletion or swap of an open facility with a closed

13

facility. Korupolu et al. [52] showed that a local search algorithm using such an

operation in the improvement step has a locality gap of at most 5. The analysis of

this local search algorithm was subsequently improved by Arya et al. [7] who showed

that the locality gap is at most 3 and that the gap is tight.

Prior to our work on the MCC problem, the only known polynomial time

constant factor approximations used variations of the primal-dual framework [13, 23]

to give a 3α approximation. Such LP relaxation based approaches are difficult to

extend to solve variants of the MCC problem (such as involving capacitated servers

for example). We note that even when the underlying metric is the Euclidean norm,

a combinatorial constant factor approximation is known only for the case α ≥ 2 [1].

This approach exploits the fact that for α = 2, the objective function is trying to

minimize the sum of the areas of the disks. We note that despite the ostensible simi-

larities between the two problems MFL and MCC, the latter has not been amenable

to any local search based approximation algorithms prior to our work.

1.2.2 Our Contribution

Our main contribution is a polynomial time algorithm that gives a constant

factor approximation for the MCC problem, without using a LP relaxation based ap-

proach. We give a simple geometric algorithm that modifies the local search technique

for the MCC problem. This is a joint work with my advisor, Kasturi Varadarajan.

We first discuss why the standard local search algorithm does not work for the

MCC problem, in order to develop the intuition needed for the modification.

14

Any feasible solution for an instance of the MCC problem consists of balls

drawn from the set B of at most |X| × |Y | distinct balls. For the MCC problem,

traditional local search works as follows - we start with a feasible solution C ⊆ B,

and we see if the cost of the solution can be decreased with small changes to the

cover i.e. by bringing in a constant number of balls in C and removing a constant

number of balls from C while retaining feasibility of the cover. Let k > 0 be the

integer that represents the constant for the standard local search algorithm. Then,

a straightforward implementation of such a scheme would check all possible O(n2k)

2k-tuples, incurring a naive run time of O(n2k). Such an approach yields a polynomial

time algorithm only if k is a constant independent of |X|, |Y |.

The aforementioned approach yields constant factor approximations for the

MFL problem, but fails to do so for the MCC problem. To see why, we consider the

following example depicted in Figure 1.1. The filled (blue) circles represent clients in

X, while the (red) crosses represent the servers in Y , and let α = 1. The distance

between the central server and the clients is r, while the distance between any other

server and its adjacent client is an arbitrarily small number ε. The optimal cover in

this configuration would consist of the balls of radius ε, centered at each of the servers

in the periphery, incurring a total cost of n·ε (assuming r >> n·ε). Now, consider the

iteration in the traditional local search algorithm when the feasible solution consists

of the single ball centered on the server in the center, whose cost is r. This cost of this

solution cannot be decreased if the algorithm considers less than n balls in a single

iteration, which makes it an infeasible approach. This example thus suggests that

15

a successful approach would consider all cheap balls before considering the inclusion

of an expensive ball, instead of adding them in any arbitrary order. We discuss

this approach (of considering the balls in a certain order determined by their size)

in Chapter 2.

r
r

r

r

r
r

r

rε

ε

ε

ε

ε

ε

ε

ε

Figure 1.1: Clients are filled (blue) circles, servers are (red) crosses, and the labels
represent inter-point distances, where r ∈ R∪{0}, ε > 0. If a feasible solution includes
the ball centered on the server in the middle, then an improvement to that solution
can only be made if the local search algorithm considers all balls of radius ε centered
on the remaining servers in a single improvement step.

16

1.3 The Planar Multi Covering (PMC) Problem

We are given two point sets Y (servers) and X (clients) in the plane, a coverage

function κ : X → N, and a constant α ≥ 1. An assignment r : Y → R+ of radii to

the points in Y corresponds to “building” a disk of radius ry centered at each y ∈ Y .

For an integer j ≥ 0, let us say that a point x ∈ X is j-covered under the assignment

if x is contained in at least j of the disks, i.e.

|{y ∈ Y | ||y − x||2 ≤ ry}| ≥ j

The goal is to find an assignment that κ(x)-covers each point x ∈ X and minimizes∑
y∈Y r

α
y . We call this the planar multi cover (PMC) problem, for which we want to

obtain a constant factor approximation algorithm.

The version of this problem where κ(x) = k, ∀x ∈ X, for some given k > 0, has

received particular attention. Here, all the clients have the same coverage requirement

of k. We will refer to this as the uniform PMC problem. In the context of the uniform

PMC, we will refer to a j-cover as an assignment of radii to the servers under which

each client is j-covered.

1.3.1 Previous Work

The (uniform) PMC problem was considered in two recent papers, motivated

by fault-tolerant sensor network design that optimizes energy consumption. Abu-

Affash et al. [1] considered the case α = 2, which corresponds to minimizing the sum

of the areas of the server disks. They gave an O(k) approximation for the problem

using mainly geometric ideas. Bar-Yehuda and Rawitz [13] gave another algorithm

17

that achieves the same approximation factor of O(k) for any α, using an analysis

based on the local ratio technique.

1.3.2 Our Contribution

In this article, we obtain an O(1) approximation for the PMC problem. That

is, we demonstrate an approximation bound that is independent of κ. This is a joint

work with Shi-Ke Xue and Kasturi Varadarajan [16, 17].

In the interests of clarity, we briefly describe our approach for the simpler

case of the uniform PMC problem, where κ(x) = k for all clients x ∈ X. Our

approach revolves around the notion of an outer cover. This is an assignment of radii

to the servers under which each client x ∈ X is covered by a disk of radius at least

||yk(x) − x||2, where yk(x) is the k-th nearest neighbor of x in Y . To motivate the

notion, consider any k-cover, and in particular, the optimal one. Consider the set of

disks obtained by picking, for each client x ∈ X, the largest disk covering x in the

k-cover. (Several clients can contribute the same disk.) This set of disks is seen to

be an outer cover.

We provide a mechanism for extending any (k − 1)-cover to a k-cover so that

the increase in objective function cost is bounded by a constant times the cost of an

optimal outer cover. This naturally leads to our algorithm in Section 4.2 – recursively

compute a (k−1)-cover and then extend it to a k-cover. To bound its approximation

ratio, we argue that the optimal solution can be partitioned into a (k − 1)-cover and

another set of disks that is almost an outer cover. Finally, we need a module for

18

computing an approximately optimal outer cover. We show in Chapter 3 that an

existing primal-dual algorithm for 1-covering can be generalized for this purpose.

The idea of an outer cover has its origins in the notion of primary disks used

by Abu-Affash et al. [1]. Our work extends on this idea in a significant manner, and

this is partly what enables our O(1) approximation bound.

1.4 The Metric Multi-Cover Problem

The Metric Multi-Cover (MMC) problem is a generalization of the PMC prob-

lem described in the previous section, such that the input point sets X, Y are set in

an arbitrary metric space (X ∪ Y, d). We have defined the problem formally in Defi-

nition 1, and we present the first constant factor approximation (independent of the

coverage function κ) in this document. The results on metric multi-cover are joint

work with Tanmay Inamdar and Kasturi Varadarajan [18].

1.4.1 Previous Work

Bar-Yehuda and Rawitz [13] were the first to give an approximation algorithm

for the MMC problem in which X, Y are points in an arbitrary metric space. They

presented a 3α · k approximation guarantee, using the local-ratio technique. They

also consider the non-uniform version of the problem, where the coverage demand of

each client is an arbitrary integer that is not necessarily related to the demands of

the other clients. They obtain a 3α · kmax approximation for this version, where kmax

is the maximum client demand. Their guarantees also hold for minimizing a more

general objective function
∑

y∈Y (wyr(y))α, where weight wy ≥ 0 is specified for each

19

server y as part of the input; we do not address this objective function here.

Fault tolerant versions of other related problems have also been studied in the

literature – facility location [21, 40, 61], t-median [41], and t-center [51]. Constant

factor approximations are known for all these problems in the metric setting. In

particular, the results for facility location solve the natural LP-relaxation and perform

a clever rounding. These rounding methods do not readily extend to our setting. One

reason for this is the fact that we are dealing with a covering problem; another reason

is the additional constraint that one has to write in the LP saying that each server

can house at most one ball.

1.4.2 Our Contribution

We present a polynomial-time algorithm that reduces the MMC to several

instances of the 1-covering version, where k = 1. This reduction preserves optimality

to within a constant multiplicative factor. More specifically, our reduction outputs

pairwise disjoint subsets Y1, Y2, . . . , Yk of servers such that computing an optimal 1-

cover of the clients X using each Yi and combining the 1-covers results in a solution

whose cost is O(1) of the optimal cost.

Using a known constant factor approximation algorithm for computing a 1-

cover, we obtain an O(1) approximation for the MMC problem in any metric space,

achieving a guarantee that is independent of the coverage demand k. This resolves

a problem left open by Bhowmick et al. [17], whose approximation guarantee in

the Euclidean setting depends on the dimension. Concretely, our approximation

20

guarantee is 2 · (108)α. We have not attempted to optimize the constants, as our

focus is on answering the question of whether a guarantee independent of k and the

dimension is possible.

This result represents a major advance over [17] in our understanding of the

MMC problem. To explain this, we first reiterate the overall approach of [17]. They

first compute covers ρi for X, for 1 ≤ i ≤ k. Each ρi is actually a special type of

cover called a level i outer cover, as described precisely in Chapter 3. They show that∑k
i=1 cost(ρi) is, up to a constant factor, a lower bound on the cost of the optimal

solution to the MMC. Note that a server in Y may contribute a ball to many of the

ρi, so the union of the ρi is not a feasible solution to the MMC.

Their algorithm for computing a k-cover is recursive – it first computes a

(k − 1)-cover and then extends it to a k-cover. They bound the increase in cost in

going from an (i− 1)-cover to an i-cover by cd · cost(ρi), where cd is a constant that

depends on the dimension d and α. To extend their approach to the metric setting,

one would have to bound the increase in cost in going from an (i − 1)-cover to an

i-cover by c · cost(ρi), where c is a constant (that depends only on α).

This is not possible, as the following “high-dimensional” example shows. Sup-

pose that k, the coverage requirement, is even and α = 1. Let

X = Y = {±ej | 1 ≤ j ≤ k/2},

where ej is the point in Rk/2 with 1 in the j-th coordinate and 0 in the other coordi-

nates. Thus, each of the k points is both a client and a server; each client has k − 2

points at distance
√

2 from it, and one ‘antipodal’ point at distance 2 from it. Here,

21

we can let ρi, the level i outer cover, for each i, to be the singleton set {δ(e1, 2)},

where δ(p, r) denotes the ball of radius r centered at p.

Now suppose the (k−1)-cover we have at hand is {δ(y,
√

2) | y ∈ Y }. That is,

the radius assigned to each y ∈ Y is
√

2. Now an optimal k-cover is {δ(y, 2) | y ∈ Y },

since in any k-cover each client needs to be contained in the ball centered at its

antipodal server. Thus the increase in cost incurred by the algorithm in going from

the (k−1)-cover to a k-cover is at least (2−
√

2)k, which is larger than cost(ρk) = 2 by

a multiplicative factor of Ω(k). Thus, the curse of dimensionality afflicts the analysis

framework of [17].

In this article, we take a different approach. We extract k disjoint subsets

Y1, Y2, . . . , Yk of Y . For each subset Yi, we compute a set of balls centered at Yi

that covers X, using as a black-box any constant factor approximation algorithm for

1-covering [23, 34]. This gives us k covers that result in a feasible solution for the

MMC problem, as the k server subsets are disjoint.

To obtain an approximation guarantee using this approach, we require that the

disjoint subsets Y1, Y2, . . . , Yk satisfy the following property: for each client from some

representative family, Yi should contain at least one server from among the i servers

nearest to the client. This concept appears to be of interest beyond its application

to the MMC problem. Notice that the property becomes stricter as i gets smaller.

A bad choice of servers Yi can mean that there is no feasible choice of Yj for j < i.

Thus it is not clear that the desired family of k subsets exists. One of our main

technical contributions is a constructive proof that a family satisfying some closely

22

related property does indeed exist - this has been extracted into a separate result

in Chapter 5.

Having constructed the k disjoint subsets, we bound the approximation factor

by first showing that the cost of an optimal cover of X using servers Yi is within

a constant of the cost of any i-level outer cover. This is straightforward given the

property that Yi satisfies. To finish, we use the result of [17], that there exists an

i-level outer cover ρi for each 1 ≤ i ≤ k such that sum of the costs of these k outer

covers serves as a lower bound for the optimal MMC solution. Notice that unlike [17],

we use the notion of outer covers only in the analysis and not the algorithm itself.

Our approach is robust enough to generalize to the non-uniform version of the

MMC problem, where each client has a possibly different demand. We obtain an O(1)

approximation for this problem as well. The approach tracks that of the uniform case

very closely, but needs one additional idea to overcome a technical complication. We

describe the generalization to the non-uniform MMC in Chapter 7.

1.5 The t-MMC Problem

To our knowledge, the t-MMC problem, where we are given a bound t on the

number of servers that can be opened, has not been studied in its generality. The

special case of 1-covering (k = 1) has, however, received considerable attention. Here,

one wants to find t server balls to cover the clients, and minimize the sum of (the

α-th powers of) the radii of the balls; this may be compared to the t-center problem,

where one wants instead to minimize the maximum radius. For this special case of

23

t-MMC, Charikar and Panigrahy [23] address the metric setting and give an O(1)

approximation. Although they explicitly address only the case α = 1, their guarantee

generalizes to any α ≥ 1. Exploiting the special structure for the case α = 1, Gibson

et al. [38] give a polynomial time algorithm for solving the problem exactly in Rd if

the underlying metric is `∞ or `1; for the `2 metric they obtain a polynomial time

approximation scheme.

1.5.1 Our Contribution

For the t-MMC, which is addressed in Chapter 8, the computation of disjoint

server subsets is identical to that of the MMC. However, the reduction to 1-covering

is subtler as we have to worry about how many open servers are allowed for each

1-covering instance. One tool we develop to address this issue is the extraction of

k outer covers from the optimal solution with additional guarantees on the number

of servers opened in each outer cover. It is worth pointing out that in the case of

1-covering in the context of t-MMC, the only known approximation is the somewhat

involved algorithm of Charikar and Panigrahy [23]. Thus, it is especially fortuitous

that we are able to deal with the t-MMC by reducing to the 1-covering case, for which

we can use their algorithm as a black box.

24

CHAPTER 2
A LOCAL SEARCH ALGORITHM FOR THE MCC PROBLEM

2.1 A Directed Local Search Algorithm

The input consists of a set of clients X and a set of servers Y in an arbitrary

metric space (X ∪ Y, d), along with a constant α ≥ 1. Let δ(y, r) denote the ball

of radius r centered on the server y, i.e. δ(y, r) = {u ∈ X ∪ Y | d(y, u) ≤ r}. The

objective is to cover the clients in X at least once using balls centered on the servers in

Y , such that the sum of the α-th powers of the radii of the balls is minimized. Without

loss of generality, we assume that the distances in the metric space are scaled such

that the minimum inter-point distance is 1. We define the level of any ball δ(y, r),

L(δ(y, r)), as the minimum positive integer i such that r ≤ 16i. If the level of a ball

δ(y, r) is i, then we refer to the ball δ(y, 16i) as the levelled ball corresponding to the

ball δ(y, r).

We now describe the pre-processing step. We first observe that any feasible

solution for an instance of the MCC problem consists of balls drawn from the set B of

at most |X| × |Y | distinct balls. For each ball δ(y, r) ∈ B, we add its corresponding

levelled ball to B̄. Let Lmax = max
δ∈B

L(δ) i.e. the maximum level of any ball in B. We

refer to all balls in B̄ having the same level i by B̄(i). Obviously,
Lmax⋃
i=0

B̄(i) = B̄. The

balls in B̄ are input to Algorithm 2.1.

Before describing the algorithm for computing a feasible cover that approxi-

mates any optimal cover, we introduce needed concepts. We first define a r-net as

25

follows. For a positive integer r, an r-net of a graph G = (V,E) is a set S ⊆ V such

that every path in G between any two vertices in S has at least r edges in it, and for

every u ∈ V \ S, there exists a vertex v ∈ S such that u is reachable from v using a

path in G having at most r − 1 edges. An r-net is a fairly well-known concept; for

instance, a 2-net is simply an independent set that is maximal by inclusion.

Algorithm 2.1 Directed LS

Require: The set of balls B̄.
1: C ← The levelled balls corresponding to the primary cover Cpr.
2: for i = 0 to Lmax do
3: Ni ← ∅.
4: C̄(i)← ∅.
5: for all δ̄ ∈ B̄(i) do
6: C̄ ← {δ ∈ C | L(δ) ≤ L(δ̄), δ ∩ δ̄ 6= ∅}.
7: if 11α · cost(δ̄) < cost(C̄) then
8: Ni ← Ni ∪ δ̄.
9: Add all balls in C̄ to the set C̄(i).
10: Let Gi = (Ni , Ei) be a graph whose vertices are the balls in Ni and (δ, δ′) ∈ Ei

iff there is a ball δ̄ ∈ C̄(i) such that δ ∩ δ̄ 6= ∅ and δ′ ∩ δ̄ 6= ∅.
11: Ri ← A maximal 3-net of Gi.
12: R̄i ← {11 · δ̄ | δ̄ ∈ Ri}.
13: C ← C \ C̄(i) ∪ R̄i.
14: return L← The set of balls in C.

For each client x ∈ X, we denote the nearest server to x in the set Y as its

primary server. For every server y ∈ Y , we construct a ball δ(y, d(y, x′)), where x′

is the farthest client in X for which y is a primary server. The set of all such balls

constitute a feasible solution, termed as the primary cover. Note that in any feasible

solution, each client is covered by a ball that is at least as far away as its primary

26

server.

Before describing the directed local search approach, let us consider the follow-

ing simpler algorithm. We start with the primary cover C. The algorithm attempts

to improve the cover C by testing against all candidate balls (in B) in non-decreasing

order of size (and thus cost) as follows. Let δc be a candidate ball. If δc ∈ C, no

action is taken and the algorithm chooses the next candidate ball according to the

aforementioned ordering. If δc /∈ C, we try to determine if the cover C can be im-

proved (i.e. cost of C can be decreased) by the addition of δc to C. Let Nc be the set

of smaller balls in C that intersect δc. If 3 · cost(δc) < cost(Nc), then the cover C

is modified by adding δc (expanded by a factor of 3) to C and removing Nc from C.

The expansion of δc is needed to retain feasibility of the cover C, so as to cover all

clients in X that were previously covered by balls in Nc. The step is repeated for all

candidate balls in non-decreasing order of size to get the final cover.

Unfortunately, it is possible to end up with a solution whose cost is unbounded

with respect to an optimal solution if we adopt the above algorithm without any

modifications. Algorithm 2.1 is a refinement of the above idea in order to ensure that

the resultant solution has a constant factor approximation guarantee.

The algorithm starts off with a feasible cover C, obtained from the levelled

balls in the primary cover Cpr. It then tries to improve the cost of C using the set of

all possible balls B̄. The outer loop (lines 2 to 13) is used to iterate over the levels

of the balls in B. In lines 5 to 9, we identify cheap candidate balls in B̄(i). After

all balls in B̄(i) have been considered, the set Ni consists of all candidate balls for

27

which a cost improving swap exists. We choose a subset of balls Ni for inclusion in

the cover C in Lines 10 to 13, as described in the following. We construct the graph

Gi in which the vertices are the balls in Ni and there is an edge between two balls

δ1, δ2 ∈ Ni if there is a ball δ′ ∈ C̄(i) such that δ1 ∩ δ′ 6= ∅ and δ2 ∩ δ′ 6= ∅. The

algorithm computes a maximal 3-net on the graph Gi, and the balls corresponding

to the vertices of the 3-net are denoted by Ri. The improved solution is then created

by swapping out the balls in C̄(i) and adding the expanded balls corresponding to Ri

(denoted by R̄i) to C (lines 10 to 13). We note that the feasibility of the cover C is

maintained after the swap, as formalised in the following observation.

Observation 2.1. After each iteration of the outer loop, the balls in C form a feasible

cover for X.

Proof. Before the first iteration, C was initialized using the levelled primary cover,

and thus was a feasible cover. We assume C is feasible after the (i− 1)-th iteration,

and consider its feasibility during iteration i. C is modified only in Line 13, when

the balls in C̄(i) are replaced by the balls in the net Ri. We show that C remains a

feasible cover after the swap in the following. Let x ∈ X be an arbitrary client. If x

was covered by any ball in C \ C̄(i) prior to the swap, then x remains covered after

removing C̄(i) from C. Consider the case where x was covered by δ ∈ C̄(i) prior

to the swap. Let δ̄ ∈ B̄(i) be the candidate disk such that δ̄ ∈ Ni and δ ∩ δ̄ 6= ∅.

If δ̄ ∈ Ri, then x remains covered by the ball 11 · δ̄ that is added to C during the

swap, since L(δ̄) ≥ L(δ) by definition of C̄(i). Finally, we consider the case where

δ̄ ∈ Ni \ Ri. Since Ri is a maximal 3-net constructed from the Gi (the intersection

28

graph of Ni), and δ̄ /∈ Ri, there exists some ball δ′ ∈ Ri that is two hops away from δ̄

in Gi. By definition of Gi, any pair of adjacent disks in Gi are of level i and intersect

a common ball in C whose level is at most i. Hence, the ball 11 · δ′ contains the ball

δ̄, ensuring that x is covered after the swap.

After considering each candidate ball in B̄, the algorithm returns the resultant

cover C. Note that in this approach, each ball gets tested exactly once for inclu-

sion in the final cover. This is unlike traditional local search algorithms - in which

each ball may be considered multiple times in arbitrary order before the algorithm’s

termination.

2.2 Approximation Guarantee

In this section, we shall see how the set of balls returned by Algorithm 2.1 is

a constant factor approximation to the MCC problem. We introduce the concept of

a directed local-search forest (DLF) which forms a key component of the analysis.

F comprises of a set of rooted trees {τ1, τ2, . . . , τj}, where each node of any tree

corresponds to a ball centered on servers in Y . For any tree τ ∈ F , let ρ(τ) denote

the ball corresponding to the root of the tree τ . The forest is constructed as follows.

For each ball δ in the levelled primary cover Cpr, (added in line 1 in Algorithm 2.1),

a tree τ is added to F with δ as ρ(τ) (with δ being the only node in τ). The forest is

updated after each iteration of the outer loop in Algorithm 2.1 as follows. Consider

any iteration i. We maintain the invariant that the roots of the forest F correspond

to the balls in the current feasible solution C. Each ball δ̄ in R̄i is added to F as the

29

parent of the all balls in C̄(i) that intersect the ball δ ∈ Ri corresponding to the ball

δ̄. Once each ball in R̄i has been assigned as a parent to some existing tree in F ,

we remove all trees τ ∈ F for which ρ(τ) is removed from C and no parent from R̄i

has been assigned as a parent to ρ(τ) in F . The forest F thus constructed has the

property that after updation of F at the end of each iteration of the outer loop, the

set of balls corresponding to the roots of F constitute the current feasible solution

C. It follows that when the algorithm terminates, the solution returned corresponds

to the roots of the trees in F .

We define some terminologies that will be used subsequently. Consider a tree

τ ∈ F . For any ball δ that is a node in τ , let child(δ) denote the set of balls for

which δ is a parent in τ . For a set of balls D, let child(D) = {child(δ) | δ ∈ D}

denote the children of D in F . Consider τ ∈ F , and let Π(τ) = {π1, π2, . . . } denote

the set of all root to leaf paths in τ , where πi consists of the set of balls in the i-th

root to leaf path in τ . By a slight abuse of notation, we use Π(F) to denote the set

of all root to leaf paths for all τ ∈ F .

Let OPT denote the set of balls that form any optimal solution to the given

instance of the MCC problem, and let OPT ′ be the levelled balls corresponding to

OPT . Obviously, OPT ′ ⊆ B̄.

We are now ready to state the main lemma that is used in the analysis.

Lemma 1. Let L be the set of balls returned by Algorithm 2.1, and let OPT ′ be any

levelled optimal solution for the MCC instance (i.e. the radius of each ball is set to

its nearest power of 16). Let F be the directed search forest constructed as described

30

before, and let Π(F) be the set of all root to leaf paths in F . Then, for each ball δo in

OPT ′, it is possible to find a set α(δo) of balls in F such that the following properties

are satisfied:

• A =
⋃

δo∈OPT ′
α(δo) is a hitting set for Π(F) i.e. for each path π ∈ Π(F), there is

at least one ball in π that also belongs to A.

• cost(A) ≤ O(1) · cost(OPT ′).

Proof. We describe the computation of the set of balls that constitute the hitting set

that satisfies the properties in Lemma 1. Let δo be any ball in the levelled optimal

solution OPT ′. Since OPT ′ ⊆ B̄, the algorithm would have considered δo for inclusion

in the solution at iteration i = L(δo). We define α(δo) as follows:

1. If δo was not added to Ni (in lines 5 to 9), then for the set of balls in C̄

corresponding to δo, we have 11α · cost(δo) ≥ cost(C̄) holds and α(δo)← C̄.

2. Consider the case when δo was added to Ni but not subsequently to Ri. Let C̄

be the set of balls in C of level at most i that intersect δo. Let C̄F ⊆ C̄ be the

set of balls in C̄ that are nodes in F i.e. each ball in C̄F lies in a root to leaf path

in Π(F). Let Π̄ be the set of paths in Π(F) which have at least one node in C̄F .

If Π̄ = ∅, then set α(δo) ← ∅. If Π̄ 6= ∅, then we claim there exists a single

ball δR such that C̄F ⊆ child(δR). Since δo was added to Ni , causing the balls

in C̄F to be removed from C, none of the balls in C̄F are in the final solution

L and hence cannot be the root in any root to leaf path in Π(F). Hence, there

must be one or more parent nodes in Π(F) that contain balls in C̄F . Let δR and

δP be two disks in Ri∩Π(DLF) such that C̄F is contained within the expanded

31

disks 11 · δR and 11 · δP i.e C̄F ⊆ child(11 · δR) and C̄F ⊆ child(11 · δP).

As Ri is a maximal 3-net constructed from the intersection graph Gi, the hop

distance between δR and δP must be at least 3. But this contradicts the fact

that δo intersects both δR and δP (as δo ∩ C̄F 6= ∅), thus proving that C̄F can

have exactly one parent node 11 · δR. We set α(δo)← {11 · δR}, and note that

cost(α(δo)) = 11α · cost(δo).

3. Finally, we consider the case when δo is in Ri. If there is a path π from δo

to one of the roots of F , then π ∈ Π(F) and is hit by δo. In this case, we

set α(δo) ← {11 · δo}. Otherwise, if δo does not lie on a path in Π(F), then

α(δo)← ∅.

It remains to prove that A thus created is a hitting set for all paths in Π(L).

Consider any path π ∈ Π(F), that terminates in a leaf node δp corresponding to some

expanded primary ball. Any such primary ball must intersect at least one ball in an

optimal solution OPT ′, δo, that is of the same or higher level as δp. We consider

the iteration of the outer loop of Algorithm 2.1 for i = L(δo). We recall that by

construction of the forest F , any non-leaf node δ contains the disks corresponding to

its child nodes in F , and cost(δ) < cost(child(δ)). Let δ′ be the first node on π

whose level is at most i i.e. L(δ′) ≤ L(δo) = i. Since π is in the set of all root to leaf

paths remaining after the algorithm terminates, then it must be that δ′ is in C at the

beginning of iteration i. Thus, δ′ belongs to C̄ corresponding to δo since δ′ intersects

δo. If δo was not added to Ni , then δ′ ∈ C̄ = α(δo) and this δ′ “hits” the path π. If

δo was added to Ni but not to the net Ri, then the parent of δ′ is added to α(δo).

32

Finally, if δo was added to Ni and then subsequently to Ri, then 11 · δo is a parent of

δ′ in F and hits π. Thus, A is shown to be a hitting set for Π(F), which completes

the proof.

We can now show that Algorithm 2.1 returns a constant factor approximation

i.e. cost(L) ≤ O(1) · cost(OPT). Consider any ball δl ∈ L, and let τl denote the

tree in F such that ρ(τl) = δl. Let Π(τl) = {πl1, πl2, . . . } denote the set of all root

to leaf paths in τl. By Lemma 1, for each set of balls corresponding to any path

π ∈ Π(τl), there is one ball in π that is also present in A. By construction, each

tree in F has the property that for any non-leaf node δ, the cost of the disk δ at

that node is strictly less than the sum of the costs of immediate child nodes of δ i.e.

cost(δ) < cost(child(δ)). Thus, we have the following relation using the last two

statements:

cost(δl) < cost(τl ∩ A).

Summing up over all balls in L, we have by Lemma 1

cost(L) =
∑
δl∈L

cost(δl) <
∑
δl∈L

cost(τl ∩ A) ≤ cost(A) ≤ O(1) · cost(OPT).

We summarize our result in the following theorem.

Theorem 2. Given point sets X, Y in a metric space (X ∪ Y, d) and a constant

α ≥ 1, Algorithm 2.1 is a combinatorial algorithm that runs in polynomial time and

returns a cover of X that is a constant factor approximation of any optimal cover of

X.

33

CHAPTER 3
OUTERCOVER

In this chapter, we look at a special variant of 1-cover (called an OuterCover),

that is useful in deriving approximations for multi-covering problems.

Definition 4. Given point sets X, Y in a metric space (X ∪ Y, d), let κ′ : X → Z+ be

a coverage function where we assume κ′(x) ≤ |Y | for any client x. For each x ∈ X,

fix an ordering of the points in Y that is non-decreasing in terms of the distance d to

x. We denote the κ′(x)-th nearest server of client x in this ordering by nn(x, κ′).

A κ′-outer cover is an assignment ρ : Y → R+ of radii to the servers such that

for each client x ∈ X for which κ′(x) > 0, there is a server y ∈ Y such that

1. The ball δ(y, ρ(y)) contains x i.e. d(y, x) ≤ ρ(y).

2. Radius of the ball at y is large, that is, ρ(y) ≥ d(x, nn(x, κ′)).

The objective function that we seek to minimize while computing an outer cover is

the function
∑

y∈Y (ρ(y))α.

Given a level κ′-outer cover ρ, and a client x ∈ X with κ′(x) > 0, any server

y that satisfies the two conditions in the definition above is said to serve x; we also

say that the corresponding ball δ(y, ρ(y)) serves x. Observe that we do not require

that a client x with κ′(x) = 0 be covered or served. When κ′ is the constant function

that takes on the value i for all x ∈ X, we denote a κ′-outer cover as an outer cover

of level i. An illustration of an outer cover of level 2 is given in Figure 3.1.

We note that it is NP-hard to compute an optimal κ′-outer-cover, even when

34

Figure 3.1: An example of OuterCover of level 2. The (blue) circles represent clients
in X, the (red) squares represent servers in Y . The disk covering each client in X
has a radius that is at least as large is its distance to its second nearest server in Y .

κ′(x) is a constant for all x ∈ X. This follows from the NP-hardness result in [9

authors], where it is shown that computing a level 1 outer-cover for points in the

plane is NP-hard.

We now look at the properties of a κ′-outer cover in the context of the MMC

problem. In Section 3.1, we derive a lower bound for the cost of an optimal solution

for the MMC problem in terms of optimal outercover costs. In the subsequent section

(Section 3.2), we give a polynomial time algorithm that computes a constant factor

approximation for a κ′-outer cover. Thus, combining the results in this chapter, we

35

get the foundations for approximating the MMC problem.

3.1 The Outer Cover Lower Bound for the MMC Problem

In this section, we derive a lower bound on the cost of an optimal cover for the

MMC problem with coverage function κ : X ← Z+. We first describe the intuition

behind the existence of such a lower bound, by considering the case when κ(x) = k,

for every x ∈ X. Let µi : X ← Z+ denote the coverage function for an outer cover

of level i i.e µi(x) = i for all x ∈ X. Let ρi denote the corresponding outer cover

assignment, and let Bi be the set of balls created by the assignment ρi. If the set

of balls Bi, Bj were to be disjoint for all i 6= j, then the collection of balls ∪ki=1Bi

would form a valid solution for the uniform MMC problem where each client has the

coverage demand k - but its not immediately apparent how the cost of an optimal

MMC solution can be bounded using individual outer cover balls. In the remainder

of the section, we show that it is indeed possible to do so, by allowing a constant

blowup in the total cost.

The following theorem is adapted from [17], which gives a lower bound on the

cost of the optimal solution for the MMC problem.

Recall that for 1 ≤ i ≤ k, the coverage function λi : X → Z+ is defined by by

λi(x) = max{0, κ(x)− (i− 1)}.

Theorem 3. Let κ : X ← Z+ be the coverage function for the MMC problem on

point sets X, Y on the metric space (X ∪ Y, d), and let k = maxx∈X κ(x) denote the

maximum coverage demand. For 1 ≤ i ≤ k, the coverage function λi : X → Z+ is

36

defined by by λi(x) = max{0, κ(x)− (i− 1)}.

Let r′ : Y → R+ be any assignment that constitutes a feasible solution to the

MMC problem. For each 1 ≤ i ≤ k, let µλi denote the cost of an optimal λi-outer

cover. Then
k∑
i=1

µλi ≤ 3α · cost(r′).

Proof. Let B = {δ(y, r′(y)) | y ∈ Y } denote the set of balls corresponding to the

assignment r′. We show that it is possible to form subsets Bi ⊆ B, for each 1 ≤ i ≤ k

such that:

1. µλi ≤ 3α · cost(Bi).

2. Bi ∩Bj = ∅, for each 1 ≤ i 6= j ≤ k.

3. No two balls in Bi intersect, for each 1 ≤ i ≤ k.

If we show this, Theorem 3 follows because

k∑
i=1

µλi ≤ 3α ·
k∑
i=1

cost(Bi) ≤ 3α · cost(B) = 3α · cost(r′).

We create the set of balls Bi in a top-down manner as described in Algo-

rithm 3.1.

We thus have a set of balls Bi, 1 ≤ i ≤ k. It is clear that Bi∩Bj = ∅ (Property

2), and no two balls in Bi intersect (Property 3).

We now verify that each Bi also satisfies Property 1. For this, consider Li, the

set of balls obtained by increasing the radius of each ball in Bi by a factor of 3. We

argue that Li is a λi-outer cover for X.

Fix x ∈ X, and consider the ball largesti(x) in Line 3 of iteration i. At this

37

Algorithm 3.1 Compute-Balls

Require: The set of balls B corresponding to a κ-cover assignment r′

Ensure: The set of balls Bi, 1 ≤ i ≤ k.
1: for i = 1 to k do
2: Let largesti(x)← The largest ball in B that contains x.
3: Let Bi

′ = {largesti(x) | x ∈ X}.
4: Bi ← ∅.
5: while Bi

′ 6= ∅ do
6: Let b be the largest ball in Bi

′.
7: N ← Set of balls in Bi

′ that intersect b. {Note: b ∈ N .}
8: Bi ← Bi ∪ {b}.
9: Bi

′ ← Bi
′ \N .

10: B ← B \Bi.

point, the balls in
⋃i−1
j=1Bj have been removed from the original B, which had at least

κ(x) balls containing x. Since no two balls in Bj intersect, there is at most one ball in

each Bj that contains x. Thus, at this point, there are at least κ(x)− (i− 1) = λi(x)

balls left in B that contain x. Thus, the radius of largesti(x) is at least d(x, nn(x, λi)).

1. If largesti(x) ∈ Bi, then the corresponding ball in Li has radius at least d(x, nn(x, λi)).

2. If largesti(x) /∈ Bi, then there is an even larger ball b in Bi that intersects

largesti(x). The ball obtained by multiplying the radius of b by 3 is in Li; it

contains largesti(x) and thus x; and it has radius at least d(x, nn(x, λi)).

Thus, Li is a λi-outer cover for X. We infer that

µλi ≤ cost(Li) ≤ 3α · cost(Bi).

Thus, Property 1 holds.

38

3.2 OuterCover: Algorithm to Generate a Preliminary Cover

Our goal in this section is to compute an outer cover that minimizes the

cost
∑

y∈Y (ρ(y))α. In the rest of this section, we describe and analyze a procedure

OuterCover(X ′, Y, κ, α) that returns an outer cover ρ : Y → R+ whose cost is O(1)

times that of an optimal outer cover.

The procedure OuterCover(X ′, Y, κ, α) is implemented via a modification of

the primal-dual algorithm of Charikar and Panigrahy [23]. Note that their algorithm

can be viewed as solving the case where κ(x) = 1 for each x ∈ X ′. As we will see,

their algorithm and analysis readily generalize to the problem of computing an outer

cover.

3.2.1 Linear Programming Formulation

We begin by formulating the problem of finding an optimal outer cover as an

integer program. For each server yi ∈ Y and radius r ≥ 0, let z
(r)
i be an indicator

variable that denotes whether the ball δ(yi, r) is chosen in the outer cover.1 For any

server yi ∈ Y and client xj ∈ X ′, we define the minimum eligible radius Rmin(yi, xj)

to be:

Rmin(yi, xj) = max(d(yi − xj), d(yκ(xj)− xj))

A ball centered at yi serves xj in an outer cover exactly when its radius is at

least Rmin(yi, xj). Finally, let Ci(r) = {xj ∈ X ′ | r ≥ Rmin(yi, xj)}. The set Ci(r)

1For a server yi ∈ Y , only the balls whose radius is from the set {d(yi − xj) | xj ∈ X ′}
will play a role in much of our algorithm. For describing the algorithm, however, it will be
convenient to allow any r ≥ 0.

39

consists of those clients that δ(yi, r) can serve.

The problem of computing an optimal outer cover is that of minimizing

∑
i,r

rα · z(r)
i , (3.1)

subject to the constraints

∑
i,r:xj∈Ci(r)

z
(r)
i ≥ 1, ∀xj ∈ X ′ (3.2)

z
(r)
i ∈ {0, 1}, ∀i, r. (3.3)

The first constraint, equation (3.2), represents the condition that for every

client xj ∈ X ′, at least one ball that is capable of serving it is chosen. The second

constraint, equation (3.3), models the fact that the indicator variables z
(r)
i can only

take boolean values {0, 1}. By relaxing the indicator variables to be simply non-

negative, i.e.

z
(r)
i ≥ 0, ∀i, r, (3.4)

we get a linear program (LP), which we call the primal LP for the problem.

The dual of the above LP has a variable βj corresponding to every client

xj ∈ X ′. The dual LP seeks to maximize

∑
xj∈X′

βj, (3.5)

subject to the constraints

∑
xj∈Ci(r)

βj ≤ rα, ∀yi, r (3.6)

βj ≥ 0, ∀xj ∈ X ′ (3.7)

40

3.2.2 A Primal Dual Algorithm

The primal dual algorithm is motivated by the above linear program. The

algorithm maintains a dual variable βj for each client xj. This variable will always be

non-negative and satisfy the dual constraints (3.6). If at some point in the algorithm,

the dual constraint (3.6) holds with equality for some yi and r, the ball δ(yi, r) is said

to be tight. A client xj is said to be tight if there is some tight ball δ(yi, r) such that

xj ∈ Ci(r). (Note that βj is then part of the dual constraint (3.6) that holds with

equality.)

Our algorithm, OuterCover(X ′, Y, κ, α), initializes each βj to 0, which clearly

satisfies (3.6). The goal of the while loop in lines 1 and 2, which we refer to as the

covering phase of the algorithm, is to ensure that each client in X ′ becomes tight,

that is, covered by some tight ball. It is easy to see that the covering phase achieves

this. We note in passing that since the βj are never decreased in the covering phase,

a client or ball that becomes tight at some point remains tight for the rest of the

phase.

Steps 3–9 constitute the coarsening phase of the algorithm. This phase starts

with the set T of tight balls computed by the covering phase. It computes a subset

F ⊆ T of pairwise disjoint balls by considering the balls in T in non-increasing order

of radii, and adding a ball to F if it does not intersect any previously added ball.

Step 10 constitutes the enlargement phase. Each ball in F is expanded by a

factor of 3, and the resulting set of balls is returned by the algorithm. Note that for

yi ∈ Y , F contains at most one ball centered at yi; thus the assignment in Step 10 is

41

Algorithm 3.2 OuterCover(X ′, Y, κ, α)

1: while ∃ xj ∈ X ′ that is not tight do
2: Increase the non-tight variables βj arbitrarily till some constraint in (3.6) be-

comes tight.
3: Let T be the set of tight balls.
4: F ← ∅
5: while T 6= ∅ do
6: δ(yi, r)← The ball of largest radius in T
7: N ← Set of balls that intersect δ(yi, r)
8: F ← F ∪ {δ(yi, r)}
9: T ← T \ N
10: Assign ρ : Y → R+ as follows:

∀ yi ∈ Y, ρ(yi) =

{
3r, if δ(yi, r) ∈ F
0, if F contains no ball centered at yi

well defined.

We argue that the balls returned by OuterCover(X ′, Y, κ, α) form an outer

cover. Consider any client xj ∈ X ′. Since xj is tight at the end of the covering phase,

there is a tight ball δ(yi, r) such that xj ∈ Ci(r). Thus xj is served in case δ(yi, r)

was added to F in the coarsening phase. If δ(yi, r) was not added to F , then it must

have been intersected by some ball δ(yi′ , r
′) that was added to F , such that r′ ≥ r.

Clearly, xj ∈ δ(yi′ , 3r′). Furthermore, 3r′ ≥ r ≥ d(yκ(xj) − xj) Thus, xj ∈ Ci′(3r′),

and xj is served by the output of OuterCover(X ′, Y, κ, α).

3.2.3 Approximation Ratio

Let the set of balls in an optimal outer cover be denoted by OPT . We now

show that the cost of the outer cover returned by OuterCover(X ′, Y, κ, α) is at most

3α · cost(OPT). We begin by lower bounding cost(OPT) in terms of the βj. We have

42

cost(OPT) ≥
∑

δ(yi,r)∈OPT

 ∑
xj∈Ci(r)

βj

 ≥ ∑
xj∈X′

βj. (3.8)

The first inequality follows because the βj satisfy (3.6); the second is because

each client in X ′ is served by at least one ball in OPT , and the βj are non-negative.

Let C denote the cost of the solution returned by OuterCover(X ′, Y, κ, α). We

have

C = 3α · cost(F) = 3α
∑

δ(yi,r)∈F

 ∑
xj∈Ci(r)

βj

 ≤ 3α
∑
xj∈X′

βj ≤ 3α · cost(OPT).

Here, the second equality is because each ball in F is tight; since the balls in F are

pairwise disjoint, each client xj ∈ X ′ is contained in at most one ball in F , from

which the next inequality follows; the final inequality is due to Inequality (3.8).

Thus, we may conclude:

Theorem 4. The algorithm OuterCover(X ′, Y, κ, α) runs in polynomial time and re-

turns an outer cover whose cost is at most 3α times that of an optimal outer cover.

43

CHAPTER 4
MULTI-COVERING IN THE PLANE

In this chapter, we consider the version of the MMC problem in which the input

point sets are on the Euclidean plane. We formally describe the problem statement

as follows.

Definition 5. Given point sets X and Y in the plane, a coverage function κ : X →

{0, 1, 2, . . . , |Y |}, and α ≥ 1, the objective is to find an assignment of radii r : Y → R+

such that

• The disks corresponding to the assignment r forms a κ(x) covering for all clients

x ∈ X,

• The cost of assignment,
∑
y∈Y

(r(y))α is minimized.

We refer to this version of the MMC problem as Planar Multi-Covering (PMC) prob-

lem.

In the remaining sections, we describe an algorithm that returns a feasible

assignment for any input (X, Y, κ, α) such that the cost of the assignment is at most

a constant factor times the cost of an optimal assignment. This algorithm has the

additional property of being an incremental algorithm, explained as follows. For

some input (X, Y, κ, α) to the PMC problem, let r be the assignment returned by the

algorithm, whose cost is a constant times the optimal κ-cover. Now, let the coverage

demand of some clients in X be increased to get a new coverage function κ′, where

κ′(x) ≥ κ(x) for all x ∈ X. The incremental property of our algorithm is that to get

44

a constant factor approximation of an optimal κ′-cover, it is sufficient to increase the

radii of some of the disks in the assignment r corresponding to the erstwhile κ-cover.

Thus, any increase in the coverage function can be handled swiftly without having to

recompute the corresponding cover from scratch.

4.1 Preliminaries

For convenience, we solve the variant of the Planar Multi-Covering problem

where we have l∞ disks rather than l2 disks. The input is two point sets Y and X in

R2, a coverage function κ : X → N ∪ {0}, and the constant α ≥ 1. (It will be useful

to allow κ(x) to be 0 for some x ∈ X.) Throughout the remainder of this chapter,

we would use k = maxx∈X κ(x) to denote the maximum coverage requirement of any

client in X. We assume that k ≤ |Y |, for otherwise there is no feasible solution.

Given an assignment r : Y → R+ for each y ∈ Y , we will say that a point

x ∈ X is j-covered if at least j disks cover it, that is,

|{y ∈ Y | ||x− y|| ≤ r(y)}| ≥ j.

We will sometimes say that x is κ-covered to mean that it is κ(x)-covered. Similarly,

if we have a assignment of radii to each y ∈ Y such that for a set of points P ⊆ X,

every point x ∈ P is covered by at least κ(x) disks, we say that P is κ-covered.

We describe an algorithm for returning an assignment r : Y → R+ for each

y ∈ Y , with the guarantee that for each x ∈ X, there are at least κ(x) points y ∈ Y

such that the l∞ disk of radius r(y) centered at y contains x. In other words the

45

guarantee is that for each x ∈ X,

|{y ∈ Y | ||x− y||∞ ≤ r(y)}| ≥ κ(x)

Our objective is to minimize
∑

y∈Y r(y)α. For this optimization problem, we will

show that our algorithm outputs an O(1) approximation. Clearly, this also gives an

O(1) approximation for the original problem, where distances are measured in the l2

norm. We will use || · || to denote the l∞ norm.

For each x ∈ X, fix an ordering of the points in Y that is non-decreasing in

terms of l∞ distance to x. For 1 ≤ j ≤ |Y |, let yj(x) denote the j-th point in this

ordering. In other words, yj(x) is the j-th closest point in Y to x. For brevity, we

denote yκ(x)(x) by nn(x, κ).

Let δ(p, r) denote the l∞ disk of radius r centered at p. The cost of a set of

disks is defined to the sum of the α-th powers of the radii of the disks. The cost of an

assignment of radii to the servers is defined to be the cost of the corresponding set of

disks.

4.2 Computing a Covering for the PMC Problem

Given the coverage function κ, we define a family of k + 1 coverage functions

λi(x) = max{0, κ(x)− (i−1)} ∀0 ≤ i ≤ k. (Recall that k is the maximum demand of

any client in κ). We note that λ1 is equivalent to the coverage function κ, and λk+1

denotes the trivial cover in which no client needs to be covered. We would use this

family of coverage functions to describe our recursive approach, as follows.

Algorithm 4.1 is an algorithm that takes as input (X ′, Y, κ, i, α) and returns

46

an assignment of radius r(y) to each server y ∈ Y such that each client x ∈ X is

λi-covered. This algorithm is recursive, bottoming out at i = k+1 where the demand

function is λk+1 where λk+1(x) = 0 for each x ∈ X. The reader should bear in

mind that the topmost call is (X, Y, κ, 1, α), and works calls itself recursively till it

bottoms out and then works its way up the stack. We now discuss the steps of the

algorithm during the i-th invocation of the recursive call i.e when the parameters are

(X, Y, κ, i, α).

In the base case, the radius r(y) is assigned to 0 for each y ∈ Y . Otherwise, we

recursively call Cover(X, Y, κ, i+1, α) to compute an assignment that λi+1-covers each

x ∈ X. We then compute X ′ ⊆ X, the set of points that are not λi-covered. We com-

pute an outer cover ρi : Y → R+ for X ′ using the procedure OuterCover(X ′, Y, λi, α)

described in Section 3.2. For any client x ∈ X ′, the outer cover has a disk δ(y, ρi(y))

that serves it. That is, x is contained in δ(y, ρi(y)) and ρi(y) ≥ ||x− nn(x, λi)||.

The goal of the while-loop is to increase some of the r(y) to ensure that each

x ∈ X ′, which is currently λi+1-covered, is also λi-covered. To do this, we iterate

via the while loop over each disk δ(y, ρi(y)) returned by OuterCover(X ′, Y, κ, i, α).

We add all points in X ′ that are served in the outer cover by δ(y, ρi(y)) to a set

XCy. That is, XCy consists of all x′ ∈ X ′ that are contained in δ(y, ρi(y)) and

ρi(y) ≥ ||x′ − nn(x, λi)||. The set YCy contains, for each x ∈ XCy, the λi(x) nearest

neighbors of x in Y . For purposes of analysis, we add y to a set Y as well.

47

Algorithm 4.1 Cover(X, Y, κ, i, α)

1: Define λi(x) = max{0, κ(x)− (i− 1)}.
2: if ∀x ∈ X,λi(x) = 0 then
3: Assign r(y)← 0 for each y ∈ Y , and return.
4: Recursively call Cover(X, Y, κ, i+ 1, α).
5: Let X ′ ← {x ∈ X | x is not λi(x)-covered }
6: Call procedure OuterCover(X ′, Y, λi, α) to obtain an outer cover ρi : Y → R+.
7: Let Y ′ ← Y .
8: Let Y ← ∅.
9: while X ′ 6= ∅ do
10: Choose y ∈ Y ′.
11: Y ← Y ∪ {y}.
12: Let XCy ← ∅, YCy ← ∅.
13: for all x′ ∈ X ′ do
14: if x′ ∈ δ(y, ρi(y)) and ρi(y) ≥ ||x′ − yκ(x′)|| then
15: XCy ← XCy ∪ {x′}.
16: YCy ← YCy ∪ {nn(x′, 1), nn(x′, 2), . . . , nn(x′, κ)}.
17: Let YC′y ⊆ YCy be a set of at most four points such that⋂

y∈YC′
y

δ(y, r(y)) =
⋂

y∈YCy

δ(y, r(y)).

18: For each y ∈ YC′y, increase r(y) by the smallest amount that ensures XCy ⊆
δ(y, r(y)).

19: Remove y from Y ′ and remove from X ′ any points x that are κ(x)-covered.

Next, we identify a set YC′y ⊆ YCy of at most 4 points such that

⋂
y∈YC′

y

δ(y, r(y)) =
⋂

y∈YCy

δ(y, r(y)).

Why does such a YC′y exist? If, on the one hand, the intersection of disks
⋂
y∈YCy

δ(y, r(y))

is empty, then Helly’s Theorem tells us that there are three disks (or maybe even two)

whose intersection is empty. On the other hand, if the intersection
⋂
y∈YCy

δ(y, r(y))

is non-empty, then it is a rectangle (as these are l∞ disks) and therefore equal to the

intersection of four of the disks.

48

We enlarge the radius r(y) of each y ∈ YC′y by the minimum amount needed

to ensure that XCy ⊆ δ(y, r(y)). We argue that after this each point in XCy is λi-

covered. To see why, consider any x′ ∈ XCy. Notice that |YCy| ≥ λi(x
′), since the

λi(x
′) nearest neighbors of x′ are included in YCy. Thus before the enlargement, x′

does not belong to
⋂
y∈YCy

δ(y, r(y)). (Recall that no point in XCy was κ-covered.)

Therefore, x′ does not belong to
⋂
y∈YC′

y
δ(y, r(y)). It follows that there is at least

one y ∈ YC′y such that δ(y, r(y)) did not contain x′ before the enlargement. As a

consequence of the enlargement, δ(y, r(y)) does contain x′. Since x′ was λi+1(x)-

covered before the enlargement, it is now κ(x′)-covered.

After increasing r(y) for y ∈ YC′y as stated, we discard from X ′ all points that

are now λi-covered. The discarded set contains XCy and possibly some other points

in X ′. We remove y from Y ′. We go back and iterate the while loop with the new X ′

and Y ′.

Since any point in X ′ as computed in line 5 is served by some disk in the outer

cover, it appears in XCy in some iteration of the while loop (if it has not already

been λi-covered serendipitously). At the end of that iteration of the while loop, it

gets λi-covered. Thus, when Cover(X, Y, κ, i, α) terminates, each point x ∈ X is

λi(x)-covered.

4.3 Approximation Ratio

In this section, we bound the ratio of the cost of the solution returned by

Cover(X, Y, κ, 1, α) and the cost of the optimal solution.

49

For this purpose, the following lemma is central. It bounds the increase in

cost incurred by Cover(X, Y, κ, i, α) in going from a λi+1-cover to a λi-cover by the

cost of the outer cover ρi for X ′.

Lemma 4.1. The increase in the objective function
∑
y∈Y

r(y)α from the time Cover(X, Y ,

κ , i + 1, α) completes to the time Cover(X, Y, κ, i, α) completes is at most 4 · 3α ·∑
y∈Y

(ρi(y))α, for all 1 ≤ i ≤ k, where k = maxx∈X κ(x).

Proof. Let us fix an y ∈ Y , and focus on the iteration when y was added to Y . Notice

that there is exactly one such iteration, since y is removed from Y ′ in the iteration it

gets added to Y .

We will bound the increase in cost during this iteration. For this, we need two

claims.

Claim 4.1. For any x′ ∈ XCy, we have

||y − x′|| ≤ ρi(y)

Proof. Recall that x′ is in XCy because x′ ∈ δ(y, ρi(y)).

Claim 4.2. For any y′ ∈ YCy, we have

||y′ − y|| ≤ 2 ∗ ρi(y)

Proof. Let y′ be added to YCy when x′ ∈ X ′ was added to XCy. Hence

||y′ − x′|| ≤ ||x′ − yκ(x′)||

≤ ρi(y),

50

since δ(y, ρi(y)) serves x′ in the outer cover (line 14 of Algorithm 4.1). Also, since

x′ ∈ δ(y, ρi(y)), ||x′ − y|| ≤ ρi(y). Therefore,

||y′ − y|| ≤ ||y′ − x′||+ ||x′ − y||

≤ ρi(y) + ρi(y)

= 2ρi(y)

Fix a y ∈ YC′y. If r(y) was increased in this iteration, it now equals ||y − x′||

for some x′ ∈ XCy. By the above two claims,

||y − x′|| ≤ ||y − y||+ ||y − x′||

≤ 3 ∗ ρi(y)

Thus the increase in r(y)α is at most 3α(ρi(y))α. Since r(y) is increased in

this iteration only for y ∈ YC′y, and |YC′y| ≤ 4, the increase in the objective function∑
y∈Y (r(y))α (in the iteration of the while loop under consideration) is at most 4 ·3α ·

(ρi(y))α.

We conclude that the increase in
∑

y∈Y (r(y))α over all the iterations of the

while loop is at most

4 · 3α ·
∑
y∈Y

(ρi(y))α = 4 · 3α ·
∑
y∈Y

(ρi(y))α

We can now bound the approximation ratio of the algorithm.

Lemma 4.2. Let r′ : Y → R+ be any assignment of radii to the points in Y under

which each point x ∈ X is κ(x)-covered. We define γi as the cost of the assignment

51

r after the call Cover(X, Y, κ, i, α) has completed execution. Then

γ1 ≤ 4 · 27α ·
∑
y∈Y

(r′(y))
α
.

Proof. We first note that for a given coverage function κ, there would be exactly k

recursive calls to the algorithm Cover(X, Y, κ, i, α), for i = 1, 2, · · · , k, in that order.

(Recall that k is the maximum coverage demand of any client). We look at the

increase in the cost of the objective function in between successive recursive calls

to Algorithm 4.1 in order to compute the final cost of the assignment r. In order to

do so, we combine Theorem 4 from Chapter 3 and Lemma 4.1 to get the following

relation (recall that µλi denotes the cost of an optimal λi-outercover):

γi − γi+1 ≤ 4 · 3α ·
∑
y∈Y

(ρi(y))α ≤ 4 · 9α · µλi . (4.1)

Using the above equation, we get the following set of equations:

γ1 − γ2 ≤ 4 · 9α · µλ1

γ2 − γ3 ≤ 4 · 9α · µλ2

...

γk − γk+1 ≤ 4 · 9α · µλk

(4.2)

Summing up and noting that γk+1 = 0 as γk+1 is the cost of the trivial cover where

all clients have a demand of 0, we have:

γ1 ≤ 4 · 9α ·
k∑
i=1

µλi ≤ 4 · 27α ·
∑
y∈Y

(r′(y))
α

(Using Theorem 3)

We conclude with a statement of the main result of this article. In this state-

ment, cost refers to l2 rather than l∞ disks. Since (a) an l2 disk of radius r is contained

52

in the corresponding l∞ disk of radius r, and (b) an l∞ disk of radius r is contained

in an l2 disk of radius
√

2r, the approximation guarantee is increased by (
√

2)α) when

compared to Lemma 4.2.

Theorem 5. Given point sets X and Y in the plane, a coverage function κ : X →

{0, 1, 2, . . . , |Y |}, and α ≥ 1, the algorithm Cover(X, Y, κ, 1, α) runs in polynomial

time and computes a κ-cover of X with cost at most 4 · (27
√

2)α times that of the

optimal κ-cover.

4.4 Concluding Remarks

Our result generalizes to the setting where X and Y are points in Rd, where

d is any constant. The approximation guarantee is now (2d) · (27
√
d)α. To explain,

the intersection of a finite family of l∞ balls equals the intersection of a sub-family

of at most 2d balls. That is why the 4 in the approximation guarantee of Theorem 5

becomes 2d. In the transition from l2 to l∞ balls in Rd, we lose a factor of (
√
d)α.

This generalization naturally leads to the next question – what can we say

when X and Y are points in an arbitrary metric space? Our approach confronts a

significant conceptual obstacle here, since one can easily construct examples in which

the cost of going from a (k−1)-cover to a k-cover (for the uniform MCMC) cannot be

bounded by a constant times the cost of an optimal outer cover. Thus, new ideas seem

to be needed for obtaining an O(1) approximation for this problem. The subsequent

chapters give an affirmative answer to this question.

53

CHAPTER 5
PARTITIONING SERVERS IN METRIC SPACE

In this chapter, we specify the partitioning scheme that lies at the core of

deriving constant factor approximations for multi-covering in the metric space. The

partitioning scheme outputs pairwise disjoint subsets Y1, Y2, . . . , Yk of servers such

that computing an optimal 1-cover of the clients X using each Yi and combining the

1-covers results in a solution whose cost is O(1) of the optimal cost. This idea of

reducing a multi-covering problem to several 1-covering problems works even when

the coverage demands are non-uniform, albeit with some necessary pre-processing

(Chapter 7). This scheme works even when the optimal 1-covers can use at most a

constant number of servers from Yi (as used in Chapter 8).

5.1 Overview

We now explain some key ideas of our partitioning scheme. For a client x,

and any 1 ≤ i ≤ |Y |, let us define the i-neighborhood of x, Ni(x), to be the set

consisting of the i nearest servers of x. At the core of our reduction is an analysis

of the neighborhoods of the clients that may be of independent interest. In order to

motivate this analysis, we first need to explain our high level plan for the server subsets

Y1, Y2, . . . , Yk in the MMC. As observed in Chapter 3, the optimal MMC solution can

be viewed, up to a constant factor approximation, as a sequence ρ1, ρ2, . . . , ρk, where

each ρi is a cover of X. In particular, ρi is a special type of cover, called an outer

cover of level i. This means that for each client x, there is a large ball in ρi that

54

contains x – a ball whose radius is at least as large as the distance from x to its i-th

nearest server.

Our plan for the server subsets Y1, Y2, . . . , Yk is that for each 1 ≤ i ≤ k, Yi

shall be “almost” a hitting set for ρi. If this can be achieved, then we can obtain a

cover of X using just the servers in Yi by moving each ball in ρi to a server in Yi that

hits it, and expanding the ball slightly. The cost of this cover is within a constant

of that of ρi. Doing this for each 1 ≤ i ≤ k, we get k covers of X whose total cost

is within a constant of the optimal MMC solution. Furthermore, the fact that the

subsets Y1, Y2, . . . , Yk are pairwise disjoint implies that these k covers together form

a valid MMC solution.

Thus, we would like each Yi to be a hitting set for the corresponding outer

cover ρi. Note, however, that we do not know anything about ρi, as it comes from

the unknown MMC optimum. Therefore, we aim for an equivalent goal – we would

like Yi to be a hitting set for the i-neighborhoods of the clients. More concretely, we

ask: can we extract k pairwise disjoint server subsets Y1, Y2, . . . , Yk such that for each

1 ≤ i ≤ k and each client x, Ni(x) ∩ Yi 6= ∅?

This specification is too stringent, and the answer to this question is “no”, as

demonstrated by the example in Figure 5.1. Thus, we need a weaker specification for

the Yi that is still sufficient for our purposes. To describe it, we need one more notion.

Let Gi = (X,Ei) be the intersection graph of i-neighborhoods of X i.e. (x1, x2) ∈ Ei

iff Ni(x1) ∩Ni(x2) 6= ∅. What we are able to show is the following.

55

Figure 5.1: Let k = 2, and suppose there are two clients at distance 1 from each
other, one server that is co-located with the first client, and a second server that is
co-located with the second client. In this example, both servers would have to be in
Y1, leaving no server for Y2.

Lemma 6. Assume k is even. We can efficiently compute a set k⋃
i= k

2
+1

Y s
i

 ∪
 k⋃
i= k

2
+1

Y p
i


of k pairwise disjoint server subsets such that for each k

2
+ 1 ≤ i ≤ k and each client

x ∈ X, there is a client x′ within two hops of x in Gi such that Ni(x
′)∩Y s

i 6= ∅ (resp.

Ni(x
′) ∩ Y p

i 6= ∅).

Note that we have weakened the original specification in two ways. First,

instead of considering i-neighborhoods for each 1 ≤ i ≤ k, we only consider i-

neighborhoods for each k
2

+ 1 ≤ i ≤ k, but now require two hitting sets for each such

i. Second, for a fixed k
2

+1 ≤ i ≤ k, we do not require that Y s
i hits the i-neighborhood

of every client in X. We only require that for any client x, there is some client x′

56

that is ‘near’ x such that Y s
i intersects the i-neighborhood of x′. The requirement for

Y p
i is also relaxed in this way. The notion of ‘near’ is a natural one – that of being

within a distance of 2 in the intersection graph Gi of the i-neighborhoods.

The proof of Lemma 6, which we prove subsequently in this chapter, is delicate.

We construct the family Y s
k , Y

p
k , Y

s
k−1, Y

p
k−1, . . . , Y

s
k
2

+1
, Y p

k
2

+1
in that order, but we have

to be careful while picking the earlier subsets to ensure that there are suitable servers

left for building the later subsets. We give an algorithm for this construction in the

next section.

5.2 Computing Disjoint Server Subsets

Suppose that we are given two point sets Y (servers) and X(clients) in an

arbitrary metric space (X∪Y, d), and a positive integer k that represents the coverage

demand of each client, and the constant α ≥ 1. We first re-iterate some notations

and some needed tools from prior chapters for ease of reference.

Let δ(p, r) denote the ball of radius r centered at p, i.e., δ(p, r) = {u ∈ X∪Y |

d(p, u) ≤ r}. For brevity, we slightly abuse the notation and write δ(p, d(p, q)) as

δ(p, q). The cost of a set B of balls, denoted cost(B), is defined to be the sum of the

α-th powers of the radii of the balls.

Any assignment r : Y → R+ corresponds to the set of balls {δ(y, r(y)) | y ∈

Y }. Note that the cost of assignment r is the same as the cost of the corresponding set

of balls. Instead of saying that r j-covers X, we will often say that the corresponding

set of balls j-covers X. We will say that a set of balls covers X instead of saying it

57

1-covers X.

For each x ∈ X and 1 ≤ j ≤ |Y |, we define yj(x) to be the j-th closest point

in Y to x using distance d. The ties are broken arbitrarily. For any x ∈ X, we define

the i-neighborhood ball of a client x as δ(x, yi(x)). We define the i-neighborhood of

x, Ni(x), as {yj(x) | 1 ≤ j ≤ i}.

For 1 ≤ i ≤ k, let Gi = (X,Ei) be the intersection graph of i-neighborhoods

of X i.e. (x, x′) ∈ Ei iff Ni(x) ∩Ni(x
′) 6= ∅.

We now proceed to establish the following result, which is Lemma 6 restated

so as to also address the case where k is odd.

Lemma 7. Let l = dk/2e. We can efficiently compute a family F of k server subsets

such that

1. F contains two subsets Y s
i and Y p

i for each l + 1 ≤ i ≤ k, and, if k is odd, one

additional subset Y p
l .

2. F is a pairwise disjoint family, i.e., any two subsets in F are disjoint.

3. Suppose that (a) l + 1 ≤ i ≤ k and Yi is either Y s
i or Y p

i , or (b) k is odd, i = l,

and Yi = Y p
i . For any client x ∈ X, there is a client x′ within two hops of x in

Gi such that Ni(x
′) ∩ Yi 6= ∅.

Before describing the algorithm for computing the family F , we introduce

needed concepts. For a positive integer r, an r-net of a graph G = (V,E) is a set

S ⊆ V such that every path in G between any two vertices in S has at least r edges in

it, and for every u ∈ V \S, there exists a vertex v ∈ S such that u is reachable from v

58

using a path in G having at most r−1 edges. An r-net is a fairly well-known concept;

for instance, a 2-net is simply an independent set that is maximal by inclusion.

We note that for any Gi, Gj such that l ≤ i < j ≤ k, Gi is a sub-graph

of Gj since the i-neighborhood of any client is contained within its j-neighborhood.

Motivated by the statement of Lemma 7, we would like to compute a 3-net Xi of Gi,

for each 1 ≤ i ≤ k. This would ensure that for any client x ∈ X, there is a client

x′ ∈ Xi that is within two hops of x in Gi. For the rest of this section, we refer to a

3-net as simply a net.

Claim 5.1. There is a polynomial time algorithm that, given X, Y , and k, computes

a hierarchy

Xk ⊆ Xk−1 ⊆ · · · ⊆ X2 ⊆ X1,

where each Xi ⊆ X is a 3-net of Gi.

Proof. Given a net Xi of Gi, we describe how to compute a net Xi−1 of Gi−1 such

that Xi ⊆ Xi−1. Since Gi−1 is a subgraph of Gi, we have that the (hop) distance

in Gi−1 between any two vertices in Xi is at least 3. We initialize Xi−1 with Xi

and assume that all vertices in Gi−1 are initially unmarked. We repeat the following

process till Gi−1 does not contain any unmarked vertices: mark all vertices in Gi−1

within distance 2 of Xi−1, and then add an arbitrary unmarked vertex from Gi−1 to

Xi−1.

We can construct the hierarchy of nets by starting with an arbitrary net Xk

of the graph Gk, and then constructing the successive nets in the hierarchy by the

59

process described above. To construct Xk itself, we apply the above method after

initializing Xk to be the singleton set consisting of any vertex in Gk.

Our algorithm for computing the family F of server subsets, as claimed in

Lemma 7, is described in Section 5.2. We begin by setting parameter l to be dk/2e,

just as in the statement of Lemma 7. We then use Claim 5.1 to compute a hierarchy

of nets, truncating it at l: Xk ⊆ Xk−1 ⊆ · · · ⊆ Xl. Any client that belongs to
k⋃
i=l

Xi

is termed as a net client. For each client x, we denote the l-neighborhood Nl(x) as

the private servers of x.

Algorithm 5.1 ComputeServerSubsets(X, Y, k)

1: For each y ∈ Y , mark y as available.
2: l← dk/2e
3: Compute Xk ⊆ Xk−1 ⊆ · · · ⊆ Xl using Claim 5.1.
4: for i = k downto l do
5: Let Y s

i ← ∅, Y p
i ← ∅.

6: for all xc ∈ Xi do
7: if i > l then
8: ys ← farthest available server in Ni(xc).
9: Y s

i ← Y s
i ∪ {ys}. Mark ys as not available.

10: if i > l or (i = l and k is odd) then
11: yp ← any available server in Nl(xc).
12: Y p

i ← Y p
i ∪ {yp}. Mark yp as not available.

13: F ← ∅.
14: for i = k downto l + 1 do
15: F ← F ∪ {Y s

i , Y
p
i }.

16: if k is odd then
17: F ← F ∪ {Y p

l }.
18: return The family F

The disjoint server subsets are computed in Lines 4 to 12 of Section 5.2 – the

60

for loop, whose index i goes down from k to l. In each iteration i ≥ l+ 1, we extract

two disjoint sets of servers Y p
i and Y s

i , and if k is odd, we extract one server set Y p
l in

iteration l. Notice that when summed over all i from k to l, we get k disjoint server

sets. The algorithm then adds all these server subsets to F and returns it.

Observe that in iteration i of Line 4, we go through each client in xc ∈ Xi, and

use a carefully designed rule to pick two available servers from the i-neighborhood

Ni(xc) of xc to add to Y p
i and Y s

i . Observe that we add the farthest available server

from the i-neighborhood Ni(xc) to Y s
i , whereas we pick an available server from

Nl(xc) ⊆ Ni(xc), i.e., a private server of xc, to add to Y p
i . These choices – farthest

and private – are crucial to our algorithm. The two added servers are immediately

made unavailable. The fact that Xi is a net of Gi is useful in controlling the impact

on server availability for later iterations of the algorithm. The subsequent section is

devoted to establishing the crucial fact that such available servers can be found in

iteration i.

Assuming that servers are available whenever the algorithm looks for them, we

can now establish Lemma 7. Fix an i such that l+ 1 ≤ i ≤ k, and consider any client

x ∈ X. Since Xi is a net of Gi, there is a client x′ ∈ Xi that is within two hops of x in

Gi. From the inner loop (Line 6) in iteration i of the outer loop (Line 4), it is evident

that for each xc ∈ Xi, there is (at least) one server in Y p
i (resp. Y s

i) that belongs to

the i-neighborhood Ni(xc). In particular, Ni(x
′)∩Y p

i 6= ∅, and Ni(x
′)∩Y s

i 6= ∅. If k

is odd, a similar argument can be made for i = l and Y p
l . This establishes Lemma 7,

assuming server availability.

61

5.3 Server Availability

Fix an iteration i of the for loop in Line 4 in Section 5.2. In such an iteration,

the algorithm considers each xc ∈ Xi in the inner for loop in Line 6. For each xc, it

looks for up to two available servers within Ni(xc) and uses them. In order for the

algorithm to be correct, such available servers must exist when the algorithm looks

for them. In this section, which is the core of our analysis, we show that this is indeed

the case.

Let us begin with a roadmap of this argument. Consider a client x ∈ Xk that

belongs to the net for Gk. Since the nets form a hierarchy, the client x also belongs

to the net Xi for each i < k. Since the i-neighborhoods of clients in Xi are disjoint,

for each i, the server choices made by other net clients do not affect x at all, and so x

will be able to find available servers within Ni(x) for each i. Now consider a server x′

that first appears in the net Xj for some j < k. That is, x′ is not in Xi for any i > j

but is in Xi for every i ≤ j. What we argue is that at the beginning of iteration j of

the for loop in Line 4, the j-neighborhood of x′ is, from the perspective of available

servers, similar to that of the j-neighborhood of x. It is in this argument that we use

the fact that a private server is chosen in Line 11.

Properties of Nets. We now state some straightforward properties concerning the

hierarchy of nets Xk ⊆ Xk−1 ⊆ · · · ⊆ Xl.

Claim 5.2. Let x, x′ be two distinct clients in Xi. Then Ni(x) ∩Ni(x
′) = ∅.

Proof. Since Xi is a 3-net of Gi, any path between x and x′ in Gi has at least three

edges. Recall that the condition Ni(x) ∩Ni(x
′) 6= ∅ is equivalent to (x, x′) being an

62

edge in Gi.

Claim 5.3. Let x ∈ X \ Xi. Then there is at most one x′ ∈ Xi such that Ni(x) ∩

Ni(x
′) 6= ∅.

Proof. If there are two clients x1 and x2 in Xi such that Ni(x) ∩ Ni(x1) 6= ∅ and

Ni(x)∩Ni(x2) 6= ∅, then there is a path in Gi with at most two edges connecting x1

and x2. Since the clients x1 and x2 belong to Xi, this would contradict the fact that

Xi is a 3-net.

Claim 5.4. Let xi ∈ Xi and xj ∈ Xj be any two distinct clients for l ≤ i < j ≤ k.

Then, Ni(xi) ∩Nl(xj) = ∅.

Proof. Since i < j, we have Xj ⊆ Xi and hence the clients xi and xj both belong

to the net Xi, implying that Ni(xi) ∩ Ni(xj) = ∅. Since l ≤ i, the claim follows, as

Nl(xj), the l-neighborhood of xj, is contained in Ni(xj).

We now proceed to the actual argument for server availability, beginning with

some notation. For x ∈ X, let Ai(x) denote the set of available servers within

Ni(x) = {yj(x) |1 ≤ j ≤ i} at the beginning of iteration i. Thus, |Ak(x)| = k.

Furthermore, Ai−1(x) ⊆ Ai(x) for l + 1 ≤ i ≤ k. Obviously, Ai(x) ⊆ Ni(x).

The threshold level of a net client x (denoted by th(x)) is defined as:

∀x ∈
k⋃
i=l

Xi, th(x) =


k, if x ∈ Xk

j, if x ∈ Xj \Xj+1, l ≤ j < k

63

The threshold level of x denotes the iteration of the outer loop of the algorithm in

which client x first enters the net. In any iteration k ≥ j ≥ th(x) + 1, the client x

can lose neighboring servers because of the server choices made by (the algorithm for)

other clients, i.e., clients in the net Xj. On the other hand, for l + 1 ≤ j ≤ th(x), x

is itself part of the net Xj. In these iterations, it can only lose neighboring servers

because of its own server choices. The next two claims address these two phases.

We now show that any net client x has enough available servers in its th(x)

neighborhood at the iteration i = th(x) of the outer loop of Section 5.2.

Claim 5.5. Let x be any net client, and let i = th(x). Then

(a) |Ai(x) ∩Nl(x)| ≥ l − (k − i).

(b) |Ai(x)| ≥ 2i− k = k − 2(k − i).

Proof. We look at the servers chosen during iteration j of the outer loop, for i < j ≤ k.

Note that x didn’t belong to the net Xj. Consider any client xj ∈ Xj. By Claim 5.4,

Ni(x) does not intersect the l-neighborhood ball Nl(xj). Hence, during the execution

of Line 11 in the inner for loop corresponding to xj, no server is made unavailable

from Ni(x). This is because the server chosen in Line 11 belongs to Nl(xj).

Thus, during iteration j, servers from Ni(x) can become unavailable only dur-

ing the execution of Line 8 of the inner for loop. We note that by Claim 5.3, there is

at most one client xj ∈ Xj such that Nj(xj) ∩Nj(x) 6= ∅. Thus, at most one server

from Ni(x) is made unavailable in iteration j.

We conclude that across the k − i iterations before iteration i, there can be

at most k − i servers from Ni(x) that have been made unavailable. Hence, |Ai(x)| ≥

64

i − (k − i) = 2i − k. Since |Ni(x) ∩ Nl(x)| = l and at most k − i servers are made

unavailable from the i-neighborhood ball Ni(x), |Ai(x) ∩Nl(x)| ≥ l − (k − i).

For any net client x, Claim 5.5 shows that in iteration i = th(x), when x first

enters the net, there are enough available servers in Ni(x). The following claim aids

in asserting this for subsequent iterations, by arguing that in any iteration i ≤ th(x),

at most 2 available servers are made unavailable from Ni(x).

Claim 5.6. Let x be any net client and l + 1 ≤ i ≤ th(x). Then

(a) |Ai−1(x)| ≥ |Ai(x)| − 2

(b) If |Ai−1(x)| = |Ai(x)| − 2, then one of the servers in Ai(x) \ Ai−1(x) is the

farthest server in Ai(x) from x.

Proof. Note that x ∈ Xi since i ≤ th(x). Consider any xc ∈ Xi \ {x}. In the

iteration of the inner for loop (Line 6) corresponding to xc, any servers that are made

unavailable belong to Ni(xc) and are therefore not in Ni(x), by Claim 5.2 (since

x, xc ∈ Xi). Thus, if any servers in Ai(x) ⊆ Ni(x) become unavailable in iteration

i, then this can happen only in the iteration of the inner for loop corresponding

to x. In this iteration of the inner for loop, the servers that become unavailable

are ys, the farthest server from x in Ai(x), and yp, a different server that is chosen

from the available servers in Nl(x). Note that {yp, ys} ⊆ Ai(x). Thus, only the

two servers ys, yp in Ai(x) become unavailable in iteration i. Furthermore, if yi(x) ∈

Ai(x) then yi(x) is the farthest server in Ai(x) from x, and thus yi(x) = ys. Thus

Ai(x) \Ai−1(x) = {ys, yp}, and Claim 5.6 (a) holds. Since ys is the farthest server in

65

Ai(x), Claim 5.6 (b) holds as well.

The following two claims show that our algorithm always succeeds in finding

available servers.

Claim 5.7. For any l + 1 ≤ i ≤ k, and any xc ∈ Xi:

(a) There is an available server in Ni(xc) when the algorithm executes Line 8 in the

iteration of the inner for loop (Line 6) corresponding to xc.

(b) There is an available server in Nl(xc) when the algorithm executes Line 11 in

the iteration of the inner for loop (Line 6) corresponding to xc.

Proof. Since xc ∈ Xi, we infer that i ≤ th(xc). Using Claim 5.6, we have

|Ai(xc)| ≥ |Ai+1(xc)| − 2

≥ |Ai+2(xc)| − 2− 2

≥ . . .

≥ |Ath(xc)(xc)| − 2 · (th(xc)− i)

≥ k − 2(k − i) (∵ |Ath(xc)(xc)| ≥ k − 2(k − th(xc)))

≥ 2 (∵ i ≥ l + 1)

Using an argument from the proof of Claim 5.6, none of the servers in Ai(xc) are

made unavailable in iteration i till xc is considered in Line 6. Thus, there are at

least two servers available when the algorithm executes Line 8 corresponding to xc,

and Claim 5.7 (a) holds.

The argument for Claim 5.7 (b) is similar but requires some case analysis.

We begin by observing that when the algorithm executes Line 11 corresponding to

66

xc, there is at least one available server y ∈ Ni(xc). Now suppose that in some

iteration i + 1 ≤ j ≤ th(xc), Aj(xc) \ Aj−1(xc) consists of two servers from Nl(xc).

By Claim 5.6 (b), a server from Nl(xc) is the farthest server from xc in Aj(xc). This

implies that all servers in Aj−1(xc) belong to Nl(xc), and thus y ∈ Nl(xc). This y is

available when the algorithm executes Line 11 corresponding to xc.

We are left with the case that in each iteration i + 1 ≤ j ≤ th(xc), Aj(xc) \

Aj−1(xc) consists of at most one server from Nl(xc). Using Claim 5.5 (a), and the

fact that th(xc)− i iterations have happened since iteration th(xc), we have

|Ai(xc) ∩Nl(xc)| ≥ |Ath(xc)(xc) ∩Nl(xc)| − (th(xc)− i) ≥ l − (k − i) ≥ 1.

Thus there is at least one server y′ ∈ Ai(xc) ∩ Nl(xc). If the server chosen in Line 8

corresponding to xc belongs to Nl(xc), then all available servers in Ni(xc) belong

to Nl(xc). Thus, once again, some server in Nl(xc) is available when the algorithm

executes Line 11 corresponding to xc. If the server chosen in Line 8 corresponding

to xc does not belong to Nl(xc), then y′ ∈ Nl(xc) is available when the algorithm

executes Line 11 corresponding to xc. We have thus shown that Claim 5.7 (b) holds.

If k is even, the algorithm does not look for available servers in iteration

i = l. If k is odd, the algorithm will look for available servers in iteration i = l, in

Line 11. The following claim extends the previous one to handle this. The proof is a

straightforward extension of the proof of the previous claim, and is therefore omitted.

Claim 5.8. Suppose k is odd. For iteration i = l, and any xc ∈ Xi, there is an

available server in Nl(xc) when the algorithm executes Line 11 in the iteration of the

67

inner for loop (Line 6) corresponding to xc.

This completes the proof of Lemma 7.

In the next 3 chapters, we will see the application of this partitioning scheme

for finding constant factor approximations for multiple variants of the multi-covering

problem.

68

CHAPTER 6
THE UNIFORM MMC PROBLEM

6.1 Algorithm

In this section, we present a constant factor approximation for the uniform

MMC problem. Recall that our input consists of two point sets Y (servers) and X

(clients) in an arbitrary metric space (X ∪ Y, d), a positive integer k that represents

the coverage demand of each client, and the constant α ≥ 1. Our algorithm (Algo-

rithm 6.1) first computes a family F consisting of k pairwise disjoint subsets of Y ,

using Section 5.2 of Lemma 7. It then invokes Cover(X, Y ′, α), for each Y ′ ∈ F , to

compute a near-optimal 1-cover of X using only the servers in Y ′. Since there are k

server subsets in F , we obtain k 1-covers of X. The algorithm then returns r, the

union of the k covers. Because server subsets in F are disjoint, this union yields a

k-cover of X.

Algorithm 6.1 MetricMultiCover(X, Y, k, α)

1: For each y ∈ Y , assign r(y)← 0.
2: F ← ComputeServerSubsets(X, Y, k).
3: for all Y ′ ∈ F do
4: r̄ ← Cover(X, Y ′, α).
5: Let r(y′)← r̄(y′) for each y′ ∈ Y ′.
6: return The assignment r : Y → R+.

In the remainder of this chapter, we outline the ideas necessary to establish

the approximation ratio of the algorithm above, using properties of the partitioning

69

scheme as well as the outer-cover lower bound established in Chapter 3 to achieve the

bound.

6.2 Approximation Guarantee

Note that Algorithm 6.1 computes the family F = {Y s
k , Y

p
k , Y

s
k−1, Y

p
k−1, . . .} as

detailed in Lemma 7. Let Yi ∈ F be one such subset, where Yi may be either Y p
i or

Y s
i . Yi has the property that for any x ∈ X, there is an x′ ∈ X that is within two

hops of x in Gi such that Ni(x
′) ∩ Yi 6= ∅. The following claim uses this property to

argue that there is an inexpensive 1-cover of X that only uses servers from Yi. The

1-cover is constructed by using the servers in Yi to “host” the balls in the outer cover

ρi.

Claim 6.1. Assume that either (a) l + 1 ≤ i ≤ k and Yi is either Y p
i or Y s

i , or (b) k

is odd, i = l, and Yi = Y p
i . Let ρi be any outer cover of level i for X using servers

from Y . There is a 1-cover of X that uses servers from Yi and has cost at most

12α · cost(ρi).

Proof. Consider the set B of balls obtained by expanding each ball in the outer cover

ρi to 6 times its original radius. We claim

Claim 6.2. For any client x ∈ X, there is some ball in B that contains x as well as

at least one server in Yi.

Before proving Claim 6.2, we first prove Claim 6.1 using it. We construct a

set B′ of balls as follows. Consider any ball b ∈ B. If it does not contain a server

from Yi, we ignore it. If it does contain a server in Yi, pick an arbitrary such server

70

y, translate b so that it is centered at y, double its radius, and add the resulting ball

to B′.

It is possible at this stage that for a server y ∈ Yi, there are several balls in B′

centered at y. From each such concentric family, discard from B′ all but the largest of

the concentric balls. It follows from Claim 6.2 that B′ covers each client in X. Since

each ball in B′ is obtained by translating and scaling some ball in the outer cover ρi

by a factor of 12, the cost of B′ is at most 12α · cost(ρi). This establishes Claim 6.1.

We now turn to the proof of Claim 6.2. From the definition of Gi, we have

that for any edge (x′, x′′) in Gi,

d(x′, x′′) ≤ d(x′, yi(x
′)) + d(x′′, yi(x

′′)). (6.1)

Now consider an arbitrary client x ∈ X. By Lemma 7, there is a path π in

Gi with at most 2 edges (and 3 vertices) that connects x to some vertex x̄, with

Ni(x̄) ∩ Yi 6= ∅.

Let δ(y, ρi(y)) be the largest ball in outer cover ρi that serves at least one

vertex on path π. Suppose that it serves vertex x̂ ∈ π. (x̂ could be the same as x or

x̄.) See Figure 6.1 for an illustration. Using the definition of an outer cover of level

i, and the way we pick the ball δ(y, ρi(y)), it follows that for any vertex x′ ∈ π,

d(x′, yi(x
′)) ≤ ρi(y). (6.2)

Thus,

d(y, x) ≤ d(y, x̂) +

 ∑
(x′,x′′)∈π[x̂,x]

d(x′, x′′)

 ≤ 5ρi(y).

71

x x1
x̂

y1 y2

y

ρi(y)

ȳ

=x̄

Figure 6.1: Illustration for the proof of Claim 6.2. For the client x ∈ X, the dashed
edges correspond to a path π in Gi from x to x̄. Here, y1 ∈ Ni(x) ∩ Ni(x1), y2 ∈
Ni(x1)∩Ni(x̄), and ȳ ∈ Yi ∩Ni(x̄). The ball δ(y, ρi(y)) serves x̂. Here, x̂ happens to
be x̄. Note that we can get from y to x using 5 edges of the figure, and from y to ȳ
using 2 edges. Therefore, expanding the ball at y by a factor of 6 will cover both x
and ȳ. (In this example, even a factor of 5 suffices.)

Here, we denote by π[x̂, x] the sub-path of π from x̂ to x, and use Inequalities 6.1

and 6.2 in the second step.

Now, Ni(x̄) ∩ Yi 6= ∅. Let ȳ ∈ Ni(x̄) ∩ Yi be chosen arbitrarily. Clearly,

d(x̄, ȳ) ≤ d(x̄, yi(x̄)) ≤ ρi(y).

We calculate that

d(y, ȳ) ≤ d(y, x̂) +

 ∑
(x′,x′′)∈π[x̂,x̄]

d(x′, x′′)

+ d(x̄, ȳ) ≤ 6ρi(y).

Thus, the ball δ(y, 6ρi(y)) contains both x and ȳ ∈ Yi, completing the proof

of Claim 6.2.

Remark. With a more detailed argument, the factor 12α can be improved. For in-

stance, a bound of 11α is almost immediate from the proof.

We can now establish the approximation guarantee for Algorithm 6.1 and our

main result.

72

Theorem 8. Given point sets X and Y in a metric space (X ∪ Y, d) and a positive

integer k ≤ |Y |, Algorithm 6.1 runs in polynomial time and returns a k-cover of X

with cost at most 2 · (12 · 9)α times that of an optimal k-cover.

Proof. It is evident that the algorithm runs in polynomial time, and we have already

noted that it returns a k-cover r. Let r′ be any optimal assignment. By Theorem 3,

there exist outer covers ρi, for 1 ≤ i ≤ k, such that

k∑
i=1

cost(ρi) ≤ 3α · cost(r′).

Assume that either (a) l + 1 ≤ i ≤ k and Yi is either or Y p
i or Y s

i , or (b) k

is odd, i = l, and Yi = Y p
i . From Claim 6.1, we conclude that there is a 1-cover for

X that uses servers Yi and has cost at most 12α · cost(ρi). Since Cover(X, Yi, α),

which is invoked in Algorithm 6.1 returns a 3α approximation, the cost of the 1-cover

it returns is at most (12 · 3)αcost(ρi).

At most two 1-covers are computed for each i, once with server set Y s
i and

once with server set Y p
i . Thus,

cost(r) ≤ 2 · (12 · 3)α ·
k∑
i=l

cost(ρi)

≤ 2 · (12 · 3)α ·
k∑
i=1

cost(ρi)

≤ 2 · (12 · 9)α · cost(r′).

73

CHAPTER 7
THE NON-UNIFORM MMC PROBLEM

In this chapter, we address the MMC problem as described in Definition 1,

specifically the case where we allow each client to specify its own coverage requirement,

and present an O(1) approximation for it. Recall that the input consists of two point

sets Y (servers) and X(clients) in an arbitrary metric space (X ∪ Y, d), a constant

α ≥ 1, and a coverage function κ : X → Z+.

Consider an assignment r : Y → R+ of radii to each server in Y . This can

be viewed as specifying a ball of radius r(y) at each server y ∈ Y . If, for each client

x ∈ X, at least κ(x) of the corresponding server balls contain x, then we say that X

is κ-covered by r. That is, X is κ-covered if for each x ∈ X,

|{y ∈ Y | d(x, y) ≤ r(y)}| ≥ κ(x).

Any assignment r : Y → R+ that κ-covers X is a feasible solution to the MMC,

and the goal is to find a feasible solution that minimizes the cost
∑

y∈Y (r(y))α. We

assume that κ(x) ≤ |Y | for each client x, for otherwise there is no feasible solution.

To solve the non-uniform MMC problem, our plan is to partition the set of

servers Y into disjoint sets and invoke a 1-covering algorithm with each server subset.

Unlike the uniform case (Chapter 6), each 1-covering instance thus generated may

only cover a subset of the clients, and not all clients in X. For example, a client x

such that κ(x) = 100 will be involved in 100 1-covering instances, whereas a client x′

with demand 50 would be in 50 1-covering instances.

74

7.1 Partitioning Servers

Our algorithm for partitioning Y into server subsets uses a criterion that gen-

eralizes that of Lemma 7. We adopt terminology for the non-uniform case from Chap-

ter 5. Let k now denote maxx∈X κ(x). For client x ∈ X, let its set of private servers

be Nl(x) = Ndκ(x)/2e(x). For notational convenience, we denote Ni(x), the set of i

nearest servers to x in Y , by NN(x, i).

Before stating the generalized lemma, we need some additional definitions. For

1 ≤ i ≤ k, we define the coverage function λi : X → Z+ by λi(x) = max{0, κ(x) −

(i − 1)}. Thus, λi is obtained by decreasing the original coverage requirement of

each client by i − 1, with the proviso that we don’t decrease below 0. For each

1 ≤ i ≤ k, we define an undirected graph Gλi with vertex set X. We add (x, x′) as

an edge in Gλi if (a) i ≤ dκ(x)/2e; (b) i ≤ dκ(x′)/2e; and (c) NN(x, κ(x)− (i− 1)) ∩

NN(x′, κ(x′)− (i− 1)) 6= ∅. Note that condition if (a) and (b) hold, condition (c) can

also be written as NN(x, λi(x))∩NN(x′, λi(x
′)) 6= ∅. The conditions (a) and (b) ensure

that a client x is isolated in graph Gλi for i > dκ(x)/2e.

Lemma 9. Let l = dk/2e. We can efficiently compute a family F of server subsets

such that

1. F contains two subsets Y s
λi

and Y p
λi

for each 1 ≤ i < l. For i = l, if k is even, F

contains Y s
λl

and Y p
λl

, else F contains only Y p
λl

.

2. F is pairwise disjoint.

3. Fix 1 ≤ i ≤ l.

(a) For any client x with κ(x) ≥ 2i− 1, there is a client x′ ∈ X within 3 hops

75

of x in Gλi such that Y p
λi
∩ NN(x′, λi(x

′)) 6= ∅.

(b) If k is even or i < l, for any client x with κ(x) ≥ 2i, there is a client x′ ∈ X

within 3 hops of x in Gλi such that Y s
λi
∩ NN(x′, λi(x

′)) 6= ∅.

Going back to the non-uniform MMC problem, Y p
λi

will be used to 1-cover the

clients {x ∈ X | κ(x) ≥ 2i− 1}, and Y s
λi

will be used to 1-cover {x ∈ X | κ(x) ≥ 2i}.

Suppose that κ(x1) = 100, κ(x2) = 50 for some x1, x2 ∈ X. The plan is use each of

the sets Y s
λi

, Y p
λi

for 1 ≤ i ≤ 25 to cover both x1 and x2 once. The additional demand

for x1 is met by using each of the server sets Y s
λj

, Y p
λj

for 25 < j ≤ 50 to cover x1

once.

In the remainder of this section, we establish Lemma 9.

7.2 Forming Nets From Filtered Clients

Roughly speaking, our approach is to extend the proof of Lemma 7, i.e. (a)

compute a hierarchy of nets Xλ1 ⊆ Xλ2 ⊆ · · · ⊆ Xλk , and (b) In each iteration

i = 1 . . . k, let each client in Xλi add one server to Y p
λi

and one server to Y s
λi

. There is

one obstacle that arises in this approach, and this motivates the following definition.

Definition 6. We say that client x2 threatens client x1 if

• κ(x1) > κ(x2), and

• NN(x1, κ(x1)− bκ(x2)/2c) ∩ NN(x2, κ(x2)− bκ(x2)/2c) 6= ∅.

Observe that NN(x2, κ(x2)− bκ(x2)/2c) = NN(x2, l), and thus the second con-

dition informally says that some private servers of x2 are also “inner” servers of x1.

76

To help understand the definition, consider the following example: suppose

that κ(x1) = 100, κ(x2) = 50, and x2 threatens x1. Thus, NN(x1, 75)∩NN(x2, 25) 6= ∅.

The plan for our algorithm is that will provide the coverage required by x2 in the first

25 iterations, and the coverage required by x1 in the first 50 iterations. Now suppose

that x2 is chosen in the net in the first 25 iterations. This precludes x1 being in the

net in these first 25 iterations. However, we would like to allow x1 to enter the net in

iteration 26, since x2 is essentially finished at this point, whereas x1 is not.

In each of the first 25 iterations, we would choose two servers for x2, one of

which would be a server from NN(x2, 25) = NN(x2, l). We would like at most one

of these two servers to belong to NN(x1, 75), so that x1 has enough nearby servers

when it later enters the net. However, we cannot ensure this, since the condition

NN(x1, 75)∩NN(x2, 25) 6= ∅ means that a private server of x2 can belong to NN(x1, 75).

Therefore, as a preprocessing step, we compute a representative subset X ⊆ X

in which no client threatens another:

Claim 7.1. We can compute in polynomial time a subset X ⊆ X of clients such that

• For any two clients x1, x2 such that x2 threatens x1, x1 ∈ X =⇒ x2 6∈ X;

• For any client x ∈ X \X, there is an x′ ∈ X such that x threatens x′.

Proof. Let φ be any ordering of the clients X such that the κ(·) values are non-

increasing. Observe that if x2 threatens x1 then x2 occurs after x1 in φ. We initialize

X to be empty, and assume all clients are initially unmarked. We process each client

in X according to the ordering φ as follows: for each cllient x, perform the following

actions if x is unmarked: 1) add x to X 2) mark all clients of X that threaten x.

77

It is easily checked that the resultant set of clients X satisfies the two proper-

ties.

We compute a hierarchy of nets on X, instead of X. For any client x ∈ X \X,

there is a client x′ ∈ X such that x threatens x′. Such an x′ will help deal with

the coverage requirements of x. For each Gλi , we define Hλi as the subgraph of Gλi

induced by X i.e. Hλi = Gλi [X]. Recall the definition of Gλi , and observe that for

1 ≤ j < i ≤ k, if (x, x′) is an edge in Gλi it is also an edge in Gλj . The same holds

for edges in Hλi .

We will construct a hierarchy of 3-nets for clients X, using the family of graphs

Hλi , obtaining an anolog of Claim 5.1.

Claim 7.2. There is a polynomial time algorithm that computes a hierarchy

Xλ1 ⊆ Xλ2 ⊆ · · · ⊆ Xλk ,

where each Xλi ⊆ X is a 3-net of Hλi .

7.3 Computing Disjoint Server Subsets

Our algorithm for computing the family F of server subsets, as stated in Lemma 9,

is described in Algorithm 7.1. In many ways, it is analagous to Section 5.2, so we only

highlight the key differences. One syntactic feature worth drawing attention to is that

index i goes up from 1 in the for loop in Line 3, as opposed to the for loop in Line 3

of Section 5.2 where it decreased starting from k. Thus, iteration i in Algorithm 7.1

corresponds to iteration k − (i− 1) in Section 5.2.

78

In iteration i, we consider each client xc ∈ Xλi in the for loop in Line 5, but we

add the farthest available server in NN(xc, κ(xc)− (i− 1)) to Y s
λi

only if κ(xc) ≥ 2i,

and any available server from NN(xc, l) to Y p
λi

only if κ(xc) ≥ 2i− 1.

Algorithm 7.1 ComputeServerSubsets(X, Y, κ)

1: l← dk/2e
2: Compute Xλ1 ⊆ Xλ2 ⊆ · · · ⊆ Xλk using Claim 7.2.
3: for i = 1 to l do
4: Let Y s

λi
← ∅, Y p

λi
← ∅.

5: for all xc ∈ Xλi do
6: if κ(xc) ≥ 2i then
7: ys ← farthest available server in NN(xc, κ(xc)− (i− 1)).
8: Y s

λi
← Y s

λi
∪ {ys}. Mark ys as not available.

9: if κ(xc) ≥ 2i− 1 then
10: yp ← any available server in NN(xc, l).
11: Y p

λi
← Y p

λi
∪ {yp}. Mark yp as not available.

12: F ← ∅
13: for i = 1 to l do
14: if k is even or i < l then
15: F ← F ∪ {Y s

λi
}

16: F ← F ∪ {Y p
λi
}

Assuming that servers are available when the algorithm looks for them, we

can now establish Lemma 9. Fix an i such that 1 ≤ i ≤ l, and assume that k is even.

Let Z = {x ∈ X | κ(x) ≥ 2i}.

To establish part (3) of Lemma 9, we want to show that for any client in Z,

there is a client x̄ within 3 hops of this client in Gλi such that Y s
λi

contains a server

from NN(x̄, λi(x̄)). Let us first consider the case of a client x ∈ Z that also belongs to

X, and hence is a vertex in Hλi . Since Xλi is a 3-net in Hλi , there is a path π in Hλi

79

with at most 2 edges (and 3 vertices) that connects x to some vertex x̄ ∈ Xλi . Let

δ(y, ρλi(y)) be the biggest ball in outer cover ρλi that serves at least one vertex on

path π. Suppose that it serves vertex x̂ ∈ π. (x̂ could be the same as x or x̄.) Note

that vertices x′ in Hλi with i > dκ(x′)/2e are isolated. Thus, κ(x′) ≥ 2i − 1 for any

vertex x′ on this path. We claim that in fact κ(x′) ≥ 2i for any vertex x′. Otherwise,

since κ(x) ≥ 2i, there is an edge (x′, x′′) in π such that κ(x′) = 2i−1, and κ(x′′) ≥ 2i.

Since (x′, x′′) is an edge in Hλi , we have

NN(x′, κ(x′)− (i− 1)) ∩ NN(x′′, κ(x′′)− (i− 1)) 6= ∅.

As i− 1 = bκ(x′)/2c, we see that x′ threatens x′′, a contradiction. We conclude that

κ(x′) ≥ 2i for any vertex x′ on π. Thus, κ(x̄) ≥ 2i, and Algorithm 7.1 adds a server

from NN(x̄, κ(x̄)− (i− 1)) to Y s
λi

in Line 7.

Now consider an arbitrary client x1 ∈ Z \ X. There is a client x ∈ X such

that x1 threatens x. Thus, κ(x) ≥ κ(x1), so x ∈ Z ∩X. Furthermore,

NN(x, κ(x)− bκ(x1)/2c) ∩ NN(x1, κ(x1)− bκ(x1)/2c) 6= ∅.

Since i− 1 ≤ bκ(x1)/2c, we have

NN(x, κ(x)− (i− 1)) ∩ NN(x1, κ(x1)− (i− 1)) 6= ∅.

This implies that (x1, x) is an edge in Gλi . Using the preceding argument, we can

prove there is a client x̄ ∈ X that is 2 hops away from x in Gλi , such that Y s
λi

has a

server added to it from NN(x̄, λi(x̄)). We can thus infer that x̄ is 3 hops aways from x1

in Gλi . Thus, if k is even, for any client x such that κ(x) ≥ 2i there is a client x̄ ∈ X

80

within 3 hops of x in Gλi , such that Y s
λi
∩ NN(x̄, λi(x̄)) 6= ∅. If k is odd, a similar

argument can be made for i < l. This completes the proof of part (3b) of Lemma 9,

predicated on server availability.

Part (3a) of Lemma 9 is established in a similar way. The argument is actually

simpler, because we do not need to argue κ(x̄) ≥ 2i; it suffices that κ(x̄) ≥ 2i − 1.

Combined, this establishes Lemma 9, assuming server availability, which we prove

subsequently.

7.4 Server Availability

In this section, we show that Algorithm 7.1 finds available servers when it

looks for them in Line 7 and Line 10. We define the threshold level of a client x ∈ X

(denoted by th(x)) as the smallest i for which x belongs to the net Xλi . (Some clients

in X may not be part of any of the nets; when we refer to the threshold level of a

client, we implicitly assume that it is in some net, in particular, Xλk .) For client

x ∈ X and iteration 1 ≤ i ≤ dκ(x)/2e of the for loop in Line 3, we define Ai(x) to be

the set of available servers within NN(x, κ(x)− (i− 1)) at the beginning of iteration i.

Note that A1(x) = NN(x, κ(x)).

To establish availability, it suffices to consider clients x ∈ X for which th(x) ≤

dκ(x)/2e. For a client x ∈ X for which th(x) > dκ(x)/2e, the algorithm never looks

for available servers in its neighborhood in Line 7 and Line 10.

We now show that any such client x has enough available servers at the be-

ginning of iteration i = th(x) of the outer loop of Algorithm 7.1. This argument is

81

where the intricacies of the non-uniform MMC and the need for resolving “threats”

show up.

Claim 7.3. Let x be any client in X such that th(x) ≤ dκ(x)/2e, and let i = th(x).

Then

(a) |Ai(x) ∩ NN(x, l)| ≥ dκ(x)/2e − (i− 1).

(b) |Ai(x)| ≥ κ(x)− 2(i− 1).

Proof. Consider any iteration j < i of the outer loop in Line 3. The client x it-

self is not part of the net Xλj . Any client x′ ∈ Xλj for which some server is

chosen in Line 7 or Line 10 must satisfy j ≤ dκ(x′)/2e. For such a client x′, if

NN(x, κ(x)− (j − 1))∩NN(x′, κ(x′)− (j − 1)) 6= ∅, then (x, x′) is an edge inHλj . Since

Xλj is a 3-net in Hλj , we conclude that there is at most one client x′ ∈ Xλj such that

(a) some server is chosen in Line 7 or Line 10 for x′, and (b) NN(x, κ(x)− (j − 1)) ∩

NN(x′, κ(x′)− (j − 1)) 6= ∅. If there is no such client, we can conclude that in it-

eration j, no server in NN(x, κ(x)− (j − 1)) (and thus NN(x, κ(x)− (i− 1))) is made

unavailable.

So let us assume that there is one such client x′. Next, we argue that NN(x, κ(x)−

(i − 1)) ∩ NN(x′, l) = ∅. Since server choices are made for x′ in iteration j, we have

j ≤ dκ(x′)/2e.

First consider the case i ≤ dκ(x′)/2e. Since x and x′ are both part of the net

Xλi , (x, x′) is not an edge in Hλi . As i ≤ dκ(x′)/2e and i ≤ dκ(x)/2e, we may conclude

that NN(x, κ(x)− (i− 1)) ∩ NN(x′, κ(x′)− (i− 1)) = ∅. Also, since i ≤ dκ(x′)/2e, we

have NN(x′, l) ⊆ NN(x′, κ(x′)− (i− 1)). Thus, NN(x, κ(x)− (i− 1)) ∩ NN(x′, l) = ∅.

82

Next, consider the case i > dκ(x′)/2e. Since dκ(x)/2e ≥ i, we have that κ(x) >

κ(x′). Now, since x′ does not threaten x, we conclude that NN(x, κ(x)− bκ(x′)/2c) ∩

NN(x′, κ(x′)− bκ(x′)/2c) = ∅. Since NN(x, κ(x)− (i− 1)) ⊆ NN(x, κ(x)− bκ(x′)/2c),

and NN(x′, κ(x′)− bκ(x′)/2c) = NN(x′, l), we conclude that NN(x, κ(x)− (i− 1)) ∩

NN(x′, l) = ∅.

Thus, in iteration j, the server choice made for x′ in Line 10 is not from

NN(x, κ(x)− (i− 1)), whereas the server choice made for x′ in Line 7 may be from

NN(x, κ(x)− (i− 1)).

Since at most one server from NN(x, κ(x)− (i− 1)) is made unavailable in each

of the i−1 iterations before iteration i, we conclude that Ai(x) ≥ κ(x)−(i−1)−(i−1).

The first assertion of the lemma also follows.

The next claim says that before every iteration th(x) ≤ i ≤ dκ(x)/2e, there

are enough available servers in NN(x, κ(x)− (i− 1)). These are iterations in which x

itself is part of the net, and the argument is identical to that of Claim 5.6.

Claim 7.4. Let x ∈ X, and let th(x) ≤ i < dκ(x)/2e. Then

(a) |Ai+1(x)| ≥ |Ai(x)| − 2

(b) If |Ai+1(x)| = |Ai(x)| − 2, then one of the servers in Ai(x) \ Ai+1(x) is the

farthest server in Ai(x) from x.

We can now assert our final claim about server availability. The proof follows

from Claim 7.3 and Claim 7.4 using arguments very similar to Claim 5.7.

83

Claim 7.5. Algorithm 7.1 finds an available server whenever it executes Line 10 or

Line 7.

This completes our proof of Lemma 9.

7.5 Solving the Non-uniform MMC Problem

In this section, we describe a constant factor approximation for the non-

uniform MMC problem. Recall that our input consists of two point sets X (clients)

and Y (servers) in an arbitrary metric space (X ∪Y, d), a function κ representing the

coverage demand of each client, and the constant α ≥ 1.

Algorithm 7.2 NonUniformCover(X, Y, κ, α)

1: k ← maxx∈X κ(x), l← dk/2e.
2: F ← ComputeServerSubsets(X, Y, κ). {Note that F = {Y s

λ1
, Y p

λ1
, Y s

λ2
, Y p

λ2
, . . . }.}

3: For each y ∈ Y , assign r(y)← 0.
4: for i = 1 to l do
5: if k is even or i < l then
6: Let rs be obtained by invoking Cover(·, Y s

λi
, α) for clients {x ∈ X | κ(x) ≥ 2i}.

7: Let r(y)← rs(y) for each y ∈ Y s
λi

.
8: Let rp be obtained by invoking Cover(·, Y p

λi
, α) for clients {x ∈ X | κ(x) ≥

2i− 1}.
9: Let r(y)← rp(y) for each y ∈ Y p

λi
.

10: return The assignment r : Y → R+

Our algorithm first computes a family F consisting of k pairwise disjoint

subsets of Y , using the algorithm of Lemma 9. It then invokes Cover(·, Y ′, α) us-

ing a server subset from F and a selected subset of clients as follows. Note that

F = {Y s
λ1
, Y p

λ1
, Y s

λ2
, Y p

λ2
, . . . }. In the i-th iteration of the for loop in Line 4, we use

84

servers in Y s
λi

to 1-cover the clients with coverage demand at least 2i, and servers in

Y p
λi

to 1-cover the clients with coverage demand at least 2i − 1. Notice that if k is

odd and i = l, there are no clients with coverage demand at least 2i.

The algorithm then returns r, the union of the k covers thus formed, which

satisfies the coverage demand of each client (as the server subsets in F are pairwise

disjoint). This union can be thought of as the combined assignment r : Y → R+; for

a server y not belonging to any subset in F , we simply set r(y) to 0.

7.6 Approximation Guarantee

To obtain an approximation guarantee for Algorithm 7.1, we first upper bound

the cost of the covers returned in iteration i of the for loop in Line 4.

Claim 7.6. Assume that either (a) k is even and 1 ≤ i ≤ l, or (b) k is odd and 1 ≤ i <

l. Let ρλi be any λi-outer cover. There is a 1-cover of the clients {x ∈ X | κ(x) ≥ 2i}

that uses servers from Y s
λi

and has cost at most 16α · cost(ρλi).

Proof. Let Z = {x ∈ X | κ(x) ≥ 2i}. Consider the set B of balls obtained by

expanding each ball in the outer cover ρλi to 8 times its original radius. It suffices,

as in the proof of Claim 6.1, to show the following claim.

Claim 7.7. For any client x ∈ Z, there is some ball in B that contains x as well as at

least one server in Y s
λi

.

We now turn to the proof of Claim 7.7. Consider an arbitrary client x ∈ Z.

By Lemma 9, there is a path π in Gλi with at most three edges that connects x to x̄,

85

such that Y s
λi
∩ NN(x̄, λi(x̄)) 6= ∅. Let δ(y, ρλi(y)) be the biggest ball in outer cover

ρλi that serves at least one vertex on path π. Suppose it serves vertex x̂. Using the

definition of λi, and the way we pick the ball δ(y, ρλi(y)), we have that for any x′ ∈ π,

d(x′, nn(x′, λi)) ≤ ρλi(y).

From the definition of Gλi , we have that for any edge (x′, x′′) in π,

d(x′, x′′) ≤ d(x′, nn(x′, λi)) + d(x′′, nn(x′′, λi)) ≤ 2ρλi(y) (7.1)

By Lemma 9, NN(x̄, λi(x̄))∩Y s
λi
6= ∅. Let ȳ be an arbitrary server in NN(x̄, λi(x̄))∩

Y s
λi

. Clearly,

d(x̄, ȳ) ≤ d(x̄, nn(x̄, λi)) ≤ ρλi(y).

We calculate

d(y, x) ≤ d(y, x̂) +

 ∑
(x′,x′′)∈π[x̂,x]

d(x′, x′′)

 ≤ 7ρλi(y),

and

d(y, ȳ) ≤ d(y, x̂) +

 ∑
(x′,x′′)∈π[x̂,x̄]

d(x′, x′′)

+ d(x̄, ȳ) ≤ 8ρλi(y).

Thus, the ball δ(y, 8ρλi(y)) contains both x and ȳ ∈ Y s
λi

, completing the proof

of Claim 7.7.

The following claim addresses the cost of the cover obtained using the server

set Y p
λi

. Its proof is very similar to that of Claim 7.6.

Claim 7.8. Let 1 ≤ i ≤ l and ρλi be any λi-outer cover. There is a 1-cover of the

clients {x ∈ X | κ(x) ≥ 2i − 1} that uses servers from Y p
λi

and has cost at most

16α · cost(ρλi).

86

We can now establish the approxmation guarantee for Algorithm 7.1 and the

main result of this section.

Theorem 10. Given point sets X and Y in a metric space (X ∪Y, d) and a coverage

function κ, Algorithm 7.1 runs in polynomial time and returns a κ-cover of X with

cost at most 2 · (16 · 9)α times that of an optimal κ-cover.

Proof. It is evident that the algorithm runs in polynomial time. It is also easy to

check that the assignment r that it returns is a κ-cover, that is, each client x is covered

at least κ(x) times. Let r′ be any optimal κ-cover. By Theorem 3 (in Chapter 3),

there exists a λi-outer cover ρλi , for 1 ≤ i ≤ k such that

k∑
i=1

cost(ρλi) ≤ 3αcost(r′).

From Claim 7.6 and Claim 7.8, and the fact that Cover(·, ·, α) returns a 3α

approximation, we conclude that the cost of a 1-cover that is computed in iteration

i of the for loop in Line 4 is at most (16 · 3)αcost(ρλi). At most two 1-covers are

computed in iteration i. Thus,

cost(r) ≤ 2 · (16 · 3)α ·
l∑

i=1

cost(ρλi)

≤ 2 · (16 · 3)α ·
k∑
i=1

cost(ρλi)

≤ 2 · (16 · 9)α · cost(r′).

87

CHAPTER 8
THE t-MMC PROBLEM

In this chapter, we describe a natural generalization of the MMC problem,

called the t-MMC problem. The input to this problem is similar to the MMC problem

– the two point sets Y (servers) and X (clients) in an arbitrary metric space (X∪Y, d),

a positive integer k that represents the coverage demand of each client, a constant α.

There is an additional input, an integer t, that represents the upper bound on the

number servers that can be opened or used in the solution.

A k-cover using at most t servers is a subset Y ′ ⊆ Y such that |Y ′| ≤ t,

together with an assignment r : Y ′ → R+ that k-covers X. Here, the cost of the

solution is defined as cost(r) =
∑

y∈Y ′(r(y))α. Intuitively, the restriction of t is

analogous to the cardinality restrictions imposed on the solutions in problems like

t-center, t-median and so on.

Now, the goal of the t-MMC problem is to compute a minimum cost k-cover

using at most t servers. In comparison to the MMC problem, the additional com-

plexity arises from having to decide which t servers to use for k-covering X. We give

an O(1) approximation for this problem. Here, we assume that k ≤ |Y | and k ≤ t,

so that the given instance is feasible.

8.1 Algorithm

The O(1) approximation algorithm for the t-MMC problem consists of the

following steps.

88

1. We first compute a family F = {Y s
k , Y

p
k , Y

s
k−1, Y

p
k−1, . . .} consisting of k pairwise

disjoint subsets of Y , using the algorithm of Lemma 7. For convenience, let us

rename this family of servers as F = {V1, V2, · · · , Vk} respectively.

2. For each 1 ≤ i ≤ k, and for each 1 ≤ ti ≤ t, we compute a 1-cover of X, using

at most ti servers from Vi. Here, we use the polynomial time approximation

algorithm of Charikar and Panigrahy [23] for computing 1-cover using at most

ti servers. Let us denote the solution returned by their algorithm by S(Vi, ti).

Even though their algorithm is stated for the case of α = 1, it generalizes to any

α ≥ 1. It can be shown that the approximation guarantee of their algorithm is

5α.

3. Let us call a k-tuple (t1, t2, . . . , tk) a valid k-tuple if 1 ≤ ti ≤ t for each i, and∑k
i=1 ti ≤ t.

We compute a valid k-tuple (t∗1, t
∗
2, . . . , t

∗
k) that minimizes

∑k
i=1 cost(S(Vi, ti)),

over all valid k-tuples (t1, t2, · · · , tk). Such a valid k-tuple can be computed in

polynomial time using dynamic programming. We return
⋃k
i=1 S(Vi, t

∗
i) as our

solution.

8.2 Approximation Guarantee

It is easy to see that the algorithm described above runs in polynomial time.

Also, for each 1 ≤ i ≤ k, S(Vi, t
∗
i) 1-covers X using disjoint servers. Since the final

solution
⋃k
i=1 S(Vi, t

∗
i) obtained using dynamic programming is a valid k-tuple, the

algorithm computes a k-cover of X that uses at most t servers.

89

For proving the approximation guarantee, we extract from the optimal solution

to the t-MMC problem, the outer covers ρi for each 1 ≤ i ≤ k with some special

properties. The following is an analogue of Theorem 3, however some new ideas are

needed to handle the restriction on the number of servers that can be used in the

resultant outer covers. The proof of the following theorem is given in Section 8.3.

Theorem 11. Let r′ : Y ′ → R+ be an assignment that constitutes an optimal solution

to the t-MMC problem, where Y ′ ⊆ Y with |Y ′| ≤ t. For each l ≤ i ≤ k, we can find

level i outer cover ρi that uses t′i servers, such that

• If k is even, then

1.
∑k

i=l+1 cost(ρi) ≤ 2 · (3 · 3)α · cost(r′), and

2.
∑k

i=l+1 2 · t′i ≤ t.

• If k is odd, then

1.
∑k

i=l cost(ρi) ≤ 2 · (3 · 3)α · cost(r′), and

2. t′l +
∑k

i=l+1 2 · t′i ≤ t.

Given an outer cover ρi that uses at most t′i servers, the following claim con-

structs an inexpensive 1-cover of X using at most t′i servers from Yi. This will help

us bound the cost of the solution returned by the algorithm from Section 8.1. This

claim strengthens Claim 6.1, but the proof generalizes easily.

Claim 8.1. Assume that either (a) l + 1 ≤ i ≤ k and Yi is either Y p
i or Y s

i , or (b) k

is odd, i = l and Yi = Y p
i . Let ρi be an outer cover of level i using at most t′i servers

from servers from Y . Then there is a 1-cover of X that uses at most t′i servers from

90

Yi, and has cost at most 12α · cost(ρi) .

Now, we establish the approximation guarantee for the algorithm described in

Section 8.1.

Theorem 12. Given point sets X and Y is a metric space (X ∪ Y, d), and positive

integers k and t such that k ≤ |Y | and k ≤ t, the algorithm described in Section 8.1

runs in polynomial time, and returns a k-cover of X using at most t servers from Y ,

and with cost at most 4 · (540)α times that of an optimal k-cover that uses at most t

servers from Y .

Proof. We focus on the case where k is even. The case where k is odd is similar, and

is therefore omitted.

We have already argued that the algorithm runs in polynomial time, and the

solution produced by the algorithm k-covers X using at most t servers.

Let r′ : Y ′ → R+ be any optimal assignment that k-covers X, where Y ′ ⊆ Y ,

with |Y ′| ≤ t. By Theorem 11, there exist outer covers ρi that use t′i servers such

that
∑k

i=l+1 cost(ρi) ≤ 2 · (3 · 3)α · cost(r′), with
∑k

i=l+1 2 · t′i ≤ t.

For each of (Y p
i , t
′
i, ρi) and (Y s

i , t
′
i, ρi), we use Claim 8.1, to argue that there

exist two 1-covers from Y p
i and Y s

i respectively. These 1-covers have cost at most

(12)α · cost(ρi) each, and each uses at most t′i servers. Since the 5α approximation

of Charikar and Panigrahy [23] is used to get two 1-covers S(Y p
i , t
′
i) and S(Y s

i , t
′
i), we

have that cost(S(Y p
i , t
′
i)) ≤ (12·5)α·cost(ρi) and cost(S(Y s

i , t
′
i)) ≤ (12·5)α·cost(ρi).

Note however that
∑k

i=l+1 2 · t′i ≤ t, so (t′k, t
′
k, · · · , t′l, t′l) is a valid k-tuple, and

91

so the dynamic program of step 3 must have considered the solution(
k⋃

i=l+1

S(Y p
i , t
′
i)

)
∪

(
k⋃

i=l+1

S(Y s
i , t
′
i)

)
.

Since the cost of the solution output by the dynamic program is at most the cost of

solution corresponding to this tuple, we have that,

k∑
i=1

cost(S(Vi, t
∗
i)) ≤

k∑
i=l+1

(cost(S(Y p
i , t
′
i)) + cost(S(Y s

i , t
′
i)))

≤ 2 · (12 · 5)α ·
k∑

i=l+1

cost(ρi)

≤ 2 · (12 · 5)α · 2 · 9α · cost(r′) = 4 · (540)α · cost(r′).

8.3 The Outer Cover Lower Bound for the t-MMC Problem

In this section, we prove Theorem 11, which generalizes Theorem 3 in the

case when the size of the outer covers are restricted to satisfy certain properties. For

convenience, we restate the theorem.

Theorem 11. Let r′ : Y ′ → R+ be an assignment that constitutes an optimal solution

to the t-MMC problem, where Y ′ ⊆ Y with |Y ′| ≤ t. For each l ≤ i ≤ k, we can find

level i outer cover ρi that uses t′i servers, such that

• If k is even, then

1.
∑k

i=l+1 cost(ρi) ≤ 2 · (3 · 3)α · cost(r′), and

2.
∑k

i=l+1 2 · t′i ≤ t.

• If k is odd, then

1.
∑k

i=l cost(ρi) ≤ 2 · (3 · 3)α · cost(r′), and

92

2. t′l +
∑k

i=l+1 2 · t′i ≤ t.

Proof. For simplicity, we prove the theorem only for the case where k is even. The

proof of the case where k is odd is similar, and is therefore omitted.

Note that any feasible solution to the t-MMC problem is also feasible for the

MMC problem. Therefore, we can use Theorem 3 to extract from the assignment r′,

the outer covers ρ̄i for each 1 ≤ i ≤ k, such that
∑k

i=1 cost(ρ̄i) ≤ 3α · cost(r′).

These outer covers satisfy the first property, but they may not satisfy the

second property. However, if the outer cover ρ̄i uses t̄i servers, then it is easy to verify

that the proof of Theorem 3 ensures that
∑k

i=1 t̄i ≤ t.

Let us order the above outer covers ρ̄i in a nondecreasing order of the number

of servers used, and rename them according to this ordering as rk, rk−1, . . . , r1. Let

t′i denote the number of servers used by the outer cover ri. To transform the outer

covers ρ̄i into the outer covers ρi that satisfy the second property of the theorem, we

need the following claim.

Claim 8.2. Let ρ̄i be an outer cover of level i, l ≤ i ≤ k, and r be any 1-cover that

uses at most t′ servers. Then there is an outer cover ρi of level i that uses at most t′

servers, and cost(ρi) ≤ 3α · (cost(ρ̄i) + cost(r)).

Proof. Let B and B′ be the set of balls corresponding to the outer cover ρ̄i and the

1-cover r respectively. We describe an iterative procedure to compute a set Ri of balls,

which is initially empty. Each ball in B and B′ is initially “unmarked”. Pick any

unmarked ball b′j ∈ B′, and suppose b′j = δ(y′j, rb′j). Let Bj denote the set unmarked

93

of balls from B that serve a client x ∈ X that is also covered by b′j. Let r′j be the

maximum radius from the set of balls Bj ∪ {b′j}. Add the ball δ(y′j, 3r
′
j) to the set

Ri. Mark the ball b′j from B′ and the balls Bj from B, and repeat the above process

until all balls from B′ are marked.

We argue that at the end of this process, the radius assignment ρi correspond-

ing to Ri is an outer cover of level i with the claimed properties. Without loss of

generality, we assume that each ball b ∈ B serves some client x ∈ X. Consider a

client x ∈ X, and a ball b ∈ B that serves it. Since r is a valid 1-cover, there exists

a ball b′ ∈ B′ that also covers x. So, if b was not considered in any iteration before,

it will be considered in the iteration when b′ is marked, and both b and b′ will be

marked by the end of that iteration. Thus, at the end of the above process, all balls

b ∈ B will be marked. Also, for each ball b′ ∈ B′, we add exactly one ball to Ri.

Therefore, |Ri| = |B′| ≤ t′.

Now we argue that ρi is an outer cover of level i. Consider any client x ∈ X.

Since ρ̄i is an outer cover of level i, there exists a ball b ∈ B centered at some

y ∈ Y with radius rb ≥ d(x, yi(x)) that covers x. Using the argument from the above

paragraph, such a ball b was marked in some iteration. Suppose the ball from the set

B′ that was marked in that iteration was b′j = δ(y′j, r
′
bj

), and the ball δ(y′j, 3r
′
j) was

added to Ri. Now,

d(x, y′j) ≤ d(x, y) + d(y, x′) + d(x′, y′j) ≤ rb + rb + rb′j ≤ 3r′j

Here, x′ ∈ X is a common client served by b in ρ̄i and covered by b′ in r. Note that

x′ may or may not be same as x. The last inequality follows because of the choice of

94

r′j. Therefore, the ball δ(y′j, 3r
′
j) covers x. Also since d(x, yi(x)) ≤ rb ≤ r′j ≤ 3r′j, the

ball δ(y′j, 3r
′
j) also serves x. Thus, it follows that ρi is an outer cover of level i.

The ball added to Ri in a particular iteration has radius 3r′j, where r′j is the

maximum radius from the set Bj ∪ {b′j}. Now, considering all such balls in Ri, the

bound on the cost of ρi follows.

Now, we use Claim 8.2 for pairs of outer covers (ρ̄i, ri) to get an outer cover

ρi of level i, for each l+ 1 ≤ i ≤ k with the desired upper bounds on the cost and the

number of servers used. Now,

k∑
i=l+1

cost(ρi) ≤
k∑

i=l+1

3α · (cost(ρ̄i) + cost(ri))

≤
k∑
i=1

3α · (cost(ρ̄i) + cost(ri))

= 2 · 3α
k∑
i=1

cost(ρ̄i)

≤ 2 · (3 · 3)αcost(r′)

The third inequality follows due to the fact that the set of outer covers {r1, r2, · · · , rk}

is same as the set of original outer covers {ρ̄1, ρ̄2, · · · , ρ̄k}. Note that for each l+ 1 ≤

i ≤ k, ρi uses at most t′i servers. Since the outer covers ri are ordered in a non-

decreasing order of the number of servers used,
∑k

i=l+1 2 · t′i ≤
∑k

i=1 t
′
i ≤ t, and the

second property follows.

95

CHAPTER 9
CONCLUSION AND OPEN PROBLEMS

In this document, we have presented several algorithms for covering problems,

and how we can exploit combinatorial and geometric properties of the problem to

get constant factor approximations. That being said, there is much work that is left

to be done in this area. We conclude this thesis with a discussion of open problems

related to our work.

9.1 APX-Hardness of the MMC Problem

We consider the hardness of approximation for the MMC problem in general

metric space. For concreteness, we focus on resolving the question for the uniform

MMC problem, in which the coverage demand for each client is k.

We first look at the hardness of the MMC problem for k = 1 i.e. when each

client x ∈ X needs to be covered by at least 1 ball centered at any of the servers in

Y . We refer to this problem as the Minimum Cost Covering problem (MCC). The

MCC problem for α = 1 is exactly solvable in polynomial time in a geometric setting

i.e. for l1, linf metrics and has a PTAS for the l2 metric. For α > 1, the MCC problem

is NP-hard as shown by Alt et al. [3]. Charikar and Panigrahy [23] had described a

primal-dual based polynomial time approximation algorithm for the MCC problem

with an approximation ratio of 3α. Recently, it was shown by Bandyapadhyay and

Varadarajan [8] that the MCC problem admits a QPTAS i.e. a (1 + ε) approximation

algorithm that runs in O(2(log(|X|·|Y |)/ε)c) time, where c > 0 is a constant. Thus, it is

96

unlikely that the MCC problem is APX-hard.

For general values of k, not much is known about the hardness of approxima-

tion for the MMC problem. For α ≥ log(|X|), Bandyapadhyay and Varadarajan [8]

showed that the MCC problem cannot be approximated beyond O(log(|X|)) under

standard complexity assumptions. The same hardness result obviously holds for the

MMC problem as well.

Open Problem 1. Is the MMC problem APX-hard for constant values of α?

9.2 An O(1) Approximation for the Capacitated MCC Problem

In the MMC problem, we assume that the balls of radius r(y) centered on each

server y ∈ Y can serve every element it covers (i.e. the clients in X). Realistically,

that may not be possible as each server may have the capability of serving a limited

number of clients, irrespective of the number of clients contained in the ball centered

on that server. Hence, capacitated versions of the set cover problem are considered,

in which each subset can only serve a limited number of clients amongst the clients

it covers. We note that any approximation algorithm for a capacitated covering

problem also holds for the uncapacitated version, by setting all capacities to infinity.

Furthermore, a capacitated covering problem can either be soft-capacitated (one is

allowed to make several copies of a subset) or hard-capacitated (one can only use the

subsets provided as input). Unless otherwise mentioned, we would only be considering

hard-capacitated problems in the remainder of this section.

In non-geometric settings, many approximation algorithms have been devel-

97

oped for capacitated covering problems. Wolsey [65] described a logarithmic approx-

imation for the capacitated set cover problem using a greedy algorithm. A differ-

ent greedy algorithm that gives the same approximation guarantee was presented

by Bar-Ilan et al. [11], who also extended the classical approximation algorithm for

the metric k-center problem to derive a 10-approximation algorithm for the capaci-

tated metric k-center problem. This guarantee was later improved to 6 by Khuller

and Sussmann [50]. For the capacitated vertex cover problem, Chuzhoy and Naor [26]

showed that while weighted vertex cover is as hard as set cover to approximate, the

unweighted vertex cover with capacities admits a 3-approximation. The latter result

was improved to a 2-approximation by Gandhi et al. [35] using randomized rounding.

For the capacitated metric facility location (CFL) problem, there are multiple algo-

rithms that give a constant factor approximation. Using local search, one can get a

3-approximation for CFL with uniform capacities [2] and a 5-approximation for the

case when the capacities are different [9]. For the latter version, a LP-based approach

also gives a constant factor approximation [4] - the factor being at least 5, matching

the local search bound.

In contrast, relatively little progress has been made for capacitated covering

problems in a geometric setting. A QPTAS for the capacitated k-median problem in

the Euclidean plane was derived by Arora et al. [6] by a modification of the dynamic

programming formulation of PTAS for the uncapacitated version of the problem.

Hochbaum and Maass [45] gave a PTAS for the problem of covering points in the

plane using minimum number of unit balls, but the capacitated version of the same

98

problem (where each unit ball could cover at most c points) had remained open for

about 30 years, till recently Ghasemi and Razzazi [36] gave a PTAS for it.

In the previous chapters, we have considered the MMC problem without ca-

pacity constraints i.e. each server disk is able to serve all clients that are contained

within it. In such a setting, the MMC problem admits a constant factor approxima-

tion. We would like to know if a similar result could be obtained if the servers were

constrained to serve a limited number of clients. We formally define the capacitated

version of the MMC problem as follows.

Definition 7. Given are a set of points X (clients), a set of points Y (servers), a

metric d on the set X ∪Y , a coverage function κ : X → Z+∪{0}, a capacity function

λ : Y → Z+ ∪ {0} and a constant α ≥ 1. An assignment r : Y → R+ corresponds to

“building” a disk of radius ry centered at each y ∈ Y . Capacity constraints of servers

are represented by the assignment z : Y ×X → {0, 1}. For any integer j, a client x

is defined to be j-covered if it is covered by at least j server disks without violating

capacity constraints of the servers i.e.

|{y ∈ Y | z(y, x) = 1, d(y, x) ≤ ry}| ≥ j.

A feasible solution is an assignment (r, z) such that

1. Each client x ∈ X is κ(x) covered.

2. Each server y ∈ Y serves most λ(y) clients i.e.
∑
x∈X

z(y, x) ≤ λ(y).

The goal is to compute a feasible solution that minimizes
∑
y∈Y

rαy . This is

defined as the non-uniform capacitated MMC problem.

99

For simplicity, we look at the uniform capacitated MMC problem where κ(x) =

1,∀x ∈ X i.e. the capacitated version of the MCC problem. We note that planar

MCC problem can be reduced to the problem of covering points with weighted disks.

This is possible by considering all disks centered on each server as part of the input

to the weighted disk set cover problem, and then discarding all but the largest disk

centered at each server from the computed solution. While attempting to reduce

the capacitated MCC problem to the weighted capacitated set cover problem, this

straightforward strategy does not work for the following reason. Consider a solution

in which two disks are centered on the same server. Discarding the smaller of the two

disks and reassigning all the clients served by it to the larger disk may violate the

capacity constraints of the latter, making the solution infeasible.

The standard LP formulation of the capacitated MCC problem has an un-

bounded integrality gap, as can be seen by the following example. Consider two

servers a and b located unit distance apart, with capacity of a being n− 1 and that

of b being 1. We also have n clients co-located with a, each needing to be served by a

disk that covers it and is centered at one of the servers, without violating the server

capacity constraints. The only integral solution that satisfies all constraints is as

follows: a disk of radius 1 centered at b that serves one client co-located with y, and a

disk of radius 0 centered on a that serves the remaining n−1 clients. The cost of this

solution is 1 (the radius of the disk centered on b). We now look at the optimal LP

solution. An optimal LP solution that can open disks fractionally would open the disk

of radius 1 centered at b by the fraction 1
n
, sufficient to serve one client completely,

100

and open the other disk of radius 0 fully, thereby incurring a total cost of 1/n. Thus,

the ratio of the costs between the integral solution and the fractional LP solution

is at least n, rendering an approach via the standard LP relaxation unviable. The

question then arises - can we extend the combinatiorial technique used in Chapter 2

to get a constant factor approximation for the capacitated MCC problem?

Open Problem 2. For the uniform capacitated MCC problem, can there be a constant

factor approximation when the input point sets are in:

1. Euclidean plane

2. Arbitrary metric space

101

REFERENCES

[1] A. K. Abu-Affash, P. Carmi, M. J. Katz, and G. Morgenstern. Multi cover of a
polygon minimizing the sum of areas. Int. J. Comput. Geometry Appl., 21(6):
685–698, 2011.

[2] A. Aggarwal, A. Louis, M. Bansal, N. Garg, N. Gupta, S. Gupta, and S. Jain.
A 3-approximation algorithm for the facility location problem with uniform ca-
pacities. Math. Program., 141(1-2):527–547, 2013.

[3] H. Alt, E. M. Arkin, H. Brönnimann, J. Erickson, S. P. Fekete, C. Knauer,
J. Lenchner, J. S. B. Mitchell, and K. Whittlesey. Minimum-cost coverage of
point sets by disks. In Proceedings of the Symposium on Computational Geome-
try, (SoCG), pages 449–458, 2006.

[4] H. An, M. Singh, and O. Svensson. Lp-based algorithms for capacitated facility
location. In FOCS, pages 256–265, 2014.

[5] B. Aronov, E. Ezra, and M. Sharir. Small-size epsilon-nets for axis-parallel
rectangles and boxes. In Proceedings of the 41st Annual ACM Symposium on
Theory of Computing, STOC, pages 639–648, 2009.

[6] S. Arora, P. Raghavan, and S. Rao. Approximation schemes for euclidean k -
medians and related problems. In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, pages 106–113, 1998.

[7] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit.
Local search heuristics for k-median and facility location problems. SIAM J.
Comput., 33(3):544–562, 2004.

[8] S. Bandyapadhyay and K. R. Varadarajan. Approximate clustering via metric
partitioning. In 27th International Symposium on Algorithms and Computation,
ISAAC, pages 15:1–15:13, 2016.

[9] M. Bansal, N. Garg, and N. Gupta. A 5-approximation for capacitated facility
location. In Algorithms - ESA 2012 - 20th Annual European Symposium, pages
133–144, 2012.

[10] N. Bansal and K. Pruhs. Weighted geometric set multi-cover via quasi-uniform
sampling. In Algorithms - ESA 2012 - 20th Annual European Symposium, pages
145–156, 2012.

[11] J. Bar-Ilan, G. Kortsarz, and D. Peleg. How to allocate network centers. J.
Algorithms, 15(3):385–415, 1993.

[12] R. Bar-Yehuda and D. Rawitz. On the equivalence between the primal-dual
schema and the local ratio technique. SIAM J. Discrete Math., 19(3):762–797,
2005.

102

[13] R. Bar-Yehuda and D. Rawitz. A note on multicovering with disks. Comput.
Geom., 46(3):394–399, 2013.

[14] M. Bellare, S. Goldwasser, C. Lund, and A. Russeli. Efficient probabilisti-
cally checkable proofs and applications to approximations. In Proceedings of the
Twenty-Fifth Annual ACM Symposium on Theory of Computing STOC, pages
294–304, 1993.

[15] B. Ben-Moshe, M. J. Katz, and J. S. B. Mitchell. A constant-factor approxi-
mation algorithm for optimal 1.5d terrain guarding. SIAM J. Comput., 36(6):
1631–1647, 2007.

[16] S. Bhowmick, K. Varadarajan, and S. Xue. A constant-factor approximation for
multi-covering with disks. In Proceedings of the Symposium on Computational
Geometry (SoCG), pages 243–248, 2013.

[17] S. Bhowmick, K. R. Varadarajan, and S. Xue. A constant-factor approximation
for multi-covering with disks. JoCG, 6(1):220–234, 2015.

[18] S. Bhowmick, T. Inamdar, and K. R. Varadarajan. Improved approximation for
metric multi-cover. CoRR, abs/1602.04152, 2016.

[19] V. Bilò, I. Caragiannis, C. Kaklamanis, and P. Kanellopoulos. Geometric clus-
tering to minimize the sum of cluster sizes. In Proceedings of the European
Symposium on Algorithms (ESA), pages 460–471, 2005.

[20] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite vc-
dimension. Discrete & Computational Geometry, 14(4):463–479, 1995.

[21] J. Byrka, A. Srinivasan, and C. Swamy. Fault-tolerant facility location: a ran-
domized dependent lp-rounding algorithm. In International Conference on In-
teger Programming and Combinatorial Optimization, pages 244–257. Springer,
2010.

[22] T. M. Chan, E. Grant, J. Könemann, and M. Sharpe. Weighted capacitated,
priority, and geometric set cover via improved quasi-uniform sampling. In Pro-
ceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA, pages 1576–1585, 2012.

[23] M. Charikar and R. Panigrahy. Clustering to minimize the sum of cluster diam-
eters. J. Comput. Syst. Sci., 68(2):417–441, 2004.

[24] C. Chekuri, K. L. Clarkson, and S. Har-Peled. On the set multi-cover problem
in geometric settings. In Proceedings of the 25th ACM Symposium on Computa-
tional Geometry, pages 341–350, 2009.

[25] F. A. Chudak and D. B. Shmoys. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM J. Comput., 33(1):1–25, 2003.

103

[26] J. Chuzhoy and J. Naor. Covering problems with hard capacities. SIAM J.
Comput., 36(2):498–515, 2006.

[27] K. L. Clarkson. New applications of random sampling in computational geome-
try. Discrete & Computational Geometry, 2:195–222, 1987.

[28] K. L. Clarkson and K. R. Varadarajan. Improved approximation algorithms for
geometric set cover. Discrete & Computational Geometry, 37(1):43–58, 2007.

[29] S. Doddi, M. V. Marathe, S. S. Ravi, D. S. Taylor, and P. Widmayer. Approx-
imation algorithms for clustering to minimize the sum of diameters. Nord. J.
Comput., 7(3):185–203, 2000.

[30] S. Eidenbenz, C. Stamm, and P. Widmayer. Inapproximability results for guard-
ing polygons and terrains. Algorithmica, 31(1):79–113, 2001.

[31] G. Even, D. Rawitz, and S. Shahar. Hitting sets when the vc-dimension is small.
Inf. Process. Lett., 95(2):358–362, 2005.

[32] E. Ezra, B. Aronov, and M. Sharir. Improved bound for the union of fat triangles.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 1778–1785, 2011.

[33] U. Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):
634–652, 1998.

[34] A. Freund and D. Rawitz. Combinatorial interpretations of dual fitting and
primal fitting. In Approximation and Online Algorithms, First International
Workshop, WAOA, pages 137–150, 2003.

[35] R. Gandhi, E. Halperin, S. Khuller, G. Kortsarz, and A. Srinivasan. An improved
approximation algorithm for vertex cover with hard capacities. J. Comput. Syst.
Sci., 72(1):16–33, 2006.

[36] T. Ghasemi and M. Razzazi. A PTAS for the cardinality constrained covering
with unit balls. Theor. Comput. Sci., 527:50–60, 2014.

[37] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and K. R. Varadarajan. On
metric clustering to minimize the sum of radii. Algorithmica, 57(3):484–498,
2010.

[38] M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and K. R. Varadarajan. On
clustering to minimize the sum of radii. SIAM J. Comput., 41(1):47–60, 2012.

[39] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algo-
rithms. J. Algorithms, 31(1):228–248, 1999.

104

[40] S. Guha, A. Meyerson, and K. Munagala. A constant factor approximation
algorithm for the fault-tolerant facility location problem. Journal of Algorithms,
48(2):429–440, 2003.

[41] M. Hajiaghayi, W. Hu, J. Li, S. Li, and B. Saha. A constant factor approxi-
mation algorithm for fault-tolerant k-median. ACM Transactions on Algorithms
(TALG), 12(3):36, 2016.

[42] S. Har-Peled. Being fat and friendly is not enough. CoRR, abs/0908.2369, 2009.

[43] S. Har-Peled and M. Lee. Weighted geometric set cover problems revisited.
JoCG, 3(1):65–85, 2012.

[44] D. Haussler and E. Welzl. epsilon-nets and simplex range queries. Discrete &
Computational Geometry, 2:127–151, 1987.

[45] D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32(1):130–136, 1985.

[46] K. Jain and V. V. Vazirani. Approximation algorithms for metric facility location
and k -median problems using the primal-dual schema and lagrangian relaxation.
J. ACM, 48(2):274–296, 2001.

[47] K. Jain, M. Mahdian, and A. Saberi. A new greedy approach for facility loca-
tion problems. In Proceedings on 34th Annual ACM Symposium on Theory of
Computing, pages 731–740, 2002.

[48] D. S. Johnson. Approximation algorithms for combinatorial problems. J. Com-
put. Syst. Sci., 9(3):256–278, 1974.

[49] R. M. Karp. Reducibility among combinatorial problems. In Proceedings of a
symposium on the Complexity of Computer Computations, pages 85–103, 1972.

[50] S. Khuller and Y. J. Sussmann. The capacitated K -center problem. SIAM J.
Discrete Math., 13(3):403–418, 2000.

[51] S. Khuller, R. Pless, and Y. J. Sussmann. Fault tolerant k-center problems.
Theoretical Computer Science, 242(1):237–245, 2000.

[52] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Analysis of a local search
heuristic for facility location problems. J. Algorithms, 37(1):146–188, 2000.

[53] V. S. A. Kumar and H. Ramesh. Covering rectilinear polygons with axis-parallel
rectangles. SIAM J. Comput., 32(6):1509–1541, 2003.

[54] N. Lev-Tov and D. Peleg. Polynomial time approximation schemes for base
station coverage with minimum total radii. Computer Networks, 47(4):489–501,
2005.

105

[55] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location
problem. Inf. Comput., 222:45–58, 2013.

[56] J. Lin and J. S. Vitter. Approximation algorithms for geometric median prob-
lems. Inf. Process. Lett., 44(5):245–249, 1992.

[57] C. Lund and M. Yannakakis. On the hardness of approximating minimization
problems. J. ACM, 41(5):960–981, 1994.

[58] N. H. Mustafa and S. Ray. Improved results on geometric hitting set problems.
Discrete & Computational Geometry, 44(4):883–895, 2010.

[59] R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a
sub-constant error-probability PCP characterization of NP. In Proceedings of
the Twenty-Ninth Annual ACM Symposium on the Theory of Computing STOC,
pages 475–484, 1997.

[60] D. B. Shmoys, É. Tardos, and K. Aardal. Approximation algorithms for facil-
ity location problems (extended abstract). In Proceedings of the Twenty-Ninth
Annual ACM Symposium on the Theory of Computing, pages 265–274, 1997.

[61] C. Swamy and D. B. Shmoys. Fault-tolerant facility location. ACM Transactions
on Algorithms (TALG), 4(4):51, 2008.

[62] K. R. Varadarajan. Epsilon nets and union complexity. In Proceedings of the
25th ACM Symposium on Computational Geometry, Aarhus, Denmark, June
8-10, 2009, pages 11–16, 2009.

[63] K. R. Varadarajan. Weighted geometric set cover via quasi-uniform sampling.
In Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC,
pages 641–648, 2010.

[64] V. V. Vazirani. Approximation algorithms. Springer, 2001.

[65] L. A. Wolsey. An analysis of the greedy algorithm for the submodular set covering
problem. Combinatorica, 2(4):385–393, 1982.

	University of Iowa
	Iowa Research Online
	Spring 2017

	Multi-covering problems and their variants
	Santanu Bhowmick
	Recommended Citation

	LIST OF FIGURES
	CHAPTER
	Introduction
	Background
	Thesis Structure

	A Local Search Algorithm for the MCC Problem
	Previous Work
	Our Contribution

	The Planar Multi Covering (PMC) Problem
	Previous Work
	Our Contribution

	The Metric Multi-Cover Problem
	Previous Work
	Our Contribution

	The t-MMC Problem
	Our Contribution

	A Local Search Algorithm for the MCC Problem
	A Directed Local Search Algorithm
	Approximation Guarantee

	OuterCover
	The Outer Cover Lower Bound for the MMC Problem
	OuterCover: Algorithm to Generate a Preliminary Cover
	Linear Programming Formulation
	A Primal Dual Algorithm
	Approximation Ratio

	Multi-Covering in the Plane
	Preliminaries
	Computing a Covering for the PMC Problem
	Approximation Ratio
	Concluding Remarks

	Partitioning Servers in Metric Space
	Overview
	Computing Disjoint Server Subsets
	Server Availability

	The Uniform MMC Problem
	Algorithm
	Approximation Guarantee

	The Non-uniform MMC Problem
	Partitioning Servers
	Forming Nets From Filtered Clients
	Computing Disjoint Server Subsets
	Server Availability
	Solving the Non-uniform MMC Problem
	Approximation Guarantee

	The t-MMC Problem
	Algorithm
	Approximation Guarantee
	The Outer Cover Lower Bound for the t-MMC Problem

	Conclusion And Open Problems
	APX-Hardness of the MMC Problem
	An O(1) Approximation for the Capacitated MCC Problem

	REFERENCES

