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ABSTRACT

In this document, we consider coreset and total sensitivity for shape fitting

problems. The shape fitting problems that are of considerable interest include: (1)

(j, k) projective clustering problem, and (2) circle fitting problem on the plane. In

(j, k) projective clustering, we are given a finite set of points P in d-dimensional

Euclidean space, and the goal is to find a shape, which is a k-tuple j-flats (affine j-

subspace), that best fits P . In circle fitting problem, given an input point set P ⊂ R2,

the goal is to find a circle that best fits P . In L1-fitting, the cost of fitting P to a

shape F is defined as
∑

p∈P dist(p, F ), where dist(p, F ) is the cost of assigning p to

F , while in L∞-fitting, maxp∈P dist(p, F ). We focus on L1-fitting.

A coreset is a compact representation of the input point set. For a shape fitting

problem, a coreset for a point set P is a weighted point set, with the property that

the cost of fitting the coreset to a shape F approximates the cost of fitting P to F , for

every shape in the family of shapes. Coreset of small (e.g., constant) cardinality is of

interest, because one can afford to use off-shelf, perhaps computationally expensive

algorithms to solve the geometric optimization problem for the coreset, and a good

solution for the coreset is guaranteed to be also good for the original input. Depending

on whether the fitting problem is L1 fitting or L∞ fitting, the coreset is L1 coreset or

L∞ coreset, respectively.

One way to obtain small coreset is via non-uniform sampling, using the framework

by [30]. Given a point set P , the “importance” of each point p ∈ P is quantified by
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its sensitivity σP (p), and the total sensitivity of P is the summation of sensitivities at

every point,
∑

p∈P σP (p). It is shown that if one samples the point set P according to

the probability distribution imposed by the sensitivities, one obtains coresets of size

roughly O(S2
P ).

Total sensitivity of a shape fitting problem quantifies the complexity of the shapes,

which is the main object being studied in this thesis. We briefly summarize the main

results below.

We establish the connection between L∞ coreset and L1 coreset. In particular, we

show that shape fitting problems with small L∞ coreset also have small L1 coreset.

This connection allows us to use existing work on L∞ coreset to obtain small L1

coreset for the aforementioned shape fitting problems (variants of (j, k) projective

clustering, and circle fitting). Consequently, we obtain the first near-linear algorithm

for integer (j, k) projective clustering in high dimension.

We show that the total sensitivity of shape fitting problem in Rd depends on the

intrinsic dimension of the shapes. For many shape fitting problems, the shapes are

low-dimensional: for example, in (j, k) projective clustering, each shape is a union of

k j-flats, and each k-tuple of j-flats is contained in a subspace of dimension O(jk).

This fact allows us to get a dimension-reduction type result for the (j, k)-projective

clustering problems. Specifically, for integer (j, k) projective clustering, the upper

bounds of the total sensitivity is improved from O((log n)f(d,j,k)) to O((log n)f(j,k)),

where f(j, k) is a function depending on only j, and k, and no longer on the possibly

large d.
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We obtain coreset of size O((log n)2), using the connection between L∞ coreset and

L1 coreset. We show that circle fitting problem does not admit coreset of size o(log n).

In particular, we show a construction of a point set, such that any 1/100-coreset of

P has size at least Ω(log n).
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PUBLIC ABSTRACT

In this document, we study coresets for shape fitting problems. Shape fitting

problems include various optimization problems people encounter in machine learn-

ing, computer vision, image processing, computational metrology, etc. Usually for

such problems, either exact algorithms are not known to exist, or are computation-

ally expensive. The idea of coreset is to obtain a small subset – so called “succinct

presentation” – of the original input, which faithfully captures all the characteristics

of the input, and then solve the same optimization problem with the smaller input

(coreset).

Depending on how one quantifies how well a shape approximates the input point set,

there are L∞ and L1 shape fitting problems. Coresets for L∞ shape fitting problems

have been proven to be very successful and influential in obtaining fast approximation

algorithms for a wide variety of geometric approximation problems. Inspired by that,

we study coresets for L1 shape fitting problems.

We obtain coresets for shape fitting problems such as k-clustering and subspace ap-

proximation (from machine learning), k-line fitting (from computer vision), and a

more general problem known as (j, k) projective clustering. In addition, for a problem

from computational metrology, circle fitting problem, we obtain both small coreset for

this problem, and we also show a lower bound on the size of the coreset. These results

on coresets allows us to obtain fast approximation algorithms for the corresponding

shape fitting problems.
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CHAPTER 1

INTRODUCTION

In this document, we describe approximation algorithms for shape fitting prob-

lems via coresets. If the shapes we have at hand is the set of lines, for example, the

shape fitting problem (which is line fitting in this case) can be stated as follows: given

a point set P , how closely does the point set look like a line? Similarly, if the shapes

are circles on the plane, the shape fitting problem is essentially asking how closely the

input point set looks like a circle. Many geometric optimization problems can be eas-

ily stated as shape fitting problems. For instance, the goal of k-median [3]/k-means

clustering [2] is to find the best k “centers”, such that the overall cost of assigning

points to the center is minimized; this is precisely the same as finding a k-point set

such that the input point set “looks like” the k points the most (see Figure 1.1). For

another example, consider the classical linear regression problem [5], where the goal

is to find the best coefficients to explain data: it can be considered as a shape fitting

problem, where the shapes are linear subspaces (such as lines passing through origin,

hyper-planes passing through origin, etc.), as shown in Figure 1.2.

Formally, a shape fitting problem is specified by a triple (Rd,F , dist), where

Rd is the d-dimensional Euclidean space, F is a family of shapes in Rd, and dist :

Rd×Rd → R+ is a continuous function that we will refer to as a distance function. We

also assume that (a) dist(p, q) = 0 if and only if p = q, and (b) dist(p, q) = dist(q, p).
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Figure 1.1. k-median/k-means clustering as a shape fitting problem (3-median/3-
means clustering): how closely does the input point set “look like” a 3-point set?

Figure 1.2. Linear regression as a shape fitting problem: how closely does the observed
data “look like” a line?
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It is easy to verify that these two properties are satisfied by Euclidean distance and

the zth power of Euclidean distance for z ∈ [1,∞). Euclidean distance and powers

of Euclidean distance are the two distance functions we work with through out this

document. We refer to each F ∈ F as a shape (for example, a line, a circle, a plane,

a shape formed by the union of k lines/k planes, for a given parameter k, etc.), and

we require each shape F to be a non-empty, closed, subset of Rd. We define the

distance of a point p ∈ Rd to a shape F ∈ F to be dist(p, F ) = minq∈F dist(p, q). An

instance of a shape fitting problem is specified by a finite point set P ⊂ Rd. There

are two possible ways to quantify how well a shape F fits the point set P : one is∑
p∈P dist(p, F ), the other is maxp∈P dist(p, F ). In both cases, the goal is to find a

shape which best fits P , that is, a shape minimizing
∑

p∈P dist(p, F ) over all shapes

F ∈ F in the first case, or a shape minimizing maxp∈P dist(p, F ) in the second case.

We slightly abuse notation, and use dist(P, F ) to denote
∑

p∈P dist(p, F ) for L1 shape

fitting problem, and maxp∈P dist(p, F ) for L∞ shape fitting problem. More explicitly,

we have the following L1 and L∞ shape fitting problems:

Problem 1 (Shape fitting problem, L1 fitting). Given an instance P for a shape

fitting problem (Rd,F , dist), find

F = arg min
F∈F

∑
p∈P

dist(p, F ).

Problem 2 (Shape fitting problem, L∞ fitting). Given an instance P for a shape

fitting problem (Rd,F , dist), find

F = arg min
F∈F

max
p∈P

dist(p, F ).
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These two different fitting criteria arise naturally in practice: if we consider

each shape as the location of a center (or a facility) serving the clients (each point

denotes the location of a client), and dist(p, F ) is the Euclidean distance between

a client p and the facility F , then the goal of L1 shape fitting is to find the most

economical placement of the facility, so that the overall distances from the clients to

the facility is not too large; while the goal of L∞ shape fitting is to find the “fairest”

placement, such that each client is guaranteed to be within some reasonable distance

to the facility.

We briefly explain the reason that we call the first problem L1 shape fitting

problem and the second problem L∞ fitting: given an n-point set P = {pi|1 ≤ i ≤ n},

and a shape F , the vector

[
dist(p1, F ) dist(p2, F ) · · · dist(pn, F )

]
encodes the distance from each point to the shape. For L1 shape fitting problem the

objective function being minimized is the L1 norm of this vector; while for L∞ shape

fitting problem, the objective function being minimized is the L∞ norm of this vector.

An important shape fitting problem is the (j, k) projective clustering problem.

Each shapes considered in (j, k) projective clustering problem is a k-tuple of j-flats

(affine j-subspaces). For example, if j = 1, 1-flats are lines, so each shape in (1, k)

projective clustering is formed by union of k lines (see Figure 1.3); if j = 2, 2-flats

are planes, so each shape is formed by union of k planes.
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dist(p, F )

l1

l2

l3 p

Figure 1.3. A shape in (1, 3) projective clustering in R2, formed by the union of three
lines, l1, l2 and l3. The distance from p to the shape l1 ∪ l2 ∪ l3 is the distance from
p to the nearest line, which is l1 in this case.

Many clustering problems are special cases of (j, k) projective clustering. We

list below the special cases of (j, k) projective clustering problems that will be con-

sidered in the rest of the documents.

(0, k) projective clustering—k-clustering problems, including k-median/k-

means: When j = 0, F is the set of k-point sets of Rd, so the (0, k)-projective

clustering problem is the k-median clustering problem when the distance function is

the Euclidean distance, and it is the k-means clustering problem when the distance

function is the square of the Euclidean distance.

(1, k) projective clustering—k-line clustering: when j = 1, the family of shapes

is the set of k-tuples of lines in Rd.

(j, 1) projective clustering— affine j-subspace approximation: when k = 1,

the family of shapes is the set of j-flats (affine j-subspaces). One particularly impor-
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tant problem is j-subspace approximation (which is also called low rank approxima-

tion in literature), where the family of shapes is the set of j-subspaces. We do not

specifically emphasize the difference here, since constructions of coresets for these two

problems are very similar, as a j-flat is contained in a (j + 1)-subspace. Often once

one has a construction for coreset for fitting j-flat, one also easily obtains a coreset

construction for fitting j-subspace.

integer (j, k) projective clustering: Other than the above projective clustering

problems where j or k is set to specific values, another variant of the (j, k) projective

clustering problem is the integer (j, k)-projective clustering problem, where we as-

sume that the input points have integer coordinates (but there is no restriction on j

and k), and the magnitude of these coordinates is at most nc, where n is the number

of input points and c > 0 is some constant. That is, the points are in a polynomially

large integer grid.

Other than (j, k) projective clustering, another shape fitting problem studied

in this document is circle fitting problem on the plane: the family of shapes consists of

all circles, F = {Fa,b,r|a, b ∈ R, r ≥ 0}, where Fa,b,r is the circle centered at (a, b), with

radius r. The distance from a point p = (x, y) to Fa,b,r is
∣∣∣√(x− a)2 + (y − b)2 − r

∣∣∣
(so it is distance from p to the nearest point on the circle). See Figure 1.4 for an

example.
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(a, b)

r

Fa,b,r

Figure 1.4. Circle fitting problem on the plane. Each point is assigned to the nearest
point on the circle. The overall cost is the summation of distance from each point to
the circle.

1.1 Coresets for shape fitting problems

In this section, we first introduce one of the key object in this document—

coreset of a shape fitting problem; after that we describe the framework of approxi-

mation algorithms for shape fitting problems using coreset.

A coreset S ⊂ Rd of P is a weighted point set in Rd, together with a weight

function w : S → R+, which assigns a weight w(p) for each point p ∈ S. A coreset

is a compact representation of the input point set P with respect to the shapes in F .

Informally, S being a “representation” (or sketch, or summary, or digest) of P (in the

context of shape fitting problem) means for any shape F ∈ F , the summation of the

distances from weighted points in S to F approximates the summation of distances

from points in P to F . So S exhibits all characteristic of P , in the sense that from the
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Figure 1.5. What a coreset might look like for line fitting problem. The blue crosses
are points in P , and the orange points are points in S, together with weights.

view point of any shape F ∈ F , S is almost indistinguishable from P , since S and P

contributes roughly the same cost when points in S or P are assigned to F . The size

of the coreset S is |S| (the number of points in S). It is usually asymptotically smaller

than the number of input points |P |, and that is the reason we call S a “compact”

(or succinct, or sparse) representation of P . Figure 1.5 shows what a coreset might

look like.

Formally, L1 coreset is defined as following:

Definition 1 (L1 ε-coreset of a shape fitting problem). Given an instance P ⊂ Rd of

a shape fitting problem (Rd,F , dist), and ε ∈ (0, 1], an ε-coreset of P is a (weighted)

set S, together with a weight function w : S → R+, such that for any shape F in F ,

it holds that

|cost(P, F )− cost(S, F )| ≤ εcost(P, F ),
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where by definition,

cost(P, F ) :=
∑
p∈P

dist(p, F ), cost(S, F ) :=
∑
p∈S

w(p)dist(p, F ).

Coreset for L∞ shape fitting problem is defined in a similar fashion:

Definition 2 (L∞ δ-coreset of a shape fitting problem). Given an n-point set P of a

shape fitting problem, and δ ∈ [0, 1), a subset Q ⊂ P is an L∞ δ-coreset of P , if for

every F ∈ F , it holds that

max
q∈Q

dist(q, F ) ≥ (1− δ) max
p∈P

dist(p, F ).

(The distance from the furthest point in Q to a shape F is at least (1− δ) times the

distance from the furthest point in P to a shape F .) Also note that since Q ⊂ P ,

max
q∈Q

dist(q, F ) ≤ max
p∈P

dist(p, F ).)

As we will see in Section 1.2, L∞ coreset first appeared, and it was used to

solve L∞ shape fitting problems; later it was generalized in L1 setting.

We now explain how to use coreset to solve the shape fitting problem ap-

proximately. The coreset S has the property that can be (informally and) roughly

summarized as “a good (respectively bad) fit to S is also a good (respectively bad)

fit to P”. In other words, if a shape fits S well, it also fits P well. Hence it usually

suffices to find a (1 + ε/c) approximation solution for S, where c is some constant.

This solution is then a (1+ ε) approximation for P . Now the size of S is small, so one

can afford to run computational expensive algorithms (for example, exact algorithms

for the optimization problem) on S. This framework is presented in Algorithm 1:
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Algorithm 1: Compute an approximate solution for P via coresets

Input: An input point set P
Output: A (1 + ε) approximate solution for P , for ε ∈ (0, 1/2)
Compute an ε/4-coreset S for P ;
Compute a (1 + ε/3) approximate solution F , such that
dist(S, F ) ≤ (1 + ε/3) minF∈F dist(S, F );
Output F .

We make two remarks regarding definition of coreset.

Remark 1 (Merging property of coreset). Coreset can be merged. Given m point

sets P1, · · · , Pm, suppose Si is an ε-coreset for Pi, then ∪mi=1Si is an ε-coreset for ∪mi=1Pi

(note that the union operation here is “bag union”, where multiple identical elements

are counted with the multiplicity or weights). This property can be quite useful in

practice: for example, suppose data is collected by m machines M1, · · · ,Mm, and we

are interested in performing some computation, for example, subspace approximation,

or clustering, on the whole data collected by these machines. Instead of first letting

each machine send their portion of data to a central machine, and then solving the

optimization problem on the union of the data, one approach could be to first let

each machine compute a coreset of the data collected on that machine, and then each

machine only need to send its coreset to the central machine. The final computation

is performed on the union of coresets. In this scenario, coreset is used as a tool to

break a large computational problem to several small problems.

Remark 2 (Intepretability of coreset). Another thing to note is that in this defini-

tion, we do not require S to be a subset of P , and we also allow the weights of points
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in S, w(p) for p ∈ S to be negative. Indeed, this definition reflects the fact that small

coreset is a compact and sparse approximation of P with respect to the family of

shapes considered in the shape fitting problem at hand. However, in this work, we

will mainly focus on constructing coresets which have these additional properties.

Coreset with these two additional properties has theoretical appeal, and there

are also two major practical motivations. The first reason is interpretability of the

weighted point set S. In data analysis application, a coreset S being a subset of P

is easier to interpret than a set of points which are sometimes linear combinations

of points in the original point set P . This is in particular true in situations where

each point in P has a natural meaning. For example, in text analysis, each document

is represented by a point/vector in RN , where N is the number of indexing words

(e.g. words in a dictionary), where each entry in the vector indicates whether a

particular word appears in the document or not (so 1 in the ith entry denotes the ith

word appeared in the document and 0 otherwise). A linear combinations of several

documents is no longer a document in the corpora most of the time. The second

issue is regarding the computations to be performed on the coreset. In the framework

presented in Algorithm 1, after computing the coreset S of P , the next step is to

solve the optimization problem on the coreset S using off-shelf algorithms. These

algorithms can be (possibly computationally expensive) exact algorithms, or some

heuristics. However, optimization problems with negative weights are generally harder

to solve, since negative weights sometimes turn a convex optimization problem into
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non-convex optimization problem, and many heuristics may no longer be applicable

in this case.

1.2 Related work: a brief history of coreset

In this section, we discuss the development of coresets for (j, k) projective

clustering problem and circle fitting problem. Since there are abundance of results

on coresets, in order to make the discussion clear, we first give a general overview of

this area and remark on some extremely influential papers. After that, we provide

a mosaic summarizing sizes of coresets for all the shape fitting problems studied in

this document (our results are also included in Table 1.1, marked with a green color).

Lastly, we mention a few shape fitting problems that do not admit small coreset.

An early influential work on coreset is by Agarwal, Har-peled and Varadarajan

in the seminal work [6][7]. The problems they studied are L∞ shape fitting problems,

which are mostly referred as enclosing problems. For example, finding the best point

fitting the input point set P in L∞ sense, is the same as finding the minimum en-

closing ball containing P ; finding the best hyperplane fitting P in L∞ sense, is the

same as finding the minimum width slab (two parallel hyper-planes) containing P ;

finding the best circle fitting P , is equivalent to finding the minimum width annulus

containing P . Agarwal, Har-peled and Varadarajan showed that this kind of L∞

fitting problems, can be reduced to one particular problem: computing extent of the

input point set. The extent of a point set P along a given direction is the width of

the minimum slab orthogonal to the direction that encloses P . They introduced the
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notion of ε-kernel, which is a subset Q of P such that the extent of Q is at least 1− ε

times the extent of P along every direction. They also given constructions of small

ε-kernel, which is used to compute small ε-coreset for a variety of L∞ shape fitting

problems.

Their work is quite influential for several reasons. The notion of ε-kernel is

related to an approximate version of convex hulls in the strongest (containmentwise)

sense. Although definitions of approximating convex hull exist in literature, they

were weaker and less clean. The framework of geometric approximation via (L∞)

coreset addresses many L∞ shape fitting problems. To some extent, the research on

L1 coreset is inspired by the success of coreset for L∞ fitting problems.

We now turn to L1 coresets. There are two important quantities here: the

cardinality of P , which is the number of input points, and the dimension d, which is

the dimension of the Euclidean space in which the shape fitting problem is considered.

We will point out the dependence of the size of the coreset on n and d explicitly, as

these are the two most important factors in the size of coreset.

Roughly speaking, the evolution of the size of the coreset can be summarized

as following: from “polylogarithmic dependence on n, and exponential dependence

on d” to “polylogarithmic dependence on n, and polynomial dependence on d”, then

to “independent of n, and exponential dependence on d”, then to “independent of n,
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and polynomial dependence on d”.

We now briefly overview the algorithms of computing coreset. An early pre-

vailing framework of computing coresets is low variance sampling. A common modus

operandi performs in two steps. The first step is to find a relatively good shape for

the input point set (using off-shelf approximation algorithms, such as constant factor

approximation algorithms), and partition the point set into multiple regions based on

this shape. For each region one sets up a carefully designed probability distribution

(the probability distribution is often tailored to ensure low variance of the sampling).

In the second step, points from each region are randomly sampled, and each sampled

point is also assigned a weight. The final output is the weighted samples S. S has

the property that for an arbitrary fixed shape F , cost(S, F ) approximates cost(P, F )

with high probability. The rest of the analysis to determine the number of samples

to be drawn from each region is often very problem-specific; and the log n factor

appears often as a result of union bound: since the coreset has to approximate the

input point set with respect to every shape in the family of shapes (which consists of

infinitely many shapes), the routine approach is to find a set of representative shapes

and apply a union bound to ensure that with constant probability, S approximates

P on this set of representative shapes. This particular set of representative shapes

is selected in certain way, such that if S is a good approximation of P with respect

to each of them, then S approximates P with respect to every shape with at least

constant probability. If the number of representative shapes is polynomial in n (the
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number of input points in P ), there would be a log n factor in the size of the coreset

S because of union bound. It worth noting that all these algorithms are randomized

and they succeed with a constant probability. The dependence on d in these coreset

first appeared as exponential, and later was improved to be polynomial.

Several constructions of some other weaker counterparts of coresets (some-

times referred as weak coreset) of size independent of n and d were also designed. For

instance, Feldman, Monemizadeh and Sohler [20] showed a weak coreset for k-means

clustering, whose size only depends on k. The weak coreset only approximates the

input point set on a certain set of shapes instead all the shapes. Such work influ-

enced later research, especially regarding the analysis of the coreset: some careful and

delicate arguments using conditional probability took place of the union bound, so

the number of the representative shapes is sometimes smaller. (In [20], the authors

showed that one only need to consider a constant number of representative shapes.)

An important piece of work regarding the low variance sampling scheme that

was ubiquitously used in the construction of coresets is the paper of Langberg and

Schulman [30]. They introduced the notion of sensitivity and total total sensitivity of

shape fitting problems: given a shape fitting problem, and the input point set P , the

sensitivity σP (p) of each point in P quantifies the importance of the point (among

other points), and total sensitivity, being a summation of sensitivities of each point,∑
p∈P σP (p), quantifies the complexity of the shapes. There is a natural probability
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distribution induced by sensitivities of each points: the probability of each point being

picked is proportional to its “importance”, which is σP (p)/
∑

p∈P σP (p). Compared

with previous low variance sampling scheme, this “sampling-by-importance” is much

simpler and natural. One of the significance of this work is that it started considering

shape fitting problems in a more unified and general way. Instead of tailor-making

coreset for each shape fitting problem, this paper encapsulates the complexity of

shapes in total sensitivity, and provides a unified framework for coreset construction.

It also connects the complexity of a shape fitting problem (total sensitivity) with

the size of the coreset: the size of the coreset roughly quadratically depends on the

total sensitivity. Accompanied with a careful analysis of the weighted sample, using a

double-sampling argument, similar to the fundamental ε-net theorem [31], first core-

set of size independent of n for k-median/k-means was obtained.

The next important work along the line of unification of the framework for

computing coreset is by Feldman and Langberg [19]. It connects ε-coreset with the

well-studied ε-approximation of range spaces. They showed that the problem of com-

puting coreset can be reduced to the problem of computing ε-approximation [31]

of a range space induced by the shape fitting problem. Therefore, the routine and

problem-tailored analysis (to show that the weighted sample is a coreset) in most

of the constructions of coreset is removed. Using the ε-approximation theorem as a

common ground, the coreset size is also improved. This is also the first deterministic

construction of coreset, since there is deterministic construction of ε-approximation.
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The connection between coreset and ε-approximation of range spaces is via sensitivity

and total sensitivity. The size of the coreset obtained via this framework is a function

of total sensitivity and another parameter measuring the complexity of the shape

fitting problem (this parameter depends on d).

We make a remark on the expression “small coreset”, since this expression will

appear many times in the following chapters. As we have seen, the dependence of the

size of the coreset on d can be either exponential or polynomial. In fixed dimension,

d is considered a constant, therefore, the size of small coreset could depend exponen-

tially on d; in high dimension, d is considered as an input, therefore, the size of the

small coreset can at most depend polynomially on d.

Table 1.1 summarizes most of the work on coreset so far. Our results are also

included in Table 1.1. The result with an “∗” indicates that it is not exactly a coreset,

instead it is some kind of succinct sketch similar to but weaker than coreset. In order

to show more clearly the dependence of the coreset size on n, d, and j, the distance

functions here are all Euclidean distance.

We now review some results about the lower bounds of coreset. In [26], it is

shown that the L∞ shape fitting problem of fitting an n-point set in R3 with two

planes does not admit coreset of size o(n). The point set constructed there also does

not admit small L1 coreset (the way to show this is very similar to the method used in
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Shape fitting problem Coreset size Reference

k-median clustering O(2O(1/ε4) log n)∗ [9]
k-median clustering O(k3ε−d−1) [29]
k-means clustering c O(k ln kε−2 ln(k/ε)) [20]
k-median/k-means
clustering

O(dk2ε−2 log n log(k/ε)) [13]

k-median/k-means
clustering

Õ(d2k3ε−2) [30]

k-median clustering O(kdε−2) [19]
k-median/k-means
clustering

O(k2dε−2) [39]

k-median with out-
lier, k-median with
weighted center

O(d(log n)2ε−2) [23]

k-line clustering O((log n)O(k)(1/ε)O(d log d+k)) [18]

k-line clustering O((log n)/ε)O(k) +O(dkε−2) [19]

k-line clustering O((log n)f(k,d)ε−2) [38]

k-line clustering O(kO(k)d(log n)2ε−2) [39]

j-subspace clustering Õ(j4ε−2)∗ [16]

j-subspace clustering O((1/ε)poly(j,d)(log n)O(j2)) [18]

j-subspace clustering O(djO(j2)ε−2 log n) [21]
j-subspace clustering O(djε−2) [19]
j-subspace clustering O(j4dε−2) [39]

integer (j, k) projec-
tive clustering

O((log n)f(d,j,k)ε−2) [38]

integer (j, k) projec-
tive clustering

O((log n)f(j,k)kjdε−2) [39]

circle fitting on the
plane

O(poly(log n, 1/ε))∗ [28]

circle fitting on the
plane

O((log n)2ε−2) [38]

Table 1.1. Results on coresets for the shape fitting problems.
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Chapter 7, where we show the lower bound on L1 coreset for circle fitting problem).

In [27], the author shows that fitting weighted point set with 2 lines, and that fitting

a point set by k-lines, where k ≥ log n, also do not have coreset of size independent

of the cardinality of the input point set.

1.3 Our contribution so far and significance

In this section, we list the concrete contributions of this dissertation. We

mainly focus on computing positively weighted coreset which is also a subset of the

original input point set for variants of the (j, k)-projective clustering problem and

circle fitting problem.

1.3.1 Connection between L∞ coreset and total sensitivity

We connect L∞ coreset and total sensitivity. In particular, we prove that

shape fitting problems with small L∞ coresets also admit L1 coreset. Using this

connection, we obtain the first small coreset for circle fitting problem. This result

is quite interesting because compared with other shape fitting problems such as k-

median/k-means clustering and j-subspace approximation, the amount of results on

circle fitting is much fewer. We give the first near-linear algorithm for integer (j, k)

projective clustering in high dimensions. Another way of stating our result is that

we have a near-linear approximation for the general (not integer) (j, k) projective

clustering problem, provided the optimal fit is only polynomially smaller than the

diameter of the input point set. These results are in Chapter 4.
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1.3.2 Total sensitivity depends on the intrinsic dimension of the shapes

We show that the total sensitivity of a shape fitting problem depends on the

ambient dimension of the shape. For example, consider the (j, k) projective clustering.

A shape here is the union of k j-flats, which is contained in a low-dimensional subspace

of dimension O(jk). For a point set in Rd, the total sensitivity of the point set

in this case depends on j and k, instead of d. Using this result, we improve the

bound of the total sensitivities for variants of (j, k) projective clustering problems. In

particular, we remove the exponential dependence on d of the total sensitivity for (j, k)

projective clustering, and also greatly simplify earlier work on upper bounding the

total sensitivities for k-clustering problems. The main idea that the total sensitivity

depends on the output (the best shape) rather than on the input (the point set)

reflects the deep fact that total sensitivity captures the notion of complexity of the

family of shapes. This result shed light on new understanding on total sensitivity

of shape fitting problems, which may inspire future work along the same lines. The

coreset we derive is positively weighted, and is a subset of input point set. As we

have remarked before, there are several advantages of obtaining positively weighted

coreset. For example, we may run algorithms or heuristics developed for the shape

fitting problem on the coreset to get an approximate solution to the shape fitting

problem. These results are in Chapter 5.

1.3.3 Lower bound on the size of coreset for circle fitting problem

In Chapter 7, we show two results. The main result is that circle fitting does

not admit coreset of size o(log n), where n is the cardinality of input point set. We
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construct a point set, whose coreset has size Ω(log n). We also show that the total

sensitivity of circle fitting problem is Ω(log n), this implies that the upper bound of

the total sensitivity of circle fitting we obtained in Chapter 4 is tight.

1.4 Organization of the document

We motivates the study of core-set and include a few application of coreset

in Chapter 2. After that, in Chapter 3, we introduce the concept of sensitivity of a

point in a point set for a shape fitting problem, and total sensitivity of a shape fitting

problem. We briefly explain the connection between total sensitivity of a shape

fitting problem, and coreset. In Chapter 4, we first show a connection between L∞

coreset and total sensitivity, and use this connection to derive upper bounds of total

sensitivity for circle fitting, k-line clustering, and integer (j, k) projective clustering

problems. We obtain small coreset in fixed dimension using the upper bounds of

total sensitivities for these three shape fitting problems. In Chapter 5, we show the

dimension reduction argument, which shows that the total sensitivity of shape fitting

problems depends on the ambient dimension of the shapes, instead of the dimension

d, for which P ⊂ Rd. We obtain small coreset for several variant of (j, k) projective

clustering problems in high dimension. In Chapter 6, we review the results from [19],

which show the connection between ε-approximation and ε-coreset, which completes

the framework of using sensitivities/total sensitivity to derive coreset. In Chapter

7, we show that the lower bound of coreset for circle fitting problem is Ω(log n) and

that the total sensitivity for circle fitting we derived earlier is tight. We end this

dissertation with a few open problems in Chapter 8.
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CHAPTER 2

APPLICATION SCENARIO

In this chapter, we describe several applications (j, k) projective clustering. We

first discuss some applications of (j, 1)-projective clustering, which is j-flat approxi-

mation, the we discuss the general (j, k) projective clustering. In many applications,

the matrix is a natural structure to encode data: each column corresponds to an

object (a gene, a document, an image, etc.), which is described by a list of features

(expression levels under certain condition, frequency of words appeared in the docu-

ment, grayscale of each pixel in an image, etc.). For example, in information retrieval,

the information of documents in a corpora is usually encoded in a term-document ma-

trix M , where the entry Mij indicates the frequency of the ith key word in the jth

document; in computer vision, each image is encode by an n-vector recording the

grayscale of the pixels (so an 100 × 100 pixel image is encoded as a vector of length

104), and a collection of m images is represented by an n × m matrix; in genetics,

a people-by-gene matrix encodes information about the response of the jth gene in

the ith individual/condition (so each row corresponds to a person, and each column

corresponds to a gene).

Subspace approximation ((j, 1) projective clustering) is particularly popular

in the field of computer vision, information retrieval, bioinformatics, genetics, etc.

One classical use of subspace approximation is for data interpretation: in order to
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understand certain phenomenon, one take a large number N of measurements, each

observation is thus a point in the ambient space RN . Low-dimensional subspace of-

ten serves as a tool to reveal the sometimes hidden, simplified structures underlying

the complex data. Subspace approximation is also often used as a pre-processing

step before clustering: the reason is often referred as “curse of dimensionality” [1]—

essentially every point looks like an outlier in high dimensional space, therefore, clus-

ter/outlier are no longer meaningful. In these situations, one often projects the data

to a low dimensional space and analyzes the low-dimensional points, for example,

see [41]. Subspace approximation is also used in information retrieval, where it is

used as a tool to overcome the problem of synonymy and polysemy in information

retrieval. We elaborate this application in the following section.

Clearly, there are also computational gains by using subspace approximation:

after projecting the high dimensional data onto a low dimensional subspace, many

computations is faster to perform in the low dimensional space (for example, distances

between pairs of points, nearest neighbors of a point, etc.). Subspace approximation

also helps to reduce the storage space of the data: the rank of an object-feature

matrix might quite large (due to noise, or the way data is collected, etc.), however,

it is often observed that the intrinsic dimension is much smaller. For instance, in

pattern recognition (face recognition, or hand-written digit recognition), visual data

often exhibits low-dimensional structure due to rich local regularities (objects in im-

ages often appear as color blocks), global symmetries (human face, for example, when
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viewed from front, is always roughly symmetric). As another example, in information

retrieval, the matrix for encoding a well-structured corpora (e,g. an encyclopedia)

is usually quite large, containing thousands of rows and thousands of columns. For

example, the well-studied MEDLINE collection of medical abstracts is a 5526 × 1033

term-by-document matrix. However, it is observed that a subspace of rank in the

order of hundreds captures most of the information [15].

Below we describe two applications of projective clustering: the first one is an

application of subspace approximation. It is from information retrieval, which is the

influential latent semantic indexing (LSI) [15][4]. The second one is an application of

general (j, k)-projective clustering. It is from computer vision, in particular,motion

segmentation, which classifies moving objects in video sequence [40]. There are, nu-

merous applications of projective clustering, in particular, subspace approximation,

in many other fields, such as astronomy [35][12][11], genetics [34][33][32].

2.1 Retrieving relevant documents: latent semantic indexing

A classical problem in information retrieval is automatic indexing and retrieval.

Data is modeled as a matrix (the term-document matrix), and a user’s query of the

collection of documents is represented as a vector. Given a query, the relevance of

a document to the query is measured by the angle between the vector of the query,

and the vector of the document. The query matching was a method quite inten-

sively studied before the appearance of latent semantic indexing: it essentially uses a
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“term-overlapping” methods, which given a query, retrieves all the documents in the

collection which contains the word in user query. However, this method suffers from

two problems: synonymy and polysemy. Synonymy describes the fact that there are

many ways to refer to the same object (for example, “cat” and “feline”, or “heart

attack” and “myocardial infarctios”). Polysemy describes the fact that most words

have more than one disctinct meaning (for example, the word “cone” clearly means

different things when it appears as “ice cream cone” and “pine cone”, the word “chip”,

“bank” generally have many different meanings). Synonymy appears as a challenging

problem in information retrieval, as two people choose the same main key word for

a single well-known object less than 20% of the time [24]. This problem seems even

more difficult to solve, considering that documents themselves do not contain all the

terms user might try to look it up under.

The idea of latent semantic indexing (LSI) is designed to overcome the syn-

onymy problem based on the idea of retrieving document by conceptual content/conceptual

topic, instead of the unreliable individual words. The key idea is to treat the unrelia-

bility of the observed term-document association data as a statistical problem, since

the observed term-document is only one representative of a whole family of relatively

close matrices representing the same corpora. For example, people might choose dif-

ferent words to index the documents on the same topic (thus leading to different

possible representations of the term-document matrix). However, they are all valid

representations of the same concept/meaning. Low rank subspace is used to capture
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the major associative patterns in the data, and ignore the less important influence. As

a simple example, consider the association of a pair of words “access” and “retrieval”.

If “access” and “retrieval” appear together in most of the documents in the corpora,

say, 95% of the time, then the absence of “retrieval” from a document containing “ac-

cess” might be “erroneous”, in the sense that it should probably contain “retrieval”,

but because of different wording the word“retrieval” does not appear. Based on the

fact that meaningful documents naturally display correlation of the occurrence of one

term and another, a subspace serves as the correct tool to captures this kind of major

association and to remove the noise (introduced by synonymy) of the data.

More explicitly, LSI works as follows: given the input term-document matrix,

one seeks the “sweet spot” of the dimension of the subspace. If the rank of the

subspace is too small, the approximation of the original term-document might not be

a sufficiently accurate approximation, and thus might not capture enough information

of the term-document matrix. On the other hand, the rank of the subspace should

not be too large, since if one reconstructs the original matrix too “precise”, one

also begin to capture noise (or “uncertain”). The correct rank of the subspace is

chosen by experiments: by varying different values of the rank, one observes how

well information retrieval system using the j-subspace works, and chooses the best j,

which returns most of the relevant documents and does not return too many irrelevant

documents (keeping the number of returned irrelevant to a query small is important,

since trivially one could always return all the documents to a query, but presenting



27

the user all documents is meaningless). Once the rank of the subspace is determined,

all the rest of computations are performed within this subspace: in particular, each

document is replaced by its projection on the subspace, and each query is also first

projected onto the subspace, and then the relevance of each documents to the query

is computed. Usually only documents whose relevance exceeds certain threshold are

returned.

2.2 Clustering trajectories: using projective clustering in motion
segmentation

We describe an application of projective clustering in computer vision: motion

segmentation. It is used as a pre-processing step for surveillance, tracking, and action

recognition [37]. The input of the motion segmentation problem is a set of trajectories.

Each trajectory records the position (or coordinates) of a point appeared on the scene

(through a camera) at F frames, so the spatiotemporal information for the point is

encoded in a vector of length 2F (because for one position we need to record the x-

coordinate and the y-coordinate). For a set of n moving points, a video sequence of F

frames recording the trajectories of these points is a 2F×n matrix, where each column

correspond to a single point, and consecutive 2-row correspond to a snapshot of the

scene. Suppose m of the trajectories correspond to the same rigid-body motion, the

m columns will live on a 3-dimensional flat according to the affine model [36][42][40].
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For a quick example, consider the following matrix:



p1 p2 p3

F1 1 1 3

1 2 7

F2 8 3 5

4 3 1

F3 9 1 6

1 2 3



.

This matrix contains three trajectories, and the video sequence contains three frames.

The first two rows of the matrix encodes the position of the three points at frame F1:

the position of p1 is (1, 1), and the position of p2 is (1, 2), and the position of p3 is

(3, 7); similarly, the 3rd row and 4th row records the scene at frame F2, with p1 at

(8,4), p2 at (3,3), and p3 at (5,1).

Using certain model selection methods, one can determine in advance that

there are k rigid-body in the video sequence. Then the goal of the the motion segmen-

tation problem is to cluster the trajectories into k groups, such that the trajectories

in each group correspond to a rigid-body motion. Since the trajectories correspond

to a rigid-motion body lie in a 3-flat, the problem is the same as solving the (3, k)-

projective clustering problem (after finding the optimum k 3-flats, one can partition

the trajectories according to the 3-flats to which they are assigned).
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CHAPTER 3

SENSITIVITY AND TOTAL SENSITIVITIES: QUANTIFYING THE
COMPLEXITY OF SHAPE FITTING PROBLEMS

In this chapter, we introduce the notion of sensitivity and total sensitivity.

These notions are from [30]. This chapter is organized as follows: we first explain

some intuition and motivation for sensitivity/total sensitivity in Section 3.1. In Sec-

tion 3.2 we explain the connection between total sensitivity and the size of coreset.

After that we present the algorithm for computing coreset using sensitivity and total

sensitivity. This section contains all the necessary definitions for the following two

chapters (Chapter 4 and Chapter 5), where upper bounds of total sensitivities for

several shape fitting problems are derived.

3.1 Sensitivities and total sensitivity for a shape fitting problem

In this section, we discuss the notion of sensitivity of a point in a point set

for a shape fitting problem and total sensitivity of a shape fitting problem. Sensi-

tivity and total sensitivity of a shape fitting problem is introduced by Langberg and

Schulman[30] as a tool for obtaining constant size ε-coreset for k-median/k-means

clustering problems (and other variants, generally referred as k-clustering problem).

Given an instance P of a shape fitting problem (Rd,F , dist), the sensitivity of a point

p in P quantifies the importance (or influence or outlierness) of p among the point

set. For shape fitting problems, where we are interested in approximating the overall



30

summation of distance from each point in P to a shape F ,
∑

p∈P dist(p, F ), the “im-

portance” of a point is defined in a very natural way: the “importance” of a point p

among P with respect to a shape F is simply the ratio dist(p, F )/dist(P, F ), which is

the fraction p contributes to the overall cost dist(P, F ) (See Figure ??). Since we need

to approximate
∑

p∈P dist(p, F ) for every F ∈ F , the “importance” of p among P

(considering all shapes) is taken as the largest possible fraction that p can contribute,

which is maxF∈F dist(p, F )/dist(P, F ).

p

dist(p, F )

F

Figure 3.1. “Importance” of p among the point set with respect to a shape F is mea-
sured as dist(p, F )/dist(P, F ). For the shape F in the picture, there are at least three
points which contribute more than p to

∑
p∈P dist(p, F ), therefore, the “importance”

of p is at most 1/4 for this particular F .
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Formally, the sensitivity of a point in a point set (with respect to a family of

shapes) is defined as follows:

Definition 3 (Sensitivity of a shape fitting problem). Given an instance P ⊂ Rd of

a shape fitting problem (Rd,F , dist), the sensitivity of a point p in P is

σP (p) := inf{β ≥ 0|dist(p, F ) ≤ βdist(P, F ),∀F ∈ F}.

This definition is equivalent to let σP (p) = supF∈F dist(p, F )/dist(P, F ), with the

understanding that if the denominator dist(P, F ) is 0, then σP (p) is also 0.

The total sensitivity of P is

SP :=
∑
p∈P

σP (p).

The total sensitivity function of a shape fitting problem is

Sn := sup
P⊂Rd,|P |=n

SP .

We make two quick remarks regarding deriving upper bound and lower bound

of total sensitivity function. (1) In order to prove that the total sensitivity function of

a shape fitting problem is upper bounded by a function f(n), one needs to show that

for any point set P of cardinality n, the summation
∑

p∈P σP (p) is upper bounded

by f(n). In order to prove that the total sensitivity function is lower bounded by

a function g(n), one only needs to find some point set of cardinality n, such that∑
p∈P

dist(p,Fp)

dist(P,Fp)
is at least g(n), where Fp is a shape in F , which witnesses that the

sensitivity of p in P is at least dist(p, Fp)/dist(P, Fp). (2) Total sensitivity function

is always upper bounded by n, since the sensitivity of each point is at most 1 by
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definition (each point contributes at most 100% of the overall summation of distances

from points in P to the shape).

We give a simple example to illustrate the computation of sensitivities of points

in a point set. Consider the following instance of a “toy” shape fitting problem: the

input point set P has three elements, P = {p1, p2, p3}. The family of shapes has

two members, F = {F1, F2}. The distance from each point in P to shapes in F is

given in the matrix M below, where mij is the distance from pi to Fj, 1 ≤ i ≤ 3 and

1 ≤ j ≤ 2: 
p1 p2 p3

F1 1 4 2

F2 7 1 2


The sensitivity of p1 in P , σP (p1) is

σP (p1) = max

{
dist(p1, F1)

dist(P, F1)
,
dist(p1, F2)

dist(P, F2)

}
= max

{
dist(p1, F1)

dist(p1, F1) + dist(p2, F1) + dist(p3, F1)
,

dist(p2, F )

dist(p1, F2) + dist(p2, F2) + dist(p3, F2)

}
= max

{
1

1 + 4 + 2
,

7

7 + 1 + 2

}
=

7

10
.

Similarly, one can easily verify that the sensitivity of p2 in P , σP (p2), is max{4/7, 1/10} =

4/7 and σP (p3) = 2/7. The total sensitivity of P , SP , is σP (p1) + σP (p2) + σP (p3) =

7/10 + 4/7 + 2/7 ≈ 1.5.

Sensitivity of a point in a point set P naturally captures the importance of a
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point p in P (with respect to the shapes at hand). For example, consider the following

instance (Figure 3.2) of 2-means clustering. The point set is formed by a cluster of

points, and an “outlier” which is far away from the majority of the points.

Sensitivities of points in a point set reflect the importance of points. The

point p1, which has a high sensitivity, is a very important points in the point set P

of Figure 3.2, and each of the points in the small cluster is relatively less important

(which is also consistent with their small sensitivities). This statement can be made

quite precise in the context of succinct (or compact) representation of P—if we are

to pick “representative” points from P to form a sketch of P , it looks like that p1

is indispensable, and for the rest of the points, it seems that if we pick an arbitrary

point from the small cluster with proper weight, we get a fairly accurate sketch of P ,

as shown in Figure 3.3.

So far, one perhaps has already vaguely felt that sensitivities of points in

each point set seem to provide some clue on the construction of coreset: in order to

form a sketch of a point set, points with high sensitivities look quite indispensable,

while points with low sensitivities seem less so. Recall that our goal is to find a small

sketch, in the next section, we will show that there is a close connection between total

sensitivity of a point set (for a shape fitting problem) and the size of the coreset.
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p1

a tiny cluster
of radius 1

dist(p1, pi) = 100

(a)

p1

+
+

a tiny cluster
of radius 1

(b)

p1

+

a tiny cluster
of radius 1

+

(c)

Figure 3.2. Illustration that sensitivity of a point reflects the “ourlier-
ness”/“importance” of the point among the point set (with respect to a family of
shapes). (a) shows the point set, where p1 is far away from the rest of points
p2, · · · , p11; (b) shows that when the two centers (red crosses) are very near to the tiny
cluster, the overall cost

∑
p∈P dist(p, F ) is almost solely contributed by p1, hence p1 is

a very “important” point and has sensitivity almost 1; (c) shows that the sensitivity
of each point in the tiny clustering is small, since for every point in the tiny cluster,
the distance from this point to the center (red crosses) are almost the same as the
rest of points in the cluster. Hence each point in the tiny cluster contributes roughly
the same fraction to the overall cost,

∑
p∈P dist(p, F ). Thus each point has a small

sensitivity roughly between 1/9 and 1/10.
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p1

+

a tiny cluster
of radius 1

+

(a)

p1

+

a heavy point
of weight 10

+

(b)

Figure 3.3. Picking representative points from P to get a sketch of P .

3.2 Total sensitivity and the size of coreset

In this section, we show that point set with small total sensitivity admits small

coreset. More explicitly, the smaller total sensitivity is, the smaller the size of coreset

is.

To get a feel on the relation between total sensitivity and the size of coreset,

we give a crude (and possibly oversimplified) reasoning. The space we consider here

is the 2-dimensional Euclidean space R2. Consider two family of shapes, F1 and F2,

where F1 is the family of very complex shapes—which consists of all subsets of R2;

while F2 consists of extremely simple shapes—only horizontal lines. The distance



36

here is Euclidean distance. The instance for these two shape fitting problems is an

n-point set P on a line. First consider the complex family of shapes F1. The total

sensitivity of P with respect to F1 is n, since for any pi in P , the shape formed

by the union of the points in P \ {pi} witnesses that σP (pi) = 1, for 1 ≤ i ≤ n

(see Figure 3.4). The coreset for F1 is P : indeed, every point in P is indispensable,

because if we omit any p in P , the cost of fitting P with the shape F which contains

all the points in P except p, is strictly positive (as p is not contained in this shape),

while on the other hand, the cost of fitting P \ {p} with F is 0 as all other points

contributes 0 to the overall cost (and also note that increasing the weights to other

points in P \ {p} would not work.) Therefore, the complexity of shapes in F1 forces

the coreset to include every member of P in this case.

p

F

Figure 3.4. An illustration that the complex family of shapes F1 forces the coreset
to include every point in P . F witnesses that the sensitivity of p in P is 1, as only p
contributes a strictly positive quantity of

∑
p∈P dist(p, F ); if p is not included in the

sketch S of P and S solely consists of points from P \ {p}, cost(S, F ) would be 0,
while cost(P, F ) is strictly positive.

Now consider the simple family of horizontal lines F2. The total sensitivity of

P with respect to F2 is 1: each point has sensitivity 1/n for any shape F , every points
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contributes exactly the same amount to the overall summation
∑

p∈P dist(p, F ), as

can be easily seen from Figure 3.5. The coreset is also quite simple: any point in P

with multiplicity n is a coreset; for example, the set S = {p}, where the weight of p

is n, is a coreset. Indeed, from the view of a shape, the points in P are completely

indistinguishable: they all contribute the same amount to dist(P, F ), for any F ∈ F2.

Therefore, we can summarize the point set with a single weighted point. From the

analysis of these two situations, it should be clear that total sensitivity quantifies the

complexity of a shape fitting problem, in the sense that small total sensitivity implies

small coreset.

F

p

Figure 3.5. An illustration that the simple family of shapes F2 has a small coreset of
{p}, where the weight of p is n. The sensitivity of p in P is 1/n, as for any F , each point
contributes the same quantity to

∑
p∈P dist(p, F ); so

∑
p∈P cost(p, F ) = ndist(p, F ),

which is exactly cost(S, F ) = w(p)dist(p, F ).

We give a more non-trivial example, to show that total sensitivity increases as

the complexity of shapes increases. Consider the family F of lines, which is a very

simple shape, and its more complex variant, the family F ′ of rays. The family of

rays is more complex than the family of lines, since one needs to specify a starting
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point for ray, after specifying the line on which the ray lies. A deeper reason (in the

context of coresets for shape fitting problem) is that a ray can always behave like a

line, so there is indeed more shapes with respect to which a sketch S of P has to

approximate. It is probably the best to look at the Figure 3.6 to see this. As we will

shown, on the plane, the total sensitivity for any point set P for a family of lines is

a constant, independent of the cardinality of P ; while the total sensitivity of P for a

family of rays is at least O(log n). The increase of total sensitivity from constant to

O(log n) reflects that total sensitivity captures the complexity of shapes.

Figure 3.6. For a point set P , by moving the ray far left enough, the ray is indistin-
guishable from a line.

The remaining question is: how to compute a coreset using sensitivities and

total sensitivity? One fairly natural approach is “sampling by importance”: since we

already have a method to measure the importance of each point in a point set (with

respect to the underlying shape fitting problem) via the notion of sensitivity, σP (·), the
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most intuitive method is to sample the points according to their sensitivities: that is,

the probability that a point p in P is picked is σP (p)/
∑

q∈P σP (q), which is σP (p)/SP .

Note that this precisely reflects the interpretation that the more outlier/important

a point is, the greater the chance that the point is selected. In order to get an

accurate sketch of P , one only needs to repeat the sampling (without replacement)

for a sufficient number of iterations and to assign weights properly. Since we do not

want to keep the reader in suspense, we will present the algorithm (Algorithm 2)

of computing coresets using sensitivities/total sensitivity at this time point. The

number of samples that need to be draw, depends quadratically on the total sensitivity

function, and another parameter characterizing the complexity of shapes, dim (P ),

which will be explained in detail in Chapter 6. We remark that dim (P ) is related

to a notion in range space (Vapnik-Chervonenkis dimension), and it is generally not

hard to compute. dim (P ) for (j, k) projective clustering problems is O(jkd), and

constant for circle fitting.

The following theorem which connects total sensitivity with coreset is from

[19], and it will be explained in Chapter 6 for the sake of completeness. For the time

being, it can be considered as a black box, which produces a coreset as long as one

computes (an upper bound of) the sensitivities σP (p) for each p in the input point

set P , and total sensitivity SP .

Theorem 1 (Connection between total sensitivity and ε-coreset [19]). Given any

n-point instance P ⊂ Rd of a shape fitting problem (Rd,F , dist), and any ε ∈ (0, 1],
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Algorithm 2: Low variance sampling algorithm using σP (·) and SP

Input: A point set P ⊂ Rd for a shape fitting problem (Rd,F , dist), ε ∈ (0, 1),
δ ∈ (0, 1), the number of samples m = O(ε−2(SP )2(dim (P ) + log 1/δ))

Output: A (multi-)point set S of size m, together with weights w(p) for each
p ∈ S, such that S is an ε-coreset of P with probability at least 1− δ.

for p ∈ P do
compute σP (p);

end
SP ←

∑
p∈P σP (p);

S ← ∅;
for i← 1 to m do

Randomly pick a point from P , where the probability of p ∈ P being picked
is σP (p)/SP . Suppose the selected point is p ∈ P ;
S ← S ∪ {p};
w(p)← SP/(mσP (p));

end

there exists an ε-coreset for P of size

O

((
Sn

ε

)2

dim (P )

)
.

The algorithmic result is that Algorithm 2 outputs an ε-coreset of P of size

O

((
Sn

ε

)2(
dim (P ) + log

1

δ

))

with probability at least 1− δ.

In the next two chapters, we focus on deriving upper bounds of total sensitiv-

ities for a family of projective clustering problems and the circle fitting problem on

the plane.
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CHAPTER 4

FROM L∞ CORESET TO L1 CORESET

In this chapter, we derive upper bounds for several projective clustering pro-

lems, and the circle fitting problem. The central problem considered in this chapter

is the following:

Problem 3 (Upper bound the total sensitivity of the shape fitting problem with

o(n)). Given a shape fitting problem (Rd,F , dist),

• is there any connection between L∞ coreset and total sensitivity of (Rd,F , dist)?

• For the shape fitting problem, where the shape fitting problem is either (a) circle

fitting, (b) k-line clustering problem, or (c) integer (j, k) projective clustering,

are the total sensitivities for these problems o(n)?

We answer affirmatively the first question in Problem 3, the answer of which is

stated in Theorem 2. The answer to the first question immediately helps us to answer

the second question in Problem 3, the answer of which is stated in Theorem 3.

Organization of this chapter: We first show that there is a connection between

L∞ coreset and L1 coreset in Section 4.1. In Section 4.2, we apply this connection to

several shape fitting problems (circle fitting, k-line clustering, and integer (j, k) pro-

jective clustering) to derive o(n) upper bounds of total sensitivities. Using the black

box of computing ε-coreset via sensitivities/total sensitivity (Theorem 1), we obtain

small coreset for these shape fitting problems. In Section 4.3, we apply our result of
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small coreset for (j, k) projective clustering to get the first near linear algorithm for

integer (j, k) projective clustering.

We remind the reader that this chapter studies shape fitting problem in fixed

dimension (the dimension d is considered as a constant). So the upper bounds of the

sizes of the coreset in this chapter depend exponentially on d. The dependence on

the number of input points is polylogarithmic.

4.1 Total sensitivity and L∞ coreset

In this section, we show a connection between L∞ coreset and L1 coreset. In

particular, this result can be summarized as a shape fitting problem which admits

small L∞ coreset also has small total sensitivity, thus also has small L1 coreset.

Before the technical details, we first give a high-level overview, and some intuition on

this connection. Let us consider the line fitting problem on the plane, and consider

the point set shown in Figure 4.1. Recall the L∞ δ-coreset of P is a subset Q1 ⊂ P ,

such that for any line, the furthest distance from points in Q1 is at least 1− δ times

the furthest distance from points in P to the line. In other words, L∞ coreset Q1

roughly approximates the outline (or boundary) of the region where the points in P

are from. A simple exact L∞ coreset is the set of points on the convex hull of P , as

shown in Figure 4.1.

Each point inQ1 is a witness that each remaining point in P\Q1, has sensitivity
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q

l

P

Q1

Figure 4.1. The set of points on the convex hull of a point set P (blue points) is an
exact L∞ coreset. For example, the furthest point from P to the line l is q, which is
in Q1.

at most 1/2. Consider a point p ∈ P \ Q1. For any line, there is always exists some

point q from Q1 that is further than p, as illustrated in Figure 4.2(a). Therefore, for

line l, we have

dist(p, l)

dist(P, l)
≤ dist(p, l)

dist(p, l) + dist(q, l)
≤ 1

2
. (4.1)

As can be seen from Figure 4.2, this is true for any line l, therefore, the sensitivity of

p is at most 1/2.

This observation suggests a “peeling” argument to bound the sensitivities: we

first compute an L∞ coreset Q1 of P , and assign each point in Q1 an upper bound

of sensitivity 1 (since sensitivity by definition cannot exceed 1); peel off this layer
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q
p

l1

P

Q1

(a)

q′

p

l2

Q1

(b)

Figure 4.2. Illustration that the sensitivity of any point in P \Q1 is at most 1/2. (a)
shows that for the line l1, the point q ∈ Q1 is further than p to line l1. (b) shows that
for the line l2, the point q′ ∈ Q1 is further than p to line l2.
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from P , we get P \ Q1. We now compute an L∞ coreset Q2 of P \ Q1, and assign

each point in Q2 an upper bound of 1/2. This is because Q2 is a subset of P \ Q1

by construction, and each point in P \ Q1 has sensitivity at most 1/2, as reasoned

above (Eq (4.1)). We repeat this peeling process: in the ith iteration, the remaining

points is in P \ ∪i−1
j=1Qj. We compute an L∞ coreset Qi of this point set, and assign

every point in Qi an upper bound of sensitivity 1/i. The reasoning is similar to the

case when i = 2: for a point qi in Qi, for any arbitrary shape F , each layer Q1,

Q2, · · · , Qi−1 contains a distinct “witness” point, which is further away from F than

qi. This peeling process continues until every point is peeled off. If there are n points

in P , and each time we peel off c points, we get at most n
c

layers of P , therefore, this

argument shows that the total sensitivity of P is at most

c× 1 + c× 1

2
+ · · ·+ c× 1

n/c
≤ c×

(
1 +

1

2
+ · · · 1

n

)
≤ c log n.

Figure 4.3 shows this peeling process on P (each time an L∞ coreset of size at most

5 is peeled off). Figure 4.3(b) shows that a point in the third layer, Q3, indeed has

sensitivity at most 1/3.

We now show the rigorous proof of the above peeling argument for bounding

total sensitivities. Recall the definition of L∞ coreset of an instance P of a shape

fitting problem:

Definition 2 (L∞ coreset for a shape fitting problem). Given an n-point set P of a

shape fitting problem, and δ ∈ [0, 1], a subset Q ⊂ P is an L∞ δ-coreset of P , if for
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every F ∈ F , it holds that

max
q∈Q

dist(q, F ) ≥ (1− δ) max
p∈P

dist(p, F ).

(the distance from the furthest point in Q to a shape F is at least (1− δ) times the

distance from the furthest point in P to a shape F .) Also note that since Q ⊂ P ,

max
q∈Q

dist(q, F ) ≤ max
p∈P

dist(p, F ).)

The following theorem shows that if a shape fitting problem admits a small

L∞ coreset, then its total sensitivity is also small (that is, o(n)).

Theorem 2 (Small L∞ coreset and small total sensitivity). Given a shape fitting

problem (Rd,F , dist). Suppose that for some 0 ≤ δ < 1, there is a non-decreasing

function fδ(n) so that any point set P ′ ⊂ Rd of size n admits an L∞ δ-coreset of size

at most fδ(n), then for any P ⊂ Rd of size n, we can compute an upper bound sP (p)

of the sensitivity σP (p), for every p ∈ P , so that

∑
p∈P

sP (p) ≤ fδ(n)

1− δ
log n.

Proof. We construct a sequence of subsets P = P1 ⊇ P2 ⊇ P3 · · ·Pm, where m ≤ n

and |Pm| ≤ fδ(n). Pi+1 is constructed from Pi as follows. If |Pi| ≤ fδ(n), the sequence

ends. Otherwise, we compute an L∞ δ-coreset Qi of Pi whose size is at most fδ(n),

and let Pi+1 = Pi \Qi. This finishes the description of the construction.

Let Qm denote the set Pm. Now, the sets Q1, Q2, . . . , Qm partition P . We

claim that for any q ∈ Qi, its sensitivity σP (q) can be upper bounded by s(q) =

1
(1−δ)i . To show this, consider an arbitrary shape F ∈ F . Consider any 1 ≤ j ≤ i.
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Observe that q ∈ Pj; let qj ∈ Qj be the point in the δ-coreset Qj of Pj such that

dist((, q)j, F ) = maxp∈Qj dist(p, F ). We have

dist(qj, F ) = max
p∈Qj

dist(p, F ) ≥ (1− δ) ·max
p∈Pj

dist(p, F )

≥ (1− δ) · dist(q, F ).

Thus dist(q,F )∑
p∈P dist(p,F )

≤ dist((,q),F )∑
1≤j≤idist((,q)j ,F )

≤ 1
(1−δ)i . Therefore, σP (q) ≤ s(q) =

1
(1−δ)i .

Finally,
∑

p∈P s(p) =
∑m

i=1
|Qi|

(1−δ)i ≤ fδ(n)
∑m

i=1
1

(1−δ)i ≤
fδ(n) logn

1−δ .

The upper bound in Theorem 2 is tight: in order to get an asymptotically

smaller upper bound of total sensitivity (i.e. o(log n)), some other properties of the

family F of shapes, other than the assumption that it has small L∞ coreset, must be

used. We show two families of shapes, each family of shapes admits a constant size

L∞ coreset, and the total sensitivity function Sn is Ω(log n).

Observation 1 (Rays extending to infinity on the right side). Consider the shape

fitting problem (R2,F , dist), where F consists of rays: F = {Fa|a ∈ R}, where

Fa = {(x, 0) ∈ R2|x ≥ a} (a ray starting from (a, 0)). The distance from a point p to

a shape Fa is a − p if a ≥ p and 0 otherwise (the point is contained in the open ray

in this case). It is easy to see that any point set P ′ admits an exact L∞ coreset (the

δ is 1 in this case), which is the left-most point in P ′. However, the total sensitivity

function Sn is Ω(log n). We show a point set whose total sensitivity is Ω(log n). Let

P be a set of n points, where p0 = (0, 0), and pi = (
∑i−1

j=0 2j, 0) for i = 1, · · · , n− 1.

Consider pi and a shape F∑i
j=0 2j , for 3 ≤ i ≤ n:

σP (pi) ≥
dist(pi, F∑i

j=0 2j)

dist(P, F∑i
j=0 2j)

=
2i−1

1 +
∑i

j=1 j2
j−1
≥ 2i−1

(i− 2)2i−1
=

1

i− 2
.
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Hence SP ≥
∑n

i=3
1
i−2

, which is Ω(log n).

Observation 2 (2-line clustering). Consider the shape fitting problem (R2,F , dist),

where F consists of pairs of lines (each shape is a union of two lines). The distance

from a point to a shape formed by two lines l1 and l2 is the minimum Euclidean dis-

tance from the point to the nearest line. This shape fitting problem admits a constant

size L∞ coreset. We now show an n-point set P whose total sensitivity is Ω(log n).

Let P be the following point set in R2: pi = (1/2−1, 0), for i = 1, · · · , n. Let Fi be a

pair of lines: one vertical line and one horizontal line, where the vertical line is y-axis,

and the horizontal line is {(x, 1/2i)|x ∈ R}.

Consider the point pi, where i = 1, · · · , n. We show that dist(pi, Fi)/dist(P, Fi)

is at least 1/(2 + i) for i = 1, · · · , n. For j ≤ i, note that dist(pj, Fi) = 1/2i: since the

distance from pj to the horizontal line in Fi is 1/2i and the distance to the vertical

line is 1/2j−1, dist(pj, Fi) = min{1/2j−1, 1/2i} = 1/2i. For i + 1 ≤ j ≤ n, on the

other hand, dist(pj, Fi) = 1/2j−1. Therefore,
∑n

j=i+1 dist(pj, Fi) =
∑n

j=i+1 1/2j−1 =

(1/2i−1) · (1− (1/2)n−i). Thus, we have

σP (pi) ≥
dist(pi, Fi)

dist(P, Fi)
=

1/2i

(1/2i−1 − 1/2n−1) + i · (1/2i)
>

1

2 + i
.

Therefore, SP ≥
∑n

i=1
1

2+i
, which is Ω(log n).

The proof in Theorem 2 is constructive. Algorithm 3 computes the sensitivi-

ties for each p ∈ P .
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One subtle thing to note in Theorem 2 and also Algorithm 3 is that δ is not part

Algorithm 3: Compute the upper bound sP (·) of σP (·) using L∞ δ-coreset

Input: A point set P
Output: An upper bound of the sensitivity of p in P , sP (p), for each p ∈ P
i← 1;
while P 6= ∅ do

Q← LInfinityCoreset(P) ; // LInfinityCoreset(P) computes an

L∞ δ-coreset of P of size at most fδ(|P |).
for q ∈ Q do

sP (q)← 1
(1−δ)i ;

end
P ← P \Q;
i← i+ 1;

end

of the input: as long as for some (instead of every) δ ∈ [0, 1) there is a procedure

LInfinityCoreset to compute a small L∞ coreset of size fδ(|P |) for input point set

P , we can get an upper bound of total sensitivity using Theorem 2 (and also use

Algorithm 3). We give a pedagogical example here. Consider the k-median clustering

problem in Rd. Any point set P ⊂ Rd admits an L∞ (2/3)-coreset of size k+ 1: such

a coreset can be obtained by starting with an arbitrary point in P , denoted p1. For

1 ≤ i ≤ k, letting pi+1 be the point in P furthest from {p1, · · · , pi}. Using this proce-

dure in the place of LInfinityCoreset in Algorithm 3, one obtains an upper bound

of (k+ 1)/(1−2/3) log n (which is O(k log n)) on the total sensitivity of P . Although

for all the problems where we are going to apply Theorem 2, we already have the L∞

δ-coreset construction for any δ ∈ (0, 1), the requirement in the Theorem 2 is indeed
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weaker.

4.2 Total sensitivities of k-line clustering, integer (j, k) projective
clustering and circle fitting

In this section, we derive upper bounds of total sensitivities for three shape

fitting problems using Theorem 2: k-line clustering, integer projective (j, k) cluster-

ing, and circle fitting problems. We use previous results of L∞ coreset for these shape

fitting problems.

Theorem 3 (Upper bound of total sensitivities for circle fitting, k-line clustering,

and integer (j, k) projective clustering). Let P ⊂ Rd be an n-point set of a shape

fitting problem, where the shape fitting problem is either (a) circle fitting, (b) k-line

clustering problem, or (c) integer (j, k) projective clustering. We can compute in

O(n(log n)O(1)) time an upper bound sP (p) on the sensitivity σP (p) for each p ∈ P so

that
∑

p∈P sP (p) ≤ (log n)O(1). For the k-line clustering problem, the constant in the

exponent of the logarithm depends on k and d, and for the integer (j, k) projective

clustering problem, it depends on j, k and d.

Proof. Circle Fitting: An L∞ 1/2-coreset of size O(1) can be computed for any

n-point set can be computed in time O(n), see for example [6] and [7]. Using the

dynamization technique described in these papers, such a 1/2-coreset can be main-

tained in (log n)O(1) time per insert or delete. The result follows using Theorem 2

and the remarks following its proof on the implied algorithm and its dynamization.

k-line clustering: An L∞ 1/2-coreset of size O(1) (with the constant depend-

ing on j) exists for any n-point set [8], but the construction in that paper does not
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describe an efficient enough algorithm for constructing such a coreset. Nevertheless,

using techniques that are now standard, a 1/2-coreset of size (log n)O(1) can be com-

puted in O(n(log n)O(1)) time. The dynamization technique described in [7] allows us

to maintain a 1/2-coreset in (log n)O(1) time per insertion and deletion.

Integer (j, k) projective clustering: An L∞ 1/2-coreset of size (log ∆ ·

log n)O(1) can be computed in time n(log ∆ · log n)O(1) for any n-point set with integer

coordinates and diameter ∆ [17]. The dynamization technique in [7] allows us to

maintain a 1/2-coreset in (log ∆ log n)O(1) time per insertion and deletion. The result

follows by recalling that ∆ is (nd)O(1) for any input to the integer projective clustreing

problem with n points.

Plugging the upper bounds of total sensitivities stated in Theorem 3 in The-

orem 1, we get small coresets in fixed dimension.

Theorem 4 (Small coresets for circle fitting, k-line clustering and integer (j, k) pro-

jective clustering). Let P ⊂ Rd be an n-point set of circle fitting problem (Rd,F , dist),

where the shape fitting problem is either (a) circle fitting, (b) k-line clustering prob-

lem, or (c) integer (j, k) projective clustering. Given ε ∈ (0, 1) and δ ∈ (0, 1). With

probability at least 1−δ we can compute in (a) O(n(log n)O(1) +(log n)O(1)ε−2(O(1)+

log(1/δ))), (b) O(n(log n)O(1) +(log n)O(1)ε−2(O(kd)+log(1/δ))), (c) O(n(log n)O(1) +

(log n)O(1)ε−2(O(kdj) + log(1/δ))) time an ε-coreset of size (a)O((log n/ε)2(O(1) +

log(1/δ))) for circle fitting problem; (b)O(ε−2(log n)f(k,d)(O(kd) + log(1/δ))) for k-

line clustering problem; (c) O(ε−2(log n)f(k,j,d)(O(kdj) + log(1/δ))) for integer (j, k)-

projective clustering problem, where f(k, d) is a function of k and d, and f(k, d, j) is
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a function of k, d, and j.

Proof. The sizes of the coresets follows directly from Theorem 1, by substituting the

upper bounds of total sensitivity O((log n)O(1)) into the formula. The running time

is the the summation of the time for computing the upper bound of sensitivity, sP (p)

for each p ∈ P , and the time for sampling. The time for computing the upper bound

of sensitivity is O(n(log n)O(1)), as proved in Theorem 3. The time for sampling

is linear to the the size of coresets, which is O((Sn/ε)
−2(dim(P,R(P )) + log(1/δ))).

The factor, dim(P,R(P )) is constant for circle fitting, and O(kdj) for (j, k) projective

clustering [19]. Hence the theorem follows.

4.3 Near linear algorithm for integer (j, k) projective clustering problem

In this section, we describe the near linear algorithm for integer (j, k) projective

clustering in Rm using the coreset we obtained in the last section. Let P ⊆ Rm be

an input instance of n points with integer coordinates of magnitude at most ∆ =

(mn)10, and 0 < ε < 1 be a parameter. We describe an algorithm that runs in

O(mn(logmn)O(1)) and returns a shape F ∈ F (a union of j k-flats) that with

probability at least a constant is nearly optimal: cost(P, F ) ≤ (1 + ε)cost(P, F ′) for

any F ′ ∈ F . Note that we consider j and k constants but the dimension m as part

of the input. We have used m rather than d to denote the dimension of the host

space to emphasize that here, unlike in the last two sections, it is not a constant.

For simplicity, we assume that the shape we are trying to fit is a union of k linear

j-subspaces in Rm, as opposed to a union of affine subspaces.

The result is obtained in three steps. First, we use a known dimension reduc-
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tion result to reduce the problem to a (j, k) projective clustering in constant dimen-

sion. To solve the projective clustering problem in constant dimension, we compute

a small coreset using essentially Theorem 4. In the third step, we solve the projective

clustering problem on the coreset nearly optimally in time polynomial in the size of

the coreset.

4.3.1 Dimension reduction

Using the algorithm of Deshpande and Varadarajan [16], we compute in time

nm
(
kj
ε

)O(1)
a linearly independent subset {a1, a2, . . . , ad′} ⊆ P whose span contains

(with probability at least 0.9) a shape F ∈ F such that cost(P, F ) ≤ (1+ε)cost(P, F ′)

for any F ′ ∈ F . Here, d′ =
(
kj
ε

)O(1)
is a constant. Let V denote the subspace spanned

by {a1, a2, . . . , ad′}. It now suffices to solve the following problem nearly optimally:

among the shapes in F that are contained in V , find the one that minimizes cost(P, ·).

Fix b ∈ Rm orthogonal to V . For p ∈ P , let p̄ denote the orthogonal projection

of p onto V and p⊥ the projection of p onto the orthogonal complement of V . For

p ∈ P , let p′ = p̄ + ||p⊥||2b, and let P ′ = {p′ | p ∈ P}. Observe that cost(P, F ) =

cost(P ′, F ) for any F ∈ F that is contained in V . It therefore suffices to solve the

following problem nearly optimally: among the shapes in F that are contained in V ,

find the one that minimizes cost(P ′, ·). This is a (j, k) projective clustering problem

in d′ + 1 dimensions, except for the additional constraint that the shape must lie in

the d′-dimensional subspace V .
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4.3.2 Computing a coreset

Our next step is to compute an L1 ε-coreset Q for P ′ using Theorem 4, treating

P ′ as a point set in d′+1 dimensions. For any p′ ∈ P ′, we have ||p′||2 = ||p||2 ≤
√
m∆;

however, the coordinates of p′ when expressed in terms of an orthonormal basis for the

subspace spanned by V and b are not necessarily integers. So we have to address this

technicality before applying Theorem 4. This is not hard to do given the following

lemma.

Lemma 1. Let F be an optimal solution for the (j, k) projective clustering problem

on the point set P . If cost(P, F ) > 0, then cost(P, F ) > 1
(m∆)c

, for some constant c

that depends only on j.

Proof. We first need the following observation.

Claim 1. Let {p1, p2, . . . , pj+1} be any linearly independent subset of P . The (j+1)-

dimensional volume of the simplex spanned by this subset is at least 1
((j+1)!)2

.

Proof. Let A be the (j + 1) × m matrix whose rows are the vectors pi. Then the

volume of the simplex in question is 1
((j+1)!)2

det(AAT ). The matrix AAT has entries

that are all integers.

Suppose that F , the optimal solution is a union of the k j-subspaces f1, f2, . . . , fk.

Let P1, . . . , Pk be the partition of P obtained by assigning each point in P to the near-

est of these k subspaces. Assuming cost(P, F ) > 0, at least one of the sets, say Pi,

contains (j + 1) linearly independent points {q1, . . . , qj+1}. Let f ′i be a j-subspace

in the span of {q1, . . . , qj+1} that contains the projection of fi on this span. Then
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the set {q1, . . . , qj+1} is contained in a (j + 1)-dimensional box, j of whose sides have

length 2 maxj+1
t=1 ||qt||2 and whose (j + 1)-th side has length 2 maxj+1

t=1 dist(qt, f
′
i). This

box must contain the simplex spanned by {q1, . . . , qj+1}, so we have:

1

((j + 1)!)2
≤ 2j+1(

j+1
max
t=1
||qt||2)j ∗ j+1

max
t=1

dist(qt, f
′
i) ≤ (2∆m)j+1 j+1

max
t=1

dist(qt, f
′
i).

The lemma follows from the above inequality by observing that cost(P, F ) ≥

maxj+1
t=1 dist(qt, f

′
i) ≥ maxj+1

t=1 dist(qt, fi).

If cost(P, F ) = 0 for the optimal F ∈ F ′, then this must be true for some

F ′ ∈ F that is contained in V as well. This means that P itself must be contained

in V . In this case, such an F ′ can be found by applying the method of [17] for shape

fitting in the L∞ sense.

Let us therefore consider the case where cost(P, F ) > 1
(m∆)c

for the optimal

F ∈ F ′. In this case, we express the points in P ′ in terms of an orthogonal basis for

the span of V and b, but round the coordinates of each point in P ′ to the nearest

multiple of 1
(mn∆)c1

where c1 > c is a sufficiently large integer. We now scale so that

the coordinates of points in P ′ are integers. Note that the magnitude of the largest

coordinate is (mn∆)O(1).

Now, treating P ′ as an input to the integer (j, k) projective clustering problem

in Rd′+1 we compute a coreset Q using Theorem 4. The running time for this step is

n(logmn)O(1).
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4.3.3 Solving the problem on the coreset

We need to find a shape F that is contained in V such that cost(Q,F ) ≤

(1+ε)cost(Q,F ′) for any shape F ′ contained in V . Since the size of Q is (logmn)O(1),

we can afford to use a generic polynomial time algorithm for this. We omit the details

from this version, and conclude with our main result:

Theorem 5. Let P be an n-point instance of the integer (j, k)-projective clustering

problem (Rm,F) (the largest magnitude of any coordinate for a point in P is at most

(mn)10), and ε > 0 be a parameter. There is a randomized algorithm that runs in

time mn(logmn)O(1) and returns a shape F ∈ F such that with constant probability,

cost(P, F ) ≤ (1 + ε)cost(P, F ′) for any F ′ ∈ F . Here, j and k are constants but m is

not.
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Q1

Q2

Q3

Q4

(a)

q3

q1

q2

Q1

Q2

Q3

Q4

(b)

Figure 4.3. (a) shows each layer of P in the peeling process. Each layer is colored
with different colors. Each layer has at most 5 points, so when there are less than 5
points left, the remaining 4 blue points, is considered as a single layer, and the peeling
stops. (b) shows that for a point q3 in the third layer Q3, its sensitivity cannot exceed
1/3, as there always exist two points, one from Q1 and one from Q2, which are further
away to the shape than q3.
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CHAPTER 5

FROM LOW DIMENSION TO HIGH DIMENSION

We have obtained an upper bound of total sensitivities for several shape fitting

problems via the connection between L∞ coreset in fixed dimension. In this section,

we focus on the high dimensional setting. The dimension d is no longer a constant, and

we would like to derive upper bounds of total sensitivities of shape fitting problems

which polynomially depend on d, instead of exponentially. The central question in

this section is the following:

Problem 4 (Total sensitivity and the dimension d). For projective clustering prob-

lems in Rd, such as k-median/k-means, k-line clustering, integer (j, k) clustering,

what is the dependence of the total sensitivity function Sn on the dimension d? Can

we remove the exponential dependence on d in the upper bounds of total sensitivities

in Theorem 3 and get upper bounds of Sn polynomially depending on d?

The reduction argument in Section 5.1 shows that the factor d can be removed

from shape fitting problems where each shape is a low-dimensional object; using this

fact, we answer the second question affirmatively in Section 5.2.

This chapter is organized as follows: we first show a dimension reduction argument,

which essentially allows us to upper bound the total sensitivity of a high dimensional

shape fitting problem with the total sensitivity of a low dimensional problem times a

constant. Then we apply this result to several variants of (j, k) projective clustering

problem, where j or k are set to specific values, and integer (j, k) projective clustering
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problem, to obtain small coreset in high dimension.

Problem 4 can be considered as part of a more general question: since total

sensitivity quantifies the complexity of shapes, what are the “right” factors to appear

in total sensitivity? Is the dependence on d essential or can it be completely removed?

The results in this section can be considered as a fairly important step towards the

final solution of the more general question. At first glance, it might look like that

the occurrence of d in total sensitivity is unavoidable: consider the hyperplane fitting

problem, where each shape F ∈ F is a hyperplane in Rd. Let P be a point set of

size d in general position. Then clearly σP (p) = 1 (since there always exists a hyper-

plane containing all d − 1 points other than p), so SP = d. However, inspecting

the question more carefully, one would notice that there is a difference between the

hyperplane fitting problem and (j, k) projective clustering prolems. A hyperplane

is a high- dimensional object—each hyperplane is an affine subspace of dimension

d− 1, while for the (j, k) projective clustering problems, the shapes are intrinsically

low dimensional: a k-tuple of j-flats is contained in a subspace of dimension at most

k(j+ 1). Hence it seems that k(j+ 1), instead d, is a more ”correct” factor to appear

in the upper bounds of total sensitivities for the variants of (j, k) projective clustering

problems.

Indeed this is the case. The fact that the shapes in (j, k) projective clustering

are low-dimensional is exploited through two observations. The first observation is
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that if the instance of the shape fitting problem, P , is also low-dimensional, then one

can replace the exponential factor of d in the upper bound of the total sensitivity SP

with the intrinsic dimension of P and F . For example, consider the k-line clustering

problem. Each shape F is a union of k lines, therefore, it is contained in a subspace

of dimension at most 2k (each line is contained in a 2-subspace, which is a plane).

Suppose P is also contained in a line, in particular this means that P is contained in

the a subspace of dimension at most 2. Then we can bound the total sensitivity of

P by O(kf1(k) log |P |) (f1(k) is a function of k), instead of O(kf2(d,k) log |P |) (f2(d, k)

is a function of d and k), as will be shown in later sections. The second observation

is that even if P is not low-dimensional, we can project P onto a low dimensional

subspace to get P ′. The total sensitivity of P is upper bounded by a constant times

the total sensitivity of P ′, which is low-dimensional now. Then we only need to use

the first observation on P ′.

This reduction immediately produce small coresets in high dimension: the

dependence of the size of the coreset on d is only polynomial (which appears in the

size of the coreset through the factor dim (P ), which is O(djk) for (j, k) projective

clustering problems).

5.1 Dimension reduction

We start with a dimension reduction argument, which shows that for shape

fitting problems where each shape is a low-dimensional object, we can upper bound

the total sensitivity of an arbitrary point set P with the total sensitivity of a low-
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dimensional point set. We first define formally the projection of a point set P onto a

shape F .

Definition 3 (projection of points on a shape). Define proj : Rd × F → Rd, where

proj (p)F is the projection of p on a shape F , that is, proj (p, F ) is a point in F which

is nearest to p, dist(p, proj (p, F )) = minq∈F dist(p, q) (ties are broken arbitrarily).

We abuse the notation to denote the multi-set {proj (p, F ) |p ∈ P} by proj (P, F ) for

P ⊂ Rd.

See Figure 5.1 for example of projecting a point set on R2 to a line.

F

p

proj (p, F ∗) F ∗

Figure 5.1. The total sensitivity of P is upper bounded by the total sensitivity of
P ′ = proj (P,F∗) times a constant factor.

Theorem 6 (Dimension reduction, computing the total sensitivity of a point set

in high dimensional space with the projected lower dimensional point set). Given
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an instance P of a shape fitting problem (Rd,F , dist). Let F ∗ denote a shape that

minimize dist(P, F ) over all F ∈ F . Let p′ denote proj (p, F ∗) and let P ′ denote

proj (P, F ∗). Assume that the distance function satisfies the relaxed triangle inequal-

ity: dist(p, q) ≤ α(dist(p, r) + dist(r, q)) for any p, q, r ∈ Rd for some constant α ≥ 1.

Then

1. the following inequality holds: SP ≤ 2α2SP ′ + α.

2. if dist(P, F ∗) = 0, then σP (p) = σP ′(p
′) for each p ∈ P . If dist(P, F ∗) > 0, then

σP (p) ≤
(
α

dist(p, p′)

dist(P, F ∗)
+ 2α2σP ′(p

′)

)
. (5.1)

Proof. If dist(P, F ∗) = 0, then P = P ′, and clearly both parts of the theorem hold.

Let us consider the case where dist(P, F ∗) > 0. By definition,

σP (p) = inf{β ≥ 0 | dist(p, F ) ≤ βdist(P, F ),∀F ∈ F},

σP ′(p
′) = inf{β′ ≥ 0 | dist(p′, F ) ≤ β′dist(P ′, F ),∀F ∈ F}.

Let F be an arbitrary shape in F . Then we have

dist(p, F ) ≤ αdist(p, p′) + αdist(p′, F )

≤ αdist(p, p′) + ασP ′(p
′)dist(P ′, F )

≤ αdist(p, p′) + 2α2σP ′(p
′)dist(P, F )

= α
dist(p, p′)

dist(P, F )
· dist(P, F ) + 2α2σP ′(p

′)dist(P, F )

≤ α
dist(p, p′)

dist(P, F ∗)
· dist(P, F ) + 2α2σP ′(p

′)dist(P, F )

=

(
α

dist(p, p′)

dist(P, F ∗)
+ 2α2σP ′(p

′)

)
dist(P, F ).
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The first inequality follows from the relaxed triangle inequality, the second inequality

follows from the definition of sensitivity of p′ in P ′, and third inequality follows from

the fact that

dist(P ′, F ) =
∑
p′∈P ′

dist(p′, F ) ≤
∑
p∈P

α (dist(p, F ) + dist(p, p′))

= α(dist(P, F ) + dist(P, F ∗)) ≤ 2αdist(P, F ),

since dist(P, F ∗) ≤ dist(P, F ).

Thus the second part of the theorem holds. Now,

SP =
∑
p∈P

σP (p)

≤
∑
p∈P

(
α

dist(p, p′)

dist(P, F ∗)
+ 2α2σP ′(p

′)

)
= α + 2α2SP ′ .

Note that although the above theorem uses the optimum shape F ∗ to a point

set P (for the shape fitting problem (Rd,F , dist)), one could use a constant factor

approximate solution F̃ instead. Therefore, the result can be easily turned into an

algorithm to compute the upper bound of the sensitivity σP (p) for each p ∈ P . The

upper bound of SP is only slightly larger in this case (depending on the constant

factor approximation solution):

Corollary 1. Given an instance P of a shape fitting problem (Rd,F , dist). Let F̃

denote an c-approximation for fitting P (c is some constant), i.e.

dist(P, F̃ ) ≤ cmin
F∈F

dist(P, F ).
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Let p′ denote proj
(
p, F̃

)
and let P ′ denote proj

(
P, F̃

)
. Assume that the distance

function satisfies the relaxed triangle inequality: dist(p, q) ≤ α(dist(p, r) + dist(r, q))

for any p, q, r ∈ Rd for some constant α ≥ 1. Then

1. the following inequality holds: SP ≤ (α2 + cα)SP̃ + α.

2. if dist(P, F̃ ) = 0, then σP (p) = σP ′(p
′) for each p ∈ P . If dist(P, P̃ ) > 0, then

σP (p) ≤
(
α

dist(p, p′)

dist(P, F̃ )
+ (α2 + cα)σP ′(p

′)

)
. (5.2)

The problem of computing the total sensitivity an instance P of the shape

fitting problem (Rd,F , dist), where each shape F ∈ F is contained in a subspace

of dimension m2, is reduced the problem of computing the total sensitivity of an

instance P ′, where P ′ is also contained in a subspace of dimension m2 (by using the

the dimension reduction in Theorem 6 or Corollary 1). We now use an important

property of the Euclidean distance, which is the rotation-invariant property. This

property essentially guarantees that we only need to consider a shape fitting problem

(R2m2 ,F , dist). In particular, consider the (j, k) projective clustering problem. m2 =

(j+1)k since each shape is a union of j-dimensional affine subspace. Fix an arbitrary

subspace G of dimension min{d, 2m2} that contains P ′. Then for for any F ∈ F ,

there is an F ′ ∈ F such that (a) F ′ is contained in G, and (b) dist(p′, F ′) = dist(p′, F )

for all p′ ∈ P ′. We show a “toy” example to further illustrate this. Since it is difficult

to show it pictorially when the dimension is larger than 3, we show an toy example,

which should convince the reader that it is the case.
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l

l′

(0, 0, 0) x-axis

z-axis

y-axis

Figure 5.2. An illustration of Theorem 7. The ambient space is R3. The point set is
contained in a line passing through origin, and the family of shapes is the set of lines
passing through origin. Hence both the point set and each shape is a low-dimensional
object (both are contained in some 1-subspace). The picture shows that the total
sensitivity of (P,F ,Rd) is the same as (P,F ′,R2), where F ′ is the set of lines passing
through origin and lie in the plane determined by y-axis and z-axis. For any l that
does not lie in the yz-plane, we can always rotate the plane determined by the line and
the subspace the point set is from, so that it completely coincides with the yz-plane.
The transformation does not change the distances from each point in the point to the
shape because of the rotation invariant property of Euclidean space.
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Theorem 7 (Sensitivity of a lower dimensional point set in a high dimensional space).

Let P ′ be an n-point instance of the (j, k)-projective clustering problem (Rd,F , dist),

where dist is the zth power of the Euclidean distance, for some z ∈ (0,∞). Assume

that P ′ is contained in a subspace of dimension m1. (Note that for each shape F ∈ F ,

there is a subspace of dimension m2 = k(j+ 1) containing it.) Let G be any subspace

of dimension m = min{m1 + m2, d} containing P ′; fix an orthonormal basis for G,

and for each p′ ∈ P ′, let p′′ ∈ Rm be the coordinates of p′ in terms of this basis. Let

P ′′ = {p′′ | p′ ∈ P ′}, and view P ′′ as an instance of the (j, k)-projective clustering

problem (Rm,F ′, dist), where F ′ is the set of all k-tuples of j-subspaces in Rm, and

dist is the zth power of the Eucldiean distance. Then, σP ′(p
′) = σP ′′(p

′′) for each

p′ ∈ P ′, and SP ′ = SP ′′ .

Using Corollary 1 and Theorem 7, we get an algorithm to compute σP (·)

(Algorithm 4).

5.2 Coresets in high dimension for a family of (j, k) projective clustering
problems

We now describe the result on the total sensitivities of several projective clus-

tering problems in high dimension. Using these upper bounds on total sensitivities

and Theorem 1 we also obtain small coresets (in high dimension) for these shape

fitting problems.
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Algorithm 4: Compute the sensitivities using the dimension reduction tech-
nique

Input: A point set P
Output: Upper bound sP (·) of the sensitivity of each point in P , σP (p),

∀p ∈ P
F̃ ← ConstantApproximate(P) ; // ConstantApproximate(P) computes a

c-approximate shape fitting P

P ′ ← proj
(
P, F̃

)
;

for p′ ∈ P ′ do
s′P ′(p

′)← Sensitivity(P ′, p′) ; // Sensitivity(P ′, p′) computes an

upper bound of the sensitivities of each p′ ∈ P ′ for a shape

fitting problem (R2m2 ,F , dist)

end

if dist(P, F̃ ) == 0 then
sP (p)← s′P ′(p

′);
end
else

sP (p)←
(
αdist(p,p′)

dist(P,F̃ )
+ (α2 + cα)sP ′(p

′)
)

;

end

5.2.1 k-median/k-means clustering ((0, k) projective clustering)

In this section, we derive upper bound of the total sensitivity function for the

k-median/k-means problems, and its generalizations, where the distance function is

zth power of Euclidean distance. These bounds are similar to the ones derived by

Langberg and Schulman [30], but the proof is much simplified. For the rest of the

document, dist is assumed to be the zth power of the Euclidean distance.

Theorem 8 (Total sensitivity of (0, k)-projective clustering). Consider the shape

fitting problem (Rd,F , dist), where F is the set of all k-point subsets of Rd. We have
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the following upper bound on the total sensitivity:

Sn ≤ 22z−1k + 2z−1, z ≥ 1,

Sn ≤ 2k + 1, z ∈ (0, 1).

In particular, the total sensitivity of the k-median problem (which corresponds to the

case when z = 1) is at most 2k + 1, and the total sensitivity of the k-means problem

(which corresponds to the case when z = 2) is 8k + 2.

Proof. Let P be an arbitrary n-point set. Apply Theorem 6, and note that proj (P,C∗),

where C∗ is an optimum set of k centers, contains at most k distinct points. Assume

that C∗ = {c∗1, c∗2, · · · , c∗k}. Let Pi be the set of points in P whose projection is c∗i ,

that is, Pi = {p ∈ P |proj (p, C∗) = c∗i }. It is easy to see that the summation of

sensitivities of the |Pi| copies of c∗i is at most 1: for any k-point set C in Rd,

|Pi| ·
dist(c∗i , C)

dist(C∗, C)
=

|Pi|dist(c∗i , C)∑k
j=1 |Pj|dist(c∗j , C)

≤ 1.

Therefore, the total sensitivity of proj (P,C∗) is at most k. Substituting α

from the remark after Theorem 6, we get the above result.

Theorem 9 (ε-coreset for (0, k)-projective clustering). Consider the shape fitting

problem (Rd,F , dist), where F is the set of all k-point subsets of Rd. For any n-point

instance P , there is an ε-coreset of size O(k3dε−2).

Proof. Observe that the dim (P ) is O(kd). Using Theorem 1, and Theorem 8, we

obtain the above result.
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5.2.2 k-line clustering ((1, k) projective clustering)

In this section, we derive upper bounds on the total sensitivity function for

the k-line clustering problem, that is, the (1, k)-projective clustering problem.

Theorem 10 (Total sensitivity for k-line clustering problem). Consider the shape

fitting problem (Rd,F , dist), where F is the set of k-tuple of lines. The total sensi-

tivity function, Sn, is O(kf(k) log n), where f(k) is a function the depends only on

k.

Proof. Let P be an arbitrary n-point set. Let K∗ denote an optimum set of k lines

fitting P . Using Theorems 6 and 7, it suffices to bound the sensitivity of an n-

point instance of a k-line clustering problem housed in R4k. By Theorem 3, the

total sensitivity of this latter shape fitting problem is O(kf(k) log n), where f(k) is a

function depending only on k. Therefore, Sn is O(kf(k) log n).

(Alternatively, one could use a recent result in [23]. Let P ′ denote the projec-

tion of P into K∗. Since K∗ is a union of k lines, we can upper bound the sensitivity

of P ′ by k times the sensitivity of an n-point set that lies on a single line. The

sensitivity of an n-point set that lies on a single line can be upper bounded by the

sensitivity of an n-point set for the weighted (0, k)-projective clustering problem, for

which the sensitivity bound is kf(k) log n as shown in [23].)

Notice that for k-line clustering problem, the bound on the total sensitivity

depends logarithmically on n. We give below a construction of a point set that shows

that this is necessary, even for d = 2.
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Theorem 11 (The upper bound of total sensitivity for k-line clustering problem is

tight). For every n ≥ 2, there exists an n-point instance of the k-line clustering prob-

lem (R2,F , dist), where dist is the Euclidean distance, such that the total sensitivity

of P is Ω(log n).

Proof. We construct a point set P of size n, together with n shapes Fi ∈ F , i =

1, · · · , n, such that
∑n

i=1 dist(pi, Fi)/dist(P, Fi) is Ω(log n). Note that this implies

that SP is at least Ω(log n). Let P be the following point set in R2: pi = (1/2i−1, 0),

for i = 1, · · · , n. Let Fi be a pair of lines: one vertical line and one horizontal line,

where the vertical line is the y-axis, and the horizontal line is {(x, 1/2i)|x ∈ R}.

Consider the point pi, where i = 1, · · · , n. We show that dist(pi, Fi)/dist(P, Fi)

is at least 1/(2+i), for i = 1, · · · , n. For j ≤ i, note that dist(pj, Fi) = 1/2i: since the

distance from pj to the horizontal line in Fi is 1/2i and the distance to the vertical

line is 1/2j−1, dist(pj, Fi) = min{1/2j−1, 1/2i} = 1/2i. For i + 1 ≤ j ≤ n, on the

other hand, dist(pj, Fi) = 1/2j−1. Therefore,
∑n

j=i+1 dist(pj, Fi) =
∑n

j=i+1 1/2j−1 =

(1/2i−1) · (1− (1/2)n−i). Thus, we have

σP (pi) = sup
F∈F

dist(pi, F )

dist(P, F )
≥ dist(pi, Fi)

dist(P, Fi)
=

1/2i

(1/2i−1 − 1/2n−1) + i · (1/2i)
>

1

2 + i

Therefore, SP ≥
∑n

i=1 σP (pi) >
∑n

i=1
1

2+i
, which is Ω(log n).

Theorem 12 (ε-coreset for k-line clustering problem). Consider the shape fitting

problem (Rd,F , dist), where F is the set of all k-tuples of lines in Rd. For any

n-point instance P , there is an ε-coreset with size O(kf(k)d(log n)2/ε2).

Proof. This result follows from Theorem 10, Theorem 1, and the fact that dim (P ) in
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this case is O(kd).

5.2.3 j-subspace approximation ((j, 1) projective clustering)

In this section, we derive upper bounds on the sensitivity of the subspace

approximation problem, that is, the (j, 1)-projective clustering problem. For the

applications of Theorems 6 and 7 in the other sections, we use existing bounds on

the sensitivity that have a dependence on the dimension d. For the subspace ap-

proximation problem, however, we derive here the dimension-dependent bounds on

sensitivity by generalizing an argument from [30] for the case j = d − 1 and z = 2.

This derivation is somewhat technical. With these bounds in hand, the derivation

of the dimension-independent bounds is readily accomplished in a manner similar to

the other sections.

Dimension-dependent bounds on Sensitivity

We first recall the notion of an (α, β, z)-conditioned basis from [14], and state

one of its properties (Lemma 2). We will use standard matrix terminology: mij

denotes the entry in the i-th row and j-th column of M , and Mi· is the i-th row of

M .

Definition 4. Let M be an n ×m matrix of rank ρ. Let z ∈ [1,∞), and α, β ≥ 1.

An n× ρ matrix A is an (α, β, z)-conditioned basis for M if the column vectors of A

span the column space of M , and additionally A satisfies that: (1)
∑

i,j |aij|
z ≤ αz,

(2) for all u ∈ Rρ, ‖u ‖z′ ≤ β‖Au ‖z, where ‖ · ‖z′ is the dual norm for ‖ · ‖z (i.e.

1/z + 1/z′ = 1).
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Lemma 2. Let M be an n × m matrix of rank ρ. Let z ∈ [1,∞). Let A be an

(α, β, z)-conditioned basis for M . For every vector u ∈ Rm, the following inequality

holds:

|Mi·u|z ≤ (‖Ai· ‖zz · βz) ‖Mu ‖zz

Proof. We have M = Aτ for some ρ×m matrix τ . Then,

|Mi·u|z = |Ai·τu|z ≤ ‖Ai· ‖zz · ‖ τu ‖zz′ ≤ ‖Ai· ‖zz · βz‖Aτu ‖zz = ‖Ai· ‖zz · βz‖Mu ‖zz.

The second step is Holder’s inequality, and the third uses the fact that A is (α, β, z)-

conditioned.

Using Lemma 2, we derive an upper bound on the total sensitivity when each

shape is a hyperplane.

Lemma 3 (total sensitivity for fitting a hyperplane). Consider the shape fitting

problem (Rd,F , dist) where F is the set of all (d− 1)-flats, that is, hyperplanes. The

total sensitivity of any n-point set is O(d1+z/2) for 1 ≤ z < 2, O(d) for z = 2, and

O(dz) for z > 2.

Proof. We can parameterize a hyperplane with a vector in Rd+1, u =
[
u1 · · · ud+1

]T
:

the hyperplane determined by u is hu = {x ∈ Rd|
∑d

i=1 uixi + ud+1 = 0}, where xi

denotes the ith entry of the vector x. Without loss of generality, we may assume that∑d
i=1 u

2
i = 1. The Euclidean distance to hu from a point q ∈ Rd is

dist(q, hu) =

∣∣∣∑d
i=1 uiqi + ud+1

∣∣∣√∑d
i=1 u

2
i

=

∣∣∣∣∣
d∑
i=1

uiqi + ud+1

∣∣∣∣∣.
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(the second equality follows from the assumption that
∑d

i=1 u
2
i = 1.)

Let P = {p1, p2, . . . , pn} ⊆ Rd be any set of n points. Let p̃i denote the

row vector
[
pTi 1

]
, and let M be the n × (d + 1) matrix whose ith row is p̃i.

Then, dist(pi, hu) = |Mi·u|z, and dist(P, hu) =
∑n

i=1 |Mi·u|z = ‖Mu ‖zz. Then us-

ing Lemma 2, we have

σP (pi) = sup
u

|Mi·u|z

‖Mu ‖zz
≤ ‖Ai· ‖zz · βz,

where A is an (α, β, z)-conditioned basis for M . Thus,

SP =
n∑
i=1

σP (pi) ≤ βz
n∑
i=1

‖Ai· ‖zz = βz
∑
i,j

|aij|z = (αβ)z.

For 1 ≤ z < 2, M has ((d + 1)1/z+1/2, 1, z)-conditioned basis; for z = 2, M has

((d+ 1)1/2, 1, z)-conditioned basis; for z > 2, M has ((d+ 1)1/z+1/2, (d+ 1)1/z′−1/2, z)-

conditioned basis [14]. Thus the total sensitivity for the three cases are (d+ 1)1+z/2,

d+ 1, and (d+ 1)z, respectively.

It is now easy to derive dimension-dependent bounds on the sensitivity when

each shape is a j-subspace.

Corollary 2 (Total sensitivity for fitting a j-subspace). Consider the shape fitting

problem (Rd,F , dist) where F is the set of all j-flats. The total sensitivity of any

n-point set is O(d1+z/2) for 1 ≤ z < 2, O(d) for z = 2, and O(dz) for z > 2.

Proof. Denote F ′ the set of hyperplanes in Rd. Let P ⊆ Rd be an arbitrary n-point

set. We first show that σP,F(p) ≤ σP,F ′(p), where the additional subscript is being

used to indicate which shape fitting problem we are talking about (hyperplanes or
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j-flats). Let p be an arbitrary point in P . Let Fp ∈ F denote the j-subspace such

that σP,F(p) = dist(p, Fp)/dist(P, Fp). Let proj (p)Fp denote the projection of p on Fp.

Consider the hyperplane F ′ containing Fp and orthogonal to the vector p−proj (p)Fp.

We have dist(p, F ′) = dist(p, Fp), whereas dist(q, F ′) ≤ dist(q, Fp) for each q ∈ P .

Therefore,

σP,F ′(p) ≥ dist(p, F ′)/dist(P, F ′) ≥ dist(p, Fp)/dist(P, Fp) = σP,F(p).

It follows that SP,F ≤ SP,F ′ . The statement in the corollary now follows from

Lemma 3.

Dimension-independent Bounds on the Sensitivity

We now derive dimension-independent upper bounds for the total sensitivity

the for j-subspace fitting problem.

Theorem 13 (Total sensitivity for j-subspace fitting problem). Consider the shape

fitting problem (Rd,F , dist) where F is the set of all j-flats. The total sensitivity of

any n-point set is O(j1+z/2) for 1 ≤ z < 2, O(j) for z = 2, and O(jz) for z > 2.

Proof. Use Theorem 6, note that the projected point set P ′ is contained in a j-

subspace. Further, each shape is a j-subspace. So, applying Theorem 7 and Corol-

lary 2, the total sensitivity is O(j2+z/2) or z ∈ [1, 2), O(j) for z = 2 and O(jz) for

z > 2.

Using Theorem 13 and the fact that dim (P ) for the j-subspace fitting problem

is O(jd), we obtain small ε-coresets:



75

Theorem 14 (ε-coreset for j-subspace fitting problem). Consider the shape fitting

problem (Rd,F , dist) where F is the set of all j-flats. For any n-point set, there

exists an ε-coreset whose size is O(j3+zdε−2) for z ∈ [1, 2), O(j3dε−2) for z = 2 and

O(j2z+1dε−2) for z ≥ 2.

Proof. The result follows from Theorem 13, and Theorem 1.

We note that for the case j = d−1 and z = 2, a linear algebraic result from [10]

yields a coreset whose size is an improved O(dε−2).

5.2.4 integer (j, k) projective clustering

Theorem 15. Consider the shape fitting problem (Rd,F , dist), where F is the set

of k-tuples of j-flats. Let P ⊂ Rd be any n-point instance with integer coordinates,

the magnitude of each coordinate being at most nc, for some constant c. The total

sensitivity SP of P is O((log n)f(k,j)), where f(k, j) is a function of only k and j.

There exists an ε-coreset for P of size O((log n)2f(k,j)kjdε−2).

Proof. Observe that the projected point set P ′ = proj (P ) {J∗1 , · · · , J∗k}, where {J∗1 , · · · , J∗k}

is an optimum k-tuple of j-flats fitting P , is contained in a subspace of dimension

O(jk). Using Theorem 3, Theorem 7, and Theorem 6, the total sensitivity SP is

upper bouned by O((log n)f(k,j)), where f(k, j) is a function of k and j. (A technical

complication is that the coordinates of P ′, in the appropriate orthonormal basis, may

not be integers. This is addressed in Section 3.3.2.)

Using Theorem 1 and the fact that dim (P ) is O(djk), we obtain the bound

on the coreset.
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CHAPTER 6

FROM ε-APPROXIMATION OF RANGE SPACES TO ε-CORESET OF
SHAPE FITTING PROBLEMS

In this chapter, we describe a result from [19], which connects ε-coreset with

ε-approximation of range spaces. Using a fundamental result in range spaces (Theo-

rem 16), the construction of ε-coreset boils down to a construction of ε-approximation

of a special range space, induced by the shape fitting problem at hand. Not only the

routine analysis to determine the number of samples in the construction of coresets

is removed, one also get smaller ε-coreset.

We first provide some necessary notions and results in ε-approximation of

range spaces. We start by defining range spaces:

Definition 5 (Range spaces and the dimension of a range space). A range space is a

pair (U,R), where U is a finite set, and R is a family of subsets of U . The dimension

of a range space (U,R), dim (U,R), is the smallest positive integer m, such that for

any U ′ ⊂ U of cardinality at least 2, it holds that

|{U ′ ∩R|R ∈ R}| ≤ |U ′|m.

dim (U,R) is closely related to the Vapnik-Chervonenkis dimension (VC-dimension)

of the range space (U,R); in fact, one can show that m is roughly no greater than

the VC-dimension of (U,R).
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For a toy example of a range space, let U = e1, e2, e3, and let R1 = {e1}, R2 =

{e2, e3}, R3 = e1, e3, the pair (U, {R1, R2, R3}) is a range space.

Definition 6 (ε-approximation of a range space). An ε-approximation of a range

space (U,R) is a subset of U , such that

∣∣∣∣ |R||U | − |S ∩R||S|

∣∣∣∣ ≤ ε,∀R ∈ R. (6.1)

A central result regarding ε-approximation of range spaces is the following:

Theorem 16 (ε-approximation of range spaces). Let (U,R) be a range space. The

dimension of (U,R) is denoted dim (U,R). Let ε, δ be real numbers in (0, 1). Let S

be a sample of

|S| = c

ε2

(
dim (U,R) + log

1

δ

)
i.i.d. elements from U , where c is a sufficiently large constant. Then with probability

at least 1 − δ, S is an ε-approximation of (U,R) (that is, S satisfies the inequal-

ity (6.1)).

A crucial component in the connection between ε-coresets of shape fitting

problems and ε-approximation of range spaces is a special range space defined in the

following way:

Definition 7 (range space of a shape fitting problem). Given an instance P of a

shape fitting problem. For each p ∈ P , let Ap be a multi-set of mp = dnσP (p)e

copies of the the point p, each copies has weight 1/mp (one can image that each

light-weight copy of p is obtained by cutting a “whole” point p into mp small pieces).
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Let P̃ = ∪p∈PAp, which is a multi-set consisting of mp copies of (light-weight) p ∈ P .

Let R(P ) := {RF,r|F ∈ F , r ≥ 0}, where each RF,r is

RF,r := {p ∈ P |(1/mp)dist(p, F ) ≤ r} .

Note that although RF,r is a subset of P , we can also viewed it as a subset of the

weighted point set P̃ : if p is in RF,r, then replace p with mp copies of the light-weight

copies of p, where each copy has weight 1/mp. We denote the obtained subsets of P̃ by

R̃F,r. Therefore, the range space (P, {RF,r|F ∈ F , r ≥ 0}) can be easily transformed

into a range space (P̃ , {R̃F,r|F ∈ F , r ≥ 0}).

Feldman and Langberg [19] proved the following result:

Theorem 17. Let P be a weighted point set, where each point p has weight wp. Let

F denote a family of shapes. Let dist denote the distance function. If a subset S ⊂ P

satisfies that

∣∣∣∣ |{p ∈ P |wpdist(p, F ) ≤ r}|
|P |

− |{p ∈ S|wpdist(p, F ) ≤ r}|
|S|

∣∣∣∣ ≤ ε

5
,∀F ∈ F , r ≥ 0,

(6.2)

then the (weighted) set S also satisfies that∣∣∣∣∣
∑

p∈P :wpdist(p,F )≤r wpdist(p, F )

|P |
−
∑

p∈S:wpdist(p,F )≤r wpdist(p, F )

|S|

∣∣∣∣∣ ≤ εr,∀F ∈ F , r ≥ 0.

(6.3)

If we apply the above theorem to the weighted point set P̃ , then it turns

out that by assigning weights to the point in S properly, we have already obtained
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ε-coreset: let r = (1/n)
∑

p∈P dist(p, F ). Notice that each point in P̃ satisfies that

1

mp

dist(p, F ) ≤ 1

n

(
1

σP (p)
dist(p, F )

)
≤ 1

n

∑
p∈P

dist(p, F ).

Therefore, the set {p ∈ P̃ |wpdist(p, F ) ≤ r} is exactly P̃ . Further, notice that

for any shape F , the quantity
∑

p∈P dist(p, F ) is exactly
∑

p∈P̃ wpdist(p, F ), since∑
p∈P̃ wpdist(p, F ) =

∑
p∈P mp · (1/mp)dist(p, F ). Therefore, multiplying Eq 6.3 by∣∣∣P̃ ∣∣∣ =

∑
p∈P mp, we get∣∣∣∣∣∑

p∈P

dist(p, F )−
∑

p∈P mp

|S|
∑
p∈S

1

mp

dist(p, F )

∣∣∣∣∣ ≤ ε ·

(
1

n

∑
p∈P

dist(p, F )

)
·

(∑
p∈P

mp

)
,

which is∣∣∣∣∣∑
p∈P

dist(p, F )− 1

|S|
∑
p∈S

∑
p∈P mp

mp

dist(p, F )

∣∣∣∣∣ ≤ ε(SP + 1)
∑
p∈P

dist(p, F ).

Therefore, the weighted set S, where each point p in S has weight (
∑

p∈P mp)/(mp|S|)

(which is roughly SP/(|S|σP (p))) is an (SP + 1)ε coreset of P with respect to the

family F of shapes. However, the S is in fact much easier to compute, as it is nothing

but an ε-approximation of the range space (P̃ , {R̃F,r|F ∈ F , r ≥ 0}), and we already

have Theorem 16 to compute it.

ε-approximation of a range space can be computed via uniform random sam-

pling 16. Notice that if one performs a uniform sampling on R̃, it is the same as

sampling points in P , where the probability that p ∈ P is picked is mp/
∑

p∈P mp, as

P̃ contains mp copies of p, for each p ∈ P . Therefore, the connection between the

uniform sampling of R̃ and the sampling scheme in Algorithm 2 is clear:

mp∑
p∈P mp

=
dnσP (p)e∑
p∈P dnσP (p)e

≈ σP (p)∑
p∈P σP (p)

.
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The size of the the coreset can also be derived from Theorem 16: in order to get

an ε-coreset, we need to compute an ε/(5SP + 5)-approximation of the range space

(R̃, {R̃F,r|F ∈ F , r ≥ 0}). Using Theorem 16, in order to get an ε/(5SP + 5)-

approximation of the range space with probability at least 1 − δ, we need to draw

O((SP/ε)
2(dim (P )+log(1/δ))) samples, where dim (R) is the dimension of the range

space (R̃, {R̃F,r|F ∈ F , r ≥ 0}). This is precisely Theorem 1.
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CHAPTER 7

L1 CIRCLE FITTING

In this chapter, we focus on the problem of L1 circle fitting:

Problem 5 (L1 circle fitting on the plane). Given a finite set of points P ⊂ R2,

compute an optimal circle, C(x, y, r), which denotes a circle with center (x, y) and

radius r, minimizing the summation of distances from points in P to the circle:

∑
p∈P

∣∣∣∣√(px − x)2 + (py − y)2 − r
∣∣∣∣

This question is motivated by the problem of measuring circularity (or round-

ness) in computational metrology[43][25]: there one needs to verify that a manu-

factured object is ”close enough” to the ideal shape, which is a disk, in this case.

This problem is referred as circularity test in computational metrology: if the object

meets the tolerance specification, accept it, otherwise reject. The common approach

is to sample some points from the surface (or boundary) of the object, and the cir-

cularity/roundness of the object is quantified by the minimum width of an annulus

enclosing all the sampled points. Figure 7.1 and Figure 7.2 shows an example.

As mentioned earlier, for any shape fitting problem, we can consider L∞ and

L1 fitting (or generally Lp fitting) depending on how we define the objective function

that we want to optimize. For circle fitting problem, for any circle C, for a given

point set P , we have the following vector, encoding the distance from each point in
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Figure 7.1. Sample points from a manufactured object

Figure 7.2. Finding the minimum width annulus enclosing all the points
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P to the circle: [
dist(p1, C) dist(p2, C) · · · dist(pn, C)

]
If we define the circularity, that is, the measure that how closely a set of points

approximates a circle, as the width of a narrowest annulus enclosing P , then we are

trying to optimize the L∞ norm of the vector above, that is,

‖
[
dist(p1, C) dist(p2, C) · · · dist(pn, C)

]
‖∞ = max

pi∈P
dist(pi, C)

If we define the circularity as the summation of all the distances from the points to

the circle, then we are trying to optimize the L1 norm:

‖
[
dist(p1, C) dist(p2, C) · · · dist(pn, C)

]
‖1 =

∑
pi∈P

dist(pi, C)

See Figure 7.3 for an example. Compared with L∞ norm, L1 norm is less sensitive to

noise/outliers and hence more robust. Also, this problem is interesting in the sense

that the shape we consider here, is quite different from families of shapes that ap-

peared in problems such as subspace approximation, k-median/k-means clustering,

projective (j, k) clustering, etc.

Since exact algorithm for L1 circle fitting is expensive, we are interested in ap-

proximation algorithms that are sublinear. In [28], a linear approximation algorithm

for L1 circle fitting is proposed. The method there has a similar flavor to the core-set

approach, however, it was left as an open problem whether it is possible to obtain

small coreset for circle fitting problem. We answer this question affirmatively: by

upper bounding the total sensitivity of the circle fitting problem, we are able to get
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Figure 7.3. L1 fitting of points sampled from the boundary of an object

coreset of size roughly O((log n/ε)2). Moreover, the coreset has the desirable prop-

erties that the points in the coreset are from the input point set, and the weights of

points in the coreset are non-negative.

7.1 Circle fitting problem has small coreset

We have mentioned the results regarding circle fitting in Theorem 3 in Chap-

ter 4. We include a separate statement regarding the coreset size of circle fitting

problem in this section for the sake of completeness.

Theorem 18 (small coreset for circle fitting). Given a point set of size n on the

plane, for the circle fitting problem there exists an ε-coreset of size O((log n/ε)2).

With probability at least 1− δ, we can compute in O(n(log n)O(1) + (log n/ε)2(O(1) +

log(1/δ)) time an ε-coreset of size O((log n/ε)2(O(1) + log(1/δ)).
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7.2 Ω(log n) lower bound of the size of coreset

In this section, we show a lower bound on the size of coreset for circle fitting

problems.

Theorem 19. There exists a point set P ⊂ R2 of size n, such that any 1/100-coreset

of P for the circle fitting problem has size at least Ω(log n).

This theorem implies that for the point set P in the theorem above, for any

ε ∈ (0, 1
100

), the ε-coreset of P has size at least Ω(log n), since any ε-coreset is also an

ε′-coreset of P , if ε ≤ ε′, by the definition of coreset.

Construction of the point set P : For simplicity, assume that n = (3N+1−

1)/2, for some N . (If n is not such a number, the result would only change by a

constant factor.) The point set P consists of N + 1 groups: the ith group, denoted by

Pi, contains 3N−i copies of the point pi = (2i, 0), i = 0, · · · , N . We prove Theorem 19

by establishing the following three lemmas:

Lemma 7.2.1 (Each Pi contributes a significant portion to the total fitting cost).

For each Pi, i = 0, · · · , N , there exists a circle Ci, such that

dist(Pi, Ci)

dist(P,Ci)
≥ 1

18
. (7.1)

Lemma 7.2.2 (Each pi cannot be too heavy in an 1/100-coreset). Let S be an

1/100-coreset of P . For each pi, in the coreset S,

w(pi) ≤ 19|Pi|. (7.2)
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Lemma 7.2.3 (Any consecutive chunk cannot be totally omitted in an 1/100-coreset).

Let l be a sufficiently large number (we will determine the value of l in the proof).

Partition the sequence p0, · · · , pN , which are points in P , into chunks of length 2l+1:

p0, · · · , p2l︸ ︷︷ ︸
first chunk CH1

, p2l+1, · · · , p4l+1︸ ︷︷ ︸
second chunk CH2

, · · · , · · · , pN︸ ︷︷ ︸
≈(N/2l)thchunk

For S to be an 1/100-coreset of P ,

S ∩ CHi 6= ∅, for every chunk.

Theorem 19 follows from Lemma 7.2.3 immediately. We describe the proof for

Theoerem 19 below:

Proof. There are N/(2l) = Θ(log n) chunks, and the point sets of the chunks are

disjoint. For S to be an 1/100-coreset of P , S needs to include at least one point

from each chunk, hence it has Ω(log n) distinct points.

From Lemma 7.2.1, we also get a corollary, which says that the upper bound

of the total sensitivity for n-point sets, O(log n), is tight:

Corollary 3. The total sensitivity of circle fitting problem, Sn, is Θ(log n).

The proof of the corollary above follows from the definition of sensitivity Def-

inition 3, Lemma 7.2.1 and Theorem 3.

Proof. The summation of sensitivities of point in Pi in P , by definition, is

∑
pi∈Pi

σpi(P ) =
∑
pi∈Pi

sup
C(x,y,r)

dist(pi, Cx,y,r)

dist(P,Cx,y,r)
≥
∑
pi∈Pi

dist(pi, Ci)

dist(P,Ci)
=

dist(Pi, Ci)

dist(P,Ci)
≥ 1

18
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In other words, the summation of sensitivities of each group of points Pi is at least

1/18. Since there are N+1 groups, the total sensitivity of P , is (N+1)/18 = Ω(log n).

Theorem 3 says that Sn is O(log n), therefore, Sn = Θ(log n).

In the rest of this section, we prove lemma 7.2.1, Lemma 7.2.2 and Lemma 7.2.3.

7.2.1 Each Pi contributes significant portion to the fitting cost

We recall lemma 7.2.1:

Lemma 7.2.1 (Each Pi contributes a significant portion to the total fitting cost).

For each Pi, i = 0, · · · , N , there exists a circle Ci, such that

dist(Pi, Ci)

dist(P,Ci)
≥ 1

18
. (7.1)

We first show that we can approximate the distance function, dist(·, ·), with

another function.

Lemma 4. Given a point p on the x-axis, (x, 0), and a circle C(0, r, r) of radius r,

with center on y-axis, define dist’(p, C) as below:

dist’(p, C) =

{
x2/r x ≤ r

x x > r

We have

1

3
dist’(p, C) ≤ dist(p, C) ≤ dist’(p, C), (7.3)

(dist(p, C) is the distance from the point to the circle, which is
∣∣√x2 + r2 − r

∣∣.)
The proof of Lemma 4 is relatively straight forward, and we omit the proof

and show Figure 7.4 to demonstrate that the lemma is correct intuitively.

We now prove Lemma 7.2.1.
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Figure 7.4. Illustration that the distance function dist(·, ·) is sandwiched between
(1/3)dist’(·, ·) and dist’(·, ·) in Lemma 4.

Proof. Consider the ith group of points Pi. Let Ci be a circle with center (0, 2i),

tangent with x-axis (in other words, it has radius 2i). We have

dist(Pi, Ci) = |Pi| · dist(pi, Ci) (Pi contains |Pi| copies of pi)

≥ |Pi| ·
1

3
· dist’(pi, Ci) (Lemma 4, Inequality 7.3)

=
1

3
· 3N−i · 2i (Definition of dist’(·, ·) in Lemma 4)

The contribution to the fitting cost of Ci from all the points to the left of and including

pi, that is, points in P0, · · · , Pi, is at most 4 · (3N−i2i):

i∑
j=0

dist(Pj, Ci) =
i∑

j=0

|Pj|dist(pj, Ci)

≤
i∑

j=0

|Pj|dist’(pj, Ci) =
i∑

j=0

3N−j
22j

2i
=

3N

2i

i∑
j=0

(
4

3

)j
≤ 4 · 3N−i · 2i

The contribution to the fitting cost of Ci from all the points to the right of Pi is at



89

most 2 · 3N−i · 2i:

N∑
j=i+1

dist(Pj, Ci) =
N∑

j=i+1

|Pj|dist(pj, Ci)

≤
N∑

j=i+1

|Pj|dist’(pj, Ci) =
N∑

j=i+1

3N−j · 2j ≤ 2 · 3N−i · 2i

Therefore, we can lower bound the contribution of Pi to the overall cost as following:

dist(Pi, Ci)

dist(P,Ci)
≥ (1/3) · 3N−i · 2i

4 · 3N−i · 2i + 2 · 3N−i · 2i
=

1

18

7.2.2 Each pi cannot be too heavy in the 1/100-coreset

We recall lemma 7.2.2:

Lemma 7.2.2 (Each pi cannot be too heavy in an 1/100-coreset). Let S be an

1/100-coreset of P . For each pi, in the coreset S,

w(pi) ≤ 19|Pi|. (7.2)

This lemma follows from the previous lemma, Lemma 7.2.1.

Proof. Let pi in a point in P , and w(pi) is the weight of pi in the 1/100-coreset S.

w(pi)dist(pi, Ci) ≤ dist(S,Ci) (non-negative weights)

≤
(
1 +

1

100

)
dist(P,Ci) (S is an 1/100-coreset)

≤ 101

100
· 18 · dist(Pi, Ci) (Lemma 7.2.1, Inequality 7.1)

=
101

100
· 18 · |Pi|dist(pi, Ci)

< 19|Pi| · dist(pi, Ci)
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Therefore,

w(pi) ≤ 19|Pi|.

7.2.3 Any consecutive chunk cannot be totally discarded

We recall lemma 7.2.3:

Lemma 7.2.3 (Any consecutive chunk cannot be totally omitted in an 1/100-coreset).

Let l be a sufficiently large number (we will determine the value of l in the proof).

Partition the sequence p0, · · · , pN , which are points in P , into chunks of length 2l+1:

p0, · · · , p2l︸ ︷︷ ︸
first chunk CH1

, p2l+1, · · · , p4l+1︸ ︷︷ ︸
second chunk CH2

, · · · , · · · , pN︸ ︷︷ ︸
≈(N/2l)thchunk

For S to be an 1/100-coreset of P ,

S ∩ CHi 6= ∅, for every chunk.

Proof. We give some intuition before the formal proof. The idea is to show that if

a chunk, consisting of a set of consecutive points in P , is omitted completely in the

coreset S, then there exists a circle which witnesses that dist(S,C) does not approxi-

mate dist(P,C). In particular, the points in the chunk contributes a large portion to

the overall fitting cost. The points to the left of the chunk would be ”too close” to

the circle, and right ”too lightweight”, so dist(Pj, C) would be small because either

dist(pj, C) or |Pj| is small. However, in the coreset S, the weights of pj’s cannot

be inflated too much, by Lemma 7.2.2. Hence they would not be able to make up

the large missing cost due to the omission of the chunk. Figure 7.5 and Figure 7.6
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5×1010

6×1010

Figure 7.5. The points in P are show on the x-axis. (In reality the points are
exponentially distributed on the x-axis.) The vertical line on the point (pj, 0) denotes
roughly the value of dist(pj, C20). Chunk {p17, · · · , p23} cannot be omitted because
of circle C20.
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5.0×1012

1.0×1013

1.5×1013

2.0×1013

2.5×1013

Figure 7.6. The points in P are show on the x-axis. (In reality the points are
exponentially distributed on the x-axis.) The vertical line on the point (pj, 0) denotes
roughly the value of dist(pj, C5). Chunk {p2, · · · , p8} cannot be omitted because of
circle C5.
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illustrate this situation.

We now prove the above statements formally. Let l be a large constant (the value of

which would be determined during the proof). Consider the chunk {pi−l, · · · , pi, · · · , pi+l}.

Consider the circle Ci, which has radius 2i, and center at (2i, 0).

The contribution from the points to the left of the chunk, that is, P0, · · · , Pi−l−1, in

the 1/100-coreset S, can be upper bounded as following:

i−l−1∑
j=0

w(pj)dist(pj, Cj) ≤ 19
i−l−1∑
j=0

dist(Pj, Ci) (Lemma 7.2.1, Inequality 7.2)

≤ 19
i−l−1∑
j=0

dist’(Pj, Ci) (Lemma 4, Inequality 7.3)

≤ 19
i−l−1∑
j=0

3N−j
(2j)2

2i

= 19
3N

2i

i−l−1∑
j=0

(4

3

)j
≤ 19 · 3 ·

(3

4

)l · 3N−i2i
The contribution from the right chunks, that is, Pi+l+1, · · · , PN , can be upper

bounded as following:

N∑
j=i+l+1

w(pj)dist(pj, Ci) ≤ 19
N∑

j=i+l+1

dist(Pj, Ci) (Lemma 7.2.1, Inequality 7.2)

≤ 19
N∑

j=i+l+1

dist’(Pj, Ci) (Lemma 4, Inequality 7.3)

= 19
N∑

j=i+l+1

3N−j2j

= 19 · 3N
N∑

j=i+l+1

(2

3

)j
≤ 19 · 2

3
·
(2

3

)l
3N−i2i
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Now we can choose l, such that

19 · 3 ·
(3

4

)l
<

1

100
,

19 · 2

3
·
(2

3

)l
<

1

100
,

If S does not include any points from the chunk {pi−l, · · · , pi, · · · , pi+l}, then the fit-

ting cost of S to Ci is at most (1/50)3N−i2i, by the two upper bounds on
∑i−l−1

j=0 w(pj)dist(pj, Cj)

and
∑N

j=i+l+1 w(pj)dist(pj, Ci). However, for S to be an 1/100-coreset, it needs to be

at least (33/100)3N−i2i:

dist(S,Ci) ≥ (1− 1/100)dist(P,Ci) (by definition of ε-coreset)

≥ (1− 1/100)dist(Pi, Ci) (points in S have non-negative weights)

≥ 99

100
· 1

3
· dist’(Pi, Ci) (Lemma 4, Inequality 7.3)

=
99

100
· 1

3
· 3N−i2i

=
33

100
· 3N−i2i

7.3 Shape fitting problems with Ω(log n) total sensitivity might admit
constant-sized coreset

We have mentioned in the beginning of previous section that lower bound on

total sensitivity does not imply a lower bound on the size of the core-set. In partic-

ular, the shape fitting problem with horizontal rays extending to the right, has total

sensitivity Ω(log n), yet it still admits a constant size coreset (Observation 1). Simi-

larly, the shape fitting problem for line segments also have total sensitivity Ω(log n),

and it also admits constant-sized coreset.
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It worth noting that in the construction of Observation 1, the ith point has sensitivity

roughly 1/i. Here we show a construction of point set, which resembles the charac-

teristic of the point set construction for circle fitting problem. Let P be a point set

consisting of log n groups, where the ith group contains 2i copies of the point (2i, 0),

i = 0, · · · , log n. The summation of sensitivities of the copies of the points in Pi is at

least 1/4: because for a ray C starting at (2i+1, 0),

dist(Pi, C) = 2i · 2i = 4i,

and
i∑

j=0

dist(Pj, C) =
i∑

j=0

(2i+1 − 2j) · 2j < 4 · 4i,

logn∑
j=i+1

dist(Pj, C) = 0.

Therefore, ∑
p∈Pi

σP (p) ≥ 1

4
.

However, the ray fitting problem has constant-sized coreset.
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CHAPTER 8

CONCLUSION AND OPEN PROBLEMS

In this chapter, we summarize the main results in the thesis and point out

some open problems.

The theme in this thesis is geometric approximation via core-set, and in particular,

the concept of total sensitivity plays an important role in our algorithms for getting

small coreset. Core-set is a succinct representation of the input point set, which has

the property that for any shape, the fitting cost of the coreset approximates the cost

of the input point set. Therefore, small coreset immediately provides a fast algorithm

for finding a near-optimal solution for the input point set. In [19], it is shown that

there is a close connection between total sensitivity and the size of coreset, that is, if a

shape fitting problem has total sensitivity S, then it admits a coreset of size O(S2d̃),

where d̃ is roughly the V C-dimension of the family of shapes.

We summarize the contributions of this thesis. we show that shape fitting problems

with small L∞ core-set have small total sensitivity. This allows us to obtain small L1

coreset for the a family of (j, k) projective clustering problems, for specific setting of

j and k. We also obtain small coreset for integer (j, k) projective clustering problem,

for general j and k. The sizes of coreset depends polylogarithmically in terms of n,

which is the cardinality of the input point size, and exponentially in terms of k, j,

and d, which is the dimension of the the input point set. Later, we show that the

exponential dependence on d can be removed for (j, k) projective clustering problem
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from the upper bounds of total sensitivity. Hence, the sizes of the coreset only lin-

early depends on d, which is due to the fact that the quantity, d̃, still depends on

d. For circle fitting problem on the plane, using the connection between L∞ coreset

and total sensitivity, we obtain coreset of size O((log n)2), and we also show a lower

bound of Ω(log n) on the size of coreset for circle fitting problem.

In the following, we point out some open problems in the area of geometric approxi-

mation via coreset.

Problem 6 (near-linear algorithm for (j, k) projective clustering in high dimension).

We have obtained near-linear algorithm for the integer (j, k) projective clustering

problem in high dimension via L1-coreset. One interesting problem is whether it is

possible to obtain the result without the extra assumption that points have integer

coordinates that are polynomially bounded.

Problem 7 (small coreset for subspace approximation). Depending on the distance

function, the size of the coreset could vary. In [22], it is shown that for squared Eu-

clidean distance, the subspace approximation problem (which corresponds to setting

k to be 1 in (j, k) projective clustering), admits coreset whose size depends on nei-

ther the cardinality, nor the dimension of the input point set. It is an open problem

whether this result could be generalized to the case of L1 fitting, with the distance

function being the Euclidean distance.

Problem 8 (Lower bound on the size of coreset for circle fitting problem). In The-

orem 19, we have shown that the lower bound on the size of coreset for circle fitting

problem is Ω(log n). In Theorem 3, the upper bound on the size of coreset is roughly
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O((log n)2). It would be interesting if the lower bound and upper bound can match:

that is, either prove that the lower bound is Ω((log n)2), or improve the size of the

coreset to O(log n).
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