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ABSTRACT

H-matrix techniques use a data-sparse tree structure to represent a dense or

a sparse matrix. The leaves of the tree store matrix sub-blocks that are represented

in full-matrix format or Rk-matrix (low rank matrix) format. H-matrix arithmetic is

defined over the H-matrix representation, which includes operations such as addition,

multiplication, inversion, and LU factorization. These H-matrix operations produce

approximate results with almost optimal computational complexity.

Based on the properties of H-matrices, the H-matrix preconditioner technique

has been introduced. It uses H-matrix operations to construct preconditioners, which

are used in iterative methods to speed up the solution of large systems of linear

equations (Ax = b). To apply the H-matrix preconditioner technique, the first step is

to represent a problem inH-matrix format. The approaches to construct anH-matrix

can be divided into two categories: geometric approaches and algebraic approaches.

In this thesis, we present our contributions to algebraic H-matrix construction

approaches and H-matrix preconditioner technique. We have developed a new alge-

braic H-matrix construction approach based on matrix graphs and multilevel graph

clustering approaches. Based on the new construction approach, we have also devel-

oped a scheme to build algebraicH-matrix preconditioners for systems of saddle point

type. To verify the effectiveness of our new construction approach and H-matrix pre-

conditioner scheme, we have applied them to solve various systems of linear equations

arising from finite element methods and meshfree methods. The experimental results
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show that our preconditioners are competitive to other H-matrix preconditioners

based on domain decomposition and existing preconditioners such as JOR and AMG

preconditioners. Our H-matrix construction approach and preconditioner technique

provide an alternative effective way to solve large systems of linear equations.
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show that our preconditioners are competitive to other H-matrix preconditioners

based on domain decomposition and existing preconditioners such as JOR and AMG

preconditioners. Our H-matrix construction approach and preconditioner technique

provide an alternative effective way to solve large systems of linear equations.
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CHAPTER 1
INTRODUCTION

1.1 Background

Systems of linear equations arise from discretization of partial differential equa-

tions and other problems. To solve these large systems of linear equations

Ax = b, (1.1)

we can apply iterative methods [35, 60]. These iterative methods start with an ap-

proximate solution x0, and then modify the approximation xi at each iteration step

i until convergence is reached. The iterative methods include classic methods like

the Jacobi, Gauss-Seidel, and SOR (Successive Overrelaxation) methods [64], as well

as Krylov subspace methods like Conjugate Gradient (CG), Minimal Residual (MIN-

RES), and General Minimal Residual (GMRES) methods [27, 61]. Even though these

methods are theoretically founded, they may suffer from slow convergence. To speed

up the convergence of iterative methods, preconditioning is a key technique, especially

for Krylov subspace methods. The idea of preconditioning technique is that instead

of solving the system (1.1) directly, we can solve the following preconditioned system:

M−1Ax = M−1b. (1.2)

Here the preconditioner M should be a matrix approximating to A, and Mx = b

is inexpersive to solve compared to (1.1). There are many existing preconditioning

techniques such as incomplete LU factorization [52] and multigrid preconditioners

[23, 50].
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In this thesis we focus on the hierarchical-matrix (H-matrix in short) pre-

conditioning technique to solve the system (1.1). H-matrix techniques are relatively

new, introduced in 1998 by W. Hackbusch [38, 40]. H-matrix techniques were first

developed to approximate densely populated matrices arising in boundary element

methods or inverses of sparse matrices in finite element methods to solve partial

differential equations [4, 10, 49]. To approximate these dense matrices, H-matrix

techniques use a data-sparse representation. H-matrix representation is based on a

hierarchical tree structure, called block cluster tree TI×I , which describes hierarchical

block partitioning of a matrix and store the data. In a block cluster tree TI×I , its

root represents the whole matrix; the internal nodes are the matrix sub-blocks that

are partitioned further on the next level; the leaves are the matrix blocks that are

not partitioned further. These leaf blocks are either low-rank matrices (Rk-matrix)

or full matrices. The building blocks of an H-matrix are Rk-matrices. An Rk-matrix

uses the product of two full rectangular matrices to represent a low-rank matrix: for

a matrix Mn×n with rank(M) ≤ k, its Rk-matrix representation is M = An×kB
T
n×k.

If k << n, the Rk-matrix representation An×kB
T
n×k , which has 2nk entries, can save

data storage. Another advantage of Rk-matrix representation is that it can reduce the

computational complexity of matrix operations, like matrix-vector multiplication and

matrix-matrix multiplication. Based on H-matrix representation, H-matrix arith-

metic has been defined [10, 38, 40]. The operations defined in H-matrix arithmetic

includes operations such as H-matrix addition, H-matrix multiplication, H-matrix

inversion, and H-matrix LU factorization. These operations take advantage of Rk-
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matrix leaves, and use the truncated singular value decomposition to achieve optimal

computational complexity of O(n logα n) for an n× n system, where α = 2 or 3 is a

moderate parameter [10, 49].

To use H-matrix techniques, one critical step is to represent a problem in H-

matrix format. The approaches to construct H-matrices can be divided into classic

approaches (geometric approaches) and algebraic approaches. The classic H-matrix

construction approaches use the geometric information underlying a problem such

as the domain information and the basis functions used for discretization [38, 49].

In some applications, system matrices are given but geometric information may not

be available. In these cases, the classic H-matrix construction approaches can not

be applied, but the algebraic H-matrix construction approaches which only relay

on matrix information can be used. The algebraic H-matrix construction approach

based on domain decomposition is introduced in [34]. We proposed another algebraic

construction approach based on multilevel clustering in [55], which will be discussed

thoroughly in this thesis.

One point we need to make clear is that H-matrix arithmetic usually pro-

duces approximate results. But optimal computational complexity makes it suitable

to construct preconditioners for iterative methods. Possible H-matrix precondition-

ers are: H-matrix inverses, H-matrix-LU factors, and H-matrix Cholesky factors. In

comparison, H-matrix-LU and H-matrix Cholesky factors are more attractive than

H-matrix inverses, since they are less expensive to compute and provide better con-

vergence rates [16, 34]. The H-matrix preconditioning technique has been shown to
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be effective to solve various problems [34, 55].

1.2 Structure of the Thesis

In this thesis, our contributions to H-matrix techniques emphasize on the

construction and application of H-matrix preconditioners to solve various problems:

first we have developed a new algebraic H-matrix construction approach based on

multilevel graph clustering, which is simple to implement yet effective [55]; second, we

have expanded our H-matrix construction approach to develop a scheme to construct

H-matrix preconditioners for problems of saddle point type; third, we have shown the

performance of our preconditioners by applying them to linear systems arising from

FEM and meshfree methods.

The thesis is organized as follows. Chapter 2 is an introduction to H-matrices

and H-matrix arithmetic, including the concept of H-matrices and the operations

defined in H-matrix arithmetic. Chapter 3 is about the new algebraic H-matrix con-

struction approach we have developed, which is based on multilevel graph clustering.

In this chapter, the numerical results of applying the new construction approach to

solve partial differential equations are also presented. Chapter 4 is about the con-

struction and application of H-matrix preconditioners to solve saddle point systems

arising form meshfree methods. Chapter 5 discusses the application of H-matrix

preconditioners to solve optimal control and invariant probability distribution prob-

lems. Chapter 6 shows the implementation of H-matrices and the algebraic H-matrix

construction approach. Chapter 7 is the summary of this thesis.
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Short definitions of the keywords used in the thesis are given below:

Binary tree. A tree whose internal nodes have no more than two children.

Index cluster tree, TI. A tree to describe a hierarchical partitioning of an index

set I. The root of TI is set I.

Block cluster tree, TI×I. A tree to describe a hierarchical partitioning of the

product of an index set I. The root of TI×I is I × I.

Full matrix format. A matrix representation format, where all m× n entries of a

matrix Mm×n are stored, for example, in the row major order.

Rk-matrix, or Rk-matrix representation. A matrix Mm×n with rank(Mm×n) ≤

k and is represented in the matrix product form Mm×n = Am×kB
T
n×k, where A and

B are both stored in the full matrix format.

Admissibility condition. A condition used to decide whether a matrix block t× s

shall be approximated by an Rk-matrix.

Hierarchical matrix representation. An hierarchical matrix H(TI×I , k), whose

admissible subblocks are stored in the Rk-matrix format and inadmissible subblocks

are stored in the full matrix format.

H-matrix arithmetic. An group of matrix operations defined over H-matrices.

Matrix graph G(V,E). An indirected graph built based on a symmetric matrix

MI×I : the vertex set G(V ) is I; there is an edge ei,j ∈ G(E) between node i and node

j if and only if mi,j 6= 0; the edge weight wi,j = |mi,j|.

Graph coarsening. A process of collapsing together a subset of the vertices of

a graph in order to form a relatively coarser graph. Graph coarsening is used in
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multilevel methods.

Multilevel method. A method working with a graph at multiple levels of granu-

larity.

Matching of a graph. A set of edges, no two of which are incident on the same

vertex.

Edge cut. The number of edges connecting vertices between different partitions.

Heavy edge matching. A heuristic to find a matching with maximum edge weight.

NP-Complete. A set of computational decision problems which is a subset of NP,

with the additional property that it is also NP-hard.

Computational complexity. The number of steps an algorithm takes to solve a

problem as a function of the size of the input .
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CHAPTER 2
INTRODUCTION TO HIERARCHICAL-MATRICES

This chapter introduces hierarchical matrices (H-matrices) andH-matrix arith-

metic.

2.1 Overview

To solve partial differential equations, we may apply boundary element meth-

ods (BEM) or finite element methods (FEM). BEM’s need to solve integral equations.

Since the kernel functions used for discretization typically have global support, dis-

cretizations of integral equations gives dense matrices. FEM’s yield sparse matrices

but the inverses of these sparse matrices are usually dense. In scientific computing,

researchers try to avoid dealing with dense matrices directly because dense matri-

ces need O(n2) storage space without compression, and matrix operations involving

densely populated matrices are usually quite expensive. For example, for an n × n

dense matrix, the computational complexity of matrix-matrix multiplication may be

up to O(n3). Researchers have long been working on the methods to deal with dense

matrices more efficiently. Wavelet approaches [28] use special basis functions in dis-

cretization, so that the obtained matrices are sparse. Panel clustering methods [37, 44]

and multipole methods [36] were developed in 1980’s based on similar ideas. They

approximate kernel functions using Taylor expansions so that some sub-matrices can

be approximated by low rank matrices. In 1998 W. Hackbusch expanded the idea

of panel clustering methods and first proposed what are called hierarchical matrices,
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or in short H-matrices [38], since this new format of matrices adapts a hierarchical

tree structure. In [38] the definition and approach to construct H-matrices for one

dimensional problems were presented and the complexity of H-matrices operations

was analyzed for two specific H-matrix tree structures. In general, the H-matrix ap-

proach uses a data sparse representation to approximate fully populated matrices, in

which certain low rank matrix blocks are represented in the Rk-matrix format. The

data sparse representation of H-matrices uses a tree structure, called block cluster

tree TI×I , which describes a hierarchical block partitioning of a matrix MI×I : the

root of the tree is I × I representing the whole matrix; an internal node s× t ∈ TI×I

represents a matrix block that is partitioned further on the next level; the leaves

of TI×I represent the smallest blocks that are not partitioned further and the leaf

blocks are either approximated by Rk-matrices or just represented as full matrices.

Following the introduction of H-matrices [38], the second paper [40] shows the ap-

proach to construct H-matrices for FEM and BEM in two and three dimensions and

it also shows that the orders of complexity of various H-matrix operations is same

as those introduced in [38]. In [41], the general approach to construct H-matrices on

rectangular or triangular meshes of one, two, and three dimensions is proposed and

analyzed.

Following the introduction, a lot of work has been done on the theories and

applications of H-matrices.

The paper [49] gives a detailed analysis of the complexity of H-matrix arith-

metic. The parallelization of H-matrix construction and H-matrix arithmetic in-
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cluding matrix-vector multiplication, matrix multiplication, and matrix inversion is

implemented in [48], which reuses most of the sequential algorithms and allows an

efficient computation of H-matrix arithmetic on shared memory systems. A variant

of H-matrices called H2-matrices is introduced in [10, 43], which improves the com-

plexity of matrix-vector multiplication to O(n). The paper [12] presents algorithms

which compute the best approximation of sum and product of H2-matrices in linear

complexity. The paper [6] proves that the inverses of stiffness matrices arising from

finite element discretization of elliptic partial differential equations can be approxi-

mated by H- and H2-matrices. The introduction of a new H-matrix operation called

H-LU decomposition is introduced in [51], which produces LU factors in H-matrix

format. Compared to H-matrix inverses, H-LU factors can be computed much faster.

The parallelization of H-LU on distributed memory systems is implemented in [33].

Besides the application of H-matrices to solve integral equations arising from

boundary element methods [5, 10], another main application area of H-matrices is

construction of efficient preconditioners for iterative methods as discussed in [11].

Before the introduction of H-LU factorization, H-inverses were used as precondi-

tioners. In [14, 15] H-inverses are used as preconditioners to solve two-dimensional

convection-diffusion equations. In [4], approximate H-matrix inverses were used as

preconditioners to solve partial differential equations with uniformly elliptic opera-

tors. The multilevel construction of hierarchical matrix approximations to inverses of

finite element stiffness matrices, which are used as preconditioners, is proposed in [18].

The introduction of H-LU factorization moves H-matrix techniques to a new stage
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since H-LU factors are usually cheaper to obtain and also provide better convergence

speed than H-inverses. In [14, 19, 21, 34] H-LU factors are used as preconditioners

to solve convection-diffusion problems. In [13, 17, 55, 57], H-LU factors are used as

preconditioners to solve systems of saddle point type.

The H-matrix approach can also be applied to solve matrix functions as dis-

cussed in [10, 11].

2.2 Model Problem

Let’s first look at the model problem, which introduces H-matrices. Consider

an integral operator of the form:

L(x) =

∫
Ω

g(x, y)u(y)dy, (2.1)

on a subdomain Ω ⊂ R with g : Rd × Rd → R as a kernel function. Discretize (2.1)

using Galerkin’s method with basis functions {ϕ0, . . . , ϕn−1}, where ϕi : Ω→ R. We

can obtain the following discretized form:

Lu = f, Li,j =

∫
Ω

∫
Ω

ϕi(x)g(x, y)ϕj(y)dx dy, i, j ∈ {0, . . . , n− 1}. (2.2)

L usually is not a sparse matrix since g is non-local.

In typical applications, the kernel function g is asymptotically smooth [10],

that is the singularities only occur on the diagonal of Ω×Ω and g is smooth elsewhere.

Then g can be approximated by a degenerate approximate kernel function:

g̃(x, y) =
k∑
i=1

g1,i(x)g2,i(y), (2.3)
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by the truncated Taylor expansion. Replacing g by its degenerated approximation in

(2.2), we obtain the following approximation to L:

L̃i,j = (ABT )i,j, (2.4)

where

Ai,k =

∫
Ω

g1,k(x)ϕi(x)dx, and Bj,k =

∫
Ω

g2,k(y)ϕj(y)dy. (2.5)

Let s, t ∈ I = {0, . . . , n − 1} and their corresponding supports be defined as Ωs =⋃
i∈s suppϕi and Ωt =

⋃
j∈t suppϕj respectively. The sub-matrix L̃s×t = As×kB

T
t×k

and the rank of L̃s×t is at most k, where k is a constant independent of s and t.

The approximation of the sub-blocks of a full matrix L by low rank matrices in a

hierarchical way leads to H-matrix techniques.

2.3 Concept of H-matrices

The key elements of H-matrix techniques are index cluster tree TI , block clus-

ter tree TI×J , admissibility conditions, and Rk-matrices.

Before we introduce the concept of H-matrices, we define the symbols and

notations that are used to describe H-matrices in this thesis. Let #s denote the

number of the elements in a set s and L(T ) denote the set of the leaves of a tree T .

S(i) is the set of the children of a given node i in a tree; sl denotes a node s on the

level l in a tree. We assume that the level of the root is 0. If the level of a node i is l,

then its children are on the level l+ 1. We let I = {0, 1, 2, ..., n− 1} be an index set.

In this thesis, we assume that an index set I is ordered, which means I = {0, 1} and

I = {1, 0} are two different sets. For geometric (or classic) H-matrix construction
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approaches, an index i ∈ I represents an index set of finite elements or boundary

element basis functions (φi)i∈I ; for algebraic H-matrix construction approaches, I

represents a row or column index set of a matrix.

2.3.1 Index Cluster Tree TI

An index cluster tree TI describes a hierarchical partitioning over an index set

I = {0, . . . , n− 1}. A tree TI is called index cluster tree if and only if it satisfies the

following properties:

1. The root of TI is the index set I;

2. Each node sl ∈ TI is either a leaf, or an internal node with children S(sl);

3. The children of the same parent are pairwise disjoint, that is ∀jl+1
1 , jl+1

2 ∈ S(il)

and jl+1
1 6= jl+1

2 , then jl+1
1 ∩ jl+1

2 = ∅.

4. The parent node sl =
⋃
tl+1∈S(sl) t

l+1.

5. L(T ) forms a partition of I.

If each internal node in TI has exactly two children, then TI is a binary tree. In

general, the number of children of each internal node is not necessarily to be 2. A TI

can be constructed top-down: starting from the root, recursively split each set into

subsets and make subsets as the children. Or it can be built bottom-up: starting from

the leaves (smallest sets), recursively build clusters over the sets on the same level

and make each cluster the parent to the sets in the cluster until the cluster equals I,

which is the root of the tree.
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2.3.2 Block Cluster Tree TI×I

A block cluster tree TI×I describes an hierarchical partitioning over the carte-

sian product of an index set I. If I is the row and column index set of a matrix

MI×I , then TI×I describes a hierarchical block partitioning over MI×I . Given an in-

dex cluster tree TI , a block cluster tree TI×I is related to the cartesian product of

TI . An admissibility condition (which is defined later) is used to determine if a node

s× t ∈ TI×I is an Rk-matrix leaf or not. The algorithm to construct a block cluster

tree TI×J is described follows:

1. The root of TI×I is I × I.

2. If a node sl× tl ∈ TI×I satisfies the given admissibility condition, then sl× tl is

an Rk-matrix leaf on level l.

3. If sl × tl does not satisfy the given admissibility condition, but #sl ≤ Ns or

#tl ≤ Ns, then sl × tl is a full-matrix leaf.

4. If sl × tl is an internal node then its children on level l + 1 are defined as:

S(sl × tl) = { il+1 × jl+1 | il+1 ∈ S(sl) and jl+1 ∈ S(tl)}.

5. Repeat step 2, 3 and 4, until each leaf s × t either satisfies the admissibility

condition, or #s ≤ Ns or #t ≤ Ns.

Here Ns is a constant to control the size of the smallest leaves in order to maintain

the efficiency of H-matrix arithmetic. Usually it is set to Ns ∈ [10, 100].
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2.3.3 Rk-matrix

Rk-matrices (low rank matrices) are the basic building blocks of H-matrices.

An m×n matrix Mm×n is called Rk-matrix if rank(Mm×n) ≤ k and it is represented

in the form of matrix product:

Mm×n = Am×kB
T
n×k, (2.6)

with A and B in full-matrix format.

The storage for a matrix Mm×n in full-matrix format is m×n, but the storage

in Rk-matrix format is k(m + n). The computational complexity of matrix-vector

multiplication in full matrix format is (2nm − n), but if a matrix is an Rk-matrix

then the complexity is reduced to (2k(n+m)− n− k). So if k is much smaller than

m and n, by representing a matrix in Rk-matrix format we can reduce its storage

required and computational complexity significantly.

2.3.4 Admissibility Condition

Admissibility conditions are used to determine whether to approximate a ma-

trix block s × t by an Rk-matrix during the construction of H-matrices. If a block

s× t is admissible, then it will be approximated by an Rk-matrix. The admissibility

conditions vary for different H-matrix construction approaches.

In classic H-matrix construction approaches, admissibility conditions are de-

fined using the geometric information underlying a problem such as the domain infor-

mation and the supports of index clusters. Given TI , TJ , and s×t ∈ TI×J , the general

form of an admissibility condition in classic H-matrix construction approaches can
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defined as:

s× t is admissible ⇐⇒ min{diam(Ωs), diam(Ωt)} ≤ µ dist(Ωs,Ωt), (2.7)

where µ ∈ R is a parameter to control the number of R-kmatrix blocks. Ωs and Ωt

are the supports of the cluster s and t respectively. The diameter of a cluster diam(s)

and the distance between two clusters dist(s, t) are defined using Euclidean norm as

follows:

diam(s) = max{‖xi − xj‖ : xi, xj ∈ Ωs},

dist(s, t) = min{‖xi − xj‖ : xi ∈ Ωs and xj ∈ Ωt}.
(2.8)

In practice boxes Bs (see Section 2.4) are used to replace cluster supports Ωs in the

admissibility condition (2.7) in order to reduce the computational complexity:

s× t is admissible ⇐⇒ min{diam(Bs), diam(Bt)} ≤ µ dist(Bs, Bt). (2.9)

Equation (2.9) is called the standard admissibility condition [10, 49] for geometric

H-matrix construction approaches. If minimum in (2.9) is replaced by maximum, we

get a strong admissibility condition [49]:

s× t is admissible ⇐⇒ max{diam(Bs), diam(Bt)} ≤ µ dist(Bs, Bt). (2.10)

(2.10) is the admissibility condition used in H2-matrix construction approaches. The

weak admissibility condition [42] is given as follows:

s× t is admissible ⇐⇒ s 6= t, (2.11)



16

which generates a coarser cluster tree compared to the standard admissibility condi-

tion, since all the off diagonal blocks are admissible by the weak admissibility condi-

tion and will be approximated using Rk-matrices. The definition of weak admissibility

condition is independent of basis functions. The admissibility condition for the H-

matrix construction approach based on domain decomposition [21] is:

s× t is admissible ⇐⇒s 6= t are domain clusters, or

s× t is admissible by the strong admissibility condition.

(2.12)

The admissibility condition for algebraic H-matrix construction approaches is simply

defined using the information contained in a matrix graph instead of the geometric

information underlying a problem [55]:

s× t is admissible ⇐⇒ s and t are not connected in the matrix graph. (2.13)

2.3.5 Definition of H-matrices

Now given a block cluster tree TI×I , the minimum block size Ns, the admissi-

bility condition, and the rank k, a set of H-matrices can be defined as:

H(T, k) = {MI×I : ∀s× t ∈ L(TI×I), s× t is admissible or min{#s,#t} ≤ Ns},

(2.14)

where the admissible leaf blocks are represented as Rk-matrices and the non-admissible

leaf blocks are represented as full-matrices.

Figure 2.1 shows an example of TI , TI×I , and the corresponding H-matrix. In

this example each internal node in TI has exactly two children.
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0
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Figure 2.1: An example of an index cluster tree TI , a block cluster tree TI×I , and
an H-matrix. (a) is TI . (b) is TI×I . (c) is the corresponding H-matrix. In (b) RK
denotes a block satisfying the given admissibility condition. In (c) the dark color
blocks are Rk-matrices and the white color blocks are full matrix blocks.

2.4 H-matrix Construction Approaches

This section reviews the approaches to construct H-matrices. The process

to construct H-matrices involves three steps: the first step is to construct an index

cluster tree TI ; the second step is to define an admissibility condition; the last step is to

construct the block cluster tree TI×I using the index cluster tree and the admissibility

condition. Depending on the information used in the H-matrix construction process,

construction approaches can be divided into two categories: geometric construction

approaches and algebraic construction approaches.

When the concept of H-matrices was first introduced, the construction of H-

matrix relied on the underlying geometric information of problems [38, 49]. The paper

[51] shows a block decomposition approach for constructing a class of H-matrices to

represent the 2D stiffness and mass matrices arising from FEM applications, which

uses the domain and grid information to construct the index cluster tree and block

cluster tree.

In some applications, the geometric information underlying partial differential
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equations is not available. In these cases, geometricH-matrix construction approaches

are not applicable. In [34, 55] algebraic approaches are proposed, which do not need

geometric information. They only use matrix graphs to construct index cluster trees

and block cluster trees.

2.4.1 Geometric Approaches

Geometric H-matrix construction approaches are built upon the geometric

information underlying problems.

First, let’s assume that the set of basis functions used to discretize a problem

is {φ0, φ1, . . . , φn−1} and the domain of the problem is Ω ⊂ Rd. Geometric H-matrix

construction approaches associate each index i ∈ I = {0, 1, . . . , n − 1} with a finite

or boundary element φi. The support of a basis function φi is denoted as:

Ωi := supp φi. (2.15)

Then the support of a cluster s = {i, i+ 1, . . . , j} is defined as:

Ωs =
⋃
i∈s

Ωi. (2.16)

To simplify construction algorithms, instead of dealing with supports directly, for

each support a point xi ∈ Ωi is selected to represent Ωi. Then a box BI can be

defined as the smallest d-dimensional box that includes all the points xi:

BI = [a1, b1]× · · · × [aj, bj]× · · · × [ad, bd], (2.17)

where aj = mini∈I < xi, ej >, bj = maxi∈I < xi, ej >, and {e1, . . . , ed} ∈ Rd are unit

vectors. BI does not necessarily contain all the supports Ωi∈I .



19

Here we introduce three frequently used geometric index cluster tree construc-

tion approaches: cardinality balanced clustering, geometrically balanced clustering,

and clustering based on domain decomposition. Cardinality balanced clustering and

geometrically balanced clustering are based on bisection.

2.4.1.1 Cardinality Balanced Clustering

The idea of cardinality balanced clustering [49] is to split a box associated

with an index cluster into two smaller boxes so that they contain the same number

of indices. The algorithm of cardinality balanced clustering to build TI over an index

set I is as follows:

1. Start with I as the root of TI and the box BI including all the points xi.

2. For each s ∈ TI with #s > Ns, split the box Bs into two boxes Bs1 and Bs2

such that Bs1 and Bs2 contain the same number of points. Define the children

of s as S(s) = {s1, s2}: choose the direction k = argmaxj=1,...,d|bj − aj|; sort all

the indices in s, such that {xi1,k, . . . , xi#s,k} are in increasing order; then split

s into s1 = {i1, . . . , i#s/2} and s2 = {i#s/2+1, . . . , i#s}.

3. Repeat the second step until the size of all the leaves is less than Ns: ∀s ∈

L(TI),#s ≤ Ns.

The advantage of cardinality balanced clustering is that it builds a balanced cluster

tree with minimum depth. A tree is called balanced, if the children of the same node

have roughly equal number of indices.
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2.4.1.2 Geometrically Balanced Clustering

The idea of geometrically balanced clustering [49] is to find the direction of

maximal extent of a box and split the box into two boxes in the same direction. The

algorithm of geometric balanced clustering is defined as follows:

1. Start with I as the root of TI and the box BI including all the points xi;

2. For each s ∈ TI with #s > Ns, split the box Bs into two boxes Bs1 and Bs2: find

the direction k := argmax|aj−bj|; split Bs in the direction k into Bs1 = [a1, b1]×

· · ·× [ak,
ak+bk

2
]×· · ·× [ad, bd] and Bs2 = [a1, b1]×· · ·× [ak+bk

2
, bk]×· · ·× [ad, bd];

split s into s1 = {i|xi ∈ Bs1} and s2 = {i|xi ∈ Bs2} and define the children of

s as S(s) = {s1, s2}.

3. Repeat the second step until the size of all the leaves is less than Ns: ∀s ∈

L(TI),#s ≤ Ns.

These two boxes, Bs1 and Bs2, may contain different number of points, which means

the cluster tree obtained by geometric balanced clustering may not be as balanced as

the tree obtained by cardinality balanced clustering.

Figure 2.2 shows an index cluster tree obtained by cardinality balanced clus-

tering and Figure 2.3 shows an index cluster tree obtained by geometric balanced

clustering when they are applied to the same problem.

2.4.1.3 Clustering Based on Domain Decomposition

Domain decomposition combined with the H-matrix technique was first intro-

duced in [39]. In [39] a domain Ω is decomposed into p non-overlapped sub-domains



21

Figure 2.2: An example of TI obtained by cardinality balanced clustering.

Figure 2.3: An example of TI obtained by geometric balanced clustering.
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{Ω1, . . . ,Ωp} and one interior boundary Γ. The index set I is also decomposed and

ordered in the sequence: I = {I1, . . . , Ip, IΓ}. Then in each sub-domain cardinality

balanced clustering approach is applied independently to build an H-matrix.

The paper [34] introduces clustering based on domain decomposition which

unifies the process of domain decomposition with index cluster tree construction to

build H-matrices. Its idea is that each domain Ωs associated with a cluster s is

decomposed into three sub-domains {Ωs1 ,Ωs2 ,Ωs3}, where Ωs1 and Ωs2 are discon-

nected from each other and Ωs3 is the domain that separates Ωs1 from Ωs2 . The

domain decomposition also divides the cluster s into three subsets {s1, s2, s3}. The

set s1 and s2 are called domain clusters, while s3 is called interface cluster. The

clustering algorithm based on domain decomposition works in the following recursive

way:

1. Start with the set I as the root of TI and the box BI that contains the domain

Ω. The set of domain clusters Cdom = {Ω} and the set of interface clusters

Cint = ∅.

2. For each domain cluster s ∈ TI with #s > Ns, its corresponding domain box

Bs = [a1, b1]× · · · × [ak, bk]× · · · × [ad, bd] is split into two boxes Bs1 and Bs2 in

the direction of maximal extent as described in geometric balanced clustering.

The box Bs3 of the interface domain is constructed as Bs3 = [a, b] × . . . ×

[ãk, b̃k] × · · · × [ad, bd], where ãk = 1/2(ak + bk) − maxj∈s3 diam(suppϕj) and

b̃k = 1/2(ak + bk) + maxj∈s3 diam(suppϕj). Correspondingly the children of s

is defined as S(s) = {s1, s2, s3}, where s1 = {i ∈ s | xi ∈ Bs1}, s2 = {i ∈ s |
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supp
⋂

Ωs1 = ∅}, and s3 = s − s1 − s2. Then update Cdom = Cdom
⋃
{s1, s2}

and Cint = Cint
⋃
s3.

3. For an interface cluster t ∈ Cint, its children are defined as: S(t) = {t}, if its

level is divided by d; Otherwise its box Bt is split into two boxes {B1, B2} in the

direction of maximal extent, and S(t) = {t1, t2}, where ti = {j ∈ t | xj ∈ Bi}.

4. Repeat the second and third steps until ∀s ∈ L(TI) has #s ≤ Ns.

Since interface clusters contain less indices than the domain clusters, the interface

clusters are split at every dth step in order to adjust the size of interface clusters with

the size of domain clusters.

2.4.2 Algebraic Approaches

If the geometric information underlying a problem is not available and only the

matrix obtained by discretization is available, then geometric H-matrix construction

approaches can not be applied. In this case we may use algebraic H-matrix con-

struction approaches, which work on matrix graphs directly. The algebraic H-matrix

construction approach based on bisection simply splits every cluster into two subsets.

The approach based on multilevel graph clustering builds a cluster tree bottom-up

[55]. Its process is presented in Chapter 3. The algebraic approach based on nested

dissection [34] builds a cluster tree top-down, which is discussed in the following

section.
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2.4.2.1 Nested Dissection

Nested dissection was originally proposed by Alan George in 1970’s [30]. It

is one of the reordering methods that are used in direct methods such as Gaussian

elimination and LU factorization to solve sparse systems of linear equations. The

reordering methods reorder matrices to reduce fill-ins introduced during Gaussian

elimination or LU factorization process, therefore reduce computational complexity of

these operations. Various nested dissection approaches were developed [30, 31, 32, 45].

In general, nested dissection uses a divide-conquer strategy. Given a graph

G(V,E), the basic idea of nested dissection is to find a separator V3 ⊂ V for the whole

graph. A separator is a small set of vertices whose removal divides the graph G into

smaller subgraphs G(V1, E1), G(V2, E2), such that V = V1

⋃
V2

⋃
V3, while G(V1, E1)

and G(V2, E2) are disconnected from each other. V1 and V2 may be connected to V3.

The vertices in V are reordered such that the vertices in V1 are numbered first, then

the vertices in V2, and the vertices in V3 are numbered last. Recursively apply the

same process to the subgraph G(V1, E1) and G(V2, E2).

The ordering generated by nested dissection does not introduce fill-ins to the

large off diagonal zero blocks in LU factorization and maintain the matrix sparsity

structure.

2.4.2.2 Clustering Based on Nested Dissection

The clustering approach based on nested dissection to build index cluster trees

was proposed in [34]. The algorithm assumes that the graph is symmetric and con-
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nected. The distance between the node i and node j is defined as the shortest path

length between them. The shortest path dist(i, j) is calculated using Dijkstra’s al-

gorithm. For a cluster v ∈ I, assume the connected subset of v is ṽ. The splitting

algorithm which partition ṽ into two parts is defined as follows:

1. Arbitrarily choose a node i ∈ ṽ.

2. Find a node j ∈ ṽ with the longest path length to i and find a node k ∈ ṽ with

the longest path length to j.

3. Partition ṽ into two subsets {ṽ1, ṽ2} as

ṽ1 = {i ∈ ṽ | dist(i, j) ≤ dist(i, k)}, ṽ2 = ṽ − ṽ1. (2.18)

Then the clustering algorithm to build TI based on the above splitting algorithm

works in the following way:

1. The root of the cluster tree TI is I and the set of domain clusters is Cdom = I.

2. For each domain cluster v, partition it into three parts {v1, v2, v3} as

v1 = ṽ1, v2 = {i ∈ ṽ | dist(i, k) ≤ dist(i, j)− 1}, and v3 = v − v1 − v2, (2.19)

where ṽ1 is obtained by the splitting algorithm. Set the children of v to be

S(v) = {v1, v2, v3}. Add v1, v2 to the domain cluster set and add v3 to the

separator cluster set Csep.

3. For each separator cluster v, divide it into two subsets using the splitting algo-

rithm and define its children as S(v) = {ṽ1, ṽ2}.
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Let dep(TI) be the depth of TI and N be the number of vertices in the graph G, the

complexity of the above clustering algorithm to build a TI is O(dep(TI)) [34]. The

modified algorithms to build TI for disconnected or directed graphs are also discussed

in [34].

2.5 H-matrix Arithmetic

There are two types of H-matrix arithmetic: fixed rank H-matrix arithmetic

and adaptive rank H-matrix arithmetic. Fixed rank H-matrix arithmetic keeps the

rank of Rk-matrix blocks below a fixed constant k. Adaptive H-matrix arithmetic

adapts the rank of individual Rk-matrix block to enforce the approximation accuracy:

for each Rk-matrix block s × t, its rank is set to rank(Ms×t) = min{k | σk ≤ δσ1},

where σi denotes the ith largest singular value of Ms×t and δ ∈ (0, 1] is a constant to

determine the accuracy within each block.

Operations defined in H-matrix arithmetic include addition, multiplication,

inversion, and LU factorization. These operations are defined recursively based on

the block cluster tree structure of H-matrices. In [34, 49] the computational com-

plexity of these H-matrix operations is comprehensively analyzed. Based on certain

assumptions it is proved that the computational complexity of H-matrix operations

is optimal and bounded by O(n logα n), where n is the size of a problem and α = 2

or 3 is a moderate constant. The following sections give a brief description of each

H-matrix operation.
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2.5.1 Rk-matrix Addition

The exact addition of two rank k matrices gives a rank 2k matrix. In order

to maintain the low rank, the truncated singular value decomposition [10] is used in

Rk-matrix addition. The truncated SVD approximates the exact sum which is an

R2k-matrix by an Rk-matrix with computational complexity of O(k2(n + m) + k3).

Let M1 = A1B
T
1 , M2 = A2B

T
2 be two Rk-matrices, then the truncated SVD which

truncates the sum M = [A1, A2][B1, B2]T to an Rk-matrix M̃ = [Ã, B̃T ] is defined in

Algorithm 2.1.

Algorithm 2.1 Truncated Singular Value Decomposition

1: Calculate a truncated QR-decomposition of [A1, A2] = QARA.

2: Calculate a truncated QR-decomposition of [B1, B2] = QBRB.

3: Calculate a singular value decomposition of RAR
T
B = UΣV T .

4: Pick the first k columns of U and V : Ũ = [U1, . . . Uk], Ṽ = [V1, . . . Vk]

5: Calculate the Rk-matrix representation of the truncated sum as: M̃ = ÃB̃T ,

where Ã = QAŨdiag(Σ11, . . . ,Σkk), B̃ = QBṼ .

M̃ is the best approximation to M with respect to Frobenius and spectral norm in

the set of Rk-matrices [49].
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2.5.2 H-matrix-vector Multiplication

The multiplication of an H-matrix H(TI×J) and a vector v is defined recur-

sively as the multiplication of each block in H(TI×J) with the corresponding segment

in v. If the block is an Rk-matrix, then Rk-matrix-vector multiplication is called;

if it is a full matrix block, then full-matrix-vector multiplication is called; otherwise

H-matrix-vector multiplication is recursively called for each child block. The pseudo

code of H-matrix-vector multiplication is given as follows:

hmat vec mul (H, v , r )
{

i f H i s an Rk−matrix
r <− rkmat vec mul (H, v ) ;

else i f H i s a f u l l−matrix
r <− fmat vec mul (H, v ) ;

else
for each c h i l d H i o f H

hmat vec mul ( H i , v , r ) ;
}

H-matrix-vector multiplication yields the exact result and no approximation is in-

volved.

2.5.3 H-matrix-matrix Multiplication

Based on H-matrix-vector multiplication, the multiplication of a H-matrix

with a full matrix can be defined. The multiplication of an H-matrix H(TI×I) with

a full matrix M yields a full matrix R. Each column R[i] is obtained by calling

H-matrix-vector multiplication with H(TI×J) and the column M [i] as inputs. The

pseudo code of H-matrix-matrix multiplication is given as follows:

hmat mat mul (H, M, R)
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{
for each column i

hmat vec mul (H, M[ i ] , R[ i ] ) ;
}

As H-matrix-vector multiplication, H-matrix-matrix multiplication also yields exact

results.

2.5.4 H-matrix Addition +H

H-matrix addition +H is defined to add two H-matrices with the same block

cluster tree structure and gives a sum with the same tree structure. The operation

works in a recursive way: if both operands are full-matrices then it calls full-matrix

addition to add them together and gives a full matrix; if they are Rk-matrices then the

operation calls the truncated SVD to obtain an Rk-matrix; otherwise it recursively

calls +H for each subblock on the next level. The pseudo code of H-matrix addition

is given as follows:

hmat hmat add (H, A , B)
{

i f H i s a f u l l−matrix
fu l lmat add (H, A, B) ;

else i f H i s an Rk−matrix ;
rkmat add (H, A, B) ;

else
for each c h i l d H i o f H

hmat hmat add ( H i , A i . B i ) ;
}

H is an H-matrix to store the result, which is allocated before calling the function.

The operation +H gives an approximation to the exact sum since the truncated SVD

is used to add two Rk-matrix blocks.
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2.5.5 H-matrix Multiplication ∗H

In general, multiplication of two H-matrices H1(TI×K) and H2(TK×J) yields

another H-matrix H(TI×J). Depending on the cluster tree structure of the operands

and the result, there could be four cases:

1. If H1, H2 and H are all subdivided on the next level, then recursively call ∗H

for the subblocks on the next level.

2. If H has sub-blocks on the next level but H1 or H2 does not, then Rk-matrix

multiplication or H-matrix-matrix multiplication is called to calculate the prod-

uct of H1 and H2, which is either an Rk-matrix or a full matrix.

3. If H is a full matrix, the product of H1 and H2 is added to H directly.

4. If H is an Rk-matrix, then the hierarchical multiplication and truncation is

called to get an approximation of the product in the Rk-matrix format.

The hierarchical multiplication and truncation is based on the idea that if anH-matrix

H only has Rk-matrix subblocks, then it can be treated as the sum of Rk-matrices

as shown in (2.20):

 R1 R2

R3 R4

 =

 R1 0

0 0

 +

 0 R2

0 0

 +

 0 0

R3 0

 +

 0 0

0 R4

 . (2.20)

By calling the truncated SVD we can add these Rk-matrices together and obtain

an Rk-matrix approximation to H. The hierarchical multiplication and truncation
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works in a recursive way as shown in Figure 2.4: if H1 or H2 are not subdivided

then the product is truncated into an Rk-matrix directly; else recursively call the

hierarchical multiplication and truncation to do blockwise multiplication and truncate

the approximate product, which has only Rk-matrix subblocks due to the previous

truncation, to an Rk-matrix block. The pseudo code of H-matrix multiplication is

H H

H H

R R

R R

hierarchical truncation hierarchical truncation
R

Figure 2.4: The process of the hierarchical multiplication and truncation.

given as follows:

hmat hmat mul (H, A , B)
{

i f H, A, and B a l l have c h i l d r e n
for i=1 to H−>b l o c k c o l s

for j=1 to H−>block rows
for k=1 to A−>block rows

hmat hmat mul ( H i j , A i k , B k j ) ;
else i f H has c h i l d r e n

i f A or B i s an Rk−matrix
hmat rkmat mul (H, A, B) ;

else //A or B i s a f u l l −matrix
hmat mat mul (H, A, B) ;

else //H i s an Rk−matrix ;
h i e r a r c h i c a l m u l t r u n c (H, A, B) ;

}

where H is an H-matrix to store the result.
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2.5.6 H-matrix Inversion invH

The operation invH is defined based on the block Gauss-Jordan elimination,

in which the exact matrix operations are replaced by the corresponding H-matrix

operations defined in H-matrix arithmetic. invH yields an approximate inverse. Let

+H and ∗H be H-matrix addition and multiplication as described in the previous

sections. Assume H =

 H11 H12

H21 H22

 has 2 × 2 blocks on the top level. The Schur

complement S can be approximated by S = H22 −H H21 ∗H invH(H11) ∗H H21. Then

the H-matrix inversion can be obtained recursively as:

invH(H) =

 H′11 H′12

H′21 H′22

 , (2.21)

where

H′11 = invH(H11) +H invH(H11) ∗H H12 ∗H invH(S) ∗H H21 ∗H invH(H11),

H′12 = −invH(H11) ∗H H12invH(S),

H′21 = −invH(S) ∗H H21 ∗H invH(H11), and

H′22 = invH(S).

2.5.7 H-LU Factorization

H-LU factorization was proposed in [38]. The algorithm to compute H-LU

factors was presented in [19, 34, 51]. H-LU factors obtained by H-LU factorization

are in H-matrix format and can be done recursively with computational complexity

of O(n logα n).
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To define H-LU factorization, first a triangular solver needs to be defined. A

triangular solver solves a triangular system AX = B, where X is an unknown H-

matrix, B is a given H-matrix, and A is a given upper or lower triangular H-matrix.

The triangular solver works in the following way:

1. If both X and B are Rk-matrices (that is X = X1X
T
2 and B = B1B

T
2 ), then

X2 = B2 and X1 = A−1B1 by calling full matrix LU factorization.

2. Else if both X and B are full matrices, then call full matrix LU factorization

to solve AX = B.

3. Otherwise, if X and B have subblocks on the next level, the solution X is

obtained by solve the block triangular system. Let’s assume X and B have

2 × 2 subblocks on the next level and A is a lower triangular H-matrix as in

(2.22):  L11 0

L21 L22


 X11 X12

X21 X22

 =

 B11 B12

B21 B22

 , (2.22)

where L11 and L22 are lower triangular H-matrices. Then X11 and X12 can be

obtained by recursively calling the triangular solver to solve L11X11 = B11 and

L11X12 = B12; X21 is obtained by solving L22X21 = B21 −H L21 ×HX11; finally,

X21 is obtained by solving L22X22 = B22 −H L21 ×H X12.

Given the triangular the algorithm of H-LU factorization for
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 A11 A12

A21 A22

 =

 L11 0

L21 L22


 U11 U12

0 U22

 (2.23)

is defined by Algorithm 2.5.7. Using triangular solvers, H-Cholesky factorization can

Algorithm 2.2 H-LU Factorization

1: If A11 or A22 is a full matrix leaf, then call full-matrix LU-factorization.

2: Otherwise, recursively apply H-LU factorization to A11 to obtain L11 and U11.

3: Apply a triangular solver to A12 = L11U12 with L11 obtained in the previous step

to get U12.

4: Apply a triangular solver to A21 = L21U11 with U11 obtained in the previous step

to get U11.

5: Finally recursively apply H-LU factorization to L22U22 = A22 −H L21 ∗H U12 to

obtain L22 and U22.

also be defined in a similar way.

2.6 H-matrix Preconditioner Technique

The H-matrix operations like H-matrix inversion, H-LU factorization and H-

Cholesky factorization general yields approximate results with optimal computational

complexity, which are possible candidates as preconditioners in iterative methods to

solve systems of linear equations [13, 17, 20, 55, 57]. The H-matrix preconditioner
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technique to solve Ax = b involves three steps: first build an H-matrix AH for A,

either by geometric approaches or algebraic approaches; then compute an H-matrix

preconditioner BH, either by H-matrix inversion or H-LU factorization; at last BH is

used in iterative methods like GMRES or MINRES. In [15], an H-matrix inverse is

used as a preconditioner to solve convection-domain problems discretized by finite el-

ement methods. The construction of H-matrix inverses is relatively expensive due to

the large constants in the estimate of computational complexity. In [19], an approach

to use H-matrix LU factors as preconditioners is pursued to solve convection-domain

problems, for both constant and non-constant convection directions. Compared to

multigrid methods, H-LU preconditioners usually need more set-up time but pro-

vide better convergence rates. [21] presents a H-LU preconditioner based on domain

decomposition to solve convection-domain problems. The approaches to build H-LU

preconditioners to solve problems of saddle point type are discussed in [13, 16, 17, 20].
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CHAPTER 3
ALGEBRAIC H-MATRIX CONSTRUCTION APPROACH BASED ON

MULTILEVEL CLUSTERING

This chapter introduces a new algebraic H-matrix construction approach we

have developed, which is based on multilevel clustering. Compared to the algebraic

approach based on nested dissection, which starts from the entire index set and then

recursively splits the sets into sub-sets, our approach starts with the individual index

and recursively aggregates these indices together until reaches the whole index set.

This chapter also presents the numeric results of applying these two approaches to

solve positive definite systems arising from finite element discretization of Poisson

equations.

3.1 Multilevel Clustering

Graph partitioning is about to partition the vertices of a graph into roughly n

equal parts such that the edge-cut is minimized. Graph partitioning problem arises

in many areas such as scientific computing and engineering. For example graph

partitioning can be applied to sparse matrix reordering to reduce fillings during fac-

torization. Graph partitioning problem is NP-complete and is not expected to be

solved in polynomial time. But there are many approximation algorithms: spectral

partitioning methods [3] produce excellent partitions but are quite expensive; geomet-

ric partitioning methods [53] are much faster than spectral partitioning methods but

they depend on the geometric information of graphs, which in some cases is not avail-
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able; compared to the other approximation methods, multilevel graph partitioning

methods [24, 46, 47] give good partitions at a moderate cost.

The basic idea of multilevel graph partitioning is to approximate the original

graph using a sequence of coarser graphs built by merging vertices together. A multi-

level graph partitioning usually has three phases: coarsening phase, in which a graph

is coarsened down to a sequence of coarser graphs by multilevel clustering; partition-

ing phase, in which a partition is calculated over the coarsest graph; uncoarsening

phase, in which the partition over the coarsest graph is projected back to the finest

graph. Here we focus on the coarsening phase and use its idea to build index trees

for H-matrices.

3.2 An H-matrix Construction Approach

In this section, we describe the new algebraic approach for H-matrix construc-

tion, which is based on multilevel clustering [55, 56, 57]. This construction approach

uses the information obtained by multilevel clustering to build an index cluster tree

and a block cluster tree for an H-matrix. It has three steps: first a sequence of

coarser graphs are built over the original graph, which is analogous to the multilevel

clustering coarsening process; in the second step an index cluster tree is constructed

based on the sequence of coarser graphs and the clusters obtained during the coars-

ening process; last, the admissibility condition is defined and a block cluster tree is

constructed.
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3.2.1 Clusters and Coarser Graphs

The idea to build a coarser graph Gi+1 over Gi is: first build clusters over the

vertices of Gi; then Gi+1 is constructed by merging the vertices of each cluster together

as one vertex on the coarser graph. The approach to build clusters is based on heavy

edge matching, which finds the maximal matching over a graph. A matching is a set

of edges, no two of which are incident on the same vertex. The matching of maximal

size is called maximal matching. Some approaches to find the maximal matching

of a graph are: random matching, heavy edge matching, light edge matching, and

heavy clique matching. Random matching (RM) randomly selects two unmatched

nodes u and v, marks them as matched, and adds the edge (u, v) in the matching.

The idea of Heavy edge matching (HEM) is to find a matching with maximal weight.

HEM randomly selects an unmatched node v, among its unmatched neighbors the

vertex u with the maximum edge weight is selected, and the edge (u, v) is added to

the matching. Heavy clique matching (HCM) collapses two vertices with high edge

connection. The complexity of these algorithms is O(#E). Among them HEM aims

to decrease the edge weight of the coarser graph and the experiments show that HEM

is a good matching algorithm resulting in good partition[47]. The original HEM

algorithm to build a matching Ci over Gi(Vi, Ei) is given in Algorithm 3.1, in which

vertices with no unmatched neighbors are matched by themselves.

The problem of the original HEM is that it may give a cardinality unbalanced

index cluster tree TI , especially when it is applied to a sparse graph. The reason is

that in the matrix graph of a sparse matrix, each vertex has O(1) neighbors, and as
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Algorithm 3.1 HEM(G(V,E))

C = ∅;

while V 6= ∅ do

randomly pick up a node v ∈ V ;

if the set of adjacent unmatched vertices of v: Adj(v) 6= ∅ then

pick up a node u ∈ Adj(v) with the heaviest edge weight;

mark v and u as matched and V = V − {v, u};

C = C
⋃
{(v, u)};

else

mark v as matched and V = V − {v};

C = C
⋃
{(v)};

end if

end while

HEM continues marking nodes as matched, the unmatched nodes will have higher

chance to stay isolated (that is they have no unmatched neighbors ). If a vertex or

its corresponding vertex on coarser graphs remains isolated as we continue building

coarser graphs, the resulting cluster tree TI , as discussed in Section 3.2.2 may not be

cardinality balanced. Figure 3.2.1 shows an example of cardinality unbalanced tree

obtained by the original HEM. To make TI more cardinality balanced, we modify

HEM by splitting the vertices of Gi(Vi, Ei) into two subsets Si,1 and Si,2, where

Vi = Si,1
⋃
Si,2. Si,1 contains the vertices build by the isolated vertices of Gi−1 and



40

{0,1}              {2, 3}              {4}

{0, 1, 2 ,3}          {4}

{0, 1, 2, 3, 4}

{0}      {1}      {2}      {3}               {4}

Figure 3.1: An example of a cardinality unbalanced cluster tree TI obtained by the
original HEM algorithm.

Si,2 contains the vertices built by merging two matched vertices of Gi−1. The vertices

in Si,1 are with higher priority to be selected than those in Si,2. The modified HEM

is given in Algorithm 3.2.

After apply HEM over Gi(Vi, Ei), a set of clusters Ci = {C0
i , . . . , C

m
i } are built

over Vi. The size of each cluster #Ck
i is either 1 or 2. The algorithm to build a coarser

graph Gi+1(Vi+1, Ei+1) is given in Algorithm 3.3.

Recursively applying the above multilevel clustering process gives a sequence of

graphs {G0, G1, . . . , Gh}. We end this sequence with Gh, when the size of its vertex

set #Vh is sufficiently small. The value of h is close to log(#V0) by the modified

HEM algorithm. The complexity of the modified HEM algorithm is bounded by

O(#E0 log(#V0)). Figure 3.2 illustrates the multilevel clustering process with 2 levels
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Algorithm 3.2 Modified HEM(Gi(Vi, Ei), Si,1, Si,2)

Ci = ∅;

while Si,1 6= ∅ do

randomly pick up an node v ∈ Si,1;

if the set of adjacent unmatched vertices of v: Adj(v) 6= ∅ then

randomly pick up a vertex u ∈ Adj(v) with the highest edge weight;

mark v and u as matched and V = V − {v, u};

Ci = Ci
⋃
{(v, u)};

else

mark v as matched; Si,1 = Si,1 − {v}; Ci = Ci
⋃
{(v)};

end if

end while

while Si,2 6= ∅ do

randomly pick up an node v ∈ Si,1;

if the set of adjacent unmatched vertices of v: Adj(v) 6= ∅ then

randomly pick up an node u ∈ Adj(v) with the highest edge weight;

mark v and u as matched and V = V − {v, u};

Ci = Ci
⋃
{(v, u)};

else

mark v as matched; Si,2 = Si,2 − {v}; Ci = Ci
⋃
{(v)};

end if

end while
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Algorithm 3.3 The Algorithm to Build a Coarser Graph Gi+1(Vi+1, Ei+1)

1: Initially Si+1,1 = ∅, Si+1,2 = ∅, Vi+1 = ∅, and Ei+1 = ∅.

2: For each cluster Ck
i ∈ Ci build a node k in Gi+1: Vi+1 = Vi+1

⋃
{k}.

3: If #Ck
i = 1 then Si+1,1 = Si+1,1

⋃
{k}, else Si+2,1 = Si+2,1

⋃
{k};

4: Add an edge (k, l) to Ei+1 ⇐⇒ ∃s ∈ Ck
i , t ∈ C l

i , and (s, t) ∈ Ei;

5: The edge weight of (k, l) ∈ Ei+1can be computed by:

wk,l =
∑
s∈Ck

i

∑
t∈Cl

j

e(s,t), e(s,t) ∈ Ei. (3.1)

for a graph defined by the following matrix:

M =



∗ 4 0 1 0 0

4 ∗ 0 1 1 2

0 0 ∗ 3 0 1

1 1 3 ∗ 0 0

0 1 0 0 ∗ 3

0 2 1 0 3 ∗



(3.2)

3.2.2 Building TI

Using the sequence of graphs (G0, G1, . . . , Gh) and the clusters obtained by

the multilevel clustering process described above, we can build an index cluster tree

TI .

To build TI , first we build a tree T̃I , whose leaves correspond to the indices of
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C1 ={2}

0 1

4

4

3 3

11
1

1

2

0

1

2

0 1
2 3

1

3

G G G

coarsen coarsen

0 1 2

C

C

0

1

0

C2

={4,5}

C

={0,1}

={0,1}

3

2 5
={2,3}

Figure 3.2: An example of the multilevel clustering process with 2 levels. The graph
G0 is defined by the matrix of (3.2).

the original matrix M , from bottom to top as follows:

1. For each vertex vi ∈ V (G0) there is a leaf i ∈ T̃I .

2. The node s ∈ T̃I on level i is the parent of the node t of level i− 1, if and only

if t ∈ Cs
i−1 obtained on Gi−1.

Figure 3.4(a) shows the tree T̃I based on the sequence of graphs and clusters in

Figure 3.2. A set Ĩ is created by listing the leaves of T̃I from left to right. Different

from I, Ĩ may not have the indices in order because of the clustering process. To

connect the indices of Ĩ with those of I, a mapping function is built by mapping

each index in Ĩ to an index in I at the same position, as shown in Figure 3.3. The

{0,   1,   2,   3,   4,   5}

{0,   1,   4,   5,   2,   3}Old indexes

New indexes

Figure 3.3: Index mapping built for TI
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definition of the mapping function leads to the definition of a permutation matrix P .

Symmetrically permuting the original matrix M as Mreorder = P TMP , we have the

reordered matrix Mreorder. Apply the mapping function to the leaves of T̃I and we

have a new tree T̃I given in Figure 3.4(b). Finally we build TI by remapping each

node in T̃I from the leaves to the root by a set of indices Lij ⊂ I (see Figure 3.4(c)):

1. If a node j0 is a leaf of T̃I then in TI it is represented as L0
j = {j};

2. If a node ji ∈ T̃I has children ti−1 and ki−1, then Lij ∈ TI has two children Li−1
t

and Li−1
k , where Lij = Li−1

t

⋃
Li−1
k .

3. If a node ji ∈ T̃I has only one child ki−1, then Lij ∈ TI has only one child Li−1
k

and Lij = Li−1
k .

TI obtained by the above process is an index cluster tree for the reordered matrix

Mreorder, which has the following properties:

1. TI has h+ 1 levels, where h is the number of levels in the multilevel coarsening

process.

2. The root of TI is set I = {0, 1, 2, . . . , n − 1}, whose elements represent the

indices of the permuted matrix Mreorder.

3. The nodes on the same level formed a partitioning over the index set I.

The whole process to build TI is shown in Figure 3.4. The following matrix:
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{0}      {1}      {2}      {3}      {4}      {5}

{0,1}              {2, 3}              {4,5}

{0, 1, 2 ,3}          {4,5}

{0, 1, 2, 3, 4, 5}

 0          1          4           5         2          3 

    0                      1                      2

       0                       1  

             root

 0          1           2          3         4           5 

    0                      1                      2

       0                       1  

             root

Level 0

Level 2

Level 3

Level 1

index mapping

             (b)

building cluster tree

             (a)              (c)

Figure 3.4: The process to build an index cluster tree TI using the graphs in Figure 3.2.
(a) is the tree T̃I before the index mapping. (b) is the tree T̃I after the index mapping.
(c) is the final index cluster tree TI .

Mreorder =



∗ 4 0 0 0 1

4 ∗ 1 2 0 1

0 1 ∗ 3 0 0

0 2 3 ∗ 1 0

0 0 0 1 ∗ 3

1 1 0 0 3 ∗



, (3.3)

is the reordered matrix Mreorder obtained by permuting M of Equation (3.2) using

the index mapping function of Figure 3.3.

3.2.3 Building TI×I

The block cluster tree TI×I describes a multilevel block partitioning over the

reordered matrix Mreorder. To build TI×I , we use the cluster tree TI and the multilevel

graphs (G0, G1, G2, . . . , Gh). If two vertices s and t are not connected in Gi, then the

corresponding matrix block s× t of Mreorder is a block with only zeros. Those blocks

of zeros are low rank matrices that can be represented exactly using Rk-matrices. So

we define the following admissibility condition for the block cluster tree construction
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approach:

s× t is admissible ⇐⇒ s and t are disconnected in Gi. (3.4)

The algorithm to build a block cluster tree is given in Algorithm 3.4. The whole

Algorithm 3.4 Block Cluster Tree Building Algorithm Based On Multilevel Clus-
tering

1: The root of TI×I is I × I.

2: If Lir×Lis is a node of TI×I , r is connected to s in Gi, and #L
(i)
r , #Lis > Ns, then

the children of L
(i)
r × L(i)

s are Li−1
v × Li−1

w where Li−1
v is a child of Lir and Li−1

w is

a child of Lis in TI .

3: Else if Lir×Lis is a node of TI×I , r is not connected to s in Gi, and #Lir, #Lis > Ns,

then Lir × Lis is a Rk-matrix leaf node in TI×I .

4: Else if Lir × Lis is a node of TI×I , and #Lir ≤ Ns or #Lis ≤ Ns, then Lir × Lis is a

dense leaf node in TI×I .

process the algebraic H-matrix construction approach based on multilevel clustering

is put together in Figure 3.5. Notice that in our example we used Ns = 1 for the

minimal block size. However the process is similar for other values of Ns except that

we stop sooner (higher) in the tree.

The difference between our H-matrix construction method and the classic

methods for building H-matrix is that the classic methods need the geometric infor-

mation underlying the problem to determine whether or not a block Lis×Lit in TI×I to
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0  1

2  34  5
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0  1 2  3
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0  

G0 1 2 3

0  1  2  3  4  5  6  7 

0 1 2 3                              4 5 6 7

0 1 2 3 4 5 6 7

0  1 2  3 4  5 6  7

0          1 2          3 4          5 6         7
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Figure 3.5: The illustration of the algebraic H-matrix construction approach based
on multilevel clustering. The top figure is the process to build the sequence of coarser
graphs and clusters. The middle figure shows the corresponding cluster tree TI . The
bottom figure shows the block clustering tree TI×I built using TI and the coarser
graphs.
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be approximated by an Rk-matrix. In our algebraic method we use the edge weights

in the coarser graphs obtained by multilevel clustering to decide how to build TI×I .

Particularly, if w
(i)
st = 0 then the block Lis×Lit is a zero block, and it is represented in

Rk-matrix format; w
(i)
st 6= 0 implies that the block L

(i)
k × L

(i)
t is a non-zero block and

it will be partitioned into smaller blocks on the next level. In this way the original

matrix can be representeded exactly as an H-matrix and no approximation is needed.

The difference between our multilevel coarsening based approach and the algebraic

H-matrix construction approach based on nested dissection is as follows. The multi-

level clustering based algorithm constructs a cluster tree bottom-up: starts with the

leaves and successively clusters them together until the root is reached. The nested

dissection based approach in [34]) starts with the root and successively subdivides

clusters until the leaves are reached, so its is a top-down approach.

3.3 Experimental Results

Using our algebraic construction approach combined with H-matrix arith-

metic, we can build various preconditioners to solve large systems of linear equations.

In this section we show the experimental results of using H-matrix preconditioners

to solve the systems of linear equations arising from FEM discretization of Poisson

equations.

The model problem of our experiment is the following Poisson equation:
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
∇2u = f, u ∈ Ω

u(x, y) = e2x cos(2y) + x3 − 3xy2, u ∈ ∂Ω.

(3.5)

Discretization of (3.6) using finite element methods yields the following system of

linear equations:

Kx = b, (3.6)

here K is a stiffness matrix. K is constructed using the grid generator developed by

Persson and Strang [59] and the piecewise linear finite element method. Note that K

is sparse, symmetric, and positive definite. Figure 3.6 shows an example of a mesh

with the element size h0 ≈ 0.2 and the distribution of the non-zero entries in K based

on the mesh.

0 10 20 30 40 50

0

10

20

30

40

50

nz = 345

Figure 3.6: The left side is a mesh on a unit circle built by the grid generator with
the element size h0 ≈ 0.2. The right side is the distribution of the non-zero entries
(black dots) in the stiffness matrix K obtained by the discretization of the Poisson
equation (3.6) using the mesh on the left.
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In our test, to generate different size of probems we chose h0 ≈ 0.020, 0.015,

0.012, 0.010, 0.007, and 0.005. The corresponding numbers of unknowns are: n =

8753, 15697, 24657, 35632, 73131, and 143834 respectively.

To show the performance our construction approach we compare it with the

algebraic approach based on nested dissection (ND) [34]. We also compare H-matrix

preconditioners with other existing preconditioners. The preconditioners built in

this experiment are: H-inverse based on HEM (HEM-H-INV), H-LU factors based

on HEM (HEM-H-LU), H-Cholesky factors based on HEM (HEM-H-CH), H-LU

factors based on ND (ND-H-LU), H-Cholesky factors based on ND (ND-H-CH),

as well as Jacobi Over-Relxation (JOR). Here we use HEM to indicate the H-matrix

construction approach based on multilevel clustering and ND to indicate theH-matrix

construction approach base on nested dissection.

These preconditioners are used in the iterative method GMRES. The iteration

of GMRES stops where the original residual is reduced by a factor of 10−12. The

convergence rate a is defined as the average decreasing speed of residual in each

iteration. a is calculated by solving the equation: at = 10−12, where t is the number

of iterations.

To compute H-LU and H-Cholesky factors, we use the H-matrix arithmetic

with adaptive rank: the rank of each Rk-matrix block Ms×t approximating a matrix

block A satisfies that rank(Ms×t) = min{ k | Σk ≤ αΣ1 }, where Σi is the ith largest

singular value of A and α is a parameter to control the accuracy. We choose α =

0.0625. We also set the size of all the leaf blocks in an H-matrix to Ns = 40.
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To compute H-inverses, we use the H-matrix arithmetic with fixed rank: the

rank of each Rk-matrix block Ms×t is less than k, since the fixed rank H-matrix

arithmetic gives better performance and convergence rates. Here we set k = 4. To

make GMRES converge for calculating H-inverses based on nested dissection (ND-

H-INV) the rank k >= 8 in our test. But its performance is much worse than

HEM-H-INV, so we do not include ND-H-INV in our comparison. The experiments

are carried out on a dual processor computer with 64-bit Athlon 4200++ CPU and

3GB memory.

Figure 3.7 compares the time consumed by the algebraic H-matrix construc-

tion approach HEM and the approach ND to build an H-matrix over the given sparse

matrix K. Figure 3.7 shows that HEM based H-matrix construction approach is a

simpler approach and works faster than ND based approach. This is because HEM

builds H-matrices by clustering vertices together base on the edge weights of each

randomly picked vertices while ND builds H-matrices by split the set of vertices into

three subsets and the process of finding the separate clusters needs more work.

Figure 3.8 compares the time taken to compute H-matrix preconditioners by

applying the H-matrix arithmetic to the H-matrices constructed by HEM and ND.

Figure 3.9 compares the memory storage in Megabyte (MB) for these H-matrix pre-

conditioners. Figure 3.10 shows the time taken by the preconditioned GMRES itera-

tions to converge using the given preconditioners.

Figure 3.11 compares the total running time (the time to construct precondi-

tioners plus the time of preconditioned GMRES iterations). Figure 3.12 shows the
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Figure 3.7: Comparison of the time complexity of the algebraic H-matrix matrix
construction approach based on multilevel clustering (HEM) and the approach based
on nested dissection (ND) for various problem sizes. The top is the comparison of
the time to build TI . The bottom is the comparison of the time to build TI×I .
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Figure 3.10: Comparison of the time for preconditioned GMRES iterations to con-
verge using various preconditioners.

convergence rates of GMRES using JOR preconditioner and the H-matrix precondi-

tioners based on HEM and ND.

Based on the above figures, we can see that with respect to the convergence

rate, all the H-matrix preconditioners outperform JOR preconditioner. As to the

total running time, all the H-matrix preconditioners shows the same rate of time

increase and the run time of theH-matrix preconditioners increases much more slowly

with problem size than JOR preconditioner. H-inverses outperform JOR when the

problem size is bigger than 105. In all, the H-matrix preconditioners are much better

than JOR preconditioner to solve the given system. The experiment results also

show that H-LU and H-Cholesky factors are cheaper to compute than H-inverses,

which verifies the computational complexity analysis of the H-matrix operations in
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Chapter 2. The H-matrix construction approach based multilevel clustering and

the H-matrix construction approach based on nested dissection are comparable to

each other, as they show the same behavior as regard to the memory requirement,

computational complexity, and the convergence rates. But the H-matrix construction

approach based multilevel clustering is a simpler approach and it also can be used to

construct more efficient H-inverse preconditioners.
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CHAPTER 4
H-MATRIX PRECONDITIONERS FOR SADDLE-POINT SYSTEMS

In this section, we present the scheme to use our algebraic H-matrix construc-

tion combine with H-matrix arithmetic to solve systems of saddle point type arising

from meshfree discretization of partial differential equations [20].

Meshfree methods are suitable for solving problems on irregular domains,

avoiding the use of a mesh. To deal with the boundary conditions, Lagrange multipli-

ers approach can be used which results in a sparse, symmetric, and indefinite system

of saddle-point type.

Due to the indefiniteness and often poor spectral properties, saddle point prob-

lems represent a significant challenge for solver developers. In recent years numerous

solution techniques have been proposed for this type of systems. Though no single

best method exists, for some important classes of problems, very effective methods

have been developed. A comprehensive survey [9] reviews a large selection of so-

lution methods, including direct solvers, stationary iterative methods, Krylov sub-

space solvers, preconditioners, and multilevel methods, with an emphasis on iterative

methods.

In [50] a preconditioner based on smoothed Algebraic Multigrid (AMG) is pro-

posed. The H-matrix based block preconditioners are discussed in [16, 17] to solve

saddle point systems arising in Oseen equations and Stokes equations. In [13] a joint

approach is presented, which computes an approximate H-matrix LU-factorization of

the matrix using domain-decomposition clustering with an additional local pivoting
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strategy to order the index set. In [55] we presented an algebraic method to construct

an LU based preconditioner for the saddle-point system obtained by meshfree meth-

ods, which combines the multilevel clustering method with H-matrix arithmetic. But

the corresponding preconditioner has both H-matrix and sparse matrix subblocks. In

this chapter we present the refined method [20] to construct a pure H-matrix precon-

ditioner for saddle point problem. We compare the new method with the old method

[55], JOR, and smoothed algebraic multigrid methods (AMG) [50]. The numerical

results show that the new preconditioner outperforms the preconditioners based on

the other methods.

4.1 Model Problem

The model problem is a second-order partial differential equation defined on

a domain Ω ⊂ R2 [50]: 
−∇2u(x) = f(x), x ∈ Ω

u(x) = g(x), x ∈ ΓD

(∂u/∂n)(x) = h(x), x ∈ ΓN

(4.1)

where ΓD ∪ ΓN is the boundary of Ω. For our numerical tests we let the domain Ω

be (0, 1)× (0, 1) ⊂ R2 with the boundary ΓD and ΓN as shown below.

Ω

ΓD

ΓD

ΓN ΓN
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A meshfree scheme, based on the Reproducing Kernel Partical Method (RKPM) [26],

is used to discretize the continuous problem (4.1). RKPM approximates a function

u(x) by uh(x) =
∑NP

i=1 uiΨi(x), where NP stands for the number of particles, Ψi is

the basis function for a particle i, and ui is the coefficient of the basis function Ψi.

Ψi is usually constructed by the product of a given kernel function Φa(x− xi) and a

correction function C(x; x − xi). A correction function is chosen to ensure that for

any d dimensional problem the discrete reproducing kernel condition is satisfied:

xα =
NP∑
i=1

Ψi(x) xαk , (4.2)

where xα = xα1
1 x

α2
2 · · ·x

αd
d , and the relationship holds for all non-negative integer

vectors α where |α| :=
∑d

k=1 αk ≤ p for some pre-determined p. We let

Ψi(x) = C(x; x− xi) Φa(x− xi). (4.3)

The correction function C(x; x− xi) is then determined by (4.2), which leads to the

equation

C(x; x− xi) = H(x− xi)
TR(x)−1H(0), (4.4)

where H(s) = [ sα | |α| ≤ p ], and R(x) =
∑NP

i=1 H(x−xi)H(x−xi)
T Φa(x−xi). The

smoothness of the kernel functions Φa(x−xi) determines the smoothness of the basis

functions. Provided the points xi are chosen appropriately, the order of convergence

of the method is p+ 1 [7, 25].

The Φa functions are typically chosen to be tensor products of B-splines:

Φa(x− xi) =
∏d

k=1 ϕ((xk − (xi)k)/ak) where ϕ is a standard B-spline function.
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To apply the above RKPM to the model problem (4.1), two sets of basis

functions are generated separately on the domain Ω and the boundary ΓD. We have

seen how to construct the basis functions Ψi over the domain Ω. For the boundary

ΓD, we construct in a similar way a family of basis functions Ψ̃j over ΓD using points

x̃j ∈ ΓD. The Lagrange Multiplier approach is used to handle the essential boundary

conditions. A Ritz–Galerkin method is used to discretize the resulting equations

which leads to a meshfree linear system Kx = F of saddle-point type: A BT

B 0


 u

λ

 =

 c

d

 , (4.5)

where Aij =
∫

Ω
((∇Ψi)

T∇Ψj + ΨiΨj) dx, Bij =
∫

ΓD
Ψ̃iΨjdS, ci =

∫
Ω
fΨi dx +

∫
ΓN
hΨi dS, and di =

∫
ΓD
gΨ̃i dS. The matrix K :=

 A BT

B 0

 in (4.5) is symmet-

ric but indefinite, but the submatrix A is symmetric positive semi-definite. Krylov

subspace method GMRES [61] is used to solve the system. Eigenvalue distribution of

(4.5) is generally considered unfavourable for solution by Krylov subspace methods.

And without preconditioning, Krylov subspace methods tend to converge poorly. It

has been observed that a simple transformation as show in (4.6) can be used to obtain

an equivalent linear system which is positive semidefinite [8, 9, 35]. The equivalent

nonsymmetric system obtained by the transformation is given as follows:

 A BT

−B 0


 u

λ

 =

 c

−d

 , (4.6)
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which is positive semidefinite and Krylov methods can be used to solve the above

system.

Even with this way of representing the problem, we still need to ensure that

the “inf-sup” or Ladyzhenskaya–Babuška–Brezzi (LBB) condition [22] is satisfied in

order to ensure that the results are accurate:

inf
w

sup
z

〈w, Bz〉
‖w‖ ‖z‖A

≥ β, where ‖z‖A =
√
〈z, Az〉. (4.7)

In order to expect convergence of the discrete approximations (4.5) we require that

(4.7) holds with the same β > 0 regardless of how fine the discretization is.

With meshfree basis functions and Ψ̃j = Ψj, unfortunately, the LBB condition

(4.7) is rarely satisfied. If the support of a basis function does not intersect the

boundary then it causes no problems for the LBB condition. However, if the support

of a basis function intersects the boundary just a little, there are severe problems

for the LBB condition. Unlike standard finite element methods, there is no mesh to

control the supports of the basis functions in meshfree methods, so this is a likely

occurrence for meshfree methods. Penalty methods in particular are likely to perform

very badly with meshfree methods.

In order to overcome these problems, we use an independently generated set

of basis functions on the boundary [50]. These can also be generated as meshfree

functions, but using a different family of kernel functions Φ̃i on the boundary ∂Ω:
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Φ̃i(x) = Φa(x− x̃i) where x ∈ ∂Ω, and the points x̃i are chosen appropriately from

∂Ω. As for the basis functions Ψi over Ω, we construct Ψ̃i(x) = C̃(x,x − x̃i) Φ̃i(x)

where C̃(x,x− x̃i) = H(x− x̃i)
T R̃(x)−1H(0) and R̃(x) =

∑NBP
i=1 H(x− x̃i)H(x−

x̃i)
T Φ̃a(x− x̃i). The size of the supports of the boundary basis functions Ψ̃j should

not be small in comparison with the size of the supports of the basis functions Ψi on

Ω.

4.2 H-matrix Preconditioners

To speed up the convergence of Krylov subspace methods (e.g. GMRES), pre-

conditioners can be used. The conventional preconditioners like Jacobi, incomplete

factorizations, sparse approximate inverses can not be applied directly to the saddle

point systems, since the indefiniteness and lack of diagonal dominance make these

preconditioners often unsatisfactory. Instead, the construction of high-quality pre-

conditioners need to exploit the block structure of the problems, with knowledge of

the problems and structure of the various blocks.

In this section, we present ourH-matrix preconditioners construction approach

which are based on block LDU-factorization [20]. Compared to the approaches in

[13, 16, 17], our approach is purely algebraic.

Since A is positive definite, the saddle point problem in (4.5) admits the fol-

lowing block LDU factorization:

K =

 A BT

B 0

 =

 L1 0

L2 L3


 I 0

0 −I


 LT1 LT2

0 LT3

 , (4.8)

where L1, L
T
1 are the Cholesky factors of A. L2 can be obtained by solving the
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following lower triangular system: L1L
T
2 = B, and then L3 can be obtained by LU

factorization of the Schur complement: L3L
T
3 = L2L

T
2 . Though K is sparse, its exact

LU factors obtained by (4.8) can be dense and expensive to compute. To reduce

the computational complexity of factorization, we use H-matrix technique. First we

reorder and represent K in the H-matrix format while the block structure of K is

maintained. Then a H-matrix version of block LDU factorization is performed and

the obtained LU factors are in the H-matrix format. These H-LU factors are not

exact, but they can be used as preconditioners in Krylov subspace methods and they

are much cheaper to compute with optimal computational complexity of O(nlogαn)

with a moderate parameter α [21].

To represent K in the H-matrix format while maintain the block structure of

K, we need to represent subblock A and B into H-matrix format respectively. Let

I denote the row and column index set of the submatrix A and J denote the row

index set of B, while A and B share the same column index set I. To build an H-

matrix over A, the algebraic approach based on multilevel clustering as introduced in

Chapter 3 is applied directly to A. First, a sequence of coarse graphs is built based

on the multilevel clustering method; then we can construct an index cluster tree TI

and a permutation matrix PA. Combining the hierarchy of coarse graphs and TI we

get an H-matrix AH over the reordered matrix Ã = PAAP
T
A . To build an H-matrix

over B, we can not apply the above method directly to B, since B is not symmetric

and has different row and column index sets. Its column index set I is same as the

column index set of A, so we use TI , obtained in the step to build the H-matrix over
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A, as the column index cluster tree of B. To build TJ over the row index set J of

B, we apply the algebraic H-matrix construction approach to the matrix graph with

weights given by BBT , which also gives a permutation matrix PB. Dense rows of

B would result in BBT being a dense matrix. However, dense rows usually do not

indicate strong local connections between indices in J , and so can usually be safely

ignored for constructing TJ . With TI and TJ available, the block cluster tree TJ×I for

B̃ = PBBP
T
A is built by the Algorithm 4.1. Since in our model problem, the size of

Algorithm 4.1 Construction of the block cluster tree TJ×I
1: The root of TJ×I is J × I.

2: For each node s× t, if its corresponding block has only zero entries, then it is an

Rk-matrix leaf node in TJ×I ;

else if #s > Ns and #t > Ns, then the children nodes of s× t are defined as:

S(s× t) = {j × i|j ∈ S(s) and j ∈ TJ ; i ∈ S(t) and i ∈ TI} ;

else if #s ≤ Ns and #t > Ns then its children are:

S(s× t) = {s× i|i ∈ S(t) and i ∈ TI};

else if #s ≤ Ns and #t ≤ Ns then s× t is a leaf represented by a full matrix;

3: Repeat the above process to each non-leaf node.

the row index set J is much smaller than the column index set I, in the above process

to build the block cluster tree, we stop partitioning the row index set J while continue

partitioning the column index set I until it is small enough (e.g. ≤ Ns). In this way
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the leaves of the obtained TJ×I are almost square, which speeds up computation as

shown in our experiment. The H-matrix representation of K obtained by the above

process is given as follows:

KH =

 PA 0

0 PB

K
 PA 0

0 PB


T

=

 AH BT
H

BH CH

 . (4.9)

Here CH is an H-matrix obtained by the block tree structure of TJ×J and it only

contains zero entries. All the leaves of CH are full matrices, since CH is a much smaller

matrix compared to AH and BH, and the experiment results show that it gives better

performance than representing some off-diagonal blocks in the R-kmatrix format.

After building AH, BH, and CH we compute H-LU factors for

KH ≈

 L1H 0

L2H −L3H


 LT1H LT2H

0 LT3H

 , (4.10)

in the following process:

1. Since AH is symmetric, positive, and semi-definite and AH ≈ L1HL
T
1H, we em-

ploy H-Cholesky factorization to AH and obtain L1H and LT1H.

2. Since BT
H ≈ L1HL

T
2H, we use an H-matrix lower triangular solve to get L2H.

3. Since L3HL
T
3H ≈ L2HL

T
2H, first the H-matrix multiplication is called to get

the product L2HL
T
2H, which is represented in H-matrix format. Then H-LU

factorization is called to factor the product and generate L3H, which is induced

by the lower triangular part of CH.
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Compared to the above process, In the approach proposed in [55] L1 is obtained by

H-Cholesky factorization, while L2 is obtained by sparse matrix operations. The

matrix L3 is the ordinary LU factorization of the Schur complement and as the size

of the problem increases, the time to compute L2 and L3 contributes a significant

part to the factorization time.

4.3 Experimental Results

In this section, we show the numerical results using the H-matrix precondi-

tioners obtained by the process in Section 4.2 to solve the saddle-point system (4.6).

In our experiments, the numbers of the basis functions for the domain Ω are

NΩ = 1600, 6400, 25600, 102400 and the corresponding numbers of boundary basis

functions are NΓ = 80, 160, 320, 640. Thus the total problem sizes are n = 1680,

6560, 25920, and 103040 respectively.

We use H-matrix arithmetic with adaptive rank to obtain the H-LU factors.

The parameter to control the accuracy of H-matrix arithmetic are set as α = 0.0625.

We also set minimum block size Ns = 40.

The GMRES iteration stops when the original residuals are reduced by the

factor of 10−12. The convergence rate a, defined as the average decreasing speed of

residuals in each iteration, can be obtained by solving the equation: at = 10−12, where

t is the number of iterations.

In the experiments we compare the performance of four preconditioners in

GMRES: JOR preconditioners[29], AMG preconditioners [50], the H-matrix method
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in [55], and the H-LU preconditioners described in Section 4.2.

The results are plotted in log-log scale. All the experiments were performed on

a Dell workstation with dual processor-Xeon 2.4GHz clock speed, and 1GB memory.

Figure 4.1 shows the total time (the time of building H-matrices, building the

preconditioners and GMRES iterations). ’HEM-H-CH’ indicates the factorization

method in [55] and ’HEM-HMAT-LU’ indicates the factorization scheme described in

Section 4.2.
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Figure 4.1: Comparison of the total time to solve the saddle-point system with JOR,
AMG, and H-LU preconditioners.

Figure 4.2 shows the average convergence rates of JOR, AMG and H-LU

preconditioners.
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Figure 4.2: Comparison of the convergence rates of GMRES with JOR, AMG and
H-LU preconditioners.

With respect to the total running time and the convergence rates, H-matrices

based preconditioners give better performance than JOR and AMG preconditioners.

When the problem size is bigger than 104 the time of ’HEM-H-CH’ shows a sharp

increase. As the problem size increases to around 105, the average convergence rates

of ’HEM-H-CH’ and ’HEM-HMAT-LU’ get very close to each other.

Figure 4.3 and Figure 4.4 give more detailed comparisons between the H-

matrix based preconditioners as to the stages of building LU factors and GMRES

iterations. Note that the time needed for building the cluster index and block cluster

trees is a small fraction of the time needed to build the preconditioners.

Figure 4.3 shows that the time to build H-matrix based preconditioner ’HEM-

HMAT-LU’ is less than and increases slower than that of ’HEM-H-CH’. The reason is
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Figure 4.3: Comparison of the time to build the H-matrix based preconditioners for
the saddle point problem.

that the calculation of ’HEM-HMAT-LU’ only involves H-matrix arithmetic, which

maintains the cost to almost optimal. But the calculation of ’HEM-H-CH’ involves

sparse matrix operations, which does not have the properties provided by the H-

matrix arithmetic.

Figure 4.4 shows the time of GMRES iteration for the H-matrix based pre-

conditioners. By representing all the subblocks of LU factors in the H-matrix format,

’HEM-HMAT-LU’ manages to maintain the sparsity of LU factors, which reduces

the computational complexity in the factorization stage and in the GMRES iteration

stage. Overall, both H-matrices based preconditioners outperform JOR and AMG

preconditioners. With the increase of the problem size ’HEM-HMAT-LU’ shows over-

all better performance than ’HEM-H-CH’.
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Figure 4.4: Comparison of the time of GMRES iterations with the H-matrix based
preconditioners.

Comparisons are also made between two iterative methods: GMRES and MIN-

RES, applied to the symmetric indefinite form of the saddle point problem. On one

hand, MINRES uses short recurrences, but may use more iterations than GMRES

applied to the unsymmetric form. As can be seen in Figure 4.5, preconditioned MIN-

RES actually gives slightly slower convergence than preconditioned GMRES for this

problem.
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CHAPTER 5
OTHER APPLICATIONS

In this chapter we present the numerical results of applying H-matrix precon-

ditioners to solve problems arising in other fields.

5.1 Optimal Control Problem

In this section we consider the finite time linear-quadratic optimal control

problems governed by parabolic partial differential equations. To solve these prob-

lems, in [62] the parabolic partial differential equations are discretized by finite ele-

ment methods in space and by θ-scheme in time; the cost function J to be minimized

is discretized using midpoint rule for the state variable and using piecewise constant

for the control variable in time; Lagrange multipliers are used to enforce the con-

straints, which result a system of saddle point type; then iterative methods with

block preconditioners are used to solve the system.

We use the discretization process described in [62] and the H-matrix precon-

ditioning technique to solve the problem. First we apply the algebraic H-matrix

construction approach to represent the system in H-matrix format; then H-LU fac-

torization is adapted to the block structure of the system to compute the approximate

H-LU factors; at last, these factors are used as preconditioners in iterative methods.

The numerical results show that theH-matrix preconditioned approach is competitive

and effective to solve the above optimal control problem.
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5.1.1 Model Problem

The model problem [62] is to minimize the following quadratic cost function:

J(z(u), u) :=
q

2
‖z(v)− z∗‖2

L2(t0,tf ;L2(Ω)) +
r

2
‖v‖2

L2(t0,tf ;Ω)

+
s

2
‖z(v)(tf , x)− z∗(tf , x)‖2

L2(Ω),

(5.1)

under the constraint of the state equation:
∂tz +Az = Bv, t ∈ (t0, tf )

z(t, ∂Ω) = 0,

z(t0,Ω) = 0,

(5.2)

where the state variable z ∈ Y = H1
0 (Ω) and the control variable v ∈ U = L2(t0, tf ; Ω).

B is an operator in L(L2(t0, tf ; Ω), L2(t0, tf ;Y
′)) and A is an uniformly elliptic linear

operator from L2(t0, tf ;Y ) to L2(t0, tf ;Y
′). The state variable z is dependent on v

and z∗ is a given target function.

5.1.1.1 Discretization in Space

The system is first discretized in space by fixing the time variable t. Consid-

ering the discrete subspace Yh ∈ Y and Uh ∈ U , the discretized weak form of (5.2) is

given as:

(żh(t), ηh) + (Azh(t), ηh) = (Buh(t), ηh), ∀ηh ∈ Yh and t ∈ (t0, tf). (5.3)

Let{φ1, φ2, .., φn} be a basis of Yh and {ψ1, ψ2, .., ψm} be a basis of Uh, where m ≤ n.

Apply the finite element methods to (5.3), we obtain the following system of ordinary

differential equations:

Mẏ + Ay = Bu, t ∈ (t0, tf ). (5.4)
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Here Ai,j = (Aφj, φi) is a stiffness matrix, Mi,j = (φj, φi) and Ri,j = (ψj, ψi) are mass

matrices, and Bi,j = (Bψi, φj). The semi-discrete solution is zh(t, x) =
∑

i yi(t)φi(x)

with control function uh(t, x) =
∑

i ui(t)ψi(x).

We can apply the analogous spatial discretization to the cost function (5.1),

and obtain:

J(y, u) =

∫ t0

tf

e(t)TQ(t)e(t) + u(t)TR(t)u(t) dt+ e(tf )
TC(t)e(tf ), (5.5)

where e(·) = y(·) − y∗(·) is the difference between the state variable and the given

target function.

5.1.1.2 Discretization in Time

After spatial discretization, the original optimal problem is transferred into

the problem to minimize the equation of (5.5) under the constraint of n ordinary

differential equations of (5.4). θ-scheme is used to discretize the above problem.

First the time scale is subdivided into l intervals of length τ = (tf − t0)/l. Let

F0 = M + τ(1− θ)A and F1 = M − τθA. The discretization of equation (5.4) is given

by:

Ey +Nu = f , (5.6)

where

E =


−F1

. . . . . .

F0 −F1

 , N = τ


B

. . .

B

 , y ≈


y(t1)

...

y(tn)

 , etc .

(5.7)
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Then the cost function (5.5) is discretized by using piecewise linear functions to

approximate the state variable and piecewise constant functions to approximate the

control variable, which results the following discrete form of (5.5):

J(y,u) = uTGu + eTKe, (5.8)

where e = y − y∗ and the target trajectory z∗(t, x) ≈ z∗,h(t, x) =
∑

i(y∗)i(t)φi(x). A

Lagrange multiplier vector p is introduced to enforce the constraint of (5.6), and we

have the Lagrangian:

L(y,u,p) =
1

2
(uTGu + eTKe) + pT (Ey +Nu− f). (5.9)

To find y, u and p where ∇L(y,u,p) = 0 in (5.9), we need to solve the following

system: 
K 0 ET

0 G NT

E N 0




y

u

p

 =


My∗

0

f

 , (5.10)

which is of saddle point type.

5.1.2 Hierarchical-Matrix Preconditioner

The construction of H-matrix preconditioners for the system (5.10) is based

on the block LU factorization.

First the matrix in (5.10) is converted to an H-matrix. Since the nonzero en-

tries of each subblock are centered around the diagonal, we apply H-matrix construc-

tion approach based on bisection approach to submatrix K, G, E and N respectively.
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Then we obtain the following H-matrix, which is on the left side of the equation,

where subscript H indicates a block in H-matrix format:
KH 0 ET

H

0 GH NT
H

EH NH 0

 =


L1H 0 0

0 L2H 0

M1H M2H L3H




U1H 0 M1TH

0 U3H M2TH

0 0 U3H

 . (5.11)

The block cluster tree TI×I of L1H, L2H, M1H, and M2H is same as the block

cluster tree structure of KH, GH, EH, and NH respectively. The block cluster tree

structure of L3H is based on the block tree structure of EH; the block tree of L3H

is symmetric; the tree structure of the lower-triangular of L3H is same as the tree

structure of the lower-triangular of EH; the tree structure of the upper-triangular of

L3H is the transpose of the tree structure of the lower triangular. L1H and L2H are

obtained by applying H-Cholesky factorization to KH and GH: KH = L1H ∗H U1H

and GH = L2H ∗H U2H. Then using the H-matrix upper triangular solve, we can get

M1H by solving M1HU1H = EH. M1H has the same block tree as EH. In the same

way we can compute M2H, which has the same block cluster tree structure as NH. At

last we construct the block cluster tree for L3H and then apply H-LU factorization

to get L3H by solving the equation: L3HU3H = M1H ∗HM1TH +HM2H ∗HM2TH.
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5.1.3 Experimental Results

In this section, we present the numerical results of solving the optimal control

problem (5.1) constrained by following equations:
∂tz − ∂xxz = v, t ∈ (0, 1), x ∈ (0, 1)

z(t, 0) = 0, z(t, 1) = 0

z(0, x) = 0, x ∈ [0, 1]

, (5.12)

with the target function z∗(t, x) = x(1−x)e−x. The parameters in the control function

J are q = 1, r = 0.0001, and s = 0.

GMRES iteration stops where the original residuals are reduced by the factor

of 10−12. The convergence rate a ia defined as the average decreasing speed of residuals

in each iteration. Fixed-rank H-matrix arithmetic is used and we set the rank of each

Rk-matrix block to be ≤ 2. The tests are performed on a Dell workstation with

AMD64 X2 Dual Core Processors (2GHz) and 3GB memory.

Table 5.1 shows the time to compute the different parts of the H-LU factors

and the time of GMRES iterations (in second). n is the size of the problem, n1

and n2 are the numbers of rows of K and G respectively. Based on Table 5.1, the

time to compute L3H contributes the biggest part of the total time to set up the

preconditioner.

Figure 5.1 shows the convergence rate of the H-LU preconditioned GMRES.

Figure 5.2, plotted on a log-log scale, shows the time to build H-matrix precondition-

ers and the time of GMRES iterations.

Based the results, we can see that H-LU speeds up the convergence of GMRES
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Table 5.1: Time of computing H-LU factors and GMRES iterations (in second).

n(n1/n2) L1H L2H M1H M2H L3H time number

of GMRES of GMRES

iterations iterations

592(240/112) 0 0 0.01 0 0.01 0 1

2464(992/480) 0.01 0 0.01 0 0.04 0 1

10048(4032/1984) 0.03 0.01 0.13 0.02 0.39 0.04 1

40576(16256/8064) 0.21 0.06 0.84 0.26 4.13 0.32 3

163072(65280/32512) 1.09 0.42 4.23 1.74 25.12 2.66 6
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Figure 5.1: The convergence rates of GMRES iterations.
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Figure 5.2: The total time to solve the system, including the time to build H-matrix
preconditioners and GMRES iterations.

iteration significantly. The problem in our implementation is that the time to compute

L3 still consists a significant part of the LU-factorization time.

5.2 Invariant Probability Distribution

The problem considered in this section is to compute the invariant probability

distribution p in the dynamic system xt+1 = f(xt), where f is the shift function. To

get p results in solving a dense system. Instead of solving the dense system directly,

we use algebraic H-matrix construction approach to partition and convert the dense

matrix into an H-matrix, which reduces the storage as well as the computational

complexity. Then H-matrix arithmetic is applied to the H-matrix to obtain the

H-matrix-LU factors, which are used as preconditioners in iterative methods. The
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numerical results show that the H-LU preconditioners are cheap to calculate, yet they

speed up the convergence of GMRES greatly.

5.2.1 Model Problem

The problem is to find the invariant probability distribution p in the following

dynamic system:

xt+1 = f(xt), x ∈ [0, 1], f(x) ∈ [0, 1]. (5.13)

To discretize (5.13), the interval [0, 1] is divided into n subintervals of equal length

l = 1/n. In our case f is defined as f = αx(1−x), where α is a constant. So for each

x ∈ [xi, xi+1], f maps x to some interval: f(x) ∈ [xj, xj+1].

A matrix A = [aij] can be constructed, where ai,j is the probability that

the function f maps x ∈ [xj, xj+1] to the interval [xi, xi+1]. The matrix A has the

following properties: A is sparse and nonsymmetric, and
∑

j aij = 1. Figure 5.3 shows

distribution of nonzero entries of A.

Each entry pi in the invariant probability distribution vector p is the proba-

bility that x ∈ [xi, xi + 1], and Ap = p. To obtain p, we need to solve the following

system of linear equations:

(A− I)p = 0, where eTp = 1, (5.14)

where e is a vector of 1’s.

The system (5.14) is singular. To avoid solving a singular system, we solve the

following nonsingular linear system:

(A+ eeT − I)p = e. (5.15)
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Figure 5.3: The distribution of nonzero entries in A. The black dots represent nonzero
entries.

The system (5.15) is nonsingular, but it is full. Most entries of (A+ eeT − I)

are 1’s, which means that some of its blocks can be represented exactly in Rk-matrix

format of rank 1. So we can use iterative methods with H-matrix preconditioners to

solve the above system.

5.2.2 H-matrix Construction

To build H-matrix preconditioners for (5.15), first we need to represent matrix

(A + eeT − I) in H-matrix format. (A + eeT − I) is nonsymmetric, so the algebraic

H-matrix construction approaches which are based on the matrix graphs can not be

applied directly. We choose the algebraic H-matrix construction based on bisection.

So the process to construct an H-matrix H for (5.15) based on bisection works

in the following way: the root of H is I × I; for each node in H if it corresponds to
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a block of rank 1, then it is a leaf and the block is represented in Rk-matrix format;

otherwise if the number of rows or columns of the block is ≤ Ns, the node is a leaf and

the block is represented in full matrix format; otherwise the block is split into four

subblocks of roughly equal size and the node has four children. The above process

can represent A + eeT − I exactly as an H-matrix. Figure 5.4 shows an example of

H-matrix representation of the matrix A + eeT − I with 8 rows and 8 columns. In

this example, Ns = 1 and the blocks marked by a letter of R represent Rk-matrices

of rank 1. The blocks with dots inside represent full matrix blocks.
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Figure 5.4: An example of H-matrix representation of matrix A + eeT − I. A letter
R indicates an Rk-matrix block and a black dot indicates a full matrix block.
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5.2.3 Experimental Results

In this section, we present the numerical results of applying the H-matrix

preconditioning technique to solve the system (5.15).

To solve the problem, we first represent the matrix of (5.15) in H-matrix for-

mat. Then we compute H-LU factors, which are used as preconditioners for GMRES.

In our experiment, we use fixed-rank H-matrix arithmetic, since it gives better overall

performance than adaptive H-matrix arithmetic. In fixed-rank H-matrix arithmetic,

we set k = 4, which means the ranks of RK-matrix blocks remain ≤ 4. We also set

the constant Ns = 40 to control the size of leaf blocks. The sizes of the problems

tested are 1024, 8192, 65536 and 261344. The experiments were carried out on a dual

processor computer with 64-bit Athlon 6 4200++ CPUs and 3GB of memory.

To see the computational complexity at each stage, we split the total time

needed to solve the problem into two parts: the time to compute H-LU precondi-

tioners (set-up time) and the time of GMRES iterations (GMRES iteration time).

Figure 5.5 shows the set-up time, the time of GMRES iterations, and the total time

(set-up time + GMRES iteration time). Based on Figure 5.5, the set-up time con-

tributes a major portion of the total time, compared to the time of GMRES itera-

tions. Yet the time to compute H-LU preconditioners increases almost linearly as we

increase the size of the problem, even though (5.15) is a dense system. That means

H-matrix arithmetic is efficient to compute preconditioners to solve these dense sys-

tems. Figure 5.6 shows the convergence rates. As the size of the problem increases,

we can see that the convergence rates decrease gracefully.
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Figure 5.5: The plot of the set-up time, the GMRES iteration time, and the total
time. The set-up time contributes the most of the time needed to solve the invariant
probability distribution problem.

Based on above results, we can see that H-LU preconditioners are cheap to

compute yet they speed up GMRES iterative method greatly.
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Figure 5.6: The convergence rates of GMRES with the H-LU preconditioners to solve
the invariant probability distribution problem.
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CHAPTER 6
IMPLEMENTATION

This chapter presents the implementation of the algebraic H-matrix precon-

ditioner technique.

6.1 Overview

Figure 6.1 shows the main modules of the algebraic H-matrix preconditioner

technique: first it takes a sparse (or data-sparse) symmetric matrix and converts

it into an H-matrix; then it uses H-matrix arithmetic to compute approximate H-

matrix inverses, H-matrix LU-factors, or Cholesky facotors; finally these H-inverses,

H-LU, or H-Cholesky factors are used as preconditioners in iterative methods.

a sparse 
symmetric 
matrix

algebraic H-matrix 
construction 
approaches

an H-matrix
the H-matrix 
arithmetic

H-matrix 
preconditioners

iterative 
methods

Figure 6.1: The main function modules of the algebraic H-matrix preconditioner
technique.

The programming language used to implement the algebraic H-matrix pre-

conditioner technique is C language. To simplify the implementation, we also use the

existing Meschach library [63]. Meschach library provides data structures for dense

and sparse matrix representation, basic matrix and vector operations, and various
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numerical algebraic algorithms. The implementation of H-matrix representation and

H-matrix arithmetic follows the description given in [10, 11, 49]. In all, our imple-

mentation includes the following five main parts:

• Data structures used to represent H-matrices.

• Implementation of H-matrix arithmetic.

• Implementation of the algebraic H-matrix construction approach based on mul-

tilevel graph clustering.

• Iterative methods with various H-matrix preconditioners.

In the following sections, we focus on the implementation of H-matrix representation,

the algebraic H-matrix construction approach, and the H-matrix LU factorization.

6.2 H-matrix Representation

The representation of H-matrices includes the representation of full matrix

blocks, the representation of Rk-matrix blocks, and the representation of H-matrix

block trees.

The full matrix blocks in an H-matrix are represented using MAT structure

defined in Meschach library:

struct
{

u i n t m, n ;
u i n t max m , max n , max s ize ;
Real ∗∗me, ∗base ;

} MAT;
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Here m is the row size and n is the column size of a matrix. Matrix entries are stored

in the array me in the row major order, where me[i] points to the starting position of

ith row of the array. To access the matrix entry at ith row and jth column, we use

me[i][j].

The structure of Rk-matrix blocks is built on MAT structure. For an RK-

matrix ABT , its structure is:

struct rkmatr ix
{

int rk ;
int rows , c o l s ;
MAT ∗A;
MAT ∗B;
} ;

The row size of the Rk-matrix is stored in rows and the column size is stored in cols.

The variable rk indicates the rank of an Rk-matrix.

After define the structure of full matrices and Rk-matrices, we can define the

structure of an H-matrix, which is based on a tree structure. The structure for an

H-matrix called supermatrix is defined as follows:

struct supermatr ix
{

int type ;
int rows , c o l s ;
int block rows , b l o c k c o l s ;
struct rkmatr ix ∗ r ;
MAT ∗ f ;
struct supermatr ix ∗∗ s ;

} ;

The size of an H-matrix is given by rows × cols. The variable block rows and the

variable block cols are used to store the number of children of the current node in
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each row and column. The field type indicates the type of a supermatrix node. Based

on the definition of H-matrices, there are three types of supermatrix nodes:

• If type = 1, the node is an Rk-matrix leaf. The pointer r points to an rkmatrix,

which stores the data. The pointer f and the pointer s are all null pointers.

• If type=2, the node is a full-matrix leaf. The pointer f points a MAT, which

stores the data. The pointer r and the pointer s are null pointers.

• If type=3, the node is an internal node. The pointer f and the pointer r are

null pointers. The pointer s is an array of size block rows × block columns,

pointing to the children of the current node.

The following is an example of the array s:
s[0][0] . . . s[0][block columns− 1]

. . . . . . . . .

s[block rows− 1][0] . . . s[block rows− 1][block columns− 1],

 (6.1)

, where s[i][j] points an H-matrix. In this way supermatrix defines a tree which can

be used to represent an H-matrix.

6.3 H-matrix Construction Approach

In our implementation of the algebraic H-matrix construction approach, we

use the structure SPMAT defined in Meschach library to represent a graph. The

structure SPMAT is used for sparse matrix representation:

typedef struct sp mat
{



90

int m, n , max m , max n ;
char f l a g c o l , f l a g d i a g ;
SPROW ∗row ;
int ∗ s t a r t r ow ;
int ∗ s t a r t i d x ;

} SPMAT;

The SPMAT structure is built on the sparse row structure SPROW. Here m and n

indicate the size of a matrix graph. If there is an edge between node i and node j,

then the corresponding entry in SPMAT equals its edge weight.

We use the structure spnode to store the clusters and coarser graph G(V,E)

obtained by merging the vertices in the same cluster together. The structure spnode

is a linked list:

struct spnode
{

SPMAT ∗S ;
int snum ;
IVEC ∗ sons ;
struct spnode ∗up ;

} ;

In the structure, up points to the coarser level. The variable snum indicates the

number of clusters and S points to the graph constructed by merging the vertices of

the same clusters together. The clusters built over the graph of the finer level are

stored in an integer vector sons of type IV EC, which is an integer vector defined in

Meschach:

typedef struct IVEC
{

u i n t dim , max dim ;
Real ∗ve ;

}
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The elements of an integer vector are stored in the array ve. The indices of vertices

belonging to the same cluster Ci are stored continuously in the integer vector sons:

sons− > ve[2 ∗ i] and sons− > ve[2 ∗ i+ 1]. If a cluster Ci contains just one vertex,

then sons[2 ∗ i+ 1] = −1.

The function multilevel hem implements the multilevel clustering algorithm,

which calls the modified HEM algorithm build cluster to build clusters and calls

spmtrmm mlt to build the coarser graph until the size of the obtained graph is small

enough. The main body of the function multilevel hem is given as follows:

void mult i l eve l hem ( struct s p c l u s t e r t r e e ∗ s p c t r e e )
{

. . . . . .
// cont inue b u i l d i n g coarse graphes
while ( gptr−>m > GMIN){

// b u i l d c l u s t e r s on the current l e v e l
r epeat =

b u i l d c l u s t e r ( ptr , gptr , E, group , &groups i z e ) ;
i f ( r epeat == 0){

break ;
} else {

l e v e l ++;
}
// a l l o c a t e memory f o r the coarser graph
ptr−>S = sp ge t (E−>m, E−>m, SPMIN) ;
// c o n s t r u c t the coarser graph
spmtrmm mlt (E, gptr , ptr−>S ) ;
// c r e a t e new l e v e l
i f ( ptr−>S−>m > GMIN){

gptr = ptr−>S ;
ptr−>up =

( struct spnode ∗) mal loc ( s izeof ( struct spnode ) ) ;
a s s e r t ( ptr−>up != NULL) ;
// p o i n t to the coarer l e v e l
ptr = ptr−>up ;
ptr−>snum = 0 ;
ptr−>sons = i v g e t ( gptr−>m∗2 ) ;

} else {
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break ;
}

}//end o f w h i l e
spct ree−>l e v e l = l e v e l ;
. . . . . .

}

The integer vector group holds the vertices with higher priority to be picked up

in HEM. The function build cluster implements the modified HEM algorithm, which

builds clusters over the sparse matrix graph S. The code of the function build cluster

is given as follows:

int b u i l d c l u s t e r ( struct spnode ∗p , SPMAT ∗S ,
MAT ∗E, IVEC ∗group , int ∗ g roups i z e )
{

. . . . . .
// randomly permute the nodes
randperm ( node state , nodenum ) ;
. . . . . .
// s t a r t b u i l d i n g c l u s t e r s
∗ g roups i z e = 0 ;
clusternum = 0 ;
idx = 0 ;
matched = 0 ;
while ( idx < nodenum−1 ){

// i f the node i s a l r e a d y matched
i f ( node state−>i v e [ node heap−>i v e [ idx ] ] == −1){

idx++;
continue ;

}
ro = node heap−>i v e [ idx ] ;
max value = 0 ;
l en = S−>row [ ro ] . l en ;
for ( j =0; j<l en ; j++){

co = S−>row [ ro ] . e l t [ j ] . c o l ;
i f ( co != ro && node state−>i v e [ co ] != −1){

va l = S−>row [ ro ] . e l t [ j ] . va l ;
i f ( va l > max value ){

max value = va l ;
max j = node state−>i v e [ co ] ;
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}
}

}
// the matched node i s found
i f ( max value != 0){

co = node heap−>i v e [ max j ] ;
p−>sons−>i v e [ p−>snum∗2 ] = ro ;
p−>sons−>i v e [ p−>snum∗2+1] = co ;
E−>me[ clusternum ] [ 0 ] = ro ;
E−>me[ clusternum ] [ 1 ] = co ;
node state−>i v e [ node heap−>i v e [ idx ] ] = −1;
node state−>i v e [ node heap−>i v e [ max j ] ] = −1;
matched = 1 ;

} else {
// the matched node i s not found .
p−>sons−>i v e [ p−>snum∗2 ] = ro ;
p−>sons−>i v e [ p−>snum∗2+1] = −1;
E−>me[ clusternum ] [ 0 ] = ro ;
E−>me[ clusternum ] [ 1 ] = −1;
group−>i v e [ ( ∗ g roups i z e )++] = p−>snum ;
node state−>i v e [ node heap−>i v e [ idx ] ] = −1;

}
p−>snum++;
idx++;
clusternum++;

}// end o f w h i l e
// d e a l wi th the l a s t node
i f ( node state−>i v e [ node heap−>i v e [ idx ] ] != −1){

node state−>i v e [ node heap−>i v e [ idx ] ] = −1;
ro = node heap−>i v e [ idx ] ;
p−>sons−>i v e [ p−>snum∗2 ] = ro ;
p−>sons−>i v e [ p−>snum∗2+1] = −1;
E−>me[ clusternum ] [ 0 ] = ro ;
E−>me[ clusternum ] [ 1 ] = −1;
node state−>i v e [ node heap−>i v e [ idx ] ] = −1;
group−>i v e [ ( ∗ g roups i z e )++] = p−>snum ;
p−>snum++;
clusternum++;

}
. . . . . .
return matched ;

}
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The process to build a coarser graph is based matrix operations. Let S be a graph

and E be a matrix containing the information of clusters, then a coarser graph SC

can be defined as SC = E × S × ET . Each row of E represents a cluster built over

S by the modified HEM algorithm. The column size of E is 2 since each cluster

contains at most 2 vertices. The coarser graph SC is constructed by merging two

rows of S whose indices are in the same cluster into one row and two columns of S

whose indices are the same cluster into one column. To speed up the column merging

process, we call the function sp col access of Meschach to build extra column access

paths for the sparse matrix S. The following function spmtrmm mlt implements the

process to build the coarser graph SC:

void spmtrmm mlt (MAT ∗E, SPMAT ∗S , SPMAT ∗SC)
{

. . . . . .
SPMAT ∗temp = SMNULL;
// a l l o c a t e memory f o r temp
. . . . . .
//temp = E∗S by row merging
for ( i =0; i<n ; i ++){

i 1 = E−>me[ i ] [ 0 ] ;
i 2 = E−>me[ i ] [ 1 ] ;
i f ( i 1 !=−1 && i 2 !=−1){

//merge row i1 and row i2 t o g e t h e r
sprow add(&S−>row [ i 1 ] ,&S−>row [ i 2 ] ,

0 ,&temp−>row [ i ] ,TYPE SPMAT) ;
} else {

l en = S−>row [ i 1 ] . l en ;
for ( j =0; j<l en ; j++)

s p s e t v a l ( temp , i , S−>row [ i 1 ] . e l t [ j ] . co l ,
S−>row [ i 1 ] . e l t [ j ] . va l ) ;

}
}
// Construct temp∗E ’ = (E∗ temp ’ ) ’ by column merging
s p c o l a c c e s s ( temp ) ;
for ( i =0; i<n ; i ++){
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j1 = E−>me[ i ] [ 0 ] ;
j 2 = E−>me[ i ] [ 1 ] ;
//merge column t o g e t h e r
i f ( j 2 !=−1){

s i 1 = temp−>s t a r t r ow [ j 1 ] ;
j i d x 1 = temp−>s t a r t i d x [ j 1 ] ;
s i 2 = temp−>s t a r t r ow [ j 2 ] ;
j i d x 2 = temp−>s t a r t i d x [ j 2 ] ;
while ( s i 1>=0 && si2 >=0){

i f ( s i 1<s i 2 ){
s p s e t v a l (SC, s i 1 , i ,

temp−>row [ s i 1 ] . e l t [ j i d x 1 ] . va l ) ;
e l t = &(temp−>row [ s i 1 ] . e l t [ j i d x 1 ] ) ;
i tmp = e l t−>nxt row ;
j i d x 1 = e l t−>nxt idx ;
s i 1 = i tmp ;

} else i f ( s i 1>s i 2 ){
s p s e t v a l (SC, s i 2 , i ,

temp−>row [ s i 2 ] . e l t [ j i d x 2 ] . va l ) ;
e l t = &(temp−>row [ s i 2 ] . e l t [ j i d x 2 ] ) ;
i tmp = e l t−>nxt row ;
j i d x 2 = e l t−>nxt idx ;
s i 2 = i tmp ;

} else {
s p s e t v a l (SC, s i 2 , i ,

temp−>row [ s i 2 ] . e l t [ j i d x 1 ] . va l
+temp−>row [ s i 2 ] . e l t [ j i d x 2 ] . va l ) ;

e l t = &(temp−>row [ s i 1 ] . e l t [ j i d x 1 ] ) ;
i tmp = e l t−>nxt row ;
j i d x 1 = e l t−>nxt idx ;
s i 1 = i tmp ;
e l t = &(temp−>row [ s i 2 ] . e l t [ j i d x 2 ] ) ;
i tmp = e l t−>nxt row ;
j i d x 2 = e l t−>nxt idx ;
s i 2 = i tmp ;

}
}
i f ( s i 1 >=0){

while ( s i 1 >=0){
s p s e t v a l (SC, s i 1 , i ,

temp−>row [ s i 1 ] . e l t [ j i d x 1 ] . va l ) ;
e l t = &(temp−>row [ s i 1 ] . e l t [ j i d x 1 ] ) ;
i tmp = e l t−>nxt row ;
j i d x 1 = e l t−>nxt idx ;
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s i 1 = i tmp ;
}

} else i f ( s i 2 >=0){
while ( s i 2 >=0){

s p s e t v a l (SC, s i 2 , i ,
temp−>row [ s i 2 ] . e l t [ j i d x 2 ] . va l ) ;

e l t = &(temp−>row [ s i 2 ] . e l t [ j i d x 2 ] ) ;
i tmp = e l t−>nxt row ;
j i d x 2 = e l t−>nxt idx ;
s i 2 = i tmp ;

}
} else {

s i 1 = temp−>s t a r t r ow [ j 1 ] ;
j i d x 1 = temp−>s t a r t i d x [ j 1 ] ;
while ( s i 1 >=0){

s p s e t v a l (SC, s i 1 , i ,
temp−>row [ s i 1 ] . e l t [ j i d x 1 ] . va l ) ;

e l t = &(temp−>row [ s i 1 ] . e l t [ j i d x 1 ] ) ;
i tmp = e l t−>nxt row ;

j i d x 1 = e l t−>nxt idx ;
s i 1 = i tmp ;

}
}

}
}
. . . . . .

}

To build an index cluster tree TI using the results obtained by the above multilevel

coarsening process, a group of pointer arrays are created: ctree is a group of pointers

pointing to the integer vector sons of spnode on each level; ncluster is built by

mapping each cluster in ctree back to the cluster consisting of vertices of the original

graph G0. Figure 6.2 shows an example of an index cluster tree described by ctree

and ncluster. The H-matrix construction function build hmatrix builds the root of

the block cluster tree. It recursively calls build hsons to build the lower levels of the

tree using the sequence of graphs and clusters obtained by the multilevel clustering
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Figure 6.2: An example of the index cluster tree described by the structure ctree and
ncluster.

process. The code of build hmatrix is given as follows:

struct supermatr ix ∗ bui ld hmatr ix (
struct supermatr ix ∗ root , IVEC ∗∗ c t ree ,
IVEC ∗∗∗ nc lu s t e r , int ∗cnum ,
SPMAT ∗∗G, SPMAT ∗K, int l e v e l )

{
. . . . . .
root−>type = HMAT;
root−>rows = K−>m;
root−>c o l s = K−>n ;
root−>block rows = cnum [ l e v e l −1] ;
root−>b l o c k c o l s = cnum [ l e v e l −1] ;
root−>s = ( struct supermatr ix ∗∗)

mal loc ( root−>block rows ∗ root−>b l o c k c o l s
∗ s izeof ( struct supermatr ix ∗ ) ) ;

. . . . . .
k = root−>block rows ;
for ( j =0; j<root−>b l o c k c o l s ; j++) {

for ( i =0; i<root−>block rows ; i++) {
root−>s [ i+k∗ j ] = ( struct supermatr ix ∗)

mal loc ( s izeof ( struct supermatr ix ) ) ;
. . . . . .
root−>s [ i+k∗ j ] = bu i ld h sons ( root−>s [ i+k∗ j ] ,

c t r ee , nc lu s t e r , cnum ,
G, K, i , j , l e v e l −1);

}
}
return root ;

}

Here G points to the sequence of coarser graphs, K is the original graph G0, and
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cnum is the number of clusters on each level. The main body of the recursive function

build hsons is given as follows:

. . . . . .
i f ( s p g e t v a l (G[ l e v e l ] , rnd , cnd ) == 0){

sm−>type = RKMAT;
sm−>rows = n c l u s t e r [ l e v e l ] [ rnd]−>dim ;
sm−>c o l s = n c l u s t e r [ l e v e l ] [ cnd]−>dim ;
sm−>block rows = 1 ;
sm−>b l o c k c o l s = 1 ;
sm−>r = new rkmatrix (0 , sm−>rows , sm−>c o l s ) ;
sm−>f = MNULL;
sm−>s = NULL;

} else i f ( n c l u s t e r [ l e v e l ] [ rnd]−>dim <= SBLOCK
| | n c l u s t e r [ l e v e l ] [ cnd]−>dim <= SBLOCK){

sm−>type = FMAT;
sm−>rows = n c l u s t e r [ l e v e l ] [ rnd]−>dim ;
sm−>c o l s = n c l u s t e r [ l e v e l ] [ cnd]−>dim ;
sm−>block rows = 1 ;
sm−>b l o c k c o l s = 1 ;
sm−>r = NULL;
sm−>s = NULL;
sm−>f = mysp bget (K, sm−>f ,

n c l u s t e r [ l e v e l ] [ rnd]−> ive ,
n c l u s t e r [ l e v e l ] [ rnd]−>dim ,
n c l u s t e r [ l e v e l ] [ cnd]−> ive ,
n c l u s t e r [ l e v e l ] [ cnd]−>dim ) ;

} else {
sm−>type = HMAT;
sm−>rows = n c l u s t e r [ l e v e l ] [ rnd]−>dim ;
sm−>c o l s = n c l u s t e r [ l e v e l ] [ cnd]−>dim ;
i f ( c t r e e [ l e v e l ]−> i v e [ rnd∗2+1]== −1)

sm−>block rows = 1 ;
else

sm−>block rows = 2 ;
i f ( c t r e e [ l e v e l ]−> i v e [ cnd∗2+1]== −1)

sm−>b l o c k c o l s = 1 ;
else

sm−>b l o c k c o l s = 2 ;
sm−>s = ( struct supermatr ix ∗∗)

mal loc (sm−>block rows ∗sm−>b l o c k c o l s
∗ s izeof ( struct supermatr ix ∗ ) ) ;



99

k = sm−>block rows ;
for ( j =0; j<sm−>b l o c k c o l s ; j++){

for ( i =0; i<sm−>block rows ; i ++){
rnd1 = c t r e e [ l e v e l ]−> i v e [ rnd∗2+ i ] ;
cnd1 = c t r e e [ l e v e l ]−> i v e [ cnd∗2+ j ] ;
sm−>s [ i+k∗ j ] = ( struct supermatr ix ∗)

mal loc ( s izeof ( struct supermatr ix ) ) ;
. . . . . .

sm−>s [ i+k∗ j ] = bu i ld h sons (sm−>s [ i+k∗ j ] , c t r ee ,
nc lu s t e r , cnum , G, K, rnd1 , cnd1 , l e v e l −1);

}
}

}
. . . . . .

The function build hsons checks the edge between two vertices decide the type of an

H-matrix block. If a block needs to be partitioned further on the next level, then

build hsons recursively calls itself to build the child H-matrix blocks.

6.4 H-LU Factorization

A is an inputH-matrix, L and U store theH-LU factors, and W is a workspace

used to store the intermediate results. The memory and tree structures have been

created for all the parameters before they are passed to the function. The following

is the implementation of H-LU factorization:

void LU hmat( struct supermatr ix ∗A, struct supermatr ix ∗L ,
struct supermatr ix ∗U, struct supermatr ix ∗W)

{
. . . . . .
i f (A−>type == FMAT){

//LU decomposi t ion on a f u l l matrix
L−>f = m get (A−>f−>m, A−>f−>n ) ;
U−>f = m get (A−>f−>m, A−>f−>n ) ;
myLUfactor (A−>f , L−>f , U−>f ) ;

} else {
// b l o c k LU f a c t o r i z a t i o n
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bm = A−>block rows ;
bn = A−>b l o c k c o l s ;
. . . . . .
for ( k=0; k<bm; k++){

LU hmat(A−>s [ k+bm∗k ] , L−>s [ k+bm∗k ] ,
U−>s [ k+bm∗k ] , W−>s [ k+bm∗k ] ) ;

for ( i=k+1; i<bm; i ++){
LU usv (A−>s [ i+bm∗k ] , L−>s [ i+bm∗k ] ,

U−>s [ k+bm∗k ] , W−>s [ i+bm∗k ] ) ;
LU lsv (A−>s [ k+bm∗ i ] , L−>s [ k+bm∗k ] ,

U−>s [ k+bm∗ i ] , W−>s [ k+bm∗ i ] ) ;
}
for ( j=k+1; j<bm; j++){

for ( i=k+1; i<bm; i ++){
hmat submlt (A−>s [ i+bm∗ j ] , L−>s [ i+bm∗k ] ,

U−>s [ k+bm∗ j ] , W−>s [ i+bm∗ j ] ) ;
}

}
}

}
. . . . . .

}

The function LU hmat is a recursive function. If A is a full matrix block, then LU

factorization for full matrices is called. The function LU usv is an H-matrix upper

triangular solve and the function LU lsv is an H-matrix lower triangular solve.
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CHAPTER 7
SUMMARY

In this thesis, we take a deep look at construction of effective preconditioners

for iterative methods to solve large systems of linear equations. There has been a lot

of research work on building preconditioners to speed up the convergence of iterative

methods: the preconditioners that target matrices with nonzero diagonal entries, like

JOR and SOR; the preconditioners that target systems arising from partial differen-

tial equations, like multigrid methods [23, 58]. Depending on the information used for

building preconditioners, preconditioners can also be divided into geometric precondi-

tioners and algebraic preconditioners. The construction of geometric preconditioners

needs the domain information underlying problems. The construction of algebraic

preconditioners uses only the information contained in matrices.

H-matrix techniques were introduced in 1998, which use a data sparse format

to represent a dense or a sparse matrix and H-matrix arithmetic to perform matrix

operations. H-matrix techniques reduce storage as well as computational complex-

ity of matrices. H-matrix techniques provide an alternative way to build effective

preconditioners for iterative methods to solving large systems of equations. One of

the key steps of the H-matrix preconditioner technique is to construct H-matrices.

H-matrices can be constructed in geometric way and algebraic way. The geomet-

ric construction approaches approximate matrix blocks by low rank matrices. The

algebraic construction methods work on matrix graphs to build block cluster trees.

The algebraic construction methods based on nested dissection (domain decomposi-
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tion) have been successfully applied to solve problems such as convection-dominated

problems [19].

In my thesis, I have presented a new algebraic H-matrix construction ap-

proach. Our approach is based on multilevel clustering: it uses the modified HEM

algorithm to build a sequence of coarser graphs and clusters over the original graph;

a balanced index tree is constructed using the information obtained during the clus-

tering process. The H-matrices constructed by our approach represent the original

matrices exactly, while the dense blocks are clustered around the diagonal and some

of the off-diagonal blocks are in Rk-matrix format. Our approach can be used to

construct effective preconditioners for iterative methods to solve partial differential

equations, which speed up the convergence of iterative methods greatly [55]. We

have also expanded our approach and built a scheme to construct H-matrix precon-

ditioners to solve saddle point problems [20, 56]. The experimental results show that

our preconditioners are competitive to other H-matrix preconditioners and existing

preconditioners such as JOR and AMG preconditioners. Our H-matrix construction

approach and preconditioner technique provide an alternative effective way to solve

large systems of linear equations.
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