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Abstract

The main goal of this work is to create a general type of proper G — space , namely,
strongly feebly Palais proper G — space(st — f — Palais proper G — space ) and to explain
the relation between st — f — Bourbaki proper and st — f — Palais proper G — space and to
study some of examples and propositions of strongly feebly Palais proper G - space.

Introduction:-
Let B be a subset of a topological space (X,T). We denote the closure of B and the interior of

B by B and B®, respectively. A subset B of (X, T) is said to be semi — open (s. o) if there

exists an open subset O of X such thatO = B = O. The complement of a semi — open set is
defined to be semi — closed (s. c¢) and the intersection of all semi — closed subset of X

—S
containing B is defined to be semi — closure of B and denote by B .The subset B of (X, T) is

called feebly open (f — open) if there is an open set U such that U < B —U ®°. The
complement of a feebly open set is defined to be a feebly closed (f — closed)[ 2 ]. B is called o«

-open if B B° and the family T of all « - sets in (X,T) is a topology on X larger than T [ 8
]. We found in [2] that a subset B of X is f — open if and only if Be T *. Section one of this
works, includes some results which are needed in section two.

Section two recalls the definition of Palais proper G — space, gives a new type of
Palais proper G — space (to the best of our Knowledge), namely, strongly feebly Palais
proper G — space, studies some of its properties and gives the relation between st — f —
Bourbaki proper and st — f — Palais proper G — space, where G- space is meant T, — space
X on which an f — locally f — compact, non — compact, T, — topological group G acts
continuously on the left.

1. Preliminaries

1.1 Definition [12]:

A subset B of a space X is called feebly open (f — open) set if there exists an open subset U

of X such that U < B < U ®. The complement of a feebly open set is defined to be a feebly
closed (f — closed) set. The collection of all f — open sets in a space X is denoted by T'

1.2 Proposition [1]:
Let X and Y be two spaces. Then A; < X and A, <Y be f— open (f — closed) sets in X and Y

, respectively if and only if A;xA; is f — open(f — closed) in XxY.



1.3 Definition [ 6]:
A subset B of a space X is called feebly neighborhood (f — neighborhood) of xeX if there is

an f — open subset O of X such that xeO < B

1.4 Definition [10, 11,13]:
Let X and Y be spaces and f: X—Y be a function, Then:

(i) f is called feebly continuous (f — continuous) function if f™(A) is an f — open set in X for
every opensetAinY.

(i) f is called feebly irresolute (f — irresolute) function if £*(A) is an f — open set in X for every
f-opensetAinY.

1.5 Proposition [1]:

Let f:X—Y be a function of spaces. Then f is an f - continuous function if, and only if,
FY(A) is an f - closed set in X for every closed set A in Y.

1.6 Proposition [1]:

Let X and Y be spaces and let f: X—Y be a continuous, open function .Then:
(i) f is f—irresolute function.
(if) The image of any f — open subset of X isan f—open setin Y.

1.7 Definition [11,13]:

(i) A function f: X—Y is called strongly feebly closed (st — f — closed) function if
the image of each f — closed subset of X is an f —closed setin Y.

(ii) A function f: X—Y is called strongly feebly open (st — f — open) function if
the image of each f — open subset of X is an f — open setin Y.

1.8 Remark [6]:

()A function f:(X, T)—(Y,1) is f — tcontinuous if and only if f:(X, Th— (Y1) is
continuous.

(i))A function f: (X, T) —>(Y,7) is f — irresolute if and only if f:(X, T)— (Y, 1) is
continuous.

1.9 Definition [2]:Let X and Y be spaces. Then a function f: X — Y is calleda st—
f— homeomorphism if:

(i) fis bijective .

(ii) f is f— continuous .

(iii) f is st —f—closed (st — f — open).

1.10 Proposition[ 6 ]: Every homeomorphism is st — f — homeomorphism.

1.11 Proposition [1]:

Let X, Y be spaces and f: X—Y be a homeomorphism function. Then f is a st — f — closed
function.

1.12 Definition [2]:

Let (ya)dep be a net in a space X and xeX. Then:



1) (xa)dep T — converges to x (written Xd—f—>x) if (xa)dep IS eventually in every f —
neighborhood of x . The point x is called an f — limit point of (yg4)4ep, and the notation
"yg— 00" is mean that (yg)qep has no f — convergent subnet.

i1) (xq)dep IS said to have x as an f — cluster point [written yq&@ X] if (%q)dep IS frequently in
every f - neighborhood of x .

1.13 Proposition[ 6 ]:

Let (xd)dep be a net in a space (X, T) and X, in X. Then y4 o Xo If, and only if, there exists a

subnet (¥dm)dmeb OF ()d)dep such that de—f> Xo-

1.14 Remark: f
Let (xg)dep be a net in a space (X, T) such that yqc X, xeX and let A be an f— open set in X

which contains x. Then there exists a subnet (Ygm)dmep Of (Yd)dep IN A such that de—f—> X.

1.15 Proposition [1]: Let X be a space, A X and xeX. Then xe A" if and only if there
exists a net (yq)gep iN A and yg ——X.

1.16 Remark [5]: Let X be a space. Then:
(i) If (xa)dep is @ netin X, xeX such that yg —— x then x4 —Xx.

(ii) If (xg)dep IS @ netin X, xeX such that yg & x then y4 a x.
(iii) If (xa)gep is @ net in X, xeX. Then yg ——>x in (X, T) if, and only if, x4 —x in (X,
Th, and ¢ @ xin (X, T) if and only if x4 e x in (X, T.

1.17 Proposition[6]: Let f: X—Y be a function, xeX. Then:

(i) fis f—continuous at x if and only if whenever a net (%g)qep in X and yg4 — 5 x
then f(xa) — /(%).

(ii) f is f—irresolute at x if and only if whenever a net (yq)qep in X and yq4 — 5 x
then £(xs) —— /(¥).

1.18 Definition [11]:

A subset A of space X is called f — compact set if every f — open cover of A has a finite sub
cover. If A=X then X is called an f — compact space.

1.19 Proposition [1]: A space (X, T) is an f — compact space if and only if every net in X
has f — cluster point in X.

1.20 Proposition [1]:
Let X be a space and F be an f — closed subset of X. Then FNK is f — compact subset of F,

for every f — compact set K in X.

1.21 Definition [1]:

(1) A subset A of space X is called f - relative compact if Z is f — compact.
(if) A space X is called f—locally f— compact if every point in X has an f — relative
compact f — neighborhood.



1.22 Definition [2, 13, 8]:

Let f: X—=Y is a function of spaces. Then:

(i) fis called a feebly compact (f — compact) function if f *(A) is a compact set in X for every
f—compact setAinY.

(i) f is called a strongly feebly compact(st — f — compact) function if f *(A) is an f — compact
set in X for every f — compact set Ain Y.

2 - Strongly Feebly Bourbaki Proper Action

2.1 Definition [4]: A topological transformation group is a triple (G,X,@) where G is a T, —
topological group, X is a T, — topological space and ¢ :GxX — X is a continuous function such
that:
(1) ¢ (91,9 (92, X)) = ¢ (9192, X) for allgy,g2€G , xeX.
(ii) @ (e, x) =x for all xeX , where e is the identity element of G.

We shall often use the notation g.x for 0(g,x) g.(h,x)= (gh).x for O(g, O(h,x))=
O(gh,x). Similarly forH <G and A< X we put HA={ga/ae H,a< A}for

@ (H, A). A set A is said to be invariant under G if GA = A.

2.2 Remark [2]:
Let X be a G — space and xeX. Then:

(1) The function ¢is called an action of G on X and the space X together with ¢ is called a G —
space ( or more precisely left G — space ).
(if) A'set A < Xis said to be invariant under G if GA = A.

2.3 Definition [2]: Let X and Y be two spaces. Then f: X—Y is called a strongly feebly
proper (st — f - proper) function if :

(i) f is f — continuous function.

(ii) f xlz: XxZ—Yx=Z is a st — f — closed function, for every space Z.

2.4 Proposition [2]: Let X, Y and Z be spaces, f: X—Y and g: Y—Z be two st — f — proper
function, such that f is an f — irresolute function. Then gof:X—Z is a st — f — proper
function.

2.5 Proposition [2]; Let fi: X;—Y; and fo: Xo—Y, be two function. Then fixfy:
X1xXo—>Y1xY; is st — f- proper function if and only if f, and f, are st — f — proper
functions.

2.6 Proposition[6]: Let f: X—P= {w} be an f — continuous function on a space X. Then f
is a st — f — proper function if and only if X is an f — compact, where w is any point which
dose not belongs to X.

2.7 Lemma: Every f — continuous function from an f — compact space into a Hausdorff
space is st — f- closed.

2.10 Proposition: Let f1: X—Y; and f,: X—Y, be two st — f — proper functions. If X is a
Hausdorff space, then the function f: X—Y1xY,, f(X) = (f1(X),f2(X)) is a st — f- proper
function.



2.11 Proposition [2]: Let X and Y be tow spaces and f: X—Y be an f — continuous, one to
one function. Then the following statements are equivalent:

(i) f is a st — f — proper function.

(ii) fis a st — f — closed function.

(iii) f is a st — f —homeomorphism of X onto f — closed subset of Y.

2.12 Proposition [2]:
Let X and Y be spaces and f: X—Y be an f — continuous function, such that  f*({y})

is an f— closed subset of X, YyeY. Then the following statements are equivalent:

(i) f isast—f — proper function.

(i) f is a st— f — closed function and f ™ ({y}) is an f — compact set, for each yeY.

(111) If (ya)gep Is @ netin X and yeY is an f — cluster point of f (yq), then there is an
f — cluster point xeX of (yg)aep such that f (x) =y.

2.13 Remark [2]:

(i) The function ¢ is called an action of G on X and the space X together with ¢ is called a
G — space ( or more precisely left G — space ).

(ii) The subspace {g.x / geG} is called the orbit (trajectory) of x under G, which denoted
by Gx [or y(x)], and for every xeX the stabilizer subgroup G, of G at x is the set {geG/ gx
=x}.

(iii) The continuous function lg: G — G defined by y — gy is called the left  translation
by g. This function has inverse I;* which is also continuous, moreover Iy is a
homeomorphism. Similarly all right translation ry:G —G are homeomorphism for every
geG.

(iv)Ag=rq (A) ={ag:acA};Ag is called the left translate of A by g, where A c G, geG.
(V)gA=Ily (A) ={ga:acA};gA is called the right translate of A by g, where A c G, geG.

2.14 Proposition: Let G be a topological group and (gq¢)dep be a net in G. Then:

()If gq — " e whereeis identity element of G, then ggq s g(rgsg —f>g )
for each geG.

(i) If gd—f) oo, then gQq — (orgq g 'y o) for each geG.
(iii) If g, — oo, then g;' — >0

2.15 Proposition: If (G, X,¢) is a topological transformation group, then ¢ is f — irresolute.

2.16 Definition [6]: A G —space X is called a strongly feebly Bourbaki proper G — space (st —
f — proper G — space) if the function@ GxX—XxX which is defined by 8 (g, x) = (x, g.x) is a st
— f— proper function.

2.17 Example:
The topological group Z, = {-1, 1} [as Z, with discrete topology] acts on the topological

space S" [as a subspace of R™* with usual topology] as follows:
1. (Xl, X2, ..ty Xn+1) = (Xl,Xz,...,Xn+1)
-1, (X1, X250+ Xn+1) = (X1, X2, ..., ~Xn+1)

Since Z, is f — compact, then by Proposition (2.6) the constant function Z,—P is a st — f —
proper. Also the identity function is a st — f — proper, then by Proposition (2.4) the proper
function of Z,x S" into Px S" is a st — f — proper.



Since PxS" is homeomorphic to S", then by Proposition (1.10) Px S" is a st — f —
homeomorphic to S". Thus by Proposition (2.11) the st — f — homeomorphism of PxS" onto S"
is st — f — proper. Since Z,xS" — Px S" is continuous and open function, then by Proposition
(1.6.i) Z,xS" — Px S" is f — irresolute. Then by Proposition (2.4) the composition Z,xS" — S"
is a st — f — proper. Let ¢ be the action of Z, on S". Theng continuous, one to one function so ¢
is f — continuous function. Since S" is T, — space, then by Lemma (2.7) ¢ is a st — f — closed.
Then by Proposition (2.11) ¢ is a st — f — proper function. Thus by proposition (2.10) Z,xS" —
S"xS"is a st — f — proper G- space.

2.18 Proposition [6]:
Let X be a G — space then the function 8: GxX—XxX which is defined by & (g, x) = (X,

g.X) is continuous function and o ({(x, y)}) is closed in GxX for every (X, y)eXxX.

3 — Strongly feebly Palais proper action:

From now on, in this section by G — space we mean a completely regular topological
T, — space X on which an f — locally f — compact, non — compact, T, — topological group
G continuously on the left (always in the sense of st — f - Palais proper G — space). Now,
in this section, definitions, propositions, theorems and Examples of a strongly feebly
Palais proper G - space [st — f - Palais proper G — space] are given as well as the relation
between st — f — Bourbaki proper and st — f — Palais proper G — space is studied.

3.1 Definition:

Let X be a G — space. A subset A of X is said to be feebly thin (f — thin) relative to a
subset B of X if the set ((A, B)) = {geG / gANB=¢} has an f — neighborhood whose
closure is f — compact in G. If A is f — thin relative to itself, then it is called f— thin.

3.2 Remark:
The f — thin sets have the following properties:
(i) Since (JANB) = g(ANg™B) it follows that if A is f — thin relative to B, then B is f —
thin relative to A.
(ii) Since ( 9gg1ANQg2B) = g.(g,'g g1ANB) it follows that if A is f — thin relative to B, then
so are any translates gA and gB.
(iii) If A and B are f — relative thin and K; — A and K, < B, then K; and K; are f —
relatively thin.
(iv) Let X be a G — space and Kj, K, be f — compact subset of X, then ((Ky, K;)) is f—
closed in G.
(v) If K1 and K; are f — compact subset of G — space X such that K; and K are f —
relatively thin, then ((K1, K2)) is an f — compact subset of G.

o

roof:
The prove of (i), (ii), (iii) and (v) are obvious.

(iv) Let ge (K, Kz))f . Then by Proposition (1.16) there is a net (gqg)dep I ((K1, K2))
such that gs—"—g. Then we have net (k)acp in Ky, such that gk K, since Ky is f —

compact, then by Theorem (1.14) there exists a subnet (gdmkém) of (guk;) such that
gg ki —>kZ, where KZ e Ko. But (kg ) in Ky and Ky is f — compact , thus there is a

point k! e K; and a subnet of k; say itself such that k; ——>k; , Theorem (1.14).



Then by Proposition (1.18.ii) gdmk§m —f>gk§=k02, which mean that ge((Ki, Ky)), there
fore ((Ky, K2)) is f —closed in G.

3.3 Definition:
A subset S of a G — space X is a feebly small (f — small) subset of X if each point of X
has f — neighborhood which f — thin relative to S.

3.4 Theorem:

Let X be a G — space. Then:

(i) Each f — small neighborhood of a point x contains an f — thin neighborhood of x.
(i1) A subset of an f — small set is f — small.

(iii) A finite union of an f — small sets is f — small.

(iv) If Sis an f—small subset of X and K is an f — compact subset of X then K is f

— thin relative to S.

Proof:

i) Let S is an f — small neighborhood of x. Then there is an f — neighborhood U of x
which is f — thin relative to S. Then ((U, S)) has f — neighborhood whose closure is f —
compact. Let V=UNS, then V is f — neighborhood of x and (v, V)) < (U, 5)),
therefore V is V is f — thin neighborhood of x.

i) Let S be an f —small set and K < S. Let xeX, then there exists an f—
neighborhood U of x, which is f — thin relative to S. Then ((U, K)) < ((U, S)), thus ((U,
K)) has f — neighborhood whose closure is f — compact. Then K is f — small.

iii) Let {S,}; be a finite collection of f — small sets and yeX. Then for each i there is
f — neighborhood K; of y such that the set ((S;, Kj)) has f — neighborhood whose closure is

f — compact. Then LnJ ((Si , Kj)) has f — neighborhood whose closure is f — compact. But
i=1
(US, N Ki)) < Ui, Ki), thus U S; is an f— small set.
i=1 i=l i=1 i=1

iv) Let S be an f — small set and K be f — compact. Then there is an f — neighborhood
Ui of K, keK, such that Uy is f — thin relative to S. Since K gkUK Uk .i.e., {Udkex is T —

open cover of K, which is f — compact, so there is a finite sub cover {Uki }in:i of {Ux}kek »

n
since ((Uki ,5)) has f — neighborhood whose closure is f — compact , thus ((_U1U K ? S)) so
1=
n
is. But (K,9)) < ((_Ulu K, ,S)) therefore K is f — thin relative to S.
1=

3.5 Definition:
A G — space X is said to be a strongly feebly Palais proper G - space (st — f — Palais
proper G — space) if every point x in X has an f — neighborhood which is f — small set.

3.6 Examples:

(i) The topological group Z,={-1, 1} act on itself (as Z, with discrete topology) as
follows:
r.ro=rirp vy, roes.



for each point x € Z, , there is an f — neighborhood which is f — small U of x where
U={x}, i.e., for any point y of Z,, there exists an f — neighborhood V of y such that V={y}
and (U, V)) = {re Z, / rUNVz=¢} = Z, , then ((U, V)) has f — neighborhood whose
closure is compact.

(i) R — {0} be f — locally f — compact topological group (as R — {0} with discrete
topology) acts on the completely regular Hausdorff space R? as follows:

r.(X1, X2) = (rxa, rXz) , for every reR — {0} and (x1, X;)eR?.

Clear R? is (R — {0}) — space. But (0,0)e R? has no f — neighborhood which is an f —
small. Since for any two f — neighborhoods U and V of (0,0) then ((U,V)) = R — {0} .
Since R is not compact, then R is not f — compact. Thus R? is not a st — f — Palais proper

(R —{0}) — space.

3.7 Proposition:
Let X be a G —space . Then:

(i) If X is st — f — Palais proper G — space , then every f — compact subset of X is an
f— small set.
(i) If X is a st — f — Palais proper G — space and K is an f — compact subset of X , then
((K,K)) is an f — compact subset of G.
Proof:
i) Let A be a subset of X such that A is f — compact. Let xeX, since X is a st — f —
proper G — space then there is an f — neighborhood of x U which is f — small. Then for
every acA there exists a neighborhood U, which is f —small , then A < U U, , since A is

aeA

n
f — compact , then there exists a;, ay, ..., a, €A such that A ¢ _UlU a, » Thus by Theorem
1=

ii) Let X be a st — f — proper G — space and K is f — compact , then by (i) Kisan  f—
small subset of X , and by Theorem (3.4.iv) K is f — thin , so ((K,K)) has f—
neighborhood whose closure is f — compact . Then by Remark (3.2.ix) ((K,K)) is f —
closed in G. Thus ((K,K)) is f — compact .

3.8 Definition: Let X be a G — space and xeX. Then J f (x) ={yeX: there is a net (gg)aep

in G and there is a net (yg)qep i X with gg—' 300 and yg —— x such that ggx—"—y} is
called feebly first prolongation limit set of x.

3.9 Proposition:
Let X be a G — space. Then X is a st — f — Bourbaki proper G — space if and only if

J"(x)=¢ for each xeX.
Proof: = Suppose that ye J " (x), then there is a net (ga)sep in G with gg——> oo and there
is a net (xg)dep iN X with yg—"- x such that ggxa——>Y, 50 @ ((Ja.xa))=Xa: Yaxd) ——> (X,
y). But X is a st — f — Bourbaki proper, then by Proposition (2.12) there is (g, X;)eGxX
such that (gg, Xq) @ (g, X1). Thus (gg)aep has a sub net (say itself). such that gq—— g,
which is contradiction, thus J ' (x)=¢. f

< Let (94, xa)dep be a net in GxX and (x, y)eXxX such that 9 ((dd, x4))=( xd, Gaxa) & (X,
y), SO (g, Gaxd)dep has a sub net, say itself, such that (x4, gaxd) —— (X, y), then yg——x
and gqya ——y. Suppose that gg—— oo then ye J ' (x), which is contradiction . Then



there is geG such that gg—-— g, then (gq, X)) —— (g, X) and 8 (g, X) = (X, y). Thus by
Proposition (2.18) and Proposition (2.12) X is a st — f — Bourbaki proper G — space.

3.10 Proposition:
Let X be a G — space and y be a point in X . Then y has no f — small whenever ye J " (x)

for some point xeX.

B

roof:
Let ye J"(x) , then there is a net (gg)dep in G with g3 —— oo and a net (xg)gep in

X with yg —— x such that ggxg —— Y. Now, for each f — neighborhood S of y and
every f — neighborhood U of x there is d,eD such that y4 €U and gqgyq €S for each d > d,,

thus gq¢e((U,S)), but gg—F— oo, thus ((U,S)) has no f — compact closure . i.e., S is not an f
— small neighborhood.

3.11 Proposition:
Let X be a st — f — Palais proper G — space. Then J ' (x) = ¢ for each xeX.

Proof:
Suppose that there exists xeX such thatJ ' (x)#¢ , then there exists ye J ' (x). Thus

there is a net (ga)gep in G with gg—'— o0 and a net (yg)dep IN X With x4 —— x such that
Jaxda —— Y. Since X be a st — f — proper G — space, then there is an f— small (f — thin) f —
neighborhood U of x. Thus there is d , €D such that ggyqcU and yyeU foreachd > d , ,
S0 g4 € ((U,U)), which has an f — compact closure , therefore (gg)qep must have an f —
convergent subnet , which is a contradiction. Thus J ' (x) = ¢ for each xeX.

In general, the definition of a st — f — Palais proper G — space implies that st — f —
Bourbaki proper G — space, which is review in following proposition.

3.12 Proposition:

Every st—f— Palais proper G —space is st—f— Bourbaki proper G — space.
Proof:

By Propositions (3.11) and (3.9).

The converse of Propositions (3.12), is not true in general as the following example
shows.

3.13 Example:
Let G be a topological group where G is not f — locally f — compact, then G is acts on

itself translation. The map 6 : GxG—GxG, which is defined by 6 (91, 92) = (92, 0102), v
(91, 92) eGxG is a st — f — homeomorphism , hence it is st — f — Bourbaki proper G — space
. But it is not st — f — Palais proper G — space, because G is not f — locally f — compact.

3.14 Lemma: Let X be an f — locally f — compact G — space . Then J'(X) =¢for each xeX

if and only if every pair of points of X has f — relatively thin f — neighborhood.

3.15 Proposition:
Let X be an f — locally f — compact G — space. Then the definition of st — f — Palais

proper G — space and the definition st — f — Bourbaki proper G — space are equivalent.



O

roof:
The definition of st — f — Palais proper G — space implies to the definition st — f —
Bourbaki proper G — space. by Propositions (3.12).

Conversely, let X be a st — f — Bourbaki proper G — space, then by Proposition (3.9)
J"(x)=¢ for each xeX. Let xeX, we will how that x has a f — small f — neighborhood.
Since X is f — locally f — compact, then there is a f — compact f — neighborhood Uy of X,
we claim that Uy is an f — small f — neighborhood of x. Let ye X, we may assume without
loss of generality , that Uy is an f — compact f — neighborhood of y such that U, and Uy are
f — relative thin i.e., ((Uy, Uy)) has f — compact closure, by Lemma(3.14). therefore Uy
is an f —small f — neighborhood of x. Thus X is st — f — Palais proper G — space.
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