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ABSTRACT OF DISSERTATION 
 

 

 

DEVELOPMENT OF A DECISION SUPPORT SYSTEM FOR CAPACITY 
PLANNING FROM GRAIN HARVEST TO STORAGE 

 
This dissertation investigated issues surrounding grain harvest and transportation 

logistics. A discrete event simulation model of grain transportation from the field to an 
on-farm storage facility was developed to evaluate how truck and driver resource 
constraints impact material flow efficiency, resource utilization, and system throughput. 
Harvest rate and in-field transportation were represented as a stochastic entity generation 
process, and service times associated with various material handling steps were 
represented by a combination of deterministic times and statistical distributions. The 
model was applied to data collected for three distinct harvest scenarios (18 total days). 
The observed number of deliveries was within ± 2 standard deviations of the simulation 
mean for 15 of the 18 input conditions examined, and on a daily basis, the median error 
between the simulated and observed deliveries was -4.1%.  

 
The model was expanded to simulate the whole harvest season and include 

temporary wet storage capacity and grain drying. Moisture content changes due to field 
dry down was modeled using weather data and grain equilibrium moisture content 
relationships and resulted in an RMSE of 0.73 pts. Dryer capacity and performance were 
accounted for by adjusting the specified dryer performance to the observed level of 
moisture removal and drying temperature. Dryer capacity was generally underpredicted, 
and large variations were found in the observed data. The expanded model matched the 
observed cumulative mass of grain delivered well and estimated the harvest would take 
one partial day longer than was observed.  

 
Usefulness of the model to evaluate both costs and system performance was 

demonstrated by conducting a sensitivity analysis and examining system changes for a 
hypothetical operation. A dry year and a slow drying crop had the largest impact on the 
system’s operating and drying costs (12.7% decrease and 10.8% increase, respectively). 
The impact of reducing the drying temperature to maintain quality in drying white corn 
had no impact on the combined drying and operating cost, but harvest took six days 
longer. The reduced drying capacity at lower temperatures resulted in more field drying 
which counteracted the reduced drying efficiency and increased field time. The 



 

 

sensitivity analysis demonstrated varied benefits of increased drying and transportation 
capacity based on how often these systems created a bottleneck in the operation. For 
some combinations of longer transportation times and higher harvest rates, increasing 
hauling and drying capacity could shorten the harvest window by a week or more at an 
increase in costs of less than $12 ha-1. 

 
An additional field study was conducted to examine corn harvest losses in 

Kentucky. Total losses for cooperator combines were found to be between 0.8%-2.4% of 
total yield (86 to 222 kg ha-1). On average, the combine head accounted for 66% of the 
measured losses, and the total losses were highly variable, with coefficients of variation 
ranging from 21.7% to 77.2%. Yield and harvest losses were monitored in a single field 
as the grain dried from 33.9% to 14.6%.  There was no significant difference in the 
potential yield at any moisture level, and the observed yield and losses displayed little 
variation for moisture levels from 33.9% to 19.8%, with total losses less than 1% (82 to 
130 kg dry matter ha-1). Large amounts of lodging occurred while the grain dried from 
19.8% to 14.6%, which resulted in an 18.9% reduction in yield, and harvest losses in 
excess of 9%. Allowing the grain to field dry generally improved test weight and reduced 
mechanical damage, however, there was a trend of increased mold and other damage in 
prolonged field drying. 
 

KEYWORDS: Machinery management, Harvest logistics, Grain transportation, 

Grain drying, Yield loss, Discrete event simulation  
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 INTRODUCTION 

Grain harvest represents a substantial cost in terms of dollars, energy, fossil fuels, 

and environmental impacts. Expected yields, grain moisture content, and potential field 

losses, along with weather risks during the harvest window, influence the equipment set 

required to efficiently and economically move grain from the field to the first storage 

location. To minimize these costs, the optimal machinery set should be used. However, 

the interaction between several separate systems influences the overall system 

performance, making the selection of optimal power, number, and size of equipment a 

daunting challenge. Many algorithms and optimization schemes have been proposed, yet 

with a few exceptions, these models are rarely used in practice and could do with 

updating to reflect modern equipment and practices. This dissertation focuses on issues 

surrounding grain harvest, transportation, and drying at an on-farm storage facility.   

Grain harvest can be classified into three interdependent systems: harvesting, 

transporting, and post-harvest drying/storage. A bottleneck in any one of these systems 

will directly affect the other two. Changes in field conditions during harvest can create or 

shift bottlenecks throughout the system. These systems are highly interrelated and require 

a whole-system approach. Figure 1-1 shows the typical flow of grain from the field to the 

first storage structure, and there could be a potential bottleneck at each operation. This 

dissertation focused on on-farm systems and did not investigate delivering grain directly 

to the elevator.  
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Figure 1-1: Typical flow of grain from the field to storage. 

 

To examine the whole system, a large number of performance, logistical, 

temporal, and geospatial factors must be considered. The harvest capacity for field 

machinery is influenced by the machine complement (size, capacity, and number of 

combines and grain carts), grain moisture, field conditions (weather impacts), plant 

conditions (for example, lodging), field size, shape, and location. On the other end of the 

system are the grain storage and drying facilities. The moisture content of the grain and 

the capacity of the dryer change over the course of the season and can limit the rate at 

which grain can be placed into storage, especially during the initial harvest period when 

moisture is highest. The effective drying capacity is also influenced by the wet holding 

tank, which provides surge capacity, allowing the dryer to ‘catch up’ once harvest has 

stopped for the day or when the harvest is interrupted due to weather. Additionally, 

weighing, sampling, and the ability of the receiving pit to unload incoming grain impact 

the system. Transportation serves as the link between the field and the storage facility. It 

is limited by distance, capacity, and the number of vehicles. Extended wait times at any 

location in the system can lead to bottlenecks, and the on-board holding capacity of 

transportation vehicles can serve as additional surge capacity. This type of system can be 

examined through simulation or operations research.  

Examining agricultural production from a whole system perspective to reduce 

waste and increase productivity has been of interest to the agricultural community for 

decades. Numerous techniques have been applied to this problem. These works have 
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generally addressed the problem through simulation or optimization techniques. Common 

simulation techniques are equation-based modeling (EBM) where governing equations 

are used to predict the response of key variables and agent-based modeling (ABM), 

where ‘agents’ emulate the behaviors of the individual components of the system 

(Parunak, Savit, & Riolo, 1998). By focusing on timing related to key events or 

interactions, these concepts can further be expanded to discrete event-based modeling 

(Loewer, Bridges, & Bucklin, 1994) and cycle analysis (Buckmaster & Hilton, 2005; 

Harrigan, 2003). Discrete event simulation (DES) modeling was chosen for this analysis, 

because it is well suited for examining resource utilization and system bottlenecks.  

A large body of work was published in the literature related to grain harvest 

timing and logistics from the 1960’s to 1980’s, many of which are summarized in Loewer 

et al. (1994). However, there have been significant changes in field size, equipment size, 

stalk quality, yield, and other factors since that time, and minimal validation data were 

available. An additional weakness of these models has always been the ability to define 

variables and contend with dynamic conditions accurately.  

For agriculture in general, models serve as decision support systems for many 

different types of farming operations. These models allow farmers, researchers, and 

extension personnel to interconnect multiple parameters and to ascertain what actions 

should be taken to improve and/or optimize system, labor, and/or cost performance. 

Models can also be used by producers to assist in the management of their operations. 

Commonly used within agriculture, static models possess fixed dates such as crop 

planting, fertilization, spraying, and scheduling management level activities. Nonetheless, 

actual conditions are subject to dynamic conditions and the cumulative effects of weather 

(i.e. temperature, humidity, and rainfall), price fluctuations, and resource availability. 

Inherent flexibility in the dates, time, and response to variables are essential to dynamic 

models (Baptist, 1992). 

Several review articles have been published which attempt to summarize 

proposed models for agricultural production. Glen (1987) reviewed mathematical models 

used in farm planning and agricultural production. Models were broken down by focus 

area, and the solution approach anc methodology employed by the models relevant to this 
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research were primarily simulations, linear programming, or dynamic programming with 

a stochastic weather element. A more recent review of machinery management studies, 

which classified their relationship to the American Society of Agricultural and 

Biosystems Engineers (ASABE) management phases (ASABE Standards, 2015d), was 

published by Bochtis, Sørensen, and Busato (2014). The studies relevant to this research 

were classified as capacity or task time planning.    

1.1 Project Goals 

The overall goal of this dissertation was to develop and validate a model to enable 

grain producers to make informed, data-driven decisions relevant to harvest and post-

harvest logistics by integrating seasonal impacts of weather with transportation, harvest, 

and post-harvest equipment performance characteristics. A model to examine harvest 

logistics from the field to the first storage structure was developed and validated. The 

model allows changes in weather, field dry down, equipment capacity, infrastructure, or 

operational practices to be evaluated. Ultimately this model would allow producers to 

identify bottlenecks in their system and examine impacts and potential gains or losses 

from investments in equipment and/or additional labor. This dissertation was separated 

into four main objectives to address the issues surrounding grain harvest logistics.   

1. Develop a DES model of grain transportation from the field to delivery at an on-

farm storage facility and incorporate stochastic parameters to account for 

variability in equipment performance. 

2. Evaluate yield and machine losses typically encountered during corn harvest in 

Kentucky. 

3. Expand the DES model for grain transportation to include wet holding and drying 

capacity, accounting for changes in drying capacity due to drying temperature and 

grain moisture content. 

4. Demonstrate the use of the model as a decision support tool to examine how 

system changes impact overall performance and costs and conduct a sensitivity 

analysis to evaluate system performance over a range of harvest rates and 

transportation times. 
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1.2 Organization of Dissertation 

Chapter 1 provides a general introduction and rationale for this project, identifies 

the specific objectives explored, and outlines the organization of this dissertation. The 

main body of this dissertation was separated into separate chapters, each of which was 

self-contained, consisting of an introduction, literature review, methods, results and 

discussion, and conclusions section. Chapter 2 presents a discrete event simulation model 

of grain transportation from the field edge to an on-farm storage facility and explores 

how daily variability in equipment performance can impact the harvest system. Chapter 3 

establishes a range of typical yield losses encountered by Kentucky producers and 

explores issues surrounding potential yield losses as grain dries in the field. Chapter 4 

expands the grain transportation DES model to include on-farm wet holding and drying 

capacity. Chapter 5 demonstrates the application of the full model as a decision support 

tool. Whole harvest season simulations of a hypothetical operation were used to explore 

changes to the system and conduct a sensitivity analysis. Chapter 6 provides a general 

summary, conclusions, and expands on potential future work associated with this project. 

The appendix includes sample code, model details, and supplemental figures not included 

in the main body of the dissertation.  
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 A DISCRETE EVENT SIMULATION MODEL FOR ANALYSIS OF 

FARM SCALE GRAIN TRANSPORTATION SYSTEMS 

2.1 Summary 

Grain transportation from the field to an on-farm storage facility is a critical 

component of the harvest system. A discrete event simulation model of grain 

transportation was developed to evaluate how truck and driver resource constraints 

impact material flow efficiency, resource utilization, and system throughput. Harvest rate 

and in-field transportation were represented as a stochastic entity generation process, and 

service times associated with various material handling steps were represented by a 

combination of deterministic times and statistical distributions. The model was applied to 

data collected for three distinct harvest scenarios (18 total days). Wheat and corn harvest 

from a large Kentucky operation was selected to evaluate the effect of different harvest 

rates (in wheat and corn), and corn harvest from a smaller Michigan operation was used 

to assess how the model handled situations where a single operator shuttled multiple 

trucks. The observed number of daily deliveries was within ± 2 standard deviations of the 

simulation for 15 of the 18 input conditions examined, and on a daily basis, the median 

error between the simulated and observed deliveries was -4.1%. This model can be used 

to simulate how changes in vehicle and labor constraints impact the overall system 

performance. An important extension of this concept is that, given an existing equipment 

set and labor force, a producer can estimate how often grain transportation is the system 

bottleneck and simulate the impact of additional vehicles or labor on grain transportation 

efficiency. 

2.2 Introduction 

2.2.1 Overview 

As the capacity of grain harvesting machinery and yield continue to increase, 

there are corresponding increases in demand placed on material handling equipment, and 

increasingly semi-trailers are used for on-road grain transportation. In a recent Iowa State 

survey, semi-trailers made up 82% of grain trucks in 2015, up from 62% in 2006 

(Edwards, Plastina, & Johanns, 2016). Investment in equipment for large harvesting 
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operations requires thoughtful planning because individual subsystem efficiency can 

impact the whole system (Sørensen & Bochtis, 2010). Additionally, difficulties finding 

reliable short-term labor to help with harvest activities, such as transporting grain from 

the field edge to storage, can result in producers using fewer drivers than trucks. A 

modeling tool that simulates grain transportation from the field edge to storage would be 

useful to producers by allowing them to evaluate how changes in the number of trucks 

and drivers used for on-road transportation affects overall productivity, transportation 

efficiency, and resource utilization. Selecting farm equipment requires a systems 

approach due to the need to evaluate interactions between field machinery, crop 

characteristics, and field conditions (Rotz, Muhtar, & Black, 1983; Søgaard & Sørensen, 

2004); however, there is a need for a simplified approach that focuses on grain 

transportation without explicitly modeling the entire system. Specifically, in this study, 

field machinery and any sources of variability associated with harvest and field 

conditions are enveloped in a single parameter, representing the rate at which material 

enters the transportation system.  

Assuming sufficient receiving and wet holding capacity at the destination facility, 

the effective harvest rate of the system will be set by in-field machinery (combine harvest 

rate (t hr-1), in-field transportation rate (t hr-1)), or by the on-road transport rate (t hr-1). 

However, combine hoppers, grain tanks on in-field transporters, and trucks staged at the 

field edge act as surge capacity, providing a buffer between processes. This allows 

harvest to progress at a faster rate than the material can be transported away from the 

field. This also means that grain transportation operations can continue after harvest 

operations have stopped for the day, allowing for delivery of the remaining grain in the 

buffer. Because of these factors, an operation may have a single operator shuttling 

multiple trucks from the field to the destination facility, allowing them to operate with 

fewer drivers than trucks. 

This study presents a discrete event simulation (DES) model of on-road grain 

transportation from the field to delivery at an on-farm storage facility. DES is a 

commonly used tool in manufacturing and operations research to examine resources 

utilization and identify bottlenecks and to assist in capacity planning (Allen, 2011). This 

approach uses a logical or mathematical model to represent state changes in a system at 
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discrete points in time, and the system is assumed constant between events, reducing 

modeling complexity (Tako & Robinson, 2012). In DES, material flows are represented 

by entities that enter the system at a determined rate and then flow through a network of 

queues and servers. In this study, entities represent full in-field transporters (tractor 

pulled grain carts) arriving at the field edge, and the rate at which they arrive represents 

the time required to harvest and transport the grain up to that point. Servers represent 

processing steps, and their duration represents the time required to complete the activity 

(time required to transport the grain to storage, time required to unload, etc.). The entity 

generation rate and service times can be deterministic or stochastic. Dynamic system 

behavior and variation in entity generation or processing times are represented with 

statistical distributions based on observations of the system (Spedding & Sun, 1999).  

2.2.2 Literature Review 

DES has been applied to a number of agricultural applications related to harvest 

logistics and grain handling. Simulation of Queues involving Unloading and Arrivals for 

Systems of Harvesting (SQUASH) was an early hybrid discrete-continuous simulation 

model used as a planning tool to evaluate grain harvesting efficiency and to size 

equipment components of many harvesting/delivery/handling/drying/storage systems 

(Benock, Loewer Jr, Bridges, & Loewer, 1981). This model calculated the operating 

efficiency of combines, hauling vehicles, wet grain receiving pit, wet holding bin, and 

grain dryer and was very useful for identifying potential problems with mismatched 

equipment before a purchase was made. Specifically, the model could be used to match 

the hauling capacity and transport time for in-field material transporter(s) and on-road 

transporter(s) with the harvest capacity of the combine(s) to optimize field efficiency and 

system performance. SQUASH allowed for the number of days to complete harvest to 

vary, but equipment performance was held constant over the course of the harvest season. 

Additionally, no stochastic processes were incorporated into the model. The number of 

harvest days could be varied, but not performance (for example, harvest rate and travel 

distance as grain moisture changes). This model was validated using time-motion 

analysis with manual stopwatches. 
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The SQUASH model could not identify the bottleneck in the system itself, so 

Loewer, Kocher, and Solaimanian (1990) expanded on the SQUASH model and used 

“expert rules” to identify bottlenecks in a grain harvest/handling/drying system. The 

model utilized a decision support tree to answer questions during harvest simulation that 

would identify the system bottleneck. Loewer, Benock, and Bridges (1980) simulated 

harvest and delivery systems over a range of efficiencies. The authors found the system 

may not be optimum if the material flow is the only evaluation criteria. They also found 

that a decrease in delivery vehicle performance was accompanied by an increase in 

combine efficiency. Flow-based optimization results in excess capacity in one or more 

system to increase utilization in another. Many of these works were consolidated in 

Loewer et al. (1994), which, in addition to the above, provided guidelines on selecting 

optimal equipment sets based on cycle time. 

Several other efforts have applied DES to field machinery and grain harvesting 

operations. De Toro and Hansson (2004) applied a DES model to simulate daily farm 

operations to study timeliness costs for two methods of estimating field workability. The 

simulation spanned multiple farm operations, and the model parameters were taken from 

ASABE Standards (2000). Benson, Hansen, Reid, Warman, and Brand (2002) presented 

a DES model of in-field grain handling, which incorporated combine travel through the 

field but was unable to accurately estimate the time required to complete an operation due 

to limitations of the modeling environment selected. Busato, Berruto, and Saunders 

(2007) applied DES to wheat harvest in Australia where they simulated multiple harvest 

scenarios to evaluate the effect of yield, field characteristics, and temporary grain storage 

bin locations on combine efficiency.  

A number of efforts, related to this research, have been made to model forage and 

silage harvest systems using DES or cycle analysis. Harrigan (2003) used observers with 

stopwatches to perform a time-motion analysis for corn silage harvest. This research was 

conducted at several Michigan dairy farms and identified average times for each step in 

the cycle and found, depending on configuration, harvesters were utilized 75%-85% of 

the cycle. Harmon, Luck, Shinners, Anex, and Drewry (2017) improved the time-motion 

analysis by utilizing data collected from GPS and vehicles CAN bus. Buckmaster and 

Hilton (2005) proposed a system model for transport and unloading systems based on 
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cycle times and capacity. This tool was spreadsheet-based and allowed for the system 

capacity and machine utilization to be determined. Dudenhoeffer, Luck, Digman, and 

Drewry (2017) developed a model for silage harvesting that was found to produce errors 

comparable to Buckmaster and Hilton (2005) but allowed for the inclusion of transport 

vehicles with dissimilar capacity. Amiama, Pereira, Castro, and Bueno (2015) used a 

DES model to develop a decision support tool for corn silage. The model encompassed 

harvest, transport, and packing. It was intended to be used both for strategic planning and 

daily decision making. Results indicated the system was more sensitive to packing 

capacity than to the number of transporters used and noted that, while some models select 

the number of transport vehicles to keep the harvester fully utilized, this does not 

necessarily result in the lowest cost if the extra transporter is mostly inactive and has a 

low utilization rate.  

Several studies have applied DES to model and evaluate commercial grain storage 

facilities. Berruto and Maier (2001) used DES to investigate how different queueing 

methods impacted the operation of a receiving pit at a country elevator. The model was 

validated using field observations and evaluated the queueing methods based on average 

customer wait times. Silva, Queiroz, Flores, and Melo (2012) noted the need to account 

for stochastic factors and model dynamic system behavior. The authors used DES 

combined with Monte Carlo to simulate grain arrival and departure for corn, wheat, and 

soybeans at a commercial facility over the course of a year.  

2.2.3 Motivation 

The majority of previous efforts at modeling grain harvest and transportation 

explicitly model every aspect of the system, and define the system using deterministic 

model inputs. There is a need to develop a simplified modeling approach to evaluate on-

road transportation equipment that can account for variable transportation demand that 

results from fluctuations in the rate at which material leaves the field. The overall goal of 

this study was to develop a DES model of grain transportation from the field to delivery 

at an on-farm storage facility. The model differs from previous works in that it represents 

harvest rate and in-field machinery interactions as a stochastic entity generation 

processes, and models receiving capacity at the storage facility as a stochastic service 
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time. The distributions used to represent these inputs are system specific (equipment set, 

crop, yield, etc.) but can be developed from easily obtained data. Specific objectives 

were: 

1. Develop a DES model for grain transportation from field to storage. 

2. Account for complex system behavior by incorporating stochastic elements into 

the model. 

3. Apply the developed model to case study operations to validate the model and 

assess the performance of the studied harvest systems. 

2.3 Materials and Methods 

2.3.1 Model Implementation  

2.3.1.1 Description 

The focus of this DES model was on-road grain transportation, and it spans from 

the arrival of full in-field transporters at the field edge to the delivery of that grain to an 

on-farm storage facility. Figure 2-1 shows a simplified flow diagram of the model, and 

subsequent sections expand on specific functionality. Entities, which represent a full 

grain cart arriving at the field edge, are created in load generation. The rate at which they 

enter the system is the time required to harvest the grain and transport it to the field edge 

and represents the demand for on-road transportation. This rate accounts for the in-field 

machinery parameters that have traditionally been explicitly modeled. The number of 

combines and grain carts, harvest rate of the combine(s) and the in-field machinery 

interactions were all reduced to the timing of arrivals at the field edge.  

After creation, an entity proceeds into the system if the current simulation time is 

less than the duration of fieldwork and the number of entities waiting for a truck is less 

than the maximum. This accounts for entities arriving faster than they can be delivered to 

the storage facility (harvest rate is larger than the transportation rate). Transportation 

continues after load generation has stopped for the day, allowing entities waiting in the 

various queues to be delivered. The model could account for mismatched capacities 

between trucks and grain carts by allowing multiple full grain carts to be loaded onto a 

single truck. The first entity acquires the truck, and subsequent loads are transferred into 

the same truck until it reaches capacity. These entities are combined and move through 
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the remainder of the system as a batched entity. Once a truck is fully loaded, and a driver 

is acquired, the load is transported to the storage facility where it is weighed and 

inspected before being unloaded. The acquire truck/driver blocks in Figure 2-1 represent 

acquiring resources from the respective resource pools. Throughout this discussion, the 

grain receiving area is referred to generally as the pit, though it could be a pit, auger, or 

drive over hopper. After unloading, trucks, and drivers are delayed by the time required 

to return to the field before being made available again. In cases where harvest was 

stopped because of a transportation bottleneck (i.e., all trucks are in use and combine(s) 

and grain carts are full), the harvest is restarted once resources become free.  
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Figure 2-1: Simplified model structure. Solid lines represent the flow of material and 

dashed lines represent the flow of information. Graphs represent stochastic input 
parameters. See Table 2-1 for variable definitions.  

 

2.3.1.2 Simulation 

The DES model was created using MATLAB and Simulink (R2017b, The 

MathWorks Inc., Natick, MA), and required the use of the SimEvents toolbox. Table 2-1 

lists the model inputs, along with a description and associated units. Model inputs were 

defined in the MATLAB workspace and passed to the Simulink model. The results of the 

simulation were passed back to the MATLAB workspace for further analysis. To 

examine the dynamic behavior of the system, 500 Monte Carlo simulations were run for 

each day for which data was available for the three operations (total of 18 daily input 
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conditions). Preliminary examination indicated 500 simulations were adequate to 

describe the variability and increasing the number of simulations by an order of 

magnitude had minimal effect on the results. In general terms of the model, the input 

parameters could be defined as constants or as random values depending on what 

characteristics of the system were of interest. For this study, the system characteristics, 

including the number of trucks, number of drivers, harvesting time, and transportation 

time were deterministic and unique to each day. The load generation rate, field transfer 

service time, and pit unloading service time were estimated from data collected during 

harvest and a distribution fit for each operation/crop (shown in the results section). The 

model simulates grain transportation for a single day, and it was assumed that adequate 

wet-holding capacity was available or would be accounted for by the duration of 

fieldwork for a given day. The effects of storing and drying wet grain were outside the 

bounds of this study. 
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Table 2-1: Model Variable Nomenclature*  

Symbol Description  Units 
Model Inputs 

𝒅𝒅𝒕𝒕𝑳𝑳𝑳𝑳𝑳𝑳𝒅𝒅 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮** 
Time between arrivals of full in-field 

transporters Minutes cart-1 

𝑸𝑸𝒄𝒄𝑳𝑳𝑮𝑮𝒕𝒕 
Number of field unloading events required 

to fill a truck Carts truck-1 

𝒅𝒅𝒕𝒕𝑭𝑭𝑭𝑭** Field transfer time Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮𝒕𝒕𝒕𝒕𝑳𝑳𝑮𝑮𝒕𝒕 Time to transport from field to facility Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝒄𝒄𝑳𝑳𝒔𝒔𝑮𝑮𝒕𝒕 Weigh and inspect duration Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝒕𝒕** Unload duration Minutes 
𝒅𝒅𝒕𝒕𝑮𝑮𝑮𝑮𝒕𝒕𝒓𝒓𝑮𝑮𝑮𝑮 Time to return to the field from the facility Minutes 
𝑵𝑵𝒅𝒅𝑮𝑮𝑮𝑮𝒅𝒅𝑮𝑮𝑮𝑮𝒕𝒕 Number of drivers - 
𝑵𝑵𝒕𝒕𝑮𝑮𝒓𝒓𝒄𝒄𝒕𝒕𝒕𝒕 Number of trucks - 

𝑸𝑸𝑭𝑭𝑮𝑮𝑮𝑮𝒔𝒔𝒅𝒅_𝒎𝒎𝑳𝑳𝒎𝒎 Number of cart entities that can be 
harvested without a truck present Entities 

𝑯𝑯𝑯𝑯 Harvest time Minutes 
𝑯𝑯𝒕𝒕 Simulation time Minutes 

µ𝑳𝑳 
Mass of grain per truckload, dry matter 

basis Tonnes truck-1 

Model Outputs 

Driver Utilization Percentage of the day drivers were 
committed to transportation % 

Truck Utilization Percentage of the day trucks were 
committed to transportation % 

Cumulative 
deliveries 

Total number of arrivals at the storage 
facility Trucks day-1 

FTE Flow time efficiency Percent 

WTF Wait time for full grain carts at the field 
edge Minutes 

WTP Wait time for trucks to unload at the 
receiving pit Minutes 

*Throughout this analysis all references to moisture content are on a wet basis, and all 
mass were on a dry matter basis. 
**Parameters considered stochastic for this analysis.  
 

Probability objects (MATLAB structures used to represent a statistical 

distribution) generated based on the collected data, and the random function were used to 

generate separate matrices of pseudorandom times for grain cart interarrival and each 
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process server. The distributions used are unique to each process and generally to each 

specific system examined. The matrices were predefined with enough random times for 

500 simulation runs for each set of input conditions. Each individual simulation was 

allocated a unique array of random times from the matrices for each respective parameter. 

Every time a Simulink block that requires a random time was called, a new value from 

the corresponding time array was selected. Enough time values were included in each 

array to accommodate 100 Simulink block calls (i.e. 100-grain cart loads harvested per 

day). This was sufficient for all conditions in this study but could be adjusted as needed. 

The specific distributions used here are described in the results, and deterministic inputs 

were handled by populating the matrices with constant values. 

The simulation was run for each day separately, and a different seed value was 

used in the random number generator to create unique matrices for each set of input 

conditions considered in the simulation. Deterministic model parameters were defined as 

constants in the workspace, and the daily simulations were independent, with the duration 

of fieldwork, number of trucks and drivers, and transportation time set as constants 

unique to each day. This resulted in input conditions that were unique to each day, and 

which allowed the simulation output to be repeatable. The simulations were run using a 

parfor loop with a parallel processing pool of four workers. Each day was evaluated 

separately, and a 1X500 SimulationOutput structure was saved from each day for further 

analysis.  

2.3.1.3 Model Structure  

Entity Generation 
 

Figure 2-2 shows the Simulink model layout. This simulation is process-oriented, 

and arrivals to the system (entities) are created via a generator process (Rubinstein & 

Kroese, 2016). In this model, entities represent full in-field transporters arriving at the 

field edge with a specified rate, 𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺. Arrival generation is handled via the 

portion of the flow diagram in light blue. Since grain transportation can continue after 

harvest stops, a custom block was included to stop load generation after a specified time. 

This allows transportation to continue after harvest operations have ceased for the day. 

Additional gates and control functions in the light blue section were included to stop 
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entity generation when no trucks/drivers were available and when the field queue 

(representing harvested grain waiting in combine hoppers and grain carts) was full. These 

structures simulate situations where harvest was stopped due to lack of an on-road 

transporter. Once a transporter becomes available, it can be immediately loaded if there is 

an entity waiting in the field queue. 

 
Figure 2-2: Simulink model flow diagram. 

 

Field-Side Interactions and Transportation 
 

Trucks and drivers are treated as resource pools in the model. The section of 

Figure 2-2 in green simulates the transfer of grain between in-field and on-road 

transportation. Accounting for unequal in-field and on-road transportation capacity was 

handled by the truck loading section of Figure 2-2 prior to the full truck queue. When 
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entities were created they were assigned an attribute based on which order they would be 

transferred to a truck, and the number of entities required to fill a truck,  

𝑄𝑄𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺, was required to be an integer value. The selection gate at the beginning of the 

truck loading section routes entities to either reserve a truck prior to being transferred, or 

to be transferred directly onto an already acquired truck. Once all the in-field arrivals 

required to fill a truck have been transferred, they are batched together and enter the full 

truck queue where they wait to acquire a driver before being transported to the storage 

facility. The service time to transfer the grain to the truck was stochastic, and the travel 

time was deterministic. Several items in the Truck Loading section of Figure 2-2 were a 

result of the programming environment. The check field gate server had a service time of 

zero and was required to ensure events were executed in the correct order when restarting 

harvest after a transportation delay. Temp Release and Get Truck Batch blocks were 

required to release a reserved truck and reassign it to the newly created batch when all 

entities required to fill a transporter are batched together (both of which happen at the 

same timestep). 

 

Storage Facility and Empty Return to Field 
 

Once an entity arrives at the storage facility, as shown in the blue section of 

Figure 2-2, it enters a first-in-first-out (FIFO) queue before being processed by a server 

which represents weighing/sampling the load. Next, the entities enter a queue in front of 

the last server, which represents unloading at the facility’s receiving pit. The time to 

weigh and inspect the load was taken as deterministic, and the time unloading at the 

receiving pit was stochastic. After unloading, the entity was duplicated before being 

destroyed. The duplicated entity was then sent through a server with a service time that 

represented the time to make the return trip to the field before the truck and driver were 

released back into the resource pool. The model assumes that each transportation cycle 

begins and ends with the vehicle staged at the field edge. An additional server which 

evaluated the HarvestCtrl function after a service time equal to 𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺 delayed 

opening the stop harvest gate. This process only has an effect if harvest had previously 

been stopped, and the delay represents time required to harvest the next full load once 

harvest begins again. This was required to prevent a waiting entity in the generator from 
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being released immediately after the truck and driver resources were released. These 

steps were handled by the custom delay resource release block shown in Figure 2-2. 

2.3.1.4 Analysis       

The primary model output is the cumulative number of deliveries that were made 

per day for a given set of input conditions. This represents how much grain could be 

harvested on a given day and indicates the overall material handling capability of the 

system. The simulation output included the average total daily deliveries and 

corresponding 95% reference intervals (±2 standard deviations) for each set of input 

conditions. The model validity was evaluated by comparing the actual number of 

truckloads delivered to the storage facility to the simulation result for each set of input 

parameters. The number of full truckloads delivered was the parameter of interest for this 

study, but it could easily be combined with the estimated load size to estimate the total 

mass of grain delivered.  

Several other performance measures were used to evaluate the system. One way 

to evaluate how efficiently material moves through a system is to examine how long it 

takes the material to travel through the system from beginning to end (flow time, 

equation (2-1)). This can be compared to the minimum time required to complete all the 

required processing steps, which is productive time (equation (2-2)). Productive time for 

this study includes the time to transfer the material to the truck, transport it to the storage 

facility, weigh and inspect the material, and unload it at the receiving pit, but does not 

include delays. The time of events was estimated for each simulation run based on entity 

attributes, which are assigned timestamps as the entity moved through the system. The 

ratio between the productive time and flow time is the flow time efficiency (FTE), which 

was determined from equation (2-3). An FTE of 100% implies that no delays were 

observed in the system. An FTE of 50% reflects that half of the time it took an entity to 

flow through the was productive, performing the required tasks, and delays between 

processing steps consumed half of the time. Because FTE was based on the actual time 

required to complete each processing step, FTE only evaluated delays between 

productive steps and does not account for inefficiencies within processing steps (i.e., if 

the minimum time to transfer the grain was 2 minutes, but a given observation took 5 

minutes, that would not be reflected in FTE). 
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Where: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺 = Time required for the ith entity to complete processing from arrival 

at field edge to delivery (minutes) 

𝑇𝑇𝑑𝑑𝑇𝑇 = Timestamp when the ith entity was delivered to the storage facility 

(minutes) 

𝑇𝑇𝑇𝑇𝑇𝑇 = Timestamp when the ith entity was created (minutes) 

 

Where: 

𝑃𝑃𝑃𝑃𝐹𝐹𝑑𝑑𝑃𝑃𝑇𝑇𝑡𝑡𝑇𝑇𝑃𝑃𝑇𝑇 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺 = Total time to complete all necessary process steps for the ith 

entity (minutes) 

𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺= Time required to transfer the ith entity from a grain cart to truck (minutes) 

𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝑡𝑡𝑡𝑡𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 = Time required to transport the ith entity from the field to storage 

(minutes) 

𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝐿𝐿𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺 = Time required to weigh and inspect the ith entity (minutes) 

𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺 = Time required to transfer the grain at the receiving pit (minutes) 

𝑇𝑇 = entity number. Represents a single grain cart arriving to the field edge 

 

Where: 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝐸𝐸𝐺𝐺 = Ratio of the minimum time required to complete 

processing to the actual time for the ith entity (%) 

 

Similarly, wait times between processes served as indicators of how efficiently 

material moved through the system. The field and pit queue were the two primary points 

of interest for this study, and their associated wait times were estimated from equation 

(2-4) and equation (2-5), respectively. Wait time was estimated for each entity in 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺  = (𝑇𝑇𝑑𝑑𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇) (2-1) 

𝑃𝑃𝑃𝑃𝐹𝐹𝑑𝑑𝑃𝑃𝑇𝑇𝑡𝑡𝑇𝑇𝑃𝑃𝑇𝑇 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺 = 𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺 + 𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝑡𝑡𝑡𝑡𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝐿𝐿𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺+𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺 (2-2) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇𝐸𝐸𝐺𝐺 =
𝑃𝑃𝑃𝑃𝐹𝐹𝑑𝑑𝑃𝑃𝑇𝑇𝑡𝑡𝑇𝑇𝑃𝑃𝑇𝑇 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺
∗ 100 (2-3) 
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equation (2-4) and each full truckload delivered to the storage facility in equation (2-5). 

Time spent waiting in the field queue represented full in-field transporters that cannot be 

unloaded because no truck was available. Frequent or long wait times here indicate the 

potential for in-field operations to be slowed or stopped. Wait times associated with full 

trucks queuing before unloading at the receiving pit indicated trucks were arriving faster 

than they could be unloaded. For a given set of input conditions, the mean wait time and 

percentage of entities or loads with wait times greater than zero were estimated across all 

simulations.  

Where: 

𝑊𝑊𝑇𝑇𝐹𝐹𝐺𝐺 = Time the ith entity spent waiting in the field side queue before being 

transferred to a truck (minutes) 

𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇 = Timestamp when the ith entity began transfer to a truck (minutes) 

 

Where: 

𝑊𝑊𝑇𝑇𝑃𝑃𝑗𝑗 = Time the jth truckload spent waiting in queue before unloading at the 

storage facility (minutes) 

𝑇𝑇𝑇𝑇𝐸𝐸𝑇𝑇 = Timestamp when the jth truckload left the scales (minutes) 

𝑇𝑇𝑑𝑑𝑇𝑇 = Timestamp when the jth truckload started unloading at the storage facility 

(minutes). 

𝑇𝑇 = index for full trucks. Corresponds to full trucks moving through the system, 

consists of 𝑄𝑄𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺 entities. 

 

The utilization of truck and driver resources was also a primary concern. The time 

a resource was dedicated to transporting a particular truckload was determined from 

equation (2-6) and equation (2-7) for trucks and drivers, respectively. Trucks were 

considered in use from the time the first entity begins to transfer to the time the vehicle 

returned to the field empty. The driver’s time was estimated similarly, except a driver 

was not required until the truck was full and ready to begin transportation. The average 

𝑊𝑊𝑇𝑇𝐹𝐹𝐺𝐺  = (𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇) (2-4) 

𝑊𝑊𝑇𝑇𝑃𝑃𝑗𝑗  = (𝑇𝑇𝑑𝑑𝑇𝑇 − 𝑇𝑇𝐸𝐸𝑇𝑇𝑇𝑇) (2-5) 
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utilization of the resources over the course of the day was determined from the total 

utilized time, number of resources, and the time when the last truck returned to the field 

(equations (2-8) and (2-9) for trucks and drivers, respectively). The average truck 

utilization, driver utilization, and flow time efficiency were estimated over the 500 

simulations for each set of given input conditions. The simulation automatically recorded 

resource utilization at discrete points over the course of the simulation. From this, the 

maximum resource utilization observed at any point over all simulations was determined. 

The discrete utilization estimates for all simulations were averaged using a five-minute 

window to show the trend of utilization over the course of the day.  

 

Where: 

𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 = Time a truck was committed to the jth truckload 

(minutes) 

𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇 = Timestamp when the first entity begins transfer to the jth truckload 

(minutes) 

𝑇𝑇𝑡𝑡𝑃𝑃𝑇𝑇 = Timestamp when the truck and driver return to the field after delivering 

the jth truckload (minutes) 

 

Where: 

𝐷𝐷𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 = Time a truck was committed to the jth truckload 

(minutes) 

𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇 = Timestamp when the driver is acquired for transport of the jth truckload 

(minutes) 

 

 

 

 

𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗  = (𝑇𝑇𝑡𝑡𝑃𝑃𝑇𝑇 − 𝑇𝑇𝑇𝑇𝐹𝐹𝑇𝑇) (2-6) 

𝐷𝐷𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗  = (𝑇𝑇𝑡𝑡𝑃𝑃𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑡𝑡𝑇𝑇) (2-7) 
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Where: 

𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 = Average truck utilization over a whole day for a given 

simulation (%) 

𝑡𝑡𝑚𝑚𝐿𝐿𝑚𝑚=Time when the final truck returns to the field (minutes) 

𝑁𝑁= Total number of deliveries 

 

Where: 

𝐷𝐷𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 = Average driver utilization over a whole day for a given 

simulation run (%) 

𝑁𝑁𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑡𝑡 = Number of drivers 

 

2.3.2 Case Studies  

2.3.2.1 Operation 1—Data Collection 

The data used to inform and validate the model were collected at two cooperating 

farms. The first cooperator (Operation 1) was a large grain farm in Western Kentucky, for 

which data was collected during the 2016 wheat (June) and corn (August/September) 

harvest. This provided the ability to look at the same system with different material 

handling demands due to the yield difference between the two crops. The producer 

operated multiple combines and utilized multiple grain carts for in-field transportation. 

During wheat harvest, the producer utilized up to four class 8 combines (grain tank 

capacity of approximately 14.5 m3) with 12.2 m platform headers and two 35.3 m3 (1,000 

bu) capacity grain carts. For corn harvest, the producer utilized two class 8 combines with 

12-row corn heads and the same two grain carts. On-road transportation utilized a 

combination of hopper and dump semi-trailers, and the grain carts were sized to match 

the capacity of the trucks (approximately 25 wet tonnes). The producer determined the 

number of unique trucks used on a given day, and it varied from 2 to 11 depending on 

𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 =
∑ 𝑇𝑇𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇 𝑃𝑃𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑁𝑁𝐺𝐺𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 ∗ 𝑡𝑡𝑚𝑚𝐿𝐿𝑚𝑚
∗ 100 (2-8) 

𝐷𝐷𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 =
∑ 𝐷𝐷𝑃𝑃𝑇𝑇𝑃𝑃𝑇𝑇𝑃𝑃 𝑃𝑃𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑁𝑁
𝑗𝑗=1

𝑁𝑁𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑡𝑡 ∗ 𝑡𝑡𝑚𝑚𝐿𝐿𝑚𝑚
∗ 100 (2-9) 
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availability, crop, and field conditions. Grain was primarily delivered to an on-farm 

drying and storage facility equipped with scales and an estimated receiving capacity of 

125 t hr-1 . 

Scale records obtained from the producer were one of the primary sources of data 

for this analysis. The records included the date, field, destination, test weight, moisture 

content, truck number, mass of grain, and grain cart driver. The records also included 

timing information, recorded to the nearest minute, including when grain carts arrived at 

the field edge and when semi-trailers arrived and departed from the storage facility. 

Records were obtained for an entire season of winter wheat and white corn harvest, and 

only on days where 100% of the grain was delivered to the on-farm storage facility were 

tested using the model. For a given day, these records were used to determine: the 

number of unique trucks utilized; the number of truckloads delivered to the facility; and 

though not explicitly a model parameter, the total amount of grain harvested (adjusted to 

tonnes on a dry matter basis). The elapsed time between when full grain carts arrived at 

the field edge was utilized to determine the interarrival time for in-field 

transporters, 𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺. The total time harvesting each day, Hh, was estimated as 

the elapsed time between the first and last grain cart arrival plus the average time 

between arrivals (equation (2-10)). This additional time was included to account for the 

time harvesting before the first in-field transporter arrived at the field edge. 

 

Where: 

𝛥𝛥𝑇𝑇 = Elapsed time between the first and last grain cart arrival for the day 

(minutes) 

TP = Total number of truckloads delivered (trucks day-1) 

 
The average transportation distance from each field to storage was estimated 

using the Network Analysis Toolbox in ArcMap 10.2.2 (ESRI, Redlands, CA). Field 

locations were imported as shapefiles, and the Kentucky road network shapefile was used 

to find the distance from each field to the storage facility. The average travel speed was 

𝐻𝐻ℎ = Δ𝑇𝑇 +
Δ𝑇𝑇
𝑇𝑇𝑃𝑃

 (2-10) 
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determined using a GPS data logger (Flashback GPS Tracker, LandAirSea, Woodstock, 

IL) that was installed on a truck that was operated for eight days during corn harvest. 

These were combined to estimate the average time required to transport grain from the 

field to storage, 𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝑡𝑡𝑡𝑡𝐿𝐿𝐺𝐺𝐺𝐺, for each day. This data was also used to determine the 

average time spent weighing and sampling the grain upon arrival at the storage 

facility, 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝐿𝐿𝑠𝑠𝐺𝐺𝑡𝑡. For this operation, the time required to return to the field from the 

storage facility, 𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡𝐺𝐺𝐺𝐺, was assumed equal to 𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝑡𝑡𝑡𝑡𝐿𝐿𝐺𝐺𝐺𝐺. 

The service time for a truck to receive grain from a grain cart, tarp the load and 

depart the field (𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹) was determined through time-motion studies of the harvest 

operation over several days for both crops. Service times at the unloading pit, 𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺, were 

determined in a similar fashion and were determined based on when the truck pulled into 

the pit to when it departed. These times were based on physical observation of the system 

and data was recorded to the nearest second. 

2.3.2.2 Operation 2—Data Collection 

A second location in Central Michigan (Operation 2) was used to evaluate how 

well the model could approximate an operation where multiple on-road transporters we 

shuttled from the field to storage by a single operator. For this location, three dump semi-

trailers were shuttled by a single operator; a common configuration in smaller operations 

that can result in harvest rates higher than the grain transportation rate. This operation 

was equipped with a class 7 combine (grain tank capacity of approximate 10.6 m3) 

running a 12-row corn head, and a single grain cart with a maximum capacity of 30.8 m3 

(875 bu) was used for in-field transportation. The full capacity of the grain cart was not 

utilized, and unloading events were timed so that each truck received two unloads from 

the grain cart. No scales were employed at this location, so no weight information was 

available. However, based on conversations with the producer, each truck had an 

approximate capacity of 28 tonnes on a wet basis (1,300 bu). For this operation, all model 

parameters were estimated from a time-motion study conducted for a single day during 

the 2016 corn harvest (November). 
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2.3.2.3 Data Analysis 

The collected data were organized and preprocessed in a spreadsheet. The input 

parameters are shown in Table 2-1, except for: 𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺, 𝑑𝑑𝑡𝑡𝑓𝑓𝐺𝐺, and 𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺 , were 

considered deterministic and were taken as average values for each operation/day. The 

time associated with entity generation, field side grain transfer, and unloading at the 

destination facility were considered as stochastic. Observations for these parameters were 

imported to MATLAB for distribution fitting. The allfitdist function (downloaded from 

the MATLAB file exchange) was used to assist in determining the best distribution for 

modeling the data. Common distributions were fit to the data and ranked based on the 

Bayesian Information Criterion (BIC). The fitdist function was then used to create 

probability distribution objects for the top choices, which were further evaluated with 

manual observation of QQ plots. The selected distributions and associated parameters 

were saved as MATLAB formatted data files (.mat) containing the probability 

distribution objects that served as inputs to the model. Finally, the probability distribution 

for the selected distributions were overlaid with histograms of the observed data using the 

histogram function with normalization based on the probability density function.  

2.4 Results and Discussion 

2.4.1 Example Operation System Characteristics 

2.4.1.1 Operation Summary 

A summary of the operating characteristics for the example farms can be found in 

Table 2-2. The two crops examined in Operation 1 represent the same system with 

different material handling requirements, and Operation 2 represents a smaller operation. 

Operation 1 used two combines and two grain carts in corn, which resulted in an average 

harvest rate, HR, of 73.6 tonnes of corn per hour (adjusted to 0% moisture). The in-field 

transporters’ capacity was matched to the semi-trucks used for on-road transportation 

(𝑄𝑄𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺 =1), and the average mass of grain, µ𝑳𝑳, was 21.0 tonnes of dry matter per truck. 

This combination resulted in an average time between full grain carts arriving at the field 

edge of 17.2 minutes. The operating characteristics were similar for Operation 1 in wheat, 

except up to four combines and two grain carts were used. The average HR was reduced 

to 44.7 t hr-1 (at 0% moisture) and the time between grain cart arrivals increased to an 
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average of 26.7 minutes. This lower harvest rate and increased time between grain cart 

arrivals represents a lower material handling requirement and is consistent with the lower 

yield of wheat compared to corn in Kentucky. Operation 2 utilized a single combine and 

grain cart and no scale data was available at this operation, so it was evaluated based 

solely on the number of truckloads delivered. Additional axles and increased 

transportation weight limits allowed an increased mass of grain to be transported per 

truckload, and each truckload was approximately 28 tonnes (1,300 std. bu). The average 

time between cart arrivals was 20.5 minutes, with two partially full grain carts required to 

fill a single truck (𝑄𝑄𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺 = 2). The characteristics of these three scenarios result in a 

transportation demand (λ) ranging from an average of 1.0 to 3.6 trucks per hour.  
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Table 2-2: Operation Characteristics* 

Parameter Operation 1 
Corn 

Operation 1 
Wheat 

Operation 2 
Corn 

Days 12 5** 1 

𝑯𝑯𝑯𝑯 (t hr-1) 86.5 (58.9-
171.9) 51.7 (12.4-71.8) - 

𝑯𝑯𝑯𝑯 (minutes) 469 (268-590) 375 (149-521) 578 
𝒅𝒅𝒕𝒕𝑳𝑳𝑳𝑳𝑳𝑳𝒅𝒅 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮 
(minutes cart-1) 17.2 (3.0-120) 26.7 (1.0-95) 20.5 (4.7-30.9) 

Tt (trucks day-1) 28 (15-39) 13.8 (5.0-23) 10 
TG (t day-1) 673 (356-1000) 329 (72-574) - 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮𝒕𝒕𝒕𝒕𝑳𝑳𝑮𝑮𝒕𝒕 (mintues) 11.6 (3.9-29.5) 5.0 (4.2-6.3) 11.8 (8.0-22.4) 

𝑵𝑵𝒕𝒕𝑮𝑮𝒓𝒓𝒄𝒄𝒕𝒕𝒕𝒕 8.6 (5-11) 3.2 (2-4) 3 
𝑵𝑵𝒅𝒅𝑮𝑮𝑮𝑮𝒅𝒅𝑮𝑮𝑮𝑮𝒕𝒕 8.6 (5-11) 3.2 (2-4) 1 

λ (trucks hr-1) 3.6 (2.5-4.5) 2.2 (0.9-2.9) 1.0 
µ𝑳𝑳 (t truckload-1) 21 (9.6-29.0) 21.5 (8.5-24.7) - 
𝑸𝑸𝒄𝒄𝑳𝑳𝑮𝑮𝒕𝒕 (Carts truck-1) 1 2 
𝒅𝒅𝒕𝒕𝑭𝑭𝑭𝑭 (minutes) 5.76 (3.6-14.0) 2.3 (1.7-2.3) 
𝒅𝒅𝒕𝒕𝒕𝒕𝒄𝒄𝑳𝑳𝒔𝒔𝑮𝑮𝒕𝒕 (minutes) 2 0 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝒕𝒕 (minutes) 12.5 (6.5-16.9) 26.1 (18.3-32.2) 
𝒅𝒅𝒕𝒕𝑮𝑮𝑮𝑮𝒕𝒕𝒓𝒓𝑮𝑮𝑮𝑮 (minutes) 𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮𝒕𝒕𝒕𝒕𝑳𝑳𝑮𝑮𝒕𝒕 9.5 
𝑸𝑸𝑭𝑭𝑮𝑮𝑮𝑮𝒔𝒔𝒅𝒅_𝒎𝒎𝑳𝑳𝒎𝒎 (loads) 3 4 1 

𝑯𝑯𝒕𝒕 960 960 
*Average values, range shown in parenthesis. 
**8 days were used for 𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺. The additional days were days when grain was 
delivered directly to a commercial elevator. 
 
 

Table 2-2 also provides a summary of the transportation requirements for the 

operations. Operation 1 had access to a relatively large number of trucks and drivers, 

which for corn, ranged from 5 to 11 trucks and drivers used per day with an average of 

8.6. In wheat, only 2 to 4 trucks were used per day, with an average of 3.2. The number 

of trucks and drivers used on a given day was determined by the producer based on 

availability, field and weather conditions, and locations. The transportation time from the 

field to the storage facility, 𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝑡𝑡𝑡𝑡𝐿𝐿𝐺𝐺𝐺𝐺, had a daily average that ranged from 3.9 to 29.5 

minutes for Operation 1 corn. The fields planted in wheat were generally closer to the 

storage facility, thus Operation 1 wheat had shorter transportation times averaging from 
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4.6 to 6.3 minutes. Operation 2 utilized three trucks that were shuttled to the storage 

facility by a single driver. The extra trucks were staged by the field edge where they 

served as temporary field side storage while waiting for a driver. No scales were used at 

Operation 2 (𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝐿𝐿𝑠𝑠𝐺𝐺𝑡𝑡 = 0), and the average time unloading at the pit was more than 

double Operation 1 at 34.5 minutes, primarily due to the capacity of the wet grain 

receiving system. 

2.4.1.2 Harvest Trends 

Data were only collected for a single day at Operation 2. Thus, discussion in this 

section is limited to Operation 1, where data was available for multiple days and crops. 

Figure 4-4 shows the trend in grain moisture content and the total mass of grain harvested 

over the course of the harvest season for Operation 1 (a) corn (b) wheat. Both plots show 

a general trend of decreasing moisture over the course of the season as the crop field 

dries, and the range of moistures encountered in corn was 26.7% w.b. to 18.8% w.b.. For 

wheat, the range encountered was 20.8% w.b. to 14.3% w.b., so both crops required some 

heated-air drying for the duration of the harvest season.  

Figure 4-4 also shows the total mass of grain harvested on a given day, as 

determined from the scale records, adjusted to a dry matter basis. This shows the overall 

harvest system productivity and accounts for any variation in yield, field machinery 

performance, transportation distance, number of transporters, and the harvest duration for 

each day. For both crops, there is a general trend of increased daily productivity as the 

grain field dries. The trend was most pronounced in wheat where the productivity 

increased from 62.3 to 730 t day-1. A large portion of the increased productivity can be 

explained by a corresponding increase in daily harvest duration. The harvest time was 

primarily determined by field conditions, or by the wet holding capacity at the storage 

facility. In corn, the trend was not as clear, and there was a larger amount of variability. 

Two days are shown in Figure 4-4 (a), which had drastically lower productivity. 

September 4th was a Sunday, which typically would not be a work day for this operation. 

The cause for the other low productivity day is unknown, but fieldwork only occurred for 

approximately 90 minutes. The last three days shown in Figure 4-4 (b), which had a 

much higher harvest rate because a large portion of the wheat was delivered directly to a 

commercial elevator, were included here for context. The two low productivity days in 
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corn and three high productivity days in wheat were excluded from Table 2-2 and 

subsequent sections.  

 
(a) 

 
(b) 

Figure 2-3: Trends over the harvest window (Data shows average moisture content and 
the average mass of grain harvested (dry matter basis) over the span of data collection (a) 

Operation 1 corn (b) Operation 1 wheat). 
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One of the aims of this research was to evaluate if the complex interactions that 

affect the harvest rate (yield, moisture, field machinery performance, etc.) could be 

represented by the elapsed time between the arrival of full loads of grain at the field edge 

(𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺). The distributions used to represent this value (shown in section 2.4.2) 

were estimated using data collected over a range of field conditions. One potential pitfall 

of using a single distribution to represent this relationship over the whole harvest season 

is the variation in field machinery performance as field conditions and moisture content 

change. Figure 2-4 shows the time between grain cart arrivals plotted against grain 

moisture content for (a) Operation 1 corn and (b) Operation 1 wheat. The moisture 

content shown here is the average moisture of the two subsequent grain cart arrivals used 

to calculate the interarrival time. There was no strong correlation between interarrival 

time and moisture for either crop (r2 <0.02 for both cases). A similar lack of correlation 

was observed between time of day and interarrival time. This indicates a single 

distribution is appropriate for use over the whole harvest season, and any moisture or 

non-stationary relationships were masked by other forms of variability. 

 
(a) 

 
(b) 

Figure 2-4: Grain moisture content plotted against the grain cart interarrival rate. 
Moisture content is the average of the two subsequent arrivals, and interarrival time is the 
time elapsed between their arrival at the field edge (a) Operation 1 corn (b) Operation 1 

wheat  
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2.4.2 Distributions for Stochastic Elements 

The full grain cart generation rate, service time to transfer grain to trucks, and the 

service time at the unloading pit were modeled as stochastic processes. Table 2-3 shows 

the selected distributions and associated parameters that were used to represent them. The 

values shown here represents the same data that was shown in Table 2-2, but here the 

data is presented in terms of the parameters of the associated distributions. Normalized 

histograms and the fitted probability functions chosen to represent the entity generation 

rate are shown in Figure 2-5. The low values on the histograms could represent instances 

when full grain carts arrive faster than the grain they contain could physically be 

harvested. There are numerous scenarios where this could be the case. For Operation 1, 

multiple full grain carts could be working in parallel and arrive at approximately the same 

time (Figure 2-5 (a) or (b)). Alternatively, Operation 2 used a single grain cart and 

required two grain cart unloads to fill a truck; entities are not required to be identical in 

size, so a smaller mass of grain could be dumped before moving to a new section of the 

field. The times on the long end of the distribution could represent delays due to 

breakdowns, changing fields, or adjusting equipment. These distributions are critical to 

the model because, given enough capacity in other areas of the system, they will govern 

how much grain enters the system and the total productivity. 
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Table 2-3: Input Parameters and Associated Distribution for Model Validation 
Symbol Operation 1 Corn Operation 1 Wheat Operation 2 Corn 

 Parameters Distribution  Parameters Distribution  Parameters Distribution  

𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺 
µ=2.68  
σ=0.29 
n=317 

Log-Logistic 
α=2.27  
β=11.79 
n=125 

Gamma 
µ=3.12  
σ=0.28 
n=15 

Log-Logistic 

𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹 
µ=1.72  
σ=0.24 
n=69 

Lognormal 
µ=2.37  
σ=0.60 
n=19 

Normal 

𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺 
µ=12.47 
 σ=1.92 

n=45 
Normal 

µ=26.1 
 σ=3.69 

n=9 
Normal 

       
*n=number of observations used, α=shape parameter, β=scale parameter, µ=mean, 

σ=standard deviation or scale parameter. Note µ and σ are in terms of their distribution.  
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(a) 

 
(b) 
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(c) 

Figure 2-5: Grain cart interarrival time (a) Operation 1 corn (b) Operation 1 wheat (c) 
Operation 2 corn 

 

Normalized histograms and the fitted probability functions chosen to represent the 

time spent unloading at the storage facility, 𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺, and the time required to transfer the 

grain to a waiting truck, 𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹, are shown in Figure 2-6 and Figure 2-7, respectively. A 

common distribution was used for both crops at Operation 1 (Figure 2-6 (a) and Figure 

2-7 (a)). The intent was to increase the sample size and find a more representative 

distribution for these processes because limited observations were available. This was 

deemed acceptable because the same equipment was used in both cases, and no 

statistically significant differences were found between the means of the individual data 

sets. Crop and moisture content most likely caused differences in the physical material 

handling capacity of the equipment; however, in addition to the time required to 

physically transfer the material, 𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹 and 𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺 include ancillary time required to 

complete the operation (align the equipment, communication between operators, etc.). 

The distributions for 𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹 and 𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺 at Operation 2 are shown in Figure 2-6 (b) and 

Figure 2-7 (b), respectively. The time required to transfer the grain to the truck for 

Operation 2 was on average less than half of Operation 1, which is consistent with 

Operation 2 requiring two unloading events to fill a single truck. 
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(a) 

 
(b) 

Figure 2-6: Pit service time (a) Operation 1 wheat and corn (b) Operation 2 corn 
 

 



 

38 

 

 
(a) 

 
(b) 

Figure 2-7: Loading service time (a) Operation 1 wheat and corn (b) Operation 2 corn 
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2.4.3 Model Application and Validation 

2.4.3.1 Overall Performance 

The simulation output was validated by comparing the number of deliveries 

estimated by the simulation to observed data. All available data was used to inform the 

model parameters for each operation/crop, and the model was applied to each individual 

set of input conditions. Figure 2-8 shows the observed number of deliveries plotted 

against the average simulation output, and Table 2-4 provides a tabular comparison. 

Overall, based on the daily input conditions, the simulation agreed well with the observed 

data, and the observed data was within the 95% reference interval for 15 of the 18 input 

conditions examined, and the median difference between the simulation and observed 

data was 0.8 deliveries, or -4.1%. Overall, the simulation underestimated the number of 

deliveries for 61% of the input conditions. The simulation underestimated the total 

number of grain deliveries by 0.5% for Operation 1 in corn and overestimated by 0.3% 

for Operation 1 in wheat, and 8% for Operation 2. It was also apparent that the simulation 

produced a relatively wide range of cumulative deliveries, with the half width of the 95% 

reference interval being on average 23%, 39%, and 24% of the average number of 

deliveries for Operation 1 corn, Operation 1 wheat, and Operation 2 corn, respectively. A 

closer examination of the three days that did not fall into the 95% reference interval gives 

insight as to why the simulation did not perform well for these observations. The 

simulation overpredicted the observed data on all three occasions. August 22 was the first 

day of harvest, and the arrival rate for the first third of the day was over double the 

season average. On 8/26, there was a single truckload harvested followed by a two-hour 

delay while switching farms. Similarly, on 06/07 there was a two-hour span where no 

truckloads arrived. Though the simulation was not able to capture these atypical 

scenarios, it does illustrate the amount of variability that can be encountered for a given 

day, and partially explains the relatively large variability in simulation output.  
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Figure 2-8: Observed versus simulated daily deliveries. Each series represents a different 

crop operation combination. Error bars represent the ± two standard deviations for the 
simulated values (n=500). 
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Table 2-4: Simulation Results: Resource Utilization and Cumulative Deliveries 

Scenario 
(operation-

crop) 
Day 

Resources 
(Trucks/ 
Drivers) 

Average 
Driver 

Utilization 
(%) 

Max Driver 
Utilization 

(%) 

Average 
Truck 

Utilization 
(%) 

Max 
Truck 

Utilization 
(%) 

Simulated 
Deliveries 

Observed 
Deliveries 

1 Corn 08/22 (5/5) 28.8 66.0 35.2 75.8 24.7±6.1 19 
1 Corn 08/23 (11/11) 13.9 31.0 16.9 35.0 33.9±6.5 34 
1 Corn 08/24 (10/10) 15.5 34.8 18.8 39.7 25.3±6.3 24 
1 Corn 08/25 (6/6) 28.7 60.2 34.1 67.9 34.8±7.3 29 
1 Corn 08/26 (7/7) 22.3 49.0 26.9 55.7 21.6±5.3 15 
1 Corn 08/27 (10/10) 17.2 34.4 20.4 39.5 26.1±6.0 28 
1 Corn 08/29 (9/9) 17.8 36.8 21.4 41.6 31.5±6.9 32 
1 Corn 08/30 (9/9) 17.3 32.9 20.9 38.6 27.7±6.6 30 
1 Corn 09/01 (8/8) 49.1 74.4 52.8 79.8 27.5 ±6.3 32 
1 Corn 09/02 (10/10) 38.1 67.9 41.1 72.6 30.8±6.7 33 
1 Corn 09/03 (11/11) 29.7 47.0 32.5 50.8 33.8 ±7.4 39 
1 Corn 09/05 (7/7) 41.1 72.0 45.1 78.2 15.5 ± 5.0 20 

1 Wheat 06/07 (2/2) 41.5 75.9 54.3 90.8 12.8±5.0 5 
1 Wheat 06/08 (3/3) 26.9 69.8 33.3 85.1 5.4±3.1 7 
1 Wheat 06/09 (3/3) 32.7 67.6 39.8 80.2 19.3±5.9 19 
1 Wheat 06/10 (4/4) 23.2 56.3 28.4 70.0 17.7±5.8 23 
1 Wheat 06/11 (4/4) 25.2 52.8 30.3 61.5 14.0±4.9 15 
2 Corn - (3/1) 82.4 96.0 51.8 89.5 10.8± 2.6 10 
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Table 2-5 shows flow time efficiency and wait times, as estimated by the 

simulation. Operation 1 had extremely high flow time efficiency for both crops (average 

92%), and on average, less than 0.2% of entities for corn and 4.4% of entities for wheat 

had wait times greater than zero at the field edge. This indicates that full in-field 

transporters rarely had to wait for a truck, and it was unlikely harvest operations were 

frequently stopped due to a lack of transportation resources. At the receiving pit, on 

average 50.6% of corn truckloads experienced wait times and the average wait was 7.1 

minutes. For wheat, 23.6% truckloads had wait times at the pit greater than zero, and the 

average wait was 5.4 minutes. When compared to corn harvest, the reduction in wait time 

and the percentage of truckloads impacted is consistent with the reduced material handling 

requirements for wheat. Moreover, when combined with the apparent lack of delay on the 

field side, this indicates there was sufficient surge capacity in the transportation resources 

to prevent wait times at the receiving pit from impacting upstream processes. 

Table 2-4 also shows resource utilization, and the columns for maximum driver 

and truck utilization represents the highest utilization that was recorded over all 

simulations. A large number of transportation vehicles employed at Operation 1 resulted 

in the low truck and driver utilization, especially in corn where the average truck 

utilization ranged from approximately 17% to 53%, with driver utilization being slightly 

lower because a driver was not considered necessary to load the truck. From a practical 

standpoint, the large number of trucks that were used by Operation 1 could serve as 

auxiliary wet holding capacity once regular wet bins were full. This would be accounted 

for by duration of harvest operations and would not impact the overall number of 

deliveries to the storage facility that were estimated. The only difference would be the 

time associated with waiting at the pit to unload the final entity before transport back to 

the field. The trucks would most likely queue at the storage facility with their last load, 

and they would be unloaded at a rate equal to the drying capacity before returning to the 

field the next morning. These aspects, and incorporating wet holding and drying capacity, 

will be addressed in future work. 
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Table 2-5: Simulated Results: Flow Time Efficiency and Wait Times 
Scenario 

(operation-
crop) 

Day 
Mean 
FTE* 
(%) 

Mean 
WTF* 

(minutes) 

Entities 
Impacted** 

(%) 

Mean 
WTP* 

(minutes) 

Truckloads 
Impacted*** 

(%) 
1 Corn 08/22 89.8 3.9 0.2 7.0 50.5 
1 Corn 08/23 89.1 - 0.0 7.4 51.8 
1 Corn 08/24 89.5 - 0.0 7.4 50.6 
1 Corn 08/25 90.0 7.5 0.3 7.4 50.6 
1 Corn 08/26 90.2 - 0.0 6.9 50.6 
1 Corn 08/27 89.9 - 0.0 7.3 51.4 
1 Corn 08/29 89.6 - 0.0 7.2 51.1 
1 Corn 08/30 90.1 - 0.0 7.1 49.9 
1 Corn 09/01 94.3 5.0 0.8 6.8 50.2 
1 Corn 09/02 93.7 - 0.0 7.2 50.9 
1 Corn 09/03 93.2 - 0.0 7.0 50.5 
1 Corn 09/05 93.3 7.5 0.5 7.0 49.0 

1 Wheat 06/07 93.9 9.0 16.7 4.0 16.5 
1 Wheat 06/08 95.5 4.8 1.5 5.6 24.5 
1 Wheat 06/09 95.5 6.5 3.2 5.3 25.0 
1 Wheat 06/10 95.2 9.1 0.2 6.1 26.2 
1 Wheat 06/11 95.5 4.8 0.2 6.0 25.6 
2 Corn - 66.5 9.1 0.8 - 0 

*WTF= wait time at field edge. WTP= wait time at the receiving pit. Mean wait time 
only considers entities that had a wait time>0. FTE=Flow time efficiency. 
**Percentage of entities (full grain carts) created that experienced a delay at the field 
edge due to lack of an available truck 
***Percentage of truckloads that experienced a delay before unloading at the storage 
facility 

 

This simulation resulted in extremely high flow time efficiency for Operation 1 

wheat, while also increasing the utilization of trucks and drivers. Fewer trucks were 

utilized during wheat harvest because of the lower harvest rate and shorter transportation 

distance. In this instance, the simulation shows the transportation equipment was better 

matched to the field conditions, with the average truck utilization ranging from 28% to 

54%, with the maximum observed truck utilization topping out over 90%. 

Operation 2 provided an example of a different system configuration where a 

single driver was responsible for handling multiple trucks, and the simulation estimated 

an average driver utilization of 82%. The average truck utilization was estimated at 52%, 
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which includes the portion of the time the trucks served as temporary storage at the field 

edge. This operation had a lower flow time efficiency at 66.5%. This is indicative of the 

wait times for both fully loaded trucks and entities in partially loaded trucks. These wait 

times are not accounted for in WTF, which impacted less than 1% of entities, and which 

only accounts for full in-field transporters waiting for a truck. For this operation, there 

was never any wait time at the receiving pit because only a single driver was used, 

implying that only a single truck could be at the storage facility at any given time.  

2.4.3.2 Example Performance 

The following sections show example simulation output for three example harvest 

scenarios that were summarized in Table 2-4. The simulation output and performance 

metrics as determined by the simulation are shown for a single day for each harvest 

scenario. Figure 2-9, Figure 2-10, and Figure 2-11 show the output of 500 simulation 

runs for Operation 1 corn, Operation 1 wheat, and Operation 2 corn, respectively. These 

specific dates were chosen because they represent a variety of input conditions and 

simulation performance. 

Figure 2-9 (a) shows the cumulative deliveries over the course of the day. The 

solid black line represents observed deliveries each semi-transparent gray circle 

represents a simulated delivery. Over the course of the day, the actual deliveries always 

fall within the range of simulation outputs, and the uneven spacing in the observed 

deliveries represents the variability in the system. For this example, the total time 

harvesting was 440 minutes. The total number of observed deliveries was 28, and the 

average simulation number of deliveries was 26.1, which represents an average of 6.8% 

underprediction of the total number of truckloads delivered. Figure 2-9 (b) shows the 

flow time efficiency for each full grain cart entity generated in the simulation. Points with 

100% FTE represent entities that were delivered with no wait or delays between handling 

steps. The x-axis in this figure represents the time at which the entity enters the system, 

with zero corresponding to the start of the harvest on the day. Actual delivery time is not 

shown and could be outside of the time scale shown. Figure 2-9 (c) and (d) shows the 

respective average utilization of trucks and drivers over the course of the day. Semi-

transparent gray circles in these figures represent resource utilization as determined by 

Simulink and represent an average utilization between system updates. The solid black 
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line shows utilization averaged across a five-minute window for all simulation runs. The 

utilization of trucks and drivers increases rapidly initially as material enters the system 

and then has a more gradual increase over the bulk of the day. The maximum utilization 

observed at any point occurs between 100 and 200 minutes. This most likely represents a 

simulation run where several entities were generated with small intergeneration times 

early in the simulation. This example utilized ten trucks and drivers, and average 

utilization never exceeded 40%. Truck utilization was always slightly higher than driver 

utilization because the simulation did not acquire a driver until the truck was full. For 

individual simulation runs, utilization decreases towards the end of the day as trucks and 

drivers complete their last run of the day, but the decrease was not dramatic because 

Simulink estimates utilization from the start of the simulation to each evaluation point. 
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(a) 

 
 (b) 

 
(c) 

 
(d) 

Figure 2-9: Example simulation output for all simulations (n=500) for a single day 
(08/27) for Operation 1 corn (Gray circles represent a single point, and darker areas 

represent a higher concentration of points. (a) Cumulative deliveries over the course of 
the day. Solid black line represents observed data. (b) Flow time efficiency, where 100% 
represents no delays between handling steps (average 89.9%). (c) Truck utilization. Black 
line represents average utilization across all simulation runs using a five-minute sampling 

window. (d) Driver utilization Black line represents average utilization across all 
simulation runs using a five-minute sampling window). 
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Figure 2-10 similarly shows results for Operation 1 in wheat. In this example, the 

observed deliveries tended to occur on the later end of the simulation output. This was 

primarily due to the long gap between the second and third arrival (Figure 2-10 (a)). 

However, simulation average total deliveries for the day was 19.3 truckloads, which was 

within 1.6% of the observed total. There were three trucks utilized in this example, and 

even with slightly higher utilization compared to Operation 1 corn, flow time efficiency 

still averaged 95% (Figure 2-10 (b)-(d)). This was primarily due to the proximity to the 

storage facility and lower material handling requirements for wheat.  
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(a) 

 
 (b) 

 
(c) 

 
(d) 

Figure 2-10: Example simulation output for all simulations (n=500) for a single day 
(06/09) for Operation 1 wheat (Gray circles represent a single point, and darker areas 

represent a higher concentration of points. (a) Cumulative deliveries over the course of 
the day. Black line represents observed data. (b) Flow time efficiency, where 100% 

represents no delays between handling steps (average 95.5%). (c) Truck utilization. Black 
line represents average utilization across all simulation runs using a five-minute sampling 

window. (d) Driver utilization. Black line represents average utilization across all 
simulation runs using a five-minute sampling window). 
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Figure 2-11 similarly shows the results for Operation 2. Over the course of the 

day, ten total truckloads were delivered, and the average after 500 simulations was 10.8 

truckloads delivered. This operation was different from the previous examples in that two 

unloading events were required to fill a truck. The increased number of points in Figure 

2-11 (b) that have Flow time efficiencies less than 100% visually represent the handling 

delays that resulted in this operation having an average flow time efficiency of 66.5%. 

Part of the lower FTE compared to Operation 1 is that multiple entities were required to 

fill a truck. The time required to harvest and load the second entity shows up as a delay in 

the transportation of the first. However, there is no major trend in FTE over the course of 

the day, indicating the system is adequately able to handle the transportation demand, at 

least over the given duration of harvest. Truck and driver utilization (Figure 2-11 (c)-(d)) 

are also quite different for this example because a single driver was responsible for three 

trucks. Truck utilization is higher in this example than in the other examples and includes 

not only productive time, but also accounts for a time when the trucks were fully or 

partially loaded waiting for a driver. The driver utilization quickly jumps to an average 

utilization of over 50% after sufficient time has passed for the first truck to be filled. 

Driver utilization continues to increase as time progresses, finally ending at an average 

utilization of over 80%.  
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(a) 

 
 (b) 

 
(c) 

 
(d) 

Figure 2-11: Example simulation output for all simulations (n=500) for a single day in 
Operation 2 (Gray circles represent a single point, and darker areas represent a higher 

concentration of points. (a) Cumulative deliveries over the course of the day. Black line 
represents observed data. (b) Flow time efficiency, where 100% represents no delays 
between handling steps (average 66.5%). (c) Truck utilization. Black line represents 

average utilization across all simulation runs using a five-minute sampling window. (d) 
Driver utilization. Black line represents average utilization across all simulation runs 

using a five-minute sampling window). 
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2.5 Conclusions 

A DES model of grain transportation was developed to evaluate grain 

transportation capacity and aid in capacity planning. Field machinery characteristics were 

not explicitly modeled but were represented by a stochastic entity generation process, 

which represented the time required to harvest and transport a full load of grain to the 

field edge. The simulation accounted for dynamic system behavior by representing entity 

generation and service times as statistical distributions. The distributions presented here 

were determined from experimentally collected data and are specific to the operations 

and conditions encountered. The data needed to create these distributions is straight 

forward to collect, and any distributions could be used to evaluate other operations. 

Moreover, stochastic components could be incorporated into other model parameters, if 

they were of interest. For the scenarios examined, the model could satisfactorily represent 

the total number of deliveries to the storage facility. The model could represent 

operations with capacity matched between in-field and on-road transporters as well as 

operations with capacity for on-road transporters being integer multiples of in-field 

transporter capacity. Additionally, a single distribution was found to adequately represent 

harvest rate and in-field machinery interactions over the range of input conditions 

encountered.  

The simulation output was used to evaluate the example system performance for 

the 18 given input conditions. FTE was very high for operation 1 in both crops, indicating 

there were few delays between handling steps and transportation capacity was sufficient. 

The relatively low utilization of trucks and drivers for Operation 1 indicate that the 

operation could be over-equipped. Operation 2 had lower FTE due to multiple entities 

being required to fill a truck. For this operation truck, and especially driver utilization, 

were relatively high, and there was no noticeable trend of decreased FTE over the course 

of the day, indicating the resources are adequately matched to the harvest rate. This 

model could be used to evaluate how changing resource quantities would impact 

utilization, throughput, and FTE, however assessing the overall implications of these 

changes would require discretion. Operation characteristics including if trucks are used as 

supplemental wet storage, resource availability, and how the transportation costs are 

structured (trucks owned vs. leased, contracted by load vs. hourly employee, etc.) all 
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affect the best decision. Further refinement could include the incorporation of drying and 

storage considerations as well as economic considerations. 
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 VARIABILITY IN CORN HARVEST LOSSES IN KENTUCKY 

3.1 Summary 

This study presents a single year evaluation of corn harvest losses in Kentucky. 

To evaluate typical harvest losses, losses were measured for four cooperating producers’ 

combines operating under normal conditions and total losses were found to be between 

0.8% to 2.4% of total yield (86 to 222 dry kg ha-1). On average, the combine head 

accounted for 66% of the measured losses, and the total losses were highly variable, with 

coefficients of variation ranging from 21.7% to 77.2%. Yield and harvest losses were also 

monitored in a single field at four points over the course of the 2017 harvest season to 

assess loss changes with respect to time and moisture. Measurement points were selected 

to cover a wide range of grain moisture contents (33.9%, 26.4%, 19.8%, and 14.6% w.b.) 

representing high moisture corn, the upper limit for drying, normal drying, and corn field 

dried to nominally 15%. There was no significant difference in the potential yield at any 

moisture level, and the observed yield and losses displayed little variation for moisture 

levels from 33.9% to 19.8%, with total losses less than 1% (82 to 130 dry kg ha-1). Large 

amounts of lodging occurred when the grain was allowed to field dry to 14.6%, which 

resulted in an 18.9% reduction in yield and measured harvest losses in excess of 9%. 

Allowing the grain to field dry generally improved test weight and reduced mechanical 

damage, however, there was a trend of increased mold and other damage in prolonged 

field drying. 

3.2 Introduction 

3.2.1 Machine Losses 

Grain yield losses can be broken down into two primary components, machine 

and preharvest losses. Machine losses are associated with the combine physically 

gathering and processing the crop. The lost crop represents revenue that was left in the 

field and is a concern to producers because these losses can be minimized through proper 

combine adjustment. They occur at the head as the crop is gathered into the machine, 

during threshing, and when separating grain from the material other than grain (MOG). 

Losses at the head are often the largest component of the overall machine loss and occur 



 

56 

 

when whole ears fail to make it into the machine (gathering loss) and when kernels are 

dislodged from the ears by the deck plates or snapping rolls (butt shelling). Losses due to 

dropped ears are often associated with crop condition, travel speed, and uneven feeding, 

and can be exacerbated by lodging. Cylinder or rotor losses are associated with 

incomplete shelling and machine settings (rotor speed, concave clearance, etc.), and the 

machine settings should be adjusted to minimize both losses and damage that can result 

from threshing too aggressively. Separation and cleaning loss are composed of loose 

kernels that fail to separate from the MOG and are carried out the back of the combine 

with the MOG. Proper machine settings and operation help minimize all of these losses, 

and several extension sources provide producers with guidelines to adjust settings based 

on observed losses (Hanna, 2008; Huitink, 2001; McNeill & Montross, 2007; Sumner & 

Williams, 2009). 

A large portion of the literature for machine losses comes from university-

affiliated cooperative extension service sources, though there a few peer-reviewed 

sources. Johnson, Lamp, Henry, and Hall (1963) presented a four-year study of changes 

in yield and quality as a function of harvest moisture. The authors found a range of 

snapping roll losses from 1.8% to 3.0% of total yield, cylinder losses less than 2%, and 

separation losses were less than 5%, with higher losses being associated with non-

combine shellers. Ayres, Babcock, and Hull (1972) performed a survey of harvest losses 

from 84 combines in Iowa. They found an average loss of 232 kg ha-1 (3.7 bu ac-1), but a 

range of 31.4 to 1444 kg ha-1 (0.5 to 23.0 bu ac-1). Surprisingly, 48% of the combines had 

losses greater than 188 kg ha-1 (3 bu ac-1), while only 7% had losses less than 63 kg ha-1 

(1 bu ac-1). Another study, by Hanna, Kohl, and Haden (2002), evaluated visible machine 

loss for conventional (76 cm) and narrow (38 cm) corn row spacing and found losses 

were similar for row spacings when the corn head was set to match. The authors found 

90% of losses occurred at the head, with kernel loss at the head representing 1% of the 

total yield. Most recently, Paulsen et al. (2014) performed a more recent study 

specifically to determine a representative range of harvest losses for corn and soybeans in 

Brazil. They found that machine losses ranged from 1.2% to 5.5% of gross yield in 

soybeans, and 0.3% to 3.6% for corn.  
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3.2.2 Losses Associated with Harvest Timing 

As grain dries in the field, energy costs associated with drying decrease, but there 

is an increased risk of lodging, reduction in yield, and quality degradation (Licht, 

Hurburgh, Kots, Blake, & Hanna, 2017). Preharvest losses are associated with a 

reduction in yield that results from allowing the grain to field dry. Visible preharvest 

losses are easily measured and observed based on ears that detach from the plant prior to 

harvesting. The potential for an additional drop in yield (referred to as invisible or 

phantom loss) is more difficult to quantify. A number of explanations for this loss have 

been proposed in the literature, including: changes in dry matter, predation, and 

incomplete shelling (broken kernel tips remaining on the cob) (Johnson et al., 1963; 

Nielsen, Brown, Wuethrich, & Halter, 1996; Sumner & Williams, 2009). These losses 

represent grain that never had the chance to make it into the combine and are a factor 

producers must consider when making management decisions regarding harvest timing. 

Yield loss and dry matter changes as the crop field dries have been explored in 

several works with mixed results. Kernel dry matter losses have been estimated at 

approximately 1% per point of moisture when the crop was allowed to dry in the field 

(Nielsen et al., 1996). This was in contrast to Elmore and Roeth (1999), who evaluated 

corn yield as a function of harvest moisture using a combination of greenhouse 

experiments and field plots. The authors found no evidence of kernel dry matter losses 

following physiological maturity, after accounting for harvest losses. Thomison, Mullen, 

Lipps, Doerge, and Geyer (2011) also studied the effect of harvest date on yield loss in 

Ohio and found yield losses associated with delayed harvest did not exist until harvest 

was extended past November. Marley and Ayres (1972) studied the effect of planting and 

harvest date in Iowa and found no difference between date and total field losses. 

However, the harvest date did significantly impact yield. Johnson et al. (1963) found no 

significant differences in yield due to moisture for handpicked ears, but there was a 

significant correlation between moisture and machine yield. 

Research efforts at modeling grain harvesting systems need to account for harvest 

timing, dry down, and yield losses with time. ASABE Standards (2015a) recommends a 

timeliness factor of 0.003% per day past the optimum day for shelled corn. This is a 

linear decrease based on the number of calendar days past the optimum crop value per 
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unit area. Many previous works, (Holtman, Pickett, Armstrong, & Connor, 1973; Loewer 

et al., 1994; Loewer, Bridges, White, & Overhults, 1980; Loewer, Bridges, White, & 

Razor, 1984; Morey, Zachariah, & Peart, 1971) utilized loss data cited from Johnson and 

Lamp (1966), which grew to 0.85% per day once grain field dried to 18%. However, this 

data does not reflect the capabilities of modern equipment and hybrids, which furthers the 

point that these values need to be updated (Loewer et al., 1984). 

Other efforts have focused on losses for small grains. Klinner and Biggar (1972) 

measured field and header loss for wheat and barley for six dates over 5 weeks and found 

barley losses of 1% for every 5.5 days past ripeness. Wheat losses were not measurable 

until the final harvest date, but the grain was at high moisture for the entirety of the study. 

A two-part study of cereal harvest models (McGechan (1985a) and McGechan (1985b)) 

compared threshing losses and front-end loss studies as a function of days past ripeness. 

The goal of this study was to determine the optimum size and forward speed of the 

combine. They found variations in source data produced very different responses, but the 

influence of straw yield and combine capacity on the cost equations outweighed the 

variations in losses. 

3.2.3 Motivation 

The overall goal of this study was to evaluate yield and machine losses typically 

encountered during corn harvest in Kentucky. Paulsen et al. (2014) contend that because 

the combine operator adjusts the settings, a good operator who pays attention to losses 

can be worth the premium. By extension, it is also of interest to establish the range of 

losses that are typically encountered in a variety of geographies and operation types. 

Toward that end, preharvest and machine losses were evaluated for several producers to 

establish a range of losses typically encountered in Kentucky for current equipment and 

hybrids. 

The second aspect of this study was to evaluate how losses and yield changed 

over the course of the harvest season. This relationship is of interest for researchers and 

producers who seek to balance the potential losses associated with field drying against 

fuel costs to dry wet grain. Generally, previous investigations in this area are dated or 

were conducted in field plots and may not be representative of current field scale 
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operations. A single field, at a university research farm, was harvested at multiple points 

as grain dried in the field to evaluate the impact of delayed harvest on yield, machine 

losses, and grain quality. 

3.3 Materials and Methods 

3.3.1 Measurement Locations:  

Machine and preharvest losses were measured for four combines utilized by three 

producers during the 2017 corn harvest season. The producers were from across the state 

(Logan, Hardin, and Madison counties), and utilized a diverse set of combines (Table 

3-1). This evaluation was used to determine the magnitude and variability of losses 

encountered in typical conditions. Three measurements were made per site, and were 

taken at random locations in the same field. An additional measurement site, at 

University of Kentucky’s C. Oran Little Research Center in Versailles, KY., was 

measured multiple times over the course of the harvest season to evaluate how losses 

changed as the crop field dried. All combine settings and forward speed were determined 

by the operators, all of whom were experienced. 
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Table 3-1: Overview of Measurement Locations and Equipment* 

County* Date Make-Model 
Head 
Width 

(m) 

# of 
Rows 

Row 
Spacing 

(cm) 

Speed 
(km h-1) 

Moisture 
Content 
(% w.b.) 

Test Weight 
(kg m-3) 

Woodford** 9/20 -12/01 CLAAS-730 4.57 6 76 5.6-6.4 33.9-14.6 681-752 
Hardin 9/17 JD -* 9.14 12 76 4.6 23.4 657 
Logan 1 9/27 CNH-8240 9.14 12 76 6.4 17.8 760 
Logan 2 9/27 CNH-8240 9.14 12 76 6.4 17.9 764 
Madison 10/4 Case IH-1666 3.66 4 91 5.2 13.3 739 

* Logan County locations were white corn, all others were normal field corn 
* *Combine utilized in the delayed harvest experiment 
***Combine model number unknown  
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3.3.2 Field Procedure 

Harvest losses were evaluated following a procedure similar to (Paulsen et al., 

2014). Each loss component was measured as outlined in Figure 3-1. During each 

measurement, the combine was operating under normal conditions before abruptly 

stopping. After the combine was cleaned out, it was reversed 2-3 m to allow access to the 

head kernel loss area. Measurements were taken by staking out the requisite area across 

the full width of the head, which resulted in a variable length and width based on the size 

of the corn head on the combine being investigated. Teams of two to three people 

examined the sample area, which often required residue be removed from the area to 

ensure all the grain was collected (Figure 3-2). All loss components were evaluated on a 

dry matter (dm) basis, and the material collected from each sampling area was labeled 

and bagged separately before being transported to the lab for further analysis. Grain 

moisture content, test weight, damage, and BCFM (broken corn and foreign material) 

were estimated from grab samples of approximately 1 kg that were collected from the 

combine’s clean grain sample door for each measurement. These samples were sealed in 

large plastic freezer bags and were placed in cold storage at approximately 4°C until 

processing. 
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Figure 3-1: Overview of loss component measurement locations 

 

 
Figure 3-2: Example staked out area to collect loose kernels. Photo was taken after the 

residue was removed and before kernels were collected  
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The unharvested crop in front of the combine was used to evaluate preharvest 

losses and to estimate the crop yield. Preharvest losses were evaluated by collecting 

downed ears in a 30 m2 area of unharvested crop. The yield was estimated based on the 

plant population (ears ha-1) and average yield per ear (kg dm ear-1). The plant population 

was determined from the row spacing and number of ears in a 10-m row length. When 

counting ears, every 10th ear was collected for dry matter determination. The procedure 

was repeated for three rows, and the yield was estimated using the average per ear dry 

matter content for all three rows. 

Head kernel loss represents kernels that were dislodged from the cob by the corn 

head and were evaluated by collecting loose kernels in a 2.5 m2 area in front of the 

combine where the corn head had passed, but the combine had not fully traversed to 

avoid having cleaning losses from the combine. The total kernel loss was estimated by 

collecting loose kernels in a 2.5 m2 area behind the combine, and this measurement 

consisted of a combination of kernel losses due to the head and machine losses. This area 

was selected sufficiently behind the combine, so it was not impacted by the residue that 

was discharged as the combine cleared out after stopping. Partially shelled ears found in 

this 2.5 m2 area represent cylinder/rotor losses and were collected separately. Whole ears 

were collected in a 30 m2 area behind the combine and represented a combination of 

preharvest loss and ear loss from the header. Ears attached to lodged stalks were not 

counted as preharvest loss. However, if the ears were still attached to the stalk after the 

header passed, it was considered being lost by the head. 

The total loss was estimated using the two measurement locations behind the 

combine using equation (3-1). The other measurements, shown in Figure 3-1, were used 

to estimate how much various components contributed to the total loss. Losses that 

occurred at the head due to ears not being gathered into the combine were separated from 

preharvest losses using equation (3-2), and the total loss at the head was estimated by 

added head kernel loss measurement (equation (3-3)). Separation and cleaning losses 

were estimated by subtracting the head kernel loss from the total kernel loss (equation 

(3-4)). Finally, the total machine loss was estimated by subtracting preharvest losses from 

the total loss (equation (3-5)). 
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Where: 

𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 = Combination of preharvest and machine losses (kg ha-1) 

𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝑇𝑇𝑇𝑇𝑃𝑃𝐸𝐸𝑇𝑇𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 =Total loss associated with loose kernels, as measured behind 

the combine, includes head, cleaning, and separation loss (kg ha-1) 

𝐶𝐶𝐸𝐸𝐹𝐹𝑇𝑇𝐸𝐸𝑑𝑑𝑇𝑇𝑃𝑃 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇=Loss due to partially shelled ears (kg ha-1) 

 

Where: 

𝐻𝐻𝑇𝑇𝑈𝑈𝑑𝑑 𝑇𝑇𝑈𝑈𝑃𝑃 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 = Losses that occur at the combine head due to dropped ears      

(kg ha-1) 

𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝑇𝑇𝑈𝑈𝑃𝑃 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 =Total ear loss as measured behind the combine, includes head 

and preharvest loss (kg ha-1) 

𝑃𝑃𝑃𝑃𝑇𝑇ℎ𝑈𝑈𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑡𝑡 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 =Losses associated with dropped ears collected from an area of 

unharvest crop (kg ha-1) 

 

Where: 

𝐻𝐻𝑇𝑇𝑈𝑈𝑑𝑑 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 = Combination of missed ears and loose kernels due to the combine 

head (kg ha-1) 

𝐻𝐻𝑇𝑇𝑈𝑈𝑑𝑑 𝑇𝑇𝑇𝑇𝑃𝑃𝐸𝐸𝑇𝑇𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 = Loose kernels collected in front of the combine (kg ha-1) 

 

Where: 

𝑆𝑆𝑇𝑇𝑆𝑆𝑈𝑈𝑃𝑃𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 = Loss associated with separating grain from the MOG (kg ha-1) 

Where: 

𝑀𝑀𝑈𝑈𝑇𝑇ℎ𝑇𝑇𝐸𝐸𝑇𝑇 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 = total mechanical loss due to gathering, shelling and cleaning the 

grain, excludes preharvest losses (kg ha-1) 

𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 =  𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝑇𝑇𝑇𝑇𝑃𝑃𝐸𝐸𝑇𝑇𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 +  𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝑇𝑇𝑈𝑈𝑃𝑃 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝐶𝐶𝐸𝐸𝐹𝐹𝑇𝑇𝐸𝐸𝑑𝑑𝑇𝑇𝑃𝑃 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 (3-1) 

𝐻𝐻𝑇𝑇𝑈𝑈𝑑𝑑 𝑇𝑇𝑈𝑈𝑃𝑃 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 =  𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝑇𝑇𝑈𝑈𝑃𝑃 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 –  𝑃𝑃𝑃𝑃𝑇𝑇ℎ𝑈𝑈𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑡𝑡 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 (3-2) 

𝐻𝐻𝑇𝑇𝑈𝑈𝑑𝑑 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 =  𝐻𝐻𝑇𝑇𝑈𝑈𝑑𝑑 𝑇𝑇𝑇𝑇𝑃𝑃𝐸𝐸𝑇𝑇𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 + 𝐻𝐻𝑇𝑇𝑈𝑈𝑑𝑑 𝑇𝑇𝑈𝑈𝑃𝑃 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 (3-3) 

𝑆𝑆𝑇𝑇𝑆𝑆𝑈𝑈𝑃𝑃𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 =  𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝑇𝑇𝑇𝑇𝑃𝑃𝐸𝐸𝑇𝑇𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 –ℎ𝑇𝑇𝑈𝑈𝑑𝑑 𝑇𝑇𝑇𝑇𝑃𝑃𝐸𝐸𝑇𝑇𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 (3-4) 

𝑀𝑀𝑈𝑈𝑇𝑇ℎ𝑇𝑇𝐸𝐸𝑇𝑇 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 =  𝑇𝑇𝐹𝐹𝑡𝑡𝑈𝑈𝐹𝐹 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 −  𝑃𝑃𝑃𝑃𝑇𝑇ℎ𝑈𝑈𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑡𝑡 𝐹𝐹𝐹𝐹𝑇𝑇𝑇𝑇 (3-5) 
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3.3.3 Tracking Yield Changes with Time 

Recoverable yield and machine losses varied as grain dried in the field, losses 

were measured at four points over the course of the 2017 corn harvest season. The 

experiments were conducted in a single field at the University of Kentucky research farm 

in Versailles, KY. The field was planted in 76 cm rows with Becks 6225HR on 

05/18/2017, and a CLAAS Lexion 730 combine with a 6-row Lexion corn head (CLAAS 

of America, Omaha, NE) was utilized to harvest the grain. The field was divided into four 

blocks with enough rows in each block for four replications per measurement date. On 

each measurement date a single pass was taken from each block, resulting in four 

measurements for each date/moisture level. The block sampling order and the section 

harvested from each block was chosen randomly (Figure 3-3). The study was conducted 

over 72 days, and moisture levels evaluated ranged from approximately 34% to 14.6%. 

 
Figure 3-3: Plot sampling layout. Each block was sampled once per measurement date. 

The order each section of the blocks was harvested is separated by shade.  
 

Loss measurements followed the same protocol as previously described, but in 

addition to the yield estimate made by hand picking ears, the actual recovered yield was 

measured for each pass through the field. After each pass was harvested, the grain was 

transferred to a truck and was weighed using truck scales with a 9 kg resolution. The 

length of each pass through the field was similar across the field and was determined 

using a gauge wheel (Rolatape 300, Rolatape Corporation, Watseka, IL). Each pass was 

approximately 230 m long and contained approximately 1,300 kg dm of shelled corn. 

Combine settings were adjusted by the operator in an adjacent field prior to harvesting 

the test field. The actual loss measurement locations were selected at random but were 

sufficiently far from the beginning of the row to allow the combine to reach steady-state 

operation.  
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3.3.4 Laboratory Procedure  

All collected loss samples were dried at 103°C for 72 hours for dry matter 

determination (ASABE Standards, 2012). Whole ears that were collected in the field 

were hand shelled after partial drying, and then returned to the oven for complete drying. 

All weights were determined using an Ohaus Precision Advanced lab scale (Ohaus 

Corporation, Parsippany, NJ).  

The grab samples of clean grain collected from the combine were used to estimate 

several quality parameters. Moisture content, test weight, and BCFM were determined for 

each measurement at both the Woodford County and cooperator sites (n=4 at Woodford 

County, otherwise n=3). The moisture content of the grain at the time of harvest was 

estimated by drying approximately 100 to 150 g samples, and the test weight of each 

sample was measured in triplicate using the Winchester test cup (USDA, 2013b). Test 

weight was measured at the incoming harvest moisture for all samples. 

All clean grain samples were subjected to drying with unheated forced air in an 

environmental chamber with constant ambient conditions of 15.6 °C and 70% relative 

humidity. These ambient conditions were chosen to provide an equilibrium moisture 

content of approximately 15%. Drying was conducted using PVC aeration tubes, and the 

samples were subject to drying air at approximately 89.2 cmm m-3 (111 cfm bu-1) for 72 

hours, which previous tests determined was sufficient to reach equilibrium. Test weight 

was measured again after drying for the Woodford County samples, which allowed for 

better comparison of test weight between harvest dates.  

BCFM was estimated for each sample using the hand sieving method as outlined 

in (USDA, 2013a). When required, a sample divider was utilized to separate 

approximately 1,000 g from the grab samples, and the percentage of BCFM was 

determined based on the weight of material passing through a 4.76 mm (12/64 inch) 

sieve. The sample divider was again used to separate an approximately 250 g sample to 

evaluate damage. The percentage (by mass) of damaged kernels was determined by 

visual inspection (USDA, 2013a). Though not an explicit grade factor, the samples were 

also evaluated for mechanical damage from the combine. This was done through visual 

inspection of the kernels on a light table (without green dye. See Chowdhury and Buchele 

(1976) for more information on the dye method) to better highlight any damage. For this 
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study, physical damage was defined as any observable damage to the seed coating, which 

included both chips and stress cracks. Although this is not an official standard, it was 

done in an attempt to capture differences in damage due to shelling at different moistures. 

3.4 Results and Discussion 

3.4.1 Cooperator Locations 

Table 3-2 shows an overview of the loss measurements from all locations. 

Cooperator combines were measured over a range of moistures from 23.4% to 13.3%, 

and yield varied from 9.3 to 12.3 t ha-1. All mass values in this paper are reported on a 

zero-moisture basis. The total losses were estimated from the total ear loss, total kernel 

loss, and cylinder loss measurements. Total losses ranged from 86 to 222 kg ha-1, which 

was equivalent to 0.5% to 2.4% of the potential yield. This was consistent with Paulsen et 

al. (2014), who found a range of losses from 0.3% to 3.6% of total yield and Hanna et al. 

(2002), who found total losses over three years averaged 1.7% and 2.6% for 76-cm and 

38-cm row spacing, respectively. There was a large amount of variability between 

measurements as manifested by the large coefficients of variation associated with the 

total loss estimate, which was up to 77.2%. Total kernel losses (combination of head 

kernel loss and separation/cleaning loss) was the largest contributing factor, and 

represented, on average, 62% of the total loss. Total ear and cylinder losses were highly 

variable, as shown by their large standard deviations, which often exceeded the mean. 

This resulted from the small magnitude of the losses and variability between 

measurement locations (e.g., the number of loose kernels found in front of the combine 

versus behind), and was consistent with what was observed by Hanna et al. (2002). 
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Table 3-2: Summary of Cooperator Combine Measurements *** 

County BCFM 
(%) 

Yield** 
(t ha-1) 

Total 
Ear 

(kg ha-1) 

Total 
Kernel 

(kg ha-1) 

Cylinder 
(kg ha-1) 

Total 
Loss 

(kg ha-1) 

CV* 
(%) 

Hardin 0.57 10.6  10 ±17 76±8 0±0 86±19 21.7 
Logan 1 0.19 12.1 65±113 72±42 22±27 160±123 77.2 
Logan 2 0.15 12.3 60±82 131±20 7±15 198±85 43.0 
Madison 0.52 9.3 33±38 110±3 79±133 222±138 62.3 

*CV= coefficient of variation in total loss measurement 
**Estimated from hand counting ears 
***All yield and losses are expressed in terms of dry matter. Mean values shown, ± one 
standard deviation where applicable. 

 

Figure 3-4 shows the components of the total loss for each cooperator combine 

that was evaluated. Negative loss components resulted from variability between 

measurement locations and the way components were estimated. For example, on a given 

replication if more kernels were found in the head kernel measurement area than in the 

total kernel measurement area, the separation and cleaning loss would appear negative. 

No preharvest losses were observed at any cooperating producer locations, which could 

be a result of the favorable conditions during harvest, or because measurements were 

taken during the peak of harvest and did not include late season harvest. On average, 

66.9% of losses occurred at the head, which was slightly lower than Paulsen et al. (2014), 

and a good deal less than the 90% observed by (Hanna et al., 2002). The combine 

operating in Madison County was the oldest combine evaluated and was operating in the 

lowest moisture and yielding corn. This combine had the highest losses of any of the 

cooperator combines, which was a result of the distinctly higher cylinder and head kernel 

losses.  
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Figure 3-4: Approximate breakdown of loss components at cooperator other 

measurement locations. Average values are shown, and separation loss represents a 
combination of separation and cleaning loss. 

 

3.4.2 Woodford County Location 

Figure 3-5 shows the change in yield as the grain field dried at the Woodford 

County site. The observed yield represented the amount of grain that was recovered by 

the combine, and the potential yield represented the yield estimated by picking and 

drying ears. This would represent the upper bounds on yield if there were no mechanical 

harvest losses. There were no significant differences between the two yield estimates or 

between yields at different moisture levels for the first three observations. The initial 

moisture content of the grain harvested on September 20th was 33.9% (all moisture 

contents are expressed on a wet basis) and was above the typical upper limit for corn 

harvest. The moisture content observed on the subsequent two observations averaged 

24.6% and 19.8%, respectively. This moisture range is representative of the typical 

harvest conditions. There was no significant change in potential yield as the field drying 

occurred, and there was no significant difference between the observed and potential 
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yield for the first three observations. Across the first three measurement dates, the 

average for both the observed and potential yield was 13.3 t ha-1. 

 
Figure 3-5: Change in yield as grain was allowed to dry in the field. Observed yield 

represents the actual grain harvested by the combine. Potential yield was estimated by 
hand picking ears. Error bars represent ± one standard deviation and was based on four 

replications. 
 

Fifty-six days passed between the 19.8% and 14.6% moisture level observations. 

This was a result of a prolonged stretch of rain and unfavorable field conditions, and 

when the field was once again suitable for harvesting, a large majority of the stalks were 

lodged to some degree (Figure 3-6). This also resulted in increased variability and a 

decrease yield. Table 3-3 shows the breakdown of the losses at the 14.6% moisture level. 

Observed yield showed a statistically significant drop to 10.9 t ha-1, from 13.3 t ha-1, 

which represented an 18.9% yield decrease when compared to the maximum potential 

yield observed on 9/20. Over the same period, the potential yield decreased by 7.1% (not 

significant), which accounted for 37.6% of the total loss. Visible or measured losses 

increased from less than 1% of the potential yield for the first three measurement dates to 

over 9.1% of the potential yield on the final measurement (Table 3-4). This was 

equivalent to 8.5% of the maximum potential yield (measured on 9/20) and accounted for 

44.9% of the total loss measured on 12/01. Another 3.3% of the total yield was lost to 

unknown sources and could be attributed to variations in the field or to the increased 
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variability in losses that were observed on 12/01. This is consistent with Thomison et al. 

(2011) who found yield loss associated with field drying was only apparent if harvest 

extended past November in Ohio.  

 

 
Figure 3-6: Lodged and wind damaged corn observed during 12/01 loss measurement. 

 

 

Table 3-3: Yield Loss Breakdown for the Measurements Taken at the 14.6% Moisture 
Level (12/01) 

Component Loss Component  
(kg ha-1) 

Percent of Maximum 
Yield*(%) 

Fraction of 
Total Loss (%) 

Potential yield loss 954 7.1 37.6 
Measured losses 1138 8.5 44.9 

Unknown 442 3.3 17.5 
Observed yield loss 2534 18.9 100.0 

*Maximum yield was taken as the highest potential yield, which was observed on 09/20 

  



 

72 

 

 
 

Table 3-4: Summary Measurements at Woodford County Location *** 

Date Speed 
(km h-1) 

BCFM 
(%) 

Yield** 
(t ha-1) 

Total Ear 
(kg ha-1) 

Total Kernel 
(kg ha-1) 

Cylinder 
(kg ha-1) 

Total Loss 
(kg ha-1) 

CV* 
(%) 

Percent 
of Yield 

(%) 
9/20 6.4 0.96 13.4 93±61 24±8 3±5 119±62 52 0.9 
9/28 5.6 0.26 13.3 107±139 24±6 0±0 130±139 107 1.0 
10/6 6.1 0.14 13.2 35±48 47±8 0±0 82±49 59 0.6 
12/1 - 0.62 12.5 930±416 208±93 0±0 1138±426 37 9.1 

*CV= coefficient of variation in total loss measurement 
**Estimated from hand counting ears 
*** Woodford county was the location used to track losses as the grain field dried. All yield and losses are expressed in terms of 
dry matter. Mean values shown, ± one standard deviation where applicable 
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Total losses averaged between 82 and 130 kg ha-1 between the 33.9% and 19.8% 

moisture level (Table 3-4). This resulted in total losses between 0.6% and 1.0% of the 

total yield, which was better than average when compared to the cooperator combines. 

For these measurements, ear loss comprised the majority of the losses and was the most 

variable component. For these observations, the coefficient of variation in total loss 

ranged from 37% to 107%. The observation on 9/28 had a coefficient of variation of 

107%, which was largely influenced by the total ear loss and varied from 0 to 292 kg ha-

1. Figure 3-7 shows a further breakdown of the loss components that were measured as 

the grain dried in the field. Minimal cylinder losses were found on any date, and 

preharvest losses did not appear to have a trend with delayed harvest. The maximum 

preharvest loss occurred on 9/28, where it represented 93% of the total loss. The large 

fraction of losses associated with head ear loss observed on 12/01 was a result of ears that 

were missed because the crop was lodged. This was consistent with Paulsen et al. (2014), 

who concluded lodged corn increased loss more than any other factor.  

 
Figure 3-7: Approximate breakdown of loss components as the grain field dried at the 

Woodford County location. Average values are shown, and separation loss represents a 
combination of separation and cleaning loss. 
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3.4.3 Quality Changes 

Figure 3-8 shows the changes in both mechanical and mold/other damage as the 

grain dried in the field. Mechanical damage was initially very high and generally 

decreased with decreasing moisture. There was no significant difference in mechanical 

damage between the 26.4% and 19.8% moisture levels, but the 14.6% moisture level was 

significantly different from the 33.9% and 26.4% moisture level. The damage reported 

here does not impact the official grade or price received, but does impact storability, and 

indicates an increased susceptibility to breakage and quality degradation with further 

handling and drying (Ng, Wilcke, Morey, Meronuck, & Lang, 1998). Conversely, as the 

grain was allowed to dry in the field, there was a trend of increasing mold and other 

damage. This represented damage that would impact the grade and marketability of the 

grain. The increase in damaged kernels was only significantly different for the final 

observation on 12/01, which displayed the highest percentage of damaged kernels and 

greatest variability. The damage levels observed over the range of dates would only 

impact the grade for the final observation, which on average exceeded the 5.0% limit for 

U.S. No. 2 corn (USDA, 2013a). However, the higher moisture samples would require 

drying which could result in increased final levels of damage, at the point of storage.  
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Figure 3-8: Percentage of kernels damaged, on a mass basis, as grain was allowed to dry 
in the field. Mechanical damage represents broken kernels or kernels with visible cracks. 
Other damages represents damage as included in the grain inspection guidelines (USDA, 

2013a). Error bars represent ± one standard deviation, and different letters indicate 
significant differences (A-C for mechanical damage and D-E for other damage). 

 

Figure 3-9 shows the test weight of samples that were taken from the same field at 

multiple points as the grain field dried. Test weight at field moisture represents the test 

weight of the sample measured at the incoming moisture. This series displays the 

expected trend of increasing test weight as the moisture content is reduced (due to field 

drying). Dry test weight represents the test weight measured after the samples were dried 

in the environmental chamber. At this point, the samples were all nominally at a moisture 

of 15%, but the data still shows a trend of increasing test weight as the samples field 

dried. This indicates that some process other than moisture change contributes to the test 

weight change, and was consistent with Johnson et al. (1963). The samples collected on 

the final observation were not dried in the environmental chamber because the grain was 

already below market moisture at the time of harvest. Test weight was significantly 

different for all dates both before and after drying. This change in test weight has a direct 

impact on which grade requirements the grain meets. Before natural air drying, the grain 

grade, based on test weight alone, progresses from U.S. No. 3 on 9/20 to U.S. No. 2 on 

9/28 to U.S. No. 1 on 10/06 and 12/01. After natural air drying, the highest moisture 
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sample meets the requirement for U.S. No. 2 corn, and the remaining dates qualify for 

U.S. No. 1 (USDA, 2013a) in terms of test weight. 

 
Figure 3-9: Test weight of samples harvested at various field moistures. Initial TW 

represents the test weight of samples at the incoming field moisture. Final TW represents 
the test weight of the samples after drying to ~15%. Error bars represent ± one standard 

deviation. 
 

3.5 Conclusions  

This study evaluated preharvest and machine yield losses for multiple producers 

and in a variety of settings to establish a typical range of machine losses in Kentucky 

corn harvest. Total losses ranged from 19 to 138 kg ha-1, which was equivalent to 0.8% to 

2.4% of total yield. Losses were highly variable for a given combine, with coefficients of 

variation in total loss ranging from 21.7% to 77.2% of the total loss. Even though 

minimal preharvest losses were observed, the total ear loss was the largest source of 

variability, and losses at the combine head amounted to between 55.7% and 80.0% of the 

total loss. This indicates that combine operators should pay close attention to factors that 

influence losses that occur at the head (speed, deck plate spacing, etc.).  

This study also attempted to quantify potential changes in losses, quality, and 

yield as grain was allowed to field dry. Harvest date (and moisture content) had no 

significant impact on the potential yield in the field, and the recovered yield was only 

significantly impacted by the long delay as the crop field dried from 19.8% to 14.6%. 
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This delay resulted in a large increase in the number of missed ears as well as increased 

mold damage. Test weight and mechanical damage generally improved with decreased 

moisture, but the test weight after drying was always sufficient to at least meet U.S. No 2 

corn standards.  

Lodging and weather impacts will have a strong effect on the results presented 

here, but these results indicate the loss relationships used in previous harvest logistics 

models are not representative of current practices. Conditions were favorable for much of 

the harvest season, and for this specific year, losses associated with field drying would 

not have been a factor until lodging occurred. This suggests an alternative approach, 

based on the chance of a weather event causing crop lodging, could be useful as a way to 

evaluate harvest timing. Ultimately, this study should be repeated for additional years to 

examine more variability in weather and to obtain finer resolution results.  
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 DISCRETE EVENT SIMULATION OF GRAIN TRANSPORTATION AND 

DRYING 

4.1 Summary 

Examining grain harvest logistics from a whole system perspective is important to 

identify system bottlenecks and increase productivity. This study presents a whole season 

discrete event simulation model of corn harvest from the field through the first storage 

structure. It was an expansion of the previously proposed transportation model and 

included wet holding capacity and grain drying at an on-farm facility. A simple method 

was proposed to estimate dryer capacity relative to its rating at standard conditions, and 

field dry down was modeled based on weather data and grain equilibrium moisture 

content relationships. The model was applied to an operation to assess the suitability of 

both the drying capacity adjustment and the overall harvest model. There was large 

variability in the observed data, which made assessing the accuracy of the drying model 

difficult. Dryer capacity was generally underpredicted and in some instances had large 

errors. The method did however, agree well with the previous literature data from which 

it was derived. The proposed relationship for field dry down accurately represented the 

change in incoming grain moisture, with a root mean squared error of 0.73 points. The 

overall harvest model showed good agreement with the observed data based on the 

cumulative mass of grain delivered over the season.  

4.2 Introduction 

4.2.1 Overview 

Determining a harvest strategy is an important decision for producers, and it 

requires an evaluation of the whole harvest system. On-farm drying and storage provides 

producers with flexibility in harvest timing by avoiding constraints associated with 

elevator business hours and long waits to unload during peak times. Producers may also 

see benefits from reduced drying costs and better marketability. On-farm storage is a 

critical component of the US grain infrastructure, with 54.5% of the total storage capacity 

located on farm (USDA-NASS, 2017). In some regions, this value increases to over 80% 

(Figure 4-1), and in wetter regions or areas with shorter harvest windows, the ability to 



 

83 

 

effectively dry wet grain to levels safe for storage, without sacrificing efficiency in other 

areas of the harvest system, is key to utilizing this storage capacity.  

 

 
Figure 4-1: Combined on-farm and off-farm storage for 2017. Labels indicate the 

percentage of capacity on the farm, and 0% indicates no on-farm storage data were 
available. The national average was 54.5% on-farm. (USDA-NASS, 2017). 

 

When harvesting and drying wet grain, the grain dryer, and temporary wet 

holding bins can often become the system bottleneck and limit the daily productivity of 

an operation. The dryer capacity depends on its configuration, drying temperature, and 

weather conditions. Additionally, incoming grain moisture (and associated quantity of 

water that must be removed) plays a large role in drying energy use and capacity. As the 

harvest season progresses, the incoming grain moisture generally decreases and drying 

capacity increases. Producers must balance costs associated with drying high moisture 

grain and potential weather delays, losses, and logistical issues that come along with 

allowing grain to dry in the field. Many operations grow a mix of wheat, corn, full-season 

soybeans, and double-crop soybeans. Harvest, transportation, and drying systems need to 

accommodate a range of planting systems. To further complicate the issue, low corn 

prices have led some producers to explore higher value commodities, such as food grade 

corn, that require additional planning and management to avoid quality discounts.  
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4.2.2 Wet Holding 

 Typically, on-farm drying systems require temporary wet-holding storage bins 

prior to the dryer. These bins serve as a buffer between processes and allow harvest and 

grain delivery to progress faster than the grain can be dried. Wet holding capacity of at 

least 25%-50% of the peak daily intake is suggested by Maier and Bakker-Arkema 

(2002), and Loewer et al. (1994) suggested sizing wet holding based on the deficit 

between the daily harvest and drying capacity. Wet holding bins provide temporary 

storage for grain delivered in excess of the drying capacity and allows the drying window 

to be extended so the dryer can ‘catch up’ once the drying demand is reduced. This 

occurs overnight after harvest stops, once the grain moisture drops, or on days with 

unfavorable harvesting weather. When managing wet grain, care must be taken to stay 

within the recommended storage times, and grain is typically held for less than 24 hours 

prior to drying to reduce heating (MWPS-13, 1987). 

4.2.3 Drying 

The dryer often has the lowest capacity in a harvest system, at least for a portion 

of the harvest season if wet grain is harvested. Several factors including the expected 

daily harvest, moisture content, wet holding, and weather conditions must be considered 

to match drying and harvest capacity. When determining the capacity of grain handling 

and drying equipment, another important consideration is future growth, where double 

the drying capacity could be required in ten years (MWPS-13, 1987). Many options exist 

for grain drying, but dryers can be broken down into low temperature/low capacity 

systems versus high temperature/high capacity systems. Generally, as the drying rate 

increases due to high temperatures, so does energy consumption. Several resources cover 

drying methods in detail (Edwards, 2014; Hellevang, 2013; Maier & Bakker-Arkema, 

2002; Maier & Watkins, 1998; MWPS-13, 1987; Nichols, n.d.). Natural air drying is the 

most energy efficient, but runs the risk of spoilage, depending on moisture content and 

temperature. Low-temperature drying is a step up from natural air drying in that a burner 

is added in line with the fan so air is heated approximately 5.6°C (10°F) above ambient. 

This study was primarily concerned with high capacity, high-temperature dryers. These 

systems have the highest capacity and are classified as cross-flow, counter-flow, or 
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mixed-flow depending on the direction of airflow relative to grain flow. These are 

generally referred to as column dryers or tower dryers. High-temperature on-floor or on-

roof bin-batch dryers are also available that use air temperatures ranging from 49°C to 

82°C (120°F to 180°F.). High-temperature, crossflow dryers are generally considered in 

the US once the required drying capacity is greater than 38 tonnes day-1 (1,500 bu day-1) 

(Loewer et al., 1994). 

Dryer performance has been explored extensively in the literature, and several 

mathematical and simulation models have been developed. This study primarily focuses 

on cross-flow dryers, which are typically modeled using deep bed drying models (Liu & 

Bakker-Arkema, 1997; Thompson, Peart, Foster, Loewer, & Bridges, 1994). These deep 

bed models utilize air psychrometric properties and a series of thin layer drying models 

(ASABE Standards, 2014) to represent the drying process. Morey, Cloud, and Lueschen 

(1976) utilized a simulation model to evaluate the energy use in a crossflow dryer for 

various drying strategies including changing drying temperature and air flow rates, 

delayed harvest, and combination drying (high temperature drying to 18-20%, followed 

by natural air drying). The general recommendations from the study were to: dry at the 

highest temperature that allows quality to be maintained, plant as early as possible, and to 

use combination drying where possible. Pierce and Thompson (1981) evaluated the 

performance of a normal crossflow dryer and several modifications to the heating and 

cooling sections as a function of airflow rate and drying air temperature. The results were 

consistent with previous research, which showed higher drying air temperature and lower 

airflow rates were generally more energy efficient and increasing the airflow rate resulted 

in increased capacity but sacrificed energy efficiency.  

Drying grain in a high-temperature dryer can have adverse effects on quality, and 

the number of stress cracked kernels, which can increase breakage and BCFM (broken 

corn and foreign material) (Brooker, Bakker-Arkema, & Hall, 1992). These stress cracks 

result from large moisture or temperature gradients in the kernel and when grain is dried 

at high temperatures to low moistures. Higher drying temperature increases drying 

efficiency and capacity, but an acceptable level of damage in regular No. 2 field corn 

might be detrimental for waxy, food grade, white corn, or other instances where high 

quality is demanded. Kernel temperature, not drying temperature is what leads to 
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breakage, and should be kept below 60°C for yellow corn and 43°C for food grade or 

white corn (Montross & Maier, 2000). Reducing the drying temperature has the effect of 

reducing drying efficiency and drying capacity and reducing the drying air temperature to 

60°C has been recommended to maintain quality in white corn. Ambient conditions and 

varietal difference influence drying, and simulation models are reportedly within 10%-

20% of experimental data (Brooker et al., 1992). Additionally, dryer performance is 

generally shown as a function of moisture, drying air flow rate, and drying air 

temperature (Morey et al., 1976; Pierce & Thompson, 1981). However, an end user has 

minimal control over the airflow rate, and from their perspective, it would be more 

beneficial to know how the dryer performance changes with temperature and moisture 

relative to a known rating. Dryer manufacturers specify dryer capacities, in terms of wet 

grain per hour, drying from 25 to 15% (10 point removal) and 20 to 15% (5 point 

removal) (ASABE Standards, 2015c). These ratings are given based on drying and 

cooling the grain, and where applicable, when full heat is used (grain discharged hot at an 

elevated moisture and cooled in a bin). These ratings are established using a combination 

of computer simulation and field testing and are based on the conditions defined in the 

standard (ASABE Standards, 2015c). The drying temperature used to produce the ratings 

is generally the highest temperature the dryer will operate at continuously (usually 

~104°C for a cross flow dryer), and actual capacity observed in the field is often 70% of 

the manufacturer’s rating (MWPS-13, 1987). Most dryers could, in theory, operate 

continuously, but Maier and Bakker-Arkema (2002) suggested a more realistic value is 

20 hours per day, which further reduces that total daily drying capacity.  

4.2.4 Harvest System Models 

An important consideration for harvest models that simulate operations over a 

span of dates is the probability that fieldwork can occur on a given day. This probability 

is largely influenced by the type and timing of the operation, geographical region, 

weather, soil type, and the slope of the field. ASABE Standards (2015a) provides the 

probability of working days, separated by the time of year, for several geographic 

locations. These probability models use historical weather data and a moisture balance to 

determine the status of the field. Field operations are classified as traffic or tillage, and 
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the field is deemed suitable for work if the moisture is below a specified threshold. 

Similar methods have been applied in a number of farm simulation models (Babeir, 

Colvin, & Marley, 1986; Hwang, Epplin, Lee, & Huhnke, 2009; Rotz & Harrigan, 2005; 

Sorensen, 2003). 

A group of related publications that explored harvesting systems were 

summarized in Loewer et al. (1994), and the associated models were distributed in 

Thompson et al. (1994). Many of these works were also previously described in the 

discrete event simulation of grain transportation that was the starting point for this study. 

Benock, Loewer, Bridges, and Loewer (1981) developed a simulation model that could 

be used to examine material flow and delays in the harvesting, handling, and drying 

system. The model assumed a constant harvest rate and allowed multiple drying practices 

to be evaluated. Bridges, Loewer, Walker, and Overhults (1979) presented a similar 

program that ranked costs associated with predetermined equipment sets and drying 

methods. O. J. Loewer et al. (1980) utilized the previous models to evaluate how changes 

in system components from an ‘optimum’ capacity influenced the overall system capacity 

and found the dryer capacity was generally the most influential factor on field equipment 

and transportation efficiency. O.J. Loewer et al. (1980) presented a sensitivity analysis of 

harvest and management strategies on the economics of on-farm drying and storage. The 

study indicated approximately 26% to 28% was the ideal moisture content to begin 

harvesting.  

Morey et al. (1971) developed a dynamic model for corn harvesting which 

operated based on the decision variable of how many hours to harvest per day for a given 

week. A sensitivity analysis showed extending the working day during peak harvest time 

was often the best policy even accounting for overtime labor rates. The number of acres 

remaining to be harvested and moisture content were considered state variables. Field 

trafficability was evaluated using historical weather data and a soil moisture budget, and 

recoverable yield and field dry down were modeled using data from Johnson and Lamp 

(1966). The dryer capacity for a given moisture content was estimated as a function of the 

5-point dryer rating with a linear correction for different moisture spans (based on the 

drying model from Thompson, Peart, and Foster (1968)). 
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Loewer et al. (1984) developed a model to determine the optimum moisture 

content to start harvest when evaluated based on costs associated with drying. Days 

suitable for fieldwork were determined from a probability of rainfall greater than 0.25 

mm, and it was assumed no work occurred on Sundays. The grain moisture in the field 

was evaluated using the relationship proposed by Morey et al. (1971) and the field losses 

based on Johnson and Lamp (1966). Dryer capacity was based on Thompson et al. (1968) 

and evaluated continuous flow drying, batch-in-bin-drying, and layer drying. The goal of 

the study was to balance field losses, grain prices, and energy costs, and empirical 

relationships were proposed to identify the optimum moisture to start harvest based on 

the number of days required to harvest the grain, grain prices, and energy costs. 

Relationships were developed to determine the optimum moisture content to begin 

harvest based on harvesting capacity, drying method, and the price ratio of drying energy 

to grain value. 

A number of modeling efforts in regions outside the United States focused on 

cereal grain production. Abawi (1993) developed a broad model of wheat harvesting and 

drying in Australia to evaluate the costs associated with field versus artificial drying. The 

model was based on an hourly simulation and was evaluated using 30 years of historical 

data. Conditions for field tractability were set based on the magnitude of rain events, and 

field and harvest losses were modeled as a function of the number of days past maturity 

and moisture content. Grain drying was modeled as a function of temperature and 

moisture removal using the relationship presented by Radajewski, Jolly, and Abawi 

(1987), and was an empirical fit derived from simulation data. The simulation indicated 

harvesting and removing 2-5 pts of moisture with artificial drying resulted in the highest 

returns, with harvest capacity significantly influencing the optimum moisture content. 

This model neglected transportation and found returns were more sensitive to drying 

capacity than to harvest capacity. 

Another early linear programming model of cereal grain harvesting and drying 

was published by Audsley and Boyce (1974). This model accounted for harvest, wet 

storage, and drying costs along with field losses. The model neglected transportation 

costs, and moisture content was assumed to be independent of weather. The amount of 

time available for field work was estimated using a simple rainfall accumulation and 10 
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years of historical data. This analysis showed the importance of planting to achieve 

varying maturity dates and concluded reduced field losses could offset the costs incurred 

by drying early wet grain. 

Sorensen (2003) used historical weather data to predict crop moisture and 

available harvest hours and simulated combine performance for various crops in 

Denmark. Combine capacity was determined through time-motion studies, and the 

overall capacity included adjustments related to field shape and a stochastic parameter 

related to field conditions. The authors found that under capacity was 50% more costly 

than over-capacity, and a 30% reduction in crop price reduced the optimal capacity by 

15%.  

De Toro and Hansson (2004) used a discrete event simulation and 20 years of 

historical records of operation completion dates to estimate timeliness and the total cost 

for planting and harvesting operations. The model was applied to a hypothetical farm in 

Sweden, and two methods were used to estimate the workability of the fields. Daily 

workability was estimated using a soil model and a simple probability of working days 

(ASABE Standards, 2015a). They found the simpler method was difficult to implement 

for harvest operations due to varying field maturation times, and the compounding effects 

of delays resulted in an underestimation of timeliness cost using the ASABE method. De 

Toro (2005) was an expansion of De Toro and Hansson (2004), which analyzed the 

effects of weather on timeliness costs on cereal farms in Sweden. The authors found 

multiple least cost machinery sets for a given farm. This was further expanded to include 

crop moisture content as a function of weather in De Toro, Gunnarsson, Lundin, and 

Jonsson (2012). The study utilized 30 years of historical weather data from Sweden and 

modeled field drying based on evapotranspiration and grain equilibrium moisture content 

relationships. The model also accounted for precipitation and grain rewetting. Here the 

authors found timeliness and drying costs were the largest contributors to annual 

variation. 

4.2.5 Motivation 

This study expands on a previously developed discrete event simulation (DES) 

model for grain transportation by including system constraints related to wet holding and 
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drying capacity. The intended application of this study is to provide decision support to 

producers by allowing them to explore how changes in their production system could 

impact the overall harvest operation. The proposed model can be used to explore the 

relationship between grain drying capacity and harvest/transportation capacity, and the 

implications of reduced drying temperature, that need to be considered when maintaining 

high levels of grain quality are important (specialty crops, food grade, etc.). Specific 

objectives of this study were: 

1. Develop a simple relationship to adjust grain dryer capacity as a function of 

drying temperature and moisture removal. 

2. Account for seasonal dryer performance by modeling field dry down based on 

weather data. 

3. Adapt the previously developed model of grain transportation to include wet 

holding storage and grain drying and expand the model to simulate a whole 

harvest season. 

4. Validate the model using data collected from a cooperating producer. 

4.3 Materials and Methods 

This study presents a DES simulation model of grain harvest from the field 

through delivery, drying, and storage at an on-farm storage facility. The model was 

developed using MATLAB and the SimEvents toolbox in Simulink (R2017b, The 

MathWorks Inc., Natick, MA). It consists of two major components – the daily harvest 

model and its application over the whole harvest season. The daily harvest model was 

used to evaluate wait times, system throughput, and resource utilization on a daily basis 

and the whole system portion utilized multiple daily simulations, aggregated the daily 

outputs, and updated input conditions between days. Models for field drying of grain and 

dryer performance as a function of drying temperature and moisture were used to account 

for changes in drying capacity over the course of the harvest season. Input and output 

variables along with their description and associated units are given in Table 4-1.  
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Table 4-1: Model Variable Nomenclature  
Symbol Description Units 

Daily Simulation Inputs 
𝒅𝒅𝒕𝒕𝑳𝑳𝑳𝑳𝑳𝑳𝒅𝒅 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮 Time between arrivals of full in-field transporters Minutes load-1 

𝒅𝒅𝒕𝒕𝑭𝑭𝑭𝑭 Field transfer time Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮𝒕𝒕𝒕𝒕𝑳𝑳𝑮𝑮𝒕𝒕 Time to transport from field to facility Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝒄𝒄𝑳𝑳𝒔𝒔𝑮𝑮𝒕𝒕 Weigh and inspect duration Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝒕𝒕 Unload duration Minutes 

𝒅𝒅𝒕𝒕𝑮𝑮𝑮𝑮𝒕𝒕𝒓𝒓𝑮𝑮𝑮𝑮 Time to return to the field from storage facility Minutes 
𝑯𝑯𝑯𝑯 Duration of field work Minutes 
𝑯𝑯𝒕𝒕 Total length of daily simulation, 1440 minutes (24 hours) Minutes 

𝑵𝑵𝒅𝒅𝑮𝑮𝑮𝑮𝒅𝒅𝑮𝑮𝑮𝑮𝒕𝒕 Number of drivers - 
𝑵𝑵𝒕𝒕𝑮𝑮𝒓𝒓𝒄𝒄𝒕𝒕𝒕𝒕 Number of trucks - 
𝑸𝑸𝒄𝒄𝑳𝑳𝑮𝑮𝒕𝒕 Number of field unloading events required to fill a truck Carts truck-1 

𝑸𝑸𝑭𝑭𝑮𝑮𝑮𝑮𝒔𝒔𝒅𝒅_𝒎𝒎𝑳𝑳𝒎𝒎 Number of loads that can be harvested without a truck present Loads 
µ𝐿𝐿 Mass of grain per truck load, dry basis Tonnes load-1 
𝑸𝑸𝒘𝒘𝑯𝑯 Capacity of the wet holding bins Loads 
𝑸𝑸𝑪𝑪𝑳𝑳𝑮𝑮𝑮𝑮𝑪𝑪 Fill level of wet holding bins at start of daily simulation Loads 
𝒅𝒅𝒕𝒕𝒅𝒅𝑮𝑮𝑪𝑪 Time to dry a full truck load of grain Minutes 

Whole Season Parameters 
𝑾𝑾𝑭𝑭 Total mass of grain to be harvested, zero moisture basis Tonnes 
β Field dry down rate coefficient Day-1 

𝑴𝑴𝑪𝑪𝑮𝑮𝑮𝑮 Incoming grain moisture content % w.b. 
𝑴𝑴𝑪𝑪𝑳𝑳𝒓𝒓𝒕𝒕 Final moisture content after drying, nominally 15% % w.b. 
𝑴𝑴𝑪𝑪𝟎𝟎 Initial know moisture content for dry down equation %w.b. 
𝑴𝑴𝑪𝑪𝑬𝑬 Equilibrium moisture content estimated from weather data %w.b. 
𝑭𝑭𝒅𝒅𝑮𝑮𝑪𝑪 Actual drying air temperature °F 
𝑭𝑭𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝒅𝒅 Air temperature used to determine dryer capacity °F 
SDC Stated drying capacity at 𝑭𝑭𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝒅𝒅 and 5 pts removal bu hr-1 

𝑯𝑯𝑹𝑹𝑪𝑪 
Relative drying capacity at a given temperature and moisture, 

dry basis Tonnes hr-1 

Model Outputs 
𝑳𝑳𝑳𝑳𝑳𝑳𝒅𝒅𝒕𝒕𝑮𝑮𝑮𝑮 Total number of arrivals at storage facility Trucks day-1 
𝑾𝑾𝑮𝑮𝑮𝑮 Total mass of grain delivered to the storage facility, dry basis Tonnes day-1 
𝑾𝑾𝑳𝑳𝒓𝒓𝒕𝒕 Total mass of grain dried on a given day, dry basis Tonnes day-1 

WT Field Side Average time full loads coming from the field wait for a truck hours 
WT Pit Average wait time for trucks to unload at the receiving pit hours 

FTE Flow time efficiency, from field to wet holding Percent 
𝑸𝑸𝒘𝒘𝑯𝑯 𝑭𝑭𝑮𝑮𝑮𝑮𝑳𝑳𝒔𝒔 Wet holding bin fill level at the end of the daily simulation Loads 

HTL Harvest time lost. Portion of the day harvest was stopped due 
to a bottleneck somewhere in the system Hours 

Driver Utilization Percentage of the day drivers were committed to transportation % 
Truck Utilization Percentage of the day trucks were committed to transportation % 
Dryer Utilization Percentage of the day the dryer was in use % 
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4.3.1 Dryer Capacity 

One of the goals of this model was to simulate the impact of harvest moisture and 

drying temperature on overall system capacity, and specifically to this study, high-

temperature continuous flow dryers were considered. Dryer manufacturers’ product 

literature typically provides estimated drying capacity (in wet bushels per hour) at 5 and 

10 points of moisture removal, and where applicable provide this data under various 

modes of operation (ex. dry and cool vs. full heat). The stated drying capacity (SDC) was 

taken as the dryer specification at five points of moisture removal at a given drying 

temperature (typically 104 °C), operating in dry/cool mode.  

A number of factors influence dryer performance including: incoming grain 

moisture, drying temperature, amount of cooling in the dryer, final moisture content, 

ambient conditions, and variety, among others. To account for seasonal variation in 

performance, and to evaluate potential changes in system performance due to drying at 

lower temperatures for specialty grains, the drying capacity was adjusted by scaling the 

5-pt rated dryer capacity. This was done by estimating a relative drying capacity (RDC) 

ratio similar to Morey et al. (1971), except for this study, the capacity was adjusted for 

both moisture content and drying temperature. The ratio of the dryer performance at a 

given moisture removal relative to the capacity at 5-pts removal was estimated from 

equation (4-1), and was a function of the amount of water removed and the incoming and 

outgoing grain moisture content. The temperature effects were approximated as a linear 

function of the difference between the rated and reduced drying temperature and was 

estimated using equation (4-2). 
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Where: 

𝑅𝑅(𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸.𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡) = Moisture correction function. Ratio of dryer capacity with a 

variable initial moisture content, variable final moisture content, and 

decreased drying air temperature compared to the stated drying capacity 

provided from the manufacturer drying at 104 C from 20 to 15% w.b.  

𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸 = Actual moisture content of incoming grain (% w.b.) 

𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡 = Final grain moisture content. Typically, 15% or 15.5% (%w.b.) 

𝑃𝑃𝑡𝑡𝑇𝑇 = Moisture removal, (𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸 −𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡), in percentage points of moisture 

removed  

𝑈𝑈, 𝑏𝑏, 𝑇𝑇 = Regression coefficients. 

 

Where: 

𝑅𝑅(𝛥𝛥𝑇𝑇) = Temperature correction function. Ratio of dryer capacity at a given 

temperature to the stated drying capacity  

𝛥𝛥𝑇𝑇 = Difference between rated and actual drying temperature, 𝑇𝑇𝐿𝐿𝑐𝑐𝐺𝐺𝑡𝑡𝐿𝐿𝑠𝑠 − 𝑇𝑇𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿, 

(°C) 

𝑑𝑑, 𝐸𝐸 = Regression coefficients.  

 

The relative capacity functions were developed based on multiple simulations 

using the cross-flow drying simulation model developed by Thompson et al. (1994). 

Simulations were run using an airflow rate of 64.3 cmm m-3 (80 cfm bu-1), that was 

estimated from manufacturers published specifications, and ambient conditions of 10°C 

and 60% relative humidity. The relative drying ratio was determined based on estimated 

drying time from the simulations. The relative change in capacity due to grain moisture 

was estimated from simulations over all combinations of 𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸 (%𝐹𝐹. 𝑏𝑏. ) =

[30,27,25,22,20], 𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡(%𝐹𝐹. 𝑏𝑏. ) = [17,16,15,14,13], 𝑇𝑇𝐿𝐿𝑐𝑐𝐺𝐺𝑡𝑡𝐿𝐿𝑠𝑠(°𝐶𝐶) =

[104,93,82,71,60]. Additionally, simulations were run for: 𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸 = [18] , 𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡 =

[14,13], at the same drying temperatures. The relative capacity due to decreased drying 

𝑅𝑅(𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸,𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡) = 𝑈𝑈 ∗ 𝑇𝑇−𝑏𝑏∗𝑃𝑃𝐺𝐺𝑡𝑡 + c ∗
𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸 ∗ 𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡

𝑃𝑃𝑡𝑡𝑇𝑇
 (4-1) 

𝑅𝑅(𝛥𝛥𝑇𝑇) = 𝑑𝑑 + 𝐸𝐸 ∗ 𝛥𝛥𝑇𝑇 (4-2) 
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temperature was calculated relative to 104 °C, and was estimated based on simulation 

results for all combinations of 𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸 (%𝐹𝐹. 𝑏𝑏. ) = [27,25,22,20,18], 𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡 = [15], and 

𝑇𝑇𝐿𝐿𝑐𝑐𝐺𝐺𝑡𝑡𝐿𝐿𝑠𝑠(°𝐶𝐶) = [104,98, 93,82,71,60,49,43]. The best fit regression coefficients for 

equationd (4-1) and (4-2) were determined using the Curve Fitting toolbox in MATLAB. 

Typical dryer ratings are given in U.S. customary units of wet bushels per hour, 

so before scaling the dryer performance, SDC was adjusted to dry t hr-1 using equation 

(4-3). RDC was then determined for a given set of conditions using equation (4-4). The 

dryer service time for a given day and entity was determined using equation (4-5). 

Because RDC was based on a stated capacity for a given dryer, the effects of airflow rate 

and heat recovery were neglected. 

Where: 

𝑆𝑆𝐷𝐷𝐶𝐶𝐿𝐿𝐺𝐺𝑑𝑑 = Drying capacity in terms of dry matter throughput (dry t hr-1) 

𝑆𝑆𝐷𝐷𝐶𝐶 = Stated drying capacity of wet grain from manufacturer data at 5 pts 

moisture removal (20% to 15%) and a known temperature (typically 104°C) 

(wet bu hr-1) 

39.368 = conversion factor from bushels of corn to tonnes 

 

Where: 

𝑅𝑅𝐷𝐷𝐶𝐶(𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸,𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡,𝛥𝛥𝑇𝑇) = Relative drying capacity as a function of moisture 

content in and out of the dryer and drying air temperature (dry t hr-1) 

 

Where: 

𝑑𝑑𝑡𝑡𝑑𝑑𝑃𝑃𝐸𝐸𝑗𝑗 = Dryer service time for the jth load (minutes) 

60 = Conversion from hours to minutes  

𝑆𝑆𝐷𝐷𝐶𝐶𝐿𝐿𝐺𝐺𝑑𝑑  = 𝑆𝑆𝐷𝐷𝐶𝐶/39.368 ∗ (1 −
20

100
) (4-3) 

𝑅𝑅𝐷𝐷𝐶𝐶(𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸,𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡,𝛥𝛥𝑇𝑇) = 𝑆𝑆𝐷𝐷𝐶𝐶𝐿𝐿𝐺𝐺𝑑𝑑 ∗ 𝑅𝑅(𝑀𝑀𝐶𝐶𝑇𝑇𝐸𝐸,𝑀𝑀𝐶𝐶𝐹𝐹𝑃𝑃𝑡𝑡) ∗ 𝑅𝑅(ΔT) (4-4) 

𝑑𝑑𝑡𝑡𝑑𝑑𝑃𝑃𝐸𝐸𝑗𝑗 =
µ𝐿𝐿𝑗𝑗

𝑅𝑅𝐷𝐷𝐶𝐶(𝑃𝑃𝑡𝑡𝑇𝑇,𝑇𝑇) /60 (4-5) 
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4.3.2 Modeling Incoming Grain Moisture 

The change in moisture content of grain coming out of the field directly impacts 

how much moisture needs to be removed from the grain and in turn the dryer capacity. 

The change in grain moisture over the course of the season was estimated using equation 

(4-6) (Morey et al., 1971). Previous works that utilized this equation treated it like the 

exponential drying model and assumed a linear increase in equilibrium moisture content 

as the harvest season progresses (Loewer et al., 1994; Loewer et al., 1984; Morey et al., 

1971). In this study weather records of temperature and relative humidity were used to 

estimate the average daily equilibrium moisture content. A function, written in MATLAB 

was used to estimate the daily change in moisture and moisture content over a range of 

dates using Euler’s method and equation (4-6). The function required a known initial 

moisture content (𝑀𝑀𝐶𝐶0) and hourly weather data, over the range of dates that are of 

interest. The hourly observations of temperature and relatively humidity were 

consolidated into daily averages, which were used to estimate the equilibrium moisture 

content, 𝑀𝑀𝐶𝐶𝐸𝐸𝐺𝐺, of the grain in the field using the Modified Henderson Equation from 

ASABE Standards (2007). If there was precipitation on a given day, it was assumed no 

drying occurred. Throughout this manuscript all moisture contents are expressed in 

percent wet basis.  

 

Where: 
𝐿𝐿𝑑𝑑𝑑𝑑
𝐿𝐿𝐺𝐺

 = Change in moisture content with time (pts day-1) 

𝑀𝑀𝐶𝐶𝐺𝐺 = Moisture content on a specific day t (% w.b.)  

𝛽𝛽 = Field drying rate coefficient (day-1) 

𝑀𝑀𝐶𝐶𝐸𝐸𝐺𝐺 = Equilibrium moisture content on a specific day t, determined from 

weather data and the Modified Henderson Equation from ASABE Standards 

(2007) (% w.b.) 

𝑑𝑑𝑀𝑀𝐶𝐶
𝑑𝑑𝑡𝑡

= −𝛽𝛽(𝑀𝑀𝐶𝐶𝐺𝐺 − 𝑀𝑀𝐶𝐶𝐸𝐸𝐺𝐺) (4-6) 
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4.3.3 Daily Model Implementation  

The daily harvest simulation was a DES model and was an expansion of the 

previously proposed model of grain transportation. Figure 4-2 shows the general flow of 

full loads of grain through the system. The simulation was driven by an entity generation 

process which represented full grain carts arriving at the field edge. The arrival of loads 

of grain at the field edge, acquisition of truck and driver resources, transportation of grain 

to the storage facility, and weighing and inspecting the grain was handled as previously 

described. These portions of the model are represented by broken lines in Figure 4-2. 

After arriving at the receiving pit, the grain was either placed directly into storage or 

transferred to the wet holding bins in front of the grain dryer. Once an entity exited the 

receiving pit, it was duplicated with one copy representing the grain as it flows through 

wet holding and drying, and the other retains the truck and driver resources and accounts 

for empty haul back to the field, as described in the previous manuscript. After 

duplication, the entities were routed either directly into storage or through wet holding 

and drying. This decision is based on a threshold moisture content of 15 % w.b. and when 

the moisture is below this level the system behaves identically to the previous model with 

grain going directly into storage.  
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Figure 4-2: Simplified diagram of the DES model. Solid lines represent the flow of 

material, and dashed lines represent information flow. The break lines represent portions 
of the model unchanged from the previous transportation model. 

 

To fit within the DES modeling framework, the continuous drying process was 

represented with an analogous discrete process. A queue and entity server represented 

wet holding capacity and drying. Wet holding, capacity, 𝑄𝑄𝑤𝑤ℎ, was a whole number 

multiple of entities that could be held in front of the dryer. This represents the 

combination of the wet holding bin capacity and dryer holding capacity. The maximum 

queue length in the model was the total holding capacity minus one to account for the 

entity in the dryer server. This could result in a small portion of the wet holding capacity 

that is never utilized, but that portion of the storage capacity would have little impact on a 

real system because the entire truck has to be unloaded before it can leave the pit. The 
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service time associated with unloading at the receiving pit, 𝑑𝑑𝑡𝑡𝑡𝑡𝐺𝐺𝐺𝐺 represented the 

minimum time required to unload a truck. However, once the wet holding capacity was 

reached, the truck was held at the receiving pit until the grain could be transferred to wet 

holding. When this occurred, the total time spent at the receiving pit was the elapsed time 

from when the entity entered the unload server to the time it could pass to the wet holding 

bin. This represents the time to transfer the whole contents of the truck and would only 

come into account when the wet holding bin is full and the pit unloading rate was higher 

than the drying rate. In this situation, the unloading rate at the receiving pit was 

essentially controlled by the drying rate. The serviced time was associated with drying 

the grain, 𝑑𝑑𝑡𝑡𝐿𝐿𝐺𝐺𝑑𝑑, was determined by dividing the mass of grain per truck load, µ𝑳𝑳 by the 

drying rate, which varied by day as described in subsequent discussion. Because the 

simulation was run in 24-hour intervals, the amount of grain waiting to be dried at the 

end of each day was carried over as an initial condition for the next daily simulation. 

4.3.3.1 Analysis       

Much of the resource utilization and material flow was analyzed as described in 

the previous transportation model. Wait times between processes, truck and driver 

utilization, and flow time efficiency FTE were identical. However, the productive time 

for a given entity was modified to account for instances when unloading at the pit takes 

longer than the pit service time (equation (4-7)). The time the dryer was utilized was 

estimated from equation (4-8), and the dryer utilization over the 24-hour daily simulation 

period was estimated from equation (4-9).  
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Where: 

𝑃𝑃𝑃𝑃𝐹𝐹𝑑𝑑𝑃𝑃𝑇𝑇𝑡𝑡𝑇𝑇𝑃𝑃𝑇𝑇 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺 = Total time to complete all necessary process steps for the ith 

entity (minutes) 

𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺 = Time required for the ith entity to be transferred to a truck (minutes) 

𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝑡𝑡𝑡𝑡𝑡𝑡𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 = Time required for the ith entity to be transported to storage 

(minutes) 

𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝐿𝐿𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺 = Time required for the ith entity to be weighted (minutes) 

𝑇𝑇𝑡𝑡𝑡𝑡𝐺𝐺 = Timestamp when the ith entity started unloading at the storage facility 

(minutes) 

𝑇𝑇𝑓𝑓𝑡𝑡𝐺𝐺 = Timestamp when the ith entity finished unloading at the storage facility 

(minutes) 

𝑇𝑇 = entity number. Represents a single load arriving to the field edge 

 

Where: 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝑃𝑃 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗 = Time the dryer was committed to the jth load (minutes) 

𝑇𝑇𝑡𝑡𝐿𝐿𝑗𝑗 = Timestamp when the jth load starts drying (minutes) 

𝑇𝑇𝑓𝑓𝐿𝐿𝑗𝑗 = Timestamp when the jth load exits the dryer (minutes) 

𝑇𝑇 = Load number. Represents a full truck load of grain 

 

 

Where: 

𝐷𝐷𝑃𝑃𝐸𝐸 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 = Dryer utilization over a 24-hour period (%) 

1440 = Length of dryer simulation assuming dryer could run continuously 

(minutes) 

𝑁𝑁 = Total number of deliveries in a day 

𝑃𝑃𝑃𝑃𝐹𝐹𝑑𝑑𝑃𝑃𝑇𝑇𝑡𝑡𝑇𝑇𝑃𝑃𝑇𝑇 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺 = 𝑑𝑑𝑡𝑡𝐹𝐹𝐹𝐹𝐺𝐺 + 𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝑡𝑡𝑡𝑡𝐿𝐿𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑑𝑑𝑡𝑡𝑡𝑡𝑐𝑐𝐿𝐿𝑠𝑠𝐺𝐺𝑡𝑡𝐺𝐺 + (𝑇𝑇𝑓𝑓𝑡𝑡𝐺𝐺 − 𝑇𝑇𝑡𝑡𝑡𝑡𝐺𝐺) (4-7) 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝑃𝑃 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗  = (𝑇𝑇𝑓𝑓𝐿𝐿𝑗𝑗 − 𝑇𝑇𝑡𝑡𝐿𝐿𝑗𝑗) (4-8) 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝑃𝑃 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 =
∑ 𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝑃𝑃 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑇𝑇𝑑𝑑 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑁𝑁
𝑗𝑗=1

1440
∗ 100 (4-9) 
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In addition to the average resource utilization, instantaneous resource utilization 

was estimated at discrete points in the system when the resource state changed. Equation 

(4-10) was applied to the truck, driver, and dryer resources to evaluate the instantaneous 

utilization as the simulation progressed. The instantons utilization was determined from 

the Simulink output, and estimates occurred when the resource states changed. A new 

parameter was proposed to quantify the amount of field time lost due to a bottleneck in 

the system. A full field side queue represented a situation where harvest had to be 

stopped because all grain carts and combines were full and there was no place for the 

entities to move downstream. The time between when this occurred and when an entity 

left the queue (allowing harvest to restart) represented lost productive time, and harvest 

time lost (HTL) was defined as the total amount of time this occurred (equation (4-11)). 

If the next load did not leave the queue until after the harvest window had ended for the 

day, the difference was taken between when the queue became full and when the window 

for fieldwork expired.  

 

Where: 

𝐼𝐼𝐸𝐸𝑇𝑇𝑡𝑡𝑈𝑈𝐸𝐸𝑡𝑡 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 = Resource utilization after a resource state change (%) 

𝑅𝑅𝑇𝑇𝑇𝑇𝐹𝐹𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝑑𝑑𝐿𝐿𝐺𝐺𝑠𝑠𝐺𝐺𝑏𝑏𝑠𝑠𝐺𝐺 = Quantity of resources not currently in use 

𝑅𝑅𝑇𝑇𝑇𝑇𝐹𝐹𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺𝐿𝐿𝐺𝐺𝐿𝐿𝑠𝑠 = Total quantity of resources  

 

 

 

 

 

 

 

 

 𝐼𝐼𝐸𝐸𝑇𝑇𝑡𝑡𝑈𝑈𝐸𝐸𝑡𝑡 𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝑇𝑇𝑈𝑈𝑈𝑈𝑡𝑡𝑇𝑇𝐹𝐹𝐸𝐸 = (1 − (
𝑅𝑅𝑇𝑇𝑇𝑇𝐹𝐹𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝐿𝐿𝑑𝑑𝐿𝐿𝐺𝐺𝑠𝑠𝐺𝐺𝑏𝑏𝑠𝑠𝐺𝐺
𝑅𝑅𝑇𝑇𝑇𝑇𝐹𝐹𝑃𝑃𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇𝐺𝐺𝐿𝐿𝐺𝐺𝐿𝐿𝑠𝑠

)) ∗ 100  (4-10) 
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Where: 

HTL = Harvest Time Lost. Total time harvest was stopped due to a bottleneck 

(minutes) 

𝑇𝑇𝐺𝐺𝐿𝐿𝑚𝑚 = Timestamp when the field queue becomes full, {𝑄𝑄𝐹𝐹𝐺𝐺𝐺𝐺𝑠𝑠𝐿𝐿 =

𝑄𝑄𝐹𝐹𝐺𝐺𝐺𝐺𝑠𝑠𝐿𝐿_𝑚𝑚𝐿𝐿𝑚𝑚,,𝑇𝑇𝐺𝐺𝐿𝐿𝑚𝑚  < 𝐻𝐻ℎ} (minutes) 

𝑇𝑇𝐺𝐺𝐿𝐿𝑚𝑚+1 = Next timestamp. Corresponds to the next entity leaving the queue 

(minutes) 

idx = Timestamp index corresponding to state change that caused the queue to 

become full 

Idx = Final timestamp when the queue was full 

 

4.3.4 Whole Season Simulation  

Figure 4-3 shows the flow diagram representing how the daily harvest model was 

applied to the whole harvest season. The model required the total mass of grain to be 

harvested, 𝑀𝑀𝐹𝐹, the moisture content at the beginning of harvest, weather data spanning 

the harvest window, and the other inputs to the daily simulation outlined in Table 4-1. 

After initialization, the model runs in a loop over the daily harvest model until the total 

mass of grain is harvested. A summary including: resource utilization, loads into the 

system, loads out of the system, wait time between processes, and the final level of the 

wet holding bins was generated for each day. The starting level of the wet holding bins, 

grain moisture content, and drying capacity were updated each day. All trucks had to be 

unloaded on the same day. If there was insufficient time to complete all unloading events, 

the daily simulation was run again using a reduced time that would allow all material to 

be delivered.  

 

𝐻𝐻𝑇𝑇𝐿𝐿 = � (min (𝑇𝑇𝐺𝐺𝐿𝐿𝑚𝑚+1,𝐻𝐻ℎ) − 𝑇𝑇𝐺𝐺𝐿𝐿𝑚𝑚) 
𝐼𝐼𝐿𝐿𝑚𝑚

𝐺𝐺𝐿𝐿𝑚𝑚=1

 (4-11) 
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Figure 4-3: Whole season flow diagram. 

 

Time harvesting, 𝐻𝐻ℎ, was the variable used to control if new grain was harvested 

on a given day. A standard eight-hour work day was used for the time harvesting 

occurred, and it was assumed no fieldwork occurred on Sunday. A simple rainfall 

threshold similar to (Audsley & Boyce, 1974) and (Loewer et al., 1984) was used to 

account for weather delays (equation (4-12)). It was assumed that 20% of the 

precipitation carried forward between days and if the accumulated rainfall threshold was 

greater than 6.35 mm no fieldwork occurred. Applying this method to ten years of 

records for the weather data for Bowling Green, Kentucky over a range of dates from 
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September 1 to October 31 resulted in an 83% average probability of fieldwork. This was 

within the range of values provided in ASABE Standards (2015a), and estimating field 

days from equation (4-12) can be applied to specific sites, if weather data is available. 

The dryer was allowed to run continuously and dry any grain present in the wet holding 

bins on days when no harvest occurred. The final iteration of the model was run twice, 

once to determine if it was the last simulation day, and a second time with a harvest time 

equal to the amount of time required to harvest the last grain. This prevented the model 

from overshooting the total mass to be harvested. After harvest was complete, the daily 

results were compiled into an overall summary. 

 

Where: 
𝑍𝑍𝐺𝐺 = Accumulated rainfall threshold, (mm of precipitation) 

𝑃𝑃𝐺𝐺 = Precipitation on a given day (mm of precipitation) 

𝑡𝑡 = Day relative to the start of the simulation 

4.3.5 Model Application 

The data used to evaluate the proposed field drying model, dryer capacity 

adjustment, and DES harvest simulation model were collected on a large grain farm in 

Western Kentucky during the 2016 corn harvest season. The harvest and transportation 

characteristics of this operation were described in detail in the previous grain 

transportation study. In addition to the previously described data, the mass of grain 

delivered in each truck, µ𝑳𝑳, was used to quantify how much grain needed to be dried. The 

dryer used at the example operation was a Sukup tower dryer (model U4018, Sukup 

Manufacturing Co., Sheffield, IA) with a 5-pt capacity (from 20 to 15% w.b.) of 102 t hr-

1 (4,000 bu hr-1), a 91 m3 heating section capacity. It should be noted that the capacity 

ratings are based on wet grain, 20% w.b. in this example. A maximum unloading rate of 

approximately 140 t hr-1 (5,500 bu hr-1) (Sukup, 2016). The operation was harvesting 

white corn, and the dryer was operated at 60 °C as a result.  

𝑍𝑍𝐺𝐺 = 𝑃𝑃𝐺𝐺   𝑡𝑡 = 1
     𝑍𝑍𝐺𝐺 = 0.2 ∗ 𝑃𝑃𝐺𝐺−1 + 𝑃𝑃𝐺𝐺  𝑡𝑡 > 1 (4-12) 
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The method used to adjust drying capacity was evaluated using two approaches. 

First, RDC estimated from equation (4-4) was compared to RDC as determined from 

Thompson et al. (1994). This primarily served to evaluate how well the empirical 

relationships developed approximated the output of the more complex model. Secondly, 

both the Thompson et al. (1994) model and the proposed RDC adjustment were 

compared to producer maintained drying records. The records utilized included incoming 

grain moisture, outlet grain moisture, and unload roller set point. The dryer was operated 

in manual mode, and the roller set point was given as a percentage of the maximum 

capacity. The daily operating parameters were estimated using a time-weighted average 

of moisture grab samples and unload roller set points. The drying capacity estimated from 

Thompson et al. (1994) was based on the required retention time and the holding capacity 

of the heating section of the dryer.  

Field drying of grain was modeled using equation (4-6) and weather data that was 

obtained from the Midwestern Regional Climate Center (2018), for the nearest weather 

station which was located in Bowling Green, KY. A value for 𝛽𝛽 was estimated using the 

weather data in combination with actual moisture content measurements taken from 

inbound trucks. The moisture content was determined using a commercial moisture 

analyzer (model GAC 2100, DICKEY-john Corporation, Auburn, IL), and a total of 339 

moisture samples over 14 days were used in the analysis. The best fit value for 𝛽𝛽 was 

determined from an exhaustive search of values in the range of 0 < 𝛽𝛽<0.1 in 0.0001 

increments. The final value of 𝛽𝛽 was taken as the value which resulted in the lowest sum 

of squared errors.  

4.4 Results and Discussion 

4.4.1 Relative Dryer Capacity 

Relative drying capacity (RDC) was determined by running the crossflow drying 

simulation from Thompson et al. (1994) over a range of drying air temperatures, initial 

and final moisture contents (135 combinations total). The best fit line for the moisture 

adjustment function (equation (4-1)) resulted in coefficients of a=1.610, b=0.2022, and 

c=0.006901, and the resulting fit matched the simulated data with an r2=0.99. The linear 

temperature adjustment (equation (4-2)) had an r2 of 0.98 using regression coefficients of 
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d=1.0 and f=0.0136. Figure 4-4 shows a comparison of the overall RDC adjustment 

determined from equation (4-4) and the estimated relatively drying capacity predicted 

using the individual model runs from Thompson et al. (1994). The RDC values 

developed in this study cover a broad range of drying conditions and included the effects 

of drying air temperature, initial moisture content, and final moisture content. Values for 

RDC are relative to the manufacturer’s stated drying capacity at 5-pt moisture removal 

with a drying air temperature of 104°C. The values for RDC in Figure 4-4 were 

determined using equation (4-4) with 𝑆𝑆𝐷𝐷𝐶𝐶𝐿𝐿𝐺𝐺𝑑𝑑 set equal to one, and each point represented 

a different moisture removal and temperature combination. The solid line was included 

for reference and represents perfect agreement between the two methods. The results 

shown in Figure 4-4 indicates the method used to adjust drying capacity in this study 

provides good agreement with those obtained from individual model runs from 

Thompson et al. (1994), and was appropriate for use. An overview of the relative drying 

capacity for various temperature reductions and moisture removal levels is shown in 

Figure 4-5. 

 
Figure 4-4: Plot of relative drying capacity estimated from Thompson et al. (1994) 

plotted against the estimated ratio from equation (4-4). 1 to 1 line shown for reference.  
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Figure 4-5: Relative drying capacity estimated for various moisture removal levels and 
temperature reductions. All ratios are relative to 5 points of moisture removal at 104°C. 

 

Table 4-2 shows the average and range in the hourly drying capacity estimated for 

the example operation. RDC estimated using equation (4-4), and RDC estimated from the 

crossflow drying model (Thompson et al., 1994) in conjunction with the observed 

ambient conditions are also shown in Table 4-3. Both methods generally underpredicted 

the estimated drying capacity. Previous work (Brooker et al., 1992) has shown that drying 

simulation models often have an error range of ±20% and in this instance 4 out of 11 of 

the daily drying estimates were outside of that range for both methods. Additionally, both 

methods evaluated dramatically under predicted the drying capacity for the first two days 

of drying. This time coincided with the highest moisture incoming grain, yet the 

estimated drying capacity was the highest on the first two days. The cause of this 

variation was unknown, but it indicated that there were other factors that were not 

accounted for occurring on those days. The dryer was operated at 60°C, which was on the 

low end of typical operation for continuous flow dryers. In this region, ambient 

conditions play a larger role in dryer performance and could contribute to the variation in 

dryer performance. The mean daily temperature over the course of the harvest window 

was 25.5 °C, which is 15.5 °C higher than standard conditions used to simulate dryer 
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performance. Applying the observed ambient conditions to Thompson et al. (1994) 

resulted in up to a 15% change in RDC.  

 

Table 4-2 Comparison of Estimated Drying Capacity to Producer Drying Log1 

Day 
Estimated 
Capacity2  

(t hr-1) 

Eq. (4-4) Xflow 
RDC 

(t hr-1) 
Error 
(%) 

RDC 
(t hr-1) 

Error 
(%) 

23-Aug 32.9 [30.7-37.7] 18.0 -45.3 17.2 -47.8 
24-Aug 27.9 [27.9-27.9] 15.8 -43.4 14.3 -49.0 
25-Aug 20.4 [18.2-23.8] 19.0 -6.5 17.1 -15.9 
26-Aug 17.8 [15.4-18.2] 23.5 30.5 21.4 20.4 
27-Aug 24.3 [16.8-34.9] 21.8 -10.4 19.7 -19.1 
29-Aug 21.4 [16.8-22.4] 20.8 -2.8 18.6 -13.1 
30-Aug 23.4 [21.0-27.9] 25.0 6.9 23.3 -0.4 
31-Aug 22.4 [21.0-25.2] 22.0 -1.9 19.7 -12.2 
1-Sep 27.3 [25.2-30.7] 20.4 -25.3 18.9 -30.9 
2-Sep 27.0 [23.8-32.1] 28.5 5.5 25.2 -6.7 
3-Sep 29.9 [25.2 32.1] 32.6 8.8 34.1 13.9 

1 All capacities are on a dry basis, and the following assumptions were used: drying 
temperature was 60°C, 139.7 t hr-1 maximum unload capacity, 5-pt rated capacity was 
81.3 t hr-1, capacity of heating section was 93 m3. Xflow refers to the granary model 
(Thompson et al., 1994) run using average daily conditions at the test site. RDC=Relative 
drying capacity. 
2. Estimated drying capacity observed at cooperating farm. Average value is given, range 
is shown in brackets. 
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Table 4-3 Summary of Weather Data from the Midwestern Regional Climate Center 
(2018) for Bowling Green, KY.*  

Day 
Ambient 

Temperature 
(°C) 

RH 
(%) 

𝑴𝑴𝑪𝑪𝑮𝑮𝑮𝑮 
(%w.b.) 

𝑴𝑴𝑪𝑪𝑳𝑳𝒓𝒓𝒕𝒕 
(% w.b.) Precipitation 

(mm) 

𝑴𝑴𝑪𝑪𝑬𝑬  
(% w.b.) 

22-Aug 21.8 71.0 26.7 15.5 0 14.7 
23-Aug 23.1 72.6 26.4 16.9 0 14.8 
24-Aug 27.1 73.8 24.3 14.7 0 14.7 
25-Aug 28.6 72.4 23.2 14.9 0 14.3 
26-Aug 28.5 73.8 22.1 15.1 0 14.6 
27-Aug 27.2 77.0 21.6 14.4 0 15.3 
28-Aug 27.0 74.8 - - 10.2 14.9 
29-Aug 26.6 75.3 20.5 13.4 0 15.0 
30-Aug 27.5 73.4 20.0 13.9 0 14.6 
31-Aug 27.2 75.0 20.9 13.9 0 14.9 
1-Sep 24.1 74.9 20.9 13.6 0 15.2 
2-Sep 22.0 62.2 20.2 14.6 0 13.1 
3-Sep 21.8 69.0 19.4 14.6 0 14.3 
4-Sep 24.2 70.5 18.7 - 0 14.3 
5-Sep 25.8 68.8 18.8 - 0 13.9 
6-Sep 26.1 69.2 - - 0 13.9 

*MCin= average harvest moisture content, MCout= average moisture content out of dryer, 
and MCE= equilibrium moisture content using the Modified Henderson Equation from 
ASABE Standards (2007), RH=average relative humidity. 

 
 
The method for estimating observed dryer capacity also introduced uncertainty 

into the analysis. The unloading metering roll settings were used to estimate drying 

capacity based on the manufacture specified maximum unload rate of 5500 bu hr-1. This 

was a large assumption because actual unloading rates vary based on variety and flow 

gate settings, and an error in the maximum capacity results in a proportional error in the 

estimated capacity. A change of one point in the unload roller setting equates to an 

approximate 5% change in unload capacity, over the range of unloader settings observed. 

The estimated drying capacity exhibited large variations as the set point was manually 

adjusted (Table 4-2-values in brackets are the daily minimum and maximum setting), and 

varied by an average of 26% on a given day. This illustrates the difficulty in evaluating 

dryer performance and shows the need for more comprehensive evaluation data. 

However, similar methods for adjusting drying capacity using the concept of RDC based 

on simulation outputs have been employed in other studies (Abawi, 1993; Morey et al., 

1971), and equation (4-4) generally agreed well with Thompson et al. (1994), although it 
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underpredicted the capacity by 6.4% (when standard test conditions were used). This 

changed to an over prediction of 8.2% when Thompson et al. (1994) was run using 

observed ambient conditions. 

4.4.2 Weather Impacts and Grain Moisture Content  

Table 4-3 included a daily summary of the weather conditions used to estimate if 

field work occurred and field drying. The date range when harvest occurred was 

generally considered early for the area, was considered drier than normal, and 

precipitation only occurred on a single day over the harvest window, which happened to 

coincide with Sunday. Due to this, weather delays had no impact over the range of dates 

examined. Figure 4-6 shows the average daily incoming grain moisture over the course of 

the harvest window. The observed incoming moisture varied from 26.7% to 18.7% and 

generally decreased as the season progressed. The slight uptick in moisture later in the 

harvest window could be due to changes in varieties or planting date. The equilibrium 

moisture content, based on average daily conditions, varied from 13.1% to 15.3% over 

the range of dates of interest to this study. The best fitting value for 𝛽𝛽 in equation (4-6) 

determined from the exhaustive search was 0.081 day-1, and this resulted in a root mean 

squared error (RMSE) of 0.73 points. The model adequately represented the trend in field 

drying. 
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Figure 4-6 Change in harvest moisture content over season. Observed MC is the average 

daily moisture of incoming grain, MCE is the grain equilibrium moisture content 
calculated based on daily weather data and Predicted MC is the predicted moisture 

content using β=0.081 day-1 using equation (4-6). Error bars represent ± one standard 
deviation. 

 

4.4.3 Example Operation System Characteristics 

The proposed model was applied to a case study operation to assess its suitability. 

Table 4-4 provides an overview of the model parameters that were used in the simulation, 

and the weather data used in the simulation are shown in Table 4-3. Many parameters 

associated with this operation and their variability were described in detail in the previous 

study. For this study, load generation rate, 𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺, and all service times were 

treated as deterministic values. They were based on all observations over the harvest 

season. The load generation rate of 17.2 minutes, and average mass of 21 dry tonnes per 

load corresponded to an average harvest rate of 73.3 dry tonnes hr-1 (3394 std. bu hr-1). 

The average time field work occurred over all days was approximately eight hours, so a 

constant value 480 minutes was used for 𝐻𝐻ℎ, on days when harvest occurred. The 

operation utilized two hopper bottom wet holding bins (5.5 m diameter x 5.7 m tall and 

6.1 m diameter x 11.5 m tall), that when combined with the wet holding on the dryer 



 

111 

 

provided enough wet holding capacity, 𝑄𝑄𝑤𝑤ℎ, for approximately 18 loads or 378 dry 

tonnes. 

 

Table 4-4: Parameters Used for the Example Simulation *  
Symbol Value Units 

Daily Simulation Inputs 
𝒅𝒅𝒕𝒕𝑳𝑳𝑳𝑳𝑳𝑳𝒅𝒅 𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮 17.2 Minutes load-1 

𝒅𝒅𝒕𝒕𝑭𝑭𝑭𝑭 5.76 Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮𝒕𝒕𝒕𝒕𝑳𝑳𝑮𝑮𝒕𝒕 11.6 Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝒄𝒄𝑳𝑳𝒔𝒔𝑮𝑮𝒕𝒕 2 Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝒕𝒕 12.5 Minutes 

𝒅𝒅𝒕𝒕𝑮𝑮𝑮𝑮𝒕𝒕𝒓𝒓𝑮𝑮𝑮𝑮 11.6 Minutes 
𝑯𝑯𝑯𝑯 Max: 480 Minutes 
𝑯𝑯𝒕𝒕 1440 Minutes 

𝑵𝑵𝒅𝒅𝑮𝑮𝑮𝑮𝒅𝒅𝑮𝑮𝑮𝑮𝒕𝒕 8 - 
𝑵𝑵𝒕𝒕𝑮𝑮𝒓𝒓𝒄𝒄𝒕𝒕𝒕𝒕 8 - 

𝑸𝑸𝒕𝒕𝑮𝑮𝒓𝒓𝒄𝒄𝒕𝒕 
1 Field unloads 

truck-1 
𝑸𝑸𝑭𝑭𝑮𝑮𝑮𝑮𝒔𝒔𝒅𝒅_𝒎𝒎𝑳𝑳𝒎𝒎 3 Loads 

µ𝐿𝐿 21 Tonnes load-1 
𝑸𝑸𝒘𝒘𝑯𝑯 18 Loads 
𝑸𝑸𝑪𝑪𝑳𝑳𝑮𝑮𝑮𝑮𝑪𝑪 VBD Loads 
𝒅𝒅𝒕𝒕𝒅𝒅𝑮𝑮𝑪𝑪 VBD Minutes 

Whole Season Parameters 
𝑾𝑾𝑭𝑭 6959 Tonnes 
β .0940 Day-1 

𝑴𝑴𝑪𝑪𝑮𝑮𝑮𝑮 VBD % w.b. 
𝑴𝑴𝑪𝑪𝑳𝑳𝒓𝒓𝒕𝒕 15 % w.b. 
𝑴𝑴𝑪𝑪𝟎𝟎 26.7 %w.b. 

𝑴𝑴𝑪𝑪𝑬𝑬 VBD %w.b. 
𝑭𝑭𝒅𝒅𝑮𝑮𝑪𝑪 140 °F 
𝑭𝑭𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝒅𝒅 220 °F 
SDC 4000 bu hr-1 
𝑯𝑯𝑹𝑹𝑪𝑪 VBD Tonnes hr-1 

*VBD= Variable by day. These are parameters that 
change over the course of the simulation 
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4.4.3.1 Example Single Day Simulation 

Figure 4-7, Figure 4-8, and Figure 4-9 provide an overview of the harvest 

simulation for a single day. Aug-27 was selected because it was near the middle of the 

simulated harvest season and exhibited a number of the behaviors the model was 

intended to capture. The top portion of Figure 4-7 shows the timing of entities entering 

(loads generated from harvest) and exiting the system (out of the dryer) over the course 

of the day, and the bottom portion shows the number of entities waiting at various 

processes. In this example, loads exiting the system appear at two equal intervals. The 

mass of grain in each load was constant over the course of the simulation, and the drying 

rate was determined based on the day the material was harvested. Drying begins as soon 

as the simulation starts because there was a surplus of 15 truckloads in the wet holding 

bins from the previous day. The first load dried quickly because it was partially finished 

drying when the previous day simulation ended. After that point, loads exit the system at 

constant intervals until all of the previous day’s grain was dried. Then new grain exits at 

a slightly faster pace due to its lower moisture content. The constant load generation rate 

(harvest rate) resulted in consistent timing between loads entering the system early in the 

simulation. On the bottom of Figure 4-7, loads from the field arrive faster than they can 

be dried, causing the wet holding bins to reach capacity approximately two hours into the 

simulation (simulation begins at the start of harvest). After that point, trucks were slowed 

down unloading at the pit, causing the number of trucks waiting at the pit to increase. 

This is shown as up to seven entities, full trucks in this case, being in process. Around 5 

hours into the simulation full loads of grain coming out of the field are waiting for a truck 

to unload onto. At this point in the simulation, grain drying was the system bottleneck 

and the wet bins, trucks, and in-field holding capacity was full. This resulted in delays for 

new material entering the system, as shown by the longer period between loads entering 

the system for the last two loads. After eight hours, the fieldwork window is over and the 

remainder of the simulation is already harvested grain being moved from the field 

through drying and storage. The number of entities waiting field side decreases first, 

followed by full trucks waiting at the pit to unload, and finally, the level of the wet 

holding bins begins to drop before the simulation ends at 24 hours.  



 

113 

 

 
Figure 4-7 Overview of material flow through the harvest system on Aug-27. The top 
portion of the figure shows loads into and out of the system, and the bottom portion 

shows the number of entities in process. 
 

Figure 4-8 shows the utilization of driver, truck, and dryer resources over the 

course of the simulation on Aug-27. The solid black line represents a moving average of 

utilization of the resources to that point in the simulation. The gray circles represent 

instantaneous resource utilization estimated when the system state changes. Driver and 

truck utilization, Figure 4-8 (a), and Figure 4-8 (b), respectively, display very similar 

trends over the course of the day. Figure 4-8 (a) shows fluctuations in instantaneous 

driver utilization since, by definition, a truck did not require a driver to be loaded at the 

field edge. The instantaneous utilization stays between 20-40% for the first portion of the 

harvest simulation, until the wet holding bins are full, causing the truck and driver 

utilization to increase as the trucks wait to unload at the storage facility. In the overnight 
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hours, additional loads from the field were transported and all trucks were empty by 

approximately 19 hours into the simulation. This additional wait time after fieldwork 

stopped for the day was the behavior that was not explicitly captured by the previous 

transportation model that assumed unlimited receiving capacity and utilized a variable 

fieldwork duration. The slight differences between the truck and driver utilization was a 

result of the model not requiring a driver until after the grain had been transferred to the 

truck. There was grain in the wet holding bins at the start of the simulation, and the dryer 

was never able to catch up, resulting in a utilization of 100% over the whole simulation 

(Figure 4-8 (c)). In this model, the dryer ran continuously, and no time was allotted for 

breakdowns or maintenance. 

 

 
(a) 
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(b) 

 
(c)  

Figure 4-8 Resource utilization over the course of an example day (Aug-27). The solid 
line represents the average utilization to that point in the simulation, and gray circles 

represent the instantaneous utilization. (a) Driver (b) Truck (c) Dryer. 
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Figure 4-9 provides an overview of material flow through the simulation for Aug-

27. Figure 4-9 (a) shows the productive time, flow time, and FTE over the course of the 

simulation. These concepts were defined in the previous study, but briefly, flow time 

represented the time span from when a load entered the system to when it was emptied 

into the receiving pit. Productive time was defined as the time required to complete all 

handling steps. Flow time efficiency (FTE) was the ratio between the two and was an 

indicator of the magnitude of the delays in the system. The horizontal axis in Figure 4-9 

(a) references the time when the entity entered the system. Initially, there were no delays 

in the system, so productive time and flow time were equal resulting in FTE equal to 

100%. In the context of this analysis, productive time was a measure of how long the 

entity was in process, and once the wet holding bins were full, productive time increased 

slightly because the unloading rate at the pit was governed by grain leaving the dryer. In 

this case, an increase in the productive time is not desirable, but reflects an increase in the 

time required to handle a load of grain. FTE rapidly decreased after approximately two 

hours due to the longer flow times that resulted from extended wait time at the receiving 

pit and field edge (Figure 4-9 (b)).  

 

 
(a) 
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(b) 

Figure 4-9 Overview of wait time and material flow efficiency for an example day of the 
simulation (Aug-27). (a) Flow time from the field to unloading at the storage facility, 

Total productive time, and FTE. These values do not include time spent in wet holding or 
dryer. (b) Wait time for full loads at the receiving pit, and full grain carts waiting field 

side.  
 

4.4.3.2 Whole Season Simulation 

Table 4-5 shows an overall summary of the simulated resource utilization and 

wait times described in the previous section, expanded over the whole harvest season. 

𝑄𝑄𝑤𝑤ℎ Final indicates the final fill level of the wet bins at the end of the daily simulation. It 

peaks on the second day of the simulation, with the wet bins completely full at the end of 

the day (with 18 entities in the bins). As the incoming grain moisture dropped, the drying 

capacity increased, and the dryer was able to catch up to harvest after Aug-29. After that 

point, dryer capacity was sufficient to dry all incoming grain during the same day. The 

wait time at the field edge was the average time full loads from the field were required to 

wait for a truck to receive the grain, and the wait time at the receiving pit represented the 

average time full trucks waited in the queue ahead of the receiving pit. These wait times 

are reflected in FTE, which varied from a minimum of 32% on to 100% later in the 

simulation. The minimum value of FTE indicated that the average load required 
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approximately three times longer than the minimum time to be delivered and was a result 

of the extended wait times to unload once the wet holding bins were full. Harvest time 

lost (HTL) represented the amount of time harvest was completely shut down due to a 

downstream bottleneck. The maximum value of HTL was 3.4 hours and represented a 

loss of 43% of the available harvesting time.  

 
Table 4-5 Whole Season Overview of Simulated Resource Utilization and Material Flow  

Day 
WT 

Field 
(hours) 

WT Pit 
(hours) 

FTE 
(%) 

Truck 
Util. 
(%) 

Driver 
Util. 
(%) 

Dryer 
Util. 
(%) 

HTL 
(hours) 

𝑸𝑸𝒘𝒘𝑯𝑯 
Final 

22-Aug 0 0.9 87 38.3 36.4 91.3 0 15 
23-Aug 0.7 5.4 47 71.8 64.7 96.6 1.9 18 
24-Aug 1.2 6.5 32 81.3 70.4 97.9 3.4 18 
25-Aug 1.1 5.8 33 82.2 70.8 98.1 3.1 17 
26-Aug 0.8 4.6 39 78.4 68.3 96.4 2.8 15 
27-Aug 0.7 3.7 46 78.3 67.8 96.3 2.2 14 
28-Aug 0 0 0 0.0 0.0 57.6 0 0 
29-Aug 0 0 100 28.0 24.4 93.2 0 1 
30-Aug 0 0 100 29.0 25.1 91.6 0 0 
31-Aug 0 0 100 29.0 25.1 81.3 0 0 
1-Sep 0 0 100 29.0 25.1 75.4 0 0 
2-Sep 0 0 100 29.0 25.1 68.0 0 0 
3-Sep 0 0 100 29.0 25.1 62.7 0 0 
4-Sep 0 0 0 0.0 0.0 0.0 0 0 
5-Sep 0 0 100 29.0 25.1 53.4 0 0 
6-Sep 0 0 100 27.7 24.0 31.6 0 0 

WT Field=Wait time at field edge. WT Pit= wait time at receiving pit. HTL= 
harvest time lost due to a downstream bottleneck. 𝑄𝑄𝑤𝑤ℎ Final=number of truckloads in the 
wet holding bins/dryer at the end of the day. 

 

Table 4-6 shows a summary of the actual observed harvest from the farm and the 

daily simulation expanded over the whole season. There were day-to-day variations 

between the simulated and observed mass of grain entering the system. The simulation 

used average values for the whole season, which could explain a portion of the daily 

variation. The actual operation was able to vary the number of trucks used on a given day 

and would have allowed more grain to be harvested on days when the lack of wet holding 

or drying capacity limited harvest. Excluding the first day, the simulation underpredicts 

the amount of grain harvested early in the season. Large values of HTL on these days and 

the full wet bin at the end of the daily simulation indicated drying was the bottleneck in 
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the simulation. This combined with the RDC adjustment that underpredicted the drying 

rate on these days indicate the dryer operating conditions may have not been fully 

accounted for. This could have included a drying air temperature higher than recorded, 

changes in the amount of cooling performed in the dryer, and/or significant differences in 

hybrid drying rates in the early part of the season. The largest variation between the 

observed system and the simulation occurred on Aug-31 when only three loads were 

harvested in the observed system, the cause of the limited harvest on that day was 

unknown. The first-day harvest also exhibited large variation between the simulated and 

observed system. The simulation overpredicted the amount of grain harvested, which 

resulted in a large amount of grain in the wet holding bin at the end of the daily 

simulation. This combined with a fixed number of transportation vehicles used in the 

model resulted in an underprediction on the second day. After the sixth day of the 

simulation, the dryer was able to accommodate the total mass of incoming grain, and for 

subsequent days the mass of grain into and out of the system was governed by the time 

harvesting and the load generation rate. The actual operation varied how long fieldwork 

occurred, and later in the season the producer was able to run longer. The simulation 

predicted the harvest would require a single day longer than was observed, however in 

the observed data, grain was harvested on the second to last day, which was a Sunday and 

violated the assumptions used in the simulation. Additionally, the simulation required all 

grain be unloaded into storage on the same day it was harvested. In reality, a single load 

or two would have sufficient time to complete unloading the following day and return to 

the field before they were needed. Despite the daily variation, Figure 4-10 shows good 

agreement between the observed and simulated cumulative mass harvested, which 

indicated the model was adequate to serve as a decision support tool.  
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Table 4-6 Summary of Grain Entering and Leaving the System 

Day Observed 
Deliveries 

Observed  
𝑾𝑾𝑮𝑮𝑮𝑮 (dry t) 

Simulated 
Deliveries 

Simulated  
𝑾𝑾𝑮𝑮𝑮𝑮 (dry t) 

Simulated  
𝑾𝑾𝑳𝑳𝒓𝒓𝒕𝒕 (dry t) 

22-Aug 19 361 28 588 273 
23-Aug 34 617 17 357 294 
24-Aug 24 477 16 336 336 
25-Aug 29 575 17 357 378 
26-Aug 15 303 18 378 420 
27-Aug 28 583 21 441 462 
28-Aug 0 0 0 0 294 
29-Aug 32 656 28 588 567 
30-Aug 30 626 28 588 609 
31-Aug 3 44 28 588 588 
1-Sep 32 673 28 588 588 
2-Sep 33 694 28 588 588 
3-Sep 39 850 28 588 588 
4-Sep 2 45 0 0 0 
5-Sep 20 447 28 588 588 
6-Sep 0 0 19 399 399 

 

 

 
Figure 4-10 Observed and simulated cumulative mass of grain delivered, dry t. 

Simulation data was based on average input conditions. 
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4.5 Conclusions 

This study presented a whole season simulation model of corn harvest logistics. 

To account for temperature and incoming moisture content effects on drying capacity, a 

simplified method to adjust drying capacity relative to the manufacturer’s rated capacity 

was proposed. When applied to the dryer used in this study, and when compared based on 

relative drying capacity, the proposed method agreed well with simulation results from 

Thompson et al. (1994). However, the model underpredicted the observed data and in 

some instances had large errors. There were large amounts of variability in the observed 

data, and ambient conditions have a large impact on dryer performance at the low drying 

temperatures observed in this study. The variability in estimated drying capacity made it 

difficult to accurately assess the proposed method and showed the need to obtain better 

data for validation. Field dry down was accurately represented over the range of 

moistures from 26.7% to 18.7%, with an RMSE of 0.73 points. The simulation estimated 

harvest would require an additional partial day over the observed data, and overall the 

harvest model showed good agreement with the observed data, based on the cumulative 

mass of grain delivered over the season. The wait times and HTL early in the harvest 

simulation were consistent with the expected behavior, and this information could be 

combined with economic information to evaluate potential system changes. 
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 SENSITIVITY ANALYSIS OF GRAIN TRANSPORTATION AND 

DRYING SYSTEMS 

5.1 Summary 

Simulation models for grain harvest systems provide a useful tool to evaluate 

economic and productivity implications of changes in equipment, operation harvest 

strategies when specialty grains with differing drying rates are incorporated, and seasonal 

variability. This study demonstrated the application of a discrete event simulation model 

for corn harvest, transportation, and drying at an on-farm storage facility. A hypothetical 

operation was evaluated for a range of seasonal effects. When compared to the baseline 

configuration, a dry year, where the corn field dried faster, and a slow drying crop slower 

field dry down rate had the largest impact on the system’s operating and drying costs 

(12.7% decrease and 10.8% increase, respectively). The impact of reducing the drying 

temperature to maintain quality in drying white corn was also examined. For this specific 

configuration, there was no impact on the total operating and drying cost, and harvest 

took six days longer. The reduced drying capacity at lower temperatures resulted in more 

field drying which counteracted the reduced drying efficiency and increased field time. 

The use of the model to evaluate impacts of additional equipment on both cost and 

system performance were demonstrated, and a sensitivity analysis demonstrated how the 

benefits of increased drying and hauling capacity varied based on how often these 

systems created a bottleneck in the operation. Based on this hypothetical operation, some 

combinations of longer transportation distance, and higher harvest rates, increasing 

hauling and drying capacity could shorten the harvest window by a week or more at an 

increase in costs of less than $12 ha-1.  

5.2 Introduction 

5.2.1 Overview 

Grain harvest systems function at their highest level when decisions are made 

using the best information available. Grain harvest is capital, labor, and energy intensive, 

and producers must develop their operational plan and select equipment to efficiently and 

economically move grain from the field through drying and into storage. This is a 



 

128 

 

complex task that should consider both year to year variability in weather and crop 

conditions, as well as seasonal variation in equipment performance. Improving the 

overall harvest capacity of the system can shorten the time required to complete the 

harvest and mitigate potential yield and quality losses associated with prolonged harvest. 

It also frees up time and resources to complete other field tasks. The benefits of 

increasing capacity in one portion of the system is directly dependent on the capacity of 

the other system components, and for additional grain drying equipment, improved 

drying capacity can lead to increased energy costs because more grain can be harvested at 

higher moistures. Harvest simulation models can be used as decision support tools to 

allow producers to evaluate the potential implications of changes to their system.  

Since the 1970’s a number of harvest simulation models have been developed to 

examine aspects of harvest systems. Carpenter and Brooker (1972) examined several 

farmer-owned and custom harvest system configurations to find the least cost equipment 

to harvest and dry corn. The model was based on 20 years of weather data and included 

costs associated with equipment, drying, and losses. The relationship between system 

components was relatively simple, with daily harvest rates estimated from a normal 

distribution, and empirical relationships were used to approximate field drying, yield 

losses, and dryer capacity. Constant hauling costs were based on the annual volume of 

grain handled, and suitability for fieldwork was estimated based on precipitation and 

temperature. Harvest rates examined varied from 3.2 to 8.9 t hr-1, which is several times 

lower than typical harvest rates in modern equipment. This study indicated continuous 

flow drying should be considered once annual volume was above 1,093 tonnes (43,000 

bu). Kiker and Lieblich (1986) used a Monte Carlo simulation to evaluate the profitability 

of artificial drying equipment in Florida. This model incorporated variability in grain 

price received and indicated a high probability of a positive return for drying once the 

annual volume increased above 508 tonnes (20,000 bu). 

Morey et al. (1971) presented a dynamic programing simulation to determine the 

optimum number of hours to harvest each week as a function of the recoverable yield and 

dryer capacity. Recoverable yield was a function of moisture based on data from Johnson 

and Lamp (1966), and also assumed a linear decrease in yield as a function of time past 

November 1st. The results indicated overtime pay could be justified during the critical 
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harvest periods, which occurred early in the season, and again late in the season as losses 

began to grow. 

Loewer et al. (1984) estimated the ideal moisture content to start harvest by 

balancing the increased energy used to dry grain at higher moistures against the value of 

potential losses. This study also utilized the loss data from Johnson and Lamp (1966), and 

the field drying equations from Morey et al. (1971). The optimum moisture content was 

shown as a function of the ratio between price of fuel energy to value of grain. For 

continuous flow dryers, the optimum starting moisture decreased as the price of fuel 

increased relative to the value of the grain, and generally the more time required to 

complete the harvest, the higher the optimum starting moisture. The potential benefits of 

increasing drying capacity were not considered as part of this study. O.J. Loewer et al. 

(1980) examined the economics of on-farm drying and storage. This study showed 

harvest should begin around 28% moisture, and indicated drying high moisture grain was 

more beneficial than field drying for most situations examined.  

Many of the previous works discussed here utilized a potential yield loss to justify 

the additional expense of drying high moisture grain. Generally they relied on loss data 

from Johnson and Lamp (1966), however, this potential yield and loss data does not 

reflect improvements in modern hybrids and equipment. The loss evaluation associated 

with this research showed there was no change in yield or losses until prolonged field 

drying created lodging in the crop. This was consistent with Thomison et al. (2011) who 

found increased losses only occurred if harvest was delayed into November where greater 

lodging occurred, and Licht et al. (2017) who found no dry matter loss as corn was 

allowed to field dry. It is likely that a major cause of harvest losses is a result of lodging 

(Paulsen et al., 2014), which can result from weather events or from stalk quality 

degradation as the crop field dries. Considering these more recent evaluations, a more 

appropriate evaluation metric for changes to the harvest system would be how much the 

potential change could reduce the harvest window. The shorter window would have the 

benefits of freeing resources for other fall operations (planting wheat, harvesting 

soybeans, etc.), and would reduce the opportunities for a storm to cause lodging and 

losses.  
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Other previous works have examined impacts of various components on the 

overall system. O. J. Loewer et al. (1980) evaluated resource utilization for a range of 

harvest rates and receiving / wet holding/ drying capacities. Combine and hauling 

efficiencies were determined relative to their theoretical maximum performance over the 

simulation, and dryer capacity generally had the largest impact on overall capacity. Isaac, 

Quick, Birrell, Edwards, and Coers (2006) developed an economic model of combine 

harvest with a focus on selecting the optimum harvest speed for wheat harvest. The ratio 

of grain to material other than grain (MOG), yield, daily time available for operations, 

price, and timeliness influenced the optimum speed and net income. This model was 

based around a single crop with a constant yield and grain/MOG ratio and knowledge of 

the combine’s functional performance. A constant drying cost was applied to grain 

harvested above safe storage moisture, and field losses were estimated from a John Deere 

service publication combined with a shrink adjustment. The authors found a combine 

speed of 7.9 kph produced the highest net return for the hypothetical operation considered 

in the model. Tippayawong, Piriyageera-anan, and Chaichak (2013) presented a case 

study that demonstrated how logistic techniques could be applied to a grain storage 

facility in Thailand. The system in their study was much different than what would 

typically be encountered in the US, but it did demonstrate how activity-based costing 

(ABC) could be applied in an agricultural setting to reduce energy use.  

5.2.2 Drying Efficiency  

Artificially drying grain to levels safe for storage is a key component in on-farm 

storage systems. Energy used in drying is highly variable and is influenced by variety, the 

initial moisture content, final moisture content, drying airflow rate, and drying air 

temperature. Pierce and Thompson (1981) and Morey et al. (1976) showed heat energy 

requirements as a function of drying air temperature and airflow rate for crossflow dryers. 

Increasing the airflow rate increases the drying capacity but decreases the drying 

efficiency. Reducing the drying temperature decreases both the drying capacity and 

energy efficiency but can be necessary to maintain quality, especially in specialty grains. 

Typical drying efficiencies for continuous flow dryers is in the range of 4 to 10 MJ per kg 

of water removed from the grain. This range could extend even further at high airflow 
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rates and low drying temperatures. Additionally, many dryers improve efficiency by 

recovering a portion of the heat from the grain in the cooling section. The amount of air 

reclaimed can be adjusted to increase drying airflow based on the incoming moisture to 

balance energy savings and capacity (Farm Fans Inc, 1999). These aspects were beyond 

the current investigation.  

Current estimated expenditures for corn production (with a yield of 8.5 tonnes per 

hectare) following soybeans in Iowa have been estimated to total approximately $1380 

ha-1. Rates to custom harvest and haul corn have been estimated at $104 ha-1, and grain 

elevators charge approximately $1.57 per t-pt ($0.04 per bu-pt) to dry wet grain (Halich, 

2018). Another extension source estimated roughly $120 ha-1 was required to harvest and 

haul the grain to the first storage facility; while drying and handling would require an 

additional $89 ha-1 (Plastina, 2018). These costs are highly variable and depend in large 

part on the organization of the operation along with labor and energy prices. 

5.2.3 Motivation 

This study was the culmination of the previous modeling efforts aimed at 

developing a system model for grain harvest logistics. The overall objective of this 

analysis was twofold. First the potential of the model as a decision support tool was 

demonstrated by applying it to examine performance and cost changes associated with 

changes made to a hypothetical farm. Secondly, a sensitivity analysis was conducted to 

explore how changes in material handling and drying demand due to increased harvest 

rate and transportation time impacted the overall system. Whole season utilization of the 

available harvest capacity, time required to complete the operation, and operating costs 

associated with harvesting, transporting and drying the grain were determined for each 

system configuration. The specific objectives of this analysis were: 

1. Examine seasonal variations in system performance due to changing weather 

conditions and field dry down rates. 

2. Evaluate the impact of reduced drying temperature required to maintain 

quality in food grade white corn. 

3. Demonstrate how the model could be applied to evaluate changes in the 

harvest system. 
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4. Conduct a sensitivity analysis by evaluating system performance and 

operating costs over a range of harvest rates and transportation times. 

5.3  Materials and Methods 

5.3.1 Model Application 

This study utilizes the previously developed whole season discrete event 

simulation (DES) model of grain harvest to conduct a sensitivity analysis and explore 

performance and economic impacts of changing system parameters. Two approaches 

were used when applying the model. The first portion of the analysis utilized a baseline 

system configuration with a series of whole season simulations, in which parameters 

were changed to demonstrate their impact on the overall system. Secondly, the baseline 

operation and several other configurations were evaluated over a range of transportation 

distances and harvest rates to evaluate changes associated with increased material 

handling and transportation demand. All model development, processing and analysis 

was conducted using MATLAB and the SimEvents toolbox in Simulink (R2017b, The 

MathWorks Inc., Natick, MA).  

The model was driven by an entity generation process, which allows material to 

enter the system at predetermined time intervals. Previous efforts in this project 

incorporated these values explicitly as inputs to the model. For this discussion, model 

field equipment characteristics and performance were utilized to determine the rate at 

which material enters the system. Field equipment characteristics (speed, width, etc.) 

were used along with (ASABE Standards, 2015b) to estimate the effective area capacity 

(Ca) and material harvest capacity (Cm). This was combined with the grain cart capacity, 

number of unloading events required to fill a truck and the average mass loaded on a 

truck to estimate the entity interarrival time or load generation rate (equation (5-1)). The 

harvest rate, 𝐶𝐶𝑇𝑇, was assumed constant, and it was assumed the grain cart was sufficient 

to not impede the combine. All other model parameters were defined as previously 

described. Throughout this analysis dry mass refers to 0% moisture material. 
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Where: 

𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺 = Time between arrivals of full grain carts (minutes) 

µ𝐿𝐿= Mass of grain per truck (dry t truck-1) 

𝐶𝐶𝑇𝑇 = material harvest capacity from ASABE Standards (2015b), dry t hr-1 

𝑄𝑄𝐺𝐺𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡 = number of unloading events to fill a truck 

60 = number of minutes in one hour 

 

5.3.2 System Configurations 

The system configuration with the operational parameters outlined in Table 5-1 

served as a baseline configuration for evaluating changes to the system. The simulated 

operation was assumed to operate a single combine and grain cart to harvest 810 ha (2000 

ac) of field corn. A class 7 combine with a 12-row head that had a constant field speed of 

5.6 kph (3.5 mph) was selected based on data from ASABE Standards (2015a) and 

Edwards et al. (2016). The average yield was assumed to be 8.11 dry tonnes per ha (152 

std. bu ac-1), which was the ten year average for the Midwestern agricultural region of 

Kentucky (USDA-NASS, 2017). Three semi-trucks and two drivers hauled grain from 

the field to the storage facility, which had a single worker present at all times when 

harvest and drying occurred. The average transportation time was assumed to be 20 

minutes, and a truck could unload in a minimum of 15 minutes. The minimum unload 

time was an optimistic estimate for an operation this size, and O. J. Loewer et al. (1980) 

indicated pit and receiving conveyor size can influence combine and delivery equipment 

efficiency. However, grain receiving equipment was not specifically examined in this 

analysis, and it was beneficial to avoid it becoming the system bottleneck. A 320 m3 

(9088 bu) hopper bottom wet holding bin was selected, along with a cross-flow dryer 

with 14.7 dry t hr-1 (730 bph at 20% moisture) rating at 5-pts moisture removal. A drying 

temperature of 104 °C (220 °F) was selected, and it was assumed harvest started at 9:00 

am each morning. A period of 10 hours each day were allotted for fieldwork and grain 

transportation and drying could occur continuously.  

𝑑𝑑𝑡𝑡𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺 =
µ𝐿𝐿

𝐶𝐶𝑇𝑇 ∗ 𝑄𝑄𝐺𝐺𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡
∗ 60 (5-1) 
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Table 5-1: System Characteristics for Baseline System 
Parameter Value Description Unit 

𝑯𝑯𝑯𝑯 600 (10) Duration of fieldwork Minutes (hr) 
𝑯𝑯𝒕𝒕 1440 (24) Total length of daily simulation Minutes (hr) 
𝑨𝑨𝑮𝑮𝑮𝑮𝑳𝑳 810 (2000) Total area to harvest ha (ac) 
𝒀𝒀𝑮𝑮𝑮𝑮𝒔𝒔𝒅𝒅 8.11 (152) Average yield dry t ha-1  

(std bu ac-1) 
𝑵𝑵𝒄𝒄𝑳𝑳𝒎𝒎𝒄𝒄𝑮𝑮𝑮𝑮𝑮𝑮𝒕𝒕 1 Number of combines - 
𝑺𝑺𝒄𝒄𝑳𝑳𝒎𝒎𝒄𝒄𝑮𝑮𝑮𝑮𝑮𝑮 5.6 (3.5) Average Combine speed kph (mph) 

𝑯𝑯𝑳𝑳𝒘𝒘𝑺𝑺𝒕𝒕𝑳𝑳𝒄𝒄𝑮𝑮 0.762 (30) Row spacing m (in) 
𝑵𝑵𝑮𝑮𝑳𝑳𝒘𝒘 12 Number of rows on corn head  

𝑽𝑽𝒄𝒄𝑳𝑳𝒎𝒎𝒄𝒄𝑮𝑮𝑮𝑮𝑮𝑮 12.3 (350) Combine onboard storage m3 (bu) 
𝑬𝑬𝒇𝒇 0.7 Field Efficiency - 
𝑪𝑪𝒎𝒎 29.25 (1354) Combine material harvest capacity dry t ha-1  

(std bu ac-1) 
𝑪𝑪𝑳𝑳 3.6 (8.9) Combine area harvest capacity  ha hr-1 (ac hr-1) 

𝒅𝒅𝒕𝒕𝑳𝑳𝑳𝑳𝑳𝑳𝒅𝒅 𝒈𝒈𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮 42 Time between arrivals of full grain carts Minutes cart-1 
𝑵𝑵𝒄𝒄𝑳𝑳𝑮𝑮𝒕𝒕 1 Number of grain carts - 
𝑽𝑽𝒄𝒄𝑳𝑳𝑮𝑮𝒕𝒕 35.3 (1000) Maximum cart capacity m3 (bu) 
𝒅𝒅𝒕𝒕𝑭𝑭𝑭𝑭 6 Field transfer time Minutes 
𝑸𝑸𝑪𝑪𝑳𝑳𝑮𝑮𝒕𝒕 1 Number of field unloading events to fill a 

truck 
Carts truck-1 

𝑵𝑵𝒅𝒅𝑮𝑮𝑮𝑮𝒅𝒅𝑮𝑮𝑮𝑮𝒕𝒕 2 Number of drivers -- 
𝑵𝑵𝒕𝒕𝑮𝑮𝒓𝒓𝒄𝒄𝒕𝒕𝒕𝒕  3 Number of trucks -- 

𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝑳𝑳𝑮𝑮𝒕𝒕𝒕𝒕𝑳𝑳𝑮𝑮𝒕𝒕 20 Time from field to facility Minutes 
µ𝐿𝐿 20.5 (950) Mass of grain per truck load dry t load-1  

(std. bu load-1) 
𝒅𝒅𝒕𝒕𝒕𝒕𝒄𝒄𝑳𝑳𝒔𝒔𝑮𝑮𝒕𝒕 4 Weigh and inspect duration Minutes 
𝒅𝒅𝒕𝒕𝒕𝒕𝑮𝑮𝒕𝒕 15 Unload duration Minutes 
𝑽𝑽𝒄𝒄𝑮𝑮𝑮𝑮𝒕𝒕 320 (9088) Storage capacity of wet bins m3 (bu) 
𝑭𝑭𝒅𝒅𝑮𝑮𝑪𝑪 104 (220) Actual drying air temperature °C (°F) 
𝑭𝑭𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝒅𝒅 104 (220) Air temperature used to determine dryer 

capacity 
°C (°F) 

SDC 14.8 (730) Stated drying capacity at 𝑭𝑭𝑮𝑮𝑳𝑳𝒕𝒕𝑮𝑮𝒅𝒅 and 5 pts 
removal 

dry t hr-1  

(20% bu hr-1) 
SEF 4651 (2000) Stated drying efficiency 25%-15% kJ kgH2O-1  

(BTU lbH2O-1) 
𝑽𝑽𝒅𝒅𝑮𝑮𝑪𝑪𝑮𝑮𝑮𝑮 82 Wet holding before dryer m3 (bu) 

β 0.0812 Field dry down rate coefficient day-1 
Year 2016 Year weather data was used from year 
𝑴𝑴𝑪𝑪𝟎𝟎 28 Initial moisture content on Sept 1 (%w.b.) 
𝑴𝑴𝑪𝑪𝑳𝑳𝒓𝒓𝒕𝒕 15 Moisture content out of the dryer (%w.b.) 
𝑵𝑵𝑺𝑺𝒕𝒕𝑳𝑳𝑮𝑮𝑳𝑳𝒈𝒈𝑮𝑮 1 Workers at storage facility persons 
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 An overview of the alternative system configurations evaluated are shown in 

Table 5-2. All changes were relative to the baseline configuration described in Table 5-1, 

and all system characteristics except those explicitly stated remained unchanged. 

Parameters examined are separated into several subsections. Seasonal effects were 

examined by changing the input weather data and field dry down rate, the effect of 

reduced drying temperature associated with changing to a specialty crop, such as white 

corn, was evaluated. Finally, the impact of increasing the capacity of specific components 

in the system was examined. 
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Table 5-2: System Variations Explored 
Name Description Summary of Changes 

Baseline Basic operations outlined in Table 5-1 - 
Seasonal 

Slow drying Base operation, with a slower field dry down 
rate 

β = 0.06 (Morey et al., 1971) 

Fast drying Base operation, with a faster field dry down 
rate 

β = 0.10 

Dry year Base operation, simulated using weather data 
from a dry year 

2009 Weather data 49 working 
days est. Sept 1-Oct 31 

Wet year Base operation, simulated using weather data 
from a wet year 

2010 Weather data 34 working 
days est. Sept 1-Oct 31 

Wet year, double 
drying capacity 

Base operation, simulated using weather data 
from a wet year 

2010 Weather data 34 working 
days est. Sept 1-Oct 31 

Crop / drying temperature 
White Corn Base operation, assuming producer was 

growing white corn. 
Yield Reduced by 13% (Martin, 

2018) 
Dryer Operated at 60 °C 

White Corn 
Delayed 

Base operation, assuming producer was 
growing white corn and delayed harvest until 

field moisture was 25%. 

Yield Reduced by 13% (Martin, 
2018) 

Dryer Operated at 60 °C 
No harvest until MCin<25 

%w.b. 
Equipment 

Additional 
driver 

Base operation with an additional driver. 𝑵𝑵𝒅𝒅𝑮𝑮𝑮𝑮𝒅𝒅𝑮𝑮𝑮𝑮𝒕𝒕 = 3 

Double dryer 
capacity 

Base operation with doubled dryer capacity. Included annual cost of 
ownership for new equipment 

SDC=29.7 dry t hr-1 (1460 BPH 
at 20%) 

Equipment for changes for a minimally equipped operation 
Minimally 
Equipped 

Base operation, minus one truck and with half 
the drying and wet holding capacity 

𝑁𝑁𝐺𝐺𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 = 2,𝑉𝑉𝑏𝑏𝐺𝐺𝐺𝐺𝑡𝑡 =160 m3 

SDC=7.4 dry t hr-1 
Additional truck Minimally equipped operation with an 

additional truck. 
 

Included annual cost of 
ownership for new equipment 

𝑁𝑁𝐺𝐺𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 = 3 
Double dryer 
capacity and 

additional truck 

Minimally equipped operation with an 
additional truck and larger dryer. 

Included annual cost of 
ownership for new equipment 

𝑁𝑁𝐺𝐺𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 = 3, 
SDC=14.8 dry t hr-1 (730 BPH 

at 20%) 
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Field dry down of grain and suitability for fieldwork was modeled using hourly 

weather data for Bowling Green, KY obtained from the Midwestern Regional Climate 

Center (2018). Ten years of hourly data (2008-2017) were evaluated for field dry down 

and days suitable for fieldwork. Field dry down was estimated using a field dry down rate 

parameter and grain equilibrium moisture content relationships as previously described. It 

was assumed the starting moisture content was 28% w.b. on Sept. 1 and the baseline dry 

down rate parameter was carried forward from the previous whole farm application (β = 

0.0812). All configurations utilized the same initial moisture content, and the effects of 

delayed harvest was not a major focus of this analysis. The baseline weather data used 

was for 2016, and effects of a slower or faster drying variety were examined by changing 

the dry down rate parameter. A slower drying crop was simulated using β = 0.06, which 

was the value assumed by Morey et al. (1971). A faster drying crop was simulated by 

increasing β by a similar amount (β = 0.1). Conditions suitable for fieldwork were 

determined as previously described, using a daily accumulated precipitation threshold < 

6.35 mm. Field drying and days suitable for field work were determined for each of the 

ten years of weather data, and seasonal effects were examined by applying the simulation 

to one of the wettest years (2009) and one of the driest (2010).  

Switching from field corn to a specialty or food grade variety can provide 

producers a premium at market, but these crops require careful processing to maintain 

quality. Specifically, drying temperature should be reduced to minimize stress cracks in 

the kernels and using a drying air temperature of 60°C has been recommended (Montross 

& Maier, 2000). This has the effect of reducing the dryer capacity and efficiency. These 

effects were examined using the white corn and white corn delayed configurations 

outlined in Table 5-2. It was assumed white corn had an average yield that was 87% of 

regular yellow corn (Martin, 2018). It should be noted that the area capacity of the field 

equipment was not changed in this evaluation, and the baseline initial moisture content 

and dry down coefficients were used. Reducing the drying temperature greatly reduced 

the drying capacity at the highest moisture levels, so a second scenario was examined 

where the grain was allowed to field dry to 25% before harvest began. This was the only 

configuration where effects of delayed harvest were considered. 
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Finally, system components were changed to demonstrate how the developed 

model could be used as a decision support tool to simulate impacts of new equipment on 

the overall system. Changes resulting from increasing drying capacity, adding additional 

trucks, and increasing the number of truck drivers were evaluated. Two changes were 

evaluated for the baseline configuration. Adding a driver to the baseline has the potential 

to increase the transportation capacity of the system and doubling the size of the dryer 

could increase overall system capacity early in the season. The baseline configuration 

was relatively well equipped, so an alternate system that was minimally equipped, which 

could show larger changes in performance as system parameters were adjusted, was also 

examined. The minimally equipped configuration was identical, except only two trucks 

were employed, and the wet holding and drying capacity were reduced by half. The 

effects of adding a truck and adding a truck plus doubling the dryer size were examined 

in this case. These changes were outlined under the equipment section of Table 5-2, and 

the annual ownership cost for the new equipment was included in the harvest costs. 

The final portion of this analysis focused on examining system performance over 

a range of transportation distances and harvest rates. The whole season was simulated 

over all combinations of transportation times from 15 to 60 minutes, in 5-minute 

intervals, and harvest rates in nine equal intervals over the range 2.5 ha hr-1 to 4.7 ha hr-1. 

This represented the baseline harvest rate ±30%. The sensitivity analysis was run for the 

baseline configuration, the baseline configuration with doubled drying capacity, the 

baseline configuration with doubled drying capacity plus an additional driver, and for the 

minimally equipped operation. For each case, the seasonal average cost per unit area, 

field capacity utilization, and length of harvest were determined.  

5.3.3 Harvest Costs 

The values used to estimate the total operating costs for each system configuration 

are summarized in Table 5-3. Cost associated with equipment operation are classified as 

operating costs, which depend directly on how much the equipment is used and 

ownership costs, which are independent of equipment use (ASABE Standards, 2015d). 

This analysis was presented in terms of operating costs associated with harvesting, 

transporting, and drying grain. Ownership costs associated with the baseline operation 
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were not included because they would remain essentially unchanged regardless of how 

the system was operated. However, when considering additional equipment added to the 

system, the annual ownership cost of the additional equipment was considered. 

Additionally, timeliness and the value of potential yield losses were neglected from this 

analysis.  
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Table 5-3: Labor and Equipment Cost Estimates* 

Parameter Value Notes 

𝑃𝑃𝑃𝑃𝐹𝐹𝑆𝑆𝑈𝑈𝐸𝐸𝑇𝑇 
$0.53 l-1 

 ($2 gal-1) 
Midwest regional average (U.S. Energy Information 

Administration, 2018) 
𝐸𝐸𝐹𝐹𝑇𝑇𝑇𝑇𝑡𝑡𝑃𝑃𝑇𝑇𝑇𝑇 $0.1 kWh  

𝐷𝐷𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐹𝐹  $0.93 l-1 
($3.5 gal-1) 5 year average (U.S. Energy Information Administration, 2018) 

   

𝑳𝑳𝑯𝑯𝒄𝒄𝑳𝑳𝒎𝒎𝒄𝒄𝑮𝑮𝑮𝑮𝑮𝑮 $20.1 hr-1   Labor rate (LR) for crop production supervisor (Edwards & 
Johanns, 2012)** 

𝑳𝑳𝑯𝑯𝒄𝒄𝑳𝑳𝑮𝑮𝒕𝒕 16.7 hr-1 Average hourly rate (Edwards & Johanns, 2012) ** 
𝑳𝑳𝑯𝑯𝑭𝑭𝑮𝑮𝒓𝒓𝒄𝒄𝒕𝒕 16.7 hr-1 Average hourly rate (Edwards & Johanns, 2012) ** 
𝑳𝑳𝑯𝑯𝒅𝒅𝑮𝑮𝑪𝑪𝑮𝑮𝑮𝑮 18.4 hr-1 Average salary rate (Edwards & Johanns, 2012) ** 

   
Combine fuel use $55.2 hr-1 Calculated from ASABE Standards (2015b), Assuming 268 kW 

Combine lube $5.5 hr-1 10% of fuel use 
Combine R&M $29.92 hr-1 Repair and Maintenance (R&M) (Edwards et al., 2016) 
𝑬𝑬𝑯𝑯𝑪𝑪𝑳𝑳𝒎𝒎𝒄𝒄𝑮𝑮𝑮𝑮𝑮𝑮 $90.6 hr-1 Total combine operating cost per hour 

   
Cart tractor fuel use $42.2 hr-1 Calculated from ASABE Standards (2015b), Assuming 205 kW 
Tractor and cart lube $4.2 hr-1 10% of fuel use 

Tractor R&M $5.0 hr-1 1% of purchase price ($250k tractor/ @ 500 hr yr-1) 
𝑬𝑬𝑯𝑯𝑪𝑪𝑳𝑳𝑮𝑮𝒕𝒕 $51.4 hr-1 Total grain cart tractor operating cost per hour 

   

Truck travel speed 
72.4 kph 
 (45 mph) (Jackson, 2015) 

Truck fuel economy 2.55 km-1  
(6 mpg) (Davis, Diegel, & Boundy, 2007) 

Truck R&M $ 24.3 hr-1 based on $0.54 mi-1 (Edwards et al., 2016) 
Truck fuel use $26.25 hr-1 Based on speed and transport time 

Insurance & other $3.0 hr-1 (Trego & Murray, 2010) 
𝑬𝑬𝑯𝑯𝒕𝒕𝑮𝑮𝒓𝒓𝒄𝒄𝒕𝒕𝒕𝒕 $53.55 hr-1 Total operating cost per hour transport time 

Additional truck 
AoC  $2,500 yr-1 Annual ownership cost from (ASABE Standards, 2015b) based 

on $20k purchase price, $0 salvage, i=5%, 10 yr service life 
Large dryer 

upgrade AoC $8,200 yr-1 Annual ownership cost from ASABE Standards (2015b) based 
on $80k purchase price, 10% salvage, i=5%, 20 yr service life 

Small dryer 
upgrade AoC 

$4,100 yr-1 Annual ownership cost from ASABE Standards (2015b) based 
on $40k purchase price, 10% salvage, i=5%, 20 yr service life 

* Parameters in bold were used in the analysis. Others were intermediate.  
** Adjusted to 2018 dollars. 
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The labor rates for the various positions in the operation were estimated from the 

average hourly total compensation from the survey conducted by (Edwards & Johanns, 

2012). The values were adjusted to 2018 dollars, and it was assumed the combine 

operator would be the highest paid person and was assigned the average rate for row crop 

production personnel with supervisor duties. Grain cart operators and truck drivers were 

given the average hourly rate, and the manager at the storage facility was assumed to 

receive the average salaried rate. These values assumed all workers were employees of 

the farm, and a different organizational structure could greatly impact the labor rates.  

The variable operating cost for field equipment were fuel use, oil for lubrication, 

and repair and maintenance (R&M). Fuel use was estimated using the formulas from 

(ASABE Standards, 2015b) and was based on an assumed horsepower for each piece of 

equipment (Throughout this section refer to notes in Table 5-3 for details regarding the 

cost estimation). Propane and diesel fuel prices were estimated using data from U.S. 

Energy Information Administration (2018). Lubrication costs were assumed to be 10% of 

fuel costs and combine R&M were based on the values reported in Edwards et al. (2016). 

R&M for the tractor pulling a grain cart was more difficult to estimate in this context, so 

1% of the initial purchase price was assumed. Costs associated with trucking were 

estimated using an assumed average speed of 72.4 kph (Jackson, 2015) and an average 

fuel economy of 2.55 km l-1. Fuel consumption was estimated for travel time only, and no 

idle fuel consumption was accounted for in this analysis. Truck R&M was estimated from 

Edwards et al. (2016), which was high compared to sources from traditional trucking 

(Trego & Murray, 2010). However, this value was deemed more appropriate for this 

application because grain trucks tend to be older and driven fewer miles per year. Taxes, 

insurance and other costs associated with trucking were estimated at $3 hr-1 based on 

Trego and Murray (2010). 

The initial purchase price was used to estimate the annual ownership costs when 

additional equipment was added to the system. For this analysis that included additional 

trucks and two different size dryers (one each as an upgrade to the baseline and 

minimally equipped configurations). The initial purchase prices were estimated from a 

brief survey of online classified advertisements, and the annual ownership cost (AoC) 
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was determined using the standard formulas in (ASABE Standards, 2015b) and the 

values given in Table 5-3.  

5.3.4 Drying Energy Use and Cost 

Drying efficiency as a function of incoming moisture content and drying 

temperature was estimated form multiple simulation runs of the cross flow drying model 

developed by Thompson et al. (1994). The simulation was run using an airflow rate of 

64.3 m3 min-1 m-3 (80 cfm bu-1) and ambient conditions of 10°C and 60% relative 

humidity. Estimated energy use per unit mass of water removed was estimated for a 

range of drying temperatures from 104°C to 49°C and a range of initial moisture contents 

from 30% to 18%. A constant final moisture content of 15% was assumed, and all 

references to moisture content in this study were on a wet basis. To incorporate changes 

in drying efficiency into the simulation, a second order polynomial was fit to the 

simulation output using the Curve Fitting toolbox in MATLAB. The best fit equation that 

was used to estimate drying efficiency is shown in equation (5-2). To apply the drying 

efficiency relationship to a specific case, a known or assumed drying efficiency from 

25% to 15% was used to offset the estimated drying capacity using equation (5-3), where 

the offset of 6797 kJ kgH2O-1 was the 25% to 15% drying efficiency from Thompson et 

al. (1994). Visual assessment indicated equation (5-2) was in line with (Morey et al., 

1976), however this drying efficiency estimation did not account for potential heat 

reclamation or other energy saving options. 

 

Where: 

𝑑𝑑𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝑓𝑓𝑓𝑓(𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺,𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑)= Drying efficiency for a given drying temperature and 

incoming moisture. Energy used per unit mass of water removed (kJ kgH2O-1) 

𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺=Incoming grain moisture content, (%w.b.) 

𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑= Drying temperature (°C) 

𝑑𝑑𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝑓𝑓𝑓𝑓(𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺,𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑)

= 18053 + 239 ∗ 𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺−236 ∗ 𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑 + 7.92 ∗ 𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺2

− 7.80 ∗ 𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑 ∗ 𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺 + 2.10 ∗ 𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑^2 

(5-2) 



 

143 

 

 

Where: 

𝑈𝑈𝑑𝑑𝑇𝑇_𝑑𝑑𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝑓𝑓𝑓𝑓(𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺,𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑)= Adjusted drying efficiency, offset to accounting for 

known drying efficiency  

𝑆𝑆𝐸𝐸𝐹𝐹= Known or assumed drying efficiency from 25% to 15% (kJ kgH2O-1) 

 

Total drying energy used and costs were estimated on a daily basis. The overall 

season fuel use and costs were calculated utilizing the sum of the daily costs. To estimate 

fuel use on a given day, the amount of water removed needed to be known. Equation 

(5-4) provides the total amount of water removed based on the moisture content and dry 

mass of grain harvested on a given day. Once the mass of water removed is known, 

equation (5-5) was used to estimate the fuel energy needed to evaporate the water. It was 

assumed the dryer ran on propane for this study, and equation (5-6) was used to estimate 

the daily propane use. Equation (5-7) was used to estimate the daily fuel cost, and 

equation (5-8) was used to estimate electricity costs associated with drying based on 5% 

of fossil fuel use (Edwards, 2014). The total drying cost for each day was determined 

from equation (5-9). 

 

Where: 

𝐻𝐻2𝑂𝑂𝐹𝐹𝑃𝑃𝑡𝑡 = Mass of water removed by the dryer (kgH2O) 

𝑀𝑀𝐺𝐺𝐺𝐺=Total mass of grain harvested on a given day (tonnes dry basis) 

𝑀𝑀𝐶𝐶𝐿𝐿𝑡𝑡𝐺𝐺=Dryer exiting moisture, assumed 15% (%.w.b.) 

 

Where: 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔𝑑𝑑=Fuel energy used in drying (MJ) 
 

𝑈𝑈𝑑𝑑𝑇𝑇_𝑑𝑑𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝑓𝑓𝑓𝑓(𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺,𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑) = 𝑑𝑑𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝑓𝑓𝑓𝑓(𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺,𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑) + (𝑆𝑆𝐸𝐸𝐹𝐹 − 6797) (5-3) 

𝐻𝐻2𝑂𝑂𝐿𝐿𝑡𝑡𝐺𝐺 = 𝑀𝑀𝐺𝐺𝐺𝐺 ∗ 1000 ∗ �
100

100 −𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺
−

100
100 −𝑀𝑀𝐶𝐶𝐿𝐿𝑡𝑡𝐺𝐺

� (5-4) 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔𝑑𝑑 = 𝑈𝑈𝑑𝑑𝑇𝑇_𝑑𝑑𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝑓𝑓𝑓𝑓(𝑀𝑀𝐶𝐶𝐺𝐺𝐺𝐺,𝑇𝑇𝐿𝐿𝐺𝐺𝑑𝑑)/1000 ∗ 𝐻𝐻2𝑂𝑂𝐿𝐿𝑡𝑡𝐺𝐺 (5-5) 
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Where: 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝑓𝑓𝑡𝑡𝐺𝐺𝑠𝑠=Fuel used in drying (l) 

𝐿𝐿𝐻𝐻𝑉𝑉= Heating value of propane, assumed 25.3 MJ l-1  

0.93=Combustion effciency  

 

Where: 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝑓𝑓𝑑𝑑= Daily cost for propane $ day-1 

𝑃𝑃𝑃𝑃𝐹𝐹𝑆𝑆𝑈𝑈𝐸𝐸𝑇𝑇= Propane unit cost, assumed $0.53 l-1 ($ l-1)  

 

Where: 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐸𝐸𝑑𝑑 = Electricity costs associated with operating the dryer ($) 

𝐸𝐸𝐹𝐹𝑇𝑇𝑇𝑇𝑡𝑡𝑃𝑃𝑇𝑇𝑇𝑇=Electric price, assumed to be 0.10$ hWh_1 

3.6=conversion factor from MJ to kWh 

 

Where: 

𝐷𝐷𝐸𝐸 = Daily total drying energy cost ($ day-1) 

5.3.5 Labor and Equipment Cost Estimation  

Cultural practices and the availability of labor can play a large role in the labor 

and equipment costs associated with a specific operation. The following section describes 

the method and assumptions used for this analysis. The combine field time on each day 

was estimated utilizing equation (5-10). This equation only charged time to the combine 

from the beginning of the simulation until the last load was delivered to the field edge. 

This did not penalize the combines for remaining time in the work day that was not 

sufficient to harvest additional loads. For example, if the last load arrives 15 minutes 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝑓𝑓𝑡𝑡𝐺𝐺𝑠𝑠 = 𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔𝑑𝑑/𝐿𝐿𝐻𝐻𝑉𝑉 ∗ .93 (5-6) 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐹𝐹𝑑𝑑 = 𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝑓𝑓𝑡𝑡𝐺𝐺𝑠𝑠 ∗ 𝑃𝑃𝑃𝑃𝐹𝐹𝑆𝑆𝑈𝑈𝐸𝐸𝑇𝑇 (5-7) 

𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐸𝐸𝑑𝑑 = 𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑔𝑔𝑑𝑑/3.6 ∗ 0.05 ∗ 𝐸𝐸𝐹𝐹𝑇𝑇𝑇𝑇𝑡𝑡𝑃𝑃𝑇𝑇𝑇𝑇 (5-8) 

𝐷𝐷𝐸𝐸 = 𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐹𝐹𝑑𝑑 + 𝐷𝐷𝑃𝑃𝐸𝐸𝑇𝑇𝐸𝐸𝑔𝑔𝐸𝐸𝑑𝑑  (5-9) 
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before the end of fieldwork and it takes 20 minutes to harvest the next load, no additional 

grain would be harvested and that 15 minutes would not count against the combine. This 

assumption also mimics a producer stopping harvest early if there is a downstream 

bottleneck. For example, early in the harvest season if fieldwork is stopped and would not 

resume until after the fieldwork window had passed, the model only charges combine 

time until the last load was created. This may result in partial days being harvested early 

in the season. Combine labor was assumed to be 110% of the combine operating time 

(equation (5-11)). The total labor and equipment operating cost for the combine was 

estimated from equation (5-12).  

 

Where: 

𝐹𝐹𝑇𝑇𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 = Combine field time (hr day-1) 

𝑇𝑇𝑓𝑓𝑤𝑤𝐺𝐺 = Timestamp when the last entity was created (hours) 

𝑁𝑁𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 = Number of combines operating in the field 

 

Where: 

𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 = Total manhours for combining on a given day (hours) 

 

Where: 

𝐶𝐶𝐹𝐹𝑇𝑇𝑡𝑡𝑑𝑑𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 = Total operating cost for combines ($ day-1) 

𝐿𝐿𝑅𝑅𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 = Combine labor rate ($ hr-1) 

𝐸𝐸𝑅𝑅𝑑𝑑𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 = Combine hourly operation costs ($ hr-1) 

 

Equation (5-13) was used to estimate the number of hours charged to tractors 

operating grain carts, and the operator’s time was assumed equal to the grain cart tractor 

field time. The full duration of fieldwork was charged to the number of grain carts 

𝐹𝐹𝑇𝑇𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑇𝑇𝑓𝑓𝑤𝑤𝐺𝐺 ∗ 𝑁𝑁𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 (5-10) 

𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 = 𝑇𝑇𝑓𝑓𝑤𝑤𝐺𝐺 ∗ 𝑁𝑁𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 ∗ 1.1 (5-11) 

𝐶𝐶𝐹𝐹𝑇𝑇𝑡𝑡𝑑𝑑𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺𝑡𝑡 ∗ 𝐿𝐿𝑅𝑅𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 + 𝐹𝐹𝑇𝑇𝑐𝑐𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝐸𝐸𝑅𝑅𝑑𝑑𝐿𝐿𝑚𝑚𝑏𝑏𝐺𝐺𝐺𝐺𝐺𝐺 (5-12) 
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operating in the field until after the last load was created. After that point it was assumed 

that a single operator could manage transferring any remaining grain, and their time was 

charged until the field queue was empty. The total operating cost for grain cart tractors 

was determined from equation (5-14). 

 

Where: 

𝐹𝐹𝑇𝑇𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺𝑡𝑡 = Field time for tractors pulling grain carts (hr day-1) 

𝑇𝑇𝐹𝐹𝐹𝐹𝐺𝐺 = Timestamp when the field queue was empty (hours) 

𝑁𝑁𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺𝑡𝑡 = Number of grain carts operating in the field 

 

Where: 

𝐶𝐶𝐹𝐹𝑇𝑇𝑡𝑡𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺 = Total operating cost for grain cart tractors ($ day-1) 

𝐿𝐿𝑅𝑅𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺 = Labor rate for grain cart operator ($ hr-1) 

𝐸𝐸𝑅𝑅𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺 = Grain cart tractor hourly operating costs ($ hr-1) 

 

The time spent transporting grain was determined from Equation (5-15). No idle 

time was included when determining the field time for transportation equipment, and fuel 

use while trucks were idling was neglected. Labor hours for truck drivers were estimated 

from equation (5-16). It was assumed all drivers were working from the start of the day 

until their last load for the day arrived on farm. Once a driver’s last load for the day was 

placed in the queue in front of the receiving pit, it was assumed the driver could quit for 

the day and the worker monitoring the storage facility would be responsible for unloading 

the trucks overnight. If fewer loads were delivered to the storage facility than drivers 

were present in the system configuration, it was assumed that fewer drivers were used on 

that day. The total operating cost to haul grain from the field to the storage facility was 

determined from equation (5-17). The last cost component that needed to be estimated 

was the labor to manage the storage facility and dryer. It was assumed an employee was 

dedicated to the dryer the entire time it was in operation. Equation (5-18) was used to 

𝐹𝐹𝑇𝑇𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺𝑡𝑡 = 𝑇𝑇𝑓𝑓𝑤𝑤𝐺𝐺 ∗ 𝑁𝑁𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺𝑡𝑡 + (𝑇𝑇𝐹𝐹𝐹𝐹𝐺𝐺 − 𝑇𝑇𝑓𝑓𝑤𝑤𝐺𝐺) ∗ 1 (5-13) 

𝐶𝐶𝐹𝐹𝑇𝑇𝑡𝑡𝑑𝑑𝐿𝐿𝐺𝐺𝐺𝐺𝑡𝑡 = 𝐹𝐹𝑇𝑇𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺𝑡𝑡 ∗ (𝐿𝐿𝑅𝑅𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺 + 𝐸𝐸𝑅𝑅𝑐𝑐𝐿𝐿𝐺𝐺𝐺𝐺) (5-14) 
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estimate the dryer labor requirement and accounted both continuous and partial day 

operation. The costs associated with labor at the dryer was estimated from equation 

(5-19).  

Where: 

𝐹𝐹𝑇𝑇𝐹𝐹𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 = Transportation equipment field time (hours day-1) 

𝑇𝑇 = number of the load delivered on a given day 

𝐽𝐽 = Total number of loads delivered  

 

Where: 

𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑡𝑡 = Total manhours for hauling on a given day (hours day-1) 

𝑇𝑇𝐸𝐸𝑇𝑇𝑗𝑗 = Timestamp when the jth load finished at the scales and enters the pit queue 

(hours) 

𝑁𝑁𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑡𝑡 = Number of workers hauling grain on a given day 

 

Where: 

𝐶𝐶𝐹𝐹𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 = Total operating costs for hauling grain ($ day-1) 

𝐿𝐿𝑅𝑅𝐹𝐹𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡 = Labor rate for truck drivers ($ hr-1) 

𝐸𝐸𝑅𝑅𝐹𝐹𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡 = Hauling hourly operation costs ($ hr-1) 

 

 

𝐹𝐹𝑇𝑇𝐹𝐹𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 = �𝑑𝑑𝑡𝑡𝐺𝐺𝐺𝐺𝐿𝐿𝐺𝐺𝑡𝑡𝑡𝑡𝐿𝐿𝐺𝐺𝐺𝐺𝑗𝑗

𝐽𝐽

𝑗𝑗=1

  (5-15) 

𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑡𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧ � 𝑇𝑇𝐸𝐸𝑇𝑇𝑗𝑗 ,   

𝐽𝐽

𝑗𝑗=𝐽𝐽−𝑁𝑁𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑡𝑡

 𝑇𝑇𝐸𝐸 𝐽𝐽 > 𝑁𝑁𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑡𝑡

�𝑇𝑇𝐸𝐸𝑇𝑇𝑗𝑗 ,   
𝐽𝐽

𝑗𝑗=1

 𝐹𝐹𝑡𝑡ℎ𝑇𝑇𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇

 (5-16) 

𝐶𝐶𝐹𝐹𝑇𝑇𝑡𝑡𝐺𝐺𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 = 𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝐿𝐿𝐺𝐺𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺𝑡𝑡 ∗ 𝐿𝐿𝑅𝑅𝐹𝐹𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡 + 𝐹𝐹𝑇𝑇𝐹𝐹𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡𝑡𝑡 ∗ 𝐸𝐸𝑅𝑅𝐹𝐹𝐺𝐺𝑡𝑡𝑐𝑐𝑡𝑡 (5-17) 
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Where: 

𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝐷𝐷𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺 = Total manhours for hauling on a given day (hr day-1) 

𝑇𝑇𝐸𝐸𝑑𝑑𝐽𝐽 = Timestamp when the final load finished drying (hours) 

𝑁𝑁𝑆𝑆𝐺𝐺𝐿𝐿𝐺𝐺𝐿𝐿𝑔𝑔𝐺𝐺 = Number of workers at the storage facility 

𝐻𝐻𝑡𝑡 = Total simulation time (hours) 

𝑄𝑄𝑤𝑤ℎ_𝐺𝐺𝐺𝐺𝐿𝐿 = Wet holding level at the end of the day 
 

Where: 

𝐶𝐶𝐹𝐹𝑇𝑇𝑡𝑡𝐿𝐿𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺 𝑠𝑠𝐿𝐿𝑏𝑏𝐿𝐿𝐺𝐺 = Labor cost associated with operating the dryer ($ day-1) 

𝐿𝐿𝑅𝑅𝐿𝐿𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺 = Labor rate paid to the person supervising the dryer ($ hr-1)  

5.3.6 Evaluation 

This analysis was focused on system performance over the whole season, and 

seasonal totals were determined by summing the results from the individual days. In 

addition to the overall total harvest operating cost, the data was separated by total drying 

energy costs and equipment operating costs. The equipment operating costs were 

comprised of the equipment operating cost (fuel, repairs, lube, maintenance), labor cost, 

and where applicable the annualized ownership cost of additional equipment. All costs 

were normalized on a per unit area basis. In addition to cost, several other metrics were 

used to evaluate the various system configurations. The number of calendar days required 

to complete the harvest was determined for each configuration and served as an indicator 

of how changing the system impacted the time required to complete the harvest. Field 

capacity utilization (FCU) was a performance measure used to evaluate how much 

material was harvested compared to the maximum. FCU was the ratio of the mass of 

material harvested on a given day to the maximum if there were no delays in harvest 

(equation (5-20)). This value varied by day and generally increased to some steady state 

value as the season progressed. The number of days into the simulation when FCU 

𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝐿𝐿𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺 = �
𝑇𝑇𝐸𝐸𝑑𝑑𝐽𝐽 ∗  𝑁𝑁𝑆𝑆𝐺𝐺𝐿𝐿𝐺𝐺𝐿𝐿𝑔𝑔𝐺𝐺, 𝑇𝑇𝐸𝐸 𝑄𝑄𝑤𝑤ℎ_𝐺𝐺𝐺𝐺𝐿𝐿 = 0

 𝐻𝐻𝑡𝑡, 𝐹𝐹𝑡𝑡ℎ𝑇𝑇𝑃𝑃𝐹𝐹𝑇𝑇𝑇𝑇𝑇𝑇
 (5-18) 

𝐶𝐶𝐹𝐹𝑇𝑇𝑡𝑡𝐿𝐿𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺 𝑠𝑠𝐿𝐿𝑏𝑏𝐿𝐿𝐺𝐺 = 𝐿𝐿𝑈𝑈𝑏𝑏𝐹𝐹𝑃𝑃𝐿𝐿𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺 ∗ 𝐿𝐿𝑅𝑅𝐿𝐿𝐺𝐺𝑑𝑑𝐺𝐺𝐺𝐺 (5-19) 
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reached its sustained maximum value was also reported for each configuration. This was 

an indicator of how long into the season incoming moisture and drying capacity were 

restricting harvest.  

 

Where: 

𝐹𝐹𝐶𝐶𝑈𝑈 = Field capacity utilization (%) 

𝐶𝐶𝑇𝑇 = Material capacity of the field machinery (t hr-1) 

𝑀𝑀𝑇𝑇𝐸𝐸 = Total mass of grain harvested on a given day (t) 

5.4 Results and Discussion 

5.4.1 Simulation Overview 

Figure 5-1 provides an overview of the field capacity utilization over the course 

of the harvest season for both the baseline configuration as well as the minimally-

equipped configuration. This figure illustrates how harvest capacity changes over the 

course of the season. On the first day of the simulation, the baseline configuration had 

sufficient hauling and wet holding capacity to use full harvest capacity. On subsequent 

days the utilization changed based on the initial level in the wet holding bins and drying 

capacity. As the season progresses and the incoming moisture content decreases, the 

system eventually comes to a steady-state level of field capacity utilization, which was 10 

calendar days for the baseline configuration. In contrast, the minimally equipped 

configuration had reduced transportation, wet holding, and drying capacity. This 

configuration took 22 days before it was able to utilize the full field capacity available 

and took 19% longer to complete harvest. Over the whole season, the average field 

capacity utilization was 90% and 75% for the baseline and minimally equipped 

configuration, respectively. The model allowed grain to be harvested until wet holding 

was full, regardless of how long the wet material would be held before drying. Allowable 

storage time was not included in this model but incorporating it would have the effect of 

reducing the wet holding capacity early in the simulation.  

𝐹𝐹𝐶𝐶𝑈𝑈 =
𝑀𝑀𝑇𝑇𝐸𝐸

𝐶𝐶𝑇𝑇 ∗ 𝐻𝐻ℎ
∗ 100 (5-20) 
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Figure 5-1: Change in field capacity utilization over the course of the simulated harvest 

season. 
 

The amount of time field equipment operated each day was calculated taking into 

account occasions when harvest stopped early due to a downstream bottleneck that 

prevented additional grain from being harvested before the end of the fieldwork period. 

Figure 5-2 shows the actual duration of fieldwork for each day over the course of the 

season. This represented the time from the start of the daily simulation to the time the 

final load entered the system. Sundays and days not suitable for fieldwork were omitted 

from the figure for clarity. The figure displays a similar trend to Figure 5-1, where the 

duration of fieldwork was limited for some days early in the season, before reaching a 

maximum value as the season progressed. The shorter duration of fieldwork combined 

with temporary delays due to downstream bottlenecks manifested in the reduced field 

capacity utilization shown in Figure 5-1. The shorter fieldwork duration on the last point 

in each series represents the final partial day required to finish the harvest.  
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Figure 5-2: Change in field time over the course of the harvest season. 

 

Figure 5-3 shows the total energy costs (propane + electric) associated with 

drying the grain for the baseline and minimally equipped configuration. The totals are 

shown for the day the material was harvested, and do not necessarily represent the day 

the material was dried. For example, if there was a surplus of five loads harvested over 

what could be dried on a given day, the energy cost for those loads were counted on the 

day they were harvested, even though they would not be dried until the following day. 

Drying costs generally decreased as the grain field dried, and local variations were due to 

changes in the total mass harvested on a given day. Increased drying capacity had the 

effect of increasing drying energy used. The baseline configuration in Figure 5-3 had 

higher energy costs because more grain was harvested at higher moisture contents early 

in the season. The decision to dry or place the grain directly in storage was based on a 

moisture content threshold of 15% for all configurations. This level could be increased 

slightly if natural air drying was used to condition grain in bins. However, that was 

beyond the scope of this investigation, and utilizing the same moisture content threshold 

allowed a uniform comparison between days.  
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Figure 5-3: Change in drying energy usage over the course of the harvest season.  

 

5.4.2 Seasonal Impacts 

Table 5-4 shows a summary of the results from the seasonal variations explored. 

Calendar days was the number of days required to complete the operation and included 

both working days and days when no fieldwork occurred. The minimum, maximum, and 

average FCU indicated the variability in and overall utilization of the available harvest 

capacity, over the whole season. Many of the configurations in Table 5-4 had the same 

minimum and maximum values of FCU, which does not fully describe the variability 

between configurations. The number of days into the simulation before field capacity 

utilization reached its maximum sustained utilization indicated how long the system 

operated at a reduced capacity. Sustained implies that the occasional day with high 

utilization early season was ignored (Figure 5-1). This generally represented the point 

when the system was no longer sensitive to the incoming grain moisture content. The 

bottleneck once the maximum level of FCU was obtained could still be any component of 

the system. E&L represented the total per unit area equipment operating and labor costs. 

This included the operating costs for combines, grain cart tractors, and trucks plus labor 

costs to operate the field equipment, drive trucks, and manage the storage facility. Where 
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applicable, this value included the additional annual ownership cost of additional 

resources. DE represented per unit area costs associated with electricity and propane used 

in grain drying. Average values shown were in terms of the whole season. The baseline 

configuration is shown in bold, and subsequent tables follow a similar layout. 
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Table 5-4: Seasonal Impacts on System Performance 

 
Calendar 

days 
(days) 

Average 
MC 

(% w.b.) 

Average 
FCU 

(ha ha-1) 

Min 
FCU 

(ha hr-1) 

Max 
FCU 

(ha hr-1) 

Time to 
Max FCU 

(days) 

E&L 
($ ha-1) 

DE 
($ ha-1) 

Total 
($ ha-1) 

Baseline 31 19.2 80 49 98 10 89 67 157 
Slow drying 33 20.3 86 42 98 13 91 83 174 
Fast drying 31 18.5 90 49 98 8 88 56 144 

Dry year 31 18.2 90 49 98 6 86 51 137 
Wet year 43 19.1 94 49 98 5 85 66 151 

Wet year,2x dryer 
capacity 

42 19.3 98 98 98 1 91 69 159 

*Average MC= weight average moisture content of all grain harvested over the season. FCU=Field capacity utilization. 
Time to Max FCU= number of days until the system reaches its sustained maximum FCU. 
E&L=Equipment operating and labor costs. Includes annual ownership cost for additional equipment, where applicable. 
DE=Drying energy costs 
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All configurations evaluated in Table 5-4 eventually reached a field capacity 

utilization of 98%. The baseline operation took a total of 31 days to complete harvest at 

an average cost of $157 ha-1. Drying energy use was estimated at $67 ha-1, which was 6% 

higher than the drying cost estimated from Halich (2018) ($67 ha-1 using 4.2 pts removed 

at $0.04 per bu-pt). Equipment and labor charges were lower than the custom combine, 

grain cart, and hauling rate of $104 ha-1 from Halich (2018) However, the values in Table 

5-4 did not include fixed costs for the field equipment but did include labor at the storage 

facility. The Iowa State University production cost estimate bulletin estimated the cost of 

harvesting, transporting, and drying corn at approximately $212 ha-1 (Plastina, 2018). If 

the fixed costs used by Plastina (2018) were included here, the baseline configuration 

estimated a 4.7% higher total cost. These values are highly dependent on the assumed 

price of diesel fuel, propane, and the assumed labor rate and structure. This discussion is 

not intended as a comment on the referenced values but serves to illustrate the model and 

baseline configuration produce values that are reasonable and realistic. 

When the dry down coefficient was reduced to β = 0.06, the number of days 

required to complete the operation increased by two days. The average field capacity 

utilization decreased 3.5 percentage points, primarily due to the increased number of days 

before the system reached steady state utilization. The slow field drying rate had the 

highest average moisture at 20.3% and was the most expensive of all the seasonal 

variations explored. Operating costs increased slightly, but increased drying costs 

accounted for the majority of the $17 ha-1 increase in harvest costs. The major difference 

between the baseline configuration and the dry year was the lower equilibrium moisture 

contents predicted in the dry year, which effectively resulted in a faster drying crop, 

especially later in the season. The dry year and the faster dry down rate (β = 0.10) 

produced similar behavior. In both cases, maximum capacity utilization was reached 

earlier in the season, but the overall harvest took the same length of time as the baseline 

configuration. Faster field drying resulted in a decrease in both operating and drying 

costs, with an 8.2% and 12.5% decrease in total costs for the faster dry down rate and dry 

year respectively.  

When applied to a wet year the total length of harvest increased to 43 days. This 

increase was primarily due to six consecutive days during the middle of the harvest that 
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were not suitable for fieldwork. Additionally, days not suitable for fieldwork early in the 

season allowed the dryer to ‘catch up’ with harvest and resulted in an average field 

capacity utilization over the course of the season of 94%. The higher field capacity 

utilization resulted in a reduction in operating costs, and the average moisture content and 

drying energy costs were similar to the baseline configuration. The effects of doubling 

the drying capacity during the wet year had no impact on the length of harvest but did 

increase field capacity utilization to 98% for the entire season, indicating drying capacity 

was not the overall system bottleneck in this case. The additional annual ownership cost 

of the larger dryer account for the majority of the increase in cost (5%) relative to the 

base configuration during the wet year.  

5.4.3 Drying Temperature 

The impact of growing white corn on the system performance is shown in Table 

5-5. The main differences considered in this configuration was a 13% reduction in yield 

and reducing the drying temperature to 60°C. Field equipment operation, initial moisture 

content, and dry down rate remained consistent with the baseline configuration. The total 

length of the harvest was increased to 37 days, and the average field capacity utilization 

was reduced to 75%. It took 19 days for the system to reach the sustained maximum field 

capacity utilization, which was 84%. The delays in the system that prolonged harvest 

were due primarily to the reduced drying capacity that resulted from the temperature 

decrease. The per unit area equipment and labor costs were increased due to the extended 

harvest period, but the lower capacity meant that more grain was harvested at lower 

moistures, reducing the drying energy costs. These tradeoffs between energy savings and 

increased harvesting costs surprisingly resulted in no change in total per ha-1 costs. 

However, these costs resulted from harvesting 13% less material. This indicates, for this 

specific example, that the premium for growing white corn would only need to surpass 

the value of the lost yield. However, in practice, differences in drying rates and maturity 

dates between the varieties would impact the analysis. The reduced yield could also 

impact field machinery capacity, but these effects were beyond the scope of the current 

investigation.  
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Table 5-5: Impacts of Switching Reduced Drying Temperature* 

 
Calendar 

days (days) 
Average 

FCU (ha ha-1) 
Min FCU 
(ha hr-1) 

Max FCU 
 (ha hr-1) 

Time to Max 
FCU (days) 

E&L 
 ($ ha-1) 

DE 
 ($ ha-1) 

Total 
 ($ ha-1) 

Baseline 31 90 49 98 10 89 67 157 
White corn 37 75 21 84 19 93 64 157 
White corn, delayed 
start 

38 80 28 84 19 91 50 142 

*FCU=Field capacity utilization. Time to Max FCU= number of days until the system reaches its sustained maximum FCU. 
E&L=Equipment operating and labor costs. Includes annual ownership cost for additional equipment, where applicable. 
DE=Drying energy costs 

 



 

158 

 

The reduced drying capacity resulted in grain spending excessive time in wet 

holding early in the season (data not are shown). This excess grain would require special 

management to prevent spoilage and could be controlled by limiting the daily harvest at 

higher moistures or by delaying harvest altogether to allow more field drying. Delaying 

the start of harvest until the incoming grain moisture was 25% was evaluated in Table 

5-5. This had the effect of increasing the average field capacity utilization and reducing 

the total harvest costs by 9.6%, primarily through reduced drying costs. However, this 

came at the cost of increasing the length of harvest by one day over the base case white 

corn configuration.  

5.4.4 Operating Characteristics 

This section illustrates how the model could be applied as a decision tool to 

evaluate changes in equipment capacity. The impact of changing the system 

configuration was summarized in Table 5-6. This table includes changes to the baseline 

configuration as well as to the alternate minimally equipped configuration. The addition 

of a driver to the baseline configuration resulted in the number of trucks and drivers 

being matched. This change to the system did not have any impact on the overall system 

performance, at least with the relatively short transportation time used in the baseline 

configuration. The additional driver did, however, result in a slight increase in labor 

costs. Doubling the size of the dryer (large dryer upgrade) reduced the length of harvest 

by two days and increased the average field capacity utilization to 98%. The reduction in 

equipment and labor costs largely offset the $10.1 ha-1 annual ownership cost for the 

dryer. The total costs increased by 6.4%, most of which was a result of drying more grain 

at higher moistures. 
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Table 5-6: Impacts of Additional Equipment*   
Calendar 

days (days) 
Average 

FCU (ha ha-1) 
Min FCU 
(ha hr-1) 

Max FCU 
(ha hr-1) 

Time to Max 
FCU (days) 

E&L 
($ ha-1) 

DE 
($ ha-1) 

Total 
($ ha-1) 

Baseline 31 90 49 98 10 89 67 157 
Additional driver 31 90 49 98 10 93 67 160 
Double dryer size 29 98 98 98 1 91 76 167 

Minimally Equipped 37 75 21 98 22 100 48 148 
Additional truck 37 75 21 98 20 100 49 149 

Double dryer size & 
additional truck 

33 86 42 98 10 97 63 160 

*FCU=Field capacity utilization. Time to Max FCU= number of days until the system reaches its sustained maximum FCU. 
E&L=Equipment operating and labor costs. Includes annual ownership cost for additional equipment, where applicable. 
DE=Drying energy costs 
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The minimally equipped operation utilized two trucks, two drivers, and had half 

of the wet holding and drying capacity compared to the baseline configuration. The base 

case for this configuration took 37 days to complete, with an average field capacity 

utilization of 75%. It took 22 days before the sustained maximum capacity was reached, 

and the harvesting cost per hectare was estimated at $148. Aside from reaching maximum 

capacity two days earlier, adding an additional truck to this configuration had little 

impact on the overall system performance. Savings in operating costs offset almost half 

of the annual cost for the additional truck, and this configuration resulted in a $1.6 ha-1 

increase in cost overall. If the dryer size was doubled and an additional truck was added 

to the system, the total length of harvest would be reduced by four days, and the average 

field capacity utilization increased to 86%. The upgraded dryer, in this case, was the 

small dryer upgrade shown in Table 5-3, and the additional costs for the upgrades was 

$8.2 ha-1. For this configuration, the decrease in equipment and labor costs, more than 

made up for the annual ownership costs of the additional truck and dryer upgrade. 

However, the larger capacity resulted in more grain dried at higher moistures, which 

increased drying energy costs. Overall the increased capacity comes at the cost of $12 per 

ha. This configuration was identical to the baseline operation, except for having half the 

wet holding capacity. This lack of wet holding prolonged the season by two days.  

5.4.5 Sensitivity Analysis 

The final portion of this study examined how the system performance changed 

with respect to transportation distance and harvest rate. Figure 5-7 shows a contour plot 

of the seasonal average field capacity utilization over a range of transportation distances 

from 15-60 minutes and a harvest rate of 2.5 to 4.7 ha hr-1. The baseline configuration 

was operating at the point noted as A on the figure and was the baseline shown in Table 

5-4 through Table 5-6. If the transportation time was doubled to 40 minutes (B), the field 

capacity utilization would remain unchanged. This indicates that between those two 

points over the course of the season there was a surplus in transportation capacity. Point 

C represents the same system with a 40-minute transportation time and a 4.5 ha hr-1 

harvest rate. Moving to this area of operation decreased the field capacity utilization to 

approximately 70%, over the whole season. After accounting for field capacity 
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utilization, points A, B, and C all have essentially the same effective area capacities. This 

indicated, for the 40-minute transportation distance, increasing the harvest rate of the 

field equipment (by increasing combine speed) would not improve the effective harvest 

rate for the whole system. Figure 5-5 shows the combine status for an example day for 

both the baseline configuration (B) and the increased harvest rate (C). The horizontal axis 

represents the simulation time, and the shaded area represents portions of time when the 

harvest was stopped due to a downstream bottleneck. The configuration with the higher 

harvest rate hits a bottleneck sooner in the day, and they occur more often. Field capacity 

utilization can be interpreted as the portion of time harvest occurs over the fieldwork 

window. For example, at a field capacity utilization of 70%, harvesting would occur on 

average 7 out of the 10 hours available for fieldwork. These are seasonal totals, and day 

to day the operation would vary, especially early in the season when the moisture content 

was high.  
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Figure 5-4: Whole season field equipment area capacity utilization as a function of 
transportation distance and harvest rate. Shown for the baseline configuration. A 

represents the operating point of the baseline configuration. B represents doubling the 
transportation time, and C represents a point with an increased harvest rate and 

transportation time. 
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Figure 5-5: Comparison of fieldwork delays due to a downstream bottleneck for the base 
configuration and an increased harvest rate of 4.5 ha hr-1. The transportation time was 40 

minutes, and the timescale was relative to 9:00 am (Day 2 of simulation).  
 

Figure 5-6 shows field capacity utilization for the minimally equipped operation. 

This configuration shows more sensitivity to the transportation distance and harvest rate 

than the baseline configuration (Figure 5-4). The difference in field capacity utilization 

was due to the limitations of the transportation, wet holding, and drying equipment. In 

contrast to the baseline configuration, moving from A to B decreased the overall field 

capacity utilization by approximately 5 percentage points. (75% to 70%), which indicated 

that doubling the transportation time resulted in an increased occurrence of bottlenecks 

downstream from the field equipment. Moving from point B to C also produced a larger 

decrease in field capacity utilization, with only 55% of the available field capacity being 

utilized at the higher harvest rate.  
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Figure 5-6: Whole season field equipment area capacity utilization as a function of 

transportation distance and harvest rate. Shown for the minimally-equipped 
configuration. A represents the operating point of the baseline configuration. B represents 
doubling the transportation time, and C represents a point with an increased harvest rate 

and transportation time. 
 

The effect of doubling the drying capacity for the baseline configuration can be 

seen in Figure 5-7. The region of operation where the average field capacity utilization 

was greater than 90% expanded to cover a wider range of transportation times and 

harvest rates. Points A and B both had a field capacity utilization of approximately 97%, 

indicating at these points there were rarely downstream bottlenecks. At point C 

increasing the drying capacity increased field capacity utilization from 70% to 74%. 

Figure 5-8 shows the impact of utilizing an additional driver along with doubled drying 

capacity. At short transport times, field capacity utilization was greater than 90% for the 

entire range of harvest rates. Field capacity utilization was also improved for areas with 
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longer transportation distances and higher harvest rates. Point C on Figure 5-8 has a field 

capacity utilization of 90%. This improvement over Figure 5-7 indicates that 

transportation was the system bottleneck, at least for a portion of the season, and this 

prevented the full drying capacity from being utilized.  

 

 
Figure 5-7: Whole season field equipment area capacity utilization as a function of 

transportation time and harvest rate. Shown for the baseline configuration with doubled 
drying capacity. A represents the operating point of the baseline configuration. B 

represents doubling the transportation time, and C represents a point with an increased 
harvest rate and transportation time. 
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Figure 5-8: Whole season field equipment area capacity utilization as a function of 

transportation time and harvest rate. Shown for the baseline configuration with doubled 
drying capacity and an additional driver. A represents the operating point of the baseline 

configuration. B represents doubling the transportation time, and C represents a point 
with an increased harvest rate and transportation time. 

 

Figure 5-9 shows the total harvest operating cost per unit area. These values 

represent the seasonal total drying energy, labor, and equipment operating costs divided 

by the total area harvested. The baseline configuration, operating at point A, had an 

estimated cost of $157 ha-1. When the transportation distance was doubled the cost 

increased to $172 ha-1, with the increased transportation demand accounting for the 

majority of the increase. Moving from B to point C had minimal impact on the overall 

cost. This was because the increased field capacity largely could not be taken advantage 

of due to downstream bottlenecks ( Figure 5-4 & Figure 5-5). Increasing the harvest rate 

could come as a result of improved field efficiency or increased ground speed. If the 
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travel speed was increased beyond the optimum point for given field conditions, harvest 

losses can increase, however, these impacts would be highly variable and were not 

included in this analysis. 

 

 
Figure 5-9: Per area costs of harvesting, transporting, and drying grain as a function of 
transportation time and harvest rate. Shown for the baseline configuration. A represents 

the operating point of the baseline configuration. B represents doubling the transportation 
time, and C represents a point with an increased harvest rate and transportation time. 

 

Figure 5-10 shows the per hectare costs of harvesting for the baseline 

configuration with doubled drying capacity. Increasing the drying capacity resulted in an 

additional annual ownership cost of $10.1 ha-1. Here point A corresponded to the baseline 

configuration with doubled drying capacity shown in Table 5-6. For point A and C, the 

labor and equipment operating cost reductions that resulted from higher resource 
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utilization were counteracted by increased drying energy costs that resulted from 

harvesting more grain at high moisture contents. Overall, this resulted in a cost increase 

approximately equal to the annual ownership cost of the dryer. Point B showed an 

increase slightly higher at approximately $12 ha-1. 

 

 
Figure 5-10: Per area costs of harvesting, transporting, and drying grain as a function of 
transportation time and harvest rate. Shown for the baseline configuration with doubled 

drying capacity. Value includes the annual cost of ownership for the large dryer upgrade. 
A represents the operating point of the baseline configuration. B represents doubling the 

transportation time, and C represents a point with an increased harvest rate and 
transportation time. 

 

Figure 5-11 shows how the harvest costs changed when an additional driver was 

added to the configuration with double the drying capacity. In this instance, the additional 

costs included were the same $10.1 ha-1 ownership cost for the dryer plus the wages for 
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the extra employee. This addition increased the per hectare costs by approximately $4 

ha-1 at point A and by approximately $2 ha-1 at points B and C, when compared to the 

configuration with doubled drying capacity. Compared to the baseline configuration, the 

total cost increase was $14.5 ha-1 and $13 ha-1 for A and B, respectively. The additional 

resources always increased the per hectare harvest costs; there were however many 

instances where the increase was less than the annual ownership costs of the new dryer. 

This indicates the improvement in efficiency helped offset the additional cost. These 

offsets were generally higher at longer transportation times and higher harvest rates. For 

example, if the system were operating at 4.42 ha hr-1 with a transportation time of 55 

minutes, the cost increase was only $1.7 ha-1. This effectively offset over 80% of the 

additional ownership costs for the larger dryer.  
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Figure 5-11: Per area costs of harvesting, transporting, and drying grain as a function of 

transportation time and harvest rate. Shown for baseline configuration with doubled 
drying capacity and an additional driver. A represents the operating point of the baseline 

configuration. B represents doubling the transportation time, and C represents a point 
with an increased harvest rate and transportation time. 
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Ultimately, the increased costs associated with additional equipment needs to be 

justified. This study was not concerned with the ideal moisture to start harvest but rather 

focused on how additional equipment would impact the overall cost and time to complete 

the operation. The change in the length of harvest when comparing the baseline 

configuration to the improved system with doubled drying capacity and an additional 

driver is shown in Figure 5-12. The larger dryer and additional truck had a varied impact 

on the system and ranged anywhere from no change to reducing the time required to 

complete harvest by 10 calendar days. Generally, the increased capacity produced a 

greater benefit in areas of operation with higher harvest rates and increased transportation 

times.  
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Figure 5-12: Change in harvest length with doubled drying capacity and three drivers A 
represents the operating point of the baseline configuration. B represents doubling the 

transportation time, and C represents a point with an increased harvest rate and 
transportation time. 

 

Traditionally, the tradeoff between yield loss due to delayed harvest and fuel used 

in drying  has been used to evaluate harvest costs and timing. This balance was highly 

dependent on the price of grain, and in many cases, small levels of loss prevention would 

justify the additional equipment. This small level of loss is difficult to quantify accurately 

due to the highly variable nature of losses and yield in general, and in this analysis a loss 

prevention of 1.5% would more than cover the increased harvest costs for all harvest rate 

and transport times considered in Figure 5-13 (assuming a corn price of $3.50 bu). 

Decreasing the number of days required to complete harvest can free resources for other 

activities and provide a buffer on years with unfavorable weather conditions. One 
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solution to evaluate changes in the system would be to evaluate the additional costs for 

new equipment against the potential to shorten the harvest window. Figure 5-13 shows 

the change in harvest costs over the baseline operation for the additional driver and larger 

dryer. This could be used with the reduced harvest length in Figure 5-12 to evaluate the 

cost for a shortened harvest window. For example, at point C, a producer could weigh the 

additional $12 ha-1 in harvest costs against being able to finish harvest 8 calendar days 

sooner. Areas on the left-hand side of the figures generally did not have transportation 

and drying bottlenecks but incurred an additional $16 ha-1 cost for no reduction in time 

required to complete the operation. In contrast, some areas with higher harvest rates and 

longer transportation distances reduced the duration of harvest for as little as $2 ha-1. 
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Figure 5-13: Change in harvest costs with doubled drying capacity and three drivers A 
represents the operating point of the baseline configuration. B represents doubling the 

transportation time, and C represents a point with an increased harvest rate and 
transportation time. 

 

5.4.6 Assumptions and Limitations 

There were several limitations associated with this study. All equipment included 

in the model was assumed to be the same size (ex. all trucks had the same capacity), and 

constant values were used for harvest rate and transportation time. The model could be 

improved by incorporating varying harvest rates and transportation distances to account 

for more local variation (similar to the grain transportation analysis). The boundary of the 

discrete event simulation could also be moved to incorporate interactions of field 

machinery. 
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Several other drying considerations were not included in this analysis. Allowable 

storage time was not considered but could have the effect of limiting harvest early in the 

simulation. Additionally, a constant final moisture was assumed, and all grain was dried 

to 15% until the incoming moisture was below that level. A producer could employ 

combination drying or operate the dryer in full heat mode early in the season to increase 

the dryer throughput. Additionally, once the incoming moisture approaches safe limits for 

storage, the dryer could be bypassed completely in favor of natural air drying.  

The cost structure used to demonstrate the model could also have an impact on the 

results. For example, truck drivers are commonly independent of the farm operation and 

are paid on a per load, mile, or bushel basis. In this case, transportation costs would be 

insensitive to wait times and delays in grain transportation. An operation of the size 

examined here may not have the resources to dedicate personnel to the storage facility 

fulltime, and the labor rates used in this analysis were somewhat generous. The costs 

associated with purchasing a larger dryer could vary widely based on purchasing new or 

used equipment and any material handling infrastructure upgrades that could be required. 

These changes would not impact the system performance but would change the cost 

implications.  

5.5 Conclusions 

This study demonstrated the application of a model for corn harvest, 

transportation, and drying at an on-farm storage facility. A hypothetical operation was 

defined to show how the model could be used as a decision support tool. The impact of 

drying capacity varied based on the configuration examined, ranging anywhere from 1 to 

22 days before the sustained maximum field capacity utilization was reached. The 

baseline operation was evaluated for a range of seasonal effects, and it was found that a 

dry year (12.7% decrease over baseline) and a slow field drying rate (10.8% increase over 

baseline) had the largest impact on the system’s operating and drying costs. The model 

was also used to evaluate the impacts of the reduced drying temperature associated with 

drying white corn. For this specific configuration, harvest took six days longer, but after 

accounting for the reduced yield, there was no impact on the total operating and drying 

cost. The reduced drying capacity forced more field drying which counteracted the 

increased operating cost and decreased drying efficiency. The use of the model to 
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evaluate impacts of additional equipment on both cost and system performance were 

demonstrated, and a sensitivity analysis demonstrated how the benefits of increased 

drying and hauling capacity varied based on how often these systems created a bottleneck 

in the operation. For some combinations of higher field capacity and longer 

transportation distance, the time required to complete the operation could be shortened by 

a week or more for an additional cost of $12 ha-1 or less.  
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 SUMMARY, CONCLUSIONS, AND FUTURE WORK 

6.1 Summary and Conclusions 

This dissertation explored issues surrounding grain harvest and transportation 

logistics with the overall objective of developing a simulation model that could be 

utilized to explore how changes in the system configuration (equipment, weather, labor, 

drying temperature, dry down rate, etc.) impacts the overall system performance and 

operating costs. Model development was broken into several stages. Initially a discrete 

event simulation (DES) model of grain transportation from the field edge to storage was 

proposed to evaluate how truck and driver resource constraints impact material flow 

efficiency, resource utilization, and system throughput. This work differed from previous 

efforts in that harvest rate and in-field transportation were not explicitly modeled, but 

were represented as a stochastic entity generation process. Service times associated with 

various material handling steps were represented by a combination of deterministic times 

and statistical distributions. The model was applied to data collected for three distinct 

harvest scenarios (18 total days). Key results from this objective were: 

• For the scenarios examined, the model could satisfactorily represent the total 

number of deliveries to the storage facility. 

• A single distribution for each operation or crop was found to adequately represent 

harvest rate and in-field machinery interactions over the range of input conditions 

encountered. 

• The observed number of deliveries was within ± 2 standard deviations of the 

simulation for 15 of the 18 input conditions examined. 

• The median error between the model and observed deliveries was -4.1%. 

• The model could represent operations with capacity matched between in-field and 

on-road transporters as well as operations with capacity for on-road transporters 

being integer multiples of in-field transporter capacity. 

• Flow time efficiency was very high for both crops in one operation evaluated, 

indicating there were few delays between handling steps, so transportation 

capacity was sufficient.  
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• The other operation examined had lower flow time efficiency because multiple 

grain cart loads (entities) were required to fill a truck. In contrast to the larger 

operation, truck, and especially driver utilization, were relatively high. 

 

A field study was conducted to examine corn harvest losses in Kentucky. This 

included establishing a range of losses commonly encountered by cooperating producers 

around the state, and an evaluation of yield and loss changes over a range of 

dates/moisture contents (09/20/2017 to 12/01/2017 / 33.9% to14.6%) from a single field 

at a University of Kentucky research farm. Key conclusions from this evaluation were:  

• Total losses for producer combines were found to be between 0.8% to 2.4% of 

total yield (86 to 222 kg ha-1), and on average 66% of the measured losses 

occurred at the head. 

• Total losses were highly variable, with coefficients of variation ranging from 

21.7% to 77.2%. 

• For the single field evaluation, there was no significant difference in the potential 

yield at any moisture level, and the observed yield and losses displayed little 

variation for moisture levels from 33.9% to 19.8%, with total losses less than 1% 

(82 to 130 kg dry matter ha-1). 

• Large amounts of lodging occurred during the long delay while the grain field 

dried to the final moisture level, resulting in a 18.9% reduction in yield and 

harvest losses in excess of 9%.   

• Test weight and mechanical damage generally improved with decreased moisture 

and post-drying test weight was always sufficient to at least meet the U.S. No. 2 

test weight requirement. 

• Results should be replicated for additional years or locations but indicate the loss 

relationships used in previous harvest logistics models are not representative of 

current practices. 

  

The DES grain transportation model was expanded to include temporary wet 

storage capacity and grain drying to evaluate how these components impact the overall 

system. A method to adjust the capacity of the dryer based on drying temperature, 



 

181 

 

incoming, and exiting moisture was proposed. The model was validated by applying it to 

the whole season of corn harvest used in the grain transportation model. In this instance, 

average values for grain cart arrivals (entities) and transportation distance were used, but 

the duration of field work each day was determined from the model, and the status of the 

system on the previous day was carried forward, so days were no longer independent. 

The moisture content and field dry down of incoming grain was modeled based on 

weather data and the equilibrium moisture content of the grain. The model was evaluated 

by comparing the estimated drying capacity to an estimate derived from producer 

records, and by comparing the observed cumulative mass of grain delivered to storage to 

the model prediction. Key results from this objective were: 

• Based on relative drying capacity, the proposed method agreed well with the 

established model from Thompson et al. (1994), with an average over prediction 

of 8.2%. 

• The variability in estimated drying capacity made it difficult to accurately assess 

the proposed method against field data and showed the need to obtain better data 

for validation.  

• Both Thompson et al. (1994) and the method used in this analysis underpredicted 

the observed data and in some instances had large errors. 

• The best fit for field dry down rate, based on the collected data was β=0.0812, 

which  had an RMSE of 0.73 points  over the range of moistures from 26.7% to 

18.7%.  

• The simulation estimated harvest would require an additional partial day over the 

observed data, and overall the harvest model showed good agreement with the 

observed data, based on the cumulative mass of grain delivered over the season. 

 

The final portion of this dissertation demonstrated the application of the full 

model to a hypothetical operation. This served to demonstrate how the model could be 

used as a decision support tool, and a sensitivity analysis was conducted over a range of 

transportation times and harvest rates to demonstrate how the benefits of potential 

changes in one portion of the system were affected by the operating parameters of the 

whole system. The number of days required to complete the operation, equipment 
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operating cost, labor costs, and drying costs were estimated for each configuration 

examined. Ownership costs were only taken into account when additional equipment was 

added to the system, and no preharvest losses or yield changes were included in this 

evaluation. Key conclusions from this analysis were: 

• Utilization of the available field capacity and duration of fieldwork generally 

increased as the grain field dried. 

• The system bottleneck could change over the course of the season, and the 

number of days into the simulation before field capacity utilization reached its 

sustained maximum varied from 1 to 22 days, depending on which configuration 

was examined.  

• A dry year and a slow field drying rate had the largest impact on the system’s 

operating and drying costs, resulting in a respective 12.7% decrease and 10.8% 

increase in costs. 

• For this specific configuration, reducing the drying temperature to dry white corn 

prolonged harvest, but had no impact on the total operating and drying cost, after 

accounting for a yield reduction (operating and drying cost only, not accounting 

for changes in gross revenue). 

• The reduced drying capacity forced more field drying which counteracted the 

increased operating cost and decreased drying efficiency. 

• For some combinations of longer transportation times and higher harvest rates, 

doubling the dryer size and finding an additional truck driver could shorten the 

harvest window by a week or more at a cost of less than $12 ha-1. 

 

To summarize, this dissertation focused on the development, testing, and 

application of a grain harvest system model that spanned from the field through drying 

and storage. It can be used to simulate how changes in equipment capacity, labor, 

weather, and crop characteristics (ex: food grain corn, or dry down rate) impact the 

overall system performance and operating costs. An important extension of this concept 

is that, given an existing equipment set and labor force, a producer can estimate how 

much increasing capacity in one area would increase the system capacity over the whole 
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season, and the cost of the additional equipment can be evaluated against the potential to 

shorten the harvest.  

6.2 Future Work 

From a model development prospective, there are several directions the model 

could be expanded to provide enhanced usefulness. The approach used here was a 

discrete event simulation from the arrival of full grain carts at the field edge through 

delivery and drying at an on-farm storage facility. Field equipment characteristics were 

represented by modeling the time required to fill a grain cart and transport the grain to the 

field edge. This time was estimated from observations of actual operations, or from a 

harvest rate and assuming sufficient in-field transportation capacity. The boundary of the 

discrete portion of the model could be expanded to include interactions of in-field 

equipment and spatial variability in performance. This would allow the model to be better 

equipped to evaluate changes in field equipment. Moreover, the variability in entity 

generation, service times, and transportation distance explored in the hauling model could 

be applied to the whole season model. This would allow more spatial and temporal 

effects of operational decisions to be examined. For example, strategies for determining 

the order in which fields are harvested could be explored (furthest first, earliest planted 

first, etc.). This work could also benefit from additional validation data for the drying 

capacity adjustment, and development of a user interface would allow the model to be 

used by producers.  

The sensitivity analysis indicated the rate at which grain dried in the field was one 

of the most influential factors on total drying energy costs. The dry down rate is relatively 

unexplored and is dependent on weather, planting date, and variety. More detailed 

information in this area could allow the model to be applied to evaluate the operational 

decisions described above and better estimate drying costs. Additionally, evaluation of 

yield changes and losses measured over the course of the harvest season in this study 

indicate the traditional loss and recoverable yield functions used to balance the costs of 

early harvest and artificial drying may not be the most appropriate method for modern 

equipment and hybrids. Losses are highly variable, and the results presented here should 

be replicated for additional years and/or locations. There still are clear timeliness benefits 

to starting harvest early. However, an alternate method to evaluate these benefits, perhaps 
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based on the likelihood of a weather event causing significant damage or lodging to the 

crop could be explored.    
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APPENDICES 

 Simulink Model Details 

 

Whole Model Diagram 

 
 

 

 

 

 



 

186 

 

Harvest Time Out Subsystem 

 

Harvest Gate Control Logic 

 
 

 

 

 

 

 

 

 



 

187 

 

 

HarvestCtrl1 Logic for Gate to Control Loading Partial Trucks 

 

 
 

 

Pit Control Gate Logic 
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Restart Harvest Subsystem 

 
 

Entity Generation Block Code 
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Example Timestamp Between Processes & Priority Setting 

 
 

Example Service Time Selection 
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Entity Generation Block to Fill Wet Holding at the Start of the Daily Simulation  
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 Sample code for DES Transportation Model 

Script to Create PDF Objects  
%**************************************************************** 
% TITLE: Fit_dist 
% AUTHOR: Aaron P. Turner  
% DATES: Jan 2018 
% DESCRIPTION: Main script to fit distribution objects to logistic data 
%collected from MI and Western Kentucky. Uncomment selected 
%crop/location to run 
%Creates distributions, can be compared using allfitdist, Selected 
%distributions can be manually saved as .mat files.  
%Also exports paper quality figures 
clear; clc; close all; 
%**************************************************************** 
 
clear; clc; close all; 
%***************Import data and set file save location**************** 
load inputdata.mat %Import source data contains raw data 
figpath='C:\XXXXX\' 
  
%**************************************************************** 
%Operation1 
 
%Corn 
%[D1] = allfitdist(Load_generation_rate_corn,'PDF'); 
  
%Time between corn loads 
PD_load_gen_corn=fitdist(Load_generation_rate_corn,'loglogistic') 
  
%%{ 
figure('Name','Corn Interarrival','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
%histogram(Load_generation_rate_corn,18,'Normalization','pdf') 
histogram(Load_generation_rate_corn,18,'FaceColor','w','EdgeColor','k',
'Normalization','pdf') 
x_values = min(Load_generation_rate_corn)-
1:0.1:max(Load_generation_rate_corn)+1; 
y = pdf(PD_load_gen_corn,x_values); 
  
hold on 
plot(x_values,y,'--k','LineWidth',2) 
%xlabel('Load Interarrival Time (minutes)'); ylabel('Probability 
Density'); 
xlabel('Grain Cart Interarrival Time (minutes)'); ylabel('Probability 
Density'); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
legend('Histogram', 'Fit PDF') 
export_fig([figpath 'Corn Interarrival miles hist BW1'],'-png', '-
r300') 
  
hold on 
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figure('Name','Corn Interarrival QQ','Units','inches','Position',[0 0 
3.5 3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(Load_generation_rate_corn,PD_load_gen_corn) 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
%export_fig([figpath 'Corn Interarrival miles QQ'],'-png', '-r300') 
%} 
  
%[D2] = allfitdist(corn_bu,'PDF'); 
%Corn Load Size 
  
PD_load_size_corn=fitdist(corn_bu,'logistic')%English 
%%{ 
%metric for figures 
corn_ton=corn_bu*56/2204*(1-15/100);%convert to t@ 0% mc 
  
PD_load_size_corn=fitdist(corn_ton,'logistic') 
  
hold on 
figure('Name','Corn Load size','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
histogram(corn_ton,20,'FaceColor','w','EdgeColor','k','Normalization','
pdf') 
x_values = min(corn_ton)-1:0.1:max(corn_ton)+1; 
y = pdf(PD_load_size_corn,x_values); 
hold on 
plot(x_values,y,'--k','LineWidth',2) 
xlabel('Load size (t)'); ylabel('Probability Density'); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
%export_fig([figpath 'Corn Load Size Miles hist'],'-png', '-r300') 
  
hold on 
figure('Name','Corn Load size QQ','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(corn_bu,PD_load_size_corn) 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
%export_fig([figpath 'Corn Load Size Miles QQ'],'-png', '-r300') 
%} 
  
%Wheat 
  
%Load generation 
%[D1] = allfitdist(Load_generation_rate_wheat,'PDF');%compare dist 
%PD_load_gen_wheat=fitdist(Load_generation_rate_wheat,'loglogistic') 
PD_load_gen_wheat=fitdist(Load_generation_rate_wheat,'gamma') r 
%%{ 
figure('Name','Wheat Interarrival','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
%histogram(Load_generation_rate_wheat,18,'Normalization','pdf') 
histogram(Load_generation_rate_wheat,18,'FaceColor','w','EdgeColor','k'
,'Normalization','pdf') 



 

194 

 

x_values = min(Load_generation_rate_wheat)-
1:0.1:max(Load_generation_rate_wheat)+1; 
y = pdf(PD_load_gen_wheat,x_values); 
  
hold on 
plot(x_values,y,'--k','LineWidth',2) 
%xlabel('Load Interarrival Time (minutes)'); ylabel('Probability 
Density'); 
xlabel('Grain Cart Interarrival Time (minutes)'); ylabel('Probability 
Density'); 
legend('Histogram', 'Fit PDF') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Wheat Interarrival miles hist BW1'],'-png', '-
r300') 
hold on 
figure('Name','Wheat Interarrival QQ','Units','inches','Position',[0 0 
3.5 3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(Load_generation_rate_wheat,PD_load_gen_wheat) 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Wheat Interarrival miles QQ'],'-png', '-r300') 
%} 
  
%Load Size 
%[D2] = allfitdist(wheat_bu,'PDF');%Compare dist 
PD_load_size_wheat=fitdist(wheat_bu,'logistic')%English 
%%{ 
%Metric for figure 
wheat_ton=wheat_bu*60/2204*(1-.135);%metric ton at 0. mc 
PD_load_size_wheat=fitdist(wheat_ton,'logistic') 
  
hold on 
figure('Name','Wheat Load size','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
histogram(wheat_ton,20,'Normalization','pdf') 
x_values = min(wheat_ton)-1:0.1:max(wheat_ton)+1; 
y = pdf(PD_load_size_wheat,x_values); 
hold on 
plot(x_values,y,'LineWidth',2) 
xlabel('Load size (t)'); ylabel('Probability Density'); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Wheat load size miles hist'],'-png', '-r300') 
hold on 
figure('Name','Wheat Load size QQ','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(wheat_bu,PD_load_size_wheat) 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Wheat load size miles QQ'],'-png', '-r300') 
  
%} 
  
%Combined properties 
%Pit service time 
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PD_pit=fitdist(service_time_pit,'normal') 
%%{ 
hold on 
figure('Name','Pit Service','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
%histogram(service_time_pit,10,'Normalization','pdf') 
histogram(service_time_pit,10,'FaceColor','w','EdgeColor','k','Normaliz
ation','pdf') 
x_values = min(service_time_pit):0.1:max(service_time_pit)+1; 
y = pdf(PD_pit,x_values); 
hold on 
plot(x_values,y,'--k','LineWidth',2) 
xlabel('Service Time (minutes)'); ylabel('Probability Density'); 
legend('Histogram', 'Fit PDF','Location','Best') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Pit service miles hist BW'],'-png', '-r300') 
  
hold on 
figure('Name','Pit Service QQ','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(service_time_pit,PD_pit) 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Pit service miles QQ'],'-png', '-r300') 
  
%} 
  
%Field transfer time 
%[D] = 
allfitdist([service_time_corn_load;service_time_wheat_load],'PDF'); 
service_time_load=[service_time_corn_load;service_time_wheat_load]; 
PD_loading=fitdist(service_time_load,'lognormal') 
  
%%{ 
hold on 
figure('Name','Loading Service','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
%histogram(service_time_load,10,'Normalization','pdf') 
histogram(service_time_load,10,'FaceColor','w','EdgeColor','k','Normali
zation','pdf') 
x_values = min(service_time_load)-1:0.1:max(service_time_load)+1; 
y = pdf(PD_loading,x_values); 
hold on 
plot(x_values,y,'--k','LineWidth',2) 
xlabel('Service Time (minutes)'); ylabel('Probability Density'); 
legend('Histogram', 'Fit PDF','Location','Best') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Loading service miles hist BW'],'-png', '-r300') 
hold on 
figure('Name','Loading Service QQ','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(service_time_load,PD_loading) 
a=gca; 
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a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Loading service miles QQ'],'-png', '-r300') 
%} 
  
%**********************************************************************
***** 
%Andy 
  
%Load generation rate 
%[D1] = allfitdist(Load_generation_rate_andy,'PDF'); 
PD_load_gen_andy=fitdist(Load_generation_rate_andy,'loglogistic') 
  
%%{ 
figure('Name','Corn Interarrival Andy','Units','inches','Position',[0 0 
3.5 3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
%histogram(Load_generation_rate_andy,6,'Normalization','pdf') 
histogram(Load_generation_rate_andy,6,'FaceColor','w','EdgeColor','k','
Normalization','pdf') 
x_values = min(Load_generation_rate_andy)-
1:0.1:max(Load_generation_rate_andy)+1; 
y = pdf(PD_load_gen_andy,x_values); 
  
hold on 
plot(x_values,y,'--k','LineWidth',2) 
%xlabel('Load Interarrival Time (minutes)'); ylabel('Probability 
Density'); 
xlabel('Grain Cart Interarrival Time (minutes)'); ylabel('Probability 
Density'); 
legend('Histogram', 'Fit PDF','Location','Best') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Load Interarrival andy hist BW1'],'-png', '-r300') 
  
hold on 
figure('Name','Corn Interarrival Andy 
QQ','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(Load_generation_rate_andy,PD_load_gen_andy) 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Load Interarrival andy QQ'],'-png', '-r300') 
%} 
  
%Pit service time 
service_time_andy_pit(service_time_andy_pit>100)=[];%Delete the really 
high service time ( It was due to breakdown/ lunch) 
[D1] = allfitdist(service_time_andy_pit,'PDF'); 
PD_andy_pit=fitdist(service_time_andy_pit,'normal') 
%%{ 
hold on 
figure('Name','Pit Service Andy','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
%histogram(service_time_andy_pit,6,'Normalization','pdf') 
histogram(service_time_andy_pit,6,'FaceColor','w','EdgeColor','k','Norm
alization','pdf') 
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x_values = min(service_time_andy_pit)-
15:0.1:max(service_time_andy_pit)+10; 
y = pdf(PD_andy_pit,x_values); 
hold on 
plot(x_values,y,'--k','LineWidth',2) 
xlabel('Service Time (minutes)'); ylabel('Probability Density'); 
legend('Histogram', 'Fit PDF','Location','Best') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Pit service andy hist BW'],'-png', '-r300') 
  
hold on 
figure('Name','Pit Service Andy QQ','Units','inches','Position',[0 0 
3.5 3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(service_time_andy_pit,PD_andy_pit) 
  
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Pit Service andy QQ'],'-png', '-r300') 
  
%} 
  
%Field transfer 
service_time_load=service_time_andy_load; 
%[D] = allfitdist(service_time_load,'PDF'); 
PD_andy_loading=fitdist(service_time_load,'normal') 
  
%%{ 
hold on 
figure('Name','Loading Service','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
%histogram(service_time_load,8,'Normalization','pdf') 
histogram(service_time_load,8,'FaceColor','w','EdgeColor','k','Normaliz
ation','pdf') 
x_values = min(service_time_load)-1:0.1:max(service_time_load)+1; 
y = pdf(PD_andy_loading,x_values); 
hold on 
plot(x_values,y,'--k','LineWidth',2) 
xlabel('Service Time (minutes)'); ylabel('Probability Density'); 
legend('Histogram', 'Fit PDF','Location','Best') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Loading service andy hist BW'],'-png', '-r300') 
hold on 
figure('Name','Loading Service QQ','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
qqplot(service_time_load,PD_andy_loading) 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath 'Loading service andy QQ'],'-png', '-r300') 
%} 
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Script to Run the Simulation Model 
%**************************************************************** 
% TITLE: Run DES model 
% AUTHOR: Aaron P. Turner  
% DATES: Feb 2018 
% DESCRIPTION: Main script to run Simulink DES simulation model      of 
%grain transportation. 
%Reads in .mat file with PDF objects for service times and entity 
%generation. 
%Simulation time and resource constraints defined in the script 
%PDF's are from recorded data and fit using Fit_dist script 
%Script to call Simevents DES model for grain hauling 
%Outputs model results as a 1X500 simulation output 
clear; clc; close all; 
%**************************************************************** 
%Define variables 
tic 
load PD_objects.mat %Read in PDF objects 
load seed_val.mat %Array of random seed values used to seed random 
number generation for each day 
mdl='Hauling_model_sto_batch.slx'; 
%mdl='test_model.slx'; 
load_system(mdl); 
numsims=500;%number of times to run the simulation 
parpool; 
  
sim_out(numsims)= Simulink.SimulationOutput;% Initialize output 
  
%**************************************************************** 
%Inputs are set for each day considered in the simulation. Uncomment a 
day to evaluate 
  
%Example change to run different days 
%8/29 
%%{ 
seed=master_seed(7); 
runtime=531.1;%Time harvesting 
num_truck=9;% number of trucks in resource pool 
num_driver=9;% number of drivers in resource pool 
field_buffer=3;%Field side storage buffer 
batch_size=1; 
dt_transport=5.0;%time traveling from field to storage 
dt_inspect=2;% time to weigh and inspect 
dt_return=dt_transport;% time to return to the field, equal to 
dt_transport+ offset to position 
%} 
 
 
%Rename PDF objects here 
PD_load_gen=PD_load_gen_corn; 
PD_field_trans=PD_loading; 
PD_pit=PD_pit; 
PD_size=PD_load_size_corn; 
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%Define matrix of random numbers for simulation. rows=simulation #. 
columns 
%number of random vars. arbitrary at 100 so there is more than enough. 
     
rng(seed);%Set seed val so can be replicated 
  
%Generate random vars 
    load_gen_rate=random(PD_load_gen,numsims,100); 
    dt_field_trans=random(PD_field_trans,numsims,100); 
    dt_unload=random(PD_pit,numsims,100); 
     
%**************************************************************** 
  
%Define outputs 
operating_cost1=zeros(numsims,1); 
WIP_final1=zeros(numsims,1); 
Loads_theory1=zeros(numsims,1); 
sys_eff1=zeros(numsims,1); 
system_throughput1=zeros(numsims,1); 
loads_missed1=zeros(numsims,1); 
man_hrs1=zeros(numsims,1); 
 
%**************************************************************** 
  
%use parallel processing 
%%{ 
% 3) Need to switch all workers to a separate tempdir in case  
% any code is generated for instance for StateFlow, or any other  
% file artifacts are  created by the model. 
spmd 
    % Setup tempdir and cd into it 
    currDir = pwd; 
    addpath(currDir); 
    tmpDir = tempname; 
    mkdir(tmpDir); 
    cd(tmpDir); 
    % Load the model on the worker 
    load_system(mdl); 
end 
  
  
parfor j=1:numsims% Run the simulation multiple times 
     
     
    sim_out(j)=fun_run_mdl(... 
             
num_truck,num_driver,load_gen_rate(j,:),dt_field_trans(j,:),dt_transpor
t,dt_unload(j,:),dt_return,field_buffer,dt_inspect,mdl,runtime,batch_si
ze); 
         
end 
  
% 5) Switch all of the workers back to their original folder. 
spmd 
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    cd(currDir); 
    rmdir(tmpDir,'s'); 
    rmpath(currDir); 
    close_system(mdl, 0); 
end 
  
close_system(mdl, 0); 
delete(gcp('nocreate')); 
%} 
toc 
  
function 
[res]=fun_run_mdl(num_truck,num_driver,Cost,load_gen_rate,dt_field_tran
s,dt_transport,dt_unload,dt_return,field_buffer,dt_inspect,mdl,runtime,
batch_size) 
%Main function calls model and Stores results 
   
%set model workspace to function and call model 
options = 
simset('SrcWorkspace','current','ReturnWorkspaceOutputs','on'); 
  
res=sim(mdl,[],options); 
end 
  

 

Script to Analyze Simulation Output 
%**************************************************************** 
% TITLE: DES Analysis 
% AUTHOR: Aaron P. Turner  
% DATES: March 2018 
% DESCRIPTION: Script reads in 1X500 Simulink output files for DES 
%transportation model and performance analysis on the system 
%Also generates High quality figures 
%**************************************************************** 
 
clc; close all; clear; 
%load andy_simout.mat 
  
figpath='C:\XXX\'; 
  
 
%Example inputs. Each day was unique 
%%{ 
folder='XXX\'; 
load wheat_delivered_actual.mat; %actual arrivals from spread sheet 
only days w/ on-farm deliveries. 
  
 
%0611 
%Load Simulink output 
load wheat0611.mat 
day1='0611'; 
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actual=wheat_actual(wheat_actual(:,1)==11,3:4); %select day and only 
time and load # 
t_harvest_stop=380; 
batch_size=1; 
num_truck=4; 
num_driver=4; 
%} 
  
  
%Define vars 
loads_delivered=[]; 
Flow_time=[];%Load creation to unload finish 
batch_order=[];%order in batch 
Truck_time=[]; 
productive_time=[]; 
loads_in=[]; 
loads_WIP=[]; 
Field_delay=[]; 
pit_delay=[]; 
truck_util=[]; 
driver_util=[]; 
  
%Loop to go through each simulation and aggregate results 
for i=1:length(sim_out) 
     
%********Loads delivered, Productive time and Flow time**************** 
    %loads delivered 
    res=[sim_out(i).Loads_out.Time sim_out(i).Loads_out.Data]; 
    loads_delivered=[loads_delivered; res]; 
    Cum_total(i)=sim_out(i).Loads_out.Data(end); 
     
    %Flow time. Time from when load is generated till it is unloaded. 
    res=[sim_out(i).T_creation.Data (sim_out(i).T_unload_complete.Data-
sim_out(i).T_creation.Data)]; 
    Flow_time=[Flow_time; res]; 
     
        %Productive time transfer, transport, weigh, unload   
    res=[sim_out(i).T_creation.Data... 
        (sim_out(i).T_finish_load.Data-sim_out(i).T_start_load.Data)... 
        (sim_out(i).T_arrive_storage.Data-
sim_out(i).T_start_trans.Data)... 
        (sim_out(i).T_finish_scales.Data-
sim_out(i).T_start_scales.Data)... 
        (sim_out(i).T_unload_complete.Data)-
sim_out(i).T_start_unload.Data]; 
    productive_time=[productive_time; res]; 
     
    
  %*****************************Wait Time*****************************   
    %Time entities wait for trucks 
    res=[sim_out(i).T_creation.Data (sim_out(i).T_start_load.Data-
sim_out(i).T_creation.Data)]; 
    Field_delay=[Field_delay; res]; 
     
    %time trucks wait @ unload  
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    res=[sim_out(i).T_creation.Data (sim_out(i).T_start_unload.Data-
sim_out(i).T_finish_scales.Data)]; 
    pit_delay=[pit_delay; res]; 
     
% *************Resource utilization*********************************** 
  
    %Final time. when all resources return to field. all 
    %sim_out(i).XXX.Time are the same time. And it is the time stamp    
%whenthe haul back is complete and the resource is released. 
    t_max=sim_out(i).T_creation.Time(end); 
    t_OT(i)=t_max-t_harvest_stop; %Amount of time hauling continues 
after harvest stops 
    %Truck utilization, account for truck being "utilized" from first 
unload 
    %Batch order  
    batch_temp=sim_out(i).Batch_order.Data; 
    batch_order=[batch_order; batch_temp]; 
     
    %Truck total time including empty haul back 
    res=[sim_out(i).T_creation.Data (sim_out(i).T_start_load.Time-
sim_out(i).T_creation.Data)]; 
    Truck_total_time=res(batch_temp==1,2); 
     
    %Truck utilization, averaged for the day 
    Daily_truck_util(i)=(sum(Truck_total_time)/num_truck)/t_max*100; 
     
    %Driver Utilization 
    res=[sim_out(i).T_creation.Data (sim_out(i).T_start_trans.Time-
sim_out(i).T_start_trans.Data)]; 
    %Driver_time=[Driver_time; res]; 
    Driver_total_time=res(batch_temp==1,2); 
     
    %Driver utilization, averaged for the day 
    Daily_driver_util(i)=(sum(Driver_total_time)/num_driver)/t_max*100; 
     
     
    %************ Parameters calculated in simulink********************  
    %Truck utilization 
    res=[sim_out(i).Truck_util.Time sim_out(i).Truck_util.Data]; 
    truck_util=[truck_util; res]; 
    %truck_util_max(i)=max(sim_out(i).Truck_util.Data); 
     
    %Driver utilization 
    res=[sim_out(i).driver_util.Time sim_out(i).driver_util.Data]; 
    driver_util=[driver_util; res]; 
    %driver_util_max(i)=max(sim_out(i).driver_util.Data); 
     
    %  
end 
  
  
%Average Delieveries 
average_deliveries=mean(Cum_total); 
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std_dev=sqrt((1/(length(Cum_total)-1))*sum((Cum_total-
average_deliveries).^2));%std. dev eq 4.2 sim and monte carlo book 
  
%Average Flow time.  
average_flow_time=mean(Flow_time(:,2)); 
  
% Productive time 
total_productive_time=[productive_time(:,1) 
productive_time(:,2)+productive_time(:,3)+productive_time(:,4)+producti
ve_time(:,5)]; 
  
%Flow time efficiency 
flow_time_eff=[Flow_time(:,1) 
total_productive_time(:,2)./Flow_time(:,2)*100]; 
average_flow_time_eff=mean(flow_time_eff(:,2)); 
  
  
%Truck and driver Utilization 
average_truck_util=mean(Daily_truck_util); 
average_driver_util=mean(Daily_driver_util); 
  
truck_util_max=max(truck_util(:,2)); 
driver_util_max=max(driver_util(:,2)); 
  
% Fit trend to SimEvents utilization 
%Trucks 
 Truck_util_sort=sortrows(truck_util,1); 
dt=5;%minutes 
for j= 1:floor(Truck_util_sort(end,1)/dt) 
if j==1 
dt_old=0; 
end 
truck_util_mean(j,:)=mean(Truck_util_sort(Truck_util_sort(:,1)>dt_old & 
Truck_util_sort(:,1)<(dt_old+dt),:),1); 
dt_old=dt_old+dt; 
end 
  
%Drivers 
 driver_util_sort=sortrows(driver_util,1); 
dt=5;%minutes 
for j= 1:floor(driver_util_sort(end,1)/dt) 
if j==1 
dt_old=0; 
end 
driver_util_mean(j,:)=mean(driver_util_sort(driver_util_sort(:,1)>dt_ol
d & driver_util_sort(:,1)<(dt_old+dt),:),1); 
dt_old=dt_old+dt; 
end 
  
% Wait time calculations 
average_t_OT=mean(t_OT);%average time trucks run after harvest stops 
max_field_delay=max(Field_delay(:,2));% max time waiting for a truck 
max_pit_delay=max(pit_delay(:,2));% max time waiting to unload 
  
%Mean Delay 
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mean_field_delay= mean(Field_delay(Field_delay(:,2)>0,2));%Mean delay, 
when there is a delay 
mean_pit_delay= mean(pit_delay(pit_delay(:,2)>0,2));%Mean delay, when 
there is a delay 
  
%estimate % of loads that experience a delay 
percent_field_delay=sum(Field_delay(:,2)>0)/length(Field_delay(:,2))*10
0; 
percent_pit_delay=sum(pit_delay(:,2)>0)/length(pit_delay(:,2))*100; 
  
%Fprint 
%disp(average_deliveries);disp(2*std_dev); 
fprintf('average t_OT %g \n',average_t_OT); 
fprintf('Driver util: %g \t Max driver util: %g 
\n',average_driver_util,driver_util_max*100); 
fprintf('truck util: %g \t Max truck util: %g 
\n',average_truck_util,truck_util_max*100); 
fprintf('FTE %g \n',average_flow_time_eff); 
fprintf('Loads delivered %g plus minus %g \n',average_deliveries, 
2*std_dev); 
fprintf('Field side delay: Max: %g  \t Mean: %g \t Percent delayed: %g 
\n',max_field_delay, mean_field_delay,percent_field_delay); 
fprintf('Pit delay Max: %g \t  Mean: %g \t Percent delayed: 
%g\n',max_pit_delay, mean_pit_delay,percent_pit_delay); 
%fprintf('%g percent of loads experience a delay at the field edge 
\n',percent_field_delay); 
%fprintf('%g percent of loads experience a delay at the pit 
\n',percent_pit_delay); 
  
  
%*****************************Plotting********************************* 
  
%%{ 
%loads delivered 
figure('Name','Loads_delieverd','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
 
scatter(loads_delivered(:,1),loads_delivered(:,2),'filled','MarkerFaceC
olor',[0.5 0.5 0.5],'MarkerFaceAlpha',0.2) 
stairs(actual(:,1),actual(:,2),'k','LineWidth',2) 
legend('Simulation', 'Actual','Location','Best') 
xlabel('Simulation Time (minutes)'); ylabel('Cumulative Deliveries'); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath folder  'loads_delivered_' day1],'-png', '-r300','-
nocrop') 
  
%Flow time 
figure('Name','Flow_time','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
scatter(Flow_time(:,1),Flow_time(:,2),'filled','MarkerFaceColor',[0.5 
0.5 0.5],'MarkerFaceAlpha',0.2) 
scatter(total_productive_time(:,1),total_productive_time(:,2),'r','fill
ed','MarkerFaceAlpha',0.1) 
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xlabel('Load Creation Time (minutes)'); ylabel('Time (minutes)'); 
legend('Flow time', 'Productive time','Location','Best') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath folder 'Flow_time_' day1],'-png', '-r300','-
nocrop') 
  
%Flow time eff 
figure('Name','Flow_time_eff','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
scatter(flow_time_eff(:,1),flow_time_eff(:,2),'filled','MarkerFaceColor
',[0.5 0.5 0.5],'MarkerFaceAlpha',0.2) 
ylim([0 100]) 
xlabel('Load Creation Time (minutes)'); ylabel('Flow Time Efficiency 
(%)'); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath folder 'Flow_time_eff_' day1],'-png', '-r300','-
nocrop') 
  
%%{ 
%Truck utilization 2 
figure('Name','Truck Utilization avg','Units','inches','Position',[0 0 
3.5 3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
scatter(truck_util(:,1),truck_util(:,2)*100,'filled','MarkerFaceColor',
[0.5 0.5 0.5],'MarkerFaceAlpha',0.2) 
plot(truck_util_mean(1:(end-5),1),truck_util_mean(1:(end-
5),2)*100,'k','LineWidth',2) 
ylim([0 100]) 
xlabel('Simulation Time (minutes)'); ylabel('Truck Utilization (%)'); 
legend('Simulation', 'Average','Location','Best') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath folder 'truck_util_avg' day1],'-png', '-r300','-
nocrop') 
  
%driver utilization 2 
figure('Name','Driver Utilization avg','Units','inches','Position',[0 0 
3.5 3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
scatter(driver_util(:,1),driver_util(:,2)*100,'filled','MarkerFaceColor
',[0.5 0.5 0.5],'MarkerFaceAlpha',0.2) 
plot(driver_util_mean(1:(end-5),1),driver_util_mean(1:(end-
5),2)*100,'k','LineWidth',2) 
ylim([0 100]) 
xlabel('Simulation Time (minutes)'); ylabel('Driver Utilization (%)'); 
legend('Simulation', 'Average','Location','Best') 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath folder 'driver_util_avg' day1],'-png', '-r300','-
nocrop') 
%} 
  
%%{ 
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%delay at field edge waiting for a truck 
figure('Name','Field_Delay','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
scatter(Field_delay(:,1),Field_delay(:,2),'filled','MarkerFaceColor',[0
.5 0.5 0.5],'MarkerFaceAlpha',0.2) 
ylim([0, max(ylim)]) 
xlabel('Load Creation Time (minutes)'); ylabel('Wait Time (minutes)'); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath folder 'field_delay_' day1],'-png', '-r300','-
nocrop') 
  
%Delay at pit waiting to unload 
figure('Name','Pit_Delay','Units','inches','Position',[0 0 3.5 
3.5],'InvertHardcopy','off','Color',[1 1 1]); 
hold on 
scatter(pit_delay(:,1),pit_delay(:,2),'filled','MarkerFaceColor',[0.5 
0.5 0.5],'MarkerFaceAlpha',0.2) 
ylim([0, max(ylim)]) 
xlabel('Load Creation Time (minutes)'); ylabel('Wait Time (minutes)'); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
export_fig([figpath folder 'pit_delay_' day1],'-png', '-r300','-
nocrop') 
%} 
%} 
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 Sample Code for Whole Season Simulation 

Main Function 
function [summary]=fun_whole_season_sim(input,weather,figpath) 
%********************************************************************** 
% TITLE: Main Function 
% AUTHOR: Aaron P. Turner 
% DATES: Aug 2018 
% DESCRIPTION: Function to call the simulink DES hauling and storage 
%model 
%simulates harvest until the required amount of grain is harvested 
%********************************************************************** 
%Define variables 
  
mdl='Hauling_model_sto_batch_dry.slx'; 
load_system(mdl); 
total_harvest=input.MT;%dry t over season 
Hh=input.Hh*60; 
Ht=input.Ht*60; 
Ncombines=input.Ncombine; 
Ncarts=input.Ncart; 
summary=table(); 
  
%Transport 
load_gen_rate(1:100)=input.load_gen_rate; 
dt_field_trans(1:100)=input.dt_field_trans; 
dt_transport=input.dt_transport; 
dt_unload(1:100)=input.dt_unload; 
dt_return=dt_transport; 
field_buffer=input.Q_field_max; 
batch_size=input.batch_size; 
dt_inspect=input.dt_inspect; 
%} 
num_truck=input.Ntruck;%average was 8.6 
num_driver=input.Ndriver;%average was 8.6 
  
  
%Drying and storage 
MCi=input.MCi;% initial moisture content 
  
SDC=input.SDC;%Stated dryer capacity 
T_rated=input.T_rated;%Rated Dryer temp 
T_dry=input.T_dry;%Actual drying temperature 
MCout=input.MCout;%Can change if needed 
wet_cap=input.wet_cap; 
load_size(1:100)=input.load_size;% dry tonne 
Nstorage=input.Nstorage; 
%Define Daily vars 
  
%Moisture content and daily runtime 
[MCpred, runtime_all]=get_daily_cond(weather,MCi,input.Hh*60); 
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%runtime_all(1:3)=0;%Delay WC till 25% 
wet_Q=wet_cap-1;%maximum wet holding cap 
wet_bin_initial=inf;%wet bin empty on day 1 
i=1;%counter var 
%adjusted dryer capacitiy in dry t/hr 
[~,scaled_cap_dry] = Drying_cap_adj(SDC, MCout,MCpred,T_rated,T_dry); 
dt_dry_rem=0;%initialize. need it later 
wet_carry_prev=0; 
%Run daily Simulations until all grain is harvested 
while total_harvest>0 
     
     
    %  close all 
    %new daily conditions 
    runtime=runtime_all(i);%daily harvest time 
    dry_rate=scaled_cap_dry(i)/60;%drying rate t/ min 
     
    %Set path dry store or direct to store 
    if MCpred(i)>MCout 
        Dry=2; 
    else 
        Dry=1; 
    end 
    dry_time=load_size/dry_rate;%dry time for dryer server 
     
    %Reduce time for partly dried load at end of previous sim 
    if dt_dry_rem(1)>0 
        dry_time(1:length(dt_dry_rem))=dt_dry_rem; 
    end 
     
     
    %Run model 
    
simout=fun_run_mdl(num_truck,num_driver,load_gen_rate,dt_field_trans,dt
_transport,... 
        
dt_unload,dt_return,field_buffer,dt_inspect,mdl,runtime,batch_size,Dry,
wet_Q,wet_bin_initial,dry_time,Ht); 
     
    %Check all loads were deliverd, if not rerun w/ adjusted time 
    if  
length(simout.Loads_in.Data)>length(simout.T_unload_complete.Data) 
        %find number of batch elements delivered 
        j=length(simout.T_unload_complete.Data); 
        %Update runtime to reflect when last load that was delivered 
was  
        %actually harvested 
        runtime_reduced=simout.Loads_in.Time(j)+1; 
         
        %Rerun 
    
simout=fun_run_mdl(num_truck,num_driver,load_gen_rate,dt_field_trans,dt
_transport,... 
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dt_unload,dt_return,field_buffer,dt_inspect,mdl,runtime_reduced,batch_s
ize,Dry,wet_Q,wet_bin_initial,dry_time,Ht);    
        flag=1; 
         
    end 
     
     
    %***********************Process data****************************** 
     
    %only update if new crop is harvested 
    %Returns # of entities in wet holding pit and total time harvest is 
    %delayed also determines number of loads that entered and left the 
    %system 
     
    %Account for initial loads being given a drytime/mass first in the 
    %simulation 
    idx1=floor(length(wet_bin_initial)/batch_size); 
    %handle updates for when harvest occurs, only drying occurs, and    
%when 
    %nothing occurs 
     
    if runtime >0 
        [bin_final(i),pit_final(i),delay(i)]= 
Daily_sum(simout,field_buffer,runtime,batch_size,figpath,i); 
        
Daily_total_in(i,1)=floor(simout.Loads_in.Data(end)/batch_size);%Truck 
loads into the system 
        
Daily_total_in(i,2)=sum(load_size(idx1+1:Daily_total_in(i,1)+idx1));%t 
harvested 
        Daily_total_out(i,1)=simout.Loads_out.Data(end)/batch_size; 
        Daily_total_out(i,2)=sum(load_size(1:Daily_total_out(i,1))); 
         
        total_harvest=total_harvest-Daily_total_in(i,2); 
    else 
        [bin_final(i),pit_final(i),delay(i)]= 
Daily_sum(simout,field_buffer,runtime,batch_size,figpath,i); 
        Daily_total_in(i,1)=0; 
        Daily_total_in(i,2)=0; 
        if isempty(simout.Loads_out.Data) 
            Daily_total_out(i,1)=0; 
            Daily_total_out(i,2)=0; 
        else 
            Daily_total_out(i,1)=simout.Loads_out.Data(end)/batch_size; 
            
Daily_total_out(i,2)=sum(load_size(1:Daily_total_out(i,1))); 
        end 
    end 
     
    %FinalIteration************************************************** 
     
    %The final iteration determine how long it took to harvest the 
    %remaining grain and rerun the simulation with only that runtime 
    if total_harvest<0 
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        target=total_harvest+Daily_total_in(i,2);%remaining at start of 
iteration 
        j=1;%counter 
        %Loop until req. loads are harvested. 
        while target>0 
            target=target-load_size(j); 
            if target>0 
                j=j+1; 
            end 
        end 
        %required field unloads to finish the day 
         
        j=j*batch_size; 
        runtime=simout.Loads_in.Time(j)+1; 
        %Run model 
        
simout=fun_run_mdl(num_truck,num_driver,load_gen_rate,dt_field_trans,dt
_transport,... 
            
dt_unload,dt_return,field_buffer,dt_inspect,mdl,runtime,batch_size,Dry,
wet_Q,wet_bin_initial,dry_time,Ht); 
         
        %Update values w/ rerun for last day 
         
        idx1=length(wet_bin_initial)/batch_size; 
        if runtime >0 
            [bin_final(i),pit_final(i),delay(i)]= 
Daily_sum(simout,field_buffer,runtime,batch_size,figpath,i); 
            
Daily_total_in(i,1)=floor(simout.Loads_in.Data(end)/batch_size);%Truck 
loads into the system 
            
Daily_total_in(i,2)=sum(load_size(idx1+1:Daily_total_in(i,1)+idx1));%t 
harvested 
            Daily_total_out(i,1)=simout.Loads_out.Data(end)/batch_size; 
            
Daily_total_out(i,2)=sum(load_size(1:Daily_total_out(i,1))); 
             
            total_harvest=total_harvest-Daily_total_in(i,2); 
        else 
            [bin_final(i),pit_final(i),delay(i)]= 
Daily_sum(simout,field_buffer,runtime,batch_size,figpath,i); 
            Daily_total_in(i,1)=0; 
            Daily_total_in(i,2)=0; 
            if isempty(simout.Loads_out.Data) 
                Daily_total_out(i,1)=0; 
                Daily_total_out(i,2)=0; 
            else 
                
Daily_total_out(i,1)=simout.Loads_out.Data(end)/batch_size; 
                
Daily_total_out(i,2)=sum(load_size(1:Daily_total_out(i,1))); 
            end 
        end 
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    end 
    %More daily summary 
     
    % table(bin_final',Daily_total_in,Daily_total_out,delay') 
% Call function for analysis 
    
[res]=analysis1(simout,runtime,num_truck,num_driver,batch_size,figpath,
i); 
    T_combine_tot=res.T_combine*Ncombines; 
    T_carts_tot=res.T_combine*Ncarts+(res.T_carts-res.T_combine)*1; 
    T_storage_tot=res.T_dryer*Nstorage; 
    T_driver_tot=res.T_drivers;% Already accounted for 
    a=table(T_combine_tot, T_carts_tot, T_storage_tot,T_driver_tot); 
    res=[res, a]; 
     
    summary=[summary;res]; 
     
     
    %Wet bin********************************************************** 
    %Handle wet bin carry over 
    %setting wet bin to inf sets dt in the model to inf so no entities 
    %are created 
     
    %check if wet bin is used at all. 
    % %{ 
    if bin_final(i)==0 
        wet_carry(i)=bin_final(i); 
        wet_carry_prev=wet_carry(i); 
        wet_bin_initial=inf; 
        dt_dry_rem=0; 
    else 
        dt_dry_rem=[]; 
        %wet_carry(i)=bin_final(i)+pit_final(i); 
        wet_carry(i)=wet_carry_prev+Daily_total_in(i,1)-
Daily_total_out(i,1); 
        wet_carry_prev=wet_carry(i); 
        %Trick because simulink needs to be same batch structure. 
        % wet carry 
        %is truck loads. multiply by batches/truck to get correct # of 
        %entities generated 
        wet_bin_initial=zeros(1,wet_carry(i)*batch_size); 
        %wet_bin_initial=zeros(1,wet_carry(i)); 
        dt_dry_rem(1)=Ht-res.t_end; 
        dt_dry_rem(2:wet_carry(i))=dry_time(50:50+wet_carry(i)-2); 
         
    end 
    %} 
     
    i=i+1; 
end 
MCin=MCpred(1:i-1); runtime_act=runtime_all(1:i-1); 
 
%Output Summary 
Daily=table(wet_carry',bin_final',Daily_total_in(:,1),Daily_total_in(:,
2),Daily_total_out(:,1),Daily_total_out(:,2),delay',MCin,runtime_act); 
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Daily.Properties.VariableNames={'wet_carry','bin_final','loads_in',... 
'mass_in','Loads_out','Mass_out','HTL','MCin','runtime'}; 
summary=[summary Daily]; 
 
 %Energy Used in drying, base eff. Was 200 BTU/lbH2) 
[energy]=Energy_use(summary,T_dry,MCout,2000); 
  
summary=[summary energy]; 
  
end 
%Function************************************************************* 
  
  
function 
[res]=fun_run_mdl(num_truck,num_driver,load_gen_rate,dt_field_trans,dt_
transport,...  
dt_unload,dt_return,field_buffer,dt_inspect,mdl,runtime,batch_size,Dry,
wet_Q,wet_bin_initial,dry_time,Ht) 
 
%set model workspace to function and call model 
options = 
simset('SrcWorkspace','current','ReturnWorkspaceOutputs','on'); 
 
  
res=sim(mdl,[],options); 
  
  
end 
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Main Function Initialization for Whole Season Validation Conditions 
%********************************************************************** 
% TITLE: Run dry and store simulation of des model 
% AUTHOR: Aaron P. Turner 
% DATES: June 2018 
% DESCRIPTION: Function to call the simulink DES hauling and storage 
model 
%simulates harvest until the required amount of grain is harvested 
%**********************************************************************
***% 
%Define variables 
clear; clc; close all; 
figpath='C:\Users\aptu222\OneDrive - University of Kentucky\Harvest 
Logistics\Turner_PhD\Papers\DES_hauling_plus_storage\Figures\sims\'; 
mdl='Hauling_model_sto_batch_dry.slx'; 
load_system(mdl); 
total_harvest=6959;%dry t over season 
Hh=8*60;%8 hrs per day for field work 
Ht=24*60; %lenght of simulation 
summary=table(); 
%test case for batch should give same results 
%{ 
%Inputs Average of 2016 corn 
%Transport 
load_gen_rate(1:1000)=17.2/2; 
dt_field_trans(1:1000)=5.76; 
dt_transport=11.6; 
dt_unload(1:1000)=12.5; 
dt_return=dt_transport; 
field_buffer=3; 
batch_size=2; 
dt_inspect=2; 
%} 
  
%%{ 
%Inputs Average of 2016 corn 
%Transport 
load_gen_rate(1:100)=17.2; 
dt_field_trans(1:100)=5.76; 
dt_transport=11.6; 
dt_unload(1:100)=12.5; 
dt_return=dt_transport; 
field_buffer=3; 
batch_size=1; 
dt_inspect=2; 
%} 
num_truck=8;%average was 8.6 
num_driver=8;%average was 8.6 
  
  
%Drying and storage 
MCi=26.7;% initial moisture content 
load weather.mat%weather data 
SDC=4000;%4000 bu/hr @ 5pt for Sukup 4018 
T_rated=220;%Rated Dryer Capacity 
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T_dry=140;%Actual drying temperature 
MCout=15;%Can change if needed 
wet_cap=18;%CHECK approximatly 16.5k bu + .75k in top of dryer???? 
load_size(1:100)=21.0;% dry tonne 
  
%Define Daily vars 
  
%Moisture content and daily runtime 
[MCpred, runtime_all]=get_daily_cond(weather,MCi,Hh); 
wet_Q=wet_cap-1;%maximum wet holding cap 
wet_bin_initial=inf;%wet bin empty on day 1 
i=1;%counter var 
%adjusted dryer capacitiy in dry t/hr 
[~,scaled_cap_dry] = Drying_cap_adj(SDC, MCout,MCpred,T_rated,T_dry); 
dt_dry_rem=0;%initialize. need it later 
  
%Dummy vars needed to prevent errors for sensitivity portion of the 
script 
Ncombines=2; 
Ncarts=2; 
Nstorage=1; 
wet_carry_prev=0; 
%Run daily Simulations until all grain is harvested 
%Same As Main Function from this point on  
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 Fieldwork and Moisture Content Estimation 
function [MCpred, runtime]=get_daily_cond(weather,MCi,Hh) 
  
%**********************************************************************
**** 
% TITLE: Moisture dry down and field time estimate 
% AUTHOR: Aaron P. Turner 
% DATES: June 2018 
% DESCRIPTION: This functions reads in hourly weather station 
observations 
% and summerizes daily Temperature and RH values 
% Predicts grain dry down from an intial moisture and provides if field 
%work occured based on 0.5in rain threshold and no work on Sunday 
%20% of rainfall carries over from previous day  
%otherwise 8 hours per day 
%********************************************************************** 
%beta=0.094;%dry down coeff. determined for the 2016 corn data 
beta=0.0812;%based on inbound records not scales 
%beta=0.06;%based on inbound records not scales (from Morey) 
%beta=0.10;%Just increased to match decrese;  
weather_stats=grpstats(weather,'Date',{'mean', 
'min','max'},'DataVars',... 
    {'TempF','RH','Precipin'}); 
TempC=(weather_stats.mean_TempF-32)*5/9; % Temperature in deg c 
  
Temp1=grpstats(weather,'Date','sum'); 
sum_Precipin=Temp1.sum_Precipin; 
  
  
%Find EMC 
%Mod. Henderson. Eqn M=((ln(1-rh)/(-K*(T+C))^(1/N) 
K=0.000086541; 
C=49.81; 
N=1.8634; 
EMC_db=(log(1-weather_stats.mean_RH/100)./(-K*(TempC+C))).^(1/N); 
EMC_wb=(100*EMC_db)./(100+EMC_db);%Convert to wb 
Temp=table(TempC,sum_Precipin, EMC_db, EMC_wb); 
weather_stats=[weather_stats Temp];%Joined data as table 
  
%Determined MC 
MCpred(1)=MCi;%initial condition 
for i=2:height(weather_stats) 
    dt=beta*(MCpred(i-1)-weather_stats.EMC_wb(i)); 
    if weather_stats.sum_Precipin>0%no change if rain event 
        dt=0; 
    end 
    MCpred(i)=MCpred(i-1)-dt; 
end 
  
DayNum=weekday(weather_stats.Date); 
Precip_yesterday=0; %assume no rain on day before start of sim 
%Determine if work occured 
for i=1:height(weather_stats) 
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    Level_today(i)=Precip_yesterday+weather_stats.sum_Precipin(i); 
     
        if DayNum(i)==1 
         
        runtime(i)=0; 
    elseif Level_today(i)>0.25%Changed 8/12/18 
        runtime(i)=0; 
    else 
        runtime(i)=Hh; 
         
    end 
    Precip_yesterday=0.2*Level_today(i); 
end 
MCpred=MCpred'; Level_today=Level_today'; runtime=runtime'; 
Temp2=table(Level_today,runtime,MCpred); 
weather_stats=[weather_stats, Temp2]; 
end 
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Energy Use in Drying Estimation  
function [res]=Energy_use(summary,T_dry,MCout,Base_eff) 
%********************************************************************** 
% TITLE: Estimate drying fuel use 
% AUTHOR: Aaron P. Turner 
% DATES: August 2018 
% DESCRIPTION: Use the polynomial fit to multiple simulation runs of 
the 
% granary model to estimate drying efficiency and energy use 
%**********************************************************************
***% 
  
%function needs summary after DES simulation and drying temperature. 
Also 
%Base level drying eff @ 10 pts and MC out 
%Estimates energy required for grain harvested on a day. Grain could be 
%dried in subsequent days 
fuel_unit_price=2.0;%$/gallon 
electric_unit_price=0.10;%$/kWh 
%Model parms. 
a0=18053; a10=239; a01=-236;a20=7.92; a11=-7.80; a02=2.10; 
  
%kJ/kgH2O 
MCin=summary.MCin; 
TempC=(T_dry-32)*5/9; 
dry_eff=a0+a10.*MCin+a01.*TempC+a20.*MCin.^2+a11.*MCin.*TempC+a02.*Temp
C.^2; 
  
Base_eff=Base_eff*2.204*1.0551;%Convert to kJ/kgH2O 
  
adj_dry_eff=dry_eff+(Base_eff-6797);%Base from sim output kJ/kgH2O 
  
dry_eff_us=adj_dry_eff/(2.204*1.0551);%convert to BTU/LB 
  
%mass in and MC match by incoming day so has to be evaluated this way 
H2O_out=summary.mass_in.*1000.*(100./(100-MCin)-100./(100-
MCout));%kgH2O 
  
  
    LHV=25.3;%LHV for propane  MJ /liter 
    Drying_energy=adj_dry_eff/1000.*H2O_out;%MJ 
    Fuel_used=Drying_energy./LHV/.93; 
    Fuel_used_us=Fuel_used*0.26417; 
    Fuel_cost=Fuel_used_us*fuel_unit_price; 
    %Convert to kWh, assume 5% electric 
    Electric_cost=Drying_energy/3.6*.05*electric_unit_price; 
  
  
%NO dry <15% 
for i=1:length(MCin) 
if MCin(i)<MCout 
    adj_dry_eff(i)=0; dry_eff_us(i)=0;Fuel_used(i)=0; 
    Fuel_used_us(i)=0; Fuel_cost(i)=0; Electric_cost(i)=0; 
end 
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end 
res=table(adj_dry_eff,dry_eff_us,Fuel_used,Fuel_used_us,Fuel_cost,Elect
ric_cost); 
  
end 
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Drying Capacity Adjustment 
function [scaled_cap_wet,scaled_cap_dry,scaled_cap_wet_bu] = 
Drying_cap_adj(rated_cap, MCout,MCin,T_rated,T_dry) 
%********************************************************************** 
% TITLE: Dryer_cap_adj 
% AUTHOR: Aaron P. Turner 
% DATES: June 2016-2018 
% DESCRIPTION: This function adjusts dryer performance based on 
incoming moisture, drying temperature and drying mode 
%********************************************************************** 
  
%rated_cap is given dryer capacity @ 220F and 5pts out (20-15) (wet 
bph) 
%in heat/cool mode 
%MC base is the base moisture. 15 or 15.5 % w.b. 
%MCin is incoming grain moisture, in %wb 
%T_rated=drying temp in deg F 
%T_dry=drying temp in deg F 
%mode 1= dry cool, 2= full heat,3=dryeration 
  
%Determine adjustment ratios for Moisture and Temperature 
  
Pts=MCin-MCout;%Pts removed 
  
%Difference between rated and actual drying temp deg C 
delT=(T_dry-T_rated)*5/9; 
  
%Regression Coeffcients 
  
%Based on Xflow model 
a=1.610; 
b=.2022; 
c=0.006901; 
d=1; 
f=0.0136; 
  
R_M=a*exp(-1*b*Pts)+c*(MCin.*MCout)./Pts;%Moisture adjustment 
R_T=d+f*delT;%Temperature Adjustment 
  
  
%Scale capacity 
rated_cap=rated_cap/39.368;%Adjust bph to t/hr 
  
rated_cap_dry=rated_cap.*(1-(20)/100);%Adjust to dry t/hr 
  
scaled_cap_dry=rated_cap_dry.*R_M.*R_T;%scale performance dry t/hr 
  
%adjust back to incoming mc (t/hr wet) 
scaled_cap_wet=scaled_cap_dry.*100./(100-MCin); 
scaled_cap_wet_bu=scaled_cap_wet*39.368; % in wet bph 
scaled_cap_dry_bu=scaled_cap_dry*39.368; %dry bhp 
  
end 
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Processes Simulation Data—Flow and Utilization 
 
function 
[res]=analysis1(simout,runtime,num_truck,num_driver,batch_size,figpath,
day1) 
%********************************************************************** 
% TITLE: process and clean simulation output data 
% AUTHOR: Aaron P. Turner 
% DATES: July 2018 
% DESCRIPTION: Function plots entities in process for daily simulation 
also 
% determines total delay in harvesting due to bottleneck and total 
entities. Finds wait time and resource utilization 
% in process at end of simulation 
%*********************************************************************% 
  
if isempty(simout.Loads_out.Data) 
    average_WT_field=0; average_WT_pit=0; average_flow_time=0; 
average_flow_time_eff=0; 
    percent_delayed_field=0; percent_delayed_pit=0; 
    t_OT=0;    t_end=0; 
    truck_util_avg=0;    driver_util_avg=0;    dryer_util_avg=0; 
    T_combine=0; T_carts=0;T_dryer=0;T_drivers=0; 
else 
     
    if isempty(simout.Loads_in.Data) 
        average_WT_field=0; average_WT_pit=0; average_flow_time=0; 
average_flow_time_eff=0; 
        percent_delayed_field=0; percent_delayed_pit=0; 
        t_OT=0; truck_util_avg=0;    driver_util_avg=0; 
        T_combine=0; T_carts=0;T_drivers=0; 
    else 
        %These times will be combined w/ number of operators in main 
script 
        T_combine=simout.Loads_in.Time(end)/60;%combine operation time 
        T_carts=simout.T_finish_load.Data(end)/60;%Final load left 
field 
        %Assumes dryers can leave after they park their last load in 
the 
        %queue If fewer loads than drivers, assumed driver=loads 
delivered 
        if length(simout.T_finish_scales.Data)<num_driver 
            T_drivers=sum(simout.T_finish_scales.Data); 
        else 
            T_drivers=sum(simout.T_finish_scales.Data(end-
num_driver+1:end))/60; 
        end 
         
         
        %Summary Loads in Loads out and Wait times 
        %%{ 
         
        WT_field=[simout.T_start_load.Data (simout.T_start_load.Data-
simout.T_creation.Data)]/60; 
        average_WT_field=mean(WT_field(:,2)); 
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percent_delayed_field=sum(WT_field(:,2)>0)/length(WT_field)*100; 
         
        WT_pit=[simout.T_start_unload.Data (simout.T_start_unload.Data-
simout.T_finish_scales.Data)]/60; 
        average_WT_pit=mean(WT_pit(:,2)); 
        percent_delayed_pit=sum(WT_pit(:,2)>0)/length(WT_pit)*100; 
         
        % Productive time transport only 
        productive_time=[simout.T_creation.Data... 
            (simout.T_finish_load.Data-simout.T_start_load.Data)... 
            (simout.T_arrive_storage.Data-simout.T_start_trans.Data)... 
            (simout.T_finish_scales.Data-simout.T_start_scales.Data)... 
            (simout.T_unload_complete.Data)-
simout.T_start_unload.Data]; 
         
        % Productive time 
        total_productive_time=[productive_time(:,1) 
productive_time(:,2)+productive_time(:,3)+productive_time(:,4)+producti
ve_time(:,5)]/60; 
         
        %Flow time. Time from when load is generated till it is 
unloaded. 
        Flow_time=[simout.T_creation.Data 
(simout.T_unload_complete.Data-simout.T_creation.Data)]/60; 
         
        %Average Flow time. 
        average_flow_time=mean(Flow_time(:,2)); 
         
        %Flow time efficiency 
        flow_time_eff=[Flow_time(:,1) 
total_productive_time(:,2)./Flow_time(:,2)*100]; 
        average_flow_time_eff=mean(flow_time_eff(:,2)); 
         
         
        %Flow time 
        %%{ 
        f=figure('Name','Flow+WT','Units','inches','Position',[0 0 3.54 
8],'InvertHardcopy','off','Color',[1 1 1]); 
        left_color = [0 0 0]; 
        right_color = [0 0 0]; 
        set(f,'defaultAxesColorOrder',[left_color; right_color]); 
        subplot(2,1,1) 
        hold all 
        yyaxis left 
        plot(Flow_time(:,1),Flow_time(:,2),'-
o','MarkerEdgeColor',left_color) 
        plot(total_productive_time(:,1),total_productive_time(:,2),'-
s','MarkerEdgeColor',left_color) 
        ylabel('Time (minutes)'); 
        ylim([0 inf]); 
        yyaxis right 
        plot(flow_time_eff(:,1),flow_time_eff(:,2),'--
o','MarkerfaceColor',[0.5 0.5 0.5]) 
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        xlabel('Load Creation Time (Hours into Simulation)'); 
ylabel('Time (Hours)'); 
        %legend('Flow Time', 'Productive Time','FTE','Location','Best') 
        l=legend('Flow Time', 'Productive 
Time','FTE','Location','southoutside','Orientation','horizontal'); 
        l.FontSize=10;  l.Position=[0 0.8759 .98 0.19]; 
        legend('boxoff') 
        ylim([0 100]);ylabel('Flow Time Efficiency, FTE (%)') 
        a=gca; 
        a.Title=[]; a.FontWeight='bold'; a.FontSize=10; 
a.FontName='arial'; 
         
        subplot(2,1,2) 
        hold on 
         
        plot(WT_field(:,1),WT_field(:,2),'-
o','MarkerEdgeColor',left_color) 
        plot(WT_pit(:,1),WT_pit(:,2),'-d','MarkerFaceColor',left_color) 
        ylim([0, max(ylim)]) 
        xlabel('Time Departed Queue (Hours into Simulation)'); 
ylabel('Wait Time (hours)'); 
        l=legend('Field Side', 'Recieving 
Pit','Location','northoutside','Orientation','horizontal'); 
        l.FontSize=10;   l.Position=[0 .38 .98 0.19]; 
        legend('boxoff') 
        a=gca; 
        a.Title=[]; a.FontWeight='bold'; a.FontSize=10; 
a.FontName='arial'; 
        export_fig([figpath 'Flow+WT' num2str(day1)],'-png', '-r300','-
nocrop') 
        %} 
         
        % *******Resource utilization****************************** 
         
        %Final time. when all resources return to field. all 
        %simout.XXX.Time are the same time. (Not for dryer) And it is    
the time stamp when 
        %the haul back is complete and the resource is released. 
        t_max=simout.T_creation.Time(end); 
        t_OT=(t_max-runtime); %Amount of time hauling continues after 
harvest stops 
        %Truck utilization, account for truck being "utilized" from 
first unload 
        %Batch order 
        batch_order=simout.Batch_order.Data; 
         
         
        %Truck total time including empty haul back 
        res=[simout.T_creation.Data (simout.T_start_load.Time-
simout.T_creation.Data)]; 
        %Truck_time=[Truck_time; res]; 
        Truck_total_time=res(batch_order==1,2); 
         
        %Truck utilization, averaged for the day 
        truck_util_avg=(sum(Truck_total_time)/num_truck)/t_max*100; 
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        %Instant util 
        truck_avail=time_clean2(simout.Truck_avail); 
        truck_util_inst=[truck_avail.Time (1-
truck_avail.Data/num_truck)*100]; 
         
         
        %Driver Utilization 
        res=[simout.T_creation.Data (simout.T_start_trans.Time-
simout.T_start_trans.Data)]; 
        %Driver_time=[Driver_time; res]; 
        Driver_total_time=res(batch_order==1,2); 
         
        %Driver utilization, averaged for the day 
        driver_util_avg=(sum(Driver_total_time)/num_driver)/t_max*100; 
         
        %Instant util 
        driver_avail=time_clean2(simout.driver_avail); 
        driver_util_inst=[driver_avail.Time (1-
driver_avail.Data/num_driver)*100]; 
         
         
        % %{ 
        % Trucks 
        f=figure('Name','Truck_util','Units','inches','Position',[0 0 
3.543 3.543],'InvertHardcopy','off','Color',[1 1 1]); 
        set(f,'defaultAxesColorOrder',[left_color; right_color]); 
        hold on 
        stairs(simout.Truck_util.Time/60, simout.Truck_util.Data*100,'-
','LineWidth',1.2,'MarkerEdgeColor',left_color) 
        
scatter(truck_util_inst(:,1)/60,truck_util_inst(:,2),'o','MarkerfaceCol
or',left_color,'MarkerFaceAlpha',0.3) 
        %plot(simout.driver_avail,'-d','MarkerEdgeColor',left_color) 
        ylim([0, 100]) 
        xlabel('Simulation Time (hours)'); ylabel('Utilization(%)'); 
        l=legend('Average', 
'Instant','Location','northoutside','Orientation','horizontal'); 
        l.FontSize=10;  l.Position=[0 0.8759 .98 0.19]; 
        legend('boxoff') 
        a=gca; 
        a.Title=[]; a.FontWeight='bold'; a.FontSize=10; 
a.FontName='arial'; 
        export_fig([figpath 'Truck_util_' num2str(day1)],'-png', '-
r300','-nocrop') 
         
        hold off 
        %Driver 
        f=figure('Name','Driver_util','Units','inches','Position',[0 0 
3.543 3.543],'InvertHardcopy','off','Color',[1 1 1]); 
        set(f,'defaultAxesColorOrder',[left_color; right_color]); 
        hold on 
        stairs(simout.driver_util.Time/60, 
simout.driver_util.Data*100,'-
','LineWidth',1.2,'MarkerEdgeColor',left_color) 
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scatter(driver_util_inst(:,1)/60,driver_util_inst(:,2),'o','MarkerfaceC
olor',left_color,'MarkerFaceAlpha',0.3) 
        %plot(simout.driver_avail,'-d','MarkerEdgeColor',left_color) 
        ylim([0, 100]) 
        xlabel('Simulation Time (hours)'); ylabel('Utilization(%)'); 
        l=legend('Average', 
'Instant','Location','northoutside','Orientation','horizontal'); 
        l.FontSize=10;  l.Position=[0 0.8759 .98 0.19]; 
        legend('boxoff') 
        a=gca; 
        a.Title=[]; a.FontWeight='bold'; a.FontSize=10; 
a.FontName='arial'; 
        export_fig([figpath 'Driver_util_' num2str(day1)],'-png', '-
r300','-nocrop') 
        hold off 
        %} 
         
    end 
    %} 
    %Time dryer was used 
    T_dryer_used=[simout.T_dry_finish.Data (simout.T_dry_finish.Data-
simout.T_dry_start.Data)]; 
     
     
    %Storage facility operator time 
     
    if isempty(simout.wet_bin.Data)%error for Wet bin not called below 
15% 
        T_dryer=simout.T_dry_finish.Data(end)/60;%hrs %should be 0 
    else 
        if simout.wet_bin.Data(end)>0 
            T_dryer=24;%hrs 
        else 
            T_dryer=simout.T_dry_finish.Data(end)/60;%hrs 
        end 
        %Dryer in use 
        dryer_use=time_clean2(simout.Dryer_stat); 
    end 
    %Dryer utilization could be 24 hrs/day 
    dryer_util_avg=sum(T_dryer_used(:,2))/(24*60)*100; 
    t_end=simout.Loads_out.Time(end);%Time final load left the system 
     
    %Dryer 
    %%{ 
    f=figure('Name','Dryer_util','Units','inches','Position',[0 0 3.543 
3.543],'InvertHardcopy','off','Color',[1 1 1]); 
    left_color = [0 0 0]; 
    right_color = [0 0 0]; 
    set(f,'defaultAxesColorOrder',[left_color; right_color]); 
    hold on 
    stairs(simout.Dryer_util.Time/60, simout.Dryer_util.Data*100,'-
','LineWidth',1.2,'MarkerEdgeColor',left_color) 
    
scatter(dryer_use.Time/60,dryer_use.Data*100,'o','MarkerfaceColor',left
_color,'MarkerFaceAlpha',0.3) 
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    %plot(simout.driver_avail,'-d','MarkerEdgeColor',left_color) 
    ylim([0, 100]) 
    xlabel('Simulation Time (hours)'); ylabel('Utilization(%)'); 
    l=legend('Average', 
'Instant','Location','northoutside','Orientation','horizontal'); 
    l.FontSize=10;  l.Position=[0 0.8759 .98 0.19]; 
    legend('boxoff') 
    a=gca; 
    a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
    export_fig([figpath 'dryer_util_' num2str(day1)],'-png', '-r300','-
nocrop') 
    hold off 
    %} 
end 
res=table(average_WT_field,percent_delayed_field, 
average_WT_pit,percent_delayed_pit,... 
    average_flow_time, average_flow_time_eff,t_OT,t_end, 
truck_util_avg,... 
    
driver_util_avg,dryer_util_avg,T_combine,T_carts,T_drivers,T_dryer); 
  
end 
 
  



 

226 

 

Processes Simulation Data—Delays and Final Status  
 
function 
[bin_final,pit_final,total_delay]=Daily_sum(simout,field_buffer,runtime
,batch_size,figpath,day) 
%********************************************************************** 
% TITLE: process and clean simulation output data 
% AUTHOR: Aaron P. Turner 
% DATES: July 2018 
% DESCRIPTION: Function plots entities in process for daily simulation 
also 
% determines total delay in harvesting due to bottleneck and total 
entities 
% in process at end of simulation 
%*********************************************************************% 
  
  
%Find how long harvest is delayed 
%incremental times from when field buffer is full to when an entity 
departs 
%Counts total missed field work. IF delay lasts past runtime, delay is 
only 
%Counted to runtime 
%8/11/18************************************************************** 
if max(simout.Field_Q.Data)==field_buffer 
    idx=find(simout.Field_Q.Data==field_buffer);%Index when full 
    for j=1:length(idx) 
        %Only count points during harvest hours 
        if simout.Field_Q.Time(idx(j)+1)<runtime %idx(j)<runtime 
changed 7/26 
          
            delay(j)=simout.Field_Q.Time(idx(j)+1)-
simout.Field_Q.Time(idx(j)); 
        else 
       delay(j)=runtime-simout.Field_Q.Time(idx(j)); 
        end 
         
    end 
else 
    delay=0; 
end 
  
%Total of delays 
total_delay=sum(delay)/60;%In hours 
  
%Clean Matlab time variable to plot. 
%Error handling set to zero if  no harvest occurs 
if isempty(simout.wet_bin.Data) 
    wet_bin_Q=timeseries(0,0); 
else 
    [wet_bin_Q]=time_clean(simout.wet_bin,simout.Dryer_stat); 
end 
%on evaluate when harvesting occurs 
if runtime>0 
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    [pit_Q]=time_clean(simout.Pit_Q,simout.Pit_stat); 
    [field_Q]=time_clean2(simout.Field_Q); 
     
else 
    pit_Q=timeseries(0,0); 
    field_Q=timeseries(0,0); 
end 
  
%Entities in process at end of day 
bin_final=wet_bin_Q.Data(end); 
pit_final=pit_Q.Data(end); 
%%{ 
%Plot***************************************************************** 
  
figure('Name','day','Units','inches','Position',[0 0 5.5 
5],'InvertHardcopy','off','Color',[1 1 1]); 
subplot(2,1,1) 
plot(simout.Loads_in.Time/60,simout.Loads_in.Data/batch_size,'ko',simou
t.Loads_out.Time(1:batch_size:end)/60,simout.Loads_out.Data(1:batch_siz
e:end)/batch_size,'kx') 
l=legend('Loads in', 'Loads out', 
'location','Northoutside','Orientation','horizontal'); 
     l.FontSize=10;  
     legend('boxoff') 
xlabel('Simulation Time (hours)'); ylabel('Number of Loads'); 
xlim([0 24]); xticks([2:2:24]); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
subplot(2,1,2) 
hold all 
a=stairs(wet_bin_Q.Time/60,wet_bin_Q.Data,'r-'); 
a1=stairs(pit_Q.Time/60,pit_Q.Data,'g-'); 
a2=stairs(field_Q.Time/60,field_Q.Data,'b-'); 
  
xlim([0 24]); xticks([2:2:24]); 
l=legend('Bins & Dryer', 'Pit','Field 
Side','location','Northoutside','Orientation','horizontal'); 
 l.FontSize=10; 
 legend('boxoff') 
xlabel('Simulation Time (hours)'); ylabel('Entities In Process'); 
set([a a1 a2],'lineWidth',1); 
a=gca; 
a.Title=[]; a.FontWeight='bold'; a.FontSize=10; a.FontName='arial'; 
hold off 
  
%Uncomment to save figures to file 
%export_fig([figpath 'day'  num2str(day)],'-png', '-r300','-nocrop') 
%} 
end 
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Clean Simulink Utilization Output Data 
function [res]=time_clean(dataset,server) 
%********************************************************************** 
% TITLE: Clean simout data 
% AUTHOR: Aaron P. Turner 
% DATES: June 2018 
% DESCRIPTION: Function to get rid of extra points that occur 
% at same time step and combine entities at the server and queue. 
%**********************************************************************
***% 
  
%For the Queue 
time=unique(dataset.Time);%unique events 
  
%Pick the final value 
for i=1:length(time) 
    temp=dataset.Data(dataset.Time==time(i)); 
    data(i)=temp(end); 
end 
  
Queue=[time data']; 
clear time data 
%Add Server status 
time=unique(server.Time);%unique events 
  
%Pick the final value 
for i=1:length(time) 
    temp=server.Data(server.Time==time(i)); 
    data(i)=temp(end); 
end 
  
server=[time data']; 
  
%Create tables, join, then set missing values to previous values to 
match 
%up time syncing 
Queue=array2table(Queue,'VariableNames',{'Time','Queue'}); 
server=array2table(server,'VariableNames',{'Time','server'}); 
[joined,  ia, ib]=outerjoin(Queue,server); 
for j=1:height(joined) 
    if ia(j)==ib(j) 
        Time2(j) =joined.Time_Queue(j); 
        Qtotal(j)=joined.Queue(j)+joined.server(j); 
    else 
        Time2(j)=max(joined.Time_Queue(j),joined.Time_server(j)); 
        if ia(j)==0 
            joined.Queue(j)=joined.Queue(j-1); 
        end 
        if ib(j)==0 
            joined.server(j)=joined.server(j-1); 
        end 
        Qtotal(j)=joined.Queue(j)+joined.server(j); 
    end 
     



 

229 

 

end 
  
res=timeseries(Qtotal',Time2'); 
  
end 
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Main Function for Sensitivity Analysis 

 
%********************************************************************** 
% TITLE: Sensitivity Analysis 
% AUTHOR: Aaron P. Turner 
% DATES: Aug 2018 
% DESCRIPTION: Function to define the input equipment and conditions 
for 
%sensitivity analysis 
%**********************************************************************
***% 
%Changed line 12 22 28 52 and func call for func_sys_def 
tic 
clc; clear; close all 
  
load weather.mat% input weather data 
Scombine=[2.45,2.71,2.98,3.24,3.50,3.76,4.03,4.29,4.55];%standard +- 
30% 
%Scombine=3.5; 
dt_transport=[15:5:60]; 
Final=table(); 
for j=1:length(Scombine) 
    Scombine1=Scombine(j); 
for i=1:length(dt_transport) 
     
    summary=func_sys_def(Scombine1,dt_transport(i),weather); 
    days_complete= length(summary.runtime); 
    days_work=sum(summary.runtime>0); 
    HTL=sum(summary.HTL);%harvest time lost 
    Combine_hours=sum(summary.T_combine_tot);% combine machine hours 
    Cart_hours=sum(summary.T_carts_tot);%cart operator hours 
    Storage_hours=sum(summary.T_storage_tot);%Labor @ storage 
    Driver_hours=sum(summary.T_driver_tot);%Driver_hours 
    Truck_Transport_hours=dt_transport(i)/60*321*2;%Total transport 
Hours based on total loads hauled @ transport distance 
    Drying_cost=sum(summary.Fuel_cost+summary.Electric_cost);%total 
drying cost 
    time=dt_transport(i); Speed=Scombine1; 
   
temp=table(Speed,time,days_complete,days_work,HTL,Combine_hours,Cart_ho
urs,Storage_hours,Driver_hours,Truck_Transport_hours,Drying_cost); 
   Final=[Final; temp]; 
   disp(i) 
end 
disp(j) 
end 
toc 
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Define System for Sensitivity Analysis 
function[summary]=func_sys_def(Scombine,dt_transport,weather) 
%********************************************************************** 
% TITLE: Define system 
% AUTHOR: Aaron P. Turner 
% DATES: Aug 2018 
% DESCRIPTION: Function to define the input equipment and conditions 
for 
%sensitivity analysis 
%*********************************************************************% 
  
 
%**************************Inputs************************************** 
clear; clc; close all; 
figpath='XXX\'; 
%Field Conditions 
Hh=10;% Total time available for harvest hrs/day 
Ht=24;% Length of simulation 
Area=2000; % Area to harvest in acres 
%Area=1000; % Area to harvest in acres 
Yield_us=152;% Average yield bu/ac 
  
%Harvester 
Ncombine=1; %Number of Combines 
%Scombine=3.5;%Combine speed, mph 
Nrow=12;%Number of rows 
RowSpace=30;%Row Spacing, inches 
Vcombine=350;%Hopper capacity, bu 
Ef=0.7;%Field efficiency 
  
Scombine=4.366;%Combine speed, mph 
%Ef=0.8; 
%In-field transportation 
Ncart=1;%Number of carts 
Vcart=1000;%Volume capacity of carts, bu 
batch_size=1;%number of unloads placed on a truck 
  
%On-Road Transportation 
load_size=950;%Bu loaded on each grain cart 
dt_field_trans=6;% Time to load a truck 
Ntruck=3;%Number of trucks 
%Ntruck=2;%Number of trucks 
Ndriver=2;%Number of drivers 
%dt_transport=20; 
  
dt_transport=40; 
%Storage 
dt_inspect=4;% Weigh and inspect time 
dt_unload=15;%Unload time at receiving pit 
%Example GSI bin 21' dia 7 rings 
Vbins=9088;%bu capacity 
%Vbins=4500; 
Nstorage=1;%persons at storage facility 
dryer_cap=82;%wet holding on dryer 
MCi=28;% initial moisture content on Sept 1 
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load weather.mat%weather data 
Year=2016; 
%Year=2010; 
SDC=730; 
%SDC=730*2; 
T_rated=220;%Rated Dryer Capacity 
T_dry=220;%Actual drying temperature 
MCout=15;%Must be this 
  
weather=weather(year(weather.Date)==Year,:); 
  
%Conditions for WC 
%{ 
T_dry=140; 
Yield_us=Yield_us*0.87; 
%} 
%************** Calculations and Units******************************* 
  
%Field 
Area=Area/2.47; %ha 
Yield=Yield_us*56/2204*2.47*.85;%Convert to dry t/ha 
MT=Yield*Area;% total mass to harvest in dry t 
  
%Combine 
w=Nrow*RowSpace/12;%working width,ft 
Ca_us=Scombine*w*Ef/8.25; 
Cm_us=Ca_us*Yield_us; 
w=w/3.28;%in m 
Scombine=Scombine*1.61;%kph 
Ct=Scombine*w/10;%Area Capacity theoretical ha/h/combine 
Ca=Ct*Ef*Ncombine;%Area Capacity actual,ha/h 
  
Cm=Ca*Yield;%Material capacity, dry t/h 
  
%Truck and Field Side interactions 
Q_field_max=floor((Ncart*Vcart+Ncombine*Vcombine)/(load_size/batch_size
));% 
load_size=load_size*56/2204*.85;%dry t 
  
load_gen_rate=(load_size/Cm*60)/batch_size; 
  
%Wet holding 
  
Vbins=Vbins*1.245/35.3147;%bu^3 to m^3 
  
%Using density from standard and add Packfactor+ standard is @ 13%mc 
Bin_cap=Vbins*718/1000*1/(1-.05)*(1-.13);%dry t 
%} 
  
dryer_cap=dryer_cap*56/2204*.85;%Change bu to dry t 
  
WH_total=Bin_cap+dryer_cap; 
  
wet_cap=floor(WH_total/load_size);%Wet holding for the model 
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%Combine inputs into a table 
input=table(Hh, Ht, MT,load_gen_rate,batch_size, Q_field_max,load_size, 
... 
    dt_field_trans, Ncombine,Ncart,Ntruck, Ndriver,Nstorage, 
dt_transport, ... 
    dt_inspect, dt_unload, Nstorage, wet_cap, 
MCi,SDC,T_dry,T_rated,MCout); 
  
%Run the whole season simulation  
[summary]=fun_whole_season_sim(input,weather, figpath); 
  
  
end 
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 Yield Loss Measurement 

 

 

Field Datasheet  
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 Supplemental Information for DES Transportation Model 

Operating Characteristics  

Duration of field work, number of trucks and one way distance for all days 

Field Time, Trucks, and Distance 

 

Crop 
Fieldwork 
(minutes) 

Number 
Trucks 

One-Way 
Distance (miles) 

Corn 421 5 2.1 
Corn 566 11 2.2 
Corn 427 10 2.5 
Corn 590 6 3.2 
Corn 363 7 2.7 
Corn 440 10 3.4 
Corn 531 9 2.7 
Corn 470 9 2.6 
Corn 93 3 11.8 
Corn 464 8 15.8 
Corn 520 10 14.5 
Corn 570 11 11.3 
Corn 101 1 11.2 
Corn 268 7 11.2 

Wheat 348 2 2.2 
Wheat 149 3 2.2 
Wheat 521 3 3.0 
Wheat 480 4 2.6 
Wheat 379 4 3.4 
Wheat 558 6 2.6 
Wheat 706 7 3.7 
Wheat 619 6 7.1 
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Pit Wait Times 

Example Pit Wait Time for Corn 
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Example Pit Wait Time for Wheat 
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Flow Time Efficiency 

Example Flow Time Efficiency-Corn  
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Example Flow Time Efficiency-Wheat 
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Loads Delivered 

Inconsistencies indicate trucks were unloaded out of order they left the field  

Corn- 
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Wheat-  
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 Supplemental Information for Whole Season Application 

Daily Simulation Overview 

Early Season Example 
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Mid-Season Example 

 
Late Season Example 
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Driver Utilization 

Driver resource utilization for all days. Season progresses from left to right, top to bottom 
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Truck Utilization 

Truck resource utilization for all days. Season progresses from left to right, top to bottom 
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Dryer Utilization 

Dryer resource utilization for all days. Season progresses from left to right, top to bottom 
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Flow Time 

Entity flow time for all days. Season progresses from left to right, top to bottom 
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Wait Time 

Field and pit wait times for all days. Season progresses from left to right, top to bottom 
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 Supplemental Information from Sensitivity Analysis 

Daily Simulation Overview 

Baseline Configuration Example- Early Season 
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Baseline Configuration Example- No Fieldwork Drying only 

 
Baseline Configuration Example- Mid-Season 
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Baseline Configuration Example- Late Season 

 
Baseline Configuration with Doubled Dryer Size Example- Early Season 

 



 

264 

 

Minimally Equipped Configuration Example- Early Season 

 
Minimally Equipped Configuration Example- Mid-Season 
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Minimally Equipped Configuration Example- Late Season 
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Example Harvest Length from Sensitivity Analysis  

Baseline (left) Double Drying Capacity (right) 

 
Double Drying Capacity and an Additional Driver (left) Minimally Equipped 

Configuration (right) 
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Example Labor Requirements from Sensitivity Analysis 

 

 

Labor requirement for baseline operation (left) and minimally equipped (right) 
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 Trends in Weather and Yield 

Kentucky Yield Trends 2008-2017 

 
 

Estimated Corn Field Drying for Bowling Green, KY  

 

Assumed MC=28% on Sept 1 
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Weather Data for Bowling Green, Ky 

 

Average weather data for Bowling Green, Ky (2008-2017) 

Date 
Mean 

Temperature 
(°C) 

Mean 
RH 
(%) 

Mean 
EMC 

(%w.b.) 

P 
Z<0.25in 

     
1-Sep 24.5 72.9 15.1 0.70 
2-Sep 24.5 71.0 14.5 0.80 
3-Sep 24.3 71.1 14.6 0.80 
4-Sep 24.2 70.0 14.3 0.70 
5-Sep 22.7 74.7 15.5 0.70 
6-Sep 22.2 73.3 15.2 0.80 
7-Sep 22.9 70.8 14.6 0.60 
8-Sep 22.7 69.6 14.4 0.90 
9-Sep 22.5 71.4 14.7 0.90 
10-Sep 22.4 73.6 15.2 0.90 
11-Sep 21.8 77.0 15.9 0.80 
12-Sep 21.3 72.7 15.2 0.80 
13-Sep 20.7 69.9 14.9 1.00 
14-Sep 20.9 71.4 15.0 1.00 
15-Sep 20.7 70.6 14.8 1.00 
16-Sep 21.2 71.6 14.9 1.00 
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17-Sep 20.7 74.5 15.6 0.80 
18-Sep 21.8 71.5 14.8 0.90 
19-Sep 21.6 72.2 15.1 0.70 
20-Sep 22.4 72.3 15.0 0.80 
21-Sep 22.3 69.3 14.4 0.80 
22-Sep 21.3 66.9 14.1 0.90 
23-Sep 20.7 66.9 14.1 0.90 
24-Sep 21.1 68.9 14.4 0.90 
25-Sep 21.7 68.7 14.4 1.00 
26-Sep 20.3 70.9 14.9 0.70 
27-Sep 20.2 68.9 14.4 1.00 
28-Sep 19.9 66.8 14.2 0.90 
29-Sep 18.6 69.9 15.0 0.90 
30-Sep 17.8 69.0 15.0 0.90 
1-Oct 17.2 68.0 14.7 0.80 
2-Oct 16.9 71.0 15.4 0.60 
3-Oct 16.4 69.7 15.1 0.80 
4-Oct 16.7 68.8 14.8 1.00 
5-Oct 18.6 67.1 14.3 1.00 
6-Oct 18.2 68.7 14.7 0.60 
7-Oct 18.0 68.4 14.6 0.90 
8-Oct 17.5 69.8 15.3 0.80 
9-Oct 17.5 73.5 15.8 0.70 
10-Oct 17.3 72.7 15.7 0.70 
11-Oct 16.2 72.5 15.8 1.00 
12-Oct 17.8 73.3 15.7 0.90 
13-Oct 18.2 76.5 16.2 0.80 
14-Oct 17.4 71.3 15.4 0.80 
15-Oct 16.7 68.4 15.0 0.80 
16-Oct 15.0 68.6 15.3 0.90 
17-Oct 14.9 62.5 13.9 0.90 
18-Oct 13.8 62.0 13.9 0.90 
19-Oct 12.5 66.7 15.0 1.00 
20-Oct 13.1 66.9 14.9 0.90 
21-Oct 13.6 63.4 14.2 1.00 
22-Oct 13.9 62.8 14.0 1.00 
23-Oct 14.5 65.1 14.4 0.80 
24-Oct 14.2 67.1 14.9 0.80 
25-Oct 13.2 67.7 15.0 0.80 
26-Oct 14.2 67.5 15.0 0.70 
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27-Oct 13.4 73.0 16.4 0.60 
28-Oct 11.6 70.6 16.0 0.60 
29-Oct 10.6 65.8 15.0 1.00 
30-Oct 12.5 61.9 14.0 0.90 
31-Oct 11.6 63.4 14.4 0.60 
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