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ABSTRACT OF THESIS 

DEVELOPMENT OF REGIONAL CURVES AND HYDRAULIC GEOMETRY 

CURVES FOR THE EASTERN KENTUCKY COALFIELDS 

Regional curves and hydraulic geometry curves relate bankfull channel dimensions to 

drainage area and bankfull discharge, respectively. These curves are used in the natural 

channel design process to help identify bankfull and to estimate bankfull dimensions of the 

design channel. Nineteen streams were surveyed to determine their bankfull parameters 

(cross-sectional area, width, mean depth, discharge, slope, and Manning’s n), along with 27 

streams previously surveyed in other studies. The data were used to create regional and 

hydraulic geometry curves for three hydrologic landscape regions (HLR 9, HLR 11, and 

HLR 16, individually) in the Eastern Kentucky Coalfields (EKC) as well as the combined 

region (all HLRs). Results indicated that separating the EKC into HLR improved the R2 of 

the regional curves. Statistical differences were noted between HLRs with regards to regional 

curves further suggesting subdivision is beneficial. For hydraulic geometry curves, lack of 

discharge data limited interpretations and hence recommendations on the need to further 

subdivide the EKC into HLRs. Results for both regional curve and hydraulic geometry curve 

analyses suggest that datasets from the EKC may be supplemented using data from other 

physiographic regions in the U.S. as long as the data are obtained from the same HLR. 

Keywords: stream restoration, geomorphology, natural channel design, hydrologic landscape 
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CHAPTER 1: INTRODUCTION 

1.1 INTRODUCTION 

The United States has over 3.5 million miles (5.6 million kilometers) of streams and 

rivers (USEPA, 2013) which provide numerous benefits such as habitat for aquatic species, 

drinking water, recreational opportunities, and hydroelectricity. According to the USEPA’s 

National Rivers and Stream Assessment (NRSA), 46% of assessed streams are in poor 

biological condition (USEPA, 2010). When assessing streams for their ability to support 

aquatic life such as benthic macroinvertebrates, the USEPA uses an index (Rapid 

Bioassessment Protocol or RBP) that allows the user to quickly evaluate the habitat, water 

quality, and biologic condition of wadeable streams in relation to reference (i.e. preferred or 

ideal) conditions. Benthic macroinvertebrates are organisms typically 0.4-1.2 inches (1-3 cm) 

in length that live at the bottom of streams. These organisms are often useful indicators of 

the health of a stream because of their sensitivity (or lack thereof) to changes in water quality 

and physical conditions (e.g. EPT taxa require high levels of dissolved oxygen and low levels 

of embeddedness) meaning the biologic health of a stream is inferable from the presence 

and/or absence of certain species. Not all streams that are geomorphically unstable are in 

poor biological condition, and vice versa, not all geomorphically stable streams support 

vibrant biologic communities; however, a strong link exists between a stream’s physical 

stability and its biological condition. Fischenich (2006) found that by addressing a stream’s 

hydrologic, hydraulic, and geomorphic processes, a stream is capable of sustaining more 

diverse biological communities, varied habitats, and improved water and soil quality.  

Throughout the U.S., efforts are underway to restore streams to stable and 

biologically healthy conditions. Restoration is defined as the “re-establishment of structure 
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and function of ecosystems” to pre-disturbance conditions as closely as possible while also 

taking into consideration anticipated future watershed conditions (NRC, 1992). The process 

of stream restoration involves redesigning the physical aspects of a stream (e.g. its 

dimension, pattern and profile) in an effort to restore dynamic equilibrium with the intent 

that restoration of chemical and biological conditions will soon follow (Lakly and McArthur, 

2000). Streams are dynamic systems that fluctuate in response to watershed inputs such as 

water and sediment. Lane (1955) showed the connection between these stream variables:  

   ∙  50 ∝    ∙   (eqn. 1.1) 

The variable Qs refers to the sediment discharge, D50 refers to the sediment particle size, Qw 

refers to the stream flow, and S refers to the slope. If one variable in Equation 1.1 increases 

or decreases the other variables on the opposite side of the equation will also decrease or 

increase to remain in equilibrium (Figure 1.1). For example, an increase in runoff (e.g. Qw) 

due to urbanization will produce erosive conditions while an increase in sediment load (Qs) 

due to land disturbance activities (e.g. road construction, mining) will result in aggradation.  

Between 1990 and 2003, Bernhardt (2005) noted an exponential growth trend as over 37,000 

stream restoration projects were undertaken in the U.S alone. With the federal requirement 

for compensatory mitigation (i.e. no net loss of streams or wetlands due to physical impacts 

for a project), the field of stream restoration will continue to grow (Cunninghman, 2003). 

Austin (2007) estimated that over $3 billion is spent annually on wetland and stream 

restoration projects to meet compensatory mitigation requirements. In addition to 

compensatory mitigation driven projects, a number of other projects are funded through 

grants, private and non-profit groups (USEPA, 1995). 
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Figure 1.1: Lane (1955) demonstrated that a change in discharge, sediment load, median 

particle size, and/or slope will lead to stream instability (e.g. degradation or aggradation). 

Source: Lane (1955). With permission from ASCE.
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Historically, engineers focused on straightening and widening streams in an effort to 

quickly transport water (e.g. alleviate flooding). Increased velocities and shear stresses 

associated with such efforts resulted in stream degradation whereby channels down cut and 

widened (Simon, 1994). To counteract streambank erosion, engineers hardened the banks 

with riprap and concrete. Increased focus on the other functions of streams besides just 

water transport such as habitat provision has called into question how we as a society should 

manage our waterways. Rosgen (1994; 1996) brought such concepts mainstream with his 

work on natural channel design (NCD) whereby designers work with the natural tendencies 

of streams to create stable and functional systems instead of against them as is the case with 

channelization and hardening. One of the first steps in the NCD process is correctly 

identifying bankfull elevation (Hey, 2006). Bankfull is defined as the point or elevation in a 

stream that divides instream and floodplain processes (e.g. the stream channel stops and the 

floodplain begins) (USEPA, 2012). Because one can identify bankfull in the field using 

physical indicators, it is a surrogate for channel forming discharge which is a theoretical 

discharge that if indefinitely maintained would produce the same channel geometry as the 

natural long-term hydrograph (Copeland et al., 2000). Bankfull flows typically occur once 

every 1-2 years (Brockman et al., 2012; Harman et al., 2012).  

In degraded streams, which are the target of restoration efforts, identification of 

bankfull elevation is often difficult because of scarce or even non-existent bankfull 

indicators. Dunne and Leopold (1978) noted several bankfull identifiers one could use 

including: 

1. Topographic breaks from vertical bank to flat floodplain (e.g. flat depositional areas 

immediately adjacent to the channel) 
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2. Topographic break from steep slope to gentle slope 

3. Changes in vegetation types (e.g. bare soil to grass, moss to grass, grass to sage, grass 

to trees, no trees to trees) 

4. Textural change of depositional sediment  

5. Elevation below which no fine debris occurs 

6. Textural change of matrix material between cobble and rocks 

While vegetation is a good bankfull indicator in the western part of the U.S., in eastern U.S. 

vegetation can grow below bankfull elevation and therefore should not be used as an 

indicator of bankfull.  

As the NCD process is dependent on the correct identification of bankfull elevation, 

an incorrect identification of bankfull elevation will lead to incorrect channel dimensions, 

patterns and profiles which will in turn affect the dynamic equilibrium of the design channel. 

One way to minimize errors in identifying bankfull elevation in degraded streams is through 

the use of regional curves. Regional curves relate the bankfull parameters (width, mean 

depth, and cross-sectional area) to drainage area. These curves help designers identify 

bankfull elevation in the field when bankfull indicators are absent or infrequent (Castro and 

Jackson, 2001; Metcalf et al., 2009; Brockman et al., 2012). Such curves are also used in 

stream assessment and design (Hey, 2006; USDA-NRCS, 2007). In addition to regional 

curve, designers can employ hydraulic geometry curves, which are similar to regional curves 

in that they relate bankfull parameters (cross-sectional area, width, and mean depth) to 

bankfull discharge instead of drainage area. Because long-term hydrologic data are required, 

development of hydraulic geometry curves is less frequent as many sites are ungaged. As the 

name implies, regional curves are developed for streams within the same physiographic 
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region (e.g. similar topography, geology, and climate). To develop a regional curve, one must 

assess (e.g. survey and compute bankfull dimensions) several stable (e.g. geomorphic 

reference) streams within the same physiographic region; these streams must encompass a 

wide range of drainage areas. Preference is given to U.S. Geological Survey (USGS) gaged 

sites due to their longer term discharge records. 

Even though the field of stream restoration has and is expected to continue growing, 

publically available regional curves are often lacking in many regions of the U.S. This lack of 

regional curves increases one’s chances of incorrectly identifying bankfull elevation. 

Furthermore, the high levels of anthropogenic impacts to some physiographic regions makes 

identification of reference streams, from which to develop regional curves, challenging. For 

example, interest has increased for developing regional curves for the Eastern Kentucky 

Coalfields (EKC) where past and current mining activities (e.g. data needs of U.S. Army 

Corps of Engineers, U.S. Environmental Protection Agency, Kentucky Division of Water) 

and the expansion of the Mountain Parkway (e.g. data needs of Kentucky Transportation 

Cabinet) has impacted the area’s streams and rivers. The EKC are part of the larger 

Cumberland Plateau region that extends from Pennsylvania down to Alabama. The region 

contains Kentucky’s highest peak, Black Mountain, which is located in Harlan County; the 

peak reaches 4,145 feet (KGS, 2012). The eastern EKC covers 37 Kentucky counties and 

over 11,650 square miles. The shale and sandstone in the region dates back to the 

Pennsylvania Era around 300 million years (Vesley et al., 2008).  

Brockman et al. (2012) created regional curves and hydraulic geometry curves for the 

Inner and Outer Bluegrass regions of Kentucky. While these regions are adjacent to the 

EKC, they encompass a different geology and topography. Previous work by Vesley (2008) 
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created regional curves (cross-sectional area, width, depth, and discharge) for the rural EKC 

physiographic region. Parola (2005) work also created regional curves for the EKC. These 

studies focused on streams located in the physiographic region of the EKC; however, the 

EKC is subdivided into many hydraulic landscape regions (HLR). While physiographic 

regions are defined by lands with similar geography, topography, and climate, HLRs are 

more homogenous units based on water movement as dictated by climate (atmospheric 

water), landform (surface water) and geology (groundwater) (Winter, 2001). Using HLRs 

instead of solely physiographic regions may result in improved regional curves (e.g. higher 

R2). By using HLR as a basis for identifying appropriate reference streams, stream restoration 

designers could increase their ability to identify reference streams by examining 

geographically distant areas, ones which may have experienced lesser levels of anthropogenic 

disturbances. 

1.2 OBJECTIVES 

The goal of the thesis was to develop tools to aid in the stream restoration design process 

for projects located in eastern Kentucky. The objectives are:  

 Determine bankfull recurrence intervals and develop regional and hydraulic 

geometry curves for the Eastern Kentucky Coalfields (EKC) 

 Develop and compare regional and hydraulic geometry curves for HLRs 9, 11, and 

16 in the EKC  

 Compare these curves to theoretical values and results from other such curves 

developed in the U.S.  
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1.3 ORGANIZATION OF THESIS 

Chapter One of contains the introduction and outlines the objectives of the research. 

Chapter Two contains a literature review of topics including stream geomorphology, regional 

curves, hydraulic geometry curves, and hydrologic landscape regions. Chapter Three contains 

all the methods used to conduct the research. Chapter Four presents and discusses the 

results. Chapter Five discusses the conclusions of the research, and Chapter 6 presents ideas 

for future work. Appendix A contains the cross section data for all streams surveyed in this 

study, and Appendix B contains all the bed material data for each stream surveyed in this 

study.   
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CHAPTER 2: LITERATURE REVIEW 

2.1 HEADWATER STREAMS  

Stream morphology is influenced by a number of factors such as topography, 

geology, land use, and climate (Leopold and Maddock, 1953; Winter, 2001; Wolock et al., 

2004). Other factors such as the type and amount of riparian or streamside vegetation also 

influence stream morphology (Rosgen, 2001; Hession et al., 2003; Cianfrani et al., 2006). 

Natural resource extraction/consumption and population growth (e.g. urbanization) 

negatively impact streams by altering topography, increasing discharge volumes and peaks, 

and reducing water and habitat quality (Schueler, 1995; Gomi et al., 2002; Villarini et al., 

2009; USEPA, 2011). In the EKC, industrialization is limited (Roenker, 2001; Lowrey, 2014) 

but current and past mining and logging activities along with the expansion of the Mountain 

Parkway and other such roadways have impacted the region’s streams and rivers. Surface 

coal mining, for which the EKC is known, negatively impacts the health of streams through 

physical alterations (e.g. stream burial such as with valley fills) as well as water quality 

impairments (Garcia-Criado et al. 1999, Kennedy et al, 2003, Freund and Petty, 2007, Pond 

et al., 2008).  

Anthropogenic activities in the EKC are particularly impacting to headwater streams, 

which are often classified as having a Strahler stream order of 3 or less (Vannote et al., 1980; 

Villines et al., 2015). The USEPA (2011) estimates that between 1992 and 2002, over 1,200 

miles of headwater streams were lost due to mining activities in the Appalachian Coalfields 

of KY, TN, WV and VA. The miles of lost stream are significantly higher when considering 

the impacts of transportation activities. For instance, in Kentucky, the Kentucky 

Transportation Cabinet is the largest payee into the Fee In Lieu Of stream mitigation 
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program (KDFWR, 2010). While headwater streams are small in size, they are quite 

numerous. Lowe and Likens (2005) estimated that headwater streams account for over 70% 

of the stream length in the U.S., a value that may be higher in the EKC due to the “mature” 

classification of the area (Davis, 1899; Shreve, 1969). While these small streams are often 

overlooked or underestimated in databases such as the National Hydrography Dataset 

(NHD) (Hansen, 2001; Childers et al., 2006; Fritz et al., 2013; Villines et al., 2015), their 

physical and biological connection to downstream waterbodies is significant (Alexander et 

al., 2007).  

Several studies found that the majority of streams impacted by anthropogenic 

activities, such as mining, are intermittent or ephemeral; however, these stream types are 

impacted much less often than higher order ones (Shreve, 1969; Villines, 2013; Palmer and 

Hondula, 2014; Blackburn-Lynch 2015). How to restore headwater streams in the EKC 

affected by anthropogenic activities is an ongoing question. One option is to use natural 

channel design (NCD) techniques. 

2.2 NATURAL CHANNEL DESIGN (NCD) 

  Natural channel design is the most widely used method of restoring streams in the 

U.S. (Doll et al., 2004). The NCD process seeks to create self-sustaining streams, ones that 

support diverse and large biologic communities (Doll et al., 2004); working with nature 

instead of against. In the past, engineers focused on widening and straightening channels to 

alleviate flooding and used riprap or concrete to stabilize eroding banks. David Rosgen’s 

approach to NCD focuses on using geomorphic principles to changing the dimension, 

pattern, and profile of the stream (Rosgen, 1994; Rosgen, 1996; Hey, 2006). This NCD 

methodology is used by many federal, state, and local agencies such as the U.S. Army Corps 
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of Engineers, U.S. Department of Agriculture Natural Resources Conservation Service, U.S. 

Environmental Protection Agency, and Kentucky Division of Water (Lave, 2009). The NCD 

process incorporates a fluvial geomorphological approach to stream restoration that was not 

used in past stream engineering designs (Hey, 2006). This methodology consists of eight 

main phases (NRCS, 2007; Doll et al., 2004), which are summarized below.  

1. Develop clear goals and objectives (e.g. improve streambank stability, improve water 

quality, reduce flooding, and improve habitat) 

2. Identify one or more reference reaches to aid in the determination of stable 

geomorphic and hydrologic conditions. Ideally, the reference reach will be located in 

the immediate vicinity of the stream of interest, is physically stable, and has good 

habitat. During this phase, a morphological characterization of the reference reach 

and the impaired stream should be conducted. Note if there are any active USGS 

gages in the watershed.  

3. Conduct an analysis of the impacted stream’s watershed. Knowing the cause of 

instability can help in the process of restoring the stream. Use Google Earth or 

similar platforms to identify land use changes influencing stream stability. 

4. Determine whether or not passive (e.g. can the stream recover or its own if the 

stressor(s) is (are) removed) or active restoration methods are required. 

5. Develop design alternatives and conduct hydraulic and sediment transport analyses 

on each alternative; choose an optimal design. 

6. Design instream structures, riparian vegetation, erosion control, and other such 

stabilization and habitat enhancement measures. 

7. Implement the optimal design developed in Steps 5 and 6. 
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8.  Monitor the implemented design to determine its effectiveness in meeting the 

project goals and objectives.  

Correctly identifying bankfull stage is one of the most important steps in the NCD 

methodology (Hey, 2006; Harman, 2011), a task that is made all the more challenging 

because many impacted streams, those which are the targets of restoration efforts, often 

have few if any bankfull indicators (Doll et al. 2004); thus, determining bankfull stage on 

such streams if often a difficult task. Misidentification of bankfull can result in incorrect 

channel dimensions, pattern and profile which will in turn affect the dynamic equilibrium of 

the design channel. One way to minimize errors in identifying bankfull elevation in degraded 

streams is through the use of regional curves. These curves help designers identify bankfull 

elevation in the field when bankfull indicators are absent or infrequent (Castro and Jackson, 

2001; Metcalf et al., 2009; Brockman et al., 2012). Regional curves as well as hydraulic 

geometry curves are also useful design tools. As NCD is an iterative process, these curves 

assist designers in identifying an appropriate starting points for their designs. 

2.3 REGIONAL CURVES 

Leopold and Maddock (1953) demonstrated the strong relationship between 

drainage area and channel geomorphology. Regional curves relate drainage area to the 

bankfull parameters discharge (Qbkf), cross-sectional area (Abkf), width (wbkf), and mean depth 

(dbkf) as seen in equations 2.1-2.4. 

Qbkf = aDAb (eqn. 2.1) 

Abkf = cDAd (eqn. 2.2) 



13 

 

wbkf = gDAh (eqn. 2.3) 

dbkf = jDAk (eqn. 2.4) 

The variable DA is the drainage area; a, c, g and j are the coefficients (intercepts); and b, d, h 

and k are the exponents (slopes). Regional curves are powerful tools, because once 

developed, knowledge of drainage area is all that is needed to estimate bankfull parameters. 

Programs such as ArcGIS and the USGS’s StreamStats allow users to delineate drainage 

areas for any stream of interest. Regional curves tend to display strongest fits (R2) for Qbkf 

and Abkf followed by wbkf and then dbkf. 

Regional curves have been developed for numerous regions throughout the U.S. 

(Blackburn-Lynch, 2015) including the Appalachian Plateaus physiographic region, which is 

the focus of this study, McCandless (2003), Miller and Davis (2003), Messinger (2009), 

Westergard et al. (2004). The Appalachian Plateaus physiographic region is vast, stretching 

from Alabama to New York. In addition to Alabama and New York, the Appalachian 

Plateaus physiographic region also encompasses parts of Georgia, Kentucky, Maryland, 

Ohio, Pennsylvania, Tennessee, Virginia and West Virginia. The Appalachian region is 

characterized as having high plateaus and deep highly sloped valleys that tend to follow a 

branched dendritic pattern (Schmidt, 1993). 

Prior research by Johnson and Fecko (2008) indicates that regional curves, at least 

for wbkf, from different physiographic regions largely with in the Appalachian are largely 

similar. The authors examined curves within the Appalachian Plateaus, Appalachian Valley 

and Ridge, and New England physiographic provinces and found that one regional curve 

could describe wbkf for the entire region (i.e. no statistical difference between almost all 
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examined curves). As Qbkf, Abkf and dbkf were not examined in this study, the same conclusion 

may not hold true.  

Table 2.1 contains regional curves developed in the Appalachian Plateau 

physiographic region. Typical values for b, d, f and h are 0.8-0.9, 0.7-0.8, 0.4-0.5, and 0.3-0.4, 

respectively (Dunne and Leopold, 1978; Brockman, 2010). The regional curves developed by 

Babbit (2005) are notably different from the others included in Table 2.1 and may be related 

to the geology, topography or climate of the area the author studied (southwestern 

Appalachians in Tennessee). Such differences bring to question whether or not regional 

curves should be based on hydrologic landscape regions (HLRs) (Wolock et al., 2004), which 

may produce significant differences in regional curves, rather than just physiographic 

province. 
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Table 2.1: Regional curves created across the Appalachian Plateaus physiographic region.  

Study  Location Qbkf
1 Abkf

1 wbkf
1 dbkf

1  

  a b R2 C d  R2 e f  R2 g h  R2 

Vesley et al. (2008) KY 32.7 0.85 0.92 9.5 0.82 0.96 10.9 0.45 0.93 0.88 0.36 0.88 

Parola et al. (2005) KY 60.3 0.61 0.96 19.1 0.57 0.97 20.1 0.3 0.93 0.95 0.28 0.8 

Babbit (2005) TN 150.1 0.75 0.99 32.5 0.70 1.00 18.5 0.44 0.97 1.76 0.26 0.97 

Westergard et al. (2004) NY 45.3 0.86 0.96 10.8 0.82 0.98 13.5 0.45 0.92 0.80 0.37 0.91 

McCandless (2003) MD 34.0 0.94 0.99 10.3 0.75  13.9 0.44  0.95 0.31  

Chaplin (2005) PA/MD 43.2 0.87 0.92 12.0 0.80 0.92 14.7 0.45 0.81 0.88 0.33 0.72 

Messinger (2009) WV 59.8 0.85 0.96 20.5 0.71 0.98 21.0 0.37 0.95 1.07 0.31 0.88 

1 Qbkf = bankfull dischare (units of ft2s-1) 
Abkf = bankfull area (units of ft2) 
wbkf = bankfull width (units of ft) 
dbkf = bankfull depth (units of ft) 
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2.4 HYDRAULIC GEOMETRY CURVES 

Hydraulic geometry curves are similar to regional curves except the independent 

variable is Qbkf instead of drainage area (Leopold and Maddock, 1953) as denoted in 

equations 2.5-2.7. 

wbkf = aQbkf
b (eqn. 2.5) 

dbkf = cQbkf
f (eqn. 2.6) 

vbkf = kQbkf
m (eqn. 2.7) 

 

The variable vbkf represents bankfull velocity; the coefficients or intercepts are a, c and k; and 

the exponents or slopes are b, f and m. The product of the coefficients (a x c x k) equals one, 

and the sum of the exponents (b + f + m) equals one per the continuity equation (Q=w x d 

x v) (Leopold et al., 1964). Typical values for b, f and m are 0.53, 0.37 and 0.10, respectively 

(Langbein, 1947; Leopold et al., 1964). 

Since bankfull is identifiable using field indicators, Qbkf serves a surrogate for the 

channel forming discharge which is a theoretical discharge that if indefinitely maintained 

would produce the same channel geometry as the natural long-term hydrograph (Copeland 

et al., 2000). Because Qbkf is required to develop hydraulic geometry curves, and determining 

Qbkf requires at least 10 years of annual peak flow data, these curves are less frequently 

developed (USGS, 1982). Although the USGS maintains 9,930 active stream gages across the 

U.S., many of these gages are located on larger streams and rivers (USGS, 2014) whereas 

stream restoration projects often occur on smaller streams (Bernhardt et al., 2005). 
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Identifying active USGS gages on within a relevant range (e.g. drainage areas less than 250 

mi2) is challenging.  

2.5 HYDROLOGIC LANDSCAPE REGIONS (HLR)  

 Hydrologic landscape regions (HLR) are areas separated by similar hydrologic 

characteristics: land-surface form, geology and climate (Wolock et al., 2004). As defined by 

Winter (2001), a HLR is described by (1) its land surface form of an upland adjacent to a 

lowland separated by an intervening steeper slope, (2) its geologic framework, and (3) its 

climatic setting. Wolock et al. (2004) used geographic information system (GIS) tools with 

principle components and cluster analyses to separate the U.S. into distinct HLRs based on 

the afore mentioned hydrologic characteristics. The authors examined 43,931 small 

(approximately 200 km2) watersheds which they grouped into 20 HLRs. HLRs with closer 

numbers are more similar (e.g. HLR 1 is similar to HLR 2 but dissimilar to HLR 20). When 

creating individual HLRs, the characteristics for land-surface form included relief, total 

percentage of flat land (<1% slope), percentage flat land in upland area, percentage flat land 

in lowland areas. The geologic characteristics for each HLR were soil permeability and 

bedrock permeability. Characteristics for climate included mean annual precipitation minus 

the mean monthly evapotranspiration. Figure 2.1 shows all of the characteristics that go into 

play for HLRs.  

 Wolock et al. (2004) found that the HLRs tended to explain a greater percentage of the 

variation in land-surface form, geology and climate amongst watershed than ecoregions (the 

U.S. has nine distinct major ecoregions): 73-83% vs. 33-79%, respectively. Faustini et al. 

(2009) developed hydraulic geometry curves based on HLRs and found that using HLRs as a 

grouping mechanism rather than ecoregion “significantly improved equation fit and 
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predictive value.” Blackburn-Lynch (2015) created U.S. wide regional curves for each HLR 

using data from 2,228 sites. Blackburn-Lynch (2015) found that in many cases the regional 

curves for individual HLRs created a better fit (e.g. higher    value) than previously 

developed regional curves based on physiographic regions. Of the curves created for Abkf, 

75% showed a good fit (e.g.   ≥0.6); for wbkf 65% showed a good fit. Developing regional 

and hydraulic geometry curves based on HLR and not just physiographic region could result 

in better fits and could support the use of data from stream sites at locations spatially distant 

to a project site but within the same HLRs. 

 

 

 

Figure 2.1. Wolock et al. (2004) graphic showing all the hydrologic characteristics that went 

into the separation of HLRs 
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CHAPTER 3: METHODS AND MATERIALS 

3.1 STUDY AREA 

The study area is located in the EKC physiographic region which encompasses the 

entire eastern portion of Kentucky (includes 37 counties and over 11,650 square miles) 

(Figure 3.1). The counties within the EKC are: Bell, Boyd, Breathitt, Carter, Clay, Clinton, 

Elliot, Estill, Floyd, Greenup, Harlan, Jackson, Johnson, Knott, Knox, Lawrence, Lee, 

Leslie, Letcher, Lewis, Madison, Magoffin, Martin, McCreary, Menifee, Montgomery, 

Morgan, Owsley, Perry, Pike, Powell, Pulaski, Rockcastle, Rowan, Wayne, Whitley, and 

Wolfe. The EKC contain more than 80 named coal beds such as the Elkhorn, Hazard, Fire 

Clay, Path Fork and Pond Creek; coal mining and natural gas extraction are common 

(Hower et al. 1994). The shale and sandstone in the region date back to the Pennsylvania Era 

around 300 million years ago ( KGS, 2012). The EKC region is characterized by mixed 

mesophytic forests and supports highly diverse ecosystems (Moore and Wondzell, 2005). 

The terrain is mountainous with elevations ranging from 500 to over 4,000 ft. The highest 

peak in the EKC, Black Mountain, is at an elevation of 4,145 ft (KGS, 2012). Agricultural 

production (non-silviculture) consists predominately of cattle production and is limited with 

respect to crops with U.S. Department of Agriculture (USDA) county estimates for 

Kentucky’s Eastern/Mountain Region highest for tobacco, hay and pasture (USDA-NASS, 

2016). Because of the remoteness of the EKC (no Interstates, rugged terrain), levels of 

industrialization are low (Roenker, 2001; Lowrey, 2014). The EKC experiences a temperate-

humid-continental climate with mild springs and falls. The average annual rainfall is around 

47 inches with a high and low temperatures for the summer months ranging between 30 and 
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Figure 3.1: The Eastern Kentucky Coalfield (EKC) region encompasses 37 counties within Kentucky.
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18°C, respectively; for the winter months, temperatures range between 6°C for a high and -

5°C for a low (USDC, 2002). 

The EKC contains five HLRs though only three were examined in this study: HLRs 

9, 11 and 16 (Figure 3.2). The HLRs 4 and 6 were too small in size. HLR 9 is characterized 

as having “humid plateaus with impermeable soils and permeable bedrock” (Wolock et al., 

2004); it is predominately located in the western portion of the EKC. HLR 9 has overland 

flow and deep ground water as well as moderate regions of karst landscape. About 10% of 

the EKC is classified as HLR 9. HLR 11 is characterized as having “humid plateaus with 

impermeable soils and bedrock” (Wolock et al., 2004). Covering 40% of the EKC, HLR 11 

is similar to 9 except the bedrock of HLR 11 is impermeable while it is permeable with HLR 

9. Overland flow is predominating in HLR 11. As seen in Figure 3.2, HLR 11 is located 

primarily in between HLRs 9 and 16. HLR 16 is defined as “humid mountains with 

permeable soils and impermeable bedrock” (Wolock et al., 2004). The terrain of HLR 16 is 

steeper than that of HLRs 9 and 11; like HLR 11, the bedrock is impermeable but unlike 

either HLR 9 or 11, the soils are deemed permeable though shallow. Because of the 

permeable soils, HLR 16 has shallow groundwater flow. HLR 16 covers the biggest portion 

of EKC at 47%.  

3.2 SITE SELECTION 

When identifying stream sites for inclusion in this study, preference was given to 

USGS gaged sites due to the need for discharge data (≥ 10 years of annual peaks) for 

developing hydraulic geometry curves. The USGS monitors hydrologic parameters such as 

water level and discharge at over 9,000 active sites throughout the U.S.; sometimes 

precipitation and/or water quality data are also collected (USGS, 2016). The USGS currently 
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Figure 3.2: The EKC region contains five hydrologic landscape regions (HLRs); three (HLRs 9, 11, and 16) were examined in this study.
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maintains 196 gage stations in Kentucky; 34 are currently active in the EKC region. In the 

office, Google Earth was used to evaluate these currently active stream sites based on five 

criteria: (1) drainage area, (2) the number of years of discharge data available, (3) 

presence/absence of upstream or downstream tributaries, (4) land use change within the 

watershed, and (5) site accessibility. Streams which were likely unwadeable (e.g. >150 mi2 or 

389 km2) were largely not considered (Brockman et al., 2012). Sites with less than 10 years of 

discharge data (e.g. new USGS gage sites) were eliminated as were sites with tributaries 

immediately upstream or downstream of the gage site. Historic aerial images, which are 

available on Google Earth were used to assess the level of land use change within the 

watersheds of the sites. Recent land use changes, such as urbanization, lead to increases in 

runoff volumes and peaks which often results in stream degradation (Hollis and Luckett, 

1976; Schueler, 1995; Hession et al., 2003; Brath et al., 2006; Villarini et al., 2009). Sites were 

eliminated if notable amounts of land use changes (≥15% by visual inspection) were found 

within the respective watersheds due to concerns related to stream instability (Schueler, 

1995).  

The remaining 11 sites in the EKC were visited to evaluate their accessibility, vertical 

and lateral stability, presence of readily identifiable bankfull indicators, and absence of 

instream structures (Brockman et al., 2012). Preference was given to readily accessible sites 

such as those located on public property (e.g. Daniel Boone National Forest and public 

parks) or adjacent to roads. For sites located on private property, permission was obtained 

from the landowner. Vertical and lateral stability was assessed by evaluating the bank height 

ratio (BHR) and riparian vegetation type and density. Sites with BHRs ≤1.3 were not 

considered (Brockman et al., 2012), and sites with bare, non-vegetated vertical or  
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Figure 3.3: Example of potential stream site with significant stream bank erosion. 
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overhanging stream banks were not used (Figure 3.3). As regional and hydraulic geometry 

curves are based on bankfull dimensions (e.g. cross-sectional area, width, mean depth, and 

discharge), sites were carefully evaluated for the presence of bankfull indicators such as flat 

depositional areas immediately adjacent to the channel, breaks in slope, and point bars 

(Dunne and Leopold, 1978). Sites with instream structures such as weirs or log jams were 

not considered as these structures can alter channel flow and subsequently channel 

morphology. Following field visits, a total of six sites met the site selection criteria and were 

included in the study: 3 in HLR 9, 2 in HLR 11, and 1 in HLR 16 (Table 3.1). 

Because the number of active USGS gage station in the EKC is limited, particularly 

when these active gage sites were further subdivided into the HLRs 9, 11 and 16, inactive 

USGS gage sites and ungaged sites were also used (Table 3.1). Inactive USGS gage sites were 

considered if they were maintained until 1985 or later. Google Earth was used to determine 

if notable land use changes occurred within the watershed since the gage was inactivated 

until present to minimize potential changes in stream morphology and stability. 

Unfortunately, none of the inactive USGS gage sites used in this study had an intact staff 

gage thus prohibiting the determination of bankfull discharge through the use of the 

respective site’s latest USGS stage-discharge rating curve. Published geomorphic and 

discharge data from Parola et al. (2005) and Vesley et al. (2008) as well as unpublished data 

from Agouridis (2012) were also used because the number of suitable USGS gage sites 

(active and inactive) within the EKC region was limited (Table 3.1). Figure 3.4 shows the 

stream sites used in this study. 
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3.3 DATA COLLECTION 

3.3.1 Equipment 

Cross-sectional and longitudinal surveys were conducted using a CST/berger 24X 

SAL automatic level along with standard equipment such as a tripod, rod, tapes and pins 

(Harrelson et al., 1994). For bed material analysis (e.g. modified Wolman pebble count), a 

metric ruler was used (Wolman, 1954; Rosgen, 1996).
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Table 3.1: Summary of stream sites used in the development of regional and hydraulic geometry curves for the EKC. 

Site ID USGS Gage Stream Name Drainage Area (mi2) HLR1 Latitude Longitude 

1  Cat Creek 12 1.31 9 37.825 -83.813 

2  Rose Creek 1.85 9 38.353 -83.251 

3 032501503 Indian Creek near Owingsville 2.43 9 38.157 -83.688 

4 03250322 Rock Lick Creek 4.2 9 36.600 -84.745 

5  Storey Branch  8.03 9 38.231 -83.634 

6 032379003 Cabin Creek near Tollesboro 22.4 9 38.568 -83.537 

7 032500003 Triplett Creek at Morehead 45.9 9 38.193 -83.416 

8 03216800 Tygarts Creek at Olive Hill2 59.6 9 38.299 -83.174 

9 03250100 North Fork Triplett near Morehead 84.7 9 38.199 -83.481 

10 03217000 Tygarts Creek near Greenup2 242 9 38.564 -82.952 

11  Stave Branch2 0.49 11 37.835 -82.837 
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Table 3.1: cont’d. 

Site ID USGS Gage Stream Name Drainage Area (mi2) HLR1 Latitude Longitude 

12  UT KY-191 Mile 5 0.76 11 37.734 -83.457 

13  Eagle Creek4 3.5 11 36.870 -84.369 

14  S. Fork Dog Slaughter4 3.5 11 36.859 -84.299 

15  Dog Slaughter 4 6.0 11 36.860 -84.301 

16  Cane Creek4 7.5 11 37.056 -84.241 

17 032163703 Big Sinking River 23.4 11 37.639 -83.785 

18 03283000 Stillwater Creek at Stillwater2 24.0 11 37.757 -83.487 

19 03404900 Lynn Camp at Corbin 53.8 11 36.951 -84.094 

20  Horse Lick Creek4 55.8 11 37.336 -84.137 

21 03282500 Red River near Hazel Green2 65.8 11 37.812 -83.464 

22 03282040 Sturgeon Creek 77.3 11 37.501 -83.810 
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Table 3.1: cont’d. 

Site ID USGS Gage Stream Name Drainage Area (mi2) HLR1 Latitude Longitude 

23 03281100 Goose Creek at Manchester  163.0 11 37.152 -83.760 

24  Buck Creek4 175.6 11 37.187 -84.456 

25  Davis Upper5 0.27 16 36.635 -83.684 

26  Line Fork Tributary2 0.31 16 37.078 -82.993 

27  Glade Branch2 0.36 16 37.862 -82.891 

28  Bear Hollow Tributary2 0.55 16 37.695 -82.798 

29  Daniels Creek2 0.8 16 37.112 -83.301 

30  Shillalah Creek4 1.9 16 36.649 -83.580 

31 03278000 Bear Branch near Noble2 2.21 16 37.451 -83.195 

32  Bad Branch4 2.6 16 37.068 -82.771 

33  Road Fork2 2.82 16 37.599 -82.372 
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Table 3.1: cont’d. 

Site ID USGS Gage Stream Name Drainage Area (mi2) HLR1 Latitude Longitude 

34  Lick Fork2 6.78 16 37.779 -82.817 

35  Beaver Creek 7.37 16 37.956 -83.619 

36  Cat Creek 22 7.81 16 37.776 -83.808 

37 032833703 Cat Creek 8.31 16 37.832 -83.811 

38  Grapevine Creek2 13.85 16 37.353 -83.349 

39 03280600 Middle Fork River 16.3 16 37.779 -83.676 

40  Rock Creek (Upper)4 18.8 16 38.247 -83.589 

41  Jenny's Creek2 35.6 16 37.813 -82.838 

42 032774003 Leatherwood at Daisy 40.9 16 37.113 -83.093 

43 03280700 Cutshin Creek 61.3 16 37.165 -83.308 

44 032120003 Paint Creek at Staffordsville 103.0 16 37.835 -82.871 
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Table 3.1: cont’d. 

Site ID USGS Gage Stream Name Drainage Area (mi2) HLR1 Latitude Longitude 

45 032485003 Licking River near Salyersville 107.0 16 37.731 -83.058 

46 03281040 Red Bird River near Big Creek2 155.0 16 37.179 -83.593 

47 03278500 Troublesome Creek at Noble2 177.0 16 37.443 -83.218 

1Hydrologic landscape region 
2Source: Vesley et al. (2008) 
3In-active USGS gage 
4Source: Parola et al. (2005) 
5Source: Agouridis (2012)
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Figure 3.4: A total of 19 stream sites were surveyed in this study: 7 active USGS gage sites, 8 inactive USGS gage sites, and 4 non-gaged 

sites. Additionally, data from stream sites from the following studies were used: 9 from Parola et al. (2005), 18 from Vesley et al., (2008), 

and 1 from Agouridis (2012).
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3.3.2 Cross-sectional Surveys 

At nearly all stream sites, a total of two riffle cross-sections were surveyed. Inability 

to survey two riffle cross-sections at select sites (3) was largely due to lack of suitable riffles 

or inability to access the second riffle. For each cross-sectional survey, data (station and 

relative elevation) were recorded for the following parameters: bankfull, thalweg, breaks in 

slopes, water surface, and flood prone extent (if accessible). For instances when the flood 

prone extent was not accessible, it was visually estimated. All cross-sectional data were 

analyzed using the RIVERMorph® software. The following bankfull parameters were 

computed: cross-sectional area (Abkf), width (wbkf), mean depth (dbkf). Refer to Appendix A 

for cross-sectional survey data and graphs. 

3.3.3 Channel Slope 

Local channel slopes (Sbkf) (approximately 20-30 bankfull widths in length) were 

determined in accordance with the methods presented in Harrelson et al. (1994).   

3.3.4 Bed Material 

Modified Wolman pebble counts were conducted at each site. These pebble counts 

consisted of measuring the intermediate axis of a minimum of 100 sampled pebbles 

(Wolman, 1954; Rosgen, 1996). These reach-wide pebble counts were conducted by first 

assessing the percentage of pools and riffle features in the assessed stream reach. Bed 

material was randomly sampled in these features based on their frequency of occurrence. For 

example, if 70% of the surveyed stream reach was comprised of riffles, then 70 samples were 

obtained from riffles while the other 30 samples were obtained in pools. Bed material 

samples were collected within the wetted perimeter. Bed material data were analyzed using 
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the RIVERMorph® software to determine the median particle size (D50). Refer to Appendix 

B for bed material data and graphs. 

3.3.5 Sinuosity 

 Due to the difficulty of accurately measuring sinuosity (K) in the field, this parameter 

was computed for each surveyed stream using Google Earth. Sinuosity was computed by 

dividing the length of the stream by its respective valley length. The length of the stream 

used to find sinuosity was 1000 times the bankfull width.  

3.3.6 Rosgen Stream Classification  

Each stream reach was classified using the Rosgen system of stream classification 

(Rosgen, 1994; 1996). From the cross-sectional surveys, data regarding floodprone extent 

(wfpa) and wbkf were used to compute the entrenchment ratio at each site; wbkf and dbkf were 

used to compute width to depth (wbkf/dbkf) ratios. Longitudinal surveys were used to 

compute bankfull or water surface slopes (both should be parallel). Google Earth 

measurements were used to compute K values (channel length divided by valley length). 

Wolman pebble counts were used to determine the D50 of the bed material. 

3.3.7 Bankfull Discharge 

At stream sites with active USGS gages, bankfull discharge (Qbkf) data were obtained 

by utilizing the site’s stage-discharge relationship as described by Williams (1978). At the 

start of each cross-sectional survey at active USGS gage sites, the date and time were 

recorded as were the water surface and bankfull elevations. Using the date and time of the 

survey, the field surveyed water surface elevation was transformed in the USGS staff gage 

equivalent for the site (e.g. the field survey data were relevant elevations while the USGS 
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records water level data to a set datum). The difference between the field surveyed water 

surface and bankfull elevations were computed to relate the relative bankfull elevation to the 

USGS gage datums. The USGS Rating Depot was used to access to most recent stage-

discharge relationships for each actively gaged site. Bankfull discharges were computed using 

the respective stage-discharge relationships along with the respective USGS gaged site 

datum-corrected bankfull elevations. As none of the inactive USGG gage sites had intact 

staff gages present, Qbkf values were not determined for these sites. 

Bankfull recurrence intervals (Tbkf) were determined using the Log Pearson Type III 

method as outlined in the USGS Bulletin 17B Guidelines for Determining Flood Flow Frequency 

(1982). Peak flow data were downloaded from the USGS into the RIVERMorph® software 

for use in determining Tbkf. A generalized skew coefficient of 0.011 and a standard error of 

prediction of 0.520 were used (Hodgkins and Martin, 2003). 

3.3.8 Manning’s n 

 When possible, Manning’s n values were back-calculated using Equation 3.1, 

bankfull discharge (Qbkf), the surveyed bankfull dimensions of cross-sectional area (Abkf) and 

hydraulic radius (Rbkf), and main channel slope (S). For data obtained from Parola et al. 

(2005) and Vesley et al. (2008), hydraulic radius was not provided thus mean bankfull depth 

(dbkf) values were used instead. This assumption can be made 

     
    

 
    

            
(Equation 3.1) 



 

36 

 

3.3.9 Riparian Vegetation  

The riparian vegetation at each stream site was classified as forest (F) or grass (G). A 

forest classification indicated that the majority of the riparian vegetation consisted of large  

trees (25-60 ft tall) (Figure 3.5). A grass classification indicated that the majority of the 

riparian vegetation consisted of grasses or other such short-rooted vegetation (e.g. weeds) 

(Figure 3.6). 

3.3.10 U.S. HLR-based Regional and Hydraulic Geometry Curves 

Blackburn-Lynch (2015) created U.S. wide regional curves for all 20 HLRs using data 

from 2,228 sites. Table 3.2 contains the data sources Blackburn-Lynch (2015) used to create 

each U.S. wide HLR-based regional curve.  Since Blackburn-Lynch (2015) did not develop 

hydraulic geometry curves, they were created in this study. Table 3.3 contains the modified 

regional curves (HLR 9, 11 and 16 only) developed using data from Blackburn-Lynch (2015) 

(only data with DA ≤ 250 mi2 were used) and the hydraulic geometry curves (HLRs 9, 11 

and 16 only). 

3.3.11 Statistical Analysis 

Cross-sectional (e.g. entrenchment ratio, width-to-depth ratio) and bed material (e.g. 

D50) data were analyzed using RIVERMorph® software. Local Sbkf values were computed 

using Microsoft Excel. Power functions were developed in Microsoft Excel for both regional 

and hydraulic geometry curves (Leopold et al., 1964). Regional and hydraulic geometry 

curves were created for all HLRs combined (e.g. HLRs 9, 11 and 16) as well as each 

individual HLR. For regional curves, the bankfull parameters Abkf, wbkf, dbkf, and Qbkf were 

the dependent variables while drainage area was the independent variable. For hydraulic 
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Figure 3.5: Example of a forested riparian stream site (USGS gage 03250000 Triplett Creek 

at Morehead, Kentucky) located in the EKC. 
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Figure 3.6: Example of a grassed riparian stream site UT off of KY-191 at Mile Marker 5, 

located in the EKC. 
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Table 3.2: All the studies included in the development of regional curves by Blackburn-

Lynch (2015). and hydraulic geometry curves (this study) for HLRs 9, 11, and 16.  

HLR 
Sample 

Size 
Studies 

9 250 

Brockman et al. (2012), Castro (2001), Chang et al. (2004), Chaplin 

(2005), Dutnell (2000), Harman et al. (2000), Keaton et al. (2005), 

Lawrence (2003), McCandless (2003), Messinger (2009), Mulvihill et al. 

(2006), Mulvihill et al. (2007), Parola et al. (2005), Robinson (2013), 

Sherwood and Huitger (2005), USEPA (2006), Vesely et al. (2008) 

11 138 

Brockman et al. (2012), Chang et al. (2004), Chaplin (2005), Cinotto 

(2003), Doll et al. (2002), Harman et al. (1999), Lotspeich (2009), 

McCandless and Everett (2002), Messinger (2009), Mulvihill et al. 

(2005), Parola et al. (2005), Robinson (2013), Sherwood and Huitger 

(2005), USEPA (2006), Vesely et al. (2008), White (2001) 

16 287 

Castro (2001), Chaplin (2005), Cinotto (2003), Dutnell (2000), Harman 

et al. (2000), Keaton et al. (2005), Lawrence (2003)2, McCandless 

(2003a), McCandless and Everett (2002), Messinger (2009), Mulvihill et 

al. (2005), Mulvihill et al. (2006), Mulvihill et al. (2007), Mulvilhill et al. 

(2009), Robinson (2013), Sherwood and Huitger (2005), USEPA 

(2006), Vesely et al. (2008), Westergard et al. (2004), White (2001) 
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Table 3.3: U.S. wide HLR-based regional and hydraulic geometry curves for HLRs 9, 11 and 

16. Qbkf is bankfull discharge (ft3 s-1), DA is drainage area (mi2), Abkf is bankfull cross-

sectional area (ft2), wbkf is bankfull width (ft), dbkf is bankfull mean depth (ft), and vbkf is 

bankfull velocity (ft s-1).  

HLR Regional Curves1 
Hydraulic Geometry 

Curves2 

9 

Qbkf=46.91DA0.78 

Abkf=14.39DA0.69 

wbkf=11.27DA0.45 

dbkf=1.26DA0.25 

Abkf=0.73Qbkf
0.83 

wbkf=2.12Qbkf
0.51 

dbkf=0.35Qbkf
0.32 

vbkf=1.36Qbkf
0.17 

11 

Qbkf=53.98DA0.76 

Abkf=18.35DA0.68 

wbkf=14.85DA0.38 

dbkf=1.24DA0.30 

Abkf=0.72Qbkf
0.85 

wbkf=2.88Qbkf
0.46 

dbkf=0.25Qbkf
0.39 

vbkf=1.39Qbkf
0.15 

16 

Qbkf=51.08DA0.86 

Abkf=17.89DA0.66  

wbkf=13.15DA0.43  

dbkf=1.35DA0.22 

Abkf=0.65Qbkf
0.83 

wbkf=2.59Qbkf
0.48 

dbkf=0.25Qbkf
0.35 

vbkf=1.55Qbkf
0.17 

1Developed using data from Blackburn-Lynch (2015) and had a DA of ≤250 mi2. 
2Developed using data from Blackburn-Lynch (2015) and had a DA of ≤250 mi2. 
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geometry curves, Abkf, wbkf, dbkf, Vbkf, Sbkf, and nbkf were the dependent variables while Qbkf was 

the independent variable. 

Analyses of covariance (ANCOVAs) were performed in the statistical software package SAS 

version 9.4 using PROC REG. Regional and hydraulic geometry curves for each bankfull 

parameter within each HLR were compared (e.g. Abkf for HLR 9 vs. Abkf for HLR 11, Abkf for 

HLR 9 vs. Abkf for HLR 16, Abkf for HLR 11 vs. Abkf for HLR 16). Comparisons were also 

made between individual HLRs to the combined regional curves (e.g. Abkf for HLR 9 vs Abkf 

for HLRs 9, 11 and 16 combined) to determine if subdivision of a physiographic region 

based on HLR significantly improved the resultant regional and hydraulic geometry curves. 

Additionally, the regional and hydraulic geometry curves for each HLR were compared to 

U.S.-wide HLR-based regional curves, for instances when drainage area was less than or 

equal to 250 mi2, developed by Blackburn-Lynch (2015). The bankfull parameters Sbkf and 

nbkf from the individual and combined HLRs were not compared to the U.S.-wide HLRs as 

Blackburn-Lynch (2015) did not provide information on Sbkf and nbkf. The coefficient of 

determination (R2) was used to classify each fit as strong (R2 ≥ 0.9), good (R2 ≥ 0.75), 

moderate (R2 ≥ 0.5), and poor (R2 < 0.5).        
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CHAPTER 4: RESULTS AND DISCUSSION 

4.1 REGIONAL CURVES 

Bankfull regional curves were created for each assessed stream in the entire EKC 

region, using stream morphology data from all 47 sites relating bankfull parameters 

(discharge, cross-sectional area, width, and mean depth) to drainage area. Regional curves 

were also created for each evaluated individual HLR region within the EKC region. Drainage 

areas ranged from 0.27 to 242 mi2; Qbkf ranged from 30.5 to 5,992 ft3 s-1; Abkf ranged from 3.8 

to 1,095 ft2; wbkf ranged from 5.5 to 147.9 ft, and dbkf from 0.62 to 9.11 ft (Table 4.1).  

Each assessed stream was classified according to the Rosgen stream classification 

system (Rosgen, 1996). Entrenchment ratio (ER) is the first factor computed when using the 

Rosgen stream classification system. ER is the extent or width of the flood prone area 

divided by the bankfull width. The ER for the surveyed streams ranged from 1.1 to >2.2 for 

HLR 9; 1.1 to > 2.2 for HLR 11, and 1.2 to >2.2 for HLR 16 (Table 4.2). The width to 

depth ratio (wbkf:dbkf) relates bankfull width to mean bankfull depth and is an indication of 

how deep the channel is as compared to its width. The wbkf:dbkf for HLR 9 ranged from 9.4 

to 54.7, 7.8 to 30.0 for HLR 11, and 7.1 to 37.4 for HLR 16. Information on sinuosity (K) 

was limited, particularly for stream assessed by Parola et al. (2005) and Vesley et al. (2008), 

but ranged from 1.1 to 1.7 in HLR 9, 1.3 to 2.0 in HLR 11, and 1.1 to 1.4 in HLR 16. Local 

bankfull slopes ranged from 0.001 to 0.014 ft ft-1 in HLR 9, 0.001 to 0.020 ft ft-1 in HLR 11, 

and 0.001 to 0.018 ft ft-1 in HLR 16. Bed material (median particle size, D50) was largely 

gravel or cobble though a few streams were dominated by sand and a few were underlain by 

bedrock. Refer to Appendix B for bed material data. 
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Table 4.1: Bankfull summary data for the EKC region.  

Site 

ID 

Stream Site (USGS Gage 

Number) 
HLR1 

Drainage 

Area (mi2) 

Qbkf 

(ft3 s-1) 
Abkf (ft

2) wbkf (ft) dbkf (ft) nbkf 

Return 

Interval 

(years) 

1 Cat Creek2 9 1.31 -- 12 15 0.8 -- -- 

2 Rose Creek 9 1.85 -- 21.2 21.5 1.0 -- -- 

3 
Indian Creek near 

Owingsville (032501503) 
9 2.43 -- 23.0 16.9 1.4 -- -- 

4 Rock Lick Creek (03250322) 9 4.2 67 47.7 21.3 2.3 0.058 1.07 

5 Storey Branch 9 8.03 -- 23.4 27.9 0.8 -- -- 

6 Cabin Creek near Tollesboro 9 22.4 -- 156.0 49.1 3.2 -- -- 

7 
Triplett Creek at Morehead 

(032500003) 
9 45.9 -- 248.3 81.4 3.1 -- -- 

8 
Tygarts Creek at Olive Hill2 

(03216800) 
9 59.6 818 255.3 82.7 3.1 0.033 1.01 
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Table 4.1 cont’d. 

Site 

ID 

Stream Site (USGS Gage 

Number) 
HLR1 

Drainage 

Area (mi2) 

Qbkf 

(ft3 s-1) 
Abkf (ft

2) wbkf (ft) dbkf (ft) nbkf 

Return 

Interval 

(years) 

9 
North Fork Triplett near 

Morehead (03250100) 
9 84.7 385 145.9 88.6 1.7 -- 1.01 

10 
Tygarts Creek near 

Greenup2 (03217000) 
9 242 3,571 1,027.0 112.7 9.1 -- 1.11 

11 Stave Branch2 11 0.49 -- 5.9 8.0 0.7 -- -- 

12 UT KY-191 Mile 5 11 0.76 -- 7.6 11.4 0.7 -- -- 

13 Eagle Creek4 11 3.5 135 47.4 31.8 1.5 0.039 -- 

14 S. Fork Dog Slaughter4 11 3.5 150 42.2 26.6 1.6 0.074 -- 

15 Dog Slaughter4 11 6.0 200 56.0 37.5 1.5 0.053 -- 

16 Cane Creek4 11 7.5 153 60.3 33.0 1.8 0.060 -- 
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Table 4.1 cont’d. 

Site 

ID 

Stream Site (USGS Gage 

Number) 
HLR1 

Drainage 

Area (mi2) 

Qbkf 

(ft3 s-1) 
Abkf (ft

2) wbkf (ft) dbkf (ft) nbkf 

Return 

Interval 

(years) 

17 
Big Sinking River 

(032163703) 
11 23.4 -- 91.7 44.8 2.1 -- - 

18 
Stillwater Creek at Stillwater2 

(03283000) 
11 24.0 194 66.5 32.6 2.0 0.042 1.01 

19 
Lynn Camp at Corbin 

(03404900) 
11 53.8 473 163.3 70.1 2.3 0.024 1.01 

20 Horse Lick Creek4 11 55.8 750 210.0 62.6 3.4 0.039 -- 

21 
Red River near Hazel Green2 

(03282500) 
11 65.8 1,710 400.0 56.0 7.1 -- -- 

22 Sturgeon Creek (03282040) 11 77.3 427 173.6 68.5 2.6 0.043 1.01 
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Table 4.1 cont’d. 

Site 

ID 

Stream Site (USGS Gage 

Number) 
HLR1 

Drainage 

Area (mi2) 

Qbkf 

(ft3 s-1) 
Abkf (ft

2) wbkf (ft) dbkf (ft) nbkf 

Return 

Interval 

(years) 

23 
Goose Creek at Manchester 

(03281100) 
11 163.0 1,160 330.7 86.3 3.8 0.066 1.01 

24 Buck Creek4 11 175.6 2,200 504.7 115.5 4.4 0.030 -- 

25 Davis Upper5 16 0.27 -- 6.0 8.4 0.7 -- -- 

26 Line Fork Tributary2 16 0.31 -- 3.8 7.0 0.6 -- -- 

27 Glade Branch2 16 0.36 -- 4.0 5.5 0.7 -- - 

28 Bear Hollow Tributary2 16 0.55 -- 6.4 6.7 1.0 - -- 

29 Daniels Creek2 16 0.8 31 9.1 9.3 1.0 0.046 -- 

30 Shillalah Creek4 16 1.9 85 26.4 25.4 1.0 0.062 -- 

31 
Bear Branch near Noble 

(03278000)2 
16 2.21 61 15.8 14.5 1.1 0.043 1.02 
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Table 4.1 cont’d. 

Site 

ID 

Stream Site (USGS Gage 

Number) 
HLR1 

Drainage 

Area (mi2) 

Qbkf 

(ft3 s-1) 
Abkf (ft

2) wbkf (ft) dbkf (ft) nbkf 

Return 

Interval 

(years) 

32 Bad Branch4 16 2.6 110 29.0 24.7 1.2 0.059 -- 

33 Road Fork2 16 2.82 70 11.5 9.8 1.2 0.032 -- 

34 Lick Fork2 16 6.78 -- 33.0 23.0 1.4 - -- 

35 Beaver Creek 16 7.37 -- 55.9 32.3 1.8 -- -- 

36 Cat Creek 22 16 7.81 -- 35.2 22.0 1.6 -- -- 

37 Cat Creek (032833703) 16 8.31 -- 44.6 26.4 1.7 -- -- 

38 Grapevine Creek2 16 13.85 -- 44.0 25.5 1.7 -- -- 

39 
Middle Fork River 

(03280600) 
16 16.3 -- 70.1 51.5 1.4 -- -- 

40 Rock Creek (Upper)4 16 18.8 350 85.4 53.0 1.6 0.044 -- 

41 Jenny's Creek2 16 35.6 -- 141.6 59.0 2.4 -- -- 
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Table 4.1 cont’d. 

Site 

ID 

Stream Site (USGS Gage 

Number) 
HLR1 

Drainage 

Area (mi2) 

Qbkf 

(ft3 s-1) 
Abkf (ft

2) wbkf (ft) dbkf (ft) nbkf 

Return 

Interval 

(years) 

42 
Leatherwood at Daisy 

(032774003) 
16 40.9 -- 163.2 52.8 3.1 -- 1.01 

43 Cutshin Creek (03280700) 16 61.3 1,100 198.6 64.9 3.1 0.054 1.02 

44 
Paint Creek at Staffordsville 

(032120003) 
16 103.0 -- 237.4 59.6 4.0 -- -- 

45 
Licking River near 

Salyersville (032485003) 
16 107.0 -- 260.3 52.6 5.0 -- -- 

46 
Red Bird River near Big 

Creek2 (03281040) 
16 155.0 5,992 1,095.0 147.9 7.4 -- 1.06 
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Table 4.1 cont’d. 

1Hydrologic landscape region 
2Source: Vesley et al. (2008) 
3In-active USGS gage 
4Source: Parola et al. (2005) 
5Source: Agouridis (2012) 

Site 

ID 

Stream Site (USGS Gage 

Number) 
HLR1 

Drainage 

Area (mi2) 

Qbkf 

(ft3 s-1) 
Abkf (ft

2) wbkf (ft) dbkf (ft) nbkf 

Return 

Interval 

(years) 

47 
Troublesome Creek at 

Noble2 (03278500) 
16 177.0 3,800 775.1 94.1 8.2 -- 1.10 
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Table 4.2: Stream type (Rosgen) and streamside (riparian) vegetation for the EKC region. 

Site 

ID 

Stream Site (USGS 

Gage Number) 
HLR1 

Drainage 

Area (mi2) 
ER wbkf:dbkf 

K 

(ft ft-1) 

Sbkf 

(ft ft-1) 

D50 

(mm)6 

Rosgen 

Stream 

Type 

Streamside 

(Riparian) 

Vegetation 

Type7 

1 Cat Creek2 9 1.31 1.5 18.8 -- 0.013 C B3/1c -- 

2 Rose Creek 9 1.85 1.7 22.4 1.1 0.014 19 B4 G/F 

3 

Indian Creek near 

Owingsville 

(032501503) 

9 2.43 >2.2 12.3 1.2 0.006 59 C4 G/F 

4 
Rock Lick Creek 

(03250322) 
9 4.2 >2.2 9.4 1.3 0.001 21 E4 G 

5 Storey Branch 9 8.03 1.1 33.2 1.1 -- 29 F4 G/F 

6 
Cabin Creek near 

Tollesboro 
9 22.4 1.4-2.2 15.5 1.1 0.004 28 B4c -- 
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Table 4.2 cont’d. 

Site 

ID 

Stream Site (USGS 

Gage Number) 
HLR1 

Drainage 

Area (mi2) 
ER wbkf:dbkf 

K 

(ft ft-1) 

Sbkf 

(ft ft-1) 

D50 

(mm)6 

Rosgen 

Stream 

Type 

Streamside 

(Riparian) 

Vegetation 

Type7 

7 
Triplett Creek at 

Morehead (032500003) 
9 45.9 1.4-2.2 26.6 1.2 0.005 58 B4c F 

8 
Tygarts Creek at Olive 

Hill2 (03216800) 
9 59.6 1.7 45.5 -- 0.001 27 B4/1c -- 

9 

North Fork Triplett 

near Morehead 

(03250100) 

9 84.7 1.2 53.7 1.7 -- 75 B3 G/F 

10 
Tygarts Creek near 

Greenup2 (03217000) 
9 242 >2.2 12.4 -- -- 37 E4 -- 

11 Stave Branch2 11 0.49 4.5 11.0 -- 0.008 16 C4 -- 

12 UT KY-191 Mile 5 11 0.76 1.3 17.3 1.3 0.008 30 B4c G 
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Table 4.2 cont’d. 

Site 

ID 

Stream Site (USGS 

Gage Number) 
HLR1 

Drainage 

Area (mi2) 
ER wbkf:dbkf 

K 

(ft ft-1) 

Sbkf 

(ft ft-1) 

D50 

(mm)6 

Rosgen 

Stream 

Type 

Streamside 

(Riparian) 

Vegetation 

Type7 

13 Eagle Creek4 11 3.5 1.1 21.3 -- 0.003 37 F4/1 -- 

14 S. Fork Dog Slaughter4 11 3.5 1.7 16.3 -- 0.016 135 B3c -- 

15 Dog Slaughter4 11 6.0 1.2 25.2 -- 0.010 91 B3c -- 

16 Cane Creek4 11 7.5 1.4 18.03 -- 0.005 46 B4c -- 

17 
Big Sinking River 

(032163703) 
11 23.4 >2.2 21.9 1.7 0.020 61 B4 F 

18 
Stillwater Creek at 

Stillwater2 (03283000) 
11 24.0 1.4 16.0 -- 0.003 51 B4c -- 

19 
Lynn Camp at Corbin 

(03404900) 
11 53.8 1.3 30.0 1.7 0.001 63 B4c -- 
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Table 4.2 cont’d. 

Site 

ID 

Stream Site (USGS 

Gage Number) 
HLR1 

Drainage 

Area (mi2) 
ER wbkf:dbkf 

K 

(ft ft-1) 

Sbkf 

(ft ft-1) 

D50 

(mm)6 

Rosgen 

Stream 

Type 

Streamside 

(Riparian) 

Vegetation 

Type7 

20 Horse Lick Creek4 11 55.8 1.7 18.7 -- 0.002 28 B4c -- 

21 
Red River near Hazel 

Green2 (03282500) 
11 65.8 >2.2 7.8 -- -- G E4 -- 

22 
Sturgeon Creek 

(03282040) 
11 77.3 1.4-2.2 26.7 2.0 0.001 84 B3 F 

23 
Goose Creek at 

Manchester (03281100) 
11 163.0 >2.2 22.5 1.5 0.004 71 C3 F 

24 Buck Creek4 11 175.6 >2.2 26.4 -- 0.001 41 C4 -- 

25 Davis Upper5 16 0.27 >2.2 15.6 -- 0.017 16 C4 F 

26 Line Fork Tributary2 16 0.31 2.4 11.3 -- -- G C4 -- 
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Table 4.2 cont’d. 

Site 

ID 

Stream Site (USGS 

Gage Number) 
HLR1 

Drainage 

Area (mi2) 
ER wbkf:dbkf 

K 

(ft ft-1) 

Sbkf 

(ft ft-1) 

D50 

(mm)6 

Rosgen 

Stream 

Type 

Streamside 

(Riparian) 

Vegetation 

Type7 

27 Glade Branch2 16 0.36 2.3 7.5 -- -- G E4 -- 

28 Bear Hollow Tributary2 16 0.55 3.4 7.0 -- 0.012 C E3 -- 

29 Daniels Creek2 16 0.8 2.2 9.5 -- 0.011 37 C4/1 -- 

30 Shillalah Creek4 16 1.9 1.7 24.3 -- 0.017 64 B4c -- 

31 
Bear Branch near 

Noble (03278000)2 
16 2.21 2.3 13.3 -- 0.011 46 C4/1 -- 

32 Bad Branch4 16 2.6 1.3 21.1 -- 0.018 78 B3c -- 

33 Road Fork2 16 2.82 3.5 8.4 -- 0.014 42 E4 -- 

34 Lick Fork2 16 6.78 1.7 16 -- 0.004 G B4/1c -- 

35 Beaver Creek 16 7.37 1.3 18.1 1.1 -- 33 B4 G/F 
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Table 4.2 cont’d. 

Site 

ID 

Stream Site (USGS 

Gage Number) 
HLR1 

Drainage 

Area (mi2) 
ER wbkf:dbkf 

K 

(ft ft-1) 

Sbkf 

(ft ft-1) 

D50 

(mm)6 

Rosgen 

Stream 

Type 

Streamside 

(Riparian) 

Vegetation 

Type7 

36 Cat Creek 22 16 7.81 1.4 13.8 -- 0.005 40 B4c -- 

37 Cat Creek (032833703) 16 8.31 >2.2 15.7 1.2 0.010 23 C4 F 

38 Grapevine Creek2 16 13.85 1.6 14.8 -- -- S B5c -- 

39 
Middle Fork River 

(03280600) 
16 16.3 >2.2 37.4 1.2 -- 79 C3 G 

40 Rock Creek (Upper)4 16 18.8 1.2 32.9 -- 0.008 46 B4/1c -- 

41 Jenny's Creek2 16 35.6 1.2 24.6 -- 0.002 S F5 -- 

42 
Leatherwood at Daisy 

(032774003) 
16 40.9 1.4 17.1 1.4 0.001 23 B4 F 
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Table 4.2 cont’d. 

Site 

ID 

Stream Site (USGS 

Gage Number) 
HLR1 

Drainage 

Area (mi2) 
ER wbkf:dbkf 

K 

(ft ft-1) 

Sbkf 

(ft ft-1) 

D50 

(mm)6 

Rosgen 

Stream 

Type 

Streamside 

(Riparian) 

Vegetation 

Type7 

43 
Cutshin Creek 

(03280700) 
16 61.3 1.4-2.2 21.2 1.4 0.009 70 B3 G 

44 

Paint Creek at 

Staffordsville 

(032120003) 

16 103.0 >2.2 14.9 -- 0.004 18 C4 -- 

45 
Licking River near 

Salyersville (032485003) 
16 107.0 1.4-2.2 10.6 1.2 -- 0.2 B5 G/F 

46 
Red Bird River near 

Big Creek2 (03281040) 
16 155.0 2.1 20.0 -- -- 28 E4 -- 
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Table 4.2 cont’d. 

 

1Hydrologic landscape region 
2Source: Vesley et al. (2008) 
3In-active USGS gage 
4Source: Parola et al. (2005) 
5Source: Agouridis (2012) 
6C=cobble, G=gravel, and S=sand 
7G=grass dominated, F=forest dominated, G/F=equal mixture of grass and forest

Site 

ID 

Stream Site (USGS 

Gage Number) 
HLR1 

Drainage 

Area (mi2) 
ER wbkf:dbkf 

K 

(ft ft-1) 

Sbkf 

(ft ft-1) 

D50 

(mm)6 

Rosgen 

Stream 

Type 

Streamside 

(Riparian) 

Vegetation 

Type7 

47 
Troublesome Creek at 

Noble2 (03278500) 
16 177.0 2.1 11.4 -- -- 18 E4 -- 
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HLR 9 contained the following Rosgen stream types: 6 B, 1 C, 1 E, and 1 F. HLR 11 

contained the following Rosgen stream types: 9B, 3 C, 1 E, and 1 F. HLR 16 contained the 

following Rosgen stream types: 10 B, 7 C, 5 E and 1 F. 

4.1.1 Bankfull Discharge 

For 24 of the 47 sites (51.1%) with long-term flow data, Qbkf was determined and 

used to develop regional curves (e.g. bankfull discharge versus drainage area). Table 4.3 

contains the resultant bankfull discharge regional curves for the EKC region (Combined 

HLRs of 9, 11 and 16) and the individual HLR regions of 9, 11 and 16. Figure 4.1 is a 

graphical representation of the data points and regression equations for the Combined HLRs 

and each individual HLR. Based on the coefficients of determination (R2), good to strong 

relationships exist for the bankfull discharge regional curves. Drainage area explained 87% of 

the variance in bankfull discharge for the EKC region (Combined HLRs). Separating the 

EKC region into individual HLRs generally improved the R2 value. For HLR 9 and 16, the 

R2 increased to 0.88 and 0.97, respectively, while it decreased to 0.80 for HLR 11. The 

exponents for the regional curves developed in this study (b=0.62-0.90) are within the ranges 

of those found by other researchers for the Appalachian region (b=0.61-0.94) (Table 4.4). 

Excluding Babbit (2005), coefficients for the combined and individual HLRs examined in 

this study (a=16.14-54.49) were within the range of those found for the Appalachian region 

(a=32.70-62.96). 
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Table 4.3: Bankfull regional curve relationships for bankfull discharge (ft3 s-1) and drainage 

area (mi2). 

HLR Regression Equation R2 

Combined HLRs (9, 11 and 16) Qbkf=37.54DA0.77 0.87 

HLR 9 Qbkf=16.14DA0.90 0.88 

HLR 11 Qbkf=54.49DA0.62 0.80 

HLR 16 Qbkf=34.88DA0.76 0.97 
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Figure 4.1: Bankfull discharge (ft3 s-1) as a function of drainage area (mi2) for the Combined 

HLRs and individual ones of HLR 9, HLR 11, and HLR 16.
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Table 4.4: Comparison of regional curves in the Eastern United States and Appalachian Region where Qbkf=aDAb, Abkf=cDAd, wbkf=gDAh, 

and dbkf=jDAk. DA is drainage area (mi2), Qbkf is bankfull discharge (ft3 s-1), Abkf is bankfull cross-sectional area (ft2), wbkf is bankfull width 

(ft), and dbkf is bankfull mean depth (ft). 

Study 
Qbkf Abkf wbkf dbkf 

a B R2 c d R2 g h R2 j k R2 

Combined HLRs 37.54 0.77 0.87 10.59 0.74 0.94 12.16 0.42 0.91 0.88 0.32 0.82 

HLR 9 16.14 0.90 0.88 10.90 0.76 0.91 13.32 0.42 0.97 0.82 0.34 0.65 

HLR 11 54.49 0.62 0.80 12.63 0.69 0.94 14.11 0.38 0.92 0.89 0.31 0.83 

HLR 16 34.88 0.92 0.97 9.81 0.76 0.95 11.18 0.42 0.90 0.89 0.33 0.89 

U.S. HLR 9 46.91 0.78 0.88 14.39 0.69 0.81 11.27 0.45 0.80 1.26 0.25 0.58 

U.S. HLR 11 53.95 0.76 0.78 18.35 0.68 0.80 14.85 0.38 0.69 1.24 0.30 0.63 

U.S. HLR 16 51.08 0.86 0.88 17.89 0.66 0.80 13.15 0.43 0.79 1.35 0.22 0.52 

Babbit (2005) 150.06 0.75 0.99 32.48 0.70 1.00 18.51 0.44 0.97 1.76 0.26 0.97 

Brockman (2010)2 35.07 0.91 0.92 15.08 0.82 0.96 14.23 0.46 0.94 1.06 0.36 0.90 

Chaplin (2005)3 43.21 0.87 0.92 12.04 0.80 0.92 14.65 0.45 0.81 0.88 0.33 0.72 

Dunne and Leopold (1978)4 -- -- -- 21.17 0.70 -- 14.00 0.40 -- 1.50 0.29 -- 

McCandless (2003)5 34.02 0.94 0.99 13.17 0.75 0.93 13.87 0.44 0.92 0.95 0.31 0.91 
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Table 4.4 cont’d. 

Study 
Qbkf Abkf wbkf dbkf 

a B R
2
 c d R

2
 g h R

2
 j k R

2
 

Messinger (2009)
6
 59.81 0.85 0.96 20.49 0.71 0.98 20.99 0.37 0.95 1.07 0.31 0.88 

Miller and Davis (2003)
7
 62.96 0.87 0.81 12.67 0.81 0.90 12.51 0.51 0.88 1.01 0.31 0.85 

Parola et al. (2005)
8
 60.30 0.61 0.96 19.10 0.57 0.97 20.10 0.30 0.93 0.95 0.28 0.80 

Vesley et al. (2008)
9
 32.70 0.85 0.92 9.45 0.82 0.96 10.88 0.45 0.93 0.88 0.36 0.88 

Westergard et al. (2004)
10

 45.30 0.86 0.96 10.80 0.82 0.98 13.50 0.45 0.92 0.80 0.37 0.91 

1Soutwestern Appalachians of East Tennessee 
2Combined Inner and Outer Bluegrass Regions of Kentucky 
3Pennsylvania and Maryland 
4Eastern United States 
5Appalachian Plateau and Valley and Ridge of Maryland 
6Appalachian Plateaus of West Virginia 
7Catskill Mountains of New York 
8Four Rivers and Upper Cumberland of Kentucky 
9Eastern Kentucky Coalfields 
10Central New York
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4.1.2 Bankfull Cross-sectional Area 

Bankfull cross-sectional area was determined for all 47 sites. Regional curves for Abkf 

were created using all the surveyed sites and subdivided in to each individual HLR region. 

Table 4.5 contains the resultant bankfull cross-sectional area regional curves for the EKC 

region (Combined HLRs of 9, 11 and 16) and the individual HLR regions of 9, 11 and 16. 

Figure 4.2 is a graphical representation of the data points and regression equations for the 

Combined HLRs and each individual HLR. Based on the coefficients of determination (R2), 

strong relationships exist for the bankfull cross-sectional area regional curves. Drainage area 

explained 94% of the variance in bankfull cross-sectional area for the EKC region 

(Combined HLRs). Separating the EKC region into individual HLRs generally maintained or 

improved the R2 values. For HLR 16, the R2 value increased to 0.95 while it was maintained 

for HLR 11 (R2=0.94) and decreased for HLR 9 (R2=0.91). The exponents for the regional 

curves developed in this study (d=0.69-0.76) are within the ranges of those found by other 

researchers for the Appalachian region (d=0.57-0.82) (Table 4.4). The coefficients for the 

combined and individual HLRs examined in this study (c=9.81-12.63) were within the range, 

though the lower end, of those found for the Appalachian region (c=9.45-32.48). 
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Table 4.5: Bankfull regional curve relationships for bankfull cross-sectional area (ft2) and 

drainage area (mi2).  

HLR Regression Equation R2 

Combined HLRs (9, 11 and 16) Abkf=10.59DA0.74 0.94 

HLR 9 Abkf=10.90DA0.76 0.91 

HLR 11 Abkf=12.63DA0.69 0.94 

HLR 16 Abkf=9.81DA0.76 0.95 
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Figure 4.2: Bankfull cross-sectional area (ft2) as a function of drainage area (mi2) for the 

Combined HLRs and individual ones of HLR 9, HLR 11, and HLR 16. 
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4.1.3 Bankfull Width 

Bankfull width was determined for all 47 sites. Bankfull width regional curves were 

created using all the surveyed sites and subdivided in to each individual HLR region. Table 

4.6 contains the resultant bankfull width regional curves for the EKC region (Combined 

HLRs of 9, 11 and 16) and the individual HLR regions of 9, 11 and 16. Figure 4.3 is a 

graphical representation of the data points and regression equations for the Combined HLRs 

and each individual HLR. Based on the coefficients of determination (R2), strong 

relationships exist for the bankfull width regional curves. Drainage area explained 91% of 

the variance in bankfull width for the EKC region (Combined HLRs). Separating the EKC 

region into individual HLRs generally improved the R2 values. For HLRs 9 and 11, the R2 

values increased to 0.97 and 0.92, respectively, while it decreased for HLR 16 (R2=0.90). The 

exponents for the regional curves developed in this study (h=0.38-0.42) are within the ranges 

of those found by other researchers for the Appalachian region (h=0.30-0.51) (Table 4.4). 

The coefficients for the combined and individual HLRs examined in this study (g=11.18-

14.11) were generally within the range, though the lower end, of those found for the 

Appalachian region (g=12.51-20.99). 
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Table 4.6: Bankfull regional curve relationships for bankfull width (ft) and drainage area 

(mi2). 

HLR Regression Equation R2 

Combined HLRs (9, 11 and 16) wbkf=12.16DA0.42 0.91 

HLR 9 wbkf=13.32DA0.42 0.97 

HLR 11 wbkf=14.11DA0.38 0.92 

HLR 16 wbkf=11.18DA0.42 0.90 
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Figure 4.3: Bankfull width (ft) as a function of drainage area (mi2) for the Combined HLRs 

and individual ones of HLR 9, HLR 11, and HLR 16. 
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4.1.4 Bankfull Mean Depth 

Bankfull mean depth was determined for all 47 sites. Bankfull mean depth regional 

curves were created using all the surveyed sites and subdivided in to each individual HLR 

region. Table 4.7 contains the resultant bankfull mean depth regional curves for the EKC 

region (Combined HLRs of 9, 11 and 16) and the individual HLR regions of 9, 11 and 16. 

Figure 4.4 is a graphical representation of the data points and regression equations for the 

Combined HLRs and each individual HLR. Based on the coefficients of determination (R2), 

moderate to strong relationships exist for the bankfull mean depth regional curves. Drainage 

area explained 82% of the variance in bankfull mean depth for the EKC region (Combined 

HLRs). Separating the EKC region into individual HLRs generally improved the R2 values in 

almost all cases. For HLRs 11 and 16, the R2 values increased to 0.83 and 0.89, respectively, 

while it decreased for HLR 9 (R2=0.65). The exponents for the regional curves developed in 

this study (k=0.31-0.34) are within the ranges of those found by other researchers for the 

Appalachian region (k=0.26-0.32) (Table 4.4). The coefficients for the combined and 

individual HLRs examined in this study (j=0.82-0.89) were generally within the range, 

though the lower end, of those found for the Appalachian region (j=0.80-1.76). 

 



 

67 

 

Table 4.7: Bankfull regional curve relationships for bankfull mean depth (ft) and drainage 

area (mi2). 

HLR Regression Equation R2 

Combined HLRs (9, 11 and 16) dbkf=0.88DA0.32 0.82 

HLR 9 dbkf=0.82DA0.34 0.65 

HLR 11 dbkf=0.89DA0.31 0.83 

HLR 16 dbkf=0.89DA0.33 0.89 
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Figure 4.4: Bankfull mean depth (ft) as a function of drainage area (mi2) for the Combined 

HLRs and individual ones of HLR 9, HLR 11, and HLR 16. 
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4.1.5 Statistical Comparison  

Results of the statistical comparisons of regional curves between HLRs are presented 

in Table 4.8. 

4.1.5.1 Bankfull Discharge 

 HLR 16 significantly differed from HLR 9, HLR 11, and Combined HLRs (Figure 

4.5) (Table 4.8). The exponent (b=0.92) of the HRL 16 regional curve was larger than the 

exponents from HLR 11 (b=0.62) and Combined HLRs (b=0.77) while the intercept 

(a=34.88) for HLR 16 was larger than that for HRL 9 (a=16.14) but smaller than the one for 

HLR 11 (a=54.49) (Table 4.4). No significant differences were noted between HLR 16 and 

U.S. HLR 16. The regional curve for HLR 16 predicted larger Qbkf values then the regional 

curves for HLR 9, HRL 11, and Combined HLRs for nearly the entire range of drainage 

areas (Table 4.9). At a drainage area of 25 mi2, the predicted value of Qbkf for HLR 16 is 

674.0 ft3 s-1 versus 292.5 ft3 s-1 for HLR 9, 400.9 ft3 s-1 for HLR 11, and 447.6 ft3 s-1 for 

Combined HLRs. Surprisingly, no significant differences were noted between HLR 9 and 

U.S. HLR 9; HLR 9 predicted lower Qbkf values for a wide range of drainage areas (Table 

4.9). Similarly, no difference was noted between HLR 9 and HLR 11 though a cross-over 

was present with HLR 9 predicting lower Qbkf values below 100 mi2 but higher ones for 

larger drainage areas. 
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Table 4.8: Results of the comparison of regional curves based on HLR. Ho: No significant differences in slopes or intercepts amongst 

regional curves. Ha: Significant differences in slopes or intercepts amongst regional curves. 

Comparison Qbkf Abkf wbkf dbkf 

p-value Reject   ? p-value Reject   ? p-value Reject   ? p-value Reject   ? 

HLR 9 vs. Combined HLRs 0.75 No 0.66 No 0.36 No 0.97 No 

HLR 11 vs. Combined HLRs 0.12 No 0.02 Yes 0.82 No 0.05 No 

HLR 16 vs. Combined HLRs 0.03 Yes 0.10 No 0.40 No 0.04 Yes 

HLR 9 vs. U.S. HLR 9  0.91 No 0.27 No 0.07 No 0.02 Yes 

HLR 11 vs. U.S. HLR 11 0.05 No 0.02 Yes 0.29 No 0.46 No 

HLR 16 vs. U.S. HLR 16 0.42 No 0.95 No 0.02 Yes 0.00 Yes 

HLR 9 vs. HLR 11 0.12 No 0.00 Yes 0.55 No 0.16 No 

HLR 9 vs. HLR 16 0.01 Yes 0.32 No 0.19 No 0.03 Yes 

HLR 11 vs. HLR 16 0.00 Yes 0.00 Yes 0.37 No 0.00 Yes 
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Figure 4.5: Comparison of regional curves for bankfull discharge. 
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Table 4.9 Comparison of HLR-based hydraulic geometry curves developed for the EKC and U.S. wide. 

Bankfull Parameters HLR 
Drainage Area (mi2) 

1 5 10 25 50 100 150 200 

Qbkf 

Combined HLRs 37.5 129.6 221.1 447.6 763.3 1,301.7 1,778.6 2,219.7 

HLR 9 16.1 68.7 128.2 292.5 545.7 1,018.4 1,466.9 1,900.3 

HLR 11 54.5 147.8 227.2 400.9 616.1 946.9 1,217.6 1,455.3 

HLR 16 34.5 153.3 290.0 674.0 1,275.4 2,413.1 3,504.1 4,565.9 

U.S. HLR 9 46.9 164.6 282.7 577.6 991.9 1,703.2 2,336.8 2,924.6 

U.S. HLR 11 54.0 183.3 310.5 622.9 1,054.9 1,786.5 2,431.2 3,025.3 

U.S. HLR 16 51.0 203.9 370.0 813.7 1,477.0 2,680.7 3,799.2 4,865.6 

Abkf 

Combined HLRs 10.6 34.8 58.2 114.7 191.5 319.8 431.7 534.1 

HLR 9 10.9 37.0 62.7 125.9 213.1 360.9 491.2 611.2 

HLR 11 12.6 38.3 61.9 116.4 187.8 303.0 400.8 488.8 

HLR 16 9.8 33.3 56.5 113.3 191.8 324.8 442.1 550.1 

U.S. HLR 9 14.4 43.7 70.5 132.6 214.0 345.2 456.6 556.9 

U.S. HLR 11 18.4 54.8 87.8 163.8 262.4 420.4 553.8 673.5 

U.S. HLR 16 17.9 51.8 81.7 149.7 236.6 373.8 488.5 590.6 
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Table 4.9 cont’d. 

Bankfull Parameters HLR 
Drainage Area (mi2) 

1 5 10 25 50 100 150 200 

wbkf 

Combined HLRs 12.2 23.9 32.0 47.0 62.9 84.1 99.8 112.6 

HLR 9 13.3 26.2 35.0 51.5 68.9 92.2 109.3 123.3 

HLR 11 14.1 26.0 33.9 48.0 62.4 81.2 94.7 105.7 

HLR 16 11.2 22.0 29.4 43.2 57.8 77.4 91.7 103.5 

U.S. HLR 9 11.3 23.3 31.8 48.0 65.3 89.5 107.4 122.3 

U.S. HLR 11 14.9 27.4 35.6 50.5 65.7 85.5 99.7 111.2 

U.S. HLR 16 13.2 26.3 35.4 52.5 70.7 95.3 113.4 128.3 

dbkf 

Combined HLRs 0.9 1.5 1.8 2.5 3.1 3.8 4.4 4.8 

HLR 9 0.8 1.4 1.8 2.5 3.1 3.9 4.5 5.0 

HLR 11 0.9 1.5 1.8 2.4 3.0 3.7 4.2 4.6 

HLR 16 0.9 1.5 1.9 2.6 3.2 4.1 4.7 5.1 

U.S. HLR 9 1.3 1.9 2.2 2.8 3.4 4.0 4.4 4.7 

U.S. HLR 11 1.2 2.0 2.5 3.3 4.0 4.9 5.6 6.1 

U.S. HLR 16 1.4 1.9 2.2 2.7 3.2 3.7 4.1 4.3 
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4.1.5.2 Bankfull Cross-sectional Area 

 HLR 11 significantly differed from HLR 9, HLR 16, Combined HLRs, and U.S. 

HLR 11 (Figure 4.6) (Table 4.8). The exponent (d=0.69) of the HLR 11 regional curve was 

smaller than the exponents for HLR 9 (d=0.76), HLR 16 (d=0.76), and Combined HLRs 

(d=0.74) while the coefficient (c=12.63) was larger than that for HLR 9 (c=10.90), HLR 16 

(c=9.81), and Combined HLRs (c=10.59) but smaller than the coefficient for U.S. HLR 11 

(c=18.35) (Table 4.4). At a drainage area of 25 mi2, the predicted value of Abkf for HLR 11 is 

116.4 ft2 versus 125.9 ft2 for HLR 9, 113.3 ft2 for HLR 16, 114.7 ft2 for Combined HLRs, 

and 163.8 ft2 for U.S. HLR 11. As seen in Figure 4.6, differences in Abkf are more 

pronounced at lower drainage areas, which are typical of many stream restoration projects 

(Alexander and Allan, 2006; Mecklenburg and Fay, 2011). Thus, separation of the EKC 

based upon HLR is likely warranted for projects with smaller drainage areas. 

4.1.5.3 Bankfull Width  

Generally, the exponents from the regional curves developed for the EKC (HLR 9, 

HLR 11, and HLR 16) displayed little variation with respect to slope indicating changes in 

bankfull width due to changes in drainage area were similar across the HLRs (Figure 4.7) 

(Table 4.4). Based on work by Johnson and Fecko (2008), it was expected that the fewest 

differences between HLRs would occur for wbkf. Significant differences were noted only 

between HLR 16 and U.S. HLR 16 (Table 4.8). The exponents between the two regional 

curves were nearly the same while the coefficient for HLR 16 (g=11.18) was lower than the 

coefficient for U.S. HLR 16 (g=13.15). At a drainage area of 25 mi2, the predicted value of 

wbkf for HLR 16 is 43.2 ft while it is 52.5 ft for U.S. HLR 16 (Table 4.9). 
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Figure 4.6: Comparison of regional curves for bankfull cross-sectional area. 
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Figure 4.7: Comparison of regional curves for bankfull width. 
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4.1.5.4 Bankfull Mean Depth 

 Significant differences were present with regards to HLR 9 and HLR 16. HLR 9 

differed significantly from HLR 16 and U.S. HLR 9 while HLR 16 differed significantly from 

HLR 11, Combined HLRs, and U.S. HLR 16 in addition to HLR 9 (Figure 4.8) (Table 4.8). 

As shown in Table 4.4, the exponent for HLR 9 (k=0.34) was larger than the exponent for 

U.S. HLR 9 (k=0.25) while the coefficient for HLR 9 (j=0.82) was smaller than the 

coefficient for U.S. HLR 9 (j=1.26). The exponent for HLR 16 (k=0.33) was larger than the 

exponent for U.S. HLR 16 (k=0.22) but similar to the exponents for HLR 9, HLR 11 

(k=0.31), and Combined HLRs (k=0.32). The coefficient for HLR 16 (j=0.89) was smaller 

than the coefficient for U.S. HLR 16 (j=1.35), larger than the coefficient for HLR 9 (j=0.82), 

but was the same or similar to the coefficients for HLR 11 (j=0.89) and Combined HLRs 

(0.88). Thus, the finding of statistically significant differences between HLR 16 and HLR 11 

and Combined HLR was surprising. At a drainage area of 25 mi2, the predicted dbkf for HLR 

9 is 2.5 ft, 2.4 ft for HLR 11, 2.6 ft for HLR 16, 2.5 ft for Combined HLRs, 2.8 ft for U.S. 

HLR 9, and 2.7 ft for U.S. HLR 16 (Table 4.z). At lower drainage areas, the differences in 

dbkf between the EKC and U.S. wide regional curves are more pronounced while differences 

between regional curves within the EKC, though significant at times, are small and generally 

on the order of 0.1-0.2 ft. 
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Figure 4.8: Comparison of regional curves for bankfull mean depth. 
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4.1.5.5 Regional Curve Comparison Summary 

 Results indicate that separating the EKC based on HLR for the development of 

regional curves was beneficial as in most instances R2 improved over the Combined HLRs 

and significant differences were present between one or more of the HLR regions within the 

EKC (i.e. why R2 of individual HLRs was generally higher than Combined HLRs). For Qbkf, 

HLR 16 differed significantly from HLR 9 and HLR 11. For Abkf, HLR 11 differed 

significantly from HLR 9 and HLR 16. Little variation (i.e. no significant differences) were 

present between the HLRs in the EKC for wbkf. For dbkf, significant differences were noted 

between HLR 9 and HLR 16 as well as HLR 11 and HLR 16.  

As seen in Figures 4.5-4.8, differences between the HLRs within the EKC were 

greatest for smaller drainage areas, which are more characteristic of the size of watersheds in 

which stream restoration projects occur (Alexander and Allan, 2006; Mecklenburg and Fay, 

2011). Based on the Combined HLR, a stream located in a 10 mi2 watershed is expected to 

have a Qbkf of 221.1 ft3 s-1 and the following dimensions: Abkf=52.8 ft2, wbkf=32 ft, and 

dbkf=1.8 ft. Using the HLR specific regional curves would yield channels of different sizes 

and dimensions. The HLR 9 regional curves would generate a larger (Abkf=62.7 ft2) and 

wider (wbkf=35.0 ft) channel with a similar depth (dbkf=1.8 ft) even though the predicted Qbkf 

of 128.2 ft3 s
-1 is much lower. The impermeable soils of HLR 9 are ideal for overland flow 

production and the permeable bedrock (i.e. karst) means groundwater and surface waters are 

closely connected (Wolock et al., 2004). While Parola et al. (2007) postulated that streams in 

karst-influenced areas would have smaller dimensions as a result of predicted smaller 

discharges, Agouridis et al. (2011) found this was not the case for the Inner and Outer 

Bluegrass regions of Kentucky, areas dominated by karst.  
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As compared to the regional curves for the Combined HLRs, the HLR 11 regional 

curves would also generate a larger (Abkf=61.9 ft2) channel with a slightly greater width 

(wbkf=33.9 ft) channel with a similar depth (dbkf=1.8 ft) even though the predicted Qbkf of 

227.2 ft3 s-1 is about the same. Like HLR 9, the soils of HLR 11 are impermeable but so is 

the bedrock (Wolock et al., 2004) which explains the larger expected Qbkf value for a 10 mi2 

watershed for HLR 11 as compared to HLR 9. Lastly, compared to the regional curves for 

the Combined HLRs, the HLR 16 regional curves would generate a similar sized channel 

(Abkf=56.5 ft2) that is narrower (wbkf=29.4 ft) and slightly deeper (dbkf=1.8 ft). HLR 16 is 

characterized by impermeable soils like HLR but bedrock like HLR 11; it has steeper 

topography than HLR 9 or HLR 11 (Wolock et al., 2004). As expected, the predicted Qbkf is 

largest for HLR 16 at 290 ft3 s-1 for a 10 mi2 watershed, and the steeper slopes produce larger 

vbkf. values (vbkf=1.8 ft s-1 for HLR 9, 3.12 ft s-1 for HLR 11, and 4.36 ft s-1 for HLR 16) 

resulting in deeper channels due to scouring (Schumm and Khan, 1972). 

Comparison of the regional curves for the three HLRs examined in the EKC to 

those same HLRs on a U.S. wide basis found few statistical differences. No statistical 

differences were found for Qbkf but were for Abkf, wbkf and dbkf. For Abkf, significant 

differences were noted between HLR 11 and U.S. HLR 11. For wbkf, differences were 

present between HLR 16 and U.S. 16. For dbkf, differences were present between HLR 9 and 

U.S. HLR 9 as well as HLR 16 and U.S. HLR 16. In each of these cases, for a 10 mi2 

watershed, the U.S. wide HLRs predicted larger channel dimensions as compared to the 

HLRs in the EKC (Table 4.9). The lack of statistical significance between some HLRs for 

some bankfull parameters suggests designers who are challenged with finding acceptable 
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reference stream sites may look to the same type of HLRs in other parts of the U.S. to 

supplement their datasets for certain bankfull parameters but not all. 

4.2 HYDRAULIC GEOMETRY CURVES 

Hydraulic geometry curves relating bankfull parameters Abkf, wbkf, and dbkf to Qbkf 

were created for the entire EKC region (HLR 9, 11 and 16 combined) and each individual 

HLR region examined in the study (HLR 9, 11 and 16 separately). Due to the low number of 

available active USGS gaged sites, only 24 of the 47 sites (51%) were used: 4 in HLR 9, 11 in 

HRL 11 and 9 in HLR 16 (Table 4.1). For HLR 9, the following sites were used: Site IDs 4, 

8, 9 and 10. Qbkf for these sites ranged from 67 to 3,571 ft3 s-1 with an average value of 1,210 

ft3 s-1 and a median value of 602 ft3 s-1. For HLR 11, the following sites were used: Site IDs 

13, 14, 15, 16, 18, 19, 20, 21, 22, 23 and 24. Qbkf for these sites ranged from 135 to 2,200 ft3 

s-1 with an average value of 687 ft3 s-1 and a median value of 427 ft3 s-1. For HLR 16, the 

following sites were used: Site IDs 29, 30, 31, 32, 33, 40, 43, 46 and 47. Qbkf for these sites 

ranged from 31 to 5,992 ft3 s-1 with an average value of 1,289 ft3 s-1 and a median value of 

110 ft3 s-1. In all instances, the majority of the sites in each individual HLR had smaller 

drainage areas and hence smaller Qbkf values; few sites had large drainage areas and hence 

large Qbkf values. Checking for continuity, the product of the coefficients for wbkf, dbkf and 

vbkf for the combined HLR, HLR 9, HLR 11, and HLR 16 equaled 1.003, 1.020, 1.003, and 

0.999, respectively. The sum of the exponents of wbkf, dbkf and vbkf summed to 1.000, 0.997, 

1.000, and 1.000, respectively.  
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4.2.1 Bankfull Cross-sectional Area  

Table 4.10: Hydraulic geometry curves for bankfull area (Abkf). Abkf is in units of ft2 and Qbkf 

is in units of ft3 s-1. 

HLR Regression Equation R2 

Combined HLR (9, 11 and 16) Abkf=0.47Qbkf
0.92 0.96 

HLR 9 Abkf=1.69Qbkf
0.77 0.99 

HLR 11 Abkf=0.65Qbkf
0.88 0.97 

HLR 16 Abkf=0.34Qbkf
0.93 0.99 
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Figure 4.9: Bankfull area as a function of bankfull discharge for the combined HLR (9, 16 

and 11), HLR 9, HLR 11, and HLR 16. 
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The hydraulic geometry curves for Abkf are presented in Table 4.10 while Figure 4.9 contains 

a graphical representation of the data. All curves exhibited a strong fit with R2 values ranging 

from 0.96 for the combined HLR curve to 0.99 for HLR 9 and 16, individually, indicating 

that Qbkf explains almost all of the variation in Abkf. The combined HLR hydraulic geometry 

curve has an exponent of 0.92. Exponents for the individual HLR hydraulic geometry curves 

(0.77 for HLR 9, 0.88 for HLR 11, and 0.93 for HLR 16) are similar to the 0.8 value found 

by McCandless (2003) for the Alleghany Plateaus and Ridge and Valley and the 0.83 to 0.89 

range found by Brockman (2010) for the Inner and Outer Bluegrass regions of Kentucky. 

4.2.2 Bankfull Width  

The hydraulic geometry curves for wbkf are presented in Table 4.11 while Figure 4.10 

contains a graphical representation of the data. These curves exhibited a good to strong fit 

with R2 values ranging from 0.79 for HLR 11 to 0.92 for HLR 16 indicating that Qbkf 

explains much of the variation in wbkf. The combined HLR hydraulic geometry curve has an 

exponent of 0.48. Exponents for the individual HLR hydraulic geometry curves (0.41 for 

HLR 9, 0.42 for HLR 11, and 0.50 for HLR 16) are similar to the 0.5 value found by 

Leopold et al. (1964) for the U.S., the 0.44 to 0.52 range reported by Brockman (2010), 0.47 

noted by McCandless (2003) for the Allegany Plateau and Valley and Ridge regions of the 

eastern U.S., and 0.52 reported by Hey and Thorne (1986) for gravel bed rivers in the United 

Kingdom. 

4.2.3 Bankfull Mean Depth  

The hydraulic geometry curves for dbkf are presented in Table 4.12 while Figure 4.11 

contains a graphical representation of the data. These curves exhibited a moderate to strong  
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Table 4.11: Hydraulic geometry curves for bankfull width (wbkf). wbkf is in units of ft and Qbkf 

is in units of ft3 s-1. 

HLR Regression Equation R2 

Combined HLR (9, 11 and 16) wbkf=2.56Qbkf
0.48 0.85 

HLR 9 wbkf=4.96Qbkf
0.41 0.81 

HLR 11 wbkf=4.09Qbkf
0.42 0.79 

HLR 16 wbkf=1.97Qbkf
0.50 0.92 
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Figure 4.10: Bankfull width as a function of bankfull discharge for the combined HLR (9, 16 

and 11), HLR 9, HLR 11, and HLR 16. 
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Table 4.12: Hydraulic geometry curves for bankfull mean depth (dbkf). dbkf is in units of ft and 

Qbkf is in units of ft3 s-1. 

HLR Regression Equation R2 

Combined HLR (9, 11 and 16) dbkf=0.19Qbkf
0.43 0.87 

HLR 9 dbkf=0.35Qbkf
0.35 0.62 

HLR 11 dbkf=0.16Qbkf
0.46 0.88 

HLR 16 dbkf=0.17Qbkf
0.43 0.95 
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Figure 4.11: Bankfull depth as a function of bankfull discharge for the combined HLR (9, 16 

and 11), HLR 9, HLR 11, and HLR 16. 
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fit with R2 values ranging from 0.62 for HLR 9 to 0.95 for HLR 16 indicating that Qbkf 

explains a moderate amount to much of the variation in dbkf depending on the HLR. The 

combined HLR hydraulic geometry curve has an exponent of 0.43. Exponents for the 

individual HLR hydraulic geometry curves (0.35 for HLR 9, 0.46 for HLR 11, and 0.43 for 

HLR 16) are similar though slightly higher in some instances to the 0.33 to 0.40 values 

reported by Miller and Davis (2003), 0.40 value reported by Leopold et al. (1964), 0.36 to 

0.39 range reported by Brockman (2010), 0.33 value provided by McCandless (2003), and 

0.39 value noted by Hey and Thorne (1986). 

4.2.4 Bankfull Velocity  

The hydraulic geometry curves for vbkf are presented in Table 4.13 while Figure 4.12 

contains a graphical representation of the data. These curves generally exhibited a poor fit 

with R2 values ranging from 0.16 for the combined HLR 9 to 0.43 for HLR 11; HLR 9 had a 

good fit with an R2 value of 0.88. In all but one case, Qbkf explained a minimal amount of the 

variation in vbkf. The combined HLR hydraulic geometry curve has an exponent of 0.09. 

Exponents for the individual HLR hydraulic geometry curves (0.23 for HLR 9, 0.12 for HLR 

11, and 0.07 for HLR 16) are similar to the 0.10 value reported by both Hey and Thorne 

(1986) and Leopold et al. (1964) and the 0.11 to 0.17 range reported by Brockman (2010); 

however, the exponents computed in this study show more variation. This variation is likely 

due to other factors that affect vbkf such as slope and channel roughness. 

4.2.5 Bankfull Slope  

The hydraulic geometry curves for bankfull (local) slope, Sbkf, are presented in Table 

4.14 while Figure 4.13 contains a graphical representation of the data. All curves exhibited a 
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Table 4.13 Hydraulic geometry curves for bankfull velocity (vbkf). vbkf is in units of ft s-1 and 

Qbkf is in units of ft3 s-1. 

HLR Regression Equation R2 

Combined HLR (9, 11 and 16) vbkf=2.11Qbkf
0.08 0.16 

HLR 9 vbkf=0.59Qbkf
0.23 0.88 

HLR 11 vbkf=1.55Qbkf
0.12 0.43 

HLR 16 vbkf=2.92Qbkf
0.07 0.35 
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Figure 4.12: Bankfull velocity as a function of bankfull discharge for the combined HLR (9, 

16 and 11), HLR 9, HLR 11, and HLR 16.  
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Table 4.14: Hydraulic geometry curves for bankfull slope (Sbkf). Sbkf is in units of ft ft-1 and 

Qbkf is in units of ft3 s-1. 

HLR Regression Equation R2 

Combined HLR (9, 11 and 16) Sbkf=0.06Qbkf
-0.49 0.27 

HLR 9 Sbkf=0.00Qbkf
0.04 1.00 

HLR 11 Sbkf=0.09Qbkf
-0.58 0.34 

HLR 16 Sbkf=0.02Qbkf
-0.13 0.25 
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Figure 4.13: Bankfull (local) slope as a function of bankfull discharge for the combined HLR 

(9, 16 and 11), HLR 9, HLR 11, and HLR 16. 
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poor fit, except HLR 9 which only had two data points yielding an R2 of 1.00, indicating that 

bankfull slope explains little variance in bankfull discharge. HLR 11 had the best fit with a R2 

value of 0.34 while the combined HLR and HLR 16 had R2 values of 0.27 and 0.25, 

respectively. The combined HLR hydraulic geometry curve had an exponent of -0.49 while 

exponents for the individual HLR hydraulic geometry curves were 0.04, -0.58, and -0.13 for 

HLR 9, HLR 11, HLR 16, respectively. The combined HLR and HLR 11 had exponents 

similar to those found by Hey and Thorne (1986), -0.43, and Brockman (2010), -0.35 to -

0.48, while HLR 16 was notably lower. As seen in Figure 4.13, the data are quite scattered 

but display the expected trend of a decrease in slope with an increase in drainage area 

(Schumm, 1977). 

4.2.6 Bankfull Manning’s n  

Table 4.15 shows the equations computed for the combined (HLR 9, 11 and 16), and 

for each individual HLR. A graphical representation is shown in Figure 4.14. All equations, 

with the exception of HLR 9, which had only two data points, had a poor fit, meaning 

Manning’s n explains little variance in bankfull discharge. The combined HLR exhibited an 

R2 of 0.07 while HLR 9, HLR 11, and HLR 16 had R2 values of 1.00, 0.14, and 0.06, 

respectively. The combined HLR hydraulic geometry curve has an exponent of -0.07 while 

exponents for the individual HLR hydraulic geometry curves were 0.23, -0.14, and -0.05 for 

HLR 9, HLR 11, HLR 16, respectively. The exponent for HLR 11 is similar to the value of -

0.2 provided by Leopold et al. (1964) but is lower than the value of -0.8 provided by 

Brockman et al. (2010). The exponents for the combined HLR and HLR 16 are much lower 

than both of these studies. Neither Parola et al. (2005) nor Vesley et al. (2008) included  
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information on riparian  vegetation thus an evaluation of its influence on the resultant 

bankfull Manning’s n trends was not performed.
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Table 4.15: Hydraulic geometry curves for Manning’s n at bankfull (nbkf). nbkf is 

dimensionless. Qbkf is in units of ft3 s-1. 

HLR Regression Equation R2 

Combined HLR (9, 11 and 16) nbkf=0.07Qbkf
-0.07 0.07 

HLR 9 nbkf=0.15Qbkf
0.23 1.00 

HLR 11 nbkf=0.10Qbkf
-0.14 0.14 

HLR 16 nbkf=0.04Qbkf
0.05 0.06 
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Figure 4.14: Bankfull Manning’s n as a function of bankfull discharge for the combined HLR 

(9, 16 and 11), HLR 9*, HLR 11, and HLR 16. HLR 9 only had data available for two points.
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4.2.7 Statistical Comparison 

Results of the statistical comparisons of hydraulic geometry curves between HLRs are 

presented in Table 4.16.  

4.2.7.1 Bankfull Cross-sectional Area  

HLR 9 significantly differed from HLR 11, HLR 16, Combined HLRs, and U.S. HLR 9 

(Figure 4.15) (Table 4.16). The exponent (h=0.77) of the HLR 9 hydraulic geometry curve was 

smaller than the exponents from HLR 11 (h=0.88), HLR 16 (h=0.93), Combined HLRs 

(h=0.92), and U.S. HLR 9 (h=0.83) while the intercept was between 2-5 times larger for HLR 9 

(g=1.69) than all the other hydraulic geometry curves from the EKC region and the U.S. curved 

developed using data from Blackburn-Lynch (2015) (Table 4.17). As seen in Figure 4.15 and 

Table 4.18, the hydraulic geometry curve for HLR 9 predicted larger values for Abkf as compared 

to the other curves, particularly for Qbkf values less than 1,000 ft3 s-1. At 250 ft3 s-1, for example, 

the predicted value of Abkf for HLR 9 is 119 ft2 versus 82 ft2 for HLR 11, 58 ft2 for HLR 16, 76 

ft2 for Combined HLRs, and 71 ft2 for U.S. HLR 9. Caution is recommended when interpreting 

these results as only four data points were used to develop the Abkf hydraulic geometry curves 

for HLR 9.  

4.2.7.2 Bankfull Width 

 For wbkf, HLR 9 differed significantly from U.S. HLR 9; no other significant 

differences were found amongst the hydraulic geometry curves (Figure 4.16) (Table 4.16). HLR 

9 had the smallest exponent (b=0.41) while U.S. HLR 9 had the largest (h=0.51) (Table 4.17). 
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Table 4.16: Results of the comparison of hydraulic geometry curves based on HLR. Ho: No significant differences in slopes or intercepts 

amongst hydraulic geometry equations. Ha: Significant differences in slopes or intercepts amongst hydraulic geometry equations. 

 

Comparison 

Abkf wbkf dbkf vbkf Sbkf nbkf 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

HLR 9 vs. 

Combined HLRs 
0.01 Yes 0.73 No 0.13 No 0.86 No --1 -- --1 -- 

HLR 11 vs. 

Combined HLRs 
0.51 No 0.24 No 0.23 No 0.91 No 0.59 No 0.92 No 

HLR 16 vs. 

Combined HLRs 
0.26 No 0.95 No 0.49 No 0.59 No 0.96 No 0.42 No 

HLR 9 vs. U.S. 

HLR 9 
0.05 Yes 0.05 Yes 0.00 Yes 0.79 No -- -- -- -- 
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Table 4.16 cont’d. 

1Only two data points were available for HLR 9, so comparisons were not made.

Comparison 

Abkf wbkf dbkf vbkf Sbkf nbkf 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

p-

value 

Reject 

  ? 

HLR 11 vs. U.S. 

HLR 11 
0.28 No 0.40 No 0.04 Yes 0.95 No -- -- -- -- 

HLR 16 vs. U.S. 

HLR 16 
0.34 No 0.34 No 0.08 No 0.45 No -- -- -- -- 

HLR 9 vs. HLR 

11 
0.00 Yes 0.26 No 0.92 No 0.10 No -- -- -- -- 

HLR 9 vs. HLR 

16 
0.00 Yes 0.69 No 0.05 Yes 0.05 Yes -- -- -- -- 

HLR 11 vs. HLR 

16 
0.01 Yes 0.17 No 0.11 No 0.64 No 0.67 No 0.45 No 
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Figure 4.15: Comparison of hydraulic geometry relationships for bankfull cross-sectional area. 
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Table 4.17: Comparison of hydraulic geometry curves in the Eastern United States and Appalachian Region where Abkf=gQbkf
h, wbkf=aQbkf

b, 

dbkf=Qbkf
f, vbkf=kQbkf

m, Sbkf=tQbkf
z, and nbkf=xQbkf

y. Qbkf is bankfull discharge (ft3 s-1), Abkf is bankfull cross-sectional area (ft2), wbkf is bankfull 

width (ft), dbkf is bankfull mean depth (ft), vbkf is bankfull velocity (ft s-1), Sbkf is bankfull slope (ft ft-1), and nbkf is bankfull Manning’s 

roughness coefficient (dimensionless). 

Study 

Abkf wbkf dbkf vbkf Sbkf nbkf 

g h R2 a B R2 c f R2 k m R2 t z R2 x y R2 

Combined 

HLRs 
0.47 0.92 0.96 2.56 0.48 0.85 0.19 0.43 0.87 2.11 0.08 0.16 0.06 

-

0.49 
0.27 0.07 

-

0.07 
0.07 

HLR 9 1.69 0.77 0.99 4.96 0.41 0.81 0.35 0.35 0.62 0.59 0.23 0.88 0.00 0.04 1.00 0.15 
-

0.23 
1.00 

HLR 11 0.64 0.88 0.97 4.09 0.42 0.79 0.16 0.46 0.88 1.55 0.12 0.43 0.09 
-

0.58 
0.34 0.10 

-

0.14 
0.14 

HLR 16 0.34 0.93 0.99 1.97 0.50 0.92 0.17 0.43 0.95 2.92 0.07 0.35 0.02 
-

0.13 
0.25 0.04 0.05 0.06 

U.S. HLR 9 0.73 0.83 0.91 2.12 0.51 0.90 0.35 0.32 0.72 1.36 0.17 0.29 -- -- -- -- -- -- 
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Table 4.17 cont’d. 

Study 

Abkf wbkf dbkf vbkf Sbkf nbkf 

g h R2 a B R2 c f R2 k m R2 t z R2 x y R2 

U.S. HLR 11 0.72 0.85 0.93 2.88 0.46 0.87 0.25 0.39 0.79 1.39 0.15 0.31 -- -- -- -- -- -- 

U.S. HLR 16 0.65 0.83 0.93 2.59 0.48 0.88 0.25 0.35 0.80 1.55 0.17 0.35 -- -- -- -- -- -- 

Brockman 

(2010)1 
0.82 0.85 0.94 2.64 0.49 0.94 0.31 0.36 0.84 1.21 0.15 0.32 0.03 

-

0.35 
0.42 0.1 -0.8 0.09 

McCandless 

(2003)2 
0.79 0.80 0.95 2.65 0.47 0.94 0.3 0.33 0.91 -- -- -- -- -- -- -- -- -- 

Leopold et. al 

(1964)3 
-- -- -- -- 0.53 -- -- 0.37 -- -- 0.10 -- -- 

-

0.70 
-- -- -0.2 -- 

Leopold et al. 

(1964)4 
-- -- -- -- 0.50 -- -- 0.40 -- -- 0.10 -- -- -- -- -- -- -- 
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Table 4.17 cont’d. 

Study 

Abkf wbkf dbkf vbkf Sbkf nbkf 

g h R2 a B R2 c f R2 k m R2 t z R2 x y R2 

Hey and Thorne 

(1986)5 
-- -- -- 2.17 0.52 0.96 0.20 0.39 0.86 2.54 0.10 0.79 -- -- -- -- -- -- 

1Combined Inner and Outer Bluegrass Regions of Kentucky 
2Bedrock, cobble and gravel streams in Allegheny Plateau and Valley and Ridge Regions 
3Theoretical equations 
4River in downstream direction 
5Equations developed in metric system. Gravel bed rivers in the United Kingdom with >50% tree cover.
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Table 4.18: Comparison of HLR-based hydraulic geometry curves developed for the EKC and U.S. wide. 

Bankfull 

Parameters 
Study 

Discharge (ft3 s-1) 

50 100 250 500 1,000 2,500 5,000 

Abkf 

Combined HLRs 17 33 76 143 270 628 1,189 

HLR 9 34 59 119 202 345 699 1,192 

HLR 11 20 37 82 152 279 626 1,152 

HLR 16 13 25 58 110 210 492 937 

U.S. HLR 9 19 33 71 127 226 483 858 

U.S. HLR 11 20 36 79 142 255 557 1,003 

U.S. HLR 16 17 30 64 113 201 430 764 

wbkf 

Combined HLRs 17 33 36 51 71 109 153 

HLR 9 25 33 48 63 84 123 163 

HLR 11 21 28 42 56 74 109 146 

HLR 16 14 20 31 44 62 99 139 

U.S. HLR 9 16 22 35 50 72 115 163 

U.S. HLR 11 17 24 37 50 69 105 145 

U.S. HLR 16 17 24 37 51 71 111 154 
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Table 4.18 cont’d. 

Bankfull 

Parameters 
Study 

Discharge (ft3 s-1) 

50 100 250 500 1,000 2,500 5,000 

dbkf 

Combined HLRs 1.0 1.4 2.0 2.8 3.7 5.5 7.4 

HLR 9 1.4 1.8 2.4 3.1 3.9 5.4 6.9 

HLR 11 1.0 1.3 2.0 2.8 3.8 5.9 8.1 

HLR 16 0.9 1.2 1.8 2.5 3.3 4.9 6.6 

U.S. HLR 9 1.2 1.5 2.1 2.6 3.2 4.3 5.3 

U.S. HLR 11 1.2 1.5 2.2 2.8 3.7 5.3 6.9 

U.S. HLR 16 1.0 1.3 1.7 2.2 2.8 3.9 4.9 

vbkf 

Combined HLRs 2.9 3.1 3.3 3.5 3.7 4.0 4.2 

HLR 9 1.5 1.7 2.1 2.5 2.9 3.6 4.2 

HLR 11 2.5 2.7 3.0 3.3 3.6 4.0 4.3 

HLR 16 3.8 4.0 4.3 4.5 4.7 5.1 5.3 

U.S. HLR 9 2.6 3.0 3.5 3.9 4.4 5.1 5.8 

U.S. HLR 11 2.5 2.8 3.2 3.5 3.9 4.5 5.0 

U.S. HLR 16 3.1 3.4 4.0 4.5 5.0 5.9 6.6 
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Table 4.18 cont’d. 

Bankfull 

Parameters 
Study 

Discharge (ft3 s-1) 

50 100 250 500 1,000 2,500 5,000 

Sbkf 

Combined HLRs 0.01 0.00 0.00 0.00 0.00 0.00 0.00 

HLR 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

HLR 11 0.01 0.01 0.00 0.00 0.00 0.00 0.00 

HLR 16 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

U.S. HLR 9 -- -- -- -- -- -- -- 

U.S. HLR 11 -- -- -- -- -- -- -- 

U.S. HLR 16 -- -- -- -- -- -- -- 

nbkf 

Combined HLRs 0.05 0.05 0.05 0.05 0.04 0.04 0.04 

HLR 9 0.06 0.05 0.04 0.04 0.03 0.02 0.02 

HLR 11 0.06 0.05 0.05 0.04 0.04 0.03 0.03 

HLR 16 0.05 0.05 0.05 0.05 0.06 0.06 0.06 

U.S. HLR 9 -- -- -- -- -- -- -- 

U.S. HLR 11 -- -- -- -- -- -- -- 

U.S HLR 16 -- -- -- -- -- -- -- 
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Figure 4.16: Comparison of hydraulic geometry relationships for bankfull width. 

 

HLR 9 had the largest coefficient (a=4.96) of the produced curves. As with Abkf, caution is 

recommended as only four data points were used to construct the HLR 9 hydraulic geometry 

curves. While significant differences were noted between HLR 9 and U.S. HLR 9, these 

differences may be the result of low amounts of data rather than physically based differences 

with HLR 9 (e.g. geology and topography) that could influence bankfull characteristics. The lack 

of significant differences between HLR 9, HLR 11, and HLR 16 indicates that separation of the 

EKC region based on hydrologic landscape units was not warranted. This result was not 
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surprising as Johnson and Fecko (2008) found regional equations, which were developed within 

the same physiographic region, were statistically similar.  

4.2.7.3 Bankfull Mean Depth 

 Significant differences were found between HLR 9 and HLR 16, HLR 9 and U.S. HLR 

9, and HLR 11 and U.S. HLR 11 for the parameter dbkf (Figure 4.17) (Table 4.16). HLR 9 had a 

smaller exponent than HLR 16 (f=0.35 vs f=0.43, respectively) while HLR 16 had a smaller 

coefficient than HLR 9 (c=0.17 vs c=0.35, respectively) (Table 4.17). As seen in Figure 4.19, the 

two curves differed more for lower values of Qbkf but began to converge above 1,000 ft3 s-1. 

Significant differences were noted between HLR 9 and U.S. HLR 9, largely with respect to 
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Figure 4.17: Comparison of hydraulic geometry relationships for bankfull mean depth. 



 

103 

 

 

exponent values. Differences associated with HLR 9, as with Abkf and wbkf, may be the result of 

few data points. HLR 11 had a larger exponent (f=0.46) and smaller coefficient (c=0.16) as 

compared to U.S. HLR 11 (f=0.39, c=0.25). At 250 ft3 s-1, values for dbkf were 2.4 ft for HLR 9, 

2.0 ft for HLR 11, 1.8 ft for HLR 16, and 2.1 ft for U.S. HLR 9 (Table 4.17). 

4.2.7.4 Bankfull Velocity 

 Significant differences were noted only between HLR 9 and HLR 16 for the parameter 

vbkf.. As seen in Figure 4.18 and Table 4.16, the HLR 16 hydraulic geometry curve has a lower 

slope (m=0.07) and a large coefficient (k=2.92) than HLR 9 (m=0.23, k=0.59). The larger Abkf 

values for HLR 9 resulted in smaller vbkf values (i.e. continuity equation). Differences between 

HLR 9 and HLR 16 were more pronounced at lower Qbkf flows (Table 4.18). For a Qbkf of 250 

ft3 s-1, the predicted vbkf for HLR 9 is 2.1 ft s-1 and 4.3 ft s-1 for HLR 16. As previously noted, 

only four data points were used to develop the hydraulic geometry curves for HLR 9, so results 

should be interpreted cautiously. 
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Figure 4.18: Comparison of hydraulic geometry relationships for bankfull velocity. 

4.2.7.5 Bankfull Slope 

 Blackburn-Lynch (2015) did not report Sbkf values, therefore U.S.-wide hydraulic 

geometry curves for this parameter were not determined. Because HLR 9 had only two Sbkf data 

points, comparisons were not made to HLR 9. No significant differences were noted between 

HLR 11, HLR 16, or Combined HLR (Figure 4.19) (Table 4.16). 
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Figure 4.19: Comparison of hydraulic geometry relationships for bankfull slope. 

 

4.2.7.6 Manning’s n 

As with Sbkf, Blackburn-Lynch (2015) did not report nbkf values nor the necessary data to 

compute nbkf using Manning’s equation, therefore U.S.-wide hydraulic geometry curves for nbkf 

were not determined. Because HLR 9 had only two nbkf data points, comparisons were not made 

to HLR 9. No significant differences were noted between HLR 11, HLR 16, or Combined HLR 

(Figure 4.20) (Table 4.16).  
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Figure 4.20: Comparison of hydraulic geometry relationships for bankfull Manning’s n. 

 

4.2.7.7 Hydraulic Geometry Curve Comparison Summary 

Excluding HLR 9, which had only four data points and the results surrounding which 

should be interpreted with caution, statistical differences between hydraulic geometry curves for 

HLRs in the EKC as well as the U.S. wide HLRs were limited to Abkf for HLR 11 and HLR 16 

as well as dbkf for HLR 11 and U.S. HLR 11. The lack of significant differences between HLRs in 

the EKC region indicates that one hydraulic geometry curve for the entire region (e.g. Combined 

HLRs) may be sufficient for stream assessment and natural channel design purposes. However, 

as seen in Table 4.18, the differences in predicted channel dimensions between the different 
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HLRs in the EKC region may be unacceptable to the designer, depending on the size of the 

stream system of interest. For example, at a Qbkf of 50 ft3 s-1, the predicted Abkf for a stream in 

HLR 9 is 34 ft2, 20 ft2 for HLR 11, and 13 ft2 for HLR 16. Hence, the size of a stream in HLR 9 

is 1.7 times larger than one in HLR 11 and 2.6 times larger than one in HLR 16; HLR 11 is 1.5 

times larger than HLR 16. At a Qbkf of 5,000 ft3 s-1, these differences are smaller particularly 

between the closer HLR units of 9 and 11. HLR 9 is only 1.03 times larger than HLR 11 but is 

1.3 times larger than HLR 16; HLR 11 is 1.2 times larger than HLR 16. 

Also important were the lack of statistical differences between the same HLR regions 

using data only within the EKC region and using data throughout the contiguous U.S., 

exempting HLR 9 from the EKC region. The results of this study suggest that designers 

challenged with finding acceptable reference streams within a HLR region, such as in the case of 

significant anthropogenic (e.g. mining, agriculture, urbanization) or natural impacts (e.g. fires, 

volcanic eruptions, floods), may look to the same type of HLR regions located in other 

geographic areas throughout the U.S. for acceptable data. As seen in Table 4.18, the predicted 

Abkf of a stream with a Qbkf of 50 ft3 s-1 is 20 ft2 for both HLR 11 and U.S. HLR 11 and is 13 ft2 

for HLR 16 and 17 ft2 for U.S. HLR 16 (1.3 times larger). At 5,000 ft3 s-1, HLR 11 is 1,152 ft2 

compared to 1,003 ft2 for U.S. HLR 11 (0.87 times smaller) and is 937 ft2 for HLR 16 and 764 ft2 

for U.S. HLR 16 (0.82 times smaller). Important to note is that this study did not conduct a 

statistical comparison between U.S.-wide HLRs. Therefore, utilizing data from non-similar 

HLRs to supplement hydraulic geometry curve datasets is not recommended at this time.  
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CHAPTER 5: CONCLUSIONS 

Within the EKC, 27 streams were surveyed, in the field, to determine their bankfull 

parameters of cross-sectional area, width, and mean depth. This dataset was supplemented using 

bankfull parameter values from Parola et al. (2005), Vesely et al. (2008), and Agouridis (2012). 

These data were used to develop regional curves and hydraulic geometry curves for three 

individual HLRs within the EKC (HLR 9, HLR 11, and HLR 16) as well as one for the entire 

EKC (Combined HLRs). U.S. wide regional curves and hydraulic geometry curves were also 

created using data from Blackburn-Lynch (2015); only sites with drainage areas less than 250 mi2 

were used as this was the upper range for the sites examined in the EKC. 

5.1 REGIONAL CURVES 

Results indicate that separating the EKC based on HLR for the development of regional 

curves was beneficial as in most instances R2 improved over the Combined HLRs and significant 

differences were present between one or more of the HLR regions within the EKC (i.e. why R2 

of individual HLRs was generally higher than Combined HLRs). For Qbkf, HLR 16 differed 

significantly from HLR 9 and HLR 11. For Abkf, HLR 11 differed significantly from HLR 9 and 

HLR 16. Little variation (i.e. no significant differences) were present between the HLRs in the 

EKC for wbkf. For dbkf, significant differences were noted between HLR 9 and HLR 16 as well as 

HLR 11 and HLR 16. Differences between the HLRs within the EKC were greatest for smaller 

drainage areas, which are more characteristic of the size of watersheds in which stream 

restoration projects occur (Alexander and Allan, 2006; Mecklenburg and Fay, 2011).  

Using the HLR specific regional curves predicted different channel sizes and dimensions. 

The HLR 9 regional curves would generate a larger and wider channel, then an average of all 
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three HLRs, even for the lowest predicted Qbkf of the HLRs. The impermeable soils of HLR 9 

are ideal for overland flow production, and the permeable bedrock (i.e. karst) means 

groundwater and surface waters are closely connected (Wolock et al., 2004). The HLR 11 

regional curves would also generate a larger channel with a slightly greater width even though the 

predicted Qbkf  is about the same as the average for the EKC. Like HLR 9, the soils of HLR 11 

are impermeable but so is the bedrock (Wolock et al., 2004) which explains the larger expected 

Qbkf value for HLR 11 as compared to HLR 9. Lastly, the HLR 16 regional curves would 

generate a similar sized channel to the average for the EKC but one that is narrower and slightly 

deeper. HLR 16 is characterized by impermeable soils like HLR but bedrock like HLR 11; it has 

steeper topography than HLR 9 or HLR 11 (Wolock et al., 2004). As expected, the predicted 

Qbkf is largest for HLR 16, and the steeper slopes produce larger vbkf. values as compared to the 

other EKC HLRs resulting in deeper channels due to scouring (Schumm and Khan, 1972). 

Comparison of the regional curves for the three HLRs examined in the EKC to those 

same HLRs on a U.S. wide basis found few statistical differences. No statistical differences were 

found for Qbkf but were for Abkf, wbkf and dbkf. For Abkf, significant differences were noted 

between HLR 11 and U.S. HLR 11. For wbkf, differences were present between HLR 16 and U.S. 

16. For dbkf, differences were present between HLR 9 and U.S. HLR 9 as well as HLR 16 and 

U.S. HLR 16. In each of these cases, the U.S. wide HLRs predicted larger channel dimensions as 

compared to the HLRs in the EKC. The lack of statistical significance between some HLRs for 

some bankfull parameters suggests designers who are challenged with finding acceptable 

reference stream sites may look to the same type of HLRs in other parts of the U.S. to 

supplement their datasets for certain bankfull parameters but not all. 
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5.2 HYDRAULIC GEOMETRY CURVES 

Excluding HLR 9, which had only four data points and the results surrounding which 

should be interpreted with caution, statistical differences between hydraulic geometry curves for 

HLRs in the EKC as well as the U.S. wide HLRs were limited to Abkf for HLR 11 and HLR 16 

as well as dbkf for HLR 11 and U.S. HLR 11. The lack of significant differences between HLRs in 

the EKC region indicates that one hydraulic geometry curve for the entire region (e.g. Combined 

HLRs) may be sufficient for stream assessment and natural channel design purposes. However, 

the differences in predicted channel dimensions between the different HLRs in the EKC region 

may be unacceptable to the designer, depending on the size of the stream system of interest. 

Also important were the lack of statistical differences between the same HLR regions 

using data only within the EKC region and using data throughout the contiguous U.S., 

exempting HLR 9 from the EKC region. The results of this study suggest that designers 

challenged with finding acceptable reference streams within a HLR region, such as in the case of 

significant anthropogenic (e.g. mining, agriculture, urbanization) or natural impacts (e.g. fires, 

volcanic eruptions, floods), may look to the same type of HLR regions located in other 

geographic areas throughout the U.S. for acceptable data. Important to note is that this study did 

not conduct a statistical comparison between U.S.-wide HLRs. Therefore, utilizing data from 

non-similar HLRs to supplement hydraulic geometry curve datasets is not recommended at this 

time.  
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CHAPTER 6: FUTURE WORK 

This research was challenged by the lack of long-term active USGS gages in the EKC. 

Development of hydrologic geometry curves requires the development of a robust stream gaging 

network that encompassing a wide range of stream sizes (e.g. small headwater streams to rivers). 

When determining where to place a stream gage, consideration should be given to the HLR in 

which the gage will be located. For instance, HLR 9 had quite limited discharge data. Future 

work should also consider the effect of riparian vegetation type (e.g. grass, forested, mixture of 

grass and forest) on bankfull channel dimensions as grouped by HLR. Because of the different 

nature of soil and bedrock permeability between the examined HLRs, as well as general 

topographic slope, it is possible that the influence of vegetation differs between the HLRs.  
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APPENDIX A: CROSS-SECTIONAL DATA
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(a) 

 
(b) 

 

Figure A.1: (a) Upstream and (b) downstream views of Site ID 2: Rose Creek (HLR 9). 
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Elevations in all tables are relative to HI=105 ft. 

 

Table A.1: Cross-sectional survey data for Site ID 2: Rose Creek, XSEC 1 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 0.46 104.54  

2 0.66 104.34  

2.5 2.40 102.60  

3 2.65 102.35  

3.5 3.37 101.63  

4 3.64 101.36  

4.5 4.37 100.63  

5 4.80 100.20  

6 5.10 99.90  

7 4.88 100.12  

8 4.86 100.14  

9 4.84 100.16 BKF 

10 5.09 99.91  

10.5 5.43 99.57 LEW 

11 5.92 99.08  

12 6.11 98.89  

13.5 6.01 98.99  

15 6.08 98.92  

17 6.03 98.97  

19 5.84 99.16  

20 5.65 99.35 REW 

22 5.52 99.48  

24 5.26 99.74  

26 5.00 100.00  

28 4.78 100.22  

30 4.75 100.25  

32 4.56 100.44  

34 4.90 100.10  

35 4.41 100.59  

36 4.00 101.00  

38 3.76 101.24  

40 3.53 101.47  

42 3.35 101.65  

44 3.00 102.00  

45 2.85 102.15  
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Figure A.2: Site ID 2, Rose Creek, XSEC 1 (HLR 9).
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Table A.2: Cross-sectional survey data for Site ID 2: Rose Creek, XSEC 2 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

1 0.05 104.95  

2 0.57 104.43  

3 0.98 104.02  

4 1.55 103.45  

5 2.14 102.86  

6 2.74 102.26  

7 3.21 101.79  

8 3.59 101.41  

9 3.85 101.15  

10 4.18 100.82  

11 4.76 100.24  

12 5.61 99.39 LEW 

13 5.95 99.05  

14.5 6.08 98.92  

16.5 5.91 99.09  

18.5 5.58 99.42  

20.5 5.40 99.60  

22.5 5.23 99.77  

24.5 5.28 99.72  

26.5 5.21 99.79  

28.5 5.11 99.89  

30.5 5.02 99.98  

32.5 5.06 99.94  

33.5 4.64 100.36  

34.5 4.18 100.82 BKF 

36 3.88 101.12  

37 3.21 101.79  

38 2.91 102.09  

39 2.72 102.28  

40 2.67 102.33  

41 2.35 102.65  
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Figure A.3: Site ID 2, Rose Creek, XSEC 2 (HLR 9).



 

118 

 

 

 

 

Figure A.4: Downstream view of Site ID 3: USGS gage 03250150 Indian Creek (HLR 9). 
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Table A.3: Cross-sectional survey data for Site ID 3: USGS gage 03250150 Indian Creek near 

Owingsville, KY, XSEC 1 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 6.08 98.92  

2 6.92 98.08  

4 7.35 97.65  

6 7.67 97.33  

8 8.10 96.90  

8.4 8.49 96.51  

8.8 8.75 96.25  

10.3 8.33 96.67  

11.3 8.19 96.81  

12 8.72 96.28  

14 9.13 95.87  

15 9.41 95.59  

16 9.50 95.50  

17 9.56 95.44  

18 9.59 95.41  

19 9.66 95.34  

20 9.65 95.35  

21 9.56 95.44  

22 9.59 95.41  

23 9.59 95.41  

24 9.49 95.51  

25 9.35 95.65  

26 9.01 95.99  

27 9.05 95.95  

28 8.96 96.04  

29 8.8 96.2  

29.6 8.03 96.97 BKF 

31 8.17 96.83  

32 8.02 96.98  

33 7.76 97.24  

34 7.36 97.64  

35 6.58 98.42  

36 6.25 98.75  

37 6.02 98.98  
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Figure A.5: Site ID 3, USGS gage 03250150 Indian Creek, XSEC 1 (HLR 9).
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Table A.4: Cross-sectional survey data for Site ID 3: USGS gage 03250150 Indian Creek near 

Owingsville, KY, XSEC 2 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 3.58 101.42  

1 3.67 101.33  

1.5 3.83 101.17  

2 4.36 100.64  

2.5 4.60 100.40 BKF 

3 5.34 99.66  

3.2 6.08 98.92  

3.8 6.33 98.67  

4 6.47 98.53  

5 6.62 98.38  

6 6.61 98.39  

7 6.57 98.43  

7.5 6.60 98.40  

8 6.59 98.41  

9 6.62 98.38  

10 6.67 98.33  

11 6.69 98.31  

12 6.57 98.43  

13 6.59 98.41  

13.5 5.56 99.44  

14 5.32 99.68  

15 5.40 99.60  

16 5.30 99.70  

17 4.82 100.18  

18 4.61 100.39 BKF 

20 4.76 100.24  

22 4.68 100.32  

23 4.81 100.19  

24 4.90 100.10  

26 4.74 100.26  

28 4.75 100.25  

30 4.23 100.77  

32 4.93 100.07  

34 4.95 100.05  

36 5.11 99.89  

38 5.34 99.66  

40 5.38 99.62  



 

122 

 

Table A,4: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

42 5.29 99.71  

44 4.74 100.26  

45 4.57 100.43  
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Figure A.6: Site ID 3, USGS gage 03250150 Indian Creek, XSEC 2 (HLR 9).
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 (a)  

 (b) 
(b) 

 

Figure A.7: (a) Upstream and (b) downstream views of Site ID 4: USGS gage 03250322 

Rock Lick Creek (HLR 9). 
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Table A.5: Cross-sectional survey data for Site ID 4: USGS gage 03250322 Rock Lick Creek 

near Sharkey, KY, XSEC 1 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

1 3.32 101.68  

2.5 3.56 101.44  

4 4.89 100.11  

5 5.82 99.18  

6 6.32 98.68  

7 6.64 98.36  

8 6.78 98.22  

9 7.01 97.99  

10 7.36 97.64  

11 7.41 97.59  

12 7.43 97.57  

12.5 7.46 97.54  

13 7.76 97.24  

14 8.33 96.67  

15 8.66 96.34  

15.4 9.30 95.70  

17 9.45 95.55  

18 9.46 95.54  

19 9.63 95.37  

20 10.30 94.70  

21 9.99 95.01  

22 9.98 95.02  

23 10.40 94.60  

24 10.38 94.62  

25 10.32 94.68  

26 10.15 94.85  

27 9.77 95.23  

28 9.60 95.40  

28.8 9.31 95.69  

29.8 8.53 96.47  

31 7.40 97.60  

32 7.11 97.89 BKF 

33 7.18 97.82  

34 7.22 97.78  

35 6.91 98.09  

36 6.54 98.46  

37 6.04 98.96  
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Table A.5: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

38 5.83 99.17  

39 5.71 99.29  

40 5.56 99.44  

41 5.35 99.65  

42 5.03 99.97  

43 4.89 100.11  

44 4.54 100.46  

45 4.41 100.59  

46 4.09 100.91  
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Figure A.8: Site ID 4, USGS gage 03250322 Rock Lick Creek, XSEC 1 (HLR 9).
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Table A.6: Cross-sectional survey data for Site ID 4: USGS gage 03250322 Rock Lick Creek 

near Sharkey, KY, XSEC 2 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

1 5.45 99.55  

2 5.53 99.47  

3 5.92 99.08  

4 6.40 98.60  

5 6.74 98.26  

6 7.25 97.75  

7 7.57 97.43  

8 7.86 97.14  

9 8.20 96.80 BKF 

9.5 8.79 96.21  

10 9.15 95.85  

11 10.30 94.70  

12 11.25 93.75  

13 11.69 93.31  

14 11.68 93.32  

15 11.69 93.31  

16 11.52 93.48  

17 11.46 93.54  

18 11.29 93.71  

19 11.56 93.44  

20 11.57 93.43  

21 11.60 93.40  

22 11.66 93.34  

23 11.62 93.38  

24 11.38 93.62  

24.5 10.76 94.24  

25.5 9.53 95.47  

27 9.21 95.79  

28 8.75 96.25  

29 8.05 96.95  

30 7.61 97.39  

31 7.35 97.65  

32 6.97 98.03  

33 6.88 98.12  

34 6.51 98.49  

35 6.33 98.67  

36 6.10 98.90  
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Table A.6: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

37 5.85 99.15  

38 5.66 99.34  

39 5.22 99.78  

40 5.03 99.97  
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Figure A.9: Site ID 4, USGS gage 03250322 Rock Lick Creek, XSEC 2 (HLR 9).
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(a)  

  
(b) 

 

Figure A.10: (a) Upstream and (b) downstream views of Site ID 5: Storey Branch (HLR 9). 
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Table A.7: Cross-sectional survey data for Site ID 5: Storey Branch, XSEC 1 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 5.00 100.00  

3 5.23 99.77  

4 5.37 99.63  

5 6.71 98.29  

6 7.25 97.75  

7 8.09 96.91  

8 8.64 96.36  

9 9.84 95.16  

10 11.64 93.36 BKF 

11.5 11.97 93.03  

13 11.96 93.04  

15 12.14 92.86  

17 12.36 92.64  

19 12.54 92.46  

21 12.61 92.39  

23 12.67 92.33  

25 12.71 92.29  

27 12.68 92.32  

29 12.75 92.25  

31 12.51 92.49  

33 12.40 92.60  

37 12.39 92.61  

39 11.45 93.55 REW 

40 10.20 94.80  

41 8.83 96.17  

42 5.99 99.01  
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Figure A.11: Site ID 5, Storey Branch, XSEC 1 (HLR 9).
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Table A.8: Cross-sectional survey data for Site ID 5: Storey Branch, XSEC 2 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 4.94 100.06  

2 4.75 100.25  

4 4.54 100.46  

5 4.64 100.36  

5.5 5.15 99.85  

6 6.35 98.65  

6.5 6.88 98.12  

7 7.82 97.18  

8 9.82 95.18  

9 11.44 93.56 BKF 

11 11.90 93.10  

13 12.15 92.85  

15 12.31 92.69  

17 12.43 92.57  

19 12.45 92.55  

21 12.42 92.58  

23 12.45 92.55  

25 12.45 92.55  

27 12.58 92.42  

29 12.59 92.41  

31 12.74 92.26  

33 12.57 92.43  

35 12.23 92.77  

36 11.61 93.39 REW 

36.5 10.15 94.85  

37 9.75 95.25  

38 7.65 97.35  

39 6.31 98.69  
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Figure A.12: Site ID 5, Storey Branch, XSEC 2 (HLR 9).
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(a)  

(b) 

 

Figure A.13: (a) Upstream and (b) downstream views of Site ID 6: USGS gage 03237900 

Cabin Creek (HLR 9). 
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Table A.9: Cross-sectional survey data for Site ID 6: USGS gage 03237900 Cabin Creek near 

Tollesboro, KY, XSEC 1 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 2.53 102.47  

2 3.12 101.88  

3 3.95 101.05  

4 4.89 100.11  

6 5.30 99.70  

8 5.11 99.89  

10 5.31 99.69  

12 6.09 98.91  

13 6.70 98.30  

14 7.15 97.85  

15 7.72 97.28  

17 7.96 97.04  

19 8.20 96.80 LEW 

21 8.43 96.57  

23 8.51 96.49  

25 8.30 96.70  

26 8.15 96.85  

28 8.49 96.51  

29 8.75 96.25  

30 8.88 96.12  

31 8.95 96.05  

32 9.95 95.05  

33 9.97 95.03  

34 9.90 95.10  

36 9.88 95.12  

37 9.81 95.19  

38 9.06 95.94  

39 9.15 95.85  

40 9.32 95.68  

41 9.39 95.61  

42 9.60 95.40  

43 9.75 95.25  

44 9.80 95.20  

45 10.09 94.91  

46 10.15 94.85  

47 10.15 94.85  

48 10.11 94.89  
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Table A.9 cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

49 10.03 94.97  

50 9.85 95.15  

51 9.79 95.21  

52 9.74 95.26  

53 9.62 95.38  

54 9.34 95.66  

55 9.03 95.97  

56 9.01 95.99  

57 9.00 96.00  

58 8.95 96.05  

59 8.12 96.88  

59.5 7.65 97.35  

60 6.24 98.76  

61 5.69 99.31 BKF 

62 6.51 99.48  

64 5.28 99.72  

66 4.95 100.05  

68 4.19 100.81  

69 3.68 101.32  

70 3.07 101.93  

71.5 2.17 102.83  
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Figure A.14: Site ID 6, USGS gage 03237900 Cabin Creek, XSEC 1 (HLR 9).
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Table A.10: Cross-sectional survey data for Site ID 6: USGS gage 03237900 Cabin Creek 

near Tollesboro, KY, XSEC 2 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

2 2.11 102.89  

4 2.29 102.71  

6 2.97 102.03 BKF 

7 4.00 101.00  

8 4.45 100.55  

9 5.00 100.00  

10 5.36 99.64  

12 5.59 99.41  

14 5.87 99.13  

15 6.26 98.74  

16 6.46 98.54  

18 6.64 98.36  

20 6.76 98.24  

21 6.77 98.23  

23 7.07 97.93  

24 7.01 97.99  

25 7.27 97.73  

26 7.54 97.46  

27 7.83 97.17  

28 7.78 97.22  

29 7.72 97.28  

30 7.51 97.49  

31 7.19 97.81  

32 7.09 97.91  

33 7.18 97.82  

34 7.19 97.81  

35 7.01 97.99  

36 7.00 98.00  

37 6.93 98.07  

38 6.90 98.10  

39 6.87 98.13  

40 6.28 98.72  

41 6.23 98.77  

42 6.16 98.84  

43 6.09 98.91  

45 6.01 98.99  

47 5.83 99.17  
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Table A.10: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

48 5.56 99.44  

49 5.29 99.71  

50 4.81 100.19  

51 4.32 100.68  

53 3.60 101.40  

55 2.54 102.46  

57 1.28 103.72  

58 0.77 104.23  



 

142 

 

 
 

 

Figure A.15: Site ID 6, USGS gage 03237900 Cabin Creek, XSEC 2 (HLR 9).
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(a)  

  

 
(b) 

 

Figure A.16: (a) Upstream and (b) downstream views of Site ID 7: USGS gage 03250000 

Triplett Creek (HLR 9). 
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Table A.11: Cross-sectional survey data for Site ID 7: USGS gage 03250000 Triplett Creek at 

Morehead, KY, XSEC 1 (HLR 9).  

Station (ft) FS (ft) Elevation (ft) Notes 

1 0.50 104.50  

3 1.24 103.76  

4 1.42 103.58  

5.5 1.95 103.05  

6.5 2.42 102.58  

7 2.90 102.10  

8.5 3.73 101.27 LEW 

10 4.29 100.71  

11.5 4.75 100.25  

13 5.16 99.84  

14.5 3.77 99.23  

16.5 5.82 99.18  

18.5 5.75 99.25  

20.5 5.92 99.08  

22.5 5.95 99.05  

24.5 5.87 99.13  

27 5.84 99.16  

29 5.90 99.10  

31 5.89 99.11  

33 5.87 99.13  

35 5.89 99.11  

37 5.92 99.08  

39 5.91 99.09  

41 5.90 99.10  

43 5.89 99.11  

44.5 5.62 99.38  

45.5 5.22 99.78  

47 5.00 100.00  

49 4.73 100.27  

51 4.61 100.39  

54 4.56 100.44  

57 4.56 100.44  

60 4.84 100.16  

62 5.18 99.82  

64 5.51 99.49  

66 5.54 99.46  

68 5.33 99.67  
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Table A.11: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

70 5.08 99.92  

72 4.69 100.31  

74 3.81 101.19 REW 

76 3.29 101.71  

78 2.06 102.94 BKF 

80 1.35 103.65  

81 0.91 104.09  

82 0.63 104.37  
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Figure A.17: Site ID 7, USGS gage 03250000 Triplett Creek, XSEC 1 (HLR 9).
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Table A.12: Cross-sectional survey data for Site ID 7: USGS gage 03250000 Triplett Creek at 

Morehead, KY, XSEC 2 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 1.14 103.86  

2 1.63 103.37  

3 2.27 102.73  

4 3.32 101.68  

5 3.87 101.13 LEW 

6.5 4.55 100.45  

8 4.79 100.21  

10 4.82 100.18  

12 4.83 100.17  

14 4.85 100.15  

15 5.40 99.60  

17 5.41 99.59  

19 5.42 99.58  

21 5.43 99.57  

24 5.44 99.56  

26 5.46 99.54  

29 5.49 99.51  

31 5.52 99.48  

33 5.54 99.46  

36 5.60 99.40  

39 5.65 99.35  

41 5.66 99.34  

43 5.62 99.38  

45 5.24 99.76  

47 5.03 99.97  

49 5.07 99.93  

52 5.42 99.58  

54 5.70 99.30  

56 5.80 99.20  

59 5.82 99.18  

51 5.75 99.24  

54 5.79 99.54  

57 5.78 99.91  

60 5.76 100.03  

63 5.46 100.15  

74 5.09 99.85  

76 4.97 100.33  
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Table A.12: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

78 4.85 100.15  

80 5.15 99.85  

82 4.67 100.33  

84 4.85 100.15  

86 4.39 100.61  

87 4.11 100.89 REW 

88 3.38 101.62  

89.5 2.85 102.15  

90.5 2.60 102.4  

92 2.31 102.69  

93 2.00 103 BKF 

94 1.23 103.77  

95 0.89 104.11  

96 0.25 104.75  
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Figure A.18: Site ID 7, USGS gage 03250000 Triplett Creek, XSEC 2 (HLR 9).
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Figure A.19: Upstream view of Site ID 9: USGS gage 03250100 North Fork Triplett (HLR 

9). 
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Table A.13: Cross-sectional survey data for Site ID 9: USGS gage 03250100 North Fork 

Triplett near Morehead, KY, XSEC 1 (HLR 9). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 0.30 104.70  

2 0.80 104.20  

4 1.20 103.80  

6 1.48 103.52  

8 1.72 103.28  

10 2.30 102.70  

12 2.40 102.60  

14 2.22 102.78  

16 2.64 102.36  

18 2.83 102.17  

20 2.51 102.49  

21 2.75 102.25  

22 2.99 102.01  

23 3.09 101.91  

24 3.24 101.76  

25 3.63 101.37  

26 4.09 100.91  

26.8 5.08 99.92  

27.5 5.40 99.60  

28 5.70 99.30  

30 6.50 98.50  

32 6.88 98.12  

34 7.19 97.81  

36 7.45 97.55  

28 7.74 97.26  

40 7.80 97.20  

42 7.83 97.17  

44 8.04 96.96  

46 8.49 96.51  

48 8.52 96.48  

50 8.90 96.10  

52 9.31 95.69  

54 9.54 95.46  

56 9.62 95.38  

58 9.43 95.57  

60 9.42 95.58  

62 9.25 95.75  
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Table A.13: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

64 9.30 95.70  

66 9.26 95.74  

68 8.73 96.27  

70 8.78 96.22  

72 8.60 96.40  

74 8.26 96.74  

76 8.60 96.40  

78 8.35 96.65  

80 8.09 96.91  

82 7.86 97.14  

84 7.63 97.37  

86 7.52 97.48  

88 7.50 97.50  

90 7.46 97.54  

92 7.46 97.54  

94 7.39 97.61  

96 7.32 97.68  

98 7.35 97.65  

100 7.33 97.67  

102 7.18 97.82  

104 6.98 98.02  

106 6.78 98.22  

108 6.60 98.40  

110 6.54 98.46  

112 6.42 98.58  

114 6.45 98.55  

116 6.37 98.63  

118 6.25 98.75 BKF 

120 6.30 98.70  

121 6.24 98.76  

122 5.62 99.38  

123 3.34 101.66  

124 2.09 102.91  
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Figure A.20: Site ID 9, USGS gage 03250100 North Fork Triplett, XSEC 1 (HLR 9).
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 (a)  

 

 

 

 

 

 

 

 

 

 

 

(b) 

 

Figure A.21: (a) Upstream and (b) downstream views of Site ID 12: UT KY-191 Mile 5 

(HLR 11). 
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Table A.14: Cross-sectional survey data for Site ID 12: UT KY-191 Mile 5, XSEC 1 (HLR 

11). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 5.29 99.71  

1 5.95 99.05  

2 6.64 98.36  

3 6.92 98.08  

4 7.43 97.57  

5 7.98 97.02  

6 7.98 97.02  

7 8.79 96.21  

8 9.45 95.55  

9 10.11 94.89  

10 10.64 94.36  

10.5 10.80 94.20 BKF 

11 11.59 93.41 LEW 

13 11.70 93.30  

15 11.51 93.49  

17 11.47 93.53  

19 11.40 93.60  

21 11.35 93.65 REW 

22 10.76 94.24  

23 10.59 94.41  

24 9.88 95.12  

25 8.98 96.02  

26 8.25 96.75  

27 7.40 97.60  

28 6.34 98.66  

29 5.65 99.35  

30 4.67 100.33  

31 4.26 100.74  

32 3.85 101.15  

33 3.65 101.35  

34 3.53 101.47  
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Figure A.22: Site ID 12, UT KY-191 Mile 5, XSEC 1 (HLR 11).
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(a)  

   

 
(b) 

 

Figure A.23: (a) Upstream and (b) downstream views of Site ID 17: USGS gage 03216370 

Big Sinking Creek (HLR 11). 
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Table A.15: Cross-sectional survey data for Site ID 17: USGS gage 03216370 Big Sinking 

Creek near Aden, KY, XSEC 1 (HLR 11). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 1.09 103.91  

1 1.34 103.66  

2 2.10 102.90  

3 2.96 102.04 LEW 

4 3.31 101.69  

5 4.52 100.48  

6 4.82 100.18  

7 5.00 100.00  

9 5.22 99.78  

11 5.78 99.22  

13 5.79 99.21  

15 5.96 99.04  

17 6.21 98.79  

18 6.32 98.68  

19 6.27 98.73  

20 6.42 98.58 BKF 

22 6.38 98.62  

24 6.21 98.79  

25 6.77 98.23  

27 5.60 99.40  

29 5.51 99.49  

31 5.41 99.59  

33 5.23 99.77  

35 5.04 99.96  

37 5.15 99.85  

39 4.95 100.05  

41 4.79 100.21 REW 

43 4.73 100.27  

45 4.56 100.44  

46 4.22 100.78  

47 3.88 101.12  

48 3.50 101.50  

49 3.25 101.75  

50 3.17 101.83  

51 3.00 102.00  

52 2.10 102.90  
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Figure A.24: Site ID 17, USGS gage 03216370 Big Sinking Creek, XSEC 1 (HLR 11).
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 (a)    (b) 

 

Figure A.25: (a) Upstream and (b) downstream views of Site ID 19: USGS gage 03404900 

Lynn Camp (HLR 11). 
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Table A.16: Cross-sectional survey data for Site ID 19: USGS gage 03404900 Lynn Camp at 

Corbin, KY, XSEC 1 (HLR 11).  

Station (ft) FS (ft) Elevation (ft) Notes 

0 1.33 103.67  

2 2.45 102.55  

4 3.49 101.51  

6 4.41 100.59  

8 5.41 99.59  

10 6.25 98.75  

11 6.90 98.10  

11.8 7.44 97.56  

12.2 9.20 95.80  

12.8 9.60 95.40 LEW 

14 9.68 95.32  

16 9.69 95.31  

18 9.78 95.22  

20 9.76 95.24  

22 9.75 95.25  

24 9.76 95.24  

26 9.89 95.11  

27 9.98 95.02  

29 9.87 95.13  

30 9.50 95.50  

32 9.62 95.38  

34 9.64 95.36  

36 9.67 95.33  

38 9.70 95.30  

40 9.72 95.28  

42 9.80 95.20  

44 9.83 95.17  

46 9.75 95.25  

48 9.83 95.17  

50 9.85 95.15  

52 9.99 95.01  

54 10.03 94.97  

56 10.12 94.88  

58 10.16 94.84  

60 10.25 94.75  

62 10.19 94.81  

64 10.29 94.71  
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Table A.16: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

65 10.14 94.86  

66 10.13 94.87  

68 9.95 95.05  

70 9.99 95.01  

72 9.96 95.04  

74 9.93 95.07  

75 9.81 95.19  

76 9.67 95.33  

77 9.40 95.60 REW 

78 8.24 96.76  

79 7.40 97.60  

80 7.20 97.80 BKF 

82 7.23 97.77  

84 7.18 97.82  

86 7.21 97.79  

88 7.08 97.92  

90 6.61 98.39  

92 5.89 99.11  

94 4.95 100.05  

96 4.18 100.82  

98 3.50 101.50  

100 2.59 102.41  
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Figure A.26: Site ID 1, USGS gage 03404900 Lynn Camp, XSEC 1 (HLR 11).
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Table A.17: Cross-sectional survey data for Site ID 19: USGS gage 03404900 Lynn Camp at 

Corbin, KY, XSEC 2 (HLR 11). 

Station (ft) FS (ft) Elevation (ft) Notes 

1 0.51 104.49  

3 1.60 103.40  

5 2.73 102.27  

7 4.29 100.71  

9 5.39 99.61  

11 5.75 99.25  

13 6.68 98.32  

14 7.29 97.71 BKF 

14.5 8.09 96.91  

15 9.17 95.83 LEW 

17 9.53 95.47  

19 9.44 95.56  

21 9.56 95.44  

23 9.59 95.41  

25 9.69 95.31  

27 9.65 95.35  

29 9.56 95.44  

31 9.48 95.52  

33 9.42 95.58  

35 9.38 95.62  

37 9.36 95.64  

39 9.41 95.59  

41 9.49 95.51  

43 9.50 95.50  

45 9.62 95.38  

47 9.57 95.43  

49 9.58 95.42  

51 9.55 95.45  

53 9.42 95.58  

55 9.36 95.64  

57 9.35 95.65  

59 9.36 95.64  

61 9.46 95.54  

63 9.49 95.51  

65 9.60 95.40  

67 9.56 95.44  

69 9.48 95.52  
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Table A.17: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

71 9.52 95.48  

73 9.74 95.26  

75 9.71 95.29  

77 9.61 95.39  

79 9.22 95.78  

81 9.02 95.98  

83 9.18 95.82  

85 8.97 96.03 REW 

85.5 7.38 97.62  

87 6.78 98.22  

89 5.93 99.07  

91 5.24 99.76  

93 4.64 100.36  

95 3.92 101.08  

97 2.95 102.05  

99 2.01 102.99  

101 1.03 103.97  
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Figure A.27: Site ID 19, USGS gage 03404900 Lynn Camp, XSEC 2 (HLR 11).
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Figure A.28: Upstream view of Site ID 22: USGS gage 03282040 Sturgeon Creek (HLR 11). 
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Table A.18: Cross-sectional survey data for Site ID 22: USGS gage 03282040 Sturgeon Creek 

near Cressmont, KY, XSEC 1 (HLR 11).  

Station (ft) FS (ft) Elevation (ft) Notes 

0 1.79 103.21  

2 2.10 102.90  

3 2.70 102.30  

4 3.11 101.89  

5 3.45 101.55  

5.5 4.43 100.57  

6 4.92 100.08  

7 5.52 99.48  

8 6.00 99.00  

9 6.35 98.65  

10 6.74 98.26  

11 6.95 98.05  

12 6.96 98.04  

14 7.15 97.85  

16 7.34 97.66  

17 7.69 97.31  

18 7.75 97.25  

20 7.85 97.15  

22 7.89 97.11  

24 8.02 96.98  

25 8.30 96.70  

27 8.46 96.54  

29 8.59 96.41  

31 8.62 96.38  

32 8.84 96.16  

33 8.90 96.10  

35 8.90 96.10  

37 8.89 96.11  

40 8.85 96.15  

42 8.74 96.26  

44 8.86 96.14  

46 8.57 96.43  

48 8.56 96.44  

50 8.22 96.78  

51 8.13 96.87  

52 7.92 97.08  

53 7.65 97.35  
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Table A.18: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

54 7.77 97.23  

55 7.64 97.36  

56 7.36 97.64  

59 6.88 98.12  

61 6.49 98.51  

63 6.42 98.58  

65 6.37 98.63  

66 6.17 98.83  

67 6.25 98.75  

68 5.93 99.07  

69 5.24 99.76 BKF 

70 4.73 100.27  

72 4.52 100.48  

74 3.04 101.96  

75 2.39 102.61  

76 2.09 102.91  

80 1.84 103.16  

81 1.76 103.24  

82 1.24 103.76  
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Figure A.29: Site ID 22, USGS gage 03282040 Sturgeon Creek, XSEC 1 (HLR 11).
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Table A.19: Cross-sectional survey data for Site ID 22: USGS gage 03282040 Sturgeon Creek 

near Cressmont, KY, XSEC 2 (HLR 11). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 1.13 103.87  

1 3.58 101.42  

1.5 4.20 100.80  

2 5.09 99.91  

3 5.49 99.51  

4 6.27 98.73  

5 6.63 98.37  

6 7.07 97.93  

7 7.44 97.56  

8 8.44 96.56  

9 9.18 95.82  

10 9.20 95.80  

11 9.61 95.39  

12 9.72 95.28  

13 10.04 94.96  

14 10.13 94.87  

15 10.51 94.49  

17 10.70 94.30  

19 10.80 94.20  

20 10.82 94.18  

22 10.98 94.02  

24 11.28 93.72  

26 11.36 93.64  

28 11.52 93.48  

30 11.54 93.46  

32 11.57 93.43  

34 11.57 93.43  

37 11.63 93.37  

39 11.63 93.37  

41 11.72 93.28  

43 11.62 93.38  

45 11.64 93.36  

47 11.62 93.38  

49 11.45 93.55  

51 11.29 93.71  

53 11.16 93.84  

55 11.18 93.82  
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Table A.19: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

57 11.21 93.79  

59 11.21 93.79  

61 11.08 93.92  

63 11.08 93.92  

a65 11.01 93.99 REW 

67 10.78 94.22  

68 10.65 94.35  

69 10.60 94.40  

71 10.28 94.72  

72 9.83 95.17  

74 9.45 95.55  

75 9.31 95.69  

77 9.07 95.93  

79 8.72 96.28  

81 8.63 96.37 BKF 

82 8.23 96.77  

84 7.75 97.25  

86 7.63 97.37  

87 7.03 97.97  

88 6.67 98.33  

89 5.98 99.02  

90 5.42 99.58  

92 4.92 100.08  

94 4.67 100.33  

95 4.72 100.28  

96 5.19 99.81  

97 5.77 99.23  

98 5.94 99.06  

99 6.42 98.58  

100 6.70 98.30  

101 6.86 98.14  

103 6.6 98.4  

104 6.38 98.62  

105 5.65 99.35  

106 5.70 99.30  

108 5.65 99.35  

109 5.41 99.59  

110 5.11 99.89  
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Table A.19: cont’d. 

111 4.33 100.67  

112 4.02 100.98  
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Figure A.30: Site ID 22, USGS gage 03282040 Sturgeon Creek, XSEC 2 (HLR 11).
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 (a)  

 (b) 

 

Figure A.31: (a) Upstream and (b) downstream views of Site ID 23: USGS gage 03281100 

Goose Creek (HLR 11). 
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Table A.20: Cross-sectional survey data for Site ID 23: USGS gage 03281100 Goose Creek 

at Manchester, KY, XSEC 1 (HLR 11). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 2.31 102.69  

1 3.10 101.90  

2 3.52 101.48  

3 4.05 100.95  

4 4.25 100.75  

5 4.63 100.37  

6 4.81 100.19  

7 5.25 99.75  

8 6.18 98.82  

9 6.56 98.44  

10 6.97 98.03  

11 7.22 97.78  

12 7.95 97.05  

13 8.71 96.29  

15 9.00 96.00  

17 9.12 95.88  

18 9.40 95.60  

20 9.68 95.32  

22 9.64 95.36  

24 9.65 95.35  

26 9.70 95.30  

28 9.62 95.38  

30 9.70 95.30  

32 9.74 95.26  

34 9.92 95.08  

36 9.79 95.21  

38 10.06 94.94  

40 10.15 94.85  

42 10.13 94.87  

44 10.02 94.98  

46 9.85 95.15  

48 9.67 95.33  

50 9.58 95.42  

52 9.59 95.41  

54 9.55 95.45  

56 9.33 95.67  

58 9.52 95.48  
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Table A.20: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

60 9.49 95.51  

62 9.34 95.66  

64 8.97 96.03  

66 9.10 95.90  

68 8.68 96.32  

69 8.67 96.33  

71 8.39 96.61  

73 8.07 96.93 REW 

75 7.82 97.18  

77 7.48 97.52  

79 6.95 98.05  

81 6.68 98.32  

83 6.67 98.33  

85 6.44 98.56  

86 6.20 98.80  

87 5.89 99.11  

89 5.35 99.65  

90 4.96 100.04  

92 4.76 100.24 BKF 

94 4.75 100.25  

96 4.62 100.38  

97 4.42 100.58  

98 4.15 100.85  

100 3.68 101.32  
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Figure A.32: Site ID 23, USGS gage 03281100 Goose Creek, XSEC 1 (HLR 11).



 

180 

 

 
(a) 

 
(b) 

 

Figure A.33: (a) Upstream and (b) downstream views of Site ID 35: Beaver Creek (HLR 16). 
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Table A.21: Cross-sectional survey data for Site ID 35: Beaver Creek in Frenchburg, KY, 

XSEC 1 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 5.58 99.42  

2 5.59 99.41  

4 5.79 99.21  

4.5 6.00 99.00  

5 6.18 98.82  

5.5 6.43 98.57  

6 6.50 98.50  

6.5 6.88 98.12  

7 7.13 97.87  

7.5 7.35 97.65  

8 7.61 97.39  

8.5 7.98 97.02  

9 8.19 96.81  

9.5 8.28 96.72  

10 8.50 96.50  

10.5 8.56 96.44  

11 8.91 96.09  

11.5 9.11 95.89  

12 9.63 95.37  

12.5 9.70 95.30  

13 9.87 95.13  

13.5 9.99 95.01  

14 10.10 94.90  

15 10.21 94.79  

16 10.34 94.66  

16.5 10.45 94.55  

17 10.58 94.42 BKF 

18 10.79 94.21  

18.5 11.03 93.97  

19 11.34 93.66 REW 

19.5 11.62 93.38  

20 11.83 93.17  

21 12.08 92.92  

23 12.16 92.84  

25 12.30 92.70  

27 12.54 92.46  

29 12.69 92.31  

31 12.50 92.50  

33 12.43 92.57  

35 12.39 92.61  

37 12.38 92.62  
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Table A.21: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

39 12.31 92.69  

41 12.30 92.70  

43 12.28 92.72  

45 12.15 92.85  

47 11.95 93.05  

49 11.92 93.08  

51 11.85 93.15  

53 11.52 93.48  

54 11.36 93.64 LEW 

54.5 11.01 93.99  

55 10.62 94.38  

55.5 10.45 94.55  

56 10.18 94.82  

56.5 9.85 95.15  

57 9.60 95.40  

58 9.19 95.81  

59 9.00 96.00  

59.5 8.89 96.11  

60 8.76 96.24  

60.5 8.60 96.40  

61 8.46 96.54  

61.5 7.79 97.21  

62 7.61 97.39  

63 7.43 97.57  

64 7.31 97.69  

65 7.20 97.80  
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Figure A.34: Site ID 35, Beaver Creek, XSEC 1 (HLR 16).
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Table A.22: Cross-sectional survey data for Site ID 35: Beaver Creek in Frenchburg, KY, 

XSEC 2 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 4.31 100.69  

2 4.62 100.38  

3 5.09 99.91  

3.5 5.38 99.62  

4 5.68 99.32  

4.5 5.90 99.10  

5 6.23 98.77  

5.5 6.55 98.45  

6 7.11 97.89  

6.5 7.63 97.37  

7 7.76 97.24  

7.5 8.01 96.99  

8 8.40 96.60  

8.5 8.76 96.24  

9 8.96 96.04  

10 9.20 95.80  

10.5 9.43 95.57  

11 9.77 95.23  

12 10.06 94.94  

13 10.20 94.80 BKF 

13.5 10.55 94.45  

14 11.16 93.84 REW 

15 11.78 93.22  

16 12.05 92.95  

18 12.40 92.60  

20 12.61 92.39  

22 12.52 92.48  

24.5 12.60 92.40  

26 12.50 92.50  

28 12.36 92.64  

30 12.49 92.51  

32 12.67 92.33  

34 12.53 92.47  

35 12.25 92.75  

36 12.12 92.88  

37 12.02 92.98  
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Table A.22: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

38 11.80 93.20 LEW 

39 11.65 93.35  

39.5 9.65 95.35  

40 9.15 95.85  

40.5 9.70 95.30  

41 8.56 96.44  

41.5 8.38 96.62  

42 8.20 96.80  

42.5 7.65 97.35  

43 7.40 97.60  

43.5 6.41 98.59  

45 6.09 98.91  

46 5.71 99.29  

47 5.19 99.81  
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Figure A.35: Site ID 35, Beaver Creek, XSEC 2 (HLR 16).
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 (a)

 

 

 

Figure A.36: (a) ownstream views of Site ID 37: USGS gage 03283370 Cat Creek (HLR 16). 
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Table A.23: Cross-sectional survey data for Site ID 37: USGS gage 03283370 Cat Creek near 

Stanton, KY, XSEC 1 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 7.31 97.69  

2 7.45 97.55  

4 7.46 97.54  

6 7.85 97.15  

8 7.82 97.18  

10 8.15 96.85  

12 8.41 96.59 BKF 

13 9.14 95.86  

14 9.89 95.11 LEW 

15 10.05 94.95  

16 10.29 94.71  

17 10.24 94.76  

18 10.15 94.85  

19 10.17 94.83  

21 10.29 94.71  

23 10.31 94.69  

25 10.19 94.81  

27 10.11 94.89  

29 10.25 94.75  

31 10.39 94.61  

33 10.26 94.74  

35 10.25 94.75  

37  8.40 96.60  

38 6.41 98.59  

39 5.70 99.30  

40 5.09 99.91  

41 4.94 100.06  

42 4.75 100.25  

43 4.50 100.50  

44 4.55 100.45  
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Figure A.37: Site ID 37, USGS gage 03283370 Cat Creek, XSEC 1 (HLR 16).
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Table A.24: Cross-sectional survey data for Site ID 37: USGS gage 03283370 Cat Creek near 

Stanton, KY, XSEC 2 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 0.86 104.14  

1 1.64 103.36  

1.5 2.53 102.47  

2 3.23 101.77  

2.5 4.26 100.74  

3 5.45 99.55  

4 5.77 99.23  

5 5.53 99.47  

7 5.36 99.64  

9 5.15 99.85  

11 5.20 99.80  

13 5.20 99.80  

15 5.38 99.62  

17 5.42 99.58  

19 5.51 99.49  

21 5.40 99.60  

23 5.30 99.70  

25 5.28 99.72  

27 5.15 99.85  

28 4.91 100.09  

29 4.89 100.11  

30 3.54 101.46 BKF 

31 2.99 102.01  

32 2.71 102.29  

33 2.61 102.39  

34 2.48 102.52  
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Figure A.38: Site ID 37, USGS gage 03283370 Cat Creek, XSEC 2 (HLR 16).
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Figure A.39: Downstream views of Site ID 39: USGS gage 03280600 Middle Fork River 

(HLR 16). 
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Table A.25: Cross-sectional survey data for Site ID 39: USGS gage 03280600 Middle Fork 

River near Hyden, KY, XSEC 1 (HLR 16). 

Station (ft) FS(ft) Elevation (ft) Notes 

0 9.01 95.99  

2 9.35 95.65  

4 9.59 95.41  

5 9.74 95.26 BFK 

6 10.2 94.8 LEW 

7 10.79 94.21  

8 11.00 94.00  

9 11.23 93.77  

10 11.30 93.70  

11 11.41 93.59  

12 11.51 93.49  

13 11.45 93.55  

15 11.20 93.80  

17 11.10 93.90  

19 10.94 94.06  

21 10.67 94.33  

23 10.87 94.13  

25 10.72 94.28  

27 10.71 94.29  

29 10.67 94.33  

31 10.82 94.18  

33 10.83 94.17  

34 11.01 93.99  

35 11.27 93.73  

37 11.21 93.79  

39 11.32 93.68  

41 11.22 93.78  

43 10.98 94.02  

45 10.69 94.31  

47 10.88 94.12  

49 10.81 94.19  

50 10.59 94.41  

52 10.50 94.50  

54 10.62 94.38  

56 10.55 94.45  

57 10.05 94.95 REW 

60 9.52 95.48  
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Table A.25: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

62 9.19 95.81  

63 8.63 96.37  

64 8.18 96.82  

65 7.79 97.21  

66 7.41 97.59  

67 6.94 98.06  

68 6.57 98.43  

69 6.24 98.76  

70 6.07 98.93  

72 5.91 99.09  

74 5.60 99.40  

76 5.31 99.69  

77 5.16 99.84  

78 5.13 99.87  
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Figure A.40: Site ID 39, USGS gage 03280600 Middle Fork River, XSEC 1 (HLR 16).
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Table A.26: Cross-sectional survey data for Site ID 39: USGS gage 03280600 Middle Fork 

River near Hyden, KY, XSEC 2 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 3.77 101.23  

2 3.92 101.08  

4 4.37 100.63  

6 4.57 100.43 BFK 

7 5.26 99.74 LEW 

8 5.62 99.38  

9 6.19 98.81  

11 6.04 98.96  

13 6.95 98.05  

15 6.50 98.50  

17 6.39 98.61  

19 6.19 98.81  

21 6.25 98.75  

23 6.35 98.65  

25 6.33 98.67  

27 6.15 98.85  

29 6.22 98.78  

31 6.20 98.80  

33 6.37 98.63  

37 6.34 98.66  

39 6.30 98.70  

41 6.29 98.71  

43 6.30 98.70  

45 6.21 98.79  

47 6.24 98.76  

49 6.30 98.70  

51 6.00 99.00  

53 5.75 99.25 REW 

54 5.50 99.50  

55 4.58 100.42  

56 4.39 100.61  

57 4.14 100.86  

58 3.61 101.39  

59 3.17 101.83  

60 2.65 102.35  

62 1.62 103.38  

64 1.23 103.77  
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Table A.26: cont’d. 

66 1.10 103.90  
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Figure A.41: Site ID 39, USGS gage 03280600 Middle Fork River, XSEC 2 (HLR 16).
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 (a) 

 (b) 

 

Figure A.42: (a) Upstream and (b) downstream views of Site ID 42: USGS gage 03211400 

Leatherwood Creek (HLR 16). 
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Table A.27: Cross-sectional survey data for Site ID 42: USGS gage 03211400 Leatherwood 

Creek at Daisy, KY, XSEC 1 (HLR 16).  

Station (ft) FS (ft) Elevation (ft) Notes 

2 0.50 104.50  

4 0.71 104.29  

6 0.96 104.04  

7 1.61 103.39  

8 2.19 102.81  

9 2.66 102.34  

10 2.90 102.10  

12 3.10 101.90  

14 4.23 100.77  

15 4.51 100.49  

17 5.24 99.76  

18 5.56 99.44  

20 5.31 99.69  

22 4.70 100.30  

23 4.94 100.06  

24 5.19 99.81  

25 5.48 99.52  

26 5.76 99.24  

27 6.22 98.78  

28 7.20 97.80  

29 7.32 97.68  

31 7.26 97.74  

33 7.48 97.52  

35 7.61 97.39 LEW 

37 7.88 97.12  

39 8.05 96.95  

41 8.36 96.64  

43 8.53 96.47  

45 8.78 96.22  

47 8.65 96.35  

49 8.91 96.09  

51 9.02 95.98  

53 9.07 95.93  

55 9.05 95.95  

57 8.96 96.04  

59 9.11 95.89  

61 9.09 95.91  
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Table A.27: cont’d.  

Station (ft) FS (ft) Elevation (ft) Notes 

63 8.95 96.05  

65 8.55 96.45  

67 8.44 96.56  

68 7.66 97.34 REW 

69 6.98 98.02  

70 6.72 98.28  

71 6.45 98.55  

72 5.92 99.08  

73 5.18 99.82  

74 4.72 100.28 BKF 

75 2.81 102.19  

76 1.28 103.72  

77 0.08 104.92  
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Figure A.43: Site ID 42, USGS gage 03211400 Leatherwood Creek, XSEC 1 (HLR 16).
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Table A.28: Cross-sectional survey data for Site ID 42: USGS gage 03211400 Leatherwood 

Creek at Daisy, KY, XSEC 2 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 1.58 103.42  

1 2.13 102.87  

2 2.58 102.42  

2.5 2.96 102.04  

3 3.40 101.60  

4 3.81 101.19  

5 4.19 100.81  

6 4.44 100.56  

7 4.58 100.42  

8 5.22 99.78  

9 5.37 99.63  

10 6.02 98.98  

11 6.29 98.71  

12 6.43 98.57  

13 6.46 98.54  

14 6.52 98.48 BKF 

15 6.95 98.05  

16 7.33 97.67  

17 7.70 97.30  

17.5 7.97 97.03  

18 8.29 96.71  

19 8.70 96.30  

20 8.59 96.41  

21 8.58 96.42  

23 8.57 96.43  

25 8.78 96.22  

27 9.09 95.91  

29 9.40 95.60  

31 9.80 95.20  

33 9.87 95.13  

35 10.30 94.70  

37 10.51 94.49  

39 10.54 94.46  

41 10.54 94.46  

43 10.67 94.33  

45 10.86 94.14  

47 10.95 94.05  
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Table A.28: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

49 10.98 94.02  

51 11.06 93.94  

53 11.10 93.90  

54 10.98 94.02  

55 10.85 94.15  

56 10.56 94.44  

57 10.44 94.56  

59 10.11 94.89  

61 9.60 95.40 REW 

62 8.61 96.39  

63 8.03 96.97  

64 7.55 97.45  

65 7.31 97.69  

66 6.93 98.07  

67 6.76 98.24  

68 6.43 98.57  

69 6.05 98.95  

71 5.50 99.50  

72 5.19 99.81  

73 4.83 100.17  

74 4.25 100.75  

75 3.87 101.13  

76 3.23 101.77  

77 2.82 102.18  

78 2.44 102.56  
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Figure A.44: Site ID 42, USGS gage 03211400 Leatherwood Creek, XSEC 2 (HLR 16).
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 (a) 

  (b) 

 

Figure A.45: (a) Upstream and (b) downstream views of Site ID 43: USGS gage 03280700 

Cutshin Creek (HLR 16). 
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Table A.29: Cross-sectional survey data for Site ID 43: USGS gage 03280700 Cutshin Creek 

at Wooton, KY, XSEC 1 (HLR 16).  

Station (ft) FS (ft) Elevation (ft) Notes 

1 0.88 104.12  

3 1.48 103.52  

5 1.86 103.14  

6 2.15 102.85  

8 2.74 102.26  

10 3.43 101.57  

12 3.74 101.26  

14.5 4.14 100.86  

16 3.96 101.04  

18 3.89 101.11  

20 4.32 100.68  

22 4.40 100.60 BKF 

23 4.79 100.21  

24 5.64 99.36  

26 7.24 97.76  

28 7.48 97.52  

30 7.37 97.63  

32 7.31 97.69  

34 7.47 97.53  

36 7.48 97.52  

38 7.54 97.46  

40 7.57 97.43  

42 7.70 97.30  

44 7.84 97.16  

46 7.62 97.38  

48 7.71 97.29  

50 8.13 96.87  

52 8.10 96.90  

54 8.06 96.94  

56 7.88 97.12  

58 7.94 97.06  

60 8.30 96.70  

62 7.89 97.11  

64 8.20 96.80  

66 7.88 97.12  

68 7.84 97.16  

70 7.78 97.22  
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Table A.29: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

72 7.65 97.35  

74 7.61 97.39  

76 7.71 97.29  

77 7.10 97.90  

78 7.21 97.79  

79 7.22 97.78  

81 7.21 97.79  

83 6.85 98.15  

85 6.39 98.61  

86 5.58 99.42  

87 4.72 100.28  

88 4.21 100.79  

89 2.00 103.00  

90 0.72 104.28  

91 0.44 104.56  
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Figure A.46: Site ID 43, USGS gage 03280700 Cutshin Creek, XSEC 1 (HLR 16).
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Table A.30: Cross-sectional survey data for Site ID 43: USGS gage 03280700 Cutshin Creek 

at Wooton, KY, XSEC 2 (HLR 16). 

Station (ft) FS(ft) Elevation (ft) Notes 

1 1.54 103.46  

2 2.39 102.61  

3 3.35 101.65  

4 4.49 100.51 BKF 

5 4.90 100.10  

6 5.38 99.62  

7 5.79 99.21  

8 6.24 98.76  

9 6.54 98.46  

10 6.90 98.10  

11 7.42 97.58  

12 7.72 97.28  

13 8.02 96.98  

14 8.26 96.74  

15 8.65 96.35  

17 8.74 96.26  

19 9.12 95.88  

21 8.86 96.14  

23 8.86 96.14  

25 8.71 96.29  

27 8.70 96.30  

29 8.39 96.61  

31 8.50 96.50  

33 8.26 96.74  

35 8.13 96.87  

37 7.91 97.09  

39 7.71 97.29  

41 7.77 97.23  

43 7.49 97.51  

45 7.70 97.30  

47 7.48 97.52  

49 7.58 97.42  

51 7.54 97.46  

53 7.38 97.62  

55 7.11 97.89  

57 7.61 97.39  

59 7.79 97.21  
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Table A.30: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

61 7.35 97.65  

63 6.32 98.68  

65 5.65 99.35  

67 4.87 100.13  

68 4.59 100.41  

69 4.18 100.82  

71 3.28 101.72  

73 2.12 102.88  

75 1.33 103.67  
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Figure A.47: Site ID 43, USGS gage 03280700 Cutshin Creek, XSEC 2 (HLR 16).
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No photos available for Site ID 44: USGS gage 03212000 Paint Creek (HLR 16). 
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Table A.31: Cross-sectional survey data for Site ID 44: USGS gage 03212000 Paint Creek at 

Staffordsville, KY, XSEC 1 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 0.14 104.86  

1 1.10 103.90  

2 1.80 103.20  

3 2.59 102.41  

4 3.49 101.51  

5 4.73 100.27  

6 5.18 99.82  

8 5.52 99.48  

10 5.75 99.25  

12 6.23 98.77  

13 6.40 98.60  

14 6.94 98.06  

15 7.21 97.79 LEW 

17 7.49 97.51  

19 7.58 97.42  

21 7.70 97.30  

23 7.85 97.15  

25 7.99 97.01  

27 8.10 96.90  

29 8.29 96.71  

31 8.47 96.53  

33 8.52 96.48  

35 8.69 96.31  

37 8.65 96.35  

39 8.16 96.84  

41 8.00 97.00  

43 7.72 97.28  

44.5 7.29 97.71 REW 

46 7.40 97.60  

48 6.73 98.27  

50 6.78 98.22  

52 6.25 98.75  

54 5.79 99.21  

55 5.46 99.54  

56 5.08 99.92  

57 4.28 100.72  

58 3.69 101.31  
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Table A.31: cont’d: 

Station (ft) FS (ft) Elevation (ft) Notes 

60 2.80 102.20 BKF 

61 2.02 102.98  

62 1.30 103.70  

63 0.01 104.99  
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Figure A.48: Site ID 44, USGS gage 03212000 Paint Creek, XSEC 1 (HLR 16).
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Table A.32: Cross-sectional survey data for Site ID 44: USGS gage 03212000 Paint Creek at 

Staffordsville, KY, XSEC 2 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

1 0.20 104.80  

2 0.99 104.01  

3 1.63 103.37 BKF 

5 2.38 102.62  

7 3.17 101.83  

9 3.48 101.52  

11 3.95 101.05  

13 4.20 100.80  

15 3.91 101.09  

17 3.63 101.37  

19 4.42 100.58  

21 4.79 100.21  

23 4.27 100.73  

24 4.65 100.35  

25 5.69 99.31  

27 5.83 99.17  

29 6.11 98.89 LEW 

30 6.56 98.44  

32 6.90 98.10  

34 6.97 98.03  

36 7.06 97.94  

38 7.21 97.79  

40 7.43 97.57  

42 7.65 97.35  

44 7.87 97.13  

46 8.05 96.95  

48 7.72 97.28  

50 7.68 97.32  

52 7.44 97.56  

54 7.06 97.94  

56 6.59 98.41  

57 6.15 98.85 REW 

58 5.71 99.29  

59 5.10 99.90  

60 4.65 100.35  

61 3.99 101.01  

62 3.25 101.75  
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Table A.32: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

64 2.10 102.90  

66 1.36 103.64  

68 0.51 104.49  

70 0.00 105.00  
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Figure A.49: Site ID 44, USGS gage 03212000 Paint Creek, XSEC 2 (HLR 16).
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(a)  

(b)  

 

Figure A.50: (a) Upstream and (b) downstream views of Site ID 45: USGS gage 03248500 

Licking River (HLR 16). 
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Table A.33: Cross-sectional survey data for Site ID 45: USGS gage 03248500 Licking River 

near Salyersville, KY, XSEC 1 (HLR 16). 

Station (ft) FS (ft) Elevation (ft) Notes 

0 3.61 101.39  

1 4.10 100.90  

2 4.65 100.35  

2.5 5.57 99.43  

3 6.00 99.00  

4 7.29 97.71  

5 7.89 97.11 BKF 

6 8.36 96.64  

7 8.80 96.20  

8 9.05 95.95  

9 9.65 95.35  

10 10.13 94.87 LEW 

11 11.45 93.55  

12 12.60 92.40  

13 12.13 92.87  

14 12.91 92.09  

15 13.28 91.72  

17 13.76 91.24  

19 13.86 91.14  

21 13.64 91.36  

23 13.22 91.78  

25 12.85 92.15  

27 13.00 92.00  

29 13.52 91.48  

31 13.81 91.19  

33 13.81 91.19  

35 13.60 91.40  

37 13.50 91.50  

39 13.78 91.22  

41 13.98 91.02  

43 14.05 90.95  

45 14.15 90.85  

47 14.33 90.67  

49 13.98 91.02  

51 13.49 91.51  

53 12.99 92.01  

54 12.90 92.10  
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Table A.33: cont’d. 

Station (ft) FS (ft) Elevation (ft) Notes 

55 12.00 93.00  

55.5 10.97 94.03 REW 

56 9.82 95.18  

57 8.93 96.07  

58 7.19 97.81  

59 7.11 97.89  

61 7.06 97.94  

62 6.49 98.51  

63 6.49 98.51  

65 4.85 100.15  

67 3.98 101.02  
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Figure A.51: Site ID 45, USGS gage 03248500 Licking River, XSEC 1 (HLR 16). 
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APPENDIX B: BED MATERIAL DATA
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Particle Size Analysis Summary: Site ID 1, Rose Creek (HLR 9)

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0.50 - 1.0 1 

1.0 - 2.0 3 

2.0 - 4.0 3 

4.0 - 5.7 2 

5.7 - 8.0 6 

8.0 - 11.3 14 

11.3 - 16.0 16 

16.0 - 22.6 10 

22.6 - 32.0 11 

32 - 45 6 

45 - 64 15 

64 - 90 7 

90 - 128 5 

128 - 180 1 

180-256 0 

256-362 0 

362-512 0 

512-1024 0 

TOTAL 100 

Classification Values 

D16 (mm) 8.24 

D35 (mm) 13.06 

D50 (mm) 19.3 

D84 (mm) 60.2 

D95 (mm) 97.6 

D100 (mm) 179.99 

Silt/Clay (%) 0 

Sand (%) 4 

Gravel (%) 83 

Cobble (%) 13 

Boulder (%) 0 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 3: USGS gage 03250150 Indian Creek (HLR 9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0.125-0.25 4 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 1 

2.0 - 4.0 2 

4.0 - 5.7 1 

5.7 - 8.0 3 

8.0 - 11.3 2 

11.3 - 16.0 1 

16.0 - 22.6 7 

22.6 - 32.0 3 

32 - 45 6 

45 - 64 8 

64 - 90 10 

90 - 128 13 

128 - 180 8 

180-256 3 

256-362 0 

362-512 0 

512-1024 0 

TOTAL 100 

Classification Values 

D16 (mm) 8.85 

D35 (mm) 34.6 

D50 (mm) 59.25 

D84 (mm) 126.48 

D95 (mm) 176.12 

D100 (mm) 256 

Silt/Clay (%) 0 

Sand (%) 6.94 

Gravel (%) 45.84 

Cobble (%) 47.22 

Boulder (%) 0 

Bedrock (%) 0 



 

227 

 

Particle Size Analysis Summary: Site ID 4: USGS gage 03250322 Rock Lick Creek (HLR 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 12 

0.062-0.125 0 

0.125-0.25 4 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 1 

2.0 - 4.0 2 

4.0 - 5.7 1 

5.7 - 8.0 1 

8.0 - 11.3 7 

11.3 - 16.0 10 

16.0 - 22.6 15 

22.6 - 32.0 13 

32 - 45 13 

45 - 64 12 

64 - 90 2 

90 - 128 3 

128 - 180 0 

180-256 1 

256-362 2 

362-512 0 

512-1024 1 

TOTAL 100 

Classification Values 

D16 (mm) 0.25 

D35 (mm) 14.59 

D50 (mm) 21.28 

D84 (mm) 52.92 

D95 (mm) 115.33 

D100 (mm) 1023.95 

Silt/Clay (%) 12 

Sand (%) 5 

Gravel (%) 74 

Cobble (%) 6 

Boulder (%) 3 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 5: Storey Branch, (HLR 9)

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 1 

2.0 - 4.0 0 

4.0 - 5.7 0 

5.7 - 8.0 5 

8.0 - 11.3 4 

11.3 - 16.0 17 

16.0 - 22.6 10 

22.6 - 32.0 19 

32 - 45 28 

45 - 64 16 

64 - 90 0 

90 - 128 0 

128 - 180 0 

180-256 0 

256-362 0 

362-512 0 

512-1024 0 

TOTAL 100 

Classification Values 

D16 (mm) 12.96 

D35 (mm) 21.28 

D50 (mm) 29.03 

D84 (mm) 45 

D95 (mm) 58.06 

D100 (mm) 64 

Silt/Clay (%) 0 

Sand (%) 1 

Gravel (%) 99 

Cobble (%) 0 

Boulder (%) 0 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 6: USGS gage 03237900 Cabin Creek (HLR 9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0.125-0.25 5 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 6 

2.0 - 4.0 5 

4.0 - 5.7 5 

5.7 - 8.0 4 

8.0 - 11.3 7 

11.3 - 16.0 6 

16.0 - 22.6 6 

22.6 - 32.0 11 

32 - 45 12 

45 - 64 10 

64 - 90 3 

90 - 128 9 

128 - 180 5 

180-256 2 

256-362 2 

362-512 0 

512-1024 2 

TOTAL 100 

Classification Values 

D16 (mm) 4 

D35 (mm) 13.65 

D50 (mm) 27.73 

D84 (mm) 106.89 

D95 (mm) 218 

D100 (mm) 1023.97 

Silt/Clay (%) 0 

Sand (%) 11 

Gravel (%) 66 

Cobble (%) 19 

Boulder (%) 4 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 7: USGS gage 03250000 Triplett Creek (HLR 9)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 2 

1.0 - 2.0 1 

2.0 - 4.0 0 

4.0 - 5.7 2 

5.7 - 8.0 4 

8.0 - 11.3 3 

11.3 - 16.0 7 

16.0 - 22.6 4 

22.6 - 32.0 9 

32 - 45 12 

45 - 64 9 

64 - 90 11 

90 - 128 4 

128 - 180 0 

180-256 3 

256-362 1 

362-512 0 

512-1024 1 

Bedrock 27 

TOTAL 100 

Classification Values 

D16 (mm) 13.99 

D35 (mm) 35.25 

D50 (mm) 57.67 

D84 (mm) BedRock 

D95 (mm) Bedrock 

D100 (mm) Bedrock 

Silt/Clay (%) 0 

Sand (%) 3 

Gravel (%) 50 

Cobble (%) 18 

Boulder (%) 2 

Bedrock (%) 27 
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Particle Size Analysis Summary: Site ID 9: USGS gage 03250100 North Fork Triplett (HLR9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 1 

0.062-0.125 0 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 0 

2.0 - 4.0 0 

4.0 - 5.7 0 

5.7 - 8.0 5 

8.0 - 11.3 5 

11.3 - 16.0 3 

16.0 - 22.6 3 

22.6 - 32.0 6 

32 - 45 6 

45 - 64 14 

64 - 90 16 

90 - 128 21 

128 - 180 14 

180-256 3 

256-362 2 

362-512 0 

512-1024 0 

Bedrock 0 

TOTAL 100 

Classification Values 

D16 (mm) 20.05 

D35 (mm) 52.67 

D50 (mm) 74.56 

D84 (mm) 139.73 

D95 (mm) 181.25 

D100 (mm) 361.99 

Silt/Clay (%) 1.01 

Sand (%) 0 

Gravel (%) 42.42 

Cobble (%) 54.55 

Boulder (%) 2.02 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 12: UT KY-191 Mile 5, (HLR 11) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 2 

1.0 - 2.0 1 

2.0 - 4.0 1 

4.0 - 5.7 2 

5.7 - 8.0 0 

8.0 - 11.3 0 

11.3 - 16.0 8 

16.0 - 22.6 17 

22.6 - 32.0 25 

32 - 45 36 

45 - 64 7 

64 - 90 1 

90 - 128 0 

128 - 180 0 

180-256 0 

256-362 0 

362-512 0 

512-1024 0 

Bedrock 0 

TOTAL 100 

Classification Values 

D16 (mm) 16.78 

D35 (mm) 24.1 

D50 (mm) 29.74 

D84 (mm) 42.11 

D95 (mm) 53.14 

D100 (mm) 90 

Silt/Clay (%) 0 

Sand (%) 3 

Gravel (%) 96 

Cobble (%) 1 

Boulder (%) 0 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 17: USGS gage 03216370 Big Sinking Creek (HLR 11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 1 

0.062-0.125 0 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 1 

2.0 - 4.0 0 

4.0 - 5.7 1 

5.7 - 8.0 1 

8.0 - 11.3 2 

11.3 - 16.0 1 

16.0 - 22.6 4 

22.6 - 32.0 11 

32 - 45 13 

45 - 64 18 

64 - 90 18 

90 - 128 20 

128 - 180 7 

180-256 1 

256-362 1 

362-512 0 

512-1024 0 

TOTAL 100 

Classification Values 

D16 (mm) 26.87 

D35 (mm) 45 

D50 (mm) 60.83 

D84 (mm) 114.7 

D95 (mm) 157.71 

D100 (mm) 361.99 

Silt/Clay (%) 1 

Sand (%) 1 

Gravel (%) 51 

Cobble (%) 46 

Boulder (%) 1 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 19: USGS gage 03404900 Lynn Camp (HLR 11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 10 

0.062-0.125 0 

0.125-0.25 2 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 0 

2.0 - 4.0 0 

4.0 - 5.7 0 

5.7 - 8.0 2 

8.0 - 11.3 1 

11.3 - 16.0 6 

16.0 - 22.6 0 

22.6 - 32.0 5 

32 - 45 10 

45 - 64 15 

64 - 90 4 

90 - 128 3 

128 - 180 2 

180-256 0 

256-362 1 

362-512 0 

512-1024 0 

TOTAL 39 

Classification Values 

D16 (mm) 12.08 

D35 (mm) 43.7 

D50 (mm) 62.73 

D84 (mm) Bedrock 

D95 (mm) Bedrock 

D100 (mm) Bedrock 

Silt/Clay (%) 10 

Sand (%) 2 

Gravel (%) 39 

Cobble (%) 9 

Boulder (%) 1 

Bedrock (%) 39 
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Particle Size Analysis Summary: Site ID 22: USGS gage 03282040 Sturgeon Creek (HLR 11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 0 

0.062-0.125 0 

0.125-0.25 3 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 1 

2.0 - 4.0 0 

4.0 - 5.7 3 

5.7 - 8.0 2 

8.0 - 11.3 2 

11.3 - 16.0 4 

16.0 - 22.6 4 

22.6 - 32.0 8 

32 - 45 11 

45 - 64 16 

64 - 90 27 

90 - 128 11 

128 - 180 7 

180-256 1 

256-362 0 

362-512 0 

512-1024 0 

TOTAL 100 

Classification Values 

D16 (mm) 24.95 

D35 (mm) 58.82 

D50 (mm) 83.5 

D84 (mm) 142.18 

D95 (mm) 212.57 

D100 (mm) 361.99 

Silt/Clay (%) 0 

Sand (%) 4 

Gravel (%) 34 

Cobble (%) 61 

Boulder (%) 1 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 23: USGS gage 03281100 Goose Creek (HLR 11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 0 

0.062-0.125 0 

0.125-0.25 2 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 1 

2.0 - 4.0 2 

4.0 - 5.7 1 

5.7 - 8.0 4 

8.0 - 11.3 2 

11.3 - 16.0 9 

16.0 - 22.6 3 

22.6 - 32.0 10 

32 - 45 6 

45 - 64 7 

64 - 90 11 

90 - 128 14 

128 - 180 17 

180-256 4 

256-362 3 

362-512 3 

512-1024 1 

TOTAL 100 

Classification Values 

D16 (mm) 13.39 

D35 (mm) 34.17 

D50 (mm) 71.09 

D84 (mm) 164.71 

D95 (mm) 326.67 

D100 (mm) 1023.95 

Silt/Clay (%) 0 

Sand (%) 3 

Gravel (%) 44 

Cobble (%) 46 

Boulder (%) 7 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 35, Beaver Creek (HLR 16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 0 

0.062-0.125 0 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 2 

2.0 - 4.0 0 

4.0 - 5.7 4 

5.7 - 8.0 2 

8.0 - 11.3 6 

11.3 - 16.0 8 

16.0 - 22.6 9 

22.6 - 32.0 18 

32 - 45 22 

45 - 64 14 

64 - 90 8 

90 - 128 4 

128 - 180 0 

180-256 0 

256-362 2 

362-512 0 

512-1024 0 

Bedrock 1 

TOTAL 100 

Classification Values 

D16 (mm) 12.48 

D35 (mm) 24.69 

D50 (mm) 32.59 

D84 (mm) 62.84 

D95 (mm) 109 

D100 (mm) Bedrock 

Silt/Clay (%) 0 

Sand (%) 2 

Gravel (%) 83 

Cobble (%) 12 

Boulder (%) 2 

Bedrock (%) 1 
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Particle Size Analysis Summary: Site ID 37: USGS gage 03283370 Cat Creek (HLR 16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 3 

0.062-0.125 0 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 4 

2.0 - 4.0 0 

4.0 - 5.7 3 

5.7 - 8.0 3 

8.0 - 11.3 8 

11.3 - 16.0 17 

16.0 - 22.6 12 

22.6 - 32.0 21 

32 - 45 22 

45 - 64 147 

64 - 90 0 

90 - 128 0 

128 - 180 0 

180-256 0 

256-362 0 

362-512 0 

512-1024 0 

Bedrock 0 

TOTAL 100 

Classification Values 

D16 (mm) 9.24 

D35 (mm) 15.17 

D50 (mm) 22.6 

D84 (mm) 39.68 

D95 (mm) 50.43 

D100 (mm) 64 

Silt/Clay (%) 3 

Sand (%) 4 

Gravel (%) 93 

Cobble (%) 0 

Boulder (%) 0 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 39: USGS gage 03280600 Middle Fork River (HLR 16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 0 

0.062-0.125 0 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 0 

2.0 - 4.0 0 

4.0 - 5.7 0 

5.7 - 8.0 0 

8.0 - 11.3 0 

11.3 - 16.0 3 

16.0 - 22.6 1 

22.6 - 32.0 6 

32 - 45 11 

45 - 64 18 

64 - 90 19 

90 - 128 18 

128 - 180 10 

180-256 8 

256-362 3 

362-512 0 

512-1024 0 

Bedrock 3 

TOTAL 100 

Classification Values 

D16 (mm) 39.09 

D35 (mm) 59.78 

D50 (mm) 79.05 

D84 (mm) 169.6 

D95 (mm) 291.33 

D100 (mm) Bedrock 

Silt/Clay (%) 0 

Sand (%) 0 

Gravel (%) 39 

Cobble (%) 55 

Boulder (%) 3 

Bedrock (%) 3 
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Particle Size Analysis Summary: Site ID 42, USGS gage 03211400 Leatherwood Creek (HLR 16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 4 

0.062-0.125 0 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 0 

2.0 - 4.0 2 

4.0 - 5.7 4 

5.7 - 8.0 8 

8.0 - 11.3 7 

11.3 - 16.0 11 

16.0 - 22.6 13 

22.6 - 32.0 18 

32 - 45 7 

45 - 64 11 

64 - 90 7 

90 - 128 4 

128 - 180 2 

180-256 1 

256-362 1 

362-512 0 

512-1024 0 

Bedrock 0 

TOTAL 100 

Classification Values 

D16 (mm) 7.42 

D35 (mm) 15.57 

D50 (mm) 23.12 

D84 (mm) 62.27 

D95 (mm) 118.5 

D100 (mm) 361.99 

Silt/Clay (%) 4 

Sand (%) 0 

Gravel (%) 81 

Cobble (%) 14 

Boulder (%) 1 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 43, USGS gage 03280700 Cutshin Creek (HLR 16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 0 

0.062-0.125 0 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 1 

2.0 - 4.0 1 

4.0 - 5.7 3 

5.7 - 8.0 7 

8.0 - 11.3 1 

11.3 - 16.0 6 

16.0 - 22.6 1 

22.6 - 32.0 4 

32 - 45 13 

45 - 64 13 

64 - 90 16 

90 - 128 10 

128 - 180 12 

180-256 2 

256-362 0 

362-512 0 

512-1024 0 

Bedrock 0 

TOTAL 100 

Classification Values 

D16 (mm) 13.65 

D35 (mm) 46.46 

D50 (mm) 70 

D84 (mm) 169.6 

D95 (mm) 237 

D100 (mm) 361.99 

Silt/Clay (%) 0 

Sand (%) 1 

Gravel (%) 46 

Cobble (%) 51 

Boulder (%) 2 

Bedrock (%) 0 
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Particle Size Analysis Summary: Site ID 44: USGS gage 03212000 Paint Creek (HLR 16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 1 

0.062-0.125 0 

0.125-0.25 0 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 2 

2.0 - 4.0 9 

4.0 - 5.7 4 

5.7 - 8.0 8 

8.0 - 11.3 10 

11.3 - 16.0 15 

16.0 - 22.6 12 

22.6 - 32.0 13 

32 - 45 8 

45 - 64 12 

64 - 90 2 

90 - 128 3 

128 - 180 3 

180-256 3 

256-362 0 

362-512 0 

512-1024 0 

Bedrock 1 

TOTAL 100 

Classification Values 

D16 (mm) 5.98 

D35 (mm) 12.27 

D50 (mm) 18.2 

D84 (mm) 56.14 

D95 (mm) 157.4 

D100 (mm) Bedrock 

Silt/Clay (%) 0.94 

Sand (%) 1.89 

Gravel (%) 85.85 

Cobble (%) 10.38 

Boulder (%) 0 

Bedrock (%) 0.94 
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Particle Size Analysis Summary: Site ID 45, USGS gage 03248500 Licking River (HLR 16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Size (mm) No. Particles 

0-0.062 0 

0.062-0.125 0 

0.125-0.25 100 

0.25-0.5 0 

0.50 - 1.0 0 

1.0 - 2.0 0 

2.0 - 4.0 0 

4.0 - 5.7 0 

5.7 - 8.0 0 

8.0 - 11.3 0 

11.3 - 16.0 0 

16.0 - 22.6 0 

22.6 - 32.0 0 

32 - 45 0 

45 - 64 0 

64 - 90 0 

90 - 128 0 

128 - 180 0 

180-256 0 

256-362 0 

362-512 0 

512-1024 0 

Bedrock 0 

TOTAL 100 

Classification Values 

D16 (mm) 0.14 

D35 (mm) 0.17 

D50 (mm) 0.19 

D84 (mm) 0.23 

D95 (mm) 0.24 

D100 (mm) 0.25 

Silt/Clay (%) 0 

Sand (%) 100 

Gravel (%) 0 

Cobble (%) 0 

Boulder (%) 0 

Bedrock (%) 0 
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