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ABSTRACT OF THESIS 
 
 

ASSESSING THE SPATIAL ACCURACY AND PRECISION OF  
LIDAR FOR REMOTE SENSING IN AGRICULTURE 

 
 

The objective of this whole study was to evaluate a LiDAR sensor for high-resolution 
remote sensing in agriculture. A linear motion system was developed to precisely control 
the dynamics of LiDAR sensor in effort to remove uncertainty in the LiDAR 
position/velocity while under motion. A user control interface was developed to operate the 
system under different velocity profiles and log LiDAR data synchronous to the motion of 
the system. The LiDAR was then validated using multiple test targets with five different 
velocity profiles to determine the effect of sensor velocity and height above a target on 
measurement error. The results indicated that the velocity of the LiDAR was a significant 
factor affecting the error and standard deviation of the LiDAR measurements, although 
only by a small margin. Then the concept of modeling the alfalfa using the linear motion 
system was introduced. Two plots of alfalfa were scanned and processed to extract height 
and volume and was compared with photogrammetric and field measurements. Insufficient 
alfalfa plots were scanned which prevented any statistical analysis from being used to 
compare the different methods. However, the comparison between LiDAR and 
photogrammetric data showed some promising results which may be further replicated in 
the future.  
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CHAPTER 1:  INTRODUCTION 

1.1  Low Altitude Remote Sensing in Agriculture 

Low altitude remote sensing in agriculture (LARS) is the use of unmanned aircraft 

systems (UAS) or manned aircraft systems (MAS) at low altitudes to remotely estimate 

crop physical and biological parameters. LARS is important for small-to-medium farm 

holdings (C. Swain et al., 2018) and provides an alternative to relatively low resolution 

satellite imagery, which makes most of the fields on smaller farms look uniform and 

represented by too few pixels (Lamb and Brown, 2001). Site specific management or intra-

field management with high resolution field data is beneficial as it monitors the local 

requirements in the field. Monitoring site specific data in real time will be the future of 

agriculture as it takes spatial and temporal variability into account instead of averaging the 

variability across the field and time into a single measurement. Variable rate information, 

although is more computationally complex, can potentially provide more accurate and 

precise information, which balances the cost of using it.  

UAS offers high resolution remote sensing data at ultra-low altitudes and slow speeds 

with a high degree of flexibility and high efficiency than MAS (Guo et al., 2012; Huang et 

al., 2016). The use of unmanned aircraft systems (UAS) to estimate a crop’s physical and 

biological properties has increased due to improvements in accuracy and efficiency 

(Malveaux et al., 2014).  Especially as the cost of UAS decreases, it will become more and 

more viable option for remote sensing in the future. The problem with the small UAS are 

due to its current limitations in terms of payload capacity, range and stability (Guo et al., 

2012; Zhang and Kovacs, 2012). But a recent study by Huang et al., 2016 suggested that 

UAS can alone provide enough accurate data or can complement MAS for crop 
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management. The results from different experiments over the past few years also showed 

the capability of using UAS for remote sensing in agriculture (Guo et al., 2012; Zhang and 

Kovacs, 2012; Huang et al., 2016; C. Swain et al., 2018). 

Crop physical properties, such as canopy height, canopy volume, and leaf area index 

(LAI) are useful for estimating nutritional and fertilizer requirements (Stamatiadis et al., 

2010), providing indication of health and potential yield (Cui et al., 2010; Colaço et al., 

2017), modeling evapotranspiration, photosynthesis, and crop yield (Bonan, 1993), and 

understanding interactions between plants and solar radiation, water, and nutrients (Nie et 

al., 2016). UAS-based remote sensing typically have higher spatial and temporal 

resolutions than satellite and conventional aerial imagery (Zhang and Kovacs, 2012), which 

makes it particularly suitable remote sensing at the individual plant level. 

There are multiple techniques used in capturing the 3D information of the environment. 

Most commonly used techniques are laser, radar and ultrasonic ranging sensors (Dworak 

et al., 2011). Laser, radar, and ultrasonic sensors are all active remote sensing techniques, 

which use time-of-flight (TOF), interferometry, or triangulation techniques to map the 

environment (Dworak et al., 2011; Vázquez-Arellano et al., 2016). The active remote 

sensing techniques provided their own energy source to be reflected/transmitted back and 

measured by the sensor whereas the passive remote sensing methods uses the energy 

available naturally like sunlight to be reflected to be measured by the sensor. The passive 

remote sensing techniques typically use image processing methods and are less accurate 

than active remote sensing techniques due to sunlight and environment issues (Kelly and 

Di Tommaso, 2015; Pittman et al., 2015; Sun et al., 2018).  
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In the future, LARS is likely to overtake traditional remote sensing in terms of use as it 

provides the opportunity of real-time monitoring and phenotyping of crops and plants with 

higher spatiotemporal resolutions.  

1.2  LiDAR in Remote Sensing 

1.2.1 Background 

The active remote sensing techniques can be used any time of the day and are typically 

more accurate for 3D modeling, but there are some limitations among commonly used 

active sensors. Ultrasonic sensors are not particularly suitable for crop remote sensing due 

to high attenuation, divergence, sensitivity to wind, and limited range. High-resolution 

radar sensors are expensive and typically exhibit a time delay for data acquisition, while 

low-cost radar sensors do not have the resolution required for remote sensing of crop 

physical structure (Dworak et al., 2011). High-resolution LiDAR, as compared to other 

ranging sensors, has higher spatial and temporal precision, and can map the environment 

more accurately (Lefsky et al., 2002). LiDAR performance is robust in a wide range of 

environmental conditions making it suitable for agriculture use (Lin, 2015). Multiple 

studies have shown the utility of LiDAR for mapping crop or tree physical properties 

(Estornell et al., 2011; Zhang and Grift, 2012; Arnó et al., 2013; Kelly and Di Tommaso, 

2015).  

LiDAR is a type of ranging sensor and an active remote sensing technique that uses 

ultraviolet, infrared or visible light to map the environment. Originated in the 1960’s, it 

uses time of flight technique to measure the distance between the object and the LiDAR. 

There are primarily two types of LiDAR based on the way the return signals are recorded. 

They are full waveform and the discrete return LiDAR as shown in the Figure 1-1. When 
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a single laser pulses emitted from a LiDAR hits an object, there may be multiple returns 

depending upon the geometric characteristics of the object. Full waveform records the 

whole pulse received whereas the discrete return only records the peaks of the signal 

received. As the full waveform LiDAR records the whole pulse received it is potentially 

provides a more accurate and precise response, but it has more data, requires more 

processing time and has less commercial software packages designed to process the data 

over large areas (Kelly and Di Tommaso, 2015). 

 

Figure 1-1: Waveform of the LiDAR mapping a tree showing its peak returns 

LiDAR is an excellent at capturing the 3D information of the environment. Mapping 

applications range from measuring canopy physical parameters in agriculture to obstacle 

avoidance for autonomous vehicles to land and construction surveying to pollutant 
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modeling. Modern LiDAR systems are easier to deploy and can be integrated into a wide 

range of platforms such as UAS, etc.  

1.2.2 Height Measurements 

A common technique to quantify the physical height of an object relative to the ground 

plane was to obtain object height model (OHM) or canopy height model (CHM). OHM 

can be computed from the digital terrain model (DTM) and digital surface model (DSM) 

of an object which can be obtained through LiDAR. The DTM represented ground 

measurements whereas the DSM consists of objects detected above ground level. The DTM 

was subtracted from the DSM to obtain the OHM, and the OHM was used to extract height 

measurements in a given region of interest. Figure 1-2 shows an example of DSM and 

DTM of a tree mapped from above it.  

 

Figure 1-2: (a) DTM of the tree (b) DSM of the tree 

1.2.3 LiDAR Sensor 

A 16 channel LiDAR (VLP-16, Velodyne LiDAR, San Jose, CA) (Figure 1-3) was used 

for the study. The LiDAR communicates with a webserver GUI with the default IP of the 

server: 192.168.1.201 once turned on. The webserver can be used to customize the settings 

of the LiDAR. From the webserver interface, the LiDAR can be configured to report three 

different types of returns last, strongest and dual returns, which reports both the last and 

strongest returns. The LiDAR can also be configured to rotate 300 - 1200 rpm. The LiDAR 

Ground 
(a) (b) 
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sends 754 UDP (User Datagram Protocol) data packets per second in the strongest and last 

returns configuration and 1508 data packets per second in the dual returns configuration 

and maps the environment in spherical coordinates. Each UDP data packet consists of 12 

data blocks consisting of rotation angles (azimuth and elevation), time of flight distances, 

calibrated reflectivity measurements and a timestamp associated with it. The LiDAR 

operates within a range of 1 m - 100 m, has 360o horizontal (azimuth) field of view with 

resolution of 0.1o - 0.4o and 30o vertical (elevation) field of view with a resolution of 2o. 

LiDAR has a typical accuracy of + 3 cm. In this whole study, the LiDAR was configured 

to only report the strongest returns (generally the closer object) and to rotate at 600 rpm. 

 

 

Figure 1-3: Velodyne VLP-16 LiDAR 

1.3  Objectives 

The overall objective of this study was to evaluate a LiDAR sensor for remote sensing 

in agriculture. The specific objectives were as follows: 

1) Develop a linear motion test fixture for evaluating a LiDAR system used for remote 

sensing in agriculture. 

2) Validate the system using a test target and determine the effect of target height and 
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LiDAR velocity on measurement error. 

3) Model the physical structure of alfalfa using the test fixture and correlate with field 

measurements and 3D measurements made using photogrammetry. 

1.4  Thesis Outline 

Chapter 1 introduces the thesis topic, provides background information, and outlines 

specific objectives for this thesis. Chapter 2 introduces the development of the linear 

motion system and the rationale behind it. This chapter also validates the performance of 

linear motion system. Chapter 3 details the development of software to operate the linear 

motion system, log the data from LiDAR and post process the raw LiDAR data to extract 

the useful information. This chapter also validates the system and determines the effect of 

target height and LiDAR velocity on measurement error. Chapter 4 details the process of 

modeling physical parameters of alfalfa using LiDAR on a linear motion system. This 

chapter also compares the LiDAR data with the field and photogrammetry measurements. 

Chapter 5 discusses the future applications of this system and the additional work this 

system aims to produce. Chapter 6, the appendix, presents pertinent information not 

presented in the body of the text as well as extended figures which provides more thorough 

details of the all the drawings, software used in this study. 
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CHAPTER 2:  LINEAR MOTION TEST FIXTURE DEVELOPMENT 

2.1  Summary 

To summarize this chapter, a linear motion test fixture was developed based on design 

constraints of usability and versatility to control the dynamics of the LiDAR. The linear 

motion system consisted of top assembly which included a carriage assembly that 

translated back and forth via force supplied by the timing belt to which the LiDAR was 

integrated. It also consisted of a frame assembly to raise the LiDAR sufficiently high above 

the ground and a motion control system to run the stepper motor and power the sensors. 

The linear motion test fixture was validated for position control, steady state velocity, and 

frame movement using a robotic total station. The results demonstrated the effectiveness 

of the test fixture for eliminating most of the uncertainty presented in traditional LiDAR 

deployment platforms used for remote sensing. 

2.2  Introduction 

For remote sensing, LiDAR can be integrated onto fixed-wing or multi-rotor UAS to 

achieve high-resolution real-time monitoring of crop physical properties at field scale. 

UAS typically consists of an aerial platform and an autopilot or flight control systems that 

includes a global positioning system (GPS) and an inertial measurement unit (IMU). 

Position and velocity are usually tracked by the GPS and IMU, and/or by additional on-

board sensors (e.g., motion flow cameras). US government official website for GPS 

(Department of Defense, 2008) states that the global user average for position accuracy 

was < 0.715 m and velocity accuracy was < 0.006 m/s with 95% probability. On top of that 

the turbulence in the environment, the skill of the operator piloting the UAS also adds to 

the uncertainty to the position, velocity and orientation measurements. A common 
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assumption is that the UAS is moving at a constant velocity (Sun et al., 2018) or GPS/IMU 

are accurate enough to predict position at any point in time. Sugiura et al., 2003 also stated 

that UAS do not have precise control over velocity, which changes due to wind speed and 

will add inaccuracies in LiDAR measurements. In all these cases, there is some uncertainty 

in the velocity and position of UAS at each time interval that contributes to LiDAR 

measurement error. The position and velocity of an UAS are susceptible to uncertainty due 

to environmental conditions and will be hard to accurately track them at the spatiotemporal 

resolutions that LiDAR data can be collected. The uncertainties in the position and velocity 

at each instant will induce inaccuracies in the 3D projection of the LiDAR measurements.  

One of the factors that affects the UAS is the overall stability and other factor that arise 

from the center of gravity (CG) of a UAS. The lower the center of gravity is in comparison 

to UAS control axis, the less stable it is. Integrating too many sensors at the same time and 

having too much weight on the lower part of an UAV lowers the CG making it less stable. 

A portable high-resolution LiDAR usually weighs anywhere between 0.3 kg to 2 kg. 

Integrating LiDAR onto a UAS will have a large impact on the COG and most likely reduce 

stability. 

Prior to implementing these techniques on large fields, the methods must be evaluated 

in a more controlled manner to reduce external effects on the LiDAR measurement error 

and to determine the upper‐limit on accuracy and precision of the LiDAR measurements. 

2.2.1 Objectives 

The objective of this chapter is to develop a linear motion test fixture to control the 

dynamics of the LiDAR. The specific objectives were as follows: 
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1) Design and fabricate the linear motion system test fixture according to the design 

constraints according to the design constraints of the system. 

2) Develop a motion control system to drive the stepper motor and supply power to the 

whole system. 

3) Validate the performance of the linear motion system. 

2.3  Materials and Methods 

2.3.1 Design Constraints 

In this study a linear motion test fixture was built to control the dynamics of a multi-

channel 3D LiDAR sensor. The linear motion test fixture needed to be built in such a way 

that it can be deployed in the field by transferring it inside a trailer. Therefore, constraints 

on maximum dimensions were determined from the inner dimensions of the trailer. The 

test fixture was also required to be robust to external disturbances – otherwise, it would 

induce uncertainty in the LiDAR measurements. Finally, the linear motion test fixture 

should also be corrosion resistant for deploying it in the moisture saturated field conditions. 

In summary, three design constraints of the system were defined based on its usability and 

versatility: 

1) Maximum dimensions of the whole system should be less than 1.8 m x 1.8 m x 3.6 

m to fit inside an existing cargo trailer. 

2) The system should be easy to carry, light weight, and robust to external disturbances. 

3) Components encountering moisture should be corrosion resistant. 

2.3.2 Test Fixture Components  

The linear motion test fixture consisted of a linear rail which was built from anodized 

aluminum extrusion ((1020, and 2020), 80/20 Inc., Columbia City, IN) due to a hard 
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surface finish, ability to assemble into a rigid structure without permanent bonds, and 

corrosion resistance against moisture saturated field conditions. A carriage assembly 

(Figure 2-1a) was designed to translate back and forth along the linear rail. The carriage 

assembly consisted of different parts designed and fabricated on a 3D printer. It consists of 

a carriage rail with wheels that slides on the t-slotted linear rail extrusion. The wheels were 

designed in such a way that the offset between the wheel width and the linear rail extrusion 

was loose enough to move smoothly without allowing for unwanted lateral movements. 

Each wheel assembly consisted of the plastic wheel and two stainless steel flanged ball 

bearings on each side (57155K305, McMaster Carr, Elmhurst, IL). The carriage assembly 

also consisted of a multipurpose mounting plate containing different sized holes organized 

in a regular pattern to accommodate different sensors. The LiDAR was integrated onto the 

multipurpose mounting plate using a 3D printed bracket (Figure 2-1b), and translated back 

and forth with the carriage assembly via force supplied by a timing belt (7959K26, 

McMaster Carr) (Figure 2-1a). The timing belt and pulley (1304N11, McMaster Carr) sub-

assembly are connected to the stepper motor and were attached to the carriage assembly 

using a clamping mechanism. The clamping mechanism allowed tension in the timing belt 

to be set so that the belt cannot slip around the pulley. A flexible cable carrier (55835K93, 

McMaster Carr) (Figure 2-1a) was also used for interfacing the LiDAR to a PC for data 

acquisition without entanglement in the linear motion system. The cable carrier was 

secured to the carriage assembly using a custom 3D-printed mount.  
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Figure 2-1: (a) Carriage assembly with the major components identified (b) 

Integration of LIDAR onto the carriage assembly using the multipurpose mount 

The linear motion system was mounted onto a frame assembly to set the height of the 

LiDAR at approximately 2 m above the ground, allowing targets up to 1 m tall to be 

scanned. The top assembly and frame assembly were connected by means of a sliding joint 

Figure 2-2b for easy dismount. The frame assembly had wheels mounted under each leg to 

improve indoor mobility. Both the top and frame assemblies had diagonal braces on the 

corners to improve rigidity. The dimensions of the top and frame assembly are less than 

the maximum constrained dimensions, thus satisfying all initial dimensional constraints. 

Refer to Appendix A for the CAD drawing of all the parts in the Figure 2-1 and Figure 2-2. 
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Figure 2-2: (a) Frame Assembly with the major components identified and (b) 

Sliding joint connecting the top and bottom frame assemblies. 

2.3.3 Torque Requirements of the System 

The torque requirements of the system were calculated as follows: 

𝑇𝑇 = 𝑟𝑟 𝑋𝑋 𝐹𝐹 Equation 2-1 

𝐹𝐹 = 𝑀𝑀𝑀𝑀 Equation 2-2 

Where  

T = torque required to move the system (N m)  

F = force needed to move the system (N)  

r = pitch radius of timing belt pulley (m)  

M = mass of carriage and LiDAR assembly (kg)  

a = desired acceleration (m/s2)  

The maximum desired acceleration of the system was initially set at 5 m/s2 to assist with 

motion component specification. A stepper motor (3.06 N m, STP-MTRH-34066D, 

AutomationDirect, Cumming, GA) was coupled with a 2.73 cm pitch radius timing pulley 

to provide torque for translating the timing belt. The required torque based upon the 

carriage mass and pitch radius was 0.41 N m, resulting in factor of safety of approximately 

Wheels 

Frame Assembly 
Sliding Joint 

Brace 
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7.5. This allowed for higher accelerations to be achieved, but more importantly, sufficient 

torque was available to ensure that the stepper motor would not miss a step under normal 

operation conditions – a necessary criteria to ensure accurate position/velocity control. 

2.3.4 Motion Control System 

All motion control electronics were housed in a plastic enclosure box (NEMA Series, 

NBA 10176, Bud Industries, Willoughby, OH) (24)  and mounted to the side of the top 

assembly for protecting against environmental and moisture saturated field conditions. 

Electronic components consisted of a 70 VDC power supply (STP-PWR-7005, 

AutomationDirect), which supplied power to a regeneration clamp (STP-DVRA-RC-050, 

AutomationDirect). The regeneration clamp is used to protect the system from back-EMF 

produced by the motor during high decelerations. The regeneration clamp then powered a 

bi-polar stepper motor controller (STP-DVR-80100, AutomationDirect), which emitted 

pulses to drive the stepper motor at a desired velocity profile. Additional power supplies 

(5/12/24 V) were integrated into the motion control system to supply power to LiDAR and 

for future instrumentation. The motion control system also consists of terminal strips and 

a plastic housing to have additional protection to the wires from the environment. Wiring 

was passed through the plastic enclosure box using cable glands. Refer to Appendix B for 

the wiring schematic of the motion control system.  
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Figure 2-3: Motion control system electronics enclosure box with major components 

identified. 

The stepper motor controller came with its own customized language called serial 

command language (SCL) for controlling the stepper motor. It was developed to make it 

simple to control the stepper motor through the serial port. It consists of several predefined 

commands to run the stepper motor in a desired velocity profile. Example commands used 

included: 

1) “DI200/DI-200”: sets the displacement of the stepper motor in clockwise (CW)/ 

counter clockwise (CCW) to 200 rev.   

2) “VE20”: sets the steady state velocity of stepper motor to 20 rev/s 

3) “AE2/DE2”: sets the acceleration/deceleration to 2 rev/s2 

4) “FL”: executes the above lines of code 

By executing the four example commands shown, the stepper motor accelerated at 2 

rev/s2 to a steady-state velocity of 20 rev/s and decelerated at 2 rev/s2 to rest with a total 

rotational displacement of 200 rev. Each revolution of the stepper motor was equivalent to 

the linear distance along the pitch circumference of the pulley attached to stepper motor. 

Therefore, desired linear dynamics had to be converted into motor velocity commands. 
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Carriage displacement was given the highest priority. That meant if the desired 

acceleration was such that it never reached the desired steady-state velocity in a given 

distance, then the desired steady-state velocity would not be reached.  

Figure 2-5 refers to the rendered image of orthogonal view of CAD model of the whole 

linear motion system. Figure 2-6 refers to picture taken of the assembled linear motion 

system.  

 

Figure 2-4: Isometric view of the linear motion test fixture CAD model. The timing 

belt and cable carrier are not shown. 
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Figure 2-5: Complete linear motion system assembly designed to translate a LiDAR 

sensor at constant velocity over a 1x1x1 m test volume. 

2.3.5 Validation of Linear Motion System Performance 

The linear motion system performance was validated using a total station (S5, Trimble 

Inc., Sunnyvale, CA) (Figure 2-7). The total station automatically tracked a prism 

(MT1000, Trimble Inc.) and was used for three different validation experiments: 

1. Frame movement validation – the prism was fixed to a horizontal rail on the 

frame assembly to detect motion in the linear test fixture frame due to 

acceleration/deceleration of the carriage. 

2. Position validation – the prism was fixed to the carriage assembly for 

determining the displacement accuracy of the carriage assembly when moving 
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between locations. 

3. Steady-state velocity validation – the prism was fixed to the carriage assembly 

for determining the velocity accuracy of the carriage assembly under steady-

state movement. 

Frame movement validation measurements were taken at 7 different velocity profiles 

(distance = 2.0m, acceleration/ deceleration = 1 to 5 m/s2, velocity = 1 to 2 m/s) with 2 

replications. Position control validation measurements were taken at 4 different distances 

(0.5, 1.0, 1.5, and 2.0 m) with 3 replications. Steady-state velocity validation measurements 

were taken at 3 different velocities (0.1, 0.5, and 1.0 m/s) with 3 replications for each 

velocity. The measurements were logged at 2.5 Hz through a serial port and saved in a text 

file. 

 

Figure 2-6: Validation of the linear motion system performance using a robotic total 

station and target prism. 
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2.3.6 Safety Precautions 

The linear motion system (Figure 2-6) was equipped with a kill switch to disengage 

power in case of emergency. Limit switches (SZL-VL-A, Honeywell International Inc., 

Morris Plains, NJ) were also placed on either end of the linear rail to disengage the stepper 

motor power whenever the carriage assembly tripped the limit switch – thereby protecting 

the linear motion system from potential mechanical failure due to improper operation or 

software malfunction. The limit switch closest to the plastic enclosure box was also used 

to index the start position of the linear motion system. 

2.4  Results and Discussion 

2.4.1 Frame Movement Validation 

The frame movement is expressed as the average magnitude of movement across the 

three axes of the linear motion system when the LiDAR was in motion. Data from the 

robotic total station showed little movement in the frame (< 1 mm) when 

accelerating/decelerating the carriage up to 5 m/s2. The average magnitude of movement 

was between 0.0001 m and 0.0002 m (Figure 2-8).  

 

Figure 2-7: Frame movement validation showing the average magnitude of 

movement. 
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2.4.2 Position Control Validation  

Position error was expressed as the difference between the distance measured by the 

total station and the theoretical displacement of the linear motion test fixture. The absolute 

position error of the linear motion test fixture was a function of distance travelled, resulting 

in 2 millimeters of error per meter travelled. The average absolute position ranged between 

0.001 m and 0.005 m (Figure 2-9).  

 

Figure 2-8: Position validation showing the deviation of distance of LiDAR from the 

theoretical distance. 

2.4.3 Steady-State Control Validation 

The error in the steady-state velocity was defined as the difference between the actual 

velocity measured by the total station and theoretical velocity of the linear motion text 

fixture. The absolute steady-state velocity error of the linear motion test fixture was 2 mm/s 

of error when travelling at 1m/s. The average error in steady-state velocity ranged from 

0.0004 m/s to 0.002 m/s (Figure 2-10).   
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Figure 2-9: Steady-state velocity validation showing the deviation of steady state 

velocity of LiDAR from the theoretical steady state velocity. 

2.5  Conclusions 

Results showed that the linear motion test fixture constrained the LiDAR to a known 

path at a known velocity to a high level of accuracy and precision. Both the error in position 

and velocity were an order of magnitude smaller than the specified measurement accuracy 

of the LiDAR sensor (± 3 cm) and were considered negligible when projecting LiDAR data 

from the sensor spherical coordinate system to a local Cartesian coordinate system. 

Position and velocity error were likely due to error when calibrating the robotic total station 

into the linear motion test fixture’s local coordinate system. No backlash was detected 

when moving the carriage back and forth to the same position. 
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CHAPTER 3:  SOFTWARE CONTROL DEVELOPMENT AND LIDAR 

VALIDATION EXPERIMENT 

3.1  Summary 

To summarize this chapter, a user control interface was developed to operate the linear 

motion test fixture from Chapter 2. The user control interface recorded LiDAR data in the 

background using a second processing thread to parse and store data into a Comma-

Separated Values (CSV) file. The LiDAR was then validated using multiple test targets at 

five different velocity profiles and six replications to determine the effect of sensor velocity 

and height above a target on measurement error. Generalized linear mixed models were 

fitted with the error and standard deviation as the response and velocity, actual height, and 

their interaction as the fixed effects to determine if there were significant differences in 

error and standard deviation for different velocities and heights. The results indicated that 

the velocity of the LiDAR was a significant factor affecting the error and standard deviation 

of the LiDAR measurements, although only by a small margin. 

3.2  Introduction 

The data from the LiDAR should be synchronized to the motion of the LiDAR to remove 

any positional error in the 3D projection of the LiDAR data. The point cloud obtained from 

the LiDAR data should be processed to acquire the information needed. The processing 

used in this study was based on Sun et al., 2018. The raw LiDAR data obtained in spherical 

coordinates was converted to Cartesian coordinates. OHM was obtained from subtracting 

the DTM from DSM to extract the height information of the object scanned and then fused 

with velocity profile data to project the height data in 3D point cloud.  
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The main advantage of using the linear motion test fixture was the ability to repeatedly 

move the LiDAR in different velocity profiles. The point density of the LiDAR on a target 

is a function of velocity. If controlled for external factors, point density follows a power 

series with a coefficient of -1(Point density ∝ 1/Velocity). As the velocity of the UAS 

increases the point density decreases for a constant LiDAR sampling rate. Lower point 

density reduces spatial resolution, which may obscure the true physical structure or provide 

insufficient data for accurate target classification. LiDAR data reduction was discussed by 

Liu and Zhang, 2008 and they concluded that the reduction in data doesn’t significantly 

affect the accuracy of DEM, however most DEMs are at a much larger scale than what is 

being investigated in this study. They also concluded that the LiDAR data can be reduced 

to an extent to remove all the trivial elements or outliers and keep the remaining ones. 

Decrease in LiDAR data when deploying on a UAS will be useful as the UAS can travel 

faster and cover more area without significantly affecting the accuracy of DEM. Decrease 

in LiDAR data also meant that less computational complexity, fast processing times and 

file handling which are essential in real time monitoring.  

One of the research questions this study seeks to understand is to how fast a LiDAR 

sensor can travel without having any significant deviation from its measurement due to 

decrease in point density at very high spatial resolutions (> 1 point per cm). This study also 

investigates how the relative height of targets within a given field-of-view (FOV) affect 

point density for a given velocity as a result of the geometry between the LiDAR and the 

targets. A predefined test target can be used to quantify LiDAR performance and perform 

statistical tests on the LIDAR data to show any significance of difference in height 

measurements with different sensor velocities and target heights.  
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Zhang and Grift, 2012 did similar research on estimating the crop height where they 

found an increase in average error of the stem height with an increase in the velocity of 

LiDAR due to reduction in point density. Sanz-Cortiella et al., 2011 did a 3D LiDAR 

experiment on multi-purpose test rail where the LiDAR was driven at 3 speeds and 2 

angular resolutions and found a linear relationship between number of impacts and leaf 

area.  Selbeck et al., 2010 also did a research project on a LiDAR scanner where he 

observed less to no deviation for the height measurements of a maize crop between 

different velocities.  

 This study expands on previous work by performing tests on a well-defined target to 

improve the ability to detect significant differences in measurement error based upon 

LiDAR velocity and target height.  

The overall objective of this chapter is to validate the LiDAR sensor using defined input 

geometries. The specific objectives were as follows: 

1) Develop a user control interface to control the linear motion test fixture and record 

the LiDAR data 

2) Develop software to process the raw LiDAR data collected with the linear motion 

system 

3) Validate the system using a test target and determine the effect of target height and 

LiDAR velocity on measurement error  

3.3  Materials and Methods 

3.3.1 User Control Interface 

A PC-based user control interface was developed to control the velocity profile of the 

linear motion system and to record LiDAR data. The user control interface shown in Figure 
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3-1 was developed in Python (2.7, Python Software Foundation, DE) using the Tkinter 

graphic user interface (GUI) toolkit. Tkinter functions were imported in Python and a class 

was defined for software configuration. Combo boxes were used to provide preset values 

controlling acceleration, velocity, deceleration, and total displacement. Preset values could 

be overwritten by entering in custom values into any combo box, but were software limited 

in terms of their maximum values. Four buttons were implemented to provide the following 

capability: 

1. Connect – opens the serial port and send the necessary commands through the 

serial port to initialize the stepper motor controller 

2. Disconnect – closes the serial port, releasing the stepper motor controller 

3. Run – simultaneously sends motion commands to the stepper motor controller to 

run the carriage assembly in the desired velocity profile and connects to the UDP 

port to log the data from LiDAR 

4. Start Position – sends a series of commands to the stepper motor controller to 

ensure the system starts at the same place every time by slowly moving the 

carriage assembly in the forward direction until it strikes the limit switch. 

 

Figure 3-1: User control interface to select different velocity profiles for the LiDAR 

After connecting to the serial port and clicking ‘Start Position’, the carriage assembly 

translated towards the start position limit switch until limit switch was pressed, at which 

point the carriage immediately stopped and the linear motion system location was set to 
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machine zero. The carriage assembly was then moved 0.1 m in the opposite direction and 

a local zero was set. The offset between the machine and local zero locations provided a 

“soft limit” to ensure that the mechanical limit switches would not be reached under normal 

operating conditions.  

The data logging flow diagram shown in the Figure 3-2 illustrates the process of 

simultaneously sending commands to the stepper motor and started a data acquisition 

background thread after clicking the ‘Run’ button. The background thread consisted of a 

connection to a UDP port with an IP address and port number specified configured to match 

the LiDAR data stream. A comma-separated values (CSV) file was created each time the 

‘Run’ button was pressed with the date and time as the file name. The LiDAR data blocks 

were encoded into hexadecimal format and parsed into the CSV file. A carriage position 

background thread continuously sampled the position of the carriage as it translated back 

and forth by polling the stepper motor controller. When the carriage assembly returned to 

the original start position, an event was raised to break the data acquisition background 

thread, thereby stopping the data logging and closing the CSV file. Refer to Appendix C 

for the motion control and data collection software developed in python. 
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Figure 3-2: Data logging flow diagram showing the order of steps followed in order 

to log the data from LiDAR 

3.3.2 Data Processing and Analysis 

The work flow of the data processing is shown in the Figure 3-3. Initially, the raw 

LiDAR data was fed into a MATLAB script (R2016a, MathWorks, Natick, MA). A 1x16 

cell structure array titled distance with each cell corresponding to a particular channel and 

consisting of 3-dimensional matrix with dimensions n x 12 x 2 (number of packets x data 

blocks per packet x 2 values per each channel per each data block) was initialized. The 
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hexadecimal values in data packets were converted into decimal format, which gives the 

azimuth angle values, time of flight distance values and calibrated reflectivity values. The 

elevation angles were fixed for a given channel. Data corresponding to the appropriate 

channel (values 0-15) were stored in the each of the cells in the distance cell structure array. 

The distances, azimuth angles and elevation angles mapped the environment in spherical 

coordinates which were converted into Cartesian coordinates (X, Y, Z) using the following 

formulae: 

𝑋𝑋𝑛𝑛 =  𝑟𝑟𝑛𝑛 cos(𝜔𝜔𝑛𝑛) sin(𝛼𝛼𝑛𝑛) Equation 3-1 

𝑌𝑌𝑛𝑛 =  𝑟𝑟𝑛𝑛 cos(𝜔𝜔𝑛𝑛) cos(𝛼𝛼𝑛𝑛) Equation 3-2 

𝑍𝑍𝑛𝑛 =  𝑟𝑟𝑛𝑛  sin(𝜔𝜔𝑛𝑛) Equation 3-3 

Where  

𝑟𝑟𝑛𝑛 = Distance of sample number ‘n’ (mm)  

𝜔𝜔𝑛𝑛= Elevation angle of sample number ‘n’ (°)  

 𝛼𝛼𝑛𝑛= Azimuth angle of sample number (°)  

n = Sample number  
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Figure 3-3: Data processing flow diagram showing the order of steps performed to 

acquire the object height model. 

Since data logging was synchronized with the motion of the system, the first timestamp 

and last timestamps represented the beginning and end of the motion profile, respectively. 

The LiDAR position was determined using the timestamp and basic kinematic equations. 

Only data collected during the steady-state portion of each test were used in analysis. The 

resulting steady-state data was split into two data sets, one for forward motion and another 

for backward motion. Cartesian coordinates obtained were projected into 3D space in Z 

axis (direction of travel, Figure 2-6) using the steady state velocity by using the following 

formulae: 

𝑍𝑍𝑛𝑛𝑛𝑛 = 𝑟𝑟𝑛𝑛  sin(𝜔𝜔𝑛𝑛) + 𝑣𝑣 ×  (𝑡𝑡 − 𝑡𝑡0) Equation 3-4 

𝑍𝑍𝑛𝑛𝑛𝑛 = 𝑟𝑟𝑛𝑛  sin(𝜔𝜔𝑛𝑛) − 𝑣𝑣 ×  (𝑡𝑡 − 𝑡𝑡0) Equation 3-5 

Where  

𝑍𝑍𝑛𝑛𝑛𝑛  = Z coordinate of sample number ‘n’ at time ‘t’ (mm)  

𝑟𝑟𝑛𝑛 = Distance of sample number ‘n’ (mm)  

𝜔𝜔𝑛𝑛= Elevation angle of sample number ‘n’ (°)  

Raw Data  
(Hex Format) 

Timestamp, 
Distance, 

Intensity and 
Azimuth 
Values 

Read Data (Excel File) 
in MATLAB and 

Conversion into Decimal 
Format X, Y, Z Values 

Conversion of Spherical 
to Cartesian Coordinates  

DSM/DTM 
Generation 

3D Point 
Cloud Ground Measurements 

and Object 
Measurements 

Project X, Y, Z Coordinates 
using Steady State Velocity  

Object Height 
Model (OHM) Using 3D point cloud 

processing in MATLAB 



30 
 

𝑣𝑣 = Steady state velocity (m/s)  

𝑡𝑡 = instantaneous timestamp (s)  

𝑡𝑡0 = initial timestamp (s)  

Equation 3-4 refers to the projection of Z coordinate in forward motion and Equation 

3-5 refers to the projection of z coordinate in backward motion. Thus, the local 3D point 

cloud relative to the linear motion system was obtained after projecting the LiDAR data 

into 3D space. Refer to Appendix D.1for the data processing of raw LiDAR data. 

3.3.3 Test Target Experiment 

A test target shown in Figure 3-4a was used to validate the LiDAR sensor when 

translating on the linear motion system at varying velocities. The target consisted of 25 

anodized aluminum tubes of 5 different heights pseudo-randomly arranged in the order as 

shown in Figure 3-4b, where no height was repeated in a single row or column. The tubes 

were bolted onto a 1 m x 1 m x 1.9 cm medium-density fiberboard (MDF) base using 

countersunk machine screws. A magnet embedded in a 3D printed plastic mount was 

attached to the top of each tube. Sheet metal steel plates (0.2 m x 0.2 m x 0.3 cm) were 

centered on each magnetic mount. The plates were painted flat black on one side and flat 

white on reverse side to provide two relative intensity values when recording LiDAR data. 

Refer to Appendix E for CAD models for the test target.  
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Figure 3-4: (a) Orientation and placement of the test target underneath the LiDAR 

(b) Physical layout showing the arrangement of heights of the test target. 

The test target was located in the middle of the frame and the sides of the MDF base 

were aligned parallel to X and Z axes. The LiDAR sensor translated above and across the 

LiDAR test target. The LiDAR sensor scanned the test target while translating forward and 

backward for a single velocity profile. LiDAR data were collected in five different velocity 

profiles and replicated three times. Each replication was split into two different scans, one 

for forward motion and one for backward motion (5x3x2). The entire experiment was 

repeated for the white and black side of the target plates. The ground (i.e. floor) 

measurements were taken prior to target measurements at a lowest velocity profile. 

Velocities within each replication were pre-determined randomly and the same order was 

applied when scanning white and black targets. 

Table 3-1 shows the order in which data were collected for each target color. Velocities 

within each replication were pre-determined randomly and the same order was applied 

when scanning white and black targets. 
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Table 3-1: Data Collection procedure of the LiDAR with the order of velocities 

Velocity (m/s) Replication 
Number 

1.0 1 
0.1 1 
0.5 1 
1.5 1 
2.2 1 
0.1 2 
1.0 2 
2.2 2 
0.5 2 
1.5 2 
2.2 3 
1.5 3 
1.0 3 
0.1 3 
0.5 3 

 

3.3.4 Point Cloud Processing of the Test Target 

The DTM was obtained separately for both white and black targets immediately before 

scanning the targets. For obtaining the average height of the ground, a region of interest 

(ROI) with a dimension of ±0.1 m in the y-axis at the expected ground level was applied 

to filter out extraneous points. The points lying inside were found and the point cloud 

corresponding to the ROI where the target would be located was obtained. The average 

height (y-coordinate) was found and used as a constant height DTM as the ground was 

relatively smooth.  
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Figure 3-5: LiDAR point cloud of (a) Test target at a velocity of 1.0 m/s (OHM) and 

(b) Extracted 0.8 m targets at a velocity of 1.0 m/s. 

For the test target measurements, both the forward and backward motion point cloud of 

the test target (Figure 3-5a), which was the resulting OHM, were generated from the 

constant height DTM and DSMs. There were two MATLAB scripts written for the forward 

and backward scans to obtain height measurements of the targets. Figure 3-5b shows the 

targets at 0.8 m extracted from the OHM using a ±0.05 m ROI in the Y axis centered at a 

height of 0.8 m above the ground level. The points lying inside were found again and the 

point cloud containing the points, which were the 0.8 m targets, was obtained. From the 

point cloud the limits of the Z-axis were found for that particular ROI and the lower limit 

was selected which was termed as the Z-coordinate of the target. The Z-coordinate was 

used to find the location of other targets in Z-axis as the position of the targets were known 

relative to each other in the Z-axis.    

(a) (b) 
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Twenty-five different ROI’s were defined for each of the 25 targets to extract points 

associated with each target. For a three-dimensional ROI corresponding to a particular 

plate, the y-axis range was a total of 0.15 m for the 0.1 m, 0.3 m and 0.8 m height targets, 

and 0.125 m for the 0.5 m and 0.6 m height targets. The decrease in the y-axis range for 

0.5 m and 0.6 m targets was to avoid the overlap of the corresponding ROIs due to the 

smaller separation distance. The ROI range of x-axis and z-axis for each target was ±0.1 m 

centered at the approximate center location of each target. This provided a large buffer 

around each ROI to ensure points from adjacent targets were not accidentally associated 

with a given target due to potential misalignment between the linear motion system and the 

test target.  

The points lying inside each ROI were extracted and associated with the corresponding 

target. In additional to retaining the raw height measurements within a ROI for statistical 

analysis, attributes computed from the points in each ROI included estimated average 

height, standard deviation in height, number of points on a particular target (point density), 

missing targets (targets where there were less than 10 points on them due to high speed or 

FOV obstruction due to adjacent targets), and the average intensity. All processed data 

were organized into a single Excel file where each spreadsheet consisted of one replication 

with five different velocity profiles and twenty-five different targets of five different 

heights. Refer to Appendix D.2 for feature extraction of test target from point cloud. 

3.4  Results and Discussion 

3.4.1 LiDAR Firmware Version 

Drift in the average distance to a stationary object was encountered when initially testing 

LiDAR, which was in excess of 10 cm from the time LiDAR was powered on until reaching 
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a steady-state value. Drift was determined to be due to changes in the internal temperature 

of the LiDAR and was mitigated through a firmware update. The maximum variability in 

measurements to the ground surface were less than 0.5 cm when using the updated 

firmware, which was well within the accuracy specifications of the LiDAR. Figure 3-6 

illustrates the distance to the ground surface measured by the LiDAR as a function of 

LiDAR temperature. Note that newer versions of the firmware were available but not used 

in this experiment due to the need to return the sensor to the manufacturer for update 

beyond version 3.0.24.1. 

 

Figure 3-6: Temperature response of the LiDAR sensor as exhibited by measured 

distance the ground surface at varying LIDAR sensor temperatures.   

3.4.2 Test Target Experiment 

The purpose of this experiment was to study the accuracy and precision of a LiDAR 

sensor when measuring a predefined test target and assess its performance for different 

velocities and target heights. The estimated height of a single target from the LiDAR was 

calculated as the average height of all the raw data points within the boundary of the target. 

Target height error was calculated by subtracting the actual height from the estimated 
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height. Figure 3-7 shows the height measurement error results as box and whisker plots for 

both height and velocity when measuring the white and black targets. 

  

(a) (b) 

  

(c) (d) 

Figure 3-7: Box and whisker plots of estimated height error for (a) white targets vs. 

actual height (b) white targets vs. actual velocity (c) black targets vs. actual height 

and (d) black targets vs. actual velocity. 

For example, in the Figure 3-7a, the red box and whisker plot shows the distribution of 

error for the 0.8 m targets across different replications, target numbers and velocities for 

the white targets. The box shows the 25% to 75% quartile values with the midline as the 

median of the data and the circular dot as the mean of the data. The whiskers show the 

minimum and maximum values of the data. From the box and whisker plots of the 

estimated height error, it was visually interpreted that error was more consistent between 
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target heights than LiDAR sensor velocity. As the velocity increases the width of the error 

distribution increased (higher kurtosis). There was also an increase in mean error as the 

velocity increased but difficult to interpret visually. 

Table 3-2 provides the height measurement error values averaged across all replications 

for given actual target heights and LiDAR senor velocities. The average height 

measurement error across the whole experiment was determined to be 5.3 mm for the white 

targets and 0.6 mm for the black targets. This result was particularly interesting given that 

the white targets had an average relative intensity of 88.2 while the black targets had an 

average relative intensity of 5.4. While only two target types are likely not enough to 

quantify a trend in error due to emissivity, it appears to contribute to error, albeit less than 

the specified accuracy of the LiDAR sensor.  

Table 3-2: Average error values of the white and black targets at different velocities 

and heights 

Average Height Measurement Error White Targets (mm) Average Height Measurement Error Black Targets 
(mm) 

Actual 
Height (m) 

Velocity (m/s) Velocity (m/s) 
0.1 0.5 1.0 1.5 2.2 0.1 0.5 1.0 1.5 2.2 

0.1 6.1 8.4 7.5 7.5 9.7 -0.8 1.0 2.8 1.1 2.5 
0.3 5.8 7.9 7.7 7.3 9.0 -0.9 1.0 0.7 1.2 2.2 
0.5 1.0 2.7 1.8 2.2 4.7 -2.0 -0.2 -0.5 -0.6 0.3 
0.6 3.7 4.4 5.5 4.5 4.0 0.9 1.3 1.7 2.1 1.8 
0.8 3.3 4.6 4.1 4.8 4.6 -0.9 -0.2 -0.2 0.4 0.9 

 

The standard deviation of a single target was calculated as the standard deviation of the 

heights of all the points inside the target boundary. Figure 3-8 shows the height 

measurement variability results as box and whisker plots for both height and velocity when 

measuring the white and black targets. 
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(a) (b) 

  

(c) (d) 

Figure 3-8: Box and whisker plots of standard deviation for (a) White targets vs. 

actual height (b) White targets vs. actual velocity (c) Black targets vs. actual height 

(d) Black targets vs. actual velocity. 

From the box and whisker plots of standard deviation, it was visually interpreted that the 

standard deviation values were consistent with height with exception of the 0.5 m targets 

in Figure 3-8a and 0.6 m targets in Figure 3-8c. Standard deviation values were also spread 

out more on both the targets as the velocity increases (higher kurtosis). In contrast to error 

values, the average standard deviation decreased as the LiDAR sensor velocity increased. 

Several explanations for this result may exist but the most plausible is that variability in 

height measurements for a given target (i.e., noise) tends be smaller when fewer 

measurements are present over a shorter period. In other words, translating a LiDAR sensor 
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over a target slowly to capture a denser point cloud may increase the noise present due to 

external factors not controlled for in this experiment. 

Table 3-3 provides the standard deviation of the estimated height averaged across all 

targets and replications for different actual heights and velocities. The average standard 

deviation across the whole experiment was 26.0 mm for the white targets and 26.9 mm for 

the black targets. 

Table 3-3: Average standard deviation values of the white and black targets at 

different heights and velocities 

Average Standard Deviation White Targets (mm) Average Standard Deviation Black Targets (mm) 
Actual Height 

(m) 
Velocity (m/s) Velocity (m/s) 

0.1 0.5 1.0 1.5 2.2 0.1 0.5 1.0 1.5 2.2 
0.1 28.7 28.1 28.6 28.6 27.8 29.4 27.4 26.2 27.6 25.8 
0.3 27.5 26.9 27.5 27.4 27.2 29.1 27.6 27.2 27.2 28.1 
0.5 24.4 24.0 24.8 24.2 20.6 28.1 27.2 27.6 27.4 26.4 
0.6 25.2 25.4 26.0 25.9 24.8 24.9 24.4 24.2 24.1 23.6 
0.8 25.7 25.9 25.1 25.8 24.9 28.4 28.1 27.8 28.1 26.5 

 

Point density and the intensity values were some of the other important parameters of 

the LiDAR data studied. The point density of a single target was calculated as the number 

of points recorded within the boundary of the target. Figure 3-9a illustrates the point density 

for the white targets averaged across all targets and replications for different heights versus 

the LiDAR sensor velocity. As velocity increased, point density decreased following a 

power series. Figure 3-9b illustrates the point density for the white targets averaged across 

all the targets and replications for different LiDAR sensor velocities versus the actual target 

height. Point density increased linearly with increase in height at a given velocity. The 

linear model resulted in a poorer fit for height than the power series model did for velocity 

due to the physical structure of the targets. Higher targets obstruct the line of sight to lower 

targets, and the pseudo-random distribution of target heights is what caused the deviations 
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between the linear model and point density for varying height. The black targets exhibited 

similar point density results to the white targets. 

  

(a) (b) 

Figure 3-9: (a) Relationship showing the correlation of point density with velocity at 

different heights (b) Relationship showing the correlation of point density with 

height at different velocities. 

The intensity of a single target was calculated as the average intensity of all the points 

within the boundary of the target. Table 3-4 provides the intensity values averaged across 

all the targets and replications for different velocity profiles and different heights. The 

average relative intensity value across the whole experiment was 88.2 for the white targets 

and 5.4 for the black targets and did not substantially deviate with change in velocity and 

actual height. The average intensity values agreed with the LiDAR specifications, which 

were intensities of 100 for perfectly white and 0 for perfectly black. 
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Table 3-4: Average intensity values of white and black targets at different heights 

and velocities 

Average Intensity White Targets  Average Intensity Black Targets 
Actual 

Height (m) 
Velocity (m/s) Velocity (m/s) 

0.1 0.5 1.0 1.5 2.2 0.1 0.5 1.0 1.5 2.2 
0.1 84.7 85.2 84.8 84.9 84.9 5.9 6.1 6.0 6.6 6.3 
0.3 89.5 90.7 90.6 90.4 88.5 5.3 5.5 5.5 5.5 5.4 
0.5 88.7 90.5 90.5 90.2 89.8 5.4 5.6 5.7 5.6 5.5 
0.6 88.9 89.6 88.5 89.0 88.9 5.3 5.4 5.4 5.4 5.3 
0.8 86.8 87.3 88.1 88.1 85.5 4.6 4.7 4.7 4.7 4.8 

 

3.4.3 Statistical Analysis of the Test Target 

Statistical analysis was performed to determine if significant differences between errors 

and standard deviations existed for different heights and velocities. Refer to Appendix G 

for the statistical analysis software used in this chapter. The raw data was fed into a SAS 

script (9.4, SAS, Cary, NC) and was sorted by target height, replication, velocity and target 

number and averaged across all the data points. The height measurement error was 

calculated as the difference of estimated and actual target height. Then the height 

measurement error was modeled with four classes consisting of velocity, target number, 

replication and actual height. The replication and target number were considered as the 

random blocks and the target-to-target variability was included. The height measurement 

error was estimated using actual height, velocity and interaction between actual height and 

velocity. Table 3-5 provides the results of the statistical analysis of error prediction of the 

white targets. 
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Table 3-5: Statistical analysis of the white targets: (a) Error model (b) Velocity 

tukey grouping table 

TYPE III Tests of Fixed Effects 

Effect Num 
DF 

Den 
DF F Value Pr > F 

Actual Height 4 20 2.93 0.0464 

Velocity 4 20 4.06 0.0143 

Velocity*Actual 
 

16 680 1.36 0.1567 
 

Tukey-Kramer Grouping for Velocity 
Least Squares Means (Alpha=0.05) 

LS-means with the same letter 
are not significantly different 

Velocity 
(m/s) Estimate (mm) Tukey Grouping 

2.2 6.4141  A 

0.5 5.5810 B A 

1.0 5.3101 B A 

1.5 5.2413 B A 

0.1 3.9931 B  
 

(a) (b) 

 

The p-value of the interaction factors (Table 3-5a) was > 0.05, so the interaction factor 

was considered insignificant. The velocity has a p-value < 0.05 making it a significant 

factor affecting measurement error. The p-value of the height factor was slightly less than 

0.05, indicating weak significance. The Tukey grouping table (Table 3-5b) was studied for 

different velocities and their error estimates, and used to detect which values or group of 

values in a particular factor was causing it to be a significant factor. It was found that the 

error estimates of 0.1 and 2.2 m/s velocities were significantly different and the error 

estimate increased as the velocity increased. The Tukey grouping of the height (not shown) 

did not exhibit any significantly different errors in heights, ruling out height as the 

significant factor affecting the error of the white targets. 

The same statistical analysis was repeated for the black targets. Table 3-6 provides the 

summary of the statistical analysis of error prediction of the black targets.  

  



43 
 

Table 3-6: Statistical analysis of the black targets: (a) Error model (b) Velocity 

tukey grouping table 

TYPE III Tests of Fixed Effects 

Effect Num 
DF 

Den 
DF F Value Pr > F 

Actual Height 4 20 0.42 0.7894 

Velocity 4 20 4.33 0.0110 

Velocity*Actual 
 

16 680 0.79 0.7020 
 

Tukey-Kramer Grouping for Velocity 
Least Squares Means (Alpha=0.05) 

LS-means with the same letter 
are not significantly different 

Velocity 
(m/s) 

Estimate 
(mm) Tukey Grouping 

2.2 1.6134  A 

0.5 0.8787 B A 

1.0 0.8347 B A 

1.5 0.5747 B A 

0.1 -0.7177 B  
 

(a) (b) 

The p-values for both the interaction and actual height was > 0.05 (Table 3-6a) making 

them both insignificant factors. The velocity was again a significant factor (p-value < 0.05) 

affecting the error. The Tukey grouping table (Table 3-6b) was again studied for different 

velocities and their error estimates were similar to the white targets. There were significant 

differences between slowest and fastest velocity profiles and the error estimate increased 

as the velocity increased. The slowest velocity profile has a negative error estimate 

inferring that it underestimated the heights of the targets whereas the faster velocities have 

a positive error estimate by overestimating the heights of the black targets. 

The standard deviation for both the targets were modeled similar to the error. Table 3-7 

refers to the statistical analysis of standard deviation prediction of the white targets.  
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Table 3-7: Statistical analysis of the white targets: (a) Standard deviation model (b) 

Velocity tukey grouping table (c) Height tukey grouping table 

TYPE III Tests of Fixed Effects 
Effect Num 

DF 
Den 
DF 

F 
Value Pr > F 

Actual 
Height 4 20 3.18 0.0357 

Velocity 4 20 10.80 <0.000
1 

Velocity
*Actual 
Height 

16 680 1.10 0.3489 
 

Tukey-Kramer Grouping for 
Velocity 

Least Squares Means 
(Alpha=0.05) 

LS-means with the same letter 
are not significantly different 

Velocity 
(m/s) 

Estimate 
(mm) 

Tukey 
Grouping 

0.1 26.8011 A 

1 26.3524 A 

1.5 26.1795 A 

0.5 26.1131 A 

2.2 24.9717 B 
 

Tukey-Kramer Grouping for 
Height 

Least Squares Means 
(Alpha=0.05) 

LS-means with the same letter 
are not significantly different 

Height 
(mm) 

Estimate 
(mm) 

Tukey 
Grouping 

0.1 28.2014  A 
0.3 27.1905 B A 

0.8 25.7138 B A 

0.6 25.4516 B A 

0.5 23.8606 B  
 

(a) (b) (c) 

The p-value for the interaction was > 0.05, making it insignificant. The p-values for the 

velocities and heights were < 0.05 making them significant factors affecting the standard 

deviation of measured height. The Tukey grouping tables (Table 3-7b, Table 3-7c) were 

studied for different velocities/heights and their standard deviation estimates. From the 

Tukey grouping table of velocity (Table 3-7b), the standard deviation of the slowest 

velocity was significantly different from the faster ones and the estimate was decreased on 

an average as the velocity increased. Less point density at faster velocity profiles was the 

likely reason behind the reduction in standard deviation. From the Tukey grouping table of 

height (Table 3-7c), the standard deviation estimate of the 0.5 m targets were significantly 

different than the other heights causing the target height as one of the significant factors of 

standard deviation. It was proved by the fact that after excluding the 0.5 m target height 

data the height factor became insignificant.  

The same statistical analysis on standard deviation was repeated for the black targets. 

Table 3-8 summarizes the statistical analysis of standard deviation prediction of the black 

target. 
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Table 3-8: Statistical Analysis of the black targets: (a) Standard deviation model (b) 

Velocity tukey grouping table (c) Height tukey grouping table 

TYPE III Tests of Fixed Effects 
Effect Num 

DF 
Den 
DF 

F 
Value Pr > F 

Actual 
Height 4 20 3.07 0.0401 

Velocity 4 20 11.06 <0.000

1 
Velocity
*Actual 
Height 

16 680 1.21 0.2533 

 

Tukey-Kramer Grouping for 
Velocity 

Least Squares Means 
(Alpha=0.05) 

LS-means with the same letter 
are not significantly different 

Velocity 
(m/s) 

Estimate 
(mm) 

Tukey 
Grouping 

0.1 27.8919  A 

0.5 26.8911  B 

1.5 26.8210 C B 

1.0 26.5436 C B 

2.2 25.9273 C  
 

Tukey-Kramer Grouping for 
Height 

Least Squares Means 
(Alpha=0.05) 

LS-means with the same letter 
are not significantly different 

Height 
(mm) 

Estimate 
(mm) 

Tukey 
Grouping 

800 27.7959  A 

300 27.3925 B A 

500 27.3618 B A 

100 27.2752 B A 

600 24.2494 B  
 

(a) (b) (c) 

 

The p-value for interaction was > 0.05 making it insignificant. The p-values for the 

velocities and heights were significant (< 0.05) making them a significant factor affecting 

the standard deviation. The Tukey grouping tables (Table 3-8b, Table 3-8c) were studied 

for different velocities, heights and their standard deviation estimates. From the Tukey 

grouping table of velocity (Table 3-8b), the standard deviation estimate of the slower 

velocities were significantly different from the faster ones and the estimate decreased as 

the velocity increased similar to the white targets. From the Tukey grouping table of height 

(Table 3-8c) the standard deviation estimate of 0.6 m targets were significantly different 

than the other heights, resulting in target height as one of the significant factors of standard 

deviation. It was also shown by the fact that after excluding the 0.6 m target height data 

the actual height factor became highly insignificant. 

Target height was a significant factor only affecting the standard deviation in height 

measurements. The ROI was less in height (y-coordinate) for 0.5 m and 0.6 m targets than 

the other targets due to being 0.1 m apart. Increasing ROI for the both targets will result in 
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overlap of both ROI, generating inaccurate measurements. The decreased ROI for both the 

heights had an impact on their standard deviations causing them to be a significant factor 

affecting the standard deviation.  

Finally, a t-test was conducted for the errors between white and black targets across 

different replications, velocities and heights. Table 3-9 summarizes t-test results of the 

errors between the white and black targets. 

Table 3-9: T-test of the errors between white and black targets 

Equality of Variances 

Method Num DF Den DF F Value Pr > F 

Folded F 749 749 1.15 0.0524 

Test Statistics 

Method Variances DF t Value Pr > |t| 

Pooled Equal 1498 -19.06 <0.0001 

Satterthwaite Unequal 1490.5 -19.06 <0.0001 

 

The equality of variances came out to be insignificant concluding that both the while 

and black targets have an equal variance or distribution of errors. As the variances was 

determined to be insignificant, the pooled statistic was given the priority over 

Satterthwhite, and was significant as the p-value was < 0.05.  

3.5  Conclusions 

A linear motion test fixture was used to control the dynamics of a LiDAR sensor. A test 

target was fabricated to determine the effects of target height and LiDAR velocity on the 

accuracy and precision of height measurements. Results showed that height measurement 

error increased as the velocity increased, concluding that accuracy decreases as the velocity 

increases. The variability of error in height measurements also increased as the velocity of 
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the LiDAR increased. Although the statistical analysis showed a significant difference 

between the faster and slower velocity profiles, the difference was approximately 1 mm 

over the range of target heights and LiDAR velocities tested. The standard deviation 

estimate followed an opposite trend, as the velocity increased the standard deviation 

decreased by approximately 1 mm over the range of target heights and LiDAR velocities 

tested. Statistical analysis showed a difference in standard deviation of height 

measurements between faster and slower velocity profiles. 

In total, these results conclude that the small changes in target height and LiDAR 

velocity will affect the accuracy and precision of LiDAR measurements. The effect is small 

and may not be substantial for agricultural applications, where other sources of error, such 

as moving crop canopies or error in resolving position of the sensor are more likely to 

dominate overall measurement error. The velocity of the LiDAR will be a tradeoff variable 

with lower velocities having higher point densities, higher variability, and higher post-

processing times, and with higher velocities having lower point densities, lower variability, 

and lower post-processing time. 
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CHAPTER 4:  PHYSICAL MODELING OF ALFALFA USING LIDAR 

INTEGRATED ONTO A LINEAR MOTION TEST FIXTURE 

4.1  Summary 

To summarize the chapter, the linear motion test fixture from CHAPTER 2 was placed 

over a quadrat (1 m square frame) to scan the alfalfa crop. Two alfalfa plots were scanned 

at five different velocities and 3 replications of each. Post processing of the raw data and 

point cloud processing was done to extract mean height, max and min height, point density, 

difference between max and min height, percent of points more than half the mean height 

and less than 25% of the mean height. Reference data were obtained through 

photogrammetry and field measurements. Insufficient alfalfa plots were scanned which 

prevented any statistical analysis from being used to compare the different methods. 

However, the comparison between LiDAR and photogrammetric data showed some 

promising results which may be further replicated in the future.  

4.2  Introduction 

Alfalfa is a type of forage crop which grows in most parts of the world. It requires 

warmer temperate climates for optimum growth. Fully grown alfalfa reach canopy heights 

between 0.6 m and 1.0 m. Alfalfa has a high nutritional value and is one of the most 

cultivated forage crop in the world (Radović et al., 2009). Alfalfa is typically harvested 

three to four times a year and usually rotated with other plants. Alfalfa is commonly a 

uniform and dense crop grown in large quantity, which makes it difficult to extract physical 

properties at field scales.  

Modeling spatial variability in crops is essential for precision management as 

summarized in CHAPTER 1. This study deals with the computation of point cloud of the 
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alfalfa crop from the LiDAR data and processing the point cloud to obtain the physical 

characteristics of the alfalfa. The results obtained from the LiDAR will be compared with 

the field based and photogrammetric measurements. Photogrammetry is the process of 

computing spatial measurements from a three a dimensional model derived from a series 

of overlapping photographs taken from different viewing angles. There are many studies 

on the use of photogrammetry to extract various crop parameters and researchers have 

found that the results obtained can achieve spatial resolution at the centimeter level 

(Colomina and Molina, 2014). Grenzdörffer, 2014 conducted a study on using 

photogrammetry to determine the heights of oilseed rape, corn, and wheat crops, and found 

a high correlation (R2>0.9) between the photogrammetric and field measured data.  

Balenović et al., 2015 also estimated the mean tree height of different types of forest stands 

with an error of 1.5% on average and concluded that photogrammetry is a viable option to 

find the heights of forest stands. 

Both LiDAR and photogrammetry are rapidly advancing technologies and have their 

own set of advantages and disadvantages. There are notable differences between LiDAR 

and photogrammetry in terms of how the resulting data can be used to obtaining crop 

parameters, in addition to environmental considerations required for optimum 

performance. LiDAR provides positional, spectral and echo information of objects with 

high resolution, with a focus on more of the geometric information while photogrammetry 

focuses more on spectral information (typically red, green, and blue wavelengths for visible 

imagery) of the object that is being scanned. Although LiDAR has more spatial accuracy, 

the 3D images from photogrammetry are easier to interpret by humans and can extract 
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other information like the texture and multichannel reflectance (Nex and Rinaudo, 2011; 

Mesas-Carrascosa et al., 2012). 

There have been many studies regarding the comparison between the LiDAR and 

photogrammetry, and also the possibility of integrating both technologies to achieve higher 

resolution as they have complementary benefits. Nex and Rinaudo, 2011 conducted a study 

on using a LiDAR-derived DSM with a photogrammetric-derived DTM to obtain an OHM 

used to extract features of a building. In contrast St‐Onge et al., 2008 conducted a study on 

a canopy height model (CHM) using a LiDAR-derived DTM with a photogrammetric-

derived DSM to measure the canopy height, but found out that they achieved lower 

resolution than using the LiDAR alone to derive the CHM. More research is needed to see 

if there are benefits in integrating both the techniques when making spatial and spectral 

measurements.  

The objective of this chapter was to collect preliminary data of alfalfa using the LiDAR 

sensor when integrated onto the linear motion text fixture. The LiDAR data will also be 

compared to field and photogrammetric data. The specific objectives were as follows: 

1) Collect the LiDAR data from alfalfa at varying forage quality factors of height and 

density 

2) Determine the alfalfa physical parameters by 3D processing the data   

3) Correlate the LiDAR measurements with the field-based measurements and 

photogrammetric measurements 
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4.3  Materials and Methods 

4.3.1 Test Setup  

This study was conducted in at the C. Oran Little Research Center (Woodford County 

Farm) in Versailles, KY. The alfalfa was about 0.5 m to 0.8 m tall and were scheduled to 

be harvested within a few days. A quadrat made of 1-1/2 PVC Schedule 40 pipe of 

dimensions 1.0 m x 1.0 m x 1.0 m was used as the study area for alfalfa. The quadrat was 

placed on the alfalfa crop as shown in the Figure 4-1. The nominal outside diameter of the 

PVC pipes were 1.9 in (48.3 mm), which will be used in the point cloud processing of 

alfalfa to identify the quadrat.  

 

Figure 4-1: Quadrat of dimensions 1.0 m x 1.0 m x 1.0 m placed in an alfalfa field. 
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The linear motion test fixture with the LiDAR sensor integrated onto it was placed on 

top of the quadrat as shown in the Figure 4-2 to scan the alfalfa inside the quadrat.  

 

Figure 4-2: Modeling the alfalfa using the linear motion system over a quadrat 

The LiDAR was run at 5 different velocity profiles with 3 replications as shown in the 

Table 3-1. Two plots with a high percentage of lodged plants were studied using the LiDAR 

sensor. The plots were also studied using a UAS (Phantom 4, DJI) and photogrammetry 

software (Pix4Dmapper Pro, Pix4D). 

4.3.2 Point Cloud Processing of Alfalfa 

Raw data of the alfalfa crop obtained from the LiDAR were processed similar to the 

method described in Section 3.3.2 to obtain the canopy height model (CHM) of alfalfa. The 
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ground plane was not scanned so the DTM was measured manually. A distance of 2087.0 

mm from the LiDAR was taken as the constant height DTM for both the plots. 

A region of interest (ROI) with dimensions of + 0.1 m centered at height of 1.0 m in the 

y-axis was applied for over the entire range of the xz-axis to extract the points relating to 

the quadrat frame as it was positioned at a height of 1.0 m above the ground. The points 

lying inside were found and were attributed to the quadrat. A predefined function in 

MATLAB pcdenoise was applied to the quadrat point cloud to remove noise and to extract 

just the quadrat and remove any outliers. The limits of the boundary of the quadrat was 

found in the xz-axis. The alfalfa inside the quadrat was only of the interest to the study, so 

new limits in the xz-axis were defined for the alfalfa crop which were obtained from the 

limits of the boundary of the quadrat by adding the dimension of the outer diameter of 48.3 

mm to the smaller limit and by subtracting it from the larger limit of the xz-axis to only 

include the alfalfa crop inside the test target. A new region of interest (ROI) with a 

dimension of 1.0 m in the y-axis and with the new limits in the xz-axis was applied. The 

points lying inside the ROI were found and were attributed to the alfalfa crop. Figure 4-3 

shows point clouds of the full LiDAR scan, quadrat, and the alfalfa inside the quadrat. 
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Figure 4-3: Points cloud of (a) Alfalfa and the quadrat (b) Quadrat (c) Alfalfa inside 

the quadrat 

For the height distribution of the alfalfa, the mean of all the points was taken as the mean 

height of the alfalfa. The maximum and the minimum heights of the all the points in the y-

axis, difference between the max and min height, point density, percentage of points more 

than half the mean height, and percentage of points less than 25% of the mean height among 

all the points were computed. Volume was also one of the desired physical properties of a 

crop. This study also attempts to compute the total volume occupied by the alfalfa crop. 

From the volume and the density of the alfalfa, the biomass within the quadrat can be 

predicted. The volume of the alfalfa crop was computed from four different methods in this 

study: 

1) First Method (Block Method): The whole area in the xz-axis was divided into 100 x 

100 blocks. All the points of the alfalfa crop inside the quadrat was distributed into 

those 100 x 100 blocks. The volume of each block was found from its area in its xz-

axis multiplied by its average height computed for all the points inside the 

corresponding block in the y-axis. The volume of all the blocks were added to give 

the final volume of the alfalfa. 

(a) (b) (c) 
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2)  Octree Method: A MATLAB function Octree (Sven, 2013) from the MATLAB file 

exchange libraries was used for this method. The whole alfalfa point cloud was 

divided into octrees (analogous to quadtrees in 2D volume). The volume from each 

of the octree blocks in their smallest stage was added to give the final volume of the 

alfalfa. 

3) Alpha Shape Method: A predefined MATLAB function alphashape was used for 

this method which computes the bounding volume that envelops the 3D point cloud 

of the alfalfa. The bounding volume was computed and attributed to the final volume 

of alfalfa. 

4) Cube Method: This was a rudimentary/crude method to compute the volume. The 

limits of the boundary of the alfalfa point cloud was found and multiplied together 

as V = Length x Width x Height to give the final volume of alfalfa. 

Apart from these methods, the average maximum and minimum heights of the points in 

an approximate 50 mm x 50 mm square were also computed by using the block method 

and finding the average heights of all the 5 x 5 adjacent blocks. This was done two ways: 

1) Side by Side: The whole 100 x 100 blocks were divided into 20 x 20 blocks  

2) Corresponding: Each combination of 5 x 5 squares combination was taken to yield 

96 x 96 blocks. 

Due to large percentage of lodged plants, the height of alfalfa computed only gives the 

apparent height of alfalfa instead of the true height of alfalfa. This study also attempts to 

compute the true height from the apparent height. This study provides only a preliminary 

technique to compute the true height and the method used may not be broadly applicable. 

The idea behind the algorithm was that lodged plants have more point density than the 
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surrounding plants. To accomplish this, the height and point density values from each of 

the 100 x 100 blocks was found. Mean and standard deviation of the point density of the 

blocks were computed. If any block had a point density greater than the mean point density 

plus two standard deviations, then the block was termed to have lodged plants. A sine of 

the average lodged angle of 30o was applied over the heights of those lodged plants and the 

mean, max and min height of all the plants was computed.  

One of the other concerns was the presence of large number of ground points in the 

alfalfa point cloud, so a threshold was applied to differentiate between ground and points 

of alfalfa. The threshold applied in this study was 200 mm. Any points which have a height 

less than 200 mm were considered ground points and not included in the statistical analysis 

of alfalfa. The mean height of alfalfa was computed again after applying the threshold. All 

parameters were written to an Excel file consisting of two spreadsheets, with each sheet 

corresponding to a separate alfalfa plot. Each spreadsheet contained six replications each 

plot grouped for five different velocity profiles. Refer to Appendix F.1 for software 

regarding the feature extraction to model the alfalfa. 

The photogrammetry method was effectively a turn-key process, for which the results 

of only the second plot were obtained. The video from the digital camera for the second 

plot was “stitched” using a photogrammetric software to obtain the point cloud for the 

alfalfa. The point cloud was imported in a MATLAB script to extract similar parameters 

as the LiDAR data. 

4.3.3 Field Measurements 

Field measurements were taken with the help of a carbon fiber GPS pole (Trimble, Inc.). 

Field measurements were taken at four to five different places within the quadrat. The 
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measurements were also taken by straightening lodged plants and measuring their height 

normal to the ground. The average of these four to five measurements was taken as the 

mean height of the alfalfa and the max was taken as the maximum height of alfalfa.  

4.4  Results and Discussion 

4.4.1 Alfalfa Physical Parameters 

Average of the six replications for physical parameters of alfalfa obtained through the 

point cloud processing was calculated and were shown below in Table 4-1and Table 4-2. 

Table 4-1: Average physical properties across six replications of alfalfa for plot 1 at 

different velocities 

Physical Parameters 0.1 m/s 0.5 m/s 1.0 m/s 1.5 m/s 2.2 m/s 

Mean Height (mm) 420.35 385.93 359.64 357.38 329.17 

Max Height of all Points (mm) 1000.00 999.56 999.32 957.91 841.95 

Min Height of all Points (mm) 0.02 0.10 0.40 0.35 0.45 

Max - Min (mm) 999.98 999.46 998.92 957.55 841.50 

Total Samples 333245.67 38228.17 16081.50 11056.17 6516.33 

More than Half Height (%) 34.19 29.23 24.43 26.74 29.46 

Thinness (%) 4.48 4.54 4.89 4.84 5.04 

Max Height in 50 mm x 50 mm (Side by Side) (mm) 778.02 712.82 701.04 619.87 428.06 

Min Height 50 mm x 50 mm (Side by Side) (mm) 38.99 18.66 6.50 3.48 1.64 

Max Height in 50 mm x 50 mm (Corresponding) (mm) 792.82 741.77 717.19 660.37 481.43 

Min Height in 50 mm x 50 mm (Corresponding) (mm) 36.60 15.24 3.12 1.65 0.00 

Volume by Block method (mm
3
) 5.32E+08 3.18E+08 2.11E+08 1.78E+08 1.15E+08 

Volume by Octree method (mm
3
) 6.98E+08 4.03E+08 3.88E+08 3.13E+08 2.31E+08 

Volume by Alpha shape (mm
3
) 3.26E+08 2.30E+08 2.26E+08 2.27E+08 1.83E+08 

Volume by Cube method (mm
3
) 1.48E+09 9.77E+08 8.77E+08 8.36E+08 6.61E+08 

Mean Height Lodged (mm) 476.83 452.66 415.01 414.96 363.33 

Max Height Lodged (mm) 1467.62 1402.25 1391.05 1174.87 799.82 

Min Height Lodged (mm) 38.99 18.66 6.50 3.48 1.64 

Mean Height Threshold (mm) 485.77 448.60 425.88 423.39 392.97 
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Table 4-2: Average physical properties across six replications of alfalfa for plot 2 at 

different velocities 

Physical Parameters 0.1 m/s 0.5 m/s 1.0 m/s 1.5 m/s 2.2 m/s 
Mean Height (mm) 484.76 444.85 452.73 436.92 441.17 
Max Height of all Points (mm) 999.99 999.88 999.47 895.87 868.34 
Min Height of all Points (mm) 0.05 0.22 4.46 3.49 25.82 
Max - Min (mm) 999.95 999.66 995.01 892.38 842.52 
Total Samples 302215.00 43068.83 19336.50 13664.50 7652.83 
More than Half Height (%) 40.03 35.59 36.18 49.82 51.56 
Thinness (%) 2.86 2.88 2.38 2.54 2.17 
Max Height in 50 mm x 50 mm (Side by Side) (mm) 754.57 679.67 643.26 636.45 550.70 
Min Height 50 mm x 50 mm (Side by Side) (mm) 27.48 22.42 8.14 3.52 0.00 
Max Height in 50 mm x 50 mm (Corresponding) (mm) 853.54 750.15 757.28 715.89 610.74 
Min Height in 50 mm x 50 mm (Corresponding) (mm) 20.53 19.02 3.84 0.64 0.00 
Volume by Block method (mm

3
) 5.22E+08 3.94E+08 3.33E+08 2.79E+08 1.65E+08 

Volume by Octree method (mm
3
) 7.46E+08 4.65E+08 4.46E+08 3.85E+08 3.04E+08 

Volume by Alpha shape (mm
3
) 2.34E+08 2.34E+08 2.64E+08 2.71E+08 2.16E+08 

Volume by Cube method (mm
3
) 1.21E+09 9.95E+08 1.01E+09 9.09E+08 7.47E+08 

Mean Height Lodged (mm) 538.35 470.78 490.63 470.76 484.47 
Max Height Lodged (mm) 1480.07 1270.40 1271.92 1200.34 1023.05 
Min Height Lodged (mm) 27.48 22.42 8.14 3.52 0.00 
Mean Height Threshold (mm) 513.08 470.56 475.76 461.13 463.85 

 

4.4.2 Comparison with Field Measurements and Photogrammetric Measurements 

The field measurements were shown in the Table 4-3. 

Table 4-3: Field based measurements for plots 1 and 2 

Physical Parameters Plot 1 Plot 2 
Mean Height (mm) 840 830 
Max Height of all Points (mm) 980 900 

 

The mean height from the plots 1 and 2 were close to 800 mm whereas the mean height 

from the plots 1 and 2 from the LiDAR sensor varied from 330 mm to 480 mm which were 

far from the field measurements. One of the reasons behind this was most of the individual 

plants were lodged and only four to five hand measurements were taken at a single plot. 
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From Table 4-1 and Table 4-2, the mean height of the alfalfa after applying the algorithms 

to straighten the lodged plants and to remove the ground related points were far greater 

than the normal, but still there was a lot of error remains between field and LiDAR 

measurements which was mostly due to very coarse sampling of alfalfa crop with very few 

field measurements.  

The photogrammetric measurements are shown in the Table 4-4.  

Table 4-4: Alfalfa physical parameters obtained from the photogrammetry  

Physical Parameters  

Mean Height (mm) 585.30 
Max Height of all Points (mm) 998.17 
Min Height of all Points (mm) 259.74 
Max - Min (mm) 738.43 
Total Samples 26756 
More than Half Height (%) 37.82 
Thinness (%) 0 

  

The mean height obtained from photogrammetry was 585.30 mm while the mean height 

from LiDAR was about 450 mm – a difference of 130 mm. One of the reasons for this 

deviation was the minimum height, which was 259 mm when using photogrammetry and 

nearly 0 mm when using LiDAR. This led to the threshold, and after it was applied the 

mean height went to about 470 mm. There was still about 100 mm difference between both 

methods. Figure 4-4 shows the histograms of heights from LiDAR at a steady-state velocity 

of 1.0 m/s after applying threshold and photogrammetry.  
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(a) (b) 

Figure 4-4: Histograms of heights of alfalfa from (a) LiDAR at a steady-state 

velocity of 1.0 m/s and (b) Photogrammetry 

From both the histograms there is clear offset of about 100 mm between the two 

methods. From a single plot, the conclusion was really difficult to reach without any 

replications from photogrammetric data.  

4.5  Conclusions 

This chapter introduces the concept of modeling the physical structure of alfalfa using 

LiDAR and comparing the results to similar data collected using photogrammetry. The 

chapter also describes the software used to process the raw data from the LiDAR to obtain 

the physical properties of the alfalfa crop. In this study, point cloud processing was applied 

to extract the height, volume, and different other statistical parameters. Similar properties 

were also obtained through photogrammetry and the field measurements. 

While the limited data collected show some indication that similar results were possible, 

far more sets of 3D scans are needed to make any conclusions. A single plot will not be 

sufficient to compare and do statistical differences between different measurements. There 

was an offset between LiDAR and photogrammetry measurements which was difficult to 
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explain without replications. This study also concluded that multiple sampling velocities 

may not be necessary because there was little difference in sampled parameters except 

between the extreme velocities. Scanning the alfalfa at just one velocity with 3 replications 

should be sufficient for future work. 
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CHAPTER 5:  SUMMARY AND CONCLUSIONS 

5.1  Summary of Work 

In the first chapter, LARS and LiDAR were introduced. In the second chapter, a linear 

motion test fixture was developed to control the dynamics of the 3D LiDAR and constrain 

it to a one-dimensional path parallel to the ground to remove any uncertainties in the 

velocity and position of the LiDAR, which may induce inaccuracies in the projection of its 

measurements. The LiDAR was attached to a carriage assembly that translates back and 

forth via force supplied by the timing belt. The linear motion test fixture was validated for 

displacement, steady state velocity and frame movement using a total station.  

In the third chapter, software was developed to control the linear motion system and 

record the LiDAR data in the background parsing it in a CSV file.  A test target containing 

metal plates of five different heights was built for validating the LiDAR. The LiDAR was 

translated across in five different velocity profiles. The raw data was processed to obtain 

different statistical parameters for each target plate for different velocity profiles. 

Generalized linear mixed models were fitted with the error and standard deviation as the 

response and velocity, actual height, and their interaction as the fixed effects to determine 

if there were significant differences in error and standard deviation for different velocities 

and heights. 

In the fourth chapter, the concept of modeling the alfalfa crop using the linear motion 

test fixture was introduced. Two plots of alfalfa crop were scanned at five different 

velocities with three replications of each velocity. Post processing of the raw data and point 

cloud processing was done to extract important statistical parameters and compare it with 

the alfalfa data obtained through photogrammetry and field measurements.  
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5.2  Conclusions 

In the second chapter, the results concluded the effectiveness of the test fixture for 

eliminating most of the uncertainty present in a traditional test fixture used for remote 

sensing.   

In the third chapter, Results showed that velocity is a significant factor affecting the 

accuracy and standard deviation. The error estimate was higher for faster velocities 

compared to slower velocities. In contrast, the standard deviation of estimated height was 

lower for faster velocities although by a smaller margin.  

  In the fourth chapter, the comparison between LiDAR and other methods concluded 

that there should be more tests and plots to be modeled to do any statistical analysis to 

observe meaningful differences. 

5.3  Future Work 

Future work consists of testing more plots with the LiDAR to model the physical 

structure of alfalfa. Instead of going to the field, it may be more efficient to plant alfalfa in 

trays in the lab to remove external factors not controlled in this study. The other main 

concern is with stalk lodging, which made point cloud data difficult to compare to hand 

measurements. In the future a more refined technique should be developed to lodging and 

account for its impact on height measurements.  
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CHAPTER 6:  APPENDICIES 

Appendix A. Linear Motion System CAD Models 

 Linear Frame  

 

Figure 6-1: Cross sectional area of T-slotted aluminum (1010, 80/20 Inc.).  

 

Figure 6-2: Cross sectional area of T-slotted aluminum (1020, 80/20 Inc.). 
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Figure 6-3: Cross sectional area of T-slotted aluminum (2020, 80/20 Inc.). 
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Figure 6-4: Cross sectional area of T-slotted aluminum (b1010, 80/20 Inc.). 

 

Figure 6-5: Cross sectional area of T-slotted aluminum (b1020, 80/20 Inc.). 
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Figure 6-6: A 2 x 2 bent bracket used for connecting two T-slotted aluminum joints.  
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Figure 6-7: A 1 x 1 bent bracket used for connecting two T-slotted aluminum joints. 
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Figure 6-8: A 4 x 4 bent bracket used for connecting two T-slotted aluminum joints. 
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Figure 6-9: A 2 x 2 flat bracket used for connecting two T-slotted aluminum joints. 

 

Figure 6-10: A 4 x 2 flat bracket used for connecting two T-slotted aluminum joints. 
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Figure 6-11: Brace on one end of the top assembly to join two linear rails together. 

 

Figure 6-12: Brace on one end of the top assembly to join two linear rails together. 
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Figure 6-13: Bracket for integrating the motion control plastic box to the top 

assembly. 

 

Figure 6-14: Sliding joint that connects the top and frame assembly. 
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 Carriage Assembly 

 

Figure 6-15: Multipurpose mount to integrate different sensors and instruments. 
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Figure 6-16: Base mount to secure multipurpose mount to the carriage rail.  
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Figure 6-17: Carriage rail to translate back and forth on the linear rail. 
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Figure 6-18: Multipurpose mount to secure LiDAR assembly to the multipurpose 

mount. 
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Figure 6-19: Upper part of the belt mount to transfer the force from timing belt to 

the carriage assembly.  
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Figure 6-20: Lower part of the belt mount to transfer the force from timing belt to 

the carriage assembly.  
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Figure 6-21: Cable carrier mount to secure the flexible carrier to it to translate 

along with the carriage assembly. 
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A.2.1 Wheel Assembly 

 

Figure 6-22: Wheel designed to translate along the indentation of the linear rail. 
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Figure 6-23: Ball bearing on either side of the wheel to ensure uniform distribution 

of force on the wheel. 
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A.3 LiDAR Assembly 

 

Figure 6-24: Top clamp to secure the LiDAR 
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Figure 6-25: Bottom clamp to secure the LiDAR 
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Figure 6-26: Top bracket to enclose the LiDAR assembly 
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Figure 6-27: Bottom part of the LiDAR assembly to enclose it. 
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Figure 6-28: Mount for attaching all the instrumentation in LiDAR assembly. 
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 Motion Control  

 

Figure 6-29: Stepper motor (STP-MTRH-34066D, AutomationDirect). 
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Figure 6-30: Motor bracket for securing the stepper motor to the frame. 
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Figure 6-31: Pulley bracket for securing the pulley to the frame.  
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Figure 6-32: Timing belt pulley to transfer the rotary motion from the stepper 

motor to the linear motion of the system. 
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Figure 6-33: Bearings on either side of the pulley to ensure uniform distribution of 

force on the pulley 

 

Figure 6-34: Cross sectional view of L-series timing belt. 
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Figure 6-35: Limit switch bracket for securing limit switches to the frame.  
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 Linear Motion Test Fixture Full Assembly  

 

Figure 6-36: Linear motion system with the dimensions of the top and frame 

assembly satisfying the design constraints.  
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Appendix B. Linear Motion Test Fixture Wiring Diagram 
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Figure 6-37: Wiring schematic for the motion control hardware. 
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Appendix C. Linear Motion Control Software and LiDAR Data Collection Software 

1. #!/usr/bin/env python   
2. # -*- coding: utf-8 -*-   
3.    
4. """ lidar_final.py: Used to control a stepper motor and log the data from VLP-

16 LiDAR synchronously  
5. Description:  
6.             1) Controls the stepper motor using a serial port by sending the req

uired messages  
7.             2) Logs the data from VLP-

16 LiDAR by connecting to a UDP port (HOST = "192.168.1.77" #host address, Port 
= 2368)  

8.             3) Synchronizes the data of LiDAR to the motion of stepper motor by 
using its position  

9.     Author: Saket Dasika  
10.     Date created: 10/25/2017  
11.     Date last modified: 06/06/2018  
12.     Python Version: 2.7  
13. """   
14.    
15. """  
16. Stepper motor functions  
17. ACx - Acceleration of x rev/sec/sec  
18. DEX - Deceleration of x rev/sec/sec  
19. VEx - Deceleration of x rev/sec  
20. DI/DI-x -  Move x rev in clockwise direvction/counter clockwise direction  
21. FP- Moves the stepper motor in the desired velocity profile  
22. DL1 - Activating Limit Switches  
23. """   
24. #importing required modules   
25. import socket #for udp socket communication to log the data from lidar   
26. import time #for creating a file with timestamp    
27. import Tkinter #for gui            
28. import ttk #for creating comboboxes   
29. from Tkinter import *   
30. import serial #for serial comunication to control stepper motor   
31. global ser #defining a serial port variable named 'ser'   
32. #defining serial port paprameters   
33. port = "COM3"  #COM port   
34. baud = 9600 #baud rate   
35. ser = serial.Serial(port,baud)   
36. ser.bytesize = serial.EIGHTBITS #number of bits per bytes   
37. ser.parity = serial.PARITY_NONE #set parity check: no parity   
38. ser.stopbits = serial.STOPBITS_ONE #number of stop bits   
39. ser.timeout = 0 #block read   
40. import threading #for starting a parallel thread   
41. global a,b,c,x,y,z,f,g,h,stopclick,stoplidar #defining global variables   
42.    
43. """  
44. Creating a gui with three frames columnwise and placing the comboxes,buttons and

 labels  
45. on these three columns  
46. """   
47. class Application(Frame):  #defining a class   
48.        
49.     def __init__(self, parent):   
50.         Frame.__init__(self, parent)          
51.         self.initialize()   
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52.                    
53.     def initialize(self):   
54.         self.grid()  #initializing a grid   
55.         #dividing grid into three rectangular frames   
56.         rightframe = Frame(root) #right frame   
57.         middleframe = Frame(root) #middleframe   
58.         leftframe = Frame(root) #left frame   
59.         #positioning three vertical frames in the grid   
60.         rightframe.grid(column=2,row=0,padx=90)    
61.         middleframe.grid(column=1,row=0)   
62.         leftframe.grid(column=0, row=0,padx=20)   
63.         root.resizable(False, False)  #gui size got locked   
64. #row - refers to which row   
65.         #coloumn -  refers to which coloumn   
66.         #pad and ipad - inner and outer padding (size and size between)   
67.         #x, y -  x and y direction   
68.    
69.         #creating four buttons and attributing it to corresponding four commands

   
70.         # positioning and sizing it   
71.         button1 = Button(rightframe,text = "Connect",font = "Times 20",command=s

elf.onbutton1click) #button connect   
72.         button1.grid(column=0,row=0,pady=10,ipadx=40,ipady=3)    
73.         button2 = Button(rightframe,text = "Start Position",font = "Times 20",co

mmand=self.onbutton2click) #button start position   
74.         button2.grid(column=0,row=1,pady=10,ipadx=40,ipady=3)   
75.         button3 = Button(rightframe,text = "Run",font = "Times 20",command=self.

onbutton3click) #button run     
76.         button3.grid(column=0,row=2,pady=10,ipadx=40,ipady=3)   
77.         button4 = Button(rightframe,text = "Disconnect",font = "Times 20",comman

d=self.onbutton4click) #button disconnect   
78.         button4.grid(column=0,row=3,pady=10,ipadx=40,ipady=3)   
79.         #creating four labels for velocity profile values   
80.         #positioning and sizing it   
81.         label1 = Label(leftframe, anchor="w",fg="black",text="Acceleration (m/s2

)",font = "Times 20") #label acceleration   
82.         label1.grid(column=0,row=0,pady=10,ipadx=40,ipady=3)    
83.         label2 = Label(leftframe,anchor="w",fg="black",text="Velocity (m/s)",fon

t = "Times 20") #label velocity   
84.         label2.grid(column=0,row=1,pady=10,ipadx=40,ipady=3)   
85.         label3 = Label(leftframe,anchor="w",fg="black",text="Deceleration (m/s2)

",font = "Times 20") #label deceleration   
86.         label3.grid(column=0,row=2,pady=10,ipadx=40,ipady=3)   
87.         label4 = Label(leftframe,anchor="w",fg="black",text="Displacement (m)",f

ont = "Times 20") #label displacement   
88.         label4.grid(column=0,row=3,pady=10,ipadx=40,ipady=3)      
89.         #creating four comboboxesfor selecting values corresponding to the label

 beside and attributing a variable to it   
90.         #four comboboxes for each of the acc,vel,dec,dis   
91.         #defining a function to it   
92.         #sizing and positing it   
93.         self.cbsymbol1 = ttk.Combobox(middleframe, textvariable = variable1,font

 = "Times 20")    
94.         self.cbsymbol1.bind("<Return>", self.cbsymbol1_onEnter)    
95.         self.cbsymbol1.bind("<<ComboboxSelected>>", self.cbsymbol1_onEnter) #fun

ction define    
96.         self.cbsymbol1['values'] = ('0.1','0.2','0.3','0.4','0.5','0.6','0.7','0

.8','0.9','1.0','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9','2.0')   
97.         self.cbsymbol1.grid(row=0,pady=10,ipadx=40,ipady=3,column=0)   
98.    
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99.         self.cbsymbol2 = ttk.Combobox(middleframe, textvariable= variable2,font 
= "Times 20")   

100.         self.cbsymbol2.bind("<Return>",self.cbsymbol2_onEnter)   
101.         self.cbsymbol2.bind("<<ComboboxSelected>>",self.cbsymbol2_onEnte

r) #function define   
102.         self.cbsymbol2['values'] = ('0.1','0.2','0.3','0.4','0.5','0.6',

'0.7','0.8','0.9','1.0','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9','2
.0')   

103.         self.cbsymbol2.grid(row=1,pady=10,ipadx=40,ipady=3,column=0)   
104.    
105.         self.cbsymbol3 = ttk.Combobox(middleframe,textvariable= variable

3,font = "Times 20")   
106.         self.cbsymbol3.bind("<Return>",self.cbsymbol3_onEnter)   
107.         self.cbsymbol3.bind("<<ComboboxSelected>>",self.cbsymbol3_onEnte

r) #function define   
108.         self.cbsymbol3['values'] = ('0.1','0.2','0.3','0.4','0.5','0.6',

'0.7','0.8','0.9','1.0','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9','2
.0')   

109.         self.cbsymbol3.grid(row=2,pady=10,ipadx=40,ipady=3,column=0)   
110.    
111.         self.cbsymbol4 = ttk.Combobox(middleframe, textvariable=variable

4,font = "Times 20")   
112.         self.cbsymbol4.bind("<Return>",self.cbsymbol4_onEnter)   
113.         self.cbsymbol4.bind("<<ComboboxSelected>>",self.cbsymbol4_onEnte

r) #function define   
114.         self.cbsymbol4['values'] = ('0.1','0.2','0.3','0.4','0.5','0.6',

'0.7','0.8','0.9','1.0','1.1','1.2','1.3','1.4','1.5','1.6','1.7','1.8','1.9','2
.0')   

115.         self.cbsymbol4.grid(row=3,pady=10,ipadx=40,ipady=3,column=0)   
116.    
117.        #below four functions are for comboboxes for getting the value wh

en entered and assigning it to a global variable   
118.        #combobox has also option to take any value between 0 to end by t

yping and entering it   
119.     def cbsymbol1_onEnter(self,event):   
120.         global mytext1     
121.         mytext1 = variable1.get() #getting the value from combobox when 

selected    
122.         vals = self.cbsymbol1.cget('values')   
123.         self.cbsymbol1.select_range(0,END)    
124.         return 'break'   
125. def cbsymbol2_onEnter(self,event):   
126.     global mytext2   
127.     mytext2 = variable2.get() #getting the value from combobox when sele

cted    
128.     vals = self.cbsymbol2.cget('values')   
129.     self.cbsymbol2.select_range(0,END)   
130.     return 'break'   
131.    
132. def cbsymbol3_onEnter(self,event):   
133.     global mytext3   
134.     mytext3 = variable3.get() #getting the value from combobox when sele

cted    
135.     vals = self.cbsymbol3.cget('values')   
136.     self.cbsymbol3.select_range(0,END)   
137.     return 'break'   
138.    
139.    
140. def cbsymbol4_onEnter(self,event):   
141.     global mytext4   
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142.     mytext4 = variable4.get() #getting the value from combobox when sele
cted    

143.     vals = self.cbsymbol4.cget('values')   
144.     self.cbsymbol4.select_range(0,END)   
145.     return 'break'       
146.    
147. def onbutton1click(self): #if connect is pushed then it will open the se

rial port and connects to the motor   
148.             ser.write("SCy.d.d..`'.......v.;...p.......Z...`...X.X.2... 

....N 1......N 8R.......2.(....2..v.q.............d...v...K.....p.xcustom motor 

......v...a...W.......ZSTPMTRH34066D!." + "\r\n") #serial command written to 
initialize the motor  

149.             ser.write("HR" + "\r\n") 
150.              
151.         else: 
152.             ser.open() 
153.             ser.write("SCy.d.d..`'.......v.;...p.......Z...`...X.X.2.. 

.....N 1......N 8R.......2.(....2..v.q.............d...v...K.....p.xcustom motor 

......v...a...W.......ZSTPMTRH34066D!." + "\r\n") 
154.             ser.write("HR" + "\r\n") 
155.             
156.     def onbutton2click(self): #'start position' is used to start the sys

tem at the same poisition   
157.         ser.write("DI-200" + "\r\n")    
158.         ser.write("VE0.5" + "\r\n")    
159.         ser.write("SH2L" + "\r\n") # it will comeback and hit the limit 

switch    
160.         ser.write("SP0" + "\r\n") #It will make the position of limit sw

itch as origin   
161.         ser.write("FP11676" + "\r\n") #it will move 0.1m forward for off

set   
162.    
163. """  
164. The lidar() function connects to an ip address and port and starts loggi

ng the data when the linear motion starts and  
165. stops when it reaches back using event 'stopclick'  
166. """   
167.     def lidar(self): #lidar data collection   
168.         global mytext1,mytext2,mytext3,mytext4   
169.         global stopclick   
170.         HOST = "192.168.1.77" #host address   
171.         PORT = 2368 #port   
172.         timestr = time.strftime("%H%M%S-%m%d%Y") #timestring formatted   
173.         file_object_UDP = open('C:/Data/' + timestr + ' ' + mytext1 + ' 

' + mytext2 + ' ' + mytext3 + ' ' + mytext4 + ' ' + 'gr' + '.csv', 'a') #filenam
e with time and velocity profile values   

174.         soc = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) #creating
 a socket   

175.         soc.bind((HOST, PORT)) #socket binds to the port   
176.         file_object_UDP.write('TimeStamp' + ',' + 'distance' + ',' + myt

ext1 + ',' + mytext2 + ',' + mytext3 + ',' + mytext4 + '\n') #it writes intially
 all the velcoity profile paramters in the first row           

177.         def UDP_parsing(data,file_obj): #parse the incoming data   
178.             timestamp = data[1200:1204] #timestamp data   
179.             timeresult = int(timestamp[3].encode('hex'),16)*16777216+int

(timestamp[2].encode('hex'),16)*65536+int(timestamp[1].encode('hex'),16)*256+int
(timestamp[0].encode('hex'),16)#micro seconds   

180.             t = (float(timeresult)/float(1000000)) #seconds past the hou
r            

181.             file_obj.write(str(t) +',' +str(data.encode('hex')) + '\n') 
#it writes in hex format   
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182.         while True:   
183.              try:   
184.                 data = soc.recv(2048)    
185.                 if len(data) > 0:                      
186.                     UDP_parsing(data,file_object_UDP) #if data is coming

 parse it   
187.              except Exception, e:   
188.                 print dir(e), e.message, e.__class__.__name__   
189.                 traceback.print_exc(e)   
190.              if stopclick == True: #stopclick is used to stop the data l

ogging when it reached it start position again   
191.                  stopclick = False #stopclick is reverted back to false 

  
192.                  file_object_UDP.close() #closes the file   
193.                  break       
194. """  
195. The onbutton3click() function  sends the command to the stepper motor fo

r moving the motor  
196. in the desired velocity profile and starts a background thread  
197. """   
198.     def onbutton3click(self): #run button #all commands below are alread

y defined for the stepper motor   
199.         global mytext1,mytext2,mytext3,mytext4   
200.         global stopclick   
201.         stopclick = False #initally stopclick = flase   
202.         stoplidar = '' #intially empty string    
203.         ser.flushInput()  #flush input buffer, discarding all its conten

ts   
204.         ser.flushOutput() #flush output buffer, aborting current output 

                      
205.         a = (float(mytext4) * 5.832 * 20000) #converting m to revolution

s of stepper motor   
206.         b = int(11676 + a) #offset   
207.         c = str(b)   
208.         x = (float(mytext1) * 5.832) #converting all the m/s to surestep

 pro language (rev/sec)   
209.         y = (float(mytext2) * 5.832)   
210.         z = (float(mytext3) * 5.832)   
211.         f = str(x)   
212.         g = str(y)   
213.         h = str(z)   
214.         t = threading.Thread(target=self.lidar, args=()) #parallel threa

ding   
215.         t.start() #start the thread   
216.         r = 3600*((float(mytext1)*2+float(mytext2)*float(mytext2))/(floa

t(mytext1)*float(mytext2))) #just to check the document size if we get all the d
ata   

217.         l = str(r)    
218.         print(l+"KB") #printing that on screen   
219.         ser.write("DL1" + "\r\n")#activating limit switches on either di

rections   
220.         ser.write("AC" + f + "\r\n") #ac - acceleration #writing all the

 velocity profile to stepper motor   
221.         ser.write("VE" + g + "\r\n") #ve-velocity   
222.         ser.write("DE" + h + "\r\n") #de - deceleration   
223.         ser.write("FP" + c + "\r\n") #displacement   
224.         ser.write("AC" + f + "\r\n")    
225.         ser.write("VE" + g + "\r\n")   
226.         ser.write("DE" + h + "\r\n")   
227.         ser.write("FP11676" + "\r\n") #it goes forward and comes back to

 staring position, starting position  = 11676   
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228.         while True:   
229.             stoplidar = ser.readline() #reads the incoming position valu

e by writing a line of code   
230.             ser.write("IP" + "\r\n")  #by writing IP to serial port it s

pits out the immediate position of stepper motor   
231.             if stoplidar.find("IP=11676")!=-

1:   #if it reaches the starting position again then break and stop the data log
ging by making stopclick true               

232.                 break   
233.         stopclick = True   
234.            
235.     def onbutton4click(self):   
236.         ser.close() #disconnect will close the serial port   
237.      
238.    
239. if __name__ == "__main__":   
240.     root = Tk() #creates a window which doesn't show up   
241.     root.geometry('{}x{}'.format(1100,400)) #size of the gui   
242.     root.title('Linear Motion System') #title    
243.     variable1 = StringVar(root) # 4 variables created for four comboboxe

s   
244.     variable2 = StringVar(root)   
245.     variable3 = StringVar(root)   
246.     variable4 = StringVar(root)   
247.     app = Application(root) #creates the application   
248.     root.mainloop() #looping indefinitely   
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Appendix D. LiDAR Data Post Processing for Test Target 

 Point Cloud from Raw LiDAR Data 

The MATLAB script used to obtain a 3D point cloud from raw LiDAR data by converting hexadecimal to 
decimal data and using velocity values to project into local 3D coordinate frame of linear motion system. The 
script can be used for any other object with minor changes in ground height section 

D.1.1 Authorship Information 

 Author : Saket Dasika 

 Last Modified: 06/06/2018 

 Version: R2016a 

D.1.2 Automating Files and Preallocation 

clearvars -except meanheightgrwh meanheightgrbl i fNames; %clear the workspace 
except the mean height of ground value 
clc; %clear the command window 
%file = 'C:\Users\sda273\OneDrive\Data\135515-01262018 0.3 0.5 0.3 2.0 wh 
rep1.xlsx'; 
%file=fNames{i}; %automating the files 
[num,text,raw] = xlsread(file);% Read from excel 
Timestamp = zeros(length(raw),1); %create Timestamp for preallocation 
azimuth = zeros(length(raw),24);  %create azimuth for preallocation 
azimuthl = zeros(length(raw),24); %create azimuthl(copy of azimuth) for 
preallocation (used for finding missing azimuth values) 
distance{1,16} = []; %create distance 1*16 cell for preallocation 
intensity{1,16} = [];%create intensity 1*16 cell for preallocation 
for i=1:16 
    distance{i} = zeros(length(raw),12,2); 
    intensity{i} = zeros(length(raw),12,2); 
end 

D.1.3 Height of Ground 

%getting the file name and see if it is white side or black side and then 
%use the corresponding ground 
[filepath,name,ext] = fileparts(file); 
whit = 'wh'; 
blac = 'bl'; 
if isempty(strfind(name, whit))==0 
    meanheightgr = meanheightgrwh; 
else if isempty(strfind(name, blac))==0 
        meanheightgr = meanheightgrbl; 
    end 
end 
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D.1.4 Velocity Profile Calculations 

acc = num(1,3);%acceleration 
vel = num(1,4);%steady state velocity 
dec = num(1,5); %deceleration 
dis = num(1,6);%displacement in one direction 
%A1-A6 are indices of the timestamp when they reach the different aspects 
%of velocity profile 
A1 = zeros(length(raw),1); %preallocation A1 
A2 = zeros(length(raw),1); %preallocation A2 
A3 = zeros(length(raw),1); %preallocation A3 
A4 = zeros(length(raw),1); %preallocation A4 
A5 = zeros(length(raw),1); %preallocation A5 
A6 = zeros(length(raw),1); %preallocation A6 
acctime = vel/acc; %time to accelerate 
accdist = (acc*acctime*acctime)/2; %distance moved while accelerating 
dectime = vel/dec; %time to deceleration 
decdist = ((vel*dectime) - (dec*dectime*dectime)/2); %distance moved while 
deceleration 
stedist = 2 - accdist - decdist; %calculate steady state distance 
stetime = (dis-accdist-decdist)/vel; %time in steady state velocity 
totaltime = (acctime+stetime+dectime)*2; %total time taken 
 
for i = 2:length(raw) 
    Timestamp(i) = num(i,1); %getting all the timestamp values 
end 
 
try 
    for i = 2:length(raw) 
        A1(i,1) = Timestamp(i) - Timestamp(2); 
    end %finding the differences between corresponding timestamp and the 
starting 
catch 
end 
I1  = find(A1>acctime); %find when it reaches steady state velocity 
a1 = I1(1); %finding the index/packet number of it 
 
try 
    for i = a1:length(raw) 
        A2(i,1) = Timestamp(i) - Timestamp(a1); 
    end %finding the differences between corresponding timestamp and the 
starting 
catch 
end 
I2 = find(A2>stetime); %find when it starts to declerate 
a2 = I2(1); %finding the index/packet number of it 
 
try 
    for i = a2:length(raw) 
        A3(i,1) = Timestamp(i) - Timestamp(a2); 
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    end %finding the differences between corresponding timestamp and the 
starting 
catch 
end 
I3  = find(A3>dectime); %find when it stops in forward motion 
a3 = I3(1); %finding the index/packet number of it 
 
try 
    for i = a3:length(raw) 
        A4(i,1) = Timestamp(i) - Timestamp(a3); 
    end %finding the differences between corresponding timestamp and the 
starting 
catch 
end 
I4  = find(A4>acctime); %find when it reaches steady state velocity in backward 
motion 
a4 = I4(1); %finding the index/packet number of it 
 
try 
    for i = a4:length(raw) 
        A5(i,1) = Timestamp(i) - Timestamp(a4); 
    end %finding the differences between corresponding timestamp and the 
starting 
catch 
end 
I5  = find(A5>stetime); %find when it starts to declerate in backward motion 
a5 = I5(1); %finding the index/packet number of it 
 
try 
    for i = a5:length(raw) 
        A6(i,1) = Timestamp(i) - Timestamp(a5); 
    end %finding the differences between corresponding timestamp and the 
starting 
catch 
end 
I6  = find(A6>dectime);%find when it stops in backward motion 
try 
    a6 = I6(1); %finding the index/packet number of it, Try statement is used 
beacuse sometimes it may not be there 
catch 
end 

D.1.5 Hexadecimal to Decimal Conversion 

try 
    for i = 2:length(raw) 
        for j = 0:200:2200 
            %finding azimuth angles which are spaced apart 200 characters in 
between 
            %azimuthl - used for finding the missing azimuth 
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            azimuth(i,(2*(j/200))+1) = 
hex2dec([raw{i,2}(1,7+j),raw{i,2}(1,8+j),raw{i,2}(1,5+j),raw{i,2}(1,6+j)])/100; 
            azimuthl(i,(2*(j/200))+1) = 
hex2dec([raw{i,2}(1,7+j),raw{i,2}(1,8+j),raw{i,2}(1,5+j),raw{i,2}(1,6+j)])/100; 
            for k = 0:96:96 
                %distance values calculated for all 16 channels for all 12 data 
blocks spaced 200 characters in between(j) and 
                %2 times which are spaced 96 characters in between(k) 
                distance{1}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+11+k),raw{i,2}(1,j+12+k),raw{i,2}(1,j+9+k),raw{i,2}(1,j+1
0+k)])*2; 
                distance{2}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+17+k),raw{i,2}(1,j+18+k),raw{i,2}(1,j+15+k),raw{i,2}(1,j+
16+k)])*2; 
                distance{3}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+23+k),raw{i,2}(1,j+24+k),raw{i,2}(1,j+21+k),raw{i,2}(1,j+
22+k)])*2; 
                distance{4}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+29+k),raw{i,2}(1,j+30+k),raw{i,2}(1,j+27+k),raw{i,2}(1,j+
28+k)])*2; 
                distance{5}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+35+k),raw{i,2}(1,j+36+k),raw{i,2}(1,j+33+k),raw{i,2}(1,j+
34+k)])*2; 
                distance{6}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+41+k),raw{i,2}(1,j+42+k),raw{i,2}(1,j+39+k),raw{i,2}(1,j+
40+k)])*2; 
                distance{7}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+47+k),raw{i,2}(1,j+48+k),raw{i,2}(1,j+45+k),raw{i,2}(1,j+
46+k)])*2; 
                distance{8}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+53+k),raw{i,2}(1,j+54+k),raw{i,2}(1,j+51+k),raw{i,2}(1,j+
52+k)])*2; 
                distance{9}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+59+k),raw{i,2}(1,j+60+k),raw{i,2}(1,j+57+k),raw{i,2}(1,j+
58+k)])*2; 
                distance{10}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+65+k),raw{i,2}(1,j+66+k),raw{i,2}(1,j+63+k),raw{i,2}(1,j+
64+k)])*2; 
                distance{11}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+71+k),raw{i,2}(1,j+72+k),raw{i,2}(1,j+69+k),raw{i,2}(1,j+
70+k)])*2; 
                distance{12}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+77+k),raw{i,2}(1,j+78+k),raw{i,2}(1,j+75+k),raw{i,2}(1,j+
76+k)])*2; 
                distance{13}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+83+k),raw{i,2}(1,j+84+k),raw{i,2}(1,j+81+k),raw{i,2}(1,j+
82+k)])*2; 
                distance{14}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+89+k),raw{i,2}(1,j+90+k),raw{i,2}(1,j+87+k),raw{i,2}(1,j+
88+k)])*2; 
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                distance{15}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+95+k),raw{i,2}(1,j+96+k),raw{i,2}(1,j+93+k),raw{i,2}(1,j+
94+k)])*2; 
                distance{16}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+101+k),raw{i,2}(1,j+102+k),raw{i,2}(1,j+99+k),raw{i,2}(1,
j+100+k)])*2; 
 
                %intensity values calculated for all 16 channels for all 12 
data blocks spaced 200 characters in between(j) and 
                %2 times which are spaced 96 characters in between(k) 
                intensity{1}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+13+k),raw{i,2}(1,j+14+k)]); 
                intensity{2}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+19+k),raw{i,2}(1,j+20+k)]); 
                intensity{3}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+25+k),raw{i,2}(1,j+26+k)]); 
                intensity{4}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+31+k),raw{i,2}(1,j+32+k)]); 
                intensity{5}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+37+k),raw{i,2}(1,j+38+k)]); 
                intensity{6}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+43+k),raw{i,2}(1,j+44+k)]); 
                intensity{7}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+49+k),raw{i,2}(1,j+50+k)]); 
                intensity{8}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+55+k),raw{i,2}(1,j+56+k)]); 
                intensity{9}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+61+k),raw{i,2}(1,j+62+k)]); 
                intensity{10}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+67+k),raw{i,2}(1,j+68+k)]); 
                intensity{11}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+73+k),raw{i,2}(1,j+74+k)]); 
                intensity{12}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+79+k),raw{i,2}(1,j+80+k)]); 
                intensity{13}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+85+k),raw{i,2}(1,j+86+k)]); 
                intensity{14}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+91+k),raw{i,2}(1,j+92+k)]); 
                intensity{15}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+97+k),raw{i,2}(1,j+98+k)]); 
                intensity{16}(i,(j/200)+1,(k/96)+1) = 
hex2dec([raw{i,2}(1,j+103+k),raw{i,2}(1,j+104+k)]); 
            end 
        end 
    end 
catch 
end 
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D.1.6 Finding Missing Azimuth Values 

try 
    for i = 2:length(raw) %finding missing azimuth values using azimuthl 
        for j = 0:10 
            if (azimuth(i,(2*j)+3) < azimuth(i,(2*j)+1)) %checking for reverted 
back angles 
                azimuthl(i,(2*j)+3) = azimuthl(i,(2*j)+3) + 360; %adding 360 
degrees to the reverted back angles 
            end 
            azimuth(i,(2*j)+2) = azimuth(i,(2*j)+1) + ((azimuthl(i,(2*j)+3)-
azimuth(i,(2*j)+1))/2); %interpolating the missing ones 
            if ( azimuth(i,(2*j)+2)>=360) %checking if they are bigger than 360 
degrees 
                azimuth(i,(2*j)+2) =  azimuth(i,(2*j)+2) - 360; %reverting back 
the angles by subtracting 360 degrees 
            end 
        end 
        azimuth(i,24) = (azimuth(i,23)) + (azimuth(i,23) - azimuth(i,21))/2; 
%last azmith angle 
        if ( azimuth(i,24)>=360) %checking if they are bigger than 360 degrees 
            azimuth(i,24) =  azimuth(i,24) - 360; %reverting back the angles by 
subtracting 360 degrees 
        end 
    end 
catch 
end 

D.1.7 Conversion of Polar Coordinates to Cartesian Coordinates 

%preallocating for forward motion 
Xforw = zeros(a2-a1+1,384); 
Yforw = zeros(a2-a1+1,384); 
Zforw = zeros(a2-a1+1,384); 
inforw = zeros(a2-a1+1,384); 
timeoffsetforw = zeros(a2-a1+1,384); %timeoffset for firing lasers 
 
%preallocating for backward motion 
Xback = zeros(a5-a4+1,384); 
Yback = zeros(a5-a4+1,384); 
Zback = zeros(a5-a4+1,384); 
inback = zeros(a5-a4+1,384); 
timeoffsetback = zeros(a5-a4+1,384); %timeoffset for firing lasers 
 
lasertime = 2.304*10^-6; %time between firing two adjacent lasers in same 
sequence 
firingtime = 55.296*10^-6; %time between whole sequence 
%timeoffset for laser = sequence index*firingtime + laserindex * 
%lasertime 
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for i = a1:a2%adding Z value because the system moves in positive Z direction 
    %two times for two azimuth angles and two types of laser ids(odd and even) 
    for j = 0:200:2200 
        if (azimuth(i,2*(j/200)+1)>30 && azimuth(i,2*(j/200)+1)<330) % clipping 
the values below mentioned angles, only looking between -30 to 30 degrees 
            for k =1:16 
                Xforw(i-(a1-1),((j/200))*32+(k)) = NaN; 
                Yforw(i-(a1-1),((j/200))*32+(k)) = NaN; 
                Zforw(i-(a1-1),((j/200))*32+(k)) = NaN; 
                inforw(i-(a1-1),((j/200))*32+(k)) = NaN; 
            end 
        else 
            %finding X,Y,Z for even channels 0,2,4.. and converting polar to 
            %cartesian coordinates 
            for k=1:2:16 
                Xforw(i-(a1-1),((j/200))*32+(k)) = 
distance{k}(i,(j/200)+1,1)*cosd(k-16)*sind(azimuth(i,2*(j/200)+1)); 
                Yforw(i-(a1-1),((j/200))*32+(k)) = meanheightgr-
(distance{k}(i,(j/200)+1,1)*cosd(k-16)*cosd(azimuth(i,2*(j/200)+1))); 
                timeoffsetforw(i-(a1-1),((j/200))*32+(k)) = (j/100)*firingtime 
+ (k-1)*lasertime; %timeoffset for laser 
                Zforw(i-(a1-1),((j/200))*32+(k)) = 
distance{k}(i,(j/200)+1,1)*sind(k-16) + (vel*1000*(Timestamp(i) + 
timeoffsetforw(i-(a1-1),((j/200))*32+(k)) - Timestamp(a1))); 
                inforw(i-(a1-1),((j/200))*32+(k)) = 
intensity{k}(i,(j/200)+1,1); 
            end 
            for k =2:2:16 
                %finding X,Y,Z for odd channels 1,3,5.. and converting polar to 
            %cartesian coordinates 
                Xforw(i-(a1-1),((j/200))*32+(k)) = 
distance{k}(i,(j/200)+1,1)*cosd(k-1)*sind(azimuth(i,2*(j/200)+1)); 
                Yforw(i-(a1-1),((j/200))*32+(k)) = meanheightgr-
(distance{k}(i,(j/200)+1,1)*cosd(k-1)*cosd(azimuth(i,2*(j/200)+1))); 
                timeoffsetforw(i-(a1-1),((j/200))*32+(k)) = (j/100)*firingtime 
+ (k-1)*lasertime; %timeoffset for laser 
                Zforw(i-(a1-1),((j/200))*32+(k)) = 
distance{k}(i,(j/200)+1,1)*sind(k-1) + (vel*1000*(Timestamp(i) + 
timeoffsetforw(i-(a1-1),((j/200))*32+(k)) - Timestamp(a1))); 
                inforw(i-(a1-1),((j/200))*32+(k)) = 
intensity{k}(i,(j/200)+1,1); 
            end 
        end 
 
 
        if (azimuth(i,2*(j/200)+2)>30 && azimuth(i,2*(j/200)+2)<330) % clipping 
the values below mentioned angles, only looking between -30 to 30 degrees 
            for k = 17:32 
                Xforw(i-(a1-1),((j/200))*32+(k)) = NaN; 
                Yforw(i-(a1-1),((j/200))*32+(k)) = NaN; 
                Zforw(i-(a1-1),((j/200))*32+(k)) = NaN; 
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                inforw(i-(a1-1),((j/200))*32+(k)) = NaN; 
            end 
        else 
            %finding X,Y,Z for even channels 0,2,4.. and converting polar to 
            %cartesian coordinates 
            for k = 17:2:31 
                Xforw(i-(a1-1),((j/200))*32+(k)) = distance{k-
16}(i,(j/200)+1,2)*cosd(k-32)*sind(azimuth(i,2*(j/200)+2)); 
                Yforw(i-(a1-1),((j/200))*32+(k)) = meanheightgr-(distance{k-
16}(i,(j/200)+1,2)*cosd(k-32)*cosd(azimuth(i,2*(j/200)+2))); 
                timeoffsetforw(i-(a1-1),((j/200))*32+(k)) = 
((j/100)+1)*firingtime + (k-17)*lasertime; %timeoffset for laser 
                Zforw(i-(a1-1),((j/200))*32+(k)) = distance{k-
16}(i,(j/200)+1,2)*sind(k-32) + (vel*1000*(Timestamp(i) +  timeoffsetforw(i-
(a1-1),((j/200))*32+(k)) - Timestamp(a1))); 
                inforw(i-(a1-1),((j/200))*32+(k)) = intensity{k-
16}(i,(j/200)+1,2); 
            end 
            for k=18:2:32 
                %finding X,Y,Z for odd channels 1,3,5.. and converting polar to 
            %cartesian coordinates 
                Xforw(i-(a1-1),((j/200))*32+(k)) = distance{k-
16}(i,(j/200)+1,2)*cosd(k-17)*sind(azimuth(i,2*(j/200)+2)); 
                Yforw(i-(a1-1),((j/200))*32+(k)) = meanheightgr-(distance{k-
16}(i,(j/200)+1,2)*cosd(k-17)*cosd(azimuth(i,2*(j/200)+2))); 
                timeoffsetforw(i-(a1-1),((j/200))*32+(k)) = 
((j/100)+1)*firingtime + (k-17)*lasertime; %timeoffset for laser 
                Zforw(i-(a1-1),((j/200))*32+(k)) = distance{k-
16}(i,(j/200)+1,2)*sind(k-17) + (vel*1000*(Timestamp(i) +  timeoffsetforw(i-
(a1-1),((j/200))*32+(k)) - Timestamp(a1))); 
                inforw(i-(a1-1),((j/200))*32+(k)) = intensity{k-
16}(i,(j/200)+1,2); 
            end 
        end 
    end 
end 
for i = a4:a5 %subtracting Z value because the system moves in negative Z 
direction 
    for j = 0:200:2200 
        if (azimuth(i,2*(j/200)+1)>30 && azimuth(i,2*(j/200)+1)<330) % clipping 
the values below mentioned angles, only looking between -30 to 30 degrees 
            for k =1:16 
                Xback(i-(a4-1),((j/200))*32+(k)) = NaN; 
                Yback(i-(a4-1),((j/200))*32+(k)) = NaN; 
                Zback(i-(a4-1),((j/200))*32+(k)) = NaN; 
                inback(i-(a4-1),((j/200))*32+(k)) = NaN; 
            end 
        else 
            for k=1:2:16 
                %finding X,Y,Z for even channels 0,2,4.. and converting polar 
to 
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            %cartesian coordinates 
                Xback(i-(a4-1),((j/200))*32+(k)) = 
distance{k}(i,(j/200)+1,1)*cosd(k-16)*sind(azimuth(i,2*(j/200)+1)); 
                Yback(i-(a4-1),((j/200))*32+(k)) = meanheightgr-
(distance{k}(i,(j/200)+1,1)*cosd(k-16)*cosd(azimuth(i,2*(j/200)+1))); 
                timeoffsetback(i-(a1-1),((j/200))*32+(k)) = (j/100)*firingtime 
+ (k-1)*lasertime; %timeoffset for laser 
                Zback(i-(a4-1),((j/200))*32+(k)) = 
distance{k}(i,(j/200)+1,1)*sind(k-16) - (vel*1000*(Timestamp(i) + 
timeoffsetback(i-(a1-1),((j/200))*32+(k)) - Timestamp(a4))); 
                inback(i-(a4-1),((j/200))*32+(k)) = 
intensity{k}(i,(j/200)+1,1); 
            end 
            for k =2:2:16 
                %finding X,Y,Z for odd channels 1,3,5... and converting polar 
to 
            %cartesian coordinates 
                Xback(i-(a4-1),((j/200))*32+(k)) = 
distance{k}(i,(j/200)+1,1)*cosd(k-1)*sind(azimuth(i,2*(j/200)+1)); 
                Yback(i-(a4-1),((j/200))*32+(k)) = meanheightgr-
(distance{k}(i,(j/200)+1,1)*cosd(k-1)*cosd(azimuth(i,2*(j/200)+1))); 
                timeoffsetback(i-(a1-1),((j/200))*32+(k)) = (j/100)*firingtime 
+ (k-1)*lasertime; %timeoffset for laser 
                Zback(i-(a4-1),((j/200))*32+(k)) = 
distance{k}(i,(j/200)+1,1)*sind(k-1) - (vel*1000*(Timestamp(i) + 
timeoffsetback(i-(a1-1),((j/200))*32+(k)) - Timestamp(a4))); 
                inback(i-(a4-1),((j/200))*32+(k)) = 
intensity{k}(i,(j/200)+1,1); 
            end 
        end 
 
        if (azimuth(i,2*(j/200)+2)>30 && azimuth(i,2*(j/200)+2)<330) % clipping 
the values below mentioned angles, only looking between -30 to 30 degrees 
            for k = 17:32 
                Xback(i-(a4-1),((j/200))*32+(k)) = NaN; 
                Yback(i-(a4-1),((j/200))*32+(k)) = NaN; 
                Zback(i-(a4-1),((j/200))*32+(k)) = NaN; 
                inback(i-(a4-1),((j/200))*32+(k)) = NaN; 
            end 
        else 
            for k = 17:2:31 
                %finding X,Y,Z for even channels 0,2,4..and converting polar to 
            %cartesian coordinates 
                Xback(i-(a4-1),((j/200))*32+(k)) = distance{k-
16}(i,(j/200)+1,2)*cosd(k-32)*sind(azimuth(i,2*(j/200)+2)); 
                Yback(i-(a4-1),((j/200))*32+(k)) = meanheightgr-(distance{k-
16}(i,(j/200)+1,2)*cosd(k-32)*cosd(azimuth(i,2*(j/200)+2))); 
                timeoffsetback(i-(a1-1),((j/200))*32+(k)) = 
((j/100)+1)*firingtime + (k-17)*lasertime; %timeoffset for laser 
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                Zback(i-(a4-1),((j/200))*32+(k)) = distance{k-
16}(i,(j/200)+1,2)*sind(k-32) - (vel*1000*(Timestamp(i) + timeoffsetback(i-(a1-
1),((j/200))*32+(k)) - Timestamp(a4))); 
                inback(i-(a4-1),((j/200))*32+(k)) = intensity{k-
16}(i,(j/200)+1,2); 
            end 
            for k=18:2:32 
                %finding X,Y,Z for odd channels 1,3,5.. and converting polar to 
            %cartesian coordinates 
                Xback(i-(a4-1),((j/200))*32+(k)) = distance{k-
16}(i,(j/200)+1,2)*cosd(k-17)*sind(azimuth(i,2*(j/200)+2)); 
                Yback(i-(a4-1),((j/200))*32+(k)) = meanheightgr-(distance{k-
16}(i,(j/200)+1,2)*cosd(k-17)*cosd(azimuth(i,2*(j/200)+2))); 
                timeoffsetback(i-(a1-1),((j/200))*32+(k)) = 
((j/100)+1)*firingtime + (k-17)*lasertime; %timeoffset for laser 
                Zback(i-(a4-1),((j/200))*32+(k)) = distance{k-
16}(i,(j/200)+1,2)*sind(k-17) - (vel*1000*(Timestamp(i) + timeoffsetback(i-(a1-
1),((j/200))*32+(k)) - Timestamp(a4))); 
                inback(i-(a4-1),((j/200))*32+(k)) = intensity{k-
16}(i,(j/200)+1,2); 
            end 
        end 
    end 
end 

D.1.8 Defining the Point Cloud 

Total_intensity_forw = mean(mean(inforw,'omitnan'),'omitnan'); %finding the 
mean intensity in forward direction 
Total_intensity_back = mean(mean(inback,'omitnan'),'omitnan'); %finding the 
mean intensity in backward direction 
 
ptCloudforw = pointCloud([Xforw(:),Yforw(:),Zforw(:)]); %pointcloud in forward 
direction (positive z direction) 
ptCloudback = pointCloud([Xback(:),Yback(:),Zback(:)]); %pointcloud in backward 
direction (negative z direction) 
 
ptCloudinten_forw = pointCloud([inforw(:),inforw(:),inforw(:)]); %intensity 
cloud in forward direction 
ptCloudinten_back = pointCloud([inback(:),inback(:),inback(:)]); %intensity 
cloud in backward direction 
 
[ptCloudforwup,inlierIndices1] = pcdenoise(ptCloudforw); %denoising forward 
point cloud 
[ptCloudbackup,inlierIndices2] = pcdenoise(ptCloudback); %denoising backward 
point cloud 
ptCloudinfode = select(ptCloudinten_forw,inlierIndices1); %removing the same 
indices for intensity cloud as point cloud 
ptCloudinbade = select(ptCloudinten_back,inlierIndices2); %removing the same 
indices for intensity cloud as point cloud 



111 
 

 
%plotting all the point clouds 
figure(1) 
pcshow(ptCloudforw); 
title('Forward Motion'); 
xlabel('X'); 
ylabel('Y'); 
zlabel('Z'); 
 
figure(2) 
pcshow(ptCloudback); 
title('Backward Motion'); 
xlabel('X'); 
ylabel('Y'); 
zlabel('Z'); 
 
%plotting those denoised ones 
figure(3) 
pcshow(ptCloudforwup); 
title('Forward Motion(updated)'); 
xlabel('X'); 
ylabel('Y'); 
zlabel('Z'); 
% zoom(0.7); %adding zoom if required 
 
figure(4) 
pcshow(ptCloudbackup); 
title('Backward Motion(updated)'); 
xlabel('X'); 
ylabel('Y'); 
zlabel('Z'); 

 Feature Extraction from Point Cloud 

The MATLAB script was used to extract heigthts of each point,mean height,standard deviation,mean 
intensity,point density on a single test target from the point cloud of the whole test target 

D.2.1 Authorship Information 

 Author : Saket Dasika 

 Last Modified: 06/07/2018 

 Version: R2016a 

D.2.2 Obtaining the Z Coordinate of the Whole Test target 

%the z coordinate is the lower limit of the range of z axis of 800mm plates 
%which can be used to find the location of other plates as the position of 
%the plates was known relative to each other in z axis 
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clearvars -except meanheightgrwh meanheightgrbl ptCloudforwup ptCloudbackup 
ptCloudinfode ptCloudinbade Total_intensity_forw Total_intensity_back name 
fNames 
clc; 
roi = [-500 500;750 850;0 2000]; %roi for the 800 mm targets 
indices = findPointsInROI(ptCloudforwup,roi); %finding the inlier points 
valout = select(ptCloudforwup,indices); 
%the pointcloudforwup was changed to ptcloudbackup for backward motion 
%plotting the 800 mm targets 
figure(1) 
pcshow(valout) 
title('Validation_8(Plates)') 
 
zcoordinate = valout.ZLimits(1); %finding the z coodinate which can be then 
used to find the roi's for all the other height targets 

D.2.3 Roi's for the Test Targets 

%finding the point clouds from those indcies which corresponds to the 25 
%targets 
%roix_y corresponds to roi for plate numberx and height y 
%example roi3_6 corresponds to plate 3 in 600mm plates 
%plate numbering can be any order 
 
roi1_8 = [-500 -300;750 900;zcoordinate+800 zcoordinate+1000]; 
roi2_8 = [-300 -100;750 900;zcoordinate zcoordinate+200]; 
roi3_8 = [-100 100;750 900;zcoordinate+600 zcoordinate+800]; 
roi4_8 = [100 300;750 900;zcoordinate+200 zcoordinate+400]; 
roi5_8 = [300 500;750 900;zcoordinate+400 zcoordinate+600]; 
 
indices1_8 = findPointsInROI(ptCloudforwup,roi1_8); 
indices2_8 = findPointsInROI(ptCloudforwup,roi2_8); 
indices3_8 = findPointsInROI(ptCloudforwup,roi3_8); 
indices4_8 = findPointsInROI(ptCloudforwup,roi4_8); 
indices5_8 = findPointsInROI(ptCloudforwup,roi5_8); 
 
valdeout1_8 = select(ptCloudforwup,indices1_8); 
valdeout2_8 = select(ptCloudforwup,indices2_8); 
valdeout3_8 = select(ptCloudforwup,indices3_8); 
valdeout4_8 = select(ptCloudforwup,indices4_8); 
valdeout5_8 = select(ptCloudforwup,indices5_8); 
 
roi1_6 = [-500 -300;575 700;zcoordinate+600 zcoordinate+800]; 
roi2_6 = [-300 -100;575 700;zcoordinate+400 zcoordinate+600]; 
roi3_6 = [-100 100;575 700;zcoordinate zcoordinate+200]; 
roi4_6 = [100 300;575 700;zcoordinate+800 zcoordinate+1000]; 
roi5_6 = [300 500;575 700;zcoordinate+200 zcoordinate+400]; 
 
indices1_6 = findPointsInROI(ptCloudforwup,roi1_6); 
indices2_6 = findPointsInROI(ptCloudforwup,roi2_6); 
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indices3_6 = findPointsInROI(ptCloudforwup,roi3_6); 
indices4_6 = findPointsInROI(ptCloudforwup,roi4_6); 
indices5_6 = findPointsInROI(ptCloudforwup,roi5_6); 
 
valdeout1_6 = select(ptCloudforwup,indices1_6); 
valdeout2_6 = select(ptCloudforwup,indices2_6); 
valdeout3_6 = select(ptCloudforwup,indices3_6); 
valdeout4_6 = select(ptCloudforwup,indices4_6); 
valdeout5_6 = select(ptCloudforwup,indices5_6); 
 
roi1_5 = [-500 -300;450 575;zcoordinate zcoordinate+200]; 
roi2_5 = [-300 -100;450 575;zcoordinate+200 zcoordinate+400]; 
roi3_5 = [-100 100;450 575;zcoordinate+800 zcoordinate+1000]; 
roi4_5 = [100 300;450 575;zcoordinate+400 zcoordinate+600]; 
roi5_5 = [300 500;450 575;zcoordinate+600 zcoordinate+800]; 
 
indices1_5 = findPointsInROI(ptCloudforwup,roi1_5); 
indices2_5 = findPointsInROI(ptCloudforwup,roi2_5); 
indices3_5 = findPointsInROI(ptCloudforwup,roi3_5); 
indices4_5 = findPointsInROI(ptCloudforwup,roi4_5); 
indices5_5 = findPointsInROI(ptCloudforwup,roi5_5); 
 
valdeout1_5 = select(ptCloudforwup,indices1_5); 
valdeout2_5 = select(ptCloudforwup,indices2_5); 
valdeout3_5 = select(ptCloudforwup,indices3_5); 
valdeout4_5 = select(ptCloudforwup,indices4_5); 
valdeout5_5 = select(ptCloudforwup,indices5_5); 
 
roi1_3 = [-500 -300;250 400;zcoordinate+200 zcoordinate+400]; 
roi2_3 = [-300 -100;250 400;zcoordinate+600 zcoordinate+800]; 
roi3_3 = [-100 100;250 400;zcoordinate+400 zcoordinate+600]; 
roi4_3 = [100 300;250 400;zcoordinate zcoordinate+200]; 
roi5_3 = [300 500;250 400;zcoordinate+800 zcoordinate+1000]; 
 
indices1_3 = findPointsInROI(ptCloudforwup,roi1_3); 
indices2_3 = findPointsInROI(ptCloudforwup,roi2_3); 
indices3_3 = findPointsInROI(ptCloudforwup,roi3_3); 
indices4_3 = findPointsInROI(ptCloudforwup,roi4_3); 
indices5_3 = findPointsInROI(ptCloudforwup,roi5_3); 
 
valdeout1_3 = select(ptCloudforwup,indices1_3); 
valdeout2_3 = select(ptCloudforwup,indices2_3); 
valdeout3_3 = select(ptCloudforwup,indices3_3); 
valdeout4_3 = select(ptCloudforwup,indices4_3); 
valdeout5_3 = select(ptCloudforwup,indices5_3); 
 
roi1_1 = [-500 -300;50 200;zcoordinate+400 zcoordinate+600]; 
roi2_1 = [-300 -100;50 200;zcoordinate+800 zcoordinate+1000]; 
roi3_1 = [-100 100;50 200;zcoordinate+200 zcoordinate+400]; 
roi4_1 = [100 300;50 200;zcoordinate+600 zcoordinate+800]; 
roi5_1 = [300 500;50 200;zcoordinate zcoordinate+200]; 
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indices1_1 = findPointsInROI(ptCloudforwup,roi1_1); 
indices2_1 = findPointsInROI(ptCloudforwup,roi2_1); 
indices3_1 = findPointsInROI(ptCloudforwup,roi3_1); 
indices4_1 = findPointsInROI(ptCloudforwup,roi4_1); 
indices5_1 = findPointsInROI(ptCloudforwup,roi5_1); 
 
valdeout1_1 = select(ptCloudforwup,indices1_1); 
valdeout2_1 = select(ptCloudforwup,indices2_1); 
valdeout3_1 = select(ptCloudforwup,indices3_1); 
valdeout4_1 = select(ptCloudforwup,indices4_1); 
valdeout5_1 = select(ptCloudforwup,indices5_1); 
 
%plotting all these targets 
figure(3) 
subplot(1,5,1) 
pcshow(valdeout1_8) 
subplot(1,5,2) 
pcshow(valdeout2_8) 
subplot(1,5,3) 
pcshow(valdeout3_8) 
subplot(1,5,4) 
pcshow(valdeout4_8) 
subplot(1,5,5) 
pcshow(valdeout5_8) 
 
figure(4) 
subplot(1,5,1) 
pcshow(valdeout1_6) 
subplot(1,5,2) 
pcshow(valdeout2_6) 
subplot(1,5,3) 
pcshow(valdeout3_6) 
subplot(1,5,4) 
pcshow(valdeout4_6) 
subplot(1,5,5) 
pcshow(valdeout5_6) 
 
figure(5) 
subplot(1,5,1) 
pcshow(valdeout1_5) 
subplot(1,5,2) 
pcshow(valdeout2_5) 
subplot(1,5,3) 
pcshow(valdeout3_5) 
subplot(1,5,4) 
pcshow(valdeout4_5) 
subplot(1,5,5) 
pcshow(valdeout5_5) 
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figure(6) 
subplot(1,5,1) 
pcshow(valdeout1_3) 
subplot(1,5,2) 
pcshow(valdeout2_3) 
subplot(1,5,3) 
pcshow(valdeout3_3) 
subplot(1,5,4) 
pcshow(valdeout4_3) 
subplot(1,5,5) 
pcshow(valdeout5_3) 
 
figure(7) 
subplot(1,5,1) 
pcshow(valdeout1_1) 
subplot(1,5,2) 
pcshow(valdeout2_1) 
subplot(1,5,3) 
pcshow(valdeout3_1) 
subplot(1,5,4) 
pcshow(valdeout4_1) 
subplot(1,5,5) 
pcshow(valdeout5_1) 

D.2.4 Feature Extraction 

Function 'meanheight' was used to compute the paramters mentioned above for all the 25 point clouds 
corresponding to the tesr targets for more details refer to the mean height function 

[meanheight1_8,count1_8,tcount1_8,stdeviation1_8,meanintensity1_8,heightm1_8] = 
meanheight(valdeout1_8,ptCloudinfode,indices1_8); 

[meanheight2_8,count2_8,tcount2_8,stdeviation2_8,meanintensity2_8,heightm2_8] = 
meanheight(valdeout2_8,ptCloudinfode,indices2_8); 

[meanheight3_8,count3_8,tcount3_8,stdeviation3_8,meanintensity3_8,heightm3_8] = 
meanheight(valdeout3_8,ptCloudinfode,indices3_8); 

[meanheight4_8,count4_8,tcount4_8,stdeviation4_8,meanintensity4_8,heightm4_8] = 
meanheight(valdeout4_8,ptCloudinfode,indices4_8); 

[meanheight5_8,count5_8,tcount5_8,stdeviation5_8,meanintensity5_8,heightm5_8] = 
meanheight(valdeout5_8,ptCloudinfode,indices5_8); 

 

[meanheight1_6,count1_6,tcount1_6,stdeviation1_6,meanintensity1_6,heightm1_6] = 
meanheight(valdeout1_6,ptCloudinfode,indices1_6); 
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[meanheight2_6,count2_6,tcount2_6,stdeviation2_6,meanintensity2_6,heightm2_6] = 
meanheight(valdeout2_6,ptCloudinfode,indices2_6); 

[meanheight3_6,count3_6,tcount3_6,stdeviation3_6,meanintensity3_6,heightm3_6] = 
meanheight(valdeout3_6,ptCloudinfode,indices3_6); 

[meanheight4_6,count4_6,tcount4_6,stdeviation4_6,meanintensity4_6,heightm4_6] = 
meanheight(valdeout4_6,ptCloudinfode,indices4_6); 

[meanheight5_6,count5_6,tcount5_6,stdeviation5_6,meanintensity5_6,heightm5_6] = 
meanheight(valdeout5_6,ptCloudinfode,indices5_6); 

 

[meanheight1_5,count1_5,tcount1_5,stdeviation1_5,meanintensity1_5,heightm1_5] = 
meanheight(valdeout1_5,ptCloudinfode,indices1_5); 

[meanheight2_5,count2_5,tcount2_5,stdeviation2_5,meanintensity2_5,heightm2_5] = 
meanheight(valdeout2_5,ptCloudinfode,indices2_5); 

[meanheight3_5,count3_5,tcount3_5,stdeviation3_5,meanintensity3_5,heightm3_5] = 
meanheight(valdeout3_5,ptCloudinfode,indices3_5); 

[meanheight4_5,count4_5,tcount4_5,stdeviation4_5,meanintensity4_5,heightm4_5] = 
meanheight(valdeout4_5,ptCloudinfode,indices4_5); 

[meanheight5_5,count5_5,tcount5_5,stdeviation5_5,meanintensity5_5,heightm5_5] = 
meanheight(valdeout5_5,ptCloudinfode,indices5_5); 

 

[meanheight1_3,count1_3,tcount1_3,stdeviation1_3,meanintensity1_3,heightm1_3] = 
meanheight(valdeout1_3,ptCloudinfode,indices1_3); 

[meanheight2_3,count2_3,tcount2_3,stdeviation2_3,meanintensity2_3,heightm2_3] = 
meanheight(valdeout2_3,ptCloudinfode,indices2_3); 

[meanheight3_3,count3_3,tcount3_3,stdeviation3_3,meanintensity3_3,heightm3_3] = 
meanheight(valdeout3_3,ptCloudinfode,indices3_3); 

[meanheight4_3,count4_3,tcount4_3,stdeviation4_3,meanintensity4_3,heightm4_3] = 
meanheight(valdeout4_3,ptCloudinfode,indices4_3); 

[meanheight5_3,count5_3,tcount5_3,stdeviation5_3,meanintensity5_3,heightm5_3] = 
meanheight(valdeout5_3,ptCloudinfode,indices5_3); 
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[meanheight1_1,count1_1,tcount1_1,stdeviation1_1,meanintensity1_1,heightm1_1] = 
meanheight(valdeout1_1,ptCloudinfode,indices1_1); 

[meanheight2_1,count2_1,tcount2_1,stdeviation2_1,meanintensity2_1,heightm2_1] = 
meanheight(valdeout2_1,ptCloudinfode,indices2_1); 

[meanheight3_1,count3_1,tcount3_1,stdeviation3_1,meanintensity3_1,heightm3_1] = 
meanheight(valdeout3_1,ptCloudinfode,indices3_1); 

[meanheight4_1,count4_1,tcount4_1,stdeviation4_1,meanintensity4_1,heightm4_1] = 
meanheight(valdeout4_1,ptCloudinfode,indices4_1); 

[meanheight5_1,count5_1,tcount5_1,stdeviation5_1,meanintensity5_1,heightm5_1] = 
meanheight(valdeout5_1,ptCloudinfode,indices5_1); 

 

%finding the mean height of all the 5 targets of the same height 
meanheight_8 = 
((meanheight1_8+meanheight2_8+meanheight3_8+meanheight4_8+meanheight5_8)/(count
1_8+count2_8+count3_8+count4_8+count5_8)); 
meanheight_6 = 
((meanheight1_6+meanheight2_6+meanheight3_6+meanheight4_6+meanheight5_6)/(count
1_6+count2_6+count3_6+count4_6+count5_6)); 
meanheight_5 = 
((meanheight1_5+meanheight2_5+meanheight3_5+meanheight4_5+meanheight5_5)/(count
1_5+count2_5+count3_5+count4_5+count5_5)); 
meanheight_3 = 
((meanheight1_3+meanheight2_3+meanheight3_3+meanheight4_3+meanheight5_3)/(count
1_3+count2_3+count3_3+count4_3+count5_3)); 
meanheight_1 = 
((meanheight1_1+meanheight2_1+meanheight3_1+meanheight4_1+meanheight5_1)/(count
1_1+count2_1+count3_1+count4_1+count5_1)); 
 
%finding the mean point density of all the 5 targets of the same height 
tcount_8 = 
((tcount1_8+tcount2_8+tcount3_8+tcount4_8+tcount5_8)/(count1_8+count2_8+count3_
8+count4_8+count5_8)); 
tcount_6 = 
((tcount1_6+tcount2_6+tcount3_6+tcount4_6+tcount5_6)/(count1_6+count2_6+count3_
6+count4_6+count5_6)); 
tcount_5 = 
((tcount1_5+tcount2_5+tcount3_5+tcount4_5+tcount5_5)/(count1_5+count2_5+count3_
5+count4_5+count5_5)); 
tcount_3 = 
((tcount1_3+tcount2_3+tcount3_3+tcount4_3+tcount5_3)/(count1_3+count2_3+count3_
3+count4_3+count5_3)); 
tcount_1 = 
((tcount1_1+tcount2_1+tcount3_1+tcount4_1+tcount5_1)/(count1_1+count2_1+count3_
1+count4_1+count5_1)); 
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%finding the mean standard deviation of all the 5 targets of the same height 
stdeviation_8 = 
((stdeviation1_8+stdeviation2_8+stdeviation3_8+stdeviation4_8+stdeviation5_8)/(
count1_8+count2_8+count3_8+count4_8+count5_8)); 
stdeviation_6 = 
((stdeviation1_6+stdeviation2_6+stdeviation3_6+stdeviation4_6+stdeviation5_6)/(
count1_6+count2_6+count3_6+count4_6+count5_6)); 
stdeviation_5 = 
((stdeviation1_5+stdeviation2_5+stdeviation3_5+stdeviation4_5+stdeviation5_5)/(
count1_5+count2_5+count3_5+count4_5+count5_5)); 
stdeviation_3 = 
((stdeviation1_3+stdeviation2_3+stdeviation3_3+stdeviation4_3+stdeviation5_3)/(
count1_3+count2_3+count3_3+count4_3+count5_3)); 
stdeviation_1 = 
((stdeviation1_1+stdeviation2_1+stdeviation3_1+stdeviation4_1+stdeviation5_1)/(
count1_1+count2_1+count3_1+count4_1+count5_1)); 
 
%finding the mean intensity of all the 5 targets of the same height 
meanintensity_8 = 
((meanintensity1_8+meanintensity2_8+meanintensity3_8+meanintensity4_8+meaninten
sity5_8)/(count1_8+count2_8+count3_8+count4_8+count5_8)); 
meanintensity_6 = 
((meanintensity1_6+meanintensity2_6+meanintensity3_6+meanintensity4_6+meaninten
sity5_6)/(count1_6+count2_6+count3_6+count4_6+count5_6)); 
meanintensity_5 = 
((meanintensity1_5+meanintensity2_5+meanintensity3_5+meanintensity4_5+meaninten
sity5_5)/(count1_5+count2_5+count3_5+count4_5+count5_5)); 
meanintensity_3 = 
((meanintensity1_3+meanintensity2_3+meanintensity3_3+meanintensity4_3+meaninten
sity5_3)/(count1_3+count2_3+count3_3+count4_3+count5_3)); 
meanintensity_1 = 
((meanintensity1_1+meanintensity2_1+meanintensity3_1+meanintensity4_1+meaninten
sity5_1)/(count1_1+count2_1+count3_1+count4_1+count5_1)); 
 
%no of missing targets 
a5 = 5-(count1_8+count2_8+count3_8+count4_8+count5_8); 
a4 = 5-(count1_6+count2_6+count3_6+count4_6+count5_6); 
a3 = 5-(count1_5+count2_5+count3_5+count4_5+count5_5); 
a2 = 5-(count1_3+count2_3+count3_3+count4_3+count5_3); 
a1 = 5-(count1_1+count2_1+count3_1+count4_1+count5_1); 

D.2.5 Sort and Write to Excel File 

%putting everything in the excel file 
A1 = [meanheight1_1 meanheight2_1 meanheight3_1 meanheight4_1 meanheight5_1 
meanheight1_3 meanheight2_3 meanheight3_3 meanheight4_3 meanheight5_3 
meanheight1_5 meanheight2_5 meanheight3_5 meanheight4_5 meanheight5_5 
meanheight1_6 meanheight2_6 meanheight3_6 meanheight4_6 meanheight5_6 
meanheight1_8 meanheight2_8 meanheight3_8 meanheight4_8 meanheight5_8]; 
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A2 = [stdeviation1_1 stdeviation2_1 stdeviation3_1 stdeviation4_1 
stdeviation5_1 stdeviation1_3 stdeviation2_3 stdeviation_3 stdeviation4_3 
stdeviation5_3 stdeviation1_5 stdeviation2_5 stdeviation3_5 stdeviation4_5 
stdeviation5_5 stdeviation1_6 stdeviation2_6 stdeviation3_6 stdeviation4_6 
stdeviation5_6 stdeviation1_8 stdeviation2_8 stdeviation3_8 stdeviation4_8 
stdeviation5_8]; 
A3 = [meanintensity1_1 meanintensity2_1 meanintensity3_1 meanintensity4_1 
meanintensity5_1 meanintensity1_3 meanintensity2_3 meanintensity3_3 
meanintensity4_3 meanintensity5_3 meanintensity1_5 meanintensity2_5 
meanintensity3_5 meanintensity4_5 meanintensity5_5 meanintensity1_6 
meanintensity2_6 meanintensity3_6 meanintensity4_6 meanintensity5_6 
meanintensity1_8 meanintensity2_8 meanintensity3_8 meanintensity4_8 
meanintensity5_8]; 
A4 = [tcount1_1 tcount2_1 tcount3_1 tcount4_1 tcount5_1 tcount1_3 tcount2_3 
tcount3_3 tcount4_3 tcount5_3 tcount1_5 tcount2_5 tcount3_5 tcount4_5 tcount5_5 
tcount1_6 tcount2_6 tcount3_6 tcount4_6 tcount5_6 tcount1_8 tcount2_8 tcount3_8 
tcount4_8 tcount5_8]; 
A5 = {heightm1_1 heightm2_1 heightm3_1 heightm4_1 heightm5_1 heightm1_3 
heightm2_3 heightm3_3 heightm4_3 heightm5_3 heightm1_5 heightm2_5 heightm3_5 
heightm4_5 heightm5_5 heightm1_6 heightm2_6 heightm3_6 heightm4_6 heightm5_6 
heightm1_8 heightm2_8 heightm3_8 heightm4_8 heightm5_8}; 
A = [A1;A2;A3;A4]; 
 
%converting the raw heights into columns with different row numbers to put them 
in excel file 
for i=1:25 
    A5mod = A5{i}; 
    for row = 1 : size(A5mod, 1) 
        ca{row,i} = A5mod(row); 
    end 
end 
 
%It checks for differnet velocites and puts them in a particular placel 
% for example if the velocity is 1.0 m/s then it starts putting from BB 10 
% for the average values and it puts the raw height data values from BB 14 
string1 = '0.1'; 
string2 = '0.5'; 
string3 = '1.0'; 
string4 = '1.5'; 
string5 = '2.2'; 
 
if isempty(strfind(name, string1))==0 
    place = 'B'; 
else if isempty(strfind(name, string2))==0 
        place = 'AB'; 
    else if isempty(strfind(name, string3))==0 
            place='BB'; 
        else if isempty(strfind(name, string4))==0 
                place='CB'; 
            else if isempty(strfind(name, string5))==0 
                    place = 'DB'; 
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                end 
            end 
        end 
    end 
end 
placeex = strcat(place,'10'); 
placeex2 = strcat(place,'14'); 
 
% If it is black then it will start from sheet number from 15 to 17 for 3 
replications 
% if it is white then it will start from sheet number 9 to 11 for 3 
replications 
 
string6 = 'bl'; 
string7 = 'wh'; 
string8 = 'rep1'; 
string9 = 'rep2'; 
string10 = 'rep3'; 
if isempty(strfind(name, string6))==0 
    sheet = 15; 
else if isempty(strfind(name, string7))==0 
        sheet=9; 
    end 
end 
if isempty(strfind(name, string8))==0 
    sheetmod = 0; 
else if isempty(strfind(name, string9))==0 
        sheetmod=1; 
    else if isempty(strfind(name, string10))==0 
            sheetmod=2; 
        end 
    end 
end 
sheetex = sheet+sheetmod; 
% writing to excel 
xlswrite('C:\Users\sda273\OneDrive\Documents\masters thesis 
files\LiDAR_Data.xlsx',A,sheetex,placeex) 
xlswrite('C:\Users\sda273\OneDrive\Documents\masters thesis 
files\LiDAR_Data.xlsx',ca,sheetex,placeex2) 

 Mean Height 

The function 'meanheight' was used to compute the raw heights of all the points,mean height,standard 
deviation,mean intensity,missing targets for the point clouds of the individual targets 

D.3.1 Authorship Information 

 Author : Saket Dasika 

 Last Modified: 06/06/2018 
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 Version: R2016a 

D.3.2 Code for the Function 

function [y,l,tcount,stdeviation,meanintensity,heightm] = 
meanheight(ptcloud,ptcloud1,indices) 
x = zeros(1,101); %preallocating x and z coordinates for creating a xz block to 
divide the target volume over 10,000 blocks (100*100 sqaures) 
z= zeros(1,101); 
height = zeros(100,100); %preallocating the heights of each block 
count = zeros(100,100); %preallocating the pointdensity of each block 
 
try 
    x(1) = ptcloud.XLimits(1); %getting the left limit of x and z of the point 
cloud of the ground 
    z(1) = ptcloud.ZLimits(1); 
    xyz = ptcloud.Location; %getting all the points of the pointcloud 
    heightm = zeros(100,100,length(xyz)); % preallocation heights of all data 
points 
    for i=2:101 
        x(i) = ptcloud.XLimits(1)+(((ptcloud.XLimits(2)-
ptcloud.XLimits(1))/100)*i); %splitting the x and z into 100*100 squares 
        z(i) = ptcloud.ZLimits(1)+(((ptcloud.ZLimits(2)-
ptcloud.ZLimits(1))/100)*i); 
    end 
 
    %for those 100x100 sqaures we check to see if each point lies in that 
    %square, if it lies then it belongs to only that square 
    for i = 1:100 
        for j=1:100 
            for k = 1:length(xyz) 
                if xyz(k,1)>=x(i) && xyz(k,1)<x(i+1) && xyz(k,3)>=z(j) && 
xyz(k,3)<z(j+1) 
                    heightm(i,j,k) = xyz(k,2)-25.9; %finding the heights of all 
the data points over the target for each square (25.9 is the offset of the MDF 
) 
                    height(i,j) = height(i,j) + xyz(k,2)-25.9; %finding the 
average height of each square 
                    count(i,j)=count(i,j)+1; %finding the number of points in 
each square 
                end 
            end 
            if count(i,j)==0 %if points are zero then height is zero 
                height(i,j) = 0; 
            end 
        end 
    end 
    y = sum(sum(height))/sum(sum(count)); %finding the total mean height 
    valinout = select(ptcloud1,indices); %finding the intensity values for the 
data points in the target 
catch 
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end 
 
heightm(heightm==0) = []; %removing the zero values in the raw heights 
heightm = heightm(:); %converting them into a single column 
if sum(sum(count))<10 || isnan(y) || y == 0 %if there are less than 10 points 
in a single target then the data is insufficient 
    %and all the variables are zero 
    l = 0; 
    y = 0; 
    tcount = 0; 
    stdeviation = 0; 
    meanintensity = 0; 
else 
    l = 1; 
    y = sum(sum(height))/sum(sum(count)); %mean height 
    tcount = sum(sum(count)); %total number of points 
    stdeviation = std(heightm); %mean standard deviation 
    meanintensity = mean(valinout.Location(:,1)); %mean intensity over the 
target 
end 

Appendix E. LiDAR Test Target CAD Models 
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Appendix F. LiDAR Post Processing for Alfalfa 

 Feature Extraction from Point Cloud of Alfalfa 

The MATLAB script was used to extract statistical parameters of the physical properties of the alfalfa plant 

F.1.1 Contents 

 Authorship Information 
 Limits of the Quadrat and Extraction of Point Cloud of Alfalfa 
 Cube Method for finding the volume 
 alphashape Method 
 Block Method 
 Octreee Method 
 Finding the min and max heights in n x n square 
 Statistical distribution 
 Lodged Plants 
 Applying Threshold 
 Sort and Write to Excel File 

F.1.2 Authorship Information 

 Author : Saket Dasika 

 Last Modified: 06/17/2018 

 Version: R2016a 

F.1.3 Limits of the Quadrat and Extraction of Point Cloud of Alfalfa 

%this section was used to find the limits of boundary of quadrat and from 
%that extract the alfalfa 
clc; 
clearvars -except ptCloudforwup ptCloudbackup ptCloudinfode ptCloudinbade name 
fNames 
xrange = ptCloudforwup.XLimits;%limits of the whole point cloud 
yrange = ptCloudforwup.YLimits; 
zrange = ptCloudforwup.ZLimits; 
 
roiframe = [xrange(1) xrange(2);900 1100; zrange(1) zrange(2)];%extracting the 
quadrat which is at a height of 1.0 m 
frameindices = findPointsInROI(ptCloudforwup, roiframe); 
frame = select(ptCloudforwup, frameindices);%quadrat point cloud 
frame  = pcdenoise(frame,'NumNeighbors',100);%denoising to remove outliers 
%plotting them 
figure(1) 
pcshow(ptCloudforwup) 
figure(2) 
pcshow(frame) 
 
xrangefr = frame.XLimits;%limits of the boundary of quadrat 
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yrangefr = frame.YLimits; 
zrangefr = frame.ZLimits; 
widthframe = 48.3;%width of the quadrat frame used 
% we are only interestedn in inside of quadrat so the width is added to the 
% outer limits to obtain the inner limits of the quadrat 
xrangefr(1) = xrangefr(1) + widthframe; 
xrangefr(2) = xrangefr(2) - widthframe; 
zrangefr(1) = zrangefr(1) + widthframe; 
zrangefr(2) = zrangefr(2) - widthframe; 
 %check to see if the distance between inner limits is close to 1000 
if xrangefr(2) - xrangefr(1) > 1025 
    xrangefr(1) = xrangefr(1) + (0.5*widthframe); 
    xrangefr(2) = xrangefr(2) - (0.5*widthframe); 
end 
if zrangefr(2) - zrangefr(1) > 1025 
    zrangefr(1) = zrangefr(1) + (0.5*widthframe); 
    zrangefr(2) = zrangefr(2) - (0.5*widthframe); 
end 
 
%extrcating alfalfa which is less than 1.0 m 
roialfalfa = [xrangefr(1) xrangefr(2);0 1000;zrangefr(1) zrangefr(2)]; 
alfalfaindices = findPointsInROI(ptCloudforwup, roialfalfa); 
alfalfa = select(ptCloudforwup, alfalfaindices); 
alfalfa = pcdenoise(alfalfa,'NumNeighbors',500);%denoising to remove outliers 
xyzalfa = alfalfa.Location; 
xalfa = xyzalfa(:,1); 
yalfa = xyzalfa(:,2); 
zalfa = xyzalfa(:,3); 
figure(3) %plotting the alfalfa point cloud 
pcshow(alfalfa) 
xlabel('X axis') 
ylabel('Y axis') 
zlabel('Z axis') 

F.1.4 Cube Method for finding the volume 

It’s just taking the ROI as a whole cube and taking the cube volume as V = abc; 

volumecube = (alfalfa.XLimits(2)-alfalfa.XLimits(1))*(alfalfa.YLimits(2)-
alfalfa.YLimits(1))*(alfalfa.ZLimits(2)-alfalfa.ZLimits(1)); 

F.1.5 alphashape Method 

shp = alphaShape(xalfa,yalfa,zalfa); 

figure(4) 

plot(shp) 
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volumeshp = volume(shp); 

F.1.6 Block Method 

Dividing the xz plane to 10000 blocks and for each block the average height and volume is found All the 
volumes are added to give the total volume and the average is taken of all the average heights of each block 
to get the average height of the total area 

block = 100; %100 x 100 = 10000 
% preallocaitng the limits of each block 
x = zeros(1,block+1); 
z = zeros(1,block+1); 
y = zeros(block,block); 
count = zeros(block,block); 
missing = zeros(block,block); 
 
x(1) = alfalfa.XLimits(1); 
z(1) = alfalfa.ZLimits(1); 
volumemine=0; 
height = zeros(block,block); 
 
% finding the limits of each block 
for i=2:block+1 
    x(i) = alfalfa.XLimits(1)+(((alfalfa.XLimits(2)-
alfalfa.XLimits(1))/block)*i); 
    z(i) = alfalfa.ZLimits(1)+(((alfalfa.ZLimits(2)-
alfalfa.ZLimits(1))/block)*i); 
end 
 
% check to see for each point if it is inside those limits 
for i = 1:block 
    for j=1:block 
        for k = 1:length(xyzalfa) 
            if xyzalfa(k,1)>=x(i) && xyzalfa(k,1)<x(i+1) && xyzalfa(k,3)>=z(j) 
&& xyzalfa(k,3)<z(j+1) 
                y(i,j) = y(i,j) + xyzalfa(k,2); 
                height(i,j) = height(i,j) + xyzalfa(k,2); 
                count(i,j)=count(i,j)+1; 
            end 
        end 
        if count(i,j)==0 
            y(i,j)=0; 
            height(i,j) = 0; 
            missing(i,j) = 0; 
 
        else 
            y(i,j) = y(i,j)/count(i,j); 
            missing(i,j) = 1; 
        end 
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    end 
end 
 
meanheight = sum(sum(height))/sum(sum(count)); % mean height of alfalfa 
 
for i = 1:block 
    for j=1:block 
        volumemine = volumemine+((x(i+1)-x(i))*y(i,j)*(z(i+1)-z(i))); %total 
volume by block method by adding each block volume 
    end 
end 

F.1.7 Octreee Method 

Used a function OcTree developed by Sven (Copyright (c) 2013, Sven) in Matlab Libraries 

OT=OcTree(xyzalfa,'style','weighted'); 
OT.shrink; 
figure 
boxH = OT.plot; 
cols = lines(OT.BinCount); 
doplot3 = @(p,varargin)plot3(p(:,1),p(:,2),p(:,3),varargin{:}); 
for i = 1:OT.BinCount 
    set(boxH(i),'Color',cols(i,:),'LineWidth', 1+OT.BinDepths(i)) 
    doplot3(xyzalfa(OT.PointBins==i,:),'.','Color',cols(i,:)) 
end 
xlabel('x') 
ylabel('y') 
zlabel('z') 
axis image, view(3) 
volumeoctree = 0; 
depthmax =  max(OT.BinDepths); 
L1=find(OT.BinDepths==depthmax); 
b1=L1(1); 
for m = b1:length(OT.BinBoundaries) 
    volumeoctree = volumeoctree+ ((OT.BinBoundaries(m,4)-
OT.BinBoundaries(m,1))*(OT.BinBoundaries(m,5)-
OT.BinBoundaries(m,2))*(OT.BinBoundaries(m,6)-OT.BinBoundaries(m,3))); 
    %volume by octree method 
end 

F.1.8 Finding the min and max heights in n x n square 

% first method : side by side 
% averaging over 25 blocks 
space = 5; % n x n square 
iterations = round(block/space); 
heightm = zeros(iterations,iterations);%p[reallocating 
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countm = zeros(iterations,iterations); 
 
 
for i = 1:iterations 
    for j = 1:iterations 
        heightm(i,j) = (sum(sum(y((i-1)*(space)+1:i*(space),(j-
1)*(space)+1:j*(space))))/(space*space)); 
        countm(i,j) = (sum(sum(count((i-1)*(space)+1:i*(space),(j-
1)*(space)+1:j*(space))))/(space*space)); 
    end 
end 
 
maxheightm = max(heightm(:)); 
minheightm = min(heightm(:)); 
maxcount = max(countm(:)); 
mincount = min(countm(:)); 
 
% second method: corresponding method 
% averaging over twenty blocks 
iteration = block-space+1; 
heighti = zeros(iteration,iteration); 
counti = zeros(iteration,iteration); 
 
for i = 1:iteration 
    for j = 1: iteration 
        heighti(i,j) = (sum(sum(y(i:i+(space-1),j:j+(space-
1))))/(space*space)); 
        counti(i,j) = (sum(sum(count(i:i+(space-1),j:j+(space-
1))))/(space*space)); 
    end 
end 
 
maxheighti = max(heighti(:)); 
minheighti = min(heighti(:)); 
maxcounti = max(counti(:)); 
mincounti = min(counti(:)); 

F.1.9 Statistical distribution 

maxheightalfa = max(yalfa);%max of all y coordinates 
minheightalfa = min(yalfa);%min of all y coordinates 
heights = maxheightalfa - minheightalfa;%max -min 
totalsamples = alfalfa.Count;%total samples 
morethanhalfheight = sum(yalfa>(heights/2 + minheightalfa))/totalsamples; 
%percent of samples more than half the height 
thinnessalfa = sum(yalfa<(mean(yalfa)-minheightalfa)*.25)/totalsamples; 
%percent of samples less than quarter of mean height 
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F.1.10 Lodged Plants 

% If the point density in a certian block is more than mean plus two 
% standard deviations then it contains lodged plants 
heightlodged = height; 
ylodged = y; 
stdev = std(countm(:)); %standard deviation 
meancount = mean(countm(:)); 
countmax = meancount + 2*(stdev); 
lodged = zeros(iterations,iterations); 
heightlodgedm = zeros(iterations,iterations); 
angle_lodged = 30; %angle of lodged plants with the ground 
 
 
for i = 1:iterations 
    for j = 1:iterations 
        if countm(i,j)>=countmax 
            lodged(i,j) = 1; 
        else 
            lodged(i,j) = 0; 
        end 
    end 
end 
 
% the points in lodged blocks will be projected with sin of the angle 
% lodged to have true height of alfalfa 
for i = 1:block 
    for j = 1:block 
        if lodged(ceil(i/5),ceil(j/5)) == 0; 
            heightlodged(i,j) = heightlodged(i,j); 
        else 
            heightlodged(i,j) = heightlodged(i,j)/sind(angle_lodged); 
        end 
        if count(i,j)==0 
            ylodged(i,j)= 0; 
            heightlodged(i,j) = 0; 
        else 
            ylodged(i,j) = heightlodged(i,j)/count(i,j); 
        end 
    end 
end 
 
meanheight_lodged = sum(sum(heightlodged))/sum(sum(count)); % mean height after 
applying the lodged plants algorithm 
 
for i = 1:iterations 
    for j = 1:iterations 
        heightlodgedm(i,j) = (sum(sum(ylodged((i-1)*(space)+1:i*(space),(j-
1)*(space)+1:j*(space))))/(space*space)); 
    end 
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end 
 
maxheightlodged = max(heightlodgedm(:)); %max height after lodged plants 
algorithm 
minheightlodged = min(heightlodgedm(:)); %min height after lodged plants 
algorithm 

F.1.11 Applying Threshold 

% A threshold is applied to remove any ground points and 200 mm was used as 
% threshold 
xyzalfanew = xyzalfa(xyzalfa(:,2)>=200,:); 
xalfanew = xyzalfanew(:,1); 
yalfanew = xyzalfanew(:,2); 
zalfanew = xyzalfanew(:,3); 
alfalfanew = pointCloud([xalfanew,yalfanew,zalfanew]); 
figure 
pcshow(alfalfanew) 
xlabel('X (mm)') 
ylabel('Y (mm)') 
zlabel('Z (mm)') 
meanheightthreshold = mean(xyzalfanew(:,2)); % finding the mean height after 
applying threshold 

F.1.12 Sort and Write to Excel File 

%putting everything in the excel file 
A = 
[meanheight;maxheightm;minheightm;maxheighti;minheighti;volumemine;volumeoctree
;volumeshp;volumecube;meanheight_lodged;maxheightlodged;minheightlodged;maxheig
htalfa;minheightalfa;heights;totalsamples;morethanhalfheight;thinnessalfa;meanh
eightthreshold]; 
%It checks for differnet velocites and puts them in a particular placel 
string1 = '0.1'; 
string2 = '0.5'; 
string3 = '1.0'; 
string4 = '1.5'; 
string5 = '2.2'; 
 
string6 = 'rep1'; 
string7 = 'rep2'; 
string8 = 'rep3'; 
 
if isempty(strfind(name, string1))== 0 
    place = 2; 
else if isempty(strfind(name, string2))==0 
        place = 9; 
    else if isempty(strfind(name, string3))==0 
            place = 16; 
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        else if isempty(strfind(name, string4))==0 
                place = 23; 
            else if isempty(strfind(name, string5))==0 
                    place = 30; 
 
                end 
            end 
        end 
    end 
end 
 
if isempty(strfind(name, string6))== 0 
    placemod = 0; 
else if isempty(strfind(name, string7))==0 
        placemod = 1; 
    else if isempty(strfind(name, string8))==0 
            placemod= 2; 
        end 
    end 
end 
 
placeex = place+placemod; 
plac = xlcolumnletter(placeex); %custom function written to convert column 
number to a letter for excel 
plac = strcat(plac,'10'); 
 
% If it is pl1 then it will put in sheet 1 
% if it is pl2 then it will put in sheet 2 
string6 = 'pl1'; 
string7 = 'pl2'; 
if isempty(strfind(name, string6))==0 
    sheet = 1; 
else if isempty(strfind(name, string7))==0 
        sheet = 2; 
    end 
end 
%writing to excel 
xlswrite('C:\Users\sda273\Documents\Alflafa_Data_new.xlsx',A,sheet,plac) 

Appendix G. LiDAR Data Statistical Analysis Software 

/************************************************************************************* 
Filename: plate_analysis_final 
Author: Surya Saket Dasika 
Last Modified: 06/07/2018 
Version: 9.4 
The SAS Script is used to find the statistical differences of errors and standard deviations of black and 
white targets for different velocities and heights. The script can be used to find the statistical differences 
of errors between black and white targets 
*************************************************************************************/ 
/* Importing data - remember to change filepath */ 
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proc import out = black 
datafile = "C:\Users\sda273\OneDrive\Documents\masters thesis files\Stats_Data_Black_updated.csv" 
dbms = csv replace; 
getnames = yes; 
run; 
/* Make column names */ 
data black; 
set black; 
rename _ = replication VAR2 = plot_no VAR3 = actual_height VAR4 = velocity 
Var5 = estimated_height; 
run; 
/* Averaging over heights on same plate */ 
/* To average we need to sort the data */ 
proc sort data = black; 
by replication plot_no actual_height velocity; 
run; 
/* Also looked at standard deviation of the measurements on a plate */ 
proc means data = black noprint; 
by replication plot_no actual_height velocity; /* average by these factors */ 
var estimated_height; /* Variable to be averaged over */ 
output out = black_analysis mean = estimated_height std = sd_height; /* Output this to a data set 
called black_analysis */ 
run; 
/* Calculating the diff of estimated from actual */ 
data black_analysis; 
set black_analysis; 
height_diff = estimated_height - actual_height; /* Actual difference */ 
col ="Black"; 
run; 
/* Analyis on height differences*/ 
/*histogram of response */ 
proc sgplot data = black_analysis; 
histogram height_diff; 
run; 
/* Boxplots of differences by actual height and velocity */ 
proc sgplot data = black_analysis; 
vbox height_diff / group = actual_height; 
run; 
proc sgplot data = black_analysis; 
vbox height_diff / group = velocity; 
run; 
/* Analyis of absolute height differences by actual_height and velocity */ 
proc glimmix data = black_analysis ; 
*where velocity ^= -; 
class velocity replication plot_no actual_height; /* Class variables */ 
model height_diff = actual_height velocity actual_height*velocity ; /* predict distance by 
actual_height, velocity, and actual_height*velocity */ 
random replication velocity(replication) plot_no(actual_height); /* Random blocks 
(or replications),also there is plate to plate variability that should be included */ 
lsmeans actual_height*velocity; 
lsmeans velocity actual_height / diff adjust = tukey lines; /* Comparing velocities */ 
ods output lsmeans = fitblacks; 
run; 
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/*plotting for the interaction between velocity and height*/ 
proc sort data = fitblacks; by velocity actual_height; run; 
proc sgplot data = fitblacks; 
where velocity > 0; 
where actual_height > 0 ; 
scatter x = velocity y = estimate / markercharattrs = (color=blue); 
series x = velocity y = estimate / group = actual_height lineattrs = (pattern = 2 thickness = 2); 
run; 
/* Standard deviation of height measurments */ 
proc sgplot data = black_analysis; 
histogram sd_height; 
run; 
/* Boxplots of differences by actual height and velocity */ 
proc sgplot data = black_analysis; 
vbox sd_height/ group = actual_height; 
run; 
proc sgplot data = black_analysis; 
vbox sd_height / group = velocity; 
run; 
/* Analyis of height differences by actual_height and velocity */ 
proc glimmix data = black_analysis; 
where actual_height ^= 600; 
class velocity replication plot_no actual_height; /* Class variables */ 
model sd_height = actual_height velocity actual_height*velocity ; /* predict distance by 
actual_height, velocity, and actual_height*velocity */ 
random replication velocity(replication) plot_no(actual_height) ; /* Random blocks 
(or replications),also there is plate to plate variability that should be included */ 
lsmeans actual_height*velocity; 
lsmeans velocity actual_height / diff adjust = tukey lines; /* Comparing velocities */ 
ods output lsmeans = fitblacked; 
run; 
/*plotting for the interaction between velocity and height*/ 
proc sort data = fitblacked; by velocity actual_height; run; 
proc sgplot data = fitblacked; 
where velocity > 0; 
where actual_height > 0 ; 
scatter x = velocity y = estimate / markercharattrs = (color=blue); 
series x = velocity y = estimate / group = actual_height lineattrs = (pattern = 2 thickness = 2); 
run; 
/* same analyis for white plates */ 
proc import out = white 
datafile = "C:\Users\sda273\OneDrive\Documents\masters thesis files\Stats_Data_White_updated.csv" 
dbms = csv replace; 
getnames = yes; 
run; 
/* Make column names */ 
data white; 
set white; 
rename _ = replication VAR2 = plot_no VAR3 = actual_height VAR4 = velocity 
Var5 = estimated_height; 
run; 
/* Averaging over heights on same plate */ 
/* To average we need to sort the data */ 
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proc sort data = white; 
by replication plot_no actual_height velocity; 
run; 
/* Also looked at standard deviation of the measurements on a plate */ 
proc means data = white noprint; 
by replication plot_no actual_height velocity; /* average by these factors */ 
var estimated_height; /* Variable to be averaged over */ 
output out = white_analysis mean = estimated_height std = sd_height; /* Output this to a 
data set called black_analysis */ 
run; 
/* Calculating the diff of estimated from actual */ 
data white_analysis; 
set white_analysis; 
height_diff = estimated_height - actual_height; /* Actual difference */ 
col = "White"; 
run; 
/* Analyis on height differences*/ 
/*histogram of response */ 
proc sgplot data = white_analysis; 
histogram height_diff; 
run; 
/* Boxplots of differences by actual height and velocity */ 
proc sgplot data = white_analysis; 
vbox height_diff / group = actual_height; 
run; 
proc sgplot data = white_analysis; 
vbox height_diff / group = velocity; 
run; 
/* Analyis of absolute height differences by actual_height and velocity */ 
proc glimmix data = white_analysis ; 
*where velocity ^= 1.5; 
*where actual_height ^= 500; 
class velocity replication plot_no actual_height; /* Class variables */ 
model height_diff = actual_height velocity actual_height*velocity ; /* predict distance by 
actual_height, velocity, and actual_height*velocity */ 
random replication velocity(replication) plot_no(actual_height); /* Random blocks 
(or replications),also there is plate to plate variability that should be included */ 
lsmeans actual_height*velocity; 
lsmeans velocity actual_height / diff adjust = tukey lines; /* Comparing velocities */ 
ods output lsmeans = fitwhites; 
run; 
/*plotting for the interaction between velocity and height*/ 
proc sort data = fitwhites; by velocity actual_height; run; 
proc sgplot data = fitwhites; 
where velocity > 0; 
where actual_height > 0 ; 
scatter x = velocity y = estimate / markercharattrs = (color=blue); 
series x = velocity y = estimate / group = actual_height lineattrs = (pattern = 2 thickness = 2); 
run; 
/* Standard deviation of height measurments */ 
proc sgplot data = white_analysis; 
histogram sd_height; 
run; 
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/* Boxplots of differences by actual height and velocity */ 
proc sgplot data = white_analysis; 
vbox sd_height/ group = actual_height; 
run; 
proc sgplot data = white_analysis; 
vbox sd_height / group = velocity; 
run; 
/* Analyis of height differences by actual_height and velocity */ 
proc glimmix data = white_analysis; 
*where actual_height ^= 500; 
*where velocity ^= 2.2; 
class velocity replication plot_no actual_height; /* Class variables */ 
model sd_height = actual_height velocity actual_height*velocity ; /* predict distance by 
actual_height, velocity, and actual_height*velocity */ 
random replication velocity(replication) plot_no(actual_height) ; /* Random blocks 
(or replications),also there is plate to plate variability that should be included */ 
lsmeans actual_height*velocity; 
lsmeans velocity actual_height / diff adjust = tukey lines; /* Comparing velocities */ 
ods output lsmeans = fitwhited; 
run; 
/*plotting for the interaction between velocity and height*/ 
proc sort data = fitwhited; by velocity actual_height; run; 
proc sgplot data = fitwhited; 
where velocity > 0; 
where actual_height > 0 ; 
scatter x = velocity y = estimate / markercharattrs = (color=blue); 
series x = velocity y = estimate / group = actual_height lineattrs = (pattern = 2 thickness = 2); 
run; 
/*t-test between white and black*/ 
data all_analysis; 
set black_analysis white_analysis; 
run; 
proc ttest data = all_analysis; 
var height_diff; 
class col; 
run; 
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