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CHAPTER 1. GENERAL INTRODUCTION 

INTRODUCTION 

Over the last decade, with the trend toward larger more intensive animal feeding 

operations (AFOs) in the United States, ammonia (NH3), hydrogen sulfide (H2S), carbon 

dioxide (CO2) and particulate matter (PM10) generated and emitted from livestock production 

facilities have become a growing environmental concern for animal producers and nearby 

residents. Poor air quality inside the buildings can affect the health and productivity of farm 

workers and animals; while emissions of gas and dust beyond AFOs can influence the 

wellness of the neighboring residences, thus increasing the number of disputes and lawsuits 

against livestock operations.  

To assess health and ecological environmental impacts caused by livestock pollutants, 

there exists a rich body of previous work to conduct numerous air pollutants experiments for 

different livestock facilities (Aarnink et al., 1995; Groot Koerkamp et al., 1998; Zhu et al., 

1999; Ni et al., 2002; Gay et al., 2003; Jacobson et al., 2005; Guo et al., 2006; Hoff et al., 

2006; Sun et al., 2008a, 2010). However, direct and long-term measurements of gas and 

PM10 concentrations and emissions (GPCER) at all animal operations are not practical since 

every gas source is different and animal and weather conditions change constantly. In the 

absence of effective and efficient means to directly measure GPCER from each livestock 

production facility, development of source GPCER mathematical prediction models might be 

a good alternative to provide reasonably accurate estimates. Additionally, due to the absence 

of a nationwide monitoring network in the United States, state and federal regulatory 

agencies have identified a need for air quality predictive (AQP) models to quantify long-term 
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air emission inventories of livestock production facilities. State planners, environmental 

scientists, and livestock producers also need AQP models to determine science-based setback 

distances between animal feeding operations and neighboring residences, as well as to 

evaluate relevant emission abatement strategies, e.g., AQP models can be used by helping 

state planners and environment scientists to site new operations and to help livestock 

producers to understand the factors influencing air quality and odor and gas transmission so 

that they might make wise decisions regarding the selection and implementation of air 

quality mitigation techniques. In brief, air quality models could make an impact by helping to 

make government and livestock producers to be more profitable, sustainable and 

economically viable while protecting the environment and quality of life of all citizens. Up to 

now, three modeling approaches have been proposed for predicting source air quality: the 

emission factors method, the multiple regression analysis method, and the process-based 

modeling method. 

Emission factors, expressed by the amount of each substance emitted per animal unit, 

are multiplied by the number of animal units to get average air emissions from animal 

operations. Arogo et al. (2003) attempted but could not assign empirical ammonia emission 

factors to estimate the average ammonia emission rates from various barns because of the 

many variables affecting air emissions. The under- or overestimated predictive results 

showed that using emission factors for all animals in all regions was not appropriate without 

direct and long-term measurements from a substantial number of representative animal 

feeding operations. 

The regression analysis method uses standard least-squares multivariate regression 

equations to predict GPCER. The purpose of multiple regression analysis is to establish a 
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quantitative relationship between various predictor variables (e.g., weather and animal 

conditions, production systems, etc.) and air emissions. This relationship is used to 

understand which predictors have the greatest effect and to forecast future values of the 

equation response when only the predictors and the direction of their effects are known. Sun 

(2006) developed statistical multiple-linear regression models to predict diurnal and seasonal 

odor and gas concentrations and emissions from confined swine grower-finisher rooms. 

However, the main weakness of this method is that the complex and sometimes nonlinear 

relationships of multiple variables can make statistical models complicated and awkward 

(Comrie, 1997). Moreover, these models are highly site-specific, making it difficult to apply 

to the data from other experiments. The only way to establish a robust set of equations is to 

sample hundreds of animal feeding operations under different meteorological conditions in 

the U.S. The lack of sufficient data is the main cause of the uncertainty of the statistical 

regression models. 

The process-based models (also called mechanical models) determine the movement 

of elements (e.g., nitrogen, carbon, and sulfur) into, through, and out of the livestock 

production system, investigate the underlying chemical and physical phenomenon, and 

identify the effects of changing one or more variables of the system. In many cases, this 

modeling method uses mass balance equations to describe the mechanisms of gaseous 

emissions and estimate their characteristic and amount at each transformation stage. Recently, 

Zhang et al. (2005) established a comprehensive and predictive ammonia emission model to 

estimate ammonia emission rates from animal feeding operations using a process-based 

modeling approach. The main processes treated in the model included nitrogen excretion 

from the animals, animal housing, manure storage, and land application of manure. The 
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results showed that the sensitivity analysis of various variables (e.g., manure production 

system, animal housing designs, and environmental conditions) needs to be quantified and 

that additional model validation is needed to improve model predictive accuracy. Other 

researchers also studied the process of mass (ammonia) transport and developed mechanical 

models for swine feeding operations (Aarnink and Elzing, 1998; Ni et al., 2000; Kai et al., 

2006). Although there has been considerable value in the development and application of 

mechanistic modeling of ammonia volatilization from the main individual sources, some 

circumstances of gaseous emissions are not well understood and several parameters are 

difficult to determine experimentally. For example, adsorption, absorption, and desorption of 

ammonia from various materials in animal barns might be another emission source, but this 

mechanism is not easily acquired. Moreover, the gas release process is very complex due to 

abundant nonlinear relationships between gaseous emissions and the many variables that 

cause gas production. Therefore, a major effort would be required in future process-based 

model studies. 

Due to the absence of adequate information available about the process of gas 

pollutant production, a black-box modeling approach using computational intelligence 

technology would be a powerful and promising tool for air quality prediction. Wikipedia 

(2010) defines computational intelligence (CI) as “CI is an offshoot of artificial intelligence. 

As an alternative to classical artificial intelligent, it rather relies on heuristic algorithms such 

as fuzzy systems, neural networks and evolutionary computation. Computational intelligence 

combines elements of learning, adaption, evolution, and fuzzy logic to create programs that 

are, in some sense, intelligent. Artificial neural network (ANN) is a branch of CI that is 

closely related to machine learning.”  It is noted that black-box models using CI technology 
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do not need detailed prior knowledge of the structure and different interactions that exist 

between important variables. Meanwhile, their learning abilities make the models adaptive to 

system changes. In recent years, there has been an increasing amount of applications of ANN 

models in the field of atmospheric pollution forecasting (Hooyberghs et al., 2005; Grivas et 

al., 2006; Sousa et al., 2007). The results show that ANN black-box models are able to learn 

nonlinear relationships with limited knowledge about the process structure, and the neural 

networks generally present better results than traditional statistical methods. Sun et al. (2008b) 

developed backpropagation and generalized regression neural network models to predict 

diurnal and seasonal gas and PM10 concentrations and emissions from swine deep-pit 

finishing buildings. It was found that the obtained forecasting results of the neural network 

models were in good agreement with actual field measurements, with coefficient of 

determination values between 81.2% and 99.5% and very low values of systemic 

performance indices. The promising results from this work indicated that artificial neural 

network technologies were capable of accurately modeling source air quality within and 

emissions from these livestock production facilities.  

Although AQP models can be used as a useful tool to forecast air quality over a time 

period that are beyond an actual monitoring period, the main input variables for the model 

must be known which require field measurements. These variables include indoor 

environment (indoor, inlet and exhaust temperatures and relative humidity), outdoor climate 

conditions (outdoor temperature, relative humidity, wind speed, wind direction, solar energy 

and barometric pressure), pig size and density (animal units), building ventilation rate, 

animal activity, overall management practices, and properties of the stored manure, to name a 

few. Sun et al. (2008c) performed a multivariate statistical analysis and identified four 
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significant contributors to the AQP models: outdoor temperature, animal units, total building 

ventilation rate, and indoor temperature. The purpose of introducing fewer uncorrelated 

variables to the models is to reduce model structure complexity, eliminate model over-fitting 

problems, and minimize field monitoring costs without sacrificing model predictive 

accuracy. Conducting long-term field measurements of the identified four variables using 

current engineering approaches are still time consuming and expensive. Therefore, making 

use of simulation programs is a good alternative to obtain the required significant input 

variables for AQP models.  

Basically, there are three steady-state models used to calculate indoor climate of 

livestock buildings which include those based on heat, moisture or carbon dioxide balances 

(Albright 1990). Pedersen et al. (1998) compared these three balance methods for estimating 

the ventilation rate in insulated animal buildings. They reported that the three methods could 

give good prediction results on a 24-hr basis when the differences between inside and outside 

temperature, absolute humidity and CO2 concentrations were greater than 2 C , 3105.0  kg

water per kg dry air and 200 ppm, respectively for the buildings tested in Northern Europe. A 

simple steady-state balance model (Schauberger et al., 1999) was developed for the sensible 

and latent heat fluxes and CO2 mass flows resulting in the prediction of inside temperature 

and ventilation rate of mechanically ventilated livestock buildings. The obtained variables 

were further applied for diurnal and annual odor emission estimates. Due to the lack of field 

measurements, the accuracy of the predicted parameters could not be determined. Morsing et 

al. (2003) released a computer program entitled StaldVentTM to help design and evaluate 

heating and ventilation systems in animal houses. They primarily used a steady-state energy 
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balance method to predict the required ventilation rate and heat capacity, room temperature, 

CO2 concentration, and expected energy consumption throughout the year.  

On the other hand, indoor climate can be predicted by studying thermal transients in 

buildings. Nannei and Schenone (1999) developed a simplified numerical model for building 

thermal transient simulation. The model can be applied to compute the room air temperature 

and the temperature of the inner surface of the walls. The good numerical results compared 

with the experimental data indicated that this model was useful for the study of unsteady 

thermal performance. Mendes et al. (2001) presented a dynamic multimodal capacitive 

nonlinear model to analyze transient indoor air temperature using Matlab/SimulinkTM 

(Matlab 5.0, 1999). This thermal model was improved by introducing internal gains and the 

inter-surface long-wave radiation. The predicted results were not experimentally validated 

however. Morini and Piva (2007) investigated the dynamic thermal behavior of residential 

heating and cooling systems with control systems during a sinusoidal variation of the outside 

temperature. The core of their program employed mechanical and thermal energy 

conservation equations implemented in the SimulinkTM environment. It was found that their 

transient model outperformed the standard steady-state approach.  

OBJECTIVES 

The over-arching goal of this study is to predict indoor climate and long-term air 

quality (NH3, H2S and CO2 concentrations and emissions) for swine deep-pit finishing 

buildings using a transient building thermal analysis and air quality predictive (BTA-AQP) 

model and a typical meteorological year/specific weather year data base.  

The specific objectives of this research were to: 



 

 

8

 

1. Develop an artificial neural network based air quality predictive (AQP) model to forecast 

source air pollutants from swine deep-pit finishing buildings as affected by time of day, 

season, ventilation rate, animal growth cycles, in-house manure storage levels, and 

weather conditions.  

2. Build a lumped capacitance model (BTA model) to predict the transient behavior of 

indoor environment (ventilation rate and indoor air temperature) according to the thermo-

physical properties of a typical swine building, set-point temperature scheme, fan staging 

scheme, transient outside temperature, and the heat fluxes from pigs and supplemental 

heaters. 

3. Evaluate the complete BTA-AQP model to estimate source air quality for a specific year 

and predict long-term air quality.  

4. Apply the proposed BTA-AQP models to different husbandry management practices and 

geographical area scenarios in order to assess the potential simulated impacts of these 

scenarios on long-term air quality 

DISSERTATION ORGANIZATION 

This dissertation is organized in paper format and comprises five papers, 

corresponding to the four research objectives. The first paper entitled “Forecasting daily 

source air quality using multivariate statistical analysis and radial basis function networks” 

has been published in the Journal of the Air and Waste Management Association 

58(12):1571-1578. The second paper entitled “Development and comparison of 

backpropagation and generalized regression neural network models to predict diurnal and 

seasonal gas and PM10 concentrations and emissions from swine buildings” has been 
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published in the Transactions of the ASABE 51(2): 685-694. The third paper entitled 

“Prediction of indoor climate and long-term air quality using the BTA-AQP model: Part I. 

BTA model development and evaluation” and the fourth paper entitled “Prediction of indoor 

climate and long-term air quality using the BTA-AQP model: Part II. Overall model 

evaluation and application” have been published in the Transactions of the ASABE 53 (3): 

863-881. The fifth manuscript entitled “Simulated impacts of different husbandry 

management practices and geographical area on long-term air quality” will be submitted to 

the Transactions of the ASABE. The five papers are followed by an overall summary of the 

major conclusions of this research and recommendations for future research. Three 

appendixes, which present sensible heat production procedures, APECAB (Aerial Pollutant 

Emissions from Confined Animal Buildings) daily data, and TMY3 (Typical Meteorological 

Year) weather data, follow the overall summary chapter. The acknowledgements are included 

at the end of this dissertation. 
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CHAPTER 2.   FORECASTING DAILY SOURCE AIR QUALITY USING 

MULTIVARIATE STATISTICAL ANALYSIS AND RADIAL BASIS 

FUNCTION NETWORKS 

 

A paper published in the Journal of the Air and Waste Management Association1 

Gang Sun, Steven J. Hoff, Brian C. Zelle, and Minda A. Nelson2 

ABSTRACT 

It is vital to forecast gas and particle matter concentrations and emission rates 

(GPCER) from livestock production facilities in order to assess the impact of airborne 

pollutants on human health, ecological environment and global warming. Modeling source 

air quality is a complex process due to abundant nonlinear interactions between GPCER and 

other factors. The objective of this study was to introduce statistical methods and Radial 

Basis Function (RBF) neural network to predict daily source air quality in Iowa swine deep-

pit finishing buildings. The results show that four variables (outdoor and indoor temperature, 

_____________________________ 

1 Reprinted with permission of J. Air & Waste Manage. Assoc., 2008, 58(12), 1571-1578. 

2 Gang Sun (Ph.D. candidate), Steven J. Hoff (professor), and Brian C. Zelle (research 

associate) are in the Department of Agricultural and Biosystems Engineering at Iowa State 

University. Minda A. Nelson, a former graduate research assistant at Iowa State University, 

is currently with Burns & McDonnell, Inc. (Kansas City, MO). Address Correspondence to: 
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animal units, and ventilation rates) were identified as relative important model inputs using 

statistical methods. It can be further demonstrated that only two factors, the environment 

factor and the animal factor, were capable of explaining more than 94% of the total 

variability after performing principal component analysis (PCA). The introduction of fewer 

uncorrelated variables to the neural network would result in the reduction of the model 

structure complexity, minimize computation cost, and eliminate model over-fitting problems. 

The obtained results of RBF network prediction were in good agreement with the actual 

measurements, with values of the correlation coefficient between 0.741 and 0.995 and very 

low values of systemic performance indexes for all the models. The good results indicated 

the RBF network could be trained to model these highly nonlinear relationships. Thus, the 

RBF neural network technology combined with multivariate statistical methods is a 

promising tool for air pollutant emissions modeling.  

IMPLICATION 

State and federal regulatory agencies in the U.S. have a critical need to characterize 

annual or daily source air quality inventories of animal feeding operations in order to access 

health and environmental impacts caused by livestock pollutants. But it is almost impossible 

and impractical to measure air and dust emissions merely based on experiments because 

every air pollutant source is different, every surrounding area is different, and weather 

conditions change constantly. The RBF neural network technology combined with 

multivariate statistical methods described in this paper was demonstrated as a promising and 

useful tool for air pollutant emissions modeling.  
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INTRODUCTION 

Over the last decade, with the trend toward larger, more intensive animal feeding 

operations (AFOs) in the United States, ammonia (NH3), hydrogen sulfide (H2S), carbon 

dioxide (CO2) and particulate matter (PM10) generated and emitted from livestock production 

facilities have become a growing environment concern for animal producers and nearby 

residents. Poor air quality inside the buildings can affect the health and productivity of farm 

workers and animals; while emissions of gas and dust beyond AFOs can influence the 

wellness of the neighboring residences, which leads to the increasing number of disputes and 

lawsuits against livestock operations. To understand health and environmental impacts 

caused by livestock and poultry pollutants, it is a critical need to characterize annual or daily 

air quality inventories as a basic database of U.S. animal facilities. State and federal 

regulatory agencies will enforce existing or enact new air quality standards based on this 

database. 

Some research projects have been conducted to monitor the gaseous emissions from 

animal buildings.1-3 However, direct and long-term measurements of air and dust emissions 

at all AFOs are not feasible or practical. Thus, the development of mathematical tools to 

forecast air quality of statistically representative AFOs is very important because it can 

reduce the number of monitoring sites and measurement costs, and provide reasonably 

accurate estimates of air concentrations and emissions at various times. Unfortunately, source 

air quality is very difficult to model due to the complex and nonlinear relationships between 

air concentrations and emissions and the many variables that determine air pollutant 

production. In recent years, neural network models have been successfully employed for the 

prediction of a wide range of pollutants at various time scales with very good results.4-6  
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The Artificial Neural Network (ANN) is an interconnected group of artificial neurons 

that uses a mathematical model or computational model for information processing based on 

a connectionist approach to computation. The findings of numerous air quality modeling 

projects 7,8 demonstrated that the performance of ANN was generally superior in comparison 

to traditional statistical methods and deterministic air modeling systems because of its 

computational efficiency, generalization ability, and its limited need of prior knowledge 

about the modeling process structure.  

It is noted that nearly all the air quality models using ANN technologies are dealing 

with the prediction of atmosphere environment pollutants. Little information is available 

regarding source air concentrations and emissions, especially from animal buildings. 

Therefore, the aim of this work was to develop an artificial neural network model to forecast 

source air pollutants from swine deep-pit finishing buildings as affected by time of day, 

season, ventilation rate, animal growth cycles, in-house manure storage levels, and weather 

conditions.  

MATERIALS AND METHODS 

Description of Experiment 

The air quality data were collected in 1000- head deep-pit swine finishing buildings 

in Iowa from January 2003 to April 2004. An instrument trailer (Mobile Emission 

Laboratory, MEL) was used to monitor gas and PM concentrations and emissions from the 

mechanically-ventilated, confined swine production buildings with one-year of manure 

storage. The MEL housed a gas sampling system (GSS), a computer, the data acquisition 

system, gas analyzers, environmental instrumentation, gas calibration cylinders, and other 
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supplies. Gas concentrations were measured with a chemiluminescence NH3 analyzer (Model 

17C, Thermal Environment Instruments, Franklin, MA), a pulsed fluorescence SO2 detector 

(Model 45C, Thermal Environment Instruments, Franklin, MA), and two photoacoustic 

infrared CO2 analyzers in the range from 0 to 2,000 and 10,000 ppm (Model 3600, Mine 

Safety Appliances CO., Pittsburg, PA). PM10 concentrations were measured continuously 

using two Tapered Element Oscillating Microbalance (TEOM) ambient PM10 monitors 

(Model 1400a, Rupprecht & Patashnick, Albany, NY).  The environment parameters and 

total building ventilation rates were simultaneously monitored. Gas and PM10 emission rates 

were determined by multiplying the total airflow rate of the ventilation fans by the increase 

in gas and PM10 concentrations between the building ventilation inlet and outlet. The 

emission rates were expressed on an animal unit basis by dividing the total emissions by the 

total animal units (1AU=500kg). During the measurement period, approximately three 

complete production cycles of pigs raised from ~20 to 120 kg were monitored. Figure 1 

shows the diurnal and seasonal NH3 emission for one complete pig growth cycle with 

approximately 960 finishing pigs from December 21, 2003 to April 13, 2004.         

Factors Affecting Source Air Quality 

Daily amounts and temporal patterns of air concentrations and emissions from source 

swine buildings can be affected by various factors including: (1) physical characteristics of 

the site, indoor environment and outdoor weather conditions; (2) diurnal and seasonal 

effects; (3) swine growth cycle; (4) ventilation system and (5) barn management; and so 

forth.  

Different regions in the U.S have different temperature, relative humidity, wind speed 

and direction, rainfall frequency and intensity, solar energy, and barometric pressure. Those 
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climate factors impact gas concentrations and emissions significantly if the rates of gaseous 

emissions were monitored in different areas of the country (e.g. northern, midwestern, and 

southern areas). Also, AFOs in different locations might have different swine breeding 

species and feed formulations, which influence source air quality as well.  

Diurnal and seasonal variations of ambient and inside environment are important 

factors resulting in changes in gaseous emissions from swine buildings. The temperature 

between inside and outside and total building ventilation rates vary hourly, daily and 

seasonally under different weather conditions. 

Swine size, density, and daily feed nutrient inputs during each growth cycle have a 

very strong impact on the gaseous concentrations and emissions. When pigs grow, the 

amount and composition of the feed intake change, as do the amount and composition of the 

manure. Thus, the daily amount of gas generation tends to increase. However, sharp 

decreases in the amount of daily nitrogen excreted were observed when the formulation 

changes due to the adjustment by the animal to the new feed composition.9 This adjustment 

process alleviates the amount of nitrogen in the manure converted to ammonia and other 

gases. Additionally, for the individual animal, interruptions in its daily life rhythm resulting 

from illness, breakdown of barn equipment or disturbed by visitors may affect its appetite so 

that gas production might decrease slightly in response to changes of feed ingested and 

nutrients excreted.                                 

Ventilation rates play a key role in indicating gaseous concentrations and emissions. 

The highest mean concentrations occur in the winter; while the lowest gas levels appear 

during the summer. The main reason is the large differences in the ventilation rate and 

ambient temperature during winter and summer. Low concentrations under warm weather 
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conditions are attributed to strong dilution effect and better indoor air mixing due to high 

ventilation rates; conversely, low ventilation rates during cold weather cause gas 

accumulation inside the swine barn. 

Swine management is also a vital factor to determine air quality inside swine 

buildings and outside ecological systems. Good management practices can maintain proper 

environment needs for the animals and decrease daily air emissions. The under-floor deep pit 

designed to store manure for up to 1 year is also a concentrated source for gas emissions. 

This manure collection practice may smooth the variations in nitrogen emissions. Other 

event-processes such as flush cycles, manure scraping, and slurry removal are another source 

of variation in gas concentrations and emissions.  

Accurate forecast of source air quality in swine buildings needs defined relationships 

between gaseous concentrations and emissions and various factors. However, assessing the 

overall impact of all the factors on estimates of daily air quality is currently impossible due to 

the absence of some measurement data about swine activity, management practices, and 

microbial cycles, etc. Without sufficient data support, it is difficult to know whether these 

variables would affect gaseous emissions significantly. Also, quantifying air emissions from 

animal agricultural sources is a complex process. There are definitely unknown factors that 

can determine air quality levels. Therefore, the choice of important variables used to make 

estimates of air quality is a challenge for model development. 

In this study, the measurement variables included indoor environment (indoor, inlet 

and exhaust temperature and RH), outdoor climate conditions (outdoor temperature, relative 

humidity, wind speed, wind direction, solar energy and barometric pressure), time of a day, 

season (a total of 16 measurement months), pig size and density (animal units), and swine 
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building ventilation rates. Correlation coefficients between gas emissions and various 

variables were analyzed tentatively to evaluate the influence of each input variable on model 

outputs, that is, determining which variable had a significant effect on gas concentrations and 

emissions. These coefficients reflected the existence of co-linearity between the explanatory 

variables. Meanwhile, the correlation coefficients can be used as a tool to eventually discard 

input features that are highly correlated with others.     

Data Processing Using Principal Component Analysis 

The initial choice of input variables was guided based on the statistical method and 

some knowledge of air pollutant production. The characteristic of the initial set constituted 

by the selected features would be high correlations among the features and multi-dimensions 

due to many input variables. This large feature set would result in computation burden and 

make the problem unnecessarily complicated. Thus, it is necessary to perform some kind of 

dimensionality reduction by using an alternative and smaller set of features derived from the 

initial ones.  

Principal components analysis (PCA)10 is a method commonly used for data 

reduction purposes. It is based on the idea of performing an orthonormal transformation and 

retaining only significant eigenvectors. Each eigenvector is associated with a variance 

represented by the corresponding eigenvalue. Each eigenvector corresponding to an 

eigenvalue that represents a significant variance of the whole dataset is called a principal 

component of the data. Each principal component is a linear combination of the original 

variables. All the principal components are orthogonal to each other so that there is no 

redundant information.  
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The PCA method can reduce the number of input variables and obtain the new 

uncorrelated variables with sufficient contribution to the majority of the original variance. 

Therefore, the introduction of PCA to the neural network may simplify the structure of the 

prediction model, minimize computation cost, and eliminate network over-fitting problems.                          

Radial Basis Function Neural Network 

Although the architecture of Radial Basis Function neural networks (RBF) is less 

widely used and well-known compared to Multilayer Perceptrons (MLP), the main important 

advantage of the RBF approach is that the RBF network can yield the minimum 

approximating error of any function.11 This best approximation property does not apply to 

MLPs. Therefore, BRF networks are suitable for modeling complex input-output mappings.  

Radial basis functions are embedded in a two-layer neural network topology (Figure 

2), where each hidden unit implements a radial kernel function. The output units implement a 

weighted sum of hidden unit outputs. The input into an RBF network is nonlinear while the 

output is linear. The most common kernel function is the Gaussian function given by:  

2
( ) exp

2
i

i

x x
x


  

  
 

 where ix x indicates the distance of a feature vector x  to a 

prototype vector ix  and  acts as smoothing parameter. The number of radial basis functions 

is typically much smaller than training patterns since they are chosen relative to some 

centroid patterns instead of relative to the training patterns. The centroid is adjusted as part of 

a training process in order to obtain good generalization. Each basis function has its own 

smoothing parameter  which is determined during the network training. Bias parameters are 

included in the summation of the kernel values to compensate for the difference between the 

average value over the basis function and the average value of the targets.   
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The weights of the first layer of the RBF network are used to adjust the centroids and 

smoothing factors used by the kernel functions. The second layer weights are determined 

using pseudo-inverse techniques. These two layers’ weights are independently trained so that 

RBF networks train much faster in general than equivalent MLP networks.  

RESULTS AND DISCUSSION 

Selection of Variables 

The outdoor temperature and relative humidity, static pressure difference between the 

inside and outside of the swine building, barn inventory and average mass per pig, building 

fan RPM, indoor, inlet and exhaust temperatures, and inside relative humidity were 

considered as preliminary model input variables. These ten measured parameters could be 

reduced to seven variables instead, i.e. barn inventory and pig mass determine the animal unit 

variable and the building airflow rate variable can be obtained by measuring the fan speeds 

(RPM) and the static pressure. The incoming air temperature parameter was left out since this 

value was the same as the outdoor temperature.  

Correlation coefficients analysis between pollutants and those seven variables were 

initially performed to evaluate the influence of each variable on air concentrations and 

emissions and the relationships between the input variables. Table 1 presents the correlation 

coefficients of the seven variables and gas and PM10 concentrations and emissions, and 

Figure 3 displays the pairwise scatterplot matrix. It was found that there were significant and 

negative correlations (p<0.05) between NH3 concentrations and outdoor temperature (Tout), 

animal unit (AU), ventilation rates (VR), and indoor and exhaust temperatures (Tin and Tex). 

Outdoor and indoor relative humidity had no relationship associated with the NH3 
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concentrations. Therefore, based on fundamental knowledge of livestock gas production, 

Tout, AU, VR, Tin and Tex variables were used as very important factors in a model to 

forecast source air quality in animal buildings. In addition, high correlation coefficients 

(p<0.05) were observed between some NH3 concentration predictors, such as outdoor 

temperature and ventilation rates (0.8842), outdoor and indoor temperature (0.8600), and 

indoor temperature and ventilation rates (0.8678), demonstrating the existence of co-linearity 

between the explanatory variables.  

It can be further seen in Figure 3 that the indoor and exhaust temperature variables 

were strongly linearly related with a very high correlation coefficient (0.9320). Discarding 

one of these two variables was reasonable due to the high correlation with each other 10.  It 

was decided to keep the indoor temperature variable as a model input.  

Similar results about the relationships between the variables and NH3 emissions, H2S, 

CO2 and PM10 concentrations and emissions were achieved regarding the correlation 

coefficient matrices (Table 1). It was also observed that different combinations of the 

parameters may affect significantly on gas and PM10 concentrations and emissions. However, 

the final selected variables as the model predictors were Tout, AU, VR, and Tin, because all 

the air quality neural network models using those four input variables can obtain better 

predictive performance in comparison to models using only the significant variables 

determined from the correlation coefficients (Table 1). Table 2 summarizes the means, 

standard deviations (S.D.) and range of the four input variables. There was substantially more 

variability in the ratings of the AU and Tout than in the rating of VR and Tin. It is not 

surprising since VR and Tin were the controlled parameters in the swine buildings.           
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Principal Component Analysis 

Table 3 presents the principal component coefficient vectors, the variance of each 

principal component (PC) and the cumulative variances after computing PCA.  As Table 3 

shows, the third and fourth PCs were only responsible for about 2.99% and 2.79% of the total 

variance respectively, certainly the negligible factors; while the first two PCs were able to 

explain more than 94% of the total variability, which suggested that it would be adequate to 

use the corresponding first two PCs instead of the four original features. It can be further 

observed that the principal component coefficients presented the relative importance of each 

standardized predictor in the PC matrix. The largest coefficients in the first PC were the first, 

third and fourth elements, corresponding to the variables Tout, VR and Tin, which meant 

these three parameters revealed significant effects in the first PC; while only the AU variable 

had a large coefficient in the second PC.    

The principal component coefficients for each variable and the principal component 

scores for each observation are illustrated in Figure 4. All the points in the plot were the 

scores of each observation for the two principal components, i.e. the original data set was 

mapped into a new coordinate system determined by the PCA. Each of the four variables was 

represented by a vector, and the direction and length of the vector indicated how each 

variable contributed to the two principal components in the plot. Note that the first principal 

component represented by the horizontal axis mainly consisted of the variables Tout, VR and 

Tin, which had positive coefficients. That corresponded to the vectors directed into the right 

half of the plot; while the significant contribution to the second principal component, 

represented by the vertical axis, was the AU variable. These two principal components were 

used as the final input variables and fed into the RBF neural network model. The first PC 
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reflected the impact of temperature and airflow rates on air quality, which may be called ‘the 

Environment Factor’. The second PC revealed the affect of swine growth cycle on air 

quality, which may be called ‘the Animal Factor’.      

RBF Network Models 

In the development of RBF neural network models, two variables (the environment 

and animal Factors) after performing the PCA were employed for the model input and gas 

and PM10 concentrations and emissions as the output. All the measured data were examined 

for missing values caused by measuring instrument failure. The variable mean was used to 

fill in the missing values. Fortunately, only a few missing values occurred in the data set so 

that this method nearly had no effect on the variance-covariance of the data. The input data of 

October 21 and 22, 2003 were removed from the model calculation due to the annual slurry 

removal events.   

All the input data were then divided into training and test subsets, i.e. three-fourths of 

the data for the training set and one-fourth of the data for the test set. The training set was 

used for computing the gradient and updating the network weights and biases; while the test 

set was used for validating the network performance. The radial basis function was 

developed using the ‘newrbe’ function in the Matlab Neural Network Toolbox. It can design 

a radial basis network with zero error on the design vectors very quickly. During the network 

training, different ‘spread’ (spread of radial basis functions) values were adjusted until the 

best RBF models were obtained. A total of fifty training and testing times for each air quality 

model were conducted. In each training and testing process, the data set was randomized 

using the ‘randperm’ function and the performance of the network was recorded.  
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Figure 5 depicts the predicted values of the best network models versus actual output. 

The solid line with the circle marks indicates the predicted values (P) and the dash line with 

the diamond marks indicates the actual output (O). The daily values shown were from 

randomly selected days which were not included in the training data set and were normalized 

using (P - Pmin)/(Pmax - Pmin) and (O - Omin)/(Omax - Omin). It can been observed that the CO2 

concentration model had the highest correlation coefficient (0.995), followed by the CO2 

emission model (0.926), the H2S emission model (0.925), the NH3 concentration model 

(0.9119), and the NH3 emission model, the PM10 emission models, and the H2S concentration 

model (between 0.879 and 0.809). Also, Mean Absolute Error (MAE) and Root Mean Square 

Error (RMSE) results of these models were very low. The low systematic MAE and RMSE in 

particular were considered an indicator of a good model. Thus, it can be concluded that the 

selected independent variables (Tin, AU, VR and Tin) or the two new PCs and RBF neural 

network technology were able to yield very accurate predictive results. Meanwhile, the PM10 

concentration model model did not achieve good results in comparison to the other models, 

the prediction outcome was still acceptable though. The explanation for the poorer 

performance of the model could be due to some factors missing in the model input, such as 

the activity of the pigs, the level of pen hygiene, management practices, the type of room 

flooring and microbial cycles etc. Although it is not easy to measure these parameters and 

evaluate how much they influence the air quality level, these variables should be investigated 

at some extent to improve predictive precision of the model. 
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CONCLUSIONS 

The mechanisms involved in gas and particulate matter concentrations and emission 

rates (GPCER) from animal feeding operations are complex and time-dependent. Various 

factors affect the air quality level including physical characteristics of the site, indoor 

environment and outdoor weather conditions, diurnal and seasonal effects, swine growth 

cycle, ventilation system and barn management, etc. The relationships between GPCER and 

these factors are highly nonlinear and some factors are highly correlated with others. Also, it 

is currently impossible to assess the overall impact of all the factors on estimates of daily air 

quality due to the absence of measurement data and a clear knowledge of air pollutant 

production processes. Therefore, source air quality modeling is a challenge for environment 

engineers and researchers.  

The statistical correlation coefficient analysis method was employed to evaluate the 

influence of relative important variables on source GPCER. The significant model input 

parameters were outdoor temperature, animal units, ventilation rates, and indoor temperature. 

The exhaust temperature variable was discarded because it was highly correlated with indoor 

temperature (R2=0.9320). Other variables were not considered as model inputs due to their 

minimal contribution to the model output in the RBF network.  

Principal component analysis was used to reduce dimensions of the input data and 

obtain the new uncorrelated variables that could account for the majority of the original 

variance. Fewer uncorrelated variables would simplify the structure of prediction model, 

minimize computation cost, and eliminate network over-fitting problems. It was found that 

only two principal components (PC) explaining more than 94% of the total variability can be 

used as the final model variables instead of the previous four predictors. The first PC 
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reflected the impact of temperature and airflow rates on the air quality, which may be called 

‘the Environment Factor’. The second PC revealed the impact of swine size and density, 

which may be called ‘the Animal Factor’.   

The RBF network presented here can yield the minimum approximating error of any 

function so that it is suitable for modeling complex and nonlinear input-output mappings. 

The ‘newrbe’ function was used to develop the radial basis function in the Matlab Neural 

Network Toolbox. Different ‘spread’ (spread of radial basis functions) values were adjusted 

until best performance indexes of RBF models were achieved. The results of RBF networks 

were rather satisfactory.  Therefore, the RBF neural network technology combined with 

multivariate statistical methods is a promising tool for source air quality modeling.    
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 Variables NH3Con NH3ER H2SCon H2SER CO2Con CO2ER PM10Con PM10ER

Tout -0.8077 0.1974 0.0291 0.7131 -0.9058 -0.2483 -0.3702 0.1733

RHout -0.0755 -0.2689 0.0088 -0.1695 0.1324 -0.1198 -0.1259 -0.3802

AU -0.2151 0.6137 -0.0976 0.3289 -0.5467 0.2136 0.1567 0.5996

VR -0.7747 0.2168 0.0847 0.7992 -0.7781 -0.0316 -0.3620 0.2432

Tin -0.6848 0.0988 0.2893 0.7885 -0.6698 -0.0630 -0.4112 0.0654

Tex -0.6614 -0.0500 0.2461 0.7403 -0.5496 -0.1219 -0.5066 -0.0216

RHin 0.0043 -0.5466 0.2340 0.0117 0.3780 -0.0730 -0.2915 -0.5644

 Note:  RHout  , outdoor RH; RHin , indoor RH; Con, concentration; ER, emission rate.

Table 1. Correlation coefficient matrix of the seven variables and gas and PM10 concentrations and emissions.

Variables     Mean (S.D) Min Max

Tout ( o C) 6.7 (12.5) -21.8 31.4

AU 128.8 (38.5) 50.0 196.0

VR (m 3 .sec -1 ) 7.0 (5.0) 1.5 21.2

Tin ( o C) 25.3 (2.2) 13.8 31.0

Table 2. The means, standard deviations (S.D.) and range of the four input variables.

Variables PC1 PC2 PC3 PC4

Tout 0.5740 -0.0258 -0.7872 0.2240

AU 0.1592 0.9733 0.1172 0.1164

VR 0.5756 -0.0226 0.1945 -0.7940

Tin 0.5603 -0.2268 0.5734 0.5531

Variance 2.7911 0.9776 0.1197 0.1116

Percent total variance 69.78 94.22 97.21 100

Table 3. PC coefficient vectors.
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Figure 1. Diurnal and seasonal NH3 emission for one complete pig growth cycle with approximately 960 

pigs (December 21, 2003 to April 13, 2004). 

 

 

Figure 2.  RBF network with kernel function i . 
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(a)     R= 0.9119    MAE= 2.712    RMSE= 3.489
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(b)     R= 0.879    MAE= 0.713     RMSE= 0.928
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(c)     R= 0.809    MAE= 68.597    RMSE= 85.929
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(d)     R= 0.925   MAE= 0.060   RMSE= 0.085
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(f)     R= 0.926     MAE= 98.879    RMSE= 133.586
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Figure 5.  The predicted values of the best network models vs. actual output (a-h indicate NH3, 

H2S, CO2 and PM10 concentration and emission, respectively). 
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(h)     R= 0.810     MAE= 0.049    RMSE= 0.072
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CHAPTER 3.   DEVELOPMENT AND COMPARISON OF 

BACKPROPAGATION AND GENERALIZED REGRESSION 

NETWORK MODELS TO PREDICT DIURNAL AND SEASONAL GAS 

AND PM10 CONCENTRATIONS AND EMISSIONS FROM SWINE 

BUILDINGS                        

 

       A paper published in the Transaction of the American Society of Agricultural and 

Biological Engineers1 

G. Sun, S. J. Hoff, B. C. Zelle, and M. A. Nelson2 

ABSTRACT 

The quantification of diurnal and seasonal gas (NH3, H2S, and CO2) and PM10 

concentrations and emission rates (GPCER) from livestock production facilities is 

indispensable for the development of science-based setback determination methods and 

evaluation of improved downwind community air quality resulting from the implementation 

of gas pollution control. The purpose of this study was to employ backpropagation neural 

network (BPNN) and generalized regression neural network (GRNN) techniques to model 

_____________________________ 
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Agricultural and Biosystems Engineering, 212 Davidson Hall, Iowa State University, Ames, 

IA 50011; phone: 515-294-6180; fax: 515-294-2255; e-mail: hoffer@iastate.edu.  
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GPCER generated and emitted from swine deep-pit finishing buildings as affected by time of 

day, season, ventilation rates, animal growth cycles, in-house manure storage levels, and 

weather conditions. The statistical results revealed that the BPNN and GRNN models were 

successfully developed to forecast hourly GPCER with very high coefficients of 

determination (R2) from 81.15% to 99.46% and very low values of systemic performance 

indexes. These good results indicated that the artificial neural network (ANN) technologies 

were capable of accurately modeling source air quality within and from the animal 

operations. It was also found that the process of constructing, training, and simulating the 

BPNN models was very complex. Some trial-and-error methods combined with a thorough 

understanding of theoretical backpropagation were required in order to obtain satisfying 

predictive results. The GRNN, based on nonlinear regression theory, can approximate any 

arbitrary function between input and output vectors and has a fast training time, great 

stability, and relatively easy network parameter settings during the training stage in 

comparison to the BPNN method. Thus, the GRNN was characterized as a preferred solution 

for its use in air quality modeling. 

Keywords. Backpropogation, Diurnal, Gas, Generalized regression neural network, 

PM10, Seasonal, Swine buildings. 

INTRODUCTION 

To address gaseous pollutants generated by livestock and poultry industries, 

atmospheric dispersion models have been a useful tool for regulatory agencies and state 

planners to determine reasonable science-based setback distances between animal production 

facilities and neighboring residences. In addition, environmental researchers and livestock 
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producers can use models to evaluate downwind community air quality impacts resulting 

from the implementation of gas pollution control (Hoff et al., 2006). The accuracy of 

dispersion model predictions relies largely on the accuracy of source emission rates, which 

are highly variable because they depend on time of the day, seasons, building characteristics, 

ventilation rate, animal size and density, manure handling systems, and weather conditions 

(Jacobson et al., 2005). However, due to the lack of data, none of the existing models 

consider the diurnal, seasonal, and climate variations of odor and gas emission rates from 

animal buildings. Some researchers simply use randomly measured data or the mean or 

geometric mean of some data measured during the daytime at any time of the year as the 

emission rates for the model input (Jacobson et al., 2005), which may result in great 

uncertainties in predictions. Thus, there is a great need to obtain source gas and PM10 

concentration and emission rate (GPCER) profiles for the time period of interest (e.g., an 

hour or a day) to ensure the accuracy of atmospheric dispersion models. 

Several studies have investigated diurnal and seasonal odor and gas emission rates 

from different types of swine production buildings (Sun, 2005; Hoff et al., 2006; Guo et al., 

2007). However, direct and long-term measurements of odor, gas, and PM10 concentrations 

and emissions at all animal operations are not practical since every gas source is different and 

animal and weather conditions change constantly. In the absence of effective and efficient 

means to directly measure GPCER from each livestock production facility, development of 

source GPCER mathematical prediction models might be a good alternative to provide 

reasonably accurate estimates. Three modeling approaches have been proposed for predicting 

source GPCER: the emission factors method, the multiple regression analysis method, and 

the process-based modeling method. 
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Emission factors, expressed by the amount of each substance emitted per animal, are 

multiplied by the number of animal units to get average air emissions from animal operations. 

Arogo et al. (2003) attempted but could not assign empirical ammonia emission factors to 

estimate the average ammonia emission rates from various barns because of the many 

variables affecting air emissions. The under- or overestimated predictive results showed that 

using emission factors for all animals in all regions was not appropriate if direct and long-

term measurements from a substantial number of representative animal feeding operations 

have not been conducted. 

The regression analysis method uses standard least-squares multivariate regression 

equations to predict GPCER. The purpose of multiple regression analysis is to establish a 

quantitative relationship between various predictor variables (e.g., weather and animal 

conditions, production systems, etc.) and air emissions. This relationship is used to 

understand which predictors have the greatest effect and to forecast future values of the 

equation response when only the predictors and the direction of their effects are known. Sun 

(2005) developed statistical multiple-linear regression models to predict diurnal and seasonal 

odor and gas concentrations and emissions from confined swine grower-finisher rooms. 

However, the main weakness of this method is that the complex and sometimes nonlinear 

relationships of multiple variables can make statistical models complicated and awkward 

(Comrie, 1997). Moreover, these models seem very dependent on the specifics of the 

experiment situation. Therefore, it is difficult to apply the developed model to the data from 

other experiments. The only way to establish a robust set of equations is to sample hundreds 

of animal feeding operations under different meteorological conditions. The lack of sufficient 

data is the main cause of the uncertainty of the statistical regression models. 
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The process-based models (also called mechanical models) determine the movement 

of elements (e.g., nitrogen, carbon, and sulfur) into, through, and out of the livestock 

production system, investigate the underlying chemical and physical phenomenon, and 

identify the effects of changing one or more variables of the system. In many cases, this 

modeling method uses mass balance equations to describe the mechanisms of gaseous 

emissions and estimate their characteristic and amount at each transformation stage. Recently, 

Zhang et al. (2005) established a comprehensive and predictive ammonia emission model to 

estimate ammonia emission rates from animal feeding operations using a process-based 

modeling approach. The main processes treated in the model included nitrogen excretion 

from the animals, animal housing, manure storage, and land application of manure. The 

results showed that the sensitivity analysis of various variables (e.g., manure production 

system, animal housing designs, and environmental conditions) needs to be quantified and 

that additional model validation is needed to improve model predictive accuracy. Other 

researchers also studied the process of mass (ammonia) transport and developed mechanical 

models for swine feeding operations (Aarnink and Elzing, 1998; Ni et al., 2000; Kai et al., 

2006). Although there has been considerable value in the development and application of 

mechanistic modeling of ammonia volatilization from the main individual sources, some 

circumstances of gaseous emissions are not well understood and several parameters are 

difficult to determine experimentally. For example, adsorption, absorption, and desorption of 

ammonia from various materials in animal barns might be another emission source, but this 

mechanism is not easily acquired. Additionally, the gas release process is very complex due 

to abundant nonlinear relationships between gaseous emissions and the many variables that 
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cause gas production. Therefore, a major effort would be required in future process-based 

model studies. 

Due to the absence of adequate information available about the process of gas 

pollutant production, a black-box modeling approach using artificial neural networks (ANN) 

would be a powerful and promising tool for air quality prediction. Black-box models do not 

need detailed prior knowledge of the structure and different interactions that exist between 

important variables. Meanwhile, their learning abilities make the models adaptive to system 

changes. In recent years, there has been an increasing amount of applications of ANN models 

in the field of atmospheric pollution forecasting (Hooyberghs et al., 2005; Grivas et al., 2006; 

Sousa et al., 2007). The results show that ANN black-box models are able to learn nonlinear 

relationships with limited knowledge about the process structure, and the neural networks 

generally present better results than traditional statistical methods. 

In the literature, little attention has been paid to forecasting source air quality within 

and from animal buildings. The overarching goal of this project was to develop 

backpropagation and generalized regression neural network models (black-box models) to 

predict diurnal and seasonal concentrations and emissions of ammonia, hydrogen sulfide, 

carbon dioxide, and particulate matter less than or equal to 10 m (PM10) from swine 

finishing buildings. 

MATERIALS AND METHODS 

Experiment Data 

The NH3, H2S, CO2, and PM10 data were collected from two identical deep-pit swine 

finishing buildings in Iowa from January 2003 to April 2004. Each building had one room 
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and was designed to house 960 pigs ranging in weight between ~20 and 120 kg. Slurry was 

stored in a 2.4 m deep concrete holding pit below a fully slatted floor and was designed to 

store manure for one year. 

An instrument trailer (Mobile Emission Laboratory, MEL) was used to monitor gas 

and particulate matter concentrations, environmental data, and barn airflow rates. A 

chemiluminescence NH3 analyzer (model 17C, TEI, Franklin, Mass.), a pulsed fluorescence 

SO2 detector (model 45C, TEI, Franklin, Mass.), and two photoacoustic infrared CO2 

analyzers (model 3600, MSA, Pittsburgh, Pa.) were used to measure gas concentrations at 12 

locations within two buildings ("north barn" and "south barn"). A solenoid switching system 

enabled gas samples to be delivered to each analyzer simultaneously in 10 min switching 

increments, i.e., each location was monitored for 10 min every 120 min. PM10 concentrations 

were measured continuously using two tapered-element oscillating microbalance (TEOM) 

ambient PM10 monitors (model 1400a, Rupprecht & Patashnick, Albany, N.Y.). 

Environmental parameters (e.g., temperature, relative humidity, and static pressure) and total 

building ventilation rates were monitored simultaneously. The total ventilation rates were 

measured by recording the on/off status of four single-speed tunnel fans, and the on/off status 

and fan rpm levels of all variable-speed fans (two pit fans, one sidewall fan, and one tunnel 

fan). The ventilation rate of each fan was obtained in situ using a FANS unit, for which 

calibration equations were developed as a function of static pressure and fan rpm levels for 

the variable-speed fans (Heber et al., 2006). Gas and PM10 emission rates were determined 

by multiplying the total airflow rate of the exhaust fans by the increase in gas and PM10 

concentrations between the building ventilation inlet and outlet. The total building emissions 

were calculated from three emission locations (the blended pit ventilation fans, the sidewall 
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fan, and the tunnel fans) and were expressed on an animal unit basis by dividing the total 

emissions by the total animal units (1 AU = 500 kg). During the whole measurement period, 

approximately three complete production cycles of pigs raised from ~20 to 120 kg were 

monitored. 

The hourly average gas concentrations were determined based on the 10 min 

sampling data using interpolation, while the hourly gas emissions were obtained by 

multiplying real-time ventilation rates by the interpolated gas concentrations. Pig weight was 

measured twice for each group (entering and leaving), and linear interpolation was used to 

estimate intermediate weights. 

The original data set of hourly average GPCER values from the north barn included 

7366-9289 lines and four variables. The data set presented diurnal (hourly) and seasonal (16 

continuous measurement months) variations of gas and PM10 concentrations and emission 

rates. A multivariate statistical analysis (Sun et al., 2008) was conducted, and from this 

analysis it was determined that four main variables were significant contributors to the 

GPCER models. These four input variables include: outdoor temperature (Tout), animal units 

(AU), total building ventilation rate (VR), and indoor temperature (Tin). 

Backpropagation Neural Network 

The multilayer perceptron (MLP) is the most common and successful neural network 

architecture with feed-forward network topologies in atmospheric science modeling 

applications; while the most common supervised learning technique used for training 

artificial neural networks is the multilayer backpropagation (BP) algorithm (Kecman, 2001). 

The term "backpropagation" refers to the process by which derivatives of network error, with 

respect to the networks, are fed back to the network and used to adjust the weights so that the 
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error decreases with each iteration and the neural model gets closer and closer to producing 

the desired outputs. In this way, BP offers a method of minimizing errors between obtained 

outputs and desired target values. 

There are generally four steps to develop a BP neural network for modeling: (1) 

preprocess the data, (2) create the network object, (3) train the network, and (4) simulate the 

network response to new inputs. In this research, the first step (preprocess) was done to scale 

the inputs and targets to fall within a specified range (from 0 to 1) in case the higher values 

would drive the training process and mask the contribution of lower valued inputs, as well as 

to perform a principal component analysis to eliminate redundancy of the data set. In the 

second step (network construction), the data set was divided into training, validation, and test 

subsets: one-half for the training set, one-fourth of the data for the validation set, and one-

fourth for the test set. The training set was used for computing the gradient and updating the 

network weights and biases. The validation set was used for improving generalization. The 

test set was used for validating the network performance. The data in each subset were 

selected randomly, and then a network was created. The third step (network training) 

initialized and trained the network. A total of five trainings were conducted. Finally, the 

trained network was employed to simulate the test data. The performances of the network in 

each training process and the best network with the highest prediction performances were 

recorded. 

Generalized Regression Neural Network 

The generalized regression neural network (GRNN) is a neural network architecture 

that can solve any function approximation problem if sufficient data are given. Figure 1 is a 
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schematic of the GRNN architecture with four layers: an input layer, a hidden layer (pattern 

layer), a summation layer, and an output layer. 

The main function of a GRNN is to estimate a linear or nonlinear regression surface 

on independent variables, i.e., the network computes the most probable value of an output y 

given only training vectors x (Specht, 1991). Specifically, the network computes the joint 

probability density function (pdf) of x and y. The expected value of the output y given the 

input vector x is given by: 
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When the density f(x, y) is not known, it must usually be estimated from a sample of 

observations of x and y. The probability estimator ),(ˆ yxf  is based on sample values xi and yi 

of the random variables x and y: 

     









































2

2

1
2

)1(2/)1(

2
exp

2
exp

1

)2(

1
),(ˆ

in

i

iTi

pp

yyxxxx

n

yxf

      (2) 

where n is the number of sample observations, and p is the dimension of the vector variable x. 

A physical interpretation of the probability estimate  yxf ,ˆ  is that it assigns sample 

probability of width  (smoothing factor or "spread") for each sample xi and yi, and the 

probability estimate is the sum of those sample probabilities. 
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The squared distance between the input vector x and the training vector xj is defined 

as: 

   iTi
i xxxxD 2

     (3) 

and the final output is determined by performing the integrations in equation 4. This result is 

directly applicable to problems involving numerical data. 
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The smoothing factor , considered as the size of the neuron's region, is a very 

important parameter of GRNN. When  is large, the estimated density is forced to be smooth 

and in the limit becomes a multivariate Gaussian with covariance 2 I (I = unity matrix), 

whereas a smaller value of  allows the estimated density to assume non-Gaussian shapes, 

but with the hazard that wild points may have a great effect on the estimate (Specht, 1991). 

Therefore, a range of smoothing factors and methods for selecting those factors should be 

tested empirically to determine the optimum smoothing factors for the GRNN models. 

Performance Indicators and Software 

The root mean square error (RMSE), mean absolute error (MAE), and coefficient of 

determination (R2) between the modeled output and measures of the training and testing data 

set are the most common indicators to provide a numerical description of the goodness of the 

model estimates. They are calculated and defined according to equations 5, 6, and 7, 

respectively (Sousa et al., 2007): 
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where 

N = number of observations 

Ti = observed value 

Ai = predicted value 

T  = average value of the explained variable on N observations. 

RMSE and MAE indicate the residual errors, which give a global idea of the 

difference between the observed and predicted values. R2 is the proportion of variability (sum 

of squares) in a data set that is accounted for by a model. When the RMSE and MAE are at 

the minimum and R2 is high (R2 > 0.80), a model can be judged as very good (Kasabov, 

1998). Neural Network toolbox 5.1 and Statistics toolbox 6.1 in Matlab 7.4 (R2007a) were 

used in the present study to develop ANN models. 
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RESULTS AND DISCUSSION 

Diurnal and Seasonal Data 

Central Iowa climate information based on monthly measurement averages in 2003 

could be separated into three typical weather conditions: warm weather (June, July, Aug.; 

22.6°C to 27.9°C), mild weather (Apr., May, Sept., Oct.; 10.1°C to 16.4°C), and cold 

weather (Jan., Feb., Mar., Nov., Dec.; -7.4°C to 2°C). Figure 2 shows three different diurnal 

and seasonal variation patterns of NH3 concentrations under different measurement months 

(Jan., Apr., and July). The mean NH3 concentrations during the winter were much higher 

than the NH3 levels in the summer, and large diurnal NH3 variations between day and night 

were observed in April. Diurnal and seasonal fluctuations of other air pollutants also existed. 

These variations indicated that the gaseous concentrations and emissions during different 

periods of the day and different seasons must be obtained and considered in air dispersion 

models for setback distance determination in lieu of random data sampled from snapshot 

measurements. 

BPNN Model Development 

The development of a good BP neural network model depends on several important 

parameters determined using trial-and-error methods. The BP ANN model of NH3 

concentration is presented here as an example showing how to choose these parameters step 

by step. Other predictive models followed this modeling process and methods. 

The initial problem faced in this study was deciding on the BP network architecture, 

i.e., the number of layers and neurons in the hidden layer as well as the type of activation 

functions for the layers. A three-layer BP network was constructed to determine if its 
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prediction performance was superior to a two-layer network. Unfortunately, the results were 

almost the same. It is worth noting that the bigger network architecture would need more 

computation and could cause overfitting of the data. In practical applications, one rarely 

encounters a structure more complex than a two-layer network. Thus, a two-layer BP 

network was employed, which could produce solutions arbitrarily close to the optimal 

solution. 

Networks are sensitive to the number of neurons in their hidden layers. The optimum 

number of neurons required is problem dependent, being related to the complexity of the 

input and output mapping, the amount of noise in the data, and the amount of training data 

available. Too few neurons lead to underfitting, while too many neurons contribute to 

overfitting, in which all training points are well-fitted but the fitting curve oscillates widely 

between these points. Currently, there is no guiding rule to determine how many neurons to 

use in the hidden layer (Kecman, 2001). The only method available is to try different 

numbers of neurons to observe how the results look. Table 1 gives the predictive model 

results (e.g., R2 between the predicted and actual values) using different numbers of neurons 

in the hidden layer. The initial number of neurons was 5, and the number was increased until 

a relatively stable and optimal value was achieved. It can be seen that 40 to 70 neurons in the 

hidden layer produced high R2 results (around 0.90). The predictive performance improved 

slightly with increasing numbers of neurons (90 to 150), but the training time increased 

significantly. When the network had 5 or 10 neurons in the hidden layer, the R2 decreased to 

0.80. Thus, 40 or 50 were determined as the optimum number of neurons in the hidden layer 

to avoid low predictive results caused by too few neurons or the overfitting performance 

from too many neurons. 
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Note that networks with threshold units are hard to train because the threshold units 

are not continuous; a small change in the weights does not cause any change in the output. 

Sigmoid transfer functions are usually preferable to threshold activation functions. With 

sigmoid units, a small change in the weights produces a change in the output, which makes it 

possible to tell whether that change in the weights was good or bad. There are three sigmoid 

transfer functions often used for BP networks: tansig (hyperbolic tangent sigmoid) transfer 

function, logsig (log-sigmoid) transfer function, and purelin (linear) transfer function. The 

tansig transfer function, which can produce both positive and negative values, tended to yield 

faster training than the logsig transfer function, which can produce only positive values. 

Table 2 summarizes the BP network performance (e.g., R2) using different transfer functions. 

In general, all of the transfer function combinations tested obtained nearly the same network 

performance expect for the combination of logsig and purelin. The tansig and logsig 

functions were employed in this research. 

Once the BP network was constructed and the weights and biases were initialized, the 

network was ready for training. Neural Network toolbox 5.1 in Matlab offers several training 

algorithms, such as traingd, traingdx, traingda, trainrp, trainlm, trainbfg, trainscg, trainoss, 

traincgf, and traincgp, which are used for training BP networks. Their characteristics 

deduced from the experiments are shown in table 3. It was observed that the traingd (gradient 

descent BP) algorithm had the lowest training speed compared to all other algorithms, 

whereas traingda (gradient descent BP with adaptive learning rate) had the fastest training 

speed, followed by trainscg (scaled conjugate gradient BP) and traingdx (gradient descent 

BP with momentum and adaptive learning rate). The trainoss (one step secant BP), trainrp 

(resilient BP), traincgp (conjugate gradient BP with Polak-Ribiére updates), trainbfg (BFGS 
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quasi-Newton BP), and traincgf (conjugate gradient BP with Fletcher-Reeves updates) 

algorithms could obtain relatively fast training speeds, but their prediction performances 

were not as good as those made by the trainlm (Levenberg-Marquardt BP) algorithm, which 

was capable of achieving very satisfying statistical results with the highest R2 and the 

smallest mean square error among the other algorithms. 

Furthermore, although the traingda and traingdx algorithms trained the BP network 

much faster than the trainlm algorithm, the performances of the former algorithms were very 

sensitive to the proper setting of the learning rate and momentum. A large learning rate may 

lead to faster convergence, but it may also cause strong oscillations near the optimal solution 

or even diverge, while excessively small learning rates result in very long training times. The 

purpose of adding momentum was to allow the network to respond not only to the local 

gradient, but also to recent trends in the error surface and allow the network to ignore small 

features in the error surface. Without momentum, the network can get stuck in a shallow 

local minimum. Conversely, with momentum, the network can slide through such a 

minimum. The optimal learning rate and momentum can only be acquired experimentally 

using the trial-and-error method. Therefore, the trainlm algorithm was suitable for training 

the NH3 concentration ANN model. However, it has a drawback in that it requires the storage 

of large matrices. If this is the case, the trainrp algorithm may be a good alternative due to its 

small memory requirement. The optimal parameters of the BP neural network model for the 

NH3 concentrations are summarized in table 4. 

GRNN Model Development 

The only parameter particular to the GRNN is the use of the smoothing factor , 

which significantly affects network performance. Table 5 summarizes the results for the NH3 
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concentration GRNN model using different smoothing factor values. The  values 0.05 and 

0.1 can fit data very closely, with higher R2 values than when using the larger , but the 

larger smoothing factor can make the function approximation smoother. 

Statistical Performance of Predictive Models 

The statistical performance of the developed predictive models are given in table 6, 

and scatter plots of predicted values (output A) versus respective observed values (target T) 

for the GRNN and BPNN models are illustrated in figure 3. The data presented in figure 3 

were normalized using (A - Amin)/(Amax - Amin) and (T - Tmin)/(Tmax - Tmin). The intercept and 

slope of the least squares line between predictions and observations are also displayed. It is 

worth mentioning that a series of random tests was conducted to evaluate the effectiveness of 

the models. The results showed that all the models were quite stable. The value of each 

performance indicator (R2, MAE, and RMSE) was within 2% change in every case. The 

results shown here were derived from the best network after the tests. 

All the GRNN and BPNN predictive models, except for the PM10 concentration and 

emission BPNN models, had excellent predicting abilities with high R2 values (81.15% to 

99.46%) and low MAE and RMSE values, which implies that these models were well-

developed (table 6). The high R2 indicates that a majority of the variability in the air pollutant 

outputs could be explained by the four input variables (outdoor and indoor temperature, 

building ventilation rate, and animal units). 

All the GRNN predictive models had higher R2 values and lower MAE and RMSE 

values than the BPNN models. This demonstrates that the GRNN models outperformed the 
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BPNN models. Thus, the GRNNs were able to predict diurnal and seasonal gas and 

particulate matter concentrations and emissions more effectively. 

SUMMARY AND CONCLUSIONS 

Backpropagation and generalized regression neural network methods were employed 

to explore the complex and highly nonlinear relationships between air pollutants and four 

variables (outdoor temperature, animal units, ventilation rate, and indoor temperature) on the 

measurements of diurnal and seasonal NH3, H2S, CO2, and PM10 levels and emissions from 

deep-pit swine buildings. 

It was found that the obtained results of BPNN and GRNN predictions were in good 

agreement with the actual measurements, with coefficient of determination (R2) values 

between 81.15% and 99.46% and very low values of systemic performance indexes. The 

good results indicated the ANN technologies were capable of accurately modeling source air 

quality within the livestock production facilities and emissions from these production 

facilities. 

The process of constructing, training, and simulating the BP network models was 

very complicated. Likewise, determining the best values for several network parameters, 

such as the number of layers and neurons, type of activation functions and training 

algorithms, learning rates, and momentum, were difficult. The effective way of obtaining 

good BP modeling results was to use some trial-and-error methods and thoroughly 

understand the theory of backpropagation. Conversely, for the GRNN models, there was only 

one parameter (the smoothing factor) that needed to be adjusted experimentally. Moreover, 

the BP network performance was very sensitive to randomly assigned initial values. However, 
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this problem was not faced in GRNN simulations. The GRNN approach did not require an 

iterative training procedure as in the backpropagation method. The local minima problem 

was also not faced in the GRNN simulations. Other significant characteristics of the GRNN 

in comparison to the BPNN were the excellent approximation ability, fast training time, and 

exceptional stability during the prediction stage. Thus, the GRNN technology outperformed 

BP, which has been demonstrated in this study. It can be recommended that a generalized 

regression neural network be used instead of a backpropagation neural network in source air 

quality modeling. 
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NOMENCLATURE         

AU = animal units 

BP = backpropagation 

BPNN = backpropagation neural network 

Con = concentration 

ER = emission rate 
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GPCER = gas and PM10 concentration and emission rate 

GRNN = generalized regression neural network 

logsig = log sigmoid transfer function 

MAE = mean absolute error 

PCA = principal component analysis 

purelin = linear transfer function 

RMSE = root mean square error 

R2 = coefficient of determination  

tansig = tangent sigmoid transfer function 

Tin = indoor temperature (°C) 

Tout = outdoor temperature (°C) 

trainbfg = BFGS quasi-Newton BP training algorithm 

traincgf = conjugate gradient BP with Fletcher-Reeves updates training algorithm 

traincgp = conjugate gradient BP with Polak-Ribiére updates training algorithm 

traingd = gradient descent BP training algorithm 

traingda = gradient descent BP with adaptive learning rate training algorithm 

traingdx = gradient descent BP with momentum and adaptive learning rate training algorithm 

trainlm = Levenberg-Marquardt BP training algorithm 

trainoss = one step secant BP training algorithm 

trainrp = resilient BP training algorithm 

trainscg = scaled conjugate gradient BP training algorithm 

VR = ventilation rates (m3 s-1) 
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No. of Avg. Elapsed

Neurons R2 Time[b]

5 0.7926 0.7862 0.7898 0.8090 0.7906 0.7936 10.3905

10 0.8079 0.8283 0.7830 0.8207 0.8337 0.8147 11.1335

20 0.8697 0.8491 0.8610 0.8579 0.8596 0.8595 12.7646

40 0.8901 0.8796 0.8878 0.8951 0.8826 0.8870 33.8522

50 0.9281 0.9358 0.9194 0.9080 0.9263 0.9235 34.7166

70 0.9136 0.8786 0.8797 0.8968 0.9077 0.8953 52.8628

90 0.9556 0.9541 0.9313 0.9366 0.9622 0.9480 71.3110

120 0.9272 0.9646 0.9415 0.9305 0.9347 0.9397 99.6590

150 0.9400 0.9367 0.9448 0.9186 0.9359 0.9352 138.6449

[b] The elapsed time (s) indicates the time of one training. The computer had an Intel Pentium 3.0G processor

    and 3.0 Gb RAM.

Table 1. Results using different numbers of neurons in the hidden layer. [a]

R2 of Predicted vs. Actual

[a] The testing network was a two-layer network with tansig  and logsig  transfer functions. Five training times

    were used for each training process. The training algorithm was trainlm .

Transfer Avg. Max.

Functions[a] R2 R2

tansig , logsig 0.9103 0.8985 0.9122 0.9284 0.9185 0.9136 0.9284

tansig , tansig 0.8883 0.8740 0.8478 0.8799 0.8880 0.8756 0.8883

logsig , logsig 0.8905 0.9067 0.9136 0.9067 0.8874 0.9010 0.9136

logsig , tansig 0.8845 0.8910 0.8908 0.8829 0.8556 0.8810 0.8910

tansig , purelin 0.8951 0.8759 0.8898 0.9023 0.8971 0.8920 0.9023

logsig , purelin 0.8571 0.8361 0.8331 0.8248 0.8337 0.8370 0.8571

Table 2. Results using different transfer functions. 

R2 of Predicted vs. Actual

[a] The first term indicates the transfer function for the hidden layer; the second term indicates the transfer

     function for the output layer. The testing network was a two-layer network with the trainlm  algorithm and

    50 neurons in the hidden layer. Five training times were used for each training process.
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Training Avg. Elapsed

Algorithm R2 Time[b]

traingd 0.7447 0.8658 0.8127 0.9042 0.8541 0.8363 140.9733

traingdx 0.8447 0.7370 0.7583 0.7992 0.7872 0.7853 23.4912

traingda 0.7019 0.7385 0.7381 0.7120 0.7410 0.7263 18.3326

trainrp 0.8528 0.8356 0.8277 0.8146 0.8186 0.8299 30.6993

trainlm 0.9032 0.9222 0.9118 0.8705 0.8935 0.9002 34.0856

trainbfg 0.7913 0.7961 0.8101 0.8232 0.8206 0.8083 33.6143

trainscg 0.8119 0.8187 0.8090 0.8450 0.8097 0.8189 20.1881

trainoss 0.7935 0.7807 0.7722 0.7233 0.7728 0.7685 24.1788

traincgf 0.7932 0.7344 0.8269 0.8240 0.8230 0.8003 41.2675

traincgp 0.7236 0.8523 0.7988 0.8150 0.8085 0.7996 32.4685

[b] Elapsed time (s) indicates the time of one training. The computer had an Intel Pentium 3.0G processor

     and 3.0 Gb RAM.

R2 of Predicted vs. Actual

[a] The testing network was a two-layer network with tansig  and logsig  transfer functions and 50 neurons

     in the hidden layer. Five training times were used for each training process.

Table 3. Results using different training algorithms. [a]

Parameter Value/Function/Method

Network architecture 2-layer network

Input features Tout, AU, VR, and Tin
[a]

Layer neurons 4-50-1 (input-hidden-output layer)

Missing data Substituting the neighborhood mean

Data normalization mapstd  function

PCA[b] processpca  function

Transfer function tansig  (hidden layer); logsig  (output layer)

Training algorithm trainlm
[a] Tout = outdoor temperature (°C), AU = animal units,

    VR = ventilation rates (m3 s-1), Tin = indoor temperature (°C).
[b] PCA = principal component analysis.

Table 4. Optimal parameters of the BP ANN model. 
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Avg. Elapsed

 R2 Time[b]

0.05 0.9702 0.9946 0.9536 0.9449 0.9471 0.9621 5.2021

0.1 0.9188 0.8965 0.9227 0.9194 0.9013 0.9117 5.6713

0.3 0.7546 0.7466 0.7375 0.7323 0.7116 0.7365 5.3201

0.5 0.6466 0.6988 0.6533 0.6635 0.6959 0.6716 5.4735

1 0.4840 0.5125 0.4922 0.5003 0.5006 0.4979 5.5726

Table 5. GRNN results using different smoothing factors. [a]

     processor and 3.0 Gb RAM.

R2 of Predicted vs. Actual

[a] Five training times for each training process.
[b] The elapsed time (s) indicates the time of one training. The computer had an Intel Pentium 3.0G

Number of

Data Points[b] R2 MAE RMSE R2 MAE RMSE
NH3Con (ppm) 8048 0.9946 1.92 3.12 0.9074 2.60 3.58

NH3ER (kg d-1) 7973 0.9774 0.80 1.35 0.8825 1.38 2.12

H2SCon (ppb) 7479 0.9167 102.54 181.37 0.8281 158.01 227.03

H2SER (kg d-1) 7366 0.9258 0.08 0.14 0.8115 0.13 0.19

CO2Con (ppm) 8500 0.9838 184.20 302.78 0.9785 242.93 376.19

CO2ER (kg d-1) 8215 0.9410 144.02 217.29 0.8691 159.51 223.23

PM10Con (g m-3) 9187 0.8570 125.52 241.60 0.7726 180.86 290.40

PM10ER (kg d-1) 9289 0.8719 0.07 0.14 0.6689 0.09 0.16
[a] Con and ER indicate the concentrations and emission rates, respectively.

Table 6. Statistical performance of developed predictive models. 

[b] Indicates the number of total data points. The test data for the predictive models were 25% of the total data.

Model[a]

GRNN BPNN
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Figure 1. Generalized regression neural network architecture. 

 

Figure 2. Different diurnal and seasonal variation patterns of NH3 concentrations from the deep-    

pit swine finishing building (hourly averages presented for three selected days). 
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(a) NH3Con- GRNN (b) NH3Con- BPNN 

(c) NH3ER- GRNN (d) NH3ER- BPNN 
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(e) H2SCon- GRNN (f) H2SCon- BPNN 

(g) H2SER- GRNN (h) H2SER- BPNN 
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(i) CO2Con- GRNN (j) CO2Con- BPNN 

(k) CO2ER- GRNN (l) CO2ER- BPNN 
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Figure 3. Scatter plots (a) to (p) of predicted values (output A) versus respective observed values       

       (target T) for the GRNN and BPNN models (Con and ER indicate the concentrations and 

emission rates, respectively. 

(m) PM10Con- GRNN (n) PM10Con- BPNN 

(o) PM10ER- GRNN (p) PM10ER - BPNN  
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CHAPTER 4.  PREDICTION OF INDOOR CLIMATE AND LONG-

TERM AIR QUALITY USING THE BTA-AQP MODEL: PART I. BTA 

MODEL DEVELOPMENT AND EVALUATION                  

 

           A paper published in the Transaction of the American Society of Agricultural and 

Biological Engineers1 

G. Sun and S. J. Hoff 2 

ABSTRACT 

The objective of this research was to develop a building thermal analysis and air 

quality predictive (BTA-AQP) model to predict ventilation rate, indoor temperature and 

long-term air quality (NH3, H2S and CO2 concentrations and emissions) for swine deep-pit 

buildings. This paper, Part I of II, presents a lumped capacitance model (BTA model) to 

predict the transient behavior of ventilation rate and indoor air temperature according to the 

thermo-physical properties of a typical swine building, set-point temperature scheme, fan 

staging scheme, transient outside temperature, and the heat fluxes from pigs and 

supplemental heaters. The obtained ventilation rate and resulting indoor air temperature  

_____________________________ 

1 Reprinted with permission of the Transactions of ASABE, 2010, 53 (3), 863- 870. 

2 The authors are Gang Sun, ASABE Member Engineer, Graduate Student, Steven J. Hoff, 

ASABE Member, Professor, Department of Agricultural and Biosystems Engineering, Iowa 

State University, Ames, Iowa. Corresponding author: Steven J. Hoff, Department of 

Agricultural and Biosystems Engineering, 212 Davidson Hall, Iowa State University, Ames, 

IA 50011; phone: 515-294-6180; fax: 515-294-2255; e-mail: hoffer@iastate.edu.  
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combined with animal growth cycle, in-house manure storage level, and typical 

meteorological year (TMY3) data (NSRDB, 2008 ) were used as inputs to the air quality 

predictive model (Part II paper) based on the generalized regression neural network (GRNN-

AQP model), which was presented in an earlier article. The statistical results indicated  that 

the performance of the BTA model for predicting ventilation rate and indoor air temperature 

were very good in terms of low mean absolute error, a coefficient of mass residual values 

equal to 0, an index of agreement value close to 1, and Nash-Sutcliffe model efficiency 

values higher than 0.65. The graphical presentations of the predicted vs. actual ventilation 

rate and indoor temperature were also provided to demonstrate that the BTA model was able 

to accurately estimate indoor climate and therefore could be used as input variables for the 

GRNN-AQP model discussed in Part II of this research (Sun and Hoff, 2010).  

Keywords.  Building thermal analysis (BTA), Air quality, indoor climate, Nash-

Sutcliffe model efficiency.  

INTRODUCTION  

Due to the absence of a nationwide monitoring network for quantifying long-term air 

emission inventories of livestock production facilities, state and federal regulatory agencies 

in the United States have identified a need for air quality predictive (AQP) models to assess 

the impact of annual airborne pollutants on human health, the ecological environment, and 

global warming. Moreover, with the increasing number of complaints and lawsuits against 

the livestock industry, state planners, environment scientists and livestock producers also 

need AQP models to determine science-based setback distances between animal feeding 

operations and neighboring residences as well as evaluate relevant emission abatement 
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strategies. Most of the AQP models proposed so far use mass balance equations to describe 

the mechanisms of gaseous emissions, estimate their characteristic and amount at each 

transformation stage, and forecast gas release from animal production sites (Aarnink et al., 

1998; Ni et al., 2000; Kai et al., 2006). Source odor and gas concentrations and emission 

rates are very difficult to model because they are highly variable with time of day, season, 

weather conditions, building characteristics, ventilation rate, animal growth cycle, and 

manure handling method. Thus, the whole modeling process can be regarded as a 

complicated dynamic system with many nonlinear governing relationships. Also, there still 

exist some circumstances of gaseous emissions that cannot be explained with our current 

limited scientific understanding. On the contrary, neural network modeling techniques, 

unlike the traditional methods based on physical principles and detailed prior knowledge of 

the modeling structure, are able to capture the interactions of numerous multivariate 

parameters, learn the relationships between input and output variables, and give quite 

satisfying prediction results. Sun et al. (2008a) developed backpropagation and generalized 

regression neural network models to predict diurnal and seasonal gas and PM10 

concentrations and emissions from swine deep-pit finishing buildings. It was found that the 

obtained forecasting results of the neural network models were in good agreement with 

actual field measurements, with coefficient of determination values between 81.2% and 

99.5% and very low values of systemic performance indices. The promising results from this 

work indicated that artificial neural network technologies were capable of accurately 

modeling source air quality within and emissions from these livestock production facilities.  

Although AQP models can be used as a useful tool to forecast air quality over a time 

period that are beyond an actual monitoring period, the main input variables for the model 
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must be known which require field measurements. These variables include indoor 

environment (indoor, inlet and exhaust temperature and relative humidity), outdoor climate 

conditions (outdoor temperature, relative humidity, wind speed, wind direction, solar energy 

and barometric pressure), pig size and density (animal units), building ventilation rate, 

animal activity, overall management practices, and properties of the stored manure, to name a 

few. Sun et al. (2008b) performed a multivariate statistical analysis and identified four 

significant contributors to the AQP models: outdoor temperature, animal units, total building 

ventilation rate, and indoor temperature. The purpose of introducing fewer uncorrelated 

variables to the models is to reduce model structure complexity, eliminate model over-fitting 

problems, and minimize field monitoring costs without sacrificing model predictive 

accuracy. Conducting long-term field measurements of the identified four variables using 

current engineering approaches are still time consuming and expensive. Therefore, making 

use of simulation programs is a good alternative to obtain the required significant input 

variables for AQP models.  

Basically, there are three steady-state models used to calculate indoor climate of 

livestock buildings which include those based on heat, moisture or carbon dioxide balances 

(Albright 1990). Pedersen et al. (1998) compared these three balance methods for estimating 

the ventilation rate in insulated animal buildings. They reported that the three methods could 

give good prediction results on a 24-hr basis when the temperature differences between 

inside and outside, absolute humidity and CO2 concentrations were greater than 2 C , 

3105.0  kg water per kg dry air and 200 ppm, respectively for the buildings tested in 

Northern Europe. A simple steady-state balance model (Schauberger et al., 1999) was 

developed for the sensible and latent heat fluxes and CO2 mass flows resulting in the 
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prediction of inside temperature and ventilation rate of mechanically ventilated livestock 

buildings. The obtained variables were further applied for diurnal and annual odor emission 

estimates. Due to the lack of field measurements, the accuracy of the predicted parameters 

could not be determined. Morsing et al. (2003) released a computer program entitled 

StaldVentTM to help design and evaluate heating and ventilation systems in animal houses. 

They primarily used a steady-state energy balance method to predict the required ventilation 

rate and heat capacity, room temperature, CO2 concentration, and expected energy 

consumption throughout the year.  

On the other hand, indoor climate can be predicted by studying thermal transients in 

buildings. Nannei and Schenone (1999) developed a simplified numerical model for building 

thermal transient simulation. The model can be applied to compute the room air temperature 

and the temperature of the inner surface of the walls. The good numerical results compared 

with the experimental data indicated that this model was useful for the study of unsteady 

thermal performance. Mendes et al. (2001) presented a dynamic multimodal capacitive 

nonlinear model to analyze transient indoor air temperature using Matlab/SimulinkTM 

(Matlab 5.0, 1999). This thermal model was improved by introducing internal gains and the 

inter-surface long-wave radiation. The predicted results were not experimentally validated 

however. Morini and Piva (2007) investigated the dynamic thermal behavior of residential 

heating and cooling systems with control systems during a sinusoidal variation of the outside 

temperature. The core of their program employed mechanical and thermal energy 

conservation equations implemented in the SimulinkTM environment. It was found that their 

transient model outperformed the standard steady-state approach.  
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The overall objective of this research is to predict indoor climate and long-term air 

quality (NH3, H2S and CO2 concentrations and emissions) for swine deep-pit finishing 

buildings using a transient building thermal analysis and air quality predictive (BTA-AQP) 

model and a typical meteorological year data base. This paper acts as Part I and discusses the 

BTA model development and resulting indoor thermal climate predictions. A second paper 

acts as Part II (Sun and Hoff, 2010) where specific air quality predictive results are presented 

for the complete BTA-AQP model.  

MATERIALS AND METHODS 

Description of typical deep-pit swine building 

A mechanically ventilated deep-pit (2.4 m) swine finishing building, located in 

central Iowa, was used for this research. As shown in figure 1, this swine building was 60 m 

long and 13 m wide, designed to house 960 finishing pigs from ~20 to 120kg. Gas 

concentrations inside the building, near wall and pit exhaust fans, and an outside location 

(background) were monitored via a mobile emission laboratory and accompanying air 

sampling lines. Also, pertinent environment parameters (temperature, relative humidity, and 

static pressure) and total building ventilation rate were simultaneously measured. During 

cold-to-mild seasons, pit fans 1 and 2, side wall fan 3, and tunnel fans 4 and 5 (figure 1) 

combined with a series of 10 rectangular center-ceiling inlets were used to distribute fresh air 

and remove moisture, odors and aerosols within the building; while all the fans (except side 

wall fan 3) and an adjustable curtain at the opposing end wall were used to maintain suitable 

indoor environment under warm and hot weather (i.e. tunnel ventilation). The total 

ventilation rate was obtained by recording the on/off status of four single-speed tunnel fans 
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(fans 5, 6, 7, and 8) and the on/off status along with fan rpm levels for all variable speed fans 

(fans 1,2,3, and 4). The ventilation rate of each fan was measured in situ using a FANS unit 

(Gates et al., 2004) where calibration equations were developed as a function of static 

pressure and fan rpm levels for variable speed fans. Gas emission rates were determined by 

multiplying fan airflow rate by representative gas concentration differences between inlet and 

outlet for all fans operating at any given time.  Field monitoring was conducted for 15-

months between January 2003 and March 2004, with the 1-year monitoring in 2003 used in 

this research for model prediction comparison.  Details of the field monitoring and overall 

procedures used can be found in Heber et al. (2006).    

Transient BTA model development 

A generalized lumped capacitance model was used to predict inside barn temperature 

changes as a function of outdoor temperature, animal units, supplemental heat, the building 

envelope thermal characteristics, and the ventilation staging system for the monitored barn 

described above.  In general, this model was developed from the following; 

outin EnergyEnergy
dt

dU
    (1) 

where 

U = internal energy of the air mass inside the barn, J. 

    = m Cv,air Tin,i 

m= mass of air inside barn, kg. 

   = ρairV 

ρair= inside air density (an assumed constant of 1.20 kg/m3). 

V= volume of airspace in barn, m3. 
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Cv,air= specific heat of air at constant volume (an assumed constant of 719 J/kg-oC). 

Tin,i= predicted inside barn temperature at current time i, oC. 

t= time, s. 

Assuming that the mass (m) and specific heat (Cv,air) are constant results in; 

airvair

outiniin

VC

EnergyEnergy

dt

dT


}{, 

    (2) 

The energy inputs (Energyin) considered with this BTA model include sensible heat 

gained from the animals (qanimals) and any supplemental heat input (qheater) required to 

maintain a desired set-point temperature inside the barn.  The losses (Energyout) considered 

with this BTA model include net envelope losses (BHLF(Tinside-Tout)) and net enthalpy losses 

from the ventilation air (VRρairCp,air(Tinside-Tout).  Integrating equation 2 results in the 

following generalized lumped-capacity BTA model used for this research; 

 
airvair

outiinoutiinairpairheateranimals
iiniin VC

tTTBHLFTTCVRqq
TT


 

 


*)()( 1,1,
1,,

 (3) 

where; 

Tin,i-1= predicted inside barn temperature at previous time i-1 (=t-Δt), oC. 

qanimals= sensible heat produced by the pigs, J/s. 

qheater= sensible heat produced by supplemental heaters, J/s. 

VR= current ventilation rate, m3/s. 

Cp,air= specific heat of air at constant pressure (an assumed constant of 1006 J/kg-oC). 

Tout= outside air temperature, oC. 

BHLF= building heat loss factor, J/s-oC. 

Δt= time increment used in transient analysis, s, which was fixed at 36 s (0.01 hr). 
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The lumped capacitance BTA model was able to determine the time dependence of indoor 

temperature within a mechanically ventilated building and take into account the heat transfer 

through the components of the building structure and the ventilation system, set point 

temperature, transients of outdoor climate, the presence of different sensible heat sources 

inside the building, and the inertia of the transient system. To simplify the modeling process, 

the following assumptions were introduced: 

 The thermal stratification of indoor air has been neglected, i.e., the indoor temperature is 

uniform at any location inside the building.   

 Radiation exchange between the pigs and the surroundings is included within the overall 

pig sensible heat production available from published data. 

 Constant thermal properties have been considered. 

 The air is incompressible (i.e., constant air density). 

Table 1 gives the approximate building heat loss factor (BHLF) for the deep-pit swine 

building used for the field measurements. Each end wall had one 0.9x2.1 m steel insulated 

door.  The end wall containing fans (see figure 1) had a lower 0.9 m of 203 mm thick 

concrete with the balance 38x90 mm wood stud construction 0.4 m on-center, 19 mm thick 

plywood interior, steel outer siding and the cavity filled with fiberglass batt insulation. The 

inlet end wall had a lower 0.9 m of 203 mm thick concrete with a 1.2 m curtain and a top 

0.30 m section of wood/insulation construction.  The side wall containing the pit fans (see 

figure 1) had a 0.9 m lower portion of 203 mm concrete, a 1.22 m tall curtain used for 

emergency ventilation with the balance 0.3 m top section consisting of wood/insulation 

construction.  The side wall containing the lone side wall fan (see figure 1) had a 0.9 m lower 

portion of 203 mm concrete, with the balance 1.5 m consisting of 38x90 mm stud 
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construction 406 mm on-center with the cavities filled with fiberglass batt insulation. The 

interior ceiling was flat consisting of a flexible woven material of inconsequential thickness, 

rafters spaced 1.22 m on-center, with the balance filled with 254 mm of blown-in cellulose 

insulation.  The top chord of the rafters and gable ends were un-insulated and covered with 

conventional steel roofing/siding.  

As shown in table 1, the total barn BHLF was 965 W/oC. The ceiling/roof/gable 

system accounted for 18% of the total, the curtain containing side wall accounted for 31%, 

with the perimeter accounting for 23%.  The remaining contributions are shown in table 1.  

The ventilation system consisted of nine stages with eight fans having four different 

diameters (46, 61, 91, and 122 cm). These fans (table 2) were operated automatically to 

maintain an operator desired inside climate according to the difference between indoor air 

temperature and set point temperature (SPT). The airflow rates for each direct-drive fan used 

in the BTA model were downgraded to 85% of their published maximum free-air capacity to 

account for in-field fan performance negatively affected by a variety of factors including 

operating static pressure differences, dust accumulation on fan shutters and blades and 

changing power supply to the fans. The airflow rates for each belt-driven fan (i.e. the three 

122 cm fans 6, 7, and 8) needed to be further corrected because of the influence of high 

operating static pressures when these belt-driven fans were used and belt-tightening effects.  

A value of 68% of the reported maximum free-air capacity (10.38 m3/s downgraded to 7.06 

m3/s) for each of these belt-driven 122 cm fans were used in the BTA model.  For example, 

fan number 7 shown in figure 1 had a maximum reported free-air capacity of 10.38 m3/s.  

Actual in-field airflow testing using FANS (Heber et al., 2006) indicated an airflow delivery 

of 7.06 m3/s at an operating static pressure difference of 20 Pa, or a factor of 0.68.  
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Therefore, correction factors of 0.85 for direct-drive fans and 0.68 for belt-driven fans had 

their basis from in-field FANS testing conducted at this research site (Hoff et al., 2009) and 

are not considered to be atypical.  The rational for adjusting fan delivery rates was that in a 

generalized procedure, where in-field performance data on fans might not be available, a 

procedure is needed for modeling fan performance as might be expected in the field.  Using 

published free-stream fan data would certainly over-estimate actual in-field fan delivery 

rates.  Anticipating operating static pressures and using published fan delivery rates 

accordingly would not account for actual in-field performance as well.  Therefore, the 

procedure used here was to model fan delivery based on published free-stream fan 

performance criteria, using adjustment factors that are based on in-field testing, to be then 

extrapolated to other fan-ventilated animal housing systems. 

Table 3 outlines the fan staging scheme for the swine deep-pit building used for field 

monitoring. Fan stages 0 and 1 consisted of variable-speed fans 1 to 4 (two pit fans, one side 

wall fan, and one tunnel fan). These fans operated continuously at stages 0A-0B and 1A-1B 

when the temperature difference between indoor air temperature and the SPT fell into a range 

of -0.3 to 0.6 C  and 1.1 to 1.7 C , respectively; while higher stage fans (single-speed fans) 

were activated gradually with increased temperature differences until the maximum fan stage 

9 was achieved, e.g., the pit fans 1 and 2 and tunnel fans 5 to 7 turned on when the 

temperature difference reached 6.1 C .  

The SPT was set at 23.3 C  when pigs entered (~ 20 kg). This SPT was reduced 

manually by the producer about 0.2 C  every Monday until a lower limit of 20 C  was 

reached.  
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Typically, one complete growth production cycle (~20 to 120 kg) was 140 days or 

about 4.5 months. The sensible heat fluxes from the pigs were calculated by multiplying 

sensible heat production (SHP/kg) at a specific temperature by the total pig weight (Albright, 

1990). Moreover, the swine buildings monitored were equipped with 148 kW of rated 

supplemental heating for cold weather make-up energy.   

Model performance evalation measures  

Statistical measures, such as mean absolute error (MAE), coefficient of mass residual 

(CMR), index of agreement (IoA), and Nash-Sutcliffe model efficiency (NSEF) can be used 

to quantify the differences between modeled output and actual measurements, and provide a 

numerical description of the goodness of the model estimates (Nash and Sutcliffe, 1970; 

Willmott, 1982; Sousa et al., 2007). The following statistical measures were employed to 

ensure the quality and reliability of the BTA model predictions.   
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Where N is the total number of observations, Pi is the predicted value of the ith observation, 

Oi is the observed value of the ith observation, and O  is the mean of the observed values.   

The MAE estimates the residual error, expressed in the same unit as the data, which 

gives a global idea of the difference between the observed and predicted values. The CMR 

measures the tendency of the model to overestimate or underestimate the measured values. 

The IoA compares the difference between the mean, the predicted and the observed values, 

indicating the degree of error for the predictions. The NSEF evaluates the relative magnitude 

of the residual variance in comparison with the measurement variance.  

In addition to the statistical measures identified above, the predictive accuracy of 

model outputs were examined through graphical presentations of the predicted vs. observed 

ventilation rate and indoor air temperature.  

RESULTS AND DISCUSSION 

Model validation is possibly the most important step in any model development 

sequence. However, no standard model evaluation guidance has been established to judge 

model performance and further compare various models that were developed using different 

modeling approaches. The reason could be due to the fact that model validation guidelines 

are model and project specific. For this research, the BTA model was evaluated based on two 

main techniques: graphical presentation and statistical analysis. The graphical presentations 
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provide a visual comparison of the predicted vs. observed values and a first overview of 

model performance (ASCE, 1993); while the statistical analysis provide a numerical tool to 

quantify the goodness of model estimates. 

Graphical presentation for model evaluation  

Central Iowa climate based on the monthly averages from the measured 2003 data 

(calendar year) could be separated into three typical global categories that were defined as: 

warm weather (June, July, Aug.; 20.2°C to 23.5°C), mild weather (Apr., May, Sept., Oct.; 

10.0°C to 16.4°C), and cold weather (Jan., Feb., Mar., Nov., Dec.; -7.6°C to 2.6°C). Figures 

2 to 7 illustrate the different diurnal and seasonal patterns of the hourly predicted vs. actual 

ventilation rate and indoor air temperature during these three representative seasons (warm, 

mild, and cold weather). 

Generally, the predicted values were visually in close agreement with actual 

measurements as shown in figures 2 to 7.  Specifically, in August (warm weather), the mean 

and standard deviation for the actual and predicted ventilation rate and indoor air temperature 

were 12.03±5.91 sm /3 vs. 13.82±7.50 sm /3 and 27.8±2.3 C vs. 26.8±2.8 C , respectively.  

It is obvious to see in figures 2 and 3 that the diurnal patterns of ventilation rate and indoor 

temperature were very similar to those of outside temperature as expected. The predicted 

ventilation rate was overestimated by an average of 8% when the highest outside 

temperatures occurred for some days, whereas the predicted indoor temperature was 

underestimated by an average of 2% in comparison with the actual measurements. 

In October (mild weather), the mean and standard deviation for the actual and 

predicted ventilation rate and indoor air temperature were 8.61±4.40 sm /3 vs. 8.17±6.14
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sm /3 and 23.3±2.1 C vs. 22.5±2.2 C , respectively. It can be seen in figures 4 and 5 that the 

ventilation rate and indoor air temperature seemed to show much less fluctuation compared 

with the August patterns except for a few days with high outside temperature. The ventilation 

rates were underestimated by the BTA model when the outside temperature dropped below 0

C .  

In February (cold weather), the mean and standard deviation for the actual and 

predicted ventilation rate and indoor air temperature were 1.95±0.39 sm /3 vs. 1.20±0.09

sm /3 and 23.4±0.9 C vs. 21.6±0.5 C . It was observed in figures 6 and 7 that the ventilation 

rate and indoor air temperature were fairly constant since the minimum ventilation rate was 

being used in the building to maintain the room set point temperature during these cold 

periods. Almost all the predicted ventilation rate and indoor temperature were slightly lower 

than corresponding field measurements.  

Statistical analysis for model evaluation 

Table 4 summarizes the statistical performance of the BTA model to predict the hourly 

ventilation rate and indoor air temperature in calendar year 2003. The mean absolute error 

(MAE) tests the accuracy of the model, which is defined as the extent to which predicted 

values approach a corresponding set of measured values. The MAE values were 1.74 3 /m s

and 1.2 C for the ventilation rate and indoor temperature, respectively. Singh et al. (2004) 

reported that MAE values less than half the standard deviation (MAE/SD<0.50) of the 

measured data can be considered low. In this research, MAE/SD<0.50 was used as a 

stringent criterion for evaluating the BTA model. The MAE/SD values for the ventilation rate 

and indoor air temperature were 0.32 and 0.41 respectively, which indicates that the BTA 
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model performance for the residual variations were very good. The coefficient of mass 

residual (CMR) expresses the relative size and nature of the error. The closer CMR is to 0 the 

better the model simulation. A negative value of CMR shows model underestimation 

tendency, and positive values indicate overestimation tendency.  The CMR for the ventilation 

rate and indoor temperature were equal to -0.03 and -0.04 respectively, which means that 

there was no systematic under- or over- prediction of the ventilation rate and indoor 

temperature by the BTA model.  The index of agreement (IoA) measures the agreement 

between predicted and measured data and ranges from 0 (no agreement) to 1 (perfect 

agreement) (Willmott, 1981). The IoA values for the ventilation rate and indoor air 

temperature were 0.96 and 0.92 respectively, which indicates that the predicted values had a 

very good agreement with the field measurements. Nash-Sutcliffe model efficiency (NSEF) 

evaluates the error relative to the natural variation of the actual measurements and varies 

from -∞ to 1. 1NSEF  means a perfect match of predicted data to the observed data. 

0NSEF  indicates that the model predictions are as accurate as the mean of the observed 

data, whereas the NSEF value less than 0 suggests that using the observed mean would be 

better than the predictions by the model. Values between 0.15.0  NSEF are considered 

good (Helweig et al., 2002). The NSEF values for the ventilation rate and indoor air 

temperature were 0.79 and 0.68 respectively, which fell within the good range.  

The graphical data along with the statistical parameters suggest that the performance 

of the BTA model for predicting ventilation rate and indoor air temperature were very good 

and could be used to provide predicted climate parameters for the ultimate goal of predicting 

inside barn concentrations and emissions as presented in Part II of this research (Sun and 

Hoff, 2010).  
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SUMMARY AND CONCLUSIONS 

Due to the absence of a nationwide monitoring network for quantifying long-term air 

emission inventories of livestock production facilities, a building thermal analysis and air 

quality predictive (BTA-AQP) model was developed to forecast indoor climate and long-

term air quality (NH3, H2S and CO2 concentrations and emissions) for swine deep-pit 

finishing buildings. 

In this paper, comprising Part I of II, a lumped capacitance model (BTA model) was 

developed to study the transient behavior of indoor air temperature and ventilation rate 

according to the thermo-physical properties of a typical swine building, the set-point 

temperature scheme, fan staging scheme, transient outside temperature, and the heat fluxes 

from pigs and supplemental heaters. The obtained indoor air temperature and ventilation rate 

developed from the BTA model could then be combined with animal growth cycle, in-house 

manure storage level, and typical meteorological year (TMY3) data to predict indoor air 

quality and emissions based on the generalized regression neural network (GRNN-AQP 

model; Sun and Hoff, 2010). The overall purpose of this paper was to acquire accurate 

estimates of significant input parameters required for the GRNN-AQP model without relying 

on expensive field measurements.  

The performance of the BTA model for predicting ventilation rate and indoor air 

temperature was very good in terms of the statistical analysis and graphical presentations. 

The statistical results showed that: 

(1) The mean absolute error values of the VR and Tin were less than half the standard 

deviation of the measured data; 
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(2) The coefficient of mass residual values for the VR and Tin were equal to -0.03 and -0.04, 

respectively;  

(3) The index of agreement values were 0.96 and 0.92 for the VR and Tin, respectively; and 

(4) The Nash-Sutcliffe model efficiency values were all higher than 0.65. 

These good results indicated that this BTA model was capable of accurately 

predicting ventilation rate and indoor air temperature in swine deep-pit buildings.   
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Table 1. Building heat loss factor for the modeled deep-pit swine building.  

Component 
L 

(m) 
H or W 

(m) 
Area 
(m2) 

R-Values 
(oC-m2/W) 

BHLF 
(W/ oC ) 

Component 
(%) 

Ceiling/Roof/Gable 59.7 12.8  765  4.5  170  17.6  

SW1 lower  59.7 0.9  55  0.4  152  15.8  

SW1 upper (solid) 59.7 1.5  91.0  3.4  27  2.8  

SW2 lower 59.7 0.9  55  0.4  152  15.8  

SW2 upper (w/curtain) 59.7 1.5  91.0  0.6  148  15.3  

EW1 (fan end) 12.8 2.4  29.3  0.8  36  3.7  

EW1 door 0.9  2.1 2  2.0  1  0.1  

EW2 (w/curtain) 12.8 2.4  29.3  0.5  60  6.2  

EW2 door 0.9  2.1 2  2.0  1  0.1  

Perimeter 145   1.50 [a] 218  22.6  

Total Barn BHLF       965  100%  
[a] The perimeter heat loss factor is expressed in W/m-C estimated using the suggested uninsulated 
perimeter heat loss factor value from Albright (1990). 

 

Table 2. Fan type and airflow rate used for the swine deep-pit building.[a] 

Fan  
Fan Diameter 

(cm) 
Rate 

(m3/s) Modeled Rate (m3/s) 

PF (1,2) [b] 46 1.06  0.90[c]  

SF (3), TF (4) 61 2.83  2.41[c]  

TF (5) 91 4.96  4.21[c]  

TF (6, 7, 8) 122 10.38  7.06[d] 
[a] PF: Pit Fan; SF: Side Wall Fan; TF: Tunnel Fan.  
[b] Number in parenthesis indicates the fan ID number as shown in figure 1. 
[c] Modeled rate at 85% of published free-stream value. 
[d] Modeled rate at 68% of published free-stream value. 
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Table 3. Fan staging scheme for the swine deep-pit building.[a]  

Stage Fan ON 
Rate 

(m3/s) 
Activation Delta T 

(°C) 

0A  PFs-1,2 at 65% VFC 1.17  -0.3 

0B  PFs-1,2 at 100% VFC 1.81  0.6 

1A PFs-1,2; SF-3, TF-4 at 70% VFC 5.17  1.1 

1B PFs-1,2; SF-3, TF-4 at 100% VFC 6.62  1.7 

2 PFs-1,2; TF-3,5 8.42  2.2 

3  PFs-1,2; SF-3; TF-4, 5 10.83  3.3 

4 PFs-1,2; TF-5,6 13.08  4.4 

5 PFs-1,2; TF-5, 6, 7 20.14  6.1 

6 PFs-1,2; TF-4,5,6,7,8 29.60  7.8 
[a] Delta T is equal to Tin-SPT. Tin: indoor temperature. VFC: ventilation full 
capacity.  

 

Table 4.The statistical performance of the BTA model.[a]   

Variable A-Mean (S.D.) P-Mean (S.D.) MAE CMR IoA NSEF 

Ventilation rate 7.03±5.43 (m3/s) 6.83±6.66 (m3/s) 1.74 (m3/s) -0.03 0.96 0.79 

Indoor air temperature 23.8±2.8 ( oC ) 22.8±2.7 ( oC ) 1.2 ( oC ) -0.04 0.92 0.68 
[a]  A: actual data; P: Predicted data.  
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Figure1. Layout of deep-pit swine finishing building. 

 
Figure 2. The predicted vs. actual ventilation rate (VR) with outside temperature (Tout) in August, 2003. 

 
Figure 3. The predicted vs. actual indoor air temperature (Tin) with outside temperature in August, 

2003. 
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Figure 4. The predicted vs. actual ventilation rate (VR) with outside temperature in October, 2003. 

Figure 5. The predicted vs. actual indoor air temperature (Tin) with outside temperature in October, 

2003. 

 

Figure 6. The predicted vs. actual ventilation rate (VR) with outside temperature in February, 2003. 
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Figure 7. The predicted vs. actual indoor air temperature (Tin) with outside temperature in February, 

2003. 
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CHAPTER 5.  PREDICTION OF INDOOR CLIMATE AND LONG-

TERM AIR QUALITY USING THE BTA-AQP MODEL: PART II. 

OVERALL MODEL EVALUATION AND APPLICATION                  

 

    A paper published in the Transaction of the American Society of Agricultural and 

Biological Engineers1 

G. Sun and S. J. Hoff 2 

ABSTRACT 

The objective of this research was to develop a building thermal analysis and air 

quality predictive (BTA-AQP) model to predict indoor climate and long-term air quality 

(NH3, H2S and CO2 concentrations and emissions) for swine deep-pit buildings. This paper 

presents Part II of this research where the performance of the BTA-AQP model is evaluated 

using typical meteorological year (TMY3) data in predicting long-term air quality trends. 

The good model performance ratings (MAE/SD<0.5, CRM≈0; IoA≈1; and NSEF > 0.5 for 

all the predicted parameters) and the graphical presentations reveal that the BTA-AQP model 

was able to accurately forecast indoor climate and gas concentrations and emissions for 

_____________________________ 

1 Reprinted with permission of the Transactions of ASABE, 2010, 53 (3), 871-881. 

2 The authors are Gang Sun, ASABE Member Engineer, Graduate Student, Steven J. Hoff, 

ASABE Member, Professor, Department of Agricultural and Biosystems Engineering, Iowa 

State University, Ames, Iowa. Corresponding author: Steven J. Hoff, Department of 

Agricultural and Biosystems Engineering, 212 Davidson Hall, Iowa State University, Ames, 

IA 50011; phone: 515-294-6180; fax: 515-294-2255; e-mail: hoffer@iastate.edu.  
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swine deep-pit buildings. By comparing the air quality results simulated by the BTA-AQP 

model using the TMY3 data set with those from a five-year local weather data set, it was 

found that the TMY3-based predictions followed the long-term mean patterns well, which 

indicates that the TMY3 data could be used to represent the long-term expectations of source 

air quality. Future work is needed to improve the accuracy of the BTA-AQP model in terms 

of four main sources of error: (1) Uncertainties in air quality data; (2) Prediction errors of the 

BTA model; (3) Prediction errors of the AQP model, and (4) Bias errors of the TMY3 and its 

limited application.  

Keywords. Air quality predictive model, Typical meteorological year, Modeling, Long-

term mean. 

INTRODUCTION 

The overall goal of this research was to develop a building thermal analysis and air 

quality predictive (BTA-AQP) model to quantify long-term indoor climate and air quality 

(ammonia, hydrogen sulfide and carbon dioxide concentrations and emissions) for swine 

deep-pit buildings. In the companion paper forming Part I of this study (Sun and Hoff, 2010), 

it has been demonstrated, based on statistical evaluation measures and graphical 

presentations, that the developed BTA model was capable of predicting indoor climate and 

building ventilation rate in swine deep-pit buildings and could be used as accurate estimates 

of significant input variables for the AQP model.  

Part II of this study, detailed in this paper, deals with the development and evaluation 

of the BTA-AQP model under typical weather conditions (TMY3). The proposed modeling 

technology was intended to perform long-term simulation of source air quality in a rapid, 
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economical, reliable, and accurate way in order to significantly reduce expensive and time-

consuming field measurements. Therefore, this BTA-AQP model can be used for livestock 

producers to extrapolate annual air emission inventories, for the research scientists to obtain a 

diurnal and seasonal air quality database for science-based setback distance determination, 

and for state and federal regulatory agencies to make relevant environment policy decisions.  

MATERIALS AND METHODS 

Long-term Air Quality Prediction Method 

Long-term air quality predictions can be separated into three components as shown in 

figure 1: the building thermal analysis (BTA) model, the air quality predictive (AQP) model, 

and a typical meteorological year (TMY3) database (NSRDB, 2008). Specifically, a lumped 

capacitance model (BTA model) was developed to study the transient behavior of indoor air 

temperature and ventilation rate according to the thermo-physical properties of a typical Iowa 

swine building, a typical set-point temperature scheme, a typical fan staging scheme, 

transient outside temperature, and the heat fluxes from pigs and supplemental heaters. The 

obtained indoor room temperature and ventilation rate combined with animal growth cycle, 

in-house manure storage level, and typical meteorological year (TMY3) data were fed into 

the generalized regression neural network (GRNN) air quality predictive model to calculate 

hourly ammonia, hydrogen sulfide and carbon dioxide concentrations and emission rates. 

The corresponding monthly and average annual air quality values were then obtained based 

on the hourly predictions. The TMY3 data used for this research project consists of 

representative hourly solar radiation and meteorological values for a 1-year period in Des 

Moines, Iowa, about 100 kilometers away from the swine deep-pit finishing facility where 
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field data was collected (calendar year 2003 data collection). Animal growth cycle includes 

pig number and average pig weight in the room, which were used to estimate total animal 

units (AU). The total AU was obtained by dividing the total pig weight by 500 kg animal live 

weight. In-house manure storage level was considered as an additional input variable 

representing a deep-pit system for the AQP model.   

Description of field gas measurements 

Field monitoring was conducted for 15-months between January 2003 and March 

2004, with the 1-year monitoring in 2003 used in this research for model prediction 

comparison.  Details of the field monitoring and overall procedures used can be found in 

Heber et al. (2006).  Two identical deep-pit swine finishing buildings located in central Iowa 

were monitored. Each building was 60 m long and 13 m wide, which can house 960 finishing 

pigs from ~20 to 120kg. Slurry was collected in a 2.4-m-deep pit below a fully slatted floor 

and was stored for one year. Once a year in the fall, the under-floor deep pit was emptied and 

the slurry was injected to nearby cropland as a fertilizer source.  

The real-time gas concentrations and emission rates, environmental data, and building 

ventilation rate were measured by a mobile emission laboratory (MEL) that included a gas 

sampling system (GSS), a computer-based data acquisition system, gas analyzers, 

environmental instrumentation, standard gas calibration cylinders, and other supplies. Gas 

concentrations from multiple sampling locations within the swine building were quantified 

with a chemiluminescence NH3 analyzer (Model 17C, Thermal Environment Instruments, 

Franklin, MA), a pulsed fluorescence SO2 detector (Model 45C, Thermal Environment 

Instruments, Franklin, MA), and two photoacoustic infrared CO2 analyzers in the range from 
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0 to 2,000 and 10,000 ppm (Model 3600, Mine Safety Appliances CO., Pittsburg, PA). A 

three-way solenoid system was used to automatically switch between 12 measuring locations 

with 10-min sampling intervals and sequentially delivered gas from each location to the gas 

analyzers. Therefore, gas samples were taken during twelve, 120-min measurement cycles 

per day. Details of the monitoring method and QA/QC can be found in Heber et al. (2006). 

Climate parameters (temperature, relative humidity, and static pressure) and total building 

ventilation rate were also simultaneously monitored. Gas emission rates were determined by 

multiplying fan airflow rate by representative gas concentration differences between inlet and 

outlet for all fans operating at any given time. The maximum estimated uncertainty in 

ventilation rate and gas concentrations were ± 7.2 % (Hoff et al., 2009) and ± 5.0 %, 

respectively. These individual uncertainties resulted in an average uncertainty in emission 

rate of about ± 9.0 %.  

Air quality database and initial data analysis 

The BTA-AQP model development was based on source air quality measurements 

which included real-time gas concentrations and emission rates, indoor and outdoor 

environmental data (indoor, inlet and exhaust temperature and relative humidity, outdoor 

temperature, relative humidity, wind speed, wind direction, solar energy and barometric 

pressure), pig size and density (animal units), and building ventilation rate. These measured 

data can be used as a fundamental database to help develop air quality predictive models and 

evaluate model forecasting performance. Thus, data quality is of paramount importance. 

Heber et al. (2006) pointed out that more efforts should be made to maximize confidence, 

credibility, and consistency of measured data for obtaining a high quality database. In this 
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study, the established principles of quality assurance and quality control were applied 

throughout the gas sample collection and great emphasis was placed on data quality. 

However, the final data set still presented three main types of problems: general errors, 

outliers, and missing observations. The general errors are wrongly recorded observations, 

probably due to calibration and other reasons, which could result in biased measurements. A 

70% valid data policy (Heber et al., 2006) was used to calculate hourly, daily, and monthly 

averages to avoid those errors. The outliers are extreme observations which do not appear to 

be consistent with the rest of the data. Outliers arise for several reasons and can cause severe 

problems. Hoff et al. (2006) reported that the H2S emissions measured during the 

independent slurry removal event would increase by an average of 62 times relative to the 

H2S emission levels before the removal. Thus, air quality data during the slurry agitation 

process should be considered as outliers and removed from the database. The missing 

observations are due to a variety of reasons, such as lost samples, malfunctioning instruments 

and sensors, and challenging weather (lightning), to name a few. A majority of air quality 

missing data in this research belonged to Missing Not at Random (MNAR). The best way to 

handle MNAR data is to develop a regression model to estimate missing values (Dunning 

and Freedman, 2008). In a word, initial data analysis must be applied to ensure database 

quality.  

Another important issue for an air quality database is the sample representativeness 

and completeness. Representative and complete sample measurements should fully 

characterize long-term (at least one year) air emission profiles and corresponding emission 

factors since gas concentrations and emissions vary with time of day, season, building 
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characteristics, ventilation rate, animal size and density, manure handling system, and 

weather conditions (Jacobson et al., 2005).  

Typical meteorological year  

Selecting appropriate representative meteorological data is vitally important to 

accurately predict indoor climate and long-term air quality levels. Normally, a representative 

meteorological data consists of a multi-year and long-term average measured data series 

which would represent a year of prevailing weather conditions for a specific location. It is 

noted that the use of typical climatic parameters instead of multiple-year data can reduce a 

great deal of time and computation in computer simulation and facilitate performance 

comparisons of different system types, configurations, and locations. Therefore, typical 

weather data has been extensively used for building energy simulation and solar energy 

analysis to assess the expected heating and cooling costs for the design of industrial and 

residential buildings. Currently, the most prevalent weather representations are test reference 

year (TRY), typical meteorological year (TMY3), and weather year for energy calculations 

(WYEC2). These data sets are used for different simulation purposes (Pedersen, 2007): TRY 

is suited to short-term energy predictions due to the representation of weather characteristics; 

while TMY3 and WYEC2 are most suitable for long-term energy estimations because the 

data represents long-term weather features. Yang et al. (2008) investigated the energy 

simulation results for office buildings in the five main climate zones of China and compared 

the results using TMY2 with those using multi-year data (1971-2000). It was found that the 

TMY2 was able to predict monthly load and energy use within 5.4% of the long-term mean. 

Based on these results, it was concluded that the TMY3 data was an acceptable 

meteorological data set to be used for this current study.  
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TMY3 is composed of typical hourly meteorological values at a specific location over 

a long period of time (30 years). For each TMY3 dataset, 12 typical months are selected 

using statistics (Sandia method; NSRDB, 2008) determined by five important parameters: 

global radiation on a horizontal surface, direct normal radiation, dry bulb and dew point 

temperatures, and wind speed (NSRDB, 2008). These important parameters were chosen 

because solar radiation determines the heat gain; dry bulb temperature and wind speed 

determine heat loss by convection; and dew point temperature is an absolute measure of 

humidity, which determines latent energy. The 12 judged most typical months were picked 

by the Sandia approach to form a complete year. Due to adjacent TMY3 months from 

different years, linear interpolation was performed to smooth the gap for 6 hours on each side 

of adjacent months. In each TMY3 month, mean values of the TMY3 elements are the 

closest to the averages of the elements for multiple years. Thus, the TMY3 can represent 

long-term average climatic conditions.   

Air quality model  

Modeling source air quality in a swine deep-pit building is a complicated dynamic 

system with many nonlinear governing relationships. Moreover, there still exist some 

circumstances of gaseous emissions that can not be explained with our current limited 

scientific understanding (Sun et al., 2008). Therefore, a black-box modeling approach using 

artificial neural networks (ANN) would be a potential method for handling air quality 

predictions. Black-box models do not need detailed prior knowledge of the structure and 

different interactions that exist between important variables. Meanwhile, their learning 

abilities make the models adaptive to system changes. Recently, there has been an increasing 

amount of applications of ANN models in the field of atmospheric pollution forecasting 
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(Hooyberghs et al., 2005; Grivas et al., 2006; Sousa et al., 2007; Sun et al., 2008). The results 

show that ANN black-box models are able to learn nonlinear relationships with limited 

knowledge about the process structure.  

Sun et al. (2008) employed backpropagation neural network (BPNN) and generalized 

regression neural network (GRNN) techniques to model gas and PM10 concentrations and 

emissions generated and emitted from a swine deep-pit finishing building. Note that GRNN 

is a term to represent the Nadaraya-Watson kernel regression used in artificial neural 

networks (ANN). The obtained BPNN and GRNN predictions were in good agreement with 

field measurements, with coefficient of determination (R2) values between 81.2% and 99.5% 

and very low values of systemic performance indexes. The good results indicated that ANN 

technologies were capable of accurately modeling source air quality within and from these 

livestock production facilities. Furthermore, it was found that the process of constructing, 

training, and simulating the BP network models was very complicated. The effective way of 

obtaining good BP modeling results was to use some trial-and-error methods and thoroughly 

understand the theory of backpropagation. Conversely, for the GRNN models, there was only 

one parameter (the smoothing factor) that needed to be adjusted experimentally. Additionally, 

the GRNN performance was not sensitive to randomly assigned initial values and the GRNN 

approach did not require an iterative training procedure as in the backpropagation method. 

Other significant characteristics of the GRNN in comparison to the BPNN were the excellent 

approximation ability, fast training time, and exceptional stability during the prediction stage. 

Thus, it was recommended in Sun et al. (2008) that a GRNN be used for source air quality 

modeling.  
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In this current research, a GRNN model was developed to explore the complex and 

highly nonlinear relationships between air pollutants and many input variables on the diurnal 

and seasonal NH3, H2S, and CO2 levels and emissions. This developed air quality model was 

then used to forecast long-term gas concentrations and emissions from a typical swine deep-

pit building associated with five significant input elements: outdoor temperature obtained 

from a specific year or the TMY3 data; a typical swine growth cycle; and ventilation rate and 

indoor air temperature predicted by the transient BTA model (Sun and Hoff, 2010). It is 

noted that in the midwestern United States, it is common practice to store manure in deep 

holding concrete pits for one calendar year. This year-long slurry storage system is also a 

concentrated source for gas concentrations and emissions (Hoff et al., 2006). Therefore, in-

house manure storage level was considered as an additional factor representing the deep-pit 

system for the AQP model. The manure depth changes with swine production time, from 0.3 

m (empty pit) to 2.1 m (full pit) throughout the year. The full and empty events generally 

occur before and after slurry removal which is typically conducted once per year in the fall 

after harvest (i.e. October).  

RESULTS AND DISCUSSION 

In this section, a comparison was made between the predicted and actual gas 

concentrations and emissions in 2003 to evaluate the accuracy of the BTA-AQP model 

estimates. In addition, the simulated results using the TMY3 data set and a five-year mean 

weather data set were compared to validate the assumption that the TMY3 could accurately 

represent long-term source air quality levels. Finally, overall prediction errors of the BTA-

AQP model were analyzed and future work is identified for improving the model. 
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BAT-AQP Model Evaluation using 2003 weather data 

Boxplots were used to provide graphical information on the median, the spread, the 

skewness, and potential outliers of actual vs. predicted data sets. The primary purpose was to 

evaluate early the data before conducting in-depth statistical analysis. The comparative 

boxplots of hourly actual vs. predicted NH3, H2S, and CO2 concentrations for each month in 

2003, are shown in figure 2. It was observed that the field collected and predicted gas 

concentrations during the majority of the time had similar median, spread, and skewness, 

which indicated that those comparative data sets were generally distributed in a similar way; 

an indication of good model performance. However, significant differences between the two 

data sets in some months can be seen, e.g., gas (NH3, H2S and CO2) concentration predictions 

in December, NH3 concentration predictions in April, H2S concentration predictions in July, 

and CO2 concentration predictions in February. The poor gas concentration predictions in 

December were probably due to two growth cycles appearing in the same month, i.e., mature 

pigs (120 kg) were gradually shipped to market in early December and smaller pigs (~20kg) 

entered at the end of December. During these times, air quality levels and indoor climate 

were highly influenced by the management of the swine barn and workers’ involvement, 

which were not considered as a factor in the development of the BTA-AQP model. The poor 

NH3 concentration predictions in April and CO2 concentration predictions in February may 

be attributed to the relatively inaccurate ventilation rate estimations by the BTA model, 

which should be improved in future work (figure 5). The poor H2S concentration predictions 

in July could partially be explained by the fact that some important variables were excluded 

in the H2S predictive model, such as manure characteristics and surface temperature. The 

manure temperature may be an important variable affecting H2S release in hot weather. 
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Moreover, in early July, some underestimated ventilation rates were observed at the 

beginning of a new swine growth cycle resulting in a corresponding higher predicted H2S 

concentration.  

The comparative boxplots of hourly actual vs. predicted NH3, H2S, and CO2 

emissions for each month in 2003, are illustrated in figure 3. Overall, the median, spread and 

skewness of the field collected and predicted gas emissions were similar except for February, 

April and December.  Again, the poor forecasting performance in February and April were 

mainly due to the fact that the relatively inaccurate ventilation rate predictions, in comparison 

to other monthly fitted values, led to greater error in gas emission calculation. For the poor 

predictions in December, the reason could be the AQP model which was not able to estimate 

gas concentrations resulting from barn management and pig activity as previously outlined.  

Furthermore, it was found that the BTA-AQP model with an additional variable, in-

house manure level, could largely improve H2S prediction accuracy. When in-house manure 

level was incorporated into the model, the overall average absolute error 

(AE=100%*│predicted-measured│/measured) dropped to 11% from an original 24% 

without manure depth considered. It should be noted that the data points which were outside 

the spread, as shown in figures 2 and 3, can be considered as potential outliers.  

Table 1 summarizes the statistical performance of the BTA-AQP model for predicting 

hourly gas concentrations and emissions in 2003.  The following statistical measures were 

employed to ensure the quality and reliability of the BTA-AQP model predictions.  A more 

detailed description is given in Sun and Hoff (2010).   
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Where N is the total number of observations, Pi is the predicted value of the ith observation, 

Oi is the observed value of the ith observation, and O  is the mean of the observed values.   

As shown in table 1, the annual predicted averages and standard deviations (SD) of 

gas concentrations and emissions were in very good agreement with the actual 

measurements. For all the parameters, the MAE/SD ratios were less than 0.5, indicating that 

the BTA-AQP models’ performance for the residual variations was very good. The CMR 

values approximated to 0, meaning that there was no systematic under- or over- prediction by 

the BTA-AQP model. The IoA values were close to 1, implying excellent agreement between 

the observed and predicted values. The NSEF values were greater than 0.5, indicating that 

the simulated data matched the measured data very well. Therefore, the BTA-AQP model 
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was able to accurately predict indoor climate and gas concentrations and emissions from the 

monitored swine deep-pit building.  

 

Long-term NH3, H2S, and CO2 concentrations and emissions 

A comparison was made between the TMY3 data set and the long-term mean weather 

data and the corresponding air quality predicted by the BTA-AQP model in order to 

investigate how the air quality values using a TMY3 data set followed actual long-term 

means (figures 4 to 7). The long-term period of time used in this study was selected from 

2004 to 2008 due to the availability of a complete online weather data set in the region near 

the monitored swine facility. Hourly predictions were made using on-site weather data for 

each year (2004-2008, inclusive), with the monthly average minimum and maximum 

predictions determined.  The maximum and minimum designations were determined by 

month and not year, e.g., the predicted minimum in January and the predicted minimum in 

February could have occurred in different years.  The Des Moines International Airport was 

chosen as the TMY3 site, which is about 100 kilometers away from the swine facility used 

for field data collection, since it is the closest Class I site in the Iowa TMY3 data set. Class I 

stations are those with the lowest uncertainty in weather information. In addition to the 

predictions made with on-site weather data from 2004-2008 and the predictions using TMY3 

weather data, the actual measured monthly averages from 2003 are given for completeness 

(figures 4 to 7). 

Figure 4 illustrates the relationships among the long-term mean (i.e. on-site 5-year 

average data), the TMY3 generated values and 2003 actual field measurements for outside 

temperature. The minimum and maximum dashed lines represent the minimum and 
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maximum ranges of the outside temperature during the selected 5-year period (2004-2008). It 

was observed that the TMY3 data and 2003 field measurements fell within the min-max 

range but some noticeable differences between the TMY3 and the long-term means were 

evident especially in February, May, August, and December. The overall absolute error 

between those two data sets was 16.3% throughout the year. Also, the differences between 

2003 field data and the long-term means can be seen in February, March, August, and 

September.  

Figures 5 and 6 summarize monthly ventilation rate and indoor temperature estimated 

by the BTA model (Sun and Hoff, 2010) using the TMY3 data set and the on-site 2004-2008 

weather data, respectively. The 2003 field measurements and the minimum and maximum 

ranges of the predicted ventilation rate and indoor temperature during the selected 5-year 

period were shown in figures 5 and 6 as well. The monthly ventilation rate predictions based 

on TMY3 data were higher than the long-term means during warm weather but closely 

matched the long-term means during cold weather conditions (figure 5). This probably was 

caused by the discrepancy in outdoor temperature between the TMY3 data set and the 2004-

2008 weather data, i.e., relatively higher outdoor temperature using the TMY3 in the summer 

resulted in a higher estimated ventilation rate. Conversely, the predicted indoor temperatures 

were in good agreement with the long-term means (figure 6). The overall absolute error was 

less than 2.0%. Furthermore, the 2003 field measured ventilation rates fell into the ranges of 

min-max expect for January, February, and April while for all 12 months of the year, the 

2003 field indoor temperatures were slightly higher than TMY3 predictions and long-term 

means. These differences between the 2003 actual data and TMY3 predictions could be due 

to different outside weather conditions and the forecasting error of the BTA model.  
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The monthly air quality predictions using the TMY3 data were compared with the 

averaged results of the 5-year period and the 2003 field measurements as illustrated in figure 

7. It was found that: (1) the NH3, H2S, and CO2 concentrations and emissions obtained by the 

TMY3 data set and the long-term air quality means were between the minimum and 

maximum values of the five individual year simulations, e.g., each of the five predicted data 

sets used one year weather data from 2004 to 2008; (2) the TMY3 predictions followed the 

long-term means well; and (3) although the majority of the 2003 field measurements were 

within the ranges of min-max of the predictions using on-site 2004-2008 weather data, some 

distinct differences between the actual data and the TMY3 predictions can be observed in 

figure 7, e.g., NH3 emissions in January and April, H2S concentrations in December, H2S 

emissions in April, July and December, CO2 concentrations in December, and CO2 emissions 

in January, March and April. Again, these distinct differences were mainly attributed to 

different outside weather conditions and the forecasting error of the BTA model.  

It can be further seen that the TMY3 values were within 6.0%, 7.0%, and 5.1% of the 

mean weather year (2004-2008) annual total for the NH3, H2S, and CO2 concentrations 

respectively and 2.1%, 3.5%, and 2.6% of the mean weather year (2004-2008) annual total 

for the NH3, H2S, and CO2 emissions respectively. These good agreements between the 

TMY3 data set predictions and the long-term means indicate that TMY3 data can be used in 

performing accurate long-term simulations of source air quality.  

Table 2 gives the absolute errors between annual averaged predictions using the 

TMY3 data and the predictions using a single year weather data from 2004-2008. No major 

differences were observed between annual TMY3 predictions and any one single year. The 

minimum AE (2.0%) occurred with NH3 emissions in 2004 while the maximum AE (11.1%) 
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appeared in H2S concentration in the same year, which suggests that annual gas 

concentrations and emissions can be obtained by a TMY3 data set instead of an individual 

year weather data without resulting in large errors. These results show that a Class I TMY3 

data set can be employed to evaluate annual air quality levels within an acceptable accuracy, 

especially for the livestock producers and environment researchers who might not be able to 

acquire complete and Class I level local weather information near a particular animal facility.  

However, it should be noted that the TMY3 data is not appropriate to estimate peak values 

for a particulate period of time.  

Overall model error analysis and future work 

The developed BTA-AQP model and TMY3 data can be used for accurately 

predicting indoor climate and long-term gas concentrations and emissions, but improvement 

in its accuracy should be made according to the following sources of error:  

(1) Uncertainties in source air quality data. Since the source air quality data is important to 

develop the BTA-AQP model and evaluate the model predictive performance, more efforts 

should be made to maximize confidence, credibility, and consistency of the measured data; 

(2) Prediction errors of the BTA model. As the number of assumptions in a model increases, 

the accuracy and relevance of the model diminishes. For example, the swine heat production 

data used in this research was from ASABE standards established decades ago. With 

improved genetics and feed management and diets, swine heat production (HP) has changed. 

Brown-Brandl el al. (2004) reported that the lean percent increase of 1.55% in the last 10 

years has caused an increase in HP by approximately 15%. Future work is needed to collect 

new swine HP data from the latest literature; 
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(3) Prediction errors of the AQP model. The accuracy of the artificial neural network AQP 

model depends on the completeness of the data set and availability of various model input 

factors that significantly affect source air quality. The complete emission profiles should 

cover all possible swine production stages for a long period of time. In this study, one-year 

source air quality data was used that might not capture all of the relationships between 

gaseous concentrations and emissions and these input factors. More gas measurements are 

needed to expand the size of the data set. For the model input parameters, more important 

factors beyond indoor and outdoor temperatures, ventilation rate, swine growth cycle, and in-

house manure storage level, should be considered and incorporated in the model.  Added 

variables such as feed nutrient content, management practices, and manure temperature 

might prove to be important input variables. When pigs grow, the amount and composition of 

the feed intake change, as do the amount and composition of the manure. Thus, the amount 

of gas generation tends to increase. However, sharp decreases in the amount of daily nitrogen 

excretion were found when diet formulation changes were implemented. This adjustment 

process alleviates the amount of nitrogen in the manure converted to ammonia and other 

gases. Swine management practices are also vital factors to determine air quality levels. 

Good management practices can maintain proper environment requirements for the animals 

and decrease daily air emissions. Manure temperature might be a factor that may directly 

influence H2S release; and, 

(4) Bias error of the TMY3 and its limited application. Uncertainty values exist in the 

meteorological elements of the TMY3 data set (NSRDB, 2008). Additionally, TMY3 data is 

suitable for simulating solar energy conversion systems and building systems since each 

TMY3 month was selected according to five elements (global horizontal radiation, direct 
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normal radiation, dry bulb and dew point temperatures, and wind speed) which are the most 

important for solar energy and building systems. No literature has shown that the TMY3 data 

is suited to air quality predictions as well. Therefore, further research may focus on the 

development of new TMY data that is determined to be more appropriate for air quality 

simulations.  

SUMMARY AND CONCLUSIONS 

The over-arching goal of this study was to develop a building thermal analysis and air 

quality predictive (BTA-AQP) model to quantify indoor climate and long-term air quality 

(ammonia, hydrogen sulfide and carbon dioxide concentrations and emissions) from swine 

deep-pit buildings.  

A comparison was made between the predicted and actual gas concentrations and 

emissions collected in 2003 in order to evaluate the accuracy of the BTA-AQP model 

estimates. It can be observed from the comparative boxplots that the median, spread and 

skewness of the field collected and predicted gas concentrations and emissions were similar. 

Poorer predictions in some of the months could be due to the relatively inaccurate ventilation 

rate predictions by the BTA model and the AQP model’s inability in estimating gas 

concentrations resulting from barn management and pig activity. For all the predicted 

parameters, the MAE/SD ratios were less than 0.5; the CRM values approximated to 0; the 

IoA values were close to 1; and the NSEF values were greater than 0.5. These good model 

performance ratings indicated that the BTA-AQP model was able to accurately predict indoor 

climate and gas concentrations and emissions from swine deep-pit buildings.  
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The monthly air quality values estimated by the BTA-AQP model using TMY3 data 

were compared with those using 5-year on-site weather data. It was observed that the 

predictions using the TMY3 data followed the long-term mean patterns very well, which 

suggests that the TMY3 data can be used in performing accurate long-term simulations of 

source air quality. In addition, annual gas concentrations and emissions can be obtained using 

TMY3 data instead of an individual year weather data without resulting in large errors. These 

results demonstrate that a convenient approach to evaluate annual air quality levels within an 

acceptable accuracy is possible without long-term expensive on-site measurements. 

However, it should be noted that the TMY3 data is not appropriate to estimate peak values 

for a particulate period of time. 

Improvement in the BTA-AQP model accuracy should be made according to four 

main sources of error: Uncertainties in air quality data; Prediction errors of the BTA model; 

Prediction errors of the AQP model, and Bias errors of the TMY3 data and its limited 

application.  
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Table 1. Statistical performance of the BTA-AQP models.[a] 

Parameter Actual ± S.D. Predicted ± S.D. MAE CMR IoA NSEF 

NH3Con (ppm) 19.9 ± 6.8 20.5 ± 6.7 0.9 0.028  0.99  0.97  

NH3ER (kg d-1) 6.86 ± 2.04 6.38 ± 1.78 0.14 0.005  0.99  0.99  

H2SCon (ppb) 553 ± 260 560 ± 254 57 0.013  0.97  0.88  

H2SER (kg d-1) 0.473 ± 0.295 0.463 ± 0.295 0.056 -0.022  0.98  0.93  

CO2Con (ppm) 2636 ± 1618 2674 ± 1601 68 0.015  0.99  0.99  

CO2ER (kg d-1) 1226 ± 280 1143 ± 210 116 -0.068  0.83  0.52  
[a] Con and ER indicate the concentrations and emissions, respectively.  

 

Table 2. Comparison of predicted air quality using the TMY3 and a single year.[a]  

Year NH3Con NH3ER H2SCon H2SER CO2Con CO2ER 

2004 8.3% 2.0% 10.4% 3.5% 6.5% 3.1% 
2005 6.5% 4.0% 7.1% 6.0% 5.4% 4.2% 
2006 5.2% 3.7% 8.9% 7.1% 4.3% 6.0% 
2007 5.6% 2.2% 7.3% 4.7% 5.5% 3.5% 
2008 8.7% 4.6% 7.9% 6.7% 8.0% 4.8% 

[a] Con and ER indicate concentrations and emissions, respectively. 
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Figure 1. Scheme of the BTA-GRNN-AQP model (Tin: indoor temperature (oC); VR: ventilation rate 

(m3s-1); AU: animal unit; Tout: outside temperature (oC), Level: in-house manure storage level (m)). 
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Figure 2. Actual vs. predicted hourly NH3 (a), H2S (b), and CO2 (c) concentrations in 2003 (1: Actual; 2: 

Predicted; circles: Potential outliers). 
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Figure 3. Actual vs. predicted hourly NH3 (a), H2S (b), and CO2 (c) emissions in 2003 (1: Actual; 2: 

Predicted; circles: Potential outliers). 

 

 

Figure 4. TMY3 vs. long-term means and 2003 field data for the outside temperature.   
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Figure 5. TMY3 predictions vs. long-term means and 2003 field data for the estimated ventilation rate. 

 

Figure 6. TMY3 predictions vs. long-term means and 2003 field data for the estimated indoor 

temperature. 
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Figure 7. TMY3 predictions vs. long-term means and 2003 field data for the monthly air quality values  

(NH3, H2S and CO2 concentrations and emissions).  
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CHAPTER 6.  SIMULATED IMPACTS OF DIFFERENT HUSBANDRY 

MANAGEMENT PRACTICES AND GEOGRAPHICAL AREA ON 

LONG-TERM AIR QUALITY                   

 

A paper to be submitted to the Transaction of the American Society of Agricultural 

and Biological Engineers  

G. Sun and S. J. Hoff 

ABSTRACT 

Simulated impacts of different husbandry management practices and geographical 

areas on long-term air quality have been studied using our proposed BTA-AQP (building 

thermal analysis-air quality predictive) model and statistical analysis methods with four 

scenarios: building heat loss factor (BHLF) scenario, barn set-point temperature (SPT) 

scenario, animal production schedule (APS) scenario, and geographical area (GA) scenario. 

The purpose was to help animal producers and environmental researchers understand the 

parameters influencing air quality and find a simple, inexpensive and effective abatement 

strategy to alleviate airborne pollution from livestock production facilities instead of 

numerous high-cost gas/odor control technologies. The predicted results indicated that (1) the 

BHLF scenario had a negligible effect on the source air quality; (2) the new SPT scenario 

was capable of reducing indoor gas levels during hot weather conditions while the 

corresponding gas emissions did not increase substantially. Thus, current barn set-point 

temperature strategies provide one method to decrease the risk of relatively high gas 

concentrations (especially H2S concentration) inside the building and protect the health of 
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workers and animals; and (3) the new APS scenario had no significant effect on mean annual 

gas concentrations but could lead to a moderate decrease in mean annual gas emissions. Also, 

it was found that the GA factor, for the swine deep-pit barns with similar building 

characteristics and management practices, might have a large impact on indoor gas 

concentrations but very little effect on mean annual gas emissions. 

Keywords.  Simulated Impacts, Air Quality, Husbandry management practices, 

Geographical areas, Livestock. 

INTRODUCTION 

Source airborne pollutants within and from livestock production facilities are affected 

by barn characteristics, outdoor weather conditions, indoor climate, diurnal and seasonal 

effects, animal growth cycles, in-house storage levels, and barn management. Studying the 

impacts of these factors on air quality is very important for helping environmental 

researchers and animal producers understand the parameters influencing livestock air quality 

so that they might make wise decisions regarding the selection and implementation of odor 

and gas mitigation techniques.  

Most recent studies have investigated the effects of several parameters, such as 

sampling sites, time of day, season, ambient air temperature, building ventilation rate, and 

flooring systems, on the odor and gas concentrations and emissions (OGCERs) for various 

animal facilities (Aarnink et al., 1995; Groot Koerkamp et al., 1998; Zhu et al., 1999; Ni et 

al., 2002; Gay et al., 2003; Jacobson et al., 2005; Guo et al., 2006; Hoff et al., 2006; Sun et 

al., 2008b, 2010c); few, however, have explored how husbandry management practices (e.g., 

the thermal insulation characteristic of an animal building, barn set-point temperature 



 

 

126

 

scheme, and animal production schedule) and geographical factors impact long-term source 

air quality. It is reasonable to hypothesize that enforcing different animal management 

policies may be a simple, inexpensive and effective abatement strategy to reduce airborne 

pollution, although no evidence to support or refute this hypothesis was found in the 

literature.   

Absence of evidence in the literature might be attributed to several factors. Firstly, 

testing the hypothesis is almost impossible in the field since actual animal buildings are not 

currently configured as laboratory testing rooms allowing changes to barn operational 

parameters for a period of time (e.g., from a couple of months to a year). Secondly, a 

laboratory testing room is inappropriate for use in hypothesis validation because it misses 

complexities in the real environment of animal buildings. Thirdly, conducting direct and 

long-term airborne contaminant measurements in different geographical areas is not practical 

due to complex experiment design, expensive monitoring system requirements, and high 

personal and management overhead. 

On the contrary, the use of air quality predictive models could facilitate this type of 

hypothesis testing far more rapidly and economically than by field/lab experiment methods. 

Therefore, the objectives of this research were to (1) apply a validated building thermal 

analysis and air quality predictive (BTA-AQP) model (Sun and Hoff, 2010a and 2010b) to 

different husbandry management practices and geographical area scenarios, (2) compare the 

corresponding air quality profiles with those under normal barn management conditions, and 

(3) assess the simulated impacts of the new scenarios on long-term air quality (ammonia, 

hydrogen sulfide and carbon dioxide concentrations and emissions). 
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MATERIALS AND METHODS 

Typical deep-pit swine building description 

A mechanically ventilated deep-pit (2.4 m) swine finishing building, located in 

central Iowa, was used for this study. As shown in figure 1, this typical swine building was 

60 m long and 13 m wide, designed to house 960 finishing pigs from ~20 to 120kg. Gas 

concentrations from an inside room site, wall and pit exhaust, and an outside location 

(background) were monitored via a mobile emission laboratory which contained a gas 

sampling system (GSS), a computer-based data acquisition system, gas analyzers, 

environmental instrumentation, standard gas calibration cylinders, and other supplies. A 

three-way solenoid system was used to automatically switch between 12 measuring locations 

with 10-min sampling intervals and sequentially delivered gas from each location to the gas 

analyzers. Thus, gas samples were taken during twelve, 120-min measurement cycles per 

day. Also, pertinent environment parameters (temperature, relative humidity, and static 

pressure) and total building ventilation rate were simultaneously measured.  Data was stored 

on a 1-minute averaged basis for a total of 15-months, 12-months of which were used for 

previous model development (Sun and Hoff, 2010a and 2010b).  

During cold-to-mild seasons, pit fans 1 and 2, side wall fan 3, and tunnel fans 4 and 5 

(figure 1) combined with a series of 10 rectangular center-ceiling inlets were used to 

distribute fresh air and remove moisture, odors and aerosols within the building; while all the 

fans (except side wall fan 3) and an adjustable curtain at the opposing end wall were used to 

maintain suitable indoor environment under warm and hot weather. The total ventilation rate 

was obtained by recording the on/off status of four single-speed tunnel fans (fans 5, 6, 7, and 
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8) and the on/off status along with fan rpm levels for all variable speed fans (fans 1,2,3, and 

4). The ventilation rate of each fan was measured in situ using a FANS unit (Gates et al., 

2004) where calibration equations were developed as a function of static pressure and fan 

rpm levels for variable speed fans. Gas emission rates were determined by multiplying fan 

airflow rate by representative gas concentration differences between inlet and outlet for all 

fans operating at any given time. The maximum estimated uncertainty in ventilation rate and 

gas concentrations were ±7.2 % (Hoff et al., 2009) and ±5.0 %, respectively. These 

individual uncertainties led to an average uncertainty in emission rate of about ±9.0 %.  

BTA-AQP model description 

The building thermal analysis and air quality predictive (BTA-AQP) model 

developed by Sun and Hoff (2010a, 2010b) was utilized in this research to predict source air 

quality from swine deep-pit buildings with different animal management practices and 

geographical area scenarios.   

The BTA model is capable of acquiring the transient behavior of ventilation rate and 

indoor air temperature according to the thermo-physical properties of a typical swine deep-pit 

building, set-point temperature scheme, fan staging scheme, transient outside temperature, 

and the heat fluxes from pigs and supplemental heaters. The obtained ventilation rate and 

resulting indoor air temperature combined with animal growth cycle, in-house manure 

storage level, and outdoor weather data were fed into the AQP model (Sun et al., 2008a) to 

calculate hourly ammonia, hydrogen sulfide and carbon dioxide concentrations and emission 

rates. The good model performance ratings and the graphical interpretations presented in Sun 
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and Hoff (2010a, 2010b) indicate that the BTA-AQP model is able to accurately predict 

indoor climate and air quality for the swine deep-pit building. 

To better compare air quality results among different scenarios, a typical 

meteorological year (TMY3) database (NSRDB, 2008) was used instead of the single 

weather year data used for the field measurements that were ultimately used to develop the 

BTA-AQP model. TMY3 consists of a multi-year and long-term (30 years) average 

measured data series which represents a year of prevailing weather conditions for a specific 

location. The Des Moines (DSM) International Airport was selected as the TMY3 site in this 

research for the normal barn management scenario. This TMY3 site is about 100 kilometers 

away from the swine facility used for field data collection and was the closest Class I site 

(Class I site has the lowest uncertainty in weather information) in the Iowa TMY3 dataset. 

Moreover, the Dallas TMY3 weather data was employed to compute long-term air quality in 

Texas, used to test the geographical area (GA) factor component of this research.  

Accuracy evaluation of simulated results 

Due to lack of field measurements, evaluating the accuracy of model simulations 

under different scenarios is a challenge to model users. Regarding the ANN (artificial neural 

network)-based AQP model (Sun et al., 2008a), two important aspects including proper 

model training methods and high-quality training dataset, might be specially considered 

during the model development in order to gain reliable predicted values. In other words, 

these two aspects would have the model outputs approximate target values given new data 

that are not in the training set. Proper model training methods were presented in detail in Sun 

et al. (2008a), e.g., how to determine optimum values for the number of model layers and 
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neurons, type of activation functions and training algorithms, learning rates, momentum, and 

smoothing factors; while high-quality training datasets should possess three essential traits: a 

sufficiently large sample number, a representative subset, and complete information related 

to the target (Haykin, 1999).  

The sufficient number of training samples for a given size neural network can be 

computed from the following:   

)1/(*))1/(log( awanN                                                                                                   (1) 

where 

N = the number of training samples 

n = the number of neurons in the network  

a = the desired accuracy on the test set 

w = the number of weights for the network  

In this research, n, a, and w values were equal to 45, 90%, and 200, respectively. Thus, the 

minimum required sufficient number of training samples would be 5306. This study used a 

total of 7330 samples as the training dataset, which indicates that the AQP model contained 

sufficient information pertaining to livestock air quality. Furthermore, these training samples 

characterized nearly all cases of hourly air emission profiles and corresponding emission 

factors throughout the year and presented typical variation patterns of the air emissions and 

factors under different weather conditions, such as cold, mild, and warm weather. 

Meanwhile, the collected training data covered a wide range of outside temperatures from as 

low as -24 oC to as high as 36 oC and included two complete animal growth cycles, one was 

from small pigs (~20kg) entering the room in early February, 2003 to larger pigs (~120kg) 
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shipped to market at the end of June, 2003; the other was between the middle of July, 2003 

(~20kg) and early December, 2003 (~120kg). The pigs of different ages experiencing cold-

mild-warm seasons resulted in a range of set-point temperatures, fan staging schemes, and 

animal heat fluxes and supplemental heaters and thus influenced the indoor climate (e.g., 

ventilation rate and inside temperature) and gas concentrations and emissions. In general, 

these cases expand the representative samples in the training dataset and provide a solid basis 

for model generalization. 

In addition to the above described two important aspects, another issue dealing with 

good model generalization is that a neural network performs very well using new testing data 

which are within the range of the training dataset. In other words, to ensure the accuracy of 

predictions, the cases from a new scenario should resemble known training data to a large 

extent. If the new testing data falls within the range of the training samples or are more or 

less surrounded by neighboring training cases, the predicted values by the AQP model are 

trustworthy; whereas, if new cases fall far outside the range of the training data, the 

predictions are scarcely reliable.  

With the help of graphical presentations, a 3-D scatterplot (figure 2) illustrates the 

relationship between the Dallas site GA scenario vs. the training dataset to demonstrate 

whether the simulated Dallas results by the AQP model were dependable and therefore 

acceptable.  The Dallas site data was selected as an example due to the fact that the 

difference between the Dallas cases and the training dataset was the largest among all the 

scenarios investigated in this research. Also, it should be pointed out that the air quality 

dataset has a five-dimensional input space so that it obviously could not be represented in a 
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3-D plot. This problem was solved using principle component analysis (PCA) technology, 

which is able to reduce the data dimensionality and transform a number of correlated 

variables into a smaller number of uncorrelated variables. The PCA results revealed that the 

fourth and fifth principle components (PC4 and PC5) were only responsible for about 3.76% 

and 5.44% of the total variance respectively, certainly the negligible factors; while the first 

three PCs (PC1~PC3) were able to explain more than 90% of the total variability, which 

suggested that it would be adequate to describe air quality data using the first three PCs 

(PC1~PC3 shown in figure 2) instead of the five original features.  

As can be seen from the different viewing angles in figure 2, a majority of the data 

from the GA scenario (Dallas, TX) fell into the range of the training data and some cases 

were encircled by nearby training samples.  Only a few of the Dallas site data were far 

removed from the training cases. To avoid viewing illusion that these two datasets looked 

closer than actual, the Bhattacharyya distance (B-distance) was employed to measure the 

similarity of their statistical distributions and determine the relative closeness of the two 

sample sets (Bhattacharyya, 1943). The closer B-distance is to 0, the more similar the two 

datasets become. The Bhattacharyya distance coefficient was equal to 0.1643 and indicated 

that the Dallas site data and the training samples seemed to overlap. Thus, it can be 

concluded that the new cases from the Dallas site scenario could bear much resemblance to 

the training data and the corresponding predictions by the AQP model would be reliable. 

Likewise, the new cases from the other scenarios (BHLF, SPT, APS) resembled the training 

data as well.    
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RESULTS AND DISCUSSION 

Different animal management practices and geographical area scenarios were tested 

to evaluate their possible effects on long-term air quality. In total, twenty-four air quality 

predictions (six NH3, H2S, and CO2 concentration and emission simulations per scenario) 

were made by the BTA-AQP model using four new scenarios: building heat loss factor 

(BHLF) scenario, barn set-point temperature (SPT) scenario, animal production schedule 

(APS) scenario, and geographical area (GA) scenario. The BHLF scenario assumed a 50% 

decline of current BHLF value, which means that the typical deep-pit swine grower/finisher 

building was on average double-insulated. The barn SPT scenario decreased the originally 

tested set-point temperature scheme by an average of 28.7% throughout the swine growth 

phase. The APS scenario would lead to a new animal growth cycle starting in mild weather 

instead of a warm or cold climate as was the case for the actual field measurements. For the 

GA scenario, Dallas, Texas was selected as a new sampling site. 

Table 1 summarizes the mean annual simulated air quality values for the above four 

scenarios. The Des Moines (DSM) scenario (a typical swine deep-pit building located in Des 

Moines under normal barn management conditions) was considered the control against which 

other scenarios were compared. Side-by-side box plots were constructed for visually 

comparing features of sample distributions of the new scenarios and the DSM scenario. 

These boxplots can provide the comparison of the location, spread, and shape of the 

distributions by examining the relative positions of the median, the heights of the boxes 

which measure the interquartile ranges, the relative lengths of the whiskers, and the presence 

of outliers at either end of the whiskers.  
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BHLF scenario 

The total building heat loss factor for the deep-pit swine building in Iowa monitored 

for this research was 965 W/oC (Sun and Hoff, 2010a). The BHLF scenario used half of that 

value, i.e., 482 W/oC to test this scenario.  

From Table 1, the percentage difference in mean annual air quality data between the 

BHLF scenario and DSM scenario, calculated by (BHLF value-DSM value)/(DSM value), 

was very slight, within +/-1.5%. This can be also verified in Figure 3. The comparative 

boxplots of hourly gas predictions for each scenario show nearly the same median, spread, 

and skewness throughout the year, which suggests that those two datasets were generally 

distributed in the same way. Thus, the BHLF scenario had a negligible effect on the source 

long-term air quality (p>0.05).  

Barn SPT scenario 

Different set-point temperature curves used in animal buildings would result in 

changes of indoor climate during the animal production period possibly affecting air quality 

parameters. Figure 4 shows two different SPT curves: one was the SPT curve used in the 

field study (DSM scenario); the other was a new SPT curve, which decreased current SPT by 

an average of 28.7% throughout the growth cycle.  

In Table 1, the SPT scenario reduced mean annual gas concentrations by -2.4% ~ -

28.6% in comparison to those using the DSM scenario. Also, it can be seen that the largest 

decrease in gas concentrations was for H2S (a -28.6% reduction). This large reduction was 

probably attributed to much higher ventilation rate as a result of the lowered set-point 

temperatures, especially during hot weather. Hence, increasing ventilation rate would be a 

significant way to expedite air exchange rate and substantially lower indoor H2S level. 
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However, despite a large reduction in H2S concentrations, the mean annual NH3 and CO2 

concentrations did not follow this reduction pattern. Contrarily, their mean annual emissions 

increased slightly since the emission rate is the product of gas concentrations and the 

ventilation rate and there is an inverse relationship between them.  

Figure 5 displays long-term hourly NH3, H2S, and CO2 concentrations and emissions 

over 12 months for the SPT and DSM scenarios. Compared with the DSM scenario for each 

month, the SPT scenario shows a decreasing trend in the magnitudes of location (as 

measured by the median) of the gas concentration distributions throughout the year except 

for January, February, March and April. Additionally, the observed shapes of these 

concentration distributions during April to September appeared to be right-skewed with 

either long-right tails or outside values on the right-tail. The lower locations and right-

skewed shapes indicated that the majority of predicted gas concentration data was highly 

concentrated in the very low range and only few high values fell into the upper range, i.e., the 

SPT scenario was capable of reducing indoor gas levels during most times under warm 

weather, due to higher ventilation rates. Meanwhile, the corresponding gas emissions did not 

increase significantly. Thus, current barn set-point temperature curves might be adjusted by 

setting a few degrees lower in warm season in order to reduce the risk of relatively high gas 

concentrations (especially H2S concentrations) inside the building and protect the health of 

workers and animals.  

APS scenario 

For grower-finisher swine production operations, animal growth cycle indicates the 

growth period as pigs mature from approximately 20 to 120 kg inside the building. Typically, 

one complete animal growth cycle for grower-finisher pigs is ~140 days or about 4.5 months 
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and thus there are two complete growth cycles in a year. These two growth cycles started 

either in the winter or in the summer during field measurements. Pig weight determined 

indoor set point temperature and different SPT setting during different seasons would 

conceivably impact diurnal and seasonal air quality. To study the effect of animal production 

schedule on long-term air quality, a new swine production timetable was established and 

used in this research. The starting date of this new timetable was on the first day of April.  

The percentage difference between the APS and DSM scenarios ranged from -2.2% 

to 5.2% for the mean annual gas concentrations and from -6.6% to -14.2% for the mean 

annual gas emissions (Table 1). The simulated results revealed that the new animal 

production schedule had no significant effect on gas concentrations (p>0.05) but could cause 

a moderate decrease in gas emissions. The ventilation rate variation resulting from the new 

schedule might account for this emission reduction.  

Looking at the boxplots shown in Figure 6, the observed APS distributions of gas 

concentrations had different locations, spreads and shapes compared with those of the DSM 

scenario. For example, the median of the APS NH3 concentration in February was larger than 

that of the DSM distribution. This may be due to two reasons: one was that larger pigs used 

for the APS scenario (87-105kg per pig) produced more gas/manure waste than the small 

pigs (20-38 kg per pig) in the DSM scenario; the other was that to maintain set-point 

temperature during cold weather, similar minimum ventilation rate was supplied for both 

scenarios. Hence, more gas accumulation inside the barn for the APS scenario resulted in 

much higher indoor NH3 concentrations, while in July, the APS scenario shows an obvious 

pattern, i.e., low locations and a right-skewed shape with heavy tail, for all the gas 

concentrations. The possible explanation might be the lower set-point temperature and the 
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corresponding higher ventilation rate caused by the larger pigs during that time in the APS 

scenario. It can be further seen that for all the gas emissions, most APS emission 

distributions appeared to be similar to the DSM scenario distributions throughout the year 

expect for July, September and October. Again, the emission rate is a function of gas 

concentrations and the ventilation rate and there is an inverse relationship between them.  

GA scenario 

Different regions in the U.S have different temperature, relative humidity, wind speed 

and direction, rainfall frequency and intensity, solar energy, and barometric pressure. These 

climatic factors might significantly influence gas concentrations and emissions if the rates of 

gaseous emissions were measured in different areas of the country (e.g. northern, mid-

western, and southern area). In this research, Dallas was used as a representative southern 

site to study the geographical area in warm weather on long-term livestock air quality.  

Mean annual simulated NH3, H2S, and CO2 concentrations decreased by -29.7%, -

18.3%, and -27.3%, respectively (Table 1), in comparison to those in Des Moines. The 

relatively high temperature and large ventilation rates in Dallas most likely accounted for this 

large reduction in gas concentrations. However, due to the inverse relationship of gas 

concentrations and ventilation rate, the estimations of gas emissions did not present a similar 

pattern. The BTA-AQP model predicted only -4.2%, -12.8%, and 1.5% decline in the NH3, 

H2S, and CO2 emissions, respectively.  

From Figure 7, it is clearly observed that the medians of the Dallas gas concentration 

distributions during a majority of the time were much lower than those of the DSM scenario 

and their distributions were markedly shifted to the right of the locations, thus showing that 

most of Dallas gas concentrations were regarded as very low values compared with the DSM 
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distributions. For example, average monthly DSM NH3 concentrations during the summer 

(June-September) were two times higher than the mean of the Dallas levels. Although there 

appeared to be a big difference between the DSM and Dallas scenarios for the gas 

concentration distributions, the boxplots of the gas emissions over 12 months looked very 

similar. This could be explained by the gas concentrations varying inversely with the 

ventilation rate and ambient temperature. Therefore, it may be concluded that, for swine 

deep-pit barns with similar building characteristics and management practices, different 

geographical area factor had a large impact on indoor gas concentrations but very little effect 

on mean annual gas emissions.  

SUMMARY AND CONCLUSIONS 

Studying the impacts of various important factors on air quality is vital for helping 

animal producers and environmental researchers understand the parameters influencing 

livestock air quality so that they might make wise decisions regarding the selection and 

implementation of gas/odor mitigation techniques. So far, few have evaluated the possible 

effects of different husbandry management practices and geographic area factors on long-

term source air quality because it is a complex and difficult task in the field.  

In this research, a total of twenty-four air quality predictions (six NH3, H2S, and CO2 

concentration and emission simulations per scenario) were made by our proposed BTA-AQP 

model using four new scenarios: building heat loss factor (BHLF) scenario, barn set-point 

temperature (SPT) scenario, animal production schedule (APS) scenario, and geographic area 

(GA) scenario. The specific conclusions are: 
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(1) The BHLF scenario used a 50% decline of current BHLF value (965 W/oC), which had 

no effect on the source air quality; 

(2) The new SPT scenario (decreased current set-point temperature by an average of 28.7% 

throughout the growth cycle) was capable of reducing indoor gas levels during most of the 

time under warm weather, due to higher required ventilation rates. The corresponding gas 

emissions did not increase substantially. Hence, current barn set-point temperature curves 

might be adjusted lower in warm seasons in order to reduce the risk of relatively high gas 

concentrations (especially H2S concentrations) in the building and protect the health of 

workers and animals; 

(3) The new animal production schedule, which started pigs in the barn in mild weather 

(April 1), had no significant effect on mean annual gas concentrations but could cause a 

moderate decrease in mean annual gas emissions; 

(4) Different geographical areas could have a large impact on indoor gas concentrations and 

ventilation rate but very little effect on mean annual gas emissions since the emission rate is a 

function of gas concentrations and the ventilation rate and there is an inverse relationship 

between them.  

 It should be noted that the simulated results were speculative by the model 

predictions. Although a great deal of effort has been made to guarantee the accuracy of 

predicted values, some of the results in the scenarios are still incompletely understood. 

However, these outcomes could enrich our present knowledge in order to be prepared for 

future research.  
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DSM BHLF SPT APS GA
Mean 19.5 19.4 19.0 20.5 13.7

NH3 Concentration (ppm) SD 9.1 9.0 11.1 10.3 9.1

% - -0.3% -2.4% 5.2% -29.7%
Mean 6.65 6.66 7.08 6.21 6.93

NH3 Emission (kg/d) SD 2.52 2.60 4.07 2.01 2.44

% - 0.2% 6.5% -6.6% 4.2%
Mean 519 510 370 534 424

H2S Concentration (ppb) SD 368 364 271 524 330

% - -1.7% -28.6% 3.1% -18.3%
Mean 0.469 0.475 0.419 0.403 0.530

H2S Emission (kg/d) SD 0.346 0.347 0.360 0.306 0.411

% - 1.3% -10.7% -14.2% 12.8%
Mean 2334 2341 2084 2282 1696

CO2 Concentration (ppm) SD 1335 1345 1084 1061 1124

% - 0.3% -10.7% -2.2% -27.3%
Mean 1176 1194 1217 1084 1159

CO2 Emission (kg/d) SD 360 366 698 332 375

% - 1.5% 3.5% -7.8% -1.5%
* DSM, BHLF, SPT, APS and Dallas indicate average annual air quality in Des Moines, air quality changed by different 

Parameter

Table 1.Mean annual air quality simulations using different management practices and geographical area scenarios.*

Building Heat Loss Factor, Set-point Temperature, Animal Production Schedule and Geographical Area (Dallas),
respectively. % means the percentage difference between the Des Moines and different scenarios.  
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Figure 1. Layout of typical deep-pit swine finishing building. 

 

    

Figure 2. The 3-D scatterplots of Dallas site cases vs. the training dataset from different viewing angles 

(IA: the training data sampled in Iowa; TX: new cases predicted by the BTA model at Dallas site, TX).  

 

 

 

6

8

4

5

7

1 

3 

2

60 m

13
 m

 
Tunnel fan 

Side wall fan

Pit fan 

Air sample line

A 

B
A: Background B: To mobile lab



 

 

145

 

 

 

 

Month

N
H

3
 C

on
ce

n
tra

tio
n 

(p
pm

)

0
1
0

20
3
0

40
50

Ja
n1

Ja
n2

F
eb

1

F
eb

2

M
ar

1

M
ar

2

A
pr

1

A
pr

2

M
ay

1

M
ay

2

Ju
n1

Ju
n2

Ju
l1

Ju
l2

A
ug

1

A
ug

2

S
ep

1

S
ep

2

O
ct

1

O
ct

2

N
ov

1

N
ov

2

D
ec

1

D
ec

2

Month

N
H

3
 E

m
is

si
o

n
 R

a
te

 (
kg

/d
)

0
5

1
0

1
5

2
0

2
5

J a
n1

Ja
n2

F e
b1

Fe
b2

M
a r

1
M

a r
2

A
p r

1

A
p r

2
M

ay
1

M
ay

2
Ju

n 1
Ju

n 2

Ju
l1

Ju
l2

A
ug

1
A

ug
2

S
ep

1
S

ep
2

O
ct

1
O

ct
2

N
ov

1
N

ov
2

D
ec

1
D

ec
2

Month

H
2

S
 C

o
n

ce
n

tr
a

tio
n

 (p
p

b
)

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

2
5

0
0

3
00

0

Ja
n1

Ja
n2

Fe
b1

Fe
b2

M
ar

1

M
ar

2

A
pr

1

A
pr

2

M
ay

1

M
ay

2

Ju
n1

Ju
n2

Ju
l1

Ju
l2

A
ug

1

A
ug

2

S
ep

1

S
ep

2

O
ct

1

O
ct

2

N
ov

1

N
ov

2

D
ec

1

D
ec

2

(a) 

(b) 

(c) 



 

 

146

 

 

 

 

Figure 3. Long-term hourly NH3, H2S and CO2 concentrations (a, c, e) and emissions (b, d, f) for the DSM 

and BHLF scenarios (1: DSM scenario; 2: BHLF scenario; circles: Potential outliers). 
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Figure 4. The set-point temperature curves with the SPT scenario and DSM scenario. 
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Figure 5. Long-term hourly NH3, H2S and CO2 concentrations (a, c, e) and emissions (b, d, f) for the DSM 

and SPT scenarios (1: DSM scenario; 2: SPT scenario; circles: Potential outliers). 
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Figure 6. Long-term hourly NH3, H2S and CO2 concentrations (a, c, e) and emissions (b, d, f) for the DSM 

and APS scenarios (1: DSM scenario; 2: APS scenario; circles: Potential outliers).  
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Figure 7. Long-term hourly NH3, H2S and CO2 concentrations (a, c, e) and emissions (b, d, f) for the DSM 

and Dallas scenarios (1: DSM scenario; 2: Dallas scenario; circles: Potential outliers). 
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CHAPTER 7.  GENERAL CONCLUSIONS                  

 

SUMMARY AND CONCLUSIONS 

The major conclusions drawn from this research are: 

1. Four significant contributors (outdoor temperature, animal units, total building ventilation 

rate, and indoor temperature) to the AQP models have been identified using a multivariate 

statistical analysis method. Also, in-house deep-pit manure level is a significant variable for 

H2S. The purpose of introducing fewer uncorrelated variables to the AQP models is to reduce 

model structure complexity, eliminate model over-fitting problems, and minimize field 

monitoring costs without sacrificing model predictive accuracy. 

2.  The backpropagation and generalized regression neural network based AQP models were 

developed to predict diurnal and seasonal gas and PM10 concentrations and emissions from 

swine deep-pit finishing buildings. It was found that the obtained forecasting results of the 

neural network models were in good agreement with actual field measurements, with 

coefficient of determination values between 81.2% and 99.5% and very low values of 

systemic performance indices. The promising results from this work indicated that artificial 

neural network technologies were capable of accurately modeling source air quality within 

and emissions from these livestock production facilities. Also, the process of constructing, 

training, and simulating the BP network models was very complicated. Likewise, 

determining the best values for several network parameters, such as the number of layers and 

neurons, type of activation functions and training algorithms, learning rates, and momentum, 

were difficult. The effective way of obtaining good BP modeling results was to use some 
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trial-and-error methods and thoroughly understand the theory of backpropagation. 

Conversely, for the GRNN models, there was only one parameter (the smoothing factor) that 

needed to be adjusted experimentally. Moreover, the BP network performance was very 

sensitive to randomly assigned initial values. However, this problem was not faced in GRNN 

simulations. The GRNN approach did not require an iterative training procedure as in the 

backpropagation method. The local minima problem was also not faced in the GRNN 

simulations. Other significant characteristics of the GRNN in comparison to the BPNN were 

the excellent approximation ability, fast training time, and exceptional stability during the 

prediction stage. Thus, the GRNN technology outperformed BP, which has been 

demonstrated in this study. It can be recommended that a generalized regression neural 

network be used instead of a backpropagation neural network in source air quality modeling. 

3. A lumped capacitance model (BTA model) was built to study the transient behavior of 

indoor air temperature and ventilation rate according to the thermo-physical properties of a 

typical swine building, the set-point temperature scheme, fan staging scheme, transient 

outside temperature, and the heat fluxes from pigs and supplemental heaters. The obtained 

indoor air temperature and ventilation rate developed from the BTA model could then be 

combined with animal growth cycle, in-house manure storage level, and field meteorological 

data to predict indoor air quality and emissions based on the generalized regression neural 

network (AQP model). The purpose was to acquire accurate estimates of significant input 

parameters required for the AQP model without relying on expensive field measurements. It 

was found that the performance of the BTA model for predicting indoor climate (ventilation 

rate and indoor air temperature) was very good in terms of the statistical analysis and 

graphical presentations.  
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The air quality predictive (AQP) model used was based on the generalized regression 

neural network. A comparison was made between the predicted and actual gas concentrations 

and emissions collected in 2003 in order to evaluate the accuracy of the BTA-AQP model 

estimates. It can be observed from the comparative boxplots that the median, spread and 

skewness of the field collected and predicted gas concentrations and emissions were similar. 

Poorer predictions in some of the months could be due to the relatively inaccurate ventilation 

rate predictions by the BTA model and the AQP model’s inability in estimating gas 

concentrations resulting from barn management and pig activity. For all the predicted 

parameters, the MAE/SD ratios were less than 0.5; the CMR values approximated to 0; the 

IoA values were close to 1; and the NSEF values were greater than 0.5. These good model 

performance ratings indicated that the BTA-AQP model was able to accurately predict indoor 

climate and gas concentrations and emissions from swine deep-pit buildings for a specific 

year.   

In addition, the monthly air quality values estimated by the BTA-AQP model using 

TMY3 data were compared with those using 5-year on-site weather data. It was observed that 

the predictions using the TMY3 data followed the long-term mean patterns very well, which 

suggests that the TMY3 data can be used in performing accurate long-term simulations of 

source air quality. In addition, annual gas concentrations and emissions can be obtained using 

TMY3 data instead of an individual year weather data without resulting in large errors. These 

results demonstrate that a convenient approach to evaluate annual air quality levels within an 

acceptable accuracy is possible without long-term expensive on-site measurements. 

However, it should be noted that the TMY3 data is not appropriate to estimate peak values 

for a particulate period of time. 
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4. A total of twenty-four air quality predictions (six NH3, H2S, and CO2 concentration and 

emission simulations per scenario) were made by our proposed BTA-AQP model using four 

new scenarios: building heat loss factor (BHLF) scenario, barn set-point temperature (SPT) 

scenario, animal production schedule (APS) scenario, and geographical area (GA) scenario. 

The specific conclusions are: (1) The BHLF scenario used a 50% decline of current BHLF 

value (965 W/oC), which had no effect on the source air quality; (2) The new SPT scenario 

(decreased current set-point temperature by an average of 28.7% throughout the growth 

cycle) was capable of reducing indoor gas levels during most of time under warm weather, 

due to the high ventilation rate. While, the corresponding gas emissions did not increase 

substantially. Hence, current barn set-point temperature curves might be adjusted by setting a 

few degrees lower in warmer seasons in order to reduce the risk of relatively high gas 

concentrations (especially H2S concentrations) in the building and protect the health of 

workers and animals; (3) The new animal production schedule starting on the first day of 

April had no significant effect on mean annual gas concentrations but could cause a moderate 

decrease in mean annual gas emissions; and (4) Different geographical area factor could have 

a large impact on indoor gas concentrations and ventilation rate but very little effect on mean 

annual gas emissions since the emission rate is a function of gas concentrations and the 

ventilation rate and there is an inverse relationship between them.  

    It should be noted that the simulated results were speculative by the model 

predictions. Although a great deal of effort had been made to guarantee the accuracy of 

predicted values, some of the results in the scenarios are still incompletely understood. 

However, these outcomes could enrich our present knowledge in order to be prepared for 

future research.  
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RECOMMENDATIONS FOR FUTURE RESEARCH 

The following are recommended for future research to improve prediction accuracy of 

the BTA-AQP model: 

 1. Uncertainties in source air quality data. Since the source air quality data is important to 

develop the BTA-AQP model and evaluate the model predictive performance, more efforts 

should be made to maximize confidence, credibility, and consistency of the measured data; 

2. Prediction errors of the BTA model. As the number of assumptions in a model increases, 

the accuracy and relevance of the model diminishes. For example, the swine heat production 

data used in this research was from ASABE standards established decades ago. With 

improved genetics and feed management and diets, swine heat production (HP) has changed. 

Brown-Brandl el al. (2004) reported that the lean percent increase of 1.55% in the last 10 

years has caused an increase in HP by approximately 15%. Future work is needed to collect 

new swine HP data from the latest literature; 

3. Prediction errors of the AQP model. The accuracy of the artificial neural network AQP 

model depends on the completeness of the data set and availability of various model input 

factors that significantly affect source air quality. The complete emission profiles should 

cover all possible swine production stages for a long period of time. In this study, one-year 

source air quality data was used that might not capture all of the relationships between 

gaseous concentrations and emissions and these input factors. More gas measurements are 

needed to expand the size of the data set. For the model input parameters, more important 

factors beyond indoor and outdoor temperatures, ventilation rate, swine growth cycle, and in-

house manure storage level, should be considered and incorporated in the model.  Added 

variables such as feed nutrient content, management practices, and manure temperature 
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might prove to be important input variables. When pigs grow, the amount and composition of 

the feed intake change, as do the amount and composition of the manure. Thus, the amount 

of gas generation tends to increase. However, sharp decreases in the amount of daily nitrogen 

excretion were found when diet formulation changes were implemented. This adjustment 

process alleviates the amount of nitrogen in the manure converted to ammonia and other 

gases. Swine management practices are also vital factors to determine air quality levels. 

Good management practices can maintain proper environment requirements for the animals 

and decrease daily air emissions. Manure temperature might be a factor that may directly 

influence H2S release; and, 

4. Bias error of the TMY3 and its limited application. Uncertainty values exist in the 

meteorological elements of the TMY3 data set (NSRDB, 2008). Additionally, TMY3 data is 

suitable for simulating solar energy conversion systems and building systems since each 

TMY3 month was selected according to five elements (global horizontal radiation, direct 

normal radiation, dry bulb and dew point temperatures, and wind speed) which are the most 

important for solar energy and building systems. No literature has shown that the TMY3 data 

is suited to air quality predictions as well. Therefore, further research may focus on the 

development of new TMY data that is determined to be more appropriate for air quality 

simulations.  
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APPENDIX A. SENSIBLE HEAT PRODUCTION PROCEDURES 

The sensible heat fluxes from the pigs were calculated by multiplying sensible heat 

production (SHP/kg) at a specific temperature by the total pig mass, which included three 

main steps: (1) obtaining the average mass of a pig (kg) and indoor air temperature at Δt = 

0.01 hr; (2) calculating sensible heat production per pig based on the indoor temperature and 

data from ASABE standards (Albright, 1990); and finally (3) calculating total sensible heat 

production. Figure A.1 shows five different SHP curves (30kg, 50kg, 70kg, 90kg, and 110kg) 

as a function of indoor air temperature and are representative of the SHP curves used in the 

BTA model.  

 

Figure A.1. Five different SHP curves (30kg, 50kg, 70kg, 90kg, and 110kg) as a function of indoor air 

temperature. 
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APPENDIX B. APECAB DAILY DATA 

 The following table summarizes the daily average field collected data used to compare 

with the developed BTA-AQP model presented in this thesis.  In total, 1-minute averages 

were originally collected but for the sake of space, only the daily averages are shown. 

 

Date Outdoor T Outside RH Inventory Mass AU Airflow Indoor T Exhaust T Exhaust RH NH3Con H2SCon CO2Con PM10Con NH3ER H2SER CO2ER PM10ER

2003 °C % kg/pig m3/s °C °C % ppm ppb ppm mg/m3 kg/d kg/d kg/d kg/d

1-Jan -3.6 60 565 116 131.4 2.6 20 17.3 37 15.0 87 2790 260 2.73 0.033 801 0.060

2-Jan -5.3 70 565 117 132.2 2.5 20.1 18 38 15.3 88 2910 277 2.56 0.030 775 0.061

3-Jan -5.8 69 565 118 133.0 2.7 20.2 18 37 14.4 85 2880 279 2.76 0.033 888 0.066
4-Jan 0.3 86 565 118 133.8 2.6 20.6 18.7 43 15.7 95 2670 270 3.62 0.043 759 0.062
5-Jan -1.4 91 565 119 134.6 2.5 20.4 18.5 45 16.4 91 2710 250 3.53 0.039 714 0.055
6-Jan -3.0 80 565 120 135.2 2.6 20.6 18.5 41 15.6 80 2710 284 2.82 0.029 746 0.062
7-Jan 3.2 68 565 120 136.0 2.9 21.3 19.6 38 14.6 73 2250 261 3.75 0.041 685 0.065
8-Jan 6.4 48 565 121 136.4 3.6 21.5 19.8 36 14.9 76 1930 261 3.39 0.042 657 0.068
6-Feb -13.7 78 897 28 50.0 2.3 23 22.1 65 14.4 97 6170 350 4.08 0.086 1580 0.071
7-Feb -15.2 72 897 29 51.2 2.4 23 22.1 64 15.6 113 6380 364 3.54 0.090 1730 0.075
8-Feb -7.9 69 897 29 52.6 2.3 23.2 22.6 68 16.2 179 6190 289 3.94 0.131 1700 0.058
9-Feb -10.4 76 897 30 54.0 2.4 23.2 22.4 69 19.8 204 6570 280 4.02 0.151 1890 0.060

10-Feb -12.7 61 897 31 55.4 2.3 23.1 22.1 69 17.3 170 6320 269 4.33 0.179 1640 0.054
11-Feb -7.9 69 897 32 56.6 2.3 23 22.3 66 18.2 262 5650 264 3.94 0.187 1490 0.053
12-Feb -9.1 57 897 32 58.0 2.4 23.2 22.1 68 18.5 241 6170 257 4.21 0.194 1620 0.052
13-Feb -2.6 61 897 33 59.4 2.8 23.6 22.5 66 20.3 257 5190 226 4.75 0.200 1720 0.058
14-Feb -1.8 86 897 34 60.8 2.3 22.8 20.9 69 24.0 370 4690 235 - - 1330 0.047
15-Feb -7.8 79 897 35 62.0 2.4 22.7 19.8 65 21.7 347 4730 280 4.67 0.203 1290 0.057
16-Feb -11.6 76 897 35 63.4 2.4 23.2 21.1 68 23.2 386 5730 261 5.27 0.253 1500 0.055
17-Feb -9.1 84 897 36 64.8 3.2 22.7 21 69 25.3 392 5550 249 6.57 0.273 1980 0.070
18-Feb -0.8 83 897 37 66.2 2.7 23.6 21.9 67 23.4 421 4730 190 5.56 0.247 1330 0.048
19-Feb -2.1 75 897 38 67.6 2.4 23.6 21.9 66 26.4 399 5160 185 5.23 0.207 1330 0.040
20-Feb 3.2 70 897 38 68.8 2.5 24.1 22.6 62 23.7 393 4440 156 5.64 0.188 1280 0.035
21-Feb 1.5 79 897 39 70.2 2.9 24.3 22.5 61 25.2 - 4310 151 5.50 - 1380 0.039
22-Feb -4.4 77 897 40 71.6 2.3 23 21.4 65 27.8 - 5110 163 5.49 - 1310 0.032
23-Feb -10.9 72 897 41 73.0 2.3 22.6 20.8 65 29.9 472 5670 214 5.54 0.183 1510 0.043
24-Feb -16.6 69 897 41 74.2 2.5 22.4 20.3 60 25.7 438 5410 242 5.13 0.195 1480 0.053
25-Feb -16.4 74 897 42 75.6 2.8 22.5 20.4 65 28.9 397 6300 247 6.36 0.231 2060 0.063
26-Feb -11.0 71 897 43 77.0 2.6 23.1 21 63 27.2 404 5710 239 5.47 0.199 1680 0.056
27-Feb -5.6 68 897 44 78.2 2.8 23.5 21.2 59 23.6 243 4930 232 4.90 0.151 1510 0.064
28-Feb -2.7 70 897 44 79.6 2.9 23.8 21.4 56 20.8 301 4690 185 5.09 0.160 1460 0.047
1-Mar -1.9 87 897 45 81.0 2.4 24.3 21.9 61 24.5 344 4710 635 4.38 0.123 1270 0.044

2-Mar -11.9 56 897 46 82.4 2.3 23.2 20.6 60 21.5 322 5210 850 4.22 0.138 1380 0.060

3-Mar -5.1 80 897 47 83.8 2.9 23.4 20.9 61 - 367 5210 923 - 0.185 1790 0.062
4-Mar -12.1 83 897 47 85.2 2.3 22.9 20.5 63 - - 5380 924 - - 1400 0.044
5-Mar -14.0 68 897 48 86.4 2.6 23.2 20.3 61 - - 5510 911 - - 1610 0.060
6-Mar -8.2 86 897 49 87.8 3.1 22.7 19.3 60 26.5 446 - 899 5.96 0.234 - 0.064
7-Mar -5.9 83 897 50 89.2 2.9 24.2 21 57 20.4 261 4630 701 4.45 0.178 1480 0.062
8-Mar -10.2 83 897 50 90.4 2.5 23.7 20.8 60 22.7 304 5210 925 4.22 0.133 1490 0.049
9-Mar -14.4 62 897 51 91.8 2.4 23.3 20.4 61 26.5 407 5740 804 4.76 0.124 1580 0.053

10-Mar -10.8 66 897 52 93.2 2.9 23.5 20.6 61 28.3 444 5600 858 5.88 0.194 1940 0.064
11-Mar 0.1 71 897 53 94.4 3.4 24.3 21.6 55 21.6 338 3970 887 5.90 0.217 1600 0.068
12-Mar 0.9 88 897 54 96.0 3.2 24.5 20.7 55 17.9 272 3610 881 5.73 0.132 1350 0.069
13-Mar 1.5 84 897 54 97.4 3.6 24.6 21 54 18.3 288 3490 865 6.44 0.156 1510 0.075
14-Mar 4.4 86 897 55 98.6 3.8 24.6 21.4 53 16.7 100 3060 723 6.15 0.063 1440 0.073
15-Mar 11.3 74 897 56 100.0 5.9 25.7 23.6 49 13.0 84 2290 666 6.32 0.106 1440 0.101
16-Mar 14.1 74 897 57 101.4 7.6 26 24.2 49 - - - 527 - - - 0.129
17-Mar 13.6 73 897 57 102.6 7.5 26.2 24.2 48 - - - 592 - - - 0.125
18-Mar 10.8 81 897 58 104.0 4 25 22 52 - - - 916 - - - 0.081
19-Mar 4.3 90 897 59 105.4 2.7 24.2 20.3 54 - - - 922 - - - 0.063
20-Mar 3.4 95 897 59 106.6 3.9 24.3 20.6 54 - - - 908 - - - 0.085
21-Mar 2.9 79 897 60 108.0 3.4 24.4 20.6 51 - - - 925 - - - 0.081
22-Mar 5.9 65 897 61 109.4 5.4 24.5 21.6 43 - - - 645 - - - 0.115
23-Mar 10.9 53 897 62 110.8 7.5 25.2 23 39 - - - 728 - - - 0.153
24-Mar 11.4 53 897 62 112.0 5.7 25.1 22.6 41 - - - 911 - - - 0.112
25-Mar 7.9 46 897 63 113.4 5.9 24.3 21.9 38 - - - 925 - - - 0.155
26-Mar 7.5 62 897 64 114.8 5.2 24.4 21.2 42 16.4 240 2350 923 8.23 0.324 1400 0.124
27-Mar 6.9 90 897 65 116.2 3.8 24.4 20.7 52 16.1 225 2440 922 6.56 0.181 1130 0.090
28-Mar 1.5 85 897 66 117.6 3.7 24.4 20.4 51 21.4 282 3210 924 7.28 0.195 1460 0.106
29-Mar 0.7 71 897 66 118.8 3.3 24.1 20.3 48 22.0 294 3400 920 7.02 0.222 1360 0.106
30-Mar 1.5 59 896 67 120.0 4.4 23.9 20.7 44 21.4 341 3240 924 8.14 0.262 1680 0.123
31-Mar 9.0 52 895 68 121.4 6.7 24.5 22.3 41 17.8 294 2470 909 8.68 0.363 1630 0.169

T: Temperature; RH: Relative humidity; AU: Animal unit; Con: Concentration; ER: Emission rate.    
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Date Outdoor T Outside RH Inventory Mass AU Airflow Indoor T Exhaust T Exhaust RH NH3Con H2SCon CO2Con PM10Con NH3ER H2SER CO2ER PM10ER

2003 °C % kg/pig m3/s °C °C % ppm ppb ppm mg/m3 kg/d kg/d kg/d kg/d

1-Apr 18.5 38 895 69 122.8 11.5 27.1 26 33 - 229 1330 191 - 0.373 1290 0.191

2-Apr 18.0 50 895 69 124.2 12.1 26.8 25.6 40 - 290 1300 232 - 0.427 1280 0.272

3-Apr 12.3 71 895 70 125.4 7.9 25.6 22.7 46 12.2 - 1600 291 8.02 - 1200 0.234
4-Apr -1.1 94 895 71 126.8 3.5 24 19.4 51 - - - 345 - - - 0.109
5-Apr -3.0 82 895 72 128.2 3.3 23.9 19.9 49 23.5 433 3790 366 7.22 0.303 1540 0.111
6-Apr -0.5 80 894 72 129.4 2.4 23.4 18.7 50 22.4 415 3700 391 5.34 0.226 1020 0.082
7-Apr -1.8 93 894 73 130.6 2.7 23.3 18.9 51 19.9 369 3560 381 5.44 0.237 1110 0.094
8-Apr -2.2 79 894 74 132.0 3.6 23.4 19.9 47 20.1 336 3460 400 7.12 0.293 1500 0.130
9-Apr 1.1 70 894 75 133.4 4.8 23.5 20.6 43 18.7 259 3130 376 7.64 0.289 1660 0.171

10-Apr 8.7 54 894 75 134.8 7.1 24.5 22.7 38 14.4 283 2270 370 8.23 0.367 1500 0.256
11-Apr 12.1 51 894 76 136.2 8.1 25.5 23.6 37 11.8 263 - - 7.44 0.364 - -
12-Apr 12.6 42 894 77 137.4 8.2 25.7 23.7 35 11.7 282 1800 - 7.58 0.402 1450 -
13-Apr 14.8 48 893 78 138.8 9.5 26.3 24.3 37 10.5 266 1660 - 6.79 0.374 1270 -
14-Apr 21.9 47 893 78 140.0 18.9 28.8 28.1 38 8.3 - 1090 - 6.50 - 1390 -
15-Apr 22.4 51 893 79 141.4 18.7 28 27.7 43 5.6 192 912 337 5.42 0.409 1330 0.563
16-Apr 13.4 87 893 80 142.6 8.9 26.6 24.2 55 14.3 - 1600 286 8.34 - 1480 0.209
17-Apr 5.3 87 893 81 144.0 4.4 23.7 19.4 50 13.4 - 2070 442 6.16 - 1120 0.177
18-Apr 6.7 91 893 81 145.4 4 24 19.2 52 14.0 446 2070 428 6.49 0.289 1050 0.145
19-Apr 10.0 95 893 82 146.8 6.1 24.2 21 57 15.8 473 1760 304 8.67 0.412 1360 0.175
20-Apr 7.2 91 892 83 147.8 4.6 24.1 20.2 53 16.1 443 1920 374 7.43 0.360 1140 0.157
21-Apr 9.9 71 891 84 149.2 6.6 25.3 22.2 47 17.2 555 1790 350 7.36 0.455 1370 0.222
22-Apr 10.5 55 891 85 150.6 7.5 26.4 24 41 24.6 621 1880 344 7.79 0.473 1340 0.229
23-Apr 12.7 51 891 85 152.0 8.8 26.4 23.8 40 19.4 602 1700 283 8.45 0.577 1570 0.230
24-Apr 9.3 79 891 86 153.2 5.4 24.3 20.8 51 16.5 - 1810 288 8.05 - 1190 0.113
25-Apr 13.4 49 891 87 154.6 8.9 25.5 23.6 39 14.4 440 1620 315 9.28 0.579 1580 0.245
26-Apr 15.0 51 891 87 155.8 10.7 25.4 23.8 38 13.4 327 1390 308 8.62 0.464 1430 0.312
27-Apr 16.4 54 891 88 157.2 11.3 26.1 24.7 41 13.1 325 1280 274 9.04 0.498 1330 0.275
28-Apr 15.7 44 891 89 158.6 10.5 26.6 24.7 37 14.8 323 1430 290 9.79 0.442 1570 0.274
29-Apr 11.2 60 891 90 160.0 8.3 24.4 21.9 45 17.8 327 1680 320 11.40 0.454 1750 0.232
30-Apr 10.5 95 891 91 161.4 4.8 24.3 21.7 57 17.6 254 1670 386 8.23 0.204 953 0.148
1-May 12.7 74 891 91 162.6 3.6 25.8 23.5 49 16.7 376 1560 516 4.58 0.182 589 0.161

2-May 13.3 69 891 92 164 4.1 27.3 24.5 46 17.3 392 1540 472 3.75 0.183 403 0.162

3-May 13.2 70 891 93 165.4 4 27.1 24.4 46 15.8 378 1590 423 3.71 0.184 543 0.140
4-May 9.9 86 890 94 166.6 3.7 25.6 21.7 53 16.5 - - 415 5.37 - - 0.117
5-May 11.0 87 890 94 167.8 4 24.4 22.1 55 12.4 421 1650 436 4.58 0.267 760 0.149
6-May 13.5 77 890 95 169.2 3.8 25.9 23.9 50 12.4 367 - 471 3.68 0.219 - 0.153
7-May 13.7 84 890 96 170.6 6.7 26.3 24.3 52 11.2 314 1500 368 5.10 0.299 1040 0.189
8-May 10.2 93 890 97 171.8 6.7 24.9 21.9 56 12.2 - 1780 280 6.83 - 1300 0.166
9-May 15.5 78 890 97 173.2 10.6 26.5 25 53 9.8 366 1390 259 6.28 0.464 1460 0.235

10-May 11.2 88 890 98 174.6 9.1 26.2 23.5 53 13.2 295 1710 298 7.15 0.328 1710 0.245
11-May 8.6 81 889 99 175.8 7 24.3 20.9 51 10.9 246 1770 331 6.35 0.320 1510 0.207
12-May 13.0 60 889 100 177.2 8.6 26.5 23.9 43 10.2 315 1610 325 5.40 0.352 1410 0.250
13-May 14.6 70 889 100 178.4 10.4 26.3 24.4 47 9.9 289 1470 256 6.62 0.403 1600 0.235
14-May 15.7 79 889 101 179.8 11.4 28.1 26.1 49 10.4 252 1440 249 6.03 0.332 1580 0.242
15-May 13.0 84 889 102 181.2 10.3 28 25.2 49 13.2 248 1580 298 6.81 0.282 1580 0.271
16-May 14.3 72 889 103 182.4 11.1 28 25.6 46 12.9 271 1500 277 7.58 0.350 1610 0.268
17-May 16.3 68 889 103 183.8 13.2 28.3 26.3 45 11.6 245 1350 269 7.41 0.335 1610 0.296
18-May 18.3 74 889 104 184.4 13.4 28.5 26.8 51 11.0 - - 248 7.75 - - 0.272
19-May 16.8 83 822 103 169.4 11.2 27.4 26.1 56 12.1 - - 227 8.05 - - 0.215
30-May 21.1 53 618 108 133 16.2 28.2 27.3 40 9.8 284 984 250 6.99 0.417 838 0.379
31-May 16.8 45 618 108 134 10.1 27.8 25.6 35 12.8 394 1210 229 5.70 0.344 954 0.185
1-Jun 17.9 52 618 109 134.8 10.9 27.6 25.6 40 12.5 400 1260 277 6.73 0.419 993 0.250

2-Jun 11.9 79 618 110 135.6 5.6 25.8 22.2 52 16.8 425 - 283 - - - 0.127

3-Jun 13.7 77 618 111 136.6 7.7 26.2 23.5 51 15.6 440 - 335 6.09 0.369 - 0.245
4-Jun 16.8 67 618 111 137.4 9.4 26.8 25 47 13.0 455 - 326 6.58 0.478 - 0.282
5-Jun 17.7 67 618 112 138.4 10.8 26.8 25.3 48 11.5 383 - 321 5.85 0.404 - 0.317
6-Jun 16.1 83 618 113 139.2 10 27.4 25.6 53 14.1 384 - 292 7.15 0.414 - 0.256

10-Jun 20.3 76 628 115 144.2 11.2 27.5 26.4 57 11.0 282 - 111 6.35 0.365 - 0.103

T: Temperature; RH: Relative humidity; AU: Animal unit; Con: Concentration; ER: Emission rate.    
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Date Outdoor T Outside RH Inventory Mass AU Airflow Indoor T Exhaust T Exhaust RH NH3Con H2SCon CO2Con PM10Con NH3ER H2SER CO2ER PM10ER

2003 °C % kg/pig m3/s °C °C % ppm ppb ppm mg/m3 kg/d kg/d kg/d kg/d
12-Jul 24.2 83 933 36 67 8.8 28.5 27.4 57 12.0 - 1310 100 5.80 - 1040 0.075
13-Jul 25.5 84 933 37 68.4 10.5 28.7 28 58 10.8 - 1240 104 5.88 - 1030 0.096
14-Jul 26.7 90 933 38 70 13.9 29.5 28.8 63 8.8 - 1000 88 6.19 - 1130 0.097
15-Jul 27.0 83 933 38 71.4 12.8 29.5 28.6 59 8.9 - 1020 75 6.29 - 1140 0.083
16-Jul 24.6 90 933 39 73 10.9 28.6 27.6 62 10.3 - 1250 94 5.61 - 1040 0.083
17-Jul 28.9 88 933 40 74.6 17.1 30.2 29.6 66 7.3 - 948 63 5.97 - 1170 0.091
18-Jul 26.1 90 933 41 76 12.3 29.4 28.6 63 9.4 - 1020 61 6.71 - 1160 0.066
19-Jul 25.1 89 933 42 77.6 11.2 28.5 27.5 62 9.8 - 1160 89 5.90 - 1100 0.081
20-Jul 25.9 97 933 42 79 12.7 29.3 28.5 69 8.5 - 1060 54 6.19 - 1220 0.059
21-Jul 23.3 91 933 43 80.6 10.5 28.5 27.4 60 10.6 - 1260 61 6.30 - 1400 0.055
22-Jul 22.1 85 933 44 82 9 27.8 26.2 54 11.5 - 1360 99 5.82 - 1210 0.076
23-Jul 22.8 80 933 45 83.6 8.8 28 26.3 51 11.3 - 1430 112 5.59 - 1170 0.080
24-Jul 23.1 84 933 46 85.2 9.9 28 26.7 54 10.3 - 1370 111 - - - 0.094
25-Jul 27.8 82 933 47 86.8 16.1 29.5 28.9 55 6.6 - 887 98 5.21 - 1070 0.132
26-Jul 31.4 82 933 47 88.2 21.2 31 31 61 4.4 - 685 89 5.22 - 969 0.159
27-Jul 25.9 99 932 48 89.6 13 29.8 28.8 66 7.2 - 917 35 5.44 - 1070 0.036
28-Jul 27.1 84 932 49 91 13.4 29.1 28.2 58 7.3 - 983 54 5.35 - 1140 0.059
29-Jul 26.6 82 932 50 92.6 12.9 28.8 27.7 58 7.3 - 1080 69 5.08 - 1160 0.070
30-Jul 26.0 89 932 51 94.2 13.6 28.8 28.1 61 6.9 - 990 51 5.20 - 1120 0.058
31-Jul 26.3 - 932 51 95.8 15.2 28.8 28.3 59 6.8 - 989 56 5.46 - 1090 0.072
1-Aug 26.5 - 932 52 97.2 - 29.1 - 56 8.0 - 973 55 - - - -

2-Aug 24.3 - 932 53 98.8 10.9 - 27.3 56 9.8 521 1120 61 5.99 0.627 956 0.053

3-Aug 23.9 - 931 54 100 9.8 - 27.3 57 10.2 535 1160 59 5.42 0.575 884 0.045
4-Aug 24.7 - 930 55 101.6 10.8 - 27.2 56 9.1 473 1160 67 5.30 0.571 961 0.053
5-Aug 20.2 - 930 55 103.2 10 - 26.4 62 10.6 547 1270 61 6.63 0.738 1230 0.053
6-Aug 25.1 - 930 56 104.6 12.7 - 27.8 60 8.6 444 1190 54 6.16 0.664 1320 0.056
7-Aug 26.6 - 930 57 106.2 14.4 - 28.4 58 8.4 443 1150 52 6.58 0.740 1330 0.060
8-Aug 25.9 - 930 58 107.6 13.4 - 28.1 57 9.3 495 1170 57 7.02 0.779 1340 0.064
9-Aug 25.4 - 930 59 109.2 13.3 - 27.8 56 9.7 498 1200 66 6.97 0.741 1320 0.072

10-Aug 24.3 - 930 59 110.6 12.7 - 27.9 59 10.2 555 1270 65 7.18 0.789 1370 0.070
11-Aug 25.8 - 930 60 112.2 14.9 - 28.2 59 9.1 484 1110 50 7.18 0.788 1280 0.061
12-Aug 24.2 - 930 61 113.8 13.3 - 27.5 58 9.8 563 1170 67 7.42 0.888 1360 0.072
13-Aug 25.3 - 930 62 115.2 14.5 - 27.9 59 8.6 470 1110 65 6.75 0.776 1300 0.076
14-Aug 26.4 - 930 63 116.8 16.6 - 28.5 63 7.6 451 1040 90 6.78 0.812 1330 0.132
15-Aug 28.5 - 930 64 118.2 19.6 - 29.6 62 6.5 393 972 71 6.34 0.770 1230 0.106
16-Aug 30.3 - 930 64 119.8 19.7 - 30.4 61 6.0 376 937 57 6.16 0.768 1130 0.093
17-Aug 29.9 - 928 65 121.2 19.8 - 30.5 61 5.7 378 916 54 5.93 0.785 1070 0.089
18-Aug 30.8 - 927 66 122.4 20.1 - 30.8 67 5.8 381 791 50 6.31 0.813 1040 0.088
19-Aug 29.5 - 927 67 124 20 - 30.3 68 5.2 376 808 51 5.79 0.813 1060 0.087
20-Aug 29.8 - 927 68 125.4 21 - 30.6 64 5.1 342 828 48 6.09 0.816 1150 0.087
21-Aug 27.8 - 927 69 127 16.3 - 29.3 59 6.6 462 1020 45 6.03 0.850 1310 0.063
22-Aug 24.5 - 927 69 128.6 13.5 - 27.6 55 8.2 560 1200 75 6.20 0.835 1340 0.080
23-Aug 25.0 - 927 70 130 15.5 - 27.8 52 8.0 512 1130 93 6.38 0.824 1300 0.113
24-Aug 29.8 - 926 71 131.4 20.5 - 30.3 57 5.8 344 909 90 6.54 0.789 1280 0.157
25-Aug 30.2 - 926 72 133 20.2 - 30.9 56 5.9 370 899 79 6.51 0.801 1110 0.143
2-Sep 19.1 72 924 78 144.8 14.5 27.4 26.3 51 9.2 524 1230 110 6.46 0.768 1290 0.134

3-Sep 19.0 67 924 79 146.2 11.3 27.7 26.5 48 10.9 584 1390 97 7.54 0.836 1540 0.095
4-Sep 17.0 67 924 80 147.8 11.1 27.3 25.5 46 12.5 645 1470 111 7.67 0.798 1490 0.099
5-Sep 18.7 65 924 81 149.2 15 27.6 26.3 45 11.2 552 1330 140 8.10 0.795 1410 0.177
6-Sep 21.7 63 924 82 150.8 17.4 28.6 27.6 47 9.7 497 1120 110 7.63 0.795 1410 0.167
7-Sep 22.0 61 923 82 152.2 17.4 28.8 27.9 45 8.8 443 1080 103 7.44 0.748 1320 0.151
8-Sep 21.7 62 922 83 153.6 17.2 28.2 27.7 46 8.6 443 1090 105 7.56 0.776 1350 0.153
9-Sep 21.7 66 922 84 155 16.7 28.2 27.4 49 9.4 498 1120 100 7.70 0.847 1420 0.138

10-Sep 23.9 64 922 85 156.4 17.5 29.2 28.5 52 7.8 414 994 96 7.22 0.770 1320 0.137
11-Sep 22.8 79 922 86 158 15.5 28.9 28.3 59 8.8 494 1070 64 7.73 0.875 1430 0.082
12-Sep 18.8 77 922 86 159.4 13.1 27.3 26.7 54 10.3 579 1280 56 7.95 0.904 1560 0.066
13-Sep 16.7 84 922 87 161 10.5 26.4 25.3 56 13.2 634 1480 60 8.84 0.880 1640 0.055
14-Sep 15.0 65 921 88 162.4 9.9 26.9 24.9 44 14.4 652 1540 106 8.73 0.831 1540 0.092
15-Sep 17.2 60 920 89 163.6 13 27 25.3 42 12.4 526 1390 147 8.32 0.716 1470 0.186
16-Sep 20.5 66 920 90 165.2 16.7 27.7 26.8 49 10.1 446 1130 128 8.64 0.779 1340 0.205
17-Sep 22.8 61 920 91 166.6 16.4 28.6 28 49 8.6 344 1000 89 7.71 0.631 1280 0.128
18-Sep 16.4 80 920 91 168.2 11 27.2 25.3 52 12.9 529 1380 91 8.70 0.750 1490 0.090
19-Sep 11.0 67 920 92 169.8 8.1 25.9 22.9 43 17.3 687 1740 125 8.79 0.759 1490 0.085
20-Sep 13.4 64 920 93 171.2 9.7 25.8 23.3 41 14.8 586 1690 118 8.29 0.708 1450 0.096
21-Sep 12.4 91 920 94 172.8 8.8 25.7 22.9 54 16.3 667 1740 86 9.53 0.838 1690 0.065
22-Sep 13.4 77 920 95 174.2 9.4 26.5 24 49 14.7 633 1680 93 8.62 0.779 1680 0.078
23-Sep 14.4 64 920 96 175.8 11.2 25.8 23.5 43 13.7 598 1570 117 8.36 0.762 1480 0.119
24-Sep 14.9 55 920 96 177.4 10.2 26.5 24.5 40 13.5 606 1610 102 8.19 0.780 1650 0.092
25-Sep 10.1 61 920 97 178.8 8.3 25.5 22.4 39 15.5 626 1820 140 7.95 0.663 1620 0.101
26-Sep 12.6 72 920 98 180.2 9.2 25.6 22.7 47 14.7 595 1680 108 8.49 0.709 1750 0.085
27-Sep 10.4 66 920 99 181.8 8.4 25.2 21.9 44 16.5 627 1800 118 8.72 0.704 1730 0.087
28-Sep 9.3 61 917 100 182.8 7.9 25.3 21.8 41 16.6 572 1800 151 8.48 0.632 1640 0.107
29-Sep 8.0 61 916 100 184 7.2 24.9 21.5 38 16.8 516 1950 174 6.75 0.455 1480 0.112
30-Sep 6.9 57 916 101 185.6 6.6 24.6 20.9 37 17.2 516 2050 192 - - - 0.114

T: Temperature; RH: Relative humidity; AU: Animal unit; Con: Concentration; ER: Emission rate.    



 

 

164

 

 

 

 

 

 

 

 

 

 

Date Outdoor T Outside RH Inventory Mass AU Airflow Indoor T Exhaust T Exhaust RH NH3Con H2SCon CO2Con PM10Con NH3ER H2SER CO2ER PM10ER

2003 °C % kg/pig m3/s °C °C % ppm ppb ppm mg/m3 kg/d kg/d kg/d kg/d

1-Oct 5.1 56 916 102 187.0 6.3 24.3 20.5 36 18.9 506 2170 208 7.72 0.448 1500 0.118

2-Oct 5.8 55 916 103 188.4 6.8 24.3 20.8 36 19.4 509 2190 214 8.33 0.494 1530 0.132

3-Oct 13.6 51 916 104 190.0 9.6 26.3 23.7 38 14.3 433 1660 132 8.34 0.529 1740 0.111
4-Oct 14.1 54 916 105 191.6 10.8 26.6 24.1 37 13.3 461 1630 149 7.56 0.544 1660 0.135
5-Oct 16.7 55 912 105 192.4 12.5 27 25.2 39 10.8 424 1450 125 7.40 0.580 1640 0.135
6-Oct 18.0 53 911 106 193.6 15.5 27.1 25.8 38 9.6 377 1320 151 7.37 0.592 1550 0.217
7-Oct 18.8 62 911 107 195.0 16.6 26.9 26 44 8.3 355 1210 139 6.97 0.591 1540 0.208
8-Oct 19.3 69 911 108 196.6 15.7 27.2 26.1 48 - 355 1170 151 - 0.626 1450 0.210
9-Oct 20.7 66 911 109 198.0 15.7 27.5 26.8 48 - 318 1090 128 - 0.563 1360 0.183
10-Oct 17.9 74 911 110 199.6 12.7 26.9 25.5 50 - 379 1260 110 - 0.597 1510 0.126
11-Oct 15.0 84 911 111 202.0 10.4 26.6 24.7 54 - 497 1520 100 8.14 0.645 1640 0.091
12-Oct 12.5 60 909 111 202.0 9.9 26.1 23.1 40 - 537 1610 154 - 0.611 1560 0.136
13-Oct 11.4 73 908 112 204.0 8.6 25.9 22.3 45 - 541 1640 123 - 0.608 1580 0.090
14-Oct 11.3 67 908 112 204.0 8.4 26 22.4 42 - 496 1600 123 - - _ 0.093
15-Oct 8.2 73 908 113 206.0 6.7 24.8 20.9 43 - 521 1760 121 - 0.521 1310 0.068
16-Oct 5.3 70 908 115 208.0 5.3 24.6 19.9 43 - - 2070 147 - - 1260 0.071
17-Oct 7.5 67 908 116 210.0 7.3 24.8 21.4 40 - - 2010 153 - - 1490 0.100
18-Oct 15.4 61 908 116 210.0 12.5 26.7 25 40 - 425 1560 119 - 0.550 1590 0.121
19-Oct 18.2 54 907 116 210.0 14.7 27.2 26.2 38 - 367 1330 143 - 0.554 1420 0.193
20-Oct 18.6 55 658 111 146.6 13.5 26.7 25 40 - 581 1140 121 - 1.150 1030 0.170
21-Oct 14.4 52 556 112 124.4 8.6 24.9 22.4 40 15.8 897 1350 130 7.17 0.973 1070 0.094
22-Oct 13.7 62 556 113 125.2 9 24.2 21.8 42 18.4 2270 1440 - 9.22 3.750 1120 -
23-Oct 10.5 60 556 113 126.0 6.3 24.6 21.7 41 25.0 93 1670 146 9.20 0.070 1030 0.080
24-Oct 9.1 78 556 114 127.0 4.8 24.2 20.6 48 26.0 93 1920 136 9.01 0.065 1000 0.057
25-Oct 5.7 64 556 115 127.8 4.3 23.7 20.3 43 29.6 83 2070 130 7.51 0.047 940 0.050
26-Oct 1.9 68 555 115 128.2 2.8 23.4 19.8 44 32.2 86 2560 158 6.86 0.037 852 0.039
27-Oct 4.0 77 554 116 129.0 3.2 23.6 20.5 46 31.9 75 2460 159 - - - 0.045
28-Oct 6.4 68 554 117 130.0 2.7 23.7 20.5 45 27.3 61 2190 130 5.52 0.024 696 0.030
29-Oct 3.4 73 554 118 130.8 2.4 23.4 19.6 44 33.7 72 2500 167 6.45 0.029 735 0.035
30-Oct 8.3 77 554 119 131.6 5.1 24 21.1 45 27.1 80 1960 123 8.12 0.048 959 0.050
31-Oct 4.8 77 554 120 133.0 3.2 23.8 20.6 46 31.6 86 2300 153 7.23 0.039 850 0.044
1-Nov 1.8 76 554 120 133.2 2.8 23.6 20.4 45 38.6 117 2890 158 7.99 0.051 955 0.038

2-Nov 4.1 92 553 121 133.8 2.9 23.8 20.6 48 36.7 139 2570 150 7.84 0.057 890 0.039

3-Nov 4.1 94 552 122 134.6 2.9 23.6 20 49 32.7 125 2510 138 7.17 0.060 857 0.036
4-Nov 4.1 91 552 123 135.4 3.3 23.7 20.5 50 34.0 179 2510 111 7.57 0.082 964 0.032
5-Nov -0.9 82 552 123 136.2 2.9 23.3 20.2 47 40.1 279 3210 152 8.08 0.117 1120 0.039
6-Nov -2.4 72 552 124 137.0 3 23.2 20 43 39.4 316 3160 165 7.68 0.137 1120 0.044
7-Nov -3.1 75 552 125 137.8 2.9 23.2 20 44 39.2 390 3350 174 7.39 0.155 1130 0.046
8-Nov -5.5 63 552 126 138.8 2.6 22.3 19 43 37.3 421 3650 189 6.89 0.164 1070 0.044
9-Nov -0.8 66 552 125 138.2 2.5 22.1 19.1 44 31.1 420 3090 163 5.96 0.182 836 0.038
23-Dec -3.5 85 1030 29 59.0 1.8 23.7 22.8 64 28.4 355 5450 62 4.93 0.136 1120 0.010
24-Dec -6.9 86 1030 29 60.6 2.1 23.6 22.6 63 34.5 460 6040 82 5.53 0.180 1370 0.017
25-Dec -2.9 79 1030 30 62.2 1.9 23.4 22.1 64 35.7 548 5320 85 5.06 0.252 1100 0.015
26-Dec 2.5 79 1030 31 63.4 1.9 23.6 22.3 59 27.7 594 4410 63 4.13 0.277 885 0.011
27-Dec 7.5 83 1020 32 64.8 2 24.2 23.2 60 20.1 553 3870 46 3.50 0.273 884 0.008
28-Dec 2.1 73 1020 33 66.4 2.5 24.8 24.1 58 21.3 752 4770 58 5.01 0.367 1260 0.014
29-Dec -2.6 80 1020 33 68.0 1.9 24.1 23.1 64 27.2 955 5710 45 4.62 0.395 1240 0.008
30-Dec -0.6 76 1020 34 69.6 2.1 23.9 22.8 64 28.7 854 5380 50 4.72 0.376 1240 0.010
31-Dec -3.8 73 1020 35 71.0 2.3 23.9 22.7 64 27.2 867 5270 64 5.12 0.417 1330 0.014

T: Temperature; RH: Relative humidity; AU: Animal unit; Con: Concentration; ER: Emission rate.    
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Date Outdoor T Outside RH Inventory Mass AU Airflow Indoor T Exhaust T Exhaust RH NH3Con H2SCon CO2Con PM10Con NH3ER H2SER CO2ER PM10ER

2004 °C % kg/pig m3/s °C °C % ppm ppb ppm mg/m3 kg/d kg/d kg/d kg/d

1-Jan 1.3 82 1020 36 72.6 2.2 24.1 22.6 63 26.3 754 4870 53 4.41 0.335 1220 0.009

2-Jan 2.4 91 1020 36 73.8 2.4 24.6 23.4 63 27.4 742 4890 35 4.78 0.371 1310 0.007

3-Jan -5.7 72 1020 37 75.4 1.8 24.4 23.2 61 27.3 773 5710 66 4.18 0.277 1250 0.012
4-Jan -8.4 74 1020 38 76.8 1.5 23.9 22.6 61 32.1 820 5890 37 3.66 0.205 1060 0.005
5-Jan -16.0 66 1020 38 78.4 1.9 24.1 22.3 56 32.9 - 5810 49 4.43 - 1200 0.008
6-Jan -12.8 59 1020 39 80.0 1.9 23.5 22 56 38.0 - 6270 47 5.47 - 1260 0.008
7-Jan -10.1 71 1020 40 81.4 1.9 23.7 22 59 41.5 - 6640 44 5.65 - 1390 0.008
8-Jan -5.3 85 1020 41 83.0 2.2 24.5 22.6 58 38.1 567 5920 52 6.32 0.245 1420 0.011
9-Jan -7.7 80 1020 41 84.4 2.4 24.7 22.8 57 37.3 605 5800 65 6.14 0.257 1540 0.014
10-Jan -4.8 87 1020 42 86.0 2.3 25.1 23.4 56 34.3 618 5820 63 6.10 0.281 1660 0.013
11-Jan 1.7 81 1020 43 87.6 3.5 25.2 23.1 50 24.7 477 4120 64 7.12 0.349 1660 0.021
12-Jan 0.2 81 1020 44 89.0 3.4 25.2 22.8 48 21.5 458 4120 68 6.75 0.347 1730 0.022
13-Jan -2.0 77 1020 44 90.6 3.2 25 22.5 49 23.6 492 4760 65 6.59 0.357 - 0.019
14-Jan -1.9 75 1020 45 92.0 3.2 25.2 22.5 51 22.3 491 4650 62 6.22 0.324 1820 0.019
15-Jan -4.6 75 1020 46 93.6 2.7 25 22 51 26.6 553 5090 76 6.00 0.317 1700 0.019
16-Jan -0.4 85 1020 47 95.2 3.3 24.8 20.9 52 24.7 478 4420 65 7.23 0.390 1830 0.020
17-Jan -0.4 87 1020 47 96.6 3.3 25.1 22.4 51 21.7 428 4250 - 7.28 0.385 1720 -
18-Jan -13.9 64 1020 48 98.2 2.1 24.4 21.7 53 32.7 520 5540 - 5.18 0.185 1400 -
19-Jan -13.9 66 1020 49 99.8 2.1 24.5 21.3 56 43.2 - 6570 - 6.48 - 1690 -
20-Jan -8.4 77 1020 50 101.2 2.4 24.4 21.7 55 42.6 - 6040 - 7.48 - 1750 -
21-Jan -3.3 72 1020 50 102.8 3.2 25.1 22.2 49 29.9 538 4750 - 7.34 0.310 1780 -
22-Jan -13.7 55 1020 51 104.2 2.4 24 21.6 53 34.9 551 5500 - 5.99 0.213 1590 -
23-Jan -1.5 63 1020 52 105.8 2.9 24.9 22.9 48 33.5 494 4420 - 6.98 0.282 1450 -
24-Jan -7.5 61 1020 53 107.4 2.7 24.1 21 50 32.8 601 4670 - 6.86 0.307 1510 -
25-Jan -6.3 55 1020 53 109.0 1.7 23.2 20.3 53 40.2 638 4780 - 5.03 0.194 987 -
26-Jan -7.5 89 1020 54 110.4 2.2 24.1 21.9 53 33.2 507 4720 - 5.83 0.222 1240 -
27-Jan -17.2 78 1020 55 112.0 2.3 23.3 22.2 54 33.5 413 5070 - 5.76 0.156 1420 -
28-Jan -20.1 73 1020 56 113.4 2 23 22.4 57 41.5 - 6140 - 5.60 - 1380 -
29-Jan -20.7 73 1020 56 115.0 2 23.2 22.5 57 37.4 - 6090 - 4.97 - 1470 -
30-Jan -21.8 72 1020 57 116.6 2.1 23.3 21.7 55 32.1 - 6050 - 4.77 - 1490 -
31-Jan -15.6 67 1020 58 118.0 2.1 23.3 18.8 54 33.5 - - - 4.78 - - -
1-Feb -8.4 86 1020 59 119.6 2.9 23.9 17.6 52 29.2 - - - 6.47 - - -

2-Feb -6.9 90 1020 59 121.2 3.3 24.5 21.1 49 22.3 552 4240 - 6.10 0.325 1640 -

3-Feb -17.5 71 1020 60 122.6 2.9 23.9 21.3 52 26.6 576 5060 - 5.69 0.281 1710 -

4-Feb -12.6 70 1020 61 124.2 2.8 23.8 17.6 52 32.7 588 4930 - 6.46 0.271 1730 -

5-Feb -5.8 83 1020 62 125.6 3 23.5 13.8 51 23.2 522 3800 - 5.70 0.309 1470 -

6-Feb -7.0 88 1020 62 127.2 3.2 24.5 21.3 48 21.5 554 4200 - 5.60 0.332 1630 -

7-Feb -14.2 82 1020 63 128.8 2.9 24.3 22.5 50 24.6 570 5050 - 5.47 0.306 1740 -

9-Feb -4.5 82 1020 65 131.8 3.3 24.4 21.8 44 19.1 492 3920 - 6.25 0.402 1550 -

10-Feb -8.4 81 1020 65 133.4 3 23.9 21.5 47 22.8 571 4200 - 6.03 0.378 1480 -

11-Feb -6.9 81 1020 66 134.8 3.3 24 21.4 44 21.7 502 4190 - 6.40 0.386 1610 -

12-Feb -11.4 83 1020 67 136.4 3.1 24.1 21.5 46 25.6 527 4800 - 7.09 0.384 1820 -

13-Feb -9.1 74 1020 68 138 3.1 24.7 22.9 47 29.7 581 4860 - 7.89 0.378 1850 -

14-Feb -10.4 80 1020 68 139.4 3.1 24.1 20.7 45 24.6 466 4430 - 7.41 0.369 1630 -

15-Feb -15.0 65 1020 69 141 3 23.7 19.5 47 32.6 483 4930 - 7.98 0.308 1780 -

16-Feb -8.7 82 1020 70 142.6 2.9 23.7 20.3 47 32.0 488 4570 - 8.24 0.336 1580 -

17-Feb -7.5 92 1020 71 144 3.2 23.7 20.9 46 24.2 402 4240 - 7.20 0.337 1560 -

18-Feb -0.6 85 1020 71 145.6 3.4 24.3 21 43 19.6 342 3370 - 6.66 0.294 1300 -

19-Feb 0.9 91 1020 72 147 3.5 24.2 20.4 44 16.9 283 3010 - 7.26 0.312 1280 -

20-Feb 0.9 92 1020 73 148.6 - 24.5 21 46 16.8 294 3020 - - - - -

21-Feb 0.5 86 1020 74 150 3.4 24.2 20.4 43 16.8 297 2930 - 6.10 0.255 1190 -

22-Feb 2.7 90 1020 74 151.6 3.2 24.4 20.6 45 17.6 311 2940 - 6.09 0.264 1100 -

23-Feb 0.9 92 1020 75 153 3.5 24.4 20.5 46 17.4 282 3010 - 6.39 0.253 1240 -

24-Feb 0.5 85 1020 76 154.6 3.6 23.9 19.4 45 17.5 301 2990 - 7.08 0.283 1310 -

25-Feb 0.4 84 1020 77 156.2 3.7 24 19 44 18.4 291 3020 - 7.34 0.287 1300 -

26-Feb 1.3 84 1020 77 157.6 3.2 24 20.1 43 19.2 268 2870 - 6.35 0.226 1100 -

27-Feb 2.7 82 1020 78 159.2 3.3 24.1 20.7 43 19.4 254 2720 - 6.85 0.233 1110 -

28-Feb 5.4 76 1020 79 160.8 3.1 24.7 21.8 42 20.5 273 2520 - 6.21 0.207 902 -

29-Feb 7.3 79 1020 80 162.2 3.7 25 22.5 44 20.9 276 2350 - 6.64 0.221 981 -

T: Temperature; RH: Relative humidity; AU: Animal unit; Con: Concentration; ER: Emission rate.    
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Date Outdoor T Outside RH Inventory Mass AU Airflow Indoor T Exhaust T Exhaust RH NH3Con H2SCon CO2Con PM10Con NH3ER H2SER CO2ER PM10ER

2004 °C % kg/pig m3/s °C °C % ppm ppb ppm mg/m3 kg/d kg/d kg/d kg/d
1-Mar 5.9 92 1020 80 163.8 5.1 25 22 48 21.3 281 2410 - 9.52 0.330 1500 -

2-Mar 2.6 88 1020 81 165.2 4.2 24.5 21.2 45 21.2 263 2630 - 8.43 0.290 1360 -

3-Mar 2.1 93 1020 82 166.8 3.9 24.2 20.9 45 20.4 282 2740 - 8.04 0.312 1290 -

4-Mar 2.9 96 1020 83 168.4 4.6 24.3 20.6 46 18.5 275 2520 - 9.04 0.356 1440 -

5-Mar 2.8 92 1010 84 169.4 4.2 24.2 20.9 46 18.2 263 2490 - 8.15 0.313 1260 -

6-Mar 5.1 78 1010 84 170.6 5.8 24 21.6 42 - - - - - - - -
7-Mar 2.7 71 1010 85 172.2 4.9 23.8 20 41 - - - 963 - - - 0.427
8-Mar 4.2 74 1010 86 173.6 5.7 24 20.9 41 18.1 250 2470 859 8.82 0.318 1690 0.448
9-Mar 2.8 80 1010 87 175.2 5.2 23.4 20.1 41 16.8 259 2450 820 8.13 0.302 1570 0.399

10-Mar 3.9 77 1010 87 176.6 5 23.8 20.4 42 18.8 297 2660 824 8.18 0.320 1520 0.382
11-Mar -4.7 65 1010 88 178.2 3.7 23.1 18.9 43 21.7 306 3500 1090 7.77 0.272 1510 0.366
12-Mar -2.5 64 1010 89 179.6 4.6 23.2 19.6 39 20.9 329 3260 946 8.00 0.306 1760 0.411
13-Mar 5.6 67 1010 90 181.2 5 23.8 20.6 41 17.9 318 2630 798 8.05 0.341 1560 0.374
14-Mar 3.1 66 1010 90 182.6 5.6 23.7 20.1 39 17.9 286 2670 786 9.38 0.359 1860 0.448
15-Mar -1.3 90 1010 91 184.2 4.3 23.3 18.7 44 21.4 288 3300 - 10.10 0.347 1880 -
16-Mar -0.9 87 1010 92 185.8 4.9 23.6 19.6 42 22.5 322 3280 892 10.80 0.386 1970 0.393
17-Mar 1.7 88 1010 93 187.2 5.5 23.9 20.1 42 22.3 326 3030 798 12.00 0.430 2060 0.404
18-Mar 3.3 84 1010 93 188.8 5.7 24 20.3 44 22.4 329 2660 814 11.50 0.411 1860 0.439
19-Mar 7.2 75 1010 94 190 6.2 25.8 22.9 44 25.5 423 2590 913 10.90 0.387 1770 0.542
20-Mar 6.9 59 1010 95 191.4 8.3 26.5 23.4 38 22.7 357 2350 777 11.20 0.368 2300 0.563
21-Mar -1.9 64 1010 96 193 5.1 23.8 19.8 39 23.6 286 2970 1020 10.70 0.332 1890 0.487
22-Mar 1.2 59 1010 96 194.4 5.7 23.9 20.3 38 24.3 308 2940 936 11.20 0.346 2040 0.489
23-Mar 8.5 61 1010 97 196 7.5 25.2 22.2 38 19.1 286 2190 803 10.00 0.358 1770 0.540
24-Mar 15.9 73 1010 98 197.6 13.5 26.2 24.7 47 - 283 1380 - - 0.408 1730 -
25-Mar 16.5 89 1010 99 199.2 12.3 26 25.6 56 - 255 1400 371 - 0.411 1780 0.390
26-Mar 16.7 90 1010 99 199.6 11.9 27.1 26.2 56 - 224 1570 321 - 0.363 1890 0.334
27-Mar 16.0 93 946 99 186.8 10.4 27 25.9 57 - 210 1640 328 - 0.277 1670 0.299
28-Mar 9.0 84 921 99 183 8.3 25.1 22.1 49 - - 2050 591 - - 2130 0.440
29-Mar 7.4 73 921 100 184.4 7.7 24.9 21.4 42 - - 2150 533 - - 1970 0.378
30-Mar 1.3 77 921 101 185.8 5.3 23.3 19.1 44 23.0 - 2820 717 11.40 - 1890 0.345
31-Mar 3.1 69 921 102 187 7.1 23.6 19.9 40 23.0 - 2680 589 13.30 - 2260 0.367
1-Apr 6.3 63 921 102 188.6 7.7 24.4 21.1 38 21.8 - 2370 603 12.60 - 2120 0.405

2-Apr 8.9 49 920 102 188.4 7.8 25.2 22.1 34 23.7 - 2240 599 13.00 - 2050 0.414

3-Apr 7.3 51 796 101 161 8 24.4 20.9 36 21.7 - 2170 576 13.30 - 2080 0.408
4-Apr 6.7 45 745 102 151.6 7.7 24.7 21.5 33 22.9 - 2330 652 12.80 - 2080 0.448
5-Apr 11.2 46 745 103 152.8 9.3 24.7 22.4 32 21.6 265 1860 515 13.90 0.343 1760 0.425
6-Apr 14.6 44 745 103 153.8 8.7 25.4 23.5 33 22.8 278 1630 372 12.90 0.337 1590 0.282
7-Apr 13.5 40 745 104 154.8 8.3 25.2 23.3 31 22.1 280 1560 373 11.10 0.297 1330 0.261
8-Apr 9.2 48 745 105 156 7 24 21.6 34 17.2 213 1410 413 8.67 0.229 1040 0.254
9-Apr 8.7 42 744 105 156.8 6.5 23.6 21.2 33 17.7 230 1500 460 8.41 0.229 1040 0.260

10-Apr 4.2 48 744 106 158 5.5 23.1 20.1 35 17.9 235 1650 537 7.74 0.216 1010 0.268
11-Apr 3.2 39 744 107 159 5.5 23 20.2 33 20.4 - 1920 593 7.96 - 1110 0.287
12-Apr 5.2 44 744 108 160 6 23.2 20.3 33 17.4 233 1720 582 8.62 0.254 1160 0.315
13-Apr 6.7 41 744 108 161 6.5 23.8 21.3 32 19.0 246 1730 636 7.76 - 1170 0.343
14-Apr 12.3 40 744 109 162.2 9.1 24.7 22.7 30 - - - 615 - - - 0.533
15-Apr 15.4 49 744 110 163.2 9.9 25.1 23.4 37 - - - 522 - - - 0.493
16-Apr 19.5 55 743 110 163.4 13.7 27.3 26 37 - - - 488 - - - 0.590
17-Apr 19.1 72 593 109 129.6 13.7 27.3 26 49 - - - 221 - - - 0.244
18-Apr 21.4 68 531 110 116.8 16 26.3 26 53 9.3 62 765 270 9.60 0.131 - 0.388
19-Apr 11.3 76 531 111 117.6 7.7 24.6 21.9 47 18.3 183 1360 348 8.44 0.190 - 0.236
20-Apr 10.3 91 531 111 118.4 5 24 20.7 52 22.6 154 1620 320 7.31 0.129 803 0.140
21-Apr 11.1 76 531 112 119 5.2 24.2 21.8 48 - - - 363 - - - 0.143
22-Apr 11.1 75 531 113 119.8 5 24.1 22 47 - - - 406 - - - 0.170

T: Temperature; RH: Relative humidity; AU: Animal unit; Con: Concentration; ER: Emission rate.    
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Figure B.1. Three complete animal growth cycles from Jan, 2003 to April, 2004. 

 

Figure B.2. Daily outdoor temperature from Jan, 2003 to April, 2004. 

 

Figure B.3. Daily outdoor RH from Jan, 2003 to April, 2004. 
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Figure B.4. Daily indoor air temperature from Jan, 2003 to April, 2004. 

 

Figure B.5. Daily airflow rate from Jan, 2003 to April, 2004. 

 

Figure B.6. Daily NH3 concentration from Jan, 2003 to April, 2004. 
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Figure B.7. Daily H2S concentration from Jan, 2003 to April, 2004. 

 

Figure B.8. Daily CO2 concentration from Jan, 2003 to April, 2004. 

 

Figure B.9. Daily PM10 concentration from Jan, 2003 to April, 2004. 
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Figure B.10. Daily NH3 emission rate from Jan, 2003 to April, 2004. 

 

Figure B.10. Daily H2S emission rate from Jan, 2003 to April, 2004. 

 

Figure B.10. Daily CO2 emission rate from Jan, 2003 to April, 2004. 
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Figure B.11. Daily PM10 emission rate from Jan, 2003 to April, 2004. 
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APPENDIX C. TMY3 DAILY DATA 

The TMY3 data is from International airport, Des Moines, Iowa (Class I site).  

 

Date Outside T ( oC ) Outside RH (%) Wind speed (m/s) GHI (w/m2)

1-Jan -2.2 49 5.2 76
2-Jan -3.8 61 3.8 75
3-Jan -4.5 64 3.1 103
4-Jan 1.6 76 4.3 60
5-Jan -0.1 76 5.7 43
6-Jan -1.7 69 4.0 81
7-Jan 4.4 61 5.0 107
8-Jan 7.9 42 5.6 105
9-Jan 1.0 43 9.3 95
10-Jan -7.3 43 7.8 105
11-Jan -10.3 51 2.6 106
12-Jan -4.1 50 5.2 111
13-Jan -7.9 37 2.9 71
14-Jan -9.0 50 5.5 114
15-Jan -10.6 51 3.0 93
16-Jan -9.1 67 5.8 64
17-Jan -14.8 59 4.1 71
18-Jan -9.8 69 6.1 91
19-Jan -5.6 75 4.0 63
20-Jan -7.7 49 3.9 73
21-Jan -10.9 51 3.8 92
22-Jan -13.5 55 5.5 52
23-Jan -18.0 52 4.3 95
24-Jan -11.5 58 4.8 56
25-Jan -9.0 72 3.6 98
26-Jan -15.6 63 4.2 102
27-Jan -7.2 64 5.5 67
28-Jan -2.1 82 3.2 23
29-Jan -6.2 65 2.8 77
30-Jan -0.7 68 5.7 116
31-Jan 0.8 85 5.5 54
1-Feb -16.5 51 2.6 139
2-Feb -15.0 56 3.3 139
3-Feb -11.6 56 2.1 117
4-Feb -11.9 71 5.2 68
5-Feb -14.1 71 2.1 107
6-Feb -16.4 60 5.1 146
7-Feb -16.3 56 3.1 147
8-Feb -11.3 58 4.9 121
9-Feb -5.7 73 4.9 60

10-Feb -5.4 83 5.5 91
11-Feb -9.2 70 7.1 153
12-Feb -11.0 63 5.4 161
13-Feb -7.7 66 6.9 90
14-Feb -9.7 56 7.1 167
15-Feb -10.4 63 4.2 111
16-Feb 0.3 66 6.5 146
17-Feb 1.4 59 3.3 150
18-Feb 1.4 62 5.8 168
19-Feb 0.1 73 4.8 135
20-Feb 2.0 90 6.2 71
21-Feb 7.2 95 4.0 59
22-Feb 3.2 91 2.5 88
23-Feb 2.3 93 5.7 57
24-Feb 1.0 83 5.4 89
25-Feb 2.7 85 5.8 106
26-Feb 0.4 72 6.7 96
27-Feb -0.4 68 3.3 168
28-Feb 5.7 61 5.6 183

T: temperature; RH: Relative humidity; GHI: Global horizontal irradiance 
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Date Outside T ( oC ) Outside RH (%) Wind speed (m/s) GHI (w/m2)

1-Mar 0.6 86 5.4 53
2-Mar 1.2 87 5.1 81
3-Mar -2.3 69 6.2 94
4-Mar -1.1 81 5.2 68
5-Mar -7.8 68 7.2 194
6-Mar -3.4 68 5.2 213
7-Mar -1.1 66 4.4 205
8-Mar -1.4 62 2.9 111
9-Mar 2.3 74 3.2 156

10-Mar 1.8 74 3.3 96
11-Mar 4.5 76 6.3 123
12-Mar 2.5 75 9.9 76
13-Mar -2.4 53 6.0 212
14-Mar 2.3 56 5.3 160
15-Mar -0.5 57 3.7 131
16-Mar -1.6 56 5.5 207
17-Mar 3.1 59 4.6 201
18-Mar 12.3 50 5.5 165
19-Mar 16.1 57 7.6 188
20-Mar 11.2 47 9.2 221
21-Mar 1.2 46 6.6 232
22-Mar 3.8 49 4.4 194
23-Mar 12.2 44 9.4 206
24-Mar 13.0 34 8.2 216
25-Mar 12.9 55 6.8 163
26-Mar 10.6 68 7.2 89
27-Mar 6.8 50 4.5 246
28-Mar 11.3 52 7.8 173
29-Mar 9.6 84 4.1 91
30-Mar 6.4 61 9.0 188
31-Mar 5.5 55 5.0 177
1-Apr 11.1 42 2.3 252
2-Apr 5.9 52 4.7 221
3-Apr 4.4 45 3.4 269
4-Apr 10.7 52 6.2 159
5-Apr -0.5 51 6.3 107
6-Apr 1.8 41 2.8 249
7-Apr 6.3 39 4.5 216
8-Apr 12.1 45 5.7 229
9-Apr 10.4 39 2.9 139
10-Apr 10.7 40 4.8 256
11-Apr 8.0 57 6.9 79
12-Apr 6.3 97 4.0 69
13-Apr 10.9 67 4.6 262
14-Apr 16.5 62 3.7 260
15-Apr 9.8 56 8.8 207
16-Apr 12.9 41 4.9 289
17-Apr 15.8 46 3.9 270
18-Apr 22.6 39 5.3 281
19-Apr 14.7 32 3.9 254
20-Apr 11.4 49 3.5 132
21-Apr 10.8 73 3.2 226
22-Apr 11.7 55 2.9 302
23-Apr 16.1 52 5.3 294
24-Apr 21.7 70 5.4 225
25-Apr 22.0 71 6.0 199
26-Apr 17.7 55 9.0 284
27-Apr 6.5 68 6.0 149
28-Apr 5.4 89 6.5 74
29-Apr 5.1 68 4.3 222
30-Apr 3.7 89 2.7 78

T: temperature; RH: Relative humidity; GHI: Global horizontal irradiance 
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Date Outside T ( oC ) Outside RH (%) Wind speed (m/s) GHI (w/m2)

1-May 14.9 65 2.4 233
2-May 20.0 46 3.4 279
3-May 20.0 42 2.5 286
4-May 21.6 39 2.9 300
5-May 22.2 33 5.5 247
6-May 17.1 28 5.8 266
7-May 10.0 35 5.1 317
8-May 9.4 37 3.3 317
9-May 14.3 36 4.2 303

10-May 16.9 55 6.4 204
11-May 11.0 47 4.1 243
12-May 14.9 54 4.4 186
13-May 12.7 52 5.2 240
14-May 14.7 47 3.6 228
15-May 17.0 47 5.4 311
16-May 12.5 66 6.6 110
17-May 13.4 81 4.0 131
18-May 13.2 85 3.4 113
19-May 15.5 74 1.9 151
20-May 18.1 66 1.9 268
21-May 19.7 56 1.1 323
22-May 21.5 45 3.0 344
23-May 19.4 57 2.7 182
24-May 21.5 58 3.2 258
25-May 23.5 55 4.1 337
26-May 22.8 60 4.5 195
27-May 24.6 57 3.9 273
28-May 23.2 60 4.0 260
29-May 26.0 59 6.0 282
30-May 19.6 67 7.0 210
31-May 19.2 65 3.7 210
1-Jun 17.5 69 4.9 282
2-Jun 16.6 57 2.9 311
3-Jun 19.7 57 3.8 260
4-Jun 21.3 50 4.4 325
5-Jun 21.7 49 2.2 299
6-Jun 22.3 63 3.1 274
7-Jun 20.1 68 6.0 245
8-Jun 16.2 51 3.6 352
9-Jun 22.1 48 4.2 346

10-Jun 25.2 53 8.8 343
11-Jun 26.1 56 6.4 221
12-Jun 22.0 48 5.2 329
13-Jun 21.9 46 3.5 342
14-Jun 21.4 60 6.7 170
15-Jun 24.1 69 7.2 297
16-Jun 28.9 62 6.9 294
17-Jun 26.6 65 6.1 285
18-Jun 21.9 51 3.4 349
19-Jun 23.8 55 6.4 316
20-Jun 19.3 75 4.3 240
21-Jun 20.0 59 2.3 341
22-Jun 20.3 63 4.8 164
23-Jun 21.6 83 3.2 183
24-Jun 26.2 79 3.0 241
25-Jun 28.4 75 3.4 257
26-Jun 26.8 69 4.5 295
27-Jun 25.3 64 2.7 273
28-Jun 25.1 74 3.0 215
29-Jun 26.7 74 3.2 217
30-Jun 29.0 70 4.2 319

T: temperature; RH: Relative humidity; GHI: Global horizontal irradiance 
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Date Outside T ( oC ) Outside RH (%) Wind speed (m/s) GHI (w/m2)

1-Jul 25.4 70 3.4 283
2-Jul 26.3 70 4.2 325
3-Jul 29.5 68 3.8 333
4-Jul 28.3 69 4.2 274
5-Jul 25.2 77 3.1 304
6-Jul 26.6 71 5.3 282
7-Jul 26.9 76 4.0 239
8-Jul 22.8 86 4.3 140
9-Jul 23.7 84 3.8 189

10-Jul 22.0 72 6.6 257
11-Jul 23.1 64 5.1 305
12-Jul 22.6 68 2.1 321
13-Jul 23.8 68 2.8 315
14-Jul 26.6 70 5.8 302
15-Jul 26.3 62 3.8 327
16-Jul 24.6 71 3.0 269
17-Jul 28.4 69 3.8 314
18-Jul 24.8 80 4.5 261
19-Jul 23.3 83 2.8 170
20-Jul 26.7 78 3.5 197
21-Jul 23.7 66 5.0 291
22-Jul 21.0 64 4.2 277
23-Jul 20.8 61 2.1 293
24-Jul 22.5 62 4.4 305
25-Jul 26.8 60 6.3 308
26-Jul 30.0 60 5.5 306
27-Jul 24.7 86 3.2 81
28-Jul 24.6 69 3.2 280
29-Jul 24.1 71 1.7 293
30-Jul 23.8 74 2.7 239
31-Jul 24.6 71 3.3 217
1-Aug 21.4 74 4.1 273
2-Aug 22.9 81 4.0 222
3-Aug 23.1 88 2.2 122
4-Aug 22.6 73 3.9 278
5-Aug 19.3 64 4.2 286
6-Aug 18.9 60 2.2 296
7-Aug 19.5 64 1.7 271
8-Aug 19.8 68 3.1 305
9-Aug 21.8 70 3.6 301

10-Aug 22.5 78 2.4 245
11-Aug 22.8 80 2.1 236
12-Aug 20.1 84 3.3 160
13-Aug 19.9 78 2.4 272
14-Aug 21.6 79 4.2 252
15-Aug 22.6 82 2.6 241
16-Aug 22.8 88 3.7 153
17-Aug 27.0 76 4.5 291
18-Aug 27.8 72 5.0 291
19-Aug 24.7 84 3.6 204
20-Aug 23.0 88 3.3 133
21-Aug 20.9 85 2.7 136
22-Aug 21.1 85 2.9 126
23-Aug 24.1 83 5.0 274
24-Aug 25.3 80 4.2 227
25-Aug 27.3 79 4.4 259
26-Aug 28.5 74 4.9 253
27-Aug 29.2 68 4.4 249
28-Aug 27.1 75 3.5 232
29-Aug 23.6 77 2.5 237
30-Aug 22.6 76 3.0 276
31-Aug 25.4 68 4.8 272

T: temperature; RH: Relative humidity; GHI: Global horizontal irradiance 
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Date Outside T ( oC ) Outside RH (%) Wind speed (m/s) GHI (w/m2)

1-Sep 22.6 71 3.8 230
2-Sep 20.7 64 2.7 277
3-Sep 25.4 68 6.3 262
4-Sep 21.6 65 3.0 216
5-Sep 22.9 69 2.7 253
6-Sep 24.5 75 4.2 232
7-Sep 27.0 68 4.2 244
8-Sep 27.3 66 3.7 246
9-Sep 18.7 60 5.9 151
10-Sep 16.6 57 2.1 237
11-Sep 20.2 63 5.0 180
12-Sep 25.6 67 5.2 204
13-Sep 20.1 74 4.0 129
14-Sep 17.1 72 3.6 108
15-Sep 17.6 76 4.2 189
16-Sep 13.0 71 4.9 94
17-Sep 11.5 62 3.4 202
18-Sep 18.0 60 3.8 242
19-Sep 23.0 69 6.3 200
20-Sep 24.8 62 6.4 201
21-Sep 20.8 66 3.7 217
22-Sep 17.5 61 5.4 180
23-Sep 12.9 55 2.4 227
24-Sep 13.3 70 3.5 99
25-Sep 12.4 63 5.2 193
26-Sep 12.1 57 3.0 208
27-Sep 18.2 51 4.5 172
28-Sep 16.8 52 3.6 204
29-Sep 16.4 70 4.6 128
30-Sep 19.9 65 3.6 200
1-Oct 16.6 48 4.2 149
2-Oct 11.5 46 6.3 115
3-Oct 6.6 58 3.1 91
4-Oct 7.8 63 1.9 157
5-Oct 10.8 56 4.0 199
6-Oct 15.5 50 3.0 204
7-Oct 17.6 48 3.5 192
8-Oct 18.8 44 3.3 184
9-Oct 17.2 52 2.6 188
10-Oct 16.4 34 7.3 199
11-Oct 10.3 45 6.4 175
12-Oct 6.9 55 1.9 196
13-Oct 13.6 47 5.2 103
14-Oct 15.8 55 5.2 182
15-Oct 9.1 88 5.2 51
16-Oct 16.6 84 6.7 94
17-Oct 10.3 60 6.4 131
18-Oct 6.0 64 5.6 94
19-Oct 8.8 60 3.7 159
20-Oct 13.0 59 3.9 166
21-Oct 10.4 52 3.7 134
22-Oct 12.6 52 5.3 145
23-Oct 10.5 75 5.0 71
24-Oct 3.9 69 6.2 87
25-Oct 3.0 61 5.8 71
26-Oct 0.7 65 2.6 95
27-Oct 1.4 76 6.3 64
28-Oct 0.0 69 4.9 163
29-Oct -1.2 71 2.6 138
30-Oct 4.4 66 4.2 144
31-Oct 8.3 62 3.2 127

T: temperature; RH: Relative humidity; GHI: Global horizontal irradiance 
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Date Outside T ( oC ) Outside RH (%) Wind speed (m/s) GHI (w/m2)

1-Nov 6.9 51 3.7 132
2-Nov 7.1 58 5.8 115
3-Nov 11.4 67 2.9 117
4-Nov 10.4 88 5.0 78
5-Nov 2.4 82 9.6 59
6-Nov 3.2 56 8.6 129
7-Nov 4.1 63 4.0 94
8-Nov 6.9 64 3.0 93
9-Nov 7.1 74 3.7 47

10-Nov 2.1 67 6.1 118
11-Nov 1.0 72 4.7 81
12-Nov 4.1 87 5.6 43
13-Nov 7.3 74 4.4 118
14-Nov 7.8 73 4.9 99
15-Nov 13.8 87 5.8 55
16-Nov -0.2 74 10.4 65
17-Nov 3.9 65 4.0 115
18-Nov 8.4 59 5.4 102
19-Nov 2.1 84 5.5 54
20-Nov -3.7 71 6.3 113
21-Nov -2.9 73 3.7 117
22-Nov 2.8 69 5.9 105
23-Nov 7.2 62 6.2 107
24-Nov 9.6 55 6.4 107
25-Nov 5.0 76 5.8 53
26-Nov 3.4 92 5.4 40
27-Nov -1.5 77 10.8 59
28-Nov -4.0 67 5.5 102
29-Nov 1.2 78 5.6 49
30-Nov -0.7 72 5.7 92
1-Dec 1.0 84 7.0 54
2-Dec -1.5 73 2.1 92
3-Dec 0.7 81 6.7 46
4-Dec 0.6 77 4.4 71
5-Dec 0.2 78 3.8 88
6-Dec 4.8 71 4.8 75
7-Dec 4.1 74 6.4 101
8-Dec 1.5 58 4.6 68
9-Dec -3.1 75 4.1 61

10-Dec -3.2 66 4.2 52
11-Dec 0.8 55 4.3 55
12-Dec 1.0 79 2.5 47
13-Dec 1.7 82 2.2 50
14-Dec -4.5 70 5.0 100
15-Dec -8.6 75 3.7 41
16-Dec -10.7 74 5.6 51
17-Dec -16.5 62 6.3 102
18-Dec -17.6 61 4.0 102
19-Dec -17.0 59 3.0 97
20-Dec -6.8 68 7.5 45
21-Dec 1.4 85 4.7 55
22-Dec -1.8 72 5.5 61
23-Dec -3.2 64 5.9 89
24-Dec -2.9 63 4.8 100
25-Dec -1.6 69 4.1 86
26-Dec -0.7 69 4.9 59
27-Dec -3.1 76 3.3 49
28-Dec -10.5 72 4.8 98
29-Dec -10.9 71 4.0 86
30-Dec -3.2 64 5.9 68
31-Dec -5.9 68 7.6 52

T: temperature; RH: Relative humidity; GHI: Global horizontal irradiance 
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Figure C.1. Daily TMY3 outdoor temperature throughout the year. 

 

Figure C.2. Daily TMY3 outdoor RH throughout the year. 

 

Figure C.3. Daily TMY3 wind speed throughout the year. 
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Figure C.4. Daily TMY3 GHI throughout the year. 
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