
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Civil Engineering Theses, Dissertations, and
Student Research Civil Engineering

Spring 5-4-2012

Prestressed Concrete Wind Turbine Supporting
System
Ibrahim Lotfy
University of Nebraska – Lincoln, ilotfy@unomaha.edu

Follow this and additional works at: http://digitalcommons.unl.edu/civilengdiss

Part of the Civil Engineering Commons

This Article is brought to you for free and open access by the Civil Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been
accepted for inclusion in Civil Engineering Theses, Dissertations, and Student Research by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Lotfy, Ibrahim, "Prestressed Concrete Wind Turbine Supporting System" (2012). Civil Engineering Theses, Dissertations, and Student
Research. 45.
http://digitalcommons.unl.edu/civilengdiss/45

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengdiss?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengdiss?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengineering?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengdiss?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/civilengdiss/45?utm_source=digitalcommons.unl.edu%2Fcivilengdiss%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages


PRESTRESSED CONCRETE WIND TURBINE SUPPORTING SYSTEM 

 

By 

 

Ibrahim Lotfy 

 

 

 

A THESIS 

 

 

Presented to the Faculty of 

The Graduate College at the University of Nebraska 

In Partial Fulfillment of Requirements 

For the Degree of Master of Science 

 

Major: Civil Engineering 

 

Under the Supervision of Professors Maher Tadros and George Morcous 

 

Lincoln, Nebraska 

May, 2012



 
 

PRESTRESSED CONCRETE WIND TURBINE SUPPORTING SYSTEM 

Ibrahim Lotfy M.S. 

University of Nebraska, 2012 

Advisors: Maher Tadros and George Morcous. 

Wind energy is one of the most commercially developed and quickly evolving renewable 

energy technologies worldwide. Wind turbines are commonly supported on tubular steel 

towers. As the turbines are growing and the towers are elevating, an increase in structural 

strength and stiffness is required to withstand the applied forces. Recent studies 

established concrete as a more economic and durable alternative to steel especially when 

the tower height exceed 240ft. Presently, concrete towers are not common due to their 

perceived heavy weight and assembly complexity. One of the systems that have been 

mentioned in the literature consists of precast rings that are post-tensioned together and 

assembled at the turbines site. While the tubular shape is compatible with wind variation 

and behavior, its construction process can be burdensome, demanding and expensive. In 

this thesis, an effort to reduce the construction cost is proposed by developing a precast 

prestressed concrete system that consists of vertical columns and horizontal panels. 

Composed of simple precast elements, this system is easy to transport, assemble and 

erect, plus it will reduce the post-tensioning costs. The proposed system has a triangular 

shaped cross-section that consists of three columns at each corner of the triangle 

connected together with commonly used precast concrete wall panels. The tower has a 

tapered profile to reduce the area subjected to wind thus lower the total weight and 

applied moment. It will also enhance the dynamic response of the tower and improve its 

overall stability. This thesis presents analysis and design of 240ft and 320ft high 

supporting systems under dead, wind and seismic loading. A comparison between the 

proposed system and current concrete and steel systems is also presented in terms of 

behavior, ease of construction and cost.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

1.1.1 A window to the past 

Wind energy is abundant; it is a free source of renewable energy that has been used for 

decades. Ever since man decided to build ships and conquer the sea, wind energy was the 

force blowing those sails and driving these ships.  And when he built windmills, either 

for grinding grains or pumping water, wind energy was the reason those windmills were 

turning.  Still to this day, some farmers use wind energy for those small applications as 

oppose to using fossil-fueled engines.  The introduction of wind turbines as means to 

generate electricity can be traced back to the late nineteenth century; however, they 

received little interest all throughout the twentieth century.  In the mid-seventies, the 

spike in oil prices aroused concerns over the limited fossil-fuel resources that were the 

main stimuli that drove a lot of government-funded programs and researches towards 

wind energy alternatives.  After the emergence of the three-bladed, stall-regulated rotor 

and fixed-speed, the simple architectural design that is implemented in today’s wind 
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turbines, the industry flourished in USA, Europe and worldwide (Burton et al., 2001). 

Figure 1-1 shows the evolution of wind turbines rotor diameters. 

 

Figure 1-1: Development of wind turbines. (US department of energy, 2008) 

1.1.2 Status Quo 

In today’s world, the fact that harnessing wind power is a green energy makes it even a 

much more attractive solution in today’s society, where the emphasis is on environmental 

issues, reduction of CO2 emissions and limiting climate changes.  Numerous efforts and 

accomplishments in engineering design, materials, aerodynamics and production pushed 

wind energy technologies to the next level and granted it a competitive edge among other 

energy sources.  Now, wind energy is one of the most commercially developed and 

quickly evolving renewable energy technologies worldwide.  Wind turbines have grown 

Year 
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both in size and efficiency; rotor diameters increased to 393.70ft, towers risen over 

328.08ft and power output reached 5 megawatts (MW) (The Concrete Center, 2007). 

World Wind Energy Association, (2010) confirms that wind power is always growing 

and it follows the same trend; the installed capacity more than doubles every third year.  

Furthermore, with the increasing awareness of the economic, social and environmental 

benefits of wind power, the growth rate is predicted to increase exponentially in the near 

future and a global capacity of 600,000MW is expected by 2015. Figure 1-2 and Figure 

1-3 show the new and total installed world capacity in the last decade and the predicted 

wind energy growth projection. 

 

Figure 1-2: World’s new and cumulative installed capacity [MW]. (WWEA, 2011) 
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Figure 1-3: Expected growth of the world installed capacity [MW]. (WWEA, 2011) 

The United States has established itself as one of the world’s largest markets in wind 

energy.  And despite of its market slowdown in 2010, the United States has maintained 

its status by producing a total of 40,180MW preceded only by China with 44,733MW.  

Among the fifty states, Texas is leading the way in total harnessed capacity followed by 

Iowa.  From Figure 1-4 and Figure 1-5, it’s obvious that the mid-west has a lot of 

potential when it comes to wind energy.  Most of the mid-west states already have a 

significant basis of operational wind farms that can be relied on for their energy 

production, and there is still a lot of room for further developments (American Wind 

Energy Association, 2011). The state of Nebraska has the fourth greatest wind energy 

potential among the nation. It had a cumulative wind energy production of 337MW 

through 2011 year’s end.   
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Figure 1-4: United States installed capacities map [MW]. (AWEA, 2011) 

 

Figure 1-5: Installed capacities by state [MW]. (AWEA, 2011) 
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1.1.3 Future Development 

Between the constant attention that the industry is getting and the continuous 

development in technology, the future is bound to be even brighter than ever featuring 

taller, bigger and more efficient wind turbines. It is obvious from Figure 1-3 that the 

world growth rate is expected to increase exponentially in the future. The same scenario 

applies for the US growth rate as well. The US Department of Energy, (2008) confirms 

that the US wind industry is on track to achieve a 16,000MW/year growth approaching 

2030 consistent with the expectation of supplying 20% of the US energy from wind 

energy by 2030 year end. 

1.2 Problem Statement 

Wind turbine generators are commonly supported on steel structures; either trussed or 

tubular tower. As the turbines are growing and the towers are elevating, an increase in 

structural strength and stiffness is required to withstand the applied forces. Recent studies 

established concrete as a more economic and durable alternative to steel especially when 

the tower height exceed 240ft. Presently, concrete towers consist of precast rings that are 

post-tensioned together and assembled at the turbines site. While the tubular shape is 

compatible with wind variation and behavior, its construction process can be 

burdensome, demanding and expensive. In this thesis, an effort to reduce the construction 

cost is proposed by developing a precast prestressed concrete system that consists of 

vertical columns and horizontal panels. Composed of simple precast concrete elements, 
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this system is easy to transport, assemble and erect, plus it will reduce if not eliminate the 

post-tensioning costs.  

1.3 Research Objectives 

The objective of this research is to develop a concrete precast prestressed wind turbine 

supporting system solution that is competitive for hub height* exceeding 240ft where 

construction methodology and logistics are optimized. This objective can be broken down 

into smaller tasks: 

• Simplify concrete forming and casting by reducing the complexity of the precast 

sections and standardizing them for multiple use.  

• Prescribe design procedures compatible with the new shape. 

• Optimize the design of the concrete elements in terms of concrete dimensions and 

steel reinforcement. 

• Consider transportation restraints. 

• Reduce or eliminate the need for post-tensioning tendons. 

• Achieve a fast erection time. 

• Maintain the desired aesthetics of the wind turbine tower.  

 
                                                 
* Hub height is the height measured from the ground level to the center of rotation of the wind turbine 

blades. 
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1.4 Scope of this Research 

This research is intended for wind turbine structures located in the Mid-West region of 

the US using wind speeds and seismic acceleration accordingly. This main concern of 

this research is wind turbines supporting systems and towers; limited literature 

concerning the turbine mechanisms, aerodynamics or fluid mechanics is included. 

Concrete applications are the main focus of this research; some steel applications, 

analysis and design are presented for comparative illustrations.  

This thesis presents analysis and design of 240 and 320ft high supporting systems under 

dead, wind and seismic loading. Comparison between the 240ft proposed system and the 

current steel solutions with the same hub height, the 320ft proposed system and the 

current concrete solutions with the same hub height are included. 

1.5 Thesis Organization 

Chapter 1: This chapter gives a general introduction about wind energy in the US and 

Worldwide, and it presents the problem statement and the research objectives of this 

thesis.     

Chapter 2: This chapter discusses the available concrete systems that are currently being 

used by manufacturers and the systems proposed for future use.   

Chapter 3: This chapter presents a detailed description of the system proposed in this 

thesis outlining its advantages and construction sequence. Proposed design procedures 

are also illustrated.   
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Chapter 4: This chapter explains the various loads applied on the proposed system along 

with the standards followed.    

Chapter 5: This chapter presents the modeling techniques implemented to accurately 

represent the structure in a finite element model using SAP 2000 and the design 

methodology followed when designing the individual tower elements and the 

corresponding design standards.     

Chapter 6: This chapter presents a summary of the system investigated and a 

comparison between them. It also contains the conclusions drawn from this study. 
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CHAPTER 2   

LITERATURE REVIEW 

2.1 Concrete vs. Steel 

Concrete has always been the competitive choice for tower like structures including tall 

chimneys, poles and bridge piers. However that is not the case for wind turbines towers 

as tubular steel towers have monopolized the market. The reason for steel dominance is 

due to the fast construction time. Steel towers are light an fast however the global wind 

market now trends toward higher and larger wind turbines to reduce energy cost and the 

tubular steel solution cannot keep up with this trend as its erection speed is tied to 

transportation of complete tube segments to the site which limits the maximum tower 

diameter to 14.5ft. Almost every wind turbine exceeding 320ft hub height and rated 

power over 2 to 3MW has employed an alternative tower solution, and turbine 

manufacturers are investigating new feasible and cost-effective solutions for these 

turbines. Although precast concrete solutions were initially implemented to reach height 

where conventional steel tower could not, they proved to be a profitable solution for 

conventional hub heights. Figure 2-1 through Figure 2-8 shows the construction sequence 

of steel towers. 
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Figure 2-1: Transportation of complete steel tube segments. (Sri, S., 2011)  

 

Figure 2-2: Blades transportation. (Sri, S., 2011) 
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Figure 2-3: Nacelle transportation. (Sri, S., 2011) 

 

Figure 2-4: Lifting of complete steel tube segments. (Sri, S., 2011) 
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  Figure 2-5: Erection of steel towers. (Sri, S., 2011) 
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Figure 2-6: Nacelle placement. (Sri, S., 2011) 
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The nacelle of the wind turbine is the heaviest component in the wind turbine structure; 

therefore the choice of the crane is dependent on its weight. The weight of the 3.6MW 

wind turbine generator is 350tons. However, the erection of the blades is the most 

challenging procedure of the construction process as two cranes have to be used to 

balance and tip the blades and orient them into the vertical direction without dragging 

them through the ground and potentially damaging them (see Figure 2-7 and Figure 2-8). 

 

 

Figure 2-7: Blade tipping using two cranes. (Sri, S., 2011) 
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Figure 2-8: Blade lifting using two cranes. (Sri, S., 2011) 
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2.2 Current Concrete Applications 

Many manufacturers have experimented with new concepts involving precast concrete 

that can overcome the transportation issues plaguing the tubular steel tower. General 

Electric, Nordex, WinWinD and Alstom-Ecotecnia have experimented with a hybrid 

tower setup where the top is a conventional tubular tower supported by in situ concrete. 

 

Vries, (2009) presented a new concrete-steel hybrid wind turbine supporting system 

developed by Advanced Tower Systems (a joint venture between two Dutch companies, 

engineering consultancy Mecal BV, large general contractor Hurks BV and a German 

renewable energy project developer Juwi Holding). Their research efforts aimed to find 

an optimized tower cross section for the bottom concrete segment suitable for 

manufacturing. After investigating several shapes they settled on a square cross section 

with rounded edges. The tower had a hub height of 435ft and supported a 2.3MW 

Siemens wind turbine. Its cross section consisted of four identical cylindrical-shaped 90 

degree corner elements and four flat tapered elements that fit in between them, as shown 

in Figure 2-9. At its base, the sides of the tower measured 27.23ft. This would allow for a 

single mold to fabricate all the rounded elements. The upper steel tower was a 

conventional tubular tower, thus its max diameter was constrained by logistics; max steel 

tubular steel diameter shouldn’t exceed 14.5ft. In consequence, larger wind turbines 

tower would feature a shorter steel segment so that its max diameter stays in the practical 

range. To properly connect the steel and concrete segments a square-shaped adaptor was 

integrated into the top section of the concrete tower. The steel tubular segment was 
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fastened in the concrete adaptor with the aid of long studs passing through the concrete 

and fastened from inside. To erect the concrete segment each additional layer is partly 

assembled on the ground into two halves before hoisting. After placement of the concrete 

components the structure was post-tensioned.  

 

Figure 2-9: Advanced Tower Systems hybrid tower. (Vries, 2009) 
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LaNier, M.W., (2005) presents a study done by the National Renewable Energy 

Laboratory to investigate the feasibility of using wind turbines in low wind speed sites. 

The wind turbine tower designs were done by BERGER/ABAM Engineers Inc. where 

different setups and concepts were investigated to determine the most economical 

approach. The concepts investigated were a tubular steel setup, a steel/concrete hybrid 

system and an all-concrete tower. The 328ft all-concrete tower, supporting a wind turbine 

of a rated power of 3.6MW, had a base diameter of 22ft and a top diameter of 12ft. Its 

base wall thickness was 2.25ft and its top wall thickness was 1.5ft. The designers used a 

combination of tendons and steel rebar to reinforce the tower and resist the straining 

actions applied. Figure 2-10 shows the design plans for the all concrete 328ft tower 

supporting a wind turbine with a rated power of 3.6MW.  
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Figure 2-10: 328ft concrete wind turbine with a power of 3.6MW. (LaNier, M.W., 2005) 
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Acciona Windpower and Enercon have had greater progress with precast concrete towers. 

Enercon (Enercon GmbH) now is offering precast concrete towers on a commercial scale 

for wind turbine having a hub height of 246ft and above. The tower consists of precast 

concrete rings that increase in diameter the closer they are to the tower base with the 

lower rings split vertically for logistical issues. After placement, the rings are post- 

tensioned in the vertical direction, Figure 2-11 shows an Enercon wind turbine model 

E126 and rated power 7.5MW.  

The Concrete Center, (2007) offered a similar solution for wind turbine having a hub 

height of 230ft and 328ft. The towers were supporting wind turbines with a rated power 

of 2MW featuring 131ft long blades and 4.5MW featuring 197ft long blades respectively. 

The 230ft tower had a uniform taper while the 328ft tower had a bi-linear one. The 

tower’s diameters at the base are 24.6ft and 39.4ft. A reinforced concrete footing was 

used to support the structures. Construction process: After the delivery of the ring 

segments to the construction site, vertical segments of max four rings (39.4ft tall) are 

assembled on the ground then post-tensioned with minimum prestress force to maintain 

its stability while hoisting the segment into its place. After placement, the segment would 

then be post-tensioned with the bottom of the tower with enough force to maintain its 

stability. After the whole tower is constructed, the main and final post-tensioning is then 

applied throughout the whole height of the tower. Figure 2-12 shows the elevation of the 

328ft tower while Figure 2-13 shows its construction sequence. This study concluded that 

not only precast concrete solutions can potentially save over 30% compared to its steel 

counterpart; it can also prolong the service life of the wind turbine to about 40-60 years. 
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Figure 2-11: Enercon wind turbine with rated power 7.5MW. (Enercon GmbH) 
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Figure 2-12: The Concrete Center 328ft concrete tower. (The Concrete Center, 2007) 
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Figure 2-13: The Concrete Center 328ft construction. (The Concrete Center, 2007) 
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Jimeno, J., (2012) explains another precast concrete tower concept developed by the 

Spanish company “Inneo Torres” for hub heights of 262ft, 328ft and 393ft and rated 

power of 1.5MW to 4.5MW. The concept consists of few large precast elements in the 

form of long narrow panels. The tower is divided into large segments, typically 65ft, and 

each segment is divided vertically into panel-ring sectors that fit together. During 

erection, sectors are assembled then hoisted in place. By reducing the number of precast 

elements, the system managed to achieve a rate of two towers per week, similar to 

erection rates of its tubular steel counterpart. Figure 2-14 shows the construction of an 

Inneo Torres tower in Spain.  

 

Figure 2-14: Construction of an Inneo Torres tower in Spain. (Jimeno, J., 2012) 
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2.3 Concrete’s Appeal 

As the turbines are growing and the towers are elevating, an increase in structural 

strength and stiffness is required to withstand the applied forces. This will introduce 

transportation issues for steel towers, bearing in mind that 14.5ft limit for the diameter of 

complete ring sections that can be transported along the public highway. While 

researchers and manufactures are working to develop segmented designs to offset this 

limitation, costly bolted connections would have to be introduced into the thickest and 

most heavily loaded sections of the tower. On the other hand, not only do precast 

concrete towers accommodate these requirements, they offer a variety of associated 

benefits. The following qualities are the main reasons that grant precast concrete its 

competitive edge (The Concrete Center, 2007) (Serna, J. & Jimeno, J., 2010).   

• Structural  behavior and dynamic performance: 

As oppose to the brittle behavior that the local buckling failure mode and fatigue 

impose on steel towers, precast concrete towers undergo a ductile behavior that is 

favorable especially in seismic controlled sites. Prestressed concrete has high 

tolerance to dynamic loads due to its higher structural damping and fatigue resistance.  

• Weight and foundation: 

The increased weight of the precast concrete gives the tower a much needed stability 

to resist overturning.  It can also be used to control the natural frequency of the tower. 

Moreover, it reduces the size of the gravity foundation needed and the concrete tower 
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base has a larger footprint which reduces the foundation’s cantilever span and the 

reinforcement needed.  

• Maintenance and Durability: 

Precast concrete is a very durable material as compared to steel. It has the ability to 

maintain its properties under harsh weathering conditions. Precast concrete tower 

require little or no maintenance; i.e. painting the concrete tower is and aesthetic 

option while Painting the steel tower is a requirement for protection against corrosion. 

• Mix design flexibility: 

Precast concrete is always associated with superior quality control and optimal 

mechanical properties. In addition, its ability to be fine-tuned to meet unique project 

requirement is an invaluable quality that comes in handy when dealing harsh 

conditions and marine applications. 

• Design and construction flexibility: 

Concrete is a very versatile material. It allows all designs and concepts with no 

limitation on tower cross-section or height. 

• Logistics and transportation: 

Even though concrete towers weight more than its steel counterpart for the same hub 

height, this won’t require a heavier crane to erect the concrete tower as the crane’s 

choice is governed by the nacelle’s weight*. Precast concrete technologies allow the 

possibility of having an on-site temporary manufacturing base that will eliminate 

                                                 
* The nacelle is the box housing all the generating components in a wind turbine, including the generator, 

gearbox, drive train, and brake assembly. 
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most of the transportation costs. In case of large wind farms this option is very 

appealing.  

• Economy: 

Precast concrete can offer an enhanced life cycle value with low initial cost. 

Concrete’s raw materials are inexpensive. For tall tower, where steel solutions aren’t 

practical, a cost-effective solution with a design life of 40 to 60 year is feasible using 

precast concrete solutions. In addition, taller wind turbines generate higher levels of 

power which in turn reduces the payback time.   
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CHAPTER 3   

PROPOSED SYSTEM 

The system proposed in this thesis is a precast concrete supporting system that will 

benefit from all the favorable concrete qualities mentioned in the literature review and 

improve upon them in several ways. This chapter presents detailed description of the 

proposed system and its construction procedures. Its expected benefits and design 

procedures are also included. 

3.1 System Description 

The proposed wind turbine supporting system is a triangular cross-section precast 

concrete tower that consists of three columns in each corner of the triangle. The columns 

are connected together with panels along the height to enclose the interior for the tower 

shaft and ensure that the columns are resisting the applied actions as one built up section. 

Along the height the columns are divided into 80ft segments for transportation and 

erection purposes. In keeping with the current wind turbine supporting systems, the tower 

has a tapered profile that varies linearly with each vertical segment. This tapered profile 

will reduce the total weight and the area subjected to wind thus lower the applied 

moment. It will also enhance the dynamic response of the tower and improve its overall 

stability. Figure 3-1 shows the tower’s cross section. 
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Figure 3-1: Tower’s cross section. 

The triangular cross section of the tower was chosen as it could accommodate a skeleton 

type construction composed of vertical columns connected by panels. The triangular 

section has been implemented in past applications like trussed steel towers. Its shape has 

an attractive aesthetic view and a good aerodynamic shape that reduces wind pressure 

and tower vibrations. Contrary to ring sections used in current concrete wind towers, 

columns and panels are easy to fabricate in the precast plant. Transportation and erection 

are also simplified.  Figure 3-2 shows the cross section of the columns. 
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Figure 3-2: Column’s cross section. 

The columns have a hollow hexagonal cross section to facilitate their connection with the 

panels. This shape also allows a doubly symmetrical reinforcement pattern that can 

accommodate the variation in wind direction as explained later in the design chapter. 

Even though in this system the column segment height is 80ft, it can be modified to fit 

any tower height or transportation limitation. The column has a hollow circular void at its 

center to reduce its weight. The hexagon sides measured 3ft each having a diameter of 

6ft. The hollow void inside the column is achieved using a 42in. PVC pipe having an 

inner diameter of 40.73in. and an outer diameter of 44.50in. as per “JM Eagle - Big Blue” 

pipe manufacturer. However, the inside void could be achieved using any alternative 

method such as Styrofoam or collapsible forms. Styrofoam is expensive and should be 

used if PVC pipes aren’t available; one the other hand collapsible form could become a 
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very attractive solution in case of wind farm construction with multiple towers. While the 

columns were intended to be prestressed and then connected with a splice connection to 

eliminate post-tensioning costs, an alternative where a portion of the strands are post-

tensioned is also included (refer to the design chapter for reinforcement details). For the 

lower segments of the tower, filling the void inside the columns with plain concrete can 

help stabilize the tower and resist the overturning moment. It will also add some 

protection to the post-tensioned duct. However this alternative was not adopted in this 

study.    

The panels’ role is to enclose the tower and connect the columns together through shear 

connections using steel bolts. The panels were design as 6in. thick reinforced concrete 

having a constant height of 10ft. Their width however varies along the tower’s vertical 

profile shown in Figure 3-3. This tapered profile is suitable for panel’s erection as the 

higher the panel’s place in the tower the lighter it will be. The panels’ heights also can be 

adjusted to accommodate transportation, erection or different tower dimensions. 

One of the main attractions of the proposed system is its tapered profile. Considering a 

conventional cantilever column subjected to uniform pressure, its excepted bending 

moment would take a second degree parabolic shape. If the tapered profile of the 

proposed system was tailored to mimic the bending moment’s shape, the columns would 

only be subjected to axial forces. Moreover, the footprint of the system determines the 

magnitude of these axial forces. The larger the footprint becomes, the overturning 

moment would be resisted by a larger lever arm which decreases the loads. However, the 

increase of the tower’s girth will attracted more wind pressure which, in turn, increases 
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the forces. Therefore the tower’s profile should be tailored with care to achieve an 

optimal design. Tweaking the tower’s profile add a lot of flexibility to the design of the 

proposed system. In this profile, every segment, measuring 80ft height, has constant 

linear slope. Transition between slopes is accommodated in the columns splices. Figure 

3-3 shows the tower’s profile for both the 240ft and the 320ft towers.  Figure 3-4 shows 

the full elevation of the 240ft concrete tower. 

 

Figure 3-3: Tower’s vertical profile for 320ft (left) and 240ft (right) systems. 
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Figure 3-4: 240ft system’s elevation. 
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The 240ft tower is composed of three segments of 80ft each. The center to center widths 

from the base to the top are 25, 15 and 10ft respectively. The 320ft tower is composed of 

four segments of 80ft each. The center to center widths from the base to the top are 40, 

25, 15 and 10ft respectively. 

3.2 Construction Sequence 

The construction process of the proposed system in much simpler than that used for 

current concrete solutions. It is done by simply erecting the columns and then connecting 

them by the panels. Figure 3-5 through Figure 3-9 illustrate the construction process of 

240ft the proposed system.  After the construction of the foundation, the columns of the 

first segment are put into place. Their slope is then controlled by fixing them into the 

base (Figure 5-16) and using steel temporary beams at the top of the segment (see Figure 

3-5). The first segment panels are then installed and fixed in the columns (see Figure 3-

6). After the installation of the panels, the temporary beams can then be removed. The 

same procedure is repeated for segment two and three (see Figure 3-7 and Figure 3-8). 
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Figure 3-5: Segment 1 columns erection and slope control. 

 

Figure 3-6: Segment 1 panels installation. 
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Figure 3-7: Segment 2 erection. 

 

Figure 3-8: Segment 3 erection. 
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Figure 3-9: Nacelle and blades installation. 

3.3 Expected Benefits 

While the proposed system benefits from all of the appealing aspects of concrete 

solutions mentioned in the literature review (refer to section 2.3), it also have some 

advantages over current concrete solutions including: 

• Flexibility: 

The proposed system can be tailored to accommodate any required dimension, 

reinforcement or logistics. Several options for the column design and reinforcing 

patterns are presented in this study including different shear reinforcement option, a 

prestressed and a post-tensioned option. Filling the lower segments of the columns 

with plain concrete is also a design alternative that could be adopted to meet specific 



39 
 

design criteria. The tower’s vertical profile is a powerful tool that could be employed 

to reduce columns reinforcement or reducing the tower’s footprint. The panels also 

can accommodate different dimensions, design and connections depending on the 

required behavior of the system.  

• Fabrication: 

Current concrete towers composed of ring sections also have a tapered profile which 

makes every ring different in dimensions for its preceding and following rings. This 

complicates the fabrication procedure as the use of multiple forms or expensive 

dynamic forms becomes a necessity. However, the proposed system is composed of 

easier shapes form a fabrication vantage point; the same typical column section and 

flat panels that don’t require special forms to fabricate.  

• Transportation: 

Flat panels can be easily stacked and piled on top of each other using shims, which 

reduce the number of trips required to transport the towers components. The column 

segments can be tailored to accommodate transportation. Transportation costs are also 

reduced. No special care is required during transportation unlike ring section which 

require fixing and balancing to avoid damage. 

• Erection: 

Once the columns of the proposed system are placed, panels’ installation is very 

quick and easy. Eliminating the need for post-tensioning and connecting the columns 

using splices will reduce the overall cost of the tower and will simplify the 

construction process by eliminating the post-tensioning steps.  
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3.4 Design Procedures and Standards 

The wind turbine industry flourished in Europe and its market is monopolized by 

European wind turbine manufactures. As a result, the European standards are used as a 

baseline for most wind turbine design. Certification for wind turbines is attained by 

complying with the International Electrotechnical Commission standards (IEC 61400-1) 

or European agency-specific standards like GL Rules (GL, 2003). Currently there is no 

standardized US code for compliance of wind turbine towers. Consequently, a variety of 

standards, codes and textbooks are integrated together using experience and judgment to 

design wind turbines in the US. The design has to be rechecked against the European 

standards before commercial certification (Agbayani, N., 2010).  

The process followed in this study to design the wind turbine was based mainly on the 

following US standards ASCE 7-10, the ACI 318 and the AISC. In instances where the 

aforementioned codes weren’t accurate or didn’t prescribe certain specifications for large 

wind turbine towers, other sources (European standards, textbooks, technical reports and 

papers) were consulted and followed as outlined in this study. One of the helpful tools in 

integrating between different design standards and design criteria was the ASCE/AWEA-

RP2011 “Recommended Practice for Compliance of Large Land-based Wind Turbine 

Support Structures”.  Released in December 2011, it provides guidelines that are 

compatible with both the IEC (2005) and the US standards and provides 

recommendations where they differ. Another helpful publication was a technical report 

done by the National Renewable Energy laboratory (LaNier, M.W., 2005).  

Figure 3-10 illustrates the design procedures recommended for the proposed system.  
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Figure 3-10: Design procedures for proposed system. 
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3.5 Dynamic Concerns 

The wind turbine structure should be designed with sufficient separation between the 

turbine operational frequencies and the structure natural frequency to avoid any 

resonance. These turbine operational frequencies results from any harmonic loading 

including the turbine rotor operational frequency and the blade-pass frequency. Turbine 

operational frequencies resulting from any transient loading, like start-up conditions, are 

negligible as there are only applied for a short duration that won’t cause resonance. 

Specifications for the natural frequency separation should comply with Certification 

Agency Guidelines. The GL Rules (GL, 2003) guidelines were implemented after 

adjustments recommended by ASCE/AWEA-RP2011.  

The natural frequency should have a least a 5% separation from the operational 

frequencies. A 5% safety margin should be applied to the tower’s natural frequency to 

account for tolerance in design assumptions and calculations. In the practical wind 

industry, a total of 15% separation is usually required between the natural and operational 

frequencies. The wind turbine generator used had a rated power of 3.6MW and a rotor 

speed of 13.2rpm yielding 0.22Hz rotational frequency.  

Table 3-1 and Figure 3-11 illustrates the allowable frequency range and the towers 

natural frequencies. 
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Figure 3-11: Natural frequencies of different towers and operational frequency range. 

Table 3-1: Natural frequencies of different towers and operational frequency range. 

Frequency Period 

Rotor Speed 
13.2 rpm --- --- 

0.22 Hz 4.55 sec 

Safe Frequency Range 
0.25 Hz 3.95 sec 

0.63 Hz 1.59 sec 

240ft proposed (triangular) 0.44 Hz 2.27 sec 

240ft steel   (circular) 0.34 Hz 2.94 sec 

320ft proposed (triangular) 0.42 Hz 2.38 sec 

320ft concrete (circular) 0.39 Hz 2.56 sec 
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3.5.1 Dynamic Properties Interpretation 

The difference between the steel and concrete towers is obvious; the concrete tower is 

much stiffer than the steel tower having a higher frequency and smaller period. 

Consequently, the steel tower would undergo larger deflections than the concrete 

proposed system.  

For the 320ft tower, the proposed system is compared against a circular concrete solution 

currently being used. A complete dynamic analysis was performed for both towers using 

both, a simplified lumped mass system and finite element analysis, to examine the 

proposed system’s behavior against the current concrete applications. Table 3-2 presents 

the results of that analysis (refer to appendix D for details). From the results it can be 

concluded that the two systems have very similar modal properties. The circular system 

has slightly higher periods than the triangular one which means that it is more flexible. 

Therefore the circular system will experience greater deformations and vibrations. As for 

modal contribution, the first mode contribute more to the triangular system’s response 

due to the higher effective modal mass and base straining actions contribution, however 

the rest of the modes contribute more to the circular system’s response.  

Figure 3-12 illustrates the mode shapes with their respective natural periods, obtained 

from finite element model, for the 320ft proposed system. 
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Table 3-2: Modal properties comparison for 320ft concrete systems. 

System Triangular (proposed) Circular (current) 

Mode 1 2 3 4 1 2 3 4 

Natural 
period 

(s) 
2.37 0.39 0.14 0.09 2.56 0.43 0.17 0.10 

Mode 
Shapes 

 

Effective 
modal 
masses 

and 
heights 

 
Top 

deflection 
contribution 

98 % 1.3 % 0.3 % 0 % 98 % 1.7 % 0.08 % 0 % 

Base shear 
contribution 

65 % 22.2 % 9.4 % 3.4 % 55.4 % 25.7 % 12.6 % 6.3 % 

Base moment 
contribution 

84 % 12.1 % 3.0 % 0.8 % 76.7 % 16.6 % 4.8 % 1.9 % 
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Figure 3-12: Mode shapes and natural periods for the 320ft proposed system. 
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CHAPTER 4   

LOADING 

The challenge starts with the wind turbine generator as its prescribed loading patterns and 

design procedures follow the IEC 61400-1 specifications. To understand the loads 

induced from wind pressure on the tower, a brief introduction to the design of the wind 

turbine generator using the IEC 61400-1 is required. The following section highlights the 

most important aspect relevant to the design of the proposed tower. 

4.1 Wind Turbine Generator 

Wind turbines are categorized into three classes; I, II and III, according to their respective 

extreme reference wind speed (Vref
*) and intensity of turbulence. This classification does 

not accurately represent a specific region and does not differentiate between different 

seismic conditions. However, a fourth class “S” is included that cover any special 

conditions. Design values for this class should be specified by the designer.  

4.1.1  Wind Models 

The IEC 61400-1 prescribes several wind models that should be considered when 

designing the wind turbine including: Normal wind speed probability distribution, 

                                                 
* The reference wind speed is defined as the averaged wind speed at the hub height over 10-minutes.  
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Normal wind profile model, Normal turbulence model, Extreme wind speed model, 

Turbulence intensity for extreme conditions, Extreme operating gust, Extreme turbulence 

model, Extreme direction change, Extreme coherent gust with direction change and 

Extreme wind shear. The two most important models for the tower are Extreme operating 

gust (EOG) and Extreme wind speed mode (EWM) respectively. 

a) Extreme wind speed model (EWM) 

This model represents the extreme conditions applied on the structure whilst the wind 

turbine non-operational. The conversion from the reference speed (Vref) to the 3-second 

gust in the IEC 61400-1 is identical to the ASCE 7-10 for open terrains meaning that both 

standards have identical extreme gust wind profiles (ASCE/AWEA-RP2011). However 

the IEC 61400-1 requires the consideration of � 15 degrees of yaw misalignment*. 

b) Extreme operating gust (EOG) 

This model represents the extreme conditions applied on the structure while the wind 

turbine operating. This model is considered during several stages of the wind turbine 

operation; start-up, shut-down, power generation and fault conditions. No equivalent 

model is provided by the ASCE 7-10. 

4.1.2  Safety Factors for Wind Turbine 

There are three safety factors in the design of wind turbine according to the IEC 61400-1; 

component consequence factor, material safety factor and loading safety factor. 

Depending on the consequence of failure of a certain component the consequence factor 

                                                 
* Yaw misalignment means the direction of the wind is not aligned with the wind turbine axis of rotation.  
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will be applied accordingly. In most cases it is take as the same as the importance factor. 

The material safety factor varies depending on the material of the component in question. 

In normal situations, the load factor is taken as 1.35 for unfavorable loads and 0.9 for 

favorable loads.  

4.2 Wind Turbine Loads 

To analyze the supporting system, the wind turbine reactions have to be determined and 

then applied on the tower either dynamically or as an amplified static load. In the 

industry, load documents containing the magnitude and direction of these forces are 

provided by the wind turbine manufacturers in accordance with the IEC 61400-1 or other 

certification agency guidelines. In instances where these loads aren’t provided, a dynamic 

simulation is performed to obtain load histograms or equivalent static load. Dynamic 

simulations are accomplished using software simulators that consider the entire wind 

turbine mechanisms working in synchronization. These mechanisms include, but not 

limited to, Main gearbox, Control and Protection functions and Braking, Hydraulic, Yaw 

and pitch systems. Loading is simulated using dynamic aero-elastic codes considering 

gravitational, inertial, actuation and aerodynamic loads. Other loads should also be 

considered like wake and impact effects. 

The wind turbine generator used in this study has a rated power of 3.6MW and features 

170ft long blades. The turbine static equivalent loads were obtained from technical 

studies published by the National Renewable Energy Laboratory (Malcolm, D.J. & 

Hansen, A.C., 2006) & (LaNier, M.W., 2005). The loads were then scaled to match the 
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reference speed at the hub height for each tower accordingly. Conversions from the 

ASCE 7-10 basic wind speeds to the IEC reference speeds was achieved using the 

provided equations in the ASCE/AWEA-RP2011. Appendix A shows the dimensions and 

specifications of the wind turbine along with the equivalent static loads applied on the 

turbine after scaling. These loads were used for both the steel and concrete tower.  

4.3 Direct Wind Pressure on the Tower 

As specified in the ASCE 7-10, a nominal 3-second design wind speed of 115mph at 

reference height of 33ft above the ground was used to represent the extreme non-

operating conditions (EWM). However, for extreme operating condition (EOG), a 

nominal 3-second design wind speed of 49.7mph at reference height of 33ft above the 

ground was used after conversion form the IEC 61400-1 reference speed. The wind speed 

profile along the tower (z) follows (Eq. 4-1) having an exponent “αi” equals 0.11 for the 

EMW and 0.2 for the EOG. 

���� � � ���	
�� ��	
 (Eq. 4-1) 

The turbine was designed as building category II. The importance factor was assumed as 

1.0 following the recommendation of ASCE/AWEA-RP2011. The exposure category of 

the turbine was assumed as “D” for clear unobstructed flat terrain. The pressure profile 

along the tower’s height imposed by wind speed can be calculated using (Eq. 4-2). Figure 

4-1 shows a graphical representation of the wind pressure in both cases; EWM and EOG 

for the 240ft concrete tower. For details concerning other tower see its corresponding 

design appendices B & C.  
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Where,  � is the basic wind speed  

(extreme 3-second gust at 33ft from ground) 

��� is the topographic factor (=1) 

 ��  is the directionality factor (=0.95) 

 ��  is the velocity pressure coefficient determined from (Eq. 4-3). 

�� �
���
���2.01 �15 !�" #��       $% � & 15 !
2.01 � ��"#��            $% � ' 15 !

(      (Eq. 4-3) 

Where,  �" is the nominal height of the atmospheric boundary layer (=700ft for 

expose category “D”) ) = 11.5 for exposure category “D” 
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Figure 4-1: Wind pressure profile along the 240ft tower height. 

The equivalent lateral static force along the tower’s height due to the wind pressure is 

computed using (Eq. 4-4).  

*���� � ����� +, -, ., (Eq. 4-4) 

Where,  

., is the projected area normal to the wind pressure 

-, is the force coefficient given by Table 4-1 through Table 4-4. 

+, is the gust-effect factor for flexible structures from (Eq. 4-5) 
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  +, � 0.925 �1 0 1.7 2�3  456�7� 0 58�9�1 0 1.7 5:  2�3 # (Eq. 4-5) 

Where,  

2�3  is the intensity of turbulence from (Eq. 4-6) 

7 is the background response from (Eq. 4-8) 

9 is the resonant response factor from (Eq. 4-10) 

58 is given by (Eq. 4-7). 

5:  & 56 Are constants taken as 3.4  

2�3 � < �33�3 �> ?@
 (Eq. 4-6) 

Where �3 is the equivalent height of the structure defined as 60% of the height but not less 

than �ABC which equals to 7ft for exposure category “D”. 

58 � 42DE�3,600E>� 0 0.57742DE�3,600E>� (Eq. 4-7) 

Where E> is the natural frequency of the tower determined from finite element analysis. 

7 � G 11 0 0.63 HI 0 JK�3 LM.?N 
(Eq. 4-8) 

Where,  

I is the horizontal dimension of the structure 

J is the height of the structure 

K�3  is the integral length scale of turbulence at the equivalent height given by 

(Eq. 4-9) 

K�3 � D � �333�OP
 (Eq. 4-9) 
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Where l and OP are constants taken as 650ft and 1/8 respectively for exposure category 

“D”. 

9 � Q1R   9C 9�  9S �0.53 0 0.47 9U� (Eq. 4-10) 

Where R is the structure damping ratio 2% (refer to section 4.5), 9C is given by (Eq. 4-

11), 9U, 9�, and 9S are computed from (Eq. 4-14). 

9C � 7.47V>�1 0 10.3V>�W N@  (Eq. 4-11) 

V> � E>K�3 �X�3  (Eq. 4-12) 

Where �X�3 is the mean hourly wind speed at height �3 determined from (Eq. 4-13) 

�X�3 � YX � �333��P �8860� � (Eq. 4-13) 

Where YX and )X are constants taken as 0.8 and 1/9 respectively for exposure category “D”.  

9[ � \1] ^ 12]� �1 ^ _`�a�       $% ] ' 01                                        $% ] � 0 (  (Eq. 4-14) 

9[ � 9� setting ] � 4.6 E>J �X�3b   

9[ � 9S setting ] � 4.6 E>I �X�3b   

9[ � 9U setting ] � 15.4 E>K �X�3b   

 
 

Table 4-1: Force coefficient for towers*. 

Cross Section 
 h/D** 

1 7 25 
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Square 
wind normal to face 1.3 1.4 2 

wind along diagonal 1 1.1 1.5 

Hexagonal or Octagonal 1 1.2 1.4 

Round 0.5-0.8 0.6-1.0 0.7-1.2 

* Based on ASCE 7-10 Table 29.5-1     

** h  : Tower Height       

** D : Least Base Dimension     

Table 4-2: Force coefficient for the 240ft proposed concrete tower cross section. 

Wind Direction 
Cross Section Proposed 

(h/D=8.77) Square Hexagonal Round 

Normal to Face 1.46 
1.22 0.81 

1.46 

Along Diagonal 1.14 1.14 

Table 4-3: Force coefficient for the 320ft proposed concrete tower cross section. 

Wind Direction 
Cross Section Proposed 

(h/D=7.93) Square Hexagonal Round 

Normal to Face 1.43 
1.21 0.81 

1.43 

Along Diagonal 1.12 1.12 

Table 4-4: Force coefficient for the 240ft steel tower (smooth surface). 

Cross Section 
h/D   

1 7 25 h/D=13.33 

Round 0.5 0.6 0.7 0.64 

 
After calculating the forces along the tower height, the shear forces and bending moments 

from the direct wind pressure on the supporting system can be readily determined at any 

point using (Eq. 4-15) and (Eq. 4-16). 

c��� � d *��e�fe�
�   (Eq. 4-15) 
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�   (Eq. 4-16) 

4.4 Fatigue Loads 

Fatigue stresses on wind turbine towers are a result of blade rotation and wind fluctuation 

causing relatively small stress changes but with higher frequencies. Consequently, during 

the same time span, wind turbine structures endure a higher number fatigue cycles than 

typical structures. To properly investigate the wind turbine’s behavior under fatigue 

loading, numerous load combinations and complex cases have to be considered in order 

to account for the unstable wind conditions and the structure’s response. The huge 

number of wind turbine supporting structures along with the fact that fatigue loading is 

often controlling the design of steel towers makes conservative assumptions regarding 

fatigue loading not economically feasible. Therefore, no simplified methods, that 

determine fatigue loading for large wind turbine, have been accepted by the industry.  

Most fatigue investigations use published S-N curves to compare against load range 

spectrum, generated from simulations, for critical components. 

4.4.1 S-N Curves 

S-N curves are graphs between the nominal stress range on the component in question 

and the allowable number of cycles it can endure during its design life. The plot uses a 

log-log plot that transforms the curves into a series of straight lines having different 

slopes “m”. Figure 4-2 shows a comparison between the S-N curves in the AISC and the 

EN specifications for structural steel components. 
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Figure 4-2: EN and AISC fatigue strength curve as shown in ASCE/AWEA RP2011. 

At low stresses, structural steel components transition into a cut-off zone where the S-N 

curve is horizontal on the log-log plot. Stresses lower than the cut-off zone may be 

repeated for an infinite number of cycles without damaging the components. Even though 

both the EN and AISC curves were based on identical confidence and probability levels, 

they have one significant difference in the cut-off stress and number of cycles; the EN 

cut-off zone starts at 5 million cycles for all categories while the AISC cut-off zone range 

from 2 to 22 million cycles depending on the component category. 

4.4.2 Dynamic Load Simulation 

Using complex software simulators wind turbines can be completely modeled, from the 

flexible blades to the supporting tower, with nonlinear structural and fluid dynamics 

models. The stress range and number of cycles can be determined form the dynamic 
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simulation for every component. The adequacy of the design is then determined for 

critical components using damage summation or stress range assessment. The most 

commonly used damage summation method is the Palmgren-Miner’s summation method. 

This method assumes that the fatigue damage from each stress range is accumulative and 

equals to the ratio of the number of cycles of that stress to the total number of cycles.  In 

this study, however, an assessment of stress ranges using a damage equivalent load 

method was used to determine the adequacy of the design. 

4.4.3 Damage Equivalent Load Method 

The damage equivalent load (DEL) is the constant load range producing the same 

damage as calculated using damage summation methods. By assuming a constant slope 

on the S-N log-log plot, any given load range can be converted to a DEL having the same 

number of cycles. The accuracy of this method depends on the slope assumed for the S-N 

curve. This method is only applicable to components having a linear relationship between 

loading and stress. 

4.5 Seismic Loading 

Seismic loading is mainly affected by the site location and the tower weight. For the Mid-

West regions, seismic loading is not except to control the tower’s design; however, zones 

along the U.S west coast or near fault lines would experience more punishing ground 

acceleration. Being lighter than concrete towers, steel tower will experience less seismic 

loading than concrete towers, however, the increasing weight of the wind turbine head 

(nacelle and blades) makes seismic loading more likely to govern their design. In this 
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study, the static equivalent earthquake loads and the seismic ground motion values were 

determined as per the ASCE 7-10 specifications. 

 

A big factor that affects seismic loading is the structural damping of the tower. Wind 

turbine structural damping lie usually somewhere between 5% and 1%. (Porwell, 2011) 

showed that using a 1% damping is overly conservative. 2% structural damping is 

typically used for steel towers; however the proposed concrete system will have a higher 

damping ratio. Conservatively, a damping ratio of 2% was assumed for both systems. The 

spectral response values in the ASCE 7-10 were determined and mapped considering 5% 

structural damping. Following the ASCE/AWEA RP2011, an adjustment factor “B” of 

1.23 was used to scale the spectral response values in the ASCE 7-10 to integrate with the 

2% damping ratio assumed. 

 

 

Load combinations in the ASCE 7-10 do not consider wind and seismic events 

simultaneously, however the ASCE/AWEA RP2011 provides two load combinations that 

considers seismic loading along with wind operational loading. In this instance where 

seismic event occurs while the wind turbine is operating, (Prowell, et.al., 2010) shows 

that an aerodynamic damping effect takes place due to the friction between the turbine 

blades and the air which increases the structural damping of the tower. Moreover, several 

relative directions of the wind pressure and seismic acceleration have to be considered.  
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Therefore, in this study, seismic events were only considered for non-operational 

conditions as per the ASCE 7-10 load combinations presented in section 4.6. 

4.5.1 Design Response Spectrum 

The ASCE 7-10 response spectrum is determined using (Eq. 4-17). 

ch�i� �
���
���
��cjk �0.4 0 0.6 iiM�       l  i ' iMcjk                        l  iM m i m ikcj>i                        l  ik & i m iUcj>iUin                              l  iU & i

( (Eq. 4-17) 

Where,  i is the fundamental period of the structure. 

iU is the long-period transition period. 

cjk & cj> are the design spectral response acceleration parameters at short and 1 

second periods calculated from (Eq. 4-18) and (Eq. 4-19). Respectively. 

ik & iM are determined using (Eq. 4-22) and (Eq. 4-23) respectively. 

cjk � 23 cok (Eq. 4-18) 

cj> � 23 co> (Eq. 4-19) 

Where cok and co> are the spectral response acceleration for short and 1 second periods 

respectively. Given by (Eq. 4-20) and (Eq. 4-21). 

cok � *hck (Eq. 4-20) 

co> � *:c> (Eq. 4-21) 

Where,  ck & c> are the mapped g-p8 spectral response acceleration parameter at short 
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and 1 second periods respectively multiplied by “B” the damping 

adjustment factor. 

*h & *: are the site coefficients. 

And, 

ik � cj>cjk (Eq. 4-22) 

iM � 0.2 cj>cjk (Eq. 4-23) 

Figure 4-3 shows a graphical representation of the design response spectrum. 

 

Figure 4-3: Design response spectrum. 

4.5.2 Seismic Design load 

The equivalent lateral seismic force distribution along the tower’s height follows the 

same pattern as the tower’s weight. Given by (Eq. 4-24).   

� � -qr (Eq. 4-24) 

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

Time (sec.)

S
p

ec
tr

al
 R

es
p

o
n

se
 A

cc
el

er
at

io
n

 (
g

)



62 
 
Where,  r is the effective seismic weight per section. 

-q is the seismic response coefficient determined from (Eq. 4-25). 

-q � cjkH92sL 
(Eq. 4-25) 

Where,  9 is the response modification factor.  

2s is the seismic importance factor. 

The ASCE 7-10 does not specify a response modification factor “R” for wind turbine, 

therefore, it was assumed as 1.5 following the recommendations of the ASCE/AWEA 

RP2011. 

The value of -q computed using (Eq. 4-25) should not exceed (Eq. 4-26) or (Eq. 4-27) 

and should not be less than (Eq. 4-28). 

-q � cj>i H92sL      $% i m iU 
(Eq. 4-26) 

-q � cj>iUi� H92sL      $% i ' iU (Eq. 4-27) 

-q � 0.044 cjk 2s   t 0.01 (Eq. 4-28) 

Table 4-5 shows the ratio of the seismic force to the wind force in the different system. 

Table 4-5: ratio of the seismic force to the wind force. 

Supporting system setup Seismic/Wind Base Shear Ratio 

240ft Steel Tower 51.7 % 
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240ft Proposed concrete system 71.3 % 

320ft Proposed concrete system 72.3 % 

 

4.6 Load Combinations 

The ASCE 7-10 load combinations were followed in this study. For the wind turbine 

loads, a load factor of 1.35 was used as per IEC 61400-1 (refer to section 4.1.2). The 

EWM non-operational conditions were considered for the ultimate load combinations. 

However, both the EWM non-operational and the EOG operational conditions were 

considered for service load combinations. Table 4-6 shows all the relevant ASCE 7-10 

load combinations used in this study. 

Table 4-6: ASCE 7-10 load combinations. 

D: dead load, W: wind load, T: wind turbine load and E: seismic load. 

Load Combinations Load Factors Load Combinations Load Factors 

Ultimate 4 1.2D+1.0W+1.35T Service 5-1 1.0D+0.6W+1.0T 

Ultimate 5 1.2D+1.0E Service 5-2 1.0D+0.7E 

Ultimate 6 0.9D+1.0W+1.35T Service 7 0.6D+0.6W+1.0T 

Ultimate 7 0.9D+1.0E Service 8 0.6D+0.7E 
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CHAPTER 5   

ANALYSIS AND DESIGN 

This chapter illustrates the different techniques employed to accurately simulate the 

response of the proposed system when subjected to different loading. Three different 

modeling techniques are presented and the most accurate method is recommended for 

future implementation. This chapter also includes the design procedures, methods and 

standards followed when designing both the concrete and steel towers.  

5.1 System Properties and Dimensions 

Table 5-1: The 240ft concrete tower properties. 

Total Height 240ft 

Tower Material Concrete 

No. of Segments 3 segments 

Tower Cross Section Triangular 

Segment Height 80ft 

Base Dimensions 25ft 

1st Segment Dimension 15ft 

2nd Segment Dimension 10ft 

Top Dimension 10ft 

Tower Profile Tri-linear (Figure 3-13) 

Tower Weight 2437 kips 

Natural Frequency 0.44 Hz 

Expected Controlling Load Ultimate tension 
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Table 5-2: The 320ft concrete tower properties. 

Total Height 320ft 

Tower Material Concrete 

No. of Segments 4 segments 

Tower Cross Section Triangular 

Segment Height 80ft 

Base Dimensions 40ft 

1st Segment Dimension 25ft 

2nd Segment Dimension 15ft 

3rd Segment Dimension 10ft 

Top Dimension 10ft 

Tower Profile Quad-linear (Figure 3-14) 

Tower Weight 3579 kips 

Natural Frequency 0.42 Hz 

Expected Controlling Load Ultimate tension 

Table 5-3: The 240ft steel tower properties. 

Total Height 240ft 

Tower Material Steel 

Tower Cross Section Circular 

Base Diameter 18ft 

Wall Thickness at Base 1.8 in. 

Top Diameter 10ft 

Wall Thickness at Top 1.0 in. 

Tower Profile linear 

Tower Weight 865 kips 

Natural Frequency 0.34 Hz 

Expected Controlling Load Fatigue 
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5.2 Design Approaches 

The design concept of current tubular wind turbine towers is relatively simple as the 

structure can be modeled as one cylindrical cantilever column supporting the wind 

turbine reactions applied at its summit. Moreover variation in wind directions is rendered 

unproblematic due to its circular cross section; its symmetrical nature allows the use of 

vector summation to transform simultaneous loading induced from different directions 

into one resultant force. Its conventional circular shape coupled with the predictable, 

fixed-free cantilever column, behavior make for a simple design process. One the other 

hand, a more challenging design approach should be adopted for the proposed system as 

its new innovative shape along with its unpredictable behavior result in an interesting and 

unconventional load path. Instead of considering the whole tower as one column, every 

element in the proposed system should be analyzed and design separately. Interactions 

between different elements have to be accounted for depending on their relative stiffness, 

load direction and connectivity. Special attentions should be granted to connections as 

they control the interchanging actions between elements.  

5.3 Modeling 

In this study, the representation of the proposed system in a finite element model was a 

necessity due to its complex shape. An understanding of the tower’s behavior and load 

path is essential to achieve an accurate replica of the tower when constructing the model.  
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5.3.1 Elements Role and Load Path 

Reinforced with all of the prestressing forces, the columns have the role of resisting the 

main forces imposed on the system. In order to achieve that, the columns have to work 

together as a composite section meaning the deflections of the three columns should 

match in both magnitude and direction. The purpose of the panels is to achieve that 

composite action between the columns. In this instance, the panels behave as tie beams 

enduring in plane bending moments and shearing forces. Moreover the panels have to 

resist direct wind pressure on its exposed surface. In this scenario, out of plane bending 

moments are the actions governing their design as they mimic the behaviors of one way 

slabs. 

The load path of the loads imposed by the wind turbine generator is obvious as it is 

distributed equally to the three columns. However, the direct wind pressure on the tower 

is carried by the panels. After deflecting, the panel’s reactions are transmitted to the two 

columns supporting it. When the two columns start deflecting, a portion of the load is 

then transmitted into the other two panels attached to the columns. This portion of the 

load is passed on to the last column achieving the composite action between the three 

columns. This scenario is identical for the pressure and suction side of the tower (refer to 

Figure 5-1). Ideally the three columns deflections should be identical. The same concept 

is applicable for any wind direction.   
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Figure 5-1: Load path for direct wind pressure (S-N direction). 

5.3.2 Tower’s profile 

Another important aspect in understanding the proposed system’s behavior is its tapered 

profile. Considering a conventional cantilever column subjected to uniform lateral 

pressure, its excepted bending moment would take a second degree parabolic shape. If 

the tapered profile of the proposed system’s matched the bending moment’s shape, the 

columns would only be subjected to axial forces. However, the actual wind pressure isn’t 

uniformly distributed along the tower’s height; it varies according to Figure 4-1. In 

addition, the reactions from the wind turbine at the top changes the bending moments 

shape. Therefore, to optimize the design, several vertical profiles for the tower were 
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considered in order to mimic the bending moment diagram. The tower’s profile chosen at 

the end, shown in Figure 3-3, was a good approximation yielding small bending moments 

and large axial forces on individual columns. 

5.3.3 Finite Element Models 

Three different finite element models using SAP 2000 were constructed to reach a better 

understanding of the tower’s behavior. Each model considers the interaction between the 

columns and the panels from a different vantage point. After analyzing the tower using 

each model, an informed decision concerning their accuracy could be reached. In each 

model the columns were represented as frame elements following the tower’s vertical 

profile. Three different approaches were used to model the panels corresponding to the 

different models. The wind loads, seismic loads and turbine loads were applied as shown 

in chapter 4. The base of the tower was considered fixed in the ground. Soil interactions 

were not considered. Load combinations and wind direction cases were applied 

accordingly.  

The first model used was the shell element model where the panels were modeled as solid 

shell elements having the same dimensions as their real counterparts. This model is a 

good representation of the panel’s behavior when subjected to out of plane bending from 

the direct wind pressure. The resulting forces on the columns were as excepted; large 

axial forces and small bending moments. Figure 5-2 shows the axial load in the columns 

and the max forces in the panels along the tower’s height. The top portion of the tower is 

subjected to axial compression due to the weight of the wind turbine. Moving further to 
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the bottom, the bending moment starts to take over causing tension on one side and 

compression on the other.  

 

Figure 5-2: Axial forces in columns (left) and panels (right) (240ft tower) 

It was apparent from the results that the panels are working as tie beams to transfer the 

forces between columns. Modeling the panels as shell elements was not the best 

representation for that purpose. The second model employed was a tie beam model where 

the panels were represented by flexural elements, having a depth of 10ft, connecting the 

columns together. In this instance, the panels behave as deep beams carrying shear and 

moment between the columns (Figure 5-3). The same axial force and bending moment 

distribution patterns as the shell model emerged yielding very close values. Using the 
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element forces from this model, the panels can be readily designed as deep beams 

subjected to in plane shear and bending. 

 

Figure 5-3: Panel represented as tie beams. 

The only issue that the tie beam model didn’t address is the connection between the 

column and the panel. The model considers the connection is a fixed connection 

transferring all the bending moment and shear forces. However, in reality, this connection 

is achieved using two shear connections at the top and bottom of the panel (refer to 

Figure 5-13 and Figure 5-14 for details). Even though the lever arm between the top and 

bottom connections will transfer moment from the column to the panel, representing it as 

a fixed connection might reduce the accuracy and the level of confidence in the results 

obtained. The last model addresses this issue, where the panels are represented by X-

bracing members connecting the columns forming a space truss (Figure 5-4). The bracing 

members were fixed in the columns at the connections’ center of gravity where moment 

releases were assigned to simulate hinged boundary conditions.  
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Figure 5-4: Panel represented as X-bracing. 

5.3.4 Conclusions  

The system actual behavior is independent of the technique used to simulate it. The 

results obtained from the three models confirmed this fact as the three models yielded 

very similar behaviors. Figure 5-5 shows the three different SAP models for the 320ft 

tower.  

The columns were mainly subjected to axial forces with low shear and moments (Table 

5-4 shows a comparison between the axial loads values obtained at the same critical 

section in the three models which were within 6% from each other). The panels were 

subjected to bending from direct wind pressure. The panels also enabled a composite 

action between the three columns by emulating the behavior of deep beams.  
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Table 5-4: Axial forces acting on the critical section of the columns. 

Load Case Shell Model Tie Beam Model X-bracing Model 

Ultimate-4 Tension 2530 (kips) 2590 (kips) 2522 (kips) 

Ultimate-4 Compression -4200 (kips) -4398 (kips) -4475 (kips) 

After converting the forces in the X-bracing model member forces to get the shear and 

moment acting on the panel using its free body diagram (refer to Figure 5-6) the same 

pattern in the in plane forces acting on the panels emerged as their magnitudes from 

different model lied within 4% from each other.  

 

Figure 5-5: SAP models: tie beam (left) shell (middle) X-bracing (right) (320ft tower) 
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Figure 5-6: Free body, shear and moment diagrams for panels. 

The tie beam modeling techniques is the method recommended and followed by this 

research. It was the most convenient out of the available techniques in terms of model 

construction and result extraction and interpretation.   
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5.4 Design 

This section prescribes a design procedures for the proposed concrete wind turbine tower 

outlining the standards followed and methods used. Design of the steel tower is also 

included. Several limit states were considered for both tower design; ultimate limit state, 

service limit state and fatigue limit state. Non-operational wind turbine state was assumed 

for the ultimate limit state and wind speed from the extreme wind model (EWM) was 

considered. For serviceability check, both wind turbine state; operational and non-

operational, were considered with wind speeds from their corresponding state; EOG and 

EWM respectively.  For fatigue check, damage equivalent load method was used to 

determine the design adequacy. Load and resistance factors were used corresponding to 

each load, limit state and material. The expected limit state to control the design differs 

depending on tower material. For steel towers, fatigue almost always controls the tower 

design as it was the case in this study. For concrete towers, the controlling load is either 

the tension force in the ultimate state or concrete fatigue. For the proposed system, the 

ultimate tension governed the design. 

5.4.1 Concrete Design 

Concrete wind turbine towers currently being used consists of precast load bearing rings 

that are post-tensioned together to resist the lateral actions from wind and seismic 

loading. Therefore, design procedures recommended for the proposed system are 

different than currently implemented concrete schemes. One of the main differences is 

designing every element constituting the tower separately in the proposed system as 
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oppose to considering the whole tower as one big cylindrical cantilever column. The 28 

day characteristic strength of concrete used was 8ksi and its modulus of elasticity was 

5422ksi. The following section presents the different concepts followed when designing 

each individual element; columns, panels and connections. For detailed calculations refer 

to Appendix B and C.  

a) Columns Design 

Reinforced with all of the prestressing forces, columns are the main force resisting 

elements in the tower. While the design features entirely prestressed columns, an 

alternative where a fraction of the strands were post-tensioned is available. To endure the 

loads applied on the tower, the three columns have to work together as one composite 

section connected by the panels as mentioned earlier in the modeling section. Each 

column is subjected to biaxial bending moments, shear and axial force, either tension or 

compression depending on the wind direction. The hexagonal shape of the columns 

allows easy connection with the panels and evenly distributed reinforcement. Due to the 

symmetric pattern of the prestressed strands reinforcing the columns, vector summation 

can be used to simplify the design from biaxial bending to a resultant bending moment. 

Each column was designed for axial force and a resultant bending moment.   

Ultimate design 

Ultimate limit state design was performed as per the ACI 318 specifications. The column 

is reinforced with 10-0.6in. grade 270ksi strands tensioned to 0.75 fpu in each side of the 

hexagonal totaling 60-06in. strands. An alternative where a portion of the strands are 

post-tensioned is also included. For this case 6-0.6in. strands are pre-tensioned in each 
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side of the hexagonal totaling 36-06in. strands plus 2 post-tensioned tendons containing 

12-0.6in. strands each are use in both sides of the columns. The concrete cover for the 

prestressing strands was taken as 4in. form the edge of the concrete to the center of the 

strands. Two alternative shear reinforcements could be implemented depending on the 

cost efficiency and the practicality of construction; either using grade 75ksi W6 spiral 

reinforcement with a 12in. pitch or two #6 C-shaped bars grade 60ksi every 24in. Figure 

5-7 shows the cross section of the columns once using all prestressed strands and another 

using prestressed strands and post-tensioned tendons, both shear reinforcement details are 

also shown.  
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Figure 5-7: Base segment column cross section. 
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In order to check the adequacy of the design, the column interaction diagram was 

constructed. Figure 5-8 shows the interaction diagram of the columns in lower segment of 

the tower.  

 

 Figure 5-8: Base segment column interaction diagram (240ft tower). 

The outer curve in the interaction diagram represents the capacity of the column when 

subjected to combined axil and bending. The inner curve indicates the columns nominal 

capacity after applying the resistance factor (φ) which fluctuates from 0.9 for pure 

bending to 0.65 for pure compression. Every point on the interaction diagram represents a 

loading case with an applied ultimate axial and moment (Pu and Mu). The furthest from 
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the y-axis the point is, the more bending moment it experiences. Points above the x-axis 

are subjected to compressive stress while points under it suffer from tensile stress. All the 

points lie inside the inner line which indicates an adequate design. As expected the 

controlling load was the tension on the column as can be notices from the lowest points 

on the diagram. Shear design was achieved using the simplified method in ACI 318 using 

a strength reduction factor of 0.75. Minimum shear reinforcement was enough to resist 

the applied forces. 

Service design 

Serviceability checks were performed following the allowable stresses set by the ACI 318 

in compression (0.4 f’c). No tension on the columns was allowed in any service check 

whether the wind turbine was stationary or operating. The stresses on the column were 

calculated using the loads for both speeds (EWM and EOG) after applying the 

corresponding loads factor. 

Deflection 

The max deflection of the top of the 240ft and the 320ft towers under service conditions 

was 8.16in. and 11.11in. respectively. The ACI 318 standards don’t specify and limits for 

deflection of concrete towers or any similar structures. However, since wind turbine 

structures resemble tall concrete chimneys, the ACI 307 specifications were adopted in 

this study. As specified in the ACI 307, the max deflection of the top of the tower under 

service conditions in inches shall not exceed 0.04 of the total height in feet. Meaning the 

max allowed deflection for the 240ft and the 320ft towers is 9.6in. and 12.8in. 

respectively.   



82 
 
Fatigue design  

Fatigue design consideration for concrete elements is relatively new that started with the 

increased implementation of high strength concrete. Concrete fatigue is typically 

considered for bridge applications. These applications typically have applied load cycles 

less than 10 million cycles, however high stress ranges are imposed on the structure 

during each cycle.  On the other hand, wind turbine tower are subjected to a much higher 

load cycles, in the magnitude of 108, but these load cycles are associated with small stress 

range; every blade rotation is a cycles that causes a small stress change. High cycle 

fatigue is mainly controlled by elastic behavior. Similar structures, subjected to such 

magnitudes of load cycles, are not fully considered by current design codes. The next 

section will highlight current code provisions having fatigue specifications for concrete 

elements. 

ACI 215R  

The ACI 215R provides limited design recommendations for wind turbines or similar 

structures.  

German Standard (DIN 1045) 

Chapter 10.8 addresses both steel (mild and prestressed) and concrete fatigue. The 

document uses the S-N curves (Figure 4-2) to check mild and prestressed steel fatigue 

endurance limit. No approach dealing with higher fatigue cycles (more than a million) 

was included.  
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CEB- FIB Model Code 1990 

The Model Code 1990 (MC90) was published by the International Federation for 

Prestressing (CEB-FIB) in 1987 and reviewed in 1993. As it stands, MC90 is the most 

suitable design tool for prestressed concrete towers as it is the only official document 

having complete design considerations for concrete, mild and prestressed steel subjected 

to more than 108 cycles of loading.  

Norwegian Standard (NS 3473) 

The NS 3473 also address concrete structures subjected to108 cycles of loading.  Chapter 

13 of that document offers a simpler approach than MC90 to fatigue design in concrete 

structures. However, specifications for prestressed steel are not addressed in the standard. 

Conclusion 

Fatigue design for structure subjected to more than 108 load cycles is not fully covered in 

DIN 1045 and the ACI 215R. Prestressed strands and tendons fatigue design is not 

addressed in NS 3473. Therefore MC90 is the only document that offers specifications 

covering all the details of fatigue design of prestressed concrete wind turbine structures.  

Fatigue Design According to MC90 

The MC90 offer three different methods for fatigue design; the simplified procedure, 

Single and spectrum of load levels procedures. In cases where the load histogram of the 

fatigue cycles is available, rigorous spectrum of load levels procedures are required. 

However, in the absence of such data, a more simplified procedure using damage 

equivalent load is acceptable to check the integrity of the tower. The simplified procedure 
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was enough to check the fatigue limit for the proposed system; if the simplified check 

was unsafe, a more detailed calculation would have been required using single load level. 

The following section presents a summary of the simplified procedure (MC90 section 

6.7.1 to 6.7.3).  

Concrete Fatigue design procedures:  

Sections subjected to compressive stress: 

�uk��vwx,Ah[y�]x� m 0.45v x�,,h�y (Eq. 5-1) 

Section subjected to tensile stress: 

�uk��vw�,Ah[y m 0.33v x��,,h�y (Eq. 5-2) 

Where,  

wx,Ah[ is the max applied compressive stress  

w�,Ah[ is the max applied tensile stress 

uk� is the partial load factor 

]x is the fatigue parameter from (Eq. 5-3) 

]x � 11.5 ^ 0.5 |wx>| |wx�|⁄  
(Eq. 5-3) 

Where,  

|wx>| is the lower value of the compressive stress within a distance no more 

than 11.8in. from the surface. 

|wx�| is the larger value of the compressive stress within a distance no more 

than 11.8in. from the surface 

 x�,,h� is the fatigue reference strength from (Eq. 5-4) 
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 x�,,h� � 0.85vRxx�!�yux | x} �1 ^  x} x}~�� 
(Eq. 5-4) 

 

Where,  x}~ is the concrete reference strength 

 x} is the characteristic concrete  cylinder strength 

ux is the partial concrete material factor 

Rxx�!� is the concrete age factor from (Eq. 5-5) 

Rxx�!� � eM.��>`��� �@ #
 

(Eq. 5-5) 

Where, ! is the concrete age at loading start 

 x��,,h� is the fatigue reference tensile strength from (Eq. 5-6) 

 x��,,h� �  x��,ABCux  (Eq. 5-6) 

Where,  x��,ABC is the lower bound of the characteristic tensile strength from (Eq. 5-7) 

 x��,ABC �  x�}~,ABC �  x} x}~�� N@
 (Eq. 5-7) 

Where,  x�}~,ABC =0.138 ksi 

 

 

Steel Strands Fatigue:  
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 �uk�����e∆wkq� m ∆w8q}uq,,h�  (Eq. 5-8) 

Where, ��e∆wkq is the maximum applied stress range 

∆w8q} is the characteristic fatigue strength at 108 cycles. 

uq,,h� is the partial steel material factor 

b) Panels Design 

As explained in the modeling section, the panels serve a dual purpose; resisting the wind 

pressure subjected directly on their surface and connecting the columns together to enable 

composite action. In the former case, the panels behave as deep beams enduring in plane 

bending moments and shearing forces, however, in the latter case, out of plane bending 

moments are the actions governing their design as they mimic the behaviors of one way 

slabs. It can be inferred that their slab action will dictate their behavior and control their 

reinforcement as the panels stiffness resisting these actions is very small compared to 

their strong axis stiffness resisting in plane bending stresses. It should be noted that the 

panels won’t be subjected to the maximum in plane and out of plane actions in the same 

time. Depending on the wind direction, the panels might experience maximum out of 

plane bending with no in plane actions or maximum in plane bracing action with a 

corresponding lower direct wind bending. Figure 5-9 shows the most critical cases that 

the panels are expected to go through depending on the wind direction. 
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Figure 5-9: Straining actions on panels according to wind direction. 

Design of panels as slabs 

Due to the relatively small out of plane stiffness of the panels, out of plane bending is 

expected to be the controlling design case. From Figure 5-9 the panels are subjected to 

maximum wind pressure when the wind direction is perpendicular to any face. In these 

cases the bracing action forces are almost non-existing. To analyze the bending moments 

and design the panels the wind pressure and the panels span are required. Due to the 

tapered profile of the tower, the panel span varies with height having the maximum at the 

base and the minimum at the top. The wind pressure also varies with the height following 

the profile calculated in the loading chapter also shown in Figure 4-1. Table B-16 in the 

design appendix calculates the bending moments applied on the panel at each panels 

taking into consideration the pressure applied, wind direction, speed and the panel clear 

span. Despite the fact that the panel width decrease with the tower height; top panel is 

10ft by 10 ft while the bottom panel is 25ft by 10ft, its behavior will not deviate from one 

way bending to two ways bending as it is only supported by the columns from two 
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opposite sides. The nominal resisting moment capacity was calculated as per to the ACI 

318 specifications. Using a W20-12” welded wire mesh in each face (to satisfy shear 

reinforcement) the nominal capacity is 5.4 (kip-ft) per linear foot of the panel. 

Design of panels as deep beams 

Due to its geometry, deep beams do not experience the same one dimensional linear 

stress that regular beams do. However they experience a two dimensional state of stress 

where Bernoulli’s theory, of plane sections remain plane after bending, does not apply. 

Therefore, the resulting strain distribution becomes nonlinear taking into account shear 

deformations normally neglected in regular beams. Figure 5-10 and Figure 5-11 show the 

strain distribution in normal and deep beams. The ACI 318 requires rigorous nonlinear 

strain procedures or strut and tie modeling for deep beams design. However, the CEB 

code offers a simplified procedure for designing deep beams taking into account the 

nonlinear strain distribution. In this study, the CEB’s simplified method was used to 

check the design of the panels as deep.  The design of deep beams is governed by shear 

deformations therefore it is required to provide shear reinforcement in both the horizontal 

and vertical direction. The welded wire reinforcement was chosen as the most suitable 

form of reinforcement as it is serving the dual purpose of resisting the out of plane 

bending moments and the in plane shearing forces since their peaks do not occur 

simultaneously. Additional flexural reinforcements were provided at a distance “y” from 

the top and bottom of the deep beam to resist in plane bending moments. The following 

section presents a brief summary of the procedures and Figure 5-12 shows the panel 

reinforcement details from the elevation, plan and side view perspective.  
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Figure 5-10: Linear strain distribution in normal beams. (Nawy, E., 2008) 

 

Figure 5-11: Nonlinear strain distribution in deep beams. (Nawy, E., 2008) 
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Figure 5-12: Panel reinforcement details. 

The factored shear force has to satisfy the following condition (Eq. 5-9) 

 �	 m φ�104 �xYnf� (Eq. 5-9) 

Where, 

�	 is the factored shear force 

φ is the strength reduction factor (= 0.75) 

 �x is the characteristic strength of concrete (=8 ksi) 

Yn is the width of the panel (=6 in) 

f is the panel depth (= (0.9)(h) = 108 in) where “h” is panel height  

The nominal shear resisting force of the plain concrete is calculated using (Eq. 5-10): 
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 �x � �3.5 ^ 2.5 g	�	f� �1.94 �x 0 2500�n �	fg	 � Ynf m 64 �xYnf (Eq. 5-10) 

Where, 

1.0 & �3.5 ^ 2.5 g	�	f� m 2.5 (Eq. 5-11) 

This factor is a multiplier of the basic equation of Vc in normal beams to account for the 

higher resisting capacity of deep beams. 

g	 is the factored bending moment 

�n is the flexural reinforcement ratio 

The nominal shear resisting force of the reinforcement is calculated using (Eq. 5-12): 

�q � \.:c: �1.0 0 KCf12 � 0 .:�c� �11 ^ KCf12 ��  �f (Eq. 5-12) 

Where, 

KC is the clear span of the panel 

.: is the total area of vertical reinforcement spaced at c: in the 

horizontal direction at both faces of the beam 

.:� is the total area of horizontal reinforcement spaced at c� in the 

vertical direction at both faces of the beam 

Maximum  �: m �W or 12 in. and maximum  �� m �W or 12 in.  

Minimum .:� � �0.0015�Y�� and minimum .: � �0.0025�Y�:  

 

The nominal moment capacity is calculated using (Eq. 5-13): 

gC � .q ��� (Eq. 5-13) 

Where, 
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 .q is the flexural reinforcement  

 � is the yielding stress of the flexural reinforcement  

�� is the moment arm from (Eq. 5-14) 

�� � 0.2�D 0 2J�    for    1 m �� & 2 

�� � 0.6D    for       �� & 1 

(Eq. 5-14) 

Where, 

D is the effective span (center to center)  

The minimum flexural reinforcement is calculated using (Eq. 5-15): 

.q t 34 �x � Yf t 200Yf �  (Eq. 5-15) 

The tension reinforcement has to be placed in the lower (tension side) segment of the 

beam such that the segment height is “y” calculated by (Eq. 5-16): 

� � 0.25J ^ 0.05D & 0.20J (Eq. 5-16) 

c) Connections and splices 

For this proposed system, three types of connections and splices are used to connect the 

tower together. The first is panel connections that connects the panels to the columns, 

second are the columns splices that links individual column segments to form one 

element and last are the base connections connecting the columns to the foundation. 

Compressible filler is used under the panels so that they can bear on each other. 

Panel Connections 

The panels are connected to the columns at its four corners using shear connections to 

simulate a hinged connection; therefore each individual connection won’t transfer any 
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bending moment. However using two connections each side of the panel transferring 

shear forces will produce a bending moment, equal to these forces multiplied by the lever 

arm, which in turn is transfer to the panels as in plane bending moment. In short, each 

panel side is supported by two connections resisting shear forces and torsional moment as 

shown in Figure 5-14. Four 1½in. A490-N grade 60ksi bolts (φVn=79.5 kips) are used in 

each corner of the panel, Figure 5-13 and Figure 5-14 show the elevation and cross 

section of the connection. See appendix B for design details.   

 

Figure 5-13: Panel connection cross section details. 
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Figure 5-14: Panel connection elevation details. 
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Columns Splices 

Columns splices are used to connect two column segments together. In the 240ft height 

tower, there is a total of two column splices per column connecting its three segments 

together, in the 320ft tower, three splices are required. The splices weren’t design to 

withstand their corresponding applied loads but rather the nominal capacity of the 

columns they are connecting. This approach will eliminate any weak or potential failure 

points along the columns and will make the splice connection as strong, if not stronger, as 

the column itself. Six 2¼ in. grade 150ksi threaded rods (φFu = 613 kips) are used for the 

splice, one in each corner of the column. Figure 5-15 shows the columns splice 

connection details along with the threaded rod dimensions. The threaded rods have to 

extend 2½ft. in the columns to overcome the transfer length of the strands so that the 

force throughout the connection doesn’t drop. However, due to the tapered profile of the 

tower, the two segments of the columns, connected by the splice, are not perfectly 

aligned which might cause problems during construction. Shims are used between the 

two segments to adjust the tapering angle (maximum slope = 16 to 1). Another alternative 

to the extension of the threaded rods 2½ft. in the columns, to transfer the full force, is to 

use a base plate at the end of the segments and fix the strands in it using chucks. That 

way the threaded bars don’t have to extend in the columns as the transfer length will be 

drastically reduced. After the threaded bars are tightened, the pockets can be grounded or 

covered with plastic caps to maintain the aesthetic view. 
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Figure 5-15: Column splice details. 
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Base Connection 

Base connections are used to connect the columns to the foundation. They are designed to 

withstand the base reactions from the columns. Like the columns splice, six 2¼ in. grade 

150ksi threaded rods (φFu = 613 kips) are used for the base connection, one in each 

corner of the column. Figure 5-16 shows the connection details. The angle of inclination 

of the columns is formed in the concrete foundation to simplify column fabrication and 

erection procedures.  

 
Figure 5-16: Base connection details. 
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5.4.2 Steel Design 

Steel towers are typically composed of tapered prefabricated conical tubes with 

decreasing diameter and thickness along the height. Its dimensions are tailored to meet 

stiffness, buckling and fatigue requirements. This section explains the procedures 

followed in order to design the steel tower. 

a) Allowable Stress Design 

In this study, the steel tower was designed using the allowable stress design method as 

per the AISC-89 Specifications. Structural steel having a yielding stress of 50ksi was 

used. The allowable compression stress is given by (Eq. 5-17).  

*h � �1 ^ v�K %@ y�2-x� � *�
53 0 3v�K %@ y8-x ^ v�K %@ yN8-xN

 (Eq. 5-17) 

Where, 

� is the effective length factor (= 2 for cantilever structures). 

K is the height of the tower. 

% is the radius of the tower. 

-x is the material coefficient calculated according to (Eq. 5-18). 

-x � Q12π�p*�  (Eq. 5-18) 

Where, 

p is the steel’s elastic modulus. 
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When the slenderness ration v�K %@ y is greater than the material coefficient�-x�, the 

allowable compression stress is recalculated using (Eq. 5-19).  

*h � 12π�p23v�K %@ y� (Eq. 5-19) 

The allowable bending stress is given by (Eq. 5-20).  

*
 � 0.6*� (Eq. 5-20) 

And the allowable shear stress is determined by (Eq. 5-21).  

*: � 0.4*� (Eq. 5-21) 

The combined stress for the applied compression and bending stresses should satisfy the 

interaction equation given by (Eq. 5-22).  

 h*h 0  
*
 m 1.0 (Eq. 5-22) 

By the same token, the combined stress for the applied shear and torsion should be less 

than the allowable shear stress. 

b) Local Buckling Stress 

Due to the large diameter of the tube compared to its wall thickness, local buckling check 

is preformed to assess whether it is a controlling parameter. The compressive strength of 

the tower is the lesser of the yielding strength and the elastic buckling stress given by 

(Eq. 5-23). 

σx� � 0.605p ! %@  (Eq. 5-23) 

Where, 

! is the tower’s wall thickness 
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Due to imperfection the axial strength of the tower will be reduced according to (Burton, 

et al., 2001) by a reduction factor given by (Eq. 5-24).  

αM �
���
���
� 0.83�1 0 0.01 % !@  l  % !@ & 212

0.7�1 0 0.01 % !@  l  % !@ ' 212( (Eq. 5-24) 

(Eq. 5-25) gives the reduction factor for bending.  

αS � 0.1887 0 0.8113αM (Eq. 5-25) 

(Eq. 5-26) computes the buckling stress.  

w	 �
���
��*� �1 ^ 0.4123 � *�)Swx��M.?�  l  )Swx� ' *� 2@

0.75)Swx�      l       )Swx� & *� 2@ ( (Eq. 5-26) 

The maximum applied stress from normal and shear is determined using (Eq. 5-27).  

wh � �� h 0  
�� 0 3 :� (Eq. 5-27) 

c) Fatigue Design 

Steel tower are more often than not governed by fatigue stresses. The IEC specifications 

prescribe a combined partial safety factor of 1.265. Damage equivalent load method was 

used with the S-N curves to determine the adequacy of the design. See appendix C for 

design details. 
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5.4.3 Recommended design Procedures for the proposed system 

a) Column design 

Controlling load case: ultimate tension (initial dimensions and prestressing). 

Ultimate limit state: design for axial and moment using interaction diagram (ACI 318).  

Service limit state: check stresses on the columns allowing no tensile stresses (ACI 318).  

Deflection: check the actual service deflection against the allowable values (ACI 307).  

Fatigue: check the adequacy of the design using the appropriate method corresponding to 

the available loading data (MC 90).  

b) Panel design 

Ultimate out of plane bending: determine initial dimensions and reinforcements using one 

way slab design theory (ACI 318). 

Ultimate in plane bending and shear: Check the adequacy of the design using deep beam 

design theory (CEB).  

c) Connections design 

Panel connection: design the connection on one side of the panel for shear and moment. 

Column splice: Design the column splice to transfer the max nominal capacity of the 

segments it is connecting.  

Base connection: design the connection to withstand the max base reactions of the three 

columns. 
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CHAPTER 6  

SUMMARY AND CONCLUSIONS 

In this chapter the results obtained from the study are summarized and conclusions are 

drawn. The 240ft proposed concrete system was compared against the 240ft steel tubular 

tower while the 320ft proposed concrete system was compared against a current 320ft 

circular concrete tower published by LaNier, M.W., (2005) (Figure 6-4). 

 

 

6.1 Design Summary 

Table 6-1 and Table 6-2 and Figure 6-1 through Figure 6-4 summarize each tower’s final 

specifications, dimensions and reinforcement.   
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Table 6-1: The 240ft systems design summary. 

Criteria Proposed System Tubular Steel Tower 

Total Height 240ft 240ft 

Tower Material Concrete Steel 

Wind Turbine 3.6MW 3.6MW 

No. of Segments 3 segments 4 segments 

Tower Cross Section Triangular Circular 

Segment Height 80ft 60ft 

Tower Profile 
Tri-linear  

(Figure 6-1) 
linear 

Dimension/ 
Diameter 

Base  25ft 18ft 

Top of 1st Segment 15ft 16ft 

Top of 2nd Segment 10ft 14ft 

Top of 3rd Segment --- 12ft 

Top of Tower 10ft 10ft 

Panel/Wall 
thickness 

Base  

6in. 

1.8in. 

Top of 1st Segment 1.6in. 

Top of 2nd Segment 1.4in. 

Top of 3rd Segment 1.2in. 

Top of Tower 1.0in. 

Tower Weight 2437 kips (1218 ton) 865 kips (433 ton) 

Natural Frequency 0.44 Hz 0.34 Hz 

Controlling Load Ultimate tension Fatigue 

Column 
Reinforcement 

Segment 1 60-0.6" Strands 
 

Segment 2 60-0.6" Strands 
 

Segment 3 42-0.6" Strands 
 

Shear  W16-12" Spiral 
 

Panel 
Reinforcement 

Shear  
W20-12" WWR 

each side  

Bending  8#5 top and bottom 
 



104 
 
Table 6-2: The 320ft systems design summary. 

Criteria Proposed System 
Circular Concrete 

Tower 

Total Height 320ft 320ft 

Tower Material Concrete Concrete 

Wind Turbine 3.6MW 3.6MW 

No. of Segments 4 segments 2 segments 

Tower Cross Section Triangular Circular 

Segment Height 80ft 160-167ft 

Tower Profile 
Quad-linear  
(Figure 6-3) 

Bi-linear 

Dimensions/ 
Diameter 

Base  40ft 22ft 

Top of 1st Segment 25ft 17ft 

Top of 2nd Segment 15ft 12ft 

Top of 3rd Segment 10ft --- 

Top of Tower 10ft 12ft 

Panel/Wall 
thickness 

Base  

6in. 

2.25ft 

Top of 1st Segment 2.00ft 

Top of Tower 1.5ft 

Tower Weight 3579 kips (1790 ton) 2475 kips (1238 ton) 

Natural Frequency 0.42 Hz 0.39 Hz 

Controlling Load Ultimate tension Ultimate tension 

Column 
Reinforcement 

Segment 1 60-0.6" Strands --- 

Segment 2 60-0.6" Strands --- 

Segment 3 42-0.6" Strands --- 

Segment 4 30-0.6" Strands --- 

Shear Reinforcement W16-12" Spiral --- 

Panel 
Reinforcement 

Shear Reinforcement 
W20-12" WWR 

each side 
--- 

Bending 
Reinforcement 

8#5 top and bottom --- 

Tower 
Reinforcement 

Segment 1 --- 240-0.6" Strands 

Segment 2 --- 192-0.6" Strands 

Horizontal 
Skin 

Reinforcement 

Segment 1 --- #6-12" 

Segment 2 --- #4-12" 

Vertical Skin 
Reinforcement 

Segment 1 --- #6-10" 

Segment 2 --- #4-10" 
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Figure 6-1: The 240ft proposed concrete system’s design plan. 
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Figure 6-2: The 240ft Steel tower’s design plan. 
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Figure 6-3: The 320ft proposed concrete system’s design plan. 
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Figure 6-4: The 320ft concrete circular tower’s design plan. (LaNier, M.W., 2005) 
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6.2 Quantities 

Table 6-3 presents the material quantities used for each tower along with approximate 

cost estimation. Material unit cost were estimated based on experience, and are used for 

comparative illustrations.  

 

Table 6-3 Material quantities and cost. 

           System 

 Material         
Proposed (240ft) 

Tubular steel 
(240ft) 

Proposed (320ft) Unit Cost 

Concrete (yd3) 600 --- 880 $ 400 

Prestressing 
strands (lb) 

28,500 --- 34,000 $ 1.50 

Post-tensioning 
tendons (lb) 

--- --- --- $ 2.30 

Threaded Bars 
(ft) 

300 --- 400 $ 22.5 

Reinforcement 
bars (lb) 

50,800 --- 73,500 $ 1.00 

Structural Steel 
(lb) 

--- 614,700 --- $ 1.50 

Material Cost $ 340,000 $ 922,000 $ 486,000   
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6.3 Systems Comparison 

6.3.1  Comparing the 240ft systems 

The most noticeable difference between the proposed system and the steel tower is the 

weight and dimension increase from the steel tower to the proposed system. The 

following points are the main characteristics that favor the proposed system over the steel 

tower. 

Structural behavior: As oppose to the brittle behavior that the local buckling and 

fatigue failure modes impose on the steel tower, the proposed system experienced a more 

favorable ductile behavior.  

Weight distribution and foundation: The increased weight coupled with the tapered 

profile of the proposed system gives the tower a much needed stability yielding better 

resistance to overturning and improved dynamic behavior.  Moreover, it reduces the size 

of the gravity foundation needed. And the proposed system’s base has a larger footprint 

which reduces the foundation’s cantilever span and the reinforcement needed.  

Dynamic performance: The proposed system has higher tolerance to dynamic loads; it 

benefits from a greater structural stiffness, than the steel tower, having higher frequencies 

and lower periods. Consequently, the steel tower would undergo greater deflections and 

vibrations than the proposed system.  
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Transportation and Erection: The limit for the diameter of complete steel ring sections 

that can be transported along the public highway is 14.5ft. This will introduce 

transportation issues for two lower segments in the steel tower, therefore costly bolted 

connections would have to be introduced into the thickest and most heavily loaded 

sections of the tower. While steel towers are characterized by fast erection, the 

introduction of vertical bolted connections would slow down the process. On the other 

hand, the proposed system can easily accommodate these logistical issues, while 

maintaining short erection times. Moreover, precast concrete technologies allow the 

possibility of having an on-site temporary manufacturing base that will eliminate most of 

the transportation costs and further shorten the construction time. In case of large wind 

farms with several wind turbine towers this option becomes very appealing.  

Maintenance and Durability: Precast concrete is a very durable material as compared to 

steel. It has the ability to maintain its properties under harsh weathering conditions. The 

proposed system requires little or no maintenance and painting it is and aesthetic option 

not a requirement for protection against corrosion. 

Flexibility: The proposed system can be tailored to accommodate any required 

dimension, reinforcement or logistics. Several options for column design and reinforcing 

patterns are presented in this study including different shear reinforcement option, a 

prestressed and a post-tensioned option. Filling the lower segments of the columns with 

plain concrete is also a design alternative that could be adopted to meet specific design 

criteria. The tower’s vertical profile is a powerful tool that could be employed to reduce 

columns reinforcement or reducing the tower’s footprint. Moreover, precast concrete is 
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always associated with superior quality control and optimal mechanical properties. In 

addition, its ability to be fine-tuned to meet unique project requirement is an invaluable 

quality that comes in handy when dealing harsh weathering conditions. 

Enhanced Design Lifetime: The steel tower has limited design life as it is controlled by 

fatigue load cycles. Increasing its excepted lifetime would result in an increase in fatigue 

cycles and consequently increase in dimensions and cost. However, the proposed 

system’s has a better tolerance to fatigue loads yielding longer design lifetime with little 

maintenance.  

Cost Efficiency: The proposed system offers an enhanced life cycle value with low 

initial cost. Concrete’s raw materials are inexpensive, and for tall tower a cost-effective 

solution with an extend design life is feasible using the proposed system.  

 

6.3.2  Comparing the 320ft systems 

Unlike the 240ft systems, both of these systems are concrete systems which make them 

similar to each other. The most noticeable differences between the two systems are the 

tower profiles and the dimensions to reinforcement ratio. The proposed system has a 

vertical profile that varies linearly every segment making it a quad-linear profile, 

however the one employed in the circular system is a bi-linear profile. The other 

noticeable difference is the tower footprints; 40ft for the proposed system vs. 22ft for the 

circular tower. These different footprints have different reinforcement; the proposed 

system was reinforced with 60-0.6”strands in each column totaling a 180-0.6” strands at 



113 
 
the base, while the circular tower was reinforced with 40 post-tensioning tendons having 

6-0.6”strands each, totaling 240-0.6” strands at the base. The following characteristics 

favor the proposed system over the circular system: 

Tapered profile: The proposed system’s vertical profile was tailored to the excepted 

bending moment diagram yielding an optimal weight distribution along the tower’s 

height and smaller applied forces compared to the circular system. 

Dimensions and reinforcement: The dimensions of the system determine the magnitude 

of the applied forces; the larger the dimensions, the smaller the forces. Wind turbine 

tower are usually built in remote places to benefit from unobstructed wind speeds, 

therefore, the increase in dimensions is unproblematic. For the proposed system, the 

columns cross-section dimensions are constant and the panels are only 6in. thick, which 

allows an increase in dimensions without a significant increase in weight and materials. 

In turn, these dimensions allow a reduction in the reinforcement required which reduces 

the overall cost. On the other hand, the base wall thickness of the circular tower measures 

2.25ft causing a significant increase in weight and materials with the increase of the 

tower’s footprint.  

The proposed system’s weight, which is larger than the circular system, coupled with the 

tapered profile grants the proposed system a better stability to resist overturning moments 

and improved dynamic behavior. Cost savings can also be expected in the gravity 

foundation due to the increased weight and footprint. 
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Dynamic performance: The circular system has a slightly higher natural period than the 

triangular one making it more flexible and more susceptible to vibration. Consequently, it 

would undergo larger deflections than the proposed system.  

Flexibility: Tweaking the tower’s vertical profile add a lot of flexibility to the design of 

the proposed system allowing it to accommodate any dimensions and reinforcement 

required. Several options for column design and reinforcing patterns are presented in this 

study including different shear reinforcement option, a prestressed and a post-tensioned 

option.  

Fabrication: The circular concrete tower has a bi-linear tapered profile which makes 

every ring section in the tower unique in dimensions and different for its preceding and 

following ring sections. This complicates the fabrication procedure as the use of multiple 

forms or expensive dynamic forms becomes a necessity. However, the proposed system 

is composed of non-complicated sections that could be easily standardized; hollow 

hexagonal column section and flat panels with sloped edges. As mentioned earlier, the 

column’s inside void was achieved using a PVC pipe, Styrofoam or collapsible forms. 

Styrofoam could be expensive and should be used if PVC pipes aren’t available, one the 

other hand collapsible form could become a very attractive solution in case of wind farm 

construction with multiple towers. The sloped edges in the flat panels are easily achieved 

without any complicated equipment.  

Transportation: Cost savings can be excepted as flat panels can be easily stacked and 

piled on top of each other using shims, which reduce the number of trips required to 

transport the towers components to the construction site. The column segments can be 
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tailored to accommodate transportation limitations. No special care should be exerted 

during shipping and handling unlike ring section which require some finesse.  

Erection: The construction procedures for the circular tower are challenging and time 

consuming. Extra care must be exerted when erecting this tower as every ring has its 

unique place that it fits and mixing and matching isn’t an option. Moreover, the multiples 

post-tensioning operations required, during erection to maintain stability and after 

completion to resist the applied load, complicate the construction process even further. 

On the other hand, once the columns of the proposed system are placed, panels’ 

installation is very quick and easy. Eliminating the need for post-tensioning by 

connecting the columns using splices will reduce the overall cost of the tower and will 

simplify the construction process by eliminating the post-tensioning steps.  

6.4 Conclusions 

The proposed concrete system did achieve a competitive and cost-effective solution, for 

wind turbine tower having a hub height of up to 320ft. Further studies may prove cost 

effectiveness for taller towers, which are likely to be proposed in future years.   The 

proposed system was optimized to include the following features: 

• An enhanced life cycle value with low initial cost. 

• An optimized concrete design in terms of concrete dimensions, steel reinforcement, 

weight distribution and dynamic performance. 

• A flexible design concept that can accommodate any logistical issues, desired 

dimensions or site specific conditions.  
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• Simple concrete fabrication procedures featuring non-complex precast sections for 

standardization purposes.  

• A fast erection time and simple construction sequence  

• A design where shipping and handling limitations were rendered unproblematic 

resulting in cost savings. 

• Attractive aesthetics. 

 

As a result, it can be shown that the proposed system has the potential to have low initial 

cost, little maintenance cost, fast un-complicated erection and excellent aesthetics in 

comparison with the dominantly used steel shaft system and the recently introduced 

precast concrete segmented system. In addition, the system is highly adjustable to accept 

different geometries. Above all, there is no need for expensive factory initial capital as 

most US plants have been making similar panels and can easily make a concentrically 

prestressed column.  
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APPENDIX A 

A. WIND TURBINE SPECIFICATIONS AND LOADS 

Table A-1: Wind turbine specifications. 

Rotor Type 3-bladed, horizontal axis 

Rotor Position Upwind 

Rotor Diameter 355.6 ft 

Swept area 99,315 ft² 

Rotor speed 13.2 rpm  

Power regulation                    Pitch regulation with variable speed 

Rotor tilt 6 degrees 

Blade length 170.6 ft 

Tip chord 3.3 ft 

Root chord 13.8 ft 

Aerodynamic profile NACA 63.xxx, FFAxxx 

Blade Tip Speed 168 mph 

Generator Nominal power 3,600 kW 

Working Frequency Range (1.15P to 2.85P) 0.253 Hz to 0.627 Hz 

Head Weight (incl. nacelle, hub and blades) 694.26 kips (347.13 tons) 

 

Coordinate system:  

x: down-wind 

y: across-wind   

z: vertical. 
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Table A-2: Wind turbine loads. 

 Forces at hub 
height 

EWM EOG Units  

Extreme 3-second 
velocity gust at hub 

height) 
115 78.3 mph 

Fx 107.25 268.87 Kips 

Fy -148.5 -18.2 Kips 

Fz -694.26 -694.26 Kips 

Mx 7843 3143.49 Kip-in 

My 4950.5 -6601.2 Kip-in 

Mz 1900.7 1177.88 Kip-in 

 

Table A-3: Wind turbine fatigue loads. 

   
Damage equivalent load for fatigue 

  

Fx 32.15 Kips 

Mx 318.63 Kip-in 

My 1600.51 Kip-in 

Mz 1637.39 Kip-in 
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APPENDIX B 

B. 240 FT PROPOSED CONCRETE SYSTEM DESIGN 

Loading 

 

 

 

 

 

Geometry and Dimensions 

Tower Height:  

Segment Height:  

Number of Segments:  

1st Segment Base Dimensions: Center Lines:  
(Sec.2 - See Figure 1) 

 

Concrete Edges:  

 

2nd Segment Base Dimensions: Center Lines:  
(Sec.3 - See Figure 1) 

 

Concrete Edges:  

 

3rd Segment Dimensions: Center Lines:  
(Sec.4 - See Figure 1) 

 

Concrete Edges:  

 

Ht 240ft:=

Hseg 80ft:=

Nseg 3:=

Bseg.1.cl 300.000in 25 ft=:=

Lseg.1.cl 259.808in 21.651ft=:=

Bseg.1.ce 378.928in 31.577ft=:=

Lseg.1.ce 328.162in 27.347ft=:=

Bseg.2.cl 180.000in 15 ft=:=

Lseg.2.cl 155.885in 12.99 ft=:=

Bseg.2.ce 258.928in 21.577ft=:=

Lseg.2.ce 224.238in 18.686ft=:=

Bseg.3.cl 120.000in 10 ft=:=

Lseg.3.cl 103.923in 8.66 ft=:=

Bseg.3.ce 198.928in 16.577ft=:=

Lseg.3.ce 172.277in 14.356ft=:=
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Figure B-1: Tower profile. 
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Figure B-2: Tower cross section. 

 

Figure B-3: Column cross section. 
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Concrete Properties 

Concrete Compressive Strength:  

Concrete Density:  

Concrete Elastic Modulus:  
(AASHTO LRFD - Eq. 5.4.2.4-1) 

 

3.6 MW Wind Turbine  

Turbine Head Weight:  

(WindPACT Report, 2005) 

Columns Properties 

Columns Area:  

Number of Columns in Cross-Section:  

PVC Pipe Own Weight:  

Column Own Weight:  

 

Weight of One column:  

Total Weight of columns:  

 

Panels Properties 

Panel Thickness:  

Number of Panels in Cross-Section  

Panel Height:  

Total Number of Panels:  

Panel Widths: Sec. 1:  

Sec. 2:  

Sec. 3:  

fc' 8 ksi⋅:=

ρc 150pcf:=

Ec 33000
ρc

1000pcf









1.5
fc'

ksi
⋅ ksi:=

Ec 5.422 10
3× ksi⋅=

Wturbine 694.26 kip⋅:=

Acol 1811.8222in
2:=

Ncol 3:=

Owpvc 231.22
lbf

ft
:=

Owcol Owpvc Acol ρc⋅+:=

Owcol 2.119 10
3×

lbf

ft
⋅=

Owcol Hseg⋅ 84.741 tonf⋅=

Wcols Owcol Hseg⋅ Ncol⋅ Nseg⋅:=

Wcols 1.525 10
3× kip⋅=

thpanel 6in:=

Npanel 3:=

hpanel 10ft:=

Np

Ht

hpanel
Npanel⋅ 72=:=

wp.1 332.536in 27.711 ft=:=

wp.2 212.536in 17.711 ft=:=

wp.3 152.536in 12.711 ft=:=
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First Panel Weight (Heaviest): 
 

 

 

Last Panel Weight (Lightest): 
 

 

Total Panel Volume: 

 

Total Panel Weight:  

 

Tower Weights 

Miscellaneous Additional Weights:   
(Connections, bolts and steel plates) 

Total Tower Weight:  

 

 

wave
332.536in 317.54in+

2







:=

Owp1 wave thpanel⋅ hpanel⋅ ρc⋅:=

Owp1 10.157 tonf⋅=

Owp2 wp.3 thpanel⋅ hpanel⋅ ρc⋅:=

Owp2 4.767 tonf⋅=

Vol
wp.1 wp.2+

2









wp.2 wp.3+

2









+ wp.3( )+








Hseg⋅ thpanel⋅ Npanel⋅:=

WPanels Vol ρc⋅:=

WPanels 911.412 kip⋅=

Wmisc 250kip:= Assumed( )

Wtot Wturbine Wcols+ WPanels+ Wmisc+:=

Wtot 3.381 10
3× kip⋅=

Wtot 1.691 10
3× tonf⋅=



127 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variations along the Height: 

 

 

B z( )
Hseg z−

Hseg









Bseg.1.ce Bseg.2.ce−( )⋅ Bseg.2.ce+








z Hseg≤if

Hseg z Hseg−( )−

Hseg









Bseg.2.ce Bseg.3.ce−( )⋅ Bseg.3.ce+








Hseg z< 2Hseg≤if

Bseg.3.ce 2Hseg z< 3Hseg≤if

:=

L z( )
Hseg z−

Hseg









Lseg.1.ce Lseg.2.ce−( )⋅ Lseg.2.ce+








z Hseg≤if

Hseg z Hseg−( )−

Hseg









Lseg.2.ce Lseg.3.ce−( )⋅ Lseg.3.ce+








Hseg z< 2Hseg≤if

Lseg.3.ce 2Hseg z< 3Hseg≤if

:=
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Wind Loading (Mid-West) 

Direct Wind on the Tower: 

Building Category:  II 
(ASCE 7-10  -  Tbl. 1.5-1) 

Wind Importance Factor:    
(ASCE 7-10  -  Tbl. 1.5-2) 

 
(ASCE 7-10  -  Fig. 26.5-1A) 

Design Wind Speeds: 

Extreme 3-sec gust at reference height (33-ft from ground): 

 Non Operational Load Case (EWM):  Extreme wind speed model 

 Operational Load Case (EOG):  Extreme operational gust 

 Non Operational Load Case (EWM):  

 Operational Load Case:  

 
(ASCE 7-10  -  Tbl. 26.6-1) 
(Triangular shape) 

Terrain Exposure Constants:   Exposure Category: " D " 
(ASCE 7-10  -  Art. 26.7.3) 

 
(ASCE 7-10  -  Tbl. 26.9-1) 

 

 

 

 

 

 

 

Basic Wind Speed: 

At Hub Level: 

Directional Factor: 

I 1.0:=

Vw 115mph 51.41
m

s
⋅=:=

V1 115mph:=

V2 49.7mph:=

V1_EWM V1
33ft

Ht









0.1−
⋅









140.239 mph⋅=:=

V2_EOG V2
33ft

Ht









0.2−
⋅









73.909 mph⋅=:=

Kd 0.95:=

αex 11.5:=

cex 0.15:=

bex 0.8:=

zg.ex 700ft:=

zmin.ex 7ft:=

lex 650ft:=

εex
1

8.0
:=

α' ex
1

9.0
:=



129 
 

 

 

 

 

 

Topographic Factor:  

(ASCE 7-10  -  Art. 26.8) 
(No hills) 

Gust-Effects: 

Flexible Structure:  
 (ASCE 7-10  -  Art. 26.2) 

Equivalent Height of Structure:   

(ASCE 7-10  -  Eq. 26.9-7) 
 

Intensity of Turbulence:  

(ASCE 7-10  -  Eq. 26.9-7) 

Integral Length scale of turbulence:  
(ASCE 7-10  -  Eq. 26.9-9) 

Background Response:  

(ASCE 7-10  -  Eq. 26.9-8) 

Peak Factor for Background Response:  

(ASCE 7-10  -  Eq. 26.9-10) 

Peak Factor for Wind Response:  

(ASCE 7-10  -  Eq. 26.9-10) 
from SAP 

Natural Frequency of the Tower:   

(ASCE 7-10  -  Eq. 26.9-4) 

Peak Factor for Resonant Response:  
(ASCE 7-10  -  Eq. 26.9-11) 

 

Mean Hourly Velocity:  
(ASCE 7-10  -  Eq. 26.9-16) 

 (EWM) 

 (EOG) 

Reduced Frequency:  
(ASCE 7-10  -  Eq. 26.9-14) 

 (EWM) 

 (EOG) 

Kzt 1.0:=

n 1.0Hz<

zeq 0.6 Ht⋅ 144 ft=:= z zmin.ex>

ok

Iz z( ) cex
33ft

z







1

6

:=

Lz z( ) lex
z

33ft







ε ex

⋅:=

Q z( )
1

1 0.63
B z( ) Ht+

Lz z( )









0.63

⋅+

:=

gQ 3.4:=

gv 3.4:=

na
75ft

Ht
0.313=:= n1 0.44Hz:=

gR 2 ln 3600
n1

Hz
⋅









⋅
0.577

2 ln 3600
n1

Hz
⋅









⋅

+:=

gR 3.989=

Vz z v, ( ) bex
z

33ft







α'ex

⋅
88

60







⋅ v⋅:=

Vz zeq V1, ( ) 158.933 mph⋅=

Vz zeq V2, ( ) 68.687 mph⋅=

N1 z v, ( )
n1 Lz z( )⋅

Vz z v, ( )
:=

N1 zeq V1, ( ) 1.475=

N1 zeq V2, ( ) 3.413=
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Damping Factor:  (ASCE-AWEA  -  Art. 5.4.4) 

Resonant Response Factor: (ASCE 7-10  -  Eq. 26.9-12) 

 (ASCE 7-10  -  Eq. 26.9-15a) 

 (ASCE 7-10  -  Eq. 26.9-15a) 

 
(ASCE 7-10  -  Eq. 26.9-15a) 

  

 

  

 

 
 

 

 (ASCE 7-10  -  Eq. 26.9-13) 

 

 

 

(ASCE 7-10  -  Eq. 26.9-12) 
 

 

β 2%:=

ηRh z v, ( ) 4.6 n1⋅
Ht

Vz z v, ( )
⋅:=

ηRB z v, ( ) 4.6 n1⋅
B z( )

Vz z v, ( )
⋅:=

ηRL z v, ( ) 4.6 n1⋅
L z( )

Vz z v, ( )
⋅:=

Rh z v, ( )
1

ηRh z v, ( )

1 e
2− ηRh z v, ( )⋅( )

−






2 ηRh z v, ( )( )2
−:= Rh zeq V1, ( ) 0.367=

Rh zeq V2, ( ) 0.186=

RB z v, ( )
1

ηRB z v, ( )

1 e
2− ηRB z v, ( )⋅( )

−






2 ηRB z v, ( )( )2
−:= RB zeq V1, ( ) 0.906=

RB zeq V2, ( ) 0.801=

RL z v, ( )
1

ηRL z v, ( )

1 e
2− ηRL z v, ( )⋅( )

−






2 ηRL z v, ( )( )2
−:=

RL zeq V1, ( ) 0.917=

RL zeq V2, ( ) 0.824=

Rn z v, ( )
7.47 N1 z v, ( )⋅

1 10.3 N1 z v, ( )⋅+( )
5

3

:=

Rn zeq V1, ( ) 0.106=

Rn zeq V2, ( ) 0.064=

R z v, ( )
1

β
Rn z v, ( )⋅ Rh z v, ( )⋅ RB z v, ( )⋅ 0.53 0.47 RL z v, ( )⋅+( )⋅:=

R zeq V1, ( ) 1.302=

R zeq V2, ( ) 0.664=
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Figure B-4: Velocity pressure along the tower height. 

 

 Gust - Effect Factor: 
(ASCE 7-10  -  Eq. 26.9-10) 

Enclosure Classification: Enclosed Building (Openings less than 10 %) 
(ASCE 7-10  -  Art. 26.10) 

Velocity Pressure Coefficient: 
(ASCE 7-10  -  Tbl. 29.3-1) 

 

(ASCE 7-10  -  Eq. 29.3-1)  

 

Kz z( ) 2.01
15ft

zg.ex









2

αex

⋅ z 15ft<if

2.01
z

zg.ex









2

αex

⋅ 15ft z≤ zg.ex≤if

:=

qz z v, ( ) Kz z( ) Kzt⋅ Kd⋅
v

mph







2

⋅ 0.00256⋅ psf( )⋅:=

0 30 60 90 120 150 180 210 240
0
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V2 EOG

Velocity Pressure Along The Tower's Height

Height (ft)

V
el

o
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ty
 P

re
ss

u
re

 (
p

sf
)

Gf z v, ( ) 0.925
1 1.7 Iz z( )⋅ gQ

2
Q z( )

2⋅ gR
2

R z v, ( )
2⋅+⋅+

1 1.7 gv⋅ Iz z( )⋅+









⋅:=



132 
 

 

 

 

Table B-1: Force coefficient for towers* 

Cross Section 
h/D**   

1 7 25 h/D=8.776 

Square 

wind normal to 
face 

1.3 1.4 2 1.46 

wind along 
diagonal 

1 1.1 1.5 1.14 

Hexagonal or Octagonal 1 1.2 1.4 1.22 

Round 0.5-0.8 0.6-1.0 0.7-1.2 0.81 

* Based on ASCE-07 Table 29.5-1       

** h  : Tower Height         

** D : Least Structure Dimension       

Table B-2: Force coefficient for proposed cross section (h/D=8.776) 

Wind Direction 
Cross Section 

Proposed 
Square Hexagonal Round 

Normal to Face 1.46 1.22 0.81 1.46 

Along Diagonal 1.14 1.22 0.81 1.14 

 

 

 

 

 

 

 

Force Coefficient: 
(ASCE 7-10  -  Tbl. 29.5-1) 

 
Ht

min B 0( ) L 0( ), ( )
8.776=
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Force along the Tower:  
(ASCE 7-10  -  Eq. 29.5-1) 

  

  

Shearing Force along the Tower:  

 

Base Shear (EWM):  

 

Base Shear (EOG):  

 

Bending Moment Along the Tower:  

 

Base Moment (EWM):  

 

Base Moment (EOG):  

 

Cf1 1.46:= Cf2 1.14:=

F qz Gf⋅ Cf⋅ Af⋅:= Cf

Fw1 z v, ( ) qz z v, ( ) Gf z v, ( )⋅ Cf1⋅ B z( )⋅:= dz

Fw2 z v, ( ) qz z v, ( ) Gf z v, ( )⋅ Cf2⋅ B z( )⋅:= dz

Sw1 z v, ( )

z

Ht

xFw1 x v, ( )
⌠

⌡

d:=

Sw2 z v, ( )

z

Ht

xFw2 x v, ( )
⌠

⌡

d:=

Sw1 0 V1, ( ) 389.946 kip⋅=

Sw2 0 V1, ( ) 304.478 kip⋅=

Sw1 0 V2, ( ) 59.243 kip⋅=

Sw2 0 V2, ( ) 46.258 kip⋅=

Mw1 z v, ( )

z

Ht

xFw1 x v, ( ) x z−( )⋅
⌠

⌡

d:=

Mw2 z v, ( )

z

Ht

xFw2 x v, ( ) x z−( )⋅
⌠

⌡

d:=

Mw1 0 V1, ( ) 4.517 10
4× kip ft⋅⋅=

Mw2 0 V1, ( ) 3.527 10
4× kip ft⋅⋅=

Mw1 0 V2, ( ) 6.898 10
3× kip ft⋅⋅=

Mw2 0 V2, ( ) 5.386 10
3× kip ft⋅⋅=
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Wind Turbine Load: (WindPact Report) 

Coordinate System: x: Downwind, y : Lateral, and z : Gravity.  

Turbine Offset:  

Straining Actions on Top of the Tower: 

  

  

  

  

  

  

Fatigue Range: 

  

  

Extreme 3-sec gust at reference height (33-ft from ground): 
(ASCE 7-05  -  Fig. 6-1) 

 

Reference wind speed over 10 min at hub height: 
(ASCE/AWEA-RP 2011  -  Eq. C5-6) 

 

Extreme 3-sec gust at hub height: 
(ASCE/AWEA-RP 2011  -  Eq. C5-4)  

 

Class II wind Turbine:  

(ASCE/AWEA-RP 2011  -  Eq. C5-4) 

Speed Modification Factor:  

  

offset 0ft:=

Fx.T.V1 143kip:= Fx.T.V2 269kip:=

Fy.T.V1 198kip:= Fy.T.V2 18kip:=

Fz.T.V1 709kip:= Fz.T.V2 703kip:=

Mx.T.V1 10458kip ft⋅:= Mx.T.V2 3143kip ft⋅:=

My.T.V1 6601kip ft⋅:= My.T.V2 6601kip ft⋅:=

Mz.T.V1 2534kip ft⋅:= Mz.T.V2 1178kip ft⋅:=

∆F x.T 32kip:= ∆M z.T 1637kip ft⋅:=

∆M x.T 319kip ft⋅:= ∆M y.T 1600kip ft⋅:=

Vmw 40
m

s
:=

Vref Vmw

Ht

zg.ex









1

αex

⋅ 36.445
m

s
⋅=:=

Ve50 z( ) 1.4 Vref⋅
z

Ht









0.11

⋅:=

Ve50 240ft( ) 51.023
m

s
⋅=

Vt 59.5
m

s
:=

c
Ve50 240ft( )

Vt









2

0.735=:=

Take c 0.75:=
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Wind Turbine Load Distribution along the Tower: 

 

 

 

  

 

 

 

 

 

 

Fx.V1 Fx.T.V1 c⋅:=

Fy.V1 Fy.T.V1 c⋅:=

Fx.V2 Fx.T.V2:=

Fy.V2 Fy.T.V2:=

Fz.V1 Fz.T.V1 c⋅:= Fz.V2 Fz.T.V2:=

Mx.V1 z( ) Mx.T.V1 c⋅ Fy.V1 Ht z−( )⋅+:=

Mx.V2 z( ) Mx.T.V2 Fy.V2 Ht z−( )⋅+:=

My.V1 z( ) My.T.V1 c⋅ Fx.V1 Ht z−( )⋅+:=

My.V2 z( ) My.T.V2 Fx.V2 Ht z−( )⋅+:=

Mz.V1 z( ) Mz.T.V1 c⋅:=

Mz.V2 z( ) Mz.T.V2:=
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Figure B-5: Moment distribution in the X-direction. 

Figure B-6: Moment distribution in the Y-direction. 
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Seismic Loading (Mid-West) 

Seismic Importance Factor:    
(ASCE 7-10  -  Tbl. 1.5-2) 

Site Class:  Soil Class "D" 
(ASCE 7-10  -  Art. 11.4.2) 

Damping Adjustment Factor:  
(ASCE-AWEA  -  Tbl. 5-6) 

Mapped Acceleration Parameters:   
(ASCE 7-10  -  Fig. 22-1 and 22-2) 

Site Coefficient:   
(ASCE 7-10  -  Tbl. 11.4-1 and 11.4-2) 

Spectral response acceleration for short period:  
(ASCE 7-10  -  Eq. 11.4-1) 

Spectral response acceleration for 1 second:  
(ASCE 7-10  -  Eq. 11.4-2) 

Design Spectral Acceleration Parameters:  

(ASCE 7-10  -  Eq. 11.4-3 and 11.4-4) 

 

Design Response Spectrum:  
(ASCE 7-10  -  Eq. 11.4-5 to 11.4-7) 
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Figure B-7: Design response spectrum. 

 

 

 

 

 

 

 

 

 

Response Modification Coefficient:  
(ASCE 7-10  -  Tbl. 12.2-1) 

Seismic Response Coefficient:  
(ASCE 7-10  -  Eq. 12.8-2 to 12.8-5) 

 

 

Seismic Base Shear:  
(ASCE 7-10  -  Eq. 12.8-1) 
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P-M Effect: 

Tower Deflection:   
(From SAP model) 

Additional Moment from deflection:  

 

Percentage of added moment:  

 

Negligible effect 

Load Combinations: 

(ASCE 7-10  -  Art. 2.3.2 and 2.4.1) 
(ASCE/AWEA-RP 2011 -  Tbl. 5-4) 

D: Dead Load T: Turbine Load 

W: Wind Load E: Seismic Load 

Ultimate Loads: 

ULT 4: 1.2D +1.0W+1.35T  

ULT 5: 1.2D +1.0E 

ULT 6: 0.9D +1.0W+1.35T  

ULT 7: 0.9D +1.0E 

Service Loads: 

SER 5-1: D +0.6W+1.0T  

SER 5-2: D +0.7E 

SER 7: 0.6D +0.6W+1.0T 

SER 8: 0.6D +0.7E 

∆ x 0.68ft:= ∆ y 0.64ft:=

Mxadd Wturbine ∆ x⋅ 472.097 kip ft⋅⋅=:=

Myadd Wturbine ∆ y⋅ 444.326 kip ft⋅⋅=:=

δxadd

Mxadd

Mx.V1 0( )
0.011=:=

δyadd

Myadd

My.V1 0( )
0.014=:=
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Design 

Table B-3: Ultimate loads acting on segment 1 columns. 

Segment 1 Columns 

Ultimate Load 

Combination 
Max/Min 

Axial Shear Moment 

Kip Kip Kip-ft 

ULT4-C1 

Axial 
-4412.15 34.29 896.54 

2603.62 11.30 1105.12 

Shear 
-3659.80 4.10 1403.51 

-1362.45 55.44 1330.82 

Moment 
-4331.37 43.82 654.47 

-3657.23 5.84 1406.12 

ULT4-C2 

Axial 
-4518.25 32.64 815.63 

1906.30 32.02 667.43 

Shear 
-4210.69 10.31 965.60 

-4115.31 44.98 1252.82 

Moment 
1900.54 30.94 656.03 

-4103.80 44.46 1419.24 

ULT5-C1 

Axial 
-2956.44 11.34 388.97 

7.32 18.55 538.14 

Shear 
-0.05 6.03 476.35 

-2847.74 23.10 495.16 

Moment 
-2824.81 22.47 266.87 

-2430.45 12.17 694.38 

ULT5-C2 

Axial 
-2712.21 13.59 421.00 

608.91 10.06 445.74 

Shear 
-831.90 2.37 490.69 

445.38 22.38 525.56 

Moment 
-2584.89 20.38 281.96 

-2212.72 13.98 666.05 

ULT6-C1 

Axial 
-4128.79 35.65 910.76 

2811.59 11.28 1104.95 

Shear 
-3464.67 3.11 1404.09 

-1096.40 54.24 1086.77 

Moment 
-4061.96 43.31 656.34 

-3464.67 3.11 1404.09 
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ULT6-C2 

Axial 
-4234.90 32.37 827.07 

2169.96 31.45 654.17 

Shear 
-3993.15 10.44 966.59 

-3911.13 41.62 1256.91 

Moment 
2169.96 31.45 654.17 

-3902.48 41.23 1405.97 

ULT7-C1 

Axial 
-2673.09 12.71 404.80 

208.63 15.88 545.04 

Shear 
207.92 6.08 476.27 

-2583.54 22.65 491.31 

Moment 
-2566.31 21.61 269.60 

-2229.13 8.67 680.62 

ULT7-C2 

Axial 
-2428.86 14.53 433.44 

816.88 10.11 445.58 

Shear 
-623.92 2.37 490.69 

728.73 21.17 511.95 

Moment 
-2326.39 19.54 284.18 

-2011.41 10.98 653.50 
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Figure B-8: Segments 1 columns interaction diagram.  

Table B-4: Segments 1 column properties. 

Service Check 

Prestress Area Inertia y f`c Stress Limits 

Kip in2 in4 in ksi ksi 

-2109.24 1811.80 2.8E+10 31.18 8.00 -4.80 0.67 

Shear Check 

bw dp 
φ 

Vc limits Shear Rft (in
2
) 

in in Kip C-Shape Spiral 

28.43 58.35 0.75 296.70 741.75 0.76 0.31 
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Table B-5: Service and operational loads check for segment 1 columns. 

Segment 1 Columns 

Load Combination 
Axial 

Momen

t 
Stress Range Comp. 

stress 

Tens. 

stress 
Kip Kip-ft ksi 

SER5-1-C1 

Axial 
-3133.08 579.19 -2.89 -2.89 Safe No tension 

1761.15 798.10 -0.19 -0.19 Safe No tension 

Shear 
1753.52 783.44 -0.20 -0.20 Safe No tension 

-1169.83 927.14 -1.81 -1.81 Safe No tension 

Moment 
-3072.30 472.80 -2.86 -2.86 Safe No tension 

-2613.67 993.31 -2.61 -2.61 Safe No tension 

SER5-1-C2 

Axial 
-3351.47 522.61 -3.01 -3.01 Safe No tension 

1168.66 755.33 -0.52 -0.52 Safe No tension 

Shear 
-3119.96 701.49 -2.89 -2.89 Safe No tension 

-3052.98 873.85 -2.85 -2.85 Safe No tension 

Moment 
1110.91 477.13 -0.55 -0.55 Safe No tension 

-3043.40 1020.87 -2.84 -2.84 Safe No tension 

SER5-2-C1 

Axial 
-2220.63 263.84 -2.39 -2.39 Safe No tension 

-102.25 373.14 -1.22 -1.22 Safe No tension 

Shear 
-133.14 297.82 -1.24 -1.24 Safe No tension 

-2134.32 348.66 -2.34 -2.34 Safe No tension 

Moment 
-2115.24 185.36 -2.33 -2.33 Safe No tension 

-1808.69 493.40 -2.16 -2.16 Safe No tension 

SER5-2-C2 

Axial 
-2049.67 288.18 -2.30 -2.30 Safe No tension 

315.32 312.10 -0.99 -0.99 Safe No tension 

Shear 
-693.25 343.48 -1.55 -1.55 Safe No tension 

160.64 375.20 -1.08 -1.08 Safe No tension 

Moment 
-1947.29 196.20 -2.24 -2.24 Safe No tension 

-1656.28 472.95 -2.08 -2.08 Safe No tension 

SER7-C1 

Axial 
-2755.27 597.48 -2.68 -2.68 Safe No tension 

2038.45 797.87 -0.04 -0.04 Safe No tension 

Shear 
-2346.55 975.62 -2.46 -2.46 Safe No tension 

-897.60 927.65 -1.66 -1.66 Safe No tension 

Moment 
-2713.09 475.23 -2.66 -2.66 Safe No tension 

2029.26 979.71 -0.04 -0.04 Safe No tension 
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SER7-C2 

Axial 
-2973.67 538.56 -2.81 -2.81 Safe No tension 

1470.47 488.90 -0.35 -0.35 Safe No tension 

Shear 
1420.87 899.90 -0.38 -0.38 Safe No tension 

-2780.74 879.39 -2.70 -2.70 Safe No tension 

Moment 
1470.12 474.69 -0.35 -0.35 Safe No tension 

-2774.98 1003.04 -2.70 -2.70 Safe No tension 

SER8-C1 

Axial 
-1842.83 284.95 -2.18 -2.18 Safe No tension 

166.34 333.38 -1.07 -1.07 Safe No tension 

Shear 
166.34 333.38 -1.07 -1.07 Safe No tension 

-1782.06 343.53 -2.15 -2.15 Safe No tension 

Moment 
-1770.57 188.99 -2.14 -2.14 Safe No tension 

-1540.26 475.06 -2.01 -2.01 Safe No tension 

SER8-C2 

Axial 
-1671.87 304.66 -2.09 -2.09 Safe No tension 

592.62 311.89 -0.84 -0.84 Safe No tension 

Shear 
-415.95 343.48 -1.39 -1.39 Safe No tension 

538.45 357.01 -0.87 -0.87 Safe No tension 

Moment 
-1602.62 199.15 -2.05 -2.05 Safe No tension 

576.91 456.32 -0.85 -0.85 Safe No tension 

OPR5-1-C1 

Axial 
-3076.01 383.70 -2.86 -2.86 Safe No tension 

637.14 720.99 -0.81 -0.81 Safe No tension 

Shear 
-2802.27 646.49 -2.71 -2.71 Safe No tension 

635.15 739.32 -0.81 -0.81 Safe No tension 

Moment 
-76.52 345.07 -1.21 -1.21 Safe No tension 

-2733.22 875.65 -2.67 -2.67 Safe No tension 

OPR5-1-C2 

Axial 
-2075.67 453.70 -2.31 -2.31 Safe No tension 

1169.19 702.01 -0.52 -0.52 Safe No tension 

Shear 
1141.57 553.14 -0.53 -0.53 Safe No tension 

-1877.83 700.43 -2.20 -2.20 Safe No tension 

Moment 
-1631.66 178.95 -2.06 -2.06 Safe No tension 

-1868.30 713.40 -2.20 -2.20 Safe No tension 

OPR7-C1 

Axial 
-2698.21 402.67 -2.65 -2.65 Safe No tension 

905.57 733.31 -0.66 -0.66 Safe No tension 

Shear 
-2517.37 648.74 -2.55 -2.55 Safe No tension 

904.38 748.00 -0.67 -0.66 Safe No tension 

Moment 
290.28 345.45 -1.00 -1.00 Safe No tension 

-2464.79 857.42 -2.52 -2.52 Safe No tension 

OPR7-C2 Axial 
-1697.86 458.69 -2.10 -2.10 Safe No tension 

1437.92 600.18 -0.37 -0.37 Safe No tension 
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Shear 
-1045.63 679.39 -1.74 -1.74 Safe No tension 

-1605.59 703.59 -2.05 -2.05 Safe No tension 

Moment 
-1253.86 188.88 -1.86 -1.86 Safe No tension 

1437.61 720.19 -0.37 -0.37 Safe No tension 

Table B-6: Shear check for segment 1 columns. 

Segment 1 Columns 

Ultimate 

Load 

Combination 

Max/ 

Min 

Axial Shear Moment Vc Vs 

Shear 
Kip Kip Kip-ft Kip Kip 

ULT4-C1 

Axial 
-4412.1 34.3 896.5 304.94 111.26 Safe 

2603.6 11.3 1105.1 0.00 111.26 Safe 

Shear 
-3659.8 4.1 1403.5 296.70 111.26 Safe 

-1362.4 55.4 1330.8 324.20 111.26 Safe 

Moment 
-4331.4 43.8 654.5 466.97 111.26 Safe 

-3657.2 5.8 1406.1 296.70 111.26 Safe 

ULT4-C2 

Axial 
-4518.3 32.6 815.6 314.96 111.26 Safe 

1906.3 32.0 667.4 0.00 111.26 Safe 

Shear 
-4210.7 10.3 965.6 296.70 111.26 Safe 

-4115.3 45.0 1252.8 296.70 111.26 Safe 

Moment 
1900.5 30.9 656.0 0.00 111.26 Safe 

-4103.8 44.5 1419.2 296.70 111.26 Safe 

ULT5-C1 

Axial 
-2956.4 11.3 389.0 296.70 111.26 Safe 

7.3 18.6 538.1 0.00 111.26 Safe 

Shear 
-0.1 6.0 476.4 296.70 111.26 Safe 

-2847.7 23.1 495.2 352.39 111.26 Safe 

Moment 
-2824.8 22.5 266.9 564.28 111.26 Safe 

-2430.5 12.2 694.4 296.70 111.26 Safe 

ULT5-C2 

Axial 
-2712.2 13.6 421.0 296.70 111.26 Safe 

608.9 10.1 445.7 0.00 111.26 Safe 

Shear 
-831.9 2.4 490.7 296.70 111.26 Safe 

445.4 22.4 525.6 0.00 111.26 Safe 

Moment 
-2584.9 20.4 282.0 497.06 111.26 Safe 

-2212.7 14.0 666.0 296.70 111.26 Safe 
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ULT6-C1 

Axial 
-4128.8 35.7 910.8 310.02 111.26 Safe 

2811.6 11.3 1104.9 0.00 111.26 Safe 

Shear 
-3464.7 3.1 1404.1 296.70 111.26 Safe 

-1096.4 54.2 1086.8 370.75 111.26 Safe 

Moment 
-4062.0 43.3 656.3 461.52 111.26 Safe 

-3464.7 3.1 1404.1 296.70 111.26 Safe 

ULT6-C2 

Axial 
-4234.9 32.4 827.1 309.93 111.26 Safe 

2170.0 31.4 654.2 0.00 111.26 Safe 

Shear 
-3993.2 10.4 966.6 296.70 111.26 Safe 

-3911.1 41.6 1256.9 296.70 111.26 Safe 

Moment 
2170.0 31.4 654.2 0.00 111.26 Safe 

-3902.5 41.2 1406.0 296.70 111.26 Safe 

ULT7-C1 

Axial 
-2673.1 12.7 404.8 296.70 111.26 Safe 

208.6 15.9 545.0 0.00 111.26 Safe 

Shear 
207.9 6.1 476.3 0.00 111.26 Safe 

-2583.5 22.7 491.3 349.27 111.26 Safe 

Moment 
-2566.3 21.6 269.6 541.45 111.26 Safe 

-2229.1 8.7 680.6 296.70 111.26 Safe 

ULT7-C2 

Axial 
-2428.9 14.5 433.4 296.70 111.26 Safe 

816.9 10.1 445.6 0.00 111.26 Safe 

Shear 
-623.9 2.4 490.7 296.70 111.26 Safe 

728.7 21.2 511.9 0.00 111.26 Safe 

Moment 
-2326.4 19.5 284.2 477.23 111.26 Safe 

-2011.4 11.0 653.5 296.70 111.26 Safe 
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Table B-7: Ultimate loads acting on segment 2 columns. 

Segment 2 Columns 

Ultimate Load 

Combination 
Max/Min 

Axial Shear Moment 

Kip Kip Kip-ft 

ULT4-C1 

Axial 
-3655.05 126.62 1406.30 

2602.55 83.11 949.71 

Shear 
-1349.70 21.05 1219.04 

-3652.77 126.70 1300.93 

Moment 
1800.80 81.98 681.52 

-3499.24 94.61 1612.21 

ULT4-C2 

Axial 
-4102.62 107.72 1419.39 

1857.67 81.72 956.09 

Shear 
-157.18 28.06 1158.47 

-4100.35 107.80 1312.28 

Moment 
-2864.41 78.38 675.21 

1757.08 82.80 1519.09 

ULT5-C1 

Axial 
-2429.32 75.25 694.38 

19.81 28.94 394.27 

Shear 
18.14 17.38 458.01 

-2429.32 75.25 694.38 

Moment 
-1569.19 42.15 234.76 

-2334.49 50.26 762.06 

ULT5-C2 

Axial 
-2211.74 67.46 666.15 

612.58 36.31 396.83 

Shear 
-552.94 18.66 358.48 

-2211.74 67.46 666.15 

Moment 
-1433.05 37.64 271.12 

-2126.25 45.12 734.70 

ULT6-C1 

Axial 
-3453.73 122.88 1394.87 

2801.02 86.87 944.84 

Shear 
-1142.12 20.92 1136.61 

-3452.03 122.94 1292.91 

Moment 
1939.04 81.98 681.44 

-3304.21 94.48 1612.16 

ULT6-C2 

Axial 
-3901.31 104.03 1406.12 

2056.13 85.56 952.97 

Shear 
43.57 25.29 1160.59 

-3899.60 104.09 1302.66 



148 
 

Moment 
-2726.17 78.38 675.29 

1952.11 82.94 1519.13 

ULT7-C1 

Axial 
-2228.00 71.51 680.62 

216.61 20.64 455.87 

Shear 
216.61 20.64 455.87 

-2228.00 71.51 680.62 

Moment 
-1430.95 42.15 234.84 

-2139.46 50.12 762.00 

ULT7-C2 

Axial 
-2010.43 63.73 653.60 

811.05 40.10 392.70 

Shear 
-595.40 16.38 480.76 

-2010.43 63.73 653.60 

Moment 
-1294.81 37.64 271.18 

-1931.23 44.99 734.66 

 

 

Figure B-9: Segments 2 columns interaction diagram.  
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Table B-8: Segment 2 column properties. 

Service Check 

Prestress Area Inertia y f`c Stress Limits 

Kip in2 in4 in ksi ksi 

-2109.24 1811.80 2.8E+10 31.18 8.00 -4.80 0.67 

Shear Check 

bw dp 
φ 

Vc limits Shear Rft (in
2
) 

in in Kip C-Shape Spiral 

28.43 58.35 0.75 296.70 741.75 0.76 0.31 

     
#6 - 24" W16 - 12" 

Table B-9: Service and operational loads check for segment 2 columns. 

Segment 2 Columns 

Load Combination  
Axial 

Mome

nt 

Stress 

Range 
Comp. 

stress 
Tens. stress 

Kip Kip-ft ksi 

SER5-1-C1 

Axial 
-2862.01 888.35 -2.74 -2.74 Safe No tension 

1549.08 806.17 -0.31 -0.31 Safe No tension 

Shear 
-1274.51 812.11 -1.87 -1.87 Safe No tension 

-2860.11 809.95 -2.74 -2.74 Safe No tension 

Moment 
970.56 681.45 -0.63 -0.63 Safe No tension 

-2862.01 888.35 -2.74 -2.74 Safe No tension 

SER5-1-C2 

Axial 
-3298.27 899.61 -2.98 -2.98 Safe No tension 

933.56 763.62 -0.65 -0.65 Safe No tension 

Shear 
-67.27 711.74 -1.20 -1.20 Safe No tension 

-3296.37 809.60 -2.98 -2.98 Safe No tension 

Moment 
-1997.92 647.85 -2.27 -2.27 Safe No tension 

-3298.27 899.61 -2.98 -2.98 Safe No tension 

SER5-2-C1 

Axial 
-2559.25 610.01 -2.58 -2.58 Safe No tension 

-65.59 534.23 -1.20 -1.20 Safe No tension 

Shear 
-130.48 364.71 -1.24 -1.24 Safe No tension 

-2559.25 610.01 -2.58 -2.58 Safe No tension 

Moment 
-1520.64 317.92 -2.00 -2.00 Safe No tension 

-2559.25 610.01 -2.58 -2.58 Safe No tension 
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SER5-2-C2 

Axial 
-2337.71 589.73 -2.45 -2.45 Safe No tension 

528.76 477.79 -0.87 -0.87 Safe No tension 

Shear 
-572.79 384.92 -1.48 -1.48 Safe No tension 

-2337.71 589.73 -2.45 -2.45 Safe No tension 

Moment 
-1396.42 329.97 -1.93 -1.93 Safe No tension 

-2337.71 589.73 -2.45 -2.45 Safe No tension 

SER7-C1 

Axial 
-2499.85 875.45 -2.54 -2.54 Safe No tension 

1910.49 811.68 -0.11 -0.11 Safe No tension 

Shear 
-959.41 811.42 -1.69 -1.69 Safe No tension 

-2498.71 805.52 -2.54 -2.54 Safe No tension 

Moment 
1180.20 677.11 -0.51 -0.51 Safe No tension 

-2499.85 875.45 -2.54 -2.54 Safe No tension 

SER7-C2 

Axial 
-2936.10 884.12 -2.78 -2.78 Safe No tension 

1294.96 767.87 -0.45 -0.45 Safe No tension 

Shear 
-2746.48 814.31 -2.68 -2.68 Safe No tension 

-2934.96 804.03 -2.78 -2.78 Safe No tension 

Moment 
-1788.28 652.21 -2.15 -2.15 Safe No tension 

-2936.10 884.12 -2.78 -2.78 Safe No tension 

SER8-C1 

Axial 
-2197.09 593.95 -2.38 -2.38 Safe No tension 

284.80 484.19 -1.01 -1.01 Safe No tension 

Shear 
79.16 362.57 -1.12 -1.12 Safe No tension 

-2197.09 593.95 -2.38 -2.38 Safe No tension 

Moment 
-1283.28 322.72 -1.87 -1.87 Safe No tension 

-2197.09 593.95 -2.38 -2.38 Safe No tension 

SER8-C2 

Axial 
-1975.54 575.30 -2.25 -2.25 Safe No tension 

890.17 482.77 -0.67 -0.67 Safe No tension 

Shear 
-343.68 384.90 -1.35 -1.35 Safe No tension 

-1975.54 575.30 -2.25 -2.25 Safe No tension 

Moment 
-1159.05 333.95 -1.80 -1.80 Safe No tension 

-1975.54 575.30 -2.25 -2.25 Safe No tension 

OPR5-1-
C1 

Axial 
-2985.46 768.18 -2.81 -2.81 Safe No tension 

429.34 590.91 -0.93 -0.93 Safe No tension 

Shear 
-140.68 666.93 -1.24 -1.24 Safe No tension 

-2983.56 675.12 -2.81 -2.81 Safe No tension 

Moment 
-1911.44 474.78 -2.22 -2.22 Safe No tension 

-2985.46 768.18 -2.81 -2.81 Safe No tension 

OPR5-1-
C2 

Axial 
-2114.14 636.71 -2.33 -2.33 Safe No tension 

953.83 584.89 -0.64 -0.64 Safe No tension 



151 
 

Shear 
-1448.42 615.07 -1.96 -1.96 Safe No tension 

527.96 581.17 -0.87 -0.87 Safe No tension 

Moment 
-1501.08 460.90 -1.99 -1.99 Safe No tension 

-2114.14 636.71 -2.33 -2.33 Safe No tension 

OPR7-C1 

Axial 
-2623.29 752.24 -2.61 -2.61 Safe No tension 

777.94 623.05 -0.73 -0.73 Safe No tension 

Shear 
197.44 668.92 -1.06 -1.06 Safe No tension 

-2622.15 669.32 -2.61 -2.61 Safe No tension 

Moment 
-1674.07 479.45 -2.09 -2.09 Safe No tension 

-2623.29 752.24 -2.61 -2.61 Safe No tension 

OPR7-C2 

Axial 
-1751.97 625.21 -2.13 -2.13 Safe No tension 

1315.23 590.68 -0.44 -0.44 Safe No tension 

Shear 
-1101.19 589.64 -1.77 -1.77 Safe No tension 

750.35 587.93 -0.75 -0.75 Safe No tension 

Moment 
726.85 463.13 -0.76 -0.76 Safe No tension 

-1635.57 630.85 -2.07 -2.07 Safe No tension 

 

Table B-10: Shear check for segment 2 columns. 

Segment 2 Columns 

Ultimate 

Load 

Combination 

Max 

and 

Min 

Axial Shear Moment Vc Vs 
Shear 

Kip Kip Kip-ft Kip Kip 

ULT4-C1 

Axial 
-3958.16 145.16 1258.53 740.15 111.26 Safe 

2341.91 72.15 1138.86 0.00 111.26 Safe 

Shear 
-1507.22 4.74 1145.02 296.70 111.26 Safe 

-3955.88 145.24 1141.00 741.75 111.26 Safe 

Moment 
1429.04 21.03 941.77 0.00 111.26 Safe 

-3958.16 145.16 1258.53 740.15 111.26 Safe 

ULT4-C2 

Axial 
-432.42 41.12 1078.21 304.34 111.26 Safe 

1588.23 70.93 1071.83 0.00 111.26 Safe 

Shear 
-45.76 1.97 981.99 296.70 111.26 Safe 

-4410.78 125.79 1129.86 717.52 111.26 Safe 

Moment 
-2652.14 29.41 895.46 296.70 111.26 Safe 

-4413.05 125.71 1253.73 655.05 111.26 Safe 
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ULT5-C1 

Axial 
-3449.12 142.78 862.27 741.75 111.26 Safe 

97.07 31.91 689.28 0.00 111.26 Safe 

Shear 
-66.61 3.54 519.79 296.70 111.26 Safe 

-3449.12 142.78 862.27 741.75 111.26 Safe 

Moment 
-2036.71 79.65 456.92 741.75 111.26 Safe 

-3449.12 142.78 862.27 741.75 111.26 Safe 

ULT5-C2 

Axial 
-3132.64 128.23 834.21 741.75 111.26 Safe 

961.89 67.15 685.40 0.00 111.26 Safe 

Shear 
-687.35 2.61 549.87 296.70 111.26 Safe 

-3132.64 128.23 834.21 741.75 111.26 Safe 

Moment 
-1859.24 71.23 473.66 741.75 111.26 Safe 

-3132.64 128.23 834.21 741.75 111.26 Safe 

ULT6-C1 

Axial 
-3686.53 137.50 1248.60 710.70 111.26 Safe 

2612.97 79.62 1142.93 0.00 111.26 Safe 

Shear 
-1270.90 4.53 1144.61 296.70 111.26 Safe 

-3684.82 137.56 1137.57 741.75 111.26 Safe 

Moment 
1586.27 22.16 938.54 0.00 111.26 Safe 

-3686.53 137.50 1248.60 710.70 111.26 Safe 

ULT6-C2 

Axial 
-4141.43 118.11 1242.21 625.76 111.26 Safe 

1859.29 78.61 1075.12 0.00 111.26 Safe 

Shear 
111.47 2.62 981.05 0.00 111.26 Safe 

-4139.72 118.17 1125.73 681.61 111.26 Safe 

Moment 
-2494.91 28.28 898.71 296.70 111.26 Safe 

-4141.43 118.11 1242.21 625.76 111.26 Safe 

ULT7-C1 

Axial 
-3177.50 135.12 850.22 741.75 111.26 Safe 

368.13 38.27 691.39 0.00 111.26 Safe 

Shear 
90.62 4.68 518.19 0.00 111.26 Safe 

-3177.50 135.12 850.22 741.75 111.26 Safe 

Moment 
-1858.68 77.64 460.52 741.75 111.26 Safe 

-3177.50 135.12 850.22 741.75 111.26 Safe 

ULT7-C2 

Axial 
-2861.01 120.61 823.39 741.75 111.26 Safe 

1232.95 74.72 689.13 0.00 111.26 Safe 

Shear 
-515.52 2.51 549.86 296.70 111.26 Safe 

-2861.01 120.61 823.39 741.75 111.26 Safe 

Moment 
-1681.22 69.26 476.64 741.75 111.26 Safe 

-2861.01 120.61 823.39 741.75 111.26 Safe 
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Table B-11: Ultimate loads acting on segment 3 columns. 

Segment 3 Columns 

Ultimate Load 

Combination 
Max/Min 

Axial Shear Moment 

Kip Kip Kip-ft 

ULT4-C1 

Axial 
-2084.25 135.33 1166.35 

1612.70 136.21 486.57 

Shear 
-239.76 53.05 453.89 

-303.44 155.78 594.72 

Moment 
880.22 122.28 21.89 

1351.74 130.47 1570.08 

ULT4-C2 

Axial 
-2630.50 152.98 1208.30 

962.71 106.67 657.43 

Shear 
-254.54 30.69 524.91 

-317.77 202.05 612.03 

Moment 
-1716.41 121.40 23.18 

-2347.82 128.27 1539.20 

ULT5-C1 

Axial 
-1436.95 79.19 523.10 

-67.97 32.16 282.18 

Shear 
-249.32 18.25 87.66 

-302.91 121.58 108.10 

Moment 
-1104.97 56.16 14.88 

-291.76 120.47 700.61 

ULT5-C2 

Axial 
-1315.70 71.08 506.69 

263.32 50.38 211.06 

Shear 
-213.79 21.53 51.37 

-301.00 115.10 133.46 

Moment 
-361.64 23.36 7.02 

-289.85 114.11 691.47 

ULT6-C1 

Axial 
-1951.28 132.91 1160.12 

1742.82 138.69 482.60 

Shear 
-971.21 64.68 779.23 

1735.99 140.01 1033.38 

Moment 
986.52 122.47 21.73 

1479.61 130.70 1570.61 

ULT6-C2 

Axial 
-2497.53 150.49 1200.09 

1092.83 109.05 655.77 

Shear 
-193.65 33.70 407.43 

-247.78 183.53 472.11 
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Moment 
-1610.11 121.20 23.31 

-2219.94 128.04 1538.67 

ULT7-C1 

Axial 
-1303.98 76.68 514.73 

62.16 34.07 280.87 

Shear 
-174.86 19.55 78.39 

-230.69 102.98 40.65 

Moment 
-329.18 53.58 3.77 

-1160.18 61.38 668.28 

ULT7-C2 

Axial 
-1182.73 68.62 499.15 

393.44 52.81 208.23 

Shear 
-204.48 16.34 344.00 

-228.79 96.62 68.04 

Moment 
-271.23 23.36 6.89 

-1056.15 55.58 636.71 

 

 

Figure B-10: Segments 3 columns interaction diagram.  

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
X

IA
L

 L
O

A
D

 (
k

ip
s)

BENDING MOMENT (kip-ft)

42 - 0.5" Strands



155 
 
Table B-12: Segment 3 column properties. 

Service Check 

Prestress Area Inertia y f`c Stress Limits 

Kip in2 in4 in ksi ksi 

-1476.47 1811.80 2.8E+10 31.18 8.00 -4.80 0.67 

Shear Check 

bw dp 
φ 

Vc limits Shear Rft (in
2
) 

in in Kip C-Shape Spiral 

28.43 58.35 0.75 296.70 741.75 0.76 0.31 

     
#6 - 24" W16 - 12" 

Table B-13: Service and operational loads check for segment 3 columns. 

Segment 3 Columns 

Load Combination 
Axial Moment 

Stress 

Range Comp. 

stress 
Tens. stress 

Kip Kip-ft ksi 

SER5-1-
C1 

Axial 
-1664.34 750.75 -1.73 -1.73 Safe No tension 

1029.98 644.18 -0.25 -0.25 Safe No tension 

Shear 
-873.00 671.24 -1.30 -1.30 Safe No tension 

-235.41 536.20 -0.94 -0.94 Safe No tension 

Moment 
-385.24 48.81 -1.03 -1.03 Safe No tension 

-1664.34 750.75 -1.73 -1.73 Safe No tension 

SER5-1-
C2 

Axial 
-2115.04 773.53 -1.98 -1.98 Safe No tension 

516.63 641.99 -0.53 -0.53 Safe No tension 

Shear 
-130.83 202.43 -0.89 -0.89 Safe No tension 

-237.99 548.85 -0.95 -0.95 Safe No tension 

Moment 
-458.55 45.64 -1.07 -1.07 Safe No tension 

-2115.04 773.53 -1.98 -1.98 Safe No tension 

SER5-2-
C1 

Axial 
-1371.10 407.86 -1.57 -1.57 Safe No tension 

-132.62 337.05 -0.89 -0.89 Safe No tension 

Shear 
-213.27 74.20 -0.93 -0.93 Safe No tension 

-1371.10 407.86 -1.57 -1.57 Safe No tension 

Moment 
-340.03 12.14 -1.00 -1.00 Safe No tension 

-233.77 528.11 -0.94 -0.94 Safe No tension 
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SER5-2-
C2 

Axial 
-1261.65 397.00 -1.51 -1.51 Safe No tension 

155.70 307.70 -0.73 -0.73 Safe No tension 

Shear 
-356.46 42.20 -1.01 -1.01 Safe No tension 

-1261.65 397.00 -1.51 -1.51 Safe No tension 

Moment 
-330.92 19.52 -1.00 -1.00 Safe No tension 

-233.41 526.22 -0.94 -0.94 Safe No tension 

SER7-C1 

Axial 
-1442.77 743.81 -1.61 -1.61 Safe No tension 

1250.79 648.03 -0.12 -0.12 Safe No tension 

Shear 
-685.46 671.71 -1.19 -1.19 Safe No tension 

1250.79 648.03 -0.12 -0.12 Safe No tension 

Moment 
-181.39 41.48 -0.92 -0.92 Safe No tension 

1249.65 748.62 -0.13 -0.13 Safe No tension 

SER7-C2 

Axial 
-1893.47 764.15 -1.86 -1.86 Safe No tension 

737.43 644.56 -0.41 -0.41 Safe No tension 

Shear 
139.41 663.10 -0.74 -0.74 Safe No tension 

-145.43 342.30 -0.90 -0.90 Safe No tension 

Moment 
-237.45 37.38 -0.95 -0.95 Safe No tension 

-1893.47 764.15 -1.86 -1.86 Safe No tension 

SER8-C1 

Axial 
-1149.53 398.29 -1.45 -1.45 Safe No tension 

77.38 320.52 -0.77 -0.77 Safe No tension 

Shear 
-94.19 75.20 -0.87 -0.87 Safe No tension 

-1149.53 398.29 -1.45 -1.45 Safe No tension 

Moment 
-231.35 5.08 -0.94 -0.94 Safe No tension 

-1149.53 398.29 -1.45 -1.45 Safe No tension 

SER8-C2 

Axial 
-1040.08 388.46 -1.39 -1.39 Safe No tension 

376.51 311.05 -0.61 -0.61 Safe No tension 

Shear 
-196.81 116.70 -0.92 -0.92 Safe No tension 

-1040.08 388.46 -1.39 -1.39 Safe No tension 

Moment 
-222.23 9.31 -0.94 -0.94 Safe No tension 

-1040.08 388.46 -1.39 -1.39 Safe No tension 

OPR5-1-
C1 

Axial 
-1713.00 590.04 -1.76 -1.76 Safe No tension 

324.60 452.91 -0.64 -0.64 Safe No tension 

Shear 
196.96 437.88 -0.71 -0.71 Safe No tension 

324.48 250.37 -0.64 -0.64 Safe No tension 

Moment 
-128.45 89.06 -0.89 -0.89 Safe No tension 

-741.99 927.45 -1.22 -1.22 Safe No tension 

OPR5-1-
C2 

Axial 
-1391.60 536.69 -1.58 -1.58 Safe No tension 

529.16 419.60 -0.52 -0.52 Safe No tension 
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Shear 
-378.61 167.00 -1.02 -1.02 Safe No tension 

-186.04 729.31 -0.92 -0.92 Safe No tension 

Moment 
-37.53 76.69 -0.84 -0.84 Safe No tension 

-789.33 973.31 -1.25 -1.25 Safe No tension 

OPR7-C1 

Axial 
-1491.43 580.79 -1.64 -1.64 Safe No tension 

545.41 455.92 -0.51 -0.51 Safe No tension 

Shear 
-649.43 733.92 -1.17 -1.17 Safe No tension 

417.06 223.22 -0.58 -0.58 Safe No tension 

Moment 
-195.42 93.33 -0.92 -0.92 Safe No tension 

-650.57 739.20 -1.17 -1.17 Safe No tension 

OPR7-C2 

Axial 
-1170.03 529.26 -1.46 -1.46 Safe No tension 

749.97 423.43 -0.40 -0.40 Safe No tension 

Shear 
-271.91 169.72 -0.96 -0.96 Safe No tension 

-232.68 359.48 -0.94 -0.94 Safe No tension 

Moment 
88.05 82.50 -0.77 -0.77 Safe No tension 

-695.98 792.95 -1.20 -1.20 Safe No tension 

 

Table B-14: Shear check for segment 3 columns. 

Segment 3 Columns 

Ultimate 

Load 

Combination 

Max 

and 

Min 

Axial Shear Moment Vc Vs 
Shear 

Kip Kip Kip-ft Kip Kip 

ULT4-C1 

Axial 
-2244.25 145.42 1038.35 741.75 111.26 Safe 

1513.51 136.21 890.75 296.16 111.26 Safe 

Shear 
-1076.27 1.23 926.41 296.70 111.26 Safe 

-2241.97 145.42 914.89 741.75 111.26 Safe 

Moment 
-480.82 115.41 67.50 741.75 111.26 Safe 

-2244.25 145.42 1038.35 741.75 111.26 Safe 

ULT4-C2 

Axial 
-2805.84 165.02 1060.83 741.75 111.26 Safe 

847.50 104.79 882.70 296.40 111.26 Safe 

Shear 
-136.27 2.61 275.05 296.70 111.26 Safe 

-286.59 188.09 663.55 741.75 111.26 Safe 

Moment 
-578.91 147.71 68.16 741.75 111.26 Safe 

-2805.84 165.02 1060.83 741.75 111.26 Safe 
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ULT5-C1 

Axial 
-1832.10 118.82 577.19 741.75 111.26 Safe 

-78.73 44.94 456.31 645.00 111.26 Safe 

Shear 
-236.63 1.00 106.57 296.70 111.26 Safe 

-1832.10 118.82 577.19 741.75 111.26 Safe 

Moment 
-423.66 81.68 7.51 741.75 111.26 Safe 

-281.06 103.59 636.33 741.75 111.26 Safe 

ULT5-C2 

Axial 
-1675.75 106.49 562.25 741.75 111.26 Safe 

348.61 73.33 441.48 296.57 111.26 Safe 

Shear 
-393.61 0.87 166.72 296.70 111.26 Safe 

-1675.75 106.49 562.25 741.75 111.26 Safe 

Moment 
-410.63 76.29 19.64 741.75 111.26 Safe 

-280.55 97.25 633.71 741.75 111.26 Safe 

ULT6-C1 

Axial 
-2078.08 141.33 1033.02 741.75 111.26 Safe 

1679.12 140.37 893.62 296.10 111.26 Safe 

Shear 
-935.62 0.81 926.74 296.70 111.26 Safe 

-2076.37 141.33 912.84 741.75 111.26 Safe 

Moment 
-266.22 40.90 61.51 741.75 111.26 Safe 

1677.41 140.37 1033.28 296.10 111.26 Safe 

ULT6-C2 

Axial 
-2639.66 160.85 1053.83 741.75 111.26 Safe 

1013.11 108.81 884.66 296.34 111.26 Safe 

Shear 
119.32 2.92 911.47 296.66 111.26 Safe 

-217.17 174.12 508.64 741.75 111.26 Safe 

Moment 
-342.45 34.58 57.55 741.75 111.26 Safe 

-2639.66 160.85 1053.83 741.75 111.26 Safe 

ULT7-C1 

Axial 
-1665.93 114.62 570.01 741.75 111.26 Safe 

86.88 48.20 457.69 296.67 111.26 Safe 

Shear 
-147.32 1.66 107.32 296.70 111.26 Safe 

-1665.93 114.62 570.01 741.75 111.26 Safe 

Moment 
-342.15 72.75 5.41 741.75 111.26 Safe 

-1665.93 114.62 570.01 741.75 111.26 Safe 

ULT7-C2 

Axial 
-1509.57 102.35 555.85 741.75 111.26 Safe 

514.22 77.42 444.00 296.52 111.26 Safe 

Shear 
-295.21 0.69 166.71 296.70 111.26 Safe 

-1509.57 102.35 555.85 741.75 111.26 Safe 

Moment 
-329.11 67.48 13.35 741.75 111.26 Safe 

-1509.57 102.35 555.85 741.75 111.26 Safe 
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Prestressed Concrete Fatigue Design (Model Code 1990) 

Operating frequency: 20 RPM for 30 years 

 

Fatigue Loads: (From SAP) 

Max Tension Case:   

Max Compression Case:   

Max Moment Case:   

Concrete and Strands Properties: 

  

  

  

Concrete Fatigue: 

Concrete Stresses: 

  

  

  

 

 

nf 5.39 10
8⋅:=

Pt 63.3kip:= Mt 46.4kip ft⋅:=

Pc 1776.9− kip:= Mc 264.4kip ft⋅:=

Pm 35.4− kip:= Mm 1023.3kip ft⋅:=

Ac Acol 1.812 10
3× in

2=:= As 60 0.217⋅ in
2

13.02 in
2=:=

Icx 28387855285in
4:= Isx 191919020in

4:=

Scx

Icx

31.1769in
9.105 10

8× in
3=:= Ssx

Isx

27.1769in
7.062 10

6× in
3=:=

fcmin1

Pt

Ac

Mt

Scx
− 0.035ksi=:= fcmax1

Pt

Ac

Mt

Scx
+ 0.035ksi=:=

fcmin2

Pc

Ac

Mc

Scx
− 0.981− ksi=:= fcmax2

Pc

Ac

Mc

Scx
+ 0.981− ksi=:=

fcmin3

Pm

Ac

Mm

Scx
− 0.02− ksi=:= fcmax3

Pm

Ac

Mm

Scx
+ 0.02− ksi=:=

fc.max max fcmax1 fcmax2, fcmax3, ( ) 0.035 ksi=:=

fc.min min fcmin1 fcmin2, fcmin3, ( ) 0.981− ksi=:=
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Concrete Strength:  

Concrete Reference Strength:  
(MC90 - Art. 6.7.2) 

Concrete Material Factor:  
(MC90 - Art. 1.6.4.4) 

 

 

Concrete Age at beginning of loading:  

Cement Factor: 
 

(MC90 - Art. 2.1.6.1) 
Normal hardening cement 

Age Factor:  
(MC90 - Eq. 2.1-54) 

 
Fatigue Reference Strength: 

(MC90 - Art. 6.7.2) 

Fatigue Parameter:  
(MC90 - Eq. 6.7-2) 

Lower bound value of the characteristic Tensile Strength: 
(MC90 - Eq. 2.1-2) 

 

Fatigue Reference Design Strength: 
(MC90 - Eq. 6.7-5)  

Simplified Method Check: 

Concrete Compression Check:  
(MC90 - Eq. 6.7-4) 

Allowable:  

Compression is Safe 

Concrete Tension Check:  
(MC90 - Eq. 6.7-5) 

Allowable:  

Tension is Safe 

fc' 8 ksi=

fcko 10MPa 1.45 ksi=:=

γ c.fat 1.5:=

γ Sd 1.1:=

γ s.fat 1.15:=

age 60day:=

sf 0.25:=

βcc exp sf 1
28day

age
−⋅







1.2=:=

fcd.fat 0.85 β cc⋅

fc' 1
fc'

25 fcko⋅
−








⋅







γ c.fat
⋅:=

ηc 1:=

fctk.min 0.95MPa
fc'

fcko









2

3

⋅ 0.43 ksi=:=

fctd.dat

fctk.min

γ c.fat
0.287ksi=:=

γ Sd ηc⋅ fc.min⋅ 1.079− ksi=

0.45 fcd.fat⋅ 1.908 ksi=

γ Sd fc.max⋅ 0.038ksi=

0.33 fctd.dat⋅ 0.095ksi=
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Strands Fatigue: 

Strands Stresses: 

  

  

  

 

 

Compression:  

For pre-tensioned strands  
(MC90 - Art. 6.7.2) 

Rebar Diameter:  

Strands Equivalent Diameter:  
(MC90 - Eq. 6.7-1) 

Fatigue Parameter:  
(MC90 - Eq. 6.7-1) 

Characteristic Fatigue Strength:  

(MC90 - Tbl. 6.7.2) 
 

For prestressed Straight Strands 
 

 

Max Stress Range: 
 

Strands Fatigue Check:  

(MC90 - Eq. 6.7-5) 

Allowable:  

Strands are Safe 

ftmin1

Pt

As

Mt

Ssx
− 4.862 ksi=:= ftmax1

Pt

As

Mt

Ssx
+ 4.862 ksi=:=

ftmin2

Pc

As

Mc

Ssx
− 136.475− ksi=:= ftmax2

Pc

As

Mc

Ssx
+ 136.474− ksi=:=

ftmin3

Pm

As

Mm

Ssx
− 2.721− ksi=:= ftmax3

Pm

As

Mm

Ssx
+ 2.717− ksi=:=

ft.max max ftmax1 ftmax2, ftmax3, ( ) 4.862 ksi=:=

ft.min min ftmin1 ftmin2, ftmin3, ( ) 136.475− ksi=:=

ft.min 0:=

ζ 0.6:=

φ s
4

8
in:=

φ p 1.6 0.2172in
2

0.746 in=:=

ηs

1 in
2( )⋅ As+

1 in
2( )⋅ As ζ

φ s

φ p









⋅








⋅+

1.514=:=

∆σ Rsk 95MPa 13.779 ksi=:=

∆σ RskN 160MPa 23.206 ksi=:=

k1 5:=

k2 9:=

∆σ s ft.max ft.min− 4.862 ksi=:=

γ Sd ∆σ s⋅ 5.348 ksi=

∆σ Rsk

γ s.fat
11.981 ksi=
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Panels Design 

Table B-15: Panels properties. 

Panels properties 

bw h d f`c Ln Ln/d jd 

in in in ksi ft --- in 

6.00 120.00 108.00 8000.00 20.00 2.22 91.20 

Shear and out of plane bending reinforcement 

φ Shear 
Vc limits 

Min 

Shear Rft 

Direct 

Wind 

Rft 

Rft. Used Vs 

ksi in2 in2 in2 Kip 

0.75 115.92 289.79 0.18 0.40 0.40 270.00 

     
W20 - 12" 

 

In plane bending reinforcement 

φ 

Bending 

Min Flexure Rft  y 
Flexure 

rft ρs 
φMn 

in2 in in2 k-ft 

0.90 2.90 2.16 18.00 2.5+0.4 0.005 1296.86 

    
8#5 
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Table B-16: Panels design for out of plane bending (as slab). 

Height 

( z ) 

CL 

Panel 

Width Kz 

qz 

Cf Gf 

Moment on 

panels 
Flexural Check 

W20-12" T&B 

(φMn=5.4(k-ft)  (psf)  (k-f) / ft' 

 (ft)  (ft) EWM C1 C2 EWM 
EWM 

C1 

EWM 

C2 

EWM 

C1 

EWM 

C2 

240 10.00 1.67 53.67 1.46 1.14 1.04 --- --- --- --- 

235 10.00 1.66 53.47 1.46 1.14 1.04 1.01 2.18 Safe Safe 

225 10.00 1.65 53.07 1.46 1.14 1.04 1.01 2.16 Safe Safe 

215 10.00 1.64 52.65 1.46 1.14 1.04 1.00 2.14 Safe Safe 

205 10.00 1.62 52.22 1.46 1.14 1.04 0.99 2.13 Safe Safe 

195 10.00 1.61 51.76 1.46 1.14 1.04 0.98 2.11 Safe Safe 

185 10.00 1.59 51.29 1.46 1.14 1.04 0.97 2.09 Safe Safe 

175 10.00 1.58 50.80 1.46 1.14 1.04 0.96 2.07 Safe Safe 

165 10.00 1.56 50.28 1.46 1.14 1.04 0.95 2.05 Safe Safe 

160 10.00 1.55 50.01 1.46 1.14 1.04 --- --- --- --- 

155 10.31 1.55 49.74 1.46 1.14 1.04 1.00 2.10 Safe Safe 

145 10.94 1.53 49.16 1.46 1.14 1.04 1.11 2.23 Safe Safe 

135 11.56 1.51 48.56 1.46 1.14 1.04 1.23 2.36 Safe Safe 

125 12.19 1.49 47.91 1.46 1.14 1.04 1.35 2.49 Safe Safe 

115 12.81 1.47 47.22 1.46 1.14 1.04 1.46 2.62 Safe Safe 

105 13.44 1.45 46.48 1.46 1.14 1.03 1.58 2.74 Safe Safe 

95 14.06 1.42 45.68 1.46 1.14 1.03 1.70 2.86 Safe Safe 

85 14.69 1.39 44.80 1.46 1.14 1.03 1.82 2.98 Safe Safe 

80 15.00 1.38 44.33 1.46 1.14 1.03 --- --- --- --- 

75 15.63 1.36 43.84 1.46 1.14 1.03 2.01 3.17 Safe Safe 

65 16.88 1.33 42.76 1.46 1.14 1.03 2.28 3.45 Safe Safe 

55 18.13 1.29 41.54 1.46 1.14 1.03 2.56 3.71 Safe Safe 

45 19.38 1.25 40.11 1.46 1.14 1.02 2.81 3.94 Safe Safe 

35 20.63 1.19 38.40 1.46 1.14 1.02 3.04 4.13 Safe Safe 

25 21.88 1.13 36.21 1.46 1.14 1.02 3.21 4.24 Safe Safe 

15 23.13 1.03 33.14 1.46 1.14 1.01 3.26 4.20 Safe Safe 

5 24.38 0.85 27.37 1.46 1.14 0.99 2.95 3.71 Safe Safe 

0 25.00 0.00 0.00 1.46 1.14 0.00 --- --- --- --- 
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Table B-17: Panels design for shear and in plane bending (as deep beam). 

Panel design for shear and in plane bending 

Ultimate 

Load 

Combination 

Max/ 

Min 

Axial Shear Moment Vc Check 

shear 

Check 

bending 
Kip Kip Kip-ft Kip 

ULT4-C1 

Axial 
-35.3 45.7 406.2 121.93 Safe Safe 

56.2 13.8 234.5 115.92 Safe Safe 

Shear 
-0.9 -172.3 -866.9 248.18 Safe Safe 

1.1 119.0 -659.2 243.23 Safe Safe 

Moment 
-0.9 -172.3 -866.9 248.18 Safe Safe 

-0.9 -163.3 811.6 239.53 Safe Safe 

ULT4-C2 

Axial 
-31.2 -31.8 -160.1 247.90 Safe Safe 

46.6 -106.5 -388.0 289.79 Safe Safe 

Shear 
-0.9 -119.0 -498.3 275.73 Safe Safe 

0.5 165.5 -786.1 237.89 Safe Safe 

Moment 
0.5 165.5 -786.1 237.89 Safe Safe 

0.5 156.5 823.7 240.51 Safe Safe 

ULT5-C1 

Axial 
-15.9 11.8 175.7 115.92 Safe Safe 

37.7 -46.0 -114.6 289.79 Safe Safe 

Shear 
-0.4 -68.8 -302.5 268.86 Safe Safe 

-0.4 68.8 -302.5 234.90 Safe Safe 

Moment 
-9.3 68.8 -311.2 236.03 Safe Safe 

-0.4 59.8 340.2 226.48 Safe Safe 

ULT5-C2 

Axial 
-20.7 3.9 127.4 115.92 Safe Safe 

40.6 19.5 221.7 116.37 Safe Safe 

Shear 
-0.1 -78.7 -376.7 256.14 Safe Safe 

0.3 41.6 -234.5 243.75 Safe Safe 

Moment 
-5.3 -78.7 -381.8 254.00 Safe Safe 

-0.1 -69.7 365.2 241.39 Safe Safe 

ULT6-C1 

Axial 
-33.1 47.4 409.2 129.98 Safe Safe 

47.8 14.9 214.1 115.92 Safe Safe 

Shear 
-0.8 -171.2 -865.5 247.37 Safe Safe 

1.1 117.8 -658.0 243.48 Safe Safe 

Moment 
-0.8 -171.2 -865.5 247.37 Safe Safe 

-0.8 -164.5 813.0 239.35 Safe Safe 
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ULT6-C2 

Axial 
-29.0 -30.1 -157.1 242.15 Safe Safe 

38.2 -105.3 -408.7 285.88 Safe Safe 

Shear 
-0.9 -117.8 -497.2 274.74 Safe Safe 

0.5 164.4 -784.7 238.07 Safe Safe 

Moment 
0.5 164.4 -784.7 238.07 Safe Safe 

0.5 157.6 825.2 241.44 Safe Safe 

ULT7-C1 

Axial 
-13.5 13.6 173.3 115.92 Safe Safe 

29.3 -44.9 -134.9 289.79 Safe Safe 

Shear 
-0.4 -67.6 -301.1 267.16 Safe Safe 

-0.4 67.6 -301.1 235.37 Safe Safe 

Moment 
-8.0 67.6 -308.5 236.33 Safe Safe 

-0.4 60.9 341.6 229.16 Safe Safe 

ULT7-C2 

Axial 
-18.4 15.0 157.1 116.93 Safe Safe 

32.2 20.6 201.3 117.40 Safe Safe 

Shear 
-0.1 -77.6 -375.3 254.47 Safe Safe 

0.3 40.5 -233.1 244.41 Safe Safe 

Moment 
-3.9 -77.5 -379.0 252.84 Safe Safe 

-0.1 -70.8 366.7 240.97 Safe Safe 
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Panels Connection Design Sample: 

  

  

  

Use: (8 - 1 1/2")  A490-N Grade 60 Bolts: 

 

 

 

Shear on Bolts from applied shear: 

 

 

Shear on Bolts from applied moment: 

Determine "r": 

  

  

 

Max Shear on one Bolt: 

 

 

Check Shear on bolts:  

Pu 57kip:= θp 90deg:=

Su 175kip:= θs 0deg:=

Mu 870kip ft⋅:= θm 85deg:=

φV n 79.5kip:=

φT n 150kip:=

n 8:=

sb

Su
2

Pu
2

+

n
23.006 kip⋅=:=

θb 18deg:=

r1 50.5418in:= r2 51.8833in:=

r3 70.1882in:= r4 71.5492in:=

mb

Mu r4⋅

2 r1
2

r2
2

+ r3
2

+ r4
2

+



⋅

24.424 kip⋅=:=

θ 67deg:=

Sb sb
2

mb
2

+ 2 sb⋅ mb⋅ cos θ( )⋅+ 39.559 kip⋅=:=

DCRsh

Sb

φV n

0.498=:=
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Figure B-11: Panel connection cross section details. 
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Figure B-12: Panel connection elevation details. 
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Table B-18: Panels connection properties. 

Panel Connection bolts properties 

No. of 

Bolts 

ϕ 
Bolt type Bolt grade 

φVn φTn 

in Kip Kip 

8 1.50 A490-N 60 79.50 150.00 

Table B-19: Panels connection design. 

Panel Connection design 

Ultimate 

Load 

Combination 

Max 

and 

Min 

Axial Shear Moment 
Total shear 

on one bolt Shear Check 

Kip Kip Kip-ft Kip 

ULT4-C1 

Axial 
-35.3 45.7 406.2 17.61 Safe 

56.2 13.8 234.5 13.03 Safe 

Shear 
-0.9 -172.3 -866.9 43.25 Safe 

1.1 119.0 -659.2 31.48 Safe 

Moment 
-0.9 -172.3 -866.9 43.25 Safe 

-0.9 -163.3 811.6 40.73 Safe 

ULT4-C2 

Axial 
-31.2 -31.8 -160.1 9.49 Safe 

46.6 -106.5 -388.0 23.99 Safe 

Shear 
-0.9 -119.0 -498.3 27.20 Safe 

0.5 165.5 -786.1 40.30 Safe 

Moment 
0.5 165.5 -786.1 40.30 Safe 

0.5 156.5 823.7 40.25 Safe 

ULT5-C1 

Axial 
-15.9 11.8 175.7 7.03 Safe 

37.7 -46.0 -114.6 10.14 Safe 

Shear 
-0.4 -68.8 -302.5 16.11 Safe 

-0.4 68.8 -302.5 16.11 Safe 

Moment 
-9.3 68.8 -311.2 16.41 Safe 

-0.4 59.8 340.2 16.06 Safe 

ULT5-C2 

Axial 
-20.7 3.9 127.4 5.86 Safe 

40.6 19.5 221.7 11.17 Safe 

Shear 
-0.1 -78.7 -376.7 19.24 Safe 

0.3 41.6 -234.5 11.12 Safe 

Moment 
-5.3 -78.7 -381.8 19.39 Safe 

-0.1 -69.7 365.2 17.88 Safe 
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ULT6-C1 

Axial 
-33.1 47.4 409.2 17.70 Safe 

47.8 14.9 214.1 11.57 Safe 

Shear 
-0.8 -171.2 -865.5 43.08 Safe 

1.1 117.8 -658.0 31.32 Safe 

Moment 
-0.8 -171.2 -865.5 43.08 Safe 

-0.8 -164.5 813.0 40.90 Safe 

ULT6-C2 

Axial 
-29.0 -30.1 -157.1 9.09 Safe 

38.2 -105.3 -408.7 24.03 Safe 

Shear 
-0.9 -117.8 -497.2 27.04 Safe 

0.5 164.4 -784.7 40.13 Safe 

Moment 
0.5 164.4 -784.7 40.13 Safe 

0.5 157.6 825.2 40.42 Safe 

ULT7-C1 

Axial 
-13.5 13.6 173.3 6.89 Safe 

29.3 -44.9 -134.9 9.93 Safe 

Shear 
-0.4 -67.6 -301.1 15.94 Safe 

-0.4 67.6 -301.1 15.94 Safe 

Moment 
-8.0 67.6 -308.5 16.18 Safe 

-0.4 60.9 341.6 16.23 Safe 

ULT7-C2 

Axial 
-18.4 15.0 157.1 6.98 Safe 

32.2 20.6 201.3 9.83 Safe 

Shear 
-0.1 -77.6 -375.3 19.07 Safe 

0.3 40.5 -233.1 10.95 Safe 

Moment 
-3.9 -77.5 -379.0 19.18 Safe 

-0.1 -70.8 366.7 18.05 Safe 

 

 

 

 

 

Columns Splice Design: 

Column design: 60-0.6" Strands 

 

 

 

 

Use 6 Threaded Bars: 

 

Use 2-1/4" (57mm) 150 ksi Threaded Bars:   Fu = 613 kips 

astrand 0.217in
2

:=

n1 60:=

Fu.strand 207ksi:=

F1 n1 astrand⋅ Fu.strand⋅ 2.695 10
3

× kip⋅=:=

Fbar

F1

6
449.19 kip⋅=:=
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Table B-20: Base connection design. 

Base Connection 

Ultimate Load 

Combination 

Axial Shear Moment 
Force on 

bolts 

6 - 2 1/4" 

threaded 

bars 

(Fu=613kips) 
Kip Kip Kip-ft Kip 

ULT4-C1 

-4398.24 351.68 897.19 -558.30 Safe 

-1379.24 66.73 1085.91 -18.37 Safe 

2384.88 183.99 1012.94 594.77 Safe 

ULT4-C2 

-742.95 86.00 961.92 63.53 Safe 

-4507.07 319.36 812.39 -592.95 Safe 

1857.41 170.36 915.94 487.96 Safe 

ULT5-C1 

-222.32 17.55 538.32 67.79 Safe 

-222.32 17.55 538.32 67.79 Safe 

-2947.96 224.12 388.97 -415.57 Safe 

ULT5-C2 

442.78 52.97 524.91 176.03 Safe 

-2704.52 204.59 420.19 -368.91 Safe 

-1130.87 78.73 527.88 -85.66 Safe 

ULT6-C1 

-1096.53 51.53 1082.68 28.12 Safe 

2667.60 202.65 1001.04 639.57 1.04 

-4115.53 332.64 911.40 -508.41 Safe 

ULT6-C2 

-460.23 68.36 962.87 110.83 Safe 

-4224.35 300.42 823.87 -543.59 Safe 

2140.13 189.39 901.70 532.31 Safe 

ULT7-C1 

60.39 24.26 529.98 113.29 Safe 

60.39 24.26 529.98 113.29 Safe 

-2665.24 205.09 404.80 -365.36 Safe 

ULT7-C2 

725.50 71.76 511.28 220.50 Safe 

-2421.80 185.57 432.65 -319.37 Safe 

-848.15 60.53 526.21 -38.87 Safe 
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APPENDIX C 

C. 240 FT STEEL TOWER DESIGN 

 

 

 

 

 

 

 

 

 

Geometry and Dimensions 

Tower Height: 
 

Segment Height: 
 

Number of Segments: 
 

Base Outer Diameter: 
 

 

Top Outer Diameter: 
 

 

Steel Properties 

Steel Yield Stress:  

Steel Density: 

 

Steel Elastic Modulus: 
 

3.6 MW Wind Turbine  

Turbine Head Weight: 
 (WindPACT Report, 2005) 

Wall Thickness: 

Wall Thickness: 

Ht 240ft:=

Hseg 80ft:=

Nseg 3:=

Dbase 216in 18 ft=:=

thbase 1.8in:=

Dtop 120in 10 ft=:=

thtop 1.0in:=

fy 50 ksi⋅:=

ρs 490
lbf

ft
3

:=

Es 28500ksi:=

Wturbine 694.26 kip⋅:=
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Tower Profile 

Variations along the Height: 

 

 

 

 

 

 

 

Tower Weights 

Miscellaneous Additional Weights:   
(Connections, bolts and steel plates) 

Steel Weight:  

Total Tower Weight:  

 

 

D z( ) Dtop

Dbase Dtop−

Ht









Ht z−( )⋅+:=

th z( ) thtop

thbase thtop−

Ht









Ht z−( )⋅+:=

As z( )
π

4
D z( )

2
D z( ) 2 th z( )⋅−( )

2− ⋅:=

Ix z( )
π

64
D z( )

4
D z( ) 2 th z( )⋅−( )

4− ⋅:=

S z( )
2 Ix z( )⋅

D z( )
:=

W z( ) As z( ) ρs⋅:=

Rt z( )
D z( ) th z( )−

2
:=

Wmisc 250kip:= Assumed( )

Wt z( )

z

Ht

xW x( )
⌠

⌡

d:=

Wtot z( ) Wturbine Wt z( )+ Wmisc+:=

Wtot 0( ) 1.559 10
3× kip⋅=

Wtot 0( ) 779.476 tonf⋅=
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Wind Loading (Mid-West) 

Direct Wind on the Tower: 

Building Category:  II 
(ASCE 7-10  -  Tbl. 1.5-1) 
(Draft 4.4) 

Wind Importance Factor:    
(ASCE 7-10  -  Tbl. 1.5-2) 

Basic Wind Speed: 
 

(ASCE 7-10  -  Fig. 26.5-1A) 

Design Wind Speeds: 

Extreme 3-sec gust at reference height (33-ft from ground): 

 Non Operational Load Case (EWM):  Extreme wind speed model 

 Operational Load Case (EOG):  Extreme operational gust 

At Hub Level: 

 Non Operational Load Case (EWM):  

 Operational Load Case (EOG):  

Directional Factor:  
(ASCE 7-10  -  Tbl. 26.6-1) 

Terrain Exposure Constants:   Exposure Category: " D " 
(ASCE 7-10  -  Art. 26.7.3) 

 
(ASCE 7-10  -  Tbl. 26.9-1) 

 

 

 

 

 

 

 

I 1.0:=

Vw 115mph 51.41
m

s
⋅=:=

V1 115mph:=

V2 49.7mph:=

V1_EWM V1
33ft

Ht









0.11−
⋅









143.049 mph⋅=:=

V2_EOG V2
33ft

Ht









0.2−
⋅









73.909 mph⋅=:=

Kd 0.95:=

αex 11.5:=

cex 0.15:=

bex 0.8:=

zg.ex 700ft:=

zmin.ex 7ft:=

lex 650ft:=

εex
1

8.0
:=

α' ex
1

9.0
:=
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Topographic Factor:  
(ASCE 7-10  -  Art. 26.8) 
(No hills) 

Gust-Effects: 

Flexible Structure:  
 (ASCE 7-10  -  Art. 26.2) 
Equivalent Height of Structure:   

(ASCE 7-10  -  Eq. 26.9-7) 
 

Intensity of Turbulence:  

(ASCE 7-10  -  Eq. 26.9-7) 

Integral Length scale of turbulence:  
(ASCE 7-10  -  Eq. 26.9-9) 

Background Response:  
(ASCE 7-10  -  Eq. 26.9-8) 

Peak Factor for Background Response:  
(ASCE 7-10  -  Eq. 26.9-10) 

Peak Factor for Wind Response:  
(ASCE 7-10  -  Eq. 26.9-10) 

Natural Frequency of the Tower:        n1= 0.34 Hz 
(ASCE 7-10  -  Eq. 26.9-4) 

Peak Factor for Resonant Response:  
(ASCE 7-10  -  Eq. 26.9-11) 

 

Mean Hourly Velocity:  
(ASCE 7-10  -  Eq. 26.9-16) 

 (EWM) 

 (EOG) 

Reduced Frequency:  
(ASCE 7-10  -  Eq. 26.9-14) 

 (EWM) 

 (EOG) 

Kzt 1.0:=

n 1.0Hz<

zeq 0.6 Ht⋅ 144 ft=:= z zmin.ex>

ok

Iz z( ) cex
33ft

z







1

6

:=

Lz z( ) lex
z

33ft







ε ex

⋅:=

Q z( )
1

1 0.63
D z( ) Ht+

Lz z( )









0.63

⋅+

:=

gQ 3.4:=

gv 3.4:=

na
75ft

Ht
0.313=:=

gR 2 ln 3600
n1

Hz
⋅









⋅
0.577

2 ln 3600
n1

Hz
⋅









⋅

+:=

gR 3.902=

Vz z v, ( ) bex
z

33ft







α'ex

⋅
88

60







⋅ v⋅:=

Vz zeq V1, ( ) 158.933 mph⋅=

Vz zeq V2, ( ) 68.687 mph⋅=

N1 z v, ( )
n1 Lz z( )⋅

Vz z v, ( )
:=

N1 zeq V1, ( ) 1.048=

N1 zeq V2, ( ) 2.424=

nI    
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Damping Factor:  (ASCE-AWEA  -  Art. 5.4.4) 

Resonant Response Factor: (ASCE 7-10  -  Eq. 26.9-12) 

 (ASCE 7-10  -  Eq. 26.9-15a) 

 (ASCE 7-10  -  Eq. 26.9-15a) 

 
(ASCE 7-10  -  Eq. 26.9-15a) 

  

 

  

 

 
 

 

 (ASCE 7-10  -  Eq. 26.9-13) 

 

 

 

(ASCE 7-10  -  Eq. 26.9-12) 
 

 

Gust - Effect Factor: 
(ASCE 7-10  -  Eq. 26.9-10) 

 

 

 

β 2%:=

ηRh z v, ( ) 4.6 n1⋅
Ht

Vz z v, ( )
⋅:=

ηRB z v, ( ) 4.6 n1⋅
D z( )

Vz z v, ( )
⋅:=

ηRL z v, ( ) 4.6 n1⋅
D z( )

Vz z v, ( )
⋅:=

Rh z v, ( )
1

ηRh z v, ( )

1 e
2− ηRh z v, ( )⋅( )

−






2 ηRh z v, ( )( )2
−:= Rh zeq V1, ( ) 0.459=

Rh zeq V2, ( ) 0.249=

RB z v, ( )
1

ηRB z v, ( )

1 e
2− ηRB z v, ( )⋅( )

−






2 ηRB z v, ( )( )2
−:= RB zeq V1, ( ) 0.948=

RB zeq V2, ( ) 0.885=

RL z v, ( )
1

ηRL z v, ( )

1 e
2− ηRL z v, ( )⋅( )

−






2 ηRL z v, ( )( )2
−:=

RL zeq V1, ( ) 0.948=

RL zeq V2, ( ) 0.885=

Rn z v, ( )
7.47 N1 z v, ( )⋅

1 10.3 N1 z v, ( )⋅+( )
5

3

:=

Rn zeq V1, ( ) 0.128=

Rn zeq V2, ( ) 0.08=

R z v, ( )
1

β
Rn z v, ( )⋅ Rh z v, ( )⋅ RB z v, ( )⋅ 0.53 0.47 RL z v, ( )⋅+( )⋅:=

R zeq V1, ( ) 1.649=

R zeq V2, ( ) 0.911=

Gf z v, ( ) 0.925
1 1.7 Iz z( )⋅ gQ

2
Q z( )

2⋅ gR
2

R z v, ( )
2⋅+⋅+

1 1.7 gv⋅ Iz z( )⋅+









⋅:=

Gf zeq V1, ( ) 1.331=

Gf zeq V2, ( ) 1.061=
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Figure C-1: Velocity pressure along the tower’s height.  

 

 

Enclosure Classification: Enclosed Building (Openings less than 10 %) 
(ASCE 7-10  -  Art. 26.10) 

Velocity Pressure Coefficient: 
(ASCE 7-10  -  Tbl. 29.3-1) 

 

(ASCE 7-10  -  Eq. 29.3-1)  

 

Kz z( ) 2.01
15ft

zg.ex









2

αex

⋅ z 15ft<if

2.01
z

zg.ex









2

αex

⋅ 15ft z≤ zg.ex≤if

:=

qz z v, ( ) Kz z( ) Kzt⋅ Kd⋅
v

mph







2

⋅ 0.00256⋅ psf( )⋅:=
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Table C-1: Force coefficient for the circular tower*. 

Cross Section 
h/D**   

1 7 25 h/D=13.33 

Round 0.5 0.6 0.7 0.64 

* Based on ASCE-07 Table 29.5-1 for moderately smooth towers   

** h  : Tower Height         

** D : Least Structure Dimension       
 

 

 

 

 

 

 

Force Coefficient: 
(ASCE 7-10  -  Tbl. 29.5-1) 

 

 

Force along the Tower:  
(ASCE 7-10  -  Eq. 29.5-1) 

  

Shearing Force along the Tower:  

Base Shear (EWM):  

Base Shear (EOG):  

Bending Moment along the Tower:  

Base Moment (EWM):  

Base Moment (EOG):  

Ht

D 0( )
13.333=

Cf 0.64:=

F qz Gf⋅ Cf⋅ Af⋅:= Af

Fw z v, ( ) qz z v, ( ) Gf z v, ( )⋅ Cf⋅ D z( )⋅:= dz

Sw z v, ( )

z

Ht

xFw x v, ( )
⌠

⌡

d:=

Sw 0 V1, ( ) 129.241 kip⋅=

Sw 0 V2, ( ) 19.091 kip⋅=

Mw z v, ( )

z

Ht

xFw x v, ( ) x z−( )⋅
⌠

⌡

d:=

Mw 0 V1, ( ) 1.517 10
4× kip ft⋅⋅=

Mw 0 V2, ( ) 2.259 10
3× kip ft⋅⋅=
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Wind Turbine Load: (WindPact Report) 

Coordinate System: x : Downwind, y : Lateral, and z : Gravity.  

Turbine Offset:  

Straining Actions on Top of the Tower: 

  

  

  

  

  

  

Fatigue Range: 

  

  

Extreme 3-sec gust at reference height (33-ft from ground): 

(ASCE 7-05  -  Fig. 6-1)  

Reference wind speed over 10 min at hub height: 

(ASCE/AWEA-RP2011  -  Eq. C5-6)  

Extreme 3-sec gust at hub height: 
(ASCE/AWEA-RP2011  -  Eq. C5-4)  

 

Class II wind Turbine:  

(ASCE/AWEA-RP2011  -  Eq. C5-4) 

Speed Modification Factor:  

  

offset 0ft:=

Fx.T.V1 143kip:= Fx.T.V2 269kip:=

Fy.T.V1 198kip:= Fy.T.V2 18kip:=

Fz.T.V1 709kip:= Fz.T.V2 703kip:=

Mx.T.V1 10458kip ft⋅:= Mx.T.V2 3143kip ft⋅:=

My.T.V1 6601kip ft⋅:= My.T.V2 6601kip ft⋅:=

Mz.T.V1 2534kip ft⋅:= Mz.T.V2 1178kip ft⋅:=

∆F x.T 32kip:= ∆M z.T 1637kip ft⋅:=

∆M x.T 319kip ft⋅:= ∆M y.T 1600kip ft⋅:=

Vmw 40
m

s
:=

Vref Vmw

Ht

zg.ex









1

αex

⋅ 36.445
m

s
⋅=:=

Ve50 z( ) 1.4 Vref⋅
z

Ht









0.11

⋅:=

Ve50 240ft( ) 51.023
m

s
⋅=

Vt 59.5
m

s
:=

c
Ve50 240ft( )

Vt









2

0.735=:=

Take c 0.75:=
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Wind Turbine Load Distribution along the Tower: 

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

Fx.V1 Fx.T.V1 c⋅:= Fx.V2 Fx.T.V2:=

Fy.V1 Fy.T.V1 c⋅:= Fy.V2 Fy.T.V2:=

Fz.V1 Fz.T.V1 c⋅:= Fz.V2 Fz.T.V2:=

Mx.V1 z( ) Mx.T.V1 c⋅ Fy.V1 Ht z−( )⋅+:=

Mx.V2 z( ) Mx.T.V2 Fy.V2 Ht z−( )⋅+:=

My.V1 z( ) My.T.V1 c⋅ Fx.V1 Ht z−( )⋅+:=

My.V2 z( ) My.T.V2 Fx.V2 Ht z−( )⋅+:=

Mz.V1 z( ) Mz.T.V1 c⋅:=

Mz.V2 z( ) Mz.T.V2:=

∆M t z( ) ∆M x.T( )2
∆M y.T( )2+:=

∆M z( ) ∆M t z( ) ∆F x.T Ht z−( )⋅+:=

FT.V1 z( ) Fx.V1
2

Fy.V1 Sw z V1, ( )+( )2+:=

FT.V2 z( ) Fx.V2
2

Fy.V2 Sw z V2, ( )+( )2+:=

MT.V1 z( ) Mx.V1 z( )
2

My.V1 z( ) Mw z V1, ( )+( )2+:=

MT.V2 z( ) Mx.V2 z( )
2

My.V2 z( ) Mw z V2, ( )+( )2+:=
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Figure C-2: Moment distribution along the tower’s height.  

 

 

Seismic Loading (Mid-West) 

Seismic Importance Factor:    
(ASCE 7-10  -  Tbl. 1.5-2) 

Site Class:  Soil Class "D" 
(ASCE 7-10  -  Art. 11.4.2) 

Damping Adjustment Factor:  
(ASCE-AWEA  -  Tbl. 5-6) 

Mapped Acceleration Parameters:   
(ASCE 7-10  -  Fig. 22-1 and 22-2) 

Site Coefficient:   
(ASCE 7-10  -  Tbl. 11.4-1 and 11.4-2) 

Spectral response acceleration for short period:  
(ASCE 7-10  -  Eq. 11.4-1) 

Spectral response acceleration for 1 second:  
(ASCE 7-10  -  Eq. 11.4-2) 

Design Spectral Acceleration Parameters:  
(ASCE 7-10  -  Eq. 11.4-3 and 11.4-4) 
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I 1=

B 1.23:=

Ss 0.12 B⋅:= S1 0.05 B⋅:=

Fa 1.6:= Fv 2.4:=

SMS Fa Ss⋅ 0.236=:=
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Figure C-3: Design Response spectrum.  
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Design Response Spectrum:  
(ASCE 7-10  -  Eq. 11.4-5 to 11.4-7) 

 

 

 

TS

SD1

SDS
0.625=:=

T0 0.2
SD1

SDS
0.125=:=

TL 12:=

Sa T( ) SDS 0.4 0.6
T

T0
⋅+








⋅ T T0<if

SDS T0 T≤ TS≤if

SD1

T
TS T< TL≤if

SD1 TL⋅

T
2

TL T<if

:=
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Response Modification Coefficient:  
(ASCE 7-10  -  Tbl. 12.2-1) 

Seismic Response Coefficient:  
(ASCE 7-10  -  Eq. 12.8-2 to 12.8-5) 

 

 

Seismic Base Shear:  
(ASCE 7-10  -  Eq. 12.8-1) 

Percentage of Wind to Seismic Force: 
 

P-M effect: 

Tower Deflection: 
 

 

Additional Moment from deflection:  

Percentage of added moment:  

Negligible effect 

R 1.5:=

Cs.lim T( )
SD1

T
R

I







⋅

T TL≤if

SD1 TL⋅

T
2 R

I







⋅

T TL>if

:=

Csn

SDS

R

I







0.105=:=

Cs T( ) 0.051 0.051 Cs.lim T( )<if

0.01 Cs.lim T( ) 0.01<if

Cs.lim T( ) otherwise

:=

Veq z( ) Csn Wtot z( )⋅:=

FT.V1 0( )

Veq 0( )
1.82=

∆ z( )

0

z

x
MT.V1 x( )

Es Ix x( )⋅
z x−( )⋅

⌠

⌡

d:=

∆ 240ft( ) 1.701ft=

Madd Wturbine ∆ 240ft( )⋅ 1.181 10
3× kip ft⋅⋅=:=

δadd

Madd

MT.V1 0( )
0.019=:=
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Load Combinations: 

(ASCE 7-10  -  Art. 2.3.2 and 2.4.1) 
(ASCE/AWEA-RP2011  -  Tbl. 5-4) 

Ultimate Loads: 

ULT 4: 1.2D +1.0W+1.35T  

ULT 5: 1.2D +1.0E 

ULT 6: 0.9D +1.0W+1.35T  

ULT 7: 0.9D +1.0E 

Service Loads: 

SER 5-1: D +0.6W+1.0T  

SER 5-2: D +0.7E 

SER 7: 0.6D +0.6W+1.0T 

SER 8: 0.6D +0.7E 

Ultimate Load: Service Load: 

Load Factors:  Load Factors:  

  

  

 

Ultimate Load (EWM): 

 

 

 

 

Service Load (EWM): 

 

 

 

 

γ DL.umax 1.2:= γ DL.smax 1.0:=

γ DL.umin 0.9:= γ DL.smin 0.6:=

γ WLu 1.0:= γ WLs 0.6:=

γ TLu 1.35:=

Pu z γ DL, ( ) γ DL Wtot z( )( ):=

Vu z( ) γ TLu Fx.V1⋅( )2
γ TLu Fy.V1⋅ γ WLu Sw z V1, ( )⋅+( )2+:=

Mu z( ) γ TLu Mx.V1 z( )⋅( )2
γ TLu My.V1 z( )⋅ γ WLu Mw z V1, ( )⋅+( )2+:=

Mz.u z( ) γ TLu Mz.V1 z( )⋅:=

Ps z γ DL, ( ) γ DL Wtot z( )( ):=

Vs z( ) Fx.V1( )2
Fy.V1 γ WLs Sw z V1, ( )⋅+( )2+:=

Ms z( ) Mx.V1 z( )( )2
My.V1 z( ) γ WLs Mw z V1, ( )⋅+( )2+:=

Mz.s z( ) Mz.V1 z( ):=
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Operation Load (EOG): 

 

 

 

 

Straining Actions at Base: 

Ultimate Load (EWM): 

 

 

 

 

 

Service Load (EWM): 

 

 

 

 

 

Operation Load (EOG): 

 

 

 

 

 

Po z γ DL, ( ) γ DL Wtot z( )( ):=

Vo z( ) Fx.V2( )2
Fy.V2 γ WLs Sw z V2, ( )⋅+( )2+:=

Mo z( ) Mx.V2 z( )( )2
My.V2 z( ) γ WLs Mw z V2, ( )⋅+( )2+:=

Mz.o z( ) Mz.V2 z( ):=

Pu 0 γ DL.umax, ( ) 1.871 10
3× kip⋅=

Pu 0 γ DL.umin, ( ) 1.403 10
3× kip⋅=

Vu 0( ) 360.105 kip⋅=

Mu 0( ) 8.155 10
4× kip ft⋅⋅=

Mz.u 0( ) 2.566 10
3× kip ft⋅⋅=

Ps 0 γ DL.smax, ( ) 1.559 10
3× kip⋅=

Ps 0 γ DL.smin, ( ) 935.371 kip⋅=

Vs 0( ) 250.197 kip⋅=

Ms 0( ) 5.894 10
4× kip ft⋅⋅=

Mz.s 0( ) 1.901 10
3× kip ft⋅⋅=

Po 0 γ DL.smax, ( ) 1.559 10
3× kip⋅=

Po 0 γ DL.smin, ( ) 935.371 kip⋅=

Vo 0( ) 270.608 kip⋅=

Mo 0( ) 7.29 10
4× kip ft⋅⋅=

Mz.o 0( ) 1.178 10
3× kip ft⋅⋅=
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Tower Design (ASD): 

Axial Stress:  

 

 

 

Bending Stress:  

 

Shear Stress:  

 

Shear Stress from Torsion:  

 

Max and Min Normal Stress:  

 

 

 

Max Shear Stress:  

 

Combined Stress:  

 

 

fa.max z( )
Ps z γ DL.smax, ( )

As z( )
:=

fa.max 0( ) 1.279 ksi⋅=

fa.min z( )
Ps z γ DL.smin, ( )

As z( )
:=

fa.min 0( ) 0.767 ksi⋅=

fb z( )
Ms z( )

S z( )
:=

fb 0( ) 10.995 ksi⋅=

fv z( )
Vs z( )

π th z( )⋅ Rt z( )⋅
:=

fv 0( ) 0.413 ksi⋅=

fvt z( )
Mz.s z( ) D z( )⋅

4 Ix z( )⋅
:=

fvt 0( ) 0.177 ksi⋅=

fn.max z( ) fa.max z( ) fb z( )+:=

fn.max 0( ) 12.274 ksi⋅=

fn.min z( ) fa.min z( ) fb z( )−:=

fn.min 0( ) 10.228− ksi⋅=

fv.max z( ) fv z( ) fvt z( )+:=

fv.max 0( ) 0.59 ksi⋅=

σw z( ) fn.max z( )( )2
3 fv.max z( )( )2⋅+:=

σw 0( ) 12.317 ksi⋅=
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Allowable Bending Stress:  

Allowable Shear Stress:  

Allowable Compressive Stress:  

 

 

 

 

 

Check Design:  

 

 

Fb.all 0.6 fy⋅ 30 ksi⋅=:=

Fv.all 0.4 fy⋅ 20 ksi⋅=:=

k 2:=

r z( )
Ix z( )

As z( )
:=

KLr k
Ht( )

r 0( )
⋅ 76.056=:=

Cc
2 π

2⋅ Es⋅

fy
106.072=:=

Fc.all

1
KLr

2

2 Cc
2⋅

−






fy⋅






5

3

3 KLr⋅

8 Cc⋅
+

KLr
3

8 Cc
3⋅

−

KLr Cc≤if

12 π
2⋅ Es⋅

23 KLr
2⋅

otherwise

:=

Fc.all 19.66 ksi⋅=

Compression z( )
fa.max z( )

Fc.all
:=

Shear z( )
fv.max z( )

Fv.all
:=

Combined z( )
fa.max z( )

Fc.all

fb z( )

Fb.all
+:=
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Check Buckling Stresses: 

Elastic Tube Buckling: 

 

Reduction Coefficient for Axial: 

 

Reduction Coefficient for Bending: 

 

Combined Buckling Stress: 

 

 

Steel Fatigue Design: 

Fatigue Moment:  

Design Cycle:  

 

 

Initial Cycle:  

Slope of the curve:  

σcr z( ) 0.605 Es⋅
2 th z( )⋅

D z( )
⋅:=

α0 z( )
0.83

1 0.01
D z( )

2 th z( )⋅
⋅+

D z( )

2 th z( )⋅
212<if

0.7

1 0.01
D z( )

2 th z( )⋅
⋅+

D z( )

2 th z( )⋅
212≥if

:=

αB z( ) 0.1887 0.8113 α0 z( )⋅+:=

σu z( ) fy 1 0.4123
fy

αB z( ) σcr z( )⋅








0.6

⋅−








⋅ αB z( ) σcr z( )⋅
fy

2
>if

0.75 αB z( )⋅ σcr z( )⋅( ) αB z( ) σcr z( )⋅
fy

2
≤if

:=

DCRb z( )
σu z( )

fy
:=

Mf z( ) ∆M z( ):=

nf 5.29 10
8⋅:=

γ ss 1.265:=

∆σy 310MPa:=

N0 10000:=

m 4:=
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Figure C-4: Demand to capacity ratio.  

 

Yielding Moment:  

Extrapolated Yielding Moment:  

Number of Cycles at Applied Moment:  

 

 

Mfs z( ) ∆σy S z( )⋅:=

Mss z( ) Mfs z( )
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N0⋅:=

Nf z( )
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∆σy S z( )⋅ m
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APPENDIX D 

D. DYNAMIC ANALYSIS 

APPROACH 

To properly determine the dynamic behavior of the proposed tower, a proper model has 

to be constructed. There are a lot of methods and numerical models available for 

choosing and using a wrong approach can either sacrifice accuracy or falsely represent 

the dynamic properties of the tower. Two different approaches were taken to provide a 

better understanding of the tower behavior under dynamic loading; the first method is 

modal analysis of a simplified lumped mass system, the second is a finite element 

method. The next paragraph states the assumptions that apply for the two models, 

individual approximations concerning a specific model will be stated separately.    

The wind turbine will be modeled as stationary mass on top of the tower. Concrete used 

for the design have a 28 day compressive strength of 8 (ksi) and a modulus of elasticity of 

5422 (ksi). Wilson damping was used for all the models, constant at 2% for each node. 

All models have a linear elastic response that allows the use of modal superposition. 
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LUMPED MASS MODEL 

This section covers the first approach taken when 

modeling the tower; it considers the tower as a 

number of lumped masses concentrated at discrete 

nodes which are connected by massless bending 

element. Discretizing the tower into nodes was easy 

as a result of the tapered profile of the tower. As 

shown in Figure D-1, the tower was divide into four 

segments each has its own weight plus the weight of 

the turbine on top, which gives five masses and 

connecting elements. Table D-1 shows the properties 

of the lumped mass model for both towers. 

 

Table D-1: Lumped mass model properties. 

Seg. 

Triangular Circular 

Mass 
(kip-s

2
/in) 

Inertia 
(in4) 

Mass 
(kip-s

2
/in) 

Inertia 
(in4) 

1 2.51 312 x 106 3.96 485 x 106 

2 1.93 133 x 106 2.44 159 x 106 

3 1.58 44 x 106 1.52 34 x 106 

4 1.46 20 x 106 1.22 10 x 106 

5 1.79 20 x 106 1.79 10 x 106 

Figure D-1: Lumped mass model. 
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Table D-2: Modal properties. 

System Triangular (proposed) Circular (current) 

Mode 1 2 3 4 1 2 3 4 

Natural 
period 

(s) 
2.37 0.39 0.14 0.09 2.56 0.43 0.17 0.10 

Mode 
Shapes 

 

Effective 
modal 
masses 

and 
heights 

 
Top 

deflection 
contribution 

98 % 1.3 % 0.3 % 0 % 98 % 1.7 % 0.08 % 0 % 

Base shear 
contribution 

65 % 22.2 % 9.4 % 3.4 % 55.4 % 25.7 % 12.6 % 6.3 % 

Base moment 
contribution 

84 % 12.1 % 3.0 % 0.8 % 76.7 % 16.6 % 4.8 % 1.9 % 
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Analysis of the model was done using modal analysis where the total response is the 

superposition of the five modal responses. The modal properties were determined and the 

modal contributions for each mode were calculated. Table D-2 provides a comparison of 

both towers modal properties. It is to be noted that the fifth mode was not included in the 

comparison as it didn’t contribute to the response. The two systems have very similar 

mode shapes. The circular system has slightly higher periods than the triangular one 

which means that it is more flexible. As for modal contribution, the first mode contribute 

more to the triangular system’s response due to the higher effective modal mass and base 

straining actions contribution, however the rest of the modes contribute more to the 

circular system’s response. 

After calculating the modal properties, a time history analysis was performed to 

determine the response histograms of the model when subjected to the ground motion of 

El Centro earthquake 1940 North South Component (Peknold Version). Two models for 

each system were constructed to increase the level of confidence in the results; the first 

using a MATLAB code along with a numerical method to solve for each time step, the 

second using SAP 2000 and imputing the earthquake acceleration as a time history 

function.  

The numerical method implemented in this study is “Central Difference Method”. It is 

based on a finite difference approximation of the time derivatives of displacement, i.e. 

velocity and acceleration. Taking constant time steps and solving for the time derivatives 

each step by using the difference from the preceding and succeeding time step. This 
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method was chosen due to its accuracy and simplicity. Figure D-2 and Figure D-3 show 

the modal and total top deflection of both systems under the seismic acceleration. Table 2 

shows the total responses from MATLAB and SAP. 

 

Figure D-2: Modal and total top deflection for triangular (left) and circular (right) tower. 

(MATLAB model) 
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Figure D-3: Modal and total top deflection for triangular (left) and circular (right) tower. 

(SAP model) 

Table D-3: MATLAB and SAP result comparison. 

Seg. 

Triangular Circular 

Top 
Displacement 

(in) 

Base 
Shear 
(Kip) 

Base 
Moment 
(kip-ft) 

Top 
Displacement 

(in) 

Base 
Shear 
(Kip) 

Base 
Moment 
(kip-ft) 

MATLAB 11.73 839.9 12 x 104 13.70 1076.6 14 x 104 

SAP 2000 11.72 959.4 12 x 104 13.70 1134.0 14.4 x 104 

As shown in Table D-3 the two models are working as expected providing close results. 

It is to be noted that the peak modal contribution to any response happens at the same 

time as the peak acceleration; however the peak total response happens at a different time 

instants. Moreover the peak of different responses also happens at different time instants; 

i.e. the peak base shear doesn’t happen at the same time as the peak base moment which 

has to be considered in design.   
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Due to the fact that the circular system is more flexible than the triangular system, the 

latter has a better overall response in terms of deflection, vibrations and base straining 

actions. As a result the triangular system will perform better than the circular one when 

subjected to the same dynamic motion. 

FINITE ELEMENT METHOD 

This method is a finite element analysis in SAP 2000, using the time history function to 

solve for the response at every time step. This three dimensional model will consider all 

the interaction between the columns and the panels and will give the most accurate 

results. Figure D-2 shows the finite element model and the discretization of the tower. 

Figure 9 shows the first different mode shapes of the tower. 

 

Figure D-4: SAP model for the triangular system. 
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Figure D-5: Mode shapes and periods for the triangular system. 
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