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The popular broadleaf herbicide atrazine is often found in contaminated 

groundwater along with other agricultural chemicals, such as nitrate. Mulch biowalls, a 

passive treatment placed in situ, can inexpensively remediate groundwater by 

intercepting and treating a contaminant plume. Three types of organic mulch: cedar, 

cypress, and hardwood were evaluated for their ability to act as supporting materials for a 

biowall to simultaneously remove atrazine and nitrate from groundwater. Physical and 

chemical properties of the mulch were characterized. Cedar mulch had the highest 

organic carbon content, 996 mg/g. The adsorptive capacity of the mulch for atrazine and 

nitrate, in mono and binary adsorbate systems were evaluated in a series of isotherm 

experiments. There was no statistical difference in the ratio of qe/Ce (equilibrium 

concentration on the mulch/equilibrium concentration in solution) for atrazine or nitrate 

among the three types of mulch, except for atrazine in the pairs of cedar-hardwood and 

cypress-hardwood in the binary adsorbate system. Atrazine adsorption appeared to 

exhibit a C-type isotherm, due to the range of concentrations examined; A wider range of 

atrazine concentrations may show a more distinct L-type isotherm. Atrazine adsorption 
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was not affected by the presence of nitrate.  Nitrate adsorption did not clearly exhibit a 

specific isotherm type and was affected by surface properties of the mulch as well as the 

presence of atrazine. The adsorption behaviors of atrazine and nitrate were quantified 

from Langmuir and Freundlich isotherms. Atrazine adsorption was best modeled by the 

Freundlich isotherm, while nitrate adsorption was best modeled by the Langmuir. 

Qualitatively, cypress mulch exhibited the greatest sorption capacity for atrazine and 

nitrate and was selected to examine the feasibility of a mulch biowall using a  laboratory-

scale biotic column. The cypress column was not able to remove nitrate because the 

concentration of dissolved oxygen was too high, even after the addition of an external 

carbon source. The column was not able to remove atrazine because the concentration of 

nitrate was too high for bacterial degradation of the herbicide to occur. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Background 

Nebraska is a land of agriculture. Ninety three percent of Nebraska is farmland, 

and Nebraska ranks in the top ten states for crop production (Nebraska Agricultural Fact 

Card 2011).  This substantial agricultural activity is made possible by the extensive use of 

fertilizers and pesticides to enhance production.  

Atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine] is a popular 

broadleaf herbicide, typically used on corn. It is normally applied at 2.2 kg/hectare or less 

(Solomon et al. 1996). Between 30,000 and 34,000 tons of atrazine are used annually in 

the United States (Solomon et al. 1996; Hayes et al. 2002). However, about 10% of the 

atrazine applied washes off fields, moving away from target sites toward areas devoid of 

oxygen, like groundwater (Ma and Selim 1996; Gu et al. 2003). Forty five percent of 

groundwater contamination cases are attributed to point source contamination of atrazine 

(Silva et al. 2004).  

More than 50% of United States population derives its primary drinking water 

from groundwater (Kross et al. 1992). Atrazine is the second most frequently detected 

pesticide in drinking water wells (U.S. EPA Office of Pesticide Programs 1993). In 2010, 

the Nebraska Department of Environmental Quality found that 5% of groundwater 

samples exceeded the reporting limit for atrazine (Nebraska Department of 

Environmental Quality, 2010). The maximum contaminant level for atrazine in drinking 

water is 3 g/L, as set by the Environmental Protection Agency (EPA). Exposure to 
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atrazine causes endocrine disruption in frogs, rats, and humans (U.S. EPA Office of 

Pesticide Programs 1993; U.S. EPA Office of Pesticide Programs 2002; Villanueva et al. 

2005). 

Atrazine and nitrate are often found together in the groundwater of agricultural 

states (Ritter 1990). In 2010, the Nebraska Department of Environmental Quality found 

that 94% of groundwater samples exceeded the reporting limit for nitrate (Nebraska 

Department of Environmental Quality, 2010). The maximum contaminant level for 

nitrate in drinking water is 10 mg NO3-N/L as nitrogen, as set by the EPA (Nebraska 

Department of Environmental Quality, 2010). Nitrate can cause methemoglobinemia, or 

“blue baby syndrome,” because it interferes with the body’s ability to carry oxygen in its 

red blood cells (Skipton and Hay 1998).  

Literature has shown that researchers have tested several processes in the 

treatment of pesticide contamination in both soil and water including: chemical and 

biological treatment processes. Waria et al. (2009) used zero valent iron and ferrous 

sulfate to degrade atrazine chemically in soil. Soybean oil was also added to provide a 

carbon source for biological activity. Atrazine, initially at a concentration of 500 mg/kg 

soil, was reduced by 79% in 342 days.  Tafoya-Garnica et al. (2009) used a fluidized bed 

reactor containing biological granular activated carbon to achieve high degradation rates. 

Modin et al. (2008) used a methane fed bioreactor intended to remove both atrazine and 

nitrate. However, atrazine removal was not successful (Modin et al. 2008). Bianchi et al. 

(2006) successfully used photolysis, photocatalysis (with TiO2), and ozonation for 

atrazine degradation.   
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Processes such as these require the presence of a nutrient source, such as methane 

or soybean oil, and specialized treatment, such as ultraviolet radiation or biological 

activated carbon. These additions can greatly increase the cost of treatment, especially 

when the price of highly trained operators is factored in.  

Passive treatment, such as a biowall, is inexpensive when compared to methods 

discussed above because it is placed in situ. Biowalls are bacteria supported on a natural 

substrate that is placed to intercept contaminated groundwater flow. Removal is 

accomplished through adsorption or biological degradation, as the contaminated plume 

passes through a permeable remediation well or trench placed perpendicular to 

groundwater flow. Biowalls are low maintenance and can endure changes in operating 

conditions (Kao et al. 2001, Schipper et al. 2004; Seo et al. 2007). Biowalls supported on 

a natural substrate, such as mulch or peat moss, have been studied for naphthalene (Seo et 

al. 2007), tetrachloroethylene (Kao et al. 2001), and denitrification (Schipper et al. 2004; 

Ilhan et al. 2011), but rarely for atrazine removal. Ilhan et al. (2011) examined the 

removal of atrazine and nitrates in a woodchip bioreactor. The bulk of the atrazine 

removal appeared to be due to physical, rather than biological methods. 

Low concentrations of nitrate, ~1mM, do not interfere with atrazine degradation 

(Crawford et al. 1998, 2000). Some atrazine-degrading bacteria, such as Pseudomonas sp. 

ADP, can use nitrate as an electron acceptor under anoxic conditions (Shapir et al. 1998).  

However, when nitrate is present in excess, some atrazine-degrading bacteria may prefer 

to use nitrate as a source of nitrogen instead of atrazine (Hunter and Shaner 2010). This 

relationship may be dependent on the bacteria species present as well as the background 

concentration of nitrate.  
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1.2 Objective 

The objective of this research is to examine a cost-effective and reliable biological 

treatment method for the co-removal of atrazine and nitrate from groundwater. Two 

approaches were established to achieve the objective. First, the adsorption capacities of 

three types of common gardening mulch for both atrazine and nitrate were examined. 

Second, the type of mulch exhibiting the largest adsorption capacity was used for further 

experimentation in a laboratory-scale biotic column experiment to examine the feasibility 

of implementation of this type of biowall in contaminated groundwater. 

1.3  Thesis Organization  

This thesis contains 5 chapters, references, and appendices. Chapter 2 provides a 

review of current literature relevant to this study, including advances in physical and 

biological remediation of atrazine as well as implications for large-scale bioremediation. 

Chapter 3 discusses an analysis of physical and chemical properties of the mulch and 

adsorption isotherms for atrazine and nitrate. Chapter 4 discusses a biotic column 

experiment that evaluated the ability of bacteria to simultaneously degrade atrazine and 

nitrate. Chapter 5 summarizes the conclusions and suggests directions for future study. 

Appendices include adsorption figures and other data.  
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CHAPTER 2: PHYSICAL AND BIOLOGICAL REMEDIATION OF 

ATRAZINE: A REVIEW 

2.1 Background 

Atrazine is one of the most widely used herbicides for the control of broad-leafed 

weeds. It was developed in Switzerland in 1958 by the Geigy Chemical Company, and 

became registered for use in the United States in 1959 (Solomon et al. 1996). Between 

30,000 and 34,000 tons of atrazine are used annually in the United States, normally 

applied at 2.2-4.5 kg/ha (1.1-2.2 g /g soil) (Yeomans and Bremner 1987; Solomon et al. 

1996; Hayes et al. 2002). 

However, about 10% of atrazine applied washes off fields, moving away from 

target sites toward areas devoid of oxygen, like groundwater (Ma and Selim 1996; Gu et 

al. 2003). The rest is retained in the soil; atrazine’s vapor pressure is so low that 

volatilization is negligible (2.89-7 mm of Hg at 25C) and it is not photodegradable at 

wavelengths >300nm (Solomon et al. 1996). Forty five percent of groundwater 

contamination cases come from point source contamination of atrazine (Silva et al. 2004).  

More than 50% of the United States population derives its primary drinking water 

from groundwater (Kross et al. 1992). The Environmental Protection Agency (EPA) has 

set the maximum contaminant level in drinking water for atrazine at 3 g/L, whereas the 

European Union has set the level at 0.1 g/L (Wilber et al. 1995; Faur et al. 2005; Zadaka 

et al. 2009). Atrazine is the second most frequently detected pesticide in drinking water 

wells (U.S. EPA Office of Pesticide Programs 1993). It has been found at levels 
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exceeding the maximum contaminant level because of its popularity and low 

biodegradability (Somasundaram and Coats 1990; Sene et al. 2010).  

The degradation of atrazine occurs through one of two pathways; it can be 

dehalogenated to form hydroxyatrazine (HYA) or dealkylated to form 

deisopropylatrazine (DIA) or deethylatrazine (DEA). Without dehalogenation, the 

dealkylated metabolites still retain the phytotoxic properties and possibly the endocrine-

disrupting potency of atrazine, making further degradation or removal of metabolites 

desirable (Boundy-Mills et al. 1997; Silva et al. 2004).  

Atrazine is also frequently found in conjunction with its metabolites. In a national 

study of groundwater quality in the United States, 49.4% of sites where pesticides had 

been detected contained both atrazine and DEA. All but two of the sites conformed to 

drinking water criteria; yet, current drinking water criteria only enforce one compound at 

a time (Kolpin et al. 2000). Another study of vernal pools in protected areas in the United 

States found atrazine was the most frequently detected pesticide (53%), followed closely 

by DEA (47%), HYA (44%), and DIA (29%) (Battaglin et al. 2008). Synergistic effects 

from multiple compounds are unknown and cannot be predicted based on the toxicity of a 

single component (Marinovich et al. 1996).  

However, regulations are changing to include metabolites. The European Union 

has set a limit of 0.5 g/L for the combination of atrazine and its degradation products, 

known as Total Chloro-s-Triazine (TCT). The EPA is considering similar strict 

regulations for TCT (Faur et al. 2005; Jiang and Adams 2006). As these regulations reach 

the United States, further research should focus on elucidating the toxicity of the 
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metabolites, which is still largely speculative. Generally speaking, atrazine, DIA, DEA, 

and didealkylatrazine share a common mechanism of toxicity with respect to endocrine 

disruption (U.S. EPA Office of Pesticide Programs 1993; Jiang and Adams 2006). 

However, relative toxicity studies with bioluminescent bacteria have shown that DEA 

and DIA are less toxic than atrazine (Kross et al. 1992). 

The toxicity of atrazine has been researched in a variety of animals. Studies on 

atrazine levels in fish species revealed that atrazine does not tend to bioconcentrate, like 

the infamous pesticide DDT (dichlorodiphenyltrichloroethane). Male frogs in water 

contaminated with greater than 0.1 g atrazine/L show hermaphroditism and retarded 

gonadal development. In rodents, atrazine is embryotoxic and embryolethal, but not 

teratogenic (Villanueva et al. 2005). In adult rats, atrazine causes mammary gland 

tumors. Though this cancer mechanism is different in humans, it doesn’t rule out the 

possibility of reproductive developmental effects by another mechanism (U.S. EPA 

Office of Pesticide Programs 2002). Health effects in humans from acute exposure to 

atrazine levels above the maximum contaminant level include “congestion of heart, lungs 

and kidneys; hypotension; antidiuresis; muscle spasms; weight loss; adrenal 

degeneration” (U.S. EPA Office of Pesticide Programs 1993). 

Atrazine is not the only contaminant in natural waters. A study on leopard frogs 

by Hayes et al. (2006) used a low concentration (0.1 ppb) of a nine-pesticide mixture, 

including atrazine, to simulate a low runoff concentration. Tadpoles exposed to the 

mixture took a longer time to metamorphose, were smaller, and had weakened immune 

systems, making them vulnerable to predation and bacterial infections. Though the 
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toxicity of atrazine is relatively well characterized, the way it interacts in the environment 

with other pesticides or its own metabolites is still greatly unknown.  

2.2 Objective 

A wealth of research has occurred on various methods to enhance atrazine 

degradation. These methods fall into three main categories: physical, biological, and a 

combination of the two. However, much of this research, especially in the biological 

field, has only been done in a laboratory-scale setting. This review will investigate 

advances in physical and biological remediation of atrazine as well as implications for 

large-scale bioremediation.   

2.3 Removal via Adsorption  

2.3.1 Background 

Adsorption occurs at a surface of a solid adsorbent, which forms chemical or 

physical bonds to remove a component, such as atrazine, from the fluid phase (Foo and 

Hameed 2010). The atrazine reaches the adsorbent after undergoing three types of 

diffusion. First, film diffusion moves the atrazine from the bulk phase to the adsorbent 

surface. Second, particle diffusion moves the atrazine to the interior of the adsorbent. 

Third, the atrazine is adsorbed onto the surface of the adsorbent (Chingombe et al. 2006). 

Compared to chemical or biological removal methods, adsorption has a low initial cost, 

offers flexibility and simplicity of operation, and doesn’t form harmful intermediates 

(Ahmad et al. 2010). 
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2.3.2 Objective 

This section will discuss a range of adsorption research, beginning with how 

atrazine adsorption on soils is affected by soil properties, hydrolysis, and land application 

of wastewater. Next, the removal of atrazine from drinking water using activated carbon 

as well as natural materials will be discussed. The final section discusses the adsorption 

characteristics of atrazine metabolites. 

2.3.3 Soil Adsorption 

Atrazine enters soil environments through land application. Atrazine adsorption 

on soils is influenced by many factors, including: organic matter, pH, conductivity, 

alkalinity, suspended solids, dissolved salts, and water content (Seol and Lee 2000). This 

section will discuss the influence of pH and organic materials on soil adsorption and 

show how the structure of atrazine influences its affinity to soil. Lastly, soil remediation 

methods with activated carbon, hydrolysis, and wastewater application will be discussed. 

A study by Clay and Koskinen (1990) showed that atrazine and hydroxyatrazine 

are more strongly adsorbed to soils at lower pH, 4, compared to a more neutral pH, 6, 

because atrazine and hydroxyatrazine are weak bases and have greater protonation at 

lower pH values. Atrazine desorption was hysteretic, which could have occurred for 

many reasons, including: equilibrium was not attained, precipitates, changes in 

desorption solution composition, degradation, or irreversible binding to soil. 

Atrazine adsorbs rapidly to organic components of soils, especially 

polysaccharides, lignin, and humic substances (Ma and Selim 1996; Masaphy and 

Mandelbaum 1997). However, the origin of the organic matter influences the adsorption.  
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In a study by Laird et al. (1994), atrazine chemisorbed to the organic matter in coarse 

silicate clays, whereas atrazine only physisorbed to the organic matter in fine silicate 

clays, because the organic material in the finer clays had fewer organic functional groups.  

Though Granular Activated Carbon (GAC) is more conventionally used for 

wastewater treatment, it has been used for soil remediation in the past. Gunther and 

Gunther (1970) suggested a rule of thumb for application rates of 200 lb/acre of activated 

carbon for every 1 lb/acre of atrazine. This is slightly higher than the 120 lb/acre 

suggested by Harvey (1973). Both application rates can be reduced with band 

applications or root dips (Gunther and Gunther 1970). However, the high rate of 

application required makes GAC feasible only for high value land or crops (Harvey 

1973). Harvey (1973) also noted that freeze-thaw cycles were detrimental to the 

effectiveness of the activated carbon, which may limit its usefulness.  

2.3.4 Dehalogenation of Atrazine 

As stated in Section 2.1, dehalogentation of atrazine is highly desired due to the 

possible phytotoxicity and endocrine-disrupting potency of the halogenated metabolites 

(Boundy-Mills et al. 1997; Silva et al. 2004).  Dehalogenation can occur through both 

chemical and biological processes.  

Xu et al. (2001) tested the ability of freeze dried samples of sodium-saturated 

ferruginous smectite to adsorb atrazine. Reduced clay adsorbed 31% of the atrazine from 

solution, but further High-Performance Liquid Chromatography (HPLC) analysis 

revealed a high concentration of hydroxyatrazine. Xu et al. believes that the atrazine was 

hydrolyzed via a nucleophilic displacement of chlorine by hydroxide. Chemical 
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hydrolysis was favored in the reduced clay environment because a greater electron 

density in the alkaline environment (Xu et al. 2001). Armstrong et al. (1967) also noted 

the benefits of an alkaline environment as well as an acidic one. Alkaline hydrolysis 

occurred through a direct nucleophilic displacement. Acid hydrolysis occurred through 

protonation of a side chain or ring nitrogen atom and than nucleophilic displacement by 

water (Armstrong et al. 1967).   

Hydrolysis can also occur biologically, with the enzyme AtzA. This enzyme was 

discovered by Mandelbaum et al. (1995) and characterized in the mid-nineties by 

deSousa et al. (1996). Both chemical and biological processes may be at work; Houot et 

al. (1998) hypothesized that increased formation of hydroxyatrazine was due to a 

combination of chemical and biological hydrolysis caused by a lower pH in soils from the 

addition of composted straw. 

2.3.5 Stimulating Soil Microbial Activity with Wastewater 

Addition of organic matter from wastewater treatment plant effluent causes an 

increase in the organic content of soil, which affects atrazine sorption (Barriuso et al. 

1997; Masaphy and Mandelbaum 1997; Celis et al. 1998). For example, remediation with 

Pseudomonas sp. ADP was only 20% effective on soils that had been sprayed with 

treated wastewater, compared to 60-80% effective in soils without wastewater (Masaphy 

and Mandelbaum 1997). Conversely, addition of high concentrations (1058 mg of 

organic carbon/L) of dissolved organic matter from sewage sludge has the reverse effect: 

increasing desorption of atrazine, due to site competition or surface modification (Celis et 

al. 1998). However, in the presence of small concentrations of dissolved organic matter, 

up to 150 mg of organic carbon/L, atrazine adsorption is not suppressed (Seol and Lee 
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2000). The effects of wastewater application have important ramifications for the 

irrigation of farmland with effluent, and warrant further study.  

This section has shown that the adsorption of atrazine on soils is strongly 

influenced by the presence of organic carbon as well as pH. Soil remediation with 

activated carbon is expensive. Recycling of wastewater treatment plant effluent onto soil 

may either decrease atrazine adsorption or increase it, depending on the concentration 

and properties of the organic material. Further research should examine the influences of 

soil properties on atrazine adsorption and the effects of irrigation with wastewater 

treatment plant effluent. 

2.3.6 Activated Carbon Adsorption 

Atrazine may enter drinking water through groundwater or runoff into surface 

water. Drinking water treatment plants typically use activated carbon treatments to 

remove atrazine or other residual compounds. This section will discuss the two most 

common types of activated carbon, Granular Activated Carbon (GAC) and Powdered 

Activated Carbon (PAC), as well as two variations: Biological Granular Activated 

Carbon (BGAC) and Activated Carbon Fibers (ACF).  

Drinking water treatment plants use activated carbon to remove organics, residual 

inorganics, and taste/odor-causing compounds (Tchobanoglous et al. 2003). Activated 

carbon has been designated the best available technology for the removal of herbicides 

from drinking water by the EPA (Adams and Watson 1996). Activated carbon has a large 

porous surface area, controllable pore structure, low acid/base reactivity, and thermal 

stability. It has a low initial cost and high adsorption and regeneration capacities. It is 
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easy to control the dosage of activated carbon and it does not form any oxidation 

byproducts as in ozoneation (Adams and Watson 1996; Foo and Hameed 2010). 

There are two types of activated carbon: Granular Activated Carbon (GAC) and 

Powdered Activated Carbon (PAC). GAC has larger particles with a diameter greater 

than 0.1 mm. In a water treatment process, it is contained in a pressurized contact basin. 

Conversely, PAC particles are smaller with a diameter less than 0.074 mm, and can be 

added at any point during the process (Tchobanoglous et al. 2003). Typically, PAC is 

added at the raw water intake, the rapid mix tank, or in a slurry contactor (Crittenden et 

al. 2005).  Later in the process PAC must be settled out in a contacting basin or removed 

with filtration (Tchobanoglous et al. 2003). GAC requires less activated carbon, has 

easier handling, and can be regenerated, but has higher operation, maintenance, and 

capital costs. PAC has a low capital cost and offers flexibility of operation; however, it is 

hard to fully utilize its entire adsorption capacity and it requires an additional filtration 

procedure (Kyriakopoulos and Doulia 2006).  

Both types of activated carbon can be designed to contain varying pore sizes. Pore 

size, as classified by the International Union of Pure and Applied Chemistry, can be seen 

in Table 2.1.  
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Table 2.1: Pore sizes of activated carbon (Ding et al. 2008) 

Pore Type Size (Å) 

Macropores >500 

Mesopores 20-500 

Secondary Micropores 8-20 

Primary Micropores <8 

 

Atrazine is 9.6 x 8.4 x 3 Å and prefers primary or secondary micropores (Li et al. 

2004a). However, in a drinking water treatment plant, atrazine is not the only target 

compound for removal, and must compete for adsorption sites with other compounds, 

including Natural Organic Matter (NOM). NOM is typically found at 3.7 ppm in natural 

waters, making it 1000 times greater than a typical concentration of atrazine 

(Kyriakopoulos and Doulia 2006; Zadaka et al. 2009). NOM affects atrazine adsorption 

in two ways: direct site competition and pore blockage (Zadaka et al. 2009). 

NOM is larger than atrazine. If preloaded, it will block openings to smaller pores, 

reducing the surface area available for atrazine adsorption. Atrazine will have to move 

around the blockage or displace the NOM to adsorb. However, if NOM is in direct 

competition with atrazine, as in a batch reactor, pore blockage is not an issue, because 

atrazine can quickly adsorb to micropores before they are blocked (Li et al. 2003, 2004a).  

Knappe et al. (1997) used RSSCT (Rapid Small Scale Column Tests) to examine 

the effect of NOM preloading on atrazine adsorption by GAC. Both virgin GAC and 

GAC that had been preloaded for 5 months effectively removed atrazine. However, a 
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longer preloading time, 20 months, was not successful due to enhanced adsorption and 

polymerization of NOM in the presence of oxygen. In a later study, Knappe et al. (1999) 

discovered that after preloading, there was no competition between NOM and atrazine for 

sites. Also, adsorption capacity could be increased by grinding preloaded GAC into PAC. 

The grinding increased the surface area by opening up pore space.  

The PAC dose in a treatment plant is typically 1-2 mg/L for odor and taste control 

(Jiang and Adams 2006). If NOM is present, 10-16 times more PAC is required to 

achieve 90-99% removals of atrazine, because NOM has slower adsorption kinetics; 

NOM moves down the column quickly, preloading the bottom of the column before 

atrazine can get there (Li et al. 2003).  

Ding et al. (2008) found that there was less site blockage in PAC with pores 15-50 

Å. NOM favors this pore size, leaving smaller micropores unblocked for atrazine 

adsorption. Similarly, Li et al. (2003) found that PAC with a greater percentage of 

mesopores had better atrazine adsorption. Due to site competition, atrazine adsorption is 

not related to the total surface area, but rather to the number of available micropores 

(Ding et al. 2008). Thus, adsorption kinetics is more important than adsorption capacity. 

There are many options to decrease the effect of NOM, including: pulse input of 

PAC, aeration, and optimizing the membrane cleaning interval. A pulse input of PAC 

results in a greater amount of contact time with a greater amount of PAC, lessening the 

effect of pore blocking materials (Li et al. 2004b). The adsorption capacities and lifespan 

of the PAC can be increased with intermittent high intensity aeration (2.7 L/min with a 2 

second pause). These bubbles generate microscale high intensity eddies that shrink the 
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resistance of the boundary layer (Jia et al. 2006). Lastly, the performance of a small 

reactor can be optimized to avoid influence from pore blocking materials with a short 

membrane cleaning interval (MCI) and a low PAC dose (Li et al. 2004b). 

Zhang and Emary (1999) used jar tests to simulate a drinking water treatment 

plant environment. PAC alone exhibited a 40-50% removal of atrazine. Typical drinking 

water treatment plant additions, such as alum coagulant or lime, had negligible effect on 

the atrazine removal. However, the combination of a lowered pH with sulfuric acid (5.8), 

alum coagulation, and PAC increased atrazine removal to over 60%.  The lower pH 

increased the hydrophilic properties of atrazine and lowered the charge density on NOM, 

making atrazine more susceptible to removal by coagulation or adsorption.  

GAC and PAC are the two most common types of activated carbon and are 

typically used in drinking water treatment plants. Two variations, more common in a 

laboratory setting, are Biological Granular Activated Carbon (BGAC) and Activated 

Carbon Fibers (ACF). 

Herzberg et al. (2004) compared anaerobic atrazine degradation by Pseudomonas 

sp. ADP on an adsorbent medium (GAC) and non-adsorbent medium. The BGAC 

(Biological Granular Activated Carbon) column degraded more atrazine by two orders of 

magnitude than the column with non-adsorbent media, due to a “double flux” of atrazine 

through the biofilm and the adsorbent media. In a similar study, Feakin et al. (1995a) 

successfully used Rodococcus rhodochrous in a BGAC column for atrazine degradation. 

The authors hypothesized that atrazine adsorbed on the GAC is not bioavailable to the 

bacteria; atrazine must desorb into the liquid phase to become bioavailable (Feakin et al. 
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1995a). BGAC has limited application to drinking water treatment plants due to 

environmental regulations. In the United Kingdom, influent bacteria counts must be 

approximately equal to effluent bacteria counts. If bacterial counts are greater than 10
3
, 

chlorination is advised (Feakin et al. 1995b).  

Scientists that are specifically interested in examining pore blockage effects in 

activated carbon often turn to ACF (Activated Carbon Fibers). ACF are synthetic 

materials from polymeric substances. They are specifically engineered to have a uniform 

and continuous pore structure. GAC is exactly the opposite; It is made from impure, non-

uniform feedstocks, it is not homogenous, and doesn’t have continuous micropores 

(Pelekani and Snoeyink 2000). ACF have faster initial adsorption rates as well as a 

greater adsorption capacity than GAC (Faur et al. 2005). Pelekani and Snoeyink (2000) 

studied the competitive adsorption between atrazine and methylene blue (a compound of 

similar size to atrazine) on ACF. Similar to previous studies with NOM, the impact of 

preloading with the competing substance decreased as pore size increased. Also, 

increasing the volume of secondary micropores relative to primary micropores increased 

the adsorption of atrazine. This allowed atrazine to directly compete for sites, instead of 

finding primary micropores blocked by the competing substance.   

In conclusion, activated carbon can be an effective tool for atrazine removal, 

provided enough micropores are not blocked by competing substances, such as NOM.  

BGAC have promise for use in the drinking water industry, but more experimentation is 

required to select robust strains of bacteria with higher survival rates. ACF are useful on a 

laboratory scale to examine pore blockage effects, but is too expensive for most real 

world applications. Activated carbon, though capable of removing 98% of atrazine, is 
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costly, leading researchers to examine cheaper alternatives: recycled activated carbon, 

modified soils, oil seed press cakes, switchgrass, and recycled materials.  

2.3.7 Natural Materials Adsorption  

PAC is typically used for six months to a year, and then it is discarded. Ghosh and 

Phillip (2005) found a way to reuse it as Powdered Waste Activated Carbon (PWAC). 

The PWAC removed 17.19 mg atrazine/g carbon, and when washed for reuse, removed 

13.24 mg atrazine/g carbon. The PWAC also supported the growth of atrazine-degrading 

bacteria that grew on the surface of the activated carbon without causing a biofilm or a 

pressure drop (Ghosh and Phillip 2005).  

Modified soils have been examined by Bottero et al. (1993) and Zadaka et al. 

(2008) for atrazine removal. Zeolites were not able to outperform activated carbon 

(Bottero et al. 1993). However, Zadaka et al. (2008) was able to achieve 93-96% removal 

rates of atrazine, outperforming activated carbon by 10%, with montmorillonite soils pre-

adsorbed with 10% poly(4-vinylpyridine-co-styrene), or PVPco-S90%-mont. Also, the 

PVPco-S90%-montmorillonite was not as affected by addition of dissolved organic 

matter, was more structurally compatible with atrazine, and had a higher charge density 

than other modified soil.  

Boucher et al. (2007) examined the adsorption of atrazine by oil seed press cakes. 

The press cakes adsorbed 58% of the atrazine, out-performing the seeds alone or ground 

seeds. This was due, in part, to a mass transfer effect; the oil particles were smaller in the 

press cakes and less blocked by other structures.  
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Atrazine adsorption on or near a field is highly desired to reduce runoff and 

groundwater contamination. The adsorption capacities of thatch and fresh switchgrass 

were evaluated in a laboratory setting to approximate the behavior of a vegetative filter. 

Both were able to effectively adsorb atrazine. The adsorption coefficients after 24 hours 

were 81.1 and 21.4 Lkg
-1

 for switchgrass and thatch, respectively. However, cut ends of 

switchgrass, not generally present in the field, may have skewed the adsorption data 

(Mersie et al. 2006). An earlier study by Mersie et al. (1999) used planted boxes of 

switchgrass instead of switchgrass cuttings. Bacterial degradation was faster in beds 

planted with switchgrass, and switchgrass plots successfully adsorbed atrazine. Similarly, 

Selim and Zhu (2005) found that sugarcane mulch residue left in the field after harvest 

exhibits strong atrazine retention, with a partitioning coefficient of 16.4 Lkg
-1

.  

Table 2.2 shows the wide variety of recycled materials that have been investigated 

as cheaper alternatives to activated carbon: wood charcoal, rubber granules, bottom ash, 

coconut fiber, and sawdust. Wood charcoal is the best alternative for adsorption, though it 

is not as efficient as activated carbon, with removal rates of 95-97%. However, rubber 

granules also have a high removal rate (82%) (Alam et al. 2000; Sharma et al. 2008). 

Alam et al. (2000) recommends rubber granules over wood charcoal because the disposal 

of the charcoal causes air pollution, whereas rubber granules can be recycled into 

rubberized asphalt.  
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Table 2.2:  Comparison of natural materials for atrazine adsorption 

Material 

Initial 

Conc. of 

Atrazine 

Time  

(min) 
Amount 

Adsorbed 

Percent 

Adsorbed Source 

Sugarcane 

mulch 

residue 3.37 mg/L 30240 47.87 mg/kg  53% 

(Selim and 

Zhu 2005) 

Sugarcane 

mulch 

residue 6.36 mg/L 30240 86.25 mg/kg  55% 

(Selim and 

Zhu 2005) 

Sugarcane 

mulch 

residue 12.34 mg/L 30240 160.3 mg/kg 57% 

(Selim and 

Zhu 2005) 

Sugarcane 

mulch 

residue 18.22 mg/L 30240 236.6 mg/kg 57% 

(Selim and 

Zhu 2005) 

Sugarcane 

mulch 

residue 24.30 mg/L 30240 310.5 mg/kg 57% 

(Selim and 

Zhu 2005) 

Sugarcane 

mulch 

residue 30.16 mg/L 30240 360.5 mg/kg 60% 

(Selim and 

Zhu 2005) 

Macro 

fungi 

florida 4 mg/L 240 2.472 mg/L 62% 

(Alam et al. 

2000) 

Macro 

fungi sajor 

caju 4 mg/L 240 2.492 mg/L 62% 

(Alam et al. 

2000) 

Saw dust 100 µg/L 100 73.25 µg/L 73% 

(Sharma et al. 

2008) 

Bottom 

ash 4 mg/L 210 3.04 mg/L 76% 

(Alam et 

al.2000) 

Baggasse 

charcoal 50 µg/L 100 38.5 µg/L 77% 

(Sharma et al. 

2008) 

Saw dust 50 µg/L 100 40.6 µg/L 81% 

(Sharma et al. 

2008) 

Fly ash 100 µg/L 100 82.9 µg/L 83% 

(Sharma et al. 

2008) 

Rubber 

granules 4 mg/L 100 3.32 mg/L 83% 

(Alam et al. 

2000) 

Baggasse 

charcoal 100 µg/L 100 84.6 µg/L 85% 

(Sharma et al. 

2008) 

Coconut 

fiber 50 µg/L 100 43.48 µg/L 87% 

(Sharma et al. 

2008) 
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Material 

Initial 

Conc. of 

Atrazine 

Time  

(min) 
Amount 

Adsorbed 

Percent 

Adsorbed Source 

Fly ash 50 µg/L 100 43.6 µg/L 87% 

(Sharma et al. 

2008) 

Coconut 

charcoal 100 µg/L 100 93 µg/L 93% 

(Sharma et al. 

2008) 

Wood 

charcoal 100 µg/L 100 95.5 µg/L 96% 

(Sharma et al. 

2008) 

Wood 

charcoal 4 mg/L 45 3.82 mg/L 96% 

(Alam et al. 

2000) 

Coconut 

charcoal 50 µg /L 100 47.8 µg/L 96% 

(Sharma et al. 

2008) 

Coconut 

fiber 100 µg/L 100 96.29 µg/L 96% 

(Sharma et al. 

2008) 

Wood 

charcoal 50 µg/L 100 48.7 µg/L 97% 

(Sharma et al. 

2008) 

 

Table 2.2 Continued:  Comparison of natural materials for atrazine adsorption 
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Alternatives for atrazine adsorption have varying degrees of effectiveness. 

However, none is equal to the power of activated carbon. Future research should focus on 

finding a cheap, fast, effective alternative for atrazine adsorption and should continue to 

elucidate the kinetics of atrazine adsorption.  

2.3.8 Metabolite Adsorption 

Atrazine is often found in conjunction with its metabolites in natural waters. 

Atrazine and its metabolites have different solubilities in water, as seen in Table 2.3. This 

affects their adsorption capacities, according to Lundelius rule: The extent of adsorption 

of a solute is inversely proportional to its solubility in the solvent (Adams and Watson 

1996).  

Table 2.3: Solubility of atrazine and its metabolites (Steinheimer 1993; Faur et al. 2005) 

Compound Solubility in Water (mg/L) 

Atrazine  34.7 

Deethylatrazine (DEA) 3200 

Deisopropylatrazine (DIA) 670 

Hydroxyatrazine (HYA) 7 

 

DEA and HYA are the two most prevalent metabolites found in soils (Liu et al. 

1996; Mudhoo and Garg 2011).  As shown in Table 2.3, HYA is strongly adsorbed to 

soils. HYA has stronger adsorption because it has a higher protonation than atrazine at 

the same pH. However, HYA adsorption does not interfere with atrazine adsorption, 

because the two compounds prefer different types of sites (Ma and Selim 1996).  

Faur et al. (2005) studied atrazine, DEA, and DIA adsorption on activated carbon 

fibers. They found that atrazine adsorbed the strongest, followed by DIA and DEA, 

confirming Lundelius rule. In binary systems, such as atrazine-DEA and atrazine-DIA, 
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the adsorbate of lower solubility, atrazine, was favored for adsorption, while the other, 

DIA or DEA, did not adsorb and had no influence on atrazine adsorption.  

Standard drinking water treatment plant processes such as coagulation, 

flocculation, sedimentation, free chlorine, lime, or soda ash do not reduce the 

concentration of atrazine, DEA, or DIA. Ozone at a dose of 3-5 mg/L reduced TCT 

(Total Chloro s-Triazine) concentration in river water by 32% and in DI water by 70%, 

because of the persistence of the metabolites. Higher removals were seen with powdered 

activated carbon (0.55 m
3
/g). In river water, 90% of TCT was removed with PAC 

concentrations of 20-50 mg/L and 80% was removed with PAC of 5 mg/L. However, 

using PAC concentrations more typical to treatment plants, 1-2 mg/L, only 40% removal 

could be achieved, due to the high solubilities of the metabolites and fowling by natural 

organic matter (Jiang and Adams 2006). A similar study showed using PAC to treat DEA 

and DIA requires 3.1-4.5 times more activated carbon than it would to treat atrazine 

alone, because of the higher solubilities of these metabolites (Adams and Watson 1996). 

The varying solubilities of atrazine metabolites pose a special challenge for 

removal. As regulations change in the coming years to include metabolites, further 

research should focus on adsorption kinetics and examine cheaper adsorption materials.  

2.3.9 Conclusions 

The presence of organic matter, either in soil or in water, has a profound effect on 

the adsorption of atrazine. Further research should focus on what other properties affect 

adsorption, and which are most important to model. A widely applicable, accurate model 

for both atrazine adsorption and desorption has yet to be developed. Also, a suitable and 
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effective alternative for activated carbon for drinking water treatment is worthy of further 

study. Lastly, the adsorption properties of atrazine metabolites may be of concern, 

especially if regulations in the United States are adjusted to include TCT levels.  

2.4 Removal via Bacteria 

2.4.1 Background 

Bacteria provide an alternative method for atrazine removal, either by degradation 

or mineralization. Atrazine degradation is the disappearance of the parent compound, 

atrazine, into intermediate compounds, or metabolites; atrazine mineralization is the 

complete transformation of atrazine and its metabolites into carbon dioxide (Ellis and 

Wackett 2011a, 2011b, 2011c). 

In soils, the half-life of atrazine is 35-50 days with little mineralization of the s-

triazine ring by indigenous bacteria (Topp 2001). The time required for indigenous 

bacteria to mineralize the s-triazine ring, thereby degrading atrazine into less toxic 

metabolites, has been estimated to be 60-360+days. Complete mineralization is estimated 

to occur only to less than 40% of applied atrazine. However, more rapid mineralization of 

atrazine has been reported in agricultural soils that frequently come in contact with 

atrazine. Repeated dosing of atrazine naturally selects bacteria with an enhanced ability 

to degrade atrazine (Alvey and Crowly 1996). Isolation of some of these indigenous 

atrazine-degrading bacteria began in the nineties and continues to the present day.  

2.4.2 Objective 

This section will discuss the spectrum of bacterial research, including a discussion 

of the effectiveness of indigenous bacterial consortia, specific isolates, and characterized 
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consortia. Next, isolated strains of bacteria that can co-remove both atrazine and nitrate 

will be discussed.  The final two sections discuss the challenges with field application of 

bacteria, including efforts to stimulate field conditions in the laboratory, and creative 

solutions to combating the reduced effectiveness of applied bacteria in the field over 

time.  

2.4.3 Uncharacterized Consortia 

Indigenous soil bacteria can be acclimated to degrade atrazine, if given time for 

the proliferation of a degrading population that selects and expresses the right genes for 

degradation (Silva et al. 2004). In top soil, atrazine degradation occurs in 60 days, 

whereas, degradation in subsurface soils or in groundwater, takes significantly longer 

(U.S. Environmental Protection Agency 1988). Under aerobic conditions in soil, the half-

life for atrazine is 3.6 + 0.4 years; under denitrifying conditions, the half-life is over 500 

years, suggesting that atrazine degradation is dependent on soil depth (Nair and Schnoor 

1992; Kruger et al. 1993). However, a study by Wilber and Parkin (1995) found that 

atrazine degradation by a natural soil consortia was not different between aerobic, nitrate-

reducing, sulfate-reducing, and methanogenic conditions. However, degradation  by the 

consortia was rapidly decreased under aerobic and nitrate-reducing conditions once the 

primary substrate, acetate, was depleted.  

2.4.4 Isolates and Isolated Consortia 

Isolated bacterial strains for atrazine mineralization have existed since the 1990’s 

(Wackett et al. 2002).  Pseudomonas sp. ADP was one of the first strains to be isolated. It 

was isolated and characterized by Mandelbaum et al. (1995) and continues to be studied 

due to its high removal efficiency. Pseudomonas sp. ADP can utilize atrazine as a 
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nitrogen source, but not as a carbon source. If a carbon source is added, such as citrate, 

removal efficiencies of 80% (Shapir et al. 1998) up to 95% (Katz et al. 2001) have been 

seen. The ratio for complete denitrification was calculated to be 5.11 g citrate g
-1

 NO3-N 

(Katz et al. 2000).  

However, the requirement of a carbon source puts Pseudomonas sp. ADP at a 

disadvantage compared to other isolates, such as Pseudominobacter sp. and Nocardioides 

sp. These isolates, especially Pseudominobacter sp., outperformed Pseudomonas sp. 

ADP because they can utilize atrazine both as a carbon and a nitrogen source (Topp 

2001). Compounds with this capability have greater potential uses as bioremediation 

agents, because they do not require additional chemical stimulation. 

Consortia are more common in nature than single strains and they can be more 

effective at atrazine removal. A consortia was isolated from atrazine degrading soil by 

Kolic et al (2007): Arthrobacter sp. AG1, Arthrobacter keyseri 12B, Ochrobactrum sp., 

and Pseudomonas sp. It was able to achieve 78% mineralization, because it shared carbon 

and nitrogen sources, and cross-fed metabolites.  

A larger consortia was characterized by Smith et al (2005): Agrobacterium 

tumefaciens, Caulobacter crescentus, Pseudomonas putida, Sphingomonas yaniokuyae, 

Nocardia sp., Rhizobium sp., Flavobacterium oryzihabitans, and Variovorax paradoxus. 

The pivotal members of this consortia were Nocardia sp. and Rhizobium sp. Nocardia sp. 

was the only member that could use the enzyme TrzB to transform atrazine into 

hydroxyatrazine. Next, Rhizobium sp. used AtzB to transform hydroxyatrazine to the next 

product, N-ethylammelide, which all members could further degrade. 
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Characterization of natural consortia illuminated the metabolic pathway of 

atrazine, providing new bacteria that work either individually or together to perform fast 

and effective degradation.  However, the impact of the natural bacteria that cannot be 

cultured must also be considered for their role in atrazine degradation (vanVeen 1999; 

Smith et al. 2005).  

2.4.5 Co-removal of Atrazine and Nitrate 

Atrazine and nitrate are often found together in groundwater in agricultural areas, 

so their simultaneous removal is often desired (Ritter 1990). Katz et al. (2001) used 

Pseudomonas sp. ADP in anoxic non-sterile reactors that had a high removal efficiency 

of atrazine, >95%, for the first month, and then lost effectiveness, 10-25%, due to 

competitive nitrifying bacteria that could not degrade atrazine. Herzberg et al. (2004) also 

saw a similar decrease in atrazine removal efficiency in a reactor filled with non-

adsorptive media. However, this effect was not present in similar reactor with adsorptive 

media due to a “double flux” of atrazine through the biofilm and the adsorbent media. 

Clausen et al. (2002) suggested that a high concentration of nitrate interferes with 

the degradation capabilities of Pseudomonas sp. However, this conclusion was based on a 

14-day reaction time, which may not be long enough to see the full effect of an excess of 

nitrate. 

Early reports by Cervelli and Rolston (1983) claimed that atrazine applied at 3 

g/g soil inhibited denitrification, specifically the reduction of N2O to N2. However, this 

was later disproved by Yeomans and Bremner (1987), who found no inhibition of 

denitrification when atrazine was applied at 5, 10, 25, or 100 g/g soil.  
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Isolate M91-3 has been studied extensively for use in denitrification coupled with 

atrazine degradation in glass media columns by Crawford et al (2000). Atrazine 

degradation was achieved in both aerobic and anaerobic zones in the column. Low 

concentrations of nitrate, ~1 mM, did not interfere with atrazine degradation (Crawford et 

al. 1998, 2000). Also, the addition of glucose accelerated the anaerobic degradation of 

atrazine in the presence of nitrate (Crawford et al. 2000).  

Hunter and Shaner (2010) used a double column containing a vegetable oil based 

denitrifying biobarrier followed by an aerobic reactor with an atrazine-degrading 

consortia to simulate nitrate and atrazine removal from groundwater. The denitrifying 

section removed 98% of the supplied nitrate and 30% of the atrazine, while the aerobic 

reactor removed the remaining 70% of the atrazine. Atrazine removal varied considerably 

in the denitrifying biobarrier, because of the interference of the nitrate, an easier source of 

nitrogen for column bacteria than atrazine. 

As the above results show, co-removal of atrazine and nitrate is possible, though 

sometimes difficult, depending on the electron acceptor conditions, the presence of a 

carbon source, and the presence of other competing bacteria.  

2.4.6 Biostimulation and Bioaugmentation 

Laboratory studies using natural soils revealed the effects of bioaugmentation and 

biostimulation on indigenous bacteria. Bioaugmentation is the addition of non-indigenous 

microbial strains (i.e. Pseudomonas sp. ADP) to the environment for purposes of 

remediation. Biostimulation is the addition of chemicals (i.e. citrate) to the environment 

to stimulate naturally occurring bacteria for purposes of remediation. Biostimulation is 
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approved faster by government agencies, whereas, bioremediation, especially with 

genetically modified organisms, causes closer scrutiny (Wackett et al. 2002). 

Bioremediation is often preferred over physical or chemical remediation because it can be 

done in situ with lower costs and environmental impacts (Sturman et al. 1995; 

Newcombe and Crowley 1999).  

Biostimulation has been researched with a number of materials: municipal solid 

waste compost, straw compost, rice hulls, sodium citrate, urea, Sudan hay, glucose, 

mannitol, acetic acid, and starch (Houot et al. 1998; Assaf and Harris 1994; Alvey and 

Crowley 1995; Chung et al. 1996; Getenga 2003). Rice hulls had the highest 

mineralization of atrazine, 88%, according to Alvey and Crowley (Alvey and Crowley 

1995; Houot et al. 1998). More information about the effectiveness of these, and other 

materials can be found in Table 2.4.  

In a study by Houot et al. (1998), municipal solid waste compost adsorbed 75% of 

applied atrazine, 1 kg/ha, making it unavailable for biodegradation. Conversely, in a 

study by Getenga (2003), municipal solid waste compost applied at 5000 ppm resulted in 

55% mineralization of atrazine. It is unknown whether this effect is due to additional 

bacteria present in the compost or if the compost provided carbon and nitrogen for the 

soil bacteria to utilize.  

Assaf and Harris (1994) found that their soil bacteria benefited from addition of 

mannitol, which produced a 17% increase in CO2 evolution, suggesting a rate-limiting 

step in the metabolization of atrazine. Acetic acid additions to soil reduced the half-life of 

atrazine from 224 to 164 days. However, because only the level of atrazine was 
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measured, these values are not indicative of complete mineralization (Chung et al. 1996). 

The varied results from these studies show that further research in this area would benefit 

from a better understanding of bacterial community population dynamics to select the 

correct compound for biostimulation.  

Silva et al. (2004) showed that biostimulation with citrate alone inhibited atrazine 

mineralization by indigenous bacteria, because their mineralization pathway may be 

different from that of Pseudomonas sp. ADP. However, bioaugmentation and 

biostimulation of Pseudomonas sp. ADP and citrate together reduced atrazine 

concentrations by 80% in 2 days. Rousseaux et al. (2003) found biostimulation and 

bioaugmentation with Chelatobacter heintzii Cit1 and sodium citrate was not effective in 

soils that already had an indigenous population of atrazine degrading bacteria. However, 

in soils without an indigenous population, biostimulation and bioaugmentation resulted in 

a 3-fold increase in mineralization capacity of atrazine. 
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Table 2.4: Comparison of biostimulation methods to encourage indigenous bacteria to mineralize atrazine 

Bacteria Name Biostimulation 

Initial 

Atrazine 

Conc. 

Percent 

Mineralization 

Time 

(days) 

Addition 

Help or 

Hinder? Source 

Natural Consortia Only Compost 0.34 mg/kg 9% 250 hinder 

(Barriuso et al. 

1996) 

Natural Consortia Glucose 100 mg/kg >10% 77 hinder 

(Alvey and 

Crowley 1995) 

Natural Consortia Sudan Hay 100 mg/kg >10% 77 hinder 

(Alvey and 

Crowley 1995) 

Natural Consortia Sodium Citrate 100 mg/kg >10% 77 hinder 

(Alvey and 

Crowley 1995) 

Natural Consortia MSW Compost 10.9 mg/L 15% 150 neither 

(Houot et al. 

1998) 

Natural Consortia 

Composted 

Straw 10.9 mg/L 16% 150 neither 

(Houot et al. 

1998) 

Natural Consortia None 10.9 mg/L 24% 150 neither 

(Houot et al. 

1998) 

Natural Consortia None 100 ppm 31% 112 -- (Getenga 2003) 

Natural Consortia 

30% MSW 

Compost 0.34 mg/kg 34% 250 hinder 

(Barriuso et al. 

1996) 

Natural Consortia Mannitol 10 mg/kg 39% 326 neither 

(Assaf and Harris 

1994) 

Natural Consortia Urea 10 mg/kg 39% 326 neither 

(Assaf and Harris 

1994) 

Natural Consortia 

Mannitol and 

Urea 10 mg/kg 39% 326 neither 

(Assaf and Harris 

1994) 

Natural Consortia 

1000 ppm 

Compost 100 ppm 42% 112 help  (Getenga 2003) 3
1
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Bacteria Name Biostimulation 

Initial 

Atrazine 

Conc. 

Percent 

Mineralization 

Time 

(days) 

Addition 

Help or 

Hinder? Source 

Natural Consortia 

2500 ppm 

compost 100 ppm 46% 112 help (Getenga 2003) 

Natural Consortia 

20 % MSW 

Compost 0.34 mg/kg 47% 250 hinder 

(Barriuso et al. 

1996) 

Pseudomonas sp. 

ADP None 30 ppm 50% 10 -- 

(Masaphy and 

Mandelbaum 

1997) 

Natural Consortia 

5000 ppm 

compost 100 ppm 55% 112 help (Getenga 2003) 

Natural Consortia Compost 100 mg/kg 59% 77 hinder 

(Alvey and 

Crowley 1995) 

Natural Consortia 

10% MSW 

Compost 0.34 mg/kg 66% 250 hinder 

(Barriuso et al. 

1996) 

Natural Consortia None 100 mg/kg 73% 77 -- 

(Alvey and 

Crowley 1995) 

Natural Consortia Starch 100 mg/kg 75% 77 help 

(Alvey and 

Crowley 1995) 

Pseudomonas sp. 

ADP 

Treated 

Wastewater 30 ppm 80% 10 help 

(Masaphy and 

Mandelbaum 

1997) 

Natural Consortia None 0.34 mg/kg 85% 250 -- 

(Barriuso et al. 

1996) 

Natural Consortia Rice Hulls 100 mg/kg 88% 77 help 

(Alvey and 

Crowley 1995) 

Table 2.4 Continued: Comparison of biostimulation methods to encourage indigenous bacteria to mineralize atrazine 

 

3
2
 



33 
 

 
 

 

As the above discussion and Table 2.4 show, the addition of natural materials can 

either help or hinder atrazine removal. The natural materials add new bacteria or fungi 

that may either compete with or assist local populations of atrazine-degrading microbes. 

The natural materials also may act as a source of nutrients for bacterial populations. 

However, atrazine may adsorb into pore space in the natural material, making it less 

bioavailable for degradation. The fastest mineralization rate was 80% in ten days with the 

addition of wastewater by Masaphy and Mandelbaum (1996). Rice hulls were the next 

most effective, with 88% mineralization in 77 days (Alvey and Crowley 1995).  

2.4.7 From the Laboratory to the Field 

Laboratory conditions are easier to control and are often less harsh to atrazine 

degrading bacteria than field conditions. Though some laboratories attempt to replicate 

conditions in the field, field conditions are hard to control such as: a non-uniform 

distribution of atrazine, the presence of other contaminants or metabolites, ambient 

temperature, and mass transport limitations for the contaminant, bacteria, and nutrients 

(Sturman et al. 1995; Strong et al. 2000;  Silva et al. 2004).  

One laboratory-scale study strived to replicate field conditions, using simulated 

rainwater, commercial herbicides, and earthworms to examine the survival rates and 

effectiveness of Pseudomonas sp. ADP. Chelinho et al. (2010) set up soil microcosms in 

the laboratory with earthworms (Eisenia andrei) and springtails (Folsomia candida) that 

were dosed with Pseudomonas sp. ADP and Atrazerba FL, a commercial herbicide 

containing atrazine. Both the herbicide and the bacteria were dispersed throughout the 

soil with simulated rainwater, to imitate field conditions. Mineralization of atrazine after 
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42 days of exposure was 99%, which was slower than similar studies without 

invertebrates, suggesting that the invertebrates may have contributed to a decline in the 

numbers of Pseudomonas sp. ADP.    

Unfortunately, in field studies, bioaugmented bacteria often exhibit a low survival 

rate or lose their degradation ability over time. This could be due to a lack of available 

nutrients, competition with indigenous populations, or other conditions not favorable to 

bacterial growth (Sturman et al. 1995; Newcombe and Crowly 1999; Silva et al. 2004). 

Before introducing bacteria, vanVeen et al. (1999) recommends the use of 

microbiosensors to assess the soil environment for availability, distribution, and 

movement of soil nutrients.  Thus, biostimulation, in addition to bioaugmentation, is 

recommended for field studies.  

The natural fluctuations of soil conditions may stress bioaugmented bacteria. 

Inoculated bacteria survival is based on their ability to colonize soil particles. Stress on 

bioaugmented bacteria can be cushioned with a carrier, such as peat moss, to provided 

protected pore space and nutrients. Carriers must be nontoxic, biodegradable, and of 

consistent quality (vanVeen et al. 1999). 

To overcome the loss of degradation ability, Newcombe and Crowly (1999) used 

a batch fermenter to deliver a bacterial consortia containing Pseudomonas sp. strain CN1 

and Clavibacter michiganese ATZ1 to soils contaminated with 100 g atrazine/g soil at 

different frequencies. In laboratory tests, soils that were inoculated once had a 

mineralization rate of 17%, but soils that were inoculated every three days had 

mineralization rates of 64%.  In field tests, no significant mineralization occurred in soils 
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that were only inoculated once. However, 72% mineralization was seen in soils that had 

eight inoculations over 12 weeks.  Lima et al. (2009) saw similar results with 

Pseudomonas sp. ADP and citrate. At low concentrations (6 g/g soil) the citrate addition 

was unnecessary. However, at high concentrations (62 g/g soil) a single inoculation 

mineralized 87% whereas the same single inoculation spread over three days mineralized 

99%. This demonstrates the vast difference between laboratory and field conditions, and 

that repeated applications are one strategy to improve microorganism survival rates in the 

field.  

Another strategy, suggested by Alvey and Crowly (1996), is to plant corn. Corn 

did not affect the mineralization rate of the bacterial consortia (Pseudomonas sp. strain 

CN1 and Clavibacter michiganese ATZ1), but it did increase the survival rate of the 

bacterial consortia. Survival of the bacterial consortia was 30 times higher in the planted 

soil compared to non-planted soil for low atrazine concentrations.   

Once the enzymes responsible for atrazine degradation with Pseudomonas sp. 

ADP were illuminated, biochemists began creating their own bioaugmentation sources 

using chemically killed, recumbent organisms engineered to overproduce enzymes of 

interest. The first field-scale study of this in the United States was performed by Strong, 

et al. (2000) using Escherichia coli that had been engineered to produce AtzA, atrazine 

chlorohydrolase, the enzyme responsible for the dehalogenation of atrazine into 

hydroxyatrazine. In the laboratory studies, 84% of initial atrazine concentration was 

degraded, whereas field scale studies only achieved 77% degradation. This difference in 

performance is attributed to field conditions, which are harder to control, including 

distribution of atrazine and temperature.  
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The public may have a negative perception of bioaugmentation with exotic 

genetically-modified strains of bacteria (Shapir et al. 1998). However, this may be 

avoided by using a method proposed by Perumbakkam et al (2006). AtzA was delivered 

to two biofilm populations on a laboratory scale using plasmids: a mixed culture of 

indigenous bacteria and Acinetobacter sp. BD413. The gene augmentation was successful 

on both accounts, resulting in 80-85% degradation of 20 mg atrazine/L. Zhao et al. 

(2003) also used the AtzA gene to augment naturally occurring soil bacteria. The 

effectiveness of the AtzA gene was compared to Pseudomonas sp. ADP in both aged and 

un-aged soils. The AtzA gene resulted in faster degradation than by Pseudomonas; 

however, the degradation of both was slowed by aging.  

The possibilities of inoculation of indigenous bacteria with necessary genes for 

degradation of contaminants is promising, especially if complete mineralization could be 

achieved. However, the cost of widespread use of engineered microorganisms is yet to be 

shown. Also, the economics and practicality of frequent re-inoculation must also be 

considered when designing large-scale projects (Topp 2001).  

2.4.8 Aging 

Remediation of older sites poses special challenges: the older the site, the greater 

the opportunity for atrazine or its metabolites to adsorb into inaccessible pore spaces, 

limiting the interaction with plants, animals, bacteria, and transport. Bound residues of 

atrazine are assumed to be unavailable, but they may not be truly unavailable to bacteria 

or other organisms (Barriuso et al. 2004). Therefore, bioavailability is best described for a 

specific organism and a specific mode of transport (Alexander 2000).  



37 
 

 
 

As a contaminant is sequestered in soil, its toxicity generally decreases with time, 

because the contaminant moves into the pore space or within the organic matter matrix. 

Desorption out of these two areas is very slow. However, risk of exposure is not 

completely eliminated because pockets of unadsorbed contaminant may still remain. 

Pockets like these are aged, but not sequestered (Alexander 2000).  

By convention, pesticide concentrations in soil are measured as total 

concentration after extraction with harsh solvents. These solvents may be releasing more 

pesticide than is actually bioavailable, and may be causing unnecessary remediation in 

places where much of the contaminant is sequestered (Alexander 2000).  Barriuso et al. 

(2004) proposed a milder extraction technique: a mix of calcium chloride and methanol. 

The introduction of Pseudomonas sp. ADP after the extraction didn’t result in further 

degradation of atrazine, demonstrating that most of the bioavailable atrazine had been 

extracted. Milder extraction methods better simulate natural conditions and this approach 

could impact environmental regulations.  

Bioavailability is an important consideration for remediation. It is influenced by 

the age of a site and whether a compound is truly sequestered, and will remain 

sequestered. Different soils may influence bioavailability differently. It is unknown 

which soil properties are most important to simulate in a laboratory setting. Differences 

in different types of soil, such as bulk soil and rhizosphere soil should be considered.  

Lastly, much research has been done with atrazine, but there are far fewer papers that 

examine the toxicity and bioavailability of its metabolites (Sturman et al. 1995; Chung 

and Alexander 1998; Alexander 1999; vanVeen et al. 1999; Alexander 2000). 
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2.4.9 Conclusions 

Table 2.5 provides a summary of papers dealing with bacterial remediation. It is 

organized from increasing mineralization rates to increasing degradation rates. As Table 

2.5 shows, Pseudomonas sp. ADP has the highest rates of mineralization, with the fastest 

rate, 7 days, attributed to Lima et al. (2009) However, the effectiveness of Pseudomonas 

sp. ADP ranges from no degradation at all (Pearson et al. 2006) to 100% degradation 

(Katz et al. 2001) to 98% mineralization (Lima et al. 2009).  Natural consortia, share a 

similar range from no degradation (Pearson et al. 2006) to 100% degradation (Smith et al. 

2005) to 84% mineralization (Alvey and Crowley 1996). Bioaugmented natural consortia 

are not as effective, ranging from 50% degradation (Topp 2001) to 80% mineralization 

(Silva et al. 2004).  

The fastest mineralization rates, under 10 days, were accomplished with, 

Pseudomonas sp. ADP amended with citrate, achieving 75-98% mineralization (Shapir et 

al. 1998; Kolic et al. 2007; Lima et al. 2009). Perumbakkam et al. (2006) achieved the 

fastest degradation rates, only a few hours, with their novel delivery of a plasmid carrying 

the AtzA gene to a natural consortia. Hopefully, with future work on gene delivery 

methods and the atrazine metabolic pathway, this high degradation rate can be translated 

into a high mineralization rate.  High mineralization rates from both Pseudomonas sp. 

ADP and natural consortia take about a month to achieve (Alvey and Crowley 1996; 

Strong et al. 2000; Katz et al. 2001; Chelinho et al. 2010) 

The wealth of information on bacterial mineralization of atrazine leaves many 

questions unanswered. As more strains are discovered, a unified method to compare the 

atrazine removal ability of different strains will be necessary.  The interaction between 



39 
 

 
 

members of an atrazine-degrading consortia as well as nutrient requirements should be 

examined to illuminate under what circumstances bioaugmentation, biostimulation, or 

gene addition can be most effective. Also, the continued persistence of atrazine in the 

environment calls for a better understanding and replication of field conditions in the 

laboratory. Lastly, remediation of older sites requires a more specific definition of 

bioavailability that should be incorporated into future environmental regulations.  
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Table 2.5: Comparison of bacteria that have been used to remediate atrazine 

Bacteria Name 

Electron 

Donor 

Initial 

Atrazine 

Concentration 

Percent 

Mineralization or 

Degradation 

Time 

(days) Source 

Clavibacter 

michiganese, 

Pseudomonas sp., and 

Cytophaga sp. 

 100 mg/kg  17% mineralization 35 (Newcombe and Crowley 

1999) 

Natural consortia Citrate 0.5 mg/kg soil 21% mineralization 106 (Rousseaux et al. 2003) 

Pseudomonas sp. ADP 

+ natural consortia 

 168.7 µg/g soil 31% mineralization 7 (Silva et al. 2004) 

Pseudomonas sp. ADP  100 mg/kg  35% mineralization 35 (Newcombe and Crowley 

1999) 

Clavibacter 

michiganese, 

Pseudomonas sp., and 

Cytophaga sp. 

 100 mg/kg  38% mineralization 84 (Newcombe and Crowley 

1999) 

Chelatobacter heintzii 

Cit1+natural consortia 

Citrate 0.5 mg/kg soil 50% mineralization 60 (Rousseaux et al. 2003) 

Natural consortia  0.37 ppm 50% mineralization 1095 (Nair and Schnoor 1992) 

Natural consortia  0.37 ppm 50% mineralization 11680 (Nair and Schnoor 1992) 

Natural consortia  168.7 µg/g soil 54% mineralization 67 (Silva et al. 2004) 

Pseudomonas sp. ADP Citrate 2.8 µmol/L 63% mineralization 14 (Clausen et al. 2002) 

Clavibacter 

michiganese, 

Pseudomonas sp., and 

Cytophaga sp. 

 100 mg/kg  64% mineralization 35 (Newcombe and Crowley 

1999) 

       4
0
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Bacteria Name 

Electron 

Donor 

Initial 

Atrazine 

Concentration 

Percent 

Mineralization or 

Degradation 

Time 

(days) Source 

Pseudomonas sp. ADP Citrate 1500 ppm 70% mineralization 21 (Mandelbaum et al. 1995) 

Clavibacter 

michiganese, 

Pseudomonas sp., and 

Cytophaga sp. 

 3 mg/kg soil 71% mineralization 28 (Alvey and Crowley 1996) 

Clavibacter 

michiganese, 

Pseudomonas sp., and 

Cytophaga sp. 

 100 mg/kg  72% mineralization 84 (Newcombe and Crowley 

1999) 

Pseudomonas sp. ADP Phosphate  0.01ppm 75% mineralization 4 (Shapir et al. 1998) 

Natural consortia Citrate 0.5 mg/kg soil 75% mineralization 30 (Rousseaux et al. 2003) 

Chelatobacter heintzii 

Cit1+natural consortia 

Citrate 0.5 mg/kg soil 75% mineralization 30 (Rousseaux et al. 2003) 

Chelatobacter heintzii 

Cit1 

Citrate 0.5 mg/kg soil 75% mineralization 30 (Rousseaux et al. 2003) 

Recombinant E. Coli 

bred to express 

atzA+natural consortia 

Phosphate 6700 ppm 77% mineralization 56 (Strong et al. 2000) 

Pseudomonas sp. ADP Citrate 

and 

Phosphate 

10 ppm 78% mineralization 15 (Shapir et al. 1998)  

       

Table 2.5 Continued: Comparison of bacteria that have been used to remediate atrazine 
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Bacteria Name 

Electron 

Donor 

Initial 

Atrazine 

Concentration 

Percent 

Mineralization or 

Degradation 

Time 

(days) Source 

Arthrobacter sp. 

AG1+Arthrobacter 

keyseri 

12B+Ochrobactrum 

sp. + Pseudomonas sp. 

Citrate 500 mg/L 78% mineralization 6 (Kolic et al. 2007) 

Pseudomonas sp. ADP 

+ natural consortia 

Citrate 337.4 µg/g 80% mineralization 18 (Silva et al. 2004) 

Natural consortia Phosphate 17100 ppm 84% mineralization 35 (Strong et al. 2000) 

Clavibacter 

michiganese, 

Pseudomonas sp., and 

Cytophaga sp. 

 3 mg/kg soil 84% mineralization 28 (Alvey and Crowley 1996) 

Pseudomonas sp. ADP Citrate 200,000 

g/hectare 

87% mineralization 7 (Lima et al. 2009) 

Pseudomonas sp. ADP  100 mg/kg  90% mineralization 35 (Newcombe and Crowley 

1999) 

Pseudomonas sp. ADP Citrate 200,000 

g/hectare 

98% mineralization 7 (Lima et al. 2009) 

Pseudomonas sp. ADP Glucose 10 µg/L 0% degradation 108 (Pearson et al. 2006) 

Pseudomonas sp. ADP Glucose 10 µg/L 0% degradation 108 (Pearson et al. 2006) 

Natural consortia Glucose 10 µg/L 0% degradation 108 (Pearson et al. 2006) 

Natural consortia Glucose 10 µg/L 0% degradation 108 (Pearson et al. 2006)  

Table 2.5 Continued: Comparison of bacteria that have been used to remediate atrazine 

4
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Bacteria Name 

Electron 

Donor 

Initial 

Atrazine 

Concentration 

Percent 

Mineralization or 

Degradation 

Time 

(days) Source 

Consortia  20 µg/g 0.02% degradation 30 (Goswami and Green 

1971) 

Pseudomonas sp. ADP  1500 ppm 17% degradation 21 (Mandelbaum et al. 1995) 

Pseudomonas sp. ADP Citrate 

and 

Phosphate 

12.5 mg/L 18% degradation 103 (Katz et al. 2001) 

Pseudomonas sp. ADP Citrate 

and 

Phosphate 

0.1 mg/L 18% degradation 103 (Katz et al. 2001) 

Consortia from Sludge Dextrose 5 mg/L 45% degradation 5 (Ghosh and Phillip 2004) 

Natural consortia Acetic 

Acid 

10 mg/L 50% degradation 164 (Chung et al. 1996) 

Natural consortia  100 ppm 50% degradation 1.25 (Mandelbaum et al. 1993) 

Nocardioides sp. 

strain C190+natural 

consortia 

 10 mg/L 

medium 

50% degradation 3 (Topp 2001) 

Pseudaminobacter 

strains (C147 or C195) 

+natural consortia 

 10 mg/L 

medium 

50% degradation 5 (Topp 2001) 

M91-3  21.6 mg/L 50% degradation 6 (Crawford et al.1998) 

Pseudomonas sp. ADP 

+ natural consortia 

 10 mg/L 

medium 

50% degradation 10 (Topp 2001) 

Natural consortia  3.2 kg/hectare 50% degradation 14  (Somasundaram and Coats 

1990)  

Table 2.5 Continued: Comparison of bacteria that have been used to remediate atrazine 
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Bacteria Name 

Electron 

Donor 

Initial 

Atrazine 

Concentration 

Percent 

Mineralization or 

Degradation 

Time 

(days) Source 

Natural consortia  2.2 kg/hectare 50% degradation 21 (Somasundaram and Coats 

1990)  

Natural consortia  12500 µg/kg 50% degradation 38 (Seybold et al. 2001) 

Natural consortia  718 µg/kg 50% degradation 86 (Seybold et al. 2001) 

Natural consortia   5 µg/g 50% degradation 87 (Kruger et al. 1993) 

Natural consortia   5 µg/g  50% degradation 87 (Kruger et al. 1993) 

Natural consortia + 

plasmid containing 

atzA 

 20 mg/L 90% degradation 0.0625 (Perumbakkam et al. 2006) 

Acinetobacter sp. 

strain BD413+plasmid 

containing atzA 

 20 mg/L 90% degradation 0.0625 (Perumbakkam et al. 2006) 

Pseudomonas sp. ADP Citrate 22 mg/kg soil 98% degradation 42 (Chelinho et al. 2010) 

Pseudomonas sp. ADP Citrate 44 mg/kg soil 99% degradation 42 (Chelinho et al. 2010) 

Pseudomonas sp. ADP Citrate 

and 

Phosphate 

12.5 mg/L 100% degradation 30 (Katz et al. 2001) 

Pseudomonas sp. ADP Citrate 

and 

Phosphate 

0.1 mg/L 100% degradation 30 (Katz et al. 2001) 

       

Table 2.5 Continued: Comparison of bacteria that have been used to remediate atrazine 
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Bacteria Name 

Electron 

Donor 

Initial 

Atrazine 

Concentration 

Percent 

Mineralization or 

Degradation 

Time 

(days) Source 

Agrobacterium 

tumefaciens, 

Caulobacter 

crescentus, 

Pseudomonas putida, 

sphingomonas 

yaniokuyae, 

Nocardiodes sp., 

Rhizobium sp., 

Flavobacterium 

oryzihabitans, 

Variovorax paradoxus 

Glucose 250 µg/g 100% degradation 4 (Smith et al. 2005)  

4
5
 

Table 2.5 Continued: Comparison of bacteria that have been used to remediate atrazine 
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2.5 Conclusions 

This review highlighted some of the literature surrounding atrazine remediation. 

Physical methods, such as adsorption on soil, activated carbon, or other natural materials 

can be effective if competition for active sites can be kept to a minimum. Biological 

methods, a relatively new technique, can be fast and effective if the conditions are 

favorable. The continued persistence of atrazine and its metabolites in the environment as 

well as ever-changing regulations will continue to require creative solutions and more 

accurate laboratory simulations in the future.  
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CHAPTER 3: EVALUATION OF MULCH PROPERTIES FOR 

ATRAZINE CONTAMINATED GROUNDWATER REMEDIATION  

3.1 Background 

Atrazine is a popular broadleaf herbicide, typically used on corn (Solomon et al. 

1996). Atrazine has a moderate solubility in water (34.7 mg atrazine/L at 25˚C), and a 

slow biodegradation rate (Faur et al. 2005). After application, atrazine can slowly 

infiltrate through soil to groundwater (Ma and Selim 1996; Gu et al. 2003). In 2010, the 

Nebraska Department of Environmental Quality found that 5% of groundwater samples 

exceeded the reporting limit for atrazine (Nebraska Department of Environmental 

Quality, 2010).  

The maximum contaminant level (MCL) for atrazine in drinking water is 3 g/L, 

as set by the EPA (Wilber et al. 1995). The European Union has not only set the MCL at 

0.1 g/L, but has also banned the use of atrazine due to its persistence in the environment 

(Wilber et al. 1995; Faur et al. 2005; Sass and Colangelo 2006; Zadaka et al. 2009). 

Atrazine was the most frequently detected pesticide (53%) in of water samples from 

vernal pools in protected areas in the United States (Battaglin et al. 2008). Exposure to 

atrazine causes endocrine disruption in frogs, rats, and humans (U.S. EPA Office of 

Pesticide Programs 1993, 2002; Villanueva et al. 2005). 

Indigenous soil bacteria, when exposed to atrazine over long periods of time, may 

gradually increase their capacity to degrade it. Specific strains have been isolated and 

characterized from indigenous consortia and reapplied for remediation via 

bioaugmentation (Mandelbaum et al. 1995; Alvey and Crowly 1996; Newcombe and 

Crowley 1999; Silva et al. 2004; Smith et al. 2005; Kolic et al. 2007; Lima et al. 2009). 
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Unfortunately, survival rates of isolated strains of bacteria in the field are low, making 

multiple reapplications necessary (Silva et al. 2004; Newcombe and Crowly 1999; 

Sturman et al. 1995). 

Bacteria supported on a substrate, or a biowall, avoids the hassle of re-application 

rates and is better able to endure changes in operating conditions (vanVeen et al. 1997). 

In situ treatments like these can be placed to intercept the contaminant plume to prevent 

the spread of further contamination. Biowalls consist of bacteria supported on a natural 

substrate, placed to intercept contaminated groundwater flow. Removal is accomplished 

through adsorption or biological degradation, as the contaminated plume passes through a 

permeable remediation well or trench placed perpendicular to groundwater flow. This 

treatment is inexpensive when compared to pump and treat methods, especially when the 

supporting substrate is cheap and abundant, like mulch (Kao et al. 2001; Schipper et al. 

2004; Seo et al. 2007). Substrates made of natural materials have been used as a 

supporting material for biowalls to remove naphthalene (Seo et al. 2007) and 

tetrachloroethylene (Kao et al. 2001), but rarely for atrazine. Ilhan et al. examined the 

removal of atrazine and nitrates in a woodchip bioreactor. The bulk of the atrazine 

removal appeared to be due to physical, rather than biological methods (Ilhan et al. 

2011). 

Atrazine and nitrate often coexist in groundwater (Ritter 1990).  In 2010, the 

Nebraska Department of Environmental Quality found that 94% of groundwater samples 

exceeded the reporting limit for nitrate (Nebraska Department of Environmental Quality, 

2010). The MCL for nitrate is 10 mg NO3-N/L (“Basic Information” 2012). Co-removal 

of atrazine and nitrate, often desired in agricultural states like Nebraska, is possible with 
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biological treatment if a carbon source is provided. This carbon source can be added 

separately, or could be part of the biowall itself (Schipper et al. 2004).  

3.2 Objective 

The objectives of this study were twofold. The first objective was to identify the 

physical and chemical properties of three types of common gardening mulch. The second 

objective was to characterize the adsorptive capacity of the mulch for atrazine and nitrate 

with a series of isotherm experiments.  

3.3 Materials and Methods 

3.3.1 Organic Mulch 

Three types of common gardening mulch were selected as possible substrates for 

biofilm support: cedar, cypress, and hardwood.  The mulch was purchased from a local 

gardening supplies store, Earl May (Lincoln, NE, USA).  

Mulch samples were prepared using the method reported by Seo et al. (Seo et al. 

2007), with modifications.  Mulch samples were dried in a fume hood overnight, ground 

for 30 seconds using a Black and Decker food processor for 30 seconds, and sieved to a 

#10 mesh size (2 mm). To remove the influence of natural bacteria and fungi, the mulch 

samples were autoclaved twice before they were finally dried in a 105C oven.   

3.3.2 Physical and Chemical Properties of the Mulch 

The pH, conductivity, water content, organic content, and cation exchange 

capacity (CEC) of each mulch was measured to determine the best kind of mulch to use 

as a supporting material for a biowall. The pH, conductivity, and organic content (Loss-

On-Ignition method) were determined using techniques from the Methods of Soil 
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Analysis (Klute et al. 1994; Weaver et al. 1994). The pH and conductivity measurements 

were taken after 10 grams of mulch sample mixed with 100 mL of nanopure water for 10 

minutes. The organic content (Loss-On-Ignition method) measurements were performed 

using a weight difference in mulch samples before and after ignition in a muffle furnace 

(550C).   

The water content was determined by taking the difference in weights between 

unprepared mulch and after drying it in a 105C oven overnight. 

 The values for organic content (High Range COD and Low Range COD) were 

found using the reactor digestion method with high and low range COD digestion vials, 

respectively, available from HACH chemicals (Loveland, CO, USA).  

The Cation Exchange Capacity (CEC) was determined using a modification of the 

barium chloride method (Ross 1995; Ciesielski and Sterckeman 1997), wherein the 

concentrations of barium and magnesium ions were measured by Inductively Coupled 

Plasma Mass Spectrometry (ICP-MS) and Atomic Absorption Spectroscopy (AAS), 

respectively, rather than by accurate weighing. The barium chloride and the magnesium 

sulfate were purchased from Fisher Scientific (Waltham, MA, USA). In this method, the 

adsorbed barium exchanges with magnesium and precipitates as BaSO4. Briefly, 2.5 g of 

mulch sample was shaken with 30 mL of a 0.1 M BaCl2 solution for one hour. The 

supernatant was collected and analyzed by ICP-MS. The mulch samples were 

equilibrated with 30 mL of 2 mM BaCl2. Lastly, the mulch samples were shaken with 

0.02M MgSO4 for two hours. 
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Each datum point represents an average of three samples. The mulch properties 

were compared with SigmaPlot 12 (Systat Software, San Jose, CA, USA) using a one-

way analysis of variance (ANOVA) with a significance level of α=0.05.  

3.3.3 Isotherm Experiments 

The adsorptive capacity of mulch for removal of atrazine, nitrate, and both 

atrazine and nitrate was quantified by conducting isotherm experiments. Sodium nitrate 

was purchased from Fisher Scientific (Waltham, MA, USA). Atrazine was purchased 

from Chemservice (West Chester, PA, USA).  Amber glass bottles with Teflon caps were 

used to minimize the effect of light on the samples. The bottles were filled with varying 

weights of mulch and filled to the rim with selected concentrations of solution to avoid 

any headspace (Environmental Protection Agency 1992). The bottles were then sealed 

with Parafilm, capped with a Teflon cap, and again sealed with Parafilm. Control tests 

were conducted to ensure that the mulch samples did not contain atrazine or nitrate and 

atrazine or nitrate were not adhering either to the glass container or to the filter paper.   

Weights and concentrations were selected so that the final concentration of a 

chemical in solution would be either less than 90% or greater than 10% of the initial 

solution concentration. The mono adsorbate data were obtained for concentration ranges 

of 0.5-20 mg NO3-N/L and 5-10 mg atrazine/L. The nitrate adsorption data were obtained 

using two concentration ranges, 0.5-3.4 mg NO3-N/L and 0.5-20 mg NO3-N/L. The lower 

range reflects the median background concentration of nitrate in Nebraska Groundwater 

in 2009, 4.7 mg NO3-N/L (“Quality-Assessed Agrichemical Contaminant Database for 

Nebraska Groundwater” 2011). 
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Binary adsorbate data were obtained for two concentrations: 7 and 3.5 mg NO3-

N/L, paired with 5 and 2.5 mg atrazine/L, respectively.  The nitrate concentration was 

selected based on the average background concentration of nitrate in Nebraska 

groundwater in 2009, 7.8 mg NO3-N/L (“Quality-Assessed Agrichemical Contaminant 

Database for Nebraska Groundwater” 2011). 

The initial atrazine concentration in solution for both the mono and binary 

adsorbate isotherms is more than a thousand times higher than typical background 

concentrations in groundwater, which are typically less than 1.5 µg atrazine/L (Nebraska 

Department of Environmental Quality, 2010). Higher concentrations were used to 

increase the concentration gradient and ensure more reliable adsorption data.  

The bottles were tumbled at 18 rpm for 5 days. The equilibrium time was selected 

based on a literature review (Seo et al. 2007). After 5 days, the solutions were filtered 

with a Millipore filtration apparatus using a Whatman GF/A filter (Fisher Scientific, 

Waltham, MA, USA) to remove particulate matter, and concentrations of the chemicals 

were determined, as described in Section 3.2.4. The adsorption capacity of nitrate and 

atrazine were calculated from the Langmuir and Freundlich data.  

The equation for the Langmuir isotherm is given as 

 

  
 

      

         
        (1) 

or, in a linearized form, 

  

  
 

 

      
 

  

    
       (2) 
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where qe is the amount of adsorbed compound on the mulch at equilibrium (mg/kg), qmax 

is the maximum adsorption capacity (mg/kg), KL is the Langmuir constant (L/mg), and 

Ce is the concentration of compound in solution at equilibrium (mg/L) (Tchobanoglous, et 

al. 2003).  

The equation for the Freundlich isotherm is given as 

 

       
   

        (3) 

 

or, in a linearized form, 

 

   (  )     (  )  
 

 
    (  )     (4) 

 

where KF ((mg/kg)(mg/L)
-n

) and n are constants representing sorption capacity and 

intensity, respectively (Tchobanoglous, et al. 2003). 

Data were discarded if the equilibrium concentration in solution was greater than 

90% or less than 10% of the initial solution concentration to ensure that the adsorption 

quantity was accurate. A 95% confidence interval was used by Sigma Plot 12 (Systat 

Software, San Jose, CA, USA) to test for possible outliers before fitting to adsorption 

models.  The ratio of qe/Ce and the average value of isotherm coefficients were compared 
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between data sets using a one way analysis of variance (ANOVA) with a significance 

level of 0.05 in SigmaPlot 12.  

3.3.4 Instrumental Analysis  

Nitrate was analyzed using a Dionex Ion Chromatograph (ICS-90) (Sunnyvale, 

CA, USA) with a Dionex AS40 Autosampler. Sample size was 5 mL. The column was a 

4x250mm IonPac AS14. An isocratic mobile phase consisted of 3.5 mM Na2CO3 and 1 

mM NaHCO3. The data were analyzed with Chromeleon v. 6.7, Build 1820.  

Atrazine was analyzed using a Waters Alliance 2695 High-Performance Liquid 

Chromatograph (HPLC) (Milford, MA, USA) connected to a Waters 2996 Photodiode 

Array (PDA) detector. The sample size was 25 L and was injected at 1 mL/min. The 

mobile phase was a gradient of water and methanol, as shown in Figure 3.1. The column 

type was Kromasil 100-5C8 and was 4.6 m in length and 250 mm in diameter. The 

column temperature was 50C. The detector wavelength was set at 222 nm. The data 

were analyzed with Waters Empower Software Build #1154. 
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Figure 3.1: High-performance liquid chromatography gradient for atrazine analysis 

3.4 Results 

3.4.1 Physical and Chemical Properties of the Mulch 

The pH, conductivity, water content, organic content, and cation exchange 

capacity (CEC) were measured to determine the best kind of mulch to use as a supporting 

material for a biowall (Table 3.1). Each data point represents an average of three samples.  

  

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

%
 o

f 
W

a
te

r 

Time (minutes) 



56 
 

 
 

 

Table 3.1: Physical and chemical properties of cedar, cypress, and hardwood mulch. 

Superscripts indicate pairings of statistical significance. 

 Cedar Cypress Hardwood 

pH 6.73 ± 0.73
a
 5.32 ± 0.02

a
 5.98 ± 0.51 

Conductivity (μS/cm) 129.1 ± 25.3 99.2 ± 6.5 105.8 ± 17.1 

Water content (%) 44.89 ± 5.14 53.82 ± 3.98 40.42 ± 7.68 

Organic content (mg/g)    

Loss-On-Ignition 976.95 ± 2.52
b
 996.35 ± 2.16

b
 984.17 ± 0.9

b
 

Low Range COD 1186.67 ± 323.93
c
 2000 ± 144.22

c,d
 1253.33 ± 106.92

d
 

High Range COD 1246.73 ± 118.34 1301.33 ± 370.91 1005.08 ± 2.8 

Cation Exchange 

Capacity (meq/100g) 7.97 ± 1.45 6.73 ± 0.68 7.23 ± 1.25 

 

Loss-on-Ignition was the only property measured that showed a statistically 

significant difference between all three types of mulch. The pH difference between cedar 

and cypress mulch is statistically significant and the Low Range COD difference between 

the pairs of cedar-cypress and cypress-hardwood is statistically significant. More accurate 

measuring equipment or methods could be used to verify these statistics in the future. 

Qualitatively, among the three types of mulch, cedar mulch has the highest pH, 

conductivity, and CEC, whereas cypress mulch has the lowest values. Seo et al. (2009) 

demonstrated a similar pattern: mulches with a high conductivity also exhibited a high 

CEC. This association can be expected, because CEC is a measure of the ability of the 

material to exchange cations and electrical conductivity is a measure of the ion content of 

a solution (Henry 1997).  

Henry (1997) reported that CEC was inversely proportional to water content. This 

is shown in Table 3.1; qualitatively, cypress has the highest water content and the lowest 
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CEC.  Research by the Virginia Extension Board concluded the inverse: High CEC was 

linked to high organic and water content in clay soils (Grisso et al. 2009). This is most 

likely because mulch has different properties than clay soil. Further investigation is 

needed to verify this.  

Surface area measurements were beyond the scope of this limited project. 

However, the surface areas of the cypress and hardwood mulch were assumed to be 

similar to results from Seo et al. (2009).  The authors performed a Brunauer, Emmett, and 

Teller (BET) isotherm revealing that cypress and hardwood mulch had a surface area of 

11-18 m
2
/g and 25-32 m

2
/g), respectively.  

3.4.2 Isotherm Experiments: Mono Systems 

Isotherm experiments were performed to quantify the adsorptive capacity of 

cedar, cypress, and hardwood mulch for the mono systems of atrazine and nitrate, as well 

as the binary system of atrazine-nitrate. The raw data for the mono-system isotherms for 

atrazine and nitrate are given in Appendices A and B, respectively. 

The raw isotherm data were graphed in Appendices A and B for atrazine and 

nitrate, respectively, to determine which of the Giles isotherm types would best describe 

the data (Giles et al. 1974a).  The atrazine figures, from Appendix A, are linear, thus 

appearing  to show that atrazine is exhibiting C-type, or constant partitioning, adsorption. 

However, Calvet (1989) suggests that an L-type, or Langmuir adsorption, better describes 

atrazine adsorption. The atrazine isotherm appears to be a C-type, likely due to the range 

of concentrations examined; a wider range of atrazine concentrations may show a more 

distinct L-type isotherm.  
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The raw isotherm data for nitrate, as seen in Appendix B, do not show a distinct 

isotherm type. Nitrate should be exhibiting a H-type, or high affinity, adsorption (Giles et 

al. 1974b). Nitrate is a negatively charged ion that has a high affinity for positively 

charged sites on the surface of the mulch. However, organic materials generally don’t 

have a high number of positive sites. The number of positive sites can be increased with 

surface treatments, such as acidification (Cays-Vesterby 2009).  

Atrazine adsorption from the aqueous phase was correlated using the Langmuir 

isotherm, as shown in Equation 2, and the Freundlich isotherm, as shown in Equation 4. 

The mono atrazine isotherm results are shown in Table 3.2. The corresponding figures for 

atrazine can be found in Appendix C. Nitrate adsorption from the aqueous phase was also 

correlated using the Langmuir and Freundlich isotherms. The isotherm results for nitrate 

are shown in Table 3.3 for all concentrations, and in Table 3.4 for Co<3.4 mg NO3-N/L. 

The corresponding figures for nitrate for all concentrations and for Co<3.4 mg NO3-N/L 

can be found in Appendices D and E, respectively. Based on the R
2
 values, Tables 3.2, 

3.3, and 3.4 show that the Freundlich isotherm best describes atrazine adsorption and the 

Langmuir isotherm best describes nitrate adsorption.  
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Table 3.2: Langmuir and Freundlich constants for mono atrazine isotherm 

 

 

 

 

 

 

 

 

Table 3.3: Langmuir and Freundlich constants for mono nitrate isotherm 

 

 

 

 

 

 

 

 

 

 

Langmuir Isotherm Freundlich Isotherm 

qmax KL R
2 

Number of 

Points 1/n KF R
2
 

Number of 

Points 

mg/g L/mg    ((mg/g)(mg/L)
-n

)   

Cedar -1.79 -0.03 0.30 11 0.79 0.85 0.91 12 

Cypress 1.16 0.06 0.16 12 0.05 1.04 0.94 12 

Hardwood -0.65 -0.06 0.73 9 0.07 0.84 0.94 11 

 

Langmuir Isotherm Freundlich Isotherm 

qmax KL R
2 

Number of 

Points 1/n KF R
2
 

Number of 

Points 

mg/g L/mg    ((mg/g)(mg/L)
-n

)   

Cedar 0.12 -4.53 0.92 12 -0.02 2.45 0.87 8 

Cypress 0.18 2.11 0.90 22 -0.001 1.47 0.02 8 

Hardwood 0.13 -1.94 0.98 17 -0.01 1.93 0.62 11 

5
9
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Table 3.4: Langmuir and Freundlich constants for mono nitrate isotherm for Co<3.4 mg NO3-N/L 

 

 

 

 

 

 

 

 

 

 

Langmuir Isotherm Freundlich Isotherm 

qmax KL R
2 

Number of 

Points 1/n KF R
2
 

Number 

of Points 

mg/g L/mg    ((mg/g)(mg/L)
-n

)   

Cedar 0.34 -5.53 0.86 9 -0.10 3.73 0.14 7 

Cypress 0.06 -3.55 0.81 17 -0.03 1.54 0.09 8 

Hardwood 0.17 -5.86 0.79 12 -0.04 1.99 0.12 9 

6
0
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A statistical analysis of the ratio of the equilibrium concentration of a compound 

on the mulch and the equilibrium concentration of a compound in solution (qe/Ce) was 

performed for each system using a one way ANOVA. The analysis revealed that there 

was no significant difference between the three types of mulch for either atrazine or 

nitrate adsorption. There was not a significant difference between the qe/Ce ratio for the 

entire nitrate range and the small (Co<3.4 mg NO3-N/L) nitrate range. A statistical 

analysis comparing the average values of coefficients for all nitrate concentrations and 

for Co<3.4 mg NO3-N/L found the difference was not significant, for either the 

Freundlich or Langmuir isotherms. 

Qualitatively, Tables 3.2 and 3.3 show that cypress mulch has the highest 

adsorption capacity for nitrate, 0.18 mg/g (qmax), and atrazine, 1.04 (mg/g)(mg/L)
-n

  (KF), 

while cedar and hardwood have lesser, similar values. At low concentrations of nitrate, as 

in Table 3.4, cedar mulch has the highest adsorption capacity for nitrate, 0.06 mg/g 

(qmax). The sorption capacity of atrazine on cedar and hardwood mulch, 0.8 

(mg/g)(mg/L)
-n

, was the same as the value found by Alam et al. (2000) for adsorption of 

atrazine on wood charcoal.   

3.4.3 Isotherm Experiments: Binary Systems 

The binary system of atrazine-nitrate was modeled similarly to the mono systems, 

using both Freundlich and Langmuir isotherms.  The raw binary data for atrazine and 

nitrate can be seen in Appendices F and G, respectively.  

The raw isotherm data were graphed in Appendices F and G for atrazine and 

nitrate, respectively, to determine which of the Giles isotherm types would best describe 
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the data (Giles et al. 1974a). Figures in Appendix F show that atrazine is still exhibiting 

linear adsorption, approximating the L-type, even in the presence of nitrate. Nitrate 

figures in Appendix G are nearly vertical, showing that nitrate adsorption is highly 

dependent on surface property variations of the mulch.  

The binary atrazine results are shown in Table 3.5. The corresponding figures for 

atrazine can be seen in Appendix H. Binary nitrate isotherm results with initial 

concentrations of 7 and 3.5 mg NO3-N/L can be seen in Tables 3.6 and 3.7, respectively. 

The corresponding figures for nitrate, Co=7 and 3.5 mg NO3-N/L, can be found in 

Appendices J and K, respectively. Based on the R
2
 values, Tables 3.5, 3.6, and 3.7 show 

that the Freundlich isotherm continues to best describe atrazine adsorption, whereas 

neither the Langmuir nor the Freundlich isotherm best describes nitrate adsorption for all 

much types.   
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Table 3.5: Langmuir and Freundlich constants for atrazine in the binary isotherm 

  

 

 

 

 

 

 

Table 3.6:  Langmuir and Freundlich constants for nitrate in the binary isotherm with an initial concentration of 7 mg NO3-N/L  

 

 

 

 

 

 

 

 

 

 

 

Langmuir Isotherm Freundlich Isotherm 

qmax KL R
2 

Number of 

Points 1/n KF R
2
 

Number 

of Points 

mg/g L/mg    ((mg/g)(mg/L)
-n

)   

Cedar 0.45 0.24 0.58 7 0.06 1.08 0.92 10 

Cypress 0.32 0.40 0.65 11 0.05 1.09 0.83 11 

Hardwood 1.38 0.05 0.16 10 0.07 1.00 0.94 10 

 

Langmuir Isotherm Freundlich Isotherm 

qmax KL R
2 

Number of 

Points 1/n KF R
2
 

Number 

of Points 

mg/g L/mg    ((mg/g)(mg/L)
-n

)   

Cedar 0.03 -0.32 0.02 5 0.07 0.56 0.04 5 

Cypress 0.01 -0.23 0.89 5 -0.29 34.5 0.82 5 

Hardwood 0.006 -0.21 0.85 6 -0.23 24.45 0.79 5 

6
3
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Table 3.7: Langmuir and Freundlich constants for nitrate in the binary isotherm with an initial concentration of 3.5 mg NO3-N/L  

 

 

 

 

 

 

 

 

 

 

Langmuir Isotherm Freundlich Isotherm 

qmax KL R
2 

Number of 

Points 1/n KF R
2
 

Number 

of Points 

mg/g L/mg    ((mg/g)(mg/L)
-n

)   

Cedar 0.01 -0.47 0.74 7 -0.30 7.04 0.96 6 

Cypress 0.03 -0.87 0.36 6 -0.02 1.28 0.33 6 

Hardwood 0.004 -0.41 0.94 5 -0.82 203.66 0.99 6 

6
4
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A statistical analysis of the ratio of equilibrium concentration of a compound on 

the mulch and the equilibrium concentration of a compound in solution (qe/Ce) was 

performed for each system using a one way ANOVA. The analysis revealed that the only 

significant difference between mulch types was during binary atrazine adsorption for the 

pairs of cypress-hardwood and cedar-hardwood. There was not a significant difference 

between the three types of mulch in the binary nitrate systems.  

The differences in the qe/Ce ratio between the mono and binary atrazine isotherms 

were significant for all systems. Also, the qe/Ce ratio between the small concentration 

(Co<3.4 mg NO3-N/L) mono and the entire nitrate isotherm were significantly different 

from both binary nitrate systems, 3.5 and 7 mg NO3-N/L.  

In a binary system, the compound with lower solubility, atrazine, is favored for 

adsorption and that the co-adsorbate, nitrate, in this case, has no influence on adsorption 

(Faur et al. 2005).  This relationship can be seen graphically in Figure 3.2. A similar 

comparison was done by Faur et al. (2005) with atrazine and deethylatrazine or 

deisopropylatrazine. When binary and mono systems for atrazine adsorption on cypress 

mulch are graphed together, the slope is nearly the same, as seen in Equations 5 and 6.  

Figures for cedar and hardwood mulch can be seen in Appendix I.  
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Figure 3.2:  Freundlich adsorption isotherm for atrazine on cypress mulch in the presence and absence 

of nitrate  

 

The equations for the best fit lines in Figure 3.2 are as follows: 

In the mono cypress (absence of nitrate), the equation is: 

   (   )            (  )               (5) 

 where qe is the amount of atrazine adsorbed on the mulch at equilibrium (mg/g) and Ce is 

the concentration of atrazine in solution at equilibrium (mg/L). This equation has an R
2
 of 

0.94.  

In the binary cypress (presence of nitrate), the equation is: 

    (  )            (  )               (6) 

This equation has an R
2
 of 0.83. 
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A statistical analysis comparing the average values of the Langmuir and 

Freundlich coefficients for atrazine in the mono and binary systems (Tables 3.2 and 3.5) 

indicated that they are not significantly different.  

Qualitatively, as in the mono system for atrazine, cypress mulch has the highest 

adsorption capacity, 1.09 (mg/g)(mg/L)
-n

  (KF). Also, cypress mulch has the lowest value 

of sorption intensity (1/n) for atrazine in both the mono and binary systems. For low 

values of 1/n, less energy is required for the adsorbate to adsorb on the surface; this low 

energy barrier results in faster adsorption (American Water Works Association 1999; 

Hristovski et al. 2009).  

The binary nitrate isotherms were obtained for two initial concentrations: 7 and 

3.5 mg NO3-N/L, paired with concentrations of 5 and 2.5 mg atrazine/L, respectively. 

The Langmuir and Freundlich isotherm data can be seen in Tables 3.6 and 3.7 for 7 and 

3.5 mg NO3-N/L, respectively. A statistical analysis comparing the ratio of qe/Ce between 

the 7 mg NO3-N/L system and the 3.5 mg NO3-N/L system revealed that the apparent 

differences were not statistically significant. Additionally, a statistical analysis comparing 

the average values of the coefficients for the two concentrations revealed that they were 

not significant for the Langmuir or the Freundlich isotherm.  

Comparison of the average values of the Langmuir coefficients for nitrate in the 

mono and binary systems (Tables 3.3, 3.4, 3.6, and 3.7) revealed a significant difference 

in maximum adsorption capacity (qmax), but not the Langmuir constant (KL),  when the 

entire mono nitrate system is compared to both binary systems. The reverse is true when 

the small (Co<3.4 mg NO3-N/L) mono system is compared to both binary systems: the 
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maximum adsorption capacity (qmax) is not significantly different, but the Langmuir 

constant (KL) is different.  The Langmuir constant is related to the energy of adsorption 

and is proportional to the adsorption bond (American Water Works Association 1999). 

Therefore, the presence of atrazine affects the capacity for nitrate adsorption at high 

concentrations of nitrate, but at low concentrations of nitrate, the energy of nitrate 

adsorption is affected.  A statistical analysis comparing the average values of the 

Freundlich coefficients for nitrate in the mono and binary systems systems (Tables 3.3, 

3.4, 3.6, and 3.7) revealed that there was no significant difference between coefficients.  

Graphically, as seen in Appendices J and K, both the Langmuir and Freundlich 

isotherms for binary nitrate are nearly vertical, regardless of starting concentration. In 

contrast, the mono nitrate behavior, as seen in Appendices D and E, exhibits smaller 

slopes at low concentrations for the Freundlich isotherm, and linear behavior for the 

Langmuir isotherms. This change of adsorption behavior in the presence of atrazine 

implies that atrazine is affecting nitrate adsorption. The differences between the binary 

and mono systems are most apparent in the Freundlich isotherm when binary and mono 

data are graphed together (Appendix L). This sudden increase in slope may have been 

caused by cation effects (Fawcett and Sellan 1977), variations in surface organic 

functional groups (Laird et al. 1994), other surface composition differences between 

samples or, most likely, the blocking of desirable nitrate sites with atrazine.   

Qualitatively, the Langmuir isotherms for nitrate in the binary system reveal that, 

at the lower concentration (3.5 mg NO3-N/L), the cypress mulch had the highest 

adsorption capacity (qmax), 0.03 mg/g. However, at the higher concentration (7 mg NO3-

N/L) the cedar mulch had the highest adsorption capacity (qmax), 0.03 mg/g. In both 
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cases, the hardwood mulch had the lowest adsorption capacity (qmax), 0.004 mg/g for 3.5 

mg NO3-N/L and 0.006 mg/g for 7 mg NO3-N /L. Qualitatively, the Freundlich isotherms 

for nitrate in the binary system suggest that cypress has the highest adsorption capacity 

(KF) for nitrate at 7 mg NO3-N/L, 34.5 (mg/g)(mg/L)
-n

. However, hardwood has the 

highest adsorption capacity (KF) for nitrate at 3.5 mg NO3-N/L, 203.66 (mg/g)(mg/L)
-n

. 

3.5 Conclusions 

The mulch characterization tests (Table 3.1) showed qualitatively that cypress had 

the lowest electrical conductivity of the three types of mulch. Electrical conductivity 

changes the charge of the surface and competes for available surface sites, thereby 

influencing adsorption (Xu et al. 2009).In contrast, Henry (1997) states that higher 

conductivity is a result of migration of ions into solution, thus, freeing sites for adsorption 

(Henry 1997). However, this claim was based on research of the adsorption of seawater 

into clay soils, not herbicides and soils, as in Xu et al. (2009). Further investigation of the 

relationships between organic content, water content, CEC, conductivity, and adsorption 

in different materials would enhance future adsorption research.  

The mulch characterization tests also showed that cypress mulch had significantly 

higher organic carbon content than other types of mulch. Atrazine adsorbs rapidly and 

preferentially to materials with a higher organic content (Ma and Selim 1996; Masaphy 

and Mandelbaum 1997; Xu et al. 2009). Therefore, cypress mulch, with the lowest 

electrical conductivity and high organic carbon content, should have the highest sorption 

capacity. 
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Although the isotherm experiments showed that the differences in the ratio of 

qe/Ce among the three types of mulch were not significant, qualitatively, cypress exhibited 

the highest adsorption capacity for atrazine. For atrazine systems, cypress had the lowest 

1/n value and the highest KF value in the Freundlich isotherms, showing that it rapidly 

adsorbs atrazine and has a high capacity for the adsorption of atrazine, respectively. In 

most nitrate systems, a Langmuir isotherm analysis showed that cypress had the highest 

qmax value, meaning that it had a comparatively higher sorption capacity for nitrate.  

Atrazine adsorption exhibited what appeared to be a C-type isotherm, however, a 

literature review revealed that, in general, the L-type better describes atrazine adsorption 

(Calvet 1989). Atrazine adsorption continued to exhibit L-type isotherms in the binary 

system, and was not affected by the presence of nitrate. Based on Giles et al. (1974b), 

nitrate adsorption was expected to show H-type isotherm behavior. However, nitrate 

adsorption did not exhibit a specific isotherm type because it was highly affected by 

surface properties of the mulch and the presence of atrazine.    

Although the isotherm data shows that cypress is the best choice for atrazine 

adsorption, it does not equal the sorption capacity of activated carbon. Adams et al. 

(1996) found KF and 1/n values of 467 (mg/g)(L/mg)
1/n

 and 0.44 for Calgon F-200 

activated carbon, which are 450 times that of the mulch, making activated carbon a more 

economical choice. However, this comparison is based on adsorption data alone, without 

the influence of a bacterial biofilm, as would be present in actual implementation of a 

mulch-based biowall for atrazine removal. 
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Based on its physical and chemical properties and its capacity for adsorption of 

atrazine and nitrate in mono and binary systems, cypress mulch was determined to be the 

best substrate to support bacterial growth in a biowall experiment. 
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CHAPTER 4: ATRAZINE CONTAMINATED GROUNDWATER 

REMEDIATION WITH A MULCH BIOWALL 

4.1 Background 

The extensive use of the broadleaf herbicide atrazine [2-chloro-4-(ethylamino)-6-

(isopropylamino)-s-triazine] and its persistence in soil and groundwater is a worldwide 

concern. Atrazine and nitrate are often found together in groundwater of agricultural 

states (Ritter 1990).  

Ongoing research on remediation techniques for pesticide contamination includes 

chemical and biological treatment processes. Waria et al. (2009) used zero valent iron 

and ferrous sulfate to degrade atrazine chemically in soil. Soybean oil was also added to 

provide a carbon source for biological activity. Atrazine, initially at a concentration of 

500 mg/kg soil, was reduced by 79% in 342 days.  Tafoya-Garnica et al. (2009) used a 

fluidized bed reactor containing biological granular activated carbon to achieve high 

degradation rates. Modin et al. (2008) used a methane-fed bioreactor intended to remove 

both atrazine and nitrate. However, atrazine removal was not successful. Bianchi et al. 

(2006) successfully used photolysis, photocatalysis (with TiO2), and ozonation for 

atrazine degradation.  Processes such as these require the presence of a nutrient source, 

such as methane or soybean oil, and specialized treatment, such as ultraviolet radiation or 

biological activated carbon. These additions may be worthwhile for short time periods, 

but would be costly over time, due to materials and operations costs.  

Passive treatments are much more cost effective and require little specialized 

equipment. A permeable reactive barrier, or biowall, can be placed to intercept a 

contaminated groundwater plume, forming a bioreactive zone. Biowalls consist of 
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bacteria supported on a natural substrate, placed to intercept contaminated groundwater 

flow. Removal is accomplished through adsorption or biological degradation, as the 

contaminated plume passes through a permeable remediation well or trench placed 

perpendicular to groundwater flow. Biowalls are typically made of cheap, abundant 

materials that perform remediation using a combination of bacterial growth and 

adsorption. In situ treatments such as these are low maintenance and can endure changes 

in operating conditions (Kao et al. 2001; Kalin 2004; Seo et al. 2007).  

Biowalls have been tested extensively for denitrification. They can be placed 

either directly in aquifers or in vadose zones above aquifers (Kao et al. 2001; Kalin 

2004). They can also be used to treat water from subsurface tile drainage (Ilhan et al. 

2011).  Denitrification requires a carbon source, which can be obtained from the organic 

content of the barrier itself, or added separately, as in Hunter (Schipper et al. 2004; 

Hunter 2009).  

Biowalls supported on a natural substrate, such as mulch or peat moss, have been 

studied for naphthalene (Seo et al. 2007) and tetrachloroethylene (Kao et al. 2001) 

removal, but rarely for atrazine. Ilhan et al. examined the removal of atrazine and 

nitrates in a woodchip bioreactor. The bulk of the atrazine removal appeared to be 

due to physical, rather than biological methods (Ilhan et al. 2011). 

4.2 Objective 

The objective of this research was to examine the feasibility of implementing a 

cypress mulch biowall with a laboratory-scale biotic column designed to remove atrazine 

and nitrate. It was anticipated that the cypress mulch, which is inexpensive and available 
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in Nebraska, would act both as a supporting material and a carbon source for 

denitrification.   

4.3 Materials and Methods 

4.3.1 Organic Mulch 

Cypress mulch was selected as the supporting substrate for the biowall, based on 

physical and chemical analysis in comparison with cedar and hardwood mulch, as well as 

isotherm experiments, as described in Section 3. Physical and chemical properties of 

cypress mulch include a pH of 5.32+0.02, an electrical conductivity of 99.2+6.5µS/cm, a 

water content of 53.82+3.98%, and a cation exchange capacity of 6.73+0.68 meq/100g. 

Cypress mulch was prepared using a modification of the method of Seo et al. 

(2007), as described in Section 3.3.1. 

4.3.2 Isotherm Experiments 

The adsorptive capacity of the mulch for removal of atrazine and nitrate was 

quantified with isotherm experiments, as described in Section 3. Various weights of 

mulch were paired with various concentrations of atrazine and nitrate, placed in brown 

glass bottles, and tumbled at 18 rpm for 5 days. Adsorption data was fitted to Freundlich 

and Langmuir isotherms. Qualitatively, for atrazine adsorption in the binary system, 

cypress mulch had the lowest 1/n value, 0.05, and the highest KF value, 1.09 

(mg/g)(mg/L)-n, meaning that it rapidly adsorbs atrazine and has a relatively high 

capacity for the adsorption of atrazine, respectively. Qualitatively, for nitrate adsorption 

in the binary system, cypress mulch had the highest qmax value, 0.03 mg/g, meaning that it 

has a relatively high capacity for nitrate adsorption.  



75 
 

 
 

4.3.3 Column Set Up 

A laboratory-scale biotic column was used to simulate implementation of a 

biowall. The column and clamps were purchased from Custom Glassblowing of 

Louisville, Kentucky, USA and was the same model used by Seo et al. (2007). Figure 4.1 

shows a schematic of the column set up.  The column is 30 cm in length and has a 3.8 cm 

inner diameter. The body of the column has five sample ports and there are two 

additional ports on each of the end caps, for a total of seven sample ports.   
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Figure 4.1: A schematic of the column set up 
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Tygon tubing from Cole-Palmer (Vernon Hills, IL, USA) was used for 

connections.  The tubing was attached to the pump using plastic hose barbs from Ace 

Hardware (Lincoln, NE, USA). Each of the seven sample ports were plugged with septa 

from Sigma-Aldrich (St. Louis, MO, USA). Both the column and the connecting tubing 

were wrapped in aluminum foil to keep out light. The feed solution was wrapped in 

towels to keep out light. A piece of vinyl tubing (Ace Hardware, Lincoln, NE, USA) 

connected the effluent port to a hose barb, and then to Tygon tubing, which ran to the 

waste container.  

The glass groundwater feed container was 22 L in volume and was capped with a 

green neoprene stopper from Sigma-Aldrich (St. Louis, MO, USA) to limit evaporation. 

A hose barb imbedded in the neoprene stopper allowed the Tygon tubing to enter the 

groundwater feed container. The waste container was a 113 L drum also affixed with a 

neoprene stopper with an imbedded hose barb to allow the passage of fluids. 

Forty-five grams of cypress mulch was added to the column. The mulch was held 

in the column at the influent and effluent ports with a fiberglass mesh purchased at Baker 

Hardware (Lincoln, NE, USA).  The column was seeded with 4 L of primary effluent 

from the Teresa Street wastewater treatment plant (Lincoln, NE, USA) pumped at 2.5 

mL/min. This flow rate was chosen based on a literature review (Seo et al. 2007). Next, 

the column was fed with a simulated groundwater solution, whose composition can be 

seen in Table 4.1. The nitrate concentration was chosen based on the average background 

concentration of nitrate in Nebraska Groundwater in 2009, 7.8 mg NO3-N/L (“Quality-

Assessed Agrichemical Contaminant Database for Nebraska Groundwater “ 2011). The 
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composition of the remainder of the groundwater was selected based on a literature 

review (Dahab and Sirigina 1994; Nebraska Department of Environmental Quality, 

2010).  

The atrazine concentration in the column is a thousand times higher than the 

typical background concentration in groundwater, which is typically less than 1.5 µg 

atrazine/L (Nebraska Department of Environmental Quality, 2010). Atrazine is an 

unfavorable nitrogen source for bacteria (Clausen et al. 2002; Hunter and Shaner 2010).  

Using an initial concentration of atrazine that is the same order of magnitude as the initial 

concentration of nitrate was intended to encourage utilization of atrazine by bacteria. 

Table 4.1: Chemical composition of synthetic groundwater solution (after Dahab and Sirigina 

1994)  

Compound Amount (mg/L) 

KH2PO4 150 

K2HPO4 32.5 

FeSO4·7H2O 0.816 

Na2MoO4 0.2365 

MnSO4·7H2O 0.1565 

CaCl2·6H2O 0.526 

Na2SO3 250 

CoCl2·6H2O 1.052 

NaNO3 42.5 (7 mg NO3-N/L) 

Atrazine 1 

 

Sodium nitrate, dipotassium phosphate, ferrous sulfate, calcium chloride, and 

cobalt chloride were purchased from Fisher Scientific (Waltham, MA, USA). Atrazine 

was purchased from Chemservice (West Chester, PA, USA). Sodium sulfite was 

purchased from Sigma Aldrich (St. Louis, MO, USA).  The monopotassium phosphate, 

was purchased from EM Science (Gibbstown, NJ, USA). The sodium molybdate was 



79 
 

 
 

purchased from Strem chemicals (Newburyport, MA, USA). The magnesium sulfide was 

purchased from Mallinckrodt chemicals (St. Louis, MO, USA). 

The potassium phosphate buffers stabilized the pH. The ferrous sulfate, sodium 

molybdate, magnesium sulfide, and calcium chloride provided minerals necessary for 

bacterial growth. The sodium sulfite and cobalt chloride were added at twice their 

stoichiometric concentration in an effort to keep the dissolved oxygen level below 1 mg 

O2/L to promote denitrification.  

The synthetic groundwater solution was mixed in a 22 L glass container and fed 

to the column from the bottom. Dissolved oxygen and pH readings were taken biweekly 

from the influent and effluent ports. Samples were also taken biweekly using a syringe 

from Becton, Dickinson, and Company (Franklin Lakes, NJ, USA) from ports 1 

(influent), 3, 5, and 6 (effluent), as shown in Figure 4.1. The sample size was 12 mL. The 

samples were filtered with a Millipore filtration apparatus with a Whatman GF/A filter 

(Fisher Scientific, Waltham, MA, USA) to remove particulate matter. Concentrations of 

nitrate and atrazine were determined, as described in Section 4.3.4. 

The average concentration of both atrazine and nitrate taken from each sample 

port were compared in SigmaPlot 12 (Systat Software, San Jose, CA, USA) using a one 

way analysis of variance (ANOVA) with a significance level of 0.05. 

4.3.4 Instrumental Analysis  

 

Nitrate was analyzed with a Dionex Ion Chromatograph and atrazine was 

analyzed with a Waters Alliance 2695 High-Performance Liquid Chromatography 

(HPLC), as described in Section 3.2.4. 
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Dissolved oxygen was measured using an YSI 5010 probe attached to an YSI 

5100 meter. The pH was measured using an  8102 BNUWP probe attached to an Orion 4 

star meter from Thermo Scientific. 

4.4 Results 

 

 The column ran for three months with an average influent pH of 6.64 and average 

dissolved oxygen of 2.23 mg O2/L. The raw column data is shown in Appendix M. The 

oxygen scavengers, sodium sulfite and cobalt chloride, added at twice their 

stoichiometric concentrations, were not sufficient to overcome the daily diffusion of 

oxygen from the atmosphere into the feed solution. Oxygen rich conditions are not 

conducive to denitrification, because oxygen is desired over nitrate as an electron 

acceptor. Anoxic conditions are required for denitrification to occur, meaning a dissolved 

oxygen level below 0.5 mg O2/L (van Haandel and van der Lubbe 2007). 

 During the course of the experiment, the cypress mulch did not degrade 

sufficiently to serve as an electron donor for denitrification. The rate of decomposition of 

mulch is inversely proportional to the ratio of lignin to nitrogen. The ratio of lignin to 

nitrogen is 125 in cypress mulch, making it very resistant to decomposition (Duryea et al. 

1999). Atrazine makes a poor electron donor for nitrate reduction because only the 

carbon atoms in the side chains are a readily available energy source (Katz et al. 2000, 

2001).   Cypress mulch, as found in the mulch characterization experiments in Section 

3.4.1, was the most acidic of the three types of mulch examined, with a pH of 5.32. 

Acidic conditions are not desirable for biological activity (Seo et al. 2007) and may have 

limited biofilm development.  
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Acetic acid was added on day 61 to serve as a carbon source to encourage 

denitrification. Using the suggested ratio of carbon to nitrogen of 1:1.45 for 

denitrification from Dahab and Lee (1988), 24.3 mL/L of glacial acetic acid was added. 

The acid was neutralized with 17,535 mg/L sodium hydroxide before being added to the 

groundwater solution.  Both acetic acid and sodium hydroxide were purchased from EM 

Science (Gibbstown, NJ, USA). 

The addition of acetic acid brought the influent dissolved oxygen down to 1.6 mg 

O2/L, which is still too aerobic for denitrification. Additionally, the amount of acid added 

may not have been sufficient to satisfy the energy requirements of both aerobic and 

anaerobic bacteria. 

Measured concentrations of atrazine and nitrate in the influent and effluent are 

shown in Figures 4.2 and 4.3, respectively. The influent concentrations of atrazine and 

nitrate were 1 mg atrazine/L and 7 mg NO3-N/L, respectively. Note that on day 61, acetic 

acid was added as a carbon source.  
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Figure 4.2: Measured atrazine concentrations in the influent and effluent ports of a biotic cypress 

column   

 

 

Figure 4.3: Measured nitrate concentrations in the influent and effluent ports of a biotic cypress column   

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100

M
e

a
su

re
d

 C
o

n
ce

n
tr

a
ti

o
n

  
(m

g
  a

tr
a

zi
n

e
/

L
) 

Day 

Atrazine Removal in a Biotic Cypress Column 

Influent

Effluent

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100

M
e

a
su

re
d

 C
o

n
ce

n
tr

a
ti

o
n

  
(m

g
  N

O
3
-N

/
L

) 

Day 

Nitrate Removal in a Biotic Cypress Column 

Influent

Effluent



83 
 

 
 

Figures 4.2 and 4.3 show fluctuations in both influent and effluent concentrations, 

including times when the effluent concentration exceeds the influent concentration. A 

statistical analysis comparing average concentrations measured from different column 

ports found that these fluctuations are not significant. Graphs comparing the data from 

sample ports 3 and 5 can be found in Appendix N. 

Denitrification is not affected by the presence of atrazine (Yeomans and Bremner 

1987; Ilhan et al. 2011). However, atrazine degradation can be affected by the presence 

of nitrate. When present in excess, nitrate provides a more readily accessible source of 

nitrogen for atrazine-degrading bacteria, thus inhibiting the degradation of atrazine 

(Clausen et al. 2002; Hunter and Shaner 2010). Physical removal of atrazine, as in Ilhan 

et al. (2011), was not occurring, because the adsorption capacity of the mulch was 

exhausted early in the experiment.    

4.5 Conclusions 

 

The column failed to remove atrazine and nitrate, even with the addition of an 

external carbon source.  Further investigation to determine what combination of natural 

materials can provide a viable carbon source and support a biowall in a field situation is 

recommended.  

The oxygen concentration was too high for nitrification to occur and the nitrate 

concentration was too high for atrazine degradation to occur. There are three ways to 

avoid problems like these: a double column system (Hunter and Shaner 2010), a low 

concentration of nitrate (Crawford et al. 1998), or an adsorptive media (Herzberg et al. 

2004).  
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Hunter and Shaner (2010) used a two-column silica sand system containing first, 

a vegetable oil based denitrifying biobarrier followed by an aerobic reactor with an 

atrazine degrading consortia. The reactors were fed with 3 mg atrazine/L and 5 mg NO3-

N/L. The denitrifying section removed 98% of the supplied nitrate and 30% of the 

atrazine, while the aerobic reactor removed the remaining 70% of the atrazine. The 

double column system sustained high removal rates of both nitrate and atrazine even 

when the nitrate concentration was spiked to 50 mg NO3-N/L.  

Crawford et al. (1998) used isolate M91-3 for denitrification coupled with 

atrazine degradation in glass media columns. The column was fed with 0.1 mM atrazine 

and 1 mM NO3-N, and kept under anoxic conditions with continuous sparging of nitrogen 

gas. Atrazine degradation was achieved in the column, therefore the authors concluded 

that low concentrations of nitrate, ~1 mM, do not interfere with atrazine degradation.  

Katz et al. (2001) used Pseudomonas sp. ADP in anoxic non-sterile reactors filled 

with glass spheres that had a 90% removal efficiency of nitrate. The removal efficiency 

of atrazine was high, >95%, for the first month, and then lost effectiveness, to 10-25%. 

This discrepancy was due to the influence of competitive nitrifying bacteria that could 

not degrade atrazine. Herzberg et al. (2004) also saw a similar decrease in atrazine 

removal efficiency in a reactor filled with non-adsorptive media. However, this effect 

was not present in a similar reactor with adsorptive media due to a “double flux” of 

atrazine through both the adsorptive media and the biofilm. 

These authors, and many others, have successfully utilized biotic columns in the 

laboratory to study remediation of atrazine, nitrate, and other compounds. Laboratory 
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conditions are easier to control and are often less harsh to bacteria. In a field-scale 

situation, factors such as a non-uniform distribution of atrazine, the presence of other 

contaminants or metabolites, ambient temperature, and mass transport limitations for the 

contaminant, bacteria, and nutrients may influence the effectiveness of a given 

remediation method (Silva et al. 2004; Strong et al. 2000; Sturman et al. 1995).  Knowing 

which of these processes have the greatest effect on remediation effectiveness, and 

therefore, most important for laboratory-scale simulation, would enhance future research.  
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Conclusions 

 This study investigated the ability of a mulch biowall to remove atrazine and 

nitrate from contaminated groundwater. First, the physical and chemical properties of 

three types of mulch were characterized. Next, the adsorption capacity of the mulch for 

atrazine and nitrate was analyzed in a series of isotherm experiments. Finally, the 

feasibility of implementing a cypress mulch biowall with a laboratory-scale biotic 

column designed to remove atrazine and nitrate was evaluated. From this research, the 

following conclusions were made: 

Mulch Characterization 

 Cypress mulch had a significantly higher organic carbon content than cedar or 

hardwood mulch.  

 Qualitatively, cypress mulch had the lowest pH, electrical conductivity, and 

cation exchange capacity. 

Isotherm Experiment 

 Based on the ratio of qe/Ce (equilibrium concentration on the mulch over 

equilibrium concentration in solution), there was no statistical difference between 

the three types of mulch except for the pairs of cedar-hardwood and cypress-

hardwood in the system of binary atrazine adsorption. 

 The ratio of qe/Ce was statistically different between mono and binary systems.  



87 
 

 
 

 . Atrazine adsorption appeared to exhibit a C-type isotherm, due to the range of 

concentrations examined; A wider range of atrazine concentrations may show a 

more distinct L-type isotherm. 

 Nitrate does not significantly influence the adsorption of atrazine.  

 Nitrate adsorption was highly dependent on mulch surface properties and did not 

exhibit a specific type of isotherm.  

 Atrazine influenced nitrate adsorption. 

 In the binary system, average values of Langmuir coefficients for nitrate 

adsorption were significantly different, indicating that atrazine is affecting the 

capacity of nitrate adsorption (qmax) at high concentration of nitrate, but at low 

concentrations of nitrate (Ce<5), the energy of nitrate adsorption (KL) is affected.  

 Qualitatively, cypress mulch exhibited the highest capacity for adsorption of 

atrazine and nitrate. 

 Cypress was selected as the best substrate to support bacterial growth in a biotic 

column.  

Column Experiment 

 Nitrate removal was not effective because daily diffusion of oxygen into the feed 

container resulted in conditions unsuitable for denitrification. 

 Atrazine removal was not effective because the nitrate concentration was too 

high.  
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5.2 Recommendations for Future Research 

The findings presented here could be enhanced with future research.  

 Previous studies, as well as the findings presented here, imply relationships 

between two or more of the following:  organic content, water content, cation 

exchange capacity, conductivity, and adsorption. Further investigation in a wide 

variety of materials may be able to identify exactly which are related and why. 

 The influence of atrazine on nitrate adsorption was most likely due to differences 

in surface properties between the three types of mulch. Further investigation, 

including a surface area measurement, via the Brunauer, Emmett, and Teller 

(BET) method, would confirm this. 

 Cedar mulch did not degrade sufficiently to provide a carbon source for 

denitrification. Further investigation to determine what combination of natural 

materials can provide a viable carbon source and support a biowall in a field 

situation is recommended.  
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APPENDICIES 

Appendix A: Raw Data for Mono Atrazine System 

 

The following tables include the raw data for the mono Langmuir and Freundlich 

isotherms for atrazine. Tables A1 and A3 shows the Langmuir and Freundlich data, 

respectively, after a statistical analysis removing data points that had a final solution 

concentration either greater than 90% or less than 10% of the initial solution 

concentration and that fell outside a 95% confidence interval. The removed data points 

can be seen in Tables A2 and A4, respectively. Control tests were performed to ensure: 1. 

The mulch did not contain atrazine, 2. The atrazine was not adhering to the glass sample 

containers, and 3. The filters were not altering the concentration of atrazine. The data 

from the control tests can be seen in Table A5. The raw data is plotted in Figures A1-A3. 
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Table A1: Raw data for mono atrazine Langmuir isotherm after statistical analysis 

Mulch 
Type 

Initial 
Conc. 

Mulch 
Weight 

Liquid 
Volume 

Final 
Conc. (Ce) 

Conc. on 
Mulch 
(qe) Ce/qe Date 

 

mg 
atrazine/L grams mL 

mg 
atrazine/L mg/g g/L 

 Cedar 10 0.1505 42.4 7.685 0.65 11.78 9.12b 

Cedar 5 0.2506 42.2 3.756 0.21 17.93 9.12b 

Cedar 5 0.5004 41.2 3.062 0.16 19.19 9.12b 

Cedar 15 0.5011 41.4 8.565 0.53 16.11 9.12a 

Cedar 5 0.7505 40.9 2.639 0.13 20.51 9.12b 

Cedar 5 1.0003 40.6 2.067 0.12 17.36 9.12b 

Cedar 15 1.0024 40.3 6.034 0.36 16.74 9.12a 

Cedar 15 1.5 39.4 4.925 0.26 18.61 9.12a 

Cedar 15 2.0008 37.9 3.834 0.21 18.13 9.12a 

Cedar 10 2.5021 37.2 1.895 0.12 15.73 9.12b 

Cedar 15 2.5041 37.2 3.003 0.18 16.85 9.12a 

Cypress 5 0.1509 42.7 3.770 0.35 10.83 9.12b 

Cypress 5 0.2513 42.4 3.631 0.23 15.73 9.12b 

Cypress 5 0.5018 41.9 2.779 0.19 14.98 9.12b 

Cypress 10 0.5021 42.4 6.273 0.31 19.93 8.26 

Cypress 5 0.7505 41.4 2.596 0.13 19.58 9.12b 

Cypress 5 1.0015 40.9 1.902 0.13 15.04 9.12b 

Cypress 10 1.0017 41.4 4.799 0.21 22.33 8.26 

Cypress 15 1.0045 41 6.726 0.34 19.92 9.12a 

Cypress 15 1.5018 39.6 4.028 0.29 13.92 9.12a 

Cypress 10 2.0006 39.4 2.820 0.14 19.95 8.26 

Cypress 15 2.0082 39 3.236 0.23 14.16 9.12a 

Cypress 10 2.5095 37.8 2.007 0.12 16.67 9.12b 

Hardwood 10 0.1504 42.7 8.047 0.55 14.51 9.12b 

Hardwood 10 0.2507 42.3 7.369 0.44 16.60 9.12b 

Hardwood 5 0.5019 41.9 3.274 0.14 22.71 9.12b 

Hardwood 5 0.7502 41.1 2.905 0.11 25.31 9.12b 

Hardwood 5 1.0002 40.5 2.344 0.11 21.79 9.12b 

Hardwood 15 1.0024 40.8 6.476 0.35 18.67 9.12b 

Hardwood 15 1.5012 40.1 4.517 0.28 16.13 9.12b 

Hardwood 15 2.5014 37.6 3.804 0.16829 22.61 9.12b 

Hardwood 10 2.5019 37.9 2.681 0.110872 24.18 9.12b 
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Table A2: Raw data for mono atrazine Langmuir isotherm removed based on a 95% confidence interval 

 

Mulch 
Type 

Initial 
Conc. 

Mulch 
Weight 

Liquid 
Volume 

Final 
Conc. (Ce) 

Conc. on 
Mulch 
(qe) Ce/qe Date 

 

mg 
atrazine/L grams mL 

mg 
atrazine/L mg/g g/L 

 Cedar 5 0.0513 42.5 4.379 0.51 8.51 9.12b 

Cedar 5 0.1516 42.6 3.776 0.34 10.98 9.12b 

Cedar 10 0.2503 42.3 6.781 0.54 12.47 9.12b 

Cedar 10 0.5011 42.2 6.668 0.28 23.77 8.26 

Cedar 10 1.0045 40.6 4.896 0.21 23.74 8.26 

Cedar 10 2.0007 38.1 3.152 0.13 24.16 8.26 

Cypress 10 0.1512 42.7 8.207 0.51 16.20 9.12b 

Cypress 10 0.2534 42.3 6.898 0.52 13.32 9.12b 

Cypress 5 0.499 43 4.284 0.06 69.40 9.12b 

Cypress 15 0.501 41.3 9.153 0.48 18.99 9.12a 

Cypress 15 2.5042 28 9.250 0.06 143.86 9.12b 

Hardwood 5 0.0507 42.9 4.253 0.63 6.73 9.12b 

Hardwood 5 0.1503 42.2 4.029 0.27 14.79 9.12b 

Hardwood 5 0.2501 42.2 3.632 0.23 15.74 9.12b 

Hardwood 15 0.5011 42.1 7.088 0.66 10.66 9.12b 

Hardwood 10 0.5041 41.7 7.166 0.23 30.57 8.26 

Hardwood 10 1.0029 41.8 5.187 0.20 25.86 8.26 

Hardwood 15 2.0019 38.7 2.813 0.24 11.94 9.12b 

Hardwood 10 2.0033 36.5 3.863 0.11 34.55 8.26 
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Table A3: Raw data for mono atrazine Freundlich isotherm after statistical analysis 

Mulch 

Type 

Initial 

Concentration 

Mulch 

Weight  

Liquid 

Volume 

Final 

Conc.(Ce) 

Conc. 

on 

Mulch 

(qe) Date 

 mg atrazine/L  grams mL 

mg 

atrazine/L  mg/g  

Cedar 10 0.1505 42.4 7.685 0.652 9.12b 

Cedar 10 0.2503 42.3 6.781 0.544 9.12b 

Cedar 5 0.2506 42.2 3.756 0.210 9.12b 

Cedar 5 0.5004 41.2 3.062 0.160 9.12b 

Cedar 15 0.5011 41.4 8.565 0.532 9.12a 

Cedar 5 0.7505 40.9 2.639 0.129 9.12b 

Cedar 5 1.0003 40.6 2.067 0.119 9.12b 

Cedar 15 1.0024 40.3 6.034 0.360 9.12a 

Cedar 15 1.5 39.4 4.925 0.265 9.12a 

Cedar 15 2.0008 37.9 3.834 0.212 9.12a 

Cedar 10 2.5021 37.2 1.895 0.121 9.12b 

Cedar 15 2.5041 37.2 3.003 0.178 9.12a 

Cypress 10 0.1512 42.7 8.207 0.506 9.12b 

Cypress 5 0.2513 42.4 3.631 0.231 9.12b 

Cypress 15 0.501 41.3 9.153 0.482 9.12a 

Cypress 5 0.5018 41.9 2.779 0.185 9.12b 

Cypress 10 0.5021 42.4 6.273 0.315 8.26 

Cypress 5 0.7505 41.4 2.596 0.133 9.12b 

Cypress 5 1.0015 40.9 1.902 0.127 9.12b 

Cypress 10 1.0017 41.4 4.799 0.215 8.26 

Cypress 15 1.0045 41 6.726 0.338 9.12a 

Cypress 10 2.0006 39.4 2.820 0.141 8.26 

Cypress 15 2.0082 39 3.236 0.228 9.12a 

Cypress 10 2.5095 37.8 2.007 0.120 9.12b 

Hardwood 5 0.1503 42.2 4.029 0.273 9.12b 

Hardwood 10 0.1504 42.7 8.047 0.555 9.12b 

Hardwood 5 0.2501 42.2 3.632 0.231 9.12b 

Hardwood 10 0.2507 42.3 7.369 0.444 9.12b 

Hardwood 5 0.5019 41.9 3.274 0.144 9.12b 

Hardwood 5 0.7502 41.1 2.905 0.115 9.12b 

Hardwood 5 1.0002 40.5 2.344 0.108 9.12b 

Hardwood 15 1.0024 40.8 6.476 0.347 9.12b 

Hardwood 15 1.5012 40.1 4.517 0.280 9.12b 

Hardwood 15 2.5014 37.6 3.804 0.168 9.12b 

Hardwood 10 2.5019 37.9 2.681 0.111 9.12b 
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Table 4: Raw data for mono atrazine Freundlich isotherm removed based on a 95% confidence interval 

 

  

Mulch 

Type 

Initial 

Concentration 

Mulch 

Weight  

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. on 

Mulch (qe) Date 

 mg atrazine/L  grams mL 

mg 

atrazine/

L  mg/g  

Cedar 5 0.0513 42.5 4.379 0.515 9.12b 

Cedar 5 0.1516 42.6 3.776 0.344 9.12b 

Cedar 10 0.5011 42.2 6.668 0.281 8.26 

Cedar 10 1.0045 40.6 4.896 0.206 8.26 

Cedar 10 2.0007 38.1 3.152 0.130 8.26 

Cypress 5 0.1509 42.7 3.770 0.348 9.12b 

Cypress 10 0.2534 42.3 6.898 0.518 9.12b 

Cypress 5 0.499 43 4.284 0.062 9.12b 

Cypress 15 1.5018 39.6 4.028 0.289 9.12a 

Cypress 15 2.5042 28 9.250 0.064 9.12b 

Hardwood 5 0.0507 42.9 4.253 0.632 9.12b 

Hardwood 15 0.5011 42.1 7.088 0.665 9.12b 

Hardwood 10 0.5041 41.7 7.166 0.234 8.26 

Hardwood 10 1.0029 41.8 5.187 0.201 8.26 

Hardwood 15 2.0019 38.7 2.813 0.236 9.12b 

Hardwood 10 2.0033 36.5 3.863 0.112 8.26 
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Table A5: Control data for mono atrazine isotherm  

 

 

 

 

Figure A1: Raw data for mono atrazine isotherm on cedar mulch  
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Mulch Type 

Initial 

Concentration 

Mulch 

Weight  

Liquid 

Volume 

Final 

Concentration 

(Ce) Date 

 mg atrazine/L  grams mL mg atrazine/L   

Cedar 0 1.0035 40.7 0.00 9.12b 

Cypress 0 1.0019 40.8 0.00 8.26 

Hardwood 0 1.0028 41 0.00 8.26 

No Mulch 10 0 43.1 10.28 8.26 

No Mulch 5 0 42.7 4.86 9.12b 

No Mulch 15 0 43.1 14.74 9.12b 

No Mulch, Filtered  10 0 42.9 9.31 9.12b 

No Mulch, Unfiltered 10 0 42.9 10.05 9.12b 
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Figure A2: Raw data for mono atrazine isotherm on cypress mulch  

 

 

Figure A3: Raw data for mono atrazine isotherm on hardwood mulch  
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Appendix B: Raw Data for Mono Nitrate System 

 

The following tables include the raw data for the mono isotherm for nitrate. 

Nitrate was analyzed using two isotherms, Langmuir and Freundlich. Tables B1 

(Langmuir) and B5 (Freundlich) shows the data after a statistical analysis removing data 

points that had a final solution concentration either greater than 90% or less than 10% of 

the initial solution concentration and that fell outside a 95% confidence interval (90-10 

Rule). The data points that were removed based on the 90-10 rule can be seen in Table 

B2. The data points that were removed based on a 95% confidence interval can be seen in 

Table B3 (Langmuir) and Table B6 (Freundlich). Control tests were performed to ensure: 

1. The mulch did not contain nitrate, 2. The nitrate was not adhering to the glass sample 

containers, and 3. The filters were not altering the concentration of nitrate. The data from 

the control tests can be seen in Table B4. The raw data is plotted in Figures B1-B3. 

 A smaller range of final nitrate concentration (Co<3.4 mg NO3-N/L)was also 

analyzed using both Langmuir and Freundlich isotherms. Tables B7 (Langmuir) and B9 

(Freundlich) shows the data after a statistical analysis removing data points that had a 

final solution concentration either greater than 90% or less than 10% of the initial 

solution concentration and that fell outside a 95% confidence interval. The data points 

that were removed based on a 95% confidence interval can be seen in Table B8 

(Langmuir) and B10 (Freundlich). 
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Table B1: Raw data for mono nitrate Langmuir isotherm after statistical analysis 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L  grams mL 

mg 

NO3-N 

/L  mg/g g/L 

 Cedar 0.68 0.0512 253.8 0.48 0.98 0.49 8.30 

Cedar 0.68 0.15 253.6 0.43 0.42 1.03 8.23 

Cedar 1.58 0.15 252.3 1.19 0.66 1.81 7.26 

Cedar 0.68 0.2506 253 0.25 0.43 0.58 8.23 

Cedar 1.58 0.2519 254.6 1.04 0.55 1.90 7.26 

Cedar 3.39 0.5009 253.7 2.54 0.43 5.92 8.1 

Cedar 1.58 0.5014 253.5 0.72 0.44 1.65 7.26 

Cedar 3.39 1.0012 251.5 2.26 0.28 7.98 8.1 

Cedar 20.33 1.3306 39.5 16.32 0.12 137.26 8.30 

Cedar 3.39 2.002 248.1 0.97 0.30 3.24 8.1 

Cedar 3.39 6.0025 239.5 2.06 0.05 38.89 8.1 

Cedar 3.39 8.004 236 1.65 0.05 32.21 8.1 

Cypress 0.68 0.0501 253.8 0.53 0.75 0.71 8.23 

Cypress 0.68 0.1528 253.4 0.4 0.46 0.87 8.23 

Cypress 0.68 0.2503 251.5 0.33 0.35 0.95 8.30 

Cypress 3.39 0.5 252.3 2.63 0.38 6.88 8.1 

Cypress 1.58 0.5008 252.4 0.99 0.30 3.32 7.26 

Cypress 0.68 0.5017 251.7 0.15 0.26 0.57 8.23 

Cypress 1.58 0.7501 252.2 0.73 0.29 2.55 7.26 

Cypress 0.68 0.7503 252.05 0.23 0.15 1.53 8.30 

Cypress 20.33 1.0001 40.7 15.33 0.20 75.41 8.30 

Cypress 3.39 1.0013 251.1 2.39 0.25 9.55 8.1 

Cypress 15.00 1.0016 40.8 11.16 0.16 71.35 11.15 

Cypress 1.58 1.0029 251.5 0.64 0.24 2.71 7.12 

Cypress 20.33 1.3303 40.2 14.61 0.17 84.59 8.30 

Cypress 3.39 2 249.6 0.83 0.32 2.60 8.1 

Cypress 1.58 2.0019 250.8 0.41 0.15 2.80 7.26 

Cypress 1.58 2.0032 249.6 0.79 0.10 8.02 7.12 

Cypress 3.39 4.0011 246.2 2.51 0.05 46.48 8.1 

Cypress 1.58 4.0013 246.3 0.35 0.08 4.62 7.12 

Cypress 1.58 4.0025 246.8 0.71 0.05 13.22 7.26 

Cypress 1.58 5.0016 252.9 0.31 0.06 4.82 7.26 
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Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L grams mL 

mg 

NO3-N 

/L mg/g g/L  

Cypress 3.39 6.0032 241.5 1.44 0.08 18.38 8.1 

Cypress 1.58 7.0017 240.1 0.38 0.04 9.23 7.26 

Hardwood 0.68 0.0506 253.2 0.59 0.44 1.35 8.30 

Hardwood 0.68 0.1504 253.4 0.45 0.38 1.17 8.30 

Hardwood 1.58 0.1514 254.1 1.3 0.47 2.76 7.26 

Hardwood 1.58 0.2508 253.4 1.26 0.32 3.89 7.26 

Hardwood 0.68 0.2523 253.4 0.33 0.35 0.95 8.23 

Hardwood 1.58 0.5001 253.4 0.68 0.46 1.49 7.26 

Hardwood 3.39 0.5011 251.7 2.51 0.44 5.69 8.1 

Hardwood 0.68 0.5018 252.2 0.14 0.27 0.52 8.23 

Hardwood 1.58 0.7504 251.8 0.49 0.37 1.34 7.26 

Hardwood 20.33 1 40.6 17.27 0.12 139.23 8.30 

Hardwood 3.39 1.0007 251.7 2.33 0.27 8.76 8.1 

Hardwood 1.58 1.0009 251.3 0.85 0.18 4.63 7.26 

Hardwood 1.58 1.002 251.2 0.82 0.19 4.30 7.12 

Hardwood 20.33 1.3308 40.4 15.77 0.14 114.04 8.30 

Hardwood 1.58 1.5022 251 0.51 0.18 2.85 7.26 

Hardwood 3.39 2.0016 249 1.83 0.19 9.44 8.1 

Hardwood 3.39 4.0018 242.5 1.19 0.13 8.94 8.1 

Table B1 Continued: Raw data for mono nitrate Langmuir isotherm after 
statistical analysis 
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Table B2: Raw data for mono nitrate Langmuir isotherm removed based on the 90-10 rule 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. (Ce) 

Conc. on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L grams mL 

mg NO3-N 

/L mg/g g/L 

 Cedar 9.49 0.5011 42 9.66 -0.01 -658.95 9.21 

Cedar 0.68 0.5035 250.8 0.03 0.32 0.09 8.23 

Cedar 1.58 0.7501 252.2 0.01 0.53 0.02 7.26 

Cedar 0.68 0.753 251.8 0.01 0.22 0.04 8.23 

Cedar 12.24 1.0005 40.8 11.25 0.04 278.71 11.15 

Cedar 1.58 1.0009 251.7 0.02 0.39 0.05 7.12 

Cedar 15.00 1.001 40.3 14.79 0.01 1749.35 11.15 

Cedar 1.58 1.0027 251.6 0.01 0.39 0.03 7.26 

Cedar 0.68 1.0111 251.9 0 0.17 0.00 8.23 

Cedar 20.33 1.5013 39.2 18.39 0.05 363.95 9.21 

Cedar 9.49 1.502 39.7 9.16 0.01 1066.02 9.21 

Cedar 1.58 2 249.9 0.03 0.19 0.15 7.12 

Cedar 20.33 2.5012 37.2 18.36 0.03 628.16 9.21 

Cedar 1.58 4.0008 230.1 0.12 0.08 1.43 7.12 

Cedar 3.39 4.0025 244.5 0 0.21 0.00 8.1 

Cypress 1.58 1.0002 251.1 0.04 0.39 0.10 7.26 

Cypress 9.49 1.5015 40.1 8.62 0.02 373.10 9.21 

Cypress 20.33 1.5035 39.5 18.36 0.05 355.61 9.21 

Cypress 20.33 2.0019 39.6 18.36 0.04 472.29 9.21 

Cypress 9.49 2.0027 38.7 8.9 0.01 787.17 9.21 

Hardwood 9.49 0.5033 41.7 8.96 0.04 205.95 9.21 

Hardwood 12.24 1.0005 41.1 11.37 0.04 318.20 11.15 

Hardwood 9.49 1.0016 40.5 8.75 0.03 294.38 9.21 

Hardwood 12.24 1.5004 39.7 11.65 0.02 746.47 11.15 

Hardwood 9.49 1.5007 39.3 9.16 0.01 1075.94 9.21 

Hardwood 1.58 2.0014 250 0 0.20 0.00 7.12 

Hardwood 20.33 2.0025 38.5 18.48 0.04 520.92 9.21 

Hardwood 20.33 2.5016 27.6 18.33 0.02 832.69 9.21 

Hardwood 1.58 4.0009 245.6 0.01 0.10 0.10 7.12 
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Table B3: Raw data for mono nitrate Langmuir isotherm removed based on a 95% confidence interval 

 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L grams mL 

mg NO3-

N /L mg/g g/L 

 Cedar 20.33 0.6703 41.2 15.69 0.28 55.07 8.30 

Cedar 20.33 1.0008 40.7 15.68 0.19 83.00 8.30 

Cedar 9.49 1.0056 40.4 8.53 0.04 222.30 9.21 

Cedar 12.24 1.5001 39.6 10.98 0.03 330.15 11.15 

Cedar 15.00 1.5013 38.8 12.54 0.06 197.24 11.15 

Cedar 20.33 2.0002 38.4 18.15 0.04 434.63 9.21 

Cypress 20.33 0.1517 47.6 17.4 0.92 18.96 9.21 

Cypress 9.49 0.3303 42 7.78 0.22 35.88 8.30 

Cypress 20.33 0.67 41.7 15.79 0.28 55.94 8.30 

Cypress 9.49 0.6707 41.4 8.17 0.08 100.65 8.30 

Cypress 12.24 1.0035 40.9 10.08 0.09 114.51 11.15 

Cypress 9.49 1.0068 41.2 7.56 0.08 95.97 9.21 

Cypress 12.24 1.5025 40.4 10.64 0.04 247.34 11.15 

Cypress 15.00 1.503 39.7 13.05 0.05 253.36 11.15 

Cypress 3.39 8.001 237.4 2.46 0.03 89.39 8.1 

Hardwood 9.49 0.1701 42.4 7.64 0.46 16.61 8.30 

Hardwood 9.49 0.2509 4.4 7.35 0.04 196.30 8.30 

Hardwood 9.49 0.3312 41.7 7.89 0.20 39.29 8.30 

Hardwood 20.33 0.6703 41.1 17.17 0.19 88.75 8.30 

Hardwood 15.00 1.0013 40.9 12.87 0.09 147.92 11.15 

Hardwood 15.00 1.5019 40.1 12.72 0.06 208.95 11.15 

Hardwood 20.33 1.5025 39.9 17.94 0.06 283.23 9.21 

Hardwood 3.39 6.0022 241 2.31 0.04 53.39 8.1 

Hardwood 3.39 8.0016 236.5 1.99 0.04 48.18 8.1 
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Table B4: Control data for mono nitrate isotherm  

Mulch Type Initial Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final Conc. 

(Ce) 

Initial 

Conc. 

 mg NO3-N/L grams mL mg NO3-N/L  

Cedar 0 1.3318 39.4 0 8.30 

Cedar 0 2.0004 249.2 0 7.12 

Cypress 0 1.3302 40.1 0 8.30 

Cypress 0 2.0005 249.9 0 7.12 

Hardwood  0 1.3303 40.2 0 8.30 

Hardwood  0 2.0004 249.2 0 7.12 

No Mulch 1.58 0 253.9 1.39 7.12 

No Mulch 1.58 0 254 1.44 7.26 

No Mulch 3.39 0 252.5 3.09 8.1 

No Mulch 0.68 0 251.3 0.6 8.23 

No Mulch 9.49 0 42.4 9.35 8.30 

No Mulch 20.33 0 42.4 18.76 8.30 

No Mulch 20.33 0 43.4 20.79 9.21 

No Mulch 9.49 0 42.7 10.16 9.21 

No Mulch 12.24 0 42.8 12.24 11.15 

No Mulch 15.00 0 42.7 14.76 11.15 

No Mulch, Filtered 0.68 0 254.2 0.58 8.30 

No Mulch, Unfiltered 0.68 0 254.2 0.62 8.30 
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Table B5: Raw data for mono nitrate Freundlich isotherm after statistical analysis 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L grams mL 

mg 

NO3-N 

/L mg/g g/L 

 Cedar 0.68 0.15 253.6 0.43 0.42 1.03 8.23 

Cedar 0.68 0.2506 253 0.25 0.43 0.58 8.23 

Cedar 1.58 0.5014 253.5 0.72 0.44 1.65 7.26 

Cedar 3.39 1.0012 251.5 2.26 0.28 7.98 8.1 

Cedar 20.33 1.3306 39.5 16.32 0.12 137.26 8.30 

Cedar 15.00 1.5013 38.8 12.54 0.06 197.24 11.15 

Cedar 20.33 2.0002 38.4 18.15 0.04 434.63 9.21 

Cedar 3.39 2.002 248.1 0.97 0.30 3.24 8.1 

Cypress 0.68 0.5017 251.7 0.15 0.26 0.57 8.23 

Cypress 0.68 0.7503 252.05 0.23 0.15 1.53 8.30 

Cypress 20.33 1.0001 40.7 15.33 0.20 75.41 8.30 

Cypress 15.00 1.0016 40.8 11.16 0.16 71.35 11.15 

Cypress 12.24 1.0035 40.9 10.08 0.09 114.51 11.15 

Cypress 9.49 1.0068 41.2 7.56 0.08 95.97 9.21 

Cypress 20.33 1.3303 40.2 14.61 0.17 84.59 8.30 

Cypress 1.58 2.0019 250.8 0.41 0.15 2.80 7.26 

Hardwood 0.68 0.1504 253.4 0.45 0.38 1.17 8.30 

Hardwood 0.68 0.2523 253.4 0.33 0.35 0.95 8.23 

Hardwood 0.68 0.5018 252.2 0.14 0.27 0.52 8.23 

Hardwood 1.58 0.7504 251.8 0.49 0.37 1.34 7.26 

Hardwood 20.33 1 40.6 17.27 0.12 139.23 8.30 

Hardwood 1.58 1.0009 251.3 0.85 0.18 4.63 7.26 

Hardwood 15.00 1.0013 40.9 12.87 0.09 147.92 11.15 

Hardwood 1.58 1.002 251.2 0.82 0.19 4.30 7.12 

Hardwood 20.33 1.3308 40.4 15.77 0.14 114.04 8.30 

Hardwood 20.33 1.5025 39.9 17.94 0.06 283.23 9.21 

Hardwood 3.39 2.0016 249 1.83 0.19 9.44 8.1 
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Table B6: Raw data for mono nitrate Freundlich isotherm removed based on a 95% confidence interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Vol. 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg NO3-

N /L grams mL 

mg NO3-

N /L mg/g g/L 

 Cedar 0.68 0.0512 253.8 0.48 0.98 0.49 8.30 

Cedar 1.58 0.15 252.3 1.19 0.66 1.81 7.26 

Cedar 1.58 0.2519 254.6 1.04 0.55 1.90 7.26 

Cedar 3.39 0.5009 253.7 2.54 0.43 5.92 8.1 

Cedar 20.33 0.6703 41.2 15.69 0.28 55.07 8.30 

Cedar 20.33 1.0008 40.7 15.68 0.19 83.00 8.30 

Cedar 9.49 1.0056 40.4 8.53 0.04 222.30 9.21 

Cedar 12.24 1.5001 39.6 10.98 0.03 330.15 11.15 

Cedar 3.39 6.0025 239.5 2.06 0.05 38.89 8.1 

Cedar 3.39 8.004 236 1.65 0.05 32.21 8.1 

Cypress 0.68 0.0501 253.8 0.53 0.75 0.71 8.23 

Cypress 20.33 0.1517 47.6 17.4 0.92 18.96 9.21 

Cypress 0.68 0.1528 253.4 0.4 0.46 0.87 8.23 

Cypress 0.68 0.2503 251.5 0.33 0.35 0.95 8.30 

Cypress 9.49 0.3303 42 7.78 0.22 35.88 8.30 

Cypress 3.39 0.5 252.3 2.63 0.38 6.88 8.1 

Cypress 1.58 0.5008 252.4 0.99 0.30 3.32 7.26 

Cypress 20.33 0.67 41.7 15.79 0.28 55.94 8.30 

Cypress 9.49 0.6707 41.4 8.17 0.08 100.65 8.30 

Cypress 1.58 0.7501 252.2 0.73 0.29 2.55 7.26 

Cypress 3.39 1.0013 251.1 2.39 0.25 9.55 8.1 

Cypress 1.58 1.0029 251.5 0.64 0.24 2.71 7.12 

Cypress 12.24 1.5025 40.4 10.64 0.04 247.34 11.15 

Cypress 15.00 1.503 39.7 13.05 0.05 253.36 11.15 

Cypress 3.39 2 249.6 0.83 0.32 2.60 8.1 

Cypress 1.58 2.0032 249.6 0.79 0.10 8.02 7.12 

Cypress 3.39 4.0011 246.2 2.51 0.05 46.48 8.1 

Cypress 1.58 4.0013 246.3 0.35 0.08 4.62 7.12 

Cypress 1.58 4.0025 246.8 0.71 0.05 13.22 7.26 

Cypress 1.58 5.0016 252.9 0.31 0.06 4.82 7.26 
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Table B6 Continued: Raw data for mono nitrate Freundlich isotherm removed based on a 95% 

confidence interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L grams mL 

mg 

NO3-N 

/L mg/g g/L  

Cypress 3.39 6.0032 241.5 1.44 0.08 18.38 8.1 

Cypress 1.58 7.0017 240.1 0.38 0.04 9.23 7.26 

Cypress 3.39 8.001 237.4 2.46 0.03 89.39 8.1 

Hardwood 0.68 0.0506 253.2 0.59 0.44 1.35 8.30 

Hardwood 1.58 0.1514 254.1 1.3 0.47 2.76 7.26 

Hardwood 9.49 0.1701 42.4 7.64 0.46 16.61 8.30 

Hardwood 1.58 0.2508 253.4 1.26 0.32 3.89 7.26 

Hardwood 9.49 0.2509 4.4 7.35 0.04 196.30 8.30 

Hardwood 9.49 0.3312 41.7 7.89 0.20 39.29 8.30 

Hardwood 1.58 0.5001 253.4 0.68 0.46 1.49 7.26 

Hardwood 3.39 0.5011 251.7 2.51 0.44 5.69 8.1 

Hardwood 20.33 0.6703 41.1 17.17 0.19 88.75 8.30 

Hardwood 3.39 1.0007 251.7 2.33 0.27 8.76 8.1 

Hardwood 15.00 1.5019 40.1 12.72 0.06 208.95 11.15 

Hardwood 1.58 1.5022 251 0.51 0.18 2.85 7.26 

Hardwood 3.39 4.0018 242.5 1.19 0.13 8.94 8.1 

Hardwood 3.39 6.0022 241 2.31 0.04 53.39 8.1 

Hardwood 3.39 8.0016 236.5 1.99 0.04 48.18 8.1 
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Table B7: Raw data for mono nitrate Langmuir isotherm (Co<3.4 mg NO3-N/L) after statistical analysis 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final  

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L grams mL 

mg NO3-

N /L mg/g g/L 

 Cedar 0.68 0.0512 253.8 0.48 0.98 0.49 8.30 

Cedar 0.68 0.15 253.6 0.43 0.42 1.03 8.23 

Cedar 1.58 0.15 252.3 1.19 0.66 1.81 7.26 

Cedar 0.68 0.2506 253 0.25 0.43 0.58 8.23 

Cedar 1.58 0.2519 254.6 1.04 0.55 1.90 7.26 

Cedar 3.39 0.5009 253.7 2.54 0.43 5.92 8.1 

Cedar 1.58 0.5014 253.5 0.72 0.44 1.65 7.26 

Cedar 3.39 1.0012 251.5 2.26 0.28 7.98 8.1 

Cedar 3.39 2.002 248.1 0.97 0.30 3.24 8.1 

Cypress 0.68 0.0501 253.8 0.53 0.75 0.71 8.23 

Cypress 0.68 0.1528 253.4 0.4 0.46 0.87 8.23 

Cypress 0.68 0.2503 251.5 0.33 0.35 0.95 8.30 

Cypress 1.58 0.5008 252.4 0.99 0.30 3.32 7.26 

Cypress 0.68 0.5017 251.7 0.15 0.26 0.57 8.23 

Cypress 1.58 0.7501 252.2 0.73 0.29 2.55 7.26 

Cypress 0.68 0.7503 252.05 0.23 0.15 1.53 8.30 

Cypress 1.58 1.0029 251.5 0.64 0.24 2.71 7.12 

Cypress 3.39 2 249.6 0.83 0.32 2.60 8.1 

Cypress 1.58 2.0019 250.8 0.41 0.15 2.80 7.26 

Cypress 1.58 2.0032 249.6 0.79 0.10 8.02 7.12 

Cypress 3.39 4.0011 246.2 2.51 0.05 46.48 8.1 

Cypress 1.58 4.0013 246.3 0.35 0.08 4.62 7.12 

Cypress 1.58 4.0025 246.8 0.71 0.05 13.22 7.26 

Cypress 1.58 5.0016 252.9 0.31 0.06 4.82 7.26 

Cypress 3.39 6.0032 241.5 1.44 0.08 18.38 8.1 

Cypress 1.58 7.0017 240.1 0.38 0.04 9.23 7.26 

Hardwood 0.68 0.0506 253.2 0.59 0.44 1.35 8.30 

Hardwood 0.68 0.1504 253.4 0.45 0.38 1.17 8.30 

Hardwood 1.58 0.2508 253.4 1.26 0.32 3.89 7.26 

Hardwood 0.68 0.2523 253.4 0.33 0.35 0.95 8.23 

Hardwood 1.58 0.5001 253.4 0.68 0.46 1.49 7.26 

Hardwood 0.68 0.5018 252.2 0.14 0.27 0.52 8.23 

Hardwood 1.58 0.7504 251.8 0.49 0.37 1.34 7.26 
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Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final  

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L grams mL 

mg NO3-

N /L mg/g g/L  

Hardwood 1.58 1.0009 251.3 0.85 0.18 4.63 7.26 

Hardwood 1.58 1.002 251.2 0.82 0.19 4.30 7.12 

Hardwood 1.58 1.5022 251 0.51 0.18 2.85 7.26 

Hardwood 3.39 2.0016 249 1.83 0.19 9.44 8.1 

Hardwood 3.39 4.0018 242.5 1.19 0.13 8.94 8.1 

 

 

Table B8: Raw data for mono nitrate Langmuir isotherm (Co<3.4 mg NO3-N/L) removed based on a 95% 

confidence interval 

 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final  

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

NO3-N 

/L grams mL 

mg 

NO3-N 

/L mg/g g/L 

 Cedar 3.39 6.0025 239.5 2.06 0.05 38.89 8.1 

Cedar 3.39 8.004 236 1.65 0.05 32.21 8.1 

Cypress 3.39 0.5 252.3 2.63 0.38 6.88 8.1 

Cypress 3.39 1.0013 251.1 2.39 0.25 9.55 8.1 

Cypress 3.39 8.001 237.4 2.46 0.03 89.39 8.1 

Hardwood 1.58 0.1514 254.1 1.3 0.47 2.76 7.26 

Hardwood 3.39 0.5011 251.7 2.51 0.44 5.69 8.1 

Hardwood 3.39 1.0007 251.7 2.33 0.27 8.76 8.1 

Hardwood 3.39 6.0022 241 2.31 0.04 53.39 8.1 

Hardwood 3.39 8.0016 236.5 1.99 0.04 48.18 8.1 

 

  

Table B7 Continued: Raw data for mono nitrate Langmuir isotherm (Ce<5 mg/L) 
after statistical analysis 
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Table B9: Raw data for mono nitrate Freundlich isotherm (Co<3.4 mg NO3-N/L) after statistical analysis 

 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final  

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Date 

 

mg 

NO3-N 

/L grams mL 

mg 

NO3-N 

/L mg/g 

 Cedar 0.68 0.0512 253.8 0.48 0.98 8.30 

Cedar 0.68 0.15 253.6 0.43 0.42 8.23 

Cedar 0.68 0.2506 253 0.25 0.43 8.23 

Cedar 3.39 0.5009 253.7 2.54 0.43 8.1 

Cedar 1.58 0.5014 253.5 0.72 0.44 7.26 

Cedar 3.39 1.0012 251.5 2.26 0.28 8.1 

Cedar 3.39 2.002 248.1 0.97 0.30 8.1 

Cypress 0.68 0.5017 251.7 0.15 0.26 8.23 

Cypress 0.68 0.7503 252.05 0.23 0.15 8.30 

Cypress 3.39 1.0013 251.1 2.39 0.25 8.1 

Cypress 1.58 1.0029 251.5 0.64 0.24 7.12 

Cypress 1.58 2.0019 250.8 0.41 0.15 7.26 

Cypress 1.58 2.0032 249.6 0.79 0.10 7.12 

Cypress 3.39 4.0011 246.2 2.51 0.05 8.1 

Cypress 3.39 6.0032 241.5 1.44 0.08 8.1 

Hardwood 0.68 0.1504 253.4 0.45 0.38 8.30 

Hardwood 0.68 0.2523 253.4 0.33 0.35 8.23 

Hardwood 0.68 0.5018 252.2 0.14 0.27 8.23 

Hardwood 1.58 0.7504 251.8 0.49 0.37 7.26 

Hardwood 3.39 1.0007 251.7 2.33 0.27 8.1 

Hardwood 1.58 1.0009 251.3 0.85 0.18 7.26 

Hardwood 1.58 1.002 251.2 0.82 0.19 7.12 

Hardwood 1.58 1.5022 251 0.51 0.18 7.26 

Hardwood 3.39 2.0016 249 1.83 0.19 8.1 
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Table B10: Raw data for mono nitrate Freundlich isotherm (Co<3.4 mg NO3-N/L) removed based on a 

95% confidence interval 

 

Mulch 

Type 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final  

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Date 

 

mg 

NO3-N 

/L grams mL 

mg NO3-N 

/L mg/g 

 Cedar 1.58 0.15 252.3 1.19 0.66 7.26 

Cedar 1.58 0.2519 254.6 1.04 0.55 7.26 

Cedar 3.39 6.0025 239.5 2.06 0.05 8.1 

Cedar 3.39 8.004 236 1.65 0.05 8.1 

Cypress 0.68 0.0501 253.8 0.53 0.75 8.23 

Cypress 0.68 0.1528 253.4 0.4 0.46 8.23 

Cypress 0.68 0.2503 251.5 0.33 0.35 8.30 

Cypress 3.39 0.5 252.3 2.63 0.38 8.1 

Cypress 1.58 0.5008 252.4 0.99 0.30 7.26 

Cypress 1.58 0.7501 252.2 0.73 0.29 7.26 

Cypress 3.39 2 249.6 0.83 0.32 8.1 

Cypress 1.58 4.0013 246.3 0.35 0.08 7.12 

Cypress 1.58 4.0025 246.8 0.71 0.05 7.26 

Cypress 1.58 5.0016 252.9 0.31 0.06 7.26 

Cypress 1.58 7.0017 240.1 0.38 0.04 7.26 

Cypress 3.39 8.001 237.4 2.46 0.03 8.1 

Hardwood 0.68 0.0506 253.2 0.59 0.44 8.30 

Hardwood 1.58 0.1514 254.1 1.3 0.47 7.26 

Hardwood 1.58 0.2508 253.4 1.26 0.32 7.26 

Hardwood 1.58 0.5001 253.4 0.68 0.46 7.26 

Hardwood 3.39 0.5011 251.7 2.51 0.44 8.1 

Hardwood 3.39 4.0018 242.5 1.19 0.13 8.1 

Hardwood 3.39 6.0022 241 2.31 0.04 8.1 

Hardwood 3.39 8.0016 236.5 1.99 0.04 8.1 
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Figure B1: Raw data for mono atrazine isotherm on cedar mulch  

 

 

Figure B2: Raw data for mono atrazine isotherm on cypress mulch  
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Figure B3: Raw data for mono atrazine isotherm on hardwood mulch  
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Appendix C: Graphs for Mono Atrazine System 
 

The following figures show the graphs for the mono isotherms for atrazine using a 

Langmuir isotherm (Figures C1-C3) and Freundlich isotherm (Figures C4-C6).  

 

 

Figure C1: Langmuir adsorption isotherm for atrazine in the mono system on cedar mulch 
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Figure C2: Langmuir adsorption isotherm for atrazine in the mono system on cypress mulch 

 

 

Figure C3: Langmuir adsorption isotherm for atrazine in the mono system on hardwood mulch 
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Figure C4: Freundlich adsorption isotherm for atrazine in the mono system on cedar mulch 

 

 

 

 

Figure C5: Freundlich adsorption isotherm for atrazine in the mono system on cypress mulch  
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Figure C6: Freundlich adsorption isotherm for atrazine in the mono system on hardwood mulch  
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Appendix D: Graphs for Mono Nitrate System  

 

The following figures show the graphs for the mono isotherms for nitrate using a 

Langmuir isotherm (Figures D1-D3) and Freundlich isotherm (Figures D4-D6).  

 

Figure D1: Langmuir adsorption isotherm for nitrate in the mono system on cedar mulch 
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Figure D2: Langmuir adsorption isotherm for nitrate in the mono system on cypress mulch 

 

 

Figure D3: Langmuir adsorption isotherm for nitrate in the mono system on hardwood mulch 
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Figure D4: Freundlich adsorption isotherm for nitrate in the mono system on cedar mulch 

 

 

Figure D5: Freundlich adsorption isotherm for nitrate in the mono system on cypress mulch 
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Figure D6: Freundlich adsorption isotherm for nitrate in the mono system on hardwood mulch 
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Appendix E: Graphs for Mono Nitrate System for Co<3.4 mg NO3-N/L 

 

The following figures show the graphs for the mono isotherms for nitrate (Co<3.4 

mg NO3-N/L) using a Langmuir isotherm (Figures E1-E3) and Freundlich isotherm 

(Figures E4-E6).  

 

Figure E1: Langmuir adsorption isotherm for nitrate (Co<3.4 mg NO3-N/L) in the mono system on cedar 

mulch 
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Figure E2: Langmuir adsorption isotherm for nitrate (Co<3.4 mg NO3-N/L) in the mono system on 

cypress mulch 

 

 

Figure E3: Langmuir adsorption isotherm for nitrate (Co<3.4 mg NO3-N/L) in the mono system on 

hardwood mulch 
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Figure E4: Freundlich adsorption isotherm for nitrate (Co<3.4 mg NO3-N/L) in the mono system on 

cedar mulch 

 

 

Figure E5: Freundlich adsorption isotherm for nitrate (Co<3.4 mg NO3-N/L) in the mono system on 

cypress mulch 
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Figure E6: Freundlich adsorption isotherm for nitrate (Co<3.4 mg NO3-N/L) in the mono system on 

hardwood mulch 
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Appendix F: Raw Data for Binary Atrazine System 

 

The following tables include the raw data for the binary Langmuir and Freundlich 

isotherms for atrazine. Tables F1 and F3 shows the Langmuir and Freundlich isotherm 

data, respectively, after a statistical analysis removing data points that had a final solution 

concentration either greater than 90% or less than 10% of the initial solution 

concentration and that fell outside a 95% confidence interval. The removed data points 

based pm the 95% confidence interval can be seen in Tables F2 and F5 for the Langmuir 

and Freundlich isotherms, respectively. Control tests were performed to ensure the 

atrazine or nitrate were not adhering to the glass containers. The data from the control 

tests can be seen in Table F4. The raw data is plotted in Figures F1-F3. 
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Table F1: Raw data for binary atrazine Langmuir isotherm after statistical analysis 

 

 

 

 

Mulch 
Type 

Initial 
Conc. 

Initial 
Conc. 

Mulch 
Weight 

Liquid 
Volume 

Final 
Conc.(Ce) 

Conc. 
on 
Mulch 
(qe) Ce/qe Date 

 

mg 
atrazine/L 

mg NO3-
N/L  grams mL 

mg 
atrazine/L mg/g g/L 

 Cedar 5 7 0.5014 41.6 2.851 0.178 15.99 10.26 

Cedar 5 7 1.5009 39.4 1.285 0.098 13.18 10.26 

Cedar 5 7 0.7513 41.2 2.041 0.162 12.57 11.15 

Cedar 5 7 1.0045 40.47 1.639 0.135 12.10 11.15 

Cedar 2.5 3.5 0.7506 41 1.075 0.078 13.82 10.26 

Cedar 2.5 3.5 1.0033 40.6 0.642 0.075 8.55 11.15 

Cedar 2.5 3.5 1.2506 40.4 0.672 0.059 11.39 11.15 

Cypress 5 7 0.503 41.4 2.595 0.198 13.11 10.26 

Cypress 5 7 0.75 41.6 2.289 0.150 15.22 10.26 

Cypress 5 7 1.0036 40.7 1.677 0.135 12.44 10.26 

Cypress 5 7 1.25 39.4 1.555 0.109 14.32 10.26 

Cypress 5 7 1.5008 40 1.230 0.100 12.24 10.26 

Cypress 5 7 1.0038 40.9 2.012 0.122 16.52 11.15 

Cypress 2.5 3.5 0.5032 42 1.302 0.100 13.02 10.26 

Cypress 2.5 3.5 0.7516 41.9 0.820 0.094 8.75 10.26 

Cypress 2.5 3.5 1.0028 40.8 0.701 0.073 9.57 10.26 

Cypress 2.5 3.5 0.7503 41.6 0.942 0.086 10.91 11.15 

Cypress 2.5 3.5 1.0022 40.8 0.671 0.074 9.01 11.15 

Hardwood 5 7 0.2506 42.1 3.457 0.259 13.33 10.26 

Hardwood 5 7 0.5 41.6 2.797 0.183 15.27 10.26 

Hardwood 5 7 0.7508 41.3 2.376 0.144 16.47 10.26 

Hardwood 5 7 0.7514 41.3 2.414 0.142 16.99 11.15 

Hardwood 5 7 1.0015 40.9 1.936 0.125 15.47 11.15 

Hardwood 5 7 1.2508 40.1 1.715 0.105 16.29 11.15 

Hardwood 2.5 3.5 0.2507 42.3 1.790 0.120 14.95 10.26 

Hardwood 2.5 3.5 0.7505 41.5 1.013 0.082 12.31 11.15 

Hardwood 2.5 3.5 1.0015 40.5 0.864 0.066 13.06 11.15 

Hardwood 2.5 3.5 1.2517 40.6 0.771 0.056 13.74 11.15 
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Table F2: Raw data for binary atrazine Langmuir isotherm removed based on a 95% confidence interval 

 

Mulch 
Type 

Initial 
Conc. 

Initial 
Conc. 

Mulch 
Weight 

Liquid 
Volume 

Final 
Conc. (Ce) 

Conc. 
on 
Mulch 
(qe) Ce/qe Date 

 

mg 
atrazine/L 

mg NO3-
N/L  grams mL 

mg 
atrazine/L mg/g g/L 

 Cedar 5 7 0.7503 40.7 2.178 0.153 14.22 10.26 

Cedar 5 7 1.0017 40.1 1.574 0.137 11.48 10.26 

Cedar 5 7 1.2508 39.9 1.498 0.112 13.41 10.26 

Cedar 5 7 1.2525 39.6 1.381 0.114 12.07 11.15 

Cedar 2.5 3.5 0.1506 42.9 1.891 0.173 10.91 10.26 

Cedar 2.5 3.5 0.2506 42.2 1.661 0.141 11.75 10.26 

Cedar 2.5 3.5 0.5013 41.6 1.339 0.096 13.89 10.26 

Cedar 2.5 3.5 1.0016 40.5 0.789 0.069 11.40 10.26 

Cedar 2.5 3.5 0.7517 40.7 0.757 0.094 8.02 11.15 

Cypress 5 7 1.2527 40 1.809 0.102 17.76 11.15 

Cypress 5 7 0.7514 41.4 1.083 0.216 5.02 11.15 

Cypress 2.5 3.5 0.1508 42.8 1.676 0.234 7.17 10.26 

Cypress 2.5 3.5 0.25 42.4 1.912 0.100 19.16 10.26 

Cypress 2.5 3.5 1.251 40.8 0.783 0.056 13.97 11.15 

Hardwood 5 7 1.003 40.3 2.315 0.108 21.47 10.26 

Hardwood 5 7 1.2502 40.5 1.806 0.103 17.46 10.26 

Hardwood 2.5 3.5 0.0501 42.8 2.158 0.292 7.40 10.26 

Hardwood 2.5 3.5 0.1506 42.4 1.872 0.177 10.60 10.26 

Hardwood 2.5 3.5 0.5007 41.9 1.007 0.125 8.06 10.26 

Hardwood 2.5 3.5 0.7501 41.4 1.293 0.067 19.40 10.26 
 

 

 

 

 

 

 

 

 



138 
 

 
 

 

Table F3: Raw data for binary atrazine Freundlich isotherm after statistical analysis 

Mulch 

Type 

Initial 

Conc. 

Initial 

Conc. 

Mulch 

Weight   

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Date 

 

mg 

atrazine/L  

mg NO3-

N/L grams mL 

mg 

atrazine/L  mg/g  

Cedar 5 7 0.5014 41.6 2.851 0.178 10.26 

Cedar 5 7 0.7503 40.7 2.178 0.153 10.26 

Cedar 5 7 1.0017 40.1 1.574 0.137 10.26 

Cedar 5 7 1.2508 39.9 1.498 0.112 10.26 

Cedar 5 7 0.7513 41.2 2.041 0.162 11.15 

Cedar 5 7 1.0045 40.47 1.639 0.135 11.15 

Cedar 5 7 1.2525 39.6 1.381 0.114 11.15 

Cedar 2.5 3.5 0.2506 42.2 1.661 0.141 10.26 

Cedar 2.5 3.5 1.0016 40.5 0.789 0.069 10.26 

Cedar 2.5 3.5 1.0033 40.6 0.642 0.075 11.15 

Cedar 2.5 3.5 1.2506 40.4 0.672 0.059 11.15 

Cypress 5 7 0.503 41.4 2.595 0.198 10.26 

Cypress 5 7 0.75 41.6 2.289 0.150 10.26 

Cypress 5 7 1.0036 40.7 1.677 0.135 10.26 

Cypress 5 7 1.5008 40 1.230 0.100 10.26 

Cypress 5 7 1.0038 40.9 2.012 0.122 11.15 

Cypress 5 7 1.2527 40 1.809 0.102 11.15 

Cypress 2.5 3.5 0.5032 42 1.302 0.100 10.26 

Cypress 2.5 3.5 0.7516 41.9 0.820 0.094 10.26 

Cypress 2.5 3.5 1.0028 40.8 0.701 0.073 10.26 

Cypress 2.5 3.5 0.7503 41.6 0.942 0.086 11.15 

Cypress 2.5 3.5 1.0022 40.8 0.671 0.074 11.15 

Hardwood 5 7 0.2506 42.1 3.457 0.259 10.26 

Hardwood 5 7 0.5 41.6 2.797 0.183 10.26 

Hardwood 5 7 0.7508 41.3 2.376 0.144 10.26 

Hardwood 5 7 0.7514 41.3 2.414 0.142 11.15 

Hardwood 5 7 1.0015 40.9 1.936 0.125 11.15 

Hardwood 5 7 1.2508 40.1 1.715 0.105 11.15 

Hardwood 2.5 3.5 0.2507 42.3 1.790 0.120 10.26 

Hardwood 2.5 3.5 0.7505 41.5 1.013 0.082 11.15 

Hardwood 2.5 3.5 1.0015 40.5 0.864 0.066 11.15 

Hardwood 2.5 3.5 1.2517 40.6 0.771 0.056 11.15 
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Table F4: Control data for binary isotherm  

Mulch Type 

Initial 

Conc. 

Initial 

Conc. 

Mulch 

Weight   

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Date 

 

mg 

atrazine/L  

mg NO3-

N/L grams mL 

mg 

atrazine/L  mg/g  

No Mulch 5 7 0 43 5.011 5.99 10.26 

No Mulch 5 7 0 42.7 5.146 7.47 11.15 

 

 

Table F5: Raw data for binary atrazine Freundlich isotherm removed based on a 95% confidence 

interval 

 

Mulch 

Type 

Initial 

Conc. 

Initial 

Conc. 

Mulch 

Weight   

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Date 

 

mg 

atrazine/L  

mg NO3-

N/L grams mL 

mg 

atrazine/L  mg/g  

Cedar 5 7 1.5009 39.4 1.285 0.098 10.26 

Cedar 2.5 3.5 0.1506 42.9 1.891 0.173 10.26 

Cedar 2.5 3.5 0.5013 41.6 1.339 0.096 10.26 

Cedar 2.5 3.5 0.7506 41 1.075 0.078 10.26 

Cedar 2.5 3.5 0.7517 40.7 0.757 0.094 11.15 

Cypress 5 7 1.25 39.4 1.555 0.109 10.26 

Cypress 5 7 0.7514 41.4 1.083 0.216 11.15 

Cypress 2.5 3.5 0.1508 42.8 1.676 0.234 10.26 

Cypress 2.5 3.5 0.25 42.4 1.912 0.100 10.26 

Cypress 2.5 3.5 1.251 40.8 0.783 0.056 11.15 

Hardwood 5 7 1.003 40.3 2.315 0.108 10.26 

Hardwood 5 7 1.2502 40.5 1.806 0.103 10.26 

Hardwood 2.5 3.5 0.0501 42.8 2.158 0.292 10.26 

Hardwood 2.5 3.5 0.1506 42.4 1.872 0.177 10.26 

Hardwood 2.5 3.5 0.5007 41.9 1.007 0.125 10.26 

Hardwood 2.5 3.5 0.7501 41.4 1.293 0.067 10.26 
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Figure F1: Raw data for binary atrazine isotherm on cedar mulch  

 

 

Figure F2: Raw data for binary atrazine isotherm on cypress mulch  
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Figure F3: Raw data for binary atrazine isotherm on hardwood mulch  
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Appendix G: Raw Data for Binary Nitrate System 

 

The following tables include the raw data for the binary isotherm for nitrate. 

Nitrate was analyzed using two isotherms, Langmuir and Freundlich. Tables G1 

(Langmuir) and G4 (Freundlich) shows the data after a statistical analysis removing data 

points that had a final solution concentration either greater than 90% or less than 10% of 

the initial solution concentration and that fell outside a 95% confidence interval (90-10 

Rule). The data points that were removed based on the 90-10 rule can be seen in Table 

G2. The data points that were removed based on a 95% confidence interval can be seen in 

Table G2 (Langmuir) and G5 (Freundlich). Control tests were performed to ensure the 

atrazine or nitrate were not adhering to the glass containers. The data from the control 

tests can be seen in Appendix F, Table F2. The raw data is plotted in Figures G1-G3. 
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Table G1: Raw data for binary nitrate Langmuir isotherm after statistical analysis 

Mulch 

Type 

Initial 

Conc. 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Vol. 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

atrazine/L  

mg NO3-

N/L grams mL 

mg NO3-

N/L mg/g g/L 

 Cedar 5 7 0.5014 41.6 5.21 0.15 35.08 10.26 

Cedar 5 7 0.7503 40.7 5 0.11 46.09 10.26 

Cedar 5 7 1.0017 40.1 4.9 0.08 58.29 10.26 

Cedar 5 7 1.2508 39.9 5.07 0.06 82.35 10.26 

Cedar 5 7 1.5009 39.4 5.16 0.05 106.83 10.26 

Cedar 2.5 3.5 0.2506 42.2 2.13 0.23 9.23 10.26 

Cedar 2.5 3.5 0.5013 41.6 2.54 0.08 31.88 10.26 

Cedar 2.5 3.5 0.7506 41 2.65 0.05 57.08 10.26 

Cedar 2.5 3.5 0.7517 40.7 2.7 0.04 62.33 11.15 

Cedar 2.5 3.5 1.0016 40.5 2.38 0.05 52.55 10.26 

Cedar 2.5 3.5 1.0033 40.6 2.85 0.03 108.35 11.15 

Cedar 2.5 3.5 1.2506 40.4 2.81 0.02 126.06 11.15 

Cypress 5 7 0.503 41.4 4.76 0.18 25.82 10.26 

Cypress 5 7 0.75 41.6 5.09 0.11 48.05 10.26 

Cypress 5 7 0.7514 41.4 6.2 0.04 140.66 11.15 

Cypress 5 7 1.0036 40.7 4.96 0.08 59.95 10.26 

Cypress 5 7 1.25 39.4 5.17 0.06 89.63 10.26 

Cypress 2.5 3.5 0.5032 42 2.6 0.08 34.61 10.26 

Cypress 2.5 3.5 0.7503 41.6 2.39 0.06 38.83 11.15 

Cypress 2.5 3.5 0.7516 41.9 2.58 0.05 50.30 10.26 

Cypress 2.5 3.5 1.0028 40.8 2.74 0.03 88.61 10.26 

Cypress 2.5 3.5 1.251 40.8 1.44 0.07 21.43 11.15 

Hardwood 5 7 0.2506 42.1 4.68 0.39 12.01 10.26 

Hardwood 5 7 0.5 41.6 5.21 0.15 34.98 10.26 

Hardwood 5 7 0.7508 41.3 5.49 0.08 66.10 10.26 

Hardwood 5 7 1.003 40.3 5.51 0.06 92.04 10.26 

Hardwood 5 7 1.2508 40.1 6.24 0.02 256.10 11.15 

Hardwood 2.5 3.5 0.0501 42.8 2.46 0.89 2.77 10.26 

Hardwood 2.5 3.5 0.1506 42.4 2.48 0.29 8.64 10.26 

Hardwood 2.5 3.5 0.2507 42.3 2.53 0.16 15.46 10.26 

Hardwood 2.5 3.5 0.7501 41.4 2.78 0.04 69.96 10.26 

Hardwood 2.5 3.5 0.7505 41.5 2.78 0.04 69.83 11.15 

Hardwood 2.5 3.5 1.0015 40.5 2.77 0.03 93.83 11.15 
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Table G2: Raw data for binary nitrate isotherm removed based on the 90-10 rule 

 

 

 

Table G3: Raw data for mono binary Langmuir isotherm removed based on a 95% confidence interval 

 

Mulch 

Type 

Initial 

Conc. 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

atrazine/L  

mg 

NO3-

N/L grams mL 

mg 

NO3-

N/L mg/g g/L 

 Cedar 2.5 3.5 0.1506 42.9 2.58 0.26 9.84 10.26 

Cypress 5 7 1.5008 40 5.16 0.05 105.22 10.26 

Cypress 2.5 3.5 0.1508 42.8 2.37 0.32 7.39 10.26 

Cypress 2.5 3.5 0.25 42.4 2.32 0.20 11.59 10.26 

Cypress 2.5 3.5 1.0022 40.8 2.87 0.03 111.90 11.15 

Hardwood 5 7 1.2502 40.5 5.24 0.06 91.91 10.26 

Hardwood 2.5 3.5 0.5007 41.9 2.73 0.06 42.37 10.26 

Hardwood 2.5 3.5 1.2517 40.6 2.82 0.02 127.85 11.15 

  

Mulch 

Type 

Initial 

Conc. 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. 

on 

Mulch 

(qe) Ce/qe Date 

 

mg 

atrazine/L  

mg 

NO3-

N/L grams mL 

mg NO3-

N/L mg/g g/L  

Cedar 5 7 0.7513 41.2 6.63 0.02 326.76 11.15 

Cedar 5 7 1.0045 40.47 6.32 0.03 230.69 11.15 

Cedar 5 7 1.2525 39.6 6.33 0.02 298.82 11.15 

Cypress 5 7 1.0038 40.9 6.68 0.01 512.33 11.15 

Cypress 5 7 1.2527 40 6.56 0.01 466.92 11.15 

Hardwood 5 7 0.7514 41.3 6.72 0.02 436.65 11.15 

Hardwood 5 7 1.0015 40.9 6.57 0.02 374.13 11.15 
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Table G4: Raw data for binary nitrate Freundlich isotherm after statistical analysis 

 

Mulch 

Type 

Initial 

Conc. 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. on 

Mulch 

(qe) Date 

 

mg 

atrazine/L  

mg NO3-

N/L grams mL 

mg NO3-

N/L mg/g  

Cedar 2.5 3.5 0.2506 42.2 2.13 0.230702 10.26 

Cedar 2.5 3.5 0.5013 41.6 2.54 0.079665 10.26 

Cedar 2.5 3.5 0.7506 41 2.65 0.04643 10.26 

Cedar 2.5 3.5 0.7517 40.7 2.7 0.043315 11.15 

Cedar 2.5 3.5 1.0033 40.6 2.85 0.026303 11.15 

Cedar 2.5 3.5 1.2506 40.4 2.81 0.02229 11.15 

Cedar 5 7 0.5014 41.6 5.21 0.148512 10.26 

Cedar 5 7 0.7503 40.7 5 0.10849 10.26 

Cedar 5 7 1.0017 40.1 4.9 0.084067 10.26 

Cedar 5 7 1.2508 39.9 5.07 0.061566 10.26 

Cedar 5 7 1.5009 39.4 5.16 0.048302 10.26 

Cypress 2.5 3.5 0.5032 42 2.6 0.075119 10.26 

Cypress 2.5 3.5 0.7516 41.9 2.58 0.051288 10.26 

Cypress 2.5 3.5 1.0028 40.8 2.74 0.030921 10.26 

Cypress 2.5 3.5 0.7503 41.6 2.39 0.061543 11.15 

Cypress 2.5 3.5 1.0022 40.8 2.87 0.025648 11.15 

Cypress 2.5 3.5 1.251 40.8 1.44 0.067185 11.15 

Cypress 5 7 0.503 41.4 4.76 0.184366 10.26 

Cypress 5 7 0.75 41.6 5.09 0.105941 10.26 

Cypress 5 7 1.0036 40.7 4.96 0.08273 10.26 

Cypress 5 7 1.25 39.4 5.17 0.057682 10.26 

Cypress 5 7 1.5008 40 5.16 0.049041 10.26 

Hardwood 2.5 3.5 0.1506 42.4 2.48 0.287171 10.26 

Hardwood 2.5 3.5 0.5007 41.9 2.73 0.064436 10.26 

Hardwood 2.5 3.5 0.7501 41.4 2.78 0.039739 10.26 

Hardwood 2.5 3.5 0.7505 41.5 2.78 0.039813 11.15 

Hardwood 2.5 3.5 1.0015 40.5 2.77 0.029521 11.15 

Hardwood 2.5 3.5 1.2517 40.6 2.82 0.022056 11.15 

Hardwood 5 7 0.2506 42.1 4.68 0.389753 10.26 

Hardwood 5 7 0.5 41.6 5.21 0.148928 10.26 

Hardwood 5 7 0.7508 41.3 5.49 0.083062 10.26 

Hardwood 5 7 1.003 40.3 5.51 0.059867 10.26 

Hardwood 5 7 1.2508 40.1 6.24 0.024365 11.15 
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Table G5: Raw data for mono binary Freundlich isotherm removed based on a 95% confidence interval 

 

Mulch 

Type 

Initial 

Conc. 

Initial 

Conc. 

Mulch 

Weight 

Liquid 

Volume 

Final 

Conc. 

(Ce) 

Conc. on 

Mulch 

(qe) Date 

 

mg 

atrazine/L  

mg NO3-

N/L grams mL 

mg NO3-

N/L mg/g  

Cedar 2.5 3.5 0.1506 42.9 2.58 0.262072 10.26 

Cedar 2.5 3.5 1.0016 40.5 2.38 0.045288 10.26 

Cypress 2.5 3.5 0.1508 42.8 2.37 0.320716 10.26 

Cypress 2.5 3.5 0.25 42.4 2.32 0.200128 10.26 

Cypress 5 7 0.7514 41.4 6.2 0.044078 11.15 

Hardwood 2.5 3.5 0.0501 42.8 2.46 0.888463 10.26 

Hardwood 2.5 3.5 0.2507 42.3 2.53 0.163666 10.26 

Hardwood 5 7 1.2502 40.5 5.24 0.057015 10.26 

 

 

Figure G1: Raw data for binary nitrate isotherm on cedar mulch  
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Figure G2: Raw data for binary nitrate isotherm on cypress mulch  

 

 

Figure G3: Raw data for binary nitrate isotherm on hardwood mulch  
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Appendix H: Graphs for Binary Atrazine System 

 

The following figures show the graphs for atrazine in the binary system of 

atrazine-nitrate using Langmuir (Figures H1-H3) and Freundlich isotherms (Figures H4-

H6).  

 

 

Figure H1:  Langmuir adsorption isotherm for atrazine in the binary system on cedar mulch 
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Figure H2:  Langmuir adsorption isotherm for atrazine in the binary system on cypress mulch 

 

 

Figure H3:  Langmuir adsorption isotherm for atrazine in the binary system on hardwood mulch 
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Figure H4:  Freundlich adsorption isotherm for atrazine in the binary system on cedar mulch 

 

 

 

Figure H5:  Freundlich adsorption isotherm for atrazine in the binary system on cypress mulch  
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Figure H6: Freundlich adsorption isotherm for atrazine in the binary system on hardwood mulch 
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Appendix I: Graphs for Binary and Mono Atrazine System 

 

The following figures show the graphs of the binary and mono Langmuir 

isotherms for atrazine (Figures I1-I3). The graphs for binary and mono Freundlich 

isotherms on cedar and hardwood mulch are also shown (Figures I4-I5).  

 

 

Figure I1: Langmuir adsorption isotherm for atrazine on cedar in the presence and absence of nitrate.  
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Figure I2: Langmuir adsorption isotherm for atrazine on cypress in the presence and absence of nitrate.  

 

 

Figure I3: Langmuir adsorption isotherm for atrazine on hardwood in the presence and absence of 

nitrate.  
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Figure I4: Freundlich adsorption isotherm for atrazine on cedar in the presence and absence of nitrate.  

 

The equations for the best fit lines in Figure I4 are as follows: 

In the mono cedar (absence of nitrate), the equation is: 
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 where qe is the amount of atrazine adsorbed on the mulch at equilibrium (mg/g) and Ce is 

the concentration of atrazine in solution at equilibrium (mg/L). This equation has an R
2
 

value of 0.91.  

In the binary cedar (presence of nitrate), the equation is: 

    (  )            (  )              (2) 

This equation has an R
2
 of 0.92. 
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Figure I5: This figure shows the Freundlich adsorption isotherm for atrazine on hardwood in the 

presence and absence of nitrate.  

 

The equations for the best fit lines in Figure I5 are as follows: 

In the mono hardwood (absence of nitrate), the equation is: 

    (  )            (  )               (3) 

 where qe is the amount of atrazine adsorbed on the mulch at equilibrium (mg/g) and Ce is 

the concentration of atrazine in solution at equilibrium (mg/L). This equation has an R
2
 

value of 0.94.  

In the binary hardwood (presence of nitrate), the equation is: 

    (  )            (  )               (4) 

This equation has an R
2
 of 0.94. 
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Appendix J: Graphs for Binary Nitrate System, Co=7 mg NO3-N/L 

 

The following figures show the graphs for nitrate in the binary system of atrazine-

nitrate with an initial concentration of 7 mg NO3-N/L. The entire nitrate binary isotherm 

was analyzed using both a Langmuir isotherm (Figure J1) and a Freundlich isotherm 

(Figure J5).  Each type of mulch was analyzed using both the Langmuir isotherm 

(Figures J2-J4) and Freundlich isotherm (Figures J6-J8) for an initial concentration of 7 

mg NO3-N /L.   

 

 

Figure J1: Langmuir adsorption isotherm for nitrate adsorbed on mulch in the binary system of 

atrazine-nitrate  
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Figure J2: Langmuir adsorption isotherm for nitrate at an initial concentration of 7 mg NO3-N/L in the 

binary system on cedar mulch 

 

 

Figure J3:  Langmuir adsorption isotherm for nitrate at an initial concentration of 7 mg NO3-N/L in the 

binary system on cypress mulch 
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Figure J4:  Langmuir adsorption isotherm for nitrate at an initial concentration of 7 mg NO3-N/L in the 

binary system on hardwood mulch 

 

 

Figure J5: Freundlich adsorption isotherm for nitrate adsorption on mulch in the binary system of 

atrazine-nitrate  
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Figure J6:  Freundlich adsorption isotherm for nitrate at an initial concentration of 7 mg NO3-N/L in 

the binary system on cedar mulch 

 

Figure J7:  Freundlich adsorption isotherm for nitrate at an initial concentration of 7 mg NO3-N/L in 

the binary system on cypress mulch 
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Figure J8:  Freundlich adsorption isotherm for nitrate at an initial concentration of 7 mg NO3-N/L in 

the binary system on hardwood mulch 
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Appendix K: Graphs for Binary Nitrate System Co=3.5 mg NO3-N/L 

 

The following figures show the graphs for the binary isotherms for nitrate in the 

binary system of atrazine-nitrate with an initial concentration of 3.5 mg NO3-N/L. The 

entire nitrate binary isotherm was analyzed using both a Langmuir isotherm (Figure K1) 

and a Freundlich isotherm (Figure K5).  Each type of mulch was analyzed using both the 

Langmuir isotherm (Figures K2-K4) and Freundlich isotherm (Figures K6-K8) for an 

initial concentration of 3.5 mg NO3-N /L.   

 

Figure K1: Langmuir adsorption isotherm for nitrate adsorbed on mulch in the binary system of 

atrazine-nitrate  
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Figure K2: Langmuir adsorption isotherm for nitrate at an initial concentration of 3.5 mg NO3-N/L in 

the binary system on cedar mulch 

 

 

 

Figure K3:  Langmuir adsorption isotherm for nitrate at an initial concentration of 3.5 mg NO3-N/L in 

the binary system on cypress mulch 
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Figure K4:  Langmuir adsorption isotherm for nitrate at an initial concentration of 3.5 mg NO3-N/L in 

the binary system on hardwood mulch 

 

 

Figure K5: Freundlich adsorption isotherm for nitrate adsorption on mulch in the binary system of 

atrazine-nitrate  
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Figure K6:  Freundlich adsorption isotherm for nitrate at an initial concentration of 3.5 mg NO3-N/L in 

the binary system on cedar mulch 

 

Figure K7:  Freundlich adsorption isotherm for nitrate at an initial concentration of 3.5 mg NO3-N/L in 

the binary system on cypress mulch 
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Figure K8:  Freundlich adsorption isotherm for nitrate at an initial concentration of 3.5 mg NO3-N/L in 

the binary system on hardwood mulch 
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Appendix L: Graphs for Binary and Mono Nitrate System 

 

The following figures show the graphs of the binary (atrazine-nitrate) and mono 

isotherms for nitrate using a Langmuir isotherm (Figures L1-L3) and a Freundlich 

isotherm (Figures L4-L6).  

 

 

Figure L1:  Langmuir adsorption isotherm for nitrate in the binary system on cedar mulch 
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Figure L2:  Langmuir adsorption isotherm for nitrate in the binary system on cypress mulch 

 

 

Figure L3:  Langmuir adsorption isotherm for nitrate in the binary system on hardwood mulch 
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Figure L4:  Freundlich adsorption isotherm for nitrate in the binary system on cedar mulch 

 

 

 

Figure L5:  Freundlich adsorption isotherm for nitrate in the binary system on cypress mulch 
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Figure L6:  Freundlich adsorption isotherm for nitrate in the binary system on hardwood mulch 
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Appendix M: Raw Data for Biotic Column 

 

The following tables include the raw data for the biotic cypress column. Table M1 

lists the concentrations of atrazine and nitrate taken at the sample ports as well as notes 

about column operation and composition. Tables M2 and M3 list the measurements for 

dissolved oxygen and pH at the influent and effluent, respectively.   
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Table M1: Raw data for biotic cypress column 

Date 

Date 

# Port 

Calc. 

Initial 

Conc. 

Final 

Conc. (Ce ) 

Calc. 

Initial 

Conc. 

Final 

Conc. 

(Ce ) 

      

mg 

atrazine

/L  

mg 

atrazine/L  

mg 

NO3-N 

/L  

mg NO3-

N /L 

3.6 1 New Groundwater Solution 

3.11 6 

New Groundwater Solution*125 mg/L sodium 

sulfite and 0.526 mg/L cobalt chloride added 

3.15 10 New Groundwater Solution 

3.21 16 New Groundwater Solution 

3.23 18 1 1 0.73 7 5.33 

3.23 18 3 1 0.73 7 5.22 

3.23 18 5 1 0.74 7 5.1 

3.23 18 6 1 0.61 7 5.29 

3.25 20 New Groundwater Solution 

3.28 23 1 1 0.45 7 3.83 

3.28 23 3 1 0.47 7 3.68 

3.28 23 5 1 0.49 7 3.73 

3.28 23 6 1 0.49 7 3.99 

3.30 25 1 1 0.43 7 5.18 

3.30 25 3 1 0.44 7 5.2 

3.30 25 5 1 0.44 7 5.21 

3.30 25 6 1 0.46 7 5.67 

3.31 26 New Groundwater Solution 

4.3 29 1 1 0.56 7 3.47 

4.3 29 3 1 0.68 7 3.53 

4.3 29 5 1 0.78 7 3.56 

4.3 29 6 1 0.61 7 1.88 

4.5 31 New Groundwater Solution 

4.6 32 1 1 0.62 7 3.27 

4.6 32 3 1 0.68 7 3.22 

4.6 32 5 1 0.67 7 3.11 

4.6 32 6 1 0.51 7 2.27 

4.9 35 1 1 0.41 7 5.08 

4.9 35 3 1 0.40 7 5.08 

4.9 35 5 1 0.40 7 4.95 

4.9 35 6 1 0.42 7 5.23 

4.10 36 

New Groundwater Solution*250 mg/L sodium 

sulfite and 1.052 mg/L cobalt chloride (twice 

stoichiometric amount) 
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Date 

Date 

# Port 

Calc. 

Initial 

Conc. 

Final 

Conc. (Ce ) 

Calc. 

Initial 

Conc. 

Final 

Conc. 

(Ce ) 

      

mg 

atrazine

/L  

mg 

atrazine/L  

mg 

NO3-N 

/L 

mg NO3-

N /L 

4.16 42 New Groundwater Solution 

4.21 47 New Groundwater Solution 

4.30 56 

New Groundwater Solution*new sodium sulfite 

added  

5.3 59 New Groundwater Solution 

5.4 60 

New Groundwater Solution* 24.3 mL/L acetic acid 

added 

5.5 61 

New Groundwater Solution*24.3 mL/L acetic acid 

and 17,535 mg/L sodium hydroxide added 

5.9 65 Column Reseeded with Primary Effluent 

5.10 66 New Groundwater Solution 

5.11 67 1 1 0.71 7 5.62 

5.11 67 3 1 0.70 7 5.55 

5.11 67 5 1 0.64 7 5.21 

5.11 67 6 1 0.64 7 5.93 

5.14 70 1 1 0.58 7 4.7 

5.14 70 3 1 0.57 7 4.62 

5.14 70 5 1 0.57 7 4.47 

5.14 70 6 1 0.88 7 6.66 

5.14 70 New Groundwater Solution 

5.17 73 1 1 0.65 7 8.13 

5.17 73 3 1 0.74 7 6.48 

5.17 73 5 1 0.73 7 5.76 

5.17 73 6 1 0.82 7 5.74 

5.17 73 New Groundwater Solution 

5.20 76 1 1 0.53 7 6.04 

5.20 76 3 1 0.50 7 4.62 

5.20 76 5 1 0.53 7 4.52 

5.20 76 6 1 0.63 7 6.71 

5.20 76 New Groundwater Solution 

5.22 78 1 1 0.42 7 4.73 

5.22 78 3 1 0.43 7 4.51 

5.22 78 5 1 0.42 7 4 

5.22 78 6 1 0.59 7 5.79 

5.23 79 Column Stopped 

Table M1 Continued: Raw data for biotic cypress column 
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Table M2: Influent pH and dissolved oxygen data for biotic cypress column  

Date 

Date 

Number pH 

Dissolved Oxygen 

 (mg O2/L) 

3.12 7 

Sodium Sulfite and Cobalt Chloride 

Added 

3.12 7 6.88 0.41 

3.26 21 6.39 2.95 

4.2 28 6.42 2.76 

4.10 36 6.53 2.09 

4.10 36 

Sodium Sulfite and Cobalt Chloride 

Added at Twice Stoichiometric 

Amount 

4.18 44 6.48 1.49 

4.19 45  2.36 

4.20 46  2.68 

4.21 47  4.03 

4.21 47  1.43 

4.23 49 New Sodium Sulfite Added 

4.23 49  2.75 

4.30 56  2 

4.30 56  1.71 

4.30 56  1.39 

5.1 57 7.19 2.3 

5.3 59  3.13 

5.3 59  2.91 

5.3 59  0.72 

5.3 59  2.81 

5.4 60  2.44 

5.5 61 Acetic Acid Added 

5.5 61 2.97 2.97 

5.6 62 

Acetic Acid and Sodium Hydroxide 

Added 

5.7 63 6.67 1.97 

5.9 65 Column Reseeded 

5.10 66 6.63 2.36 

5.14 70 6.63 1.38 

5.14 70 6.64 1.13 

5.22 78 6.58 1.15 

Total Average 6.33 2.13 

Average Since Acetic Acid Added 6.63 1.60 
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Table M3: Effluent pH and dissolved data for biotic cypress column 

 

Date 

Date 

Number pH 

Dissolved 

Oxygen 

   mg O2/L 

5.7 63 6.28 0.89 

5.14 70 6.61 1.71 

5.22 78 6.57 1.65 

Total 

Average 

 

6.49 1.42 
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Appendix N: Graphs for the Biotic Column 

 

The following figures show the measured concentrations of atrazine and nitrate in 

the third and fifth biotic cypress column ports.  The measured concentrations of atrazine 

can be seen in Figure N1. The measured concentrations of nitrate can be seen in Figure 

N2. The influent concentrations of atrazine and nitrate were 1 mg atrazine/L and 7 mg 

NO3-N/L, respectively. Note that on Day 61, acetic acid was added as a carbon source.  

 

 

Figure N1: Measured atrazine concentrations in the third and fifth ports of a biotic cypress column.   
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Figure N2: Measured nitrate concentrations in the third and fifth ports of a biotic cypress column.   
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