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Throughout the field of transportation engineering, decision makers require quality 

information. The information used in transportation operations, planning, and design is 

based, in part, on data from traffic detectors. The need for quality data has spurred 

innovations in data collection including the introduction of modern, commercially 

available, non-intrusive traffic detectors. As these new technologies become available, a 

need exists to understand their capabilities and limitations—especially limitations that are 

unique to a specific region. 

This thesis examined the accuracy of four non-intrusive traffic detector 

technologies considered for potential data collection applications on Nebraska’s 

highways. The technologies evaluated included the Solo Pro II video image processor 

(VIP), 3M Canoga Microloop 702 magnetic induction detector, Image Sensing Systems 

RTMS G4 microwave radar detector, and Wavetronix SmartSensor 105 microwave radar 

detector. These four detectors were installed at the NTC/NDOR non-intrusive detector 

test bed along Interstate 80 near the Giles Road interchange in Omaha, Nebraska. Data 

were collected in June, July, and August of 2011, and these detectors were analyzed 

based on the accuracy of their volume, speed, and length-based vehicle classification. 
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The analysis in this thesis utilizes numerous graphical and statistical methods to 

demonstrate the significance of errors in the data from the four evaluated detectors. The 

impacts of lighting, rain, traffic volume, and various levels of temporal aggregation on 

the detectors’ accuracies were analyzed. Multiple regression analysis revealed that the 

volume accuracy of the Solo Pro II was affected by night lighting, as well as by the 

combined effect of dawn lighting and rain. The volume accuracies of the Microloop 702 

and G4 were significantly affected by the combination of dusk lighting and rain, while 

the volume accuracy of the SmartSensor 105 was not found to be significantly affected 

by lighting or rain conditions. In addition to these results, this thesis analyzed the 

collected data in order to provide hypotheses pertaining to potential links between 

significant environmental factors and physical operating characteristics of the evaluated 

non-intrusive traffic detectors.



iv 

 

 

iv
 

ACKNOWLEDGMENTS 

First and foremost, I would like to thank my thesis adviser, Dr. Laurence Rilett, for his 

direction, guidance, and input relating to this thesis, as well as for the additional 

opportunities he provided and encouraged me to pursue during my graduate studies. I 

would also like to acknowledge the other members of my advisory committee, Dr. Anuj 

Sharma and Dr. Aemal Khattak, who have my sincere gratitude for their instruction and 

recommendations, and for the time they spent critiquing my work. 

I would also like to express my gratitude for the other students and researchers in 

the Nebraska Transportation Center (NTC) Transportation Systems Engineering office, 

who I had the pleasure of getting to know and working with throughout this process. 

Thanks, especially, to Dr. Justice Appiah for his direction relating to my questions about 

the appropriate ways to approach statistical issues in my research. Also thanks to Dr. 

Bhaven Naik for similar types of instruction. I am also thankful for the numerous friends 

I have made among my peers in the office. I will not attempt to name them all here for 

fear of leaving a name out, but they know who they are. 

There were also a number of people in the NTC business center that deserve 

recognition for the support they gave me throughout this process. Chris LeFrois and 

Larissa Sazama were an invaluable resource and provided much needed encouragement 

when I ventured outside my comfort zone into the realm of intelligent transportation 

systems (ITS) communications. Valerie Lefler deserves special recognition for her ability 

to smile and be an encouragement even when she had a hundred different things on her 

mind. The rest of the NTC business center staff also deserve recognition for the great 



v 

 

 

v
 

work they do—which largely goes unnoticed by the research assistants like myself but 

makes the research we do possible. 

Outside of this office, I would like to thank the many people at the Nebraska 

Department of Roads (NDOR) who made their valuable time available to me throughout 

the course of this thesis. In the ITS section, I would especially like to thank Sarah Tracy 

and Steve Olson for their involvement throughout this study. I would also like to thank 

Don Wood, the District 2 electronics tech leader, for his assistance with hardware at the 

NTC/NDOR non-intrusive detector test bed throughout the study. Lastly, I would like to 

thank the various people at the District 2 Traffic Operations Center for their interaction 

throughout the study, and their interest in my safety when test bed visits were necessary. 

I would like to express my gratitude to the many contacts with whom I interacted, 

who represent the manufacturers and distributors of the various non-intrusive detection 

technologies evaluated in this thesis. Many of these people were very generous with their 

time in helping me shape my understanding of the operation of the detectors. They also 

assisted with the proper calibration of the detectors, as well as in troubleshooting  

communications issues. 

Finally, I would also like to thank my wife, Melani, for her support and relentless 

encouragement throughout the ups and downs of this thesis. Without her playing the role 

she did, this feat would not have been possible for me. Finally, I would like to thank my 

God, who, among his many other blessings, blessed me with a critical mind and natural 

curiosity that made this study engaging for me.  



vi 

 

 

v
i 

TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS ................................................................................................. iv 

TABLE OF CONTENTS ................................................................................................... vi 

LIST OF TABLES .............................................................................................................. x 

LIST OF FIGURES ......................................................................................................... xvi 

CHAPTER 1 INTRODUCTION ...................................................................................... 1 

1.1 Background ................................................................................................. 1 

1.1 Problem Statement ...................................................................................... 2 

1.2 Research Objectives .................................................................................... 3 

1.3 Research Program ....................................................................................... 4 

1.3.1 Literature Review.................................................................................. 4 

1.3.2 Identification and Setup of Test Bed .................................................... 4 

1.3.3 Collection and Reduction of Data ......................................................... 5 

1.3.4 Analysis of Data .................................................................................... 5 

1.3.5 Inference of Results .............................................................................. 6 

1.3.6 Dissemination of Findings .................................................................... 6 

CHAPTER 2 LITERATURE REVIEW ........................................................................... 7 

2.1 Introduction ................................................................................................. 7 

2.2 Available Detection Technologies .............................................................. 7 

2.2.1 Intrusive Detectors ................................................................................ 8 

2.2.2 Non-Intrusive Detectors ...................................................................... 10 

2.3 Standards for Evaluating Traffic Detectors .............................................. 15 

2.4 Previous Traffic Detection Evaluation Studies ......................................... 17 

2.4.1 California PATH Studies .................................................................... 17 

2.4.2 Detection Technology for IVHS Study............................................... 22 

2.4.3 Minnesota Guidestar Studies .............................................................. 27 

2.4.4 Texas Transportation Institute Studies................................................ 34 



vii 

 

 

v
ii 

2.4.5 Purdue University Studies................................................................... 37 

2.4.6 University of Nebraska Studies .......................................................... 40 

2.4.7 Illinois Center for Transportation Studies........................................... 43 

2.4.8 Other Studies ....................................................................................... 46 

2.5 Chapter Summary ..................................................................................... 51 

CHAPTER 3 NTC/NDOR NON-INTRUSIVE DETECTOR TEST BED SETUP ....... 54 

3.1 Test Bed Organization .............................................................................. 55 

3.2 Detector Locations and Configuration Process......................................... 64 

3.2.1 Autoscope Solo Pro II ......................................................................... 64 

3.2.2 3M Canoga Microloop 702 ................................................................. 67 

3.2.3 Image Sensing Systems RTMS G4 ..................................................... 70 

3.2.4 Wavetronix SmartSensor 105 ............................................................. 73 

3.3 Chapter Summary ..................................................................................... 76 

CHAPTER 4 DATA COLLECTION AND REDUCTION ........................................... 78 

4.1 Data Collection ......................................................................................... 78 

4.2 Data Reduction.......................................................................................... 81 

4.2.1 Step 1: Ground Truth .......................................................................... 81 

4.2.2 Step 2: Data Compilation .................................................................... 82 

4.2.3 Clock Synchronization ........................................................................ 83 

4.3 Chapter Summary ..................................................................................... 89 

CHAPTER 5 STATISTICAL METHODS ..................................................................... 91 

5.1 Simple Statistics ........................................................................................ 91 

5.1.1 Mean Percent Error ............................................................................. 91 

5.1.2 Mean Absolute Percent Error.............................................................. 92 

5.1.3 Correlation Coefficient ....................................................................... 92 

5.2 Skewness and Kurtosis ............................................................................. 93 

5.3 GEH Statistic ............................................................................................ 97 

5.4 Theil's Inequality Coefficient .................................................................... 98 

5.5 Analysis of Variance ............................................................................... 101 

5.6 Multiple Regression Model..................................................................... 103 



viii 

 

 

v
iii 

5.7 Chapter Summary ................................................................................... 105 

CHAPTER 6 AGGREGATE ANALYSIS AND RESULTS ....................................... 106 

6.1 One-Minute Aggregation Interval Analysis............................................ 107 

6.1.1 One-Minute Volume Analysis .......................................................... 107 

6.1.2 One-Minute Speed Analysis ............................................................. 134 

6.1.3 One-Minute Classification Analysis ................................................. 157 

6.2 Five-Minute and Fifteen-Minute Aggregation Interval Analysis ........... 180 

6.2.1 Five-Minute and Fifteen-Minute Volume Analysis .......................... 180 

6.2.2 Five-Minute and Fifteen-Minute Speed Analysis ............................. 182 

6.2.3 Five-Minute and Fifteen-Minute Classification Analysis................. 183 

6.3 Chapter Summary ................................................................................... 185 

CHAPTER 7 DISAGGREGATE ANALYSIS AND RESULTS ................................. 188 

7.1 Presence Detection Analysis ................................................................... 188 

7.1.1 Volume Effect ................................................................................... 190 

7.1.2 Precipitation Effect ........................................................................... 191 

7.1.3 Lighting Effect .................................................................................. 193 

7.2 Per-Vehicle Speed Analysis .................................................................... 197 

7.3 Per-Vehicle Classification Analysis ....................................................... 219 

7.4 Chapter Summary ................................................................................... 227 

CHAPTER 8 CONCLUSIONS .................................................................................... 229 

8.1 Summary ................................................................................................. 229 

8.2 Conclusions ............................................................................................. 230 

8.3 Future Research ...................................................................................... 232 

REFERENCES ............................................................................................................... 234 

APPENDICES ................................................................................................................ 243 

Appendix A Glossary ....................................................................................... 243 

Appendix B Macros for Automated Step in Clock Synchronization ............... 251 

Appendix C One-Minute Volume ANOVA Thinning ..................................... 259 

Appendix D Five-Minute Analysis Additional Figures and Tables ................. 265 



ix 

 

 

ix
 

Appendix E Fifteen-Minute Analysis Additional Figures and Tables ............. 301 

 

  



x 

 

 

x
 

LIST OF TABLES 

Table 2.1 Non-Intrusive Detector Models ........................................................................ 11 

Table 2.2 Recovered Parameters (13) ............................................................................... 19 

Table 2.3 VTDS Detection Results (14) ........................................................................... 20 

Table 2.4 Freeway Incident Detection and Management Traffic Parameter Specifications 

(18) .............................................................................................................................. 23 

Table 2.5 Freeway Metering Control Traffic Parameter Specifications (18) ................... 24 

Table 2.6 Environmental Factors Affecting Device Performance (22) ............................ 29 

Table 2.7 Summary of Sensor Performance (23) .............................................................. 30 

Table 2.8 Duckworth Tested Sensors and Characteristics (41) ........................................ 47 

Table 2.9 Previous Field Test Results for the Wavetronix SmartSensor 105 ................... 52 

Table 2.10 Previous Field Test Results for the 3M Canoga Microloop 702 .................... 53 

Table 3.1 Detector Calibration Summary ......................................................................... 77 

Table 4.1 Data Collection Dates ....................................................................................... 80 

Table 4.2 Data Intervals Included in Analysis .................................................................. 80 

Table 4.3 Ground Truth Output Sample ........................................................................... 81 

Table 4.4 Sample Count Aggregation Before (a) and After (b) Manual Time Shift ........ 86 

Table 4.5 Sample Count Aggregation Before (a) and After (b) Automated Macro Time 

Shift ............................................................................................................................. 88 

Table 4.6 Sample High Volume Count Aggregation Before (a) and After (b) Second 

Manual Time Shift ...................................................................................................... 89 

Table 6.1 One-Minute Volume Summary Statistics ....................................................... 112 

Table 6.2: Detector One-Minute Volume Error Statistics .............................................. 116 



xi 

 

 

x
i 

Table 6.3: One-Minute Volume Theil's Inequality Coefficients .................................... 117 

Table 6.4: Solo Pro II One-Minute Volume Percent Error ANOVA ............................. 128 

Table 6.5: Microloop 702 One-Minute Volume Percent Error ANOVA ....................... 128 

Table 6.6: G4 One-Minute Volume Percent Error ANOVA .......................................... 128 

Table 6.7: SmartSensor 105 One-Minute Volume Percent Error ANOVA.................... 128 

Table 6.8: Solo Pro II One-Minute Volume Percent Error Regression Model ............... 129 

Table 6.9: Solo Pro II One-Minute Volume Percent Error Significant Factors Regression 

Model ........................................................................................................................ 130 

Table 6.10: Microloop 702 One-Minute Volume Percent Error Regression Model ...... 131 

Table 6.11: Microloop 702 One-Minute Volume Percent Error Significant Factors 

Regression Model ..................................................................................................... 131 

Table 6.12: G4 One-Minute Volume Percent Error Regression Model ......................... 132 

Table 6.13: G4 One-Minute Volume Percent Error Significant Factors Regression Model

................................................................................................................................... 132 

Table 6.14: SmartSensor 105 One-Minute Volume Percent Error Regression Model ... 133 

Table 6.15: SmartSensor 105 One-Minute Volume Percent Error Significant Factors 

Regression Model ..................................................................................................... 134 

Table 6.16 One-Minute Mean Speed Summary Statistics .............................................. 138 

Table 6.17: Detector One-Minute Mean Speed Deviation Statistics .............................. 143 

Table 6.18: One-Minute Mean Speed Theil's Inequality Coefficients ........................... 143 

Table 6.19: Solo Pro II One-Minute Mean Speed Percent Deviation ANOVA ............. 152 

Table 6.20: G4 One-Minute Mean Speed Percent Deviation ANOVA .......................... 152 

Table 6.21: SmartSensor 105 One-Minute Mean Speed Percent Deviation ANOVA ... 152 



xii 

 

 

x
ii 

Table 6.22: Solo Pro II One-Minute Mean Speed Percent Deviation Regression Model

................................................................................................................................... 153 

Table 6.23: Solo Pro II One-Minute Mean Speed Percent Deviation Significant Factors 

Regression Model ..................................................................................................... 154 

Table 6.24: G4 One-Minute Mean Speed Percent Deviation Regression Model ........... 154 

Table 6.25: G4 One-Minute Mean Speed Percent Deviation Significant Factors 

Regression Model ..................................................................................................... 155 

Table 6.26: SmartSensor 105 One-Minute Mean Speed Percent Deviation Regression 

Model ........................................................................................................................ 156 

Table 6.27: Mean One-Minute Classification Proportions ............................................. 158 

Table 6.28 One-Minute Classification Error Percentage Summary Statistics ................ 172 

Table 6.29: Solo Pro II One-Minute Classification Error Percentage ANOVA ............. 173 

Table 6.30: Microloop 702 One-Minute Classification Error Percentage ANOVA ...... 173 

Table 6.31: G4 One-Minute Classification Error Percentage ANOVA ......................... 173 

Table 6.32: SmartSensor 105 One-Minute Classification Error Percentage ANOVA ... 173 

Table 6.33: Solo Pro II One-Minute Classification Error Percentage Regression Model

................................................................................................................................... 175 

Table 6.34: Solo Pro II One-Minute Classification Error Percentage Significant Factors 

Regression Model ..................................................................................................... 175 

Table 6.35: Microloop 702 One-Minute Classification Error Percentage Regression 

Model ........................................................................................................................ 176 

Table 6.36: G4 One-Minute Classification Error Percentage Regression Model ........... 176 



xiii 

 

 

x
iii 

Table 6.37: G4 One-Minute Classification Error Percentage Significant Factors 

Regression Model ..................................................................................................... 177 

Table 6.38: SmartSensor 105 One-Minute Classification Error Percentage Regression 

Model ........................................................................................................................ 178 

Table 6.39: Interval Volume Correlation Coefficients At Various Aggregation Levels 181 

Table 6.40: Five-Minute and Fifteen-Minute Mean Speed Summary Statistics ............ 182 

Table 7.1 Presence Detection Summary Statistics .......................................................... 189 

Table 7.2 Low Volume Presence Detection Statistics .................................................... 190 

Table 7.3 High Volume Presence Detection Statistics ................................................... 190 

Table 7.4 Clear Weather Presence Detection Statistics .................................................. 192 

Table 7.5 Rainy Weather Presence Detection Statistics ................................................. 192 

Table 7.6 Day Lighting Presence Detection Statistics .................................................... 194 

Table 7.7 Night Lighting Presence Detection Statistics ................................................. 194 

Table 7.8 Dawn Lighting Presence Detection Statistics ................................................. 194 

Table 7.9 Dusk Lighting Presence Detection Statistics .................................................. 195 

Table 7.10: Detector Per-Vehicle Speed Deviation Statistics ........................................ 207 

Table 7.11: Per-Vehicle Speed Theil's Inequality Coefficients ...................................... 208 

Table 7.12: Solo Pro II Per-Vehicle Speed Percent Deviation ANOVA ........................ 216 

Table 7.13: G4 Per-Vehicle Speed Percent Deviation ANOVA .................................... 216 

Table 7.14: SmartSensor 105 Per-Vehicle Speed Percent Deviation ANOVA .............. 217 

Table 7.15: Solo Pro II Per-Vehicle Speed Percent Deviation Regression Model ......... 218 

Table 7.16: G4 Per-Vehicle Speed Percent Deviation Regression Model ...................... 218 

Table 7.17: SmartSensor 105 Per-Vehicle Speed Percent Deviation Regression Model 219 



xiv 

 

 

x
iv

 

Table 7.18: Per-Vehicle Classification Proportions........................................................ 220 

Table 7.19: Solo Pro II Classification Confusion Matrix ............................................... 221 

Table 7.20: Microloop 702 Classification Confusion Matrix ......................................... 222 

Table 7.21: G4 Classification Confusion Matrix ............................................................ 222 

Table 7.22: SmartSensor 105 Classification Confusion Matrix ..................................... 223 

Table 7.23: Percent Correctly Classified by Lighting Levels ......................................... 224 

Table 7.24: Percent Correctly Classified by Rain Factor ............................................... 225 

Table 7.25: Percent Correctly Classified by Traffic Volume Factor .............................. 226 

Table D.1 Five-Minute Volume Summary Statistics ...................................................... 268 

Table D.2: Detector Five-Minute Volume Error Statistics ............................................. 271 

Table D.3: Five-Minute Volume Theil's Inequality Coefficients ................................... 271 

Table D.4 Five-Minute Mean Speed Summary Statistics ............................................... 280 

Table D.5: Detector Five-Minute Mean Speed Deviation Statistics............................... 284 

Table D.6: Five-Minute Mean Speed Theil's Inequality Coefficients ............................ 284 

Table D.7: Mean Five-Minute Classification Proportions .............................................. 291 

Table D.8 Five-Minute Classification Error Percentage Summary Statistics................. 300 

Table E.1 Fifteen-Minute Volume Summary Statistics .................................................. 304 

Table E.2: Detector Fifteen-Minute Volume Error Statistics ......................................... 307 

Table E.3: Fifteen-Minute Volume Theil's Inequality Coefficients ............................... 307 

Table E.4 Fifteen-Minute Mean Speed Summary Statistics ........................................... 316 

Table E.5: Detector Fifteen-Minute Mean Speed Deviation Statistics ........................... 320 

Table E.6: Fifteen-Minute Mean Speed Theil's Inequality Coefficients ........................ 320 

Table E.7: Mean Fifteen-Minute Classification Proportions .......................................... 327 



xv 

 

 

x
v
 

Table E.8 Fifteen-Minute Classification Error Percentage Summary Statistics ............. 336 

  



xvi 

 

 

x
v
i 

LIST OF FIGURES 

Figure 3.1 Test Bed Location............................................................................................ 54 

Figure 3.2 Test Bed Layout .............................................................................................. 56 

Figure 3.3 Detection Zones of the Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) ................................................................................................... 57 

Figure 3.4 Test Bed Fixture Block Diagram ..................................................................... 60 

Figure 3.5 Front of NDOR Cabinet .................................................................................. 61 

Figure 3.6 Back of NDOR Cabinet ................................................................................... 61 

Figure 3.7 Front of NTC Cabinet ...................................................................................... 62 

Figure 3.8 Back of NTC Cabinet ...................................................................................... 62 

Figure 3.9 Solo Pro II Camera Mounting Location .......................................................... 64 

Figure 3.10 Autoscope Virtual Detector Layout............................................................... 66 

Figure 3.11 Microloop 702 Pull Box Locations ............................................................... 68 

Figure 3.12 ITS Link Software Screenshot....................................................................... 69 

Figure 3.13 G4 Mounting Support Structure (a) and Unit (b) .......................................... 71 

Figure 3.14 WinRTMS4 Screenshot ................................................................................. 72 

Figure 3.15 SmartSensor 105 Mounting Support Structure (a) and Unit (b).................... 74 

Figure 3.16 SmartSensor Manager Screenshot ................................................................. 75 

Figure 4.1 Clock Synchronization Flow Chart ................................................................. 84 

Figure 4.2 Clock Synchronization Macro Flow Chart ...................................................... 87 

Figure 5.1: Small Sample Histograms of Per-Vehicle Speed Distributions for the Solo Pro 

II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ....................................... 96 



xvii 

 

 

x
v
ii 

Figure 6.1: One-Minute Volume Scatter Plots Against Ground Truth for Solo Pro II (a), 

Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors .............................. 108 

Figure 6.2: Box Plot of Reported One-Minute Volumes ................................................ 109 

Figure 6.3: Histograms of One-Minute Volume Distributions for Ground Truth (a), Solo 

Pro II (b), Microloop 702 (c), G4 (d), and SmartSensor 105 (e) .............................. 110 

Figure 6.4: Cumulative Distribution Plot of One-Minute Volume Distributions for 

Ground Truth and All Detectors ............................................................................... 111 

Figure 6.5: One-Minute Volume Percent Error Box Plot ............................................... 113 

Figure 6.6: Histograms of One-Minute Volume Percent Error Distributions for Solo Pro 

II (a), Microloop (b), G4 (c), and SmartSensor 105 (d) Detectors ........................... 114 

Figure 6.7: One-Minute Volume Percent Error Cumulative Distribution Plot ............... 115 

Figure 6.8: Solo Pro II One-Minute Volume Percent Error Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 119 

Figure 6.9: Solo Pro II One-Minute Volume Percent Error Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 119 

Figure 6.10: Solo Pro II One-Minute Volume Percent Error Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 120 

Figure 6.11: Microloop 702 One-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 121 

Figure 6.12: Microloop 702 One-Minute Volume Percent Error Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 121 

Figure 6.13: Microloop 702 One-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot .................................................................................... 122 



xviii 

 

 

x
v
iii 

Figure 6.14: G4 One-Minute Volume Percent Error Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 123 

Figure 6.15: G4 One-Minute Volume Percent Error Rain Factor Cumulative Distribution 

Plot ............................................................................................................................ 123 

Figure 6.16: G4 One-Minute Volume Percent Error Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 124 

Figure 6.17: SmartSensor 105 One-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 125 

Figure 6.18: SmartSensor 105 One-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot .................................................................................... 125 

Figure 6.19: SmartSensor 105 One-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot .................................................................................... 126 

Figure 6.20: Box Plot of Reported One-Minute Mean Speeds ....................................... 135 

Figure 6.21: Histograms of One-Minute Mean Speed Distributions for the Solo Pro II (a), 

Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ............................................... 136 

Figure 6.22: Cumulative Distribution Plot of One-Minute Mean Speed Distributions for 

All Detectors ............................................................................................................. 137 

Figure 6.23: One-Minute Mean Speed Scatter Plots Against Baseline for Solo Pro II (a), 

G4 (b), and SmartSensor 105 (c) Detectors .............................................................. 139 

Figure 6.24: One-Minute Mean Speed Percent Deviation Box Plot ............................... 140 

Figure 6.25: Histograms of One-Minute Mean Speed Percent Deviation Distributions for 

Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors ..................................... 141 



xix 

 

 

x
ix

 

Figure 6.26: One-Minute Mean Speed Percent Deviation Cumulative Distribution Plot

................................................................................................................................... 142 

Figure 6.27: Solo Pro II One-Minute Mean Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot .................................................................................... 145 

Figure 6.28: Solo Pro II One-Minute Mean Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot .................................................................................... 146 

Figure 6.29: Solo Pro II One-Minute Mean Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot .................................................................................... 146 

Figure 6.30: G4 One-Minute Mean Speed Percent Deviation Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 147 

Figure 6.31: G4 One-Minute Mean Speed Percent Deviation Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 148 

Figure 6.32: G4 One-Minute Mean Speed Percent Deviation Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 148 

Figure 6.33: SmartSensor 105 One-Minute Mean Speed Percent Deviation Lighting 

Factor Cumulative Distribution Plot ......................................................................... 149 

Figure 6.34: SmartSensor 105 One-Minute Mean Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot .................................................................................... 150 

Figure 6.35: SmartSensor 105 One-Minute Mean Speed Percent Deviation Volume 

Factor Cumulative Distribution Plot ......................................................................... 150 

Figure 6.36: Mean One-Minute Proportion Short, Medium, and Long Vehicles Bar Chart

................................................................................................................................... 158 

Figure 6.37: Box Plot of One-Minute Percent Short Vehicle Distributions ................... 159 



xx 

 

 

x
x
 

Figure 6.38: Box Plot of One-Minute Percent Medium Vehicle Distributions .............. 160 

Figure 6.39: Box Plot of One-Minute Percent Long Vehicle Distributions ................... 160 

Figure 6.40: One-Minute Percent Short Vehicles Scatter Plots Against Ground Truth for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors ..... 162 

Figure 6.41: One-Minute Percent Medium Vehicles Scatter Plots Against Ground Truth 

for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors 163 

Figure 6.42: One-Minute Percent Long Vehicles Scatter Plots Against Ground Truth for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors ..... 164 

Figure 6.43: Histograms of One-Minute Percent Short Vehicles Error Distributions for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ...................... 166 

Figure 6.44: Histograms of One-Minute Percent Medium Vehicles Error Distributions for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ...................... 167 

Figure 6.45: Histograms of One-Minute Percent Long Vehicles Error Distributions for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ...................... 168 

Figure 6.46: One-Minute Percent Short Vehicles Error Cumulative Distribution Plot .. 169 

Figure 6.47: One-Minute Percent Medium Vehicles Error Cumulative Distribution Plot

................................................................................................................................... 170 

Figure 6.48: One-Minute Percent Long Vehicles Error Cumulative Distribution Plot .. 170 

Figure 6.49: Solo Pro II One-Minute Percent Short Vehicles Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 179 

Figure 6.50: Solo Pro II One-Minute Percent Medium Vehicles Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 179 



xxi 

 

 

x
x
i 

Figure 6.51: Solo Pro II One-Minute Percent Long Vehicles Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 180 

Figure 6.52: Box Plot of Five-Minute Percent Long Vehicle Distributions ................... 183 

Figure 6.53: Box Plot of Fifteen-Minute Percent Long Vehicle Distributions ............... 184 

Figure 7.1: Presence Detection Stacked Bar Chart ......................................................... 189 

Figure 7.2: Presence Detection Volume Factor Stacked Bar Chart ................................ 191 

Figure 7.3: Presence Detection Rain Factor Stacked Bar Chart ..................................... 193 

Figure 7.4: Dusk Lighting Transition on 06/20/2011 ..................................................... 194 

Figure 7.5: Potential Spillover Situations ....................................................................... 196 

Figure 7.6: Presence Detection Lighting Factor Stacked Bar Chart ............................... 196 

Figure 7.7: Box Plot of Reported Per-Vehicle Speeds ................................................... 199 

Figure 7.8: Histograms of Per-Vehicle Speed Distributions for the Solo Pro II (a), 

Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ............................................... 200 

Figure 7.9: Cumulative Distribution Plot of Per-Vehicle Speed Distributions for All 

Detectors ................................................................................................................... 201 

Figure 7.10: Cumulative Distribution Plot of Per-Vehicle Speed Distributions for All 

Detectors with Respective Multiplicative Factors Applied ...................................... 202 

Figure 7.11: Per-Vehicle Speed Scatter Plots Against Baseline for Solo Pro II (a), G4 (b), 

and SmartSensor 105 (c) Detectors........................................................................... 204 

Figure 7.12: Per-Vehicle Speed Percent Deviation Box Plot ......................................... 205 

Figure 7.13: Histograms of Per-Vehicle Speed Percent Deviation Distributions for Solo 

Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors ............................................. 206 

Figure 7.14: Per-Vehicle Speed Percent Deviation Cumulative Distribution Plot ......... 207 



xxii 

 

 

x
x
ii 

Figure 7.15: Solo Pro II Per-Vehicle Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot .................................................................................... 209 

Figure 7.16: Solo Pro II Per-Vehicle Speed Percent Deviation Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 210 

Figure 7.17: Solo Pro II Per-Vehicle Speed Percent Deviation Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 210 

Figure 7.18: G4 Per-Vehicle Speed Percent Deviation Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 212 

Figure 7.19: G4 Per-Vehicle Speed Percent Deviation Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 212 

Figure 7.20: G4 Per-Vehicle Speed Percent Deviation Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 213 

Figure 7.21: SmartSensor 105 Per-Vehicle Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot .................................................................................... 214 

Figure 7.22: SmartSensor 105 Per-Vehicle Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot .................................................................................... 214 

Figure 7.23: SmartSensor 105 Per-Vehicle Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot .................................................................................... 215 

Figure 7.24: Per-Vehicle Classification Proportion Bar Chart ....................................... 220 

Figure 7.25: Classification Proportions Lighting Factor Stacked Bar Chart .................. 224 

Figure 7.26: Classification Proportions Rain Factor Stacked Bar Chart ........................ 225 

Figure 7.27: Classification Proportions Volume Factor Stacked Bar Chart ................... 226 



xxiii 

 

 

x
x
iii 

Figure C.1: Full Data One-Minute Volume Percent Error ANOVA Residual Index Plots 

for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ................ 260 

Figure C.2: Full Data One-Minute Volume Percent Error ANOVA Residual 

Correlograms for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d)

................................................................................................................................... 261 

Figure C.3: Factor 10 Thinned One-Minute Volume Percent Error ANOVA Residual 

Index Plots for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d)

................................................................................................................................... 262 

Figure C.4: Factor 10 Thinned One-Minute Volume Percent Error ANOVA Residual 

Correlograms for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d)

................................................................................................................................... 263 

Figure C.5: Factor 20 Thinned One-Minute Volume Percent Error ANOVA Residual 

Index Plot for SmartSensor 105 ................................................................................ 264 

Figure C.6: Factor 20 Thinned One-Minute Volume Percent Error ANOVA Residual 

Correlogram for SmartSensor 105 ............................................................................ 264 

Figure D.1: Five-Minute Volume Scatter Plots Against Ground Truth for Solo Pro II (a), 

Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors .............................. 265 

Figure D.2: Box Plot of Reported Five-Minute Volumes............................................... 266 

Figure D.3: Histograms of Five-Minute Volume Distributions for Ground Truth (a), Solo 

Pro II (b), Microloop 702 (c), G4 (d), and SmartSensor 105 (e) .............................. 267 

Figure D.4: Cumulative Distribution Plot of Five-Minute Volume Distributions for 

Ground Truth and All Detectors ............................................................................... 268 

Figure D.5: Five-Minute Volume Percent Error Box Plot .............................................. 269 



xxiv 

 

 

x
x
iv

 

Figure D.6: Histograms of Five-Minute Volume Percent Error Distributions for Solo Pro 

II (a), Microloop (b), G4 (c), and SmartSensor 105 (d) Detectors ........................... 270 

Figure D.7: Five-Minute Volume Percent Error Cumulative Distribution Plot ............. 271 

Figure D.8: Solo Pro II Five-Minute Volume Percent Error Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 272 

Figure D.9: Solo Pro II Five-Minute Volume Percent Error Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 272 

Figure D.10: Solo Pro II Five-Minute Volume Percent Error Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 273 

Figure D.11: Microloop 702 Five-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 273 

Figure D.12: Microloop 702 Five-Minute Volume Percent Error Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 274 

Figure D.13: Microloop 702 Five-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot .................................................................................... 274 

Figure D.14: G4 Five-Minute Volume Percent Error Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 275 

Figure D.15: G4 Five-Minute Volume Percent Error Rain Factor Cumulative Distribution 

Plot ............................................................................................................................ 275 

Figure D.16: G4 Five-Minute Volume Percent Error Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 276 

Figure D.17: SmartSensor 105 Five-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 276 



xxv 

 

 

x
x
v
 

Figure D.18: SmartSensor 105 Five-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot .................................................................................... 277 

Figure D.19: SmartSensor 105 Five-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot .................................................................................... 277 

Figure D.20: Box Plot of Reported Five-Minute Mean Speeds ...................................... 278 

Figure D.21: Histograms of Five-Minute Mean Speed Distributions for the Solo Pro II 

(a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ........................................ 279 

Figure D.22: Cumulative Distribution Plot of Five-Minute Mean Speed Distributions for 

All Detectors ............................................................................................................. 280 

Figure D.23: Five-Minute Mean Speed Scatter Plots Against Baseline for Solo Pro II (a), 

G4 (b), and SmartSensor 105 (c) Detectors .............................................................. 281 

Figure D.24: Five-Minute Mean Speed Percent Deviation Box Plot ............................. 282 

Figure D.25: Histograms of Five-Minute Mean Speed Percent Deviation Distributions for 

Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors ..................................... 283 

Figure D.26: Five-Minute Mean Speed Percent Deviation Cumulative Distribution Plot

................................................................................................................................... 284 

Figure D.27: Solo Pro II Five-Minute Mean Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot .................................................................................... 285 

Figure D.28: Solo Pro II Five-Minute Mean Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot .................................................................................... 285 

Figure D.29: Solo Pro II Five-Minute Mean Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot .................................................................................... 286 



xxvi 

 

 

x
x
v
i 

Figure D.30: G4 Five-Minute Mean Speed Percent Deviation Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 286 

Figure D.31: G4 Five-Minute Mean Speed Percent Deviation Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 287 

Figure D.32: G4 Five-Minute Mean Speed Percent Deviation Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 287 

Figure D.33: SmartSensor 105 Five-Minute Mean Speed Percent Deviation Lighting 

Factor Cumulative Distribution Plot ......................................................................... 288 

Figure D.34: SmartSensor 105 Five-Minute Mean Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot .................................................................................... 288 

Figure D.35: SmartSensor 105 Five-Minute Mean Speed Percent Deviation Volume 

Factor Cumulative Distribution Plot ......................................................................... 289 

Figure D.36: Mean Five-Minute Proportion Short, Medium, and Long Vehicles Bar Chart

................................................................................................................................... 290 

Figure D.37: Box Plot of Five-Minute Percent Short Vehicle Distributions .................. 291 

Figure D.38: Box Plot of Five-Minute Percent Medium Vehicle Distributions ............. 292 

Figure D.39: Box Plot of Five-Minute Percent Long Vehicle Distributions .................. 292 

Figure D.40: Five-Minute Percent Short Vehicles Scatter Plots Against Ground Truth for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors ..... 293 

Figure D.41: Five-Minute Percent Medium Vehicles Scatter Plots Against Ground Truth 

for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors 294 

Figure D.42: Five-Minute Percent Long Vehicles Scatter Plots Against Ground Truth for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors ..... 295 



xxvii 

 

 

x
x
v
ii 

Figure D.43: Histograms of Five-Minute Percent Short Vehicles Error Distributions for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ...................... 296 

Figure D.44: Histograms of Five-Minute Percent Medium Vehicles Error Distributions 

for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ................ 297 

Figure D.45: Histograms of Five-Minute Percent Long Vehicles Error Distributions for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ...................... 298 

Figure D.46: Five-Minute Percent Short Vehicles Error Cumulative Distribution Plot. 299 

Figure D.47: Five-Minute Percent Medium Vehicles Error Cumulative Distribution Plot

................................................................................................................................... 299 

Figure D.48: Five-Minute Percent Long Vehicles Error Cumulative Distribution Plot . 300 

Figure E.1: Fifteen-Minute Volume Scatter Plots Against Ground Truth for Solo Pro II 

(a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors ........................ 301 

Figure E.2: Box Plot of Reported Fifteen-Minute Volumes ........................................... 302 

Figure E.3: Histograms of Fifteen-Minute Volume Distributions for Ground Truth (a), 

Solo Pro II (b), Microloop 702 (c), G4 (d), and SmartSensor 105 (e) ...................... 303 

Figure E.4: Cumulative Distribution Plot of Fifteen-Minute Volume Distributions for 

Ground Truth and All Detectors ............................................................................... 304 

Figure E.5: Fifteen-Minute Volume Percent Error Box Plot .......................................... 305 

Figure E.6: Histograms of Fifteen-Minute Volume Percent Error Distributions for Solo 

Pro II (a), Microloop (b), G4 (c), and SmartSensor 105 (d) Detectors ..................... 306 

Figure E.7: Fifteen-Minute Volume Percent Error Cumulative Distribution Plot .......... 307 

Figure E.8: Solo Pro II Fifteen-Minute Volume Percent Error Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 308 



xxviii 

 

 

x
x
v
iii 

Figure E.9: Solo Pro II Fifteen-Minute Volume Percent Error Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 308 

Figure E.10: Solo Pro II Fifteen-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot .................................................................................... 309 

Figure E.11: Microloop 702 Fifteen-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 309 

Figure E.12: Microloop 702 Fifteen-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot .................................................................................... 310 

Figure E.13: Microloop 702 Fifteen-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot .................................................................................... 310 

Figure E.14: G4 Fifteen-Minute Volume Percent Error Lighting Factor Cumulative 

Distribution Plot ........................................................................................................ 311 

Figure E.15: G4 Fifteen-Minute Volume Percent Error Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 311 

Figure E.16: G4 Fifteen-Minute Volume Percent Error Volume Factor Cumulative 

Distribution Plot ........................................................................................................ 312 

Figure E.17: SmartSensor 105 Fifteen-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot .................................................................................... 312 

Figure E.18: SmartSensor 105 Fifteen-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot .................................................................................... 313 

Figure E.19: SmartSensor 105 Fifteen-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot .................................................................................... 313 

Figure E.20: Box Plot of Reported Fifteen-Minute Mean Speeds .................................. 314 



xxix 

 

 

x
x
ix

 

Figure E.21: Histograms of Fifteen-Minute Mean Speed Distributions for the Solo Pro II 

(a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ........................................ 315 

Figure E.22: Cumulative Distribution Plot of Fifteen-Minute Mean Speed Distributions 

for All Detectors ....................................................................................................... 316 

Figure E.23: Fifteen-Minute Mean Speed Scatter Plots Against Baseline for Solo Pro II 

(a), G4 (b), and SmartSensor 105 (c) Detectors ........................................................ 317 

Figure E.24: Fifteen-Minute Mean Speed Percent Deviation Box Plot .......................... 318 

Figure E.25: Histograms of Fifteen-Minute Mean Speed Percent Deviation Distributions 

for Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors ............................... 319 

Figure E.26: Fifteen-Minute Mean Speed Percent Deviation Cumulative Distribution Plot

................................................................................................................................... 320 

Figure E.27: Solo Pro II Fifteen-Minute Mean Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot .................................................................................... 321 

Figure E.28: Solo Pro II Fifteen-Minute Mean Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot .................................................................................... 321 

Figure E.29: Solo Pro II Fifteen-Minute Mean Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot .................................................................................... 322 

Figure E.30: G4 Fifteen-Minute Mean Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot .................................................................................... 322 

Figure E.31: G4 Fifteen-Minute Mean Speed Percent Deviation Rain Factor Cumulative 

Distribution Plot ........................................................................................................ 323 

Figure E.32: G4 Fifteen-Minute Mean Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot .................................................................................... 323 



xxx 

 

 

x
x
x
 

Figure E.33: SmartSensor 105 Fifteen-Minute Mean Speed Percent Deviation Lighting 

Factor Cumulative Distribution Plot ......................................................................... 324 

Figure E.34: SmartSensor 105 Fifteen-Minute Mean Speed Percent Deviation Rain 

Factor Cumulative Distribution Plot ......................................................................... 324 

Figure E.35: SmartSensor 105 Fifteen-Minute Mean Speed Percent Deviation Volume 

Factor Cumulative Distribution Plot ......................................................................... 325 

Figure E.36: Mean Fifteen-Minute Proportion Short, Medium, and Long Vehicles Bar 

Chart .......................................................................................................................... 326 

Figure E.37: Box Plot of Fifteen-Minute Percent Short Vehicle Distributions .............. 327 

Figure E.38: Box Plot of Fifteen-Minute Percent Medium Vehicle Distributions ......... 328 

Figure E.39: Box Plot of Fifteen-Minute Percent Long Vehicle Distributions .............. 328 

Figure E.40: Fifteen-Minute Percent Short Vehicles Scatter Plots Against Ground Truth 

for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors 329 

Figure E.41: Fifteen-Minute Percent Medium Vehicles Scatter Plots Against Ground 

Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) 

Detectors ................................................................................................................... 330 

Figure E.42: Fifteen-Minute Percent Long Vehicles Scatter Plots Against Ground Truth 

for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) Detectors 331 

Figure E.43: Histograms of Fifteen-Minute Percent Short Vehicles Error Distributions for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ...................... 332 

Figure E.44: Histograms of Fifteen-Minute Percent Medium Vehicles Error Distributions 

for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ................ 333 



xxxi 

 

 

x
x
x
i 

Figure E.45: Histograms of Fifteen-Minute Percent Long Vehicles Error Distributions for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) ...................... 334 

Figure E.46: Fifteen-Minute Percent Short Vehicles Error Cumulative Distribution Plot

................................................................................................................................... 335 

Figure E.47: Fifteen-Minute Percent Medium Vehicles Error Cumulative Distribution 

Plot ............................................................................................................................ 335 

Figure E.48: Fifteen-Minute Percent Long Vehicles Error Cumulative Distribution Plot

................................................................................................................................... 336 



1 

 

 

1
 

CHAPTER 1 INTRODUCTION 

1.1 Background 

Decisions relating to highway transportation are made at many different administrative 

levels. These decisions are often based on information that comes from collected data. 

They can only be as sound as the collected data upon which they are based. The data used 

in traffic engineering generally fit into one of two categories. Inventory data, which 

address the available highway resources, include items such as road classification, cross-

sectional characteristics, pavement quality indices, and intersection characteristics; this 

type of data is generally taken from design documents or by direct measurement. The 

second type of data is demand data, which is concerned with the degree to which the 

stated resources are currently, have historically, or are projected to be utilized. Demand 

data include items such as origin-destination matrices, travel time, traffic volume, and 

vehicle classification. Data on the characteristics of traffic on a given roadway or network 

are vitally important to management decision-making. Decision-makers work under the 

assumption that the data are reasonably reliable, but acknowledge that there will be errors 

inherent in a given dataset. While it is rather difficult to improve historical data, there has 

been an ongoing effort by officials responsible for data collection to improve the quality 

of data currently being collected, or that which will be collected in the future. 

Since the 1960s, inductive loop detectors have been the primary source of 

vehicular traffic data, e.g., volume, speed, and classification (1). However, there are a 

number of problems presented by loop detectors that have warranted research into 

alternative means of traffic data collection. Some of the problems with inductive loop 

detectors include their high failure rate, the intrusive nature of their installation and 
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maintenance (traffic disruption and danger for installers), and their undermining of the 

structural integrity of the surrounding pavement (2, 3, 4). Research into detector 

technologies has yielded six major scientific properties that allow detectors to detect 

vehicles: sound, opacity, geomagnetism, reflection of transmitted energy, electromagnetic 

induction, and vibration (5). Most of the state-of-the-art detectors on the market fit into a 

category with one of these detected properties, or could be considered combination 

detectors (i.e., those which observe multiple properties of vehicles). 

The goal of this thesis was to make statistical comparisons between some of the 

non-intrusive technologies currently available for traffic detection for performance under 

various environmental conditions. Statistical analyses on comparisons ranging from 

disaggregate presence detection to higher parameters such as speed and classification 

were conducted to arrive at value judgments of the various traffic detectors under 

examination. The evaluation of the detectors also included an analysis of the impacts 

environmental conditions exert on the various detectors. It was anticipated that the 

statistical analysis presented in this thesis would advance the field not only by delineating 

the characteristics of the set of non-intrusive traffic detectors upon which it was 

conducted, but also by informing future research on yet undeveloped traffic detectors. 

1.1 Problem Statement 

While there exists a substantial body of literature reporting on the accuracy of various 

traffic detector technologies, the majority of such research was conducted under ideal 

environmental conditions (adequate lighting, low wind, and no precipitation), or without 

explicit acknowledgment of the impacts that environmental conditions may have on 

detector accuracy. Because agencies that implement these technologies for traffic data 
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collection purposes do so with the expectation that the data they are receiving has a 

reasonable accuracy across environmental characteristics, a need exists to provide 

quantified, empirical assessment of the factors associated with adverse environmental 

conditions (such as low lighting, lighting transition, and precipitation), specifically those 

conditions frequently encountered in the state of Nebraska. 

1.2 Research Objectives 

The primary objective of an currently ongoing research pursuit in the field of traffic 

detectors, led by the Nebraska Transportation Center (NTC), is to provide a sound 

methodological framework for use in analyzing the fitness of various non-intrusive traffic 

detection technologies—technologies which, importantly, inform policy-makers and 

designers. As technology rapidly evolves, this is an ongoing task. The current study is 

valuable to this ongoing research, as it implements a series of statistical tools and 

analyses to closely examine and document the responsivity of numerous traffic data 

technologies to various environmental conditions. Analyses were conducted on four 

technologies that represent alternatives to the traditional inductive loop for traffic data 

collection. The study assessed the accuracy of vehicular traffic volume, speed, and 

length-based classification data, collected by one video detector, two different radar 

detectors, and a magnetic induction microloop detector under fair and adverse conditions 

including rain and lighting conditions (i.e., dawn, dusk, and night [dark]). Review of 

these data informs upon which of these detector technologies are most robust against 

adverse environmental conditions. A primary focus of this thesis was on scientifically 

defensible statistical analyses of the error rates of these four technologies, conducted 

under the full spectrum of potentially adverse environmental conditions. 
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1.3 Research Program 

The research presented in this thesis was carried out by following the program of tasks in 

the order presented in this section. 

1.3.1 Literature Review 

The first step was to conduct a literature review examining the existing body of 

knowledge pertaining to state-of-the-art traffic detectors and their various accuracies. 

This review provided a base of evidence upon which to construct a research program 

capable of furthering collective understanding of this subject. This review was conducted 

by examining existing publications relevant to the historical and current use of traffic 

detectors, industry accepted inaccuracies, and technological limitations of different traffic 

detectors. The literature review is outlined in chapter 2 of this thesis. 

1.3.2 Identification and Setup of Test Bed 

The test bed for this detector study was an area along westbound Interstate 80 (I-80) at 

the Giles Road interchange in Omaha. This is a permanent traffic detector test bed 

maintained by the Nebraska Department of Roads (NDOR) and Nebraska Transportation 

Center (NTC). At this location, NDOR installed three above-ground detection systems 

and one buried detection system, which were each analyzed in this study. The buried 

detector was a 3M Canoga Microloop. The three above-ground systems were the 

Autoscope Solo Pro II, Image Sensing Systems RTMS G4, and Wavetronix SmartSensor 

SS105. The current research primarily involved the logistical planning of data collection; 

installation of additional site apparati for electronic communications and data collection; 

and calibration of the detectors. The test bed setup and detector calibration are 

documented in chapter 3 of this thesis. 
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1.3.3 Collection and Reduction of Data 

Time-stamped vehicle observation, speed, and length data were collected from the four 

detection systems over a five-month period spanning March 2011 through July 2011. To 

facilitate analyses involving environmental conditions, weather data were collected from 

the KMLE weather station located at the Millard, Nebraska Airport, approximately 0.5 

miles from the test bed. In addition to the collection of these data files, video was 

recorded so that subsequent manual observation could be conducted in order to establish 

ground truth vehicle count and classification, as well as manual verification of weather 

conditions. A subset of the collected, data representing various environmental and traffic 

conditions, was selected for analysis. Data reduction involved establishing ground truth 

from the recorded video and aggregating the output from the various detectors for this 

data set. Data collection and reduction are documented in chapter 4 of this thesis. 

1.3.4 Analysis of Data 

Data analysis took two forms. Aggregate analysis considered the detector performance in 

the detection of volume, speed, and vehicle classification over temporal aggregation 

intervals of one, five, and fifteen minutes. Disaggregate analysis considered the per-

vehicle detection performance of the various detectors relating to presence, speed, and 

vehicle classification. While disaggregate analysis provided a resolution of data 

unobtainable in the aggregate analysis, the aggregate analysis provided information on 

detection abilities at an aggregation level consistent with the practical application of these 

detectors for intelligent transportation systems (ITS) support. Therefore, both types of 

analyses provided valuable information on the detection performance of alternative traffic 

detectors. Aggregate analysis is documented in chapter 6, while disaggregate analysis is 
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documented in chapter 7 of this thesis. The statistical methods utilized in the analyses are 

detailed in chapter 5. 

1.3.5 Inference of Results 

The trends that arose in the analyses were documented, and to the extent that it was 

practical, were also tested for statistical significance. Upon documentation of the 

findings, attempts were made to reconcile the findings with what was previously 

acknowledged regarding the physical operating characteristics of the various detection 

technologies, in order to offer potential explanations for the deviations from ground truth. 

These explanations are offered alongside the analysis description in chapters 6 and 7. The 

most significant of these results are reiterated in the conclusions in chapter 8, as are 

recommendations for future research relating to the assessment of non-intrusive traffic 

detectors. 

1.3.6 Dissemination of Findings 

This thesis documents the culmination of the results of the current study, but there have 

been other published documents and presentations focusing on specific aspects of this 

study, and future documents are in their planning stages. The purpose of these documents 

and presentations is to make the lessons and recommendations garnered from this 

research available to all interested parties.  
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CHAPTER 2 LITERATURE REVIEW 

2.1 Introduction 

While an extensive body of research has analyzed various traffic detector technologies, 

there exists a need for further research based on the rate at which manufacturers are 

producing new detectors or improving algorithms for previously released detector 

technologies. It cannot be assumed that, simply because a given technology provided the 

best accuracy for cost five years ago, it will still be the best technology today. To this 

end, this literature review begins with a basic explanation of the different technologies 

that are used in state-of-the-art traffic detectors. It then presents the various metrics which 

have been used in previous studies to compare traffic detectors. Finally, the findings of 

the most relevant and most recent traffic detector technology evaluations are summarized 

to facilitate comparison with the results of this study. 

2.2 Available Detection Technologies  

One of the most basic schemes for the classification of traffic detectors divides them into 

the following three categories: intrusive detectors, non-intrusive detectors, and off-

roadway technologies (2). Intrusive detectors refer to technologies that require the 

installation of the detector under, in, or on the roadway. Detectors of this type are 

characterized by the need to intrude upon and obstruct traffic flow during their 

installation and maintenance. This is frequently cited in the literature as causing 

additional delay, as well as placing the installer in a potentially dangerous location near 

traffic. Non-intrusive detectors refer to technologies which do not require obstruction of 

traffic during their installation and maintenance. Most frequently, these detectors are 

installed either alongside the roadway, or overhead. Finally, off-roadway technologies 
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refer to non-point technologies employed in the collection of traffic information. 

Examples of off-roadway technologies include probe vehicles, bluetooth vehicle 

reidentification, automatic vehicle identification (AVI), or remote imaging (satellite or 

aircraft). This literature review was primarily concerned with intrusive and non-intrusive 

detector technologies. 

2.2.1 Intrusive Detectors 

The most common intrusive detector is the inductive loop. An inductive loop detector is a 

system comprised of four parts, including one or more coils of wire embedded in or under 

the pavement, an electronics unit which provides the circuit with power and senses a 

change in inductance, a lead in wire from the loop(s) to the pull box, and a lead in cable 

from the pull box to the electronics unit in a controller cabinet (5). When a vehicle with 

conductive metal passes over the loop, the inductance is reduced, thereby increasing the 

frequency of the oscillator. The higher frequency is registered by the detector oscillator, 

and the vehicle’s presence is registered. 

Another type of intrusive detector is the pneumatic road tube (2). The pneumatic 

road tube is a tube laid across the travelled lane. The tube is capped so that the passage of 

a vehicle's tires over the tube increases the air pressure in the tube. This pulse of higher 

pressure is registered by a sensor at one end of the tube, which records an axle passage. 

Vehicle count, speed, and classification data are calculated from axle passages. The wear 

that these tubes receive makes them more suited to short-term installations than long-term 

data collection. 

Magnetometers are intrusive traffic detectors that sense the earth’s magnetic field. 

They have two or three distinct coils around perpendicular axes, and are therefore more 
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properly known as two-axis or three-axis fluxgate magnetometers (6). These multiple 

axes allow them to detect changes in both the vertical and horizontal components of the 

earth’s magnetic field, which in turn allows magnetometers to detect the presence of 

stopped vehicles as well as the passage of moving vehicles. Magnetometers have greater 

lane discretion than the magnetic detectors discussed in the non-intrusive detectors 

section below, which means that they are less likely to register false calls from magnetic 

spillover. However, their larger size requires an intrusive installation, while some 

magnetic detectors can be installed non-intrusively. 

A final class of intrusive traffic detector with a specialized application is weigh-

in-motion (WIM), which is achieved through one of three primary technologies (7). The 

first of these technologies is the piezoelectric sensor, which is installed in a saw cut 

across the travel lane and produces a voltage proportional to the force exerted on it by the 

wheels of a single axle. The dynamic load is calculated from the detected voltage. The 

second type of WIM detector is a bending plate. A bending plate detector consists of  

high-strength steel plates in each wheel path of a travel lane. The bottom of each steel 

plate is equipped with a strain gauge. From the reported strain in both plates, the dynamic 

axle load can be calculated. The third type of WIM detector is a load cell. A load cell 

detector consists of a single load cell with two scales (one in each wheel path). The load 

cell is equipped with a strain gauge which registers the dynamic axle load. For each of 

the three systems, the dynamic load is processed through a calibrated computation which 

estimates the vehicle’s static load. WIM detectors are frequently paired with a different 

detector, such as an inductive loop, to allow other parameters such as speed and vehicle 

classification to be recorded. 
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2.2.2 Non-Intrusive Detectors 

Much research over the past two decades has been conducted toward the development 

and analysis of various non-intrusive detectors. Six classes of non-intrusive detectors 

have emerged, based on the respective technologies the detectors employ for vehicle 

detection. These classes are: video image processor, microwave radar, magnetic, 

acoustic, infrared, and combined technology. Each of these detector classes has varied in 

its degree of use by the industry, and each thrives in different applications. Table 2.1 

provides a cursory list of non-intrusive detector models with their classification by 

technology. 
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Table 2.1 Non-Intrusive Detector Models 

Manufacturer Model Technology

Econolite Autoscope Solo Pro II Video Image Processor

Econolite Autoscope Solo Terra Video Image Processor

Iteris Vantage Video Image Processor

Iteris VersiCam Video Image Processor

Miovision Video Analysis Service Video Image Processor

Traficon Detector Board VIP Video Image Processor

Traficon TrafiCam Video Image Processor

ISS RTMS G4 Microwave Radar (FMCW)

GMH Engineering Delta DRS1000 Microwave Radar (Doppler)

IRD TMS-SA Microwave Radar (Doppler)

MS Sedco Intersector Microwave Radar (FMCW)

MS Sedco TC26-B Microwave Radar (Doppler)

Naztec Accuwave 150-LX Microwave Radar (FMCW)

Stalker Speed Sensor Microwave Radar (Doppler)

Wavetronix SmartSensor 105 Microwave Radar (FMCW)

Wavetronix SmartSensor Advance Microwave Radar (FMCW)

Wavetronix SmartSensor HD Microwave Radar (FMCW)

Wavetronix SmartSensor Matrix Microwave Radar (FMCW)

Wavetronix SmartSensor V Microwave Radar (FMCW)

Xtralis ASIM MW 334 Microwave Radar (Doppler)

GTT Canoga Microloop 702 Magnetic

MS Sedco TC30 Acoustic (Ultrasonic)

SmarTek Systems SAS-1 Acoustic (Passive)

OSI LaserScan AutoSense Infrared (Active)

Xtralis ASIM IR 30x Infrared (Passive)

Xtralis ASIM DT 351

Combined (Doppler Radar, 

Passive Infrared)

Xtralis ASIM DT 372

Combined (Ultrasonic, 

Passive Infrared)

Xtralis ASIM TT 29x

Combined (Doppler Radar, 

Ultrasonic, Passive Infrared)  

One type of non-intrusive traffic detector is the video image processor (VIP). This 

type of detector consists of a camera which captures video of the traffic stream, and a 

computer programmed with an algorithm to processes the recorded video. The computer 

recognizes changes between successive frames and extracts parameters about vehicles 
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that pass through the image (5). Two primary types of algorithms exist in VIP detectors: 

trip-line and tracking. Trip-line detection allows a user to program virtual detectors onto 

certain areas within the image. When a group of pixels near that area changes hue or 

lightness, vehicle presence at that location is registered. By defining the geometry of the 

image and placing multiple virtual detectors along a travel lane, a speed trap 

configuration is able to extract vehicle count, speed, and length parameters for vehicles in 

that lane. Tracking algorithms in VIPs are less fully developed and are generally 

considered to be more complex. While trip-line algorithms only monitor specific areas of 

the image for changes, a tracking algorithm monitors the entire image, thereby 

recognizing a vehicle as it enters the frame, tracking it through the image. Based on 

calibration of image geometry, this type of algorithm is able to extract parameters such as 

vehicle count, speed, and length. VIPs with tracking algorithms are also useful for their 

ability to register turning movement counts at intersections. One example of a trip-line 

VIP detector is the Autoscope Solo Pro II, evaluated in this study. 

Another type of non-intrusive detector is microwave radar. Microwave radar 

functions by emitting an electromagnetic wave toward the roadway (6). When a vehicle 

passes through the electromagnetic wave, it reflects a portion of the wave back to the 

detector. There are two types of microwave radar that differ in the way this reflected 

wave is processed. A continuous wave (CW) Doppler radar unit senses the shift in 

frequency between the transmitted signal and the detected return signal. This frequency 

shift is used to sense vehicle presence and calculate speed based on the Doppler principle. 

CW Doppler radar units are unable to detect stationary objects. A frequency modulated 

continuous wave (FMCW) radar unit transmits an electromagnetic wave, the frequency of 
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which is continuously being adjusted with time. Because of this modulated frequency, it 

is possible to determine the range (distance) to the vehicle. Successive range readings are 

used to determine the vehicle speed. A FMCW radar unit is able to detect stopped 

vehicles. Microwave radar units are either installed in an overhead (over one lane of 

traffic) or side-fire (transmitting perpendicular to the direction of traffic and across 

multiple lanes) configuration. Examples of microwave radar units include the Wavetronix 

SmartSensor 105 and ISS RTMS G4, evaluated in the current study. 

A magnetic detector can fall into either the intrusive or non-intrusive category, 

depending on the model selected. This form of detector has been included under non-

intrusive detectors in this thesis, due to the fact that the one magnetic detector assessed in 

this study was considered non-intrusive because it was installed in a conduit bored under 

the travel lanes from the side of the roadway. Other magnetic detectors are placed in saw 

cuts, or in holes cored into the pavement. Magnetic detectors function by passively 

sensing the vertical component of the earth's magnetic field (6). When the earth's 

magnetic field at the location of the detector is perturbed by the nearby passage of a 

ferrous object, a vehicle detection is registered. When two magnetic detectors are placed 

along a travel lane in a speed trap configuration, vehicle speed and length can be 

reported. Examples of magnetic detectors include the 3M Canoga Microloop 702, 

evaluated in this study. 

The two types of acoustic traffic detectors are ultrasonic and passive acoustic (2). 

Ultrasonic detectors employ an active acoustic technology. They function by a) 

transmitting ultrasonic electromagnetic pulses and measuring the time it takes each pulse 

to be reflected back to the detector, or b) transmitting a continuous ultrasonic wave and 
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using the Doppler principle to detect vehicle presence. Passive acoustic detectors sense 

the different sources of sound associated with a vehicle, such as engine noise and 

tire/road interface noise, rather than transmitting an electromagnetic wave like the 

ultrasonic detector. They use an array of microphones, along with an algorithm capable 

of locating vehicles in the detection area. Both types of acoustic detectors are capable of 

collecting volume, speed, and classification data. 

There are three classes of infrared traffic detectors on the market: active infrared, 

passive infrared, and infrared axle detectors. An active infrared detector is mounted over 

the roadway or in a crossfire configuration at the side of the road, and emits infrared 

beams toward the road surface, which are reflected to the detector. Passive infrared 

detectors function in a similar manner, except that they rely on electromagnetic energy 

emitted by the vehicle, or solar and atmospheric energy reflected off of the vehicle. In 

both cases, the infrared energy enters the detector through an optical system that directs it 

to an infrared-sensitive material, which generates an electrical signal that can be 

processed to determine vehicle presence (6). An infrared axle detector is mounted at 

ground level on one or both shoulders, depending on the model. It transmits an infrared 

laser across the travel lanes a few inches above the road surface. An axle is detected 

when the infrared signal is reflected off a wheel back to the unit (for single shoulder 

models), or when the infrared signal between the transmitter and receiver is disrupted by 

a wheel (for paired, i.e., two-shoulder units). The axle counts are aggregated into vehicle 

counts, speeds, and classifications based on axle spacing (8). 

While each detection technology has its own strengths and weaknesses, 

manufacturers have learned to leverage the strengths of multiple technologies by creating 
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combined detectors. These detectors aggregate data from multiple sensors to create a 

more robust system. For example, there are detectors that combine an infrared sensor 

with either an ultrasonic or microwave radar sensor. In a combined passive infrared-

Doppler radar detector the passive infrared sensor is able to register slow-moving (or 

stopped) vehicles that a Doppler radar sensor may miss, while the Doppler radar sensor is 

able to provide more accurate speed readings for faster moving vehicles than is the 

passive infrared sensor (2). 

2.3 Standards for Evaluating Traffic Detectors  

Committee E17.52 of ASTM International, a leader in the development of voluntary 

consensus standards, is responsible for the development of standards related to traffic 

monitoring. This committee is currently responsible for ten active standards (9). The most 

pertinent of these standards is the Standard Test Methods for Evaluating Performance of 

Highway Traffic Monitoring Devices (10). This standard provides guidance for two 

unique test methods that can be applied to a traffic monitoring device (TMD). The first 

method is a “type-approval test” and the second is an “on-site verification test,” the 

outcome of either method being an accept or reject decision for the given detector. A 

type-approval test is to be applied to an untested brand and model of detector in order to 

determine its performance in a variety of potential installation scenarios. An on-site 

verification test is to be conducted at each installation location on a brand and model of 

detector that has already passed a type-approval test. 

The standard is written in such a way that it could be referenced in purchase 

specifications. It outlines the responsibilities of the user and the seller in the testing 

process. The general process includes the following steps: the user must outline the traffic 
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parameters to be detected and the tolerance with which each parameter is to be reported; 

the user and seller must agree on the source of baseline data and the accuracy of the 

baseline data collection method; a type-approval test should include a minimum of three 

hours of data collection, while for most parameters, an on-site verification test only 

requires a minimum of 50 vehicle observations; the device is installed and calibrated by 

the seller and confirmed by the user; after data is collected by the device and the agreed 

upon reference mechanism, the errors are calculated and compared to the pre-defined 

tolerance specified by the user; if the error for any parameter exceeds the tolerance, the 

device is rejected. 

As the test provides a simple accept or reject decision, the standard explicitly 

states that “no information is presented about either the precision or bias of the test 

method for measuring the performance of a TMD since the test result is non-quantitative” 

(10). 

Another standard from ASTM International, which is closely tied to the above 

standard, is the Standard Specification for Highway Traffic Monitoring Devices (11). 

While the above standard is used to define the testing method in order to confirm that 

tolerances set in the purchase specifications are met, this specification provides guidance 

for the preparation of the purchase specifications. In doing so, it defines different traffic 

parameters that a detector could be required to measure; and also defines measures of 

tolerance to be used in testing, including percent difference, single-interval absolute value 

difference, and multiple-interval absolute value difference. Together, these two standards 

assist agencies in purchasing and installing traffic detectors that are capable of reporting 

traffic parameters within an expected error tolerance. 



17 

 

 

1
7
 

2.4 Previous Traffic Detection Evaluation Studies 

Over the past two decades, researchers at a number of different agencies and institutions 

have conducted studies to assess various traffic detection technologies. The following 

synopsis of the most relevant of these studies summarizes the metrics that have been 

considered in assessing traffic detectors, as well as the different methodologies employed 

and relevant qualitative and quantitative findings. An emphasis is placed specifically on 

performance metrics relating to detection accuracy. 

2.4.1 California PATH Studies 

Since 1992, the California PATH coalition has sponsored a number of studies on various 

traffic detection technologies. These studies have addressed a broad range of research, 

including accuracy assessment of different video detection models at freeway and 

intersection locations; prototyping new wireless magnetic detection networks; developing 

automated data validation algorithms for loop detectors; and developing a system to 

automate "ground truth" data collection for future highway detector assessments. 

Relevant methods and findings from these studies are presented below. 

The first independent assessment of VIP technology was conducted in 1992 by 

California PATH. The study compared three commercially available systems and five 

prototype systems, and involved the processing of 280 minutes of recorded video 

separately, using the different VIPs under examination (12). The set of video used was 

selected to include numerous scenarios with different characteristics, such as more or 

fewer lanes, various traffic volumes, approaching and departing traffic, steep to shallow 

camera angles, overhead versus side mounting, varying lighting conditions, and disparate 

weather conditions. Ground truth for count and speed was found by manual analysis of 
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the recorded video (including frame-by-frame analysis for true speed). The study 

differentiated the video detectors into two classes based on their detection algorithm: trip-

line or tracking; the study reported average absolute percent error for each class of 

detector under each test condition. It was determined that under optimum conditions, trip-

line detectors had greater count accuracy, while tracking detectors had greater speed 

accuracy. Conditions that were found to degrade performance were non-optimal camera 

placement, transition from day to night (dusk lighting), headlight reflections on wet 

pavement, shadows of adjacent vehicles or objects, fog, and heavy rain. In various 

conditions, trip-line detectors were found to have lower error rates in count and speed 

data than tracking detectors. However, the authors noted that all tracking detectors 

analyzed were prototypes at the time of testing. 

A subsequent study developed a video vehicle tracking algorithm to detect traffic 

parameters by the processing of video images (13). This study focused primarily on the 

technical composition of the video processing algorithm, but is relevant to the current 

research; the functional specifications for the system under development in the study, 

which are provided in table 2.2, provide insight into the desired data quality for use in 

ITS applications. While some of these parameters, such as flow rate, average speed, and 

classification, could potentially be obtained from a single detector, other parameters 

listed in the table, such as link travel time and origin/destination tracking, require vehicle 

re-identification at multiple detector stations. Analysis of the tracking algorithm utilized 

by the study under review found it to be very effective for velocity measurement, but less 

effective for measuring flow, density, and spacing—the result of missed or false 

detections. 
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Table 2.2 Recovered Parameters (13) 

Parameter Units Range Reporting Rate Error

Vehicle Flow Rate veh/h/lane 0-2500 variable ± 2.5%

Average Speed mph 0-90 variable ± 1 mph

Link Travel Time min 0-60 variable ± 5%

Vehicle Classification type count 0-2400 variable ± 5%

Lane Changes changes by lane as measured variable ± 5%

Queue Length veh/type/lane as measured variable ± 5%

Spatial Headway ft/veh as measured variable ± 5%

Acceleration mph/sec as measured variable ± 5%

Origin/Destin. Tracking enter/exit location 0-500 veh/h/loc tracked vehicle ± 10%  

Another study under the California PATH program assessed issues relating to the 

implementation of a new advanced traffic control system in Anaheim, California (14). 

The new control system was to implement SCOOT (a 1.5 generation control approach) 

and a video traffic detection system (VTDS). The portion of this study relevant to the 

current research was the assessment of the VTDS under different operating conditions at 

signalized intersections. At the outset of the study, it was anticipated that the VTDS, 

manufactured by Odetics Inc. (now Iteris), would be capable of providing presence 

detection for signal actuation, as well as traffic data such as count, speed, volume, and 

density. As the study progressed, the traffic data requirement was lowered, and the 

detector was assessed only for its presence detection ability. The study found that 65% of 

vehicles were accurately detected individually, while 81% were adequately detected for 

proper signal actuation. Further analysis revealed the effects of various test conditions, as 

outlined in table 2.3. The results of this study indicate that the performance of this early 

generation VIP was greatly affected by inclement environmental conditions. 
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Table 2.3 VTDS Detection Results (14) 

Test Condition Correct Detection

Clear, Overhead Sun, LOS A-B 81.3%

Clear, Overhead Sun, LOS C-D 82.4%

Clear, Transverse Sun, LOS B-E 74.9%

Clear, Into Sun, LOS B-E 85.2%

Clear, Low Light, LOS B-E 45.4%

Clear, Night, LOS B-E 55.9%

Rain, Day, LOS B-E 48.8%

Rain, Night, LOS B-E 61.0%

Clear, Overhead Sun, LOS B-E, Wind Vibration 61.1%

Clear, Overhead Sun, LOS B-E, EM Noise 83.4%

Clear, Overhead Sun, LOS B-E, Overhead Wires in View 43.1%

Clear, Overhead Sun, LOS A-B, Color Camera 84.6%  

A study conducted in 2005 assessed the accuracy of a remote traffic microwave 

sensor (RTMS) along a California freeway (3). The researcher responsible for the study 

compared the RTMS output to the output of adjacent loop pairs in order to calculate lane-

by-lane RMSE (root mean-square error) bias and MAPE (mean absolute percent error) 

for flow, occupancy, and speed at 30-second and 5-minute aggregation levels. Data was 

collected for the five eastbound lanes of a divided highway with a median barrier. The 

RTMS was installed in a side-fire configuration on the south side of the freeway, near the 

eastbound lanes. Results indicated that the RTMS overestimated flow and occupancy, 

underestimated velocity in lanes near the median, underestimated occupancy in lanes near 

the shoulder, and overestimated velocity in lanes near the shoulder. The MAPE values 

also demonstrated that a more aggregate sampling interval generally produced a smaller 

percent error than did a more disaggregate sampling interval. This study noted that 

excessive over-counting in the lane nearest to the median could be explained by "echoes 

off the concrete barrier" (3). The findings of this report also revealed extreme occupancy 

error in the lane nearest the detector. This appears to indicate that the detector provided 
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the best detection for lanes in the middle of the detection area, while having greater error 

rates in the nearest and farthest detection zones. 

Subsequent analyses examined loop detectors and RTMS accuracy at the 

disaggregate, per-vehicle level, based on the same method of data collection utilized in 

the previous study (15). Results indicated that, across four lanes of traffic, for analysis 

periods including both free flow and congested traffic conditions, the count accuracy of 

the RTMS detector was characterized by 4.8% missed vehicles and 5.6% false detections. 

These two types of count errors nearly offset one another, resulting in strong count 

accuracy. This study also reported that the RTMS detection on-time varied lane to lane, 

creating a lane bias for occupancy. The larger detection zone of the RTMS led to higher 

occupancy measurements in comparison to the loop detectors. 

The most recent research completed under California PATH relating to non-

intrusive detector assessment involved efforts to develop an automated system for 

collecting ground truth data (16, 17). Traditionally, ground truth data for detector 

assessment has been collected manually via human analysis of recorded video. However, 

as Caltrans developed a detector test bed on Route 405 near Irvine, California, it was 

determined that it would be valuable to develop an automated ground truth system, 

which, unlike the manual collection process, would be capable of assessing large data 

sets. The resulting automated system was the Video Vehicle Detector Verification 

System (V2DVS). This system consisted of six downward-pointing video cameras (one 

over each lane) mounted on an overpass, each camera having a dedicated field computer 

that conducts video image processing, as well as a central server on which data are 

recorded. Under various lighting conditions, the cameras provide detection rates with 
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accuracies ranging between 98.3% and 99.7%, and correct velocity calculation for 

96.5%-99.7% of vehicles (16). Initial testing of alternative detection technologies at this 

site found that missed detections were most commonly due to ambiguous vehicle lane 

position, non-ideal image processing conditions (shadow or occlusion) for VIPs, or 

reflection and occlusion problems in distant lanes for crossfire detectors. It was also 

concluded that frequent false detection could typically be reduced by additional 

calibration. 

2.4.2 Detection Technology for IVHS Study 

Further analysis of various traffic detection technologies was conducted under the FHWA 

sponsored Detector Technology for IVHS (Intelligent Vehicle-Highway Systems) study. 

The objectives of this program were to determine traffic parameters to be measured for 

IVHS applications and associated accuracy specifications; to perform laboratory and field 

tests of available technologies for the determination of their ability to measure these 

traffic parameters with acceptable accuracy; and to determine the feasibility of 

establishing a permanent vehicle detector test bed (18). The required accuracies for 

freeway data were found for two potential IVHS applications (i.e., incident management 

and ramp metering). The accuracy of various parameters was further divided by data 

aggregation intervals into tactical, strategic, and historic parameters.  

Tactical data is used in applications that require data immediately at relatively 

short aggregation intervals (e.g., 20 seconds). Strategic traffic parameters have a greater 

aggregation interval (e.g., 5 minutes), thereby diminishing the noise in the data that 

results from the randomness of vehicle arrivals and driver behavior. Lastly, historic data 

is used to maintain databases and for future planning purposes. It is generally collected at 
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a greater aggregation interval (e.g., 15 minutes or 1 hour). Table 2.4 shows parameter 

specifications for freeway incident management, while table 2.5 shows parameter 

specifications for freeway ramp metering. 

Table 2.4 Freeway Incident Detection and Management Traffic Parameter 

Specifications (18) 
 

Parameter Units Range Collection Interval Allowable Error

Mainline Flow Rate veh/h/lane 0-2500 20 s ± 2.5% *

Mainline Occupancy % (by lane) 0-100 20 s ± 1%

Mainline Speed mph (by lane) 0-80 20 s ± 1 mph

Mainline Travel Time min 20 s ± 5%

Parameter Units Range Collection Interval Allowable Error

Mainline Flow Rate veh/h/lane 0-2500 5 min ± 2.5% *

Mainline Occupancy % 0-100 5 min ± 2%

Mainline Speed mph 0-80 5 min ± 1 mph

On-Ramp Flow Rate veh/h/lane 0-1800 5 min ± 2.5% *

Off-Ramp Flow Rate veh/h/lane 0-1800 5 min ± 2.5% *

Link Travel Time seconds 5 min ± 5%

Current O-D Patterns veh/h 5 min ± 5%

Parameter Units Range Collection Interval Allowable Error

Mainline Flow Rate veh/h/lane 0-2500 15 min or 1 hour ± 2.5% *

Mainline Occupancy % 0-100 15 min or 1 hour ± 2%

Mainline Speed mph 0-80 15 min or 1 hour ± 1 mph

On-Ramp Flow Rate veh/h/lane 0-1800 15 min or 1 hour ± 2.5% *

Off-Ramp Flow Rate veh/h/lane 0-1800 15 min or 1 hour ± 2.5% *

Link Travel Time seconds 15 min or 1 hour ± 5%

Current O-D Patterns veh/h 15 min or 1 hour ± 5%

Tactical Parameters (Detection)

Strategic Parameters (Incident Management)

Historic Parameters (Planning)

 
* @ 500 veh/h/lane 
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Table 2.5 Freeway Metering Control Traffic Parameter Specifications (18) 
 

Parameter Units Range Collection Interval Allowable Error

Ramp Demand Yes/No 0.1 s 0% (No misses)

Ramp Passage Yes/No 0.1 s 0% (No misses)

Ramp Queue Length vehicles 0-40 20 s ± 1 vehicle

Mainline Flow Rate veh/h/lane 0-2500 20 s ± 2.5% *

Mainline Occupancy % 0-100 20 s ± 2%

Mainline Speed mph 0-80 20 s ± 5 mph

Parameter Units Range Collection Interval Allowable Error

Mainline Flow Rate veh/h/lane 0-2500 5 min ± 2.5% *

Mainline Occupancy % 0-100 5 min ± 2%

Mainline Speed mph 0-80 5 min ± 5 mph

Parameter Units Range Collection Interval Allowable Error

Mainline Flow Rate veh/h/lane 0-2500 15 min or 1 hour ± 2.5% *

Mainline Occupancy % 0-100 15 min or 1 hour ± 2%

Mainline Speed mph 0-80 15 min or 1 hour ± 5 mph

On-Ramp Flow Rate veh/h/lane 0-1800 15 min or 1 hour ± 2.5% *

Off-Ramp Flow Rate veh/h/lane 0-1800 15 min or 1 hour ± 2.5% *

Tactical Parameters (Local Responsive Control)

Strategic Parameters (Central Control)

Historic Parameters (Pretimed Operation)

 
* @ 500 veh/h/lane 

The aforementioned study selected 19 detectors (three ultrasonic, one active IR, 

two passive IR, five microwave radar, five VIP, one acoustic, one inductive loop, and one 

magnetometer) for potential evaluation with laboratory and field testing. The laboratory 

testing focused on operating parameters such as power consumption, operating 

frequency, minimum detectable signal, and detection zone size. While valuable in their 

own right, these laboratory test results are not directly relevant to the comparison of 

accuracies of various detector technologies in the field.  

The field test quantified performance of detectors as it related to their measured 

values of flow rate, speed, and density (or occupancy, as is commonly detected as a proxy 

for density). Intersection and freeway field testing sites were selected in Minnesota, 
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Florida, and Arizona in order to include a wide variety of environmental conditions. The 

evaluated detectors included three ultrasonic detectors, five microwave detectors, four 

infrared detectors (including active and passive infrared detectors), five video image 

processing detectors, one magnetometer, one microloop, and one pneumatic tube 

detector. Manual observation of video recordings of the traffic scene was used to 

establish the ground truth against which the detector technologies were compared. Speed 

ground truth was determined through the use of a probe vehicle, with the driver recording 

his speedometer reading at the detector location. These field test results were evaluated to 

determine the best technologies for the following applications, with the following results: 

the best- performing non-intrusive technologies for collecting both low and high volume 

count data were microwave radar and video image processors; the best-performing non-

intrusive technologies for low and high volume speed data were microwave radar 

detectors for per-vehicle results. Other technologies, such as video image processors, 

enter the scene when average speed data over some aggregation interval is needed. 

Microwave detectors were also found to be the most unaffected by inclement weather. 

The technologies with the most noticeable inclement weather limitations were ultrasonic, 

infrared, acoustic, and VIP. 

Based solely on count accuracy, it was found that the inductive loop detectors 

provided the most accurate data, with an error rate below 1% (19). These were followed 

by the overhead RTMS-X1 microwave radar and one lane of the Autoscope 2003 VIP 

outputs, with 1-2% error rates, which were in turn proceeded by the following detectors, 

having 3-7% error rates: Whelen TDN-30 microwave radar; the other lane of Autoscope 

2003 VIP; Microwave Sensors TC-30C ultrasonic; Sumitomo SDU-300 ultrasonic; 
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Midian Electronics SPVD magnetometer; side-fire EIS RTMS-X1 microwave radar; and 

Eltec 833 passive IR. The detectors with the least accurate counts in this study were the 

Eltec 842 passive IR, AT&T SmartSonic passive acoustic, and Microwave Sensors TC-

26 microwave radar. 

The primary author of these studies, Lawrence Klein, went on to publish a book 

entitled Sensor Technologies and Data Requirements for ITS (6). In it, he draws on his 

experience from the above studies, as well as the findings of previous studies, in order to 

provide an overview of various detector technologies available for ITS. The book also 

addresses the application of sensor data to various ITS strategies and the data processing 

necessary for these applications. It provides a broad overview of traffic data in ITS, 

ranging from data acquisition by sensors and communications protocols to data 

processing, fusion, and archival at a traffic management center (TMC). 

Klein has been involved in two other seminal studies relating to traffic detection. 

The first of these was the Traffic Detector Handbook, published in its third edition in 

2006 (5). This document was intended as a primer on intersection and freeway traffic 

detection for the practicing traffic engineer. It addresses the operational mechanics of the 

various detector technologies, detector applications, in-roadway detector design, detector 

installation, and detector maintenance. The second (2007) study compiled manufacturer 

and model information for over 50 commercially available traffic detector models (20). 

This study also provided brief descriptions of the functionality of each type of traffic 

detection technology. 
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2.4.3 Minnesota Guidestar Studies 

Since 1997, a series of studies has been conducted under the Minnesota Guidestar 

program to assess state-of-the-art non-intrusive traffic detectors. In the first phase of this 

study, 17 different traffic detectors were analyzed at both freeway and signalized 

intersection locations (21). The primary sources of ground truth data were loop detectors 

embedded in the roadway with select 15-minute periods, rather than manual observation 

from recorded video. While confidence in the results may be limited due to the loop 

detector ground truth data method, this form of ground truth is less labor intensive than 

manual observation, and allows for larger data sets to be efficiently processed. A 

subsample with 15-minute manual observation ground truth reveals similar error rates to 

the error rates with loop detectors as the ground truth thereby increasing confidence in the 

results from the larger data sets where loop detectors served as the ground truth.  

The (1997) study also included a section on the influence of weather on the 

various detectors, though the results presented were qualitative in nature. Though the 

results involved the impact upon a given detector technology by a given weather 

condition, the study lacked a statistical analysis of the significance of these effects. 

Graphs showed apparent correlations between error rates and precipitation rates or other 

environmental phenomenon, but were utilized only for a qualitative visual assessment. 

The value of weather-based assessment is to offer potential explanations for errors based 

on environmental conditions. One example is an assessment of an active infrared device 

which states, “Overcounting was also observed during periods of heavy snowfall when 

snow in the air may have been detected by the device” (21). Table 2.6 shows the 17 

devices evaluated in the initial study and their reactivity to environmental factors. Of 
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particular interest in this table is the fact that the video and radar technologies appeared to 

perform well in all weather conditions tested, with the exception of leakage in the 

housing of the radar unit, which caused electrical problems following the weather event. 

This can be viewed as a minor problem which should not be counted against the potential 

utility of this technology. Finally, the magnetic detectors appeared to demonstrate poorer 

performance in rain and low temperature conditions. 
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Table 2.6 Environmental Factors Affecting Device Performance (22) 
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Device

Inductive Loop + + + + + + + + + + + + + + +

Passive Infrared

Eltec Model 833 +/- +/- +/- +/- +/- +/- +/- +/- +/- +/- +/- +/- +/- +/- +/-

ASIM IR 224 (2) + + + + + + + + + + + + + + +

Active Infrared

Autosense I + + + + + + ? ? ? ? - - - + +

Magnetic

IVHS 232E (2) + + + + + + ? ? ? ? - + + + -

Radar

RTMS X1 + + + + + + ? ? ? ? -* -* + + +

Doppler Microwave

PODD + + +/- + + + - - - - + + + + +

TDN-30 + + + + + + - - - - + + + + +

Pulse Ultrasonic

Lane King + + + + + + + + + + + + + + +

TC-30 + + + + + + +/- +/- +/- +/- + + + + +

Passive Acoustic

SmartSonic (2) +/- + +/- + + + +/- +/- +/- +/- + + + + -

Video

EVA 2000s + + + + + + ? ? ? ? + + + + +

Autoscope 2004 + + + + + - +/- + + - + + + + +

TraffiCam - S + + + + + ? ? ? ? ? + + + + +

Video Trak-900 + + + + + - ? ? ? ? + + + + +

Freeway Intersection Both Test Sites

 
(1) Snow is evaluated here as a direct factor in affecting device performance, secondary factors 

such as vehicle tracking patterns are not included. 

(2) Two detectors of this model were analyzed. 

* The RTMS unit was observed to miscount following periods of rain and freezing rain due to 

water entering the housing. 

+ Denotes a device which performs satisfactorily in the stated condition. 

+/- Denotes a device which meets some but not all of the criteria for satisfactory performance. 

- Denotes a device which does not perform satisfactorily in the stated condition. 

? Denotes a situation that could not be confirmed. 



30 

 

 

3
0
 

Phase 2 of the Minnesota Guidestar non-intrusive detector evaluation study was 

published five years later, in 2002 (23). The methodology of this study was modeled after 

that of the first phase, but placed greater emphasis upon assessment in freeway traffic 

detection. The nine detector models evaluated in this phase differed from those of the 

previous phase, though some were simply newer-generation models of the same 

technology, from the same manufacturer. A summary of detector performance, similar to 

that given for phase 1 of the same study, is provided in table 2.7. Due to the study 

schedule coinciding with a mild winter, weather impacts were not assessed in this phase. 

Table 2.7 Summary of Sensor Performance (23) 

Peak
Off 

Peak

Autosense II Active Infrared + + + +/- + +

3M Canoga Magnetic + + + - +/- +

ECM Loren (1) Microwave +/- - -

SmarTek Passive Acoustic + +/- + + + +

ASIM IR 254 (2) Passive IR (PIR) +/- +/- + + +/- +

ASIM DT 272 (3) PIR/Ultrasonic N/A +/- + + + +/-

ASIM TT 262

PIR/Ultrasonic/ 

Radar + + + + + +/-

Autoscope Solo Video + + + + +/- +

Traficon VIP D Video + + + + +/- +
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Sensor Model Technology
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ce Volume 

Performance

 
(1) The EMC Loren did not function in the test. No data available. 

(2) ASIM IR 254 was difficult to calibrate for side-fire installation because of alignment 

complications. 

(3) Data collection problem presented difficulty in fully evaluating the ASIM DT 272. 

+ Denotes a device which performs satisfactorily in the stated condition. 

+/- Denotes a device which meets some but not all of the criteria for satisfactory performance in 

the stated condition. 

- Denotes a device which does not perform satisfactorily in the stated condition. 
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The next phase of the study concentrated on the design and assessment of a 

portable, non-intrusive traffic detection system (PNITDS) (24). A successful PNITDS 

should be able to be installed and calibrated quickly, easily, and safely without disrupting 

traffic flow, in order to facilitate short-term traffic studies. There were three different 

system concepts presented in the paper under review. A pole-mounted system was tested, 

which allowed a non-intrusive detector to be mounted to any roadside signpost or 

lamppost. This system was tested with three different detectors: a Wavetronix 

SmartSensor, a RTMS X3, and a SmarTek SAS-1. The second system was trailer-

mounted PNITDS which consisted of a Wavetronix SmartSensor mounted on a 

retractable mast arm on a heavy-duty trailer designed as a platform for a mobile dynamic 

message sign. The third system was relatively new to the market (i.e., The Infra-Red 

Traffic Logger [TIRTL], an axle-based vehicle classifier, developed in Australia). 

In the analysis of the various detectors installed with the pole-mounted system at 

an eight-lane freeway test site, the following results were found over 24-hour test periods 

(24): The Wavetronix SmartSensor had a per-lane volume detection error ranging from 

1.4%-4.9% and speed detection error between 3.0% and 9.7%. It also provided 

reasonable length-based classification when properly calibrated. The RTMS X3 had 

volume detection errors ranging between 2.4% and 8.6% and speed detection errors 

ranging between 4.4% and 9.0%. This detector also provided reasonable length-based 

classification when properly calibrated. Finally, the SmartTek SAS-1, which was 

mounted in a non-optimal location, had volume errors ranging between 9.9% and 11.8% 

(performing particularly poorly in congested traffic conditions) and speed detection errors 

ranging between 5.6% and 6.8%. When properly calibrated, this detector provided 
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accurate percent-passenger-vehicle estimates, but poor accuracy in estimates of percent- 

medium and percent-large vehicles. 

The most recent phase of the Minnesota Guidestar study returned to the detector 

test bed used in the first two phases in order to assess newer detector technologies in a 

long-term installation scenario (8). In this phase of the study, the following five 

technologies were tested: Wavetronix SmartSensor HD, GTT Canoga Microloops, PEEK 

AxleLight, TIRTL, and Miovision.  

The analysis of the SmartSensor HD found that the volume absolute percent error 

was 1.6% and the absolute percent error for speed was 1.0% at an average speed of 60.9 

mph. The classification percent error was 3.0% incorrectly classified vehicles, based on a 

length-based, three-class system. The test period for the SmartSensor HD included 

extreme cold, rain, snow, and fog conditions, with fog being the only condition to 

noticeably affect performance. The volume error remained below 5%, even in foggy 

conditions. 

The analysis of the Canoga Microloops found that the volume absolute percent 

error was 2.5%, and the absolute percent error for speed was 0.6% at an average speed of 

60.9 mph. The classification percent error was 2.9% incorrectly classified vehicles, based 

on a length-based, three -class system. The only potential weather effect noted in the 

study was snow on the roadway, which might have caused drivers to maintain poor lane 

position, potentially affecting the accuracy of volume data.  

The analysis of the AxleLight found that vehicles were initially undercounted by 

9.1%. As the AxleLight is an axle-based detector, it was found that this error was due to 

two cars with a small spacing (tailgating) being classified as a multiple unit truck. After 
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further calibration, the undercounting was 5.4%. The study found that speed was 

consistently underreported by the AxleLight, but claimed that this could be addressed by 

recalibration, as a simple speed trap configuration is used by this detector. While not 

analyzed during the study, the manufacturer recommended that the AxleLight not be used 

in heavy rain conditions, as significant amounts of water kicked up by wheels could 

decrease accuracy. 

The analysis of TIRTL found that it generally reported volume with a 2% 

overcount, but a few outliers with greater error could not be explained. The absolute 

average percent error in reported speed was found to be 2%, or 1.2 mph, at an average 

speed of 58 mph. Testing in rainy conditions revealed that at the test site, rain did not 

affect the performance of TIRTL. However, the study reported that locations with poor 

drainage, wheel path rutting, ponding, or extremely heavy rain could produce wheel 

spray capable of degrading performance. 

This phase of the research concluded with an analysis of the Miovision system, a 

non-traditional approach to video image processing. At the freeway test site, the 

Miovision collected volume data within the accuracy of the baseline (2%). Speed data 

was not analyzed. However, turning movement counts were conducted at two different 

intersections. These movement counts were very accurate, each movement volume 

having an error of less than 0.5% for the two-hour test period. 

All four of the detector studies conducted under the Minnesota Guidestar program 

were well-executed, and prove to be invaluable reference works. In addition to scientific 

analyses of detector performance, the experiences of the research team with installation, 

calibration, maintenance, and cost were well-documented. 
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2.4.4 Texas Transportation Institute Studies 

In recent years, the Texas Transportation Institute (TTI) has also conducted research 

related to non-intrusive traffic detectors and their data. In 2000, a TTI report focused 

specifically on freeway application of the following three detectors: PEEK Videotrak 900 

VIP, 3M Microloop magnetic, and SmarTek SAS-1 acoustic (25). In this study, count and 

speed detection accuracy were only part of the evaluation criteria. The other factors 

assessed were the ease with which the different systems were set up and configured, and 

installation cost. While the study did not set out to evaluate the effects of environmental 

conditions on performance, a rainstorm on one of the eight days of data collection 

introduced a discussion of the impact this rain had on detection accuracy. It appeared that 

the rain negatively affected the performance of both the video and acoustic detectors, but 

there was no statistical analysis of the significance of these effects beyond demonstration 

that the error rates were greater during wet weather. The error rates of the detectors under 

evaluation were not presented as straightforward mean percent errors or mean absolute 

percent errors. The study reported the percent of intervals in which the error was 0-5%, 5-

10%, or greater than 10%. For results of the study, refer to the source (25). 

A subsequent report, published in 2002, highlighted the experiences of Texas and 

various other states with loop detectors and non-intrusive detectors (26). This study also 

analyzed the performance of five detector models for freeway data collection. First, the 

Peek ADR-6000 was assessed for its classification, count, and speed accuracy, in order to 

determine its viability as a baseline against which non-intrusive detectors could be tested. 

This system was found to have a classification accuracy of 98.9%, count accuracy greater 

than 99.9%, and speed accuracy within +/- 1 mph of a speed gun for 95.0% of vehicles. 
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The Peek ADR-6000 was determined to be an adequate baseline for the testing of the 

four non-intrusive detectors. 

The non-intrusive detectors were assessed based on per-lane five-minute counts 

and average speed, and 15-minute occupancy (26). The Autoscope Solo Pro was found to 

undercount by up to 5% in free flow conditions, by 10-25% in congested conditions in 

lane one, and by 0-10% in all other lanes in free flow and congested conditions. The Solo 

Pro speed was found to be within 3 mph of the baseline for lane one, 2 mph for lanes two 

and three and 5 mph for lane four. Of the three detectors tested for occupancy, the Solo 

Pro was found to have the greatest agreement with loop occupancy, within 1% of loop 

occupancy for most intervals. The Iteris Vantage was found to have less count bias than 

the Solo Pro, but had the greatest standard deviation of count accuracy, undercounting by 

as much as 22% in lane one and overcounting by as much as 10% in lanes one and two. 

The speeds reported by the Vantage were found to generally be within 5 mph for all 

lanes, with the exception of lane two, which occasionally reported speeds 15 mph greater 

than the baseline. The Vantage was found to report occupancy within 6% of loop 

occupancy for most intervals. The EIS RTMS was found to provide counts generally 

within 10% of loop counts for lane one and within 5% of loop counts for lanes two, three, 

and four. The RTMS speeds in lane three were found to be within 5 mph of baseline 

speeds, except for intervals where the average speed dropped below 50 mph, in which 

case speeds were up to 10 mph above the baseline. Lane four consistently overestimated 

speeds by 2-5%. Lane one speeds differed from baseline speeds by up to 15% in 

congested conditions. Occupancy tests were not performed on the RTMS. The SmarTek 

SAS-1 was the final detector analyzed. Lane one counts were found to be up to 32% 
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below baseline during congested conditions. Other lanes were found to overcount by as 

much as 6% and undercount by as much as 18%. The SAS-1 was found to overestimate 

speeds in lane one during congested conditions by as much as 25 mph, but was within 5 

mph during free flow speeds. Lanes two, three, and four were generally within 5 mph of 

the baseline. The occupancy reported by the SAS-1 was generally found to be within 4% 

of the baseline. 

In 2007, TTI selected an urban freeway site and developed a detector test bed for 

the Arizona Department of Transportation (ADOT), recommending four state-of-the-art 

detectors to be analyzed in the first round of tests at the new test bed (27). While the 

report did not present the results of detector analyses, it addressed many key 

considerations in the design process of a detector evaluation program. The report 

recommended that the detectors be analyzed in the conditions under which they are 

expected to perform, which may include some or all of the following: “a.m. peak” period, 

“p.m. peak” period, off-peak, dry weather, wet weather, congested conditions with slow 

speeds, free-flow conditions, intense fog, blowing dust, full sunlight, full dark, light 

transitions (dawn and dusk), or snow/ice conditions. The report recommended the 

following as potential statistical measures of data accuracy: mean absolute error, mean 

absolute percent error (MAPE), mean percent error, and root mean squared error 

(RMSE). It recommended the use of a Peek ADR 6000 system for a baseline against 

which other detectors would be tested, based on the confidence TTI had gained in that 

particular product during a previous study (26). A search for a subsequent report from 

ADOT that included information on the implementation of the TTI test bed design or 

results of detector testing at such a site did not return any results. 
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2.4.5 Purdue University Studies 

In recent years, researchers at Purdue University have conducted a number of studies for 

the Indiana Department of Transportation (INDOT) relating to traffic detection, most 

being focused on video detectors. The first of these studies evaluated the performance of 

two VIP systems at signalized intersection, in comparison to loop detectors (28). The two 

systems evaluated were the Econolite Autoscope and Peek VideoTrak-905. As stated 

earlier, performance metrics at an intersection do not necessarily imply similar 

performance for freeway installations, but data trends are worth acknowledging. For 

example, this study noted that at night, vehicle headlights extended far enough ahead of 

vehicles to prevent gap out, whereas it would have occurred during daylight conditions. It 

was also determined that at night it was possible for a vehicle to pull too far forward at 

the stop bar so that headlights were out of the detection area and the dark vehicle was not 

detected in the detection area. It is possible that additional illumination at the intersection 

could reduce the effect of both issues. Based on the findings of this report, INDOT 

suspended the deployment of VIP detectors at signalized intersections. As this relates to 

freeway installations of video detectors, it could imply a potential for errant vehicle 

length and classification information at night if headlights are detected instead of 

vehicles. 

Another report by Purdue researchers examined methods of identifying errors in 

ITS data from freeway detectors when the data are recorded and archived (29). While 

most detectors are evaluated immediately after installation, there is generally a lack of 

data quality control performed throughout the life of the detector, during which time data 

quality could deteriorate. The authors proposed a set of automatic tests that could be run 
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periodically to ensure data quality. The first test addressed flow continuity, comparing 

five-minute, all-lane vehicle counts for two closely spaced freeway detectors with no 

ingress or egress between the two detectors. Significant departures indicated erroneous 

data from at least one of the detectors. The second test addressed speed continuity, 

comparing five-minute per-lane average speeds as reported by two closely-spaced 

detectors with no ingress or egress between them. Any significant departure or consistent 

offset in values indicated erroneous data from at least one of the detectors. The third test 

addressed data availability, using statistical modeling based on the expected traffic 

volume to estimate the number of set-duration time periods (i.e., 30-sec, 1-min., 5-min., 

etc.) in a day, during which it could be expected that there would be zero volume. If the 

actual number of zero volume intervals was significantly different, it was possible that 

the detector was malfunctioning. Finally, the fourth test addressed average effective 

vehicle length (AEVL), assessing the relationships between reported volume, speed, and 

occupancy to determine whether these relationships were practically feasible. Values 

outside of a preset range of expectations indicated erroneous data. The tests were 

demonstrated on data from RTMS radar and Canoga microloop detectors along the 

Borman expressway (I-80/94). It was proposed that the tests be automated on INDOT 

traffic data archives to help maintain freeway sensor data quality. 

The next three relevant reports by Purdue researchers all focused on the 

assessment of VIP detector accuracy at signalized intersections. The first of these studies 

assessed the stop bar detection performance of Autoscope Solo Pro VIP detectors at 

different mounting locations, as compared to loop detectors at a high speed intersection 

(30). The mounting locations were 40 feet above the pavement, 165 feet downstream of 
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the stop bar, and 60, 48, or 36 feet from the mast arm standard, with 60 feet being the 

optimal location, aligned with the lane marking between the left turn lane and leftmost 

through lane. It was concluded that, even with optimal camera location, the VIP still had 

statistically significantly more missed and false calls than the stop bar loop detectors. The 

difference in performance at the three mounting locations was minimal. 

The second of these three signalized intersection VIP studies was published in 

2006. The study compared the performance of the following three detector models: 

Autoscope Solo Pro, Peek UniTrak, and Iteris Vantage (31). All three VIP systems were 

found to have many more false calls and missed calls than the traditional loop detectors. 

Depending on when in a signal cycle a false or missed call occurs, it can have either 

safety or efficiency implications. As a result, it was determined that the INDOT 

moratorium on VIP detectors at signalized intersections, in place since 2001, was still 

justified. 

The next VIP study focused specifically on the question of detection zone 

activation and deactivation during daytime and nighttime conditions (32). This study 

addressed a specific issue with video detection at night, that is, when the reflection of 

headlights on the pavement ahead of the vehicle is detected instead of (or in addition to), 

the vehicle itself. The analysis found that 15 of the 16 camera mounting locations at the 

intersection had a statistically significant difference in activation residual between 

daytime and nighttime conditions. This is to say that, at night, presence detection was 

activated significantly earlier than during the day. The deactivation times were found to 

differ significantly between daytime and nighttime for 9 of the 16 cameras, but the 

average difference in deactivation time was much smaller than the average difference in 
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activation time. These findings supported the hypothesis that headlight reflection on 

pavement causes early detector activation. While this paper focused on activation and 

deactivation of presence sensors at a signalized intersection, this type of error could have 

potential implications for occupancy and length-based classification in freeway detection 

scenarios. 

In 2008, another report was published on freeway detector monitoring for data 

verification (33). This report further developed the concept of Average Effective Vehicle 

Length (AEVL), detailed in an earlier report (29), and presented a user interface through 

which detector reliability could be monitored. The AEVL is used as a monitoring metric 

because it combines the effects of volume, occupancy, and speed into a single variable. 

Once a range of reasonable values is determined, it is possible to automate analysis of 

detector data for intervals during which the AEVL lies outside of the acceptable range. 

The remainder of the report focused on the design of a user interface which would allow 

traffic management center (TMC) personnel to easily monitor the health of numerous 

detectors in the TMC coverage region. The essence of this user interface was a 

geographic information system (GIS) map, which classified the AEVL from each 

detector in the database as acceptable or unacceptable and created either a green or red 

marker at the physical location of each detector, based on that detector’s AEVL. By 

clicking a marker, the user was directed to that detector’s data in the database. This 

allowed the user to determine whether the detector required maintenance. 

2.4.6 University of Nebraska Studies 

A previous study conducted by researchers at the University of Nebraska-Lincoln 

evaluated the performance of three non-intrusive detectors for freeway installation (34). 
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The three detector models evaluated were the EIS RTMS microwave radar detector, 

Wavetronix SmartSensor microwave radar detector, and Autoscope RackVision VIP 

detector. The analysis considered various data aggregation levels by addressing per-

vehicle data, 1-minute interval data, and 15-minute interval data. The primary focus was 

on volume, but speed and classification were also addressed. The study found that the 15-

minute interval mean percent volume errors for the RTMS, SmartSensor, and RackVision 

were -1.4%, 1.4%, and 0.7%. The 15-minute mean absolute percent volume errors for the 

RTMS, SmartSensor, and RackVision were 3.6%, 3.2%, and 1.8%. These results indicate 

that each of the above detectors was capable of providing reasonably accurate historical 

volume data. Analysis of rainy and clear weather data indicated that there was no 

significant difference in the performance of any of these detectors based on weather. 

Analysis of light and heavy traffic indicated that the SmartSensor was most affected by 

traffic, having a 15-minute mean percent volume error of 1.5% in normal traffic and -

0.5% in heavy traffic. Analysis of lighting conditions indicated that the RackVision was 

minimally impacted by lighting, with a mean percent volume error of 0.8% in daylight 

and -0.8% in dark conditions. 15-minute average speed analysis was included, but 

appears to be primarily an indication of calibration accuracy, rather than detector 

capability, since no ground truth data was provided. Analysis of length-based 

classification was performed on the SmartSensor and RackVision. The results indicated 

that the RackVision classified more vehicles in the small class (0-23 feet long) while the 

SmartSensor classified more vehicles in the medium class (24-45 feet long). 

Manual counts were not conducted at the 1-minute interval; therefore, error rates 

were not reported for this less-aggregated level. Instead the detectors were compared to 
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one another to reveal relative differences. For 1-minute mean volume, it was determined 

that there was not a significant statistical difference between values reported by different 

detectors. A speed analysis was performed on a small sample of 20 minutes, using data 

from a Lidar gun to serve as ground truth. The results of this analysis showed that, as 

configured, the RTMS provided the most accurate speed data across all lanes. The 

difference between RackVision speeds and Lidar speeds was consistent across lanes. This 

indicates that a single calibration factor for the RackVision could have significantly 

improved speed performance. The differences between SmartSensor speeds and Lidar 

speeds were more erratic across lanes, indicating that each lane would require a unique 

calibration factor to improve performance. Per-vehicle, length-based classification results 

were given for the SmartSensor and RackVision, but not for the RTMS. The SmartSensor 

classified 79%, 16%, and 5% of the traffic as small, medium, and large vehicles, 

respectively, while the RackVision classified 91%, 6%, and 3% in the same categories. 

While no ground truth data was given, these results indicate that the large vehicles were 

approximately consistent, while the SmartSensor classified some of the vehicles as 

medium that the RackVision classified as small. These results were consistent with the 

15-minute results presented above. 

Another paper from the University of Nebraska was recently presented which 

outlined the research plan and some preliminary results of the study completed for this 

thesis (35). This paper expressed the need for a side-by-side comparison of detector 

technologies in order to eliminate any bias due to each detection technology being 

subjected to a unique set of environmental and traffic conditions. In a side-by-side 

comparison, all detectors are analyzed under the same set of operating conditions. The 
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statistics of mean absolute percent difference (MAPD) and mean percent difference 

(MPD) were proposed to compare the results of pairs of detectors, as a ground truth 

source had not yet been established. The detectors compared in the study were the 

Wavetronix SmartSensor, ISS RTMS G4, and Autoscope Solo Pro II. Based on 119 one-

minute samples, it was determined that the Autoscope reported volumes 9% and 7% 

greater than the SmartSensor and RTMS G4, respectively. As a proxy for length-based 

classification, percent passenger vehicles (vehicles less than 21 feet long) was reported 

for each detector. This comparison found that the Autoscope reported percent passenger 

vehicles 37% and 26% higher than the SmartSensor and RTMS G4, respectively. This 

preliminary study also analyzed six probe vehicle speed runs (with GPS ground truth 

speeds) finding that the mean percent errors (MPE) in speed were 4%, -3%, and 14% for 

the SmartSensor, RTMS G4, and Autoscope. 

2.4.7 Illinois Center for Transportation Studies  

The Illinois Center for Transportation recently completed a study further examining 

sources of error in VIP detection at intersections. For this study, the following three VIP 

detectors were mounted side-by-side: Autoscope Solo Pro, Peek Unitrak, and Iteris Edge 

2. The first volume of this study addressed the impacts of configuration changes on VIP 

performance (36). The stop bar and advance detection zones were analyzed for false, 

missed, stuck-on, and dropped calls in day and night conditions after preliminary 

configuration. The results were presented to the VIP manufacturer representatives, who 

made configuration changes before a second round of analysis was performed. The report 

presented extensive quantified changes in each type of detection error. The general trend 

was that after recalibration, the missed and dropped calls were decreased, but at the cost 
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of increased false and stuck-on calls. Thus, it was concluded that when recalibrating a 

VIP detector to diminish a specific type of error, it is important to be cognizant of the 

effect that the recalibration has on overall VIP performance. 

The next volume of this study analyzed lighting effects on VIP performance (37). 

The various lighting conditions for which data were collected were dawn, sunny morning, 

cloudy noon, dusk, and night. In cloudy noon (ideal) conditions, false calls were the only 

concern, with tall vehicles triggering calls in the lane adjacent to their travelled lane in 

addition to a call in their travelled lane. At the stop bar, the false calls in lanes one and 

two were less than 3% for each VIP, but were up to 20% for lane three. False calls in lane 

three were also problematic for advance detection zones. Missed, dropped, and stuck-on 

calls were nearly non-existent in cloudy noon conditions. Dawn conditions increased 

false calls for the Autoscope and Peek detectors (due to headlight spillover), while 

increasing missed calls for the Iteris detector. Sunny morning conditions increased false 

calls for all detectors (due to shadow spillover), and stuck-on calls were increased for 

Autoscope and Peek detectors. Dusk conditions increased false calls for all detectors and 

increased missed calls in lane one for the Peek detector. Night conditions increased false 

calls (due to headlight spillover) for Autoscope in lanes one and two and Peek in lane 

two, while decreasing false calls for Peek in lane three. Missed calls increased for Peek in 

lane one at night. This portion of the study was valuable, primarily for its qualitative 

explanations for detection errors such as headlight and shadow spillover and tall vehicle 

occlusion. 

The third volume of this study addressed the effects of windy conditions on VIP 

detector performance (38). While windy condition performance is determined primarily 
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by the rigidity of the structure on which the camera is mounted, this portion of the study 

provided information on the relative sensitivity of the different VIP detectors to camera 

movement. It is important to note that all three cameras were mounted side-by-side on a 

luminaire arm at an approximate height of 40 feet above the roadway. The researchers 

observed that VIP reaction to wind was greatly dependent on lighting conditions. They 

found that under cloudy noon lighting, wind effects were minimal. Under sunny morning 

lighting (when long shadows were present), there was a significant increase in false calls 

for all detector models, while advance zone missed calls increased for the Peek detector, 

and decreased for the Iteris and Autoscope detectors. Under nighttime lighting, false calls 

significantly increased for all three detector models at both stop bar and advance zones. 

The final volume of this study analyzed the effects of adverse weather conditions 

on VIP detector performance (39). The conditions for which data were collected were 

rain and snow under both day and night lighting, and light and dense fog under daytime 

lighting. Results indicated that daytime light fog conditions moderately increased false 

calls for Autoscope and Iteris detectors. During daytime dense fog, Iteris and Autoscope 

registered image contrast loss and went into permanent call modes, while missed calls 

were registered for the Peek detector. Both daytime and nighttime snow greatly increased 

false calls for all three systems. False calls also increased in daytime rain and to a greater 

extent nighttime rain (purportedly due to headlight spillover from adjacent lanes). 

Detailed performance analysis for each detector zone is provided in the report. 

Another detector evaluation study, performed at the Illinois Center for 

Transportation, looked at the performance of wireless magnetometers under various 

weather conditions at intersection and railroad crossing installations (40). The 
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magnetometers under investigation were manufactured by Sensys Networks. It was found 

that at the stop bar, false calls made up 5.6% to 7.2% of total calls per lane in favorable 

weather and 7.7% to 15.4% in winter weather. These were primarily due to a vehicle 

placing a call in its lane as well as the adjacent lane. At the advance detection zone 

(approximately 250 feet upstream of the stop bar), missed calls were the most prevalent 

type of error, ranging from 0.7%-9.7% depending on lane and weather. While these 

missed calls varied with weather conditions, they were not found to correlate with the 

weather conditions. The missed calls were primarily attributed to lane change maneuvers. 

The results at the railroad grade crossing indicated that the detectors were configured in 

such a way so as to reduce missed and dropped calls at the expense of more frequent false 

and stuck-on calls. 

2.4.8 Other Studies 

While most of the relevant traffic detection technology assessment studies have been 

conducted in series, or by authors who established themselves by conducting ongoing 

research in the field, there are a few studies worth noting that were conducted as 

standalone works relating to traffic detection technology. The first of these is A 

Comparative Study of Non-Intrusive Traffic Monitoring Sensors by Gregory Duckworth 

et al. (41). This study emphasized recognition of the intrinsic limitations of various 

technologies for traffic detection. While commercially available detectors employed 

various technologies at the time the study was conducted, the authors developed their 

own low-cost detectors and signal processing algorithms based on video, Doppler radar, 

Doppler ultrasound, pulsed ultrasound, passive acoustic, and passive infrared 

technologies. The basic analysis of each of their detectors is given in table 2.8. The final 
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conclusion was that the most promising low-cost replacement for an inductive loop 

detector was a combination detector with pulsed ultrasonic and either pulsed-Doppler 

ultrasound or Doppler radar. 

Table 2.8 Duckworth Tested Sensors and Characteristics (41) 

Sensor 

Type

Sensor 

Cost

Commun- 

ications 

Bandwidth

Processing 

Load

Detection 

Performance

Speed 

Estimation 

Performance

Vehicle 

Classification 

Performance

Video 

Camera

High 

($150-500)

Med-High 

(10-4500 kbs)

Med-High

(10 MOPS)
Good Very Good Very Good

Doppler 

Radar

Medium

(<$100)

Medium

(2-10 kbs)

Low

(0.2 MOPS)
Fair/Good Excellent Poor

Doppler 

Ultrasound

Low

(<$75)

Medium

(8 kbs)

Medium

(0.12 MOPS)
Good Fair N/A

Pulsed 

Ultrasound

Low

(<$75)

Very Low

(0.32 kbs)

Very Low

(0.01 MOPS)
Very Good N/A Good

Passive 

Acoustic

Low

(<$25)

Medium

(10 kbs)

High

(2.2 MOPS)
Poor Fair Poor

Passive 

Infrared

Low 

(<$30)

Very Low

(0.32 kbs)

Very Low

(0.001 MOPS)
Very Good N/A N/A

 

Two more relevant studies have been published in recent years. The first of these 

papers attempted to determine the feasibility of mounting an ultrasonic detector in a side-

fire configuration instead of the overhead configuration in which ultrasonic detectors 

have traditionally been mounted (42). The designed system was implemented at two test 

sites (a highway with light traffic and an arterial with heavy traffic). While mounted in 

the side-fire configuration, it was arranged with such a detection zone as to only detect 

vehicles in one lane. At the highway test bed, the five-minute count mean absolute 

percent error was 0.7% across daylight, night, and heavy rain conditions. Five-minute 

average speed was also calculated at this test bed, based on an assumed average vehicle 

length, with the following root mean squared errors for each condition: 7.4% (daylight), 

6.9% (night), and 7.6% (heavy rain). At the arterial test bed with heavier traffic, the five-
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minute count MAPE was 3.4% during testing, which included dusk, night, and heavy 

snow conditions. 

The second study developed a neural-edge-based tracking video detection 

algorithm (43). Most other video detectors with tracking algorithms employed either 

background subtraction or edge detection, but the neural-edge-based detection method 

was shown to outperform other methods. The count accuracy of the new algorithm was 

over 98% in overcast daylight conditions. Dawn, dusk, and night conditions caused the 

greatest difficulty for the new algorithm, but count accuracy was still above 96% in these 

conditions. Vehicle classification ranged from 80% correct classification in dawn, dusk, 

and night conditions, to over 95% correct detection in daylight conditions. 

A report published in 2003 by the University of Utah did not provide any unique 

detector accuracy assessment, but provided a well-organized review that was state-of-the-

art for that time period (2). The report begins with a presentation of the various traffic 

data needs and explanations of the functionality of various types of traffic detector 

technologies. It then assessed detector technologies based on various selection criteria 

such as data type, data accuracy, ease of installation, and cost. Finally the report provided 

a procedure for the selection of an appropriate traffic detector for a specific installation. 

In 2004, a study was conducted to assess the accuracy of VIP detectors installed 

at intersections in Utah (44). While the results of detector functionality at an intersection 

installation cannot directly be related to results at a freeway installation, there is value in 

recognizing trends that emerge when different environmental and lighting conditions are 

considered. Eight detectors from four manufacturers were analyzed in the study. It was 

found that the detection performance was good under day and dusk conditions, with 
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87.2% correct detection across all manufacturers in both conditions with reduced 

performance: in inclement weather (81.3% correct detection) and at night (73.4% correct 

detection). This indicates that weather and lighting had an impact on VIP performance at 

street intersections, and, potentially, at freeway installations. 

A 2009 report was written in an attempt to apply the ISO Guide to the Expression 

of Uncertainty in Measurement (GUM) to the quantification of traffic detector 

performance (45, 46). In an effort to conform to this broad standard, the method of 

evaluation was rigid, and produced results which were conveyed in very general 

statistical measures, such as the mean and standard deviation of count error. The study 

recommended the use of traffic stream videotape for baseline volume and classification 

data and probe vehicles (with onboard GPS) for baseline speed data. The test 

methodology was demonstrated on the DataCollect SDR radar detector and Traficon 

VIP/D video detector. Count error histograms showed that both detectors tended to 

undercount, provided the tested calibration. Length histograms showing reported lengths 

of multiple passes with a probe vehicle of known length showed that the VIP/D 

underestimated length more severely than the SDR, and also had a greater standard 

deviation of length measurements for the probe vehicle. This analysis was used as a 

proxy for length-based classification. Finally, speed error histograms showed that both 

detectors tended to overestimate speed, but the VIP/D overestimated more severely, and 

also had a greater standard deviation of speed error. The authors determined that the 

VIP/D did not necessarily have worse detection capabilities than the SDR, but required 

more precise configuration and calibration in order to facilitate comparable detection. It 

was also concluded that there were both advantages and disadvantages to attempting to 
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apply a broad standard such as the ISO GUM to a specific task such as analyzing traffic 

detectors. 

Finally, a recent study conducted in Hawaii evaluated three different detector 

technologies based on their vehicle classification capabilities (47). The three systems 

chosen for this study were the Autoscope Rack Vision Terra VIP, Custom Electronic and 

Optical Solutions TIRTL active infrared detector, and Wavetronix SmartSensor HD radar 

detector. TIRTL, an axle-based detector, was analyzed based on a 15-class scheme 

composed of the standard FHWA 13 category scheme plus a 14
th

 class for “unclassified” 

vehicles and 15
th

 class for 8-15 axle road trains (48). The Rack Vision Terra and 

SmartSensor HD provide vehicle lengths, and were analyzed based on a five-class, 

length-based scheme, with classes designed to represent motorcycles, light-duty vehicles, 

single-unit heavy vehicles, articulated heavy vehicles, and multiple-trailer trucks. The 

detectors were tested at four sites with varying levels of truck traffic. The study 

concluded that the Rack Vision Terra was adequate for daytime classification on low 

volume arterials, but was affected by poor lighting and weather conditions, and had 

difficulty discerning motorcycles from other light-duty vehicles. It was concluded that 

neither the Rack Vision Terra nor SmartSensor HD provided desirable accuracy at 

freeways, primarily due to congestion. TIRTL was found to have good classification 

performance, but was inhibited by the need for a flat cross-section in order to achieve 

optimal performance. This study did not address the relative cost of the detectors or the 

environmental impacts on classification. 
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2.5 Chapter Summary 

The literature review presented in this chapter provided background information on 

traffic detector technologies, the standards that direct their implementation, and previous 

research on the assessment of competing traffic detectors. Brief explanations were given 

of the functional characteristics of different types of intrusive detectors (including 

inductive loop, pneumatic road tube, magnetometer, and weigh-in-motion systems) and 

non-intrusive detectors (including video image processors, microwave radar, magnetic, 

ultrasonic, passive acoustic, infrared, and combined systems). This introduction to the 

functional characteristics of the various detectors was followed by a review of existing 

standards governing the selection and performance evaluation of traffic detectors. Of 

particular relevance were two ASTM standards that provided a basis for a traffic detector 

performance-based specification, as well as an accompanying standard method for 

evaluating the performance of an installed detector. While the latter of these two 

standards can be used to assess detectors, it is based on a duplex accept or reject decision 

that relates to the performance specification it was intended to complement, but is less 

relevant to research on the common sources of error for various detector technologies. 

The remainder of the literature review focused on the methodologies and findings of 

traffic detector assessments performed over the past two decades. Tables 2.9 and 2.10  

provide an overview of the findings of these previous studies as they relate to the 

Wavetronix SmartSensor 105 and 3M (or subsequent GTT) Canoga Microloop 702, 

which are evaluated in the current study. No previous studies have specifically assessed 

the Autoscope Solo Pro II or ISS RTMS G4 at freeway installations.
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Table 2.9 Previous Field Test Results for the Wavetronix SmartSensor 105 

Organization 
Mounting 

Location 
Volume Speed Classification 

Response to 

Environment 

Minnesota 

Guidestar – 

PNITDS  

(24) 

8 lane freeway – 

various sidefire 

locations 

24-hr APD per lane 

1.4% -4.9% 

24-hr APD per 

lane 3.0% - 9.7% 

3 lanes, 3 length 

bins APD per lane 

0.4% -5.6% 

no impact 

4 lane freeway – 

sidefire 17’ height, 

17’ offset 

24-hr APD per lane 

1.6% -3.9%    

4 lane freeway – 

sidefire 19’ height, 

15’ offset 

1-hr APD per lane 

0.0% - 0.7% for 2 far 

lanes, 9.7% - 20% for 

2 near lanes 

   

4 lane arterial – 

sidefire 17’ height, 

15’ offset 

24-hr APD per lane 

0.6% - 2.7% in 3 

farthest lanes, over-

counting in near lane 

   

UNL (34) 

5 lane freeway – 

sidefire 18’ height, 

19’ offset 

15-min APD per lane 

1.4% - 5.8%   

affected by 

traffic volume 

 



 

 

 

5
3
 

Table 2.10 Previous Field Test Results for the 3M Canoga Microloop 702 

Organization 
Mounting 

Location 
Volume Speed Classification 

Response to 

Environment 

TTI (25) 

3 lane arterial – 

under bridge 

3.25-hr APD per lane 

0.1% - 1.5%    

2 lane highway – 

conduit under 

pavement 

15-min APD per lane 

within 5% for 93.5% - 

99.5% of intervals 

1-min average 
speed error 

µ = -0.25 mph 

σ = 3.6 mph 

  

Minnesota 

Guidestar – 

Phase 2 (23) 

3 lane freeway – 

conduit under 

pavement 

24-hr APD < 2.5% 

(within accuracy of 

baseline loop) 

24-hr APD per 

lane 1.4% - 4.8%   

1 lane freeway – 

under bridge 
24-hr APD 1.8% 

   

Minnesota 

Guidestar – 

Phase 3 (8) 

3 lane freeway – 

conduit under 

pavement 

24-hr APD per lane 

1.1% - 3.7% 

24-hr APD per 

lane 0.0% - 1.3% 

3 lanes, 3 length 

bins 30-min APD 

2.9% 

no performance 

degradation 

 



54 

 

5
4
 

CHAPTER 3 NTC/NDOR NON-INTRUSIVE DETECTOR TEST BED SETUP 

The NTC/NDOR non-intrusive detector test bed used in this study was developed with 

limitations identified by previous research conducted at the University of Nebraska in 

mind. The previous evaluation of three non-intrusive detector technologies found that 

conclusions were limited by the fact that the detectors under evaluation were installed at 

locations separated by approximately 900 feet, and that the installations were temporary 

(34). As a result of these limitations, as well as the recognition of a need for future 

research at a permanent test facility with collocated detectors, the Nebraska Department 

of Roads (NDOR) and Nebraska Transportation Center (NTC) planned a permanent, non-

intrusive traffic detector test bed along an urban section of I-80 in Omaha, near the Giles 

Road interchange. Figure 3.1 shows the location of the NTC/NDOR non-intrusive 

detector test bed. This chapter outlines the configuration of that test bed and calibration 

of the installed detectors. 

 

Figure 3.1 Test Bed Location 
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3.1 Test Bed Organization 

In 2007, NDOR installed fixtures at the NTC/NDOR non-intrusive detector test bed in 

Omaha. The original installation included three above-ground detection systems and one 

buried detection system, along with appropriate support infrastructure. The buried 

detector was a 3M Canoga Microloop 702 magnetic induction system, and the three 

above-ground systems were the Autoscope Solo Pro II VIP system, EIS RTMS 

microwave radar system, and Wavetronix SmartSensor 105 microwave radar system. 

Three of these systems remained in place throughout the duration of this study. However, 

the EIS RTMS was replaced in October 2009 with the newer generation ISS RTMS G4 

by NDOR personnel. This technology is examined in the current study. 

The test bed layout is shown in figure 3.2. This figure shows the locations of the 

detectors, as well as additional support infrastructure at the site. This support 

infrastructure includes two 41-foot-tall support towers for the sidefire radar detectors, two 

NEMA 332 cabinet enclosures with necessary electronic fixtures, a third 41-foot-tall 

support structure with PTZ surveillance camera and wireless communication link to the 

NDOR network, and conduit, along with appropriate electrical and communications 

wiring, to link site fixtures. 
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Figure 3.2 Test Bed Layout 

The physical locations of the detectors are shown in figure 3.2. The detection 

zones (areas in which they detect the presence of vehicles) are shown in figure 3.3. The 

Canoga Microloop 702 and Solo Pro II were arranged to have overlapping detection 

zones, which is to say that they detect vehicles at the same location along the roadway. 

These two systems were configured for detection in the three westbound lanes. The 

RTMS G4 has a detection zone which overlaps those of the Canoga Microloop 702 and 

Solo Pro II detectors; it was configured to detect traffic in both the eastbound and 

westbound lanes. The SmartSensor 105 also detects traffic in both directions, but has a 

detection zone 100-feet east of the other three systems. While this offset was not ideal for 

data comparison, it diminished the likelihood of crosstalk between the RTMS G4 and 

SmartSensor 105. Crosstalk is a phenomenon in which the electromagnetic signals from 

these two detectors could interact in a manner that would degrade performance if they 
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were closer together. Because two of the detector technologies were installed for the three 

westbound lanes only, this thesis focused on analysis of data reported for those lanes. 

 
Figure 3.3 Detection Zones of the Solo Pro II (a), Microloop 702 (b), G4 (c), 

and SmartSensor 105 (d) 

The NDOR cabinet was outfitted with additional electronic equipment at the time 

the detectors were installed in order to support the various detectors. This equipment 
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included a Transition Networks SISTM10XX-180 Ethernet switch. This switch connects 

all of the detectors to the wireless bridge, which facilitates communication with the 

NDOR Ethernet backbone. This allows the detectors to be accessed by NDOR personnel 

from remote locations, including the NDOR main office. It should be noted that the 

reason for data eventually being collected on-site was due to bandwidth limitations of this 

wireless bridge. In addition to the Ethernet switch, support electronics for the various 

detectors are housed in the NDOR cabinet. The Autoscope Solo Pro II VIP requires an 

ACIP4E communications panel, which sends power to the VIP and converts the data and 

video signal from the 11 conductor cable into an Ethernet output, as well as an NTSC 

coaxial video output. 

The ISS RTMS G4 has a native Ethernet output and thus does not require 

additional hardware in the cabinet. The Wavetronix SmartSensor 105 is connected via 

RS-485 serial communication to a Wavetronix Click!200 lightning surge protector in the 

cabinet. This is connected to a Wavetronix Click!301 serial to Ethernet converter, which 

sends an Ethernet output to the switch. 

The three westbound lanes of I-80 were outfitted with two 3M Canoga Microloop 

702 detectors per lane. These were connected via RS-485 serial communication to three 

rack mounted 3M 942 Traffic Monitoring Cards (one per lane). These each output RS-

232 serial communication, which was connected to three Wavetronix Click!301 serial to 

Ethernet converters, which send three Ethernet connections to the switch. 

At the outset of this study, a second NEMA 332 cabinet enclosure was installed 

for NTC next to the existing NDOR cabinet, as shown in figure 3.2. The two cabinets 

were connected via conduit. Power and an Ethernet connection from the NDOR cabinet 
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were supplied to the new NTC cabinet. A field-hardened VIA AMOS-3001 embedded 

computer was installed in the NTC cabinet. This computer accesses the detector output 

from the NDOR cabinet through an Ethernet connection. The computer stores detector 

data from all four non-intrusive detectors being evaluated. In addition, the computer 

stores video from the Autoscope Solo Pro II camera. This computer was selected based 

on its operating specifications, which allow it to operate reliably under the harsh 

environmental conditions encountered in Nebraska, such as extreme heat and humidity. 

An AXIS 241Q video server was also installed in the NTC cabinet. This equipment is 

used to digitize the NTSC video from the Autoscope camera so that it can be recorded by 

the NTC data collection computer. Finally, a D-Link DGS-2205 Ethernet switch was 

installed in the NTC cabinet. This switch allowed the data collection computer to 

communicate with the AXIS video server as well as the detector fixtures in the NDOR 

cabinet. Figure 3.4 shows the electronic components installed at the test bed, and 

communications protocols linking the various components. Additionally, figures 3.5-3.8 

show the components as they are laid out in the NDOR and NTC cabinets. The resulting 

test bed is maintained jointly by NDOR and NTC. 
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Figure 3.4 Test Bed Fixture Block Diagram
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Figure 3.5 Front of NDOR Cabinet 

 

 

 
Figure 3.6 Back of NDOR Cabinet 
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Figure 3.7 Front of NTC Cabinet 

 

 
Figure 3.8 Back of NTC Cabinet 
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At the NTC/NDOR non-intrusive detector test bed, there are two methods of 

obtaining detector data. The first alternative is to physically visit the test bed and 1) 

download the information from the NTC data collection computer, or 2) remove the hard 

drive from the NTC data collection computer and retrieve the information later. The 

second alternative is to connect to the NDOR intranet through a VPN login, which was 

provided to the researcher. Once connected through the VPN, Microsoft’s Remote 

Desktop Connection software can be used to control the NTC data collection computer 

from the NTC ITS Laboratory. For detector calibration, it was advantageous to physically 

be at the test bed so that the vehicle detection could be manually verified. However, the 

ability to remotely access the data collection computer allowed the researcher to 

commence and terminate data collection intervals, while mitigating risk by limiting time 

spent at a potentially dangerous roadside location. 

Because a goal of this thesis was to examine the impact of environmental factors 

on the performance of the various detection technologies, it was necessary to also collect 

weather data. While the test bed is not instrumented with a weather station, weather data 

was available at the Millard Airport (KMLE) weather station, which is located 0.5 miles 

north of the test bed. A full METAR weather report is logged online every 20 minutes 

(49). This information was automatically recorded at the NTC ITS Laboratory. It was 

determined that this weather information, along with confirmation of conditions through 

manual review of video from the test bed, would provide the necessary weather data for 

the proposed analysis. 



64 

 

6
4
 

3.2 Detector Locations and Configuration Process  

Each of the detectors evaluated in this study required a specific mounting location and 

configuration process. This section of the report outlines the location and configuration 

tasks for each detector. 

3.2.1 Autoscope Solo Pro II 

The Autoscope Solo Pro II camera was mounted 47 feet above the roadway on a street 

light pole on the Giles Road overpass bridge, as seen in figure 3.9. At this location, it is 

offset 14 feet from the nearest detected lane, as seen in figure 3.2. The detection zones, 

which are shown in figure 3.3(a), begin 130 feet upstream and end 65 feet upstream of 

the camera's location. 

 
Figure 3.9 Solo Pro II Camera Mounting Location 

The hardware components of the Solo Pro II detection system as it is installed at 

the NTC/NDOR non-intrusive detector test bed include the Solo Pro II camera, a pan/tilt 
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head on which the camera is mounted, an Autoscope ACIP4E communications panel, and 

an 11-conductor cable connecting the pole-mounted camera to the communications panel 

in the NDOR traffic cabinet. The software components of the system include the image 

processing software, which is run on hardware in the camera housing, and the Autoscope 

Software Suite, which is run on the NTC data collection computer and is used to 

configure the image processing software and collect detection data. The version of the 

Autoscope Software Suite used for this data collection effort was the Autoscope Network 

Browser Version 8.3.2. 

At the outset of this study, it was necessary to calibrate the Solo Pro II to 

conditions at the site. This initial calibration was conducted using the Autoscope Network 

Browser Version 8.3.2. First, the pan, tilt, and zoom were adjusted so that the desired 

section of roadway was in the frame. Next, the geometry of the image was calibrated by 

placing a series of lines in the image that were longitudinal and transverse with respect to 

the roadway, and dimensioning the offsets between these lines. The camera height above 

the roadway was also required for this calibration. This geometric information allowed 

the image processing software to calculate parameters such as vehicle speed and length. 

The next step was to place virtual detectors on the image. These virtual detectors, which 

can be seen overlaid on the image in figure 3.10, defined which pixels were monitored 

for changes by the image processing software to be registered as detections. The boxes in 

figure 3.10 are speed detectors. They calculate vehicle speed and length based on a speed 

trap algorithm, which analyzes the time of pixel color/hue change at the upstream end of 

the box and, subsequently, at the downstream end of the box. The final step in the 

calibration of these detectors was to adjust their placement for optimal detection 
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accuracy. Due to the oblique angle of the image, it was necessary to offset the virtual 

detectors so that they were not directly over the center of each lane. In figure 3.10, it can 

be seen that the speed detector for lane 1 (the lane farthest from the camera) was actually 

located mostly over the shoulder of the roadway. This was to avoid large vehicles in lane 

2 (the center lane in the image) from being detected in both lanes 1 and 2. Once the 

virtual detectors were configured, the detection file was uploaded to the image processing 

software in the camera and detection could commence. 

 

Figure 3.10 Autoscope Virtual Detector Layout 

During a site visit on May 11, 2011, Mr. Jordan Schwening, a representative of 

Mid American Signal, reviewed the detector layout and confirmed that the detector 

placement was appropriate for the camera location. He made two qualifying comments, 

first, noting that the oblique angle of the camera view made the detector susceptible to 

errors related to occlusion (though the camera height reduced the severity of this issue). 

Occlusion refers to a scenario in which a large vehicle in a lane closer to the camera hides 
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(occludes) a smaller vehicle in a lane farther from the camera. In an ideal situation the 

camera would be mounted directly over the middle lane to minimize occlusion. For this 

site (and presumably most other traffic detection sites) it would be cost-prohibitive to 

install the necessary support infrastructure to provide such a mounting location. 

Therefore, the planned data collection commenced at the current mounting location. 

The second concern noted by Mr. Schwening was regarding noise in the video 

signal, which he thought could cause false detections. This noise was found to be due to a 

loose connection between the camera and the cable leading back to the cabinet, and was 

addressed by tightening the loose connection. As the detection algorithm is implemented 

in the camera itself, and because this noise was introduced to the video signal after the 

signal had left the camera, it was determined that this issue had not affected previous 

detection results. 

Another concern pertained to the presence of the pan/tilt mounting for the Solo 

Pro II camera; it could have been easy for someone to inadvertently adjust the video 

alignment, which would have moved the virtual detectors to less ideal locations. As a 

quality control measure, a reference screenshot was created when the virtual detector 

configuration was finalized. This reference screenshot was used throughout the study to 

confirm that the camera angle was not altered. For each day on which data was collected, 

a video frame was visually compared to the reference screenshot. No camera realignment 

was noted throughout the data collection phase of this study. 

3.2.2 3M Canoga Microloop 702 

The 3M Canoga Microloop 702 detectors were installed in two parallel three-inch 

diameter PVC conduits, which were bored 21 inches below the road surface. The boring 
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process was such that the lower and upper boundary on the depth were 18 and 24 inches. 

These conduits were offset by 20 feet, as seen in figure 3.2. Microloop 702 probes were 

installed in each conduit under each of the three westbound lanes of I-80. By offsetting 

the conduits, and therefore the microloops under each lane, in this manner, the detectors 

could function as a standard speed trap. Pull box covers at the end of both conduits can be 

seen on the shoulder of the road in figure 3.11. 

 

Figure 3.11 Microloop 702 Pull Box Locations 

The hardware components in the microloop detection system included the three-

inch PVC conduits, the Microloop 702 probes installed in the conduits, a pull box at the 

end of each conduit on the shoulder of the roadway, cabling from the pull boxes to the 

NDOR traffic cabinet, 3M 942 Traffic Monitoring Cards in the NDOR traffic cabinet for 

each lane, and Wavetronix Click!301 serial to Ethernet converters for each lane to allow 

the serial output from the Traffic Monitoring Cards to be transmitted to the NTC data 

collection computer via Ethernet communications. The software components of the 
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system included the detection software on the 3M 942 Traffic Monitoring Cards, the 

Lantronix CPR Version 4.3 virtual serial port package, and the Global Traffic 

Technology ITS Link Version 3.4.0.8 software package, which is run on the NTC data 

collection computer. A screenshot in figure 3.12 shows the user interface of the ITS Link 

software, which has tools for calibration of the detectors and the collection of traffic data. 

 

Figure 3.12 ITS Link Software Screenshot 

The Microloop 702 detection system was installed during the initial construction 

of the NTC/NDOR non-intrusive detector test bed in 2007. Due to personnel turnover 

since that time and an inability to find previous documentation of communications 

protocols, there was difficulty establishing communications between the ITS Link 

software and 3M 942 Traffic Monitoring Cards at the outset of this study. While the ITS 

Link software can communicate over RS-232 serial communications, the RS-232 output 

of the 942 Traffic Monitoring Cards was converted to Ethernet by the Wavetronix 

Click!301 serial to Ethernet converters for networking with the NDOR intranet and NTC 

data collection computer. Ultimately, the Lantronix CPR Version 4.3 software package 

was installed on the NTC data collection computer. This software package created virtual 

serial ports which directed the IP addresses of the three Wavetronix Click!301 to "virtual" 
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RS-232 serial ports on the NTC data collection computer. With this software in place, the 

ITS Link software was able to communicate with the 3M 942 Traffic Monitoring Cards. 

Once communication was established with the Microloop 702 detection system, it 

was found that the detectors had been calibrated at the initial installation. A preliminary 

comparison of ten minutes of detector data with ground truth from 4:10 PM to 4:20 PM 

on March 3, 2011 indicated that the volume error was below 3%. Additionally, the speed 

and length output for this period provided reasonable values, although ground truth 

values were not available for comparison at that time. It was therefore determined that 

there was no need for recalibration of the Microloop 702 detection system, specifically, 

for this study. When Jordan Schwening, a product representative with Mid American 

Signal, visited the site on May 11, 2011, he agreed that these detectors were calibrated 

correctly and were functioning as intended. 

3.2.3 Image Sensing Systems RTMS G4 

The RTMS G4 was mounted on a support structure (see figure 3.13) at the location 

shown in figure 3.2. Its mounting height was 30 feet above the roadway, and it is offset 

54 feet from the nearest lane. This mounting location is consistent with manufacturer 

recommendations for optimal performance (50). 
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Figure 3.13 G4 Mounting Support Structure (a) and Unit (b) 

The hardware components of the G4 detection system include the RTMS G4 radar 

unit, a power supply in the NDOR traffic cabinet, and an Ethernet cable over which data 

can be transmitted to the NTC data collection computer. The software components of the 

system include the internal signal processing software within the radar unit and the 

WinRTMS4 Version 4.5.0.0 software utility, which is run on the NTC data collection 

computer. A screenshot of the user interface for the WinRTMS4 utility can be seen in 

figure 3.14. This utility is used to calibrate the G4 detector as well as collect G4 data. 
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Figure 3.14 WinRTMS4 Screenshot 

Communications were established with the G4 relatively easily due to its native 

Ethernet output. A preliminary comparison of ten minutes of data with ground truth from 

4:10 PM to 4:20 PM on March 3, 2011 indicated that the volume error was below 1%. 

Speed and length output also appeared to be reasonable, although ground truth for these 

parameters was not available at the time. Therefore, it was determined that there was no 

need to adjust the configuration of the G4. Additionally, it was deemed unnecessary to 

request a product representative visit the site based on a report from NDOR personnel 

that a representative was present for the initial installation of the device, and the positive 

findings of the preliminary ten-minute data collection period. While the RTMS G4 was 

configured to detect traffic in both directions, this study focused its analysis on the three 

westbound lanes (those nearest to the detector) due to limitations of the ground truth data 

source. 
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3.2.4 Wavetronix SmartSensor 105 

The Wavetronix SmartSensor 105 was mounted on a support structure (figure 3.15), 

located 100 feet from the G4, as seen in figure 3.2. Because the two devices use similar 

microwave radar technology, they were separated to prevent "crosstalk," or signal 

interference. The detector was offset from the nearest lane by 54 feet and mounted at a 

height of 30 feet above the roadway. While the mounting offset from the nearest lane was 

greater than the minimum specified by the manufacturer, and all lanes were less than the 

maximum distance away from the detector, it was not within the "recommended offset" 

range of 25 to 35 feet (51). It was understood that the support structure was installed at its 

current location to maintain a specified clear zone next to the roadway. Due to this clear 

zone consideration, the offset of 54 feet was considered a typical mounting location, 

though it fell outside the manufacturers recommended offsets but within its acceptable 

offsets. The mounting height of 30 feet above the roadway matches the manufacturers 

recommendation for the given offset of 54 feet. 
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Figure 3.15 SmartSensor 105 Mounting Support Structure (a) and Unit (b)  

The hardware components of the SmartSensor 105 detection system include the 

SmartSensor 105 microwave radar unit, SmartSensor cable from the radar unit to the 

NDOR traffic cabinet, Wavetronix Click!200 Surge Protector, and Wavetronix Click!301 

serial to Ethernet converter in the NDOR traffic cabinet. The software components of the 

system include the internal signal processing software within the radar unit and the 

SmartSensor Manager Version 3.0.0 software utility, which is run on the NTC data 

collection computer. This software package, which can be seen in figure 3.16, includes 

tools for calibration as well as data collection. 
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Figure 3.16 SmartSensor Manager Screenshot 

When communication with the SmartSensor 105 was established, the existing 

detection zones appeared to align with the existing traffic lanes. Therefore, a preliminary 

data set was collected. This comparison of ten minutes of data with ground truth from 

4:10 PM to 4:20 PM on March 3, 2011 showed that the volume error was greater than 

30%, indicating a problem with the detector configuration. This information was 

provided to Mr. Jordan Schwening, a product representative with Mid American Signal. 

During a site visit on May 11, 2011, Mr. Schwening adjusted the per-lane sensitivity 

settings, which appeared to correct most of the detection issues based on observed 

performance during the remainder of the site visit. The SmartSensor 105 configuration 

resulting from these adjustments was used for the duration of the data collection for this 

thesis. 



76 

 

7
6
 

3.3 Chapter Summary 

The test bed setup outlined in this chapter provides information on the NTC/NDOR non-

intrusive detector test bed from which the data utilized in conducting this thesis were 

obtained. This test bed is located in Omaha, along I-80, at the Giles Road interchange. 

While the site was intended to be representative of typical urban freeway traffic data 

collection sites in Nebraska, the exact mounting configuration and calibration, as well as 

site geometrics, will undoubtedly vary slightly between installation locations. The 

information in this chapter outlines the characteristics of this site and the detector 

calibration, in order to demonstrate its representative nature, while also examining its 

unique characteristics. The first portion of this chapter also details the communications 

infrastructure and describes the NTC data collection computer, both of which were 

installed at the test bed. 

In addition to defining the characteristics of the NTC/NDOR non-intrusive 

detector test bed site, information is provided in this chapter on the four detectors under 

evaluation, along with their supporting infrastructure. These four non-intrusive traffic 

detectors are the Autoscope Solo Pro II, 3M Canoga Microloop 702, Image Sensing 

Systems RTMS G4, and Wavetronix SmartSensor 105. The mounting locations of these 

detectors are described, as well as the system components for each detector. Finally, the 

calibration of each detector for this evaluation is presented. The installation and 

calibration of these detectors is summarized in table 3.1. Once the detectors were 

calibrated, the NTC/NDOR non-intrusive detector test bed was ready for data collection. 
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Table 3.1 Detector Calibration Summary 

Detector
Installed / 

Configured

Initial 

Calibration

Further 

Calibration

Autoscope Solo Pro II
Yes

(Spring 2007)

Yes

(12-15-2010)

Yes

(06-07-2011)

3M Canoga Microloop 702
Yes

(Spring 2007)
No No

Image Sensing Systems 

RTMS G4

Yes

(10-15-2009)

Yes

(12-14-2010)
No

Wavetronix SmartSensor 105
Yes

(Spring 2007)

Yes

(12-14-2010)

Yes

(05-11-2011)   
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CHAPTER 4 DATA COLLECTION AND REDUCTION 

4.1 Data Collection 

The data collection effort for this study took place during the six months between March 

and August of 2011 at the NTC/NDOR non-intrusive detector test bed described in 

chapter 3. While data was not collected continuously during the entire study period, the 

duration of the selected collection period allowed for representative data to be collected 

under various environmental conditions. Preliminary analysis of the initial data led to a 

recalibration of some of the detectors during March, April, and May of 2011. It was 

determined that only data collected after the final calibration of all detectors would be 

analyzed. Therefore, the data analyzed in this thesis was collected in June, July, and 

August of 2011. 

Output from the four detector systems at the site was available for collection 

through connections to an Ethernet switch in the NDOR cabinet. Through this 

connection, time-stamped vehicle observations (with speed information) were archived to 

the NTC data collection computer. Additionally, video from the Autoscope Solo Pro II 

camera was routed to the data collection computer by the AXIS video server, and was 

recorded. The recorded data and video were transferred to a WD external hard drive 

located in the NTC research cabinet. At intervals of approximately 14-days, the external 

hard drive in the field was manually retrieved and brought back to the NTC ITS 

laboratory. When one external hard drive was retrieved, a comparable unit was left in its 

place for the next 14-day interval. The data and video on the retrieved external hard drive 

were then transferred to a server at the NTC ITS laboratory. In addition to the data 

retrieved from the test bed, weather data were obtained in real-time from the Millard 
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Airport (KMLE) weather station via an internet connection (49). This information was 

also archived at the NTC ITS laboratory. The reported weather conditions were stored 

with each dataset in order to expand the scope of the analysis, and video recordings were 

referenced to confirm the reported weather condition. 

An issue arose during data collection involving the Microloop 702 detectors. It 

was noted that the ITS Link software for the microloops was utilizing up to 90% of the 

NTC data collection computer’s 1.2GHz processor. Initially this was noted as peculiar 

but unimportant. Later, it became apparent that, while the microloops were reporting 

accurate vehicle volumes at the beginning of each data collection interval, a large number 

of vehicles were not recorded after approximately two hours of data collection. During a 

site visit, it was noted that indicators on the detector card were signaling detections that 

were not being recorded on the data collection computer. It was concluded that the large 

percentage of “missed vehicles” was the result of a communications issue between the 

detector card and data collection computer, and not a result of poor detection. The 

detector manufacturer was contacted, but was unable to provide an explanation for the 

communications issue. It was determined that only data collected during the initial period 

(i.e., the first two hours) of each data collection interval would be used in the analysis, as 

the factor under investigation was detection capability, not the testing of a specific 

communications medium. This limitation reduced the amount of collected Microloop 702 

data that was available for analysis. One potential solution for future studies would be to 

collect contact closure data through a traffic counter/classifier such as a PEEK ADR 

instead of a data collection computer. 
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Data were collected over 48 days during the months of June, July, and August of 

2011. These 48 data collection days are shown in table 4.1. However, due to the 

extensive manual labor requirements of data reduction, only a subsample of this data set 

was ultimately included in the analysis. The analyzed data set included 1,467 minutes 

(slightly more than 24 hours) of data. Intervals were chosen for this analysis data set so 

that various combinations of environmental factors such as lighting, precipitation, and 

traffic volume would be represented. Table 4.2 outlines the data intervals that were 

ultimately included in the analyzed data set. 

Table 4.1 Data Collection Dates 

6/7/2011 6/19/2011 7/5/2011 7/30/2011

6/8/2011 6/20/2011 7/6/2011 8/2/2011

6/9/2011 6/21/2011 7/7/2011 8/3/2011

6/10/2011 6/22/2011 7/8/2011 8/4/2011

6/11/2011 6/25/2011 7/11/2011 8/5/2011

6/12/2011 6/26/2011 7/12/2011 8/6/2011

6/13/2011 6/27/2011 7/13/2011 8/12/2011

6/14/2011 6/30/2011 7/14/2011 8/15/2011

6/15/2011 7/1/2011 7/21/2011 8/16/2011

6/16/2011 7/2/2011 7/22/2011 8/18/2011

6/17/2011 7/3/2011 7/28/2011 8/19/2011

6/18/2011 7/4/2011 7/29/2011 8/30/2011  

Table 4.2 Data Intervals Included in Analysis 

Date Time Date Time

6/9/2011 8:04 - 9:59 6/20/2011 21:22 - 21:50

6/9/2011 10:01 - 11:19 6/20/2011 22:14 - 22:19

6/9/2011 11:36 - 12:39 6/20/2011 22:41 - 23:58

6/9/2011 22:50 - 23:58 6/25/2011 6:23 - 11:08

6/20/2011 16:01 - 16:42 6/25/2011 11:10 - 11:25

6/20/2011 16:44 - 17:11 7/6/2011 5:28 - 6:08

6/20/2011 17:13 - 17:15 7/6/2011 15:36 - 15:40

6/20/2011 17:17 - 17:22 7/6/2011 15:42 - 16:59

6/20/2011 17:24 - 17:39 7/6/2011 17:27 - 21:30

6/20/2011 17:41 - 18:27 7/28/2011 5:30 - 6:29

6/20/2011 18:31 - 21:04  
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4.2 Data Reduction 

The data reduction procedure for this study involved two distinct steps. The first step was 

the derivation of ground truth vehicle time stamps and length-based classifications from 

video of the traffic stream. The second step was the compilation of ground truth data and  

data from the various detectors at the test bed into a consolidated data set. 

4.2.1 Step 1: Ground Truth 

The derivation of the ground truth data from video of the traffic stream was a laborious 

task because it had to be done manually (i.e., based on video observations). To facilitate 

the task, a series of macros (i.e., customized programs) were written for implementation 

in Microsoft Excel. With these macros and the input of video start time and playback 

speed, it was possible to correlate various keystrokes to a vehicle passage timestamp. 

Nine different keys were assigned to represent each combination of three vehicle classes 

and three traffic lanes. The user would watch the video at a particular location, and  every 

time the front bumper of a vehicle reached this location, the user entered the appropriate 

key stroke. For example, Ctrl+r indicated a long vehicle in lane 1 (the westbound lane 

nearest to the shoulder). The final result was an output file that contained vehicle 

timestamps, traveled lanes, and classifications (see table 4.3). 

Table 4.3 Ground Truth Output Sample 

Timestamp Lane Class

5:29:31 2 1

5:29:34 2 1

5:29:37 1 1

5:30:00 2 1

5:30:18 3 1

5:30:19 2 2

5:30:29 2 1

5:30:44 2 1

5:30:52 1 2

5:31:13 2 1  
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As a quality control measure, ground truth data were reduced by two users 

independently for 30 minutes (2% of the final data set). Comparison of the observations 

recorded by the two users revealed a volume agreement of 99.9%. Additionally, there 

was agreement on the lane assignment for 99.1% of the vehicles and agreement on the 

classification of 96.5% of the vehicles. Length-based classification ground truth was 

more susceptible to human error than volume or lane assignment due to the subjectivity 

of interpreting a vehicle's length from the video. 

4.2.2 Step 2: Data Compilation 

The compilation of the data into a consolidated data set was also accomplished through 

macros implemented in Microsoft Excel. A separate macro was required for each detector 

technology because each had a unique data file. These files were retrieved from the test 

bed, as outlined in section 4.1. The output files from the Microloop 702 detectors were 

XML-formatted while the other detectors provided various types of delimited text files. A 

unique macro was written to parse the output files from each detector into similar Excel 

worksheets. While the data files from each technology included various parameters, each 

included per-vehicle timestamps, speeds, and either lengths or length-based 

classifications. Once clock synchronization was performed (as discussed in section 4.2.3), 

the data in these worksheets was formatted for per-vehicle analysis. At this point, 

information regarding the environmental factors under consideration was incorporated 

into the data worksheets using another macro. This consolidated data file was saved and 

the data in this file was also aggregated for one, five, and fifteen minute aggregation files. 

These per-vehicle and aggregate files were converted to comma delimited tables, which 

were imported into the R software environment for statistical analysis. 
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4.2.3 Clock Synchronization 

A major issue that must be considered when collecting time-stamped data from multiple 

sources with independent internal clocks is clock drift. Clock drift occurs when the 

internal clocks of two or more different devices deviate relative to one another over the 

passage of time. If clock drift does occur, clock synchronization is required so that the 

error associated with this drift is reduced or eliminated. The clock synchronization 

process utilized for this thesis is shown in figure 4.1, and described in the following 

paragraphs. 
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Figure 4.1 Clock Synchronization Flow Chart 
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The standard methodology in these situations is to establish a reference clock. For 

this study, the reference clock was the time stamp on the ground truth video, which was 

taken from the internal clock of the Axis 241Q video server. Before each data collection 

period commenced, this clock was set equal to the time on the NTC data collection 

computer using the Axis Camera Station Client software. Using the Autoscope Network 

Browser, ITS Link, WinRTMS4, and SmartSensor Manager software tools, it was then 

possible to set each of the detectors’ internal times equal to the NTC data collection 

computer’s internal time. This approach gave all data sources an equal starting point at 

the beginning of each data collection interval (most of which lasted less than 24 hours). 

From this common starting point, clock drift throughout the data collection 

interval was relatively small. Based on analysis of clock drift in the data set under 

analysis, it was found that clock drift with respect to the Axis 241Q video server clock 

never exceeded 10 seconds per 24 hours for any of the detectors under evaluation. While 

the SmartSensor Manager software had a tool to automatically synchronize the 

SmartSensor 105 time with the NTC data collection computer time at regular intervals, 

the software tools for the other detectors and the Axis 241Q video server did not have this 

capability. Therefore, compensation for this clock drift within a data collection interval 

was made during the data reduction stage. 

This compensation during data reduction involved both manual and automated 

procedures. The first manual procedure involved in this process was to observe one-

second per-lane counts from each source after the source data files were aggregated into a 

common Microsoft Excel workbook. These counts were observed in the format shown in 

table 4.4. When any detector's data were observed to consistently deviate from the ground 
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truth by more than one second in either direction, an adjustment factor of one second was 

either added to or subtracted from all subsequent detections from that detector, and the 

manual analysis continued until the end of the data set. This approach is best 

demonstrated by example: 

Table 4.4 Sample Count Aggregation Before (a) and After (b) Manual Time 

Shift 
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8:05:00 8:05:00

8:05:01 8:05:01

8:05:02 1 1 1 1 1 8:05:02 1 1 1 1 1

8:05:03 8:05:03

8:05:04 1 1 1 1 8:05:04 1 1 1 1

8:05:05 1 8:05:05 1

8:05:06 8:05:06

8:05:07 8:05:07

8:05:08 1 1 1 8:05:08 1 1 1 1

8:05:09 1 8:05:09

8:05:10 8:05:10

(a) (b)  

The hypothetical example in table 4.4 shows one second being subtracted from all 

Microloop 702 timestamps after 8:05:03. At this point all clock drift had been reduced to 

±1 second from the ground truth (video) timestamp. An Excel macro was written that was 

able to shift times by ±1 second to match the timestamp of the nearest ground truth 

detection not already correlated to a matched detection from the given detector. A flow 

chart (figure 4.2) demonstrates the logical process used by this macro to automate this 

portion of the clock synchronization. As a reference for the algorithm applied by this 

macro, the code is included in Appendix B. A sample data interval is shown in table 4.5 

before and after running this macro. 
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Figure 4.2 Clock Synchronization Macro Flow Chart 
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Table 4.5 Sample Count Aggregation Before (a) and After (b) Automated 

Macro Time Shift 
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8:05:00 8:05:00

8:05:01 8:05:01

8:05:02 1 1 1 1 1 8:05:02 1 1 1 1 1

8:05:03 8:05:03

8:05:04 1 1 1 1 8:05:04 1 1 1 1 1

8:05:05 1 8:05:05

8:05:06 8:05:06

8:05:07 8:05:07

8:05:08 1 1 1 1 8:05:08 1 1 1 1

8:05:09 8:05:09

8:05:10 8:05:10

(a) (b)  

While this macro functioned appropriately in low-volume times, it was difficult to 

develop a function that could assess matched detections during high volume periods, such 

as the high volume period shown in table 4.6(a). Therefore, the final procedure in clock 

synchronization was to manually shift detection times in these high volume periods (as 

seen in table 4.6(b) with the SP II or Solo Pro II detector). 
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Table 4.6 Sample High Volume Count Aggregation Before (a) and After (b) 

Second Manual Time Shift 
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17:15:00 17:15:00

17:15:01 1 1 17:15:01 1 1 1

17:15:02 1 17:15:02

17:15:03 1 1 1 1 1 17:15:03 1 1 1 1 1

17:15:04 17:15:04

17:15:05 1 1 1 1 1 17:15:05 1 1 1 1 1

17:15:06 1 1 17:15:06 1 1

17:15:07 1 1 1 17:15:07 1 1 1 1

17:15:08 1 17:15:08

17:15:09 1 2 1 1 1 17:15:09 1 1 1 1 1

17:15:10 1 1 1 1 17:15:10 1 1 1 1 1

17:15:11 17:15:11

(a) (b)  

The result of this clock synchronization process was that the detector-reported 

timestamps were shifted as necessary to minimize clock drift. The resulting timestamps 

had a resolution of one second, which was adequate for the analysis to be performed in 

this thesis. Once clock synchronization was completed, data compilation was resumed as 

outlined in section 4.2.2 which ultimately resulted in a data set for statistical analysis. 

4.3 Chapter Summary 

The data collection and reduction process outlined in this chapter have provided an 

overview of the processes employed in gathering the appropriate data from the evaluated 

detectors and formatting it for analysis. Once detectors had been appropriately calibrated, 

as was outlined in the previous chapter, data collection was relatively simple. The only 

significant issues involving data collection were related to communications between the 

detectors and the data collection computer. These issues were overcome through frequent 

monitoring during data collection. Data reduction was facilitated through the 

development of Excel macros, but remained a labor-intensive task. The manual 
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derivation of ground truth data from recorded video was a limiting factor in the size of 

the analyzed data set. The primary difficulty encountered during data reduction was the 

need to account for clock drift in the various detectors. This was accomplished through 

manual and automated procedures. The data collection and reduction endeavors resulted 

in tabulated detection data for statistical analysis.  
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CHAPTER 5 STATISTICAL METHODS 

A number of statistical methods were used in the data analysis for this thesis. 

Explanations of the various methods are presented in this chapter, so as to avoid 

muddling the presentation of the results in the chapters with interspersed theory. These 

statistics are applied in the following analysis chapters. 

5.1 Simple Statistics 

Throughout the analyses of the four traffic detectors under examination in this study, a 

number of simple statistical methods were applied in order to define their accuracies and 

the distributions of values they reported. 

5.1.1 Mean Percent Error 

The mean percent error (MPE) is a simple statistic that provides the arithmetic mean of 

the deviations of detected values from ground truth values, scaled as a percentage of the 

ground truth value. When no ground truth was available, a baseline was selected, and the 

statistic was referred to as the mean percent difference (MPD), instead of MPE. The MPE 

was defined according to the following equation: 

 

















n

i i

ii

y

yx

n
MPE

1

100
1

 (5.1) 

where:   is the number of observations, 

    is the detector reported value for observation  , and 

    is the ground truth value for observation  . 

The MPE is negative when the mean detector-reported value is less than the mean ground 

truth value, and positive when the mean detector reported value is greater than the mean 

ground truth value. While the MPE is useful for determining the direction and magnitude 
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of a detector's bias for a specified parameter, its weakness is that percent errors with 

opposite signs have a balancing effect. 

5.1.2 Mean Absolute Percent Error  

The mean absolute percent error (MAPE) is a statistic that accounts for the balancing 

effect of positive and negative percent errors, which is problematic in MPE. It represents 

the arithmetic mean of the absolute values of deviations of detected values from ground 

truth values, scaled as a percentage of the ground truth value. When no ground truth is 

available, a baseline is selected and the statistic is referred to as the mean absolute 

percent difference (MAPD), instead of MAPE. The MAPE is defined according to the 

following equation: 
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where:   is the number of observations, 

    is the detector reported value for observation  , and 

    is the ground truth value for observation  . 

5.1.3 Correlation Coefficient 

Another simple statistic is the correlation coefficient. The correlation coefficient (r) 

indicates the strength of a linear relationship between two variables, and is calculated 

according to the following equation: 
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where:   is the number of observations, 

    is the detector reported value for observation  , 

    is the mean of detector reported values for all observations, 

    is the true value for observation  , and 

    is the mean of true values for all observations. 

The correlation coefficient is on the range       . A value near 1 indicates a strong 

positive linear relationship between x and y while a value near -1 indicates a strong 

inverse linear relationship, and a value near 0 indicates a weak linear relationship. 

5.2 Skewness and Kurtosis 

Skewness and kurtosis are two statistics that describe the distribution of a set of values. 

For example, the distributions from various detectors of observed speeds over a given 

time period will each have a skewness and kurtosis. Specifically, skewness and kurtosis 

are the third and fourth standardized moments of the distribution. Skewness is a measure 

of the asymmetry of a distribution. A negative skew indicates that the left tail is longer 

and that the bulk of the values are greater than the mean. A positive skew indicates that 

the right tail is longer and that the bulk of the values are less than the mean. A 

symmetrical distribution will have zero skewness. The magnitude of the skewness can be 

interpreted as a measure of asymmetry. The skewness of a sample is calculated according 

to the following equation: 

 

 

 
2/3

1

2

1

3

1

1

1























n

i

i

n

i

i

xx
n

xx
n

g  (5.4) 



94 

 

9
4
 

where:   is the number of observations, 

    is the value for observation  , and 

    is the mean of the values for all observations. 

Kurtosis is a measure of the peakedness of a distribution. A platykurtic 

distribution has a kurtosis of less than three and is characterized by broad peaks and thin 

tails. A leptokurtic distribution has a kurtosis of greater than three and is characterized by 

a slender peak and fatter tails. Lastly, a mesokurtic distribution has a kurtosis of exactly 

three. All normal distributions are mesokurtic regardless of their parameters. As it applied 

to analysis of pre-vehicle speed detection in this thesis, kurtosis provided a measure of 

sensitivity to differences in speed. The kurtosis of a sample as defined here is calculated 

according to the following equation:  
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where:   is the number of observations, 

    is the value for observation  , and 

    is the mean of the values for all observations. 

This definition of kurtosis is not to be confused with the kurtosis excess (       ), 

such that a normal distribution has a kurtosis excess of zero. 

An example demonstrating the interpretation of skewness and kurtosis is given 

based on pre-vehicle speed data taken from the NTC/NDOR non-intrusive detector test 

bed between 4:35 PM and 5:35 PM on June 20
th

, 2011. Histograms of the distributions of 
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speeds from the four detectors under evaluation in this thesis for this time period are 

given in figure 5.1, along with the skewness and kurtosis of each distribution. 
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Figure 5.1: Small Sample Histograms of Per-Vehicle Speed Distributions for 

the Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) 
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All of the distributions in figure 5.1 have skewness values between -1 and 1, 

indicating relatively balanced distributions. However, the distribution of speeds from the 

Solo Pro II, which had the largest positive skewness value, can be seen to have a longer 

right tail than left tail. Also, the distribution of speeds from the SmartSensor 105, which 

had the most negative skew, appears to have a slightly longer left tail than right tail. 

Regarding kurtosis, the SmartSensor 105 distribution, which had a kurtosis of 3.07 

(nearly mesokurtic), has a distribution with a peakedness similar to a normal distribution. 

It can also be seen that the two significantly leptokurtic distributions (those with kurtoses 

significantly greater than three), compared to the other distributions, are characterized by 

having long tails and slender peaks. Lastly, the G4 with a platykurtic distribution 

(kurtosis of 1.93) has a broad peak and nearly non-existent tails. 

5.3 GEH Statistic 

The GEH statistic is a self-weighting test statistic used in assessment of traffic volume 

estimates, which has most frequently been applied to validate traffic microsimulation 

models (52). The self-weighting characteristic, which makes it appealing for 

microsimulation model validation, also made it appropriate for analysis of traffic volume 

detection accuracy. The GEH statistic for time period   is calculated according to the 

following equation:  
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where:     is the detector reported volume for time period   and 

     is the reference volume for time period  . 
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A GEH statistic of 0 indicates perfect detection for the given time period, while higher 

values indicate more severe errors. 

In detection accuracy, a large percent error at a low volume should not necessarily 

receive the same weight as a large percent error at a high volume. By self-weighting, the 

GEH statistic assigns greater weights to errors at high volumes than errors at low 

volumes. The following example demonstrates the applicability of the GEH statistic. 

Consider a hypothetical example with two time intervals: (a) 7 of 8 vehicles detected and 

(b) 70 of 80 vehicles detected. The percent errors for the two intervals (12.5% for each) 

suggest equal performance in both intervals. The absolute errors for the two intervals (1 

and 10 missed vehicles, respectively) suggest that the detector performance was far worse 

for the high volume interval (b). The GEH statistics for the two intervals (0.37 and 1.15) 

suggest a more significant error during the high volume interval, without suggesting that 

the error was 10 times as bad as the low volume interval, as was suggested by the 

absolute error. 

5.4 Theil's Inequality Coefficient  

In measuring the difference between detected and true values, or detected values from 

two detection sources, it is useful to have a numerical representation of the degree of 

agreement, or inversely the degree of inequality, between the two sets of values. While 

statistics such as a correlation coefficient, mean percent error, and mean absolute percent 

error are useful for this purpose, they do not in themselves convey information about the 

nature of the differences between two sets of data. Theil's inequality coefficient provides 

a similar metric that can be deconstructed in such a way as to indicate the nature of the 

differences between two sets of data (53). Originally, this inequality coefficient was 
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developed to measure the goodness-of-fit of economic forecasts, but was recently 

introduced into the traffic engineering field for validation of microscopic simulation 

models (54). Because this validation of simulated data with respect to observed values is 

similar to the current application of validating observed data with respect to ground truth, 

Theil's inequality coefficient was included in this thesis. Theil's inequality coefficient (U) 

is defined by the following equation:  
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where:   is the number of observations, 

    is the ground truth value for observation  , and 

    is the detector reported value for observation  . 

The numerator of this equation is the root mean square error, and the denominator 

scales U such that it will always lie on the range      . If    , the detector 

reported values are equal to the true values for all observations. If    , the detection 

performance is as bad as possible. The mean square error, as seen in the numerator of the 

above equation can be deconstructed into three components, as shown in the following 

equation: 
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where:    is the mean true value of all observations, 

    is the mean detector reported value of all observations, 

    is the standard deviation of detector reported values for all   

   observations, 

    is the standard deviation of true values for all observations, and 

   is the correlation coefficient of detector reported and true values. 

When these three components are each divided by their sum, as shown in the following 

equations, they become proportions such that           . 
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where:    is the bias proportion, which indicates the proportion of the inequality  

   that can be contributed to a systematic tendency toward over- or  

   under-estimation of the true value (a small value of    indicates  

   good detector calibration); 

    is the variance proportion, which indicates the proportion of the  

   inequality that can be attributed to unequal variances between  

   the detector’s reported values and true values (a large    indicates  
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   that the variance of the detected values is significantly different  

   from the variance of the true values); and 

    is the covariance proportion, which indicates the proportion of the  

   inequality that is unsystematic (ideally    should represent the  

   largest proportion of the inequality). 

5.5 Analysis of Variance 

Analysis of variance (ANOVA) is utilized numerous times throughout the following 

chapters in order to determine which factors significantly affect a given detector's ability 

to correctly detect a specific parameter, such as volume, speed, or vehicle classification. 

In these analyses, there were two factors (lighting and rain) with four and two levels, 

respectively (day, night, dawn, dusk; and clear, rain). Therefore, the model chosen was 

the following four-by-two factorial ANOVA: 

 ijkijjiijky    (5.12) 

where: 

         

         

         

   is the overall mean for all  , 

    is the effect of the  th level of factor A, 

    is the effect of the  th level of factor B, 

      is the interaction effect between the  th level of factor A and the  th 

  level of factor B, and 

      is the random effect or error term. 
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Each use of ANOVA in the following chapters began with this model, having different   

variables, such as volume percent error or classification error percentage. However, in 

models that found the interaction term (    ) to not be statistically significant, this term 

was eliminated from the model in order to increase the power of the analysis for 

significance of the independent factors of lighting and rain.  

These analyses were conducted on an unbalanced sample, meaning that there 

were different numbers of sample points in different combinations of the levels of factors 

for lighting and rain. Due to this fact, type III (marginal) sums of squares were used. 

Type III sums of squares are calculated in such a way that the sum of squares for each 

factor is calculated given the effects of all other factors. It is the only type of sums of 

squares that does not convolute the hypotheses being tested to be about the order in 

which factors are added to the model or number of sample points in each cell. Rather, the 

hypothesis tested by this ANOVA with type III sums of squares is whether the effect of a 

factor, given all other factors, is statistically significant (55). 

There are three basic assumptions for the ANOVA model. The first of these 

assumptions is normality of random effect (    ). While this assumption was not strictly 

met by the majority of the models in the following chapters, ANOVA can be appropriate 

in some instances where this assumption is not met. One statistical text states that "for 

large samples, more radical departures are acceptable since the central limit theorem 

comes into play" (56). The sample sizes for the analyses in this report were of a 

magnitude which made this qualification applicable. The next assumption is 

independence of the random effect (    ). In time series data such as that used in this 

analysis, autocorrelation (a lack of independence) can be an issue. For that reason, each 
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of the ANOVA models in the following analyses were tested for autocorrelation and 

thinned appropriately to eliminate autocorrelation and meet the assumption of 

independence. An example of this thinning procedure is given in Appendix B. The final 

assumption for ANOVA is homoscedasticity (homogeneity of variances). The tests for 

this assumption are sensitive to non-normality (Bartlett's test) or unequal sample sizes 

(Hartley's & Cochran's tests), which made them inappropriate for these data. Also, the F 

tests (which underlie ANOVA) are robust with respect to departures from homogeneity 

(56). Therefore, while this third assumption was not checked, there was a great deal of 

confidence in the ANOVA models employed in this study. 

5.6 Multiple Regression Model  

A series of multiple regression models were used throughout the data analysis in this 

study. The general form of these models is given by the following equation: 
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where: 

    is the predicted percent error or deviation for a single given time period 

    , 

   is the theoretical mean percent error or deviation for the specified  

   detector given daylight non-rainy conditions with true volume of 0  

   vehicles, 

    is the coefficient for the average effect of one more vehicle in the true  

   volume, 

     is the true volume for time period  , 

    is the coefficient for the average effect of night lighting conditions, 
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      is a dummy variable taking the value of 1 during night lighting  

   conditions, 

     is the coefficient for the average effect of dawn lighting conditions, 

      is a dummy variable taking the value of 1 during dawn lighting  

   conditions, 

     is the coefficient for the average effect of dusk lighting conditions, 

      is a dummy variable taking the value of 1 during dusk lighting  

   conditions, 

     is the coefficient for the average effect of rainy conditions, 

      is a dummy variable taking the value of 1 during rainy conditions, 

     is the coefficient for the average interaction effect of night and rainy  

   conditions, 

     is the coefficient for the average interaction effect of dawn and rainy  

   conditions, 

     is the coefficient for the average interaction effect of dusk and rainy  

   conditions, and 

    is the residual error for time period  . 

The definitions of the dependent variable were specific to the various applications of the 

model, and were therefore given with each application of the model in the following 

chapters. 

Regression analysis also posits a number of assumptions that must hold in order 

for the model to be valid. The first of these assumptions is independence of the residual 

error. As with ANOVA, this assumption was met through appropriate thinning of the data 
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in the manner demonstrated in Appendix B. Another assumption is that there is no 

multicollinearity in the predictors. This condition was the reason that certain variables 

were not explicitly included in the model. For example, the day lighting condition was 

not explicitly included in the model. Instead, it is implied when the dummy variables for 

night, dawn, and dusk were all 0. In the same way, clear weather was not explicitly 

stated, but rather, was implied when the dummy variable for rain was 0. 

Homoscedasticity is also assumed for linear regression, but was not confirmed for this 

analysis. Lastly, it is assumed that the independent variables are measured without error. 

This assumption was met through the experimental design. 

5.7 Chapter Summary 

The preceding chapter defined the statistics used in the following chapters to analyze the 

data and draw appropriate conclusions. The analyses in this thesis begin with elementary 

statistics, such as mean percent error, mean absolute percent error, and correlation 

coefficients, which have been used in many of the previous detector evaluation studies 

documented in the literature review. There are also a number of graphical representations 

of the data, which are enhanced by descriptive statistics such as skewness and kurtosis. 

This analysis attempted to go one step further by introducing statistics borrowed from 

other specializations within transportation systems engineering, such as the GEH statistic 

and Theil’s inequality coefficient. Lastly, established statistical models such as ANOVA 

and regression were applied to test hypotheses regarding the statistical significance of 

environmental factors on the accuracies of various traffic detectors. 
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CHAPTER 6 AGGREGATE ANALYSIS AND RESULTS 

This thesis compared the relative accuracy of reported traffic parameters from particular 

detector technologies under various conditions. The following analysis employed a 

variety of graphical representations and statistical tests in order to convey the strengths 

and weaknesses of the various detection technologies. The analysis was divided 

principally  between aggregate analysis of one-minute, five-minute, and fifteen-minute 

interval data, and disaggregate, per-vehicle analysis. This chapter focuses on the 

aggregate analysis while chapter 7 covers disaggregate per-vehicle analysis. 

This aggregate analysis was based on vehicle detections in the 1467 minute (24-

hour) analysis data set defined in section 4.1. In this data set there were a total of 36,124 

time-stamped ground truth vehicle presence detections with associated vehicle 

classification. The data set also included time-stamped detector-reported vehicle 

detections with individual speeds and vehicle classifications from each of the four 

analyzed detection systems. These detections were aggregated over one-minute, five-

minute, and fifteen-minute intervals to obtain interval volumes, interval average speeds, 

and interval classification proportions. Additionally, lighting, precipitation conditions, 

and traffic volume were noted for each minute so that potential effects of these factors on 

the performance of the various detector technologies could be determined. 

When traffic volume was considered as a factor in this analysis, each one-minute 

period was classified as either a low-volume or high volume period. Low volume periods 

were defined as periods when the traffic stream had a level of service of A or B (i.e., one-

minute periods during which the three-lane passenger car equivalency did not exceed 54). 

High-volume periods were characterized by a level of service of C or D (i.e., one-minute 
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periods during which the three-lane passenger car equivalency exceeded 54). Because the 

worst level of service observed in the data set was LOS D, it was inappropriate to 

extrapolate this analysis to conditions representing level of service E or F. 

6.1 One-Minute Aggregation Interval  Analysis 

The focus of this section is the one-minute interval data analysis performed on volume, 

speed, and vehicle classification. 

6.1.1 One-Minute Volume Analysis  

The analysis of volume begins with simple graphics comparing the reported one-minute 

volumes from each detector with the ground truth one-minute volumes obtained by 

manual observation of video. Figure 6.1 shows detector-reported one-minute volume 

versus ground truth one-minute volume for each detector. While the Solo Pro II, 

Microloop 702, and G4 one-minute volumes all appeared to have strong linear 

relationships with the ground truth volume, figure 6.1(d) shows that the SmartSensor 105 

tended to under-report volume when the ground truth volumes were high (e.g. greater 

than 40 veh/min). This led to a correlation coefficient (r) of 0.91 for the SmartSensor 

105, lower than the correlation coefficients of the other detectors, which were all greater 

than 0.99. 
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Figure 6.1: One-Minute Volume Scatter Plots Against Ground Truth for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) 

Detectors 

Figure 6.2 shows box plots for each detector’s reported volume. Again, this figure 

shows that the SmartSensor 105 did not report as many high volumes (60+ vehicles per 

minute) as the other detectors and the ground truth. When comparing the 75th percentile 

one-minute volumes (i.e., the upper boundaries of the inter-quartile ranges in figure 6.2) 

of the detectors with that of the ground truth volumes, the relatively lower 75th percentile 

values from the Solo Pro II, G4, and SmartSensor 105 may indicate a tendency to under-
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report one-minute volume, while the relatively higher 75th percentile value from the 

Microloop 702 may indicate a tendency to over-report one-minute volume. 

 
Figure 6.2: Box Plot of Reported One-Minute Volumes 

The histograms in figure 6.3 again show that the SmartSensor 105 was missing 

the extreme upper tail of the ground truth and other detectors. This is quantified in the 

values of skewness and kurtosis given along with the histograms. The skewness of the 

ground truth distribution of one-minute volumes (1.190) was relatively high because of 

the impact of the long right tail of the distribution. While the Solo Pro II, Microloop 702, 

and G4 one-minute volume distribution skewnesses was similar to the ground truth, the 

SmartSensor 105 had a lower value of skewness (0.660). 
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Figure 6.3: Histograms of One-Minute Volume Distributions for Ground 

Truth (a), Solo Pro II (b), Microloop 702 (c), G4 (d), and SmartSensor 105 

(e) 
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Figure 6.4 gives a cumulative distribution plot of the one-minute volumes from 

the ground truth and four detectors under evaluation. This plot also shows that the ground 

truth, Solo Pro II, Microloop 702, and G4 had similar distributions, while the upper end 

of the SmartSensor 105 distribution had a distinctly different shape. 

 
Figure 6.4: Cumulative Distribution Plot of One-Minute Volume 

Distributions for Ground Truth and All Detectors  

Summary one-minute volume statistics were calculated for the ground truth data, 

as well as each detector, and are given in table 6.1. The values for mean one-minute 

volume indicate that the Solo Pro II, G4, and SmartSensor 105 tended to under-report 

one-minute volume compared to the ground truth, while the Microloop 702 mean one-

minute volume indicates that it tended to over-report volume. The standard deviation 

(i.e., 10.3) of the SmartSensor 105 one-minute volume distribution provides further 
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indication of the lack of high one-minute volumes present in the ground truth one-minute 

volume distribution, which had a standard deviation of 14.5. 

Table 6.1 One-Minute Volume Summary Statistics 

Mean Median

Standard 

Deviation

Ground Truth 24.6 21 14.5

Solo Pro II 23.9 21 13.8

Microloop 702 25.2 22 14.4

G4 23.4 20 13.7

SmartSensor 105 22.0 21 10.3  

These summary depictions of the one-minute volume data were followed by 

calculation of the percent error, absolute percent error, and GEH statistic for each 

detector and each one-minute interval. The distributions one-minute volume percent error 

are shown in the box plots in figure 6.5. Volume percent error was calculated such that a 

negative value indicated undercounting and a positive value indicated overcounting. 

Based on the placement of the inter-quartile ranges with respect to zero percent error, it 

can be seen that the Solo Pro II, G4, and SmartSensor 105 each tended to undercount 

more frequently than they overcounted. In contrast, the Microloop 702 can be seen to 

overcount more frequently than it undercounted. It is also worth noting that while the 

inter-quartile ranges of the four detectors were all approximately equal in height, the total 

range of one-minute volume percent errors was much greater for the G4 and SmartSensor 

105 than for the Solo Pro II and Microloop 702. 
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Figure 6.5: One-Minute Volume Percent Error Box Plot 

Figure 6.6 shows histograms of the volume percent error distributions for the four 

detectors. The tendency of each detector to either overcount or undercount is readily 

observed in these histograms. While the negative values of skewness indicated longer left 

tails than right tails for the G4 and SmartSensor 105, the Solo Pro II and Microloop 702 

had positive values of skewness with relatively equal left and right tails. While difficult 

to see in the histogram in figure 6.6(a), the density of the upper "outliers" compared to 

lower "outliers" in the Solo Pro II and Microloop 702 box plots in figure 6.5 provides 

evidence of the more prominent upper tail of these distributions, leading to the positive 

value of skewness. 
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Figure 6.6: Histograms of One-Minute Volume Percent Error Distributions 

for Solo Pro II (a), Microloop (b), G4 (c), and SmartSensor 105 (d) Detectors  
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Figure 6.7 shows cumulative distribution plots of the one-minute volume percent 

error distributions for the four detectors. The vertical portion of each curve at 0% error 

represents the proportion of one-minute intervals for which the respective detector 

correctly reported the volume. This graph shows very clearly that the Microloop 702 had 

the lowest proportion of intervals in which volume was under-reported, while having the 

largest proportion of intervals in which volume was over-reported. The long left tail of 

the SmartSensor 105 in figure 6.7 was a result of its under-reporting during high volume 

intervals. 

 
Figure 6.7: One-Minute Volume Percent Error Cumulative Distribution Plot 

Appropriate statistics, such as correlation coefficient, mean percent error (MPE), 

mean absolute percent error (MAPE), percent error variance, mean GEH statistic, 85th 
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percentile GEH statistic, and GEH variance, are given in table 6.2. A review of the 

correlation coefficients shows a very strong linear relationship between each of the Solo 

Pro II, Microloop 702, and G4 one-minute volumes and the ground truth one-minute 

volumes, and a slightly weaker correlation between the SmartSensor 105 one-minute 

volumes and ground truth one-minute volumes. Mean percent error values indicate a 

tendency for under-reporting one-minute volumes by the Solo Pro II, G4, and 

SmartSensor 105, while indicating a tendency for over-reporting one-minute volumes by 

the Microloop 702. Mean absolute percent error values indicate that the G4 had, on 

average, the one-minute volume closest to the ground truth one-minute volume of the 

four detectors. While MAPE indicates that the G4 reported the most accurate one-minute 

volumes of the four detectors, the GEH statistic indicated that the Microloop 702 was 

more accurate than the G4 when absolute error was considered in conjunction with 

percent error. 

Table 6.2: Detector One-Minute Volume Error Statistics 

Correlation

Coefficient
MPE MAPE

Percent 

Error 

Variance

Mean

GEH

85th

Percentile

GEH

GEH 

Variance

Solo Pro II 0.992 -2.34% 6.53% 0.00749 0.304 0.577 0.0712

Microloop 702 0.991 3.30% 6.07% 0.00764 0.270 0.552 0.0852

G4 0.993 -4.52% 5.54% 0.00700 0.276 0.555 0.137

SmartSensor 105 0.910 -5.07% 8.18% 0.0178 0.516 0.707 0.920  

Additionally, Theil's inequality coefficient (U) was calculated and presented in 

table 6.3, along with its proportional components for each detector. This goodness-of-fit 

measure is explained in section 5.4. It is useful here because of the additional 

components, indicating the nature of the errors. The first additional component is the bias 

proportion (Um) which is a measure of systematic error indicative of consistent 

overestimation or underestimation of volume. The second additional component is the 
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variance proportion (Us) which is a measure of the degree of equality between variance in 

the reported volumes and variance in actual volumes. The third additional component is 

the covariance proportion (Uc) which is a measure of the unsystematic error. As mutually 

exclusive proportions, Um, Us, and Uc sum to one. 

Table 6.3: One-Minute Volume Theil's Inequality Coefficients 

U Um Us Uc

Solo Pro II 0.037 0.136 0.113 0.752

Microloop 702 0.035 0.086 0.002 0.913

G4 0.040 0.292 0.112 0.596

SmartSensor 105 0.135 0.131 0.342 0.527  

The values of U in table 6.3 indicate that the Microloop 702, Solo Pro II, and G4 

one-minute volumes had similar degrees of inequality when each was compared to the 

ground truth one-minute volumes. The SmartSensor 105 was found to have an inequality 

coefficient higher than the other three detectors, indicating a comparatively greater 

inequality when its one-minute volumes are compared to the ground truth one-minute 

volumes. The fact that the G4 had the highest value of Um indicates that it had the 

greatest bias proportion of the three detectors, and could benefit most from further fine 

tuning of its calibration. The fact that the SmartSensor 105 had the highest Us indicates 

that it had the greatest variance proportion of the three detectors, and that the variance in 

one-minute SmartSensor 105 volumes differed most from the variance in one-minute 

ground truth volumes. Lastly, the high value of Uc for the Microloop 702 indicates that it 

had the greatest covariance proportion or unsystematic error. That is to say that a large 

proportion of the Microloop 702's one-minute volume error could not be explained by 

consistent bias or a different variance than the ground truth one-minute volumes. 

Next, the data set was broken down by environmental conditions. Percent error 

distributions were determined for data subsets with similar conditions for factors such as 
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lighting (day, night, dawn, dusk), precipitation (clear, rain), and traffic volume. It is 

important to note that the effects of dawn and dusk could be expected to differ by 

installation location. A VIP detector specifically would be affected by these lighting 

transitions differently if the camera is pointed north, east, south, or west. 

Effects of lighting, precipitation, and volume on the Solo Pro II one-minute 

volume percent error are shown in the distributions in figures 6.8-6.10. Figure 6.8 shows 

that the largest undercounting and overcounting errors occurred during dawn lighting 

conditions. It was hypothesized that this was due to long shadows causing problems for 

the video image processing algorithm employed by this detector. Figure 6.9 shows that 

rain tended to decrease undercounting by the Solo Pro, while increasing overcounting. 

This could be attributed to headlight spillover due to a more reflective pavement surface 

in rainy conditions. The potential causes of this phenomenon are further explored in 

section 7.1.3 of this thesis. Next, figure 6.10 shows an intuitive effect of volume on Solo 

Pro II one-minute volume percent error. The frequency and magnitude of overcounting 

were lower for high volume periods than low volume periods, while undercounting was 

more frequent, but with a smaller magnitude, for high volume periods. 
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Figure 6.8: Solo Pro II One-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot 

 
Figure 6.9: Solo Pro II One-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot 
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Figure 6.10: Solo Pro II One-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot 

Figures 6.11-6.13 depict similar plots of the effects of lighting, rain, and volume 

on the Microloop 702 one-minute volume percent error distributions. Figure 6.11 shows 

greater undercounting by the Microloop 702 under dusk lighting conditions and greater 

overcounting under night and dawn lighting conditions. One possible explanation of these 

trends involves inconsistent vehicle lane position, which could result in either 

undercounting or overcounting. Figure 6.12 shows similar distributions of one-minute 

volume percent error under clear and rainy conditions for the Microloop 702. Lastly, the 

effects of volume seen in figure 6.13 indicate that at higher volumes, overcounting by the 

Microloop 702 decreased and undercounting increased in both frequency and magnitude. 
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Figure 6.11: Microloop 702 One-Minute Volume Percent Error Lighting 

Factor Cumulative Distribution Plot 

 
Figure 6.12: Microloop 702 One-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot 
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Figure 6.13: Microloop 702 One-Minute Volume Percent Error Volume 

Factor Cumulative Distribution Plot 

Figures 6.14-6.16 depict the effects of lighting, rain, and volume on the G4 one-

minute volume percent error distributions. In figure 6.14, the greater proportion and 

magnitude of undercounting during dusk conditions, compared to other lighting 

conditions, stands out. Further review of the ground truth video revealed that the heaviest 

period of rain in the dataset took place during dusk conditions on June 20
th

, 2011. It was 

hypothesized that the severe undercounting during dusk conditions was due to the heavy 

rain. This hypothesis was supported by the severe undercounting during rainy conditions, 

shown in figure 6.15. Figure 6.16 shows that high volume tended to reduce overcounting 

by the G4, while generally increasing the frequency and decreasing the magnitude of 

undercounting. 
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Figure 6.14: G4 One-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot 

 
Figure 6.15: G4 One-Minute Volume Percent Error Rain Factor Cumulative 

Distribution Plot 
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Figure 6.16: G4 One-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot 

Figures 6.17-6.19 show the effects of lighting, rain, and volume on the 

SmartSensor 105 one-minute volume percent error distributions. In order to interpret 

figures 6.17 and 6.18, it is important to first recognize the strong impact of high volume 

traffic on the undercounting of the SmartSensor 105, as shown in figure 6.19. Under high 

volume conditions (LOS C or D), the SmartSensor 105 undercounted 96.9% of the one-

minute intervals. 50% of those high volume intervals were undercounted by 30.6% or 

more. This severe impact of high traffic volume provides an explanation of the severe 

undercounting in day lighting conditions as well as clear (i.e. rain-free) conditions, as all 

high traffic volume intervals occurred during clear, day lighting periods. 
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Figure 6.17: SmartSensor 105 One-Minute Volume Percent Error Lighting 

Factor Cumulative Distribution Plot 

 
Figure 6.18: SmartSensor 105 One-Minute Volume Percent Error Rain 

Factor Cumulative Distribution Plot 
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Figure 6.19: SmartSensor 105 One-Minute Volume Percent Error Volume 

Factor Cumulative Distribution Plot 

Next, the statistical significance of the effects of various environmental conditions 

on one-minute volume percent error was assessed through analysis of variance 

(ANOVA). Specifically, ANOVA based on the model defined in section 5.5 was 

performed on each detector's one-minute volume percent error with factors for lighting 

(levels=Day, Night, Dawn, and Dusk) and precipitation (levels = None and Rain). In 

order to minimize the effects of serial correlation, the data sets for the Solo Pro II, 

Microloop 702, and G4 were thinned by a factor of 10 (that is, the ANOVA models were 

developed using every 10th minute of data in the initial data set) to include 147 data 

points, while the Smartsensor 105 data were thinned by a factor of 20 to include 74 data 

points. The decision to thin the data sets with the stated factors is documented in 

Appendix B. Statistical significance is reported at an α = 0.05 level. 
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The output of the Solo Pro II ANOVA found in table 6.4 indicates that lighting 

and rain each had statistically significant impacts on the Solo Pro II’s one-minute volume 

percent error. These effects could be attributed to vehicle shadows in specific lighting 

conditions and headlight glare in rainy conditions. The results of the Microloop 702 

ANOVA, found in table 6.5, indicate that the interaction between lighting and rain had a 

statistically significant impact on Microloop 702 one-minute volume percent error. This 

effect could be attributed to vehicle lane position under different precipitation and 

lighting conditions. The results of the G4 ANOVA, found in table 6.6, indicate that 

lighting, rain, the interaction between lighting and rain, and the intercept all had 

statistically significant impacts on G4 volume percent error. These results defied 

expectations, as there exists no intuitive, practical explanation for this technology to be 

affected by both lighting and rain. Further review of the data found that this detector 

performed the most poorly during a nearly three-hour rainy period that spanned day, 

dusk, and night lighting. One potential explanation is that water or water vapor entered 

the detector housing and caused malfunction during this period. This hypothesis was 

based on a similar issue documented with an earlier model in this detector family in a 

previous study (22). An independent study of this issue was beyond the scope of this 

thesis. Lastly, the results of the SmartSensor 105 ANOVA, found in table 6.7, indicate 

that rain had a statistically significant impact on the SmartSensor 105 volume percent 

error. One possible explanation of this effect could be that the radar signal reflected off of 

large raindrops and created false detections. 
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Table 6.4: Solo Pro II One-Minute Volume Percent Error ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 0.001 1 0.203 0.653

Lighting 0.089 3 5.422 0.001 *

Rain 0.041 1 7.473 0.007 *

Residuals 0.777 142  

Table 6.5: Microloop 702 One-Minute Volume Percent Error ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 0.008 1 1.593 0.209

Lighting 0.005 3 0.326 0.806

Rain 0.013 1 2.705 0.102

Lighting:Rain 0.071 3 4.814 0.003 *

Residuals 0.684 139  

Table 6.6: G4 One-Minute Volume Percent Error ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 0.268 1 34.2355 0.000 *

Lighting 0.141 3 6.0312 0.001 *

Rain 0.033 1 4.1616 0.043 *

Lighting:Rain 0.129 3 5.4895 0.001 *

Residuals 1.086 139  

Table 6.7: SmartSensor 105 One-Minute Volume Percent Error ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 0.017 1 1.271 0.264

Lighting 0.014 3 0.353 0.787

Rain 0.139 1 10.177 0.002 *

Residuals 0.941 69  

Type III sums of squares were selected based on the fact that the analysis was 

unbalanced, meaning that there were unequal numbers of observations at each level of the 

given factors. This type of sum of squares tests each factor with the effect of all other 

factors including the interaction as givens. In cases where the interaction effect was found 

to not be statistically significant, it was eliminated from the model and a subsequent 

model was analyzed. It was concluded that the lighting-precipitation effect was not 

significant for the Solo Pro II (table 6.4) or SmartSensor 105 (table 6.7). 
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Next, an attempt was made to fit a multiple regression model for the one-minute 

volume percent error for each detector to support trends noticed in the graphical 

representation of the data. The model for this regression takes the form presented in 

section 5.6, with the dependent variable (  ) being the volume percent error of the given 

detector for minute  , and the first dependent variable ( ) being the theoretical mean 

volume percent error for the specified detector given daylight, non-rainy conditions with 

a true volume of 0 vehicles. The same thinning methodology presented in Appendix B for 

ANOVA analyses was used in this regression analysis, however, different required 

thinning factors were dictated by these regression models. In this case, the data for all 

detectors was thinned by a factor of 10. 

The Solo Pro II one-minute volume percent error model has coefficients given in 

table 6.8. The statistically significant factors in this model were night lighting and the 

combined effect of dawn lighting and rain. It was hypothesized that night and the 

interaction effect of dawn and rain were significant due to headlight spillover. The 

adjusted R-squared for this model was 0.1476, indicating a low correlation between the 

predicted and observed values for Solo Pro II one-minute volume percent error. 

Table 6.8: Solo Pro II One-Minute Volume Percent Error Regression Model  

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) -2.50 1.879 -1.331 0.185

V.Truth (β1) -0.03 0.053 -0.612 0.542

Night (γ11) 7.70 2.328 3.309 0.001 *

Dawn (γ12) -7.18 3.878 -1.852 0.066

Dusk (γ13) -0.43 3.152 -0.135 0.893

Rain (γ21) 2.69 2.114 1.27 0.206

Night:Rain (γ31) -4.46 4.651 -0.959 0.339

Dawn:Rain (γ32) 12.71 5.606 2.267 0.025 *

Dusk:Rain (γ33) 4.98 4.846 1.029 0.305  
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A similar model was created next, but with independent variables not found to be 

significant in the first model excluded. The coefficients in this model are shown in table 

6.9. While this model had an even lower adjusted R-squared value of 0.1085, the average 

effect of the significant factors from the first model on the Solo Pro II one-minute volume 

percent error are shown more clearly in the "Estimate" column of this model. While the 

estimates of the significant factors in the first model were affected by the inclusion of 

additional non-significant independent variables, the estimates in this model more 

accurately depict the effects of the significant independent variables on Solo Pro II one-

minute volume percent error. 

Table 6.9: Solo Pro II One-Minute Volume Percent Error Significant Factors 

Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) -2.94 0.670 -4.384 0.000 *

Night (γ11) 7.39 1.838 4.021 0.000 *

Dawn:Rain (γ32) 8.16 3.790 2.152 0.033 *  

The Microloop 702 one-minute volume percent error model coefficients are 

shown in table 6.10. The only statistically significant factor in this model was the 

combined effect of dusk lighting and rain. It was hypothesized that this effect was found 

to be significant due to erratic vehicle lane position caused by either driver fatigue or 

heavy rain occurring during one of the dawn periods in the data set. The adjusted R-

squared for this model was 0.0832, indicating a low correlation between the predicted 

and observed values for Microloop 702 one-minute volume percent error. 
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Table 6.10: Microloop 702 One-Minute Volume Percent Error Regression 

Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 2.99 1.807 1.657 0.100

V.Truth (β1) -0.05 0.051 -1.035 0.303

Night (γ11) 4.22 2.238 1.884 0.062

Dawn (γ12) -6.20 3.728 -1.662 0.099

Dusk (γ13) 5.34 3.030 1.763 0.080

Rain (γ21) -0.14 2.033 -0.069 0.945

Night:Rain (γ31) -7.81 4.472 -1.746 0.083

Dawn:Rain (γ32) 7.28 5.390 1.351 0.179

Dusk:Rain (γ33) -12.81 4.659 -2.749 0.007 *  

Another similar model was created that excluded independent variables which 

were not found to be significant in the first model. The coefficients in this model are 

shown in table 6.11. While this model had an even lower adjusted R-squared value of 

0.0272, the average effect of the significant factors from the first model on the Microloop 

702 one-minute volume percent error are shown more clearly in the "Estimate" column of 

this model. While the estimates of the significant factors in the first model were affected 

by the inclusion of additional non-significant independent variables, the estimates in this 

model more accurately depict the effects of the significant independent variables on 

Microloop 702 one-minute volume percent error. 

Table 6.11: Microloop 702 One-Minute Volume Percent Error Significant 

Factors Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 2.06 0.606 3.392 0.001 *

Dusk:Rain (γ33) -7.41 3.287 -2.255 0.026 *  

The G4 one-minute volume percent error model coefficients are shown in table 

6.12. The statistically significant factors in this model were the intercept and the 

combined effect of dusk lighting and rain. It was hypothesized that the intercept was 

significant because of the low variance in G4 one-minute volume percent-error. It was 
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also hypothesized that the combined effect of dusk and rain was significant due to heavy 

rain occurring during one of the dawn periods in the data set. The adjusted R-squared for 

this model was 0.1380, indicating a low correlation between the predicted and observed 

values for G4 one-minute volume percent error. 

Table 6.12: G4 One-Minute Volume Percent Error Regression Model  

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) -5.99 2.284 -2.622 0.010 *

V.Truth (β1) 0.03 0.064 0.500 0.618

Night (γ11) 4.02 2.829 1.422 0.157

Dawn (γ12) -0.49 4.713 -0.105 0.917

Dusk (γ13) -0.80 3.830 -0.210 0.834

Rain (γ21) 4.17 2.569 1.622 0.107

Night:Rain (γ31) -10.92 5.652 -1.932 0.055

Dawn:Rain (γ32) -2.58 6.813 -0.379 0.705

Dusk:Rain (γ33) -22.68 5.888 -3.852 0.000 *  

Another similar model was created, but with the removal of independent variables 

not found to be significant in the first model. The coefficients in this model are shown in 

table 6.13. This model had a slightly higher adjusted R-squared value of 0.1477. While 

the estimates of the significant factors in the first model were affected by the inclusion of 

additional non-significant independent variables, the estimates in this model more 

accurately depict the effects of the significant independent variable on G4 one-minute 

volume percent error. 

Table 6.13: G4 One-Minute Volume Percent Error Significant Factors 

Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) -4.28 0.740 -5.79 0.000 *

Dusk:Rain (γ33) -20.57 4.011 -5.129 0.000 *  

The SmartSensor 105 one-minute volume percent error model coefficients are 

shown in table 6.14. The statistically significant factors in this model were the intercept 

and true volume. It was hypothesized that the intercept was found to be significant due to 
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the SmartSensor 105's high average volume percent error, and that the true volume was 

significant due to increased volume percent error under high volume conditions. The 

adjusted R-squared for this model was 0.3687, which, while higher than the adjusted R-

squared values from the models for the other detectors, also indicated a low correlation 

between the predicted and observed values for SmartSensor 105 one-minute volume 

percent error. The reason this adjusted R-squared is so high compared to those of the 

other detectors was because of the strong effect of true volume on the SmartSenser 105 

volume percent error, as can be seen in figure 6.1(d). 

Table 6.14: SmartSensor 105 One-Minute Volume Percent Error Regression 

Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 9.34 2.742 3.406 0.001 *

V.Truth (β1) -0.60 0.077 -7.788 0.000 *

Night (γ11) -4.31 3.397 -1.270 0.206

Dawn (γ12) -6.02 5.659 -1.063 0.289

Dusk (γ13) 1.36 4.599 0.296 0.767

Rain (γ21) -0.49 3.085 -0.159 0.874

Night:Rain (γ31) 2.13 6.787 0.314 0.754

Dawn:Rain (γ32) 1.68 8.180 0.206 0.837

Dusk:Rain (γ33) 3.64 7.070 0.515 0.608  

Another similar model was created with independent variables not found to be 

significant in the first model excluded. The coefficients in this model are shown in table 

6.15. This model had a slightly higher adjusted R-squared value of 0.3784. While the 

estimates of the significant factors in the first model were affected by the inclusion of 

additional non-significant independent variables, the estimates in this model more 

accurately depict the effects of the significant independent variable on SmartSensor 105 

one-minute volume percent error. 
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Table 6.15: SmartSensor 105 One-Minute Volume Percent Error Significant 

Factors Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 7.63 1.713 4.452 0.000 *

V.Truth (β1) -0.56 0.059 -9.48 0.000 *  

While the low adjusted R-squared values for these models suggest a weak linear 

relationship between the independent factors and the one-minute volume percent error, 

this is to be expected in this application, due to variability in detection based on factors 

other than the environmental factors considered herein. If it were possible to consistently 

predict the volume percent error of a specific detector for any given minute based on a 

model of this character, it would be possible to eliminate these errors. While these models 

are not as accurate as one might hope, as evidenced by their low adjusted R-squared 

values, they remain useful in their ability to demonstrate the average effect of potential 

environmental factors (see "Estimate" column in the previous tables) and to show which 

of these effects are consistent enough to be deemed statistically significant. 

6.1.2 One-Minute Speed Analysis  

The analysis of one-minute mean speed is the focus of this section. As a particular ground 

truth speed measurement was not available at the test site, the Microloop 702 was 

selected as a baseline against which the other detectors were compared. The results of 

this analysis are tempered by the acknowledgement that there were potential errors in the 

baseline speed from the Microloop 702. The reason that this system was selected as the 

baseline was that its practical implementation most closely resembled the legacy system 

of loop detector "speed traps." 

The one-minute mean speed analysis began with graphical representations of the 

reported one-minute mean speeds for each detector. The box plot in figure 6.20 indicates 
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that the Solo Pro II tended to report a higher speed than the other detectors. However, this 

bias could potentially be reduced with further calibration. For further information on 

potential calibration tools available to remove this bias, refer to section 7.2. A more 

important concern was the variability in the reported one-minute mean speeds. The 

histograms in figure 6.21, as well as the cumulative distribution curves in figure 6.22, 

depict similar shapes for the distributions of the Solo Pro II, Microloop 702, and 

SmartSensor 105, with a distinct shape for the G4's distribution, which has a shorter left 

tail. 

 
Figure 6.20: Box Plot of Reported One-Minute Mean Speeds 
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Figure 6.21: Histograms of One-Minute Mean Speed Distributions for the 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) 
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Figure 6.22: Cumulative Distribution Plot of One-Minute Mean Speed 

Distributions for All Detectors 

Summary statistics for the one-minute mean speed distributions are given in table 

6.16. In this table, the speed bias of the Solo Pro II is again evident, with the mean Solo 

Pro II speed being approximately 11 miles per hour higher than the mean baseline speed 

from the Microloop 702. It is also interesting to note that while the G4 speed distribution 

appeared to be different from the baseline Microloop 702 distribution, it had a standard 

deviation very similar to the baseline distribution. The kurtosis (as shown in figure 6.21) 

is a good measure of the difference between the G4 and baseline one-minute speed 

distributions. The Microloop 702 distribution, which was much more peaked than the G4 

distribution, had a kurtosis of 4.019, in comparison to 2.248. 
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Table 6.16 One-Minute Mean Speed Summary Statistics 

Mean Median

Standard 

Deviation

Solo Pro II 72 73 3.09

Microloop 702 61 61 2.43

G4 64 64 2.45

SmartSensor 105 62 63 3.32

*all units are (mph)  

Next the detected speeds from the Solo Pro II, G4, and SmartSensor 105 were 

compared to the one-minute mean speed of the Microloop 702 baseline detector. The 

scatter plots are shown in figure 6.23. The accompanying correlation coefficients (r) 

indicate that the Solo Pro II had the strongest linear relationship to the baseline one-

minute mean speeds, with a correlation coefficient of 0.736, compared to 0.327 for the 

G4 and 0.433 for the SmartSensor 105. 
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Figure 6.23: One-Minute Mean Speed Scatter Plots Against Baseline for Solo 

Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors 

This step was followed by the calculation of the percent deviation and absolute 

percent deviation from the baseline for each detector and each one-minute interval. The 

distributions of the percent deviation values for each detector are displayed graphically in 

figures 6.24-6.26. In figure 6.24, the inter-quartile range of the Solo Pro II is shorter than 

the inter-quartile ranges of the other detectors, indicating less variance in the percent 

deviation between the Solo Pro II and the baseline than between either the G4 and the 

baseline of the SmartSensor 105 and the baseline. The histograms in figure 6.25 further 
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indicate that the percent deviation from the baseline one-minute speeds was more 

consistent for the Solo Pro II than for the other detectors. This is quantified by the 

kurtosis values given with the histograms. The kurtosis of the Solo Pro II one-minute 

mean speed percent deviation distribution was 6.317, indicating a peaked distribution, 

while the G4 and SmartSensor 105 distributions had kurtoses of 3.279 and 3.202, 

respectively, indicating distributions with a peakedness similar to a normal distribution. 

The relative steepness of the middle portion of the Solo Pro II cumulative distribution 

curve in figure 6.26 provides another depiction of the consistency of its one-minute speed 

deviation from the baseline. 

 
Figure 6.24: One-Minute Mean Speed Percent Deviation Box Plot 
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Figure 6.25: Histograms of One-Minute Mean Speed Percent Deviation 

Distributions for Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors  
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Figure 6.26: One-Minute Mean Speed Percent Deviation Cumulative 

Distribution Plot 

Appropriate one-minute mean speed deviation statistics, such as mean percent 

deviation (MPD), mean absolute percent deviation (MAPD), and percent deviation 

variance are given in table 6.17. Comparison of the MPD values in this table indicates 

that the SmartSensor 105 was calibrated so that its mean speed most closely reflected the 

mean speed of the baseline detector. The percent deviation variances quantify the 

observations regarding the preceding figures. The Solo Pro II had a percent deviation 

variance much lower than the other two detectors, indicating that its deviation from the 

baseline was more consistent. It is again worth noting that this consistent bias could be 

removed with further appropriate calibration. 
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Table 6.17: Detector One-Minute Mean Speed Deviation Statistics 

MPD MAPD

Percent 

Deviation 

Variance

Solo Pro II 18.10% 18.10% 0.00130

G4 4.03% 5.11% 0.00228

SmartSensor 105 1.92% 4.38% 0.00269  

Theil's inequality coefficient was also calculated for one-minute mean speeds, and 

is presented, along with its proportion components, in table 6.18. This goodness-of-fit 

measure is explained in section 5.4. The proportion components provided further 

understanding of the characteristics of the differences in each detector's reported speed 

from the baseline. The bias proportion (Um) is a measure of proportion of the deviation 

due to consistent bias in the detection of speed. The variance proportion (Us) is a measure 

of the proportion of the deviation due to inequality baseline and detector variances in 

one-minute mean speeds. The covariance proportion (Uc) is a measure of the proportion 

of the deviation that is unsystematic or random. As mutually exclusive proportions, Um, 

Us, and Uc sum to one. 

Table 6.18: One-Minute Mean Speed Theil's Inequality Coefficients 

U Um Us Uc

Solo Pro II 0.084 0.965 0.003 0.031

G4 0.030 0.417 0.000 0.583

SmartSensor 105 0.027 0.114 0.070 0.817  

The values of U in table 6.18 indicate that the G4 and SmartSensor 105 one-

minute mean speeds had similar degrees of inequality when each was compared to the 

baseline one-minute mean speeds. The Solo Pro II was found to have an inequality 

coefficient higher than the other detectors, indicating a comparatively greater inequality 

when its one-minute mean speeds were compared to the baseline one-minute mean 

speeds. The fact that the Solo Pro II had the highest Um indicates that it had the greatest 
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bias proportion of the three detectors, and could benefit most from further calibration. 

The fact that the SmartSensor 105 had the highest value of Us indicates that it had the 

greatest variance proportion of the three detectors, and that the variance in one-minute 

SmartSensor 105 mean speeds was the most significantly different from the variance in 

one-minute baseline mean speeds. Lastly, the high value of Uc for the SmartSensor 105 

indicates that it has the greatest covariance proportion or unsystematic error. That is to 

say that a large proportion of the SmartSensor 105's one-minute speed percent deviation 

cannot be explained by consistent bias or a different variance than the baseline one-

minute speeds. 

Next, the data set was broken down by environmental conditions; percent 

deviation distributions were determined for data subsets with similar conditions for 

factors such as lighting (day, night, dawn, dusk), precipitation (clear, rain), and traffic 

volume. 

Effects of lighting, precipitation, and volume on the Solo Pro II one-minute mean 

speed percent deviation are shown in the distributions in figures 6.27-6.29. Figure 6.27 

shows that there was more variation in the one-minute speed percent deviations under 

night, dawn, and dusk lighting conditions than under day lighting conditions. It was 

hypothesized that headlight use during night, dawn, and dusk periods created a gradient 

of hues on the image, which the VIP software cannot interpret as precisely as it interprets 

the stark contrast of vehicle on pavement during day lighting periods. Similarly, the 

effect of rain, as shown in figure 6.28, was to increase variation in speed deviations. This 

could again be attributed to greater headlight use in rainy conditions, or to image quality 

reduction with rain and mist in the air. Lastly, figure 6.29 shows that under higher traffic 
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volumes, the Solo Pro II one-minute speed percent deviation was more consistent. This 

could be attributed to an aggregation effect. When volume was higher, the one-minute 

mean speed was based on more vehicle speeds. If one of those vehicle speeds was 

misreported by the detector, it had less impact on the one-minute mean speed than a 

similarly misreported single speed during a low volume minute. 

 
Figure 6.27: Solo Pro II One-Minute Mean Speed Percent Deviation Lighting 

Factor Cumulative Distribution Plot 
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Figure 6.28: Solo Pro II One-Minute Mean Speed Percent Deviation Rain 

Factor Cumulative Distribution Plot 

 
Figure 6.29: Solo Pro II One-Minute Mean Speed Percent Deviation Volume 

Factor Cumulative Distribution Plot 
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Figures 6.30-6.32 depict similar plots of the effects of lighting, rain, and volume 

on the G4 one-minute mean speed percent deviation distributions. In figure 6.30, it 

appears that dawn lighting conditions shifted G4 speeds so that more one-minute mean 

speeds were underestimated and fewer were overestimated. No practical explanation for 

this trend was found. Figure 6.31 shows that the variability of G4 one-minute speed 

percent deviation increased in rainy weather. This could be due to disruption of the radar 

signal by rain droplets in the air, which in turn decreased detection precision. Figure 6.32 

shows reduced variability of G4 speed percent deviation under high volume conditions. 

This could be attributed to an aggregation effect, as was previously explained for the Solo 

Pro II. 

 
Figure 6.30: G4 One-Minute Mean Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot 
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Figure 6.31: G4 One-Minute Mean Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot 

 
Figure 6.32: G4 One-Minute Mean Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot 
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Figures 6.33-6.35 show the effects of lighting, rain, and volume on the 

SmartSensor 105 one-minute mean speed percent deviation distributions. Figures 6.33 

and 6.34 show that the SmartSensor 105 one-minute speed detection appeared to be 

relatively consistent under various lighting conditions and the absence or presence of 

rain. Figure 6.35 shows reduced variability of SmartSensor 105 speed percent deviation 

under high volume conditions. It was again hypothesized that this was due to an 

aggregation effect, as was previously posited for the Solo Pro II. 

 

 
Figure 6.33: SmartSensor 105 One-Minute Mean Speed Percent Deviation 

Lighting Factor Cumulative Distribution Plot 
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Figure 6.34: SmartSensor 105 One-Minute Mean Speed Percent Deviation 

Rain Factor Cumulative Distribution Plot 

 
Figure 6.35: SmartSensor 105 One-Minute Mean Speed Percent Deviation 

Volume Factor Cumulative Distribution Plot 
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The statistical significance of these environmental effects on speed detection was 

determined through ANOVA. As with the volume percent error ANOVA, this will be an 

unbalanced four-by-two factorial ANOVA based on the model presented in section 5.5. 

This analysis was performed on each detector's one-minute mean speed percent 

deviation, with factors for lighting (levels=Day, Night, Dawn, and Dusk) and 

precipitation (levels = None and Rain). In order to minimize the effects of serial 

correlation, thinning was performed in a manner similar to that outlined in Appendix B 

for one-minute volume ANOVA. The models for one-minute mean speed ANOVA 

dictated that a thinning factor of 10 would eliminate autocorrelation for all detectors. 

Statistical significance was reported at an α = 0.05 level. 

The output of the Solo Pro II speed ANOVA found in table 6.19 indicates that the 

intercept, as well as the effects of rain and an interaction effect between lighting and rain, 

were statistically significant. The results of the G4 ANOVA, found in table 6.20, indicate 

the mean one-minute mean speed percent deviation was significant, as was the effect of 

lighting and an interaction effect between lighting and rain. Lastly, the results of the 

SmartSensor 105 ANOVA, found in table 6.21, indicate that the mean one-minute mean 

speed percent deviation was statistically significant, while the effects of lighting and rain 

were not found to be statistically significant. As the interaction effect between lighting 

and rain was found not to be statistically significant for the SmartSensor 105, it was 

eliminated from the underlying model to provide greater power to the test of significance 

for the independent effects of lighting and rain, respectively. 
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Table 6.19: Solo Pro II One-Minute Mean Speed Percent Deviation ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 1.510 1 1687.807 0.000 *

Lighting 0.007 3 2.551 0.058

Rain 0.014 1 15.945 0.000 *

Lighting:Rain 0.018 3 6.619 0.000 *

Residuals 0.124 139  

Table 6.20: G4 One-Minute Mean Speed Percent Deviation ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 0.165 1 104.524 0.000 *

Lighting 0.025 3 5.179 0.002 *

Rain 0.001 1 0.581 0.447

Lighting:Rain 0.019 3 4.007 0.009 *

Residuals 0.220 139  

Table 6.21: SmartSensor 105 One-Minute Mean Speed Percent Deviation 

ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 0.053 1 17.851 0.000 *

Lighting 0.007 3 0.788 0.502

Rain 0.001 1 0.214 0.645

Residuals 0.421 142  

Lastly, multiple regression models for the one-minute mean speed percent 

deviation for each detector were developed to support trends observed in the graphical 

representation of the data. This regression was based on the equation given in section 5.6, 

with the dependent variable (  ) being the mean speed percent deviation for minute  , and 

the first dependent variable ( ) being the theoretical mean speed percent deviation for the 

specified detector given daylight non-rainy conditions, with a true volume of 0 vehicles. 

As with the other analyses in this chapter, the effects of serial correlation were minimized 

through data thinning performed in a manner similar to that outlined in Appendix B for 

one-minute volume ANOVA. The models for one-minute mean speed regression dictated 

that a thinning factor of 10 would eliminate autocorrelation for all detectors. Statistical 

significance of model factors was reported at a level of α = 0.05. 
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The coefficients of the Solo Pro II one-minute mean speed percent deviation 

model are shown in table 6.22. The statistically significant factors in this model were the 

intercept, the combined effect of dawn lighting and rain, and the combined effect of dusk 

lighting and rain. It was hypothesized that headlight reflection off of pavement, which 

was made more reflective by rain, caused issues for Solo Pro II speed detection. Based on 

this hypothesis, it was expected that the interaction effect of night lighting and rain would 

also be significant. While that was not the case at an α = 0.05 level, the p-value of 0.084 

indicates that this interaction effect would have been significant under a slightly less 

stringent analysis. The adjusted R-squared for this model was 0.1202, indicating a low 

correlation between the predicted and observed values for Solo Pro II one-minute mean 

speed percent deviation. 

Table 6.22: Solo Pro II One-Minute Mean Speed Percent Deviation 

Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 18.36 0.773 23.771 0.000 *

V.Truth (β1) -0.01 0.022 -0.570 0.570

Night (γ11) 0.69 0.957 0.718 0.474

Dawn (γ12) 1.20 1.594 0.750 0.454

Dusk (γ13) 0.88 1.296 0.680 0.498

Rain (γ21) 0.71 0.869 0.821 0.413

Night:Rain (γ31) -3.33 1.912 -1.740 0.084

Dawn:Rain (γ32) -7.93 2.304 -3.440 0.001 *

Dusk:Rain (γ33) -5.18 1.992 -2.599 0.010 *  

A similar model was created next, through removal of the non-significant 

independent variables from the first model. The coefficients in this model are shown in 

table 6.23. This model had a slightly higher adjusted R-squared value of 0.1229. While 

the estimates of the significant factors in the first model were affected by the inclusion of 

additional non-significant independent variables, the estimates in this model more 
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accurately depict the effects of the significant independent variables on the Solo Pro II 

one-minute mean speed percent deviation. 

Table 6.23: Solo Pro II One-Minute Mean Speed Percent Deviation 

Significant Factors Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 18.23 0.255 71.549 0.000 *

Dawn:Rain (γ32) -6.08 1.519 -4.003 0.000 *

Dusk:Rain (γ33) -3.63 1.363 -2.663 0.009 *  

The coefficients of the G4 one-minute mean speed percent deviation model are 

shown in table 6.24. The statistically significant factors in this model were the true 

volume, night lighting, rain, the combined effect of dawn lighting and rain, and the 

combined effect of dusk lighting and rain. The adjusted R-squared for this model was 

0.1845, indicating a low correlation between the predicted and observed values for G4 

one-minute mean speed percent deviation. 

Table 6.24: G4 One-Minute Mean Speed Percent Deviation Regression 

Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 1.21 0.998 1.218 0.225

V.Truth (β1) 0.08 0.028 2.955 0.004 *

Night (γ11) 3.76 1.236 3.041 0.003 *

Dawn (γ12) 3.62 2.059 1.760 0.081

Dusk (γ13) 2.55 1.673 1.524 0.130

Rain (γ21) 2.48 1.122 2.211 0.029 *

Night:Rain (γ31) -2.63 2.469 -1.065 0.289

Dawn:Rain (γ32) -7.75 2.976 -2.605 0.010 *

Dusk:Rain (γ33) 5.44 2.572 2.115 0.036 *  

A similar model was created by removing the independent variables not found to 

be significant in the first model. The resulting model showed both rain and the interaction 

effect of dawn and rain to be non-significant. Therefore, another model was created with 

these factors removed as well. The coefficients in the resulting model are shown in table 

6.25. While this model had an even lower adjusted R-squared value of 0.1577, the 
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average effect of the significant factors from the first model on the G4 one-minute mean 

speed percent deviation are shown more clearly in the "Estimate" column of this model. 

While the estimates of the significant factors in the first model were affected by the 

inclusion of additional non-significant independent variables, the estimates in this model 

more accurately depict the effects of the significant independent variables on G4 one-

minute mean speed percent deviation. 

Table 6.25: G4 One-Minute Mean Speed Percent Deviation Significant 

Factors Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 2.76 0.746 3.697 0.000 *

V.Truth (β1) 0.05 0.024 2.002 0.047 *

Night (γ11) 2.59 1.042 2.489 0.014 *

Dusk:Rain (γ33) 9.43 1.824 5.170 0.000 *  

The coefficients of the SmartSensor 105 one-minute mean speed percent 

deviation model are shown in table 6.26. The statistically significant factors in this model 

were true volume, night lighting, and the combined effect of night lighting and rain. A 

hypothesis could not be formulated to explain why these factors were found to be 

significant. The adjusted R-squared for this model was 0.0231, indicating a low 

correlation between the predicted and observed values for SmartSensor 105 one-minute 

mean speed percent deviation. 
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Table 6.26: SmartSensor 105 One-Minute Mean Speed Percent Deviation 

Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) -0.31 1.380 -0.224 0.823

V.Truth (β1) 0.08 0.039 2.129 0.035 *

Night (γ11) 4.71 1.709 2.755 0.007 *

Dawn (γ12) 1.73 2.847 0.607 0.545

Dusk (γ13) 0.26 2.314 0.111 0.911

Rain (γ21) 1.21 1.552 0.780 0.437

Night:Rain (γ31) -7.03 3.415 -2.058 0.042 *

Dawn:Rain (γ32) 1.36 4.116 0.331 0.741

Dusk:Rain (γ33) 1.52 3.558 0.428 0.669  

An attempt was made to create a similar model by removing the independent 

variables not found to be significant in the first model. This resulting model found both 

true volume and the interaction effect of night and rain to be non-significant. When 

another model was created having the intercept and night as the only factors, night was 

found to be non-significant. Therefore, it was concluded that none of the tested factors 

were significant by themselves in a model for the SmartSensor 105 one-minute mean 

speed percent deviation. 

While the low adjusted R-squared values for these models suggests a weak linear 

relationship between the independent factors and the one-minute mean speed percent 

deviation, this is to be expected in this application due to variability in speed detection 

based on factors other than the environmental conditions considered herein. If it were 

possible, based on a model similar to one of these, to accurately predict the percent 

deviation in speed of a specific detector for any given minute, it would be possible to 

eliminate these errors. As this is not the case, we present these models in spite of their 

low adjusted R-squared values, in order to demonstrate the average effect of potential 

environmental factors (see "Estimate" column in the above tables) and to demonstrate 

which of these effects were consistent enough to be deemed statistically significant. 
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6.1.3 One-Minute Classification Analysis  

The final detection parameter to be analyzed at the one-minute aggregation interval was 

vehicle classification. This analysis assessed the ability of each detector to correctly 

identify in which of three length-based bins a vehicle belonged. The three length bins 

were (in length): under 25 feet, 25 to 40 feet, and over 40 feet. They were intended to 

represent passenger vehicles, single unit heavy vehicles, and multiple unit heavy vehicles. 

Throughout the remainder of this section, these three classes will be referred to as short, 

medium, and long vehicles. The mean one-minute proportions of short, medium, and long 

vehicles, as reported in the ground truth and by each detector, are depicted in figure 6.36. 

These mean one-minute classification proportions are also given in table 6.27. This figure 

and table indicate that the Solo Pro II had a tendency to classify more vehicles as short 

and medium, and fewer as long, than did the ground truth. The other detectors appeared 

to average approximately the same proportions as the ground truth. 
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Figure 6.36: Mean One-Minute Proportion Short, Medium, and Long 

Vehicles Bar Chart 

Table 6.27: Mean One-Minute Classification Proportions 

Ground 

Truth
SoloPro II

Microloop 

702
G4

Smartsensor 

105

Short 80.2% 88.0% 81.3% 80.4% 78.5%

Medium 4.4% 6.7% 4.7% 3.8% 5.0%

Long 15.4% 5.4% 13.9% 15.8% 16.5%  

These tendencies, indicated by the mean proportions, can be further investigated 

by examining the distributions of one-minute percent short, medium, and long vehicles, 

as reported by the ground truth and each detector. Box plots of the distributions for 

percent short, medium, and long vehicles are given in figures 6.37-6.39. It is shown in 

these figures that distributions of Microloop 702, G4, and SmartSensor 105 one-minute 
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percent short, medium, and long vehicles closely resembled the ground truth 

distributions. It is worth noting that while the Solo Pro II long and short vehicle 

proportion distributions appeared to differ greatly from the ground truth distributions, the 

Solo Pro II proportion medium vehicle distribution bore a greater resemblance to the 

ground truth proportion medium vehicle distribution. 

 
Figure 6.37: Box Plot of One-Minute Percent Short Vehicle Distributions 



160 

 

1
6
0
 

 
Figure 6.38: Box Plot of One-Minute Percent Medium Vehicle Distributions 

 
Figure 6.39: Box Plot of One-Minute Percent Long Vehicle Distributions 
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Scatter plots in figures 6.40-6.42 illustrate the correlations between one-minute 

true and detected percent short, medium, and long vehicles. The correlation coefficients 

included in the figures indicate that the G4 exhibited the strongest correlations between 

reported and ground truth classification proportions, while the Microloop 702 and 

Smartsensor 105 also exhibited good correlation with the ground truth. The Solo Pro II 

had lower correlation coefficients, and appeared to over-report short vehicle proportions 

and under-report long vehicle proportions. 
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Figure 6.40: One-Minute Percent Short Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 
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Figure 6.41: One-Minute Percent Medium Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 
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Figure 6.42: One-Minute Percent Long Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 

The next step in the analysis was to determine the one-minute proportion errors 

for each minute in the dataset for each detector. This was accomplished by subtracting 

the ground truth short vehicle proportion from the detector-reported short vehicle 

proportion for each minute, and likewise for the medium and long vehicle proportions. A 

positive error value indicates that the detector reported a higher percentage of the 

specified class in a given minute than the ground truth percentage. A negative error value 
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indicates that in a given minute the detector reported a lower percentage of vehicles of 

the specified class than were reported by the ground truth percentage. An error value of 

zero indicates that the detector reported a proportion of the specified class equal to the 

ground truth proportion belonging to that class for the given minute. 

The distributions of these errors for the short, medium, and long vehicles are 

shown in the histograms in figures 6.43-6.45. The peakedness of the distributions for the 

Microloop 702, G4, and SmartSensor 105 in these figures indicates that for many of the 

data intervals these detectors exhibited small or non-existent departures from the ground 

truth proportions. The Solo Pro II histograms for the short and long proportions in figures 

6.43 and 6.45 indicate that this detector had a bias for over-reporting the proportion of 

short vehicles and under-reporting the proportion of long vehicles. 
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Figure 6.43: Histograms of One-Minute Percent Short Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure 6.44: Histograms of One-Minute Percent Medium Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure 6.45: Histograms of One-Minute Percent Long Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Another visual representation that draws attention to the distributions of these 

one-minute proportion errors is a cumulative distribution function. Figures 6.46-6.48 

depict cumulative distribution functions for short, medium, and long vehicle proportions 

for each detector, which illustrate the nature of the undercounting and overcounting of the 

respective classes. These figures again show that the Solo Pro II had the largest errors in 

classification of the analyzed detectors. The distributions of the other three detectors 

appeared to be very similar. 

 
Figure 6.46: One-Minute Percent Short Vehicles Error Cumulative 

Distribution Plot 
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Figure 6.47: One-Minute Percent Medium Vehicles Error Cumulative 

Distribution Plot 

 
Figure 6.48: One-Minute Percent Long Vehicles Error Cumulative 

Distribution Plot 
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An additional statistic was used to define the classification error without 

replicating the analyses in triplicate for short, medium, and long vehicle classes. This 

statistic will be referred to as the one-minute classification error percentage, and is 

defined by the following equation: 

 
2

ijiijiiji

ij

pldpltpmdpmtpsdpst
CE


  (6.1) 

where:      is the true percent short vehicles for minute  , 

       is the percent short vehicles for minute   reported by detector  , 

      is the true percent medium vehicles for minute  , 

       is the percent medium vehicles for minute   reported by  

  detector  , 

      is the true percent long vehicles for minute  , and 

       is the percent long vehicles for minute   reported by detector  . 

The factor of two in the denominator is necessary to eliminate overestimation of 

misclassification errors. The need for this factor is demonstrated by the following 

hypothetical example: During a minute with 10 short, 0 medium, and 0 long vehicles, a 

detector reports 9 short, 1 medium, and 0 long vehicles. The intuitive classification error 

percentage is 10%, as 1 of 10 vehicles was incorrectly classified. The numerator of the 

above equation would equal 20% as                  and                 . 

The denominator eliminates the double-counting of vehicles that are missed in one class 

and counted in another class. Summary statistics for the classification error percentage 

are given in table 6.28. 
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Table 6.28 One-Minute Classification Error Percentage Summary Statistics 

Mean Median

Standard 

Deviation

Solo Pro II 12.0% 10.5% 8.84

Microloop 702 4.4% 3.4% 4.58

G4 3.4% 2.2% 4.17

SmartSensor 105 4.2% 3.5% 4.17  

The statistical significance of the effect of environmental factors on the various 

detectors’ ability to classify vehicles was determined through ANOVA. As with the 

volume percent error ANOVA, this was an unbalanced four-by-two factorial ANOVA 

based on the model presented in section 5.5. This analysis was performed on each 

detector's one-minute classification error percentage, with factors for lighting 

(levels=Day, Night, Dawn, and Dusk) and precipitation (levels = None and Rain). In 

order to minimize the effects of serial correlation, thinning was performed in a manner 

similar to that outlined in Appendix B for one-minute volume ANOVA. The models for 

one-minute classification error percentage ANOVA dictated that a thinning factor of 5 

would eliminate autocorrelation for all detectors. Statistical significance was reported at a 

level of α = 0.05. The initial models for each detector were tested with consideration of a 

potential interaction effect between lighting and rain. As this interaction effect was found 

to not be statistically significant for any of the detector's models, it was removed from the 

models to increase the statistical power of the analysis on the independent effects of 

lighting and rain factors. 

The output of the Solo Pro II classification ANOVA, found in table 6.29, 

indicates that the intercept, as well as the effects of lighting and the effects of rain, were 

statistically significant. The results of the Microloop 702 ANOVA found in table 6.30 

indicate that the intercept was the only statistically significant parameter in the model. 
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The results of the G4 ANOVA found in table 6.31 indicate that the intercept, as well as 

the effects of lighting and the effects of rain, were statistically significant. Lastly, the 

results of the SmartSensor 105 ANOVA, found in table 6.32, indicate that the intercept 

was the only statistically significant parameter in the model. 

Table 6.29: Solo Pro II One-Minute Classification Error Percentage ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 22595.7 1 348.597 0.000 *

Lighting 2759.9 3 14.193 0.000 *

Rain 394.8 1 6.091 0.014 *

Residuals 18732.7 289  

Table 6.30: Microloop 702 One-Minute Classification Error Percentage 

ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 1742.5 1 104.022 0.000 *

Lighting 91.7 3 1.825 0.143

Rain 28.9 1 1.726 0.190

Residuals 4841.1 289  

Table 6.31: G4 One-Minute Classification Error Percentage ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 2020.0 1 89.333 0.000 *

Lighting 271.4 3 4.001 0.008 *

Rain 100.1 1 4.425 0.036 *

Residuals 6534.8 289  

Table 6.32: SmartSensor 105 One-Minute Classification Error Percentage 

ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 1976.8 1 96.604 0.000 *

Lighting 45.7 3 0.744 0.526

Rain 1.2 1 0.059 0.808

Residuals 5913.9 289  

Next, multiple regression models for the one-minute classification error 

percentage for each detector were developed to support trends noticed in the graphical 

representation of the data. This regression was based on the equation given in section 5.6, 
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with the dependent variable (  ) being the classification error percentage for minute  , 

and the first dependent variable ( ) being the theoretical classification error percentage 

for the specified detector given daylight, non-rainy conditions with true volume of 0 

vehicles. As with other analyses in this chapter, the effects of serial correlation were 

minimized through data thinning, performed in a manner similar to that outlined in 

Appendix B for one-minute volume ANOVA. The models for one-minute classification 

error percentage regression dictated that a thinning factor of 5 would eliminate 

autocorrelation for all detectors. Statistical significance of model factors was reported at a 

level of α = 0.05. 

The Solo Pro II one-minute classification error percentage model coefficients are 

shown in table 6.33. The statistically significant factors in this model were the intercept, 

true volume, and night lighting. It was hypothesized that the true volume was significant 

because higher volume periods generally had higher short vehicle proportions, which 

diminished the Solo Pro II's tendency to overestimate short vehicle proportion. The 

increase in classification error under night lighting conditions was attributed to the impact 

of vehicle headlights. The adjusted R-squared for this model was 0.1616, indicating a low 

correlation between the predicted and observed values for Solo Pro II one-minute 

classification error percentage. 
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Table 6.33: Solo Pro II One-Minute Classification Error Percentage 

Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 13.64 1.422 9.594 0.000 *

V.Truth (β1) -0.11 0.040 -2.856 0.005 *

Night (γ11) 7.79 1.791 4.349 0.000 *

Dawn (γ12) -2.33 2.965 -0.785 0.433

Dusk (γ13) 2.78 2.429 1.144 0.254

Rain (γ21) 2.44 1.611 1.513 0.131

Night:Rain (γ31) -3.05 3.587 -0.849 0.396

Dawn:Rain (γ32) 1.30 4.211 0.309 0.758

Dusk:Rain (γ33) -5.07 3.818 -1.328 0.185  

A similar model was created, removing independent variables not found to be 

significant in the first model. The coefficients in this model are shown in table 6.34. This 

model had a slightly higher adjusted R-squared value of 0.1658. While the estimates of 

the significant factors in the first model were affected by the inclusion of additional non-

significant independent variables, the estimates in this model more accurately depict the 

effects of the significant independent variable on Solo Pro II one-minute classification 

error percentage. 

Table 6.34: Solo Pro II One-Minute Classification Error Percentage 

Significant Factors Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 14.79 1.036 14.280 0.000 *

V.Truth (β1) -0.14 0.034 -4.170 0.000 *

Night (γ11) 6.80 1.472 4.620 0.000 *  

The coefficients of the Microloop 702 one-minute classification error percentage 

model are shown in table 6.35. The only statistically significant factor in this model was 

the intercept. The adjusted R-squared for this model was 0.0190, indicating a low 

correlation between the predicted and observed values for Microloop 702 one-minute 

classification error percentage. 
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Table 6.35: Microloop 702 One-Minute Classification Error Percentage 

Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 5.14 0.731 7.027 0.000 *

V.Truth (β1) -0.04 0.021 -1.796 0.074

Night (γ11) 1.37 0.921 1.485 0.139

Dawn (γ12) -1.31 1.525 -0.861 0.390

Dusk (γ13) -0.17 1.250 -0.138 0.891

Rain (γ21) -1.06 0.829 -1.283 0.201

Night:Rain (γ31) -2.15 1.846 -1.163 0.246

Dawn:Rain (γ32) 0.61 2.166 0.282 0.778

Dusk:Rain (γ33) 0.70 1.964 0.358 0.721  

The G4 one-minute mean speed percent deviation model coefficients are shown in 

table 6.36. The statistically significant factors in this model were the intercept, true 

volume, and the combined effect of dusk lighting and rain. The impact of ground truth 

volume on this model could be attributed to increased short vehicle proportions under 

higher volume conditions. It was noted earlier (in the analysis of one-minute volume) that 

the G4 was adversely affected by heavy rain occurring during one of the dusk data 

intervals. It was hypothesized that this heavy rain was the reason that the combined effect 

of dusk and rain was found to be significant in this model. The adjusted R-squared for 

this model was 0.0627, indicating a low correlation between the predicted and observed 

values for G4 one-minute classification error percentage. 

Table 6.36: G4 One-Minute Classification Error Percentage Regression 

Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 5.03 0.845 5.954 0.000 *

V.Truth (β1) -0.05 0.024 -1.979 0.049 *

Night (γ11) -1.89 1.064 -1.775 0.077

Dawn (γ12) -2.07 1.761 -1.175 0.241

Dusk (γ13) 0.32 1.443 0.223 0.824

Rain (γ21) -0.03 0.957 -0.029 0.977

Night:Rain (γ31) 1.72 2.131 0.805 0.422

Dawn:Rain (γ32) 0.54 2.501 0.218 0.828

Dusk:Rain (γ33) 5.98 2.268 2.639 0.009 *  
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A similar model was created excluding independent variables not found to be 

significant in the first model. This model showed the ground truth volume to be non-

significant. Therefore, it was removed and another model created. The coefficients in this 

resulting model are shown in table 6.37. While this model had an even lower adjusted R-

squared value of 0.0609, the average effect of the significant factors from the first model 

on the G4 one-minute classification error percentage are shown more accurately in the 

"Estimate" column of this model. While the estimates of the significant factors in the first 

model were affected by the inclusion of additional non-significant independent variables, 

the estimates in this model more accurately depict the effects of the significant 

independent variables on G4 one-minute classification error percentage. 

Table 6.37: G4 One-Minute Classification Error Percentage Significant 

Factors Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 3.53 0.279 12.630 0.000 *

Dusk:Rain (γ33) 7.14 1.595 4.473 0.000 *  

The SmartSensor 105 one-minute mean speed percent deviation model 

coefficients are given in table 6.38. The only statistically significant factor in this model 

was the intercept. The adjusted R-squared for this model was -0.0137, indicating a low 

correlation between the predicted and observed values for SmartSensor 105 one-minute 

classification error percentage. 
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Table 6.38: SmartSensor 105 One-Minute Classification Error Percentage 

Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 4.58 0.815 5.620 0.000 *

V.Truth (β1) -0.01 0.023 -0.279 0.780

Night (γ11) 0.57 1.026 0.554 0.580

Dawn (γ12) -0.04 1.699 -0.023 0.982

Dusk (γ13) -0.75 1.392 -0.541 0.589

Rain (γ21) 0.61 0.923 0.656 0.512

Night:Rain (γ31) -1.83 2.055 -0.890 0.374

Dawn:Rain (γ32) -0.44 2.413 -0.182 0.856

Dusk:Rain (γ33) -2.08 2.188 -0.952 0.342  

The extremely low adjusted R-squared values for these models suggest that 

volume, lighting, and rain factors were not appropriate variables for predicting the 

classification error percentage. The models were presented in spite of their low adjusted 

R-squared values in order to demonstrate the average effect of potential environmental 

factors (see "Estimate" column in the above tables) and demonstrate which of these 

effects were consistent enough to be deemed statistically significant. 

Throughout this analysis of one-minute classification, one observation has 

recurred. The Solo Pro II appears to have a propensity for misclassifying long vehicles as 

short. Figures 6.49-6.51 graphically represent the extent of this issue and show that the 

problem was exacerbated during night lighting conditions. One potential practical 

explanation for this is that the headlights of the vehicle were detected while the body of 

the vehicle was not. This would potentially cause the headlights of a long vehicle to 

register a vehicle length of less than 25 feet. 
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Figure 6.49: Solo Pro II One-Minute Percent Short Vehicles Error Lighting 

Factor Cumulative Distribution Plot 

 
Figure 6.50: Solo Pro II One-Minute Percent Medium Vehicles Error 

Lighting Factor Cumulative Distribution Plot 
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Figure 6.51: Solo Pro II One-Minute Percent Long Vehicles Error Lighting 

Factor Cumulative Distribution Plot 

6.2 Five-Minute and Fifteen-Minute Aggregation Interval Analysis 

In addition to the aggregate analysis performed at the one-minute interval, similar 

analyses were replicated at five-minute and fifteen-minute intervals. Due to the repetitive 

nature of these analyses and the degree to which the results were similar to the one-

minute analysis results, a full description of these analyses is not given in this thesis. 

However, the differences introduced by various aggregation intervals are highlighted in 

this section. Additionally, many of the five-minute and fifteen-minute counterparts to the 

figures and tables in the one-minute analysis are given in appendices D and E. 

6.2.1 Five-Minute and Fifteen-Minute Volume Analysis 

The first and most noteworthy difference that occurred with more extensive aggregation 

was the loss of information. Most of the more specific observations that follow stem from 

this initial finding. For example, as scatter plots were developed and correlation 
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coefficients calculated for detector versus ground truth volumes, correlation coefficients 

increased with the aggregation interval, as shown in table 6.39. Due to this loss of 

variability, the volume MAPE and variance of volume percent error for each detector 

decreased from one-minute to five-minute and from five-minute to fifteen-minute 

aggregation intervals. 

Table 6.39: Interval Volume Correlation Coefficients At Various 

Aggregation Levels 

1-minute 5-minute 15-minute

Solo Pro II 0.992 0.996 0.997

Microloop 702 0.991 0.994 0.995

G4 0.993 0.997 0.998

SmartSensor 105 0.910 0.925 0.938  

Regarding the analysis of volume inequality using Theil's inequality coefficient 

and its proportional components, the actual inequality coefficient decreased with greater 

aggregation, similar to MAPE. It was also noted that the bias proportion and variance 

proportion both increased with greater aggregation, while the covariance (unexplained) 

proportion decreased with greater aggregation. Based on equations 5.9-5.11, and the 

understanding that mean volumes are larger over longer aggregation intervals, and that 

the variance of observations decreasing with greater aggregation, these trends follow 

logically. 

When the effects of various lighting, rain, and traffic volume conditions on 

volume detection were considered at different aggregation intervals, the same trends were 

recognizable at each level of aggregation. The cumulative distribution plots of five-

minute and fifteen-minute volume percent error in appendices D and E have the same 

basic shapes as the one-minute cumulative distribution plots presented earlier in this 

chapter, but generally have curves that are less smooth,  since, when the same data are 
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aggregated over longer intervals, the result is fewer observation points from which to 

create the cumulative distribution curves. 

6.2.2 Five-Minute and Fifteen-Minute Speed Analysis 

The analyses of five-minute and fifteen-minute mean speeds gave results very similar to 

the one-minute mean speed analysis, the primary difference being reduced variability of 

interval mean speeds at greater aggregation intervals. This can be seen in table 6.40, 

where the standard deviation of fifteen-minute mean speeds was lower than those of the 

five-minute mean speeds for each detector. As with the aggregation of volume data, the 

interval mean speed correlation coefficients with respect to the baseline Microloop 702 

increased for each detector as aggregation interval length increased. 

Table 6.40: Five-Minute and Fifteen-Minute Mean Speed Summary Statistics 

Mean Median
Standard 

Deviation
Mean Median

Standard 

Deviation

Solo Pro II 72 73 2.54 72 73 2.37

Microloop 702 61 62 1.88 61 62 1.78

G4 64 63 2.21 64 64 2.09

SmartSensor 105 62 63 2.60 62 63 2.14

* all units are (mph)

Five-Minute Fifteen-Minute

 

Regarding the analysis of speed inequality using Theil's inequality coefficient and 

its proportional components, the actual inequality coefficient decreased with greater 

aggregation, as it did for volume analysis. Also, the bias proportions and variance 

proportions increased with greater aggregation, while the covariance (unexplained) 

proportion decreased, for the same reasons provided for the volume application of Theil's 

inequality coefficient. Lastly, the shapes of speed percent deviation cumulative 

distribution plots were similar at various aggregation intervals, with a slight increase in 
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the steepness of the middle of some of these plots with greater aggregation due to 

reduced variability. These plots can be found in appendices D and E. 

6.2.3 Five-Minute and Fifteen-Minute Classification Analysis  

The reduced variability with greater aggregation becomes most obvious upon analysis of 

classification at five-minute and fifteen-minute intervals. One-minute intervals can 

produce extremely diverse proportions of short, medium, and long vehicles (especially 

during very low-volume periods throughout the night when three long vehicles out of five 

total vehicles in a minute can cause a long vehicle proportion of 60%). When aggregation 

over a longer temporal interval is considered, chance distributions of vehicle classes such 

as this balance out and variability in the data is decreased. This can be readily seen by 

comparing the five-minute and fifteen-minute percent long vehicle distributions in figures 

6.52 and 6.53 with each other and the one-minute distributions in figure 6.39. 

 
Figure 6.52: Box Plot of Five-Minute Percent Long Vehicle Distributions 
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Figure 6.53: Box Plot of Fifteen-Minute Percent Long Vehicle Distributions 

When classification error percentage (as defined by equation 6.1) was analyzed at 

five-minute and fifteen-minute aggregation intervals, the classification error decreased 

with further aggregation. This was again due to the loss of information which takes place 

with further aggregation. This loss of information can be understood by imagining a short 

vehicle in one minute being misclassified as a long vehicle and a long vehicle in the next 

minute being misclassified as a short vehicle. Assuming no other vehicles were detected 

in this two-minute period, aggregation at the one-minute interval would report a mean 

100% classification error, while aggregation at the two-minute interval would report a 

mean 0% classification error. While this example is unrealistic, it serves to demonstrate 

how the mean G4 classification error percentages were 3.4%, 2.1%, and 1.6% at the one-

minute, five-minute, and fifteen-minute aggregation intervals, respectively. Refer to 
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appendices D and E for further information on five-minute and fifteen-minute 

classification error.  

6.3 Chapter Summary 

This chapter has provided analysis of the time aggregate detection abilities of the four 

detectors under evaluation. The relative strengths and weaknesses of the different 

detectors were demonstrated in the results of this analysis. One-minute, five-minute, and 

fifteen-minute aggregation intervals were selected to represent the effect of various levels 

of aggregation on detector accuracy. Specific ITS applications require data at various 

intervals, and one detector may be well-suited for an application that uses fifteen-minute 

aggregate data while not providing appropriately accurate data for an application 

requiring one-minute aggregate data. The aggregate data analysis presented in this 

chapter focused on interval traffic volume, mean speed over the interval, and traffic 

composition over the interval (proportion short, medium, and long vehicles). 

The analysis of interval traffic volume detection in this chapter indicated that the 

G4 had the strongest correlation with ground truth volumes, with correlation coefficients 

of 0.993, 0.997, and 0.998 for one, five, and fifteen minute intervals, respectively. The 

Solo Pro II and Microloop 702 had correlation coefficients nearly as strong as the G4, 

and had mean percent errors closer to zero than the G4. The SmartSensor 105 was found 

to underreport volume when higher traffic volumes were present. It was found that while 

mean percent error was relatively unchanged by longer aggregation intervals, mean 

absolute percent error decreased for every detector with longer aggregation intervals. 

Regression analysis found that the environmental conditions that significantly affected 

Solo Pro II volume detection were night lighting and the combined effect of dawn 
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lighting and rain. The Microloop 702 and G4 were found to be significantly affected by 

the combined effect of dusk lighting and rain, while the SmartSensor 105 was not found 

to be significantly affected by lighting or rain conditions. 

The analysis of interval mean speed was conducted with the Microloop 702 data 

serving as a baseline due to the lack of ground truth speeds. The distributions of one, five, 

and 15-minute mean speeds indicated that the Solo Pro II was reporting interval mean 

speeds much higher than the other three systems, including the baseline Microloop 702. 

However, it was concluded that this could be corrected with further calibration. The more 

intriguing finding was that while the Microloop 702, Solo Pro II, and SmartSensor 105 

mean speed distributions all had similar shapes, the G4's mean speed distribution had a 

more symmetrical shape which lacked the significant left tail that was present in the other 

detectors’ distributions. This was interpreted as the G4 being relatively insensitive to 

reductions in speed. Interval mean speed analysis provided very similar results at the one, 

five, and 15-minute aggregation levels, with the primary difference being a reduction in 

the variance of reported values from each detector as aggregation increased. This was 

consistent with expectations for data aggregation. The interval speed detection analysis 

also considered the influence of environmental factors with mixed results. 

Lastly, the interval classification analysis indicated strong length-based 

classification from the Microloop 702, G4, and SmartSensor 105, with mean 

classification error percentages below 5% for all three at one-minute intervals. The Solo 

Pro II struggled with classification, with the most frequent problem being the 

misclassification of long vehicles as short. The Solo Pro II's mean classification error was 

12% at the one-minute aggregation interval. It was found that greater aggregation levels 
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decreased mean classification error percentages for all four detection systems, and also 

decreased the variance of these classification error percentages. Analysis involving the 

influence of environmental factors indicated that night lighting conditions exacerbated 

the Solo Pro II's classification problem. The G4’s classification ability was found to be 

affected by the combination of dusk lighting and rain. This effect was hypothesized to be 

a result of heavy rain which took place during one of the dusk lighting intervals. The 

classification abilities of the other detectors appeared to be relatively uninfluenced by the 

documented environmental factors. 
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CHAPTER 7 DISAGGREGATE ANALYSIS AND RESULTS 

While aggregate interval analysis provided information on detector performance over 

temporal intervals, representing what may be used in practical planning and ITS 

implementations, disaggregate per-vehicle analysis provides a powerful tool for the 

determination of factors which affect detector performance. The following analysis 

focused on disaggregate analysis of per-vehicle detection. 

This disaggregate analysis was based on vehicle detections in the 1467 minute 

analysis data set defined in section 4.1. In this data set there were a total of 36,124 time-

stamped ground truth vehicle presence detections with vehicle classification. The data set 

also included time-stamped detector reported vehicle detections with individual speeds 

and vehicle classifications from each of the four analyzed detection systems. 

Additionally, lighting and precipitation conditions and traffic volume were noted at the 

time of each detection, so that potential effects of these factors on the performance of the 

various detector technologies could be determined. 

7.1 Presence Detection Analysis  

The first detection parameter analyzed at the per-vehicle disaggregate level was presence 

detection. Each detection reported by one of the traffic detectors could be classified as 

either a correct detection or a false detection. If the detection could be correlated to a 

ground truth detection during the same second and in the same lane, it was classified as a 

correct detection. If there was no corresponding ground truth detection in the same lane at 

the same second, it was classified as a false detection. Additionally, if there was a ground 

truth detection without a corresponding reported detection from the given detector, this 

was classified as a missed detection for that detector. Table 7.1 gives the number of 
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correct, missed, and false detections for each analyzed detector during the entire data set, 

as well as percent correct, missed, and false detections. 

Table 7.1 Presence Detection Summary Statistics 

Correct 

Detections

Missed 

Detections

False 

Detections

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 33785 2339 1204 90.5% 6.3% 3.2%

Microloop 702 35177 947 1816 92.7% 2.5% 4.8%

G4 33934 2190 431 92.8% 6.0% 1.2%

SmartSensor 105 31189 4935 1137 83.7% 13.2% 3.1%  

The values in this table indicate that the Microloop 702 and G4 had the best overall 

presence detection rates, while the SmartSensor 105 had a comparatively high number of 

missed detections. Figure 7.1 provides a graphical depiction of the information presented 

in the table above. It is interesting to note that while the Microloop 702 and G4 had 

similar percent correct detections, the Microloop 702's errors were primarily false 

detections, while the G4's errors were primarily missed detections. 

 
Figure 7.1: Presence Detection Stacked Bar Chart 
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The next step in the analysis was to separate the data into subsets representing the 

various factors being considered as potentially affecting detection performance, and to 

determine the percent correct, missed, and false detections for these subsets.  

7.1.1 Volume Effect 

The first division was by traffic volume at the time of the detection into low volume and 

high volume subsets. Low volume periods were defined as periods when the traffic 

stream had a level of service of A or B (i.e., one-minute periods during which the three-

lane passenger car equivalency did not exceed 54). High volume periods were 

characterized by a level of service of C or worse (i.e., one-minute periods during which 

the three-lane passenger car equivalency exceeded 54). Table 7.2 gives the presence 

detection performance for low volume periods, while table 7.3 gives the presence 

detection performance for high volume periods. 

Table 7.2 Low Volume Presence Detection Statistics 

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 90.0% 6.3% 3.7%

Microloop 702 92.3% 2.2% 5.4%

G4 93.0% 5.8% 1.3%

SmartSensor 105 89.0% 7.5% 3.6%  

Table 7.3 High Volume Presence Detection Statistics 

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 92.0% 6.2% 1.8%

Microloop 702 93.9% 3.4% 2.7%

G4 92.4% 6.7% 1.0%

SmartSensor 105 67.3% 31.2% 1.5%  

As would be expected, there was a tradeoff between missed detections and false 

detections at different volumes of traffic. At a higher traffic volume, there were generally 

more missed detections and fewer false detections. It is noteworthy, however, that the 



191 

 

1
9
1
 

percent correct detections remained fairly similar at different volumes. The one major 

exception is the SmartSensor 105 which appears to have performed much better at low 

volumes than at high volumes. This supports the finding in section 6.1.1 that the 

SmartSensor 105 tended to under-report volumes when the ground truth volume was 

high. Figure 7.2 depicts visually the effects of volume on presence detection for the 

various detectors analyzed. This figure again shows that the SmartSensor 105 performed 

much better under low volume conditions than high volume conditions. 

 
Figure 7.2: Presence Detection Volume Factor Stacked Bar Chart  

 *where (a) represents low volume periods and (b) represents high volume periods 

7.1.2 Precipitation Effect  

The next factor to be considered was precipitation. A division was made between clear 

and rainy subsets of the data. Table 7.4 gives the presence detection performance for 

clear weather periods, while table 7.5 gives the presence detection performance for rainy 

periods. Rainy periods were defined as any minute in the data set during which liquid 
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precipitation was noted. This absence or presence of rain was determined based on 

weather reports from the nearby Millard Airport in conjunction with manual observation 

of the ground truth video from the NTC/NDOR non-intrusive detector test bed. 

Table 7.4 Clear Weather Presence Detection Statistics 

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 90.7% 6.5% 2.9%

Microloop 702 93.0% 2.4% 4.5%

G4 93.4% 5.5% 1.1%

SmartSensor 105 82.6% 14.6% 2.7%  

Table 7.5 Rainy Weather Presence Detection Statistics 

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 89.5% 5.1% 5.5%

Microloop 702 90.6% 2.9% 6.5%

G4 88.8% 9.4% 1.7%

SmartSensor 105 90.7% 4.3% 5.0%  

The correct detection rates of the Solo Pro II, Microloop 702, and G4 all 

decreased with rain by varying magnitudes. One contrast that emerged in these two tables 

was the improvement of the SmartSensor 105’s percent correct detections by 8.1 

percentage points between clear and rainy conditions. In the search for a logical 

explanation for this result, it was noted that all high volume periods (i.e., LOS C or D) 

were also clear periods. This unintentional correlation could have been reintroducing the 

strong negative effect of high volume on SmartSensor 105’s presence detection as a 

pseudo-positive effect of rain. Therefore, it should not be concluded that the SmartSensor 

105 performed better in rainy conditions based on these data. Figure 7.3 visually depicts 

the contrasts between the values in tables 7.4 and 7.5. 
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Figure 7.3: Presence Detection Rain Factor Stacked Bar Chart 

 *where (a) represents clear weather periods and (b) represents rainy weather periods 

7.1.3 Lighting Effect 

The final factor to be considered was lighting. For lighting, a division was made between 

day, night, dawn, and dusk subsets of the data. The definitions of these lighting 

conditions were related to time of day. For the purpose of this study, dawn was defined as 

the one hour period centered around sunrise. Dusk was defined as the one hour period 

centered around sunset. Review of video of the traffic stream confirmed that the lighting 

transition from day to night took place during this one hour period, as shown in figure 

7.4. Day was defined as the period from the end of the dawn period to the beginning of 

the dusk period. Night was defined as the period from the end of the dusk period to the 

beginning of the dawn period. 
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Figure 7.4: Dusk Lighting Transition on 06/20/2011 
 *where (a) is sunset - 30 min, (b) is sunset -15 min, (c) is sunset, (d) is sunset +15 min, and (e) is 

 sunset + 30 min 

Table 7.6 gives the presence detection performance for day lighting periods, while 

table 7.7 gives the presence detection performance for night lighting periods. Table 7.8 

gives the presence detection performance for dawn lighting periods, and table 7.9 gives 

the presence detection performance for dusk lighting periods. 

Table 7.6 Day Lighting Presence Detection Statistics 

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 90.6% 6.6% 2.8%

Microloop 702 92.9% 2.5% 4.5%

G4 93.1% 5.7% 1.1%

SmartSensor 105 82.4% 14.8% 2.9%  

Table 7.7 Night Lighting Presence Detection Statistics 

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 89.7% 3.8% 6.5%

Microloop 702 92.1% 1.5% 6.5%

G4 94.2% 4.9% 0.9%

SmartSensor 105 93.1% 2.8% 4.1%  

Table 7.8 Dawn Lighting Presence Detection Statistics 

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 87.1% 5.7% 7.1%

Microloop 702 92.4% 0.9% 6.7%

G4 95.2% 3.4% 1.3%

SmartSensor 105 90.9% 4.2% 4.9%  
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Table 7.9 Dusk Lighting Presence Detection Statistics 

% Correct 

Detections

% Missed 

Detections

% False 

Detections

Solo Pro II 91.7% 3.8% 4.5%

Microloop 702 90.1% 4.2% 5.7%

G4 83.8% 14.2% 2.0%

SmartSensor 105 91.6% 4.4% 4.0%  

There are a few noteworthy values in these tables. First, the 14.8% missed 

detections for the SmartSensor 105 under day lighting conditions were 10.4% to 12.0% 

higher than the missed detections for this unit under the three other conditions. The most 

rational explanation for this is that the volume effect was, again, showing up 

unintentionally due to the fact that all high volume periods were during day lighting 

conditions. Another error rate that stood out was the 14.2% missed detections for the G4 

under dusk lighting conditions. Further analysis of the data set indicated that this severe 

error rate may have been due to the effect of heavy rain during portions of the dusk 

subset. There were much higher missed detection rates during this heavy rain period than 

during the remainder of the dusk period. Another noteworthy trend was the increase in 

Solo Pro II false detections under night and dawn lighting. This could potentially be 

attributed to headlight spillover at night and long shadow spillover at dawn. Spillover is a 

phenomenon where a vehicle artifact, such as shadow or headlight reflection on 

pavement, is detected in a lane adjacent to the lane in which the vehicle is actually 

travelling. A potential instance of headlight spillover in lane two from the vehicle 

travelling in lane one can be seen in figure 7.5(a), while a potential instance of shadow 

spillover in lane two from the truck in lane one can be seen in figure 7.5(b). Next, figure 

7.6 visually depicts the contrasts between the presence detection rates under various 

lighting conditions. 
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Figure 7.5: Potential Spillover Situations 

 
Figure 7.6: Presence Detection Lighting Factor Stacked Bar Chart  

 *where (a) represents day periods, (b) represents night periods, (c) represents dawn periods, and  

 (d) represents dusk periods 

While disaggregate presence detection may be considered the most basic metric 

of traffic detector accuracy, it should not be overemphasized in the assessment of traffic 

detectors. Most ITS applications for which a traffic detector would be required utilize 

data aggregate on some time interval. As presence detection is aggregate, it is represented 
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by volume over the set interval. This aggregation allows for a balancing effect of missed 

and false detections, which is not represented in the disaggregate analysis. For that 

reason, the metric of disaggregate presence detection was presented in conjunction with a 

number of other metrics. 

7.2 Per-Vehicle Speed Analysis  

As a ground truth speed was not available throughout the duration of the data collection 

period, the Microloop 702 was selected as a baseline against which the other detectors 

were compared. This system was chosen as the baseline because its magnetic induction 

technology and functional procedure for collecting speed data through a "speed trap" 

configuration most closely represented the legacy system of inductive loop detectors.  

This speed trap configuration introduced a potential type of error that is not 

present in the other detectors. While other detectors use one detection zone to calculate 

speed, the speed trap correlates detections from two discrete sources to calculate speed. If 

only one of the sources registers a detection, no correlation occurs and the vehicle is 

assigned a speed of zero. Additionally, if the two sources falsely correlate detections of 

two different vehicles as one, extreme high or low speeds can be calculated as a result. 

These specific errors must be removed from the data set before analysis commences. This 

was done by defining an interval of reasonable speeds and removing detections having 

speeds outside this reasonable interval. 

Based on the fact that "operating speeds have been found to be normally 

distributed," the speeds of vehicles at the detector test bed were assumed to be normally 

distributed (57). Under this assumption, the 40,395 vehicle sample should only have 

included approximately three vehicles (0.0063%) outside the range of 36 - 87 mph 
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(    ). The range defined by four standard deviations from the mean was selected 

based on sample size and the number of expected values outside the ranges for that 

sample size. In reality, there were 185 values outside of this range (still less than 0.5% of 

the sample), rather than three. Many of these values were zero speeds. Other values near 

160 mph resulted when vehicles in adjacent lanes occasionally confounded the speed trap 

calculation for speed. These 185 values were labeled "outliers," and were removed from 

the data set for the per-vehicle speed analysis. The remaining data set included speed data 

for 40,210 vehicles. 

This analysis began with graphical representation of the distributions of detected 

per-vehicle speeds from each detector. The box plot in figure 7.7 indicates that the G4 

reported the smallest distribution of speeds, while the Solo Pro II reported the largest 

distribution of speeds. The inter-quartile ranges speeds in this box plot also shows that 

the Solo Pro II frequently reported speeds much higher than the other three detectors. 
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Figure 7.7: Box Plot of Reported Per-Vehicle Speeds 

The histogram that follows (figure 7.8) depicts even more clearly the distributions 

of reported speeds from the various detectors. Additionally, the values for the first four 

central moments were given to further characterize each distribution. The mean speed 

values again showed that the Solo Pro II mean speed was 8.4 to 11.2 mph higher than the 

other detectors. It is also worth noting that the variance of the G4 speeds was lower than 

that of the other three detectors. This supports the hypothesis from chapter 6 that the G4 

was less sensitive to differences in speed than were the other three detectors. 
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Figure 7.8: Histograms of Per-Vehicle Speed Distributions for the Solo Pro 

II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) 
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The cumulative distribution plot in figure 7.9 provides one more graphical 

representation of the speed distributions for the four detectors under consideration. In this 

plot, the higher Solo Pro II speeds were again obvious. Closer examination revealed that, 

while the G4 detected higher speeds similarly to the Microloop 702 and SmartSensor 

105, it did not detect the same lower speeds as the Microloop 702 and SmartSensor 105 

(i.e., speeds below approximately 55 mph). 

 
Figure 7.9: Cumulative Distribution Plot of Per-Vehicle Speed Distributions 

for All Detectors 

The most obvious information available in the above figures is that the mean of 

the Solo Pro II reported speeds (72.7 mph) was much higher than the other three 

detectors, which all had similar mean speeds (61.5 mph - 64.3 mph). While the Solo Pro 

II software contained a speed calibration adjustment factor (a multiplicative factor which 
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can be applied to every vehicle speed), this factor was not adjusted since the initial 

installation of the detector, based on the fact that its inclusion would be purely empirical 

and not based on the theory behind how speed is calculated by this detector. It is noted 

here that configuration of the detectors and recalibration for this thesis was primarily 

focused on optimizing presence detection. Recalibration after a preliminary data 

collection interval did not address speed detection. As such, the mean speed bias alone 

should not be considered as a detriment for any of the detectors. Figure 7.10 shows how 

closely the distributions of per-vehicle speeds from each detector represented one-another 

when appropriate multiplicative factors were applied to each speed so that all detectors 

had the same mean speed as the baseline Microloop 702. 

 
Figure 7.10: Cumulative Distribution Plot of Per-Vehicle Speed 

Distributions for All Detectors with Respective Multiplicative Factors 

Applied 
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After noting the speed distributions reported by each detector, the detected speeds 

from the Solo Pro II, G4, and SmartSensor 105 were compared to the speeds reported by 

the Microloop 702 baseline detector. The scatter plots in figure 7.11 and the 

accompanying correlation coefficients (r) indicated that the Solo Pro II speeds had the 

strongest linear relationship to the baseline speeds. Figure 7.11 also shows that the range 

of G4 speeds was narrower than the range of speeds from the other detectors, suggesting 

that it may be relatively insensitive to changes in speed when compared to the other 

detectors. 
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Figure 7.11: Per-Vehicle Speed Scatter Plots Against Baseline for Solo Pro II 

(a), G4 (b), and SmartSensor 105 (c) Detectors 

This was followed by the calculation of the percent deviations and absolute 

percent deviations from the baseline for each detection. The distributions of the percent 

deviation values for each detector are displayed graphically in figures 7.12-7.14. 

Appropriate per-vehicle speed deviation statistics such as MPD, MAPD, and variance of 

percent deviation are given in table 7.10. There are a few observations worth noting in 

these figures and the table. Figure 7.12 shows that the inter-quartile range of the Solo Pro 

II was narrower than those of the G4 and SmartSensor 105, indicating that it had a 
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relatively consistent deviation from the baseline. The relatively high kurtosis of the Solo 

Pro II speed percent deviation in figure 7.13 provides further evidence of this fact, as 

does the steep central portion of its cumulative distribution curve (figure 7.14) and the 

relatively small percent deviation variance of the Solo Pro II (table 7.10). Also worth 

noting are the similarities between the G4 and the SmartSensor 105. It was hypothesized 

that the similar distributions of these two detectors’ speed percent deviations, shown in 

figures 7.12 and 7.13, indicated that the common technology of microwave radar 

employed by these detectors led to a specific bias in speed detection. Additionally, the 

differences between these two detectors, indicated by the values in table 7.10, indicate 

that other attributes of reported speeds were unique to each detector model with the same 

technology. 

 
Figure 7.12: Per-Vehicle Speed Percent Deviation Box Plot 
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Figure 7.13: Histograms of Per-Vehicle Speed Percent Deviation 

Distributions for Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors  
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Figure 7.14: Per-Vehicle Speed Percent Deviation Cumulative Distribution 

Plot 

Table 7.10: Detector Per-Vehicle Speed Deviation Statistics 

MPD MAPD

Percent 

Deviation 

Variance

Solo Pro II 17.9% 18.2% 0.00694

G4 4.85% 8.33% 0.00959

SmartSensor 105 2.88% 8.59% 0.0115  

Theil's inequality coefficient (U) was calculated for per-vehicle speeds for each 

detector, and is presented along with its proportion components in table 7.11. This 

goodness-of-fit measure was explained in section 5.4. U can take values from zero to one, 

with higher values indicating greater inequality between the detector-observed speeds and 

baseline speeds. The proportion components provide further understanding of the 
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character of differences of each detector's reported speed from the baseline. The bias 

proportion (Um) is a measure of proportion of the deviation due to consistent bias in the 

detection of speed. The variance proportion (Us) is a measure of the proportion of the 

deviation due to inequality between the baseline and detector variances in per-vehicle 

speed distributions. The covariance proportion (Uc) is a measure of the proportion of the 

deviation that is unsystematic, or random. As mutually exclusive proportions, Um, Us, and 

Uc sum to one. 

Table 7.11: Per-Vehicle Speed Theil's Inequality Coefficients  

U Um Us Uc

Solo Pro II 0.088 0.848 0.002 0.150

G4 0.050 0.174 0.006 0.820

SmartSensor 105 0.053 0.049 0.003 0.949  

The values for U in table 7.11 indicate that the Solo Pro II had the greatest per-

vehicle speed inequality with respect to the baseline speeds. This was to be expected 

based on the previous data presented on per-vehicle speed. However, the value of Um 

indicated that 84.8% of the Solo Pro II's inequality with respect to baseline speeds was 

attributable to bias (a consistent error that can be addressed with further calibration). The 

remainder of table 7.11 indicates that the G4 could also benefit from additional 

calibration with a bias proportion (Um) of 17.4%, and that the SmartSensor 105 had the 

highest proportion of unsystematic inequality (Uc = 94.9%). 

Next, the data set was broken down by environmental conditions, and percent 

deviation distributions were determined for data subsets with similar conditions for 

factors such as lighting (day, night, dawn, dusk), precipitation (clear, rain), and traffic 

volume (low volume, high volume).  
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Effects of lighting, precipitation, and volume on the Solo Pro II per-vehicle speed 

percent deviation are shown in the distributions in figures 7.15-7.17. Figure 7.15 

indicates that the Solo Pro II was prone to greater speed errors under night lighting in 

comparison to the other lighting conditions, as evidenced by relatively fat tails at both 

ends of the cumulative distribution line for night lighting. Figure 7.16 indicates that under 

rainy conditions, the severity of Solo Pro II speed overestimation may be slightly reduced 

relative to clear conditions. It was hypothesized that both of these environmental impacts 

could be attributed to headlight reflection off of the pavement in night or wet conditions. 

However, testing this hypothesis was beyond the scope of this thesis. Traffic volume did 

not appear to greatly impact Solo Pro II reported speeds (figure 7.17). 

 
Figure 7.15: Solo Pro II Per-Vehicle Speed Percent Deviation Lighting 

Factor Cumulative Distribution Plot 
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Figure 7.16: Solo Pro II Per-Vehicle Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot 

 
Figure 7.17: Solo Pro II Per-Vehicle Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot 
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Figures 7.18-7.20 represent the effects of lighting, rain, and traffic volume on G4 

speed detection. The cumulative distribution lines in figure 7.18 indicate that while the 

G4 generally overestimated speed, the severity of this overestimation was diminished in 

dawn lighting conditions. As the microwave radar technology employed by the G4 

should not have been affected by light, an alternative explanation was required. The most 

practical explanation implied that the G4 was insensitive to changes in speed in 

comparison to the other detector systems evaluated. The three other systems each had 

similar mean speeds for dusk and night conditions and a mean speed approximately 2 

mph higher during dawn and day conditions, indicating more aggressive driver behavior 

at those times. In contrast, the G4 had similar mean speeds for dusk, night, and dawn 

conditions, and a mean speed approximately 2 mph higher during day lighting conditions. 

Figure 7.19 indicates that the G4 was relatively unaffected by rain conditions. Lastly, 

figure 7.20 indicates that the G4 overestimated speed by 7.5% during high volume 

conditions, as compared to 4.0% during low volume conditions. Based on the 

fundamental speed-density relationship, it was anticipated that actual speeds would be 

lower at high densities (and thus also high volume). Therefore, the greater overestimation 

of speed under high volume conditions again indicates that the G4 was relatively 

insensitive to changes in speed. 
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Figure 7.18: G4 Per-Vehicle Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot 

 
Figure 7.19: G4 Per-Vehicle Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot 
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Figure 7.20: G4 Per-Vehicle Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot 

The observed speeds from the SmartSensor 105 for different lighting, rain, and 

traffic volumes are shown in figures 7.21-7.23. The similar cumulative distribution lines 

in figure 7.21 indicate that the SmartSensor 105 speed detection was unaffected by 

various lighting conditions. Similarly, figure 7.22 indicates that the SmartSensor 105 

speed detection was relatively unaffected by rain. Lastly, figure 7.23 indicates that traffic 

volume did have some impact on the reported speeds of the SmartSensor 105. It appears 

that higher traffic volume increased the percent deviation of the SmartSensor 105 speed 

relative to the baseline speed by an average of 2.5 percentage points (4.9% mean 

deviation in high volume compared to 2.4% mean deviation in low volume). 
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Figure 7.21: SmartSensor 105 Per-Vehicle Speed Percent Deviation Lighting 

Factor Cumulative Distribution Plot 

 
Figure 7.22: SmartSensor 105 Per-Vehicle Speed Percent Deviation Rain 

Factor Cumulative Distribution Plot 
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Figure 7.23: SmartSensor 105 Per-Vehicle Speed Percent Deviation Volume 

Factor Cumulative Distribution Plot 

The effects of environment on speed detection were studied using ANOVA. An 

unbalanced four-by-two factorial ANOVA, based on the model presented in section 5.5, 

was used due to the unequal numbers of vehicles observed in each category, defined by 

the four lighting levels and two precipitation levels. This analysis was performed on each 

detector's per-vehicle speed percent deviation, with factors for lighting (levels=Day, 

Night, Dawn, and Dusk) and precipitation (levels = None and Rain). In order to minimize 

the effects of serial correlation, thinning was performed in a manner similar to that 

outlined in Appendix B for the one-minute volume ANOVA. The models for per-vehicle 

speed ANOVA dictated that a thinning factor of 10 would eliminate autocorrelation for 

all detectors. Statistical significance was reported a level of α = 0.05. It is important to 

note that statistical significance reported here does not imply practical significance. This 

is to say that, due to the large sample size, a factor could be found to have a statistically 
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significant effect on the speed percent deviation, but the magnitude of that effect could be 

so small as to be meaningless from an engineering perspective. 

The output of the Solo Pro II speed ANOVA, found in table 7.12, indicates that 

the intercept, as well as the effects of lighting, rain, and an interaction effect between 

lighting and rain, were statistically significant. The results of the G4 ANOVA, found in 

table 7.13, indicate the intercept was significant, as were the effects of lighting, rain, and 

an interaction effect between lighting and rain. Lastly, the results of the SmartSensor 105 

ANOVA, found in table 7.14, indicate that intercept was statistically significant, while 

the effects of lighting and rain were not found to be statistically significant. As the 

interaction effect between lighting and rain was found not to be statistically significant 

for the SmartSensor 105, it was eliminated from the underlying model to provide greater 

power to the test of significance for the independent effects of lighting and rain. 

Table 7.12: Solo Pro II Per-Vehicle Speed Percent Deviation ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 20.496 1 2913.207 0.000 *

Lighting 0.169 3 7.987 0.000 *

Rain 0.066 1 9.321 0.002 *

Lighting:Rain 0.141 3 6.691 0.000 *

Residuals 23.527 3344  

Table 7.13: G4 Per-Vehicle Speed Percent Deviation ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 1.944 1 204.036 0.000 *

Lighting 0.320 3 11.193 0.000 *

Rain 0.057 1 5.974 0.015 *

Lighting:Rain 0.167 3 5.855 0.001 *

Residuals 32.051 3364  
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Table 7.14: SmartSensor 105 Per-Vehicle Speed Percent Deviation ANOVA 

Sum Sq Df F value Pr(>F) Sig.

(Intercept) 0.725 1 60.694 0.000 *

Lighting 0.056 3 1.562 0.197

Rain 0.014 1 1.212 0.271

Residuals 37.119 3106  

Next, multiple regression models for the per-vehicle speed percent deviation for 

each detector were developed to test whether the relationships found in the graphical 

representation of the data were statistically significant. This regression was based on the 

equation given in section 5.6, with the dependent variable (  ) being the speed percent 

deviation for vehicle  , and the first dependent variable ( ) being the theoretical mean 

speed percent deviation for the specified detector given daylight, non-rainy conditions. 

As with other analyses in this chapter, the effect of serial correlation was minimized 

through data thinning performed in a manner similar to that outlined in Appendix B for 

one-minute volume ANOVA. The models for per-vehicle speed regression dictated that a 

thinning factor of 10 would eliminate autocorrelation for all detectors. Statistical 

significance of model factors was reported at α = 0.05. 

Table 7.15 lists the Solo Pro II’s one-minute mean speed percent deviation model 

coefficients. The statistically significant factors in this model were the intercept, rain, the 

combined effect of dawn lighting and rain, and the combined effect of dusk lighting and 

rain. The adjusted R-squared for this model was 0.0101 signifying a low correlation 

between the predicted and observed values for speed percent deviation. 
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Table 7.15: Solo Pro II Per-Vehicle Speed Percent Deviation Regression 

Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 18.27 0.164 111.518 0.000 *

Night (γ11) -0.19 0.728 -0.257 0.797

Dawn (γ12) -0.25 1.186 -0.207 0.836

Dusk (γ13) -0.20 0.876 -0.225 0.822

Rain (γ21) 1.25 0.545 2.291 0.022 *

Night:Rain (γ31) -2.87 1.495 -1.918 0.055

Dawn:Rain (γ32) -6.10 1.625 -3.755 0.000 *

Dusk:Rain (γ33) -3.78 1.474 -2.567 0.010 *  

The coefficients of the G4 per-vehicle speed percent deviation model are shown 

in table 7.16. The statistically significant factors in this model were the intercept, rain, 

and the combined effect of dawn lighting and rain. The adjusted R-squared for this model 

was 0.0150, signifying a low correlation between the predicted and observed values for 

speed percent deviation. 

Table 7.16: G4 Per-Vehicle Speed Percent Deviation Regression Model  

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 4.72 0.190 24.889 0.000 *

Night (γ11) 1.15 0.841 1.369 0.171

Dawn (γ12) -1.21 1.354 -0.892 0.373

Dusk (γ13) -0.62 1.019 -0.613 0.540

Rain (γ21) 1.81 0.628 2.888 0.004 *

Night:Rain (γ31) 3.08 1.797 1.712 0.087

Dawn:Rain (γ32) -5.89 1.865 -3.155 0.002 *

Dusk:Rain (γ33) 3.06 1.875 1.633 0.102  

The coefficients of the SmartSensor 105 per-vehicle speed percent deviation 

model are shown in table 7.17. The only statistically significant factor in this model was 

the intercept. The adjusted R-squared for this model was 0.0010, signifying a very low 

correlation between the predicted and observed values for speed percent deviation. 
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Table 7.17: SmartSensor 105 Per-Vehicle Speed Percent Deviation 

Regression Model 

Estimate Std. Error t value Pr(>|t|) Sig.

(Intercept) (α) 2.93 0.224 13.074 0.000 *

Night (γ11) 0.83 0.944 0.881 0.379

Dawn (γ12) 0.92 1.504 0.612 0.540

Dusk (γ13) 0.61 1.144 0.531 0.596

Rain (γ21) -0.88 0.706 -1.249 0.212

Night:Rain (γ31) 3.63 1.970 1.842 0.066

Dawn:Rain (γ32) -1.81 2.079 -0.870 0.384

Dusk:Rain (γ33) 0.21 1.935 0.111 0.912  

While the low adjusted R-squared values for these models suggest a weak fit, that 

was to be expected in this application. If it were possible to accurately predict the speed 

percent error of a specific detector for any given vehicle based on one of the models 

listed above, it would be possible to eliminate these errors. As this is not the case, these 

models were presented in spite of their low adjusted R-squared values to demonstrate the 

average effect of potential environmental factors (see "Estimate" column in the above 

tables), and to surmise which of these effects were consistent enough to be deemed 

statistically significant. 

7.3 Per-Vehicle Classification Analysis  

The final detection parameter to be analyzed was vehicle classification. This analysis 

assessed the ability of each detector to correctly identify in which of three length-based 

bins a vehicle belonged. The three length bins were: under 25 feet, 25 to 40 feet, and over 

40 feet in length, and were intended to represent passenger vehicles, single unit heavy 

vehicles, and multiple unit heavy vehicles, respectively. These length bin divisions were 

chosen based on the stated practice of NDOR officials responsible for the collection of 

planning data. Throughout the remainder of this section, these three classes will be 

referred to as short, medium, and long vehicles. The proportions of vehicles classified as 
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short, medium, and long by ground truth observation and each detector are depicted in 

figure 7.24. These classification proportions are also given in table 7.18. This figure and 

table indicate that the Solo Pro II had a tendency to classify more vehicles as short and 

medium, and fewer as long, than the actual ground truth. The other detectors appeared to 

provide classification proportions similar to the ground truth. 

 
Figure 7.24: Per-Vehicle Classification Proportion Bar Chart 

Table 7.18: Per-Vehicle Classification Proportions 

Ground 

Truth
Solo Pro II

Microloop 

702
G4

Smartsensor 

105

Short 81.7% 88.8% 82.3% 82.0% 79.4%

Medium 4.4% 6.4% 4.8% 3.8% 5.0%

Long 13.9% 4.8% 13.0% 14.2% 15.7%  
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In the analysis of a classification problem such as this one, confusion matrices 

provide a useful tool. A confusion matrix is an n-by-n matrix where n is the number of 

classes. For this vehicle classification problem, the confusion matrix was 3-by-3, with the 

rows representing ground truth classifications and the columns representing detector- 

reported classifications. The values in each cell represented the number of vehicles that 

had the specific combination of ground truth and detector-reported classification, based 

on the row and column, respectively. As can be seen in the following tables, the diagonal 

of the matrix represents correctly classified vehicles, while the non-diagonal cells 

represents misclassified vehicles. Also, row sums gave the total number of vehicles in the 

given class, while column sums gave the number of detector-reported vehicles in the 

given class. 

The confusion matrix for the Solo Pro II classification is given in table 7.19. The 

sum of the diagonal cells indicates that 85.4% of the vehicles were correctly classified. 

Examination of the cells off the diagonal indicates that the most common classification 

error made by the Solo Pro II was to misclassify long vehicles as short, which it did with 

2410 vehicles (7% of the total traffic stream). Other frequent errors included 

misclassifying long vehicles as medium vehicles (3.2% of the total traffic stream) and 

medium vehicles as short vehicles (3.1% of the total traffic stream). 

Table 7.19: Solo Pro II Classification Confusion Matrix 

Short 27274 (79.4%) 380 (1.1%) 47 (0.1%) 27701 (80.6%)

Medium 1078 (3.1%) 468 (1.4%) 38 (0.1%) 1584 (4.6%)

Long 2410 (7%) 1093 (3.2%) 1582 (4.6%) 5085 (14.8%)

30762 (89.5%) 1941 (5.6%) 1667 (4.9%)

Solo Pro II Class

Column Total

Row Total

G
ro

u
n

d
 

T
ru

th
 

C
la

ss

Short Medium Long
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The confusion matrix for the Microloop 702 classification is given in table 7.20. 

The sum of the diagonal cells indicates that 94.9% of the vehicles were correctly 

classified. Examination of the cells off the diagonal indicates that all potential 

misclassifications had similar occurrence rates, ranging from 0.5% to 1.1% of the total 

traffic stream. 

Table 7.20: Microloop 702 Classification Confusion Matrix 

Short 28593 (80%) 365 (1%) 255 (0.7%) 29213 (81.8%)

Medium 404 (1.1%) 1000 (2.8%) 180 (0.5%) 1584 (4.4%)

Long 364 (1%) 246 (0.7%) 4312 (12.1%) 4922 (13.8%)

29361 (82.2%) 1611 (4.5%) 4747 (13.3%)Column Total

Row Total

G
ro

u
n

d
 

T
ru

th
 

C
la

ss

Microloop 702 Class

Short Medium Long

 

The confusion matrix for the G4 classification is given in table 7.21. The sum of 

the diagonal cells indicates that 96.2% of the vehicles were correctly classified. 

Examination of the cells off the diagonal indicates that the most common classification 

error made by the G4 was to misclassify medium vehicles as short, which it did to 556 

vehicles (1.6% of the total traffic stream). Other types of potential misclassifications all 

had infrequent occurrence rates, ranging from 0.3% to 0.6% of the total traffic stream. 

Table 7.21: G4 Classification Confusion Matrix 

Short 27617 (80%) 203 (0.6%) 97 (0.3%) 27917 (80.8%)

Medium 556 (1.6%) 908 (2.6%) 113 (0.3%) 1577 (4.6%)

Long 161 (0.5%) 185 (0.5%) 4698 (13.6%) 5044 (14.6%)

28334 (82%) 1296 (3.8%) 4908 (14.2%)

Row Total

Column Total

G
ro

u
n

d
 

T
ru

th
 

C
la

ss

G4 Class

Short Medium Long

 

The confusion matrix for the SmartSensor 105 classification is given in table 7.22. 

The sum of the diagonal cells indicates that 95.4% of the vehicles were correctly 

classified. Examination of the cells off the diagonal indicates that the most common 

classification error made by the SmartSensor 105 was to misclassify short vehicles as 
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medium, which it did to 575 vehicles (1.8% of the total traffic stream). Other types of 

potential misclassifications all had infrequent occurrence rates, ranging from 0.2% to 

1.0% of the total traffic stream. 

Table 7.22: SmartSensor 105 Classification Confusion Matrix 

Short 24850 (78%) 575 (1.8%) 109 (0.3%) 25534 (80.2%)

Medium 257 (0.8%) 903 (2.8%) 307 (1%) 1467 (4.6%)

Long 147 (0.5%) 63 (0.2%) 4644 (14.6%) 4854 (15.2%)

25254 (79.3%) 1541 (4.8%) 5060 (15.9%)

Row Total

Column Total

G
ro

u
n

d
 

T
ru

th
 

C
la

ss

SmartSensor 105 Class

Short Medium Long

 

The next step in the analysis was to break the data into subsets representing the 

various factors that may affect detector classification performance, and to determine the 

percent correctly classified at each level of a given factor. The first factor to be 

considered was lighting, and the four levels were day, night, dawn, and dusk, as defined 

in section 7.1. Figure 7.25 depicts the classification proportions for the ground truth and 

various detectors under each of the four lighting conditions. Additionally, confusion 

matrices such as those already presented were analyzed for the various lighting levels, 

with the percent correctly classified by each detector under each lighting level presented 

in table 7.23. The Solo Pro II had difficulty classifying long vehicles appropriately under 

all lighting conditions, as evidenced by figure 7.25, but this problem was most severe at 

night. This observation is supported by table 7.23, which shows that the percent of 

vehicles correctly classified by the Solo Pro II dropped 6% during night lighting 

compared to other lighting conditions. The other detectors under evaluation appeared to 

function consistently across lighting conditions. 
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Figure 7.25: Classification Proportions Lighting Factor Stacked Bar Chart 

 *where (a) represents ground truth, (b) represents Solo Pro II, (c) represents Microloop 702,  

 (d) represents G4, and (e) represents SmartSensor 105 

Table 7.23: Percent Correctly Classified by Lighting Levels  

Day Night Dawn Dusk

Solo Pro II 85.6% 79.8% 86.5% 86.0%

Microloop 702 94.8% 96.1% 95.9% 95.9%

G4 96.0% 97.8% 97.4% 97.1%

SmartSensor 105 95.3% 96.2% 95.3% 96.8%  

The next factor to be considered was precipitation. Figure 7.26 depicts the 

classification proportions for the ground truth and various detectors under clear and rainy 

conditions. Additionally, confusion matrices such as those already presented were 

analyzed for data subsets of clear and rainy weather, with the percent correctly classified 

by each detector shown in table 7.24. Based on table 7.24, it appears that the Solo Pro II 

was more affected by the presence of rain than were any of the other detectors. However, 

close examination of the ground truth bars in figure 7.26 reveals that there was a higher 

proportion of long vehicles in the rain subset than the clear subset. Because it was found 
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that the Solo Pro II had difficulty correctly classifying long vehicles, the decreased 

correct classification in table 7.24 was probably more closely linked to the proportion of 

long vehicles in the traffic stream than to the precipitation. 

 
Figure 7.26: Classification Proportions Rain Factor Stacked Bar Chart 

 *where (a) represents ground truth, (b) represents Solo Pro II, (c) represents Microloop 702,  

 (d) represents G4, and (e) represents SmartSensor 105 

Table 7.24: Percent Correctly Classified by Rain Factor 

Clear Rain

Solo Pro II 85.7% 82.8%

Microloop 702 95.0% 94.6%

G4 96.2% 96.3%

SmartSensor 105 95.4% 95.4%  

The final factor to be considered was traffic volume. Figure 7.27 depicts the 

classification proportions for the ground truth and various detectors under low volume 

(LOS A or B) and high volume (LOS C or worse) conditions. Additionally, confusion 

matrices were analyzed for data subsets of low and high volume periods, with the percent 

correctly classified by each detector presented in table 7.25. While table 7.25 indicates 
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that all detectors evaluated had either relatively unchanged or improved classification 

ability in high volume traffic, figure 7.27 reveals that this was most likely due to the 

higher proportion of short vehicles during high volume periods. For example, note that 

the percent correctly classified by a null model detector, which classified every vehicle as 

short, would increase from 79.6% in low volume to 87.9% in high volume based on the 

ground truth in this data set. 

 
Figure 7.27: Classification Proportions Volume Factor Stacked Bar Chart  

 *where (a) represents ground truth, (b) represents Solo Pro II, (c) represents Microloop 702,  

 (d) represents G4, and (e) represents SmartSensor 105 

Table 7.25: Percent Correctly Classified by Traffic Volume Factor 

Low 

Volume

High 

Volume

Solo Pro II 84.3% 88.4%

Microloop 702 94.7% 95.5%

G4 96.2% 96.2%

SmartSensor 105 95.5% 95.2%  
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The per-vehicle classification analysis performed here indicates that the 

Microloop 702, G4, and SmartSensor 105 each correctly classified approximately 95% of 

all vehicles they detected. It is also demonstrated that the correct classification rates of 

these three detectors were relatively unaffected by lighting, rain, or traffic volume. In 

contrast, the Solo Pro II correctly classified only 85% of the vehicles it detected. The 

most frequent classification error committed by the Solo Pro II was to misclassify a long 

vehicle as a short vehicle. It was found that this type of misclassification by the Solo Pro 

II was most prevalent under night lighting conditions. 

7.4 Chapter Summary 

This chapter has provided analyses of the individual vehicle-level detection abilities of 

the four detectors under evaluation. The relative strengths and weaknesses of the different 

detectors were demonstrated in the results of this analysis. The disaggregate analysis 

presented in this chapter indicates the nature of error committed by the different 

technologies, while aggregate analysis (as presented in chapter 6) indicates the magnitude 

of these errors in intervals consistent with practical ITS applications. 

The analysis of presence detection in this chapter indicated that the G4 and 

Microloop 702 had the strongest presence detection abilities, with 92.8% and 92.7% 

correct detection rates, respectively, while the Solo Pro II had a 90.5% correct detection 

rate, and the SmartSensor 105 lagged with an 83.7% correct detection rate. Further, the 

SmartSensor 105 correct presence detection rate was found to drop to 67.3% in periods of 

high traffic volume, compared to 89.0% in low volume periods. 

The analysis of per-vehicle speed was conducted with the Microloop 702 data 

serving as a baseline due to the lack of ground truth speeds. While the SmartSensor 105 
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had the lowest mean percent deviation from the baseline speed at 2.88%, the variance in 

percent deviation indicated that the Solo Pro II could most closely resemble the baseline 

speeds if further calibration was conducted to remove the extreme speed detection bias. 

As calibrated, the Solo Pro II had a mean percent deviation from the baseline of 17.9%. 

The speed detection analysis also considered the influence of environmental factors, with 

mixed results. 

Lastly, the per-vehicle classification analysis indicated strong length-based 

classification from the Microloop 702, G4, and SmartSensor 105, with correct 

classification rates of 94.9%, 96.2%, and 95.4%. The Solo Pro II struggled with 

classification, the most frequent problem being the misclassification of long vehicles as 

short. The Solo Pro II's correct classification rate was 85.4%. Analysis involving the 

influence of environmental factors indicated that night lighting conditions exacerbated 

the Solo Pro II's classification problem, correct classification rate dropping to 79.8% in 

this condition. The classification abilities of the other detectors appeared to be relatively 

uninfluenced by the documented environmental factors. 
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CHAPTER 8 CONCLUSIONS 

8.1 Summary 

In this thesis, four non-intrusive detection systems were evaluated for their ability to 

detect traffic parameters on a typical urban freeway segment in Nebraska. The four 

detectors evaluated were the Autoscope Solo Pro II video image processing system, 3M 

Canoga Microloop 702 magnetic induction system, RTMS G4 microwave radar system, 

and Wavetronix SmartSensor 105 system. These systems were installed at the 

NTC/NDOR Non-Intrusive Detector Test Bed along I-80 near the Giles Road interchange 

in Omaha, Nebraska. The detectors were each calibrated using recommended procedures, 

and preliminary data were collected so that further calibration could fine-tune detection. 

After the fine-tuning, all detectors were functioning as expected, and ready for data 

collection. Vehicle presence/volume, speed, and length-based classification data were 

collected between March and August of 2011. Additionally, ground truth data was 

collected through manual observation of video from the test bed. Statistical analysis of 

the data was performed at both the disaggregate per-vehicle level and various temporal 

aggregation intervals. Comparisons of the performance of the various detectors were 

made on a variety of statistical measures relating to accuracy. The analysis also 

investigated the impact of environmental factors such as lighting and rain on the 

performance of the various detectors. Lastly, generalized conclusions about the detection 

performance of the evaluated systems were drawn from the numerous investigated 

analytical metrics. 
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8.2 Conclusions 

The analysis of vehicle presence detection at the per-vehicle level generally revealed a 

tradeoff between missed detections and false detections. The G4 and Microloop 702 

detectors had the strongest presence detection abilities, with 92.8% and 92.7% correct 

detection rates, while the Solo Pro II had a 90.5% correct detection rate, and the 

SmartSensor 105 lagged with an 83.7% correct detection rate. Similar results were found 

at the one-minute aggregation interval. The G4 had a mean absolute percent error 

(MAPE) of 5.5%, while the Microloop 702, Solo Pro II, and SmartSensor 105 followed 

with MAPEs of 6.1%, 6.5%, and 8.2%. The MAPEs of all detectors decreased at the 

greater aggregation levels of five and fifteen minutes, but at these levels, the Solo Pro II 

MAPEs were the lowest, followed by the G4, Microloop 702, and SmartSensor 105. This 

indicates that detector selection could be influenced by aggregation level of required data. 

Analysis of the effects of various lighting and rain conditions found that the Solo Pro II 

volume detection accuracy was affected by night lighting conditions and the combined 

effect of dawn lighting and rain. Microloop 702 and G4 volume detection were found to 

be affected by the combined effect of dusk lighting and rain, while SmartSensor 105 

volume detection was found to not be significantly affected by lighting or rain conditions. 

The analysis of speed detection was conducted with the Microloop 702 data 

serving as a baseline due to the lack of ground truth speeds. The distributions of per-

vehicle as well as one, five, and fifteen minute mean speeds indicated that the Solo Pro II 

was reporting speeds much higher than the other three systems, including the baseline 

Microloop 702. However, it was concluded that this could be corrected with further 

calibration. The more intriguing finding was that, while the Microloop 702, Solo Pro II, 
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and SmartSensor 105 speed distributions all had similar shapes, the G4's mean speed 

distribution lacked the significant left tail that was present in the other detector's 

distributions. This was interpreted as the G4 being relatively insensitive to reductions in 

speed. The primary effect of longer aggregation intervals on speed detection was a 

reduction in the variance of reported values from each detector as aggregation increased. 

This was consistent with expectations for data aggregation. The consideration of the 

impact of environmental factors on speed detection for the various detectors provided 

mixed results. 

Lastly, the detectors were assessed for their ability to classify vehicles into one of 

three length-based classifications (0-24 ft, 25-40 ft, or 41+ ft). This analysis indicated 

strong length-based classification from the Microloop 702, G4, and SmartSensor 105, 

with 94.9%, 96.2%, and 95.4% of vehicles being correctly classified by these three 

systems, respectively. As the data were temporally aggregated, the accuracies improved 

(due to an aggregation effect) to the extent that the mean fifteen-minute classification 

error percentages for the Microloop 702, G4, and SmartSensor 105 were 2.1%, 1.6%, and 

2.1%. In contrast, the Solo Pro II struggled with classification, having a per-vehicle 

correct classification rate of 85.4% and a mean fifteen-minute classification error of 

10.4%. The most frequent type of error made by the Solo Pro II classification was 

misclassifying long vehicles as short. Analysis involving the influence of environmental 

factors indicated that night lighting conditions exacerbated the Solo Pro II's classification 

problem. The G4 classification ability was found to be affected by the combination of 

dusk lighting and rain, which ultimately led to the hypothesis that this detector's 

classification ability was affected by heavy rainfall. The classification abilities of the 
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other detectors appeared to be relatively uninfluenced by the documented environmental 

factors. 

When the results of this thesis were compared to results of previous studies which 

evaluated similar parameters, they were found to generally be comparable but with 

slightly higher error rates. The fact that the errors rates were on similar orders of 

magnitude indicated that the results of this thesis were consistent with the body of 

knowledge on these detectors. The slightly higher error rates were attributed to the fact 

that this data set included a greater proportion of data from inclement conditions than 

most of the comparable studies. Also influential in the higher error rates in this study was 

the fact that most of the analysis herein was performed at a more disaggregate level than 

many of the previous studies. As discussed in chapter 6, the effect of greater aggregation 

is generally to decrease error rates. 

8.3 Future Research 

While this thesis answered a number of questions that aid in the comparison of alternative 

traffic detection technologies currently available on the market, it also left a number of 

questions unanswered. As was stated throughout, the evaluation criteria for traffic 

detectors is application specific. The accuracy assessment provided here represents only 

one such criterion. Other comparative criteria are system cost, number of traffic 

parameters estimated, ease of installation, maintenance concerns, power consumption, 

communications, onboard data storage availability, and reliability. Some of these 

represent simple questions that can be addressed when a detector is selected for a specific 

application. Other analytical criteria relating to the life of a detector, such as reliability 

and maintenance concerns, could warrant future research. Analysis over a longer data 
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collection period could also provide useful information on the drift or potential 

deterioration of performance over time. It would be valuable to understand at what 

intervals a permanent detector should be recalibrated over its life to maintain a desired 

degree of accuracy. 

Additionally, a number of new questions relating to detector accuracy are raised 

by the results found in this thesis. For example, this thesis found various environmental 

factors to significantly affect accuracy of some of the detectors evaluated herein. Further 

analysis is necessary to determine if these affects apply to whole classes of detectors 

(such as video image processors, microwave radar, magnetic induction, etc.), or 

specifically to the models tested in this thesis. Analysis of accuracy under snowy 

conditions could add to the knowledge of precipitation effects on various detection 

technologies. There is also a continual need to analyze the newest detectors on the market 

representing each technology. 
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APPENDICES 

Appendix A Glossary 

Key Terms 

Active Detector A traffic detector which transmits electromagnetic energy to be 

reflected back toward the detector by a passing vehicle. 

Active Infrared Detector An infrared detector which transmits energy in the infrared 

portion of the electromagnetic spectrum and detects the portion of 

this energy reflected off a vehicle in the detection zone. 

Advance Detection Zone A detection zone generally 250 feet or more upstream of an 

intersection stop bar, where traffic detection can be used to 

augment signal timing to provide dilemma zone protection. 

Baseline Detector-provided data against which other detectors are analyzed. 

While the presence of errors in the baseline data is acknowledged, 

it is assumed to represent a fair standard against which the other 

detectors can be analyzed. 

Call When a traffic detector installed at an intersection registers vehicle 

presence in a detection zone and requests right-of-way for that 

vehicle at the intersection. 

Clock Drift A phenomenon whereby the reported times from two clocks which 

were once set to the same time tend to diverge as time passes. 

Coil A loop of wire which uses the principle of electromagnet induction 

to cause a change in current. 

Conduit A tube in which wire or other electrical components can be 

installed to protect them from environmental conditions. 

Correct Detection A presence detection from a detector that can be correlated to a 

ground truth detection in the same lane during the same second. 

Crosstalk Unintended interaction between two distinct electromagnetic 

signals. Can be caused by interaction of two proximate inductive 

coils or other proximate detectors functioning at similar 

frequencies. 

Density A measure of the concentration of vehicles on a segment of 

roadway generally expressed in vehicles per mile or vehicles per 

mile per lane. 
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Detection Zone The physical location on a roadway where a vehicle must be 

located in order for a traffic detector to register its presence or 

passage. 

Detector See Traffic Detector. 

Doppler Radar Detector A type of microwave radar detector which is capable of 

registering the passage of moving vehicles in the detection zone, 

but not presence of stopped vehicles. Also known as a continuous 

wave radar detector. 

Dropped Call A detector activation which ends before the detected vehicle has 

vacated the detection zone. 

False Call An improper detector activation when no vehicle was present in 

the detection zone. 

False Detection A presence detection from a detector that cannot be correlated to a 

ground truth detection because no ground truth detection was 

registered in the same lane during the same second. 

Frequency The number of times that an electromagnetic waveform repeats its 

cycle in 1 second. 

Frequency Modulated Continuous Wave Radar Detector A type of microwave radar 

detector capable of registering both passage of moving vehicles 

and presence of stopped vehicles in the detection zone. This is 

achieved by constantly changing the waveform of the transmitted 

electromagnetic energy. 

Ground Truth The manually-collected vehicle time stamps and classification 

assignments obtained by observation of recorded video of the 

traffic stream. Numerous precedents for manual ground truth are 

documented in the literature review of this thesis. 

Inductive Loop Detector An active traffic detector composed of one or more coils of 

wire embedded in or under the roadway, as well as an associated 

electronics unit. The presence of a vehicle in the detection zone 

causes the inductance of the wire coils to decrease. This change is 

registered by the electronics unit as a vehicle passage. 

Infrared Detector A traffic detector which senses electromagnetic waves in the 

portion of the electromagnetic spectrum between wavelengths of 

0.74 µm and 300 µm and frequencies of 400 THz and 1 THz. 

There are infrared detectors with either passive or active wave 

sources. 
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Intrusive Detector A traffic detector which, by nature of its installation procedure, 

requires part of the roadway to be blocked during its installation or 

maintenance. Generally these detectors are installed in the 

subgrade of the roadway, in the pavement, or directly on the 

surface of the pavement. 

Long Vehicle A class of vehicle that is defined as having a total length of greater 

than 40 feet. This length-based class is intended to represent 

multiple unit heavy vehicles. 

Loop Detector See Inductive Loop Detector. 

Macro A procedure which can be defined by a block of code to perform a 

set of tasks. Macros are frequently used within Microsoft Excel to 

automate repetitive tasks. 

Magnetic Detector A traffic detector which functions by passively sensing the vertical 

component of the earth's magnetic field. A perturbation of the 

earth’s magnetic field due to the passage of a large ferrous object 

through the detection zone is registered as a vehicle detection. 

Magnetic detectors are generally installed under the roadway and 

can be either intrusive or non-intrusive depending on the 

installation procedure. 

Magnetometer Detector More specifically known as a two-axis fluxgate 

magnetometer, this traffic detector senses both the vertical and 

horizontal components of the earth’s magnetic field. A change in 

the magnetic field due to a large ferrous object in the detection 

zone is registered as either a vehicle presence or passage. 

Medium Vehicle A class of vehicle that is defined as having a total length between 

25 and 40 feet. This length-based class is intended to represent 

single unit heavy vehicles. 

Microwave Radar Detector An active, non-intrusive traffic detector installed above or 

beside the roadway which functions by transmitting and receiving 

electromagnetic energy in the microwave range of the 

electromagnetic spectrum (wavelengths from 1 mm to 1 m and 

frequencies from 300 GHz to 300 MHz). 

Missed Call The lack of a detector activation when a vehicle was present in the 

detection zone. 

Missed Detection A ground truth detection that cannot be correlated to a detector- 

reported detection because no detector-reported detection was 

registered in the same lane during the same second for the 

specified detector. 
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Non-Intrusive Detector A traffic detector which, by nature of its installation 

procedure, allows the roadway to remain fully operational during 

its installation or maintenance. Generally these detectors are 

installed above the roadway surface either offset from the nearest 

lane in a side-fire configuration or directly over the roadway in an 

overhead configuration. 

Occlusion A phenomenon whereby a tall vehicle in a lane nearer to an 

overhead or side-fire detector either causes false activation of a 

detection zone in a lane further from the detector, or “hides” a 

vehicle in a lane further from the detector, causing a missed 

detection. 

Occupancy A measure of the percentage of time in which a detection zone is 

occupied by a vehicle. Occupancy is frequently used as a proxy for 

density. 

Overhead Configuration An installation in which a non-intrusive detector is 

mounted on a support structure directly over the roadway in order 

to detect vehicles passing beneath it. 

Passive Acoustic Detector A non-intrusive traffic detector which functions by 

passively sensing audible noise created by a vehicle’s engine, 

exhaust, and tires. 

Passive Detector A traffic detector which does not transmit electromagnetic energy 

of its own but rather detects energy emitted by objects in its 

detection zone or emitted by an external source and reflected off 

objects in the detection zone. 

Passive Infrared Detector An infrared detector which does not transmit energy of its 

own, but detects energy emitted by the vehicle and energy emitted 

by the sun and atmosphere reflected off the vehicle. 

Pull Box An underground container into which electrical conduit runs so 

that appropriate wire or cable splices can be created or serviced 

through a removable cover flush with the ground level. 

Short Vehicle A class of vehicle that is defined as having a total length of less 

than 25 feet. This length-based class is intended to represent 

passenger vehicles. 

Side-Fire Configuration An installation in which a non-intrusive detector is 

mounted on a support structure on the side of the road and offset a 

given distance from the nearest lane of traffic. 
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Speed Trap A configuration of detectors in which two detectors are placed in 

the same lane at a known distance apart. Speed and vehicle length 

are able to be determined based on rising and falling edge time 

stamps for the two detectors. This configuration is typical for loop 

detectors. 

Spillover A phenomenon whereby a vehicle’s headlights, shadow, or large 

magnetic footprint cause a detection to be registered in the 

detection zone of an adjacent lane. 

Stuck-On Call A detector activation which persists after the detected vehicle has 

vacated the detection zone. This type of error can result in messed 

calls for subsequent vehicles entering the same detection zone. 

Test Bed An intersection or segment of roadway outfitted with appropriate 

infrastructure for comparative analysis of traffic detectors. 

Tracking A class of video image processing algorithm which functions by 

following or “tracking” a moving object from the time it enters the 

image until the time it leaves the image. 

Traffic Detector A device which is capable of registering the presence or passage of 

automotive vehicles at a given point on the roadway. In addition to 

presence and passage, traffic detectors can also potentially provide 

data on other physical characteristics of the detected vehicles. 

Trip-Line A class of video image processing algorithm which functions by 

determining when a moving object moves through a specific area 

of the video image, thereby “tripping” the detector. 

Ultrasonic Detector An active traffic detector which functions by transmitting high 

frequency sound waves (above the human audible range) and 

registering the reflection of the wave from a vehicle in the 

detection zone. 

Video Image Processor A passive traffic sensor which functions by processing a 

video signal through a series of algorithms which separate moving 

objects from the background image and interpret the moving 

objects as vehicles in a detection zone. 

Virtual Detector An image overlay which is used in video image processing traffic 

detectors to define which pixels are to be monitored for changes by 

the image processing software and how those changes are to be 

interpreted as detections. 
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Weigh-in-Motion Detector A class of traffic detector employed for the specific 

purpose of determining wheel, axle, or axle group weight and 

aggregating this into vehicle weight for vehicles moving at high 

speeds. Weigh-in-Motion detectors are generally based on 

piezoelectric, bending plate, or load cell technologies.  



249 

 

2
4
9
 

Acronyms 

ADOT Arizona Department of Transportation 

AEVL Average Effective Vehicle Length 

ANOVA Analysis of Variance 

APD Absolute Percent Deviation / Absolute Percent Deviation 

AVI Automatic Vehicle Identification 

CW Continuous Wave 

FHWA Federal Highway Administration 

FMCW Frequency Modulated Continuous Wave 

GIS Geographic Information System 

GPS Global Positioning System 

GUM Guide to the Expression of Uncertainty in Measurement 

INDOT Indiana Department of Transportation 

IR Infrared 

ISO International Organization for Standardization 

ITS Intelligent Transportation Systems 

IVHS Intelligent Vehicle-Highway System 

LOS Level of Service 

MAPD Mean Absolute Percent Difference 

MAPE Mean Absolute Percent Error 

MPD Mean Percent Difference 

MPE Mean Percent Error 

NDOR Nebraska Department of Roads 

NEMA National Electrical Manufacturers Association 

NTC Nebraska Transportation Center 
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NTSC National Television System Committee 

PATH Partners for Advanced Transportation technology 

PNITDS Portable Non-Intrusive Traffic Detection System 

PTZ Pan Tilt Zoom 

PVC Polyvinyl Chloride 

RMSE Root Mean-Square Error 

RTMS Remote Traffic Microwave Sensor 

SCOOT Split Cycle Offset Optimization Technique 

TIRTL The Infra-Red Traffic Logger 

TMC Traffic Management Center 

TMD Traffic Monitoring Device 

TTI Texas Transportation Institute 

V2DVS Video Vehicle Detector Verification System 

VIP Video Image Processor 

VPN Virtual Private Network 

VTDS Video Traffic Detection System 

WIM Weigh-in-Motion 

XML Extensible Markup Language 
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Appendix B  Macros for Automated Step in Clock Synchronization  

There were five powerful macros employed in the clock synchronization process that 

significantly reduced the amount of manual work required to synchronize clocks for the 

analyzed detectors. The following is the macro code written for this purpose. 

 

Sub ClockSynchAllDetectors() 
 
    ' this macro runs the four macros that adjust timestamps of the four detectors 
    Debug.Print "Beginning " & Now 
    Call clockSynchAutoscope    ' this line runs Sub clockSynchAutoscope() 
    Debug.Print "Autoscope " & Now 
    Call clockSynchMicroloop    ' this line runs Sub clockSynchMicroloop() 
    Debug.Print "Microloop " & Now 
    Call clockSynchG4           ' this line runs Sub clockSynchG4() 
    Debug.Print "G4 " & Now 
    Call clockSynchSmartSensor  ' this line runs Sub clockSynchSmartSensor() 
    Debug.Print "SmartSensor " & Now 
 
End Sub 
 
 
Sub clockSynchAutoscope() 
 
    ' this macro adjusts Autoscope timestamps +/- 1 second to match the nearest ground truth      
    ' timestamp in the same lane 
Debug.Print "Beginning " & Now 
    ' the next lines define variables 
Dim A As Worksheet 
Dim S(1 To 3) As Worksheet 
Dim i As Integer 
Dim t1 As Date 
Dim t2 As Date 
Dim rFound As Range 
Dim last As Boolean 
    ' the next lines define which worksheets are referred to as S(1), S(2), and S(3) 
Set S(1) = Sheets("Lane1") 
Set S(2) = Sheets("Lane2") 
Set S(3) = Sheets("Lane3") 
    ' the next lines format the timestamps in the Autoscope worksheet so that the .Find method  
    ' works correctly later on 
Worksheets("Autoscope").Columns("K:M").NumberFormat = "[$-F400]h:mm:ss AM/PM" 
For i = 1 To 3  ' this for loop loops through the worksheets for the three lanes 
    S(i).Activate   ' this activates one of the lane worksheets 
    Range("C2").Select  ' column C is the column with autoscope one second counts in it; row 2  
             ' represents 00:00:00 (midnight) for the given day 
    last = False    ' initializes last (false for last value moved up, true for last value moved down) 
    Do Until ActiveCell.Row = 86402 ' row 86401 represents 11:59:59 therefore this Do Until loop  
         ' does every second for the day 
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        If ActiveCell.Value <> "" Then ' if the autoscope one second count for the current second is  
        ' not "" (null) then 
            If ActiveCell.Offset(0, -1).Value = "" Then ' if the ground truth one second count for the  
      ' current second is null then 
                If ActiveCell.Offset(-1, 0).Value = "" And _ 
                ActiveCell.Offset(-1, -1).Value <> "" And _ 
                ActiveCell.Offset(1, 0).Value = "" And _ 
                ActiveCell.Offset(1, -1).Value <> "" Then 
                 ' if the autoscope count for the previous second is null and the ground truth count 
  ' for the previous second is not null and the autoscope count for the next second  
  ' is null and the ground truth count for the next second is not null then 
                    If last = False Then ' if the last autoscope timestamp adjustment was to subtract one  
    ' second then 
                        t1 = ActiveCell.Offset(0, -2).Value ' t1 is the current second 
                        t2 = ActiveCell.Offset(-1, -2).Value ' t2 is the previous second 
                        With Worksheets("Autoscope").Columns(i + 10)     
   ' go to the autoscope worksheet and the column corresponding to lane i 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues)   
   ' find the autoscope timestamp matching the current second 
                            rFound.Value = t2   ' replace that autoscope timestamp with a timestamp of the  
            ' previous second (i.e. subtract 1 second from that  
            ' autoscope timestamp) 
                        End With 
                        last = False    ' set last equal to false 
                    Else    ' if last is true 
                        t1 = ActiveCell.Offset(0, -2).Value ' t1 is the current second 
                        t2 = ActiveCell.Offset(1, -2).Value ' t2 is the next second 
                        With Worksheets("Autoscope").Columns(i + 10)     
   'go to the autoscope worksheet and the column corresponding to lane i 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues)   
   'find the autoscope timestamp matching the current second 
                            rFound.Value = t2   ' replace that autoscope timestamp with a timestamp of the  
    ' next second (i.e. add 1 second from that autoscope timestamp) 
                        End With 
                        last = True ' set last equal to true 
                    End If 
                ElseIf ActiveCell.Offset(-1, 0).Value = "" And _ 
                ActiveCell.Offset(-1, -1).Value <> "" Then   
   ' if ther is no ground truth timestamp for the same second as the current  
   ' autoscope timestamp, and there is a ground truth timestamps 1 second  
   ' before but not 1 second after the current autoscope timestamp then 
                        t1 = ActiveCell.Offset(0, -2).Value ' t1 is the current second 
                        t2 = ActiveCell.Offset(-1, -2).Value    ' t2 is the previous second 
                        With Worksheets("Autoscope").Columns(i + 10)     
   ' go to the autoscope worksheet and the column corresponding to lane i 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues)   
   ' find the autoscope timestamp matching the current second 
                            rFound.Value = t2   ' replace that autoscope timestamp with a timestamp of the  
   ' next second (i.e. add 1 second from that autoscope timestamp) 
                        End With 
                        last = False ' set last equal to false 
                ElseIf ActiveCell.Offset(1, 0).Value = "" And _ 
                ActiveCell.Offset(1, -1).Value <> "" Then ' if there is no ground truth timestamp for the  
   ' same second as the current autoscope timestamp, and there is a  
   ' ground truth timestamps 1 second after but not 1 second before the  
   ' current autoscope timestamp then 
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                        t1 = ActiveCell.Offset(0, -2).Value ' t1 is the current second 
                        t2 = ActiveCell.Offset(1, -2).Value ' t2 is the next second 
                        With Worksheets("Autoscope").Columns(i + 10)     
   ' go to the autoscope worksheet and the column corresponding to lane i 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues)   
   ' find the autoscope timestamp matching the current second 
                            rFound.Value = t2   ' replace that autoscope timestamp with a timestamp of the  
   ' next second (i.e. add 1 second from that autoscope timestamp) 
                        End With 
                        last = True ' set last equal to true 
                End If 
            End If 
        End If 
        ActiveCell.Offset(1, 0).Select  ' select autoscope one second count for the next second 
    Loop    ' go back to beginning of Do Until loop 
Next i  ' go back to beginning of For loop with i incremented 
 
Worksheets("Autoscope").Columns("K:M").NumberFormat = _ 
"h:mm:ss;@"  ' revert autoscope timestamps to original time format 
 ' next lines erase autoscope 1 second counts from worksheets Lane1, Lane2, and Lane3 
For i = 1 To 3 
    S(i).Activate 
    Range("C2:C86500").Select 
    Selection.ClearContents 
    Range("C1").Select 
Next i 
Debug.Print "calcAutoscope " & Now 
 ' next line calls the Sub calcAutoscope() macro which calculates 1 second autoscope 
 ' counts in worksheets Lane1, Lane2, and Lane3 based on the newly synchronized 
 ' autoscope timestamps 
Call calcAutoscope 
Debug.Print "Ending " & Now 
 
End Sub 
 
 
Sub clockSynchMicroloop() 
 
    ' this subroutine employs similar logic to Sub clockSynchAutoscope() with the major exception    
    ' that while the three lanes of autoscope timestamps are in three columns of the same  
    ' worksheet, the three lanes of microloop timestamps are in similar columns of three distinct  
    ' worksheets called Microloop1, Microloop2, and Microloop3 
Debug.Print "Beginning " & Now 
Dim S(1 To 3) As Worksheet 
Dim i As Integer 
Dim t1 As Date 
Dim t2 As Date 
Dim rFound As Range 
Dim last As Boolean 
Set S(1) = Sheets("Lane1") 
Set S(2) = Sheets("Lane2") 
Set S(3) = Sheets("Lane3") 
For i = 1 To 3 
    Worksheets("Microloop" & i).Columns("G:G").NumberFormat = _ 
    "[$-F400]h:mm:ss AM/PM" 
Next i 
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For i = 1 To 3 
    S(i).Activate 
    Range("D2").Select 
    last = False    ' false for last value moved up, true for last value moved down 
    Do Until ActiveCell.Row = 86402 
        If ActiveCell.Value <> "" Then 
            If ActiveCell.Offset(0, -2).Value = "" Then 
                If ActiveCell.Offset(-1, 0).Value = "" And _ 
                ActiveCell.Offset(-1, -2).Value <> "" And _ 
                ActiveCell.Offset(1, 0).Value = "" And _ 
                ActiveCell.Offset(1, -2).Value <> "" Then 
                    If last = False Then 
                        t1 = ActiveCell.Offset(0, -3).Value 
                        t2 = ActiveCell.Offset(-1, -3).Value 
                        With Worksheets("Microloop" & i).Columns(7) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = False 
                    Else 
                        t1 = ActiveCell.Offset(0, -3).Value 
                        t2 = ActiveCell.Offset(1, -3).Value 
                        With Worksheets("Microloop" & i).Columns(7) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = True 
                    End If 
                ElseIf ActiveCell.Offset(-1, 0).Value = "" And _ 
                ActiveCell.Offset(-1, -2).Value <> "" Then 
                        t1 = ActiveCell.Offset(0, -3).Value 
                        t2 = ActiveCell.Offset(-1, -3).Value 
                        With Worksheets("Microloop" & i).Columns(7) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = False 
                ElseIf ActiveCell.Offset(1, 0).Value = "" And _ 
                ActiveCell.Offset(1, -2).Value <> "" Then 
                        t1 = ActiveCell.Offset(0, -3).Value 
                        t2 = ActiveCell.Offset(1, -3).Value 
                        With Worksheets("Microloop" & i).Columns(7) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = True 
                End If 
            End If 
        End If 
        ActiveCell.Offset(1, 0).Select 
    Loop 
Next i 
For i = 1 To 3 
    Worksheets("Microloop" & i).Columns("G:G").NumberFormat = _ 
    "h:mm:ss;@" 
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Next i 
For i = 1 To 3 
    S(i).Activate 
    Range("D2:D86500").Select 
    Selection.ClearContents 
    Range("D1").Select 
Next i 
Debug.Print "calcMicroloop " & Now 
For i = 1 To 3 
    Call calcMicroloop(i) 
Next i 
Debug.Print "Ending " & Now 
 
End Sub 
 
 
Sub clockSynchG4() 
 
    ' this subroutine employs similar logic to Sub clockSynchAutoscope()     
Debug.Print "Beginning " & Now 
Dim A As Worksheet 
Dim S(1 To 3) As Worksheet 
Dim i As Integer 
Dim t1 As Date 
Dim t2 As Date 
Dim rFound As Range 
Dim last As Boolean 
Set S(1) = Sheets("Lane1") 
Set S(2) = Sheets("Lane2") 
Set S(3) = Sheets("Lane3") 
Worksheets("G4").Columns("I:K").NumberFormat = _ 
"[$-F400]h:mm:ss AM/PM" 
For i = 1 To 3 
    S(i).Activate 
    Range("E2").Select 
    last = False    ' false for last value moved up, true for last value moved down 
    Do Until ActiveCell.Row = 86402 
        If ActiveCell.Value <> "" Then 
            If ActiveCell.Offset(0, -3).Value = "" Then 
                If ActiveCell.Offset(-1, 0).Value = "" And _ 
                ActiveCell.Offset(-1, -3).Value <> "" And _ 
                ActiveCell.Offset(1, 0).Value = "" And _ 
                ActiveCell.Offset(1, -3).Value <> "" Then 
                    If last = False Then 
                        t1 = ActiveCell.Offset(0, -4).Value 
                        t2 = ActiveCell.Offset(-1, -4).Value 
                        With Worksheets("G4").Columns(i + 8) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = False 
                    Else 
                        t1 = ActiveCell.Offset(0, -4).Value 
                        t2 = ActiveCell.Offset(1, -4).Value 
                        With Worksheets("G4").Columns(i + 8) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
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                            rFound.Value = t2 
                        End With 
                        last = True 
                    End If 
                ElseIf ActiveCell.Offset(-1, 0).Value = "" And _ 
                ActiveCell.Offset(-1, -3).Value <> "" Then 
                        t1 = ActiveCell.Offset(0, -4).Value 
                        t2 = ActiveCell.Offset(-1, -4).Value 
                        With Worksheets("G4").Columns(i + 8) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = False 
                ElseIf ActiveCell.Offset(1, 0).Value = "" And _ 
                ActiveCell.Offset(1, -3).Value <> "" Then 
                        t1 = ActiveCell.Offset(0, -4).Value 
                        t2 = ActiveCell.Offset(1, -4).Value 
                        With Worksheets("G4").Columns(i + 8) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = True 
                End If 
            End If 
        End If 
        ActiveCell.Offset(1, 0).Select 
    Loop 
Next i 
Worksheets("G4").Columns("I:K").NumberFormat = _ 
"h:mm:ss;@" 
For i = 1 To 3 
    S(i).Activate 
    Range("E2:E86500").Select 
    Selection.ClearContents 
    Range("E1").Select 
Next i 
Debug.Print "calcG4 " & Now 
Call calcG4 
Debug.Print "Ending " & Now 
 
End Sub 
 
 
Sub clockSynchSmartSensor() 
 
    ' this subroutine employs similar logic to Sub clockSynchAutoscope() 
Debug.Print "Beginning " & Now 
Dim A As Worksheet 
Dim S(1 To 3) As Worksheet 
Dim i As Integer 
Dim t1 As Date 
Dim t2 As Date 
Dim rFound As Range 
Dim last As Boolean 
Set S(1) = Sheets("Lane1") 
Set S(2) = Sheets("Lane2") 
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Set S(3) = Sheets("Lane3") 
Worksheets("SmartSensor").Columns("J:L").NumberFormat = _ 
"[$-F400]h:mm:ss AM/PM" 
Worksheets("SmartSensor").Columns("J:L").ColumnWidth = 11 
For i = 1 To 3 
    S(i).Activate 
    Range("F2").Select 
    last = False    ' false for last value moved up, true for last value moved down 
    Do Until ActiveCell.Row = 86402 
        If ActiveCell.Value <> "" Then 
            If ActiveCell.Offset(0, -4).Value = "" Then 
                If ActiveCell.Offset(-1, 0).Value = "" And _ 
                ActiveCell.Offset(-1, -4).Value <> "" And _ 
                ActiveCell.Offset(1, 0).Value = "" And _ 
                ActiveCell.Offset(1, -4).Value <> "" Then 
                    If last = False Then 
                        t1 = ActiveCell.Offset(0, -5).Value 
                        t2 = ActiveCell.Offset(-1, -5).Value 
                        With Worksheets("SmartSensor").Columns(i + 9) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = False 
                    Else 
                        t1 = ActiveCell.Offset(0, -5).Value 
                        t2 = ActiveCell.Offset(1, -5).Value 
                        With Worksheets("SmartSensor").Columns(i + 9) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = True 
                    End If 
                ElseIf ActiveCell.Offset(-1, 0).Value = "" And _ 
                ActiveCell.Offset(-1, -4).Value <> "" Then 
                        t1 = ActiveCell.Offset(0, -5).Value 
                        t2 = ActiveCell.Offset(-1, -5).Value 
                        With Worksheets("SmartSensor").Columns(i + 9) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = False 
                ElseIf ActiveCell.Offset(1, 0).Value = "" And _ 
                ActiveCell.Offset(1, -4).Value <> "" Then 
                        t1 = ActiveCell.Offset(0, -5).Value 
                        t2 = ActiveCell.Offset(1, -5).Value 
                        With Worksheets("SmartSensor").Columns(i + 9) 
                            Set rFound = .Find(What:=t1, LookIn:=xlValues) 
                            rFound.Value = t2 
                        End With 
                        last = True 
                End If 
            End If 
        End If 
        ActiveCell.Offset(1, 0).Select 
    Loop 
Next i 
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Worksheets("SmartSensor").Columns("J:L").NumberFormat = _ 
"h:mm:ss;@" 
For i = 1 To 3 
    S(i).Activate 
    Range("F2:F86500").Select 
    Selection.ClearContents 
    Range("F1").Select 
Next i 
Debug.Print "calcSmartSensor " & Now 
Call calcSmartSensor 
Debug.Print "Ending " & Now 
 
End Sub 
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Appendix C One-Minute Volume ANOVA Thinning 

One of the assumptions for an analysis of variance is independence of data or a lack of 

autocorrelation. The autocorrelation of a data set can be seen in index plots and 

correlograms. Figure C.1 displays the one-minute volume percent error ANOVA 

residuals for each detector, while Figure C.2 shows the correlograms associated with this 

data. The dashed lines in correlograms indicate the 95% confidence interval for no 

statistically significant correlation. Autocorrelation factors (ACFs) outside this interval 

indicate potentially significant correlations. In Figure C.2 it can be seen that all four 

detectors appear to have significant autocorrelation. An attempt was made to remove this 

correlation through thinning the full data set by a factor of 10, which left 147 data points 

of an original 1,467. The index plots for this thinned data set are given in Figure C.3, and 

the correlograms are given in Figure C.4. The autocorrelation factors for the Solo Pro II, 

Microloop 702, and G4 were mostly non-significant at this level of thinning, with 

potentially significant factors having no recognizable patterns, indicating that the 

potentially significant factors can be attributed to white noise. Therefore, the data thinned 

at this level was selected to be analyzed with ANOVA for these three detectors. The 

autocorrelation for the SmartSensor 105 appears to remain significant at this level of 

thinning based on Figure C.4(d). Therefore, the data set for this detector was thinned by a 

factor of 20, leaving 74 data points. The index plot and correlogram for this thinned data 

set are given in figures C.5 and C.6. As there is only one potentially significant 

autocorrelation factor at this level of thinning, it was determined to conduct the ANOVA 

for this detector on the factor 20 thinned data. 
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Figure C.1: Full Data One-Minute Volume Percent Error ANOVA Residual 

Index Plots for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure C.2: Full Data One-Minute Volume Percent Error ANOVA Residual 

Correlograms for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) 
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Figure C.3: Factor 10 Thinned One-Minute Volume Percent Error ANOVA 

Residual Index Plots for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) 
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Figure C.4: Factor 10 Thinned One-Minute Volume Percent Error ANOVA 

Residual Correlograms for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) 
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Figure C.5: Factor 20 Thinned One-Minute Volume Percent Error ANOVA 

Residual Index Plot for SmartSensor 105 

 
Figure C.6: Factor 20 Thinned One-Minute Volume Percent Error ANOVA 

Residual Correlogram for SmartSensor 105 
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Appendix D Five-Minute Analysis Additional Figures and Tables  

 

Figure D.1: Five-Minute Volume Scatter Plots Against Ground Truth for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) 

Detectors 
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Figure D.2: Box Plot of Reported Five-Minute Volumes 
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Figure D.3: Histograms of Five-Minute Volume Distributions for Ground 

Truth (a), Solo Pro II (b), Microloop 702 (c), G4 (d), and SmartSensor 105 

(e) 
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Figure D.4: Cumulative Distribution Plot of Five-Minute Volume 

Distributions for Ground Truth and All Detectors  

Table D.1 Five-Minute Volume Summary Statistics 

Mean Median

Standard 

Deviation

Ground Truth 123 109 66.1

Solo Pro II 119 107 62.6

Microloop 702 126 116 65.1

G4 117 105 62.4

SmartSensor 105 110 105 45.3  
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Figure D.5: Five-Minute Volume Percent Error Box Plot 
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Figure D.6: Histograms of Five-Minute Volume Percent Error Distributions 

for Solo Pro II (a), Microloop (b), G4 (c), and SmartSensor 105 (d) Detectors  
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Figure D.7: Five-Minute Volume Percent Error Cumulative Distribution 

Plot 

Table D.2: Detector Five-Minute Volume Error Statistics 

Correlation

Coefficient
MPE MAPE

Percent 

Error 

Variance

Mean

GEH

85th

Percentile

GEH

GEH 

Variance

SoloPro II 0.996 -2.24% 4.58% 0.00270 0.495 0.885 0.139

Microloop 702 0.994 3.35% 5.28% 0.00306 0.532 0.897 0.139

G4 0.997 -4.58% 4.75% 0.00295 0.531 0.921 0.311

SmartSensor 105 0.925 -5.24% 6.96% 0.0132 1.02 1.60 3.77  

Table D.3: Five-Minute Volume Theil's Inequality Coefficients  

U Um Us Uc

SoloPro II 0.028 0.234 0.210 0.559

Microloop 702 0.027 0.153 0.019 0.831

G4 0.032 0.469 0.187 0.346

SmartSensor 105 0.124 0.152 0.419 0.431  
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Figure D.8: Solo Pro II Five-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot 

 
Figure D.9: Solo Pro II Five-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot 
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Figure D.10: Solo Pro II Five-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot 

 
Figure D.11: Microloop 702 Five-Minute Volume Percent Error Lighting 

Factor Cumulative Distribution Plot 
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Figure D.12: Microloop 702 Five-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot 

 
Figure D.13: Microloop 702 Five-Minute Volume Percent Error Volume 

Factor Cumulative Distribution Plot 
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Figure D.14: G4 Five-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot 

 
Figure D.15: G4 Five-Minute Volume Percent Error Rain Factor Cumulative 

Distribution Plot 
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Figure D.16: G4 Five-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot 

 
Figure D.17: SmartSensor 105 Five-Minute Volume Percent Error Lighting 

Factor Cumulative Distribution Plot 
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Figure D.18: SmartSensor 105 Five-Minute Volume Percent Error Rain 

Factor Cumulative Distribution Plot 

 
Figure D.19: SmartSensor 105 Five-Minute Volume Percent Error Volume 

Factor Cumulative Distribution Plot 
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Figure D.20: Box Plot of Reported Five-Minute Mean Speeds 
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Figure D.21: Histograms of Five-Minute Mean Speed Distributions for the 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d)  
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Figure D.22: Cumulative Distribution Plot of Five-Minute Mean Speed 

Distributions for All Detectors 

Table D.4 Five-Minute Mean Speed Summary Statistics 

Mean Median

Standard 

Deviation

Solo Pro II 72 73 2.54

Microloop 702 61 62 1.88

G4 64 63 2.21

SmartSensor 105 62 63 2.60  
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Figure D.23: Five-Minute Mean Speed Scatter Plots Against Baseline for 

Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors  
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Figure D.24: Five-Minute Mean Speed Percent Deviation Box Plot 
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Figure D.25: Histograms of Five-Minute Mean Speed Percent Deviation 

Distributions for Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors  
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Figure D.26: Five-Minute Mean Speed Percent Deviation Cumulative 

Distribution Plot 

Table D.5: Detector Five-Minute Mean Speed Deviation Statistics 

MPD MAPD

Percent 

Deviation 

Variance

SoloPro II 18.07% 18.07% 0.00049

G4 4.10% 4.66% 0.00139

SmartSensor 105 1.96% 3.13% 0.00110  

Table D.6: Five-Minute Mean Speed Theil's Inequality Coefficients 

U Um Us Uc

SoloPro II 0.083 0.985 0.004 0.011

G4 0.027 0.552 0.010 0.440

SmartSensor 105 0.019 0.261 0.094 0.648  
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Figure D.27: Solo Pro II Five-Minute Mean Speed Percent Deviation 

Lighting Factor Cumulative Distribution Plot 

 
Figure D.28: Solo Pro II Five-Minute Mean Speed Percent Deviation Rain 

Factor Cumulative Distribution Plot 
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Figure D.29: Solo Pro II Five-Minute Mean Speed Percent Deviation Volume 

Factor Cumulative Distribution Plot 

 
Figure D.30: G4 Five-Minute Mean Speed Percent Deviation Lighting Factor 

Cumulative Distribution Plot 
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Figure D.31: G4 Five-Minute Mean Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot 

 
Figure D.32: G4 Five-Minute Mean Speed Percent Deviation Volume Factor 

Cumulative Distribution Plot 
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Figure D.33: SmartSensor 105 Five-Minute Mean Speed Percent Deviation 

Lighting Factor Cumulative Distribution Plot 

 
Figure D.34: SmartSensor 105 Five-Minute Mean Speed Percent Deviation 

Rain Factor Cumulative Distribution Plot 
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Figure D.35: SmartSensor 105 Five-Minute Mean Speed Percent Deviation 

Volume Factor Cumulative Distribution Plot 
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Figure D.36: Mean Five-Minute Proportion Short, Medium, and Long 

Vehicles Bar Chart 
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Table D.7: Mean Five-Minute Classification Proportions 

Ground 

Truth
SoloPro II

Microloop 

702
G4

Smartsensor 

105

Short 80.1% 87.8% 81.1% 80.3% 78.3%

Medium 4.3% 6.8% 4.8% 3.8% 5.0%

Long 15.6% 5.4% 14.1% 16.0% 16.7%  

 
Figure D.37: Box Plot of Five-Minute Percent Short Vehicle Distributions 
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Figure D.38: Box Plot of Five-Minute Percent Medium Vehicle Distributions 

 
Figure D.39: Box Plot of Five-Minute Percent Long Vehicle Distributions 
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Figure D.40: Five-Minute Percent Short Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 
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Figure D.41: Five-Minute Percent Medium Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 
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Figure D.42: Five-Minute Percent Long Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 
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Figure D.43: Histograms of Five-Minute Percent Short Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure D.44: Histograms of Five-Minute Percent Medium Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure D.45: Histograms of Five-Minute Percent Long Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure D.46: Five-Minute Percent Short Vehicles Error Cumulative 

Distribution Plot 

 
Figure D.47: Five-Minute Percent Medium Vehicles Error Cumulative 

Distribution Plot 
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Figure D.48: Five-Minute Percent Long Vehicles Error Cumulative 

Distribution Plot 

Table D.8 Five-Minute Classification Error Percentage Summary Statis tics 

Mean Median

Standard 

Deviation

Solo Pro II 10.6% 9.8% 5.22

Microloop 702 2.6% 2.2% 1.77

G4 2.1% 1.7% 1.70

SmartSensor 105 2.7% 2.4% 1.82  
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Appendix E  Fifteen-Minute Analysis Additional Figures and Tables  

 

Figure E.1: Fifteen-Minute Volume Scatter Plots Against Ground Truth for 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d) 

Detectors 
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Figure E.2: Box Plot of Reported Fifteen-Minute Volumes 
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Figure E.3: Histograms of Fifteen-Minute Volume Distributions for Ground 

Truth (a), Solo Pro II (b), Microloop 702 (c), G4 (d), and SmartSensor 105 

(e) 
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Figure E.4: Cumulative Distribution Plot of Fifteen-Minute Volume 

Distributions for Ground Truth and All Detectors  

Table E.1 Fifteen-Minute Volume Summary Statistics 

Mean Median

Standard 

Deviation

Ground Truth 368 320 189

Solo Pro II 357 312 180

Microloop 702 376 332 185

G4 350 307 179

SmartSensor 105 332 310 130  
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Figure E.5: Fifteen-Minute Volume Percent Error Box Plot 
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Figure E.6: Histograms of Fifteen-Minute Volume Percent Error 

Distributions for Solo Pro II (a), Microloop (b), G4 (c), and SmartSensor 105 

(d) Detectors 
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Figure E.7: Fifteen-Minute Volume Percent Error Cumulative Distribution 

Plot 

Table E.2: Detector Fifteen-Minute Volume Error Statistics 

Correlation

Coefficient
MPE MAPE

Percent 

Error 

Variance

Mean

GEH

85th

Percentile

GEH

GEH 

Variance

SoloPro II 0.997 -2.14% 4.08% 0.00199 0.766 1.25 0.313

Microloop 702 0.995 3.26% 5.03% 0.00221 0.880 1.27 0.265

G4 0.998 -4.71% 4.73% 0.00233 0.913 1.41 0.744

SmartSensor 105 0.938 -5.22% 6.47% 0.0112 1.64 2.82 9.59  

Table E.3: Fifteen-Minute Volume Theil's Inequality Coefficients  

U Um Us Uc

SoloPro II 0.025 0.275 0.239 0.495

Microloop 702 0.025 0.156 0.039 0.816

G4 0.030 0.539 0.191 0.276

SmartSensor 105 0.115 0.166 0.453 0.391  
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Figure E.8: Solo Pro II Fifteen-Minute Volume Percent Error Lighting 

Factor Cumulative Distribution Plot 

 
Figure E.9: Solo Pro II Fifteen-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot 
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Figure E.10: Solo Pro II Fifteen-Minute Volume Percent Error Volume 

Factor Cumulative Distribution Plot 

 
Figure E.11: Microloop 702 Fifteen-Minute Volume Percent Error Lighting 

Factor Cumulative Distribution Plot 
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Figure E.12: Microloop 702 Fifteen-Minute Volume Percent Error Rain 

Factor Cumulative Distribution Plot 

 
Figure E.13: Microloop 702 Fifteen-Minute Volume Percent Error Volume 

Factor Cumulative Distribution Plot 



311 

 

3
1
1
 

 
Figure E.14: G4 Fifteen-Minute Volume Percent Error Lighting Factor 

Cumulative Distribution Plot 

 
Figure E.15: G4 Fifteen-Minute Volume Percent Error Rain Factor 

Cumulative Distribution Plot 
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Figure E.16: G4 Fifteen-Minute Volume Percent Error Volume Factor 

Cumulative Distribution Plot 

 
Figure E.17: SmartSensor 105 Fifteen-Minute Volume Percent Error 

Lighting Factor Cumulative Distribution Plot 
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Figure E.18: SmartSensor 105 Fifteen-Minute Volume Percent Error Rain 

Factor Cumulative Distribution Plot 

 
Figure E.19: SmartSensor 105 Fifteen-Minute Volume Percent Error Volume 

Factor Cumulative Distribution Plot 



314 

 

3
1
4
 

 
Figure E.20: Box Plot of Reported Fifteen-Minute Mean Speeds 
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Figure E.21: Histograms of Fifteen-Minute Mean Speed Distributions for the 

Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 105 (d)  
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Figure E.22: Cumulative Distribution Plot of Fifteen-Minute Mean Speed 

Distributions for All Detectors 

Table E.4 Fifteen-Minute Mean Speed Summary Statistics 

Mean Median

Standard 

Deviation

Solo Pro II 72 73 2.37

Microloop 702 61 62 1.78

G4 64 64 2.09

SmartSensor 105 62 63 2.14  
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Figure E.23: Fifteen-Minute Mean Speed Scatter Plots Against Baseline for 

Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors  
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Figure E.24: Fifteen-Minute Mean Speed Percent Deviation Box Plot 
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Figure E.25: Histograms of Fifteen-Minute Mean Speed Percent Deviation 

Distributions for Solo Pro II (a), G4 (b), and SmartSensor 105 (c) Detectors  
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Figure E.26: Fifteen-Minute Mean Speed Percent Deviation Cumulative 

Distribution Plot 

Table E.5: Detector Fifteen-Minute Mean Speed Deviation Statistics 

MPD MAPD

Percent 

Deviation 

Variance

SoloPro II 17.99% 17.99% 0.00032

G4 4.15% 4.65% 0.00118

SmartSensor 105 1.86% 2.44% 0.00055  

Table E.6: Fifteen-Minute Mean Speed Theil's Inequality Coefficients  

U Um Us Uc

SoloPro II 0.083 0.990 0.003 0.008

G4 0.026 0.600 0.010 0.395

SmartSensor 105 0.015 0.388 0.041 0.579  
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Figure E.27: Solo Pro II Fifteen-Minute Mean Speed Percent Deviation 

Lighting Factor Cumulative Distribution Plot 

 
Figure E.28: Solo Pro II Fifteen-Minute Mean Speed Percent Deviation Rain 

Factor Cumulative Distribution Plot 
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Figure E.29: Solo Pro II Fifteen-Minute Mean Speed Percent Deviation 

Volume Factor Cumulative Distribution Plot 

 
Figure E.30: G4 Fifteen-Minute Mean Speed Percent Deviation Lighting 

Factor Cumulative Distribution Plot 
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Figure E.31: G4 Fifteen-Minute Mean Speed Percent Deviation Rain Factor 

Cumulative Distribution Plot 

 
Figure E.32: G4 Fifteen-Minute Mean Speed Percent Deviation Volume 

Factor Cumulative Distribution Plot 
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Figure E.33: SmartSensor 105 Fifteen-Minute Mean Speed Percent Deviation 

Lighting Factor Cumulative Distribution Plot 

 
Figure E.34: SmartSensor 105 Fifteen-Minute Mean Speed Percent Deviation 

Rain Factor Cumulative Distribution Plot 



325 

 

3
2
5
 

 
Figure E.35: SmartSensor 105 Fifteen-Minute Mean Speed Percent Deviation 

Volume Factor Cumulative Distribution Plot 
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Figure E.36: Mean Fifteen-Minute Proportion Short, Medium, and Long 

Vehicles Bar Chart 
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Table E.7: Mean Fifteen-Minute Classification Proportions 

Ground 

Truth
SoloPro II

Microloop 

702
G4

Smartsensor 

105

Short 80.0% 87.6% 80.9% 80.2% 78.3%

Medium 4.3% 6.8% 4.8% 3.7% 4.9%

Long 15.8% 5.5% 14.3% 16.1% 16.8%  

 
Figure E.37: Box Plot of Fifteen-Minute Percent Short Vehicle Distributions 
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Figure E.38: Box Plot of Fifteen-Minute Percent Medium Vehicle 

Distributions 

 
Figure E.39: Box Plot of Fifteen-Minute Percent Long Vehicle Distributions 



329 

 

3
2
9
  

Figure E.40: Fifteen-Minute Percent Short Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 
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Figure E.41: Fifteen-Minute Percent Medium Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 
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Figure E.42: Fifteen-Minute Percent Long Vehicles Scatter Plots Against 

Ground Truth for Solo Pro II (a), Microloop 702 (b), G4 (c), and 

SmartSensor 105 (d) Detectors 
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Figure E.43: Histograms of Fifteen-Minute Percent Short Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure E.44: Histograms of Fifteen-Minute Percent Medium Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure E.45: Histograms of Fifteen-Minute Percent Long Vehicles Error 

Distributions for Solo Pro II (a), Microloop 702 (b), G4 (c), and SmartSensor 

105 (d) 
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Figure E.46: Fifteen-Minute Percent Short Vehicles Error Cumulative 

Distribution Plot 

 
Figure E.47: Fifteen-Minute Percent Medium Vehicles Error Cumulative 

Distribution Plot 
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Figure E.48: Fifteen-Minute Percent Long Vehicles Error Cumulative 

Distribution Plot 

Table E.8 Fifteen-Minute Classification Error Percentage Summary 

Statistics 

Mean Median

Standard 

Deviation

Solo Pro II 10.4% 9.5% 4.41

Microloop 702 2.1% 1.9% 1.29

G4 1.6% 1.2% 1.28

SmartSensor 105 2.1% 2.1% 0.97  
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