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ABSTRACT 

Studying the movements of grizzly bears (Ursus arctos) in Alberta is imperative for 

scientifically informed management practices. To properly balance industry requirements with 

conservation imperatives, it is necessary to understand the spatial and spatial-temporal movement 

patterns of grizzly bears as they relate to underlying landscape properties. As part of the Foothills 

Research Institute Grizzly Bear Research Program, this dissertation explored both fine and large-

scale movement patterns generated from global positioning system (GPS) radiotelemetry data. 

Between 1999 and 2005, grizzly bears were captured and radio-collared across western 

Alberta. The temporal resolution of GPS data collection had a large impact on the amount of 

information available for analysis. A significant decrease in available information was 

demonstrated as time between locations increased. The presence of serial autocorrelation 

indicated the presence of prolonged movement behavior in fine-scale vector structures. The 

ability to identify internal vector clusters dramatically decreased as temporal resolution 

decreased. 

The relationship between level of human activity and grizzly bear movement rate across 

multiple spatial and temporal scales was studied in detail. Resulting movement patterns of grizzly 

bears were found to be intrinsically linked to both internal and external factors. Overall, grizzly 

bears residing in mountain environments were found to have significantly slower movement rates 

and smaller home ranges sizes when compared to grizzly bears residing in foothills environments. 

Temporally, movement rates also varied significantly according to season, month, and time of 

day. These findings have significance for modeling efforts which attempt to replicate grizzly bear 

spatial and temporal movement patterns across Albertan landscapes. 
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The use of time sequence graphs aided in differentiating between different types of 

movement behaviors and allowed for the quantification and assessment of consecutive vector 

data. Results emphasized that slow movement clusters occurred more often and for longer periods 

of time when compared to fast travel segments. While some movement-habitat relationships were 

identified, results were highly individual by bear. Overall models tended to respond the best when 

working with mountain bears over foothills bears. Results further suggested that vector-based 

movements should be separated according to type (slow versus fast) for future modeling efforts. 
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CHAPTER 1 - INTRODUCTION 

1.1 Context 

In western Canada, the grizzly bear (Ursus arctos) is currently at risk from expanding 

industrial, residential and recreational developments (Ross 2002). Nationally, the grizzly bear is 

listed as a species of special concern (COSEWIC 2002). Because grizzly bears demonstrate a lack 

of resilience to anthropogenic disturbance (Weaver et al. 1996, Carroll et al. 2001, Gibeau et al. 

2001, Garshelis et al. 2005), they are often used as a focal species for conservation whose 

presence and persistence is considered an excellent indicator of ecosystem integrity (Noss et al. 

1996, NESERC 2000, Carroll et al. 2001). This is especially relevant for grizzly bears in Alberta 

where the continual loss and fragmentation of critical habitat due to increased human 

development is threatening the long-term viability of the population (Rosenberg et al. 1997, Beier 

and Noss 1998, Gibeau 2000, Gibeau et al. 2002, Nielsen et al. 2004a, Nielsen 2005). Overall, 

declining grizzly bear populations are predicated by low population densities due to large area 

requirements, low reproductive rates, limited dispersal ability, and human-bear mortalities 

(Carroll et al. 2001). In 2000, the total grizzly bear population on provincial lands in Alberta was 

estimated to be approximately 840 bears (Kansas 2002). By 2003, the estimated number of 

grizzly bears in Alberta had dropped to 500 individuals or less (Stenhouse et al. 2003). Due to the 

recognition of current population declines, Alberta's Endangered Species Conservation 

Committee has recently listed the grizzly bear as 'under review for threatened status' (ESCC 

2005, Garshelis et al. 2005). 

Imperative to wildlife conservation is understanding the relationship between wildlife and 

habitat (Nams et al. 2006). Since 1999, now the Foothills Research Institute (FRI), formerly the 

Foothills Model Forest Grizzly Bear Research Project (FMFGBRP), has conducted research to 

provide land-use managers with the information and tools needed to ensure the long-term 
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conservation of grizzly bear populations in Alberta, Canada (NESERC 2000). As with the 

conservation of any species, understanding grizzly bear behavior at multiple spatial and temporal 

scales is paramount for informed management practices. Global Positioning Systems (GPS) 

radiotelemetry data and Geographic Information Systems (GIS) have become important 

conservation and management tools. Over the past 10 years, the FRI has developed detailed 

models that predict and describe habitat preference, security areas, and mortality risk locations 

(Gibeau et al. 2001, Nielsen et al. 2002, 2003, Nielsen et al. 2004a, Nielsen et al. 2004b, Nielsen 

et al. 2004c, Linke et al. 2005, Munro et al. 2006, Nielsen et al. 2006). However, spatially explicit 

models which focus on quantifying grizzly bear movement behavior have remained 

underdeveloped and limited in scope (Schwab 2003, Hunter 2007, Berland et al. 2008). 

The detailed study of movement patterns is necessary to provide information regarding 

general space-use, basic habitat interactions, dispersal characteristics, and population 

distributions. Historically, the quantification of grizzly bear movements had been predominantly 

ignored or modeled because reliable GPS telemetry data did not exist (Boone and Hunter 1996). 

Within the past decade, improvements to GPS radiocollar technology has improved our ability to 

monitor movements and collect exceptionally large and detailed data sets for individual animals 

(Frair et al. 2004, Dettki and Ericsson 2006). Further, new analytical approaches and statistical 

methods have been developed to handle GPS telemetry data sets with improved quality and 

quantity (Johnson et al. 2002, Nielsen 2005, Dettki and Ericsson 2006, Home et al. 2007, Hunter 

2007). 

Spatial data analysis has grown rapidly in the fields of geography, wildlife biology and 

landscape ecology (Bailey and Gatrell 1995, Fortin and Dale 2005). One of the primary 

challenges confronting research involving spatial data analysis stems from the complex 

interaction between space and time (Wagner and Fortin 2005). Broadly defined, spatial data 
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analysis is the quantitative study of phenomena (spatial data events) that are physically referenced 

in space (and further in time), often with an emphasis on spatial arrangement or pattern (Bailey 

and Gatrell 1995). It has been recognized that quantitative methods are needed to link spatial 

patterns and ecological processes at various spatial and temporal scales (Turner et al. 2001, Fortin 

and Dale 2005). For grizzly bears, this link has largely been explored through the utilization of 

habitat-use or resource selection models (Nielsen et al. 2002, Nielsen 2005). 

Spatial data analysis typically employs statistics and models to infer information about 

the spatial processes generating the pattern of observations or population in question (Liebhold 

and Gurevitch 2002). In an effort to make these generalizations, researchers often group data 

events with similar properties (defined either spatially or temporally) and attempt to characterize 

and understand the resulting spatial pattern. For example, a spatial or temporal cluster of grizzly 

bear GPS data locations may indicate preference for a specific habitat type. Beyond the basic 

consideration of spatial pattern, is the complex consideration of process. Often, a spatial pattern 

results from more than one process (Liebhold and Gurevitch 2002, Wiegand and Moloney 2004, 

Fortin and Dale 2005, Wagner and Fortin 2005). That is, it might be more than simply habitat 

type creating a cluster of GPS radiotelemetry locations. External influences could include 

individual bear social interactions or human-bear encounters. As such, the relationship between 

pattern and process remains a challenging and important area of research (Turner et al. 2001). 

Emergent technologies and analytic tools are making it possible to better integrate the concepts of 

pattern with process (Chetkiewicz et al. 2006). 

Grizzly bear GPS radiotelemetry data is an example of a spatial point pattern. 'Real life' 

spatial patterns often result from both first-order and second-order effects (Bailey and Gatrell 

1995, Fortin and Dale 2005). From a statistical perspective, an observed spatial point pattern is 

the realization of spatial stochastic process (Gatrell et al. 1996). First-order statistics, such as 
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kernel density estimation are often employed to describe the intensity of a point pattern where the 

expected value (mean or average) varies over space (Gatrell et al. 1996). Second-order statistics, 

such as bivariate K-functions are used to describe the internal structure of a point pattern 

(Wiegand and Moloney 2004). Where first-order approaches describe large-scale (global) 

variation in intensity, second-order approaches summarize point-to-point distances and detect 

local patterns across difference scales (Wiegand and Moloney 2004). While these approaches are 

capable of detecting various types of clusters in the data, they might not determine the underlying 

stochastic process generating the clusters (Fotheringham et al. 2000). They are often further 

limited by the scale at which they can be applied and are susceptible to boundary edge effects 

(Gatrell et al. 1996, Wiegand and Moloney 2004). Furthermore, typical point pattern analysis 

(PPA) methods lack the ability to deal with consecutive data points as required by GPS telemetry 

data. 

The development of spatial movement models is largely reliant on the acquisition of GPS 

radiotelemetry data. In fact, without the use of GPS data, the ability to model, predict and further 

understand the movement characteristics of grizzly bears would remain limited in scope. A 

movement pattern, created from consecutive GPS point and vector data, requires an additional 

suite of analytical procedures. Movement paths of individual animals reflect behavioral responses 

to environmental properties and may serve to identify changes to movement processes (Johnson 

et al. 2002). Based on preliminary explorations (Schwab 2003), grizzly bear movements are not 

uniformly distributed across the landscape and violate the typical model assumption of constant 

movement behavior (Morales and Ellner 2002, Johnson et al. 2006). As such, grizzly bear spatial 

movement patterns can be characterized as a spatially heterogeneous process that is 

nonstationary. When a grizzly bear changes its behavior, it is proposed that the mathematical 

properties of movement steps and therefore vector characteristics could change accordingly 

(Martin et al. 2008). For example, step lengths may be significantly shorter while an individual 
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forages as opposed to when the individual moves to a new feeding location. Empirically-based 

measures such as step length distributions can help to describe the stochasticity of the velocity or 

movement rate for an individual (Tischendorf 1997). It has been suggested that to further 

understand this problem, researchers should study the spatial structure of the entire trajectory to 

identify patterns in the movement path (Martin et al. 2008). Unfortunately, making the leap from 

static recorded GPS locations to a continuous behavior, such as movement, remains burdened by 

many data assumptions. 

In the past, explorations of grizzly bear movements were limited to simple large-scale 

descriptions such as home range size, annual distance travelled, and daily movement rate. With 

the recent advancement in GPS data collection techniques, larger, more detailed data sets provide 

a new opportunity to accurately separate movement strategies into behavioral categories (Johnson 

et al. 2002, Fortin et al. 2005, Frair et al. 2005, Dettki and Ericsson 2006, Coulon et al. 2008). 

Movement behavior is a highly variable process that is specific to individual grizzly bears and 

difficult to generalize across populations (Schwab 2003, Nielsen 2005, Stenhouse et al. 2005, 

Hunter 2007). Ironically, population-level inferences are often the focus of telemetry-based 

studies (Aarts et al. 2008). The understanding of movement is required to help know when 

individuals are active, how fast they move, what physical areas they move through, and how 

much they vary in these traits. The use of individual empirical-based models may capture 

environmental relationships which further shape our understanding of population distributions 

(Aarts et al. 2008). As such, researchers are often interested in the physical location of an 

individual in relation to supplementary data sources. For example, low gradient riparian areas are 

highly selected for by grizzly bears as preferred habitat (McLellan and Hovey 2001a). 

Unfortunately, river bottoms and valleys have also been identified as a primary sink (attractive 

habitat coupled with high risk of mortality) (Nielsen et al. 2006). A few studies exist which have 

quantitatively examined the movements of large carnivores (Amstrup et al. 2000, Amstrup et al. 
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2001, Austin et al. 2004, Collins et al. 2005), however, none of these are specific to grizzly bears 

in Alberta. Individually-based models and empirical assessments are still needed to identify key 

variables that influence the movement of grizzly bears across Albertan landscapes. 

Further, there exists a significant lack of understanding of how grizzly bear movements 

are distributed in space and time. To properly understand grizzly bear movement as a behavioral 

process, it is important to first empirically identify the relevant spatial and temporal scales at 

which movement occurs (Johnson et al. 2002, Fortin and Dale 2005, Hunter 2007). For example, 

grizzly bears shift their behaviors seasonally as food availability changes spatially and temporally 

(Nielsen et al. 2002, Mueller et al. 2004). Individuals further modify their movement behaviors in 

response to reproductive strategies and social interactions during specific times of the year (Dahle 

and Swenson 2003b, 2003a, Stenhouse et al. 2005). Finally, the classifications of movements are 

often subject to researcher interpretation. These movements can be simultaneously interpreted 

across multiple spatial or temporal scales. For example, spatial classifications include long-range 

dispersal, daily movement within home ranges, or localized foraging movements. Temporal 

scales of movement can be examined annually, seasonally, daily, or hourly depending on the 

purpose of analysis. 

In addition to spatial and temporal considerations, grizzly bears are thought to exhibit 

different types of movement (Hunter 2007). As grizzly bears utilize the entire landscape (habitat 

and non-habitat) and respond to gradients of habitat quality, it is often assumed that GPS-based 

spatial movement patterns will reflect information regarding individual-landscape interactions. 

The most common approach is to separate movements into two general behaviors where foraging 

movements are characterized by slow, sinuous vectors and traveling movements are characterized 

by fast, straight vectors (Zollner and Lima 2005, Nams 2006a). The identification of movement 

oriented locations, for instance, may aid in the identification of important corridors (Schwab 

6 



2003). In comparison, non-movement locations can help to identify locally important habitat 

patches (Hunter 2007). The ability to identify local spatial and temporal variability within an 

entire movement trajectory requires exceptionally fine-scale data sets (Hunter 2007). Further, 

critical to understanding such detailed behavioral characteristics are appropriate methods for 

quantifying and analyzing the movements of individual animals (Franke et al. 2004, Home et al. 

2007). As a first step, empirical results provided by GPS-based studies can strengthen the basic 

understanding of overall movement characteristics. Subsequently, by linking vector-based 

consecutive data structures with supplementary data layers, information can be extracted 

regarding the underlying process generating the resulting spatial movement pattern. Finally, 

combining empirically-generated results with modeling efforts could improve movement analyses 

which attempt to replicate animal behavior across complex landscapes (Ager et al. 2003). 

1.2 Research Objectives 

The primary goal of this research is to analyze both the spatial and spatial-temporal 

movement patterns of grizzly bears in western Alberta, Canada. More specifically, I intend to 

characterize the movement behavior of grizzly bears as it pertains to underlying landscape 

characteristics and related levels of human activity. To accomplish this goal, I focus largely on 

the role of GPS radiotelemetry data to 1) quantify grizzly bear movement rates, and 2) examine 

the relationship between grizzly bear spatial response and underlying landscape structure. The 

dissertation is heavily weighted on empirically-based assessments. Associated with the overall 

purpose of this research are a series of relevant questions. 

• Why is it important to understand grizzly bear movement? 

• How should movement data be spatially represented? 

• At what spatial and temporal scales should movement be addressed? 
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• Is it possible to discriminate between slow and fast movement types for grizzly 

bears using GPS radiotelemetry data? 

• How do underlying landscape properties influence grizzly bear movement rates 

and patterns? 

• How does understanding more about movement help management make 

conservation decisions? 

The next chapter in this dissertation (Chapter 2) will provide an extensive summary of 

previous research studies and techniques quantifying spatial and temporal movement patterns 

with specific reference to grizzly bears. First, a detailed review of grizzly bear spatial and 

temporal landscape and habitat interactions is conducted. Following this, pattern-based and 

process-based approaches to modeling animal movement are reviewed. Specifically, I focus on 

approaches and models that deal with the consecutive nature of GPS radiotelemetry data. The 

chapter then discusses data challenges when dealing with GPS radiotelemetry data including 

locational error, autocorrelation, and vector uncertainty. Finally, regions of analysis by chapter 

are outlined and available supplementary data layers are reviewed. 

The following chapters (Chapters 3 - 6) in this dissertation are intended to address the 

four separate but related research objectives listed below. 

1. To examine the spatial and spatial-temporal relationship between GPS radiotelemetry 

capture rate and resulting vector characteristics as indicated primarily by movement 

rate (Chapter 3). 

2. To quantify and compare large-scale GPS radiotelemetry grizzly bear movement rate 

and home range size as related to population subgroup characteristics, spatial 

location, and temporal scale (Chapter 4). 
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3. To examine the relationship between grizzly bear home range size and underlying 

landscape characteristics (Chapter 5). 

4. To differentiate between movement behaviors and relate individual fine-scale grizzly 

bear movements to underlying landscape properties (Chapter 6). 

Lastly, Chapter 7 will summarize the major findings of the dissertation in order of 

chapter development. Emphasis will be placed on significant research contributions to grizzly 

bear movement ecology, along with recommendations to improve modeling efforts which attempt 

to replicate grizzly bear movement patterns across large-scale landscapes. Future research 

directions will be discussed with reference to localized management and conservation practices. 
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CHAPTER 2 - UNDERSTANDING THE SPATIAL AND TEMPORAL MOVEMENT 
PATTERNS OF GRIZZLY BEARS 

2.1 Introduction 

Current global positioning systems (GPS) based-studies have allowed for considerable 

research advances in the fields of conservation biology and wildlife management specific to large 

ranging species (DeCesare et al. 2005). The majority of previous studies based on large GPS 

radiotelemetry data sets often adopt descriptive statistics (e.g. average daily movement rate or 

movement orientation) (Amstrup et al. 2000, Amstrup et al. 2001, Maehr et al. 2002, Ager et al. 

2003) or pattern-based approaches (e.g. home range delineation) (McLoughlin et al. 2000, Collins 

et al. 2005) where general inferences are made regarding the underlying process. For example, 

clusters of data points are often utilized to determine habitat use or selection. Unfortunately, 

working with radiotelemetry data is not a spatial panacea. While the use of GPS radiotelemetry 

data can strengthen the development of reliable landscape-level models, such as those required by 

grizzly bear conservation, many challenges remain when linking process-based models with the 

behavioral characteristics of a species (Schick et al. 2008). 

2.2 Grizzly Bear Spatial and Temporal Landscape Interactions 

Grizzly bear distributions and their use of habitats have been well documented within 

Alberta (Hamer et al. 1991, Gibeau et al. 2001, Gibeau et al. 2002, Nielsen et al. 2002, Chruszcz 

et al. 2003, Nielsen et al. 2003, Mueller et al. 2004, Nielsen et al. 2004a, Nielsen et al. 2004c, 

Garshelis et al. 2005, Linke et al. 2005, Stenhouse et al. 2005, Munro et al. 2006, Nielsen et al. 

2006, Pengelly and Hamer 2006). Since 1999, extensive resource selection function (RSF) 

models have been developed detailing the habitat-use of grizzly bears in west-central Alberta 

(Nielsen et al. 2002, 2003, Nielsen et al. 2004a, Nielsen 2005). Despite individual variability in 

resource selection (Nielsen et al. 2002), grizzly bears are largely habitat generalists (Noss et al. 

1996, Ross 2002) consuming a variety of plant and animal species to satisfy their nutritional 
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requirements (Munro et al. 2006). The process of acquiring resources and the behavioral response 

of movement are intricately linked and differentiating between the two can be difficult. As such, 

it is vital to consider bear behavior as related to habitat selection and activity patterns when 

examining movements across landscapes. 

Grizzly Bear Habitat Interactions 

The habitat selection and diet of grizzly bears in Alberta is diverse and varies both 

spatially and temporally (Nielsen 2005, Munro et al. 2006). Though grizzly bears are adaptable, 

seasonal influence on plant phenology is a significant factor influencing habitat selection 

(McLellan and Hovey 2001a). Generally, grizzly bears hibernate from late October or early 

November until mid April. To account for seasonal variability in food availability, bear activities 

are usually classified into 3 separate seasons occurring between April 1st and October 15th 

(Nielsen 2005). The first season, hypophagia or den emergence, occurs from mid-April to June 

14th. The second season, early hyperphagia or pre-berry, occurs from June 15th to August 14th. 

The third season, late hyperphagia or berry, occurs from August 15th to denning (mid/late 

October). 

During the spring months after den emergence (hypophagia), Nielsen et al. (2002) found 

bears to select for areas of high greenness (regions of high vegetation productivity), streamside 

and alpine habitats. Bears were generally found to avoid non-vegetated areas and young 

regenerating forests (Nielsen et al. 2002). Diets primarily consisted of sweet vetch (Hedysarum) 

digging, other roots, grasses, and some ungulate matter (Munro et al. 2006). In addition, bears 

selected intermediate-aged clearcuts that were more complex in shape during hypophagia 

(Nielsen et al. 2004a). During the summer (early hyperphagia) and autumn (late hyperphagia) 

months, bears were found to select for high greenness, streamside, alpine, young and old 

cutblocks, herbaceous areas, open forests and shrub-wetland habitats, while avoiding regenerating 
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burn sites and non-vegetated classes (Nielsen et al. 2002). Summer diets were generally 

dominated by green vegetation such as grasses, forbs, and horsetails, while autumn diets 

consisted primarily of buffalo berry {Shepherdia canadensis) and mountain blueberry and 

huckleberry (Vaccinium spp.) (Munro et al. 2006). Results further indicated that bears avoided 

moderate density levels of access during the summer and autumn months. Elevation and hillshade 

appeared not to affect grizzly bear distributions (Nielsen et al. 2002). Prior to denning in the fall, 

grizzly bears returned to root digging as the primary food source (Munro et al. 2006). 

Only one study currently exists which examined the diets of grizzly bears according to 

landscape type or physical location (Munro et al. 2006). Munro et al. (2006) stratified individuals 

into mountain or foothills based on home range location. Mountain bears were defined as having 

> 80% of their home range fall within mountain landscapes (> 1,700 m elevation threshold). The 

remaining home ranges were classified as foothills bears. Slight changes for both diet and 

consumption period were reported when comparing mountain bears with foothills bears. Munro et 

al. (2006) reported a reduction of ungulate matter in the diets of mountain bears when compared 

to foothills bears. Additionally, mountain bears were found to have higher root content in their 

diet (Munro et al. 2006). Temporally, insect foraging began 1 month earlier in the foothills when 

compared to the mountains. Fruit consumption (e.g. berries) began earlier and lasted longer in the 

foothills when compared to mountain bears. 

Grizzly bear response to human development and activities have also been documented in 

Alberta (Gibeau et al. 2002, Chruszcz et al. 2003, Linke et al. 2005, Berland et al. 2008, Roever 

et al. 2008a, 2008b). Human development features include roads, forestry clearcuts, and industrial 

resource extraction features such as seismic lines, all of which impact grizzly bear habitat 

selection and therefore movement patterns. Research has indicated that grizzly bears respond to 

road development at different spatial and temporal scales (Roever et al. 2008a, 2008b). In some 



cases, roads create potential barriers to grizzly bear movement within the mountain parks and the 

eastern slopes regions (Gibeau et al. 2002, Proctor et al. 2005). Alternatively, roads also support 

the growth of herbaceous vegetation selected by grizzly bears in the spring and early summer 

(Roever et al. 2008a, 2008b). Chruszcz et al. (2003) examined grizzly bear spatial response to 

roads, road crossing behavior, and habitat and temporal patterns of cross-road movements. Two 

overall trends emerged: 1) high-volume roads were generally avoided, and 2) movement 

decisions relative to roads were related to habitat quality. Overall results highlighted that grizzly 

bears were found closer to low-volume than to high-volume roads (Gibeau et al. 2002, Chruszcz 

et al. 2003). However, when analyzed according to sex, females were found further from paved 

roads than males suggesting females to be more cautious than males (Gibeau et al. 2002). More 

specifically, males were more likely to exploit high quality habitat near roads when it was night 

and hiding cover was present (Gibeau et al. 2002). This was further supported by Chruszcz et al. 

(2003) which found grizzly bears utilized high quality valley-bottom habitat adjacent to low-

volume roads. Overall, the probability of road crossings was found to increase when more 

vegetation was present emphasizing the need for security (Chruszcz et al. 2003). None of the 

above studies provided information regarding movement rates surrounding roads or in regards to 

road crossings. 

Information regarding grizzly bear use of clearcuts has recently been reexamined. Past 

studies have largely promoted the argument that grizzly bears avoided clearcut features within 

home ranges (McLellan and Hovey 2001a). More recently, grizzly bears have been observed 

using clearcuts in forestry dominated landscapes (Nielsen et al. 2004a, Nielsen et al. 2004c). In 

these studies, the use of clearcuts in Alberta was found to be highest during mid-summer and 

lowest during late-summer (Nielsen et al. 2004c). Individual GPS locations were consistently 

located closer to clearcut edges than clearcut centers (Nielsen et al. 2004a). More specifically, 

clear-cut interiors were avoided while higher perimeter-to-edge ratio clearcuts were selected 
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(Nielsen et al. 2004a). This may suggest a preference for hiding cover proximity or transition 

between cover types (Gibeau et al. 2002, Nielsen et al. 2004a). Lastly, clearcut habitats were 

found to be utilized more than expected during the twilight and nocturnal times of day (Nielsen et 

al. 2004a). This may suggest that bears prefer to use open areas under the cover of night. 

Results concerning seismic lines are somewhat confounding. When examining whether 

grizzly bear landscape use is affected by seismic cutlines and the resulting landscape structure, 

Linke et al. (2005) found no direct relationship between the proportion of seismic cutlines and 

population-level landscape use. However, the study found that while the grizzly bear population 

did not respond to seismic cutline densities, the population did respond to the habitat structure 

created by seismic line presence (Linke et al. 2005). For example, bears appeared to use areas 

more when landscape patches were larger. Unfortunately, no specific conclusions could be made 

regarding any direct relationship between seismic lines and grizzly bear populations. 

Grizzly Bear Movements 

Efforts to quantify movement rates for grizzly bears in the past have focused on 

comparisons of fidelity (White and Garrott 1990), home range size (Gibeau et al. 2001, Dahle and 

Swenson 2003 a, 2003b, Berland et al. 2008), natal dispersal (Boone and Hunter 1996, McLellan 

and Hovey 2001b), daily movement rate (Gibeau et al. 2001), and genetic connectivity (Proctor 

2003, Proctor et al. 2005). Of the previous approaches listed, home range size is the most 

common and widely used surrogate for wildlife movement. Home range is generally defined as 

the area traversed by an individual grizzly bear for normal activities (White and Garrott 1990). 

Typically, home range analysis is employed to assess both the extent of habitat use for a 

landscape, as well as the change in area or space over time. Further, home range-based analysis 

can be used to test the impacts of human activities on animal movements by measuring a 

significant shift to mean or central area of use (Worton 1987). 
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Mean annual home range sizes for grizzly bears from previous studies are summarized in 

Table 2-1. A description of home range types can be found on pages 26 to 28. A direct 

comparison was difficult as methods and data varied among studies. In all cases, the mean annual 

home ranges for males are significantly larger than those of females. Studies demonstrated that 

home range sizes also varied according to body mass, food availability, dispersal, and 

reproductive strategy (Dahle and Swenson 2003a, 2003b, Collins et al. 2005). A recently 

conducted study employed home range comparisons as a surrogate for seasonal movements and 

change to spatial patterns (Berland et al. 2008). Home ranges were found to be the largest during 

early hyperphagia indicating high amounts of related movement. Early hyperphagia is concurrent 

with the season when male-female associations occur (Stenhouse et al. 2005). Another study 

reported movements (indicated by home range size) to increase during mating season for both 

male and female bears (Dahle and Swenson 2003b). While home range size provides a 

quantitative description of area utilization and large range movements (Austin et al. 2004), it fails 

to provide an understanding of movements occurring at finer spatial and temporal scales (Rettie 

and Messier 2001). To do this, movements must be assessed using vector-based movement rates. 

Table 2-1. Mean annual home ranges for female and male grizzly bears as reported by previous 
studies. Home range types include minimum convex polygons (MCP) and kernel density 
estimation (KDE) outlines. 

Study Location 
Mean home range 

size (km2) 
Home range 

type 

(Mace and Waller 1997) 

(Dahle and Swenson 2003a) 

(McLellan and Hovey 2001b) 

Montana, US M: 768, F: 125 

Scandinavia M: 944, F: 249 

BC, Canada & M: 668, F: 253 
Montana, US 

95% MCP 

MCP 

KDE 
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To my knowledge, only a few studies currently exist which provide a detailed assessment 

of vector-based movement rates for grizzly bears in Alberta (Gibeau et al. 2001, Stenhouse et al. 

2005, Hunter 2007, Cattet et al. 2008). The most common measure of movement is daily 

movement rate typically expressed as the mean distance over a 24-hr period. Gibeau et al. (2001) 

reported female grizzly bears (n = 16) in the central Canadian Rocky Mountain regions to have a 

mean daily movement distance of 3.4 km (range 0.2 - 16.3 km) or an average movement rate of 

0.14 km/h. Results showed no differences between day versus night movements, but found 

substantial differences to movement patterns when human activity was factored in (Gibeau et al. 

2001). An additional study reported daily movement distances for adult female grizzlies to range 

from 3.0 km to 6.4 km (0.13 km/h to 0.27 km/h) (Berland et al. 2008). Often, the quantification of 

movement rate isn't the primary focus of the study and as such, detailed information regarding 

grizzly bear movement rates is limited. 

In 2005, two studies were published that assessed the movement rates of grizzly bears in 

relation to road crossings (Waller and Servheen 2005) and female-male associations (Stenhouse 

et al. 2005). The first study, conducted in Montana, found that reported movement distances and 

movement rates were significantly greater when bears crossed highways compared to not crossing 

highways (Waller and Servheen 2005). Data associated with a highway crossing recorded a mean 

movement rate that was 573 m/h or 0.57 km/h significantly faster than other hourly movement 

rates. Mean 24-hr movement rates surrounding a road crossing were 0.7 km/h faster when 

compared to the normal 24-hr movement rate. The non-crossing movement rates were not 

reported for comparison. The second study, conducted in Alberta, reported mean rates of 

movement for both male and female bears to be significantly higher surrounding a mating event 

(Stenhouse et al. 2005). More specifically, movement rate was found to increase for both the 

approach and departure when compared to the actual association. When analyzed by sex, males 
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had a faster rate of movement prior to and after a mating event than females (Stenhouse et al. 

2005). 

Andrew Hunter (2007) conducted a comparison of movement velocities for one 

individual grizzly bear using 2005 GPS radiotelemetry data locations. Hunter (2007) identified 

the average movement rate for an adult male bear (G098) as 5.2 m/min or 0.31 km/h. Results 

further identified a movement behavior threshold of 6.5 m/min or 0.39 km/h with a 95% 

confidence interval (LB: 5.5 m/min; UB: 7.7 m/min) (Hunter 2007). Movements occurring below 

this threshold were considered foraging, while movements above 0.39 km/h were considered 

locomotion. Hunter (2007) then assessed the relationship between both foraging locations and 

locomotion locations with underlying landscape properties using a habitat selection model. 

Foraging-based movements were positively associated with water, edge features, leaf area index, 

and crown closure, while negatively associated with slope aspect and net radiation. Results 

suggested that locomotion movements were positively associated with water, leaf area index, and 

barren lands. To summarize, individual male G098 preferred to travel through cooler areas, closer 

to water features, and through barren landscapes with green vegetation present (Hunter 2007). Of 

particular interest, the locomotion model highlighted a clear preference for movement along river 

and stream networks. The model presented here was limited to one individual. Further, separating 

movement and foraging data was not conclusive with significant overlap occurring between the 

two (e.g. water and barren). For example, when examining the locomotion versus foraging home 

range areas it appeared that the resulting spaces were nearly 100 percent overlapped (Hunter 

2007). When using a two-process model to separate movement from foraging, it is inevitable that 

some events will be misassigned and attributed to the wrong process. Yet, the approach of 

partitioning an animal's trajectory data into different types of behavior may significantly improve 

modeling results (Hunter 2007). 
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Lastly, Cattet et al. (2008) analyzed the movement rates of radiocollared bears following 

a capture event to determine if capture and handling had any long-term effects on mobility. It was 

reasoned that if mobility was reduced for an extended period of time, then an individual's ability 

to acquire resources would also be reduced. Model results suggested that movement rate varied as 

a function of sex and reproductive class, month, the interaction between month and day of month, 

and the number of days following capture (Cattet et al. 2008). Overall, the study found grizzly 

bear movement rates to be significantly reduced (57% below normal) following a capture event. 

Reduced movement rates lasted from the day of capture up to 6 weeks before returning to mean 

levels (Cattet et al. 2008). The study further found movement rates to peak at 28 days (SE = 4.3 

days) post-capture. These results have large implications when working with GPS radiotelemetry 

data to assess movement rates as this dissertation does. Results suggest that data may need to be 

discarded prior to analysis. 

2.3 Movement Strategies for Assessing Consecutive Data (Pattern and Process Models) 

Relationships between movement patterns and processes have received increased 

attention over the last decade (Tischendorf 1997, With et al. 1999, Zollner and Lima 1999, 

Johnson et al. 2002, Chetkiewicz et al. 2006, Schick et al. 2008). Movement pattern refers to the 

spatial composition and configuration of the data itself (Chetkiewicz et al. 2006). Much more 

complicated is the concept of movement process. Process refers to the way grizzly bears interact 

within or spatially respond to landscapes, subsequently creating movement patterns (Chetkiewicz 

et al. 2006). Process-based approaches focus predominantly on inferring how individual-

environment interaction influences movement behavior (Schick et al. 2008). It is suggested that 

progress in movement ecology requires a merging of the two approaches. First, a solid 

understanding of the movement data is required. Then, approaches which integrate data with 

behaviorally-based movement models are required. 
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To understand spatial and temporal movement patterns specific to grizzly bear 

populations within Alberta, it is important to understand and address individual grizzly bear 

movements within and across heterogeneous landscapes (Ager et al. 2003). When dealing with 

large GPS radiotelemetry data sets, one must first understand how spatial movement patterns 

should be conceptualized. That is, how should we define movement and represent movement in 

space given a GPS spatial point data set? Second, how should spatial movement patterns be 

analyzed and what methods are available for linking movement patterns to underlying process? 

Lastly, can we differentiate between movement behaviors? The following section endeavors to 

address these questions by reviewing all pertinent movement literature using grizzly bear spatial 

response as examples where possible. 

Pattern-based Approaches 

The complexity with which wildlife interact within their environment generates intricate 

movement patterns (Jonsen et al. 2003). These movements can be accurately mapped as point, 

vector, or grid-based representations (Figure 2-1). The term movement is used here to describe 

the process by which individuals are displaced (change in spatial location) in space and time 

(Turchin 1998, Nathan et al. 2008). As an individual moves through space, a path can be recorded 

reflecting its past and present positions and its attributes (Wentz et al. 2003). Once understood in 

these theoretical terms, spatial patterns emerge which reflect real-world processes. When dealing 

with GPS radiotelemetry data, it is important to first understand movement empirically prior to 

any model development (Turchin 1998). GPS radiotelemetry data sets can empirically be 

approached in two primary ways: 1) as individual data locations demonstrating points in space 

and time (Figure 2-la), or 2) as vector data representation linking consecutive points across space 

and time (Figure 2-lb). 
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Figure 2-1. Diagram of: a) spatial point data, b) vector-based representation of spatial point data, 
c) least-cost path representation showing simulated movement between known locations, and d) 
kernel density interpolation of movement based on spatial point data. 
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Spatial point data typically represent static locations in two-dimensional x, y space where 

each location is characterized by an attribute or measure of the phenomenon being studied. For 

example, Figure 2-la may represent the physical locations of individual grizzly bear denning sites 

in west-central Alberta. With typical point data sets, the main purpose of analysis is to determine 

whether or not observed events exhibit any systematic pattern or departure from Complete Spatial 

Randomness (CSR) (Boots and Getis 1988, Bailey and Gatrell 1995). This analytical approach is 

termed Point Pattern Analysis (PPA). The presence of clustered or dispersed patterns can be 

recognized using CSR as a null model providing an effective summary of spatial interaction or 
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dependence (Boots and Getis 1988). In the case of GPS radiotelemetry data representing one 

unique grizzly bear, points that are grouped in space may indicate feeding or selection behavior 

for a preferred resource patch. As a corollary, GPS locations that exhibit dispersion or regularity 

may represent searching or travel movement across landscapes. Departure from CSR as a null 

model is often visually apparent a priori (Gatrell et al. 1996). Finally, the use of CSR techniques 

assumes that the occurrence or position of any point remains independent of the position of any 

other point (Wiegand and Moloney 2004). This is not the case with moving point data as will be 

discussed later in this chapter. 

While Figure 2-la provides information regarding discrete locations, the relationship 

between individual events, and information regarding event distribution across space, it fails to 

acknowledge the consecutive nature of moving point data as demonstrated in Figure 2-lb. Now 

consider an individual grizzly bear moving across two-dimensional space, point events are now 

recorded intervals represented by physical locations (x, y) with the addition of time (t). Here, the 

added element of time transforms a spatial point pattern characterized by individual events to a 

spatial 'movement' pattern characterized by points (recorded intervals) and linkages between 

consecutive points. Further, as time (t) is recorded sequentially, ((/, t2, t3... t„), points can be 

linked in space providing additional information regarding distance and direction. Thus, the 

spatial movement pattern described by recorded locations from ti to t9 can further be defined as a 

path or movement trajectory (sequence of consecutive points) containing a series of moves or 

path segments (Turchin 1998). 

Path segments provide quantitative information on time duration, path length, path 

direction, path velocity, and overall tortuosity between recorded locations. These metrics provide 

quantitative insight and can be used to parameterize movement rules for the spatially explicit 

process-based models described in the following section (Turchin 1998, Chetkiewicz et al. 2006). 
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For grizzly bears, movement is a continuous process. The data in Figure 2-lb provides 

information regarding geographical locations for tj and t2; however, travel between these points 

may be convoluted and depends on many unknowns such as individual bear behavior. While 

visually represented as straight-line connections (Figure 2-lb), for grizzly bears, the analysis of 

vector plots is typically unrealistic when dealing with data sets where locations are collected 

across large temporal intervals (e.g. 4-hr separations). As such, empirical methods or pattern-

based approaches remain limited in application, restricted primarily to the description of 

movement rates and delineation of home ranges (Turchin 1998, Amstrup et al. 2000, Amstrup et 

al. 2001, Rettie and Messier 2001). 

The two most common home range estimators include minimum convex polygon and 

kernel density estimation home ranges. Minimum convex polygon (MCP) home range delineation 

is a non-statistical polygon method of estimating spatial usage (Ostro et al. 1999). This approach 

simply describes the outer limits of each animals movements by connecting the peripheral 

locations (Worton 1987) (see Figure 2-2c). It has been realized that the use of MCP often 

overestimates an individual's home range. For example, MCP can include large areas of land 

which are never visited by the individual, in some cases due to geographic constraint (Worton 

1987). They further provide no detailed information regarding internal intensity or usage (Worton 

1987). 
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Figure 2-2. Diagram from bear G216 highlighting: a) GPS radiotelemetry point data set, b) 
vector-based movement pattern, c) minimum convex polygon home range, and d) kernel density 
estimation highlighting 95% contour outline. 

Kernel density estimation (KDE) is currently the home range technique most widely 

accepted and applied by wildlife biologist and ecologists (Worton 1987, Kernohan et al. 1998, 

Matthiopoulos 2003a). Kernel density estimation is a nonparametric approach resulting in a 

continuous intensity surface which varies across the individual's distribution (Mace and Waller 

1997, Berland et al. 2008). KDEs characterize the relative intensity of space use in the form of a 

probability density function. The most basic use of kernel density estimation is to employ the 

95% outline as the home range descriptor and ignore the internal information (Figure 2-2d). 
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Figure 2-3. Diagram from bear G216 highlighting: a) a GPS radiotelemetry point data set with 
50% and 95% kernel outlines, and b) a GPS vector data set with 50% and 95% kernel outlines, 
generated in Arc View 3.2 with the default ad hoc smoothing parameter. 

Resulting kernel surfaces can additionally be used to identify 'hot spots' or regions of 

high usage by an individual or population (Matthiopoulos 2003a). By generating internal 

contours, such as 50% probability outlines, core areas within an individual's home range can be 

identified (Figure 2-3a). Hot spots or core areas can then be characterized by extracting 

underlying landscape properties to determine which factors affect the distribution (or movement) 

of the study species (Matthiopoulos 2003a). 

As animal movements occur in network space as a series of trajectories or paths, it may 

be more reasonable to create network-based kernel density estimators. The above example 

(Figure 2-3) compares a point-based kernel home range and a vector-based kernel home range. 

Both kernel home ranges in this example were generated using the Animal Movement Extension 

in Arc View 3.2 (Hooge et al. 1999). The above network or vector-based kernel representation 

(Figure 2-3b) preserved the linear spatial pattern resulting from movement paths when compared 

to the point-based kernel home range (Figure 2-3a). The resulting vector-based 95% kernel 

outline is similar in appearance and shape to a standard distance-based or path buffer. In the 
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above example, the resulting outer kernel could be used to identify travel-based movements while 

the 50% vector-based core area contour would identify foraging-specific movements. If a study is 

interested in examining home range movement patterns or movement patterns related to 

landscape properties, it might be more appropriate to choose a vector-based approach like the 

example above. The only example similar to this approach in the current literature is the 

Brownian Bridge model presented by Home et al. (2007). 

When dealing with continuous data, there may not be a biologically obvious way to 

classify or characterize an individual's movement path. Few approaches exist which retain the 

consecutive nature of GPS data. These vector-based analytical approaches include three 

dimensional space-time prisms, moving object spatio-temporal data models (MOST), and graph 

theory models. Of these, space-time prisms are the most easily applied to GPS telemetry data. 

Hagerstrand (1970) used space-time continuum modeling to conceptualize and diagram where 

individuals came from and where they were bound at different points in space and time (Baer and 

Butler 2000). Space-time prisms were employed as conceptual tools for understanding variations 

in location and mobility (Hagerstrand 1970). A movement path, in Hagerstrand terminology, 

simply reflects the trajectory of an individual over space and time (Baer and Butler 2000). The 

potential path area is defined as the interior of the prism which houses all locations in space and 

time that the individual can occupy (Miller 2005). Baer and Butler (2000) suggest that because 

grizzly bears have trajectories in space and time, their paths can be modeled in this fashion 

(Figure 2-4). 

The space-time prism can be a useful tool for understanding how the location and 

mobility of grizzly bears vary over space and time (Baer and Butler 2000). When applied to 

individual grizzly bears, the approach can provide additional detail regarding internal clustering 

and spatial patterns within annual home ranges (Figure 2-4). Within the space-time prism, 

29 



horizontal distance represents geographical dispersion of the individual while vertical distance 

represents elapsed time. Change from a wide to narrow horizontal distance would indicate a 

change in behavior. For example, wide horizontal distance suggests large amounts of traveling 

while a narrow horizontal distance indicates a localized phenomenon, such as feeding (Baer and 

Butler 2000). The space-time prism technique is exploratory in nature. The approach further 

offers an alternative to standard boxplots and quantitative summaries as mobility patterns are 

represented graphically (Baer and Butler 2000). Unfortunately, its large-scale utility is limited. 

While potentially taking home range explorations to a new level, Miller (2005) states that 

rigorous analytical and statistical measurement of space-time prisms do not yet exist. 

Figure 2-4. Example of a 3D space-time prism for individual grizzly bear G203 showing the 
potential path area (PPA) as season (preberry, berry and postberry) changes. The space-time 
prism path begins at the bottom of the graph, progressing upward as sequential GPS locations are 
added. The vertical spread represents the temporal duration of radiocollar data. The horizontal 
spread represents the spatial PPA or home range of the individual bear during a given time frame. 
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Process-based Approaches 

This section of the chapter focuses specifically on movement models and approaches for 

dealing with consecutive data points such as GPS radiotelemetry data. In most cases, movement 

models examine how patterns in the data correspond with patterns in the environment (Schick et 

al. 2008). Strategies for analyzing movements range from the simple to the complex and have 

been applied at varying spatial and temporal scales (Turchin 1998, Chetkiewicz et al. 2006). 

Organizing movement models into a cohesive and logical progression is difficult. There appear to 

be multiple paradigms concerning movement ecology (Turchin 1998, Chetkiewicz et al. 2006, 

Holyoak et al. 2008, Nathan et al. 2008, Schick et al. 2008). 

Approaches to understanding and modeling GPS-based movements have previously been 

classified as: vector versus raster-based approaches (Tischendorf 1997), empirical versus 

simulation-based movement models (Turchin 1998), Eulerian versus Lagrangian approaches 

(Turchin 1998), and most recently, non-inferential versus inferential movement models (Schick et 

al. 2008). Choosing an appropriate classification scheme is difficult given the overlapping nature 

of the above dichotomies. To reiterate, because this research focuses on previously collected GPS 

radiotelemetry data, the movement models reviewed here are largely empirically vector-based 

approaches with specific focus on individual-landscape interactions. The subsequent process-

based models are reviewed in a logical progression by which animal movements can be 

summarized, quantified and then modeled. 

As previously mentioned, one of the most recent movement papers suggested that 

process-based models can theoretically be classified into non-inferential and inferential 

movement models (Schick et al. 2008). Non-inferential refers to statistical-based approaches 

which focus on the interaction between individuals and their environment (Schick et al. 2008). 

Examples of non-inferential vector-based models include fractal analysis, random walk, 
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correlated random walk and step selection function models. These empirically-based approaches 

characterize movement paths primarily based on their pattern using step length, turning angle, 

velocity, and fractal dimension (Chetkiewicz et al. 2006). Small-scale simulations are often 

employed to highlight significant patterns in the data. Further these approaches tend to be popular 

in large part because of the inherent ability to relate patterns in movement data to patterns in the 

environment (Schick et al. 2008). More complex approaches include first-time passage models 

(Frair et al. 2005) and Levy flight approaches (Marell et al. 2002). More recently, researchers 

have further developed empirically-based models termed multi-behavior or two-process models 

to distinguish between types of movements, such as foraging or dispersal (Johnson et al. 2002, 

2006, Hunter 2007, Schick et al. 2008). Finally, a time series segmentation approach that focuses 

on vector movement strategies is reviewed (Dettki and Ericsson 2006, Barraquand and Benhamou 

2008). These latter technologies and new analytical tools are making it possible to better integrate 

landscape patterns with behavioral processes (Chetkiewicz et al. 2006). 

Inferential movement models address both the state of the moving individual and its 

response to the state of the map over which it moves (Schick et al. 2008). Small-scale examples 

of inferential movement models include Hidden Markov models (Franke et al. 2004), and state-

space models (Jonsen et al. 2003, Flemming et al. 2006, Barraquand and Benhamou 2008). In 

these examples animal movements are often simulated over computer generated heterogeneous 

landscapes. They are computationally intensive and have yet to be applied to large collections of 

radiotelemetry data as required by grizzly bear research. Instead, this review will focus on large-

scale inferential models used to simulate movements across landscapes which include cost-

distance models (Adriaensen et al. 2003) and grid-based diffusion models (Blackwell 1997, 

Home et al. 2007). Simulation approaches are typically used to identify movement processes over 

large landscapes where movement data are unavailable, incomplete, or contain substantial error. 

However, two recent studies have emerged which combine the vector properties of GPS 
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radiotelemetry locations with large-scale GIS grid-based movement models (Graves et al. 2007, 

Home et al. 2007). 

Moving point data is typically modeled or simulated in one of two ways: 1) as a vector-

based model approximating movement paths between patches or known locations (Figure 2-lb 

and Figure 2-lc), or 2) as a continuous grid-based or density surface demonstrating movement as 

related to underling landscape surfaces (Figure 2-ld). The majority of empirical vector-based 

models quantify the patterns as presented by movement pathways (Figure 2-5). 

Figure 2-5. Example of vector segment calculations for distance (km), movement rate (km/h), 
and deviation angle (deg) or turning angle parameters where distance for vector segment A is the 
straight line distance between tt and t2. Movement rate is calculated by dividing the distance for 
vector segment A by the time difference between t, and t2. Lastly, deviation angle is the bearing 
in degrees that the following vector segment (B) deviates from the bearing of vector segment (A) 
preceding it. 

The most straightforward of these is vector distance or step length, turning angle, and 

movement rate. Resulting movement parameters (small step lengths versus long step lengths) are 

then compared to specific landscape features. For grizzly bears, long step lengths and small 

turning angle coupled with high movement rates may indicate directed travel through undesirable 
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habitat (Graves et al. 2007). Understanding these basic parameters of movement for a particular 

species is an important first step to more complex movement analyses. Further, these basic 

metrics can be used to parameterize movement rules for spatially explicit models such as those 

described below (Chetkiewicz et al. 2006). 

Approaches which focus on simulating vector-based movements most commonly employ 

fractal analyses (Crist et al. 1992, Bascompte and Vila 1997, Phillips et al. 2004), random walk 

models (Schippers et al. 1996, Turchin 1996), correlated random walk models (Kareiva and 

Shigesada 1983, Bergman et al. 2000, Austin et al. 2004), or step selection functions (Fortin et al. 

2005). In all cases, movement length, turning angle and velocity distributions are considered to be 

indicators of complex behavioral processes (Bartumeus and Levin 2008). 

The most straightforward indices, such as net squared displacement, path tortuosity or 

complexity, and fractal dimension are fairly intuitive (Turchin 1998, Bergman et al. 2000, Wentz 

et al. 2003, Whittington et al. 2004). They are commonly employed to summarize movement 

behavior in relation to habitat quality or habitat complexity based on whether the movement path 

or trajectory is classified as straight or convoluted (Bascompte and Vila 1997, Whittington et al. 

2004). For example, path tortuosity or fractal dimension would be influenced by behavioral 

aspects such as foraging intensity or navigation ability (Whittington et al. 2004, Nams 2005). The 

attractiveness of using a measure like fractal dimension is that it can be compared across different 

populations or subgroups by testing for significant differences in the degree of complexity. 

However, as fractal dimension is an overall summary measure, internal variations related to 

landscape heterogeneity can be missed (Nams 2005). A more powerful and detailed approach 

describes individual movements as random walks or correlated random walks (Turchin 1996). 

34 



Applying random walks directly to movement data take process-based analyses to the 

next level. First, an individual (vector movement pattern) is described as a sequence of 

probabilistic discrete steps expressing its walk under homogeneous or null conditions. Movement 

is typically broken down into two components: move length and turning angle between 

successive moves (Tischendorf 1997). The accumulation of these measurements creates a 

frequency distribution for total step length and turning angle. The step length distribution 

describes the stochasticity (shape) of the velocity of the moving individual and the convolution of 

the movement path is expressed by the step angle distribution. To create a random walk model, 

turning angles and length units are randomly drawn from a continuous uniform distribution 

(Fortin and Dale 2005) often creating a highly tortuous and circular path (Whittington et al. 

2004). The raw movement data are then compared to the simulated random walk model to 

highlight significant behavioral trends of the species under question. 

In reality, individual movements fall somewhere between random walk and directed 

walks (Tischendorf 1997). By constraining movement between known locations and 

concentrating movement direction by assuming a non-uniform distribution of turning angles, a 

correlated random-walk (CRW) model can be generated. CRW models have been quite 

successful in exploring and simulating the biological or behavioral response of an individual to 

their habitat (Bergman et al. 2000). For example, straight-line paths often represent large 

contiguous patches of habitat while highly sinuous paths represent convoluted routes through 

fragmented and patchy landscapes. Length and direction of the movement steps determine the 

grain of the simulated organism's response to the landscape (Tischendorf and Fahrig 2000). CRW 

movement paths are usually characterized by some degree of directional persistence or net 

direction bias where smaller turning angles are more probable than larger turning angles 

(correlated move directions) (Turchin 1998, Bartumeus and Levin 2008). While random walk 

models assume there is no autocorrelation present in sequential step lengths or turning angles, 
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CRW models predict the next step will equal that of the previous step demonstrating a high 

directional persistence and low path tortuosity (Whittington et al. 2004). CRW models typically 

can be used to examine first-order autocorrelation for movement length and direction (Fortin and 

Dale 2005). For example, positive correlation in sequential turn direction can indicate area-

restricted habitat searches (Turchin 1998). 

The advantage of CRW approaches is that behavioral changes, such as foraging or 

directed walks, can be analyzed with respect to expected net displacement to test the 

appropriateness of the model (Turchin 1998, Fortin and Dale 2005). According to Bergman et al. 

(2000), comparing the observed and predicted displacements can produce three possible 

outcomes: 1) data can correspond to model predictions indicating directed random movement, or 

2) the model may overpredict displacement indicating preference for an area, or 3) the model may 

underpredict displacement indicating avoidance of an area. Resulting correlated random walk 

patterns behave like linear movement at very small scales and like random Brownian movement 

at very large scales (Turchin 1996). 

Individual-based models provide an opportunity to identify key variables that influence 

the movement of animals through space (Boone and Hunter 1996). Further, the results are often 

used to create movement models which aim to incorporate movement behavior (Jerde and 

Visscher 2005). According to Turchin (1998), the above approaches provide more descriptive 

statistics that are useful for summarizing organism dynamics but lack the spatial explicitness to 

describe large-scale movement patterns. Movement pathways which span long time periods are 

likely to contain complexities that are difficult to compare directly to a random walk model or 

correlated random walk model (Jonsen et al. 2003). For example, a CRW model can fail to 

describe movement across larger scales due to changes in individual movement behavior 

(Morales and Ellner 2002). This transferability is important for grizzly bear research which 
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requires movement models to be applied across large landscapes. Finally, the major assumption 

of the CRW model is that move lengths (and by extension movement rate) and turning angles are 

not autocorrelated (Austin et al. 2004). This type of autocorrelation (evident in fine-scale grizzly 

bear data, see Chapter 3) is the primary reason for rejecting the use of CRW models (Turchin 

1998). An extension of random walk models more applicable to current grizzly bear research are 

least-cost path models or linkage zone models. 

More recently, extrinsic biases to animal movements have been evaluated using step 

selection function (SSF) models (Fortin et al. 2005, Coulon et al. 2008). Similar to a CRW model, 

random steps are generated from distributions of length and turning angles observed from many 

individuals. The observed and random steps are then contrasted using a conditional logistic 

regression similar to that found in a resource selection function (RSF) models (Nielsen et al. 

2002). Resulting steps with a higher SSF score will have increased odds of being chosen by the 

animal (Fortin et al. 2005). The approach is novel because it employs vector steps (segments 

separating successive locations) rather than location or areal data (Coulon et al. 2008). The 

utilization of vector-based steps results in an understanding of the landscape characteristics the 

path will encounter between known points. However, no studies have yet attempted to distinguish 

between types of movement using this approach. For example, while results presented by Coulon 

et al. (2008) state that movements do not occur randomly in space and that distance to roads had 

the largest effect on roe deer movements, the study was unable to state whether individuals 

moved faster or slower relative to certain features. Despite the various limitations, these type of 

models serve as learning tools to assess how movement behavior varies from random (Johnson et 

al. 2006). 

Somewhere between pattern and process-based approaches falls the empirical assessment 

of distinguishing between types of movement behavior. Movement studies require nonlinear 
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methods because animal behaviors or changes between behavioral states are inherently nonlinear 

(Jonsen et al. 2003). Both two-process curve fitting behavior models (Johnson et al. 2002, Hunter 

2007) and time-series models (Dettki and Ericsson 2006) are capable of describing such 

nonlinearities. These efforts focus primarily on using GPS-based vector movement rates to 

establish scalar or discrete types of movement. For example, by partitioning grizzly bear 

movement into fast movement or locomotion movement and foraging or specialized movement it 

is possible to account for more variation in model parameters (Hunter 2007). Activity levels are 

assumed to follow a bimodal frequency distribution where slow movement behaviors (resting, 

sleeping, prolonged foraging) are close to zero and active behaviors (travelling) are relatively 

high in comparison (Gervasi et al. 2006). 

Recently, studies have employed a non-linear two-process curve fitting model to 

differentiate types of movement behavior (Johnson et al. 2002, 2006, Hunter 2007). This 

technique fits a nonlinear concave function to the log transformed frequency distribution of 

movement velocities. Major inflections or natural breaks along the curve provide a method to 

differentiate or identify a threshold between movement types or processes. More frequent slow 

movements occur on the steep phase of the function while fast movements occur on the tail (less 

steep portion) of the function (Johnson et al. 2006). Studies using this approach assume that 

small, slow and large, fast movements correspond to within (foraging) and between habitat patch 

(travel) movement behaviors. Unfortunately, establishing a dichotomy between movement types 

is a complicated generalization of real movement behaviors. For example, an individual may 

travel to a new place and forage along the way (Nams 2005). This is quite often the case for 

grizzly bears. In such cases, a three-process model identifying foraging, searching and traveling 

behavior would be needed (Johnson et al. 2002, Hunter 2007). However, previous attempts to 

identify a third-scale of movement were not successful by either study. Further, while able to 

identify distinct scales of movement, this approach does not retain the consecutive nature of the 
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data. Continuous path data that provides information regarding animal behavior along that path is 

needed (Hunter 2007). 

Direct observation of an individual's movement path may be the most powerful method 

for quantifying movement patterns (Home et al. 2007). A time series is a collection of 

observations made sequentially in time. While commonly used in economic forecasting or stock 

market analysis (Chatfield 1980), the approach has recently been applied to GPS radiotelemetry 

data sets (Dettki and Ericsson 2006). Records of animal movement are rarely continuous and a 

typical data set consists of time-ordered sequences of coordinate pairs separated by known time 

intervals (Matthiopoulos 2003b). When observations are taken at predetermined intervals 

(typically equally spaced), the time series is said to be discrete (Chatfield 1980). A time series 

graph can be used to visualize descriptive measures as well as highlight internal patterns in the 

data such as sequential temporal clusters related to speed, distance or some other quantitative 

characteristic of the data in question (Dettki and Ericsson 2006). Further, using time series 

analysis provides an opportunity to assess serial or temporal autocorrelation in the vector data 

structure (Chatfield 1980). 

In the below example, a time series graph has been generated for an individual male 

grizzly bear (Figure 2-6). The resulting graph structure visualizes the complete movement 

trajectory using normalized distance to describe vector characteristics. Low normalized distances 

occurring below <1.0 mean standard deviations were coded as short movement vectors (Figure 

2-6a). All remaining vectors were coded as fast movement vectors (Figure 2-6b). Further, 

sequential clusters with similar values were highlighted to demonstrate consecutive vectors with 

related speeds. Both visually and through the use of basic table analysis it is possible to identify 

internal vector clusters within the time sequence graph. By partitioning the data into foraging and 

travel vectors, future modeling efforts can account for more of the variation found within 
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movement data structures (Dettki and Ericsson 2006). Lastly, by directly linking the graph 

structure to raw data in a GIS environment, individual grizzly bear movement patterns can be 

compared visually and quantitatively to underlying landscape properties. 

Figure 2-6. Example of a time series sequence graph for male G216 with a normalized distance 
threshold < 1.0 standard deviation below the mean normalized distance demonstrating the 
separation of a) slow movements, and b) fast movements with related spatial vector patterns. 
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Large-scale grid-based movement models have been developed where knowledge about 

landscape features and individual movements can be combined in a spatial context (Tischendorf 

1997). For grizzly bears, the development of GIS cost-based models for movement simulations 
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across larger landscapes have received considerable attention (Boone and Hunter 1996, Walker 

and Craighead 1997, Clevenger et al. 2002, Larkin et al. 2004, Kindall and Manen 2005, Graves 

et al. 2007). These models generally take the form of either least-cost path (LCP) models or 

linkage zone (LZM) models. The most common approach is to create underlying spatially explicit 

habitat models to identify movement corridors or linkage zones across large landscapes 

(Clevenger et al. 2002, Singleton et al. 2004). Both models rely on underlying grid surfaces to 

simulate the most likely pathway or movement zone for moving individuals to travel from a start 

location to a destination. Permeability or cost surfaces are generated by classifying available 

habitat into categories reflecting the resistance value to movement (Boone and Hunter 1996, 

Larkin et al. 2004). Higher values equate increased resistance while lower values are intended to 

promote movement across the landscape. Resulting movement routes (vector or grid-based) 

reflect the most suitable habitat and fewest surmountable barriers (Larkin et al. 2004, Kindall and 

Manen 2005). When used in a GIS environment, least-cost path models can facilitate the 

identification of barriers and corridors important to animal movement (Clevenger et al. 2002). 

However, these models are primarily landscape driven and while useful for assessing potential 

movement patterns, cost-distance approaches often lack sensitivity testing and validation against 

empirical data (Boone and Hunter 1996, Driezen et al. 2007). Larkin et al. (2004) admit their use 

of least-cost path analysis is subjective at best. 

More recently, Graves et al. (2007) combined vector-based GPS movements with GIS 

techniques to identify primary habitat and functional corridors for brown bears in Alaska. This 

approach used movement path characteristics (path density, speed and angular deviation), rather 

than vegetation and landscape structure, to determine functional travel corridors (Graves et al. 

2007). It was assumed that movement paths in primary habitat would be dense, slow, and sinuous 

as grizzly bears search for food or rest. The study further assumed movements to be constrained, 

linear and faster in landscapes with fragmentation or fewer resources indicating a travel corridor 
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(Graves et al. 2007). Movement parameters were transferred to grid-based landscape surfaces and 

reclassified into either primary habitat patches or highly functional bear corridors depending on 

cell value. Results reported the best discrimination between classes when locations were sampled 

at 6-h intervals using a search radius of 1,000 m and a cell size of 500 m. The approach as 

presented is useful for identifying large-scale landscape functionality as used by GPS-collared 

bears in the study region (Graves et al. 2007). It was suggested that for fine-scale location data a 

smaller cell size and search radius would be needed. There was no report of movement rate 

characteristics in this paper. 

One of the most interesting papers related to analyzing animal movements with specific 

reference to bears was recently published by Home et al. (2007). The authors developed a 

Brownian bridge movement model for estimating the expected movement path of an animal 

between consecutive data points. A Brownian bridge is a continuous-time stochastic model of 

movement in which the probability of being in an area is based on the time, distance, and 

mobility between successive pairs of locations (Home et al. 2007). The approach is akin to 

modeling an animal's utilization distribution for a period of observations (Home et al. 2007). The 

resulting Brownian home range (similar to its kernel counterpart) highlighted multiple centers of 

activity as well as likely "connections" via pathways between the areas of frequent use. It was 

reported that this is likely a result of the models mechanistic basis which estimates the home 

range by modeling the animal's expected movement path (Home et al. 2007). Movement path 

uncertainty is directly incorporated via the mobility parameter and the measurable location error. 

While a sophisticated new approach for analyzing an individual's home range with emphasis on 

movement, the approach did not differentiate between types of behaviors. For example, a similar 

approach could be reached using a vector-based kernel estimator to identify a movement home 

range. According to Home et al. (2007) incorporating estimates for different behaviors could 

more accurately depict animal movements. 
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As this chapter has reviewed, most pattern-based analyses employ a data driven approach 

which aim to make inferences about underlying processes. For example, empirically-based 

measures provide a simplified understanding of the behavioral process generating a resulting 

movement pattern. In movement simulations, long displacements and nearly straight paths are 

assumed to represent highly permeable patches while short displacements and convoluted or 

tortuous paths indicate low permeability patches or search behaviors (Boone and Hunter 1996). 

Often, these approaches are too specific in their application thus limiting transferability 

(Barraquand and Benhamou 2008). An additional problem is that no two studies can effectively 

employ the same set of assumptions. Due to the inherent uncertainty in model frameworks, 

comparisons across studies become difficult (Table 2-2). 

Table 2-2. Summary of movement model approaches with emphasis on GPS moving point data. 

Empirical Assessment Simulation Models 
GPS Point GPS Vector Continuous 

Data Moving Data Movement Data 

1st Order Quadrat, nearest Net displacement, GIS-based corridor 
Approaches (Global, neighbor, minimum tortuosity, fractal models, linkage zone 
Pattern) convex polygons, dimension, space-time models, least-cost 

kernel density prisms, network path models 
analysis KDEs 

2nd Order 
Approaches 
(Local, Process) 

Ripley's K, O-ring 
statistic, Moran's I„ 

Getis 

RW, CRW, SSF, two-
process behavior 

models, time series 
models 

Diffusion, state-space 
models, combined 

vector-grid GIS 
models 

Non-inferential Inferential 

Moving point data or spatial movement patterns require additional analytical techniques 

beyond those currently offered by point pattern analysis. These include both measures and 

techniques which acknowledge consecutive data structures and the inherent temporal component 
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of GPS data. More specifically, a process-based model driven by empirical data will provide an 

opportunity to test model sensitivity to changing parameters and resulting patterns of vector-

based movement representation. Extensive telemetry data sets further provide researchers with an 

opportunity to explore the nature of consecutive vector data. These approaches step beyond the 

simpler exploration of movement patterns and begin to integrate the underlying process. Only a 

few of the previously reviewed approaches examined actual changes in movement rate or 

velocity. Further, maintaining the integrity of consecutive movement data is rare and not often 

considered or incorporated. Yet, two studies promote the importance of this approach through the 

use of time series analysis (Dettki and Ericsson 2006, Barraquand and Benhamou 2008). 

2.4 GPS Data Challenges 

GPS Data Uncertainty 

Working with GPS radiotelemetry data introduces issues regarding spatial (positional), 

temporal and attribute (characteristic) error. Despite significant improvements to the technology, 

error remains inherent in animal movement data (Frair et al. 2004). Two primary types of error 

can bias analyses and results based on GPS locations: spatial location error and missed location 

fixes (Frair et al. 2004, Lewis et al. 2007). Studies have shown that steep slopes, slope 

orientation, dense forest canopy, collar brand, and animal behavior (collar position) can all 

contribute to a reduction in GPS data acquisition and location accuracy (Frair et al. 2004, Gau et 

al. 2004, DeCesare et al. 2005, Sundell et al. 2006, Heard et al. 2007). Studies have further 

explored the influence of measurement error on habitat selection (Rettie and McLoughlin 1999, 

Frair et al. 2004, Lewis et al. 2007) and movement parameters (Jerde and Visscher 2005, 

Ganskopp and Johnson 2007). 

GPS radiotelemetry data is much more accurate today than it was previously. Prior to 

selective availability, Mace and Waller (1997) reported an average error of 150 m. Since 2000, 
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most studies report stationary GPS locations to be accurate to within approximately 30 m. 

However, when dealing with moving point data mean error values have been reported to range 

from 14.3 m (Lewis et al. 2007) up to 55.0 m (Hunter 2007). Lewis et al. (2007) recorded a mean 

location error of 14.3 m however this result varied substantially within different habitat groups. 

Hunter (2007) calculated an average estimated horizontal error of 55.0 m ranging from 17.7 m to 

329.3 m. 

Large amounts of location error or spatial inaccuracy can result in the misclassification of 

habitats or bias estimates of movement paths. Habitat classification accuracy is dependent on the 

amount of location error and the degree of landscape heterogeneity (Frair et al. 2004). Spatial 

inaccuracies are further influenced by habitat type and amount of habitat cover. For example, one 

study documented a positive trend between increasing canopy closure and GPS error (DeCesare 

et al. 2005). Specifically, error distances (up to 8 m from the true path) were found to be larger 

and more variable under high canopy closure forests. It has been suggested that buffering 

individual points will help to capture portions of habitat type missed by location error (Rettie and 

McLoughlin 1999). However, the use of buffers will also contribute habitats that potentially did 

not influence resulting animal behaviors (Frair et al. 2004). 

The second type of error inherent in GPS radiotelemetry data is missed fix acquisitions 

directly resulting in missing data points. According to Friar et al. (2004) this problem has largely 

been ignored. Even slight underrepresentation will have significant effects on ecological models 

(Heard et al. 2007). Missed fixes can result in large time gaps making it difficult to get detailed 

movement paths. Gaps in time sequence often result from collar failure or failure of the collar to 

acquire satellite signals in mountainous terrain or dense canopy cover (Lewis et al. 2007). For 

example, Heard et al. (2007) found that as canopy cover increased the probability of obtaining a 

fix decreased. Further, closed conifer and deciduous forest types reported large negative effects 
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on the probability of acquiring a GPS location (Frair et al. 2004). Heard et al. (2007) also reported 

an interaction effect between collar orientation and canopy cover. Therefore, it can logically be 

assumed that GPS locations will be underestimated in areas with dense forest or high canopy 

cover - especially when grizzly bears are resting there and collars may not be upright. However, 

if an individual is resting for significant amount of time in high canopy cover, the pattern should 

still be identifiable. 

Collar brand, type, and year of construction will further contribute to both fix acquisition 

rate and spatial accuracy (Frair et al. 2004, DeCesare et al. 2005). Previous work by Friar et al. 

(2004) tested 3 different collar types and found the Televilt brand radiocollar to have a lower 

probability of acquiring GPS radiotelemetry locations than ATS or Lotek collars. Overall, mean 

rates of successful location attempts ranged from 68% to 98% depending on collar brand (Frair et 

al. 2004). Another study recorded GPS Lotek collar fix rate for 10 individual black bears ranging 

from 89% to 96% (Lewis et al. 2007). Of note, moving fix rate was only 7.3% lower than the fix 

rate recorded for stationary test collars (Lewis et al. 2007). Lastly, a previous study of Televilt 

Simplex collars recorded a mean success rate of 65% (Gau et al. 2004). It's important to note that 

direct comparisons between studies are not realistic given they were conducted in different study 

regions with different years of data. The construction and functionality of radiocollars today has 

evolved considerably over earlier models circa 1999 - 2001 (G. Stenhouse, personal 

communication). 

When screening location data, there is a trade-off between data accuracy and data 

reduction. To reduce data error, studies often initiate a GPS Dilution of Precision (DOP) cut-off 

threshold. Lower GPS DOP values result from a widely dispersed satellite array yielding a higher 

level of positional accuracy (Ganskopp and Johnson 2007, Lewis et al. 2007). As DOP is related 

to location error, it has been suggested that locations with a high DOP (greater than 6) be 
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removed from the data sets (Ganskopp and Johnson 2007, Lewis et al. 2007). Of course, by 

removing data to reduce location error, the decreased number of data points itself may add other 

bias in the resulting GPS data set. 

In effort to better understand the quality of GPS radiocollar data used in this dissertation, 

I conducted a simple comparison of both mean DOP value and the proportion of location fixes. 

Collar performance (grouped by collar type - T. Simplex, ATS or T. Tellus) was compared for all 

bears across all years by assessing GPS fix success rate. Overall GPS fix success was calculated 

as: 

(scheduled fixes per day x total # of days) ^ ^ ^ 

# of actual fixes recorded 

For all collar types, capture success rate (F6>i43 = 2.81, P = 0.013) and DOP (%2 = 33.403, 

df = 6, P < 0.001) were significantly different across years. More specifically, 1999 recorded the 

highest mean capture success rate (mean = 0.70, SE = 0.04), while 2003 (mean = 3.63, SE = 0.09) 

and 2005 (mean = 3.56, SE = 0.16) recorded the lowest or best DOP scores. Overall, capture 

success rates when grouped by collar type were found to be moderate, recording on average 

between 51% and 62% of total scheduled GPS events (Table 2-3). Capture success rate (%2 = 

8.96, df = 2 , P = 0.011) and DOP (%2= 78.12, df = 2 , P < 0.001) were significantly different for 

each collar type. 
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Table 2-3. Success rate and average dilution of precision (DOP) score by collar type (n = 
from 1999 to 2005. 

150) 

Collar 
type 1999 2000 2001 2002 

Success Mean Success Mean Success Mean Success Mean 
n % DOP n % DOP n % DOP n % DOP 

T. Simplex 9 67.6 3.79 12 52.6 3.69 14 61.2 3.84 15 49.6 3.55 
ATS 2 79.9 3.78 7 59.2 4.91 5 63.5 5.43 4 41.2 4.89 
T. Tellus 

Collar 
type 2003 2004 2005 Overall Mean 

Success Mean Success Mean Success Mean Success Mean 
n % DOP n % DOP n % DOP n % DOP 

T. Simplex 27 49.2 3.52 24 46.3 3.57 11 39.4 3.5 112 50.7 3.61 
ATS 2 63.9 5.11 3 65.6 5.15 5 72.4 4.95 28 62.2 4.97 
T. Tellus _ _ _ _ _ 10 51 2.86 10 51.3 2.93 

ATS collars were found to capture approximately 10% more data locations (P = 0.027) 

than Televilt Simplex or Televilt Tellus brand collars. However, ATS collars were also found on 

average to have higher DOP values (Figure 2-7). This result suggests that while ATS collars 

successfully retrieve more GPS radiotelemetry location, the quality of the data was generally 

worse. Televilt Tellus collars (n = 10), after 1 year of deployment were found to have the best or 

lowest mean DOP (mean = 2.93, SE = 0.11, P < 0.001). No direct correlation between DOP and 

capture success rate was found. It is important to note that complexities of data capture related to 

habitat type were not analyzed as part of this study. 

Results from various studies have found that habitat selection bias via GPS-based animal 

locations can result in type II errors and therefore bias model parameters or coefficients (Frair et 

al. 2004). Statistical corrections for GPS bias require knowledge of both the canopy cover and the 

behavior of the individual animal (Heard et al. 2007). Estimating correction factors is difficult at 

best, especially when dealing with large landscapes and populations. Results from a Monte Carlo 
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simulation demonstrated that estimates of turning angle and step length are accurate only when 

the distance between two locations is large relative to the measurement error (Jerde and Visscher 

2005). However, results from one study found that uncorrected data exhibited remarkable 

accuracy for estimating distance between adjacent coordinates of moving GPS collars (Ganskopp 

and Johnson 2007). The study states that distance error measurements (overestimates and 

underestimates) will likely compensate for one another over time equaling zero as long as 

movement segments exceed normal position error (Ganskopp and Johnson 2007). According to 

Johnson et al. (2002), using movement rate or velocity, as opposed to distance, will help to 

standardize variation in sampling interval due to occasional missed fixes and slight differences in 

acquisition time, as well as differences in collar scheduling. 

Figure 2-7. Average success rate and dilution of precision (DOP) score by collar type (n = 150) 
from 1999 to 2005. 
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Temporal and Spatial Autocorrelation 

Another fundamental consideration of moving point data is the presence of spatial 

(geographical) and temporal (serial) autocorrelation between locations. The presence of spatial 

autocorrelation and time to independence or temporal autocorrelation has particular implications 

for studies based on GPS radiotelemetry data (Rooney et al. 1998). The primary premise when 

working with GPS radiotelemetry data is that locations must be statistically independent to 

achieve valid results (Otis and White 1999). For example, methods for estimating home range or 

utilization distributions assume the locational observations to be independent (Worton 1987). 

Autocorrelation is a measure of whether closer events are more likely to have similar magnitudes 

(Fortin and Payette 2002). Simply described, if autocorrelation is high then the ability to predict 

an individuals position based on its last position is also high (Rooney et al. 1998). Because a 

movement path or trajectory is modeled as a continuous, stationary, stochastic process, it is by 

definition an autocorrelation function (Otis and White 1999). Therefore, moving data descriptions 

such as distance or movement rate will be correlated and thus are not considered statistically 

independent. This lack of spatial and temporal independence has typically been viewed as a 

problem in ecological studies (Liebhold and Gurevitch 2002). 

In geographic research, spatial autocorrelation is more commonly addressed in research 

studies when compared to temporal autocorrelation (Christman 2007). Positive spatial 

autocorrelation refers to nearby locations of GPS observations which have a similar magnitude 

than those randomly placed in the study area (Dale et al. 2002, Fortin and Payette 2002). As a 

corollary, negative spatial autocorrelation exists when nearby events are dissimilar. 

Understanding the degree of spatial association or autocorrelation in the data, allows the 

researcher to determine the level of spatial dependence. If observations are clustered then 

estimates may be overly precise and biased as the values are not stochastically independent from 

one another (Legendre 1993, Flahaut et al. 2003). It is generally considered that ignoring 
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autocorrelation results in misleading conclusions including an increase in type I errors (i.e. tests 

are declared significant when they are not) (Fortin and Payette 2002, Diniz-Filho et al. 2003, 

Martin et al. 2008). For example, the presence of positive autocorrelation will lead to the 

underestimates of standard errors thereby producing a false increase in model precision (Legendre 

1993, Aarts et al. 2008). 

Previous studies have suggested that spatial autocorrelation in the data be avoided or 

minimized. The most common practice is to employ a random sampling regime in an attempt to 

ensure that consecutive GPS locations are independent of each other (Rooney et al. 1998, 

Liebhold and Gurevitch 2002). For example, in effort to eliminate autocorrelation associated with 

telemetry data, Dahle and Swenson (2003b) excluded GPS locations <100 hours for individual 

bears while Chruszcz et al. (2003) excluded locations < 10 hours for individual bears. Efforts for 

dealing with spatially autocorrelated data specifically in bear research vary considerably, if 

addressed or mentioned at all. 

Methods employed to quantitatively assess the amount of spatial autocorrelation in a data 

set can be classified as either global measures or local measures. Global measures quantify spatial 

autocorrelation by computing a single value for the entire data set (Boots 2002). Local measures 

quantify variations in spatial autocorrelation within the data set or study region. The most 

commonly employed global indices include Moran's I and Geary's c. Both approaches assume 

stationarity, meaning that the underlying process should have roughly the same parameter values 

(mean and variance) for the entire study region (Wagner and Fortin 2005). They further assume 

that the spatial autocorrelation value at different spatial distances or lags is also similar over the 

entire study region (Wagner and Fortin 2005). Often, ecological processes (movement) are 

nonstationary resulting in the mean and variance of a variable changing across a study region. In 

such cases, local indices of spatial autocorrelation are used. These include local Moran's /, and 
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local Getis G, for example. Local spatial statistics are used to detect clusters of either high or low 

spatial autocorrelation values. 

Due to the automation of GPS collection, moving point data are further characterized by 

temporal or serial autocorrelation between successive locations (Martin et al. 2008). Defined, 

serial autocorrelation is the phenomenon where the position of an individual at time t + At is not 

independent of its position at time t. The most straight forward method of assessing temporal 

autocorrelation is to calculate the time to independence using rate of movement (Rooney et al. 

1998). Time to independence is most commonly achieved by subsampling the data set until 

autocorrelation in the data is eliminated (Fortin and Dale 2005). In most cases, the resulting 

subsampled data set is then used for all future statistical analysis. There is usually no way a priori 

to determine what the time to independence will be. Approaches such as time series analysis can 

be used to characterize the autocorrelation properties of vector movement segments using 

parameters such as step length, turning angle, or velocity. 

Some studies state that autocorrelation between GPS radiotelemetry locations is not 

entirely undesirable as it contains relevant information regarding movement patterns and 

behavioral characteristics (Cushman et al. 2005, Martin et al. 2008). Due to the consecutive 

nature of GPS location data, the resulting data sets are often characterized by short intervals 

between successive locations. Points closer together in space and time have higher levels of 

autocorrelation (Figure 2-8a). As moving data is increasingly subsampled to remove 

autocorrelation in the data (Figure 2-8c), resulting movement patterns will be significantly 

underestimated (Rooney et al. 1998). By subsampling, the quality of data and usefulness may be 

severely compromised (Ostro et al. 1999). 
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Figure 2-8. Diagram showing a) example of detailed movement data with high degree of spatial 
autocorrelation, b) example of current spatial moving data set, and c) example of generalized 
movement data with reduced levels of spatial autocorrelation between GPS locations (after 
Turchin 1998). 

c. 

One potential solution to this problem would be to study the internal spatial structure of 

the movement trajectory to identify patterns of non-stationarity prior to data resampling (Martin 

et al. 2008). For example, when a grizzly bear changes its behavior during the monitoring period, 

the mathematical properties of the steps may change accordingly (slow versus fast). This type of 

non-stationarity in bear behavior results in varying levels autocorrelation across the total length of 

the movement trajectory (Figure 2-8a). By subsampling the data and breaking down the total 

trajectory important information and trends in movement behavior may be lost (Figure 2-8c). The 

inclusion of autocorrelated data in GPS-based studies can provide added knowledge regarding 
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animal movement patterns and resulting movement models (Martin et al. 2008). It has further 

been suggested that an adequate sample size may be more important than achieving independence 

between points (Seaman et al. 1999). 

Vector Data Uncertainty 

A major concern when working with moving point data is that GPS radiotelemetry is 

only sampled at discrete moments in time. In addition to location error, researchers must also 

consider vector uncertainty. Interpolating a path or trajectory between known points has been 

approached in a variety of ways (Shi and Liu 2000, Wentz et al. 2003, Miller 2005, Pfoser et al. 

2005). Two primary concerns regarding movement path creation are 1) the individual doesn't 

follow a directed line between two points, and 2) our inability to observe the movement pathway 

continuously. Advances are being made on both fronts. There are a few GIS-based studies 

dedicated to moving objects and assessing the uncertainty associated with positional accuracy 

(Wentz et al. 2003, Miller 2005). 

The most standard approach to dealing with vector uncertainty when working with 

vector-based movement data (Figure 2-9a) is to use error bands or distance-based buffers (Figure 

2-9b). For example, a distance buffer is intended to represent the potential area over which an 

individual may have ranged between locations (Johnson et al. 2002). This approach is further 

used to counter the potential location bias associated with collar failure. The buffer is typically 

superimposed on the landscape and the underlying landscape properties are extracted for 

assessment. Often vector-based buffers are employed when the successive locations are separated 

by large time periods and the potential for error increases. One study, Johnson et al. (2002), 

employed circular buffers (based on the distance of each vector segment) between successive 

locations greater than 3 hours apart (Figure 2-9c). As demonstrated below, as the vector distance 

increases, the resulting circular buffer is also increased to account for additional uncertainty 
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between known points. A more realistic interpretation of an error buffer for moving point data is 

the directional error ellipse (Shi and Liu 2000, Miller 2005). 

To accommodate mobile objects, Miller (2005) proposed a moving object spatiotemporal 

(MOST) model to estimate movement possibilities between two sample locations. The MOST 

data model represents the area within which movement can occur as a lens-shaped region or 

ellipse between the two sample locations (Figure 2-9d). This ellipse or lens demonstrates the 

uncertainty at a point in time over a given time interval between the two known events (Miller 

2005). The ellipse region is intended to represent the maximum possible travel extent for each 

individual vector segment. Similar to the circle buffer approach, as the vector distance between 

known locations increases the corresponding ellipse will also increase in size. While an 

interesting framework for dealing with moving vector data, the approach has yet to be transferred 

to a working GIS environment. Further, an alternative consideration is that as an individual 

moves further, faster, and more directed distances, the uncertainty associated with vector 

placement will decrease. The result is that the error buffer would be smaller in width rather than 

larger. 

Other approaches include using a least-cost path approach or constrained random walk 

approach (Figure 2-9e) to model the missing data between two known points in a modeling 

environment (Wentz et al. 2003). The former involves relating movement to underlying landscape 

properties and the latter incorporates direction change and altering speed of travel between known 

locations. Both approaches require large amounts of extremely fine-scale data for validation. 

Further, the parameters governing the resulting movement paths are species specific and difficult 

to transfer due to individual movement behaviors. For example, Wentz et al. (2003) discovered 

that a standard Euclidean straight-line model performed better for one species of monkey, while 

the constrained random walk performed better for the other species of monkey. Regardless, path 
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interpolations were found to represent reasonable approximations of missing movement patterns 

(Wentz et al. 2003). 

A more applicable buffer choice would be a probability density function created for each 

individual line segment (Shi and Liu 2000, Pfoser et al. 2005). This technique would create 

similar results to a point-based kernel density estimator. A resulting vector-based density surface 

will result in higher probabilities at the vector location and lower probability values as distance 

from the vector location increases (Figure 2-9f). Resulting kernel movement bands will vary 

depending on the smoothing value and cell size used. The approach has the ability to add 

variability to commonly used stationary buffers. It further has the ability to be applied over large 

landscapes with limited computational difficulty. 

Geographic movement parameters such as resulting vectors and related movement rates 

(velocity) are always measured with inherent error and limited precision in reality (Miller 2005). 

One critical question suggested by Miller (2005) is, how does error and uncertainty propagate 

through inferred entities (e.g. movement representation) and relationships (movement paths over 

landscapes)? The representation of moving point data as a space-time path is currently poorly 

validated in landscape ecology and wildlife biology. Due to computational limitations, the 

approaches reviewed here provide more of a visual representation of movement than an actual 

reflection of real-world movement. The appropriate choice for movement research depends 

largely on the scale of analysis and the questions being asked. 
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Figure 2-9. Conceptual diagrams highlighting different approaches to dealing with vector 
uncertainty: a) GPS point and vector data set, b) standard vector buffer, c) vector circle buffer 
based on distance, d) directional ellipse or lens buffer, e) least-cost path or correlated random 
walk approach, and f) vector-based kernel density estimation. 
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e. 
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2.5 Linking GPS Data with Supplementary Data 

GPS telemetry data alone doesn't inform researchers which types of landscape elements 

are being used and which are being avoided. To truly understand how grizzly bears exist within 

landscapes, it is important to study the interaction between landscape properties and grizzly bear 

spatial response. Very few examples exist which examine the relationship between vector-based 

movement rate and landscape properties. As such, there is no clear understanding of how to 

approach this question. As reviewed, various options exist although few appear to work with 

large amounts of GPS radiotelemetry data over large landscapes. 

Supplementary data commonly used to describe grizzly bear occurrence include land 

cover or vegetation classification maps (Franklin et al. 2001, McDermid 2005), vegetation indices 

such as greenness or canopy cover, elevation or terrain ruggedness, distance to riparian areas, 

distance to forest edge, distance to roads or road density, and more recently, resource selection 

function maps (Nielsen et al. 2002). As this research project and related grizzly bear GPS 

radiotelemetry data encompass a large portion of Alberta (Figure 2-10), the following chapters 

are in part reliant on the large-scale remote sensing products created by the FRI mapping team. 

Mapping products produced and supplied by the FRI will be reviewed here in detail and then 

utilized within subsequent chapters as needed. Figure 2-10 highlights the specific research areas 

according to chapter. Chapter 3 and Chapter 6 both focus on a small region north of Highway 16. 

Chapter 4 encompasses the entire front range of the Rockies from the south to the northwest 

corner of the map. Lastly, Chapter 5 focuses on the main west-central portion of Alberta ranging 

from Highway 1 in the south to Highway 16 in the north. 
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Figure 2-10. West-central Alberta, Canada study region showing major highways with 
mountains (dark grey), foothills (medium grey), and prairies (light grey); where the majority of 
Alberta grizzly bears were captured and radiocollared between 1999 and 2005. Specific study 
regions are labeled to show regions for individual chapter analyses. 

Chapter 3 & 

Chapter 6 

Supporting data can be classified into line, polygon, point or grid data layers. Vector 

layers included human-use linear features such as major highways, secondary and gravel roads, 

seismic lines, railway lines, pipelines and powerlines (Figure 2-11). Natural landscape features 
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included river features and polygon water features (Figure 2-12). The only point data layer used 

in this research was well site locations (Figure 2-12). Available grid data layers included: 

landcover classification, resource selection function, crown closure, species composition, 

elevation, slope, aspect, and vector ruggedness maps (Figure 2-13 to Figure 2-15). 

All raster surfaces had a 30 m cell resolution. The study area land cover classification 

layers were generated using an object-oriented classification of Landsat TM satellite images 

(1999-2002) combined with topographic variables, GIS vegetation inventories, and field ground-

truth sites. A total of 10 land cover classes were identified: upland trees, wetland trees, upland 

herbs, wetland herbs, shrubs, water, barren land, snow/ice, cloud, and shadow (Franklin et al. 

2001, McDermid 2005). The overall accuracy of the base-level land cover map when compared to 

field sites was recorded at 91.8 % (Kappa = 0.904) (McDermid 2005). The original 10 land cover 

classes were reclassified to 7 land cover classes using the crown closure to identify open and 

closed forest types (Table 2-4). 

Table 2-4. Original 10 land cover classes modified into 7 land cover classes used in large-scale 
and fine-scale movement analyses. 

Land cover classes Modified land cover classes 
Upland trees Open forest (0-50) 

Closed forest (50-100) 
Wetland trees Wetland forest 
Upland herb Herbaceous 
Wetland herb 
Shrub Shrub 
Water Water 
Barren Non-vegetated 
Snow/Ice 
Cloud/Shadow 
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Resource selection function surface (RSF) maps were created for the project by Scott 

Nielsen (Nielsen et al. 2002, Nielsen 2005). Input data layers included habitat classes, species 

composition, crown closure, distance to forest edge, distance to open edge, compound 

topographic index, and grizzly bear GPS locations. Roads were not used in RSF model creation 

as they tended to be correlated with a number of habitat elements. Final RSF surfaces use 

population-level coefficients to estimate the presence or relative probability of occurrence for 

grizzly bears on the landscape (Nielsen 2005). 

Both species composition and crown closure were created as continuous grid surfaces 

ranging from 0% to 100% Using generalized linear models (McDermid 2005). Crown closure was 

measured as the canopy gap fraction for each 30 m pixel where a high crown closure value 

indicated a closed or dense forest canopy. Alternatively, species composition was measured as the 

proportion of conifer trees within each 30 m pixel. A low species composition indicated a 

homogeneous broadleaf forest stand and a high species composition value indicated a 

homogeneous coniferous forest stand. Values ranging from 20% to 80% indicated varying levels 

of mixed forest. 

Slope and aspect grid surfaces were derived from a digital elevation model (DEM) grid 

surface for the province and supplied by the FRI. Subsequently, using this baseline topographic 

information a vector terrain ruggedness measure (VRM) surface grid was also created 

(Sappington et al. 2007). Topographic variability or terrain ruggedness is a multivariate 

representation of terrain incorporating the heterogeneity of slope and aspect variables. The script 

was available online from the Environmental Systems Research Institute Arcscripts website: 

(www.esri.com/arcscripts). Further descriptions can also be found in Sapptinton et al. (2007). 
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CHAPTER 3 - EXPLORING GPS-BASED VECTOR MOVEMENT 
CHARACTERISTICS IN RESPONSE TO CHANGING TEMPORAL DATA 
COLLECTION SCALE 

3.1 Introduction 

The ability to analyze and model grizzly bear movements and habitat use is strongly tied 

to the spatial and temporal scales of data collection (Morales and Ellner 2002). For grizzly bears, 

large temporal data collection intervals usually limit analyses to home range delineation, broad-

levels of habitat use, dispersal or annual movements, and average daily movement rate (White 

and Garrott 1990). With the advancement of Global Positioning Systems (GPS) over recent years, 

the temporal frequency at which telemetry location data are collected has greatly improved 

resulting in data sets which are physically larger, more detailed, more accurate, and more evenly 

sampled. With improved finer-scale data sets, researchers can now explore changes in movement 

behavior, detailed habitat use, and spatial response to underlying landscape characteristics 

(Berland et al. 2008). However, the choice of an appropriate sampling interval remains poorly 

understood (Johnson et al. 2006). Wildlife may not respond to the landscape at the spatial scale of 

data collection (Nams et al. 2006). This chapter endeavors to explore the relationship between 

data sampling rates and the ability to address and answer wildlife research questions 

appropriately. For example, is it appropriate to examine bear activity and movements based on 

hourly, 4-hour, daily, or weekly time sampling intervals? 

While GPS technologies have improved our ability to collect large amounts of individual 

movement data (Jonsen et al. 2003), researchers are still left with the difficult problem of how to 

study and quantify a continuous process based on static points in space and time (Turchin 1998). 

Commonly, GPS receivers are programmed to retrieve locations at discrete intervals providing 

snapshots of locations over time which the researcher can then translate into vector movements. 

At the most basic level, each path is a sequence of points characterized by their temporal and 
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spatial coordinates (Turchin 1998). The standard approach is to generate a straight-line or 

Euclidean connection between sequential data points as discussed in Chapter 2. As such, 

knowledge of where an actual movement path occurred between these locations is unclear and 

depends on many unknowns, including individual behavior (Sundell et al. 2006, Hunter 2007). 

There is considerable room for discrepancy and error when the process of movement between 

locations is assumed (Flemming et al. 2006, Ganskopp and Johnson 2007, Hunter 2007). This 

uncertainty will increase or decrease depending on the temporal and subsequently spatial detail of 

data collection (Graves et al. 2007). 

The detection of spatial patterns is directly tied to spatial and temporal scale (Fortin and 

Dale 2005). The appropriate or optimal temporal scale for data collection depends on the question 

being asked by the researcher and the subsequent analysis being conducted. For example, grizzly 

bears will select for and move through habitats at various temporal and spatial scales depending 

on time of day or characteristics of the landscape (Nams et al. 2006). Wildlife research and 

analyses are often conducted without any prior knowledge regarding the appropriate time interval 

best suited to the research being conducted. Concern arises when working with calculated vector-

based movement parameters. Previous studies have highlighted that movement rate is biased by 

sampling interval (Johnson et al. 2006, Nams 2006b). For example, if we sample a movement 

path more intensively, we record more detail and the corresponding movement rate increases 

(Johnson et al. 2006, Graves et al. 2007). Furthermore, if recorded radiotelemetry locations are 

significantly under sampled, then the information required to make correct inferences regarding 

behavioral response may be absent (Turchin 1998). To my knowledge no studies currently exist 

which have examined the effect of data collection interval on grizzly bear movement 

characteristics, temporally or spatially. 
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The primary focus of this chapter will be to measure the impact of changing temporal 

scale on resulting spatial movement patterns. For example, how will varying the temporal scale of 

data collection affect information regarding grizzly bear spatial response using vector data 

representation and movement rate as indicators? Beginning with the finest-scale of data available 

(in this case, 20-min data) provides an opportunity to determine the appropriate time interval for 

data collection. The process of data resampling can be conducted by incrementing either the 

spatial or temporal resolution of the data set (Turchin 1998). As GPS data is commonly 

programmed to record locations at equal temporal intervals, it is easier to vary the temporal scale 

rather than the spatial scale of the data (Turchin 1998). For example, if a radiocollar is 

programmed to collect a point every hour, the data can then be resampled by selecting every 

fourth data point or one point every 4 hours. In this chapter analysis will be broken down into the 

following four sections according to two scales (global and local) of analysis: 1) global vector 

summary properties, 2) global vector distribution comparisons, 3) local one to one vector segment 

comparisons, and 4) local sequential vector data comparisons. Results reported in Section 3.4 will 

provide information regarding the amount of data necessary to answer specific wildlife-based 

research questions pertaining to the study of grizzly bears. The results will further directly 

influence what GPS radiotelemetry data sets are used in the upcoming chapters. 

3.2 Study Area and Supplementary Data Layers 

The research study area for Chapter 3 was situated along the eastern slopes of the 

Canadian Rocky Mountains (Figure 3-1). The specific region falls within west-central Alberta 

just north of the Yellowhead Highway or Highway 16 which runs east west in orientation. As 

demonstrated in Figure 3-1,1 individual grizzly bear resided in the high elevation mountains 

(dark grey) to the west, 3 grizzly bears resided in the upper foothills (medium grey) northwest of 

Hinton and southeast of Grande Cache, and 1 grizzly bear resided in the Swan Hills to the east of 

the foothills (light grey). The mountains in this region are rugged high elevation peaks 
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characterized by uplifted shale and sandstone with montane alpine valleys (Figure 3-2a). The 

Upper Foothills and Swan hills are characterized by rolling ridges with some rocky outcrops and 

predominantly closed-canopied coniferous forests (Beckingham et al. 1996). The primary 

industries in this region are forestry and oil and gas exploration with the landscape largely 

fragmented by cutblocks and secondary roads (Figure 3-2b). Human recreation activities include 

back country hiking, camping, and off road vehicling. 

Figure 3-1. Chapter 3 study region and 95% kernel home range outlines for 2 female grizzly 
bears (reds) and 3 male grizzly bears (blues) where GPS radiotelemetry points were collected at 
20-min intervals north of Highway 16. 
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Figure 3-2. Photos taken of Chapter 3 study region highlighting a) an east west progression from 
foothill coniferous forests with riparian valley bottoms in the east to high elevation mountains in 
the west, and b) a foothills landscape with secondary industry roads, forestry clearcuts, and oil 
and gas wellsites. 

a. 

The only additional supplementary data used in the analysis was a FRI project generated 

remotely sensed 2005 landscape classification map (Section 2-5, Figure 2-13, p. 64). The 

landscape map originally had 10 active classifications which were subsequently reduced to 7 

classes: closed forest, open forest, wet treed, herbaceous (upland and wetland herbaceous 

combined), shrub, water, and non-habitat (barren, snow/ice, cloud, and shadow combined) (Table 

2-4, p. 60). The landscape surface was used to provide additional information regarding the effect 

of changing temporal lag on the spatial placement of GPS-based vector segments as related to 

underlying land cover classes. 
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3.3 Methods 

GPS Data Preparation 

In 2005, 5 individual grizzly bears (male, n = 3; female, n = 2) were captured and fitted 

with Televilt Tellus 1 (Lindesberg, Sweden) GPS radiocollars. For each bear (n = 5), sex, 

reproductive status, age class, physical location of data set, data collection range, and number of 

resulting GPS data points were noted. Each collar was programmed to retrieve GPS 

radiotelemetry locations from approximately early May until late October at 20-min intervals. For 

detailed information on GPS location data classification and processing see Chapter 4, Section 3. 

For consistency, GPS data points with a DOP > 6 were removed from the data set (this standard 

was used across all chapters in this thesis). The individual data sets were inspected for 

exceptionally large time gaps corresponding to temporary failure or data corruption. Only 

individual grizzly bear G218 contained time gaps of concern at which point the data set was 

separated into two data sets and processed separately. While the resulting data sets contained the 

occasional missed fix or time gap, the data was assumed to be the best available data or 'gold 

standard' of GPS location data for each individual bear. Each 20-min data set was considered the 

base level of data analysis for each bear to which all resampled data sets were compared. 

For all 5 individual bears, a total of 7 resampled temporal data collection levels were 

created and used in the following analyses. Temporal resample intervals were chosen to represent 

data collection schedules commonly employed in extensive large carnivore GPS telemetry 

research projects. As with the FRI, the majority of GPS radiocollars are programmed to record 

one telemetry location every 4 hours or 6 times a day. Data resampling was conducted by starting 

with the base level 20-min data set for each individual bear and selecting or resampling data 

points at predetermined increments. For example, by skipping 1 point and selecting every 2nd 

GPS telemetry point the resulting selection was then transformed into a new GPS data set 

representing a location point captured every 40-min. Further, by skipping 2 data points and 
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selecting every 3rd GPS location, the resulting resampled data set represented a point captured 

every hour. Additional temporal resampling was conducted to create GPS telemetry data sets 

representing a recorded grizzly bear location for every 2-hr, 4-hr, 6-hr, and 12-hr interval. Here 

after, base level or lag 0 refers to the original or 'gold standard' data set, lag 1 refers to a point 

every 40-min, lag 2 refers to a point every 1-hr, lag 5 refers to a point every 2-hr, lag 8 refers to a 

point every 3-hr, lag 11 refers to a point every 4-hr, lag 17 refers to a point every 6-hr, and 

finally, lag 35 refers to a point every 12-hr. 

Global Vector Summary Statistics 

The primary unit of analysis for this chapter is the vector segment linking consecutive 

GPS telemetry locations. Post data resampling, straight-line or Euclidean vectors were created for 

each of the 7 resampled point data sets for each bear (see Figure 3-3). Generated vectors were 

used to measure distance (km), resulting mean movement rate (km/h), and path deviation angle or 

turning angle (deg) as temporal lag between captured GPS telemetry locations increased (see 

Figure 2-5, p. 33, for a detailed depiction of vector components). Distance (km) for each vector 

segment is simply the length in kilometers between consecutive data points. Mean movement rate 

(km/h) was calculated by dividing each vector length by time duration between data points tj and 

t2. Deviation angle (deg) was calculated by measuring the bearing in degrees of each vector 

segment as it deviates from the vector segment preceding it (Jenness 2007). The angle of 

deviation will have a bearing of 0° if the next segment continues in the same direction and 180° if 

the vector segment doubles back in the opposite direction (Jenness 2007). Turning direction (left 

or right) was not considered in this analysis. Reported results will primarily focus on rates of 

movement and turning angle rather than vector distance. The use of movement rate as a summary 

measure helps to standardize some of the variation present in vector distance values. This is often 

due to the inability of collars to acquire GPS locations for all 20-min scheduled attempts resulting 
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in slight measurement bias from the occasional missed fix or slight differences in the time of data 

acquisition (Johnson et al. 2002). 

Figure 3-3. Example of 20-min data resampled to larger temporal data collection levels 
demonstrating variation of resulting vector paths for a) individual female G203, and b) individual 
male G231. 

Lag 8 - 3hr 

Lag 11 -4hr 

Lag 17- 6hr 

Lag8 - 3hr 
Lag11 -4hr 
Lag17 - 4hr 

82 



Beginning at the base level or lag 0, vector summary statistics were calculated and 

compared between temporal lags for each of the 5 individual bears. Mean movement rate (km/h), 

median movement rate (km/h), mean deviation angle (deg), and mean vector distance (km) for all 

bears across changing temporal lags or data collection levels were compared using line charts 

with ± standard error bars highlighting variance. Vector summary statistics were then compared 

for each individual bear between lags. Each resampled temporal lag (lag 1, 2, 5, 8, 11, and 17) 

was compared against the base level or 'gold standard' data set. Second order (e.g. lags 2 and 5) 

and third order (e.g. lags 5 and 11) lag differences were also compared for each individual grizzly 

bear. As the data (and variables) did not fulfill the assumptions of equal variance and normality, 

significant differences between temporal data collection levels by individual bear were evaluated 

using two independent samples Mann-Whitney U tests in SPSS. Significance was identified at 

both the P < 0.05 (**) and P < 0.10 (*) levels. 

Global Vector Distribution Comparisons 

The second level of analysis moves beyond general vector summary properties to assess 

overall vector distributions for each bear by temporal data collection level or temporal lag. This 

section of analysis can be broken down into three separate approaches: 1) general distribution 

comparisons, 2) comparison of vector spatial distributions, and 3) percent landscape change 

related to the spatial pattern of vector distributions. First, in order to properly assess measured 

distributions relative frequency histograms were generated for each bear across each temporal 

lag. Resulting mean movement rate (km/h), mean deviation angle (deg), and mean vector distance 

(km) distributions were then compared between the base level 20-min data set (lag 0) and all 

resampled temporal lags (lags 1, 2, 5, 8, 11, and 17) using nonparametric Kolmogorov-Smirnov Z 

tests. Second order and third order lag differences were again compared for each individual 

grizzly bear. Significance was identified for both the P < 0.05 (**) and P < 0.10 (*) levels. 
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When working with spatial movement patterns, points and line segments are the primary 

geometric elements. The fundamental basis of error models for vector segments is typically a 

buffer or error-band as previously discussed in Chapter 2 (Shi and Liu 2000). Often studies 

employ a buffer or zone of influence around features without determining an appropriate distance 

a priori. In order to determine the amount of variation or error associated with an entire 

movement trajectory as the temporal resolution of the data decreases, this analysis compared 

vector distributions using standard GIS spatial buffers. To measure spatial differences between 

temporal lags for each individual bear, movement trajectories for each resampled temporal lag 

(lags 1, 2, 5, 8, 11, and 17) were spatially compared against the 'gold standard' or lag 0. That is, 

each temporal lag vector path was mapped against the original base level vector path for each 

bear. To measure the amount of departure between the two paths, the resampled vector path was 

buffered until the buffer included the original base level data (Figure 3-4). The distance in meters 

of the resulting buffer was recorded for each bear for each temporal lag. Finally, the resulting 

buffer distances were averaged across all bears. Results are intended to provide information 

regarding the amount of spatial uncertainty present when working with 4-hr or 6-hr data 

compared to finer-scale data. 
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Figure 3-4. Spatial distribution comparisons using buffering techniques to calculate the amount 
of vector variability as temporal data scale decreases for a) female G203 (3.2 km) and, b) male 
G231 (4.0 km). 

b. 

Legend: 
— — Base - 20min 
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Lastly, vector spatial distributions were compared for each temporal lag against the base 

level data using habitat proportion as an indicator of spatial change. Beginning with the 20-min or 

'gold standard' data for each grizzly bear, mean habitat proportion as a percentage was extracted 

for all vectors along the movement trajectory (Figure 3-5). For example, while one vector may be 

100% closed forest, another vector might contain closed forest (60%), open forest (20%), and non 

habitat (20%) classes. I acknowledge that there is inherent error in that the actual vector line 

between points is assumed. However, at the 20-min data level, this is the most accurate 

assumption available of where the bear might have been on the landscape without the added 

complexity of building movement models. For each individual grizzly bear across each resampled 

temporal lag (lags 1, 2, 5, 8, 11, and 17) mean habitat proportion was extracted along total vector 

path. Resulting mean habitat class proportion change was compared as data sampling resolution 

decreased from the base level assessment. Change between levels > 0.05 was deemed to be 

significant. 

Figure 3-5. Example of vector habitat proportion extraction for G216 using 20-min baseline data 
where habitat proportion is calculated for each vector segment. 

\ 
\ \ 
\ 
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Local Vector One to One Comparisons 

For the third level of analysis, this chapter moves from global vector comparisons to local 

vector comparisons. The intent of this analysis is to learn how data resampling affects the internal 

habitat variation within a grizzly bears movement trajectory. To further assess the error associated 

with vector comparisons across temporal data collection scales, one to one vector comparisons 

were conducted in a fashion similar to a remote sensing error matrix or contingency table analysis 

(NRC 2009). Here, rather than comparing two thematic maps, two vector maps were compared to 

assess the degree of misclassification among habitat classes as data resolution decreases. 

First, habitat class type with the maximum proportion for each vector was extracted at the 

base level for each bear. This information was considered the 'reference map' for the analysis and 

thus was assumed to be 100% accurate. Second, for each individual grizzly bear across each 

resampled temporal lag (lags 1, 2, 5, 8, 11, and 17) maximum habitat proportion or the modal 

habitat type was extracted for each vector segment (Figure 3-6). To complete a vector-based 

contingency table analysis, one to one direct comparisons were conducted. To create the same 

number of vector segments within the resampled temporal lag movement trajectories, repeating 

vector segments were added similar to a moving window analysis. For example, if the 20-min 

base level data was resampled to 40-min data or a GPS location at every 2nd point, 4 vectors 

would be reduced to 2 vectors (see Figure 3-6). Therefore, to create a one to one comparison 

matrix, 1 repeating vector would be added back to the 40-min or lag 1 data table repeating the 

resampled vector maximum habitat type at every 2nd interval. For lag 2 or 1-hour interval data, 2 

repeating vectors would be added in at every 3rd interval and so on. The resulting matrices were 

used as uncertainty information matrices for each resampled movement trajectory. The resulting 

matrices further describe the change in vector spatial placement via change in habitat 

classification when compared to the 'gold standard' or base level vector segments. 
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Figure 3-6. Example of vector contingency table analysis for habitat classification error 
assessment showing vector resampling taking the maximum habitat type for each vector segment 
across all temporal data collection levels and comparing them again the base level data or 'gold 
standard' data. Note: the asterisk (*) indicates repeating vectors added into data resampled tables 
for direct one to one vector comparisons. 

Base 20-min data • 

Level 1 40-min data • 
7 

Base Levell 
7 7 
7 7* 
3 3 
3 3* 

Base 20-min data • • -

Level 2 lhr data • 

Base Level2 
7 7 
7 7* 
3 7* 
3 3 

Contingency tables were created to assess the resulting user accuracy and producer 

accuracy as well as the error of commission and omission for each resampled temporal lag (lags 

1, 2, 5, 8, 11, and 17) compared to the original base-level data set (Table 3-1). User accuracy 

provided a measure of output map reliability while the producers accuracy indicated the 

percentage of resampled vectors which were correctly classified (NRC 2009). Resulting errors of 

omission indicated the number of vectors incorrectly excluded from each habitat class and errors 

of commission indicated the number of vectors incorrectly assigned to each habitat class but 

which actually belonged in a different habitat class (NRC 2009). Overall contingency table 

accuracies were reported as data collection resolution decreased for each individual bear. Results 

further identified the temporal data collection scale when overall user and producer accuracy 

reached 0% for each habitat class for all 5 individual grizzly bears. 
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Table 3-1. An example of a contingency table comparing base-level (20min) vector 
classification with level 1 (40-min) vector classification where numbers represent vector counts 
rather than raster cell counts. The overall contingency table accuracy is shown in the bottom right 
corner indicating that in this example, vector habitat type classification at the 40-min data 
collection scale is 80% correct when compared to the 20-min or 'gold standard' data. 

Classification Data (Level 1 or 40-min Data) 

Reference Data 
(Base-Level Data) 
Open Forest 
Closed Forest 
Wet Treed 
Herb 
Shrub 
Water 
Non Habitat 

Column Total 
User Accuracy 
Error of Commission 

Open Closed Wet Non Row Producer Error of 
Forest Forest Treed Herb Shrub Water Habitat Total Accuracy Omission 

562 
64 
3 
16 
59 
0 
34 

738 
0.76 
0.24 

89 
2592 

56 
84 
95 
0 

111 

3027 
0.86 
0.14 

6 
37 

277 
40 
12 
0 
18 

390* 
0.71 
0.29 

26 
32 
36 
740 
58 
0 

88 

980 
0.76 
0.24 

67 
75 
13 
58 

1068 
0 
85 

1366 
0.78 
0.22 

0 
0 
0 
0 
0 
0 
0 
0 

0.00 
1.00 

36 
69 
12 
51 
78 
0 

810 
1056 
0.77 
0.23 

786 
2869 
397 
989 
1370 

0 
1146 

"7557 

0.72 
0.90 
0.70 
0.75 
0.78 
0.00 
0.71 

80.04 

0.28 
0.10 
0.30 
0.25 
0.22 
1.00 
0.29 

Local Vector Sequential Data Comparisons 

Finally, after assessing overall vector summary properties, distribution comparisons, and 

individual vector segment comparisons, sequential vector movement characteristics were 

compared. As a movement trajectory is a collection of observations (GPS locations) made 

sequentially in time, it is necessary to maintain the consistency of the data structure in space and 

time. This section of the analysis examines the internal variation within the total movement 

trajectory for each individual bear across each data temporal collection scale. First, vector serial 

autocorrelation is examined using both movement rate (km/h) and angular deviation or turning 

angle (deg) variables. Second, spatial-temporal and spatial vector movement clusters were 

identified using time series analysis. 

By employing a time series-based temporal autocorrelation function (ACF) and partial 

autocorrelation function (PACF), time to independence can be identified in a sequential data 

series (Chatfield 1980). A time series or sequential data chart was constructed for each grizzly 
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bear using the 20-min GPS radiotelemetry data set (Figure 3-8). Both ACF and PACF functions 

were calculated and used to identify the temporal lag at which GPS observations were no longer 

correlated for each individual grizzly bear. Autocorrelations and partial autocorrelations were 

calculated to a lag of 35 (for 20-min data this = 1 2 hours). The equation of the autocorrelation 

function (ACF) is: 

n-k 

]T(x; -x){xi+k -x) 
rk = — — - (Equation 3.1) 

2 > , - x ) 2 

;=i 

Where rk indicates the Mi lag sample autocorrelation, x, is the zth observation of input series, and 

x is the average of the n observations. Results for each were plotted as standard ACF and PACF 

charts highlighting the presence of autocorrelation across increasing time lags (Figure 3-7). The 

ACF is used to estimate the degree to which a vector segment is correlated with the previous 

segment across the entire movement trajectory. The PACF correlates the value of a vector after 

the effects of correlations at the intervening lags have been removed (Chatfield 1980). Significant 

autocorrelation was calculated using the independence model in SPSS. 

For each bear, ACF and PACF functions were also generated for each resampled data 

collection level or temporal lag (e.g. Figure 3-7b). Although autocorrelation is addressed in the 

data at the base level, by generating the ACF and PACF functions at coarser resolutions 

additional information may be generated. For example, will resulting ACF chart and PACF charts 

demonstrate the presence of autocorrelation when working strictly with 1-hr data or 4-hr data 

typical to large carnivore research studies? Results were examined to highlight at what ACF and 

PACF level movement rate and turning angle vectors were no longer correlated for each bear. For 

example, at what resampled temporal lag would time to independence be achieved when working 
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with vector structures? The temporal data collection level where no serial autocorrelation was 

present in the data was further identified for each bear. For example, at what data collection scale 

would radiocollars have to be programmed at to record data independent and free of potential 

serial autocorrelation (e.g. 3 hour or 4 hour intervals)? 

Figure 3-7. Example of resulting temporal autocorrelation function (ACF) and partial 
autocorrelation function (PACF) analysis for female G203 for a) 20-min base level data, and b) 1-
hour data for movement rate (km/h). 

Temporal Lag (1 hr movement data) Temporal Lag (1hr movement data) 

When dealing with consecutive vector data structures two possible cluster types exist: 1) 

vector clusters that are linked in time and therefore space, or 2) vectors clusters that are solely 

linked in space. The former often identify a change in movement behavior (e.g. bedding or 

foraging) where both vector distance and time (movement rate) between recorded locations is 
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small. The latter type of cluster indicates site revisits where an individual has returned to a 

location previously visited. In order to identify space-time clusters, a time series sequence was 

generated for each bear using the 20-min sequential vector data. A time sequence graph can be 

used to identify variation in the data sequence (Figure 3-8). To do this assessment, it was assumed 

that slow small-scale movements were foraging activities while faster large-scale movement 

occurred when individuals moved between foraging areas. It was further assumed that movement 

could be classified into discrete events. 

Figure 3-8. Example of a time series sequence graph highlighting the internal variation of a 
movement trajectory using consecutive vector data. Changes to normalized distance (speed) as 
time progresses are demonstrated as slow (red) versus fast (grey) or short versus long vectors. 

0 20 40 60 8Q 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 
GPS Sequential Locations 

To begin, a time sequence graph was generated for each individual at each temporal data 

capture level (lag 0, 1, 2, 5, 8, 11, and 17). Normalized distance was used to standardize the data 

and reduce the occasional errant data value due to missed fixes or location error. After some 

exploration, <1 .0 standard deviation below the mean for normalized distance was employed to 

separate small slow movement vectors from larger faster movement vectors. Within each time 

sequence graph, spatiotemporal clusters were identified by selecting 3 or more consecutive 

movement vectors which occur below the normalized distance threshold. The resulting 
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sequentially linked vectors were then recorded as one individual temporal cluster. It was assumed 

that because clusters were temporally linked, they were also spatially joined thus forming a 

spatial-temporal cluster within the movement trajectory. 

Clusters were recoded by the number of points in each cluster for mapping and graphing 

purposes. For example, cluster size and location were mapped for each bear at each temporal data 

collection level and reevaluated for site revisits. A spatial cluster or site revisit was defined as 

occurring when at least two spatiotemporal clusters overlapped. Previous studies have suggested 

that sampling interval could confound movement results (Nams 2006b). As such, the process was 

repeated for each bear across each resampled temporal lag (lags 1, 2, 5, 8, 11, and 17). Finally, 

the mean percent of clusters retained were recorded and compared across bears to identify at what 

temporal level, cluster information both decreased by 50% and further disappeared completely. 

For each bear, clusters or dominant site revisits that were retained across temporal data collection 

levels were examined for unique characteristics (e.g. a high number of night time points possibly 

indicating a resting location). 

3.4 Results 

Global Vector Summary Results 

In 2005, GPS locations were collected for 3 male bears and 2 female bears. The temporal 

extent of the data collection ranged from May to September for female G203 (n = 7557), from 

June to September for males G210 (n = 1150) and G231 (n = 5208), from early June to mid June 

for male G216 (w = 442), and from July to September for female G218 (n = 1399) (Table 3-2). 

Overall fix rates (number of points successfully recorded at the 20-min capture rate) varied by 

bear: G203 = 94%, G210 = 78%, G216 = 95%, G218 = 88%, G231 = 94%. Individual male G210 

located in the mountains recorded the largest number of missed fixes (22%) when compared to 

individuals located in the foothill environments. This result could possibly be due to large 
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changes in elevation, topography and steep slopes resulting in fewer satellites within view of the 

collar. 

Vector summary statistics, mean movement rate (km/h), mean deviation rate (deg), and 

mean vector distance (km), were examined for all 5 individual bears at the base level (20-min 

data) or lag 0 (Table 3-2). Base level histograms were created showing relative frequency for 

each vector summary statistic for each individual bear (Figure 3-9). Typically, slow movements 

occurred more frequently with faster movements being progressively less frequent. Distance and 

therefore movement rate values were highly skewed to the left indicating a large number of 

vectors with small distances and slow movement rates. Histograms for deviation angle 

demonstrated a U shape with larger numbers of values clustered near 0° indicating straight-line 

movements or 180° indicating large amounts of turning. Mean movement rates ranged from 0.31 

km/h up to 1.24 km/h for female G218 and male G216, respectively. Both the slowest and fastest 

recorded movement rates belonged to grizzly bears residing in foothill environments. Individual 

male G210 recorded the lowest mean deviation vector angle at 75° while female G218 recorded 

the highest mean deviation vector angle at 85° (Table 3-2). Of interest, female G218 recorded 

both the slowest mean movement rate and the highest mean deviation angle indicating more 

turns. Mean vector distance results mirrored mean movement rate results for all bears as 

expected. 
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Table 3-2. Base level summary statistics for mean hourly movement rate (km/h), mean distance 
traveled (km), and mean angle of path deviation (deg), including classification information for 5 
grizzly bears radiocollared in 2005. 

Summary Statistics 

Mean Mean Mean 
Bear Movement Distance Turn 
ID/ Rate Traveled Angle 
Sex Location Data Collection Range n (km/h) (km) (deg) 

Swan 
G203F Hills May 31 - Sept. 30 7557 0.55 0.202 79.15 
G210M Mountain June 9 - July 19/Sept 7 - Sept 15 1150 0.49 0.23 74.85 
G216M Foothills June 7 - June 14 442 1.24 0.45 76.09 
G218F Foothills July 12 - July 17/Sept 6 - Sept 30 1399 0.31 0.13 85.31 
G231M Foothills June 28 - Sept 21 5208 0.47 0.18 83.21 
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When mean movement rate (km/h) and median movement rate (km/h) were compared for 

all bears across all resampled data levels, mean movement rate was reported to decrease as 

temporal lag increased (Figure 3-10a). Median movement rate however demonstrated higher 

levels of variability and no discernible decrease in median movement rate value (Figure 3-10b). 

Figure 3-10. Mean and median movement rate (km/h) line charts for 2005 individual grizzly 
bears for each temporal lag corresponding to data collection scale (20-min to 12-hr), bears are 
further coded according to sex where females are represented by dashed lines and males are 
represented by solid lines (note: male G216 is showing extreme differences in values). 

Tempora l Lag Temporal Lag 

As temporal lag increased, mean deviation angle or turning angle showed extreme 

variability indicating either an increase in straight-line vectors or vectors with high turning angles 

(Figure 3-1 la). Depending on the original spatial patterns of the data set, as the data is resampled 

and spatial resolution decreases the resulting spatial pattern will either become more linear in 

nature or zigzag back and forth. As expected, mean distance increased as temporal lag increased 

(Figure 3-1 lb) with males showing slightly larger distances overall. 
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Figure 3-11. Line graphs for a) mean angle of path deviation (deg) and b) mean distance (km) 
for 2005 individual grizzly bears for each temporal lag corresponding to data collection scale (20-
min to 12-hr), bears are further coded according to sex where females are represented by dashed 
lines and males are represented by solid lines (note: male G216 demonstrates extreme differences 
in values). 

b. 

Temporal Lag Temporal Lag 

Mann-Whitney U results between temporal data collection levels varied by bear. 

Generally, mean distances were found to be significantly different between all temporal lag 

comparisons at the P < 0.05 level (Table 3-3). For individuals G203 and G231, mean movement 

rates significantly decreased (P < 0.001) across all temporal data collection levels when compared 

to the base level data. Both reported significant differences between base level deviation angles 

and resampled deviation angles at higher levels only (G203 = 4-hr and 6-hr; G231 = 2-hr up to 6-

hr). For individuals G210 and G218, movement rates were significantly lower (P < 0.001) for 

temporal data collection levels up to level 11 (4-hr) when compared to 20-min data, with level 17 

(6-hr) and level 35 (12-hr) showing no significant differences for both bears. Individual male 

G216 reported a slightly significant reduction (P = 0.063) to mean movement rate for level 2 (1-

hr) data when compared to the base level (20-min) data. 
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Overall results concluded that as data sampling interval decreased from the 20-min or 

base level data, the resulting movement rate also significantly decreased. However, almost no 

differences were found as movement rate comparisons moved to second order or third order 

comparisons (e.g. level 2 to level 5 or level 5 to level 11). This indicated that when working with 

movement rate at lower sampling resolution moving from 2-hr data to 4-hr data should not impact 

resulting vector-based movement rates. Results further demonstrated that vector deviation angle 

significantly differed as temporal data sampling decreased indicating a loss of turning information 

or detail at higher levels (Table 3-3). Again, no significant differences were apparent between 

higher order data levels such as between 2-hr and 4-hr data levels. Distances however 

demonstrated significant differences across all resampling intervals. 
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Global Vector Distribution Results 

Beyond overall movement trajectory summary measures, vector distributions were also 

compared across data sampling intervals for each bear using Kolmogorov-Smirnov tests. Again, 

the majority of distributions for vector distances were found to be significantly different between 

all temporal lag comparisons at the P < 0.05 level (Table 3-4). Movement rate distributions for 

individuals G203 and G231 showed significant differences (P < 0.001) for all resampled lags 

when compared to the base level data. Individuals G210, G216, and G218 demonstrated 

significant differences between movement rate distributions at varying levels when compared to 

the base level movement rate distribution (Table 3-4). All grizzly bears, except G216, reported 

significant differences between base level deviation angle distributions and resampled deviation 

angle distributions at higher levels. Finally, only G203 and G231 demonstrated significant 

differences to movement rate distributions at second order and third order data comparisons. 

To assess the amount of vector spatial error or variance as data collection scale 

decreased, spatial buffer size was compared across bears and vector distributions. Using the base 

level data or 'gold standard' as the true vector movement trajectory, all subsequent data 

resampled vector distributions were compared using a simple distance-based buffer (Table 3-5). 

Results indicated when working with 1-hr data, buffers would have to range from 350 m (G218b) 

up to 1000 m (G231) to capture potential vector error between known locations. When working 

with 4-hr data, buffers ranged from 800 m for G218b up to 4000 m or 4.0 km for G231. The 

mean 4-hr buffer across all bears was 2.6 km. It is important to note that this measurement is one 

side of the buffer. That is, the mean true buffer distance when working with 4-hr data would total 

5.2 km from edge to edge in order to potentially capture the original fine-scale vector path. 

Examples of individual 4-hr spatial buffer results are mapped in Figure 3-4. The resulting 4-hr 

buffers look similar to an individual bear's home range. 
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Table 3-5. Spatial buffer (m) results comparing generated paths at each temporal data collection 
level to the original 20--min path for all 5 individual grizzly bears. 

G203 G210 G216 G218a G218b G231 
Temporal Lag Buffer Width (m) Mean Buffer (m) 

Base level (20min) 0 0 0 0 0 0 0 
Level 1 (40min) 1000 875 625 400 500 800 700 
Level 2 (1hr) 890 965 845 650 350 1000 783 
Level 5 (2hr) 2200 1020 1700 600 530 1750 1300 
Level 8 (3hr) 1600 1950 2300 1000 700 2800 1725 
Level 11 (4hr) 3150 2400 3350 2100 800 4000 2633 
Level 17 (6hr) 3550 2400 3100 2000 1200 4250 2750 
Level 35 (12hr) 5900 4960 6000 2000 1600 4500 4160 

The final analysis of this section focused on the relationship between changing vector 

distributions and general habitat class proportions. Assuming that the 20-min movement 

trajectory or vectors again represented the best data available, habitat proportion was extracted for 

each individual grizzly bear. The base level habitat proportions were then compared against all 

resampled vector habitat proportions (see Tables 3-6 and Tables 3-7). Significant changes were 

noted if habitat proportion increased or decreased by 5%. 

All five grizzly bears showed significant habitat proportion change for at least one habitat 

class at upper temporal data collection levels. Individuals G203 (6-hr), G216 (12-hr), G218a (3-

hr), G218b (12-hr), and G231 (12-hr) all reported a significant increase in the proportion of 

closed forest for vector distributions. Only individual G210 reported a significant decrease in the 

proportion of closed forest for 4-hr and 12-hr vector distributions. Interestingly, G210 is the only 

sample bear residing in a mountainous environment! Individual G210 was also the only bear who 

saw a significant increase in non habitat for 6-hr and 12-hr vector distributions. Other reported 

changes included a decreasing proportion of shrub (G210 and G218a) and decreasing proportion 

of non habitat (G203, G216, G218a, and G218b). 
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Across lower data resample levels, no significant changes to habitat class proportions 

were reported for any of the individuals. This indicated that until the data is largely reduced, 

vector collected habitat information is not overly sensitive to resampled vector distributions. 
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Table 3-6. Habitat proportion results highlighting significant changes to proportion of habitat 
type across each temporal data collection level when compared to the 20-min base level data for 
individual grizzly bears G203, G210 and G216. 

G203 Habitat Proportion Change (%) 
Base Level Level 1 Level 2 Level 5 Level 8 Level 11 Level 17 Level 35 

Habitat Classes 
Open Forest 
Closed Forest 
Wet Treed 
Herbaceous 
Shrub 
Water 
Non Habitat 

0.11 
0.36 
0.05 
0.13 
0.18 
0.00 
0.16 

0.01 
0.01 

-0.01 

0.02 

0.01 

-0 .02 

0.03 

0.01 

-0.02 

0.03 

0.01 

-0.03 

0.04 
0.01 

-0.03 

-0.01 
0.05 
0.01 
0.01 

-0.05 

-0.02 
0.07 
0.01 
0.03 
-0.04 

-0.04 

G210 Habitat Proportion Change (%) 
Base Level Level 1 Level 2 Level 5 Level 8 Level 11 Level 17 Level 35 

Habitat Classes 
Open Forest 
Closed Forest 
Wet Treed 
Herbaceous 
Shrub 
Water 
Non Habitat 

0.09 
0.19 
0.00 
0.08 
0.61 
0.00 
0.02 

0.01 

0.01 

-0.01 

0.02 

-0.01 
-0.01 

0.03 
-0.02 

0.02 

-0.02 

0.03 
-0.04 
0.01 
0.04 

-0.01 
-0.06 

0.03 
-0.01 
0.01 
0.04 

-0.04 

0.04 
-0.08 

0.09 

-0.03 
-0.06 

0.02 
-0.09 
0.03 
0.13 

G216 Habitat Proportion Change 1%) 
Base Level Level 1 Level 2 Level 5 Level 8 Level 11 Level 17 Level 35 

Habitat Classes 
Open Forest 
Closed Forest 
Wet Treed 
Herbaceous 
Shrub 
Water 
Non Habitat 

0.05 
0.62 
0.08 
0.05 
0.03 
0.00 
0.17 

0.01 
0.01 

-0.01 

-0.01 

0.01 
0.02 
-0.01 
-0.01 
-0.01 

-0.01 

0.02 
0.01 

0.01 

-0.03 

0.02 

0.01 
-0.02 
-0.01 

0.02 
-0.04 
0.01 
-0.01 

0.03 

0.03 

-0.03 

0.02 
0.05 

-0.01 

-0.01 

-0.05 
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Table 3-7. Habitat proportion results highlighting significant changes to proportion of habitat 
type across each temporal data collection level when compared to the 20-min base level data for 
individual grizzly bears G218a, G218b, and G231. 

G218a Habitat Proportion Change (%) 
Base Level Level 1 Level 2 Level 5 Level 8 Level 11 Level 17 Level 35 

Habitat Classes 
Open Forest 0.10 0.01 -0.01 0.02 -0.01 0.01 -0.01 -0.03 
Closed Forest 0.31 -0.01 0.01 -0.01 0.05 0.05 0.07 0.15 
Wet Treed 0.02 0.01 0.02 0.02 
Herbaceous 0.15 0.01 0.02 -0.02 -0.06 -0.02 
Shrub 0.10 0.01 0.02 -0.03 -0.01 -0.05 
Water 0.00 
Non Habitat 0.32 -0.02 -0.02 -0.03 -0.02 -0.06 -0.08 

G218b Habitat Proportion Change (%) 
Base Level Level 1 Level 2 Level 5 Level 8 Level 11 Level 17 Level 35 

Habitat Classes 
Open Forest 0.13 0.01 -0.02 -0.01 -0.02 -0.04 
Closed Forest 0.26 0.02 0.02 0.03 0.03 0.10 
Wet Treed 0.13 0.02 0.01 
Herbaceous 0.26 0.01 -0.01 0.01 0.01 0.01 -0.01 
Shrub 0.09 -0.01 0.01 0.02 0.01 0.02 
Water 0.02 -0.01 -0.01 -0.02 
Non Habitat 0.11 -0.01 -0.02 -0.02 -0.04 -0.03 -0.07 

G231 Habitat Proportion Change 1%) 
Base Level Level 1 Level 2 Level 5 Level 8 Level 11 Level 17 Level 35 

Habitat Classes 
Open Forest 0.21 -0.02 -0.02 -0.03 -0.02 -0.04 
Closed Forest 0.59 0.01 0.01 0.02 0.02 0.06 
Wet Treed 0.07 -0.02 
Herbaceous 0.04 -0.01 
Shrub 0.07 -0.01 -0.01 -0.01 -0.01 -0.02 
Water 0.00 
Non Habitat 0.02 0.01 0.01 0.01 0.02 0.03 
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Local Vector One to One Results 

A vector contingency table analysis was conducted to quantify vector classification 

accuracy by showing the degree of misclassification among habitat classes as vector resolution 

decreased. Resulting contingency table analysis produced a mean accuracy value for each bear 

across each temporal lag (Table 3-8). For example, across all bears 4-hr vector data will have a 

habitat classification accuracy of 62% when compared to the base level or 20-min data. 

Table 3-8. Contingency table results highlighting overall accuracy of vector habitat proportion as 
temporal data collection level changes when compared to the 20-min base level data for all 5 
individual grizzly bears. 

G203 G210 G216 G218 G231 
Temporal Lag Overall Accuracy Mean Accuracy 

Base level (20min) 100.00 100.00 100.00 100.00 100.00 100.00 
Level 1 (40min) 80.04 87.65 83.48 80.84 81.49 82.70 
Level 2 (1hr) 73.75 84.70 80.32 76.20 75.92 78.18 
Level 5 (2hr) 64.51 78.09 74.43 68.18 68.47 70.74 
Level 8 (3hr) 60.26 71.39 74.66 58.54 65.46 66.06 
Level 11 (4hr) 57.47 61.48 72.40 53.04 63.54 61.59 
Level 17 (6hr) 52.52 64.35 70.81 49.61 61.64 59.79 
Level 35 (12hr) 27.83 56.78 66.97 48.11 58.37 51.61 

The above overall mean accuracy demonstrates the number of vectors at subsequent 

levels assigned to the correct class. This approach can also be used to examine at what temporal 

data collection level the producer's accuracy and users accuracy reach zero (Table 3-9). To 

reiterate, the producer's accuracy shows what percentage of the resampled vector classification 

was correctly identified. The user's accuracy tells the user for the resampled vector map what 

percentage of a vector class corresponds to the original class. While the actual user's and 

producer's accuracy are slightly different across each temporal lag, the lag at which each class 

reaches 0% is the same (Table 3-9). 
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Table 3-9. Contingency table results highlighting at what temporal data collection level overall 
user and producer accuracy reaches 0% for each habitat class for all 5 individual grizzly bears. 

Users Accuracy (level where accuracy = 0%) 

Bear ID 
Open 
Forest 

Closed 
Forest Wet Treed Herbaceous Shrub Water 

Non 
Habitat 

G203 
G210 
G216 
G218 
G231 

12 hr 
3 hr 
12 hr 

no vectors 
6 hr 

12 hr 
3 hr 1 hr 

no vectors 
2 hr 

no vectors 
6 hr 

no vectors 

12 hr 

Producers Accuracy (level where accuracy = 0%) 

Bear ID 
Open 
Forest 

Closed 
Forest Wet Treed Herbaceous Shrub Water 

Non 
Habitat 

G203 
G210 
G216 
G218 
G231 

12 hr 
3 hr 
12 hr 

no vectors 
6 hr 

12 hr 
3 hr 1 hr 

no vectors 
2 hr 

no vectors 
6 hr 

20 min 

12 hr 

Results demonstrated that for G203 and G216 no water vectors were present at any lag. 

For all bears, the closed forest class never reached 0% accuracy. For individuals G203 and G231, 

no vector-based habitat proportions reached 0%. For G210, open forest (12-hr), herbaceous (12-

hr), and water (2-hr) classes were no longer detectable at varying temporal levels. For individual 

G216, all habitat classes except closed forest reached an accuracy level of 0%. Lastly, individual 

G218 reported open forest and water classes to reach 0% accuracy levels for 12-hr and 6-hr 

vector data sets respectively. Individual user accuracy figures were generated to highlight the 

decreasing accuracy value for habitat classifications as vector data resolution decreased for each 

individual bear (Figures 3-12 and Figures 3-13). As a general trend, as vector temporal lag 

decreased, user's accuracy for each habitat class also decreased. In most cases, the user's 

accuracy value fell below 50% for each habitat class type by the 4-hr data lag. The exception to 

this trend is closed forest (Figure 3-12). Other exceptions include herbaceous (G218) and shrub 

(G210) classes which remained above 75% for all temporal lags. 
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Local Vector Sequential Data Results 

Results of the ACF and PACF analysis are shown in Table 3-10. Across all individual 

grizzly bears, significant positive autocorrelation was found at minimum up to 2h40min for 

movement rate (km/h) and lh40min for deviation angle (deg). Males G210 and G216 both 

reported the smallest times to independence, while female G203 reported the longest times to 

independence (4h40min for movement rate and 3h20min for turning angle). Of note, female 

G203 was the only individual bear residing in the Swan Hills, east of other foothills bears. Female 

G203 was classified as a female with cubs which may have had an impact on the resulting 

sequential vector serial autocorrelation structure. 

PACF results were also examined and are shown in Table 3-10. Time to independence 

was reached at higher temporal lags for deviation angle when compared to movement rate. For 

individuals G210, G216, and G218 PACF results reported no partial autocorrelation beyond 20-

min vectors for movement rate. Again, individual G203 reported the longest times to 

independence for PACF. 
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To examine the presence of serial autocorrelation at varying temporal data collection 

scales, ACF and PACF results were also generated for each resampled vector data collection 

level. Results demonstrated at what temporal data collection scale no serial autocorrelation would 

be present in the vector data set. For example, individuals G210 and G218 reported that a GPS 

data point collected every 4-hr would produce no presence of autocorrelation in resulting 

movement rate calculations (Table 3-10). For female G203, serial autocorrelation was present 

across all data collection scales for movement rate and turning angle. Data would subsequently 

have to be resampled beyond 12-hr to remove any dependence present in resulting calculated 

movement parameters. Beyond this, by examining the resulting ACF and PACF charts for other 

data collection levels (e.g. 1-hr data) cyclical trends in movement rate became apparent (Figure 3-

7b). Movement rates were found to exhibit positive autocorrelation occurring at approximately 

12-hr intervals across all bears. 

The final section of this chapter identified and compared sequential slow moving vector 

clusters both temporally and spatially. Using a time series sequence graphing approach, 

movement characteristics for each individual bear were mapped at each temporal data collection 

scale (Figure 3-14a). Using normalized distance, two movement types were identified. Slow 

movements were characterized by vectors occurring below a normalized threshold of 1.0 mean 

standard deviation. All remaining movements were classified as fast vectors indicating travel 

behavior. Resulting time sequence graphs were analyzed for slow vector clusters that were linked 

sequentially and therefore temporally, as well as spatially due to low vector distances. 

Overlapping vector clusters were also identified to highlight site revisits for each individual 

grizzly bear (Figure 3-14a). 

Spatiotemporal cluster results are identified in Table 3-11 for each individual bear across 

each data collection level. Again, the base level was assumed to provide the best available 
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information and thus clusters identified at this level represented 100% of the identifiable clusters. 

The ability to identify slow moving vector clusters fell off significantly as data resolution 

decreased. That is, if a researcher was working with 1-hr data structures, only 43% of slow 

moving vector clusters would be present for identification. When working with 4-hr data, only 

7.5% of slow moving clusters were identifiable. Results indicated that when working with typical 

GPS data sets, identifying fine-scale behaviors and internal vector variations will be limited. In 

fact, the identification of process-based movement behaviors may only be possible when working 

with 20-min or finer scale data sets. 

Finally, spatial clusters or site revisits are identified in Table 3-12. Following the same 

format, the ability to identify site revisits for each individual bear decreased largely as data 

resolution subsequently decreased due to vector resampling. For example, only 50% of site 

revisits were identifiable when working with 2-hr data for all bears combined. Only individuals 

G203 and G210 retained spatial clusters at 4-hr and above data collection levels. For the other 3 

individual grizzly bears, site revisits were not apparent in the data when working 4-hr vector 

intervals. 
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3.5 Summary 

In order to analyze and understand the movement patterns created from consecutive GPS 

radiotelemetry data, researchers must first decide on an appropriate data approach. However, 

before modeling it is imperative a solid understanding be achieved regarding GPS vector-based 

movement characteristics. Information regarding both movement patterns and processes change 

according to the spatial and temporal scale of data collection. Furthermore, individual grizzly 

bears will respond to or interact with the environment at various spatial and temporal scales. For 

example, males and females have different home range sizes, move at different rates, and select 

for different habitats (Nielsen et al. 2002, Schwab 2003, Nielsen 2005, Stenhouse et al. 2005). 

This makes it difficult to understand and generalize bear movements at the population level. 

Ideally, all GPS radiotelemetry location data should be collected at the finest scale 

possible. Unfortunately, this is not always logistically and financially possible. This chapter 

worked with 20-min data, a quality and quantity previously not available for grizzly bear data 

analyses. Beginning with the gold standard (20-min data) and resampling to lower vector 

resolutions provided an opportunity to highlight differences regarding available vector 

information and characteristics across different temporal levels of data collection. 

Previous studies have demonstrated that movement rate is biased by sampling rate 

(Johnson et al. 2002, Nams 2006a). The choice of appropriate sampling interval is therefore an 

important consideration. Typically, as a movement path is sampled more intensively, more detail 

is recorded, net displacement is greater, and movement rate increases while vector distance 

decreases (Johnson et al. 2006). Generally, the opposite occurs when data is undersampled. 

However, while significant differences to movement rate existed between the base level (20-min) 

data when compared directly to larger data temporal scales, no significant differences were found 

between higher order lags. That is mean movement rate differences were not significant when 
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comparing 1-hr versus 2-hr or 2-hr versus 4-hr vector data sets. This result was similar for mean 

turning angle. As such, when working with larger-scale vector sets, researchers should be able to 

group vector data across various temporal collection levels without concern. This applies the use 

of both mean movement rate and mean turning angle as global descriptive measures. 

Often wildlife studies calculate movement rate as a mean value, rather than a median or 

mode movement rate. This chapter examined the differences between mean and median 

movement rate as temporal data collection scale changed. The resulting mean movement rate 

behaved as expected, slightly decreasing as temporal lag increased. The resulting median 

movement rate however demonstrated variable results, neither obviously decreasing nor 

increasing as temporal lag changed. The calculation of mean movement rate itself is an average of 

the distance traveled between two points given a specific duration of time. The resulting mean is 

therefore expressing the average at each lag given a number of mean movement rates for each 

vector segment. The resulting median chart is expressing the median movement rate summarizing 

the middle movement rate value as temporal lag changes. While the median value may be more 

appropriate when working with highly skewed data, the mean was used here for direct 

comparison to other wildlife study results. 

It is further important to consider the influence of fix rate on the estimation of movement 

parameters distributions (movement rate and turning angle) (Jerde and Visscher 2005). A study 

conducted by Johnson et al. (2002) recorded no differences to movement rate distributions when 

data was sampled > 3 hr and < 16 hr for caribou. Similarly, we found no significant differences 

for grizzly bears movement distributions between larger lag sampling intervals. Distributions 

were significantly different however when 20-min movement rate distributions were compared 

against all other resampled vector lags. Results indicated again that higher order lags could be 

combined with no significant influence to vector-based movement parameters. 
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Vector distributions were also assessed spatially. That is, total movement path placement 

was compared at decreased temporal resolutions to the original vector movement path for each 

bear. Resulting buffer widths provided both a quantitative measure of potential vector error, as 

well as a visual interpretation of this variability. The amount of departure increased considerably 

as vector resolution decreased across all bears. Results provided a measure of spatial uncertainty 

when working with vector data layers for all bears individually and grouped. For example, on 

average when working with 4-hr data, movement paths would require a 2.6 km buffer to capture 

any potential vector error between known GPS locations. These results are useful when 

determining where a bear may have travelled between locations and the extent of habitat that may 

have possibly influenced resulting movement patterns. 

Changes to spatial vector placement were also examined using changing habitat class 

proportions. Significant changes were reported if change equaled or exceeded 5% for each habitat 

class between resampled temporal lags and the original baseline data. Significant differences to 

the proportion of habitat class were only reported at higher temporal lags indicating that vector 

collected habitat information is not overly sensitive to resampled vector information at lower 

temporal resolutions. For all bears, closed forest showed significant changes at higher levels. For 

4 out of 5 bears the change to closed forest proportion was positive. However, for mountain bear 

G210 the change of closed forest class proportion was negative with a corresponding increase in 

the presence of non habitat class proportion. This result indicates that as vector resolution 

changes, vector spatial placement in environments with mountain landscape features is an 

especially important consideration. 

Local vector one to one comparisons were also used to quantify the degree of change as 

data collection resolution decreased. This was completed using a vector-based contingency table 

analysis for each individual bear. When grouped, contingency table results indicated that local 
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vector habitat classification accuracies dropped to approximately 80% for 40-min data, 70% for 

2-hr data, 60% for 4-hr data, and to 50% for 12-hr data. To reiterate, this assumes that 20-min 

data represents the most accurate representation of movement segments between known 

locations. 

The use of a vector-based contingency table analysis further provided habitat class 

specific accuracy results. Spatial vector placement and corresponding habitat proportions 

responded differently for each bear across changing vector resolutions. The contingency table 

approach provided an opportunity to highlight when specific vector-based habitat classes reached 

a 0% accuracy level or reached the equivalent 100% error level. For all individual bears across all 

resampled temporal levels, closed forest never reached 0% when compared to the other habitat 

class types. Every other habitat class type fell below 50% accuracy levels when working with 4-

hr vector data. Results further provided additional information regarding the spatial pattern of 

underlying habitat patches. Habitat patch types which are small and fragmented, such as shrub or 

open forest are more sensitive to changing vector resolutions. For habitat classes with limited size 

and shape, resampled vectors which may have indicated selection at fine temporal resolutions 

could potentially miss or avoid patches at coarser temporal resolutions. Overall persistence of 

closed forest vector accuracy may directly reflect the fact that closed forest patches are large and 

contiguous across the landscape. As such, vector-based contingency results must take habitat 

placement and structure into consideration. 

Most movement models (e.g. CRW and SSF) assume that vector lengths (movement rate) 

and turning angles are not serially autocorrelated (Austin et al. 2004). In fact, this is often the case 

when working with data points that are separated by large temporal intervals. However, when 

working with fine-scale movement data for grizzly bears it is expected that data would be serially 

autocorrelated. All base level data for all 5 individual bears were highly significantly 
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autocorrelated. It was found that by resampling vector data structures to a capture rate of 3-hr or 

4-hr serial autocorrelation could be eliminated. However, in the case of one individual grizzly 

bear (G203) serial autocorrelation was present across all vector sampling lags. Resampling fine-

scale data to achieve independence was further found to significantly reduce the information 

available within the data structure. For example, if this study reduced each individual data set to 

the point where autocorrelation was no longer present, the ability to detect fine-scale spatial and 

temporal data clusters within the consecutive data structure would disappear. Non-stationary 

movement patterns, such as those indicated when examining the autocorrelation structure of 1-hr 

data points, would not be apparent if the data was resampled at the resolution of time to 

independence (Cushman et al. 2005). 

The presence of serial autocorrelation in both movement rate and turning angle indicate 

the propensity of individual bears to maintain the same speed and make sequential movements in 

similar directions. This is known as directional persistence (Zollner and Lima 1999). For turning 

angle, this means that individual bears will either continue in straight directions or continue 

turning when compared to the previous vector segment. For movement rate, this implies that if 

one vector is a slow moving vector the preceding vector will likely also be a slow moving vector. 

Therefore, positively autocorrelated slow movement or high turning angle vectors could indicate 

the presence of a sustained foraging behavior. Resulting ACF and PACF charts for 1-hr vector 

data segments demonstrated cyclical patterns when examining movement rate for individual 

bears. For example, ACF results for individual G231 highlighted positively autocorrelated vectors 

up to 4-hr, negatively autocorrelated values from 4-hr to 10-hr, positively autocorrelated values 

from 11-hr to 14hr, and then again at 20-hr to 24-hr (see Figure 3-7b for an example). This 

pattern indicates movements to be similar at smaller lags (up to 4-hr), different at middle lags (up 

to 10-hr), and similar again across the range of 24-hr or a single day. Grizzly bear movements are 
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therefore non-stationary across both small and long time lags indicating a possibility of non-

random movements or changes to movement behaviors along trajectories. 

While use the of time sequence graphs is a relatively straight-forward and simplistic 

analysis, it offers a novel method for retaining the consecutive nature of large GPS vector data 

structures which most complicated movement models do not. The approach further provided a 

method for distinguishing between types of movement behaviors and examining internal vector 

structure. The use of a normalized distance threshold may not be the strongest statistically in 

terms of developing a separation threshold, yet it worked well in the examples provided here. I 

believe this is largely because movement data is so heavily skewed to zero with the majority of 

vector steps and subsequently movement rates having small values. As such, separating vector 

distributions into a dichotomous classification (the smallest vectors versus everything else) is 

possible. The resulting threshold provides a conservative estimate closer to zero than might be 

needed when working with a two-process behavior model. 

As the sampling interval increases or temporal resolution decreases, the ability to detect 

finer-scale responses equally decreases. This was evident as data collection resolution decreased 

the ability to identify slow moving clusters diminished. When working with 4-hr data the ability 

to identify changes in movement behavior decreases, not only in the quantity of behavior shifts 

but also in the duration or length of the existing clusters. In addition to losing sequential vector 

clusters, site revisits also disappeared. As demonstrated by this chapter, low to moderate amounts 

of data may be adequate for estimating home range size but inadequate to identify movement 

clusters. When working with 4-hr GPS data sets, researchers should focus on working within the 

context of a home range. The opposite, large amounts of data, while the typically more attractive 

option, may be excessive and difficult when the analysis stage is reached further producing high 

levels of autocorrelation and variability (Turchin 1998). Yet, unless a grizzly bear researcher is 
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working with 20-min or 40-min data at most, differences in movement processes will not be 

discernible. 
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CHAPTER 4 - QUANTIFYING LARGE-SCALE GPS-BASED GRIZZLY BEAR 
MOVEMENT RATES AND HOME RANGE SIZES 

4.1 Introduction 

Current Global Positioning Systems (GPS) - based studies have generated extensive 

telemetry data sets providing information regarding the movement rates of large ranging species 

(Amstrup et al. 2001, Mauritzen et al. 2001, Rettie and Messier 2001, Taylor et al. 2001). The 

major goal of these studies is often a management driven long-term conservation plan for the 

species in question (Chetkiewicz et al. 2006). In Alberta, habitat loss resulting from oil and gas 

exploration, industrial extraction and increased human activities (such as tourism, recreation and 

suburban/rural development) has threatened the survival of grizzly bear populations (Gibeau et al. 

2002, Nielsen et al. 2006). In the case of the Foothills Research Institute Grizzly Bear Research 

Program, understanding movement rates and the related activity patterns of grizzly bears is 

required to provide management with the scientific information needed to balance industry 

requirements with conservation imperatives (NESERC 2000). 

Movements of grizzly bears are highly variable and difficult to investigate. At a basic 

level, they are governed by the individuals need to acquire resources, reproduce, avoid 

conspecifics, and limit human interactions (Mace and Waller 1997, Dahle and Swenson 2003a, 

2003b, Mueller et al. 2004, Stenhouse et al. 2005). At a more complex level, resulting movement 

rates are influenced by seasonal climate, related food production, time of day, interaction with 

external factors, and physical location on the landscape (Weaver et al. 1996, Stenhouse et al. 

2005, Kaczensky et al. 2006). Differences in movement rates are further defined by sex, 

reproductive status and age of individual bears (Dahle and Swenson 2003a, 2003b). For example, 

the movements of males are found to be more extensive than those of females especially during 

mating season (Amstrup et al. 2001, McLellan and Hovey 2001b, Dahle and Swenson 2003b, 

Stenhouse et al. 2005). Movement rates and related home range size are additionally impacted by 
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the amount of human-induced habitat fragmentation and loss (Chruszcz et al. 2003, Dickson et al. 

2005, Berland et al. 2008) which inherently alters the configuration and composition of the 

natural landscape (Linke et al. 2005). Reduced connectivity and impeded movements may result 

in higher mortality and lower rates of reproduction, leading to smaller populations and reduced 

population viability (Chruszcz et al. 2003, Proctor 2003, Proctor et al. 2005). To my knowledge, 

only one other study has reported on grizzly bear movement rates specific to human development 

in Alberta (Gibeau 2000, Gibeau et al. 2001). Generally, there appears to be an overall lack of 

research focusing on the spatial and temporal quantification of grizzly bear movements in regions 

with varying levels of human presence and development. 

As demonstrated in Chapter 3, the ability to measure and analyze movement rates and 

related vector characteristics is largely related to the scale of data collection. Limitations exist 

when measuring and quantifying spatial temporal movement patterns based upon GPS location 

data collected at large temporal intervals (Morales and Ellner 2002). This is especially true when 

studying large carnivores where the majority of radiocollars are programmed to record locations 

with larger time gaps (e.g. 1 GPS location every 4 or 5 hours) to maximize collar life or study 

duration on a specific animal. The majority of GPS location data for the FRI is collected at 4-hour 

intervals. Unfortunately, when dealing with more than one individual over large spatial scales, 

modeling or simulating movement between thousands of known GPS locations is 

computationally intensive and unrealistic. Home range estimation and simple vector-based 

movement statistics offer a basic first step in understanding the general biological requirements 

and spatial response of grizzly bears (Dahle and Swenson 2003a, 2003b, Collins et al. 2005). 

The goal of this chapter is not to model movement but to empirically quantify GPS-based 

movement rates and related activity patterns for grizzly bears across multiple temporal and spatial 

scales using previously obtained GPS radiotelemetry locations. The description and quantification 
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of movement patterns, both spatially and temporally, are important first steps to understanding 

the complexity of underlying movement processes (Fortin and Dale 2005). Prior to data analysis, 

a large portion of the required methods section focuses on data preparation and processing in 

effort to minimize biased movement results. Specific chapter objectives are three-fold: 1) to 

examine population-level differences in hourly movement rates and home range size across 

multiple temporal and spatial scales; 2) to identify and describe relationships between movement 

rates and the presence of human activity (development) in different landscape regions; and 3) 

examine female-specific differences in hourly movement rates and home range size according to 

reproductive status and landscape type. Results reported in Section 4.4 will provide a theoretical 

basis for future chapters and analyses. Furthermore, the findings have significance for future 

modeling efforts which attempt to replicate or predict grizzly bear movement patterns across 

landscapes. Finally, identifying differences to movement rates among individual bears and bear 

subgroups will aid management in making localized site-specific conservation decisions 

(Chetkiewicz et al. 2006). 

4.2 Study Area and Supplementary Data Layers 

The research study area for Chapter 4 was situated along the eastern slopes of the 

Canadian Rocky Mountains ranging from west-central Alberta south to the Canada-US border 

(Figure 4-1). The region is comprised of two major landscape types: 1) the high elevation 

mountains in the west (dark grey), and 2) the industry dominated foothills in the east (medium 

grey). The mountain landscapes (> 1700 m in elevation) run northwest to southeast in orientation 

and are characterized by rugged terrain, douglas fir (Pseudotsuga menziesii), lodgepole pine 

(Pinus contorta), or aspen (Populus tremuloides) forests, and alpine meadow valley bottoms 

(Beckingham et al. 1996). Moving to the east, foothills landscapes (< 1700 m elevation) are 

dominated by conifer forests such as lodgepole pine or white spruce (Picea glauca), deciduous 

forests such as aspen or balsam poplar {Populus balsamifera) and mixed forests. Additional 
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landscape types include wet meadow and wet treed complexes consisting of black spruce (Picea 

mariana) and tamarack (Larix laricina) stands, riparian valleys, regenerating (post-fire and 

clearcut harvesting) forest stands, and agricultural lands (Beckingham et al. 1996). Human 

activities in the foothills include tourism, recreational uses (hunting, hiking, and off-road 

vehicles), mining, agriculture, forest harvesting, oil and gas exploration and extraction, and 

transportation routes, all of which contribute to landscape fragmentation. Mountain landscapes, 

although mostly protected from industrial development, contain major highways and extensive 

recreational use. In Alberta, where grizzly bear populations occupy both mountain and foothills 

environments, valuable information can be gained by studying movement rates across regions 

with varying levels of human activity (Gibeau et al. 2002). 

Supplementary linear features such as highways, secondary and gravel roads, railways, 

pipelines, and powerlines were used to calculate total linear distance (km) and human access 

density (km/km2) for both landscape type and bear management areas (BMA). Well sites, 

represented as point features, were additionally compiled and used to quantify presence of human 

activity across the study region (see Table 4-1). 
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Figure 4-1. Map of central and south-western Alberta showing Chapter 4 study regions with 
major cities, highways, provincial bear management areas (BMAs), and provincial mountain 
parks represented in relief. 
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Table 4-1. Total distance (km) and densities (km/km2) for human access linear features and well 
sites grouped according to landscape type and bear management area. 

Summary Statistics 
Total Area 

(km2) 
# o f 

Segments 
Total Distance 

(km) 
Landscape Type 
All Linear Access 
Mountains 
Foothills 
Well Site Locations 
Mountains 
Foothills 

34453.0 
89484.4 

34453.0 
89484.4 

7178 
149301 

334 
23766 

6923.39 
89770.10 

Density 
(km/km2) 

0.201" 
1.003+* 

0.0097" 
0.2656+ 

Bear Management Areas 
All Roads 
BMA 3 16786.2 
BMA 4 11280.6 
BMA 5 9005.5 
BMA 6 3083.9 
N Hwy 16 49328.3 
Mountain 34453.0 
Railways 
BMA 3 16786.2 
BMA 4 11280.6 
BMA 5 9005.5 
BMA 6 3083.9 
N Hwy 16 49328.3 
Mountain 34453.0 
Pipelines 
BMA 3 16786.2 
BMA 4 11280.6 
BMA 5 9005.5 
BMA 6 3083.9 
N Hwy 16 49328.3 
Mountain 34453.0 
Well Site Locations 
BMA 3 16786.2 
BMA 4 11280.6 
BMA 5 9005.5 
BMA 6 3083.9 
N Hwy 16 49328.3 
Mountain 34453.0 

17399 
29699 
11348 
4375 
56342 
6758 

300 
63 
56 
100 
535 
114 

2654 
712 
544 
137 

22962 
187 

4506 
1109 
1178 
174 

16799 
334 

9960.42 
12391.00 
6247.09 
2308.85 
33537.72 
5727.37 

332.20 
150.46 
265.75 
116.46 
570.26 
442.65 

4167.88 
1655.82 
1061.59 
495.12 

13148.35 
313.62 

0.593 
1.098+* 
0.694* 
0.749* 
0.680* 
0.166" 

0.020 
0.013 
0.030 
0.038+ 

0.012" 
0.013 

0.248 
0.147 
0.118 
0.161 
0.267+ 

0.009" 

0.268 
0.098 
0.131 
0.056 
0.341+ 

0.010" 
Values represent the highest density for each group. 

" Values represent the lowest density for each group. 
*Values represent linear densities which exceed the 0.6 km/km2 threshold (Forman et al. 1997) 
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4.3 Methods 

GPS Data Preparation 

Between 1999 and 2005, the FRI grizzly bear research project captured and collared 167 

grizzly bears, some of which were collared multiple times (n = 34). Each bear was fitted with 

either a Televilt Simplex (Lindesberg, Sweden) GPS radiocollar, an Advanced Telemetry 

Systems (ATS) (Isanti, Minnesota, USA) GPS radiocollar, or a Televilt Tellus 1 (Lindesberg, 

Sweden) GPS radiocollar. Capture protocols followed the Canadian Council on Animal Care 

accepted procedures and were reviewed by the Animal Care Committee at the Western College of 

Veterinary Medicine in Saskatoon, Saskatchewan (CCAC 2003). Over 7 years, 18 known bear 

mortalities and 20 confirmed collar failures were recorded but not analyzed as part of this 

research. Mortalities were generally classed as unknown (n = 5), illegal (n = 6), legal hunt (« = 2), 

research (n = 2), self-defense (n = 1), management action (n = 1), or other bear (n = 1). 

Confirmed collar failures represented GPS radiocollars that upon retrieval were found to have no 

data, erroneous data files, or valid data but had stopped recording locations at an earlier date. 

Collars retrieved with valid data prior to a mortality or collar failure event were included in the 

analyses. Collars were discarded from analyses if annual GPS radiotelemetry recorded locations 

were < 50. This excluded 17 radiocollars at the onset of this study reducing the initial sample size 

to 150 grizzly bears. 

Collars were programmed to retrieve GPS radiotelemetry locations from den emergence 

in early spring to denning in late fall at either 5-hr time intervals (n = 45), 4-hr intervals (n = 86), 

2-hr intervals (« = 6), 1-hr intervals (n = 4), or 20-min intervals (n = 9). Only 50.4 % of total 

attempted recorded fixes were successfully downloaded for processing. Locations for each year 

were divided into 4 seasons: hypophagia or den emergence (May 1 - June 15), early hyperphagia 

or pre-berry (June 15 - August 15), late hyperphagia or berry (August 15 - October 15) and 

denning (October 15 - May 1). Seasonal classifications correspond to documented grizzly bear 
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feeding behavior (Hamer and Herrero 1987, Hamer et al. 1991, Nielsen 2005, Nielsen et al. 

2006). In addition to seasonal categories, locations were further classed according to month 

(April - November) and time of day to assess finer scales of movement (Nielsen et al. 2003, 

Munro et al. 2006). Following Munro et al. (2006), annual sunrise, sunset, and civil twilight 

tables (http://www.cmpsolv.com/los/sunset.html) were used to define crepuscular (predawn and 

dusk), diurnal (sunrise to sunset) and nocturnal (dusk to predawn twilight periods) time of day 

classes. All tables were generated to approximate daylight conditions for the center of our study 

area at Robb, Alberta (53°N and 117°W). While North American brown bears are largely diurnal 

and bed most frequently at night (Munro et al. 2006), it is speculated that nocturnal movement 

behavior may increase in regions with high levels of human activity (Gibeau et al. 2002, 

Kaczensky et al. 2006). As such, times of day classifications were used to assess whether 

movement patterns differed over a 24-hour period according to landscape type. 

Radiocollared grizzly bears across each year were categorized first by sex (male, n = 55; 

female, n = 95), then by age (subadult, 2-4 yrs old or adult, > 5 yrs old) (Mace and Waller 1997, 

Gibeau et al. 2002), and further combined to represent reproductive status (adult male, n = 36; 

subadult male, n = 19; adult female, n = 36; subadult female, n = 19; and females with cubs, n = 

40) (Table 4-2). Reproductive status was assessed based on individual observation during den 

emergence, capture events and/or radio telemetry uploads to aircraft. Grizzly bears were then 

grouped according to landscape type. Individual bears with > 75% of GPS locations above 1700 

m were categorized as mountain bears with all remaining bears categorized as foothills bears 

(Munro et al. 2006). Individual bears were further stratified according to provincial BMA. Bear 

management areas were classified as mountain, BMAs 3, 4, 5 or 6, or all lands occurring north of 

Highway 16 (Figure 4-1). Mountain BMAs, which included provincial parks, typified landscapes 
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with lower levels of human activity; while foothill BMAs and lands occurring north of Highway 

16 were characterized as regions with extensive resource extraction and increased human access. 

Table 4-2. Final 148 grizzly bears used in Chapter 4 analysis classified by year and reproductive 
status. 

Reproductive Status (Sex + Age) 

Adult Adult Female with Subadult Subadult 
Year Female Male Cubs Female Male Total 
1999 4 3 1 2 1 11 
2000 7 5 4 2 1 19 
2001 5 4 6 3 1 19 
2002 1 3 10 3 2 19 
2003 7 6 8 4 4 29 
2004 8 6 8 3 2 27 
2005 4 8 3 1 8 24 
Total 36 35 40 18 19 148 

Movement Rate and Home Range Size Analysis 

Prior to the analyses, several data filtering tasks were preformed to retain the most 

accurate and least biased movement data. In total, the 150 GPS radiocollars provided 88,656 raw 

GPS radiotelemetry locations. Movement rates were calculated by measuring Euclidean distance 

(meters) between consecutive GPS locations and dividing by time (hours) separating those 

locations. As collars were programmed to retrieve GPS data at various intervals, movement rates 

were standardized to km/hr for all grizzly bears across all years. It has been suggested that a 

lower Dilution of Precision (DOP) score indicates higher quality locations resulting from 

improved satellite geometry and position (Hofmann-Wellenhof et al. 2001). As such, all GPS 

radiotelemetry locations with a DOP score > 6 were deleted (Lewis et al. 2007). This reduced the 

total GPS radiotelemetry data set from 88,656 to 81,012 (8.6 % loss of GPS events) locations. 
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Further studies, as well as Chapter 3 in this study, have found movement rates to be 

significantly underestimated as time between subsequent locations increases (Rettie and 

McLoughlin 1999, Amstrup et al. 2000, Rettie and Messier 2001, Johnson et al. 2002). As such, 

the effect of time gaps due to missed GPS fixes on both distance (km) between recorded locations 

and calculated movement rate (km/hr) was assessed for each GPS data point. GPS radiotelemetry 

locations from 1999 (11 collars, n = 5429) were classified into 3 groups for testing: consecutive 

locations with 4-hr separations or no missed fix (group 1), consecutive locations with 8-hr 

separations or 1 missed fix (group 2), and consecutive locations with greater than 8-hr separations 

or 2 or more missed fixes (group 3) (Figure 4-2). After confirming the relationship between 

missed GPS fixes and underestimated movement rates, this filtering technique was also applied to 

5-hr data, 2-hr data, 1-hr data and 20-min data sets across all years. Subsequently, the total 

number of GPS radiotelemetry locations was reduced to 60,695. 

Figure 4-2. Hourly movement rate trajectories (km/h) for 1999 resulting from increased time 
gaps (missed fixes) between consecutive GPS data locations. 
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Cattet et al. (2008) conducted an independent study using a subset of the GPS 

radiotelemetry data which analyzed the post-capture movement rates of 91 radiocollared bears to 

determine if capture and handling had any long-term effects on mobility. Post-capture response 

curves suggested that lower movement rates (approximately 43% below population normal) 

existed for at least 3 weeks (and up to 6 weeks) following a capture and handling event (Cattet et 

al. 2008). In an effort to eliminate biased movement results, I excluded all GPS telemetry 

locations for days 1 through 21 post-capture and handling. In total, this reduced the overall 

radiocollar sample to 148 individual bears (Table 4-1) and the total GPS radiotelemetry data set 

from 60,695 to 49,987 locations for all subsequent movement rate analyses. 

For the majority of movement analyses the sampling unit was each individual bear or 

radiocollar. First, grouping all years of data, mean hourly movement rates (km/hr) were compared 

for all 148 bears by (/) year, (ii) sex, (iii) age class, (/V) reproductive status, (v) landscape type, 

and (vz) BMA. Second, to assess finer scale movements, GPS radiotelemetry data locations across 

all years were pooled and mean hourly movement rates were compared across (i) seasons, (ii) 

months and (iii) time of day classes. Finally, to assess if grizzly bear activities varied according to 

time of day and physical location, crepuscular, diurnal, and nocturnal hourly movement rates 

were compared across landscape types and BMAs. 

To assess annual activity or home range areas used by individual bears, 95% kernel home 

ranges (km2) were calculated using the Animal Movement V. 2 Extension in Arc View 3.2a 

(Hooge et al. 1999). See Chapter 5 for a detailed description on home range generation. First, 

home range size (km2) was assessed to see if changes in size varied by year. Annual home range 

size (km2) was then compared for 145 bears by (/) sex, (ii) age class, (iii) reproductive status, (iv) 

landscape type, and (v) BMA. Three additional individuals were excluded from home range 

analysis due to number of available GPS telemetry data points. Home ranges were not calculated 
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by season, month or time of day due to a lack of GPS radiotelemetry data (« > 50) required for 

proper home range generation (Seaman et al. 1999). It was expected that movement rates for 

individual bears would be directly related to annual home range size. 

Due to the reproductive importance of female grizzly bears (Gibeau et al. 2002, Nielsen 

et al. 2004b), additional comparisons were conducted using 12 individual radiocollared females. 

Each female was radiocollared for a minimum of three consecutive years ranging from 1999 to 

2004. For each year, individual females were classified by reproductive status (female (F), n = 

20; female with cubs of the year (FCOY), n = 13; or female with yearlings (FY), n = 12). For 

example, an individual female (GO 16) would be classed as a solitary female in 1999, then classed 

as a female with COYs in 2000, and finally classed as a female with yearlings in 2001 (Table 4-

3). 

Table 4-3. Summary of reproductive status over consecutive years for 12 individual female 
grizzly bears radiocollared from 1999 to 2004. 

Reproductive Status by Year 
Bear ID 1999 2000 2001 2002 2003 2004 n 
G002 FY FY F 1229 
G003 F F FCOY FY 1400 
G004 F F FCOY FCOY 2074 
G007 F FCOY FY 69 
G010 F F F FCOY FY 1098 
G012 F FCOY FY FY 1233 
G016 F FCOY FY 797 
G020 F F FCOY FY 1322 
G023 FY FCOY FY FCOY 958 
G028 F F FCOY FY 2145 
G040 F F FCOY 731 
G100 F FCOY F F 730 
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In some cases, only two of the classifications were present. To begin, mean hourly 

movement rates (km/h) and annual home range size (km2) were compared for all females by 

reproductive class. In effort to understand the effect of human development and activity on 

movement behavior, individual females were then grouped by landscape type (mountain or 

foothills) and mean hourly movement rates (km/h) were again compared by reproductive class. 

Differences between means were evaluated using analysis of variance (ANOVA) within 

SPSS. For data that did not fulfill the assumptions of equal variance and normality, the 

nonparametric Kruskal-Wallis and Mann-Whitney tests were used to identify differences between 

groups. Pairwise comparisons for multiple groups were assessed with Tukey's honestly 

significant difference (HSD) and Games-Howell procedures, respectively. Significance was held 

at P < 0.05 for all tests. 

4.4 Results 

GPS Data Processing Results 

During data preparation, movement rates (km/h) for 1999 GPS data were found to be 

significantly underestimated (%2 = 42.87, df = 2, P < 0.001) as time between consecutive locations 

increased (Figure 4-2). More specifically, movement rates for consecutive locations with 4-hr 

separations or no missed fixes (group 1, « = 4181) were significantly higher (mean = 0.25, SE = 

5.29, P < 0.001) than consecutive locations with 8-hr separations or 1 missed fix (group 2 ,n-

833) or consecutive locations with greater than 8-hr separations or 2 or more missed fixes (group 

3,n = 415). Comparatively, mean distances (km) were found to significantly increase (%2 = 

156.48, df = 2 , P < 0.001) as time between consecutive locations increased (Figure 4-2). In result, 

only data from group 1, consecutive locations with 4-hr separations or no missed fixes (also 

applied to 5-hr data, 2-hr data, 1-hr data and 30-min data), were selected for all subsequent 

analyses in this chapter. 
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Population Movement Rate Results 

Over 7 years, GPS locations were collected for 54 male and 94 female bears. While the 

study attempted to collar both sexes of the population, more females than males were captured 

(Table 4-4). Results indicated average movement rates between years were not significantly 

different (%2= 11.150, d f = 6, P = 0.084). However, average rates of movement were found to 

significantly vary when grouped by sex (£/= 1120.0, Z = -5.648, P < 0.001), and reproductive 

status (x2= 42.137, df = 4, P < 0.001) but not by age class (Figure 4-3). The overall average 

movement rate for bears across Alberta was 0.3 km/h or 7.2 km/day. Generally, movement rates 

were found to be significantly higher for males (mean = 0.39 km/h, SE = 0.03) than females 

(mean = 0.25 km/h, SE = 0.01). When classified by reproductive status (Table 4-4), adult males 

demonstrated significantly higher movement rates than adult females (P = 0.001), subadult 

females (P = 0.004) and females with cubs (P < 0.001). In comparison, mean movement rates for 

females with cubs were significantly lower than adult males (P < 0.001) and subadult males (P = 

0.022), but not adult females or subadult females. 
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Table 4-4. Average mean hourly movement rates (km/h) of grizzly bears (n = 148) by i) 
reproductive status (sex combined with age) and by ii) bear management area from 1999 to 2005. 

Summary Statistics (km/h) 

n Mean Std. Error Median Minimum Maximum 
Reproductive Status 
Adult Males 35 0.42 0.03 0.39 0.15 1.3 
Subadult Males 19 0.33 0.03 0.33 0.16 0.63 
Adult Females 36 0.26 0.01 0.26 0.15 0.45 
Subadult Females 18 0.28 0.02 0.26 0.14 0.44 
Females with Cubs 40 0.22 0.01 0.22 0.1 0.57 
Total 148 0.3 0.01 0.26 0.1 1.3 

Bear Management Area 
Mountain 37 0.27 0.02 0.26 0.14 0.53 
BMA 3 70 0.29 0.01 0.27 0.1 0.64 
BMA 4 15 0.27 0.03 0.23 0.17 0.67 
BMA 5 2 0.31 0.16 0.31 0.15 0.47 
BMA 6 5 0.29 0.07 0.23 0.14 0.51 
N Hwy 16 19 0.39 0.06 0.33 0.15 1.3 
Total 148 0.3 0.01 0.26 0.1 1.3 

Bears were further grouped according to landscape type and BMA to determine if 

physical location impacted population movement rates. Average rates of movement were found to 

vary significantly by landscape type (U= 1727.0, Z = -3.838, P < 0.001) but not by BMA (Figure 

4-3). In total, 79 bears resided predominantly in mountain landscapes while the remaining 69 

bears resided in foothills landscapes (Figure 4-3d). Grizzly bears located in mountain 

environments were found to have significantly slower movement rates (mean = 0.26 km/h, SE = 

0.01) than grizzly bears located in foothill environments (mean = 0.35 km/h, SE = 0.02) where 

linear human access densities are approximately five times higher (Table 4-1). 
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Figure 4-3. Box plots demonstrating differences to mean movement rates (km/h) for 148 bears 
from 1999 to 2005 grouped by a) sex, b) age, c) reproductive status, d) landscape type, and e) 
provincial bear management areas. 
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When grouped by both landscape type and reproductive status, only subadult male 

grizzly bears demonstrated significantly faster movement rates (U= 14.0, Z = -2.193, P = 0.028) 

in foothill environments over mountain environments (Table 4-5, Figure 4-4). Mean differences 

between bear management areas, while not significant, revealed movement rates to be higher for 

bears residing north of Highway 16 (mean = 0.39 km/h, SE = 0.06) than those found in mountain 

BMAs (Table 4-4, Figure 4-3). North of Highway 16 also recorded the highest density of well 

sites (0.34 pt/km2) and corresponding pipelines (0.27 km/km2) (Table 4-1). 

Figure 4-4. Differences in movement rates (km/h) for 148 bears from 1999 to 2005 grouped by 
reproductive status and physical location - significant differences were found for subadult males 
only. 
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To assess movements across varying temporal scales, I further grouped GPS 

radiotelemetry data (49, 987 locations) for all 148 bears and compared mean hourly movement 

rates (km/h) across seasons, months, and times of day. Movement rates were significantly greater 

(X2= 1538.91, d f = 3 , P < 0.001) for hypophagia (den emergence), hyperphagia (pre-berry), and 

late hyperphagia (berry) seasons relative to denning or the winter season (mean = 0.17 km/h, SE 

= 0.01). Of the 4 seasonal comparisons, no significant differences (P = 0.956) were found 

between hypophagia (mean = 0.36 km/h, SE = 0.01) and late hyperphagia (mean = 0.36 km/h, SE 

= 0.003) hourly movement rates. Movements were found to be the greatest during the 

hyperphagia or pre-berry (mean = 0.38 km/h, SE = 0.004) season. When grouped by reproductive 

status, adult males recorded a peak in movement rate (mean = 0.56 km/h) during hypophagia or 

the late spring / early summer season (Figure 4-5). 

Figure 4-5. Differences in movement rates (km/h) for 148 bears from 1999 to 2005 grouped by 
reproductive status over seasons. 
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Results further demonstrated that movement rates significantly varied according to month 

(%2 = 2594.69, df = 7, P < 0.001). Mean movement rates for all bears were found to increase from 

April (mean = 0.23 km/h, SE = 0.02) to August (mean = 0.42 km/h, SE = 0.01), however a slight 

decreased occurred during the month of July (0.37km/h, SE = 0.004, Figure 4-6). From 

September (mean = 0.36 km/h, SE = 0.005) through October (mean = 0.19km/h, SE = 0.004) 

movements began to decrease as bears prepared to hibernate. When grouped by reproductive 

status, adult males demonstrated above average movement rates for the month of June (mean = 

0.59 km/h) while females with cubs peaked during the month of August (mean = 0.5 km/h, Figure 

4-6). 

Figure 4-6. Differences in movement rates (km/h) for 148 bears from 1999 to 2005 grouped by 
reproductive status over month. 
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Table 4-5. Mean movement rate (km/h) comparisons by landscape type (mountain versus 
foothills) for reproductive status and time of day classes. 

Differences in mean movement Mann- Z P 
Mean Comparisons rate (km) ± SE Whitney U Score Value 
All bears grouped M: 0.26 ±0.01, F: 0.35 ± 0.21 1727.0 -3.838 0.000 

Adult males M: 0.36 ± 0.03, F: 0.46 ± 0.05 112.0 -1.179 0.239 
Subadult males M: 0.24 ± 0.04, F: 0.37 ± 0.03 14.0 -2.193 0.028 
Adult females M: 0.26 ±0.01, F: 0.28 ± 0.03 108.0 -0.777 0.437 
Subadult females M: 0.29 ± 0.02, F: 0.27 ± 0.02 26.0 -1.132 0.258 
Females w cubs M: 0.20 + 0.01, F: 0.26 ± 0.03 124.0 -1.645 0.100 

Adult males predawn M: 0.38 ± 0.06, F: 0.36 ± 0.04 16566.0 -0.057 0.954 
Adult males day M: 0.42 ±0.01, F: 0.51 ±0.01 9464573.0 -6.513 0.000 
Adult males dusk M: 0.53 ± 0.06, F: 0.82 ± 0.05 16429.5 -5.26 0.000 
Adult males night M: 0.25 ±0.01, F: 0.39 ±0.01 1720152.0 -7.946 0.000 
Subadult males predawn M: 0.29 ± 0.07, F: 0.10 ±0.02 1348.0 -3.304 0.001 
Subadult males day M: 0.36 ±0.01, F: 0.38 ±0.01 1346670.0 -0.544 0.586 
Subadult males dusk M: 0.42 ± 0.07, F: 0.45 ± 0.06 2319.0 -0.25 0.803 
Subadult males night M: 0.17 ±0.01, F: 0.25 ±0.01 682624.0 -3.356 0.001 
Adult females predawn M: 0.11 ±0.01, F: 0.33 ± 0.07 5473.5 -3.343 0.001 
Adult females day M: 0.29 ±0.01, F: 0.32 ± 0.01 2569302.0 -6.081 0.000 
Adult females dusk M: 0.36 ± 0.03, F: 0.48 ± 0.06 7037.5 -1.746 0.081 
Adult females night M: 0.17 ±0.01, F: 0.24 ± 0.01 700906.5 -4.393 0.000 
Subadult females predawn M: 0.33 ± 0.06, F: 0.10 ±0.02 538.0 -2.334 0.020 
Subadult females day M: 0.31 ±0.01, F: 0.29 ± 0.01 532741.5 -1.151 0.250 
Subadult females dusk M: 0.27 ± 0.06, F: 0.43 ± 0.05 708.5 -1.229 0.219 
Subadult females night M: 0.29 ± 0.02, F: 0.20 ± 0.01 135756.0 -4.633 0.000 
Females w cubs predawn M: 0.10 ±0.01, F: 0.44 ± 0.04 13128.5 -8.493 0.000 
Females w cubs day M: 0.24 ± 0.004 F 0.59 ± 0.01 13045829.0 -27.90 0.000 
Females w cubs dusk M: 0.27 ± 0.02, F: 0.63 ± 0.04 31984.5 -6.36 0.000 
Females w cubs night M: 0.15 ±0.01, F: 0.20 ± 0.01 2769635.0 -7.411 0.000 

Results indicated that mean movement rates also differed significantly by time of day 

class (x2= 2821.09, d f = 3, P < 0.001). Grizzly bears in Alberta show highest movement rates 

during dusk (mean = 0.53 km/h, SE = 0.02) and then day (mean = 0.4 km/h, SE = 0.003) time 

classes when compared to predawn (mean = 0.27 km/h, SE = 0.01) and night (mean = 0.23 km/h, 

SE = 0.003) time classes (Figure 4-7). The highest maximum movement rates were recorded 

during the evening crepuscular (7.34 km/h) and daytime (6.96 km/h) times of day. When grouped 

by landscape type, foothills grizzly bears showed increased movement rates over mountain bears 
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across all times of day (P < 0.001, Figure 4-8) with the greatest mean differences occurring 

during the day (foothills = 0.49 km/h; mountain = 0.29 km/h) and at dusk (foothills = 0.64 km/h; 

mountain = 0.36 km/h). 

Figure 4-7. Differences in movement rates (km/h) for 148 bears from 1999 to 2005 grouped by 
reproductive status over time of day. 
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More specifically, when grouped by landscape type and reproductive status (Table 4-5), 

foothills adult males moved significantly faster than mountain adult males during day (P < 

0.001), dusk (P < 0.001) and night (P < 0.001) times of day while foothills adult females were 

found to move significantly faster than mountain adult females during predawn (P = 0.001), day 

(.P < 0.001), and night (P < 0.001) times of day. Females with cubs were found to have 

significantly faster movement rates when residing in the foothills for all times of day (P < 0.001). 
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As a corollary, subadult females demonstrated significantly slower movement rates during 

predawn (P = 0.02) and night (P < 0.001) times of day when residing in foothills environments. 

Lastly, foothills subadult males were found to move significantly slower during predawn (P = 

0.001) times of day but significantly faster during night (P = 0.001) times of day when compared 

to mountain subadult males. Finally, when grouped by BMA (Figure 4-8), results indicated that 

grizzly bears residing north of Highway 16 (P < 0.001) moved significantly faster than bears in 

other BMA's for predawn, day and dusk classes. 
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Population Home Range Size Results 

Mean annual 95% kernel home range size (km2) was calculated and compared for 145 

individual bears. No significant differences were found to indicate home range size varied across 

years (%2 = 9.124, df = 6, P = 0.167). Activity areas ranged from a minimum of 42 km2 for a 

female with cubs to 7,263 km2 for a subadult male with a population mean of 878 km2 (Table 4-

6). 

Table 4-6. Average mean annual kernel home range size (km2) of grizzly bears (n = 145) by i) 
reproductive status combined with age and by ii) bear management area from 1999 to 2005. 

Summary Statistics (km2) 

n Mean Std. Error Median Minimum Maximum 
Reproductive Status 
Adult Males 33 1450.35 229.23 996.37 94.55 6129.01 
Subadult Males 18 2201.24 492.25 1709.21 67.91 7263.34 
Adult Females 36 336.32 31.26 302.21 57.72 917.83 
Subadult Females 18 534.96 87.39 410.21 93.94 1494.04 
Females with Cubs 40 452.4 81.23 257.64 41.69 2363.9 
Total 145 878.05 99.28 459.13 41.69 7263.34 

Bear Management Area 
Mountain 37 462.51 68.03 380.86 81.94 2065.42 
BMA 3 69 824.83 105.61 512.07 41.69 4402.76 
BMA 4 15 380.53 94.39 211.52 47.39 1328.06 
BMA 5 1 1968.37 — 1968.37 1968.37 1968.37 
BMA 6 4 555.94 130.01 545.48 288.84 843.94 
NHwy 16 19 2283.73 529.10 1364.16 67.91 7263.34 
Total 145 878.05 99.28 459.13 41.69 7263.34 

Overall, mean home range size significantly varied by sex (U= 698.0, Z = -7.035, P < 

0.001), age (U= 1445.0, Z = -2.508, P < 0.001), and reproductive status (%2= 52.481, df = 4, P < 

0.001). On average, females (mean = 424 km2, SE = 40.58) occupied approximately 75% less 

landscape than males (mean =1,715 km2, SE = 231.13). Additionally, subadult bears (mean = 

150 



1,337 km2, SE = 277.83) were found to occupy larger home ranges than most adult bears (mean = 

721 km2, SE = 89.47). When grouped by reproductive status (Table 4-7, Figure 4-9), post-hoc test 

results indicated that home ranges occupied by subadult males were significantly larger than adult 

females (P = 0.011), subadult females (P = 0.027) and females with cubs (P = 0.019), but not 

significantly larger than adult male bears (P = 0.643). No significant differences were found 

between females with cubs, adult females and subadult female groupings (Figure 4-9). 

Table 4-7. Mean home range size (km2) comparisons by landscape type (mountain versus 
foothills) and reproductive status. 

Mean Differences in home range size Mann- Z P 
Comparisons (km2) ± SE Whitney U Score Value 
All bears grouped M: 399.1 ±40.1, F: 1420.6 ± 186.7 1123.0 -5.923 0.000 

Adult males M: 738.8 ±138.0, F: 1912.8 ±331.1 49.0 -2.984 0.003 
Subadult males M: 855.1 ±272.5, F: 2720.4 ± 620.7 14.0 -1.824 0.068 
Adult females M: 308.7 ±31.6, F : 408.3 ± 75.2 100.0 -1.06 0.289 
Subadult females M: 317.9 ±64.9, F: 673.1 ± 121.4 20.0 -1.675 0.094 
Females w cubs M: 254.0 ± 34.4, F: 820.9 ± 190.4 85.0 -2.751 0.006 

Mean annual home range sizes (km2) also significantly varied according to landscape 

type (U= 1123.0, Z = -5.923, P < 0.001), and population unit (%2= 17.663, df = 4, P = 0.001). 

Grizzly bear activity areas were found to be extensively larger in foothill (mean = 1,420 km2, SE 

= 186.65) environments than mountain (mean = 399 km2, SE = 40.08) environments. Annual 

home ranges of mountain grizzly bears ranged from 42 km2 to 633 km2 (mean = 286, SE = 21.9) 

for females and from 95 km2 to 2065 km2 (mean = 771, SE = 121.3) for males. Annual home 

ranges of foothills grizzly bears ranged from 90 km to 2364 km2 (mean = 656.6, SE = 90.4) for 

females and 68 km2 to 7263 km2 (mean = 2231, SE = 318.2) for males. Results further 

emphasized that individual bears residing north of Highway 16 occupied the largest home ranges 

(mean = 2,283 km2, SE = 529.1) in the FRI study region (Figure 4-9). Mountain home ranges 
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were found to be significantly smaller than only two bear management areas: BMA 3 (P = 0.038) 

and north of Highway 16 (P = 0.022). 
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Figure 4-9. Box plots demonstrating differences to mean kernel home ranges (km2) for 145 bears 
from 1999 to 2005 grouped by a) sex, b) age, c) reproductive status, d) landscape type, and e) 
provincial bear management areas. 
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Figure 4-10. Differences to mean kernel home ranges (km2) for 145 bears from 1999 to 2005 
grouped by reproductive status and physical location - significant differences were found for 
adult males and females with cubs. 
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When grouped by landscape type and reproductive status, only adult males (U= 49.0, Z = 

-2.984, P = 0.003) and females with cubs (£/= 85.0, Z = -2.751, P = 0.006) reported significantly 

larger home ranges in foothill environments over mountain environments (Table 4-7, Figure 4-

10). 

Female Movement Rate and Home Range Size Results 

Between 1999 and 2004, 12 individual females were collared over at least 2 consecutive 

years demonstrating change to reproductive status (Table 4-3). Female-specific results 

demonstrated a significant difference in hourly movement rate (F2.42— 8.01, P = 0.001) when 

grouped by reproductive status (Figure 4-11). Solitary females recorded the highest mean 
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movement rate (mean = 0.26 km/h, SE = 0.01) over both females with yearlings (mean = 0.25 

km/h, SE = 0.019) and females with COYs (mean = 0.19 km/h, SE = 0.016). Post-hoc 

comparisons revealed significant differences existed between solitary females and females with 

COYs CP - 0.001) and between females with yearlings and females with COYs (P = 0.009), but 

not between solitary females and females with yearlings (P = 0.951). 

Figure 4-11. Box plots demonstrating differences to hourly movement rate (km/h) and mean 
kernel home ranges (km2) for female bears from 1999 to 2004 grouped by reproductive status. 
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Similar to movement rate, differences for mean annual home ranges were also recorded 

as significant when grouped (y_2 - 9.35, df = 2 , P = 0.009). However, while differences to home 

range size were quite large (females with COYs: mean = 239.42 km2, SE = 77.37; solitary 

females: mean = 366.48 km2, SE = 40.44; females with yearlings: mean = 515.61 km2, SE = 

117.62), only females with COYs and females with yearlings were found to differ significantly (P 

= 0.05) (Figure 4-11). 

When grouped by landscape type (Figure 4-12a), mountain females (n = 29) showed 

slight significant differences (F2^ = 3.77, P = 0.04) between hourly movement rates for solitary 

females and females with COYs (P = 0.033), but not females with yearlings. No significant 
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differences were noted between females with yearlings (mean = 0.22 km/h, SE = 0.01) and 

solitary females (mean = 0.26 km/h, SE = 0.01) or females with COYs (mean = 0.2 km/h, SE = 

0.02). Foothills females (n = 16) however reported strong significant differences (F2j5 = 8.0, P = 

0.005) to hourly movement rates by reproductive status. Solitary females (mean = 0.27 km/h, SE 

= 0.02, P = 0.017) and females with yearlings (mean = 0.3 km/h, SE = 0.03, P = 0.006) both 

demonstrated significantly higher movement rates than females with COYs (mean = 0.15 km/h, 

SE = 0.03, Figure 4-12a). On average, mountain females (0.23 km/h) reported slower movement 

rates than foothills females (0.25 km/h). This is consistent with population movement results. One 

notable exception is that females with COYs residing in foothill environments had 25% slower 

movement rates than females with COYs residing in mountain environments (Figure 4-12a). 

When grouped by landscape type, mean home ranges were 47% larger in foothill (mean = 

531.05 km2, SE = 101.56) environments than mountain (mean = 280.43 km2, SE = 30.08) 

environments. Further, results emphasized significant differences {F2,i% = 3.67, P = 0.04) in home 

range size for mountain females but not foothills females (Figure 4-12b). Only solitary mountain 

females recorded significantly larger home ranges (mean = 318.82 km2, SE = 38.94, P = 0.033) 

than females with COYs (mean = 170.72 km2, SE = 43.39). Finally, box plots demonstrated little 

variability in home range size for mountain females, but increased variability to movement rates. 

Comparatively, box plots highlighted large variability in home range size for foothills females 

with less variability present in movement rates (Figure 4-12b). 
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Figure 4-12. Box plots demonstrating differences to a) hourly movement rate (km/h), and b) 
mean kernel home ranges (km2) for female bears by reproductive status and grouped by landscape 
type from 1999 to 2004. 
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When individuals were compared over consecutive years grouped according to landscape 

type, results highlighted trend differences between mountain and foothills females by 

reproductive status (Figure 4-13). Movement rates for foothills females clearly decreased as 

reproductive status change from solitary female to female with COYs, while movement rates for 

mountain females appeared to be more random. This result was echoed as reproductive status 

changed from females with COY's to females with yearlings. 

Figure 4-13. Line graphs individual female grizzly bears grouped by landscape type a) foothills 
versus b) mountain; showing changes to mean movement rate (km/h) related to reproductive 
status over 3 consecutive years. 
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4.5 Summary 

This chapter focused on an empirical, pattern-based approach to quantifying movement 

rates and home range size differences typical of that found in many wildlife studies (Amstrup et 

al. 2000, Amstrup et al. 2001, Rettie and Messier 2001, Ager et al. 2003, Theuerkauf et al. 2003, 

Ferguson and Elkie 2004). Grizzly bear movements, although highly individual in nature, can 

provide information regarding group-level movement patterns spatially and temporally across 

large landscapes. However, no studies to date have linked spatial and temporal movement 

patterns to underlying landscape type in such detail as reported here. It was expected that home 

range size and movement rate would be influenced by landscape type. For this large-scale 

analysis, landscape characteristics were simplified into either mountain and foothills 

classifications, or bear management area (BMA) classifications. In Alberta, mountain landscapes 

have less human activity and industry-based development than foothills landscapes. Final results 

emphasized significantly different home range sizes and movement rates occurring across 

different landscapes, spatially and temporally. 

Previous research had identified daily movement rates ranging from 3.4 km (Gibeau et al. 

2001) to 4.9 km (Schwab 2003). When grouped, the sample population used in this analysis 

reported a mean movement rate of 0.30 km/h or a 7.2 km daily movement rate over the entire 

study region. Mountain results were reported as 0.26 km/h or 6.24 km/day, while foothills results 

reported 0.35 km/h or 8.4 km/day. Finally, grizzly bears residing north of Highway 16 recorded 

0.39 km/h or 9.36 km/day. Movement rates for grizzly bears in Alberta were found to be double 

than what was previously reported. Further, grizzly bears north of Highway 16 on average were 

found to move three times faster when compared to bears residing in the Banff - Bow Valley 

region (Gibeau et al. 2001). These varying results will have significant impact on modeling 

attempts which incorporate movement parameters as baseline information, especially those in 

industry dominated landscapes. 
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Given that grizzly bears in general occupy large annual home ranges, human 

development landscape features may generate local disturbances which are not obvious based on 

the scale of this analysis. To understand local variations in movement patterns finer-scale GPS 

data are required as demonstrated in Chapter 3. Unfortunately, the majority of data collected over 

the years for the FRI has been collected across larger spatial and temporal scales (e.g 1 point 

every 4 hours). As such, it is still necessary to understand large-scale home range patterns and 

daily movement rates relative to the scale of data collection. Further, analysis conducted using 

more than one individual provides an opportunity to obtain information regarding population 

trends. This is especially important given the opportunity to also compare spatial patterns over 

different landscape types. 

Intraspecific variation in movement behavior is an important characteristic of grizzly bear 

movement ecology. Overall, average movement rates were highly influenced by sex and 

reproductive status, but not by age class. As anticipated, males and subadult males moved faster 

and traveled further than adult females, subadult females and females with cubs. The movement 

rates of adult females and subadult females were found to be quite similar. 

Movement rates were further influenced by spatial location. Grizzly bears residing in 

mountain environments were found to move slower that grizzly bears residing in foothill 

environments. In Alberta, the industrial development of natural resources has become a 

prominent landscape feature along the eastern slopes of the Rockies (Table 4-1). However, when 

analyzed by reproductive status, only subadult males demonstrated significantly faster movement 

rates in foothill environments over mountain environments. Previous research suggests that 

subadult bears are especially vulnerable (Mueller et al. 2004) and may be displaced by adult bears 

to lower quality habitats (Gibeau et al. 2002) resulting in increased movements and activity 

ranges. Further, subadult bears have been found closer to high-use roads than adult bears 
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regardless of time of day (Mueller et al. 2004). Increased levels of human interaction translates 

directly to increased risk of mortality (Mueller et al. 2004). 

Increased human access can lead to greater disturbance and human-bear encounters. The 

reported linear threshold density for functioning landscapes with large carnivores is 

approximately 0.6 km/km2 (Forman et al. 1997, Gibeau 2000). That is, landscapes with linear 

densities above this threshold are largely fragmented and less likely to sustain large carnivore 

populations long-term. The majority of foothills bear management areas occurring outside 

mountain parks reported combined linear densities above this threshold. Although, indirectly 

related, grizzly bear movement rates were also found at higher rates in these regions. Further, 

grizzly bear mortality densities are also highest in the foothills due to increased access and 

human-bear encounters (Nielsen et al. 2004b). 

Movement rates were further influenced temporally according to season, month and time 

of day. Population movement rates were found to be the greatest during hyperphagia or the pre-

berry season which runs from June 15 to August 15. During this season, bears are found to feed 

on green vegetation such as grasses, forbs and horsetails (Munro et al. 2006). Habitat selections 

further include streamsides, alpine regions, herbaceous areas, open forests, some cutblocks, and 

shrub-wetland complexes (Nielsen et al. 2002). It is possible that prior to berry season or late 

hyperphagia, more extensive travels are required to obtain multiple types of food resources. 

When examined by month, adult male bears moved fastest during June while females with cubs 

movement rates were found to peak in August. Stenhouse et al. (2005) examined movement rates 

immediately proceeding and following male-female associations to identify movement behavior 

in response to possible mating events. The majority of male-female associations occurred from 

mid May until the end of July, peaking in mid June (Stenhouse et al. 2005). During this time, 

males exhibited a significantly faster movement rate prior to and after an association event. It is 
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thought that a male must likely cover long distances and travel faster to mate with as many 

females as possible (Stenhouse et al. 2005). Results of this study highlighted a significant 

increase of movement rates for males and females during the month of June. The rate of 

movement then decreased into the remainder of summer. 

The daily movement patterns of grizzly bears have been found to vary substantially. 

Grizzly bears in Alberta were additionally found to engage in different activities according to 

time of day. For example, bears were found to be more active (root digging and frugivory) during 

diurnal and crepuscular times of day, with bedding most likely to occur at night and in forested 

habitats (Munro et al. 2006). Results reported here corroborated findings by Munro et al. (2006). 

Bears showed higher movement rates during day and evening dusk times of day. It has been 

suggested that grizzly bears may modify their temporal and spatial activity patterns in response to 

human activity level (Gibeau 2000). Some studies have reported movements to be diurnal (Munro 

et al. 2006) while others have reported movements to be crepuscular (Gibeau 2000, Nielsen et al. 

2004a) or even nocturnal (Kaczensky et al. 2006). When landscape type was factored into this 

analysis no change in behavior was found related to time of day movements for Alberta grizzly 

bears. 

Grizzly bears residing in foothill environments moved faster than grizzly bears residing 

in mountain environments over all times of day. Daily movement patterns were further 

complicated by reproductive status. Of interest, subadult females demonstrated significantly 

slower movement rates in foothill environments during predawn and night times of day, while 

subadult males moved slower during predawn but faster during night times of day in foothill 

environments. Results of previous studies analyzing female grizzly bear behavior found that adult 

females were the most risk-adverse, choosing ultimately to avoid humans rather than seek out 

high quality habitat. Further, females were found to be farther away from roads than males 
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(Gibeau 2000). When dealing with subadult bears residing in a highly fragmented landscape, this 

behavior may be amplified. This might explain why subadult females have significantly slower 

movement rates when compared to subadult males in the same environment at the same time of 

day. 

Annual areas used by grizzly bears in Alberta did not significantly vary. However, when 

grouped, home range sizes were found to vary according to sex, age and reproductive status for 

various bear subgroups. As with bear populations in general, female grizzly bears occupied 

significantly smaller home ranges than did males. Subadult male grizzly bears reported the largest 

annual home ranges over other reproductive classes. One subadult male in particular ranged 

widely and its annual home range (7,263 km2) was larger than any adult male bears. This subadult 

bear resided north of Highway 16 where the majority of available landscape is classified as 

foothills with corresponding high densities of oil and gas exploration features (well sites and 

pipelines) (Table 4-1). While this individual may be an outlier, it may also be important in 

understanding the relationship between bears and landscapes. Overall, no significant differences 

were found between solitary females, subadult females, or females with cubs when grouped. 

Annual home range size was found to further vary by landscape type and population unit. 

Home range sizes demonstrated significant differences when separated by landscape type. Bears 

residing in the foothills travel more extensively than bears residing in the mountains. However, 

when examined by reproductive status, only adult males and females with cubs reported 

differences by landscape type. Interestingly, while females with cubs reported the smallest mean 

home ranges in mountain environments, home ranges in foothill environments were larger than 

adult females and subadult females (Figure 4-10). What does this tell us about females with cubs 

in industry dominated landscapes? This result could have important implications for cub survival 

outside mountain parks. Results indicated that subadult males (P = 0.07) and subadult females (P 
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= 0.09) home range size responded, but not significantly (Table 4-7). Adult females showed no 

differences to home range size by landscape type. 

When examined according to BMA, individual bears residing north of Highway 16 

reported the largest home range sizes. While BMA 3 reported significantly larger home ranges 

when compared to mountain ranges, BMA 4 did not. In fact, grizzly bear home ranges in BMA 4 

reported similar home range characteristics to grizzly bears residing in mountain landscapes. 

BMA 4 is situated along the eastern slopes north of Banff and Highway 1 and south of Nordegg 

and Highway 11 (Figure 4-1). BMA 4 further reported the highest density of roads when 

compared to all other bear management areas. While high road density may not influence home 

range size and therefore grizzly bear spatial distributions and related movements on the 

landscape, it does allow increased access and possible human-bear encounters. 

The survival of adult female grizzly bears is necessary in maintaining viable populations 

(Mueller et al. 2004) and is the key to long term persistence (Gibeau 2000, Gibeau et al. 2001). 

While studies often assess movement rates and annual home range size (Mace and Waller 1997, 

Collins et al. 2005), few have incorporated the affect of reproductive status (Mace and Waller 

1997, Dahle and Swenson 2003a, 2003b) and none have coupled reproductive status with 

physical location. Further, adult females have been found to be most influenced by human 

activities and development when compared to other bear subgroups (Gibeau et al. 2002). As such, 

this chapter specifically addresses movement rates for adult females during different reproductive 

phases. As anticipated, as female reproductive status changed from solitary females to females 

with COYs to females with yearlings, movement rates decreased and subsequently increased. 

These results were further reflected in home range size changes. 
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However, when grouped by landscape type (mountains vesus foothills) results were 

slightly more complicated. In mountain environments, both movement rate characteristics and 

home range size characteristics were consistent as reproductive status changed showing slight 

reductions for females with COYs. In foothills environments, results varied largely as 

reproductive status changed. For foothills females, FCOYs movements were reduced by 

approximately 50% when compared to solitary females or females with yearlings. While this 

reduction in movement rates is expected, the differences between foothills and mountain females 

may be due to additional external factors. For example, one study found that adult females with 

cubs of the year did not cross highways (Waller and Servheen 2005). While another study 

suggested that home range size for females with cubs of the year may be restricted in effort to 

reduce contact with infanticidal males (Dahle and Swenson 2003b). For mountain females with 

COYs, resulting home ranges were small with little variability. Comparatively, foothills females 

with COYs and yearlings, showed home ranges with large amounts of variability. 
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CHAPTER 5 - INFLUENCE OF UNDERLYING LANDSCAPE CHARACTERISTICS 
ON GRIZZLY BEAR HOME RANGE SIZE AND CORRESPONDING MOVEMENT 
RATE 

5.1 Introduction 

Grizzly bears utilize the entire landscape (habitat and non-habitat) and respond to 

gradients of habitat quality. At a larger-scale, these interactions are reflected within seasonal 

movements across home ranges (Graves et al. 2007). At a finer-scale, these interactions are 

reflected in daily movement patterns within or around varying habitat types. Understanding large-

scale movements or bear response to landscape structure is difficult and relies on the combined 

use of GPS radiotelemetry data, supplementary data layers and multivariate statistics. For 

example, individual bear home range size and movement rate may vary depending on the amount 

of human development, habitat or resource availability, landscape terrain and ruggedness, and 

habitat preference or knowledge of the individual animal (Koehler and Pierce 2003). 

Understanding the relationship between home range size and underlying landscape properties and 

habitat characteristics may help provide insights into grizzly bear ecology. 

The focus of this chapter is to explore landscape-level movement patterns using home 

range size as an indicator for large-scale movements. As grizzly bear interaction with the 

landscape is largely related to the distribution, availability, and quality of resources (Nielsen et al. 

2002, 2003, Nielsen et al. 2004a, Nielsen et al. 2004c, Munro et al. 2006) home range studies 

often assume that an inverse relationship between home range size and habitat quality exists 

(Koehler and Pierce 2003). Extending this assumption, it is often assumed that larger home 

ranges are positively correlated with faster movement rates. For grizzly bears it is expected that 

small home range sizes indicate concentrated high quality habitat requiring individuals to travel 

less in search of resources. The alternative is that larger home ranges indicate lesser quality 

habitat (possibly dispersed over larger areas) requiring individuals to travel further and likely 
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faster in search of resources. Other factors which also influence home range size of grizzly bears 

include social interactions, reproductive requirements, population density, and human-bear 

interactions (Dahle and Swenson 2003b, 2003a). Finally, home range estimates may be 

influenced by generation technique (e.g. type of kernel estimator) including number of GPS data 

points and duration of collection (White and Garrott 1990). 

Classical home range analysis is tailored to work with data points separated by relatively 

large time intervals between observations (Dettki and Ericsson 2006). Most commonly, wildlife 

habitat use is determined by the distribution of radiotelemetry 'use' points. Typically, each 

location is classified by the type of habitat in which they occur often by computing habitat 

proportion at the individual GPS location site or inside fixed circle buffers applied to each 

location (Potvin et al. 2003). Statistical tests often compare the 'use' locations to what is available 

or the expected pattern of occurrence based on habitat availability. Critical assumptions of this 

approach are that all locations are independent, the sample size is sufficiently large, and that 

quantitative variables achieve normality. Bias may further result from sampling strategy and 

locational error, especially if the habitat patches are small. 

As explored in Chapters 3 and 4, GPS-based movement data are not normally distributed 

and are temporally autocorrelated, specifically at fine data collection scales due to the sequential 

nature of the data. One advantage of computing habitat influence using a home range estimator is 

that independence of locations can be dismissed as long as the full range of habitat is captured 

within the home range (Kernohan et al. 1998, Otis and White 1999). Further, the proportional 

area calculated within a home range provides a viable method of quantifying habitat 'use' and 

addresses the potential biases associated with GPS data by estimating the complete utilization 

distribution of the individual grizzly bear (Kernohan et al. 1998). Finally, where inherent 

telemetry error is unavoidable, coupled with a fragmented landscape, using proportional area of 
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home range (e.g. 95% contours) to define habitat use helps to limit standard error problems 

present when using locational point data. For example, as demonstrated in Chapter 3, when 

working with GPS locations collected at 4-hr intervals, the assumed movement path would have 

to be buffered at minimum 5.2 km to account for potential error. Additionally, as demonstrated in 

Chapter 3, each resulting 4-hr buffer basically mimicked that of a home range for each individual 

grizzly bear. 

While the previous chapter (Chapter 4) examined the relationship between annual home 

range size and landscape type, bear management area, sex, age, and reproductive status, Chapter 

5 will focus specifically on large-scale movement patterns using individual home range size and 

spatial distribution. As demonstrated in Chapter 3, when working with radiotelemetry data 

collected at larger intervals (e.g. 4-hr), analysis is restricted to large-scale spatial comparisons 

such as daily movement rate or home range size. The intent of this chapter is to evaluate the 

relationship between landscape characteristics and spatial movement pattern as defined by an 

individual bear's home range size. For example, do relationships exist between specific landscape 

class types and foothills grizzly bears where home ranges are significantly larger and movement 

rates are significantly higher? To learn more about the relationship between several independent 

variables and home range size, a multiple linear regression (MLR) analysis was employed. 

Although a secondary consideration in this chapter, a MLR analysis was also employed to 

explore the relationship between movement rate and underlying landscape properties. Finally, 

model residuals were examined for spatial autocorrelation. 

5.2 Study Area and Supplementary Data Layers 

In Chapter 5, the research area focused on a subset of the greater FRI study region 

(Figure 5-1). The study region was situated between Highway 1 - the Trans Canada Highway to 

the south, Highway 16 to the north, the Alberta - British Columbia border to the west, and the 
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prairies to the east. The size of the total study region is approximately 135,500 km2. Within the 

region there are two primary landscape types: 1) the high elevations mountains in the west (dark 

grey), and 2) the lower elevation foothills to the east and northeast (medium grey) (Figure 5-1). 

Numerous mesoclimates exist due to the variable landscape characteristics such as rugged 

mountains, steep ridged foothills, flat and rolling uplands, subdued lowlands, and deeply incised 

valleys (Beckingham et al. 1996). Mountain features maintain a northwest to southeast orientation 

ranging from less than 500 meters in elevation to a maximum elevation of 3680 meters. The 

lower foothills range from elevations of less than 500 meters up to 1150 meters (Beckingham et 

al. 1996). Vegetation types and human-use features are as previously described in Section 4.2. 

Supplementary data layers included lines, polygon and grid data layers for the entire 

study region (Section 2-5). For all home range and movement comparisons, vector data layers 

included all roads, railways, pipelines, power lines and seismic lines (Figures 2-11 and 2-12, p. 

62-63). Individual oil and gas well sites were also included as a polygon data layer where each 

well site represented a square area of 1 ha. For the following analyses, I grouped major roads and 

railways into a single paved human-use linear layer, and further grouped pipelines and power 

lines into a single herbaceous human-use linear layer. Linear features were then used to calculate 

densities (km/km2) for each home range. All the above vector and polygon data layers were 

updated yearly (1999, 2000, 2001, 2002, 2003, and 2004) with the exception of seismic lines. 

Seismic lines were retained as a static individual vector layer representing approximate seismic 

line densities from 1999 to 2004. 

Grid data layers utilized included a digital elevation model (DEM), DEM derived slope 

and aspect layers, a topographic vector ruggedness (VMR) layer (Sappington et al. 2007), a 

resource selection function (RSF) model layer (Nielsen et al. 2002, Nielsen 2005), species 

composition and crown closure layers (McDermid 2005), a distance to water surface layer, and 
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finally a land cover classification layer (McDermid 2005) (Figure 2-12 to Figure 2-15, p. 63-66). 

Of the grid data layers included in the analysis; elevation, slope, aspect, VMR, RSF, and distance 

to water were static and non-changing from 1999 to 2005. The remaining grid surfaces: land 

cover classification, species composition layer, and crown closure layer, were all updated 

annually from 1999 to 2004. As such, annual home range extractions reflected landscape change 

from year to year. 
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Figure 5-1. Map of central Alberta study region showing Chapter 5 study region with mountain 
and foothill grizzly bear 95% kernel home ranges. Additional features include major cities, 
highways, mountainous regions represented in dark grey relief, foothill regions represented in 
medium grey relief, and prairies represented in light grey. 
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5.3 Methods 

Home Range Data Preparation 

Between 1999 and 2004, GPS radiotelemetry data was collected for 109 grizzly bears 

residing between Highway 1 and Highway 16. See Section 4.3 for a detailed description on GPS 

data processing and individual grizzly bear classification procedures. For each year of GPS 

radiotelemetry data, 95% kernel home ranges (km2) were generated using the Animal Movement 

Extension in Arc View 3.2a (Hooge et al. 1999). The fixed kernel home range utilization 

distributions (Worton 1989) were calculated using the ad hoc calculated smoothing parameter 

(Silverman 1986). Attempts to employ the least squares cross validation (LSCV) smoothing 

parameter failed due to computational processing difficulties. In addition, it has been suggested 

that the original ad hoc smoothing parameters provide a less biased estimator than a user selected 

correction (Hooge et al. 1999). Most users will find the ad hoc calculations are very similar to 

LSCV for large-scale exploratory analysis (Hooge et al. 1999). Further, because the LSCV 

process increases the amount of smoothing, resulting home ranges may have estimates that are 

too large (Seaman et al. 1999). Here, I am only interested in the 95% kernel outline as an 

expression of home range size and delineation and not internal variation in intensity. Home 

ranges were not calculated for individuals if GPS radiotelemetry data sets had < 50 locations as 

suggested for proper home range generation (Seaman et al. 1999). 

To assess the relationship between home range size and landscape type, each grizzly bear 

was classified as residing in the mountains (n = 62) or foothills (n = 47). As previously described, 

individual grizzly bears with > 75% of GPS locations above 1700 m were categorized as 

mountain bears with all remaining bears categorized as foothills bears. As demonstrated in Figure 

5-1, some mountain and foothills home ranges overlapped where individual bears resided near the 

1700 m elevation threshold or home ranges were exceptionally large. Both mean hourly 

movement rate (km/h) and annual home range size (km2) were then compared according to 
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landscape type using the nonparametric Kruskal-Wallis and Mann-Whitney U tests to examine if 

significant differences were present between groups. It was expected that results would mirror 

those reported in the previous chapter with some slight changes due to spatial boundary 

differences resulting in a smaller data set. Significance was held at P < 0.05 for all tests. 

Multiple Linear Regression Analysis 

To evaluate the influence of underlying landscape features on home range size (km2) and 

related movement rate (km/h), landscape classes (open and closed forest, wet treed, herbaceous, 

shrub, water and non habitat), human linear densities (roads, railways, seismic lines, power lines 

and pipelines), well sites, general topographic characteristics (elevation, slope, aspect and 

ruggedness), resource selection function (RSF) values, species composition, forest crown closure, 

and distance to water were extracted for each of the 109 kernel home ranges. See Table 5-1 for a 

complete list of independent variables. Prior to model development and outlier removal, basic 

scatter plots were generated to assess whether linear relationships between home range size or 

average movement rate and underlying landscape characteristic variables existed. 

Before carrying out the multiple regression analyses, variable data were screened for 

normality, multicollinearity, and outliers using bivariate scatterplots. Both dependent variables 

(home range size and average movement rate) were log transformed to improve normalization. 

Likewise, transformations were conducted on the independent variables but when examined, the 

transformations were minimally helpful. The residual plots were not significantly changed by the 

transformation and as such the independent variables remained untransformed. As multivariable 

regression analysis is sensitive to collinearity among predictor variables, variables were assessed 

for multicollinearity prior to modeling using Pearson's correlation tests and variance inflator 

function (VIF) diagnostics. All variables with strong correlations (r > 0.6) and individual VIF 

scores >10 were assumed to be collinear and excluded from the model in a hierarchical approach. 

176 



For example, elevation (r = 0.91) and slope (r = 0.98) were strongly correlated with vector 

landscape ruggedness and were excluded from the final model. Individual case outliers were also 

identified and removed from the analysis using centered leverage value (> 0.5) and Cook's 

distance (> 0.2). Before finalizing the multiple regression analyses, model residuals were also 

examined to check for violations of the assumptions. 

Table 5-1. Names and definitions of 19 variables used in a multiple linear regression of factors 
influencing home range size for 109 individual bears from 1999 to 2004. 

Model Variable Code Definition 
Habitat Classes 
Open Forest 
Closed Forest 
Wet Treed 
Herbaceous 
Shrub 
Water 
Non Habitat 

OpenFor% Proportion of open forest (0 to 100) 
ClosedFor% Proportion of closed forest (0 to 100) 
Wettreed% Proportion of wet treed (0 to 100) 

Herb% Proportion of herbaceous (0 to 100) 
Shrub% Proportion of shrub (0 to 100) 
Water% Proportion of water (0 to 100) 

Nonhab% Proportion of non habitat (0 to 100) 

Linear Features 
Road and railway 

Linear herbaceous 

Seismic lines 

Wellsites 

RdRwyDen Road and railway densities (km/km2) 

LinHerbDen Linear herbaceous densities (km/km2) 

SeismicDen Seismic line densities (km/km2) 

WellsitesHa Wellsites areas in hectares (ha) 

Landscape Features 
Elevation 
Slope 
Aspect 
Topographic variability 

AvgElevation Average elevation in meters (m) 
AvgSlope Average slope in degrees (°) 

AvgAspect Average aspect in degrees (°) 
AvgVMR Average topographic vector ruggedness (0 to 1) 

Habitat Features 
Resource selection 
function 
Species composition 
Crown closure 
Distance to water 

AvgRSF Average RSF value based on categories (1 to 6) 
AvgSC Average species composition (0 to 100) 
AvgCC Average crown closure (0 to 100) 

DistWater Average distance to water in meters (m) 
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To identify which combinations of landscape variables best predicted movement rate and 

home range size, multiple linear regression (MLR) models were performed for 109 individual 

home ranges initially, further reduced to 106 home ranges and 104 movement rates grouped. For 

each model, contributing variables were ranked according to the standardized coefficient value. 

Independent variables were deemed significant at P < 0.05. All home ranges were initially 

grouped to assess whether a population-level model was viable. However, as demonstrated in 

Chapter 4, home range size and movement rate significantly differed according to landscape type. 

Further, certain habitat types available to foothills grizzly bears may be absent for mountain 

grizzly bears. As such, both home range size and movement rate MLR models were also 

computed for separate groups: mountain bears versus foothills bears. Other breakdowns were not 

considered due to sample size of subgroups. 

Resulting model standardized residuals (ordinary residuals recomputed to a standard 

deviation of 1.0) were subsequently examined for spatial dependence. If the presence of spatial 

autocorrelation is demonstrated, one approach is to select a random sample of home ranges that 

are not spatially autocorrelated and reapply the statistical model (Fortin and Payette 2002). 

However, this is a loss of information. As previously mentioned, home ranges were separated 

according to landscape type and the multiple linear regression models were rerun. Model 

residuals were then reassessed for the presence of spatial autocorrelation according to landscape 

type. It is the hope that individual models will reduce the presence of spatial autocorrelation in 

model residuals and provide additional information regarding the relationship between home 

range size and independent variables. 

Spatial Autocorrelation Analysis 

Global and local spatial statistics are typically used to examine if data are spatially 

autocorrelated (Ord and Getis 2001). The spatial distribution of model residuals was examined for 
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spatial dependence by calculating the global and local Moran coefficients (Anselin 2003, Osborne 

et al. 2007). First, a total spatial weights matrix was created for all 106 individual home ranges. 

Rather than adopting the standard inverse distance approach, binary weights were calculated 

using the proportion or percentage of overlap between each pair of home ranges (Figure 5-2). 

Any pair of home ranges that had at least 10% mutual overlap was considered connected and 

given a value of 1. This resulted in all home ranges having at least one connection. Using this 

criterion, four situation specific weights matrices were created in the following analysis. 

Figure 5-2. Example of home range overlap calculation, where home ranges were required at 
least 10% mutual overlap to be considered connected and included within the spatial weights 
matrix. 
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Both the global and local Moran calculations were conducted with the program GeoDA 

version 0.9.5 (Anselin 2003). The value of Moran's /generally varies between 1 (extreme 

positive spatial autocorrelation) and - 1 (extreme negative spatial autocorrelation), although 

values beyond - 1 or + 1 are occasionally obtained. Positive global Moran's I occurs when the 

residuals at neighboring locations are similar and negative when they are dissimilar (Osborne et 

al. 2007). Moran's / is approximately zero when no spatial autocorrelation is present. The 

resulting Moran's / spatial autocorrelation statistic was visualized using the scatterplot slope with 

the spatially lagged standardized residuals on the vertical axis and the original standardized 

residuals on the horizontal axis. The four quadrants in the scatter plot correspond to different 

types of spatial autocorrelation (Nelson and Boots 2008). For example, spatial clusters of like 

values are plotted in the upper right (high-high) and lower left (low-low) quadrants. Spatial 

outliers are plotted in the upper left (low-high) and lower right (high-low) quadrants. 

Randomizations (99 permutations) were conducted to test significance and obtain a reliable 

result. Results will focus largely on the presence of high-high and low-low locations which 

indicate clusters of large residual values. 

While global measures are useful for summarizing spatial autocorrelation for the entire 

data set, local measures are necessary to identify areas which differ from the typical situation 

(Boots 2002). Even when significant global autocorrelation is absent, global Moran's coefficients 

can be decomposed further to examine spatial autocorrelation around each data point. This 

calculation is termed local indicators of spatial association (LISA) and is also available in the 

GeoDa program (Anselin 2003). The resulting local Moran coefficients can be used to identify 

clusters of residuals that deviate from the mean in a like fashion (Boots 2002). Using this 

approach, local measures (LISA) were also calculated for each standardized residual to create 

individual significance (p-value) and cluster maps for each individual home range (Anselin 

2003). Positive local Moran's / indicate values that are extreme relative to the mean. Local 
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Moran's / values near zero indicate no spatial autocorrelation is present or that it is present in 

values near the mean (Nelson and Boots 2008). The resulting LISA value was applied to the 

mapped centroid for each home range for visualization. 

5.4 Results 

Preliminary Home Range Size and Movement Rate Comparisons 

Within the west-central study region, GPS locations for 109 individual grizzly bears were 

collected from 1999 to 2004. When grouped by landscape type, 47 bears were found to reside in 

foothill environments while 62 bears were found to reside in mountain environments. Results for 

this particular subset of grizzly bears indicated average movement rate (U = 926.0, Z = -3.249, P 

= 0.001) and home range size (U= 664.0, Z = -4.852, P < 0.001) to be significantly different 

when grouped by landscape type. The overall average movement rate for bears used in this 

assessment was recorded at 0.28 km/h or 6.72 km/day which is slightly lower than the overall 

average movement rate results reported in Chapter 4 (0.3 km/h or 7.2 km/day). Grizzly bears 

located in mountain environments (mean = 0.25 km/h, SE = 0.01) were again found to move 

significantly slower than grizzly bears located in foothill environments (mean = 0.32 km/h, SE = 

0.02). 

Mean annual kernel home range size for all bears was reported at 682 km2 which is 

approximately 200 km2 smaller than the overall population home range size reported in Chapter 4 

(878 km2). When grouped by landscape type, mountain home ranges (mean = 394 km2, SE = 

41.2) were again found to be significantly smaller than foothill home ranges (mean = 1062 km2, 

SE = 140.1). While mountain home range sizes are consistent with the results presented in 

Chapter 4.0, foothill home range sizes were found to be approximately 400 km2 smaller. The 

reduction to both movement rate and home range size is likely a response of removing individual 

bears (largely subadult males) from the analysis which reside north of Highway 16. 
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As expected (Figure 5-3), results demonstrated that movement rate (km/h) and home 

range size (km2) are positively associated (R2 = 0.21) although this relationship wasn't 

exceptionally strong. Three individual bears were identified as potential outliers. Two of the 

outliers were individual males residing in the foothills (G045 and G062) and reported 

exceptionally large home ranges (4402.8 km2 and 4286.9 km2 respectively - Figure 5-3a). The 

third outlier was a female grizzly bear (G092) residing in the mountains. The cases were also 

confirmed as outliers using the centered leverage value and Cook's distance. The removal of 

these data points improved resulting linear relationships and as such, they were also removed 

from the following MLR analyses. As demonstrated by Figure 5-3b, the linear relationship 

between movement rate and home range size increased slightly to R2 = 0.27. 
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Figure 5-3. Scatterplots demonstrating the relationship between home range size (km2) and 
movement rate (km/h) for a) all grizzly bears prior to outlier removal, and b) for all bears after 
outlier removal. 
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Home Range Size Multiple Linear Regression Results 

Initial linear explorations were conducted using non transformed home range size for 

interpretation. Resulting scatter plots highlighted weak relationships between home range size 

and underlying landscape characteristics for all 106 remaining individual bears after outlier 

removal (Figure 5-4 to Figure 5-6). When compared to home range size (km2), road and railway 

densities (R2 = 0.04), linear herbaceous densities (R2 = 0.03), seismic densities (R2 = 0.27), and 

proportion crown closure (R2 = 0.24) values all expressed weak positive relationships. Only 

wellsite area expressed a strong positive relationship (R2 = 0.52). Results indicated that as home 

range size increased, the above variables also increased in value. As a corollary, elevation (R2 = 

0.25), slope (R2 = 0.24), aspect (R2 = 0.18), RSF (R2 = 0.25), vector ruggedness (R2 = 0.21), and 

species composition (R2 = 0.22) values expressed negative relationships. This indicated that as 

home range size increased, these values decreased. For species composition, a lower species 

composition value indicates a mixed to deciduous forest type rather than a mixed to coniferous 

forest type. No relationship was found between home range size and mean distance to water (R2 = 

0.00). 

Linear relationships were also examined between home range size and proportion of 

habitat class for all 106 individual bears (Figure 5-7 and Figure 5-8). When compared to home 

range size (km2), open forest (R2 = 0.03), closed forest (R2 = 0.21), wet treed (R2 = 0.31), and 

water (R2 = 0.09) habitat class proportions all expressed positive relationships. The remaining 

habitat classes, proportion of shrub (R2 = 0.18), proportion of herbaceous (R2 = 0.22), and 

proportion of non habitat (R2 = 0.12) all expressed negative relationships. In the following MLR 

models, elevation, slope and RSF have subsequently been eliminated due to collinear 

relationships with other variables. Of the remaining independent variables, wellsite area, 

proportion wet treed, and seismic line densities reported the three best linear relationships with R2 

values above 25%. 
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Stepwise multiple regression models were developed to assess the contribution of 

independent variables (landscape properties) to the dependent variable (log transformed home 

range size). When grouped for all bears, the resulting multiple regression model described a 

significant proportion of the variation in home range size (P < 0.001). The coefficient of 

determination (R2) for all home ranges combined was reported at 0.781. The resulting model 

responded to five independent variables (Table 5-2). Proportion of shrub was reported as the 

highest contributing variable and was negatively correlated with home range size (-0.516). Linear 

herbaceous density (-0.486), proportion of herbaceous habitat (-0.389), and average species 

composition (-0.387) all contributed negatively to home range size. Finally, well site area (0.360) 

was reported as positively correlated to home range size. Upon examination, the partial regression 

coefficients were equivalent to the beta values reported below. 

Table 5-2. Results of multivariate linear regression models for 106 individual home ranges 
showing contributing variables with standardized beta coefficients, standard error, significance, 
and variable ranking. 

Variable Beta SE P-value Rank 

LinHerbDen -0.486 0.517 0.000 2 
WellsitesHa 0.360 0.000 0.000 5 
AvgSC -0.387 0.012 0.000 4 
Herb -0.389 0.027 0.000 3 
Shrub -0.516 0.014 0.000 1 

To examine for possible differences due to landscape type, a separate MLR model was 

run for mountain home ranges (n = 61) and foothills home ranges (n - 45). The resulting MLR 

produced significant models for both mountain bears and foothills bears (P < 0.001). Coefficients 

of determination were high for both mountain home ranges (R2 = 0.79) and foothills home ranges 

(R2 = 0.81). Mountain home range size responded to three landscape variables (Table 5-3). 
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Proportion of shrub was the most important variable (-0.751), followed by proportion of closed 

forest (-0.507) and proportion of herb (-0.431) landscape classes. 

Table 5-3. Results of multivariate linear regression models for mountain home ranges (n = 61) 
and foothills home ranges (n = 45) showing contributing variables with standardized beta 
coefficients, standard error, significance, and variable ranking. 

Variable Beta SE P-value Rank 

Mountain HRs 
ClosedFor -0.507 
Herb -0.431 
Shrub -0.751 

0.011 0.013 2 
0.035 0.004 3 
0.018 0.000 1 

Foothill HRs 
LinHerbDen -0.607 0.416 0.000 1 
WellsitesHa 0.454 0.000 0.001 3 
AvgSC -0.494 0.019 0.002 2 
OpenFor 0.257 0.070 0.024 7 
Wettreed 0.371 0.051 0.046 5 
Herb -0.377 0.103 0.009 4 
Shrub -0.364 0.030 0.005 6 

Foothills home ranges responded to seven landscape variables. Linear herbaceous density 

was the highest contributing variable (-0.607). This was followed by average species composition 

(-0.494), well site area (0.454), proportion of herb (-0.377), proportion of wet treed forest (0.371), 

proportion of shrub (-0.364), and proportion of open forest (0.257). For mountain home ranges, 

shrub, closed forests and herbaceous landscape classes were all negative factors influencing home 

range size. For foothills home ranges, wellsite area, open forests, and wet treed forests were all 

positively correlated with home range size. Linear herbaceous densities, species composition, 

herbaceous and shrub landscape classes were all negatively correlated with home range size. 
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Movement Rate Multiple Linear Regression Results 

In addition to the three previously identified outliers, two additional cases were identified 

and removed prior to finalizing the movement rate multiple linear regression analyses. Both cases 

were identified as extreme values and having a large effect on the regression coefficients using 

the centered leverage value and Cook's distance. This reduced the sample size from 106 

individuals to 104 individuals. An individual female with cubs (G007) residing in the foothills in 

2002 represented one of the cases. The second outlier was a subadult female (G048) residing in 

the mountains during 2003. Initial linear explorations between mean daily movement rate (km/h) 

and landscape variables were again examined for the remaining 104 grizzly bears. Resulting 

scatter plots demonstrated slight improvements to relationships after outlier removal. 

Relationships were significantly weaker than those reported for home range size above and thus 

weren't included visually. When compared to average movement rate (km/h), road and railway 

densities (R2 = 0.07), linear herbaceous densities (R2 = 0.03), seismic densities (R2 = 0.09), 

wellsite area (R2 = 0.02), and crown closure (R2 = 0.14) all demonstrated very poor positive linear 

relationships. Scatterplots further highlighted poor negative relationships between average 

movement rate (km/h) and elevation (R2 = 0.13), slope (R2 = 0.11), aspect (R2 = 0.05), RSF (R2 = 

0.03), vector ruggedness (R2 = 0.09), and species composition (R2 = 0.09). 

Linear relationships were also examined between movement rate and proportion of 

habitat class for all 104 individual bears. When compared to movement rate (km/h), open forest 

(R2 = 0.03), closed forest (R2 = 0.14), wet treed (R2 = 0.07), and water (R2 = 0.01) habitat class 

proportions all expressed weak positive relationships. The remaining habitat classes, proportion 

of shrub (R2 = 0.09), proportion of herbaceous (R2 = 0.13), and proportion of non habitat (R2 = 

0.08) all expressed weak negative relationships. Of the remaining independent variables not 

eliminated due to multicollinearity, only crown closure, closed forest, and proportion of 

herbaceous reported R2 values above 10%. 
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Stepwise multiple regression models were developed to explore the contribution of 

independent variables (landscape properties) to the dependent variable (log movement rate). 

Model results were poor and only two of the three models produced significant results. When 

grouped, the analysis produced a significant model (.R2 = 0.29, P = 0.002) involving only one 

landscape variable. Proportion of shrub (negatively correlated) was the only contributing variable 

(3 = -0.346, P = 0.018). Separately, mountain movement rates also produced significant model 

results (R2= 0.38, P = 0.031) while foothills movement rates did not (R2= 0.27, P = 0.590). 

Again, proportion of shrub (negatively correlated) was the only contributing variable (3 = -0.461, 

P = 0.049) to movement rate. No other variables were found to be contributing factors. 

Spatial Autocorrelation Results 

A total of 4 symmetric weights matrices (derived from the original) were used to 

calculate Moran's / based on mutual overlapping home ranges (Table 5-4). The first symmetric 

weights matrix was created to test the standardized residuals of the home range size grouped 

MLR model. While all 106 home ranges were connected (having at least one neighbor), only 13% 

of the possible home range pairings met the mutual >10% overlap criterion. When broken down 

by landscape type, symmetric matrices were created using all 61 mountain grizzly bear home 

ranges and 45 foothills grizzly bear home ranges. For mountain home ranges, 14% of the possible 

home range pairings met the mutual >10% overlap criterion while 29% of the possible foothills 

home range pairings met the mutual >10% overlap criterion. Finally, the last symmetric weights 

matrix was created to examine the resulting movement rate model residuals using 13% of the 

possible home range pairings. 
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Table 5-4. Symmetric spatial weights characteristics showing total number of home range 
comparisons, home range pairs with 0% overlap, home range pairs with < 10% mutual overlap, 
and home range pairs with > 10% mutual overlap for all MLR models. 

Weights Matrix 

Possible # of 
HR 

Connections 
# of HRs 

= 0% 
# of HRs 

< 10% 
# of HR 
> 10% 

HR MLR Model (n = 106) 11,130 9,062 638 1,430 
HR Mtn MLR Model (n = 61) 3,660 2,972 160 528 
HR Fthill MLR Model (n = 45) 1,980 1,142 258 580 

Moverate MLR Model (n = 104) 10,712 8,682 608 1,422 

Figure 5-9. Classic global Moran's / scatterplot highlighting residual values against weighted 
residual values using percentage home range overlap for grouped home range size MLR model. 
Fit line and envelope are generated within Geoda. 

Moran's 7=0.0159 
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Global Moran's results differed according to MLR model. For all home range sizes 

grouped (n = 106) across the entire study region, the resulting MLR model residuals 

demonstrated positive spatial autocorrelation (Moran's / = 0.0159) (Figure 5-9). 
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Post analysis randomizations indicated that this was not significant (P = 0.300). When 

broken down according to landscape type, the mountain home range size MLR model (n = 61) 

also showed no significant spatial autocorrelation (Moran's / = 0.0098, P = 0.332) was present in 

model residuals (Figure 5-10). Interestingly, the foothills home range size MLR model (n = 45) 

demonstrated a small negative (Moran's I = -0.0374, P = 0.4340) Moran's I coefficient. Again, 

no significant spatial autocorrelation was reported for model residuals. 

Figure 5-10. Classic global Moran's I scatterplot highlighting residual values against weighted 
residual values for a) mountain home range size, and b) foothills home range size MLR models. 

a. Moran's 7=0.0098 b. Moran's/=-0.0374 

Finally, global Moran's / was also calculated for the movement rate MLR model (Figure 

5-11). For all movement rates grouped (n = 104), the resulting model residuals showed that no 

significant positive spatial autocorrelation was present (Moran's 1= 0.0012, P = 0.4230). As 

previous MLR models reported poor results for movement rate, no attempt was made to assess 

the presence of spatial autocorrelation for model residuals according to landscape type. 
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Figure 5-11. Classic global Moran's I scatterplot highlighting residual values against weighted 
residual values using percentage home range overlap for grouped movement rate MLR model. 
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Although the proportion of home range overlap produced non-significant global spatial 

autocorrelation results for all four MLR models, pockets of outlier residuals remained and were 

detected by LISA (Figure 5-12 to Figure 5-13). For all models, non significant residual values 

were primarily situated between the -1.0 and 1.0 interval lines. Individual cases that were 

classified as significantly autocorrelated were clustered in the lower left and upper right 

quadrants, indicating values were either low-low spatial clusters or high-high spatial clusters 

(Table 5-5). In terms of regression residuals, high-high residual cases are locations where the 

observed value of the dependent variable is underpredicted while low-low residual cases are 

locations where the observed value of the dependent variable is overpredicted. 
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Table 5-5. Local indicators of spatial association (LISA) for model residuals for all four MLR 
models. The three columns show the resulting cases and percentages according to LISA cluster 
class type. 

Cluster Classes (n, %) 
SWM H-H L-L No Sig 

HR MLR Model (n = 106) 12 3 91 
(0.11) (0.03) (0.86) 

HR Mtn MLR Model (n = 61) 8 1 52 
(0.13) (0.02) (0.85) 

HR Fthill MLR Model (n = 45) 2 0 43 
(0.04) (0.00) (0.96) 

Moverate MLR Model (n = 104) 10 
(0.10) 

1 
(0.01) 

93 
(0.89) 

Resulting local spatial autocorrelation values were mapped according to resulting positive 

and negative LISA values for significant cases only (P < 0.05). For the home range size MLR 

model residuals, the north-central part of the study area demonstrated the major concentration of 

highly significant (P < 0.05) positive or negative local Moran's / values (Figure 5-12a). Residual 

clusters indicated that in this particular location of the study region the MLR model performed 

poorly. Non significant small residuals near zero were also mapped demonstrating where the 

model fit well. While the grouped home range size MLR model residuals reported no significant 

positive spatial autocorrelation, the number of individual cases reporting significant local spatial 

autocorrelation was the largest {n = 15) (Figure 5-12a). Three of the cases were low-low residual 

clusters and twelve or 11% of the cases were high-high residual clusters. 

For comparison, results were also mapped for the grouped movement rate MLR model 

residuals (Figure 5-12b). While global Moran's / was not reported as significant, a large number 

of individual cases (n = 11) also reported significant local spatial autocorrelation. Ten of the 

eleven cases (10% of the overall cases) were classified as high-high residual cluster locations. 
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The remaining case was classified as a low-low residual cluster. When compared visually, results 

demonstrated that the concentration of highly significant cases were also located in the north-

central part of the study area. For both models, the region where model performance was poor 

was situated along the boundary between mountain and foothills landscape types where home 

ranges overlapped considerably. 

Resulting local spatial autocorrelation values were further mapped according to landscape 

type. For mountain home range size model residuals, nine individual home ranges were reported 

as being highly positively significant (Figure 5-13a). Eight cases were high-high residual clusters 

and one individual home range was classified as a low-low residual cluster. When mapped, the 

concentrations of highly significant cases were constricted to a small north central portion of the 

study region. While the global Moran's / coefficient was the smaller than the grouped and 

foothills MLR, the mountain home range size model residuals further reported the largest 

percentage (13%) of high-high residual clusters over the other two MLR models (Table 5-5). For 

foothills home range size model residuals, only two individual home ranges were reported as 

being highly positively significant (Figure 5-13b). In both cases, significant residuals were 

classified as high-high cluster types. The remaining cases were classified as non significant and 

having a small local Moran's value near zero indicating that the model fit well overall. 
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5.5 Summary 

As expected, home range sizes and movement rates reported differences between 

mountain and foothills landscape types. Although, depending on the individual grizzly bears 

included in the analysis, results varied slightly to those reported in the previous chapter (Chapter 

4). The relationship between home range size and movement rate was found to be positively 

correlated as expected. Yet, this relationship was not as strong (R2 = 0.27) as predicted. This 

observation suggests that even as home range size increases and the individual distances traveled 

may subsequently increase, daily movement rates based on large-scale GPS radiotelemetry may 

not. Understanding the direct relationship between home range size and movement rate may be 

difficult due to the different scales at which these indicators are measured and occur. 

In modeling efforts, such as this one, issues include variable selection, the absence of 

additional contributing variables, multicollinearity among explanatory variables, and the failure to 

meet model assumptions (Christman 2007). With standard statistical methods such as linear 

regression, the data are assumed to be statistically independent (Overmars et al. 2003). However, 

typical spatial data have a tendency to be dependent providing additional information regarding 

spatial pattern and process. For multiple linear regression models, this presence of spatial 

dependence can provide a biased estimation of error variance and an overestimation of the R2 

value (Overmars et al. 2003). As such, in addition to examining the relationship between home 

range size and landscape properties, model residuals were subsequently examined for spatial 

autocorrelation. 

For grizzly bears, previous studies have suggested that there is a relationship between 

landscape characteristics and home range size. Typically, smaller home range sizes indicate more 

profitable environments. In mountain environments, usable habitats and related movements are 

often restricted to lower-elevation valley bottoms (primarily consisting of shrub and herbaceous 
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habitat classes) and higher-elevation alpine meadows (Noss et al. 1996). Previous studies have 

noted that grizzly bears commonly use ridgetops, mountain saddles, and riparian networks for 

travel across mountain landscapes (Noss et al. 1996, Nielsen et al. 2002). Additionally, in 

mountain environments where landscapes are more restricted, home ranges are often smaller in 

size due to topographic constraints. In comparison, in foothills environments where landscapes 

are varied, resulting home ranges tend to be larger and less restricted topographically. As such, 

foothills-based movement through landscapes is more complicated and varies depending on 

habitat availability, amount of human disturbance and resulting spatial pattern and distribution 

(Berland et al. 2008). 

When all home ranges were grouped, MLR results indicated that percentage of shrub 

habitat was the largest contributing variable to overall home range size. For grizzly bears, home 

ranges were smallest when proportion of shrub was largest. The next highest ranked contributing 

variables were linear herbaceous (pipeline and powerline right of ways) densities, percentage of 

herbaceous habitat, and mean species composition (all negatively related). Overall, smaller home 

ranges were related to high linear densities, high proportions of herbaceous, and high mean 

species composition (coniferous forests). The only positively related variable was area of 

wellsites indicating larger home ranges were related to increased numbers of well sites. However, 

because the availability of certain landscape types changes depending on physical location, it was 

important to fit the model separately for mountain home ranges and foothills home ranges. 

Model results suggest that the influences on foothills home range size are more complex 

than the influences on mountain home range size. When conducted separately, the total number of 

contributing variables for mountain home range size was three, while seven were reported for 

foothills home range size. Results indicated that proportion of shrub remained the highest 

contributing variable for mountain home ranges but not for foothills home ranges (it fell to rank 
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6). The other two contributing variables for mountain home ranges were proportion of closed 

forest and proportion of herbaceous habitats. For grizzly bears residing in mountain 

environments, smaller home ranges have higher percentages of shrub, closed forests, and 

herbaceous landscape classes. Previous regional habitat assessments promote open herbaceous 

and shrub habitats as well as coniferous forest stands as secure landscapes for grizzly bears 

(McLellan and Hovey 2001a, Nielsen et al. 2002, 2003, Nielsen et al. 2006) which compliment 

the mountain MLR results presented above. 

Model results for foothills home range size indicated that density of linear herbaceous 

features was the overall largest contributing variable. This was followed by average species 

composition and wellsite area. Proportion of herbaceous, wet treed forest, shrub, and open forest 

habitat classes were ranked four through seven respectively. Overall, larger foothills home ranges 

were related to lower densities of linear herbaceous, lower values of species composition 

(indicating mixed to deciduous forest types), larger numbers of well sites, lower percentages of 

herbaceous and shrub habitats, and higher percentages of open forest and wet treed forest types. 

Of interest was the absence of contribution from human-use features such as road density 

and seismic line density when explaining home range size. Further, distance to water which has 

been found important in grizzly bear habitat use and travel also did not show up as a contributing 

variable (Hunter 2007). While this type of analysis provides a general interpretation and 

understanding of the relationship between home range size and landscape properties, to fully 

understand the spatial interactions of grizzly bears and landscape, analyses should be conducted 

at finer spatial and temporal scales. The MLR analysis conducted here further emphasized the 

need to explore models specific to different landscape types. It additionally indicated which 

variables may be important to grizzly bear landscape interactions at finer-scales. 
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Specifying a model using average movement rate for each individual bear was a 

secondary consideration of this chapter. Results were poor and only one contributing variable 

produced significant results. When grouped, the model results were the weakest. 

By separating the model according to landscape type, only mountain grizzly bear movement rates 

reported significant results that were slightly improved. The only contributing variable to 

mountain movement rates was the percentage of shrub habitat. Again, this relationship was 

negatively correlated suggesting that faster movement rates occurred when lower percentages of 

shrub habitats were present. 

Unfortunately, using a variable such as mean movement rate (km/h) for each individual 

bear assumes stationarity in the statistical sense (Blackwell 1997). While providing information 

regarding annual or seasonal trends, it fails to provide behavioral details of finer-scale 

movements. One approach to improve model results may be to either include new or different 

variables or to transform variables until linear relationships are improved. However, in this study 

linear transformations did little to improve the distribution of independent variables. Likely, a 

global measure such as daily movement rate cannot not be meaningfully related to extracted 

home range properties due to the differing scale at which movement processes operate. It is likely 

better results would be achieved through the use of a finer-scale approach. Further, detailed 

examination of linear relationships between home range size and landscape variables (Figure 5-8) 

indicated that two possible relationships exist. Subsequent removal of exceptionally large home 

ranges (> 1,500 km2) may further improve MLR model results. 

Spatial autocorrelation occurs when a variable is correlated with itself displaced in space 

(Christman 2007). Consequently, the characteristics of homes ranges that are closer in space are 

anticipated to be more correlated than those farther apart. Analysis of model residuals that 

indicates the presence of significant spatial autocorrelation implies that the data are not 
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independent and type I errors may occur (Fortin and Payette 2002, Diniz-Filho et al. 2003). While 

individual global Moran's / results differed depending on the multiple regression model 

examined, none were significant which suggests that MLR results are valid. 

However, the global Moran's / coefficient should be interpreted with caution as local 

variability may exist regardless of global results. As demonstrated in this chapter, local 

explorations can complement the general global results (Osborne et al. 2007). Consequently, 

spatial autocorrelation testing was extended to examine the local indicators of spatial association 

(LISA). The analysis of residuals through LISA provided an approach to explore where 

significant local spatial autocorrelation exists within the study region itself. In this context, the 

mapping of Moran's coefficients can be utilized to distinguish positive and negative spatial 

autocorrelation based on the residual value of a location in relation to the residual value of its 

neighbors (Nelson and Boots 2008). For example, high-high and low-low Moron scatterplot 

values indicate residual values surrounded by similar values and highlight clusters rather than 

outliers. By identifying the spatial patterns where residuals are positively spatially autocorrelated, 

we can further identify where model errors may occur and where approaches to the modeling 

technique may have to be modified. Improvements to overall model results could be achieved by 

selectively removing cases which are significantly autocorrelated, by random case selection, or 

finally, by creating smaller subpopulation models as was conducted here to examine local spatial 

autocorrelation in mountain and foothills landscape types (Fortin and Payette 2002). 

The presence of significant positive local spatial autocorrelation in model residuals 

indicated that the standard multiple linear regression model cannot capture all spatial dependency 

in the home range data. Such spatial autocorrelation could potentially indicate that non-linear 

relationships between the dependent and the independent variables are present or that important 

regressor variables, including spatial ones are missing (Cliff and Ord 1981, Griffith 1992, 
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Overmars et al. 2003, Christman 2007). In this study, it is most likely that the relationship 

between home range size and underlying environmental processes are complex given differences 

to individual bear spatial response. Second, it is likely that some influential variables are missing 

from the analysis. For example, the presence of local autocorrelation in the residuals may be 

caused by intrinsic (individual behavior or conspecific interactions) or extrinsic (environment) 

factors not included here but relevant to grizzly bears (Aarts et al. 2008). Based on the clustered 

location of significant residuals, a variable not included but potentially influential, could be social 

interactions between individual bears. Another example may be the number of overlapping home 

ranges with a singular home range. For example, often the home range of subadult grizzly bears 

will contain some portion of overlap with its mother's home range after dispersing (McLellan and 

Hovey 2001b). An additional consideration is the absence of stationarity in the data, indicating 

that the relationship being modeled (e.g. home range size and proportion of habitat class) will 

vary spatially over the region (Christman 2007, Osborne et al. 2007). For example, a preferred 

resource may be present in one location of the study region but absent in another. Individual 

grizzly bears in this region may also demonstrate different habitat associations or responses 

despite similar habitat resources being available. 

In this study, by examining the geographically mapped LISA clusters types and LISA 

significance values, high-high residual clusters were found to be concentrated in the north-central 

portion of the study area. The presence of localized spatial autocorrelation suggests that further 

examination of like-residual clusters may explain why the model fits poorly in this location. 

Detailed examination of individual cases for the grouped home range size MLR model residuals 

revealed that the majority of significantly spatially autocorrelated home ranges were located 

within BMA 3 (Figure 5-12a). More specifically, eleven out of twelve high-high residual clusters 

were located in BMA 3 with the remaining case being located in the mountains bordering BMA 

3. Half of the home ranges exceeded (1,731 km2 to 2,378 km2) the mean annual foothills home 
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range size (1,420 km2) reported in Chapter 4. All three of the low-low residual clusters were also 

located in BMA 3 although these were situated approximately 100 km to the south. Detailed 

examination of the significant spatial autocorrelated mountain home range model residuals 

revealed the majority of high-high residual clusters to be situated near to and around the Cadomin 

coal site. It is possible that the presence of local spatial autocorrelation in this region may result 

from conflicting variables such as good grizzly bear habitat types mixed with high levels of 

human development and very high densities of roads. Individual home ranges in this region may 

include variables in quantities opposite of what would typically be expected (e.g. open mine sites 

and mining roads). 
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CHAPTER 6 - ANALYZING MOVEMENT CHARACTERISTICS USING TIME SERIES 
SEGMENTATION AND DISCRIMINANT ANALYSIS 

6.1 Introduction 

The parameterization of least-cost path (Singleton et al. 2004, Drielsma et al. 2007, 

LaRue and Nielsen 2008), diffusion (Boone and Hunter 1996), individually-based (Blackwell 

1997, Home et al. 2007), step selection function (Fortin et al. 2005, Coulon et al. 2008), and 

corridor models (Graves et al. 2007) for large ranging species, such as grizzly bears, depends on 

reliable empirical movement data (Dickson et al. 2005). Process-based models are commonly 

tested post-generation with GPS radiotelemetry data to validate their accuracy or not tested at all. 

These models often reflect large-scale movements linking conservation areas across major 

divides or valley regions (Singleton et al. 2004, Graves et al. 2007, LaRue and Nielsen 2008). 

However, the role of landscape properties on grizzly bear movements is little understood and 

often neglected in such research. Few grizzly bear studies have described large-scale movement 

patterns and the underlying processes influencing those movements. Furthermore, only a couple 

of studies to my knowledge have assessed fine-scale movement patterns in relation to underlying 

landscape characteristics (Home et al. 2007, Hunter 2007). For grizzly bears, the surrounding 

spatial environment facilitates or impedes movement between resource patches and is therefore a 

vital consideration when analyzing movement behavior or spatial response. Before beginning to 

understand the relationship between landscapes and movement, it is imperative that movements 

are appropriately classified according to movement behavior type (Fryxell et al. 2008). 

Distinguishing between movement types is essential for studying the spatial movement 

patterns, habitat use, and behavior of individual grizzly bears. According to Turchin (1998), 

because the actual movement path of an individual, combined with underlying landscape 

properties, can be recorded, we can test mechanistic hypotheses about processes that affect 

movement (Fortin et al. 2005). Direct observation of a movement path may be the best approach 
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for accomplishing this (Turchin 1998, Home et al. 2007). The various components of a 

movement path (i.e. speed or step length) can provide insight regarding how individuals move 

through a landscape (Goodwin et al. 1999). For example, do the rates of vector-based movements 

differ in relation to landscape properties? What does this tell researchers about grizzly bear 

behavior? To understand how grizzly bears exist in landscapes, it is important to understand how 

individual grizzly bears interact (via movement) with landscape properties. This would require a 

direct analysis of movement trajectories both quantitatively and qualitatively (Goodwin et al. 

1999). The most common first step is to separate movement behaviors into a dichotomous 

classification: slow versus fast or foraging versus traveling. To do this, both large amounts of 

fine-scale GPS radiotelemetry data are required, as well as quantitative approaches which deal 

with sequential data structures. 

As reviewed in Chapter 2 and briefly explored in Chapter 3, times series graphing is one 

way of analyzing a sequence of data points which are typically recorded consecutively at equally 

spaced time intervals. This approach is most commonly used in economic forecasting, stock 

market analysis, and signal processing (Chatfield 1980). More recently, time series analysis has 

made indirect gains in ecology research via Fourier spectrums and wavelet analyses although 

primarily for the task of assessing internal autocorrelation structure (Hunter 2007, Wittemyer et 

al. 2008). One of the benefits of employing time series analysis is that data can be partitioned into 

internally homogeneous data segments (Dettki and Ericsson 2006). The goal of segmentation in 

the case of an individual grizzly bear data set would be to identify internal clusters of maintained 

similar movement characteristics. It has further been suggested that time series segmentation can 

be used to identify periods of second-order homogeneity or local stationarity (Clemencon and 

Slim 2004). For a grizzly bear movement time sequence, a period of local stationarity would be 

defined as a section of sequential, vectors where the mean or variance remained constant over a 

portion of the entire path. 
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In this chapter, time series segmentation of movement vectors was utilized to 

differentiate between types of movement behavior. By segmenting consecutive movement vectors 

into a series of homogeneous slow and fast movement classes, it is possible to identify their 

distribution with respect to landscape features (Phillips et al. 2004, Barraquand and Benhamou 

2008). Specifically, the overall intent of this chapter is three-fold. First, it is necessary to devise a 

separation method by which resulting movement parameters in each category would be 

significantly different. This analysis focuses on identifying both the slowest and fastest 

movement vectors, separated from possible transition vectors, using upper and lower normalized 

distance thresholds (as per the foraging cluster technique applied in Chapter 3). The second 

objective of the chapter is to explore the affect of landscape properties on segmented grizzly bear 

movement patterns. To do this, a discriminant analysis was conducted to determine what 

landscape variables best predicted movement behaviors. Finally, vector-based kernel surface 

maps were created to visualize potential representations of slow and fast movements for each 

individual bear using the predetermined movement classification. Results are intended to provide 

information regarding grizzly bear movement behavior at fine-scales, and further emphasize the 

need to distinguish between movement types or rates when examining landscape interactions. 

6.2 Study Area and Supplementary Data Layers 

In Chapter 6, the research area is again focused on the region north of Highway 16 as per 

Chapter 3. Within this region, 5 individual grizzly bears were captured and collared to retrieve 

GPS telemetry locations at 20-min intervals. The study region encompassed a total area of 71,084 

km2. The region is primarily characterized as an industry-based environment (Figure 6-1). Large 

numbers of roads, seismic lines, oil and gas well sites, and forestry cutblocks typify this 

landscape resulting in an extensive network of linear features. The region is surrounded to the 

north, east and south by highways and agricultural business. To the west and southwest, a 

mountainous high elevation area exists with rock, snow, and ice dominating the landscape. 
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Figure 6-1. Detailed map of Chapter 6 study region north of Highway 16 showing change in 
elevation, major cities, highways and secondary roads. 

Supplementary data layers generated in 2005 were used to coincide directly with the 20 

min GPS radiotelemetry data also collected in 2005 (Figures 2-12 to 2-15, p. 62-66). The first 

grid layer employed was the FRI project landscape classification map (McDermid 2005). As in 

Chapter 3 and Chapter 5, the original 10 land cover classes were modified into 7 land cover 

classes (Table 2-4, p.60). 

Human use linear and point features included paved roads, secondary roads, herbaceous 

linear features (powerlines and pipelines), seismic lines, and wellsites. Natural linear features 

included rivers and streams. Distances to feature surfaces were created using the straight-line 
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distance function in the Spatial Analyst extension in ArcGIS 9.3 for all supplementary linear and 

point features. According to Goodwin et al. (1999) it may be insightful to see if movement 

behavior changes as individuals wander closer to specific landscape features. Therefore, using 

linear data features, 30-m grid surfaces were created that represented the distance (m) to any 

nearest feature (water, major roads, all roads, seismic lines, herbaceous linear, and wellsites). It is 

further assumed that using distance to features rather than presence or absence of feature (e.g. 

within a pre-defined distance or not) will allow details that might be missed to be retained in the 

analysis. 

To assess the influence of terrain or ruggedness on the movement rates for grizzly bears, 

a 30 meter digital elevation model (DEM) was used. From the DEM, slope and aspect surfaces 

were generated. A terrain ruggedness measure (VRM) was further derived from the same DEM 

and resulting slope and aspect layers (Sappington et al. 2007). The terrain ruggedness grid surface 

was created to provide a multivariate representation of topography. Final supplementary grid 

surfaces included in the analysis were a resource selection function (RSF) surface (Nielsen 2005), 

a crown closure surface, and a species composition surface (McDermid 2005). 

6.3 Methods 

GPS Data Preparation 

In 2005, the Foothills Research Institute introduced Televilt Tellus 1 (Lindesberg, 

Sweden) GPS radiocollars to the study. Of the 167 grizzly bears previously noted in Chapter 4, a 

total of 5 individuals (males, n = 3; females, n = 2) were fitted with the Televilt Tellus 1 GPS 

radiocollars capable of retrieving locations at 20-min intervals. Specific details regarding data 

processing and individual bear classifications can again be found in Chapter 3. The following 

analysis utilizes the same base level 20-min data as it was previously processed for missed fixes, 

post-capture data reduction, and DOP accuracy levels. 
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Again, as in Chapter 3, the primary unit of analysis is the vector segment created as a 

function of linking consecutive GPS telemetry locations. Using the 20-min consecutive data 

points, movement vectors were estimated as straight lines between consecutive locations. 

Because the problem of identifying the actual track between known locations is difficult to solve 

when working with GPS radiotelemetry data, I continued with the working assumption that 20-

min data represents the 'gold standard' of grizzly bear data. For each vector, mean hourly 

movement rate (km/h), mean vector distance (km), and mean turning angle or angular deviation 

(deg) were calculated to represent primary movement parameters. Using total vector distance or 

path length (km), normalized distance was also calculated for each vector segment or movement 

step. 

Underlying landscape characteristics were extracted for each movement vector for each 

grizzly bear using the following grid surfaces: a 7-class landscape habitat class map (McDermid 

2005), a species composition and crown closure surface, a resource selection function surface 

(Nielsen 2005), distance to landscape features (water, herbaceous linear features, seismic lines, 

wellsites, paved roads, and all roads surfaces), and lastly, elevation, slope, aspect, and vector 

ruggedness measurement grids. When working with landscape habitat classes, rather than 

selecting a central position along the assumed vector, all habitat classes along the entire portion of 

each vector were extracted (Fortin et al. 2005). This provided a proportion or average for each 

habitat type along each vector (Figure 3-5, Chapter 3, p. 86). For example, one vector could 

possibly be classified as 100% closed forest while another vector could be classified as 20% 

closed forest, 30% open forest, and 50% shrub. Further, when working with habitat classes, I also 

extracted the mode or maximum habitat class for each individual vector. 
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Figure 6-2. Example of grid vector extraction where vectors properties are averaged twice, first 
the value for each vector start or end location is averaged based on the value of the four closest 
grid cells, and second the value for the entire vector is based on the average between each start 
and end point for that particular vector. 

For the remaining grid surfaces, resulting variables were calculated by acquiring the 

values for each vector start and end (GPS locations) and averaging between the two. At each GPS 

location, landscape variable values were calculated by averaging the values of the 4 nearest cells 

(Figure 6-2). This approach provided a method for averaging the potential location error as well 

as habitat classification variability for each vector start and end location. This approach followed 

the same assumption made when calculating movement rate, which is a mean or average 

representation of distance over time applied to the entire vector length. 
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Movement Behavior Segmentation and Classifications 

Time series segmentation graphs were created for each individual bear where normalized 

distance was plotted over time by case number creating a data series for sequential vector steps 

(Figure 6-3a). Using standard deviation for normalized distance (<1.0 for slow moving vectors 

and >1.0 for fast moving vectors) three types of movement vectors were identified (Figure 6-3b). 

More information regarding the use of normalized distance can be found in Chapter 3 on p. 91-92 

and p. 123. 

Figure 6-3. Time series sequence graph for individual G216 showing a) normalized distance 
over time, and b) normalized distance over time classified using <1.0 mean SD and >1.0 mean 
SD to separate out slow from fast vectors creating the baseline three-class movement 
classification. 
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The two primary movement types are represented in green (slower movements) and beige 

(faster movements). Change or transition movements (grey) were identified as vectors that fell 

between the identified slow and fast movement normalized distance thresholds. By retaining 

transition or change vectors within the time series sequence graph a three-class movement 

classification was created (Figure 6-3b). 

By ignoring and removing vectors which occurred between the thresholds, a two-class 

movement classification was created (Figure 6-4a). Below, vectors classified as slow moving 

vectors are green while fast moving vectors are beige. Lastly, by only including vectors that 

occurred in sequences of 3 or more, slow movement clusters and travel segments were identified 

and separated into a two-class cluster movement classification (Figure 6-4b). In the below time 

series sequence graph, vectors that do not maintain a 'slow' or 'fast' normalized distance for at 

least 3 or more sequential vectors are excluded from data set. As such, data sets were partially 

reduced with the occasional time gap occurring. However, by identifying spatial temporal vector 

clusters, it was possible to both reduce movement variability or noise from the data set while also 

examining segments of data characterized by similar movement behaviors. 

A threshold value of 3 sequential vectors was chosen to represent a continued movement 

behavior lasting at least 1-hr in duration. As there is no precedent for a threshold selection of this 

kind, the selection was based primarily on resulting time series graphs and data explorations 

within a GIS environment. However, the use of a 1-hr minimum (at least 3 sequential vectors) 

eliminated vectors potentially prone to error (e.g. an errant GPS point) or vector sequences that 

were highly variable in pattern (e.g. long to short to long etc.). 
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Figure 6-4. Time series sequence graph for individual G216 showing a) the two-class movement 
classification (with transition vectors removed), and b) the two-class cluster classification where 
three or more sequential vectors were selected as slow movement clusters and those above the 
threshold were fast moving travel segments. 
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GPS Sequential Locations 

As previously explored in Chapter 3, time sequence graphing can be utilized to identify 

spatial and spatial temporal vector clusters (i.e. periods of local stationarity). In Chapter 3, this 

technique was used to examine the effects of changing temporal data scale on the identification of 

slow movement or foraging clusters and spatial site revisits. Here, the same technique is 

employed to identify both slow movement clusters (Figure 6-5a) and fast movement travel 
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segments (Figure 6-5b) along the length of a total movement path. As demonstrated in the 

provided examples, by identifying clusters of similar movement patterns, prolonged movement 

behaviors can be explored both visually and quantitatively. For example, in Figure 6-5b only one 

fast moving travel segment was identified with greater than 20 sequential data points indicating 

that this bear moved further distances at faster rates for approximately 6.5 to 7.0 hours (GPS 

locations 80 - 100). Alternatively, one slow movement cluster was identified which extended for 

approximately 13.0 hours (Figure 6-5a). In this case, the cluster may indicate prolonged foraging 

or a bedding event. 

Figure 6-5. Time series graphs modified to demonstrate sequential clusters of like behaviors 
where a) slow moving clusters are highlighted and b) fast moving or travel segments are 
highlighted for one individual bear. 

40 — 

30-

20-

4> 

33 
la O 

a. 

• i i i i i i i i 
2 2 2 2 2 3 3 3 3 3 

1 1 1 1 1 

r T T i i 
3 3 a ,3 3 4 * 

3 4 5 8 7 8 9 0 1 2 3 
1 1 1 1 1 1 ) 1 1 1 1 

1 1 2 3 4 S 
1 1 1 1 1 

i i n i i n n p-f— 
7 8 8 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 * * * 4 4 

1 1 1 1 0 1 2 3 4 S 6 7 S S S 1 2 3 « 5 e ? 8 9 a t 2 3 4 5 6 ? g 9 a i 2 3 4 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

GPS Sequential Locations 

220 



To establish a working baseline, individual grizzly bear movement parameters 

(movement rate, distance, and turning angle) were examined and compared both individually and 

grouped. For each of the three movement classification approaches, the number of identified slow 

and fast moving vectors were examined by individual bear. Mean hourly movement rate (km/h) 

and mean turning angle or angular deviation (deg) were further compared to identify significant 

differences for each bear for each movement classification grouping. Comparisons were again 

conducted for all bears grouped to see if differences were maintained regardless of individual 

variations. As the vector data movement parameters do not fulfill the assumptions of equal 

variance and normality, overall mean differences between the movement types classifications 

were identified using the nonparametric Kruskal-Wallis test with significance held at P < 0.05. 

Post-hoc comparisons were conducted using Games-Howell for data where equal variances are 

not assumed. All attempts to transform and improve movement parameters distributions were 

unsuccessful in meeting the assumptions of normality. As such, data was retained in its original 

form. 

Finally, three discriminant analyses were conducted for each individual bear to predict 

whether vectors were classified correctly using the time series segmentation approach. One of the 

advantages of using discriminant analysis is its ability to measure the percent of correct 

classifications. As vectors were initially segmented using normalized distance, predictor variables 

for the following discriminant analysis models were speed (km/h) and turning angle (deg). For all 

analyses, the dependent variable was the movement classification type. The three-class movement 

classification was coded as 1 = slow, 2 = transition, and 3 = fast. The two-class movement 

classification was coded as 1 = slow and 2 = fast. Lastly, the two-class cluster movement 

classification was coded as 1 = slow moving clusters and 2 = fast moving travel segments. 
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Classification results were reported in terms of both percent of original grouped cases 

correctly classified and as percent of cross-validated grouped cases correctly identified. It is 

expected that the two-class cluster movement classification group will perform the best, followed 

by the two-class movement classification, and lastly the 3-class movement classification group. 

To compare classification results with results potentially occurring by chance, a proportional 

chance criterion (Cpro) was calculated for each analysis. The proportion of chance accuracy rate 

was computed by squaring and summing the proportion of cases in each group from the table of 

prior probabilities for groups (Table 6-1). 

Table 6-1. SPSS output of prior probabilities for groups used in proportion of chance accuracy 
rate calculation. 

Prior Probabilities for Groups 

ClusterCode Prior 
Cases Used in Analysis 

ClusterCode Prior Unweighted Weighted 
Foraging Cluster .636 225 225.000 
Travel Segment .364 129 129.000 
Total 1.000 354 354.000 

In the above example, 54% (0.6362 + 0.3642 = 0.536) would be calculated as occurring 

by chance. Operationally, the resulting classification from the discriminant function should be 

25% or higher (at least 67% correctly classified) than the proportional by chance accuracy rate. 

Final classification results were averaged across all bears and the best movement classification 

approach was adopted for all following movement-landscape analyses. 

Individual Two-class Cluster Movement Landscape Comparisons 

Before examining multivariate relationships by grouping all variables and movements for 

all bears, individual dichotomous vector comparisons were conducted separately for each bear. 

Using the two-class cluster movement classification approach discussed above, slow moving 
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clusters were compared against fast moving travel segments for each landscape variable. Mean 

landscape properties were compared using Mann-Whitney U tests. For example, mean proportion 

crown closure was compared for slow moving clusters and fast moving travel segments. 

Significance was held at P < 0.05. Resulting bar charts were plotted and examined for all 

landscape variables which demonstrated significance. Where possible, attempts were made to 

draw relationships beyond the individual to the subpopulation. 

Individual Two-class Cluster Landscape Discriminant Analysis 

Discriminant analysis is applicable to a range of wildlife and ecological problems in 

which multiple measurements (landscape properties) are made on samples of observations 

(vectors) possessing an identifiable group structure (movement type). It is employed here because 

the variable being predicted is categorical. A discriminant analysis behaves like a cluster analysis 

in reverse. For example, we can separate clusters of vectors as slow moving vectors (foraging 

clusters) and fast moving vectors (travel segments) in advance. By including multiple potential 

contributing variables, the model will then best predict which landscape properties can be used to 

discriminate between the slow and fast movement groups. Similar to other statistical procedures, 

the independent variables must meet assumptions for normality, homogeneity of 

variance/covariance, mulitcollinearity and data outliers. First, all independent landscape variables 

(Table 6-2) were examined for normality through the use of histograms and by examining 

skewness and kurtosis. Failing this, all variables were transformed and retested but still failed 

tests for normality. Proportional data such as % crown closure and % species composition are 

bounded between 0 and 100, making it difficult to transform as there are large amounts of zeros. 

It has been noted however that violations of the normality assumption are not fatal and the 

resulting significance tests are still reliable as long as non-normality is caused by skewness and 

not outliers (Tabachnick and Fidell 1996). As transformations were not statistically successful in 
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improving distributions, independent variables were retained in their original forms for 

interpretation. 

Finally, as discriminant analysis is highly sensitive to the inclusion of outlier data, 

multivariate outliers were identified using Mahalanobis distance to measure each case relative to 

the group centroid and covariance matrix for the distribution of all cases. The centroid and 

covariance matrix are the multivariate equivalents to the mean and standard deviation. Cases 

greater than the critical value, indicating a large Mahalanobis D2 distance, were removed for each 

individual bear. Homogeneity of variance was tested using Box's M test which tests the null 

hypothesis that the group variance-covariance matrices are equal. Because this test is sensitive to 

large sample sizes, a significant result is not regarded as problematic. However, when rejecting 

the null hypothesis due to the variances being heterogeneous, the working response is to 

substitute separate covariance matrices into the classification. The classifications were then 

reassessed for improvements. 
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Table 6-2. Independent variables extracted for each vector and used in discriminant function 
analysis. 

Model Variable Code Definition 
Habitat Classes 
Closed forest 
Open forest 
Wet treed 
Herbaceous 
Shrub 
Non Habitat 

ClFor Proportion of closed forest 
OpFor Proportion of open forest 
WetTr Proportion of wet treed 
Herb Proportion of herbaceous 
Shrub Proportion of shrub 

NonHab Proportion of non habitat 

Human Use Features 
Primary roads 
Secondary roads 
Linear herbaceous 
Seismic lines 
Wellsites 

PavedRds Distance to primary roads (m) 
AllRds Distance to secondary roads (m) 

LinHerb Distance to linear herbaceous (m) 
Seismic Distance to seismic lines (m) 

Wellsites Distance to wellsites (m) 

Landscape Features 
Elevation 
Slope 
Aspect 
Topographic variability 

AvgElevation Average elevation in meters (m) 
AvgSlope Average slope in degrees (°) 
AvgAspect Average aspect in degrees (°) 
AvgVMR Average topographic vector ruggedness (0 to 1) 

Habitat Features 
Resource selection function AvgRSF 
Species composition AvgSC 
Crown closure AvgCC 
Distance to water DistWater 

Average RSF value based on categories (1 to 30) 
Average species composition (0 to 100) 
Average crown closure (0 to 100) 
Distance to water (m) 

Final discriminant function analysis model runs were conducted for each bear for each 

two-class cluster movement classification. Each model examined only the vectors grouped into 

sequential slow moving clusters and fast travel segments as it was expected to perform the best. 

Mahalanobis distance criterion was used in a step-wise fashion for variable entry and removal. 

The stepwise approach has the advantage of preventing problems of co-linearity among 

independent variables (Dussault et al. 2005). To the extent that the independent variables are 
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correlated, the standardized discriminant function coefficients will not reliably assess the relative 

importance of the predictor variables. Since non-linearity between independent variables only 

reduces the power to detect relationships, linearity between independent variables was not tested. 

Overall, the landscape variables used in this analysis were not linearly related. 

The overall power of the model was estimated by scrutinizing the eigenvalues, Wilk's 

lambda, canonical correlation coefficients, and the percentage of correctly classified classes. As 

each individual bear resided in different locations on the landscape and subsequently had 

different variable ranges, all models were conducted individually. Variable importance was 

expressed in terms of standardized coefficients and resulting structure matrices. Comparisons 

were made between individual bears when possible. Again, classification results were reported 

for each model run and compared to the proportional by chance accuracy rate. Final discriminant 

scores were compared using two-independent samples t tests where equal variances are not 

assumed. 

Sequential Movement Patterns and Mapping 

To further examine and emphasize the importance of separating movement behaviors for 

grizzly bears, kernel surfaces were created for each individual bear. First, vectors were separated 

into individual layers, one representing slow moving clusters and one representing fast moving 

travel segments. Figure 6-6 demonstrates the obvious differences in vector characteristics and 

spatial patterns between the two movement behavior types. By nature, slow movement clusters 

are significantly shorter with greater variation in vector direction. Alternatively, fast moving 

travel segments are highly linear and cover greater distances. 
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Figure 6-6. Example of a spatial movement pattern generated by the two-class cluster 
segmentation approach where sequential slow movement vectors (green) and fast movement 
travel segments (beige) are highlighted for one grizzly bear. 
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To explore this dichotomous representation of movements beyond the use of vectors, 

kernel density line surfaces were created for each vector type. This was completed for spatial 

extent or home range of each individual grizzly bear resulting in a slow movement cluster surface 

and a fast movement travel segment surface. To emphasis the length or duration of movement 

behavior, each linear kernel density surface was weighted according the number of vectors 

associated with each cluster. Final vector-based kernel density surfaces were reclassified to 

outline the 50% and 95% boundaries for slow movement clusters and fast movement travel 

segments. For each, the ArcGIS defaults were used to define the smoothing band. 
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6.4 Results 

Movement Behavior Segmentation and Classifications 

First, movement parameters for all vectors were compared to establish a baseline. Of the 

5 individual grizzly bears, 1 adult female (G203) was located in the Swan Hills region, 2 adult 

males and 1 adult female (G216, G218, and G231) were located in the foothills directly north of 

Hinton, and 1 adult male grizzly (G210) was located in the higher elevations mountains northwest 

of Jasper (Table 6-3). Baseline results indicated that mean movement rate (%2= 306.8, df = 4, P < 

0.001), mean turning angle (%2= 37.902, df = 4, P < 0.001), and mean distance (x2 = 265.4, d f = 

4, P < 0.001) were all significantly different between individual bears. 

Table 6-3. Average mean hourly movement rate (km/h) 2005 (n = 5) grizzly bears showing sex, 
reproductive status, age, location of home range, number of GPS radiotelemetry locations, 
average movement rate, average distance traveled and average turning angle based on straight-
line vectors. 

Summary Statistics 2005 
Mean Mean Mean 

Bear 
ID Sex 

Repro 
Status Age Location n 

Movement 
Rate (km/h) 

Distance 
Traveled (km) 

Turning 
Angle (deg) 

G203 F FC 10 SwanHills 7557 0.55 0.19 79.15 
G210 M AM 11 Mountain 1150 0.49 0.22 74.72 
G216 M AM 16 Foothills 442 1.27 0.44 76.09 
G218 F AF Foothills 1399 0.32 0.13 85.37 
G231 M AM Foothills 5197 0.47 0.17 83.21 

When compared individually, movement rates for individual males G210 (mountain) and 

G231 (foothills) were not significantly different (P = 0.984). All other individual comparisons 

were significantly different between bears. Results emphasized the need for individual processing 

when identifying different types of movement behaviors for each individual. Movement threshold 

levels are therefore unique to each individual grizzly bear. 
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Three-class and Two-Class Movement Comparisons 

Resulting three-class time series sequential graphs were generated for each individual 

grizzly bear (Figure 6-7 to Figure 6-11). Each time series graph provided a baseline from which 

the two-class and two-class cluster movement classifications were subsequently generated and 

analyzed. While transition vectors were explored, results focused primarily on comparing results 

between slow moving vectors and fast moving vectors. As resulting segmentation graphs 

maintained the consecutive nature of GPS spatial moving data for each individual grizzly bear 

visual explorations were also conducted (Figure 6-7 to Figure 6-11). The resulting time series 

graphs provided information regarding the overall spatial movement pattern of each individual for 

temporal duration of data collection. As such, seasonal differences could also be visualized. 

The separation of movement behaviors into slow, transition, and fast movements is most 

apparent when analyzing the resulting graph structure for individual G216 (Figure 6-9). By 

combining both the sequence graph structure with the mapped vector pattern, changes to 

movement behavior for G216 were easily distinguished. Travel movements were relatively 

straight-lined (mean = 32.2 deg, SE = 2.47) with longer and faster (mean = 3.1 km/h, SE = 0.053) 

vector segments while slow movements (mean = 0.14 km/h, SE = 0.009) were quite clustered 

with short vector segments and high turning rates (mean = 106.7 deg, SE = 3.52). This type of 

movement separation was also apparent when examining the resulting graph structures and vector 

maps for individuals G210 (Figure 6-8) and G218 (Figure 6-10). When working with large 

amounts of vector data (> 4000 sequential GPS locations) as demonstrated in Figure 6-7 and 

Figure 6-11, the time series segmentation technique continued to work for dichotomizing 

movement behavior, however results became more difficult to visualize. While time sequence 

graphs are highly detailed, resulting vector maps respond well and clearly demonstrated the 

difference movement types for large data files as demonstrated by individuals G203 and G231. 

229 



Fi
gu

re
 6

-7
. 

Ti
m

e 
se

qu
en

ce
 g

ra
ph

 f
or

 i
nd

iv
id

ua
l 

fe
m

al
e 

G
20

3 
de

m
on

st
ra

tin
g 

co
ns

ec
ut

iv
e 

ve
ct

or
 

^ 
m

ov
em

en
t 

da
ta

 s
eg

m
en

te
d 

in
to

 3
 b

eh
av

io
ra

l 
cl

as
se

s 
" 

""
' 

. 
. 

. 
* 

(s
lo

w
 a

nd
 f

as
t) 

w
ith

 a
 re

su
lti

ng
 tr

an
si

tio
n 

(g
re

y)
 

« 
ca

te
go

ry
 b

et
w

ee
n 

sl
ow

 (
gr

ee
n)

 a
nd

 f
as

t (
be

ig
e)

 
m

ov
em

en
ts

. 

0.
00

2-

0.
00

1-

ii 
<>

, 

50
0 

m
t.y

Ĵ
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Figure 6-11. Time sequence 
graph for individual male G231 
demonstrating consecutive vector 
movement data segmented into 3 
behavioral classes (slow and fast) 
with a resulting transition (grey) 
category between slow (green) and 
fast (beige) movements. 
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The resulting time series sequence graphs provided a means to quantify summary 

statistics for vectors by movement classification groupings. First, the number of slow moving 

vectors, transition vectors and fast moving vectors were calculated for each bear using the three-

class movement classification grouping (Table 6-4). Overall results indicated that the identified 

number of slow movement vectors ranged from 53% for G216 to 64% for G218 of total available 

vectors. Transition vectors for 3 out of 5 bears represented the next largest proportion of total 

vectors ranging from 20% to 26%. Individuals G203 and G206 were the exception with fast 

moving vectors being the next largest proportion at 27% and 33% respectively. For individuals 

G216, G218, and G231 fast moving vectors ranged from 11% to 16% of the overall proportion of 

available vectors. 

Table 6-4. Three-class vector movement classifications for each grizzly bear (n = 5) showing 
total vectors, number of slow movement vectors, number of transition vectors, and resulting 
number of fast movement vectors. 

Vector Movement Classifications 
No. of 
Slow No. of No. of Fast 

Bear 
ID Sex 

Repro 
Status Location n 

Moving 
Vectors 

Transition 
Vectors 

Moving 
Vectors 

G203 F FC SwanHills 7557 4553 1795 1209 
G210 M AM Mountain 1150 714 304 132 
G216 M AM Foothills 442 236 60 146 
G218 F AF Foothills 1399 889 285 225 
G231 M AM Foothills 5208 3201 1318 689 

Three-class movement vectors were also compared for differences to mean movement 

rates (km/h) and mean turning angles (deg) for each bear. Overall vector movement classification 

results were similar for all five individual bears (Table 6-5). Results demonstrated significant 

differences between mean movement rates (P < 0.001) and mean turning angles (P < 0.001) 

between movement type classifications for all bears. Resulting movement rate vectors were 

ranged from 0.07 km/h to 0.14 km/h for slow moving vectors and from 1.27 km/h to 3.11 km/h 
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for fast moving vectors. Transition movement rates ranged from 0.32 km/h and 1.23 km/h, 

depending on the individual bear. Overall, female G218 demonstrated the lowest movement rates 

(mean = 0.07 km/h, SE = 0.002) across classes, while male G216 demonstrated the highest 

movement rates (mean = 3.11 km/h, SE = 0.053) across classes. Resulting slow movement 

turning angles ranged from 85° to 107° for individuals G210 and G216, respectively. Fast 

movement turning angles results demonstrated significantly straighter or directed vector segments 

ranging from 32° to 55° in direction. Overall results indicated similar trends existed for all 

individual bears. 

Table 6-5. Vector movement classifications for each grizzly bear (n = 5) showing mean 
movement rate (km/h) and mean turning angle (deg) after movement segmentation into slow, 
transition, and fast movement behavior classes based on normalized distance thresholds. 
Significance tests were conducted using the Kruskal-Wallis test. 

Mean Movement Rate (km/h) Mean Turning Angle (deg) 

Bear 
ID Slow Transition Fast P Slow Transition Fast P 

G203 0.13 0.71 1.91 0.001 97.96 60.79 35.63 0.001 
G210 0.13 0.65 2.10 0.001 85.66 62.5 43.58 0.001 
G216 0.14 1.23 3.11 0.001 106.71 62.94 32.22 0.001 
G218 0.07 0.32 1.27 0.001 94.7 80.32 54.83 0.001 
G231 0.12 0.62 1.82 0.001 99.25 66.21 41.39 0.001 

When grouped for all 5 individual bears, movement classes maintained a consistent trend 

regarding movement rate and turning angle parameters (Figure 6-12). Results for this 

subpopulation of grizzly bears reported mean vector movement rate (%2= 11084.61, df = 2, P < 

0.001) and mean vector turning angle (%2 = 2334.52, df = 2, P < 0.001) to be significantly 

different when comparing the three movement behavior classes. More specifically, slow (mean = 

0.12 km/h, SE = 0.001) movement rates were significantly smaller than fast traveling (mean = 

1.91 km/h, SE = 0.017) movement rates (£/= 80218.5, Z = -75.37, P < 0.001) and slow (mean = 
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97.4 deg, SE = 0.58) turning angles were significantly larger than fast moving (mean = 39.3 deg, 

SE = 0.78) turning angles (U= 4832986.0, Z = -43.91, P < 0.001). 

While grizzly bear movement behaviors can be segmented, variability within each unique 

vector classification remained as noted by outlying data points as demonstrated in Figure 6-12. 

This was specifically true for fast moving vector classifications. Grouped results indicated that 

while mean values may vary by individual bear; overall subpopulation trends regarding 

movement behaviors are still identifiable when working with vector-based movement parameters. 

Statistical comparisons were not conducted for the two-class movement classification as the 

results would remain the same minus the presence of transition vectors. 

Figure 6-12. Boxplots for movement rate (km/h) and turning angle (deg) classified according to 
movement behavior for all five grizzly bears combined. 

Transition 
Movement Classes Movement Classes 

Two-Class Cluster Movement Comparisons 

The resulting time series graphs were manually processed to identify slow movement 

clusters and fast travel segments where similar movement behaviors occurred for 3 or more 

sequential vectors. New cluster graphs were created for each individual bear highlighting the 

sequential pattern of slow and fast moving clusters. By examining the difference between the 
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number of identified fast movement vectors and the number of sequential fast travel segments 

simple data trends can be identified (Table 6-6). For individual G216, of the total fast movement 

vectors identified, 88% of these were sequentially linked forming distinct travel segments. Also, 

of the total slow moving vectors identified, 95% of these were identified as slow movement 

clusters. Resulting comparisons (assuming the segmentation technique correctly classified the 

cases) indicated that for this individual, two types of movement behaviors are easily distinguished 

and tend to be quite distinct in pattern. 

Table 6-6. Differences between vectors classified as slow moving or fast moving vectors 
compared to the number of vectors identified as sequential slow cluster vectors or sequential fast 
travel segment vectors where difference indicated the percentage of vectors classified as clusters 
for each bear. 

Vector Classifications 
No. of No. of 

No. of Slow Slow No. of Fast Fast 
Bear Slow Cluster Difference Fast Segment Difference 
ID Sex Location Vectors Vectors % Vectors Vectors % 
G203 F SwanHills 4553 4040 88.7 1209 766 63.4 
G210 M Mountain 714 610 85.4 132 60 45.5 
G216 M Foothills 236 225 95.3 146 129 88.4 
G218 F Foothills 889 782 88.0 225 125 55.6 
G231 M Foothills 3201 2897 90.1 689 389 56.5 

However, it appeared that male G216 may be the exception to the group (Table 6-6). For 

every other bear examined, differences between total vectors and vectors which were sequentially 

clustered resulted in lower percentages for slow movements and more so with fast movement 

vectors. For all bears, over 85% of slow moving vectors were further classified as occurring 

within a slow movement cluster indicating that foraging or bedding type behaviors tend to extend 

for more than one individual vector segment and over longer time periods. As such, slow moving 

clusters were easier to identify regardless of both bear individuality and duration of the GPS 

radiotelemetry collar data. The identification and separation of fast moving segments appeared to 

be less obvious. With the exception of individual G216, sequential fast movement segments only 
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make up 46% to 63% of the classified fast moving vectors. While fast moving vectors were 

identified and present for each bear, fast movement behaviors did not consistently last for the 3 or 

more consecutive vectors as needed to form a travel segment. As such, resulting percentages were 

lower indicating the fast movements were sporadic and short lasting. 

Clusters were further ranked by the number of vectors occurring within each cluster 

(Figure 6-13 to Figure 6-17). Resulting spatial movement patterns for each individual grizzly bear 

were examined via time sequence graphs and compared to known date time information to 

identify seasonal or daily trends. Resulting cluster graphs for Swan Hills female G203 identified 

402 slow movement clusters and 162 unique fast moving travel segments (Figure 6-13). Visually, 

slow movement clusters appeared to extend over longer time periods at the beginning and end of 

the below graph. 

Figure 6-13. Final resulting two-class cluster graphs showing 402 identified slow movement 
clusters and 162 fast moving travel segments for individual G203. 
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Combined Foraging Clusters and Travel Segments 

When compared to GIS data layer information, longer lasting slow movement clusters 

occurred during the months of June and September. One slow movement cluster (mid-graph) 
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occurred in early August and lasted for 55 sequential vectors or 18 hours. Fast movement travel 

segments, while occurring throughout, appeared more often from case number 4,000 to 5,800 and 

again from 6,600 to 7,000. When examined, the former occurred during the month of August and 

tended to result in frequent travel vectors of short linear movements (e.g. 3 to 5 vector segments 

equaling 1.0 to 1.5 hours). The latter, occurred during the month of September and extended for 

longer periods of time ranging outward to the most western portion of the home range (Figure 6-

7). 

Figure 6-14. Final resulting two-class cluster graphs showing 73 identified slow movement 
clusters and 14 fast moving travel segments for individual G210. 
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The resulting cluster graph for individual G210 above identified 73 slow movement 

clusters and only 14 fast movement travel segments (Figure 6-14). For this mountain male, slow 

movement clusters appeared to be fairly consistently spaced over the duration of the data 

collection period. The largest proportion slow movement clusters took place during the month of 

July in the most heavily used portion of the vector home range. While the majority of vectors 

were classified as slow movement clusters, when the resulting vector map was examined (Figure 

6-8) it visually appeared that the majority of vectors were fast movement travel segments. Results 
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suggest that the majority of movements are localized slow movements with long lasting travel 

segments occurring between. Of the few occurring fast movement travel segments, an early 

grouping occurred in June and a final grouping occurred in September. 

Figure 6-15. Final resulting two-class cluster graphs showing 24 identified slow movement 
clusters and 20 fast moving travel segments for individual G216. 
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The resulting cluster graph for individual foothills male G216 (Figure 6-15 above) had 

the shortest duration of collected GPS radiotelemetry locations and therefore vector sequence. For 

this bear, the data collection sequence only lasted for the span of a week. Here, explorations will 

be examined by time of day. Three major slow movement cluster events were identified. The first 

occurred on June 8th beginning at 14:00 hours and ending at 05:30 hours indicating a possible 

resting or bedding event. The second cluster of slow movement vectors, while not lasting as long, 

was also largely characterized by night time GPS locations. The last slow movement cluster was 

predominantly made up of daytime locations. The largest occurring fast movement travel 

sequence occurred during daylight hours from 06:00 hours to 13:30 hours (7.5 hours) and covered 
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a total distance of approximately 70 km. This equates to 10 km/hr indicating a much directed 

travel oriented movement. All other travel segments appeared to occur primarily during the day. 

Figure 6-16. Final resulting two-class cluster graphs showing 87 identified slow movement 
clusters and 31 fast moving travel segments for individual G218. Note the data separation at case 
#341 where a significant time gap prompted the data to be processed as two unique data sets but 
are combined here for illustrative purposes. 
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Combined Foraging Clusters and Travel Segments 

The resulting cluster graph sequence for individual foothills female G218 demonstrated a 

large section of slow movement clusters occurring at the beginning portion of data set #2 (Figure 

6-16). This large slow movement cluster occurred during early September. Four other slow 

movement cluster events occurred where sequential vector segments were > 20. All of these were 

characterized by a day to night to day transition. The remaining smaller slow movement clusters 

were interspersed with short lasting travel segments. Explorations highlighted a pattern where 

movement vectors switched from slow to fast movement behaviors at approximately 1.5 to 2.0 

hour intervals. 
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Figure 6-17. Final resulting two-class cluster graphs showing 311 identified slow movement 
clusters and 83 fast moving travel segments for individual G231. 
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Combined Foraging Clusters and Travel Segments 

Finally, the cluster graph for foothills male G231 was examined. The largest slow 

movement cluster occurred at the end of June and lasted for approximately 2 days or 48 hours in 

total. Compared to the other bears and the average size of slow movement clusters, this is 

exceptionally large. A large portion of the remaining cluster graph demonstrated the presence of 

slow movement clusters separated by small sequences of fast travel vectors some of which were 

large enough to generate a travel segment cluster (Figure 6-17). For this bear the mean cluster 

size of fast movement travel segments was 6.4 vector events or approximately 2.0 hours. 

Excluding the large slow movement cluster event, the remaining slow movement clusters had a 

mean size of 13.5 vector events which lasted 4.5 to 5.0 hours. 

With all bears grouped both slow and fast vector cluster sizes were compared by month 

(Figure 6-18) as well as day or night classes. Comparisons indicated that slow movement cluster 

size by month differed significantly (%2 = 284.69, df = 4, P < 0.001). Overall results indicated that 

mean slow movement cluster size was largest in June (mean = 28.4, SE = 0.838, time = 9.5 hr) 

and September (mean = 19.5, SE = 0.288, time = 6.5 hr) while the smallest mean slow movement 
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cluster size was reported for the month of July (mean = 13.4, SE = 0.147, time = 4.5 hr). 

Resulting mean fast movement travel segment size while smaller when compared to slow 

movement clusters, also differed significantly by month (%2 = 38.39, df = 3, P < 0.001). 

Comparisons indicated that fast moving travels segments were shortest in July (mean = 4.8, SE = 

0.156, time = 1.5 hr) and longest in June (mean = 6.88, SE = 0.29, time = 2.3 hr). Of the post-hoc 

comparisons, travel segment comparison between June and September were not significantly 

different (P = 0.586). 

Figure 6-18. Resulting box plots for all 5 grizzly bears grouped showing slow movement cluster 
and fast movement travel segment size (number of vectors) by month. 
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Grouped daytime / nighttime cluster comparisons for all bears revealed that while slow 

movement clusters were significantly different (U= 6946946, Z = -19.202, P < 0.001), fast 

moving traveling segments were not (P = 0.29). Results demonstrated that mean slow movement 

cluster size was larger for night (mean = 19.07, SE = 0.237, time = 6.4 hr) when compared to day 

(mean = 18.0, SE = 0.354, time = 6.0 hr) classifications. Although the mean values were similar, 

manual explorations revealed that large slow movement clusters where 24 or more (8 hr) 

segments were present contained 10% more nighttime classes than daytime classes. While not 
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significantly different, mean consecutive fast moving travel segments were marginally longer 

during the day (mean = 6.13) than at night (mean = 6.04). 

Finally, movement parameters such as mean movement rate (km/h) and mean turning 

angle (deg) were compared individually (Table 6-7) and grouped for the two cluster classification 

group (Figure 6-19). Mean results mirrored those reported for the three-class movement grouping. 

Yet, results for the two-class cluster grouping reported larger mean separations for both 

movement rate and turning angle movement parameters. When grouped, mean movement rates 

remained significantly slower for slow movement clusters (mean = 0.113, SE = 0.001) when 

compared to travel segments (mean = 2.10, SE = 0.21) for all bears. Further, slow movement 

clusters (mean = 100.5, SE = 0.605) maintained higher turning angles than fast movement travel 

segments (mean = 33.26, SE = 0.819) for all bears. Results were significant for all grouped 

comparisons (P < 0.001). Although variation was substantial among individuals, grouped data 

suggested movement parameters could be simplified to a single distribution. 

Table 6-7. Vector movement classifications for each grizzly bear (n = 5) showing mean 
movement rate (km/h) and mean turning angle (deg) after movement segmentation into slow 
movement clusters and fast movement travel segments. Significance tests were conducted using 
the Kruskal-Wallis test. 

Mean Movement Rate (km/h) Mean Turning Angle (deg) 

Bear 
ID 

Slow 
Moving Fast Travel 
Clusters Segments P 

Slow 
Moving Fast Travel 
Clusters Segments P 

G203 
G210 
G216 
G218 
G231 

0.12 2.05 0.001 
0.12 2.59 0.001 
0.13 3.17 0.001 
0.07 1.43 0.001 
0.11 1.98 0.001 

101.32 30.97 0.001 
88.20 33.75 0.001 
107.60 32.04 0.001 
97.79 43.39 0.001 
102.12 34.85 0.001 

245 



Figure 6-19. Resulting box plots for all 5 grizzly bears grouped showing mean movement rate 
(km/h) and mean turning angle (deg) for slow movement clusters and fast movement travel 
segments. 
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Separation of turning angle distributions provided additional information regarding travel 

segment outliers (Figure 6-19 and Figure 6-20). By examining the variation in frequency 

distributions of turning angles for all grizzly bears, the difference between fast movement travel 

segments and slow movement clusters can be better understood. For all bears, slow movement 

clusters contained a range of turning angles (from straight-line movements to highly tortuous 

movements). As a corollary, fast movement travel segment frequencies were largely skewed 

indicating that while some turning vectors were present the majority of consecutive vectors were 

straight-lined and highly directed. As such, resulting slow movement vector clusters had a wider 

spread when compared to travel segment vectors. 
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Figure 6-20. Turning angle distributions for all 5 grizzly bears by fast movement travel segments 
and slow movement foraging clusters. 

Movement Segmentation Classification Accuracies 

For all three model classification approaches for all five individual bears, significant 

mean differences were observed for both predictor variables (movement rate and turning angle). 

While the log determinants were quite similar; Box's M indicated that the assumption of equality 

of covariance matrices for all comparisons was violated. However, given the large sample sizes 

for each bear, this problem was not regarded as serious. For all bears and all 3 grouping types, 

Wilk's lambda indicated a highly significant function (P < 0.000) with speed (km/h) reported as 

the strongest predictor while low turning angle (deg) was secondary. 

Fast Movement Travel Segments Slow Movement Clusters 
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Table 6-8. Discriminant classification accuracy results for vector movement types (3 movement 
classification types) based on speed and turning angle variables for individual bears with the 
proportional by chance accuracy rate for each classification strategy. 

Discriminant Classification Accuracy Results (%) 
3-Class 3-Class By 2-Class 2-Class By 2-Class Cluster By 
Move Chance Move Chance Clusters Chance 

Bear ID Accuracy Rate Accuracy Rate Accuracy Rate 
G203 88.3 56.3 98.6 82.5 99.3 92.5 
G210 78.4 58.5 95.9 91.3 98.7 96.9 
G216 96.8 51.3 100.0 66.3 100.0 67.0 
G218 83.4 59.0 96.7 84.8 98.2 95.3 
G231 92.9 57.5 98.4 88.5 99.3 99.0 
Mean 88.0 56.5 97.9 82.7 99.1 90.1 

Overall discriminant classification accuracy results showed that vectors were correctly 

classified but varied from the low 80's for 3 movement behavior types to 100% for sequentially 

clustered movements (Table 6-8). The best classification results were achieved for the two-class 

cluster classification as expected. When all bears were grouped, combined classification accuracy 

was 99.1% for the two-class cluster movement grouping. Results respond as expected given that 

speed is derived from and thus highly correlated with distance; however the results provide 

information as to the accuracy of different classification approaches. For example, going from a 

cluster classification approach to one that includes transition vectors decreases accuracy levels by 

11%. All classification results accuracies listed above were greater than the indicated proportional 

by chance accuracy criteria, supporting the breakdown of vectors into distinct movement types 

(Table 6-8). 

Results varied individually. When examining the 3-class movement classification for 

individual G203, slow movement vectors (99.7%) reported the best classification results over 

transition vectors (62.5%) and fast movement vectors (83.8%). The two-class movement 

dependent variable correctly classified 99.9% of slow moving and 93.4% of fast moving vectors. 
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The two-class cluster grouping again correctly classified slow movement vectors at 99.9% but 

improved upon the fast vector classification to 96.1%. For individual G210, the 3-class movement 

classification correctly classified 99.9% of slow, 31.7% of transition, and 69.7% of fast vectors. 

Removing transition vectors improved the classification of fast moving vectors to 74.2% while 

slow moving vectors remained constant at 99.9%. The final two-class cluster dependent variable 

improved the classification result to 100% for slow moving vectors and 85% for fast moving 

travel segments with 15% remaining as misclassified. For male G216, the 3-class movement 

classification correctly classified 99.6% of slow, 86.7% of transition, and 96.6% of fast 

movement vectors. Both the two-class classification and the sequential movement cluster 

classification correctly identified 100% of slow moving vectors and 100% of fast moving vectors. 

When examining the 3-class movement classification for individual G218, slow moving vectors 

(90.2%) reported the best classification results over transition vectors (71.7%) and fast moving 

vectors (71.0%). After removing transition vectors, 100% of slow movement vectors were 

correctly classified and 83.7% of fast movement vectors were correctly classified. The final 

grouping correctly classified slow vector clusters at 100% and fast vector segments at 87.1%. 

Finally, for individual G231, the 3-class movement classification correctly classified 98.2% of 

slow, 82.5% of transition, and 88.3% of fast movement vectors. Removing transition vectors 

improved the classification of fast moving vectors to 91.2% while slow moving vectors improved 

to 99.9%. The cluster classification dependent variable correctly classified slow clusters at 99.9% 

and fast segments at 94.4%. 

Individual Two-class Cluster Movement Landscape Results 

Using the two-class cluster vector segmentation approach, mean landscape values for 

slow moving vectors and fast moving vectors were assessed for each individual grizzly bear. 

Depending on the amount of data processed, each individual grizzly bear had a related unique 

number of slow and fast movement vectors. For Swan Hills female G203, 4040 sequential vectors 
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were classified as slow and 766 were classified as fast moving vector clusters. For mountain male 

G210, 610 and 60 vectors were classified as slow and fast moving vector clusters, respectively. 

For foothills male G216, 225 vectors were classified as slow vectors and 129 vectors were 

classified as fast. For foothills female G218, 782 slow vectors and 125 fast vectors were 

identified. Finally, for foothills male G231, 2897 vectors were classified as slow and 389 vectors 

were classified as fast. Vector comparisons were reviewed according to three variable groups: 

habitat proportions, natural landscape variables, and distance to linear variables. 

For four out of five grizzly bears, all mean proportions for vector habitat types were 

significantly different (P < 0.001) when comparing slow and fast moving vectors (Figure 6-21). 

Of all five bears, only foothills female G218 reported non-significant results when examining 

herbaceous habitat class proportions. For individuals G210, G216 and G218 fast vector segments 

reported higher means for open forest when compared to slow moving vectors. Mountain male 

bear G210 reported the largest differences between slow (mean = 0.06, SE = 0.009) and fast 

vectors (mean = 0.17, SE = 0.032) for open forest proportions. The opposite was reported for 

G203 and G231. For three out of five grizzly bears (G203, G210, and G216), fast vector segments 

reported higher mean proportions of closed forest than slow vectors. Interestingly, 3 of 5 bears 

(G210, G218 and G231) reported higher means for both open and closed forest proportions when 

fast vectors were compared to slow vectors. The other two individuals (G203 and G216) reported 

higher slow vector proportions for open forest and higher fast vector proportions for closed 

forests. 

Results for wet treed habitat proportions were split, 2 of the 4 bears (G203 and G216) 

reported higher means for fast vectors over slow vectors while the other 2 bears (G218 and G231) 

reported higher means for slow vectors over fast vectors. Only mountain male (G210) reported no 

wet treed proportions for vectors due to a lack of wet treed habitat in mountain environments. For 
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males G210, G216 and G231 herbaceous habitat class reported higher means for fast moving 

vectors when compared to slow moving vectors. The largest significant difference was reported 

for mountain bear G210 (fast mean = 0.16, SE = 0.03; slow mean = 0.07, SE = 0.01). For Swan 

Hills female G203 the result was opposite with higher proportions of herbaceous for slow moving 

vectors (mean = 0.15, SE = 0.005) over fast moving vectors (mean = 0.12, SE = 0.008). Female 

G218 reported no significant differences (P = 0.652) between the two movement types. Visually, 

mean differences for G218 herbaceous appeared exceptionally large, however further exploration 

through the use of histograms and box plots revealed that the majority of slow movement vector 

proportions were either 0.0 or 1.0. This resulted in an overestimated mean with a large standard 

deviation (mean = 0.32, SD = 0.46) for slow movement clusters when compared to travel 

segments (mean = 0.11, SD = 0.19) resulting in a non significant result. 

For Swan Hills female G203, mountain male G210, and foothills female G218, slow 

moving vectors reported higher proportions of shrub than fast moving vectors. Mountain 

individual G210 again reported the largest differences between slow (mean = 0.68, SE = 0.018) 

and fast (mean = 0.35, SE = 0.041) vectors. Results for foothills bears G216 and G231 

demonstrated higher shrub means for fast moving vectors when compared to slow moving 

vectors. Finally, non-habitat results reported higher mean proportions for fast moving vectors 

over slow moving vectors for 3 of 5 bears (G210, G218 and G231). Again, the largest differences 

were reported for mountain male G210 where non-habitat fast moving vectors (mean = 0.12, SE 

= 0.03) had significantly higher means than slow moving vectors (mean = 0.01, SE = 0.004). This 

isn't surprising given that non-habitat in mountain environments is primarily composed of rock, 

snow and ice through which a bear would move faster given food sources are limited. In foothills 

environments the non-habitat class is composed primarily of barren landscape patches where 

vegetation is limited (e.g. mining sites). 
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Figure 6-21. Bar charts showing mean habitat proportion class results comparing slow moving 
vectors and fast traveling vectors for each individual bear. 
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Figure 6-22. Bar charts showing mean landscape variables results comparing slow moving 
vectors and fast traveling vectors for each individual bear. 
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Two-class vector segmentation results were variable for species composition, crown 

closure, and RSF (Figure 6-22). Results for 3 out of 5 bears (G210, G218 and G231) 

demonstrated significantly higher mean species compositions for fast moving vectors over slow 

moving vectors. To reiterate, a higher species composition indicates a higher proportion of 

coniferous trees while a lower species composition indicates a higher proportion of deciduous 

trees. Mountain male G210 again demonstrated the largest differences between fast moving 

vectors (mean = 82.7, SE = 0.186) and slow moving vectors (mean = 39.5, SE = 1.37). Results 

for mean crown closures indicated that fast vectors had significantly higher crown closure 

percentages when compared to slow vectors for 3 out of 5 bears. Male G216 reported no 

significant differences (P = 0.345) while male G231 reported higher crown closure means 

associated with slow movement vector clusters. For Swan Hills female G203, mountain male 

G210, and foothills males G216 and G231, mean RSF values were significantly higher for slow 

moving vectors when compared to fast moving vectors. For foothills female G218, mean RSF 

values were significantly higher for fast moving vector segments over slow moving vector 

clusters. 

Landscape variable comparisons included elevation, slope, aspect, and vector ruggedness 

(Figure 6-22). Mean elevation comparisons, while small significant differences were present 

between vector types, mainly provided a visual description of where grizzly bears resided on the 

landscape. All significant results for slope reported that slow movement vectors had higher slopes 

over fast movement vectors for both mountain and foothill bears. Again, the largest mean 

differences were reported for mountain bear G210. No significant differences were reported for 

individual grizzly bears G203 and G218 when examining slope. Mean aspect of fast moving 

vectors was also found to be significantly lower than slow moving vectors for all grizzly bears 

except Swan Hills female G203. Aspect differences were the greatest for foothills female G218. 

Finally, vector ruggedness was significantly higher for fast vectors over slow vectors for 3 out of 
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5 grizzly bears (G203, G210 and G218). No significant differences were found for foothills bear 

G216. Only individual G231 reported significantly higher vector ruggedness values for slow 

vectors over fast vectors. 
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Figure 6-23. Bar charts showing mean distance to features results comparing slow moving 
vectors and fast traveling vectors for each individual bear. 
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Results for distance to linear landscape and human use features are shown in Figure 6-23. 

For Swan Hills female G203 and mountain male G210, travel vectors were closer to water 

features than slow movement vectors. For foothills bears G216 and G231, slow movement 

vectors were closer (had smaller mean distances) to water features when compared to fast moving 

vectors. Distances to herbaceous linear features were not significant for 3 out of 5 grizzly bears 

(G203, G216, and G218). Only foothills male G231 highlighted fast travel vectors as occurring 

closer to herbaceous linear features when compared to slow vectors but these distances still 

ranged from 5.5 km to 6.5 km. Foothills individuals G216 and G231 reported mean distance to 

seismic lines to be lower for fast movement vectors over slow movement vectors. For example, 

G216 reported fast vectors were on average 51m from seismic lines while slow vectors were on 

average 64 m from seismic lines. For G231, fast moving vector segments were approximately 150 

m from seismic lines while slow moving clusters were 230 m from seismic lines. Significant 

results for distance to wellsites indicated that slow movement vectors were closer to wellsites 

when compared to fast movement vectors for individuals G203 and G216. Foothills bears G218 

and G231 reported no significant differences when comparing distance to wellsites. 

Mean distances to primary paved roads or major highways ranged from 19 km for Swan 

Hills bear G203 to 52 km for mountain bear G210. While significant differences were present for 

4 out of 5 bears, overall distances were too large to really speculate any relationship between 

slow and fast vector classes. Of greater interest are the results for distance to secondary roads. 

Secondary roads included both 2-lane paved and gravel road types. Significant differences were 

only reported for Swan Hills female G203 and foothills male G231. Individual G203 reported 

lower mean distance to secondary roads for slow vector clusters (mean = 396.5, SE = 7.1) when 

compared to fast vector segments (mean = 521.8, SE = 19.26). As a corollary, individual G231 

reported lower mean distance to secondary roads for travel vectors (mean = 703.4, SE = 38.7) 

when compared to slow movement clusters (mean = 1,056.7, SE = 25.2). Individuals G216 and 
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G218 reported no significant differences and mountain male G210 was too far away from all 

linear features including roads to legitimately consider. 

Individual Landscape Discriminant Analysis Results 

A multivariate step-wise discriminant function analysis (DFA) was used to determine the 

landscape characteristics which contributed most to discriminating between movement behaviors 

for each individual grizzly bear (Table 6-9, p. 263). Resulting eigenvalues for each DFA function 

were generally low indicating that landscape variables were not powerful in distinguishing 

between the two movement behaviors (slow clusters and fast travel segments). However, overall 

significant discriminant functions were obtained for each bear (P < 0.001). That being said, 

resulting structure matrices highlighted which landscape variables (loading cutoff > 0.30) did 

correlate with the DFA function. Mean discriminant scores differed significantly between 

movement classes. Only one (G203) of the five individual grizzly bears met the equal variance-

covariance assumption. For the others, log determinants were similar. Of the five bears, mountain 

male G210 reported the best example of DFA model results. 

G203 Discriminant Results - For individual G203, significant mean differences between 

slow movement clusters and fast travel segments were found for all landscape variables except 

herbaceous, non habitat, slope and vector ruggedness. For this bear, 14 of the possible 21 

variables were entered into the DFA model using the stepwise procedure. The model reported a 

canonical correlation of 0.244 (6% explained variation). The five highest contributors as 

identified by the structure matrix were distance to wellsites (-0.545), distance to water features 

(0.448), RSF (0.428), and distance to secondary roads (-0.392) (Table 6-9). When broken down, 

the final two-movement cluster classification model correctly classified 99.8% of the slow 

movement vectors and only 4% of the fast travel segments used to develop the model. Resulting 

mean discriminant function scores were significantly different between movement classes (?i 092.9 

258 



= 17.805, P < 0.001), with higher mean scores reported for slow movement clusters (n = 4038, 

mean = 0.109, SE = 0.02) and lower mean scores reported for fast traveling segments (n = 764, 

mean = -0.578, SE = 0.04). For Swan Hills female G203, low proximity to wellsites, increased 

distance from water features, high RSF values, and close proximity to secondary roads 

discriminated between slow movement clusters and travel segments. 

G210 Discriminant Results - For individual G210, significant differences between slow 

movement clusters and travel segments were found for all landscape variables except closed 

forest, crown closure, RSF, and elevation. For this bear, 12 of the possible 21 variables were 

entered into the DFA model. Model efficacy was reported at 38% (canonical correlation = 0.615). 

Wilk's lambda reported the unexplained variation at 0.622. Of the variables included, the 

structure matrix revealed that species composition (0.480), aspect (-0.364) and distance to water 

(-0.334) reported the largest correlations with the DFA function (Table 6-9). The final two-

movement cluster classification model correctly classified 96% of the slow vectors and 62% of 

the fast vectors used to develop the model. Resulting mean discriminant function scores were 

significantly different between movement classes (?6i.o = -10.359, P < 0.001), with lower mean 

scores reported for slow movement clusters (n = 610, mean = -0.244, SE = 0.03) and higher mean 

scores reported for traveling vectors (n = 60, mean = 2.48, SE = 0.26). Overall, travel segments 

were related to higher proportions of species composition (coniferous stands) and closer 

proximity to water features. Slow movement clusters were related to lower proportions of species 

composition (mixed to deciduous stands), south facing slopes, and were farther from water 

features. 
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Figure 6-24. Resulting box plot illustrating the distribution of discriminant scores for slow 
movement clusters and travel segments for individual grizzly bear G210. 
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G216 Discriminant Results - Individual G216 demonstrated significant mean differences 

between slow movement clusters and travel segments for open forest, wet treed, shrub, non 

habitat, distances to seismic, wellsites, primary roads, and slope and aspect variables. The 

stepwise model procedure entered 10 of the 21 possible variables. The resulting DFA model was 

able to explain only 29% of the variation (canonical correlation = 0.538). Wilk's lambda reported 

the unexplained variation at 0.71, yet the function was reported as significant (P < 0.001). The 

structure matrix reported open forest (-0.486) and distance to primary roads (0.316) as having the 

largest correlations with the DFA function (Table 6-9). The final model correctly classified 

96.9% of the slow vectors and 58.1% of the fast vectors used to develop the model. Resulting 

mean discriminant function scores were significantly different between movement classes (t\74.26 

= 10.372, P < 0.001), with higher mean scores reported for slow movement clusters (n = 225, 

mean = 0.482, SE = 0.05) and lower mean scores reported for traveling vectors (n = 129, mean = 

-0.841, SE = 0.12). For male G216, results suggest that low proportions of open forest and 

increased distances from primary roads discriminated between slow movement clusters and travel 
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segments. Travel segments generally had higher proportions of open forest and were found closer 

to primary roads. 

G218 Discriminant Results - Female G218 reported significant mean differences 

between slow movement clusters and travel segments for closed forest, herbaceous, species 

composition, crown closure, RSF, distance to primary and secondary roads, elevation, aspect, and 

vector ruggedness variables. The stepwise procedure entered 11 variables into the DFA model. 

Again, the resulting model performed weakly explaining only 25% of the total variation 

(canonical correlation = 0.497). Although Wilk's lambda reported the function as significant (P < 

0.001), 75% of the variation remained unexplained. The resulting matrix reported aspect (0.489), 

closed forest (-0.402), and vector ruggedness (-0.369) as having the largest correlations with the 

resulting DFA function (Table 6-9). The final two-movement classification model correctly 

classified 96.5% of the slow moving vectors and 43.5% of the fast moving vectors used to 

develop the model. Resulting mean discriminant function scores were significantly different 

between movement classes (t\i2.6 = 10.639, P < 0.001), with higher mean scores reported for slow 

movement clusters (n = 11 A, mean = 0.229, SE = 0.03) and lower mean scores reported for 

traveling vectors (n = 124, mean = -1.429, SE = 0.15). For foothills female G218, larger 

(southwest) aspects, lower proportions of closed forest and lower vector ruggedness discriminated 

between slow movement clusters and travel segments. 

G231 Discriminant Results - Individual male G231 reported significant mean 

differences between slow movement clusters and travel segments for open forest, non habitat, 

species composition, crown closure, RSF, distances to water, linear herbaceous, seismic lines, 

wellsite features, and secondary roads, as well as slope and aspect. The stepwise procedure 

entered 14 variables into the DFA model. The model reported a canonical correlation of 0.405 

(16% explained variation). The highest contributor to the function as identified by the structure 
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matrix was proportion of non habitat features (0.758) (Table 6-9). When broken down, the final 

two-movement classification model correctly classified 99.5% of slow vectors and 24.5% of fast 

vectors used to develop the model. Resulting mean discriminant function scores were 

significantly different between movement classes (£391.7 = -12.957, P < 0.001), with lower mean 

scores reported for slow movement clusters (n = 2883, mean = -0.160, SE = 0.014) and higher 

mean scores reported for traveling vectors (n = 379, mean = 1.22, SE = 0.11). Finally, results for 

foothills male G231 suggested that high proportion of non habitat was the only significant 

variable for predicting between slow movement clusters and travel segments. For this bear, travel 

segments had higher proportions of non habitat class than slow movement clusters. 
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Sequential Movement Patterns and Mapping Results 

Vector-based kernel density surfaces were created for each bear for each movement 

behavior (slow versus fast). It is important to note that the creation of each surface was completed 

using vector data rather than point data. This resulted in very different spatial movement patterns 

due to differing vector lengths and localized intensities (Figure 6-25 to Figure 6-29). 

For all bears, resulting kernel surfaces suggested complex distributions of highly 

localized space use for slow movement clusters. Multiple centers or clusters of slow vectors were 

present for each bear weighted by duration of stay. For example, 50% kernel density outlines 

(dark green) highlighted slow movement clusters where individual bears either remained in the 

same region for longer than 8 hours (often including day and night classes) or revisited the same 

location more than once. While kernel overlap between the slow and fast travel surfaces was 

present for 95% outlines, 50% kernel overlap for slow movement clusters versus fast travel 

segments was considerably limited. In fact, centers for slow movement clusters and travel 

segments often emphasized different spatial regions within each home range. 

Resulting fast travel surfaces visually provided a more comprehensive outline of the total 

movement path when compared to resulting slow movement surfaces. This is largely a function 

of travel segment vector length and distribution across the home range. Resulting slow movement 

vectors (short step lengths with higher turning angles) which tend to be more circular in nature 

generated focused areas of use. Travel segments (long directed step lengths) generated linear use 

surfaces similar to path buffers or home range approaches at the 95% level. However, centralized 

movement regions as indicated by 50% kernel outlines identified regions where individuals 

tended to travel frequently between slow movement clusters. The resulting example travel 

surfaces highlighted movement pathways or corridors separate from slow movement clusters. 
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Figure 6-25. Resulting fine-scale movement behavior kernel density maps for G203 showing 
slow movement clusters in green and travel segments in grey. 
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Figure 6-25. Resulting fine-scale movement behavior kernel density maps for G203 showing 
slow movement clusters in green and travel segments in grey. 
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6.5 Summary 

This chapter promotes a novel, empirically-based approach in the study of animal 

movement that explicitly identifies the movement patterns of grizzly bears. By employing time 

series graphs in conjunction with vector movement patterns, individual movement behaviors can 

be identified. By decomposing the movement track into a dichotomous movement structure, we 

were able to group similar observations of slow movements and fast movements. This separation 

is necessary to understand the relationship between movement and the landscape (Martin et al. 

2008). Regardless of individual variation, the separation of vectors into slow and fast movement 

behaviors was successful using the time series segmentation approach. Further, movement 

parameters thresholds defining behavior types could be established for this particular population 

of grizzly bears. Comparing movement parameters with underlying landscape properties has 

provided some insight into different movement behaviors in relation to varying landscape 

properties. 

General movement segmentation results provided the baseline data required to proceed 

with the separation of movement behaviors at fine-scales. Data was screened for 5 individual 

grizzly bears and different movement types were identified. This research focused primarily on 

two types of movement, fast and slow. However, it has also been stated that to understand how 

animals perceive and react to landscape structure, we also need to identify the boundaries or 

transition locations of movement behaviors (Nams 2005) indicating the need to identify a third 

class. Previous attempts to generate a 3-process model to separate movement behaviors (foraging, 

transition, and fast movements) were generally unsuccessful and transition or middle-ground 

locations were often misclassified (Johnson et al. 2002, Hunter 2007). While transition vectors 

were identified here as a byproduct of segmenting fast and slow movements, they were excluded 

from subsequent analyses to make it easier to distinguish between the two movement classes. 

Therefore, some relationships may have been missed when conducting the comparisons. 
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However, as only sequential vectors were chosen chances are that if a landscape variable had an 

impact on prolonged movement behavior it would have been captured using this approach. 

Beyond this, it has been suggested that two major concerns must be addressed when 

segmenting movement behaviors using a time series approach (Dettki and Ericsson 2006). This 

first concern is the definition of the appropriate cutoff or threshold value used to separate 

movement behaviors. The development of a cutoff threshold of 3 consecutive vectors was 

achieved after much trial and error. The second concern is specifically related to the choice of 

movement parameter used to represent vector movements. For grizzly bears, the use of 

normalized distance worked better than movement rate to reduce noise in the data while 

maintaining the overall characteristics of the data set. While general movement trends are 

consistent across bears, movement parameters such as movement rate, normalized distance and 

turning angle can vary significantly. As such, defining a single threshold for all individual 

segmentation graphs at this stage was inappropriate. Further, because movement data is largely 

skewed towards zero and non-normal in distribution, the use of one standard deviation threshold 

worked well to identify vectors with low or high normalized distances. 

Previous studies have detailed the habitat-use of grizzly bears in Alberta (Nielsen et al. 

2002, 2003, Nielsen et al. 2004a, Nielsen et al. 2004c, Munro et al. 2006). Resources important to 

grizzly bears are typically distributed heterogeneously in space. The general theory predicts that 

individual grizzly bears will spend more time in high quality habitats with abundant food sources 

resulting in shorter slower movements (Graves et al. 2007). Conversely, individual bears would 

reduce their time in regions with limited resources resulting in longer faster movement patterns. 

The advantage of separating movement into different classes provides researchers the opportunity 

of identifying movement parameters related to specific behaviors. By employing a sequential data 

threshold of three, researchers are able to examine movements where behaviors have occurred for 
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more than one vector segment. This indicates a maintained or prolonged behavioral trend. For 

each individual grizzly bear, maintained movement behaviors varied. However, the most common 

movement pattern was one that alternated between periods of highly directed fast movements 

(also termed travel segment) and more tortuous slow movement (termed slow movement cluster). 

At fine spatiotemporal scales, individual grizzly movement patterns were highly variable 

in both form and function, ranging from straight-lined movements to highly concentrated slow 

movement clusters (Figures 6-7 to 6-11). As is common with many studies, turn angle 

distributions for foraging vectors were more variable and concentrated around a bearing of 180°. 

In contrast, movement distributions had a concentrated range highly focused around zero which 

indicated movements occurred in a directed manner. For all bears, localized slow movement 

clusters and fast travel segments both increased during the months of June and September over 

July and August indicating seasonal variability within the vector structure. Improvements could 

potentially be made by relating monthly vector patterns to seasonal food models. Occasionally, 

individuals spent long periods of time in one spatial location. When an individual enters a 

profitable place, they typically intensify their space use (Phillips et al. 2004, Barraquand and 

Benhamou 2008). The largest slow movement cluster was recorded with >130 consecutive 

vector events lasting just less than 2 days or 44 hours. Further, individuals were also found to 

travel long distances between slow movement cluster events. The longest occurring travel 

segment contained approximately 20 consecutive vectors which equals just over 6 hours of 

continuous fast movement. 

The identification and separation of travel segments appeared to be less clean cut. With 

the exception of individual G216, sequential travel segments only made up 46% to 63% of 

classified moving vectors. This implies that while fast movements can be distinguished from slow 

movements, individual fast movement behavior is variable and not simply made up of 
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consecutive travel segments. More specifically, fast movement behaviors on average do not last 

for 3 or more consecutive vectors implying that longer distance travels are less common and not 

the only type of movement process present when dealing with individual bears. In most cases, 

longer slow movement clusters were separated by more frequently occurring short periods of fast 

movements. The identification of slow movement clusters and travel segments coupled with 

sequential graph structures as presented here has proved to be a unique approach for examining 

consecutive vector movement data. While not statistically complex, it has provided a solid 

approach to movement separation, visualization and quantitative assessment. It further provided a 

base for additional exploration and statistical analysis. For example, time series graphs were 

additionally segmented to examine seasonal or daily differences. 

Movement-landscape relationships were not easy to simplify and separate due to 

individual variation as well as the uncertainty of the relationship between the assumed vector and 

underlying landscape. It was the hope that when comparing mean landscape variables associated 

with two classes of vectors or movement types, results would be consistent across all bears and 

significant differences would exist between slow and fast vector classes. Unfortunately, results 

were highly individual and population-level inferences were difficult to make using a sample size 

of 5 individual bears. For example, for 3 out of 5 bears, travel segments occurred closer to water 

features when compared to slow movement clusters. For the other 2 individual bears (G216 and 

G231), slow movement clusters occurred closer to water features. Only one other study has 

examined movements related to landscape properties which produced results similar to the results 

presented here (Hunter 2007). Individual male G098 was found to travel through cooler areas 

(based on a solar index), closer to water, and areas that were barren with some green vegetation. 

In this chapter, vectors were measured according to standard movement parameters. 

Based on the characteristics of vector distances, a model was produced to discriminate which 
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landscape variables were identifiable using two movement behavior types. Overall models did not 

perform well, in that they did not produce large canonical correlations which resulted in small 

percentages of explained variation. However, for each individual bear, landscape variables were 

identified which did contribute to the discrimination of movement behavior type. Further, all 

functions were significant and direct comparisons of mean discriminant scores by movement type 

also differed significantly. Of the five individual analyses, mountain bear male G210 produced 

the best results when compared to the other bears. The poorest results were reported for Swan 

Hills female G203. It is possible that the ability to distinguish between movement behaviors is 

ultimately related to the landscape in which the bear resides and the sex of the bear. Further, 

resulting classifications preformed well when identifying slow movement clusters (> 90%) but 

performed poorly when identifying travel segments (< 62%). 

The variables that did contribute to individual discriminant functions were distance to 

human features (e.g. wellsites and roads), distance to water, RSF, species composition, crown 

closure, aspect, vector ruggedness, and proportion of non-habitat. Generally, slow movement 

clusters were explained by south/southwest aspects, higher RSF values, lower percent species 

composition (deciduous/mixed forests), open forests, and higher vector ruggedness. Slow 

movement clusters were also found farther from water features, closer to wellsites, farther from 

primary roads but closer to secondary roads. Travel segments were explained by lower RSF 

values, conifer forests, closed forests or higher percentage cover, and low vector ruggedness. 

Travel segments were often closer to water features and primary roads, but further from 

secondary roads and wellsites features. Travel segments were also explained by high proportion 

of non habitat features. Variables that did not contribute and were often excluded from the 

analyses were habitat proportion classes (wet treed, herbaceous, and shrub), slope, distance to 

linear herbaceous (powerlines and pipelines), and distance to seismic lines. 

274 



While some general trends can be extracted, individual variation mitigates the 

opportunity to make any conclusive statements as indicated by direct individual mean 

comparisons. Given that grizzly bear movements result from both external and internal 

considerations, landscape variables alone are not likely enough to understand the movement 

behaviors of individual grizzly bears. The underlying surfaces used here may additionally not 

provide the information or variables needed to fully understand resulting spatial patterns. 

Influences not considered here may include social interaction with other bears, distribution of 

bear specific foods over seasons, response to human-bear encounters, and movements occurring 

during mating season. More specifically, the use of landscape classes does not contain 

information regarding food availability or the number of producing berry bushes. 

Another possibility is that landscape variable extraction and vector-based movements 

may not occur at the same scale. That is, how can landscape properties be related to individual 

vectors at a meaningful scale? More specifically, the underlying process generating long travel 

segments or spatial response might not be captured within a grid-based surface (e.g. a human-bear 

interaction or flight response). Implementing such models is time-consuming, challenging and 

difficult to transfer to mapping environments. 

Beyond this, an additional limitation to the research conducted here was the lack of a 

process-based model approach. While the quantitative assessment was extensive, understanding 

the process generating the resulting spatial movement patterns was limited. An alternative 

approach would be to conduct a conditional logistic regression model where random movement 

steps would be compared to observed movement steps. This type of approach is typically used in 

resource selection function modeling (Nielsen et al. 2002, Nielsen 2005, Hunter 2007), or in the 

case of movement, a step selection function model (Fortin et al. 2005, Coulon et al. 2008). 
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However, to conduct a step selection function analysis a random step data set must be created 

from distributions of lengths and turning angles which was not part of this analysis. 

Kernel density maps require more complex approaches than what was explored 

here. It is recognized that well developed kernel density models require additional programming 

and testing to truly be utilized for management purposes (Berland et al. 2008). However, it was 

important to emphasize the importance of developing different movement models specific to the 

movement behavior being studied. Results clearly demonstrated that resulting vector separations 

and thus movement behaviors create distinctly different localized home range delineations. 

Further, not only were these surfaces characterized by fast and slow moving vectors, they were 

also weighted according to the number of vectors assigned to each localized cluster event. In this 

way, the use of probability surfaces may provide an approach that may mitigate source error 

when working with straight-line vector segments (Home et al. 2007). For example, a travel 

segment lasting longer in time and therefore space will be more heavily emphasized in the 

resulting surface than a travel segment lasting for only 3 consecutive segments. 

By first segmenting vector data into two types of movement behavior, I was able to 

generate kernel estimation surfaces that were behavior specific. For example, specific localized 

travel regions or localized slow movement (feeding, bedding, resting, etc.) regions were more 

precisely identified. As demonstrated below (Figure 6-30), the creation of travel segment 

movement surfaces provided an opportunity to examine grizzly bear movement across more than 

one spatial scale. In Figure 6-30, the resulting kernel surface has been reclassified to emphasize 

the overall spatial movement pattern (e.g. a 95% vector movement home range). Beyond this, 

each surface can further be reclassified to emphasize the 50% localized travel regions or 

emphasize the 75% or 90% travel regions that fall somewhere in between. By determining 

regions of travel specific movements, the resulting outlines provide another approach for 
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examining the influence of underlying landscape properties on varying spatial movement 

patterns. For example, the varying kernel density probabilities could emphasize zones of potential 

influence on grizzly bears travel specific movements. Further, one could examine travel 

movement hotspot landscape characteristics compared to the general or available movement 

landscape characteristics. The same could be completed with a slow movement cluster surface. 

Figure 6-30. Probability surfaces of travel segments for individual grizzly bear G203 
highlighting reclassifications showing varying levels of travel intensity weighted by travel 
segment duration and overlapping segments of travel (50%, 75%, 90% and 95% estimations). 

• I 50% Travel K l)h 
75% Travel KIIE 
90% Travel KDE 
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CHAPTER 7 - RESEARCH CONTRIBUTIONS AND RECOMMENDATIONS 

7.1 Introduction 

MacArthur and Wilson's influential theory of island biogeography recognized that habitat 

fragmentation eventually results in the creation of isolated 'island' populations as habitat 

connectivity decreased and linkages between habitats are broken. In an attempt to reduce the 

isolation of habitat fragments, numerous studies (Fahrig and Merriam 1985, Rosenberg et al. 

1997, Beier and Noss 1998, Bunn et al. 2000) have recommended preserving landscape 

connectivity and thus the movement of individuals between habitat patches. For all species, 

including grizzly bears, connectivity is imperative for safe movement within home ranges (Noss 

et al. 1996) and across large landscapes for dispersal. However, before connectivity can even be 

considered, it is important that grizzly bear movements be studied and understood across multiple 

temporal and spatial scales as accomplished by this dissertation. 

By understanding movement patterns and the processes underlying those patterns, it is 

possible to manage the landscape accordingly. Knowledge of grizzly bear movements is 

necessary to better understand space-use, landscape interactions, dispersal characteristics, and 

population distributions. The quantification of movements further provides information regarding 

when individuals are active, how fast they move, what physical areas they move through, and 

how much they vary in these traits. Finally, the separation of movement behavior into types can 

aid in the development of models which incorporate both the foraging and travel needs of grizzly 

bears within Alberta. 

7.2 Research Contributions 

Within this dissertation, I quantified and examined the movement ecology of grizzly 

bears in Alberta based primarily on GPS radiotelemetry data. The two primary objectives were to: 
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1) quantify grizzly bear movement rates, and 2) examine the relationship between grizzly bear 

spatial response and underlying landscape characteristics. As currently there has been no 

comprehensive review of the movement information generated by GPS radiotelemetry data, the 

majority of this research adopts a spatial and temporal exploratory nature. For example, at what 

spatial and temporal scales can movements be addressed? Also, is it possible to discern between 

travel oriented and slow movement behaviors for grizzly bears using GPS radiotelemetry data 

alone? 

Working with GPS data sets further requires a solid understanding of the data 

assumptions, considerations and issues. The first issue which arises is generalizing a continuous 

process such as movement using discrete events in space and time. Secondly, within this 

dissertation straight-lined movements are assumed to occur between known GPS locations. 

Additionally, when working directly with fine-scale GPS radiotelemetry data, serial and spatial 

autocorrelation is inherent within the data structure. Finally, distinguishing between different 

movement behaviors or grizzly bear spatial response to underlying landscape variables is 

complex given both bear individuality and landscape complexity. In the following section, key 

findings and implications for management and research are summarized in order of chapter 

development. 

Chapter 3 Summary 

The primary goal of Chapter 3 was to examine the relationship between GPS 

radiotelemetry capture rate and resulting vector characteristics as indicated primarily by 

movement rate. Exploratory analysis was conducted at two spatial scales: global and local. 

Overall results reinforced the understanding that vector movement patterns vary spatially 

depending on the temporal scale of data collection. As the understanding of spatial patterns is 

reliant on exploratory data analysis, this chapter focused heavily on the quantification and 
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comparisons of vector related movement characteristics as GPS radiotelemetry resolution 

decreased over time (20-min to 12-hr locations). Overall results emphasized the type of analysis 

and information available to researchers depends largely on the scale of data collection. Results 

indicated that data sampling has to be conducted at a rate or extent that is appropriate to detect the 

patterns or processes one is looking for. The most important finding of this chapter is the 

understanding of the relationship between temporal data scale and information available for 

analysis. Analysis should be conducted to the scale of data collection. 

Overall, both global and local results demonstrated a significant decrease in information 

as temporal resolution decreased. For researchers interested in analyzing movement parameters, 

grouping GPS data across varying data collection schedules is possible. For example, no 

significant differences to movement rates were present between data collected at 1-hr, 2-hr, 4-hr, 

etc. intervals. However, it should be noted that movement rates calculated from data collected at 

20-min intervals were significantly higher than all other collection intervals indicating the need 

for caution when conducting comparisons. Working with GPS radiotelemetry data collected at 

20-min intervals provided a level of detail previously unattainable (e.g. the identification of 

internal vector clusters). 

Results further demonstrated that spatial movement patterns and their relationship to 

underlying habitats will change considerably depending on the scale of data collection. For 

example, vector details are significantly reduced and data uncertainty is significantly increased 

when time between locations increases to 4-hr intervals. Researchers conducting vector-based 

movement analyses would need to buffer up to approximately 3.0 km (one side) or 6.0 km (total 

buffer width) to account for vector uncertainty when working with 4-hr data points. Another 

example of reduced accuracy is indicated by the change of habitat proportion along each vector. 

As vector resolution decreases, the ability to obtain accurate habitat information will also 
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decrease. The use of vector contingency table analysis provided a more detailed understanding in 

relation to changing vector placement and habitat type. Results allowed for the quantification of 

error associated with data reduction. 

Chapter 3 further demonstrated the presence of serial autocorrelation within sequential 

data structures. Serial autocorrelation varied by individual bear with data generally achieving 

independence at higher temporal lags. Further, the presence of serial autocorrelation in fine-scale 

data indicated the presence of prolonged movement behavior within the vector structure. The data 

segmentation required to eliminate serial autocorrelation also removes the data required to 

examine differences in movement behaviors or to identify spatial clusters within and across a 

movement trajectory. 

Chapter 4 Summary 

The main objective of Chapter 4 was to quantify and compare large-scale movement rate 

and home range size as related to population subgroup characteristics, spatial location, and 

temporal scale. The majority of large-scale movements for grizzly bears based upon GPS 

radiotelemetry data is programmed to record a location over large temporal intervals (e.g. 4 hours 

or 6 hours). Using the available data collected over a 7-year period, Chapter 4 empirically 

quantified and compared annual home ranges and movement rates for grizzly bears in Alberta. 

Results emphasized that daily movement rates varied over large-scales due to both intra 

and extra-specific characteristics spatially and temporally. Significant differences to movement 

rates were found by sex and reproductive status, but not by year or age class. Results further 

demonstrated varying movement patterns between years, seasons, months and times of day. For 

this study, movements were also quantified and compared for mountain environments and 

foothills environments. Overall, grizzly bears residing in mountain environments were found to 
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have significantly slower movement rates and smaller home ranges sizes when compared to 

grizzly bears residing in foothills environments. It is recognized that this is an extremely 

simplified understanding of where, how, and why grizzly bears are spatially distributed. 

However, movement rates were significantly different in each of the environments indicating the 

need for locally focused analyses. While overall movement rates were significantly faster in 

foothills landscapes over mountain landscapes, only subadult males demonstrated significant 

differences between the two. In addition to the intraspecific variation (e.g. reproductive status) 

reported here, bear interactions with other bears (e.g. male-female associations) will further 

complicate the understanding of movement patterns across large landscapes. 

The quantitative results of movement rates and home range sizes reported here are 

important on two research fronts. First, the empirical assessment of GPS radiotelemetry data is 

the first of its kind completed for grizzly bear populations in the province of Alberta. As such, 

conservation and land-use managers will have a better understanding of grizzly bear home ranges 

and spatial movement across different temporal scales. Second, the detailed understanding of 

grizzly bear movement rates can be used to improve movement-based models, such as large-scale 

corridor or connectivity models. For example, simulation models which previously attempted to 

model movement corridors typically focused on the requirements and movement rates of female 

grizzly bears. However, given the extensive ranges and movement patterns of males or subadult 

males, either more than one model would be required, or movement parameters would have to be 

larger. Such fine-scale interactions are difficult to incorporate into large-scale movement models. 

Chapter 5 Summary 

The intent of Chapter 5 was to examine the relationship between grizzly bear home range 

size and underlying landscape characteristics. As the majority of grizzly bear radiotelemetry data 

is collected at 4-hr time intervals, comparisons were conducted at the home range level as 
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indicated by results generated in Chapter 3. The relationship between home range size and 

landscape variables was best described according to landscape type. When separated, mountain 

bear home ranges sizes responded to three landscape classes: shrub, closed forest, and 

herbaceous. Foothills bear home ranges responded to seven landscape classes: linear herbaceous 

density, species composition, wellsite area, herbaceous, wet treed, shrub, and open forests. 

Overall models tended to respond the best when working with mountain bears over foothills bears 

suggesting that foothills landscapes have higher levels of complexity. Chapter 5 results indicated 

that exploring the relationship between landscape properties and movement rate could not be 

conducted and properly understood within the context of a grizzly bear's home range. 

Results further explored the contribution of spatial autocorrelation in large-scale grizzly 

bear home range data. Overall explorations of global spatial autocorrelation indicated the 

presence of minimal positive spatial autocorrelation in home range size multiple regression model 

residuals when all bears were grouped. Subsequent model runs reported no significant global 

spatial autocorrelation in model residuals for both mountain home ranges and foothills home 

ranges. While autocorrelation was absent or limited at the global level, local analysis 

demonstrated the presence of limited spatial interaction between bear home ranges in the north-

central portion of the study region. Localized positive spatial autocorrelation highlighted sub 

regions where the models performed poorly. These locations were either situated close to the 

boundary between mountain and foothills regions or near to a large disturbance site. Models 

could be improved by either selectively removing cases with significant autocorrelation or cases 

could be examined in more detail to determine why the model performed poorly in these regions. 

Chapter 6 Summary 

The focus of Chapter 6 was ultimately two-fold. First, the majority of the analysis 

focused on devising a method for differentiating between movement types. Second, to examine 
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the relationship between the previously identified movement types and underlying landscape 

properties, a discriminant analysis was conducted. While large landscape differences were 

outlined in Chapter 5, approaches for dealing with fine-scale data were still needed. Therefore, 

this chapter endeavored to evaluate fine-scale movement patterns and their relationship to 

underlying landscape properties. 

An important conclusion from the work completed in Chapter 6 is the separation of 

vector-based movements into movement behavior groups. Time series segmentation facilitated 

the breakdown of movement behaviors into slow movement clusters and fast movement travel 

segments by identifying sequential spatiotemporal clusters. This novel approach allowed for the 

analysis of movement while maintaining the sequential structure of the data itself. No other 

studies I'm aware of have conducted this type of examination for individual grizzly bears. This 

approach further provided a jumping-off point for additional statistical analyses, such as direct 

comparisons of movement behavior clusters. Resulting slow movement clusters and travel 

segments can be separated into specific movement behavior strategies for future movement 

models and home range analyses. From this perspective, the results presented here can aid in the 

development of better, more reliable movement models specific to grizzly bears. For example, we 

now recognize future movement models must be generated according to movement behavior. 

The identification of locally homogeneous vectors or local stationarity within movement 

trajectories provided valuable insight into individual bear behaviors at fine-scales. The 

characterization of homogeneous slow movement and travel segment bouts allowed for additional 

analyses regarding cluster duration, cluster frequency and cluster characteristics (day versus night 

classes). Results demonstrated that slow movement clusters on average lasted longer than fast 

movement clusters for all bears. Further, both slow and fast clusters types were larger for June 

and September over July and August indicating seasonal differences within vector structures. By 
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examining internal cluster characteristics, it is possible to infer additional information regarding 

the process generating them. For example, slow movement clusters with large mean residence 

times may indicate a profitable spatial location that should be examined in detail. For travel 

segments showing a large number of sequential fast movements, the next major question to be 

addressed is whether these segments represent a spatial response, flight, or simply the drive to 

acquire new resources. Unfortunately, this type of knowledge is exceptionally difficult to gather 

without direct observation of individual animals. 

While some habitat-movement trends were reported according movement type, results 

were highly individual by bear. This made it difficult to draw population-level conclusions when 

working with such a small sample size. Further, of the five individuals with 20-min data available 

for analysis, one resided in the mountains, 3 in the foothills, and 1 in Swan Hills. The resulting 

discriminant analysis indicated the mountain DFA results were much improved over bears 

residing in the foothills. This result again supports the need for separate models according to 

landscape type. 

7.3 Recommendations for Future Work 

This dissertation has presented a solid understanding of grizzly bear movement ecology. 

Given the research completed, the most important recommendation that can be made is the need 

to recognize the limitations when working with GPS radiotelemetry data specific to movement 

analyses. Due to the complicated nature of the data, limitations exist on data processing as well as 

the type of analysis conducted. Of course with any research project, there always remains room 

for improvement. The priority of this dissertation was to empirically gather and assess movement 

data in a variety of ways. In this sense, the research has achieved its goals, yet new questions 

continually surfaced. 
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First, more research time needs to be spent investigating movement patterns and 

processes at finer spatial and temporal data scales. Right now, the best available data is collected 

at 20-min intervals. Comparisons to finer data collection levels, such as those gathered by 

Andrew Hunter, would allow for a better understanding of the inherent error when working with 

vector data structures. Unfortunately, working with finer-scales of GPS data comes with 

additional logistical and ethical considerations, such as battery life and impact of repetitive 

capture on grizzly bear health (Cattet et al. 2008). 

Second, resulting movement parameters must be tested in the context of simulated 

movement modeling at larger-scales. Bridging the gap between empirical data and modeling 

approaches remains primarily unstudied for grizzly bears in Alberta. While Chapter 6 presents a 

robust technique for separating movement types, it has only been applied to 20-min data sets for 

five individual grizzly bears. The next step would be to ultimately test this approach using less 

frequently sampled data sets from a larger population of animals across the geographic area of 

interest. For example, applying the segmentation technique to a larger subpopulation of grizzly 

bears with 1-hr data, results may highlight population-level trends not achieved within the course 

of this study. With a larger data set, movement surfaces could be created that compliment 

foraging area or core area analysis. 

Finally, no process-based approaches were conducted as part of this dissertation. As such, 

the ability to investigate the underlying mechanisms generating the GPS spatial movement 

patterns is limited. A next step would be to use the detailed movement results presented here to 

further parameterize movement models. For example, random walk models or step selection 

function models require the generation of random vector movements for comparison. These 

usually draw upon known movement parameter distributions to examine questions surrounding 
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randomization. Further, linking movement parameters to underlying landscape properties requires 

more work across multiple scales. 

Attempts to examine this relationship at the individual level were not as successful as 

needed to create functional movement models. While habitat-use models are well developed for 

the FRI project (Nielsen et al. 2002, 2003, Nielsen et al. 2004a, Nielsen et al. 2004c), movement-

based models require more work. It is possible that movement behavior comparisons would be 

better understood using food-based surfaces rather than landscape classification surfaces. Again, 

future work should be conducted across more individuals to achieve a better understanding of the 

behavioral relationships between movement and underlying landscape properties. Currently, due 

to individual variability, drawing population-level conclusions is difficult. Understanding the 

overall spatial structure (pattern and process) of grizzly bear movements will significantly 

improve modeling efforts which attempt to replicate movement patterns across large-scale 

landscapes. 

The potential exists to link the movement results presented here to other variables such as 

bear health and mortality rates. First, it would be interesting to examine the relationships of 

individual grizzly bears movement rates and health indicators (e.g. weight or stress) across the 

two primary landscape types. Second, by separating vector-based movements into slow 

movement clusters and travel segments for a larger population of grizzly bears, the resulting 

spatial pattern of mapped travel segments could provide additional information regarding 

movement behaviors across varying landscape types. For example, does the number of travel 

segments increase (occurrence or duration) in fragmented environments and what is the resulting 

spatial pattern? Alternatively, do slow movement clusters occurring for long periods of time 

indicate high-security habitat types or food patches high in resources? Understanding these 
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relationships would help to identify landscapes or regions where focused management and 

conservation efforts are needed. 
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