Wilfrid Laurier University Scholars Commons @ Laurier

Theses and Dissertations (Comprehensive)

2010

Paleolimnological Reconstruction of Hydrologic Change in the Slave River and Great Slave Lake During the Past Millennium

Matthew Ennis Wilfrid Laurier University

Follow this and additional works at: http://scholars.wlu.ca/etd Part of the <u>Hydrology Commons</u>

Recommended Citation

Ennis, Matthew, "Paleolimnological Reconstruction of Hydrologic Change in the Slave River and Great Slave Lake During the Past Millennium" (2010). *Theses and Dissertations (Comprehensive)*. 1013. http://scholars.wlu.ca/etd/1013

This Thesis is brought to you for free and open access by Scholars Commons @ Laurier. It has been accepted for inclusion in Theses and Dissertations (Comprehensive) by an authorized administrator of Scholars Commons @ Laurier. For more information, please contact scholarscommons@wlu.ca.

Library and Archives Canada

Published Heritage Branch

395 Wellington Street Ottawa ON K1A 0N4 Canada Bibliothèque et Archives Canada

Direction du Patrimoine de l'édition

395, rue Wellington Ottawa ON K1A 0N4 Canada

> Your file Votre référence ISBN: 978-0-494-75370-5 Our file Notre référence ISBN: 978-0-494-75370-5

NOTICE:

The author has granted a nonexclusive license allowing Library and Archives Canada to reproduce, publish, archive, preserve, conserve, communicate to the public by telecommunication or on the Internet, loan, distribute and sell theses worldwide, for commercial or noncommercial purposes, in microform, paper, electronic and/or any other formats.

The author retains copyright ownership and moral rights in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission. AVIS:

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque et Archives Canada de reproduire, publier, archiver, sauvegarder, conserver, transmettre au public par télécommunication ou par l'Internet, prêter, distribuer et vendre des thèses partout dans le monde, à des fins commerciales ou autres, sur support microforme, papier, électronique et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur et des droits moraux qui protège cette thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

In compliance with the Canadian Privacy Act some supporting forms may have been removed from this thesis.

While these forms may be included in the document page count, their removal does not represent any loss of content from the thesis.

Conformément à la loi canadienne sur la protection de la vie privée, quelques formulaires secondaires ont été enlevés de cette thèse.

Bien que ces formulaires aient inclus dans la pagination, il n'y aura aucun contenu manquant. ____

Paleolimnological reconstruction of hydrologic change in the Slave River and Great Slave Lake during the past millennium

By

Matthew Ennis

Honours Bachelor of Science, Wilfrid Laurier University, 2007

THESIS Submitted to the Department of Geography and Environmental Studies in partial fulfillment of the requirements for the Master of Science degree Wilfrid Laurier University Waterloo, Ontario, Canada 2010

©Matthew Ennis, 2010

Abstract

The Slave River Delta (SRD), NWT, represents a pivotal node in the upper Mackenzie Basin watershed and is a productive northern wetland landscape with a rich natural and cultural heritage. Concerns over environmental consequences of natural and anthropogenic-driven decline in river discharge as well as climate variability have prompted hydroecological studies to improve understanding of how this ecosystem functions over time and space. However, long-term natural hydrological variability of the Slave River system is not well documented and needs to be further developed. In order to provide a temporal context for understanding and evaluating the impacts of climate variability and change and other stressors on Slave River discharge, multi-proxy paleolimnological analyses have been conducted to reconstruct a long-term record of hydrologic variability in the Slave River system. Study sites include two small closeddrainage lakes (GSL1, SD34) located near a former elevated strandline of Great Slave Lake and another lake (SR1) located upstream on an island in the Slave River.

Multi-proxy analysis of lake sediment cores collected from SD34, GSL1 and SR1 provided a ~1200-year record of water level variation for the Slave River and Great Slave Lake. Sediment composition and elemental and stable isotope geochemistry proved to be sensitive indicators of hydrologic change within the study basins. Interpretation of C/N ratios and $\delta^{13}C_{org}$ values from SD34, GSL1 and SR1 additionally indicated that conventional, straightforward interpretation of these commonly applied paleolimnological measurements is not always appropriate.

Prior to the onset of the last millennium, during the Early Medieval period (MP), high C/N ratios, low $\delta^{18}O_{lw}$, high $\delta^{13}C_{org}$ and inorganic sediment indicated open-drainage conditions caused by riverine inundation of both study lakes. River inundation of SD34 and GSL1 was attributed to Slave River discharge dominated by a large flashy spring freshet and high ice-jam flood frequency.

The percent organic carbon, organic nitrogen, δ^{15} N, C/N ratios, $\delta^{18}O_{lw}$ values and $\delta^{13}C_{org}$ values appear to indicate isolation of SD34 and GSL1 from the Slave River at ~1000 AD and ~1150 AD, respectively. However, reduced ice-jam flood frequency in the SRD precedes a similar change in the upstream Peace-Athabasca Delta (PAD) by ~400 years. A change in the distributary network of the SRD and low Slave River discharge may account for the ~400 year offset and explain why SD34 and GSL1 became isolated from ice-jam flooding during the Middle MP, when ice-jam flood frequency was high in the PAD.

The interval of low Slave River discharge suggested by SD34 and GSL1 sediment records appeared to end at ~1300 AD with the re-emergence of open-drainage conditions in SD34 indicated by high $\delta^{13}C_{org}$ values. Open-drainage conditions at SD34 spanned the Late MP and were attributed to high Slave River discharge that is consistent with an interval of high North Saskatchewan River discharge.

The SR1 C/N record indicated that high Late MP Slave River discharge continued throughout the Little Ice Age (LIA). High LIA Slave River discharge was attributed to a delay in snowmelt-generated runoff that sustained higher summer river discharge as a result of a shift to cooler climate conditions. High $\delta^{13}C_{org}$ values in the GSL1 record indicated open-drainage conditions in GSL1 throughout the LIA and $\delta^{18}O_{lw}$ values that were similar to modern Great Slave Lake (GSL) $\delta^{18}O_{lw}$ values suggested that the open-drainage conditions were the result of GSL inundation. Therefore, increased Slave River

discharge appears to have caused high GSL water levels during the LIA, similar to that observed upstream in Lake Athabasca. High GSL water levels inundated GSL1 and likely occupied the strandline visible in the landscape to the south of the SRD.

At the beginning of the 20th century, the SR1, SD34 and GSL1 sediment records indicate closed-drainage conditions were established. Closed-drainage conditions at each study lake were attributed to a decline in water level within the Slave River system at the end of the LIA A 20th century decline in discharge parallels a shift to a warmer climate regime that has been shown to cause an earlier, more rapid melt of the spring snowpack in the headwaters of the Peace and Athabasca rivers. The sediment records of the three study lakes indicated that water levels within the Slave River system have declined from the high levels that characterized the LIA, falling to levels possibly similar to the MP. However, high $\delta^{18}O_{1w}$ values at GSL1, throughout the 20th century that are unique within the ~1200 record may suggest that present hydrological conditions at this site are unprecedented in the last ~1200 years.

These findings establish a link between hydrologic conditions within the Slave River system and those upstream in the PAD and Lake Athabasca. Sediment records from SD34, GSL1 and SR1 demonstrated that in the past ~400 years, the hydrology of the Slave River system responded similarly to the PAD in response to shifting climate regimes. This indicates that hydrologic change upstream in the headwaters of the Slave River has historically translated downstream to the SRD and GSL. Furthermore, these results show that water levels in the upper Mackenzie River system have varied considerably in the last ~1200 years and that they have been in decline over the last 200 years – a decline that is likely to continue given expected trajectories in river discharge.

Acknowledgements

I would like to thank my advisor Dr. Brent Wolfe for his time, patience, support and guidance which have been given from start to finish. Your passion for this work is contagious and has made the writing process much easier. I would also like to thank Brent for allowing me the opportunity to participate in field work outside the scope of my own project I would like to sincerely thank my co-advisor Dr. John Johnston for his time, patience and enthusiasm. Thank you for helping me think outside the box and for bringing a different perspective to the table that was always appreciated.

I am thankful to the following people for providing me with help and support during lab work and all other components of the thesis process: Dr. Brent Wolfe, Dr. John Johnston, Dr. Thomas Edwards, Dr. Roland Hall, Johan Wiklund, Bill Mark, Bronwyn Brock, Michelle Tai, Paige Harms, Caleb Light, Stephanie Lyons, Erin Dobson, Kevin Turner, Nick Sidhu and the rest of the MBD/NHL group. I would like to thank the following organizations for providing funding for fieldwork and analytical support: NSERC Northern Research Chair Program, Northern Scientific Training Program and the Polar Continental Shelf Program.

I would like to thank my family for all their support and encouragement. A special thank you to Suzanne Hatch for being there for me throughout the whole Masters process with continued support and encouragement. As well, an additional thank you to Caleb Light, Eric Thuss, Erin Dobson, Eric Sadowski and Andrea Kenward for "Wednesday Lunch Beers".

Table of Contents

Chapter 1 - Introduction	1
1.1 Introduction	1
1.2 Objectives	8
Chapter 2 - Study Site	10
-	10
5	
	13
	13
	14
	16
	17
	17
5	19
8	19
	20
	21
	25
Chapter 4 - Results and Interpretation	27
4.1 SR1	27
4 1.1 Core Description	27
•	29
4 1.3 Geochemical Stratigraphy	32
6 6	32
	33
	34
	35 36
	38
	39
	39
1	41
	45
	45
	46
Zone 1 (~762 AD to ~1818 AD)	47
	49
	50
	51
	53
1	53
	57
015	60
5 5	50 51
+	62
	63
	64
	65
Zone 4 (~1957 AD to ~2007 AD)	67

Chapter 5 - Discussion)
5.1 A Change in Depositional Environment at the Sediment Contacts	
of SR1, SD34 and GSL1 70	
5.2 Diatom Record at GSL1	
5.3 Establishing an Alternative Interpretation of $\delta^{13}C_{org}$ at GSL1 and SD34 77	
5.4 Paleohydrology of the Slave River and Great Slave Lake	
over the Past Millennium	
5 4 1 Early Medieval Period (~750 AD to ~ 1200 AD) 82	
5 4.2 Middle Medieval Period (~1200 AD to ~1300 AD)	
5 4 3 Late Medieval Period (~1300 AD to ~1550 AD) 87	
5 4.4 Little Ice Age (~1550 AD to ~1860 AD) $\dots \dots \dots$	
5 4.5 Post Little Ice Age (~1860 AD to ~2007 AD) 91	
Chapter 6 - Conclusions	1
6.1 Summary	
6.2 Management Implications	
6.3 Future Recommendations 100	0
References 10)1
Appendix A: ²¹⁰ Pb and ¹³⁷ Cs results	9
Appendix B: Study Site Chronologies	6
Appendix C: ¹⁴ C Results from Beta Analytic	2
Appendix D: LOI Results	6
Appendix E: Organic Carbon and Nitrogen Elemental and Stable Isotope	
Geochemistry 14	8
Appendix F: Cellulose Oxygen Isotope Results	1

List of Tables

Table 1. Summary of gravity cores names and depths from SR1, SD34 and GSL1	18
Table 2 Summary of Russian cores. names and depths from SR1, SD34 and GSL1	18
Table 3 Results of seed samples from SD34 RC-2 submitted for radiocarbon	
dating with 2 sigma standard deviations (95% probability) from SD34	44
Table 4: Comparing percent organic carbon, percent organic nitrogen and C/N	
ratios measured from recently deposited Slave River flood sediment	
(Brock et al., 2010) to values measured below the sediment contacts	
of SR1, SD34 and GSL1	73

List of Figures

Figure 2 Evolution of hydrographs for rivers draining the hydrographic apex of North America over the past millennium and anticipated future (Wolfe et al., 2008a) 5 Figure 3 Possible strandline of Great Slave Lake (Photo taken March 2007, facing north)
(Wolfe et al., 2008a) 5 Figure 3 Possible strandline of Great Slave Lake 9 (Photo taken March 2007, facing north) 9 Figure 4: SR1 (March 2007, facing north) 14 Figure 5: SR1 (March 2007, facing north) 14
Figure 3 Possible strandline of Great Slave Lake (Photo taken March 2007, facing north).9Figure 4: SR1 (March 2007, facing north).14Figure 5: SR1 (March 2007, facing north).14
(Photo taken March 2007, facing north). . . . 9 Figure 4: SR1 (March 2007, facing north). 14 Figure 5: SR1 (March 2007, facing north). 14
Figure 4: SR1 (March 2007, facing north) 14 Figure 5: SR1 (March 2007, facing north) 14
Figure 5: SR1 (March 2007, facing north). 14
Figure 6 SD34 (May 2005, facing east)
Figure 7: Topographic map of SRD area including GSL1 and SD34
Figure 8: GSL1 (March 2007, facing north east)
Figure 9: GSL strandline (March 2007, facing south) 16
Figure 10: Organic content and mineral matter values from LOI
analysis on SR1 KB-2
Figure 11 a) Activity profiles of ²¹⁰ Pb and ¹³⁷ Cs in Bq/g for SR1 KB-2 b) SR1
sediment core chronology 31
Figure 12 Percent nitrogen and percent organic carbon cross-plot of SR1 KB-2. 33
Figure 13 Geochemical stratigraphy for SR1 KB-2 . 34
Figure 14: Correlation between SD34 RC-2 and SD34 KB2 using organic content
values from LOI analysis
Figure 15: a) Activity profiles of ²¹⁰ Pb and ¹³⁷ Cs in Bq/g for SD34 KB-2 b) SD34
sediment core chronology 42
Figure 16 Percent nitrogen and percent organic carbon cross-plot of SD34 KB-2 and
RC-2
Figure 17 [.] Geochemical stratigraphy for SD34
Figure 18. Correlation between GSL1 RC-1 and GSL1 KB-1 using organic content
values from LOI analysis
Figure 19: Percent organic carbon values for GSL1 KB-1 (26.5 cm to 0 cm) and GSL1
RC-1 (100 cm to 20 cm)
Figure 20: a) Activity profiles of ²¹⁰ Pb and ¹³⁷ Cs in Bq/g for GSL1 KB-1 b) GSL1
sediment core chronology 58
Figure 21. Percent nitrogen and percent organic carbon cross-plot of GSL1 KB and
RC-1
Figure 22: Geochemical stratigraphy for GSL1
Figure 23: Change in depositional environment at SD34, GSL1 and SR1 as indicated
by C/N ratios and Cellulose-inferred lake water δ^{18} O 71
Figure 24: Soil map of Slave River Delta and surrounding area with approximate
position of SRD front at ~1180 years BP depicted as a dashed line
(Vanderburgh and Smith, 1988)
Figure 25. GSL1 open-drainage diatom indicator record compared to GSL1 $\delta^{13}C_{org}$ and
cellulose-inferred lake water δ^{18} O records

Figure 26. Spatial and temporal variability of a) concentration of chlorophyll a, b)	
isotopic composition of phytoplankton, c) concentration of DIC from four	
PAD lakes taken throughout the 2007 open-water season and the spring of	
2008 (Lyons,2010)	79
Figure 27 Comparison of $\delta^{13}C_{org}$ records from three closed-drainage basins PAD1	
(L1ght, 2010), GSL1 and SD34	81
Figure 28: Records of Slave River discharge (SD34 and SR1) compared to	
modeled North Saskatchewan River discharge (Model 1)(Case and	
MacDonald, 2003) and Great Slave Lake level record (GSL1) compared to	
Lake Athabasca lake level record (Bustard Island North Pond C/N ratios)	
(Wolfe et al, 2008a)	84
Figure 29. ~1200 year variation of Slave River discharge and multi-centennial change	
in Great Slave Lake water level	97

Chapter 1- Introduction

1.1 Introduction

The Slave River Delta (SRD) (Figure 1) is located on the southeast shore of Great Slave Lake (GSL) at the terminus of the Slave River. The SRD is a productive northern wetland landscape, home to a variety of unique plant and animal assemblages (Milburn et al., 1999). Deltaic landscapes such as the SRD are ecologically significant because they are more productive than other components of northern river systems (Milburn et al., 1999). The SRD is also of great cultural importance to the Deninu Ku'e First Nation community of Fort Resolution who utilize natural resources in the delta to support and maintain traditional lifestyles (Wolfe et al., 2007a).

The Slave River is part of the upper Mackenzie River system and is sourced predominantly by the Peace and Athabasca rivers. There are several potential stressors on the Peace-Athabasca-Slave river system. The Peace River was regulated in 1968 by the construction of the WAC Bennett Dam at Hudson's Hope, British Columbia. Additionally, growing energy demand has led to increased interest in hydroelectric development on the Slave River near Fort Smith (Hannaford, 2008). Increasing water withdrawal from the Athabasca River for oil sands production has recently put additional stress on the river system (Campbell and Spitzer, 2007). As well, climate change in recent years has caused the recession of alpine glaciers and a decline of snowpacks (Schindler and Donahue, 2006). This has resulted in a reduction in source water entering alpine-sourced rivers systems such as the Peace-Athabasca-Slave river system. All of these factors potentially influence the flow of water in the Slave River, but how these changes in river discharge may affect the SRD is not fully understood.

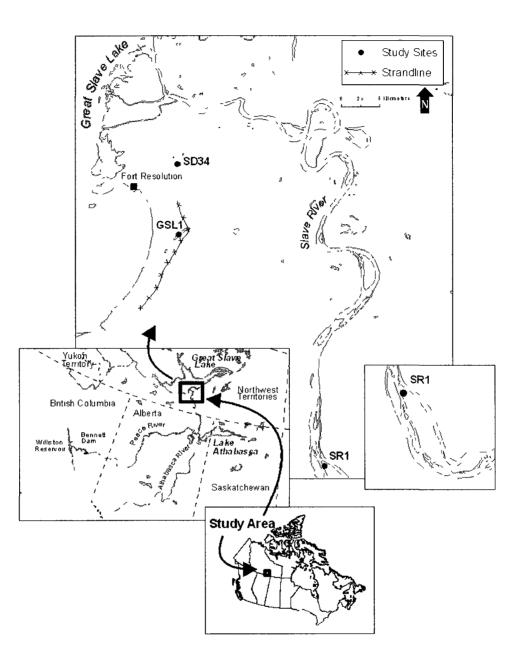


Figure 1 Slave River Delta and study lakes SR1, SD34 and GSL1 A former strandline of GSL visible in the landscape during the 2007 field season is also highlighted

The ability to predict future evolution of northern rivers is difficult because of a lack of long-term river and climate data for Canada's North (Rouse et al., 1997; Schindler and Donahue, 2006). The paucity of river gauging stations and short duration of available records provide limited insight into natural variability in discharge of northern river systems. Studies by Dery and Wood (2005) and Dery et al. (2009) have shown that hydrologic trends inferred from short-term records are susceptible to drastic change (reversal of trend) in response to fluctuating discharge over short periods of time. Longer hydrologic records than those available are then required to strengthen understanding of natural variability within northern river systems such as the Slave River. Long-term records of hydrologic variability within northern river systems would provide the knowledge required to make informed water resource management decisions (Sear and Arnell, 2006).

Extensive studies in the Peace-Athabasca Delta (PAD), upstream from the SRD by Wolfe et al. (2005, 2006, 2008a,b) have demonstrated the effectiveness of using multiproxy paleolimnological reconstruction as a tool for developing long-term hydrologic records to supplement sparse discharge data for a northern river system. Wolfe et al. (2005, 2006, 2008a,b) analyzed sediment cores from several PAD lakes in response to reports of less frequent and extensive spring flooding, declining lake levels and loss of wildlife habitat since the regulation of the Peace River (at the WAC Bennett Dam). These studies aimed to distinguish the effects of multiple stressors on the hydrological regime of a northern river system and to provide temporal context for the evaluation of causes affecting contemporary hydrological change. Results have indicated that the drying of PAD lakes can occur at a variety of time scales in the absence of spring river flooding. Some lakes may last decades without the input of river water and others may dry up within years (Wolfe at al., 2005; Peters et al., 2006). Wolfe et al. (2006, 2008a) also indicate that river flooding over the last several centuries has oscillated between multi-decadal intervals of both high and low flood frequency, suggesting significant natural variability in spring river flood frequency. As well, the most recent interval of low flood frequency in the PAD began several decades before the construction of the WAC Bennett Dam (Wolfe et al., 2006). Wolfe et al. (2008a,b) suggesting that changes in headwater climate and local geomorphic changes in Athabasca River flow appear to be the dominant drivers of river discharge and flooding in the PAD.

Using reconstructions of winter temperature and growth season relative humidity in the Columbia Icefield based on isotope analysis of tree-ring records, Edwards et al. (2008) described past climate of the eastern Rocky Mountains in the headwaters of the Athabasca River. During the past millennium, the upper Mackenzie River system has been characterized by a three-phase climate history, which includes the Medieval Period (MP) (AD ~1000 to ~1530), Little Ice Age (LIA) (AD ~1530 to ~1890) and 20th century. The climate of the MP consisted of relatively warm winters and higher relative humidity during the growth season and the LIA was characterized by a transition to colder temperatures and low growth season relative humidity (Edwards et al., 2008). Since the end of the LIA, temperature and relative humidity have increased and the climate reconstruction suggests that conditions may be returning to those similar to the early millennium.

Wolfe et al. (2008a), Sinnatamby et al. (2010) and Johnston et al. (2010) have demonstrated significant variability in discharge within the Peace-Athabasca river system over the last 1000 years in response to the changing climate patterns in the eastern Rocky Mountains outlined by Edwards et al. (2008). For instance, water levels in Lake Athabasca increased from a low at the onset of the millennium (MP) to a high during the LIA (Wolfe et al., 2008a; Sinnatamby et al., 2010; Johnston et al., 2010). Lake level variation over this period has been influenced by changes in summer discharge through the Peace-Athabasca river system. During the MP, warmer temperatures caused an earlier spring melt in headwater regions and a "flashy" spring freshet, which resulted in frequent, high-magnitude ice-jam flood events but low summer discharge and low Lake Athabasca water levels (Figure 2). During the LIA, colder temperatures delayed the spring melt in the Peace-Athabasca headwater regions, resulting in sustained high summer discharge that raised Lake Athabasca water levels ~2.3 m above contemporary levels (Wolfe et al., 2008a; Sinnatamby et al., 2010; Johnston et al., 2010) (Figure 2).

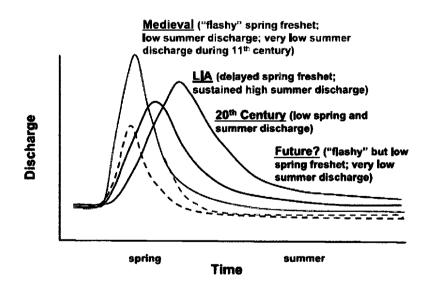


Figure 2. Reconstructed and projected hydrographs for rivers draining the hydrographic apex of North America (Wolfe et al., 2008a).

Since the end of the LIA (~1900 AD), river discharge in the Peace-Athabasca river system has been in decline causing Lake Athabasca water levels to decrease (Wolfe et al., 2008a). If current trends of decreasing discharge persist, summer discharge in the Peace-Athabasca river system may fall below the low levels reconstructed for the 11th century (Figure 2). Lake Athabasca and GSL are both natural reservoirs in the same river system and their water levels have been shown to respond comparably during wet and dry years (Bennett, 1970). As a result, it is likely that in the past millennium GSL has experienced periods of high and low water level similar to those documented by Wolfe et al. (2008a), Sinnatamby et al. (2010), and Johnston et al. (2010) for Lake Athabasca. Evidence of fluctuating Great Slave Lake water levels similar to Lake Athabasca would provide new insight into the natural forcing factors that contribute to variability in Slave River discharge.

While there has been extensive study upstream in the PAD and Lake Athabasca, a long-term record of Slave River hydrologic variability is lacking. Using multi-proxy paleolimnological methods, Brock et al. (2010) were able to supplement the 47-year gauged record of the Slave River by generating an 80-year record of flood frequency for an SRD lake. The 80-year record indicates flood frequency was lowest prior to upstream river regulation and that the onset of river regulation coincided with a period of increased flood frequency. Changes in flood frequency at the SRD, as determined by Brock et al. (2010), paralleled those observed in the flood frequency records developed by Wolfe et al. (2006) for the PAD, suggesting climate is the dominant driver of change in runoff regime for both the SRD and PAD. However, the Brock et al. (2010) record is still relatively short and does not address long-term hydrologic variability in the Slave River system. A long-term record of hydrologic variability of the SRD would not only provide new insight to the relationship between the PAD and SRD (two large important wetland systems in the upper Mackenzie River Basin), but more importantly, would provide understanding of the Slave River system's response to a variable climate. Such knowledge is critical in establishing a historical context of natural hydrologic variability within the Slave River system A context of natural variability coupled with an understanding of the relationship between climate and river discharge is critical for making informed management decisions. The importance of informed management of the Slave River system may be amplified in the near future as discharge through the system is expected to decline as a result of declining glacier melt contributions and snow pack runoff in headwater regions (Barnett et al., 2005, Lapp et al., 2005, Rood et al., 2005).

1.2 Objectives

The objective of this study is to establish a long-term hydrologic record for the Slave River and gain a better understanding of the relationship between climate variation over the past 1200 years and Slave River hydrology. Such a record would extend beyond the instrumental records (47 years) of the Slave River and the flood frequency record established by Brock et al. (2010) (~80 years). Research questions that multi-proxy geochemical analyses will address include: 1) How has Slave River discharge changed over the past millennium and what is its relationship to climate? 2) How does variation in Slave River discharge compare to paleohydrological records of the upstream PAD? and 3) Does the postulated strandline south of the SRD observed during field study in March 2007 (Figure 3) correspond to a GSL high-stand during the LIA similar to the high-stand of Lake Athabasca documented by Sinnatamby et al. (2010) and Johnston et al. (2010)? Information gained here regarding the relationships between climate and discharge as well as the Slave River and PAD can be used to inform water resource management within the upper Mackenzie River basin.

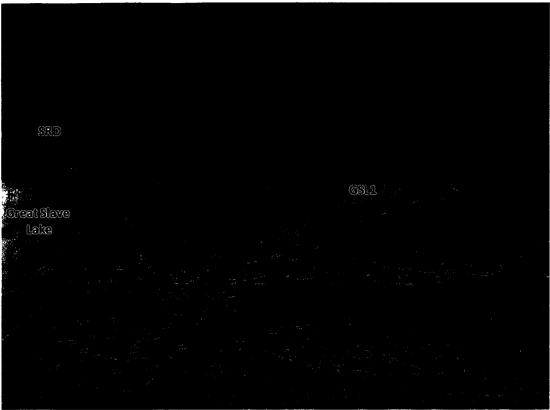


Figure 3. Possible strandline of Great Slave Lake is shown by dashed line. The relict river channel GSL1 terminating at the potential shoreline is also indicated (photo taken March 2007, facing north).

Chapter 2 – Study Site

2.1 Slave River-Great Slave Lake System

The Slave River flows through relict deltaic and alluvial sediments, deposited after the retreat of the Keewatin Ice Sheet. The Slave River and GSL are located within former Glacial Lake McConnell. Outflow and glacial isostatic adjustment resulted in Lake McConnell draining by 8300 BP (Vanderburgh and Smith, 1988) leaving present-day Lake Athabasca, GSL and Great Bear Lake as remnants of the second largest glacial lake in North America. Observations of the landscape surrounding GSL have indicated that lake water levels have declined more then 90 m from early post-glacial conditions (Rawson, 1950). Since the draining of Glacial Lake McConnell, sediment carried by the Slave River has been deposited in the southern arm of GSL forming the SRD. Since 1180 ¹⁴C yr BP, progradation of the delta has occurred at an average rate of 10 m per year, and the relict delta now covers an area of ~8300 km² (Vanderburgh and Smith., 1988). Currently, only about 5% of the SRD is actively prograding and at a much slower rate than the historical average (Vanderburgh and Smith, 1988).

The Slave River flows for 420 km north from its origin at the confluence of the Peace River and Rivière des Rochers in the Peace-Athabasca Delta (PAD). The channel remains relatively straight for the majority of its length, but as it nears the SRD, meander bends and island bar complexes become more prevalent (Figure 1). The Peace River contributes ~66% of the flow to the Slave River (English et al., 1997) with the bulk of remaining water input supplied by the Athabasca River and Lake Athabasca. The Slave River terminates at the SRD, and accounts for the majority of annual water input to GSL, a primary source of water for the Mackenzie River.

The Peace-Athabasca-Slave system drains approximately 615.000 km² and discharges at an annual rate of ~3,400 m³/s into GSL (Prowse et al., 2002), accounting for ~75% of total inflow to the lake (Gibson et al., 2006a). GSL occupies ~27,200 km² with a maximum length of 440 km and width of 160 km and has a total volume of $\sim 1.58 \times 10^{12} \text{ m}^3$ (Rawson, 1950). The mean water level of GSL (from 1939-99) is approximately 166.60 ± 0.22 masl. However, there is considerable variability in lake level, both annually and interannually, with an historical annual range of ~ 1.2 m (Gibson, 2006b). The water balance of GSL is dominated by river flow, accounting for 95% of the input and 93% of the output. As a result, the water level of GSL is subject to both seasonal and annual fluctuations driven predominantly by variation in Slave River discharge (Rawson, 1950). Maximum water levels occur in late May and early June corresponding to peak river flow and minimum levels occur in April when Slave River discharge is lowest (Gibson et al., 2006b). Fluctuations of inflow to the Slave River from headwater regions in the eastern Rocky Mountains have been shown to influence the instrumental (~past 50 years) water balance of GSL (Gibson et al., 2006b). High (low) water levels within GSL correspond to increased (decreased) discharge through the Peace-Athabasca-Slave system (Gibson et al., 2006a). This indicates that a longer record of GSL water level change would be useful for identifying climatic and hydrologic variability within the upper Mackenzie River system (including the SRD).

The SRD contains a variety of small lakes and wetlands, spanning a range of hydrological settings. SRD lakes were classified based on the dominant process affecting

their water balances during the 2003 thaw season (Brock et al., 2007). SRD lakes were classified as evaporation-, flood- or exchange-dominated. Evaporation-dominated lakes have water balances controlled by snowmelt in the spring followed by evaporation and precipitation during the summer months and are generally not affected by river flooding during the spring melt. The water balance of exchange-dominated lakes is variable throughout the thaw season and depends mainly on the strength of seiche events on GSL or Slave River inflow. Flood-dominated lakes have water balances that are largely controlled by river flooding during the spring break-up. Spring break-up flooding is important in a northern delta such as the SRD because it provides water to lakes otherwise isolated from the main drainage network of the Slave River (Brock et al., 2007, 2008; Sokal et al., 2008). The pulses of water from spring break-up flooding replenish water levels and introduce sediment to lake beds (Milburn et al., 1999; Rouse et al., 2007). The occurrence and magnitude of flooding in the SRD depends predominantly on the amount of Slave River discharge during the spring breakup (Brock et al., 2008). Because Slave River discharge is dependent on snow accumulation and rate of melt in its source regions, changes in upstream hydrologic conditions can have significant influence downstream in the lakes of the SRD (Brock et al., 2008).

2.2 Study Basins

Multi-proxy paleolimnological analyses were conducted on sediment cores retrieved from three study basins: SR1 (Figure 1, 4, 5), GSL1 (Figure 1, 6) and SD34 (Figure 1, 7) to gain insight into multi-centennial hydrologic change in the Slave River system. SR1 was chosen because it is located upstream from the SRD and was expected to provide a record of Slave River water level outside of the active delta and SD34 was chosen because it was anticipated to record high Slave River water levels within the contemporary delta. GSL1 is located outside of the active delta, adjacent to a strandline south of the SRD (Figure 3) and was chosen because it was expected to provide a record of high GSL water levels. All three basins are currently isolated from hydrological influence of the Slave River and GSL.

2 2 1 SR1 (60° 48'09 7'' N, 113° 13'33 9'' W)

SR1 is a small basin (~100 m in length) that at the time of coring (March 24, 2007) was ~90 cm deep (Figure 4, 5). This basin is located on a large island (~10 km long and ~1.5 km wide) on the Slave River, ~60 km upstream from the SRD. The island has no evidence of recent flooding and the basin is surrounded by mature spruce forest, with no evidence of inflow or outflow channels (Figure 4, 5). It is expected that SR1 would only experience flooding during periods of Slave River discharge higher than the present.

Figure 4. SR1 (March 2007, facing north).

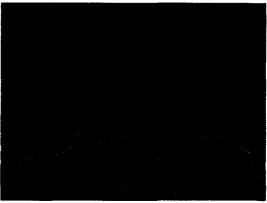


Figure 5. SR1 (March 2007, facing north).

2.2.2 SD34 (61° 11'41'' N, 113° 33'49'' W)

SD34 (Figure 6) is located in the relict region of the SRD, ~6 km northeast of Fort Resolution. The lake is kidney-shaped with a maximum length of ~600 m and is less than 2 m at its deepest point. The lake appears to be located at an elevation of ~159 metres above sea level (masl) (Figure 7). SD34 contains no inflow or outflow channels. Presently, the lake is isolated from the Slave River and its distributaries and is not flooded by river water during the spring break-up, even during large spring break-up floods like that of 2005 (Brock et al., 2008). SD34 was classified as an evaporationdominated basin by Brock et al. (2007).

Figure 6. SD34 (May 2005, facing east)

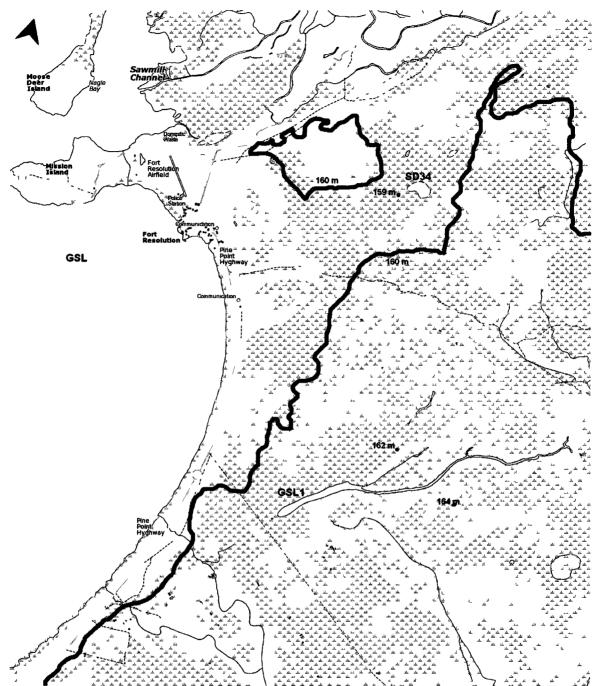


Figure 7. Topographic map of SRD area including GSL1 and SD34 (Atlas of Canada, 2006). 160 m contour lines are indicated by thick black line, spot elevations in close proximity to GSL1 and SD34 are also highlighted. Elevation of GSL1 is approximated to be between 161 masl to 163 masl based on spot elevations in the vicinity of the lake and the proximity of the lake to 160 masl contour line. Elevation of SD34 is approximated to be 159 masl based on its location between two 160 masl contour lines and its close proximity to a 159 masl spot elevation.

2.2.3 GSL1 (61° 11'41'' N, 113° 33'49'' W)

GSL1 is the terminal end of a relict river channel that was likely a former distributary channel of the Slave River (Figure 8). It is located ~2.5 km east of the current GSL shoreline and ~8 km southeast of Fort Resolution (Figure 1). The main body of the basin is shallow (< 2 m deep) and has a length of ~2 km and width of ~150 m. The elevation of GSL1 appears to be between ~161-163 masl (Figure 7), ~3.6-5.6 m higher in elevation than the highest gauged GSL water level (157.23 masl) (Gibson, 2006b). Currently, the lake is located outside the range of contemporary river flooding (see Brock et al., 2008). However, a possible former strandline of GSL observed near this site during field study in March 2007 suggests the area may have been flooded during a high-stand of GSL (Figure 9). The strandline is marked by a change in the spatial distribution of lakes and the termination of several relict river channels (such as GSL1) (Figure 9). A greater concentration of lakes likely indicates poorer drainage on the GSL side of the strandline.

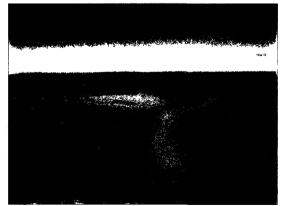


Figure 8. GSL1 (March 2007, facing northeast).

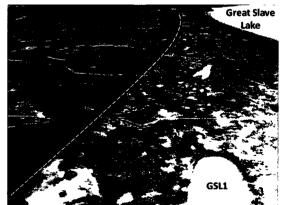


Figure 9. GSL strandline (March 2007, facing south).

Chapter 3 – Field and Laboratory Methods

3.1 Retrieval of Sediment Cores

Lake sediment cores were collected for each study lake (SD34, GSL1 and SR1) through lake ice in March 2007 using gravity and Russian peat corers. Gravity cores were collected using a Glew gravity corer, driving a tube (open at both top and bottom) vertically into the lake sediment using gravity (Glew et al., 1989). The cores were then sectioned into 0.5-cm intervals at the field station. The Russian peat coring process involved the use of a chamber corer. In the closed position, the chamber corer was driven vertically into the sediment with drive rods. While maintaining its vertical orientation, the corer was then rotated capturing the sediment within the chamber and the Russian peat corer was then removed (Glew et al., 2001). Russian cores were then sectioned into 0.5-cm intervals at Wilfrid Laurier University. The combination of gravity and Russian cores is effective for providing a sedimentary record for the recent past because the gravity core preserves the integrity of the uppermost sediment sequence and the Russian corer can penetrate more deeply than the gravity corer, extending the sediment record.

Several cores were taken from each study lake (Table 1 and 2). Gravity cores were denoted KB and Russian cores were denoted RC. Depths and names of all cores taken are presented in Table 1. For SR1, the KB-2 core was used for analysis because it had a more defined sediment-water interface than KB-1, indicating that the uppermost sediments had been less disturbed during the core retrieval process. For SD34, the KB-2 core had a better defined sediment-water interface than KB-1 and was used for analysis. Two RC

cores were also taken from SD34. SD34 RC-2 was used for analysis because it appeared to have preserved a greater amount of the uppermost sediment than RC-1. One of each core type was taken from GSL1 and as a result KB-1 and RC-1 cores were used for analysis. Russian cores from SD34 (SD34 RC-2) and GSL1 (GSL1 RC-1) were aligned to their corresponding gravity cores (SD34 KB-2 and GSL1 KB-1) using percent organic matter values. Once aligned, the Russian core depths were adjusted to account for missing surface sediment.

Study Lake	Coring Date (2007)	Gravity Core Name	KB Core Depth (cm)
SR1	March 24	SR1 KB-1	54.0
SR1	March 24	SR1 KB-2	39.5
SD34	March 24	SD34 KB-1	36 5
SD34	March 24	SD34 KB-2	38.0
GSL1	March 25	GSL1 KB-1	26.5

Table 1 Summary of gravity cores

Study Lake	Russian Core Name	RC Core Depth (Field Measurement) (cm)	RC Core Depth (Adjusted in Lab) (cm)
SR1	SR1 RC-1	4 - 100	Not analyzed
SD34	SD34 RC-1	7 - 54	Not analyzed
SD34	SD34 RC-2	0 - 66	4 5 - 75.5
GSL1	GSL1 RC-1	0 - 95	0 5 - 100

3.2 Laboratory Methods

3.2.1 Loss-on-Ignition Analysis

Loss-on-ignition (LOI) is frequently used to determine moisture content, bulk organic matter content and inorganic content of lake sediment (Dean, 1974; Heiri et al, 2001). Organic content profiles are of greatest interest to this study as they can potentially reveal patterns and trends in lake productivity, organic matter diagenesis and terrestrial organic matter and inorganic matter inputs over time. Additionally, in order to establish a continuous stratigraphic record for SD34 and GSL1, LOI results were used to align the gravity and Russian cores.

LOI was conducted at 0.5-cm intervals on samples from SR1 KB-2 (0 cm to 39.5 cm), SD34 KB-2 (0 cm to 38.0 cm), SD34 RC-2 (4.5-cm to 75.5-cm), GSL1 KB-1 (0 cm to 26.5 cm) and GSL1 RC-1 (0.5 cm to 43.5 cm). Wet sediment samples from each interval (approximately 0.5 grams) were weighed before and after heating at 90°C, 550°C and 950°C. The weight loss during each temperature stage was measured and provides an estimate of the water content (1), organic matter content (2), mineral content (3) and carbonate content (4) of the sediment samples.

- (1) Water content, $LOI_{90} = ((WW DW_{90}/WW)*100)$
- (2) Organic matter content, $LOI_{550} = ((DW_{90}-DW_{550})/DW_{90})*100$
- (3) Mineral matter content, $LOI_{950} = ((DW_{90}-DW_{950})/DW_{90})*100$
- (4) Carbonate content, $CaCO_3 = (LOI_{950}/0.44)$

*WW wet weight of sample, before heating to 90°C DW dry weight of sample, after heating to 90°C (Heiri et al., 2001).

3.2.2 Sediment Chronology

A ²¹⁰Pb-based sediment chronology was developed for each study lake. Total ²¹⁰Pb activity is a measure of both unsupported ²¹⁰Pb, the result of atmospheric fallout, and supported ²¹⁰Pb, which occurs naturally within the sediment column as the result of in situ ²²⁶Ra decay (Appleby, 2001). Supported ²¹⁰Pb, in equilibrium with ²²⁶Ra, can be subtracted from the total ²¹⁰Pb inventory, and the amount of unsupported ²¹⁰Pb can then be determined. The unsupported ²¹⁰Pb value for each sediment interval can be used to determine the sediment age using the radioactive decay of ²¹⁰Pb (22.26 yrs), to produce a chronology for the core over the period of time that unsupported ²¹⁰Pb is present (~150 years) (Appleby, 2001). The Constant Rate of Supply (CRS) model (Appleby, 2001) assumes a constant flux of ²¹⁰Pb to the sediment, independent of changes in sedimentation rates, was used to establish the core chronologies.

The peak activity of ¹³⁷Cs, usually reported as 1963, can also provide a stratigraphic marker for sediment chronologies (Appleby, 2001) and was measured using gamma spectrometry. ¹³⁷Cs values may peak at 1963 in stratigraphic records because this was when peak fallout occurred from above ground nuclear bomb testing, which released ¹³⁷Cs into the atmosphere.

²¹⁰Pb and ¹³⁷Cs analysis were conducted on SR1 KB-2, SD34 KB-2 and GSL1 KB-1 because gravity cores preserve integrity of the uppermost sediment sequence.
Preparation for dating required packing freeze-dried lake sediment samples into plastic tubes. Samples taken at 1-cm intervals (from 0-cm to 40-cm for SR1 KB-2, 0-cm to 36.5-cm for SD34 KB-2 and 0.5-cm to 26.5-cm for GSL1 KB-1) were prepared for each study lake. After packing, the sediment in the tube was sealed with epoxy and submitted to the

University of Waterloo Environmental Change Laboratory (WATER) for ²¹⁰Pb and ¹³⁷Cs analysis. Gamma spectrometry was used to measure the radioisotope activity needed for the development of the sediment chronologies. Values from samples measured in the gamma spectrometer were coupled with interpolated values to calculate CRS dates for every sample where unsupported ²¹⁰Pb was present in SR1 KB-2, SD34 KB-2 and GSL1 KB-1. The depth of supported ²¹⁰Pb was interpreted to be reached where ²¹⁰Pb values became relatively constant.

In order to constrain sediment chronologies of Russian cores that extend well below the ²¹⁰Pb chronology, radiocarbon dating ¹⁴C was attempted. Radiocarbon (¹⁴C) has a half-life of 5,568 years and is most often applied for age-dating up to 40,000 years. Lake sediments usually contain telmatic and limnic plant and animal debris that can be collected and dated in order to obtain age control on sedimentary sequences (Björk and Wohlfarth, 2001). For this study, plant macrofossils extracted from SD34 RC-2 at 45-cm and 54-cm core depth were radiocarbon-dated to constrain the sediment chronology below the ²¹⁰Pb dated interval.

3.2.3 Analysis of Organic Carbon and Nitrogen Content and Stable Isotope Composition

Organic carbon and nitrogen content and stable isotope composition were analysed to reconstruct nutrient dynamics related to hydrologic variability in each study lake. Geochemical characterization of organic matter within lake sediment can reveal organic matter source and supply, cycling of nutrients, and lake productivity throughout time and thus is useful for reconstructing past environmental conditions within lakes (Meyers, 1997; Meyers and Teranes, 2000). The content and isotopic composition of organic carbon and nitrogen may also be strongly linked to hydrological processes as they have been successfully used in combination with other proxies to reconstruct long-term hydroecological change within the upper Mackenzie River Basin (Wolfe et al., 2008b; Brock et al., 2010; Johnston et al., 2010).

Percent total organic carbon (% C_{org}) describes the abundance of organic matter in lake sediments (Meyers and Teranes, 2001). However, only ~50% of lake sediment organic matter is composed of carbon, making the total organic matter roughly double the % C_{org} value (Meyers and Teranes, 2001). The % C_{org} value is a more sensitive proxy than total organic matter (determined through LOI) because total organic matter content can be inflated by variable amounts of volatile non-carbon components (Meyers and Teranes, 2001). Changes in % C_{org} within a sediment core can be associated with changes in primary productivity, making it a useful proxy for inferring paleoenvironmental change (Meyers and Teranes, 2001).

Total nitrogen content (%N) includes the measurement of both inorganic and organic nitrogen in lake sediment (Talbot, 2001). Nitrogen is an important nutrient for organic productivity. Additionally, nitrogen can act as the limiting nutrient for organic productivity in lakes, meaning changes in lake organic matter production and composition can be influenced by the source and cycling of nitrogen (Talbot, 2001). However, determination of bulk nitrogen by an elemental analyzer does not separate organic and inorganic nitrogen. Inorganic nitrogen typically represents a small fraction of total nitrogen in lake sediments, but can represent a larger proportion of total nitrogen in sediment with low organic content (Meyers, 1997). In such cases, the inorganic fraction can artificially depress the C/N ratio (Meyers, 1997). Expressing lake sediment %C_{org} and %N values as a ratio (C/N) can indicate the relative contribution of organic matter from terrestrial (allochthonous) or aquatic (autochthonous) sources (Meyers and Teranes, 2001). Typically, organic matter that is aquatic in origin has C/N ratios that are low (4-10), whereas organic matter derived from (cellulose-rich, protein-poor) vascular land plants have high C/N ratios of >20 (Meyers and Teranes, 2001). However, algal growth under nitrogen-limiting conditions has been shown to cause elevated C/N values in highly productive basins (Meyers and Teranes, 2001).

The carbon isotope composition in the organic matter of lake sediments is an important proxy for assessing organic matter sources, reconstructing past productivity, and identifying changes in availability of nutrients in surface waters (Meyers and Teranes, 2001). Stable carbon isotope composition of lake sediment organic matter $(\delta^{13}C_{org})$ represents the $^{13}C/^{12}C$ ratio and provides an archive of catchment and within-lake processes (Meyers and Teranes, 2001). The carbon isotope composition of aquatic plants is primarily determined by the $\delta^{13}C$ of the dissolved inorganic carbon source $(\delta^{13}C_{DIC})$. Processes controlling the $\delta^{13}C_{DIC}$ composition include the source and supply of inorganic carbon (e.g., from catchment runoff), ^{13}C -enrichment from preferential uptake of ^{12}C by phytoplankton during photosynthesis, isotopic exchange with atmospheric CO₂, recycling of ^{13}C -depleted CO₂ from respiration/decay of water column and bottom sediment organic matter, and uptake of bicarbonate (HCO₃⁻_(aq)) at elevated pH (Wolfe et al., 2000). Conventional interpretations typically attribute positive shifts in $\delta^{13}C_{org}$ to increases in aquatic productivity (McKenzie, 1985; Schelske and Hodell, 1991, 1995;

Meyers and Lallier-Verges, 1999). However, stratigraphic shifts in lake sediment $\delta^{13}C_{org}$ may also result from hydrologically-driven changes (Wolfe et al., 1999, 2000)

Nitrogen isotope composition (δ^{15} N) is commonly used as an indicator of ecosystem productivity, nutrient availability, and the source of organic matter (Meyers, 1997; Talbot, 2001). Using δ^{15} N values to identify the source of organic matter is based on the difference between 15 N/¹⁴N ratios of inorganic nitrogen available to plants in water and on land (Meyers and Teranes, 2001). A δ^{15} N signature depends predominantly on its source. Atmospheric N₂ fixed by blue-green algae produce a signature that is lower (0‰) than non-nitrogen fixing algae (7-10‰) (Meyers and Teranes, 2001). Despite this, interpretation of sedimentary δ^{15} N records is made more difficult than those of carbon, by the complicated dynamics of nitrogen biogeochemical cycling (Fogel and Cifuentes, 1993; Bernasconi et al., 1997; Hodell and Schelske, 1998; Brenner at al., 1999; Talbot, 2001)

In order to prepare sediment for organic carbon and nitrogen content and stable isotope analysis, samples taken at 0.5-cm intervals from SR1 KB-2 (0 cm – 40 cm), SD34 KB-2 (0 cm – 36.5 cm), SD34 RC-2 (4.5 cm – 75 cm), GSL1 KB-1 (0 cm – 26.5 cm) and GSL1 RC-1 (20 cm – 100 cm) were treated with a 10% HCl wash to dissolve carbonate and rinsed with deionized water to a neutral pH. Samples were then freeze-dried and drysieved through a 500-µm mesh to to remove coarse organic matter that may be of terrestrial origin. Organic carbon and nitrogen elemental and stable isotope compositions were measured on the fine fraction using a Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS) at the University of Waterloo Environmental Isotope Laboratory (UW-EIL). Elemental organic carbon and nitrogen results are expressed in percent weight. Stable isotope results are expressed as deviations in per mil (‰) from a standard material. The organic carbon stable isotope composition (δ^{13} C) is measured against Vienna Peedee Belemnite (VPDB) and the nitrogen stable isotope composition (δ^{15} N) is measured against atmospheric nitrogen (AIR). Analytical uncertainties of %C_{org}, %N, δ^{13} C and δ^{15} N for SR1 KB-2 are ±0.10%, ± 0.01%, ± 0.08‰ and ±0.01‰, respectively. Analytical uncertainties of %C_{org}, %N, δ^{13} C and δ^{15} N for SD34 KB-2 and RC-2 (combined) are ±0.50%, ± 0.04%, ± 0.12‰ and ±0.11‰, respectively. Analytical uncertainties of %C_{org}, %N, δ^{13} C and δ^{15} N for GSL1 KB-1 and RC-1 (combined) are ±0.50%, ± 0.05‰ and ±0.40‰, respectively. All analytical uncertainties are based on sample replicates.

3.2.4 Cellulose Oxygen Isotope Analyses

Oxygen isotope analysis of aquatic plant cellulose extracted from lake sediments can be used to reconstruct lake water oxygen isotope composition, a useful tracer of past hydrological conditions (Edwards and McAndrews, 1989; Edwards, 1993; Wolfe et al., 2001, 2007b). Cellulose is a bio-molecule that exists in the cell walls of plants and some algae and is preserved in sediments as algal cells within zooplankton fecal pellets, or as amorphous organic matter (Edwards, 1993). Aquatic cellulose incorporates the oxygen isotope composition of the lake water from which it is formed. The cellulose δ^{18} O can be used to reconstruct lake water oxygen-isotope history under the assumption that oxygen isotope fractionation between the lake water and cellulose is constant ($\alpha_{cell-lw} = 1.028$) and is independent of temperature and plant species (Wolfe et al., 2001).

Sediment from SD34 RC-2, GSL1 KB-1 and GSL1 RC-1 were analyzed for cellulose oxygen isotope composition Sediment from SR1 was not analyzed because it was determined that analysis of organic carbon and nitrogen content and stable isotope composition was sufficient for reconstructing past hydrological conditions. SD34 RC-2 was sampled at 0.5-cm resolution (4.5 cm - 75 cm) and GSL1 KB-1 (0 cm - 26.5 cm) and GSL1 RC-1 (27 cm - 100 cm) was sampled at 3.0-cm resolution. Cellulose extraction involved several steps (Wolfe et al., 2001, 2007b). Acid-washing to remove carbonate and sieving to separate coarse and fine fractions (see Analysis of Organic Carbon and Nitrogen Content and Stable Isotope Composition) were performed first. Solvent extraction, bleaching, and alkaline hydrolysis were performed on the fine fraction to remove non-cellulose organic material. Next, removal of iron and manganese oxyhydroxides was completed through hydroxylamine leaching, followed by heavyliquid density separation using sodium polytungstate to separate the cellulose fraction from the minerogenic residue. Cellulose oxygen isotope composition was measured using standard methods (Wolfe et al., 2007b) by CF-IRMS at the UW-EIL. Oxygen isotope results were expressed as δ -values, which represent deviations in per mil (‰) from the Vienna-Standard Mean Ocean Water (VSMOW) standard for oxygen. Analytical uncertainties for SD34 RC-2, GSL1 KB-1 and GSL1 RC-1 were ±0.19‰, ±0.72‰, and $\pm 0.43\%$, respectively, based on sample replicates.

Chapter 4 - Results and Interpretation

4.1 SR1

4.1.1 Core Description

Visual observations of the SR1 KB-2 sediment core prior to field sectioning revealed two distinct units. The lower unit extended from the base of the core (39.5-cm depth) to 30.5-cm depth and consisted of inorganic-rich, light grey, silty clay sediment. No plant fibres were observed in these lower strata and LOI revealed high percent mineral matter (78.0% to 90.0%) and low organic matter content (8.1% to 18.7%) below 30.5-cm depth (Figure 10). At 30.5-cm depth there was an abrupt contact where sediment changed from light grey silty clay to dark brown organic sediment (Figure 10). A similar silty clay - organic contact was observed in the longer Russian core collected from SR1 (SR1 RC-1). The silty clay interval of the Russian core extended from the contact to the base of the core, indicating that this interval extended at least 57 cm below the base of SR1 KB-2. However, the Russian core was not used for analysis because SR1 KB-2 captured the sediment contact and the uppermost sediments extending to the sediment-water interface were obtained.

The upper strata in SR1 KB-2 consisted of dark brown organic sediment and extended from 30.5 cm - 0 cm. Organic matter content increased towards the top of the core from 19.1% to 30.1% and was higher than in the lower unit. The increase in organic content (Figure 10) was coupled with an increase in visible plant fibres towards the top of the core.

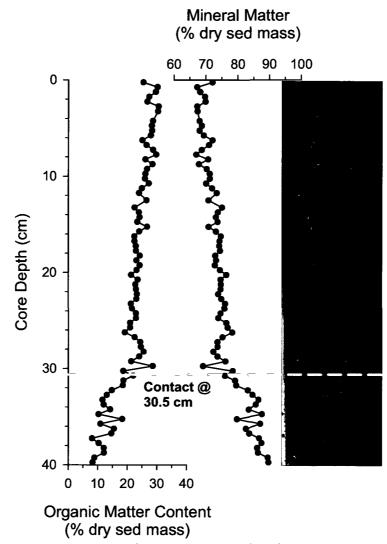


Figure 10. Organic matter content and mineral matter values from LOI analysis on SR1 KB-2. An image of SR1 RC-2 is scaled to fit the core depth of SR1 KB-2 in order to highlight the sediment contact at 30.5-cm core depth.

4.1.2 Sediment Core Chronology

Total ²¹⁰Pb activity for SR1 KB-2 ranged from 0.023 Bq/g to 0.134 Bq/g. Total ²¹⁰Pb activity peaked at 3.25-cm midpoint core depth (0.130 Bq/g) and then generally declined from 3.25-cm (0.101 Bq/g) to 15.25-cm (0.040 Bq/g) midpoint core depth (Figure 11a). From 15.25-cm to 39.25-cm, values became relatively constant, ranging from 0.023 Bq/g to 0.059 Bq/g. It was estimated that background (i.e., supported) ²¹⁰Pb levels were reached at approximately 15.25-cm midpoint depth (0.040 Bq/g) where total ²¹⁰Pb activity becomes relatively constant. This resulted in a basal Constant Rate of Supply (CRS) ²¹⁰Pb date of ~1792 AD at the 15.25-cm depth horizon (Figure 11a, b). SR1 KB-2 exhibited a well-defined ¹³⁷Cs peak that corresponded to a CRS ²¹⁰Pb date ~1963 AD at the 9.75-cm midpoint depth horizon (Figure 11a, b). The dating of the ¹³⁷Cs peak to ~1963 AD corresponds to the maximum ¹³⁷Cs fallout due to above-ground nuclear bomb testing. The dating of the¹³⁷Cs peak to ~1963 AD and a ²¹⁰Pb background value of 0.040 Bq/g, similar to values determined for cores from the upstream PAD (Wolfe et al., 2005, 2008b) suggests that modeled CRS dates for SR1 KB-2 are robust. The mean sampling resolution for SR1 KB-2 for the CRS modeled dates is ~15.4 years per cm.

Sediment core chronology below unsupported ²¹⁰Pb levels in SR1 KB-2 was extrapolated using a linear regression of the cumulative dry mass and CRS modeled ²¹⁰Pb dates through the 0-cm to 14.25-cm interval. The 0-cm to 15.25-cm interval (where supported levels of ²¹⁰Pb were estimated to be reached) was not used to extrapolate dates down-core because samples from 14.75-cm and 15.25-cm midpoint depth spanned time intervals (~34 and 102 years, respectively) that were significantly larger than the average interval for CRS modeled dates above 14.25-cm midpoint depth (~3.0 years) and were most likely the result of the large peak in ²¹⁰Pb concentration observed at 15.25-cm depth. These values are likely over-estimated and were deemed less reliable. This resulted in a date of ~1784 AD at the observed sediment contact at 30.5 cm and a basal date of ~1546 AD (39.25-cm midpoint depth) for SR1 KB-2 (Figure 11b). Below the 30.5 cm horizon, there is marked change in the average resolution of extrapolated dates from 8.3 yrs/cm to 25.4 yrs/cm. A decrease in the resolution of extrapolated dates indicates a slower sedimentation rate below the sediment contact at 30.5-cm (Figure 11b). Because the extrapolation is based on CRS values from the organic sediment above the contact, there is less confidence in the chronology below the contact.

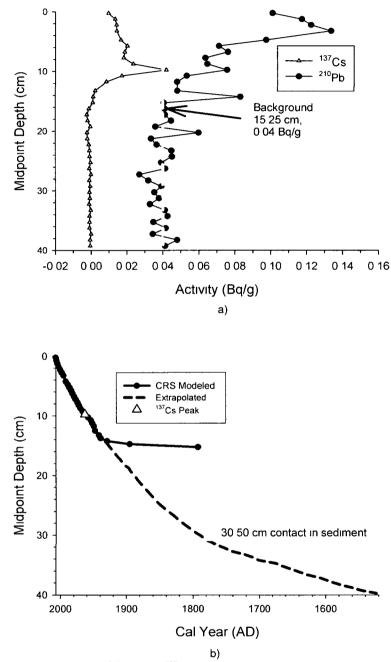


Figure 11 a) Activity profiles of ²¹⁰Pb and ¹³⁷Cs in Bq/g for SR1 KB-2 Dashed grey line denotes background levels of supported ²¹⁰Pb b) SR1 sediment core chronology based on the Constant Rate of Supply (CRS) model, extrapolated down core for KB-2 using a linear regression of cumulative dry mass and CRS dates through the 0 cm to 14 75-cm interval

4.1.3 Geochemical Stratigraphy

Assessment of the Inorganic Nitrogen Fraction: Correction for C/N Ratios

Evaluation of inorganic nitrogen is important because, if present, it can depress calculation of C/N ratios and lead to incorrect interpretations of this important metric. Talbot (2001) suggested that inorganic nitrogen can be detected by plotting percent nitrogen (on the y-axis) versus percent organic carbon (on the x-axis) and determining the y-intercept of the regression line. If the y-intercept of the regression line passes through the y-axis at a positive value, percent nitrogen is present in excess of percent organic carbon and the positive y-intercept value can be used as an estimate to correct for the presence of inorganic nitrogen. Because of the significant change in sediment composition at the visible contact in SR1 KB-2, values from above and below the contact were plotted separately to assess the presence of inorganic nitrogen. Above the visible contact (~1784 AD to ~2007 AD), the linear regression intercepts the x-axis indicating that organic carbon is present in excess of nitrogen and that bulk nitrogen values from this interval do not need correction. In contrast, below the visible sediment contact (~1546 AD to ~1784 AD), the linear regression intercepts the y-axis at 0.030% (Figure 11). The 95% confidence interval for ~1546 AD to ~1784 AD is relatively narrow and closely follows the regression line (Figure 12). Therefore, a correction factor of 0.030% was applied to bulk N values from this interval. The correction resulted in increases to C/N ratios below the contact ranging in value from 0.6 to 1.8. The entire corrected geochemical record is shown in Figure 13.

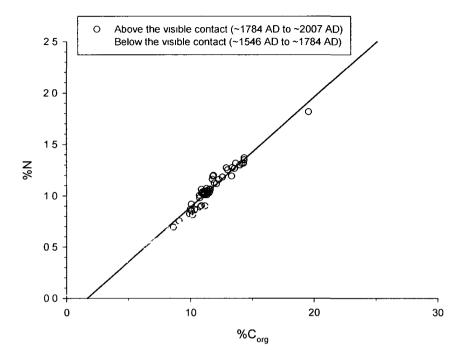


Figure 12 Percent nitrogen and percent organic carbon cross-plot of SR1 KB-2 Solid lines denote linear regression lines Note that for the interval below the visible contact (~1546 AD to ~1784 AD), the linear regression line intersects the y-axis The value of the y-intercept indicates the average amount of inorganic nitrogen for this interval (Talbot, 2001) Dotted lines denote the 95% confidence intervals for above and below the visible contact

Geochemical Results and Interpretation

Organic content and carbon and nitrogen elemental and stable isotope analysis have been used to identify four stratigraphic zones in the SR1 KB-2 sediment core (Figure 13). These zones were determined based on observed changes in the geochemical proxies. The transition from Zone 1 to 2 is based on changes in organic carbon, organic nitrogen, $\delta^{13}C_{org}$ and $\delta^{15}N$. The visible contact in the sediment was not used to establish Zone 2 because changes in most parameters occurred above this horizon. Zone 3 was established at changes in the trends of $\delta^{13}C_{org}$, $\delta^{15}N$ and C/N ratio and Zone 4 was based on a change in $\delta^{13}C_{org}$. These zones are described and interpreted below.

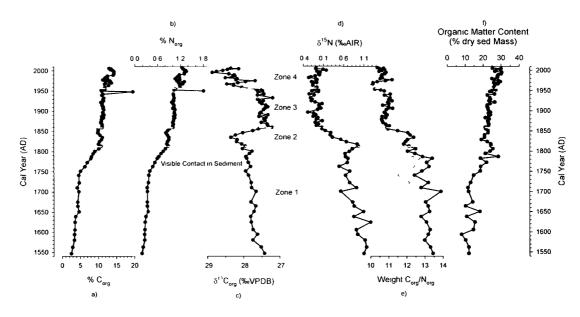


Figure 13 Geochemical records for SR1 KB-2 showing a) organic carbon content, b) organic nitrogen content (light grey line denotes uncorrected values), c) $\delta^{3}C_{org}$, d) $\delta^{5}N$, e) C/N (dark grey line denotes values before N correction) and f) organic matter content Dashed lines distinguish different stratigraphic zones

Zone 1 (~1546 AD to ~1818 AD)

In Zone 1, organic matter content was relatively variable in comparison to higher in the core, and gradually increased from 8.1% to 28.6%. The organic carbon and nitrogen contents in Zone 1 were the lowest in the record ranging from 2.6% to 10.2% and 0.22% to 0.81%, respectively. Values showed little variability and increased slightly within the zone. $\delta^{13}C_{org}$ values ranged narrowly and declined within Zone 1 from -28.0% to -27.4%. $\delta^{15}N$ values ranged from 0.5% to 1.3% and were considerably more variable than $\delta^{15}N$ values in other zones. $\delta^{15}N$ values decreased slightly within Zone 1, but represented some of the highest values in the record. After correcting for the presence of inorganic nitrogen, the C/N ratios ranged from 11.4 to 13.9 and were among the most variable and highest in the record. C/N ratios increased gradually throughout Zone 1. The visible stratigraphic contact (30.5 cm) observed in the sediment was located near the top of Zone 1.

The high C/N ratios observed in Zone 1 may be associated with an allochthonous source of organic matter because they are slightly higher (>11) than values that are typically aquatic in origin (4-10) (Meyers and Teranes, 2001). High δ^{15} N values may also suggest a terrestrial supply of organic material as values in Zone 1 (0.5‰ to 1.3‰) are similar to the δ^{15} N signature of land plants (~0.5‰) (Meyers and Teranes, 2001). If the source of organic material to SR1 is indeed allochthonous, organic matter content, organic carbon content, organic nitrogen content and $\delta^{13}C_{org}$ values are representative of organic material from outside the basin and therefore, cannot be used as indicators of aquatic productivity within Zone 1.

Zone 2 (~1818 AD to ~1863 AD)

In Zone 2, organic matter content ranged from 19.1% to 24.4%. Values showed little variability and remained relatively constant within the zone. The organic carbon and nitrogen contents ranged narrowly from 10.1% to 11.2% and 0.82% to 0.90%, respectively. $\delta^{13}C_{org}$ values ranged from -28.4‰ to -27.7‰ in Zone 2 with little variability (similar to Zone 1). $\delta^{13}C_{org}$ values decreased steadily (from -27.9‰ to -28.3‰) until ~1848 AD at a rate (-0.22‰/year) greater than that of Zone 1 (-0.0024‰/year). From ~1848 AD to the top of Zone 2, $\delta^{13}C_{org}$ values increased steadily from -28.3‰ to -27.7‰. δ^{15} N values ranged from 0.06‰ to 0.96‰ showing little variability. With the onset of Zone 2, δ^{15} N values declined at a faster rate than Zone 1 (from 0.96‰ to 0.15‰). C/N ratios ranged from 11.5 to 12.4, remaining relatively high.

similar to Zone 1. Values were less variable than Zone 1, and remained relatively constant until ~1851 AD, after which values decreased to the top of the zone (from 12.4 to 11.5).

High C/N ratios until ~1851 AD had a similar range (11.8 to 12.4) to Zone 1 (11.4 to 12.6) suggesting the dominant source of organic material in Zone 2 remained allochthonous. However, after ~1851, C/N ratios decreased to the top of the zone. Values became closer (11.5) to those of aquatic origin (4-10) (Meyers and Teranes, 2001) suggesting a possible shift in the dominant source of organic material from allochthonous to autochthonous. A shift in organic material source in Zone 2 may also be supported by decreasing δ^{15} N values throughout the zone. δ^{15} N values that approach zero by the top of Zone 2 are similar to values produced by nitrogen-fixing algae (~0‰) and may suggest increased aquatic productivity towards the top of Zone 2 (Meyers and Teranes, 2001). $\delta^{13}C_{org}$ values that increase towards the top of Zone 2 also support an increase in aquatic productivity (Schelske and Hodell, 1991; Hodell and Schelske, 1998; Meyers and Teranes, 2001). As well, in Zone 2, organic matter content, organic carbon content and organic nitrogen content were consistently higher than observed in Zone 1, consistent with an increase in aquatic productivity

Zone 3 (~1863 AD to ~1953 AD)

In Zone 3, organic matter content ranged from 21.2% to 26.7%. Values showed little variability (similar to Zone 2) and increased throughout the entire zone. Organic carbon and organic nitrogen content narrowly ranged between 10.1% to 11.8% and 0.9% to

1.2%, respectively, remaining relatively constant throughout Zone 3 Outlying values were observed at ~1956 AD (19.5% for %C_{org} and 1 8% for %N_{org}). δ^{13} C_{org} values in Zone 3 ranged from -27.6‰ to -27.2‰ and are considerably more variable than the lower two zones. δ^{13} C_{org} values fluctuate throughout the zone and are the highest values in the sediment core. δ^{15} N values ranged from -0.28‰ to 0.07‰ and were more variable than Zone 2. δ^{15} N values remained relatively constant throughout the zone. C/N ratios ranged narrowly from 10.6 to 11.2 and were lower than the lower two zones. Values remained constant throughout Zone 3.

In Zone 3, lower C/N ratios than the previous two zones (10.6 to 11.2) represent values similar to organic matter that is aquatic in origin (4-10) (Meyers and Teranes, 2001). This suggests that the dominant source of organic matter deposition in SR1 throughout Zone 3 is autochthonous. Autochthonous deposition of organic matter is supported by low δ^{15} N values (close to 0‰) throughout the zone. These values are similar to those produced by nitrogen-fixing algae and suggest nitrogen-limiting conditions within SR1 as a result of high primary productivity, similar to studies elsewhere (Brenner et al., 1999; Talbot and Laerdal, 2000). Additionally, $\delta^{13}C_{org}$ values in Zone 3 are the highest in the SR1 record. Trends of increasing $\delta^{13}C_{org}$ values are conventionally interpreted as an indicator of increased aquatic productivity (Schelske and Hodell, 1991; Hodell and Schelske, 1998; Meyers and Teranes, 2001). High values in organic matter content, organic carbon content and organic nitrogen content are consistent with deposition of organic material from high aquatic productivity; however these values may also represent a reduced flux of inorganic sediment to SR1.

Zone 4 (~1953 AD to ~2007 AD)

In Zone 4, organic matter content ranged from 25.1% to 30.5%. Values ranged narrowly, gradually increasing to the top of the core. Organic carbon and nitrogen content were relatively variable and increased from 11.7% to 14.3% and 1.1% to 1.4%, respectively. These values were the highest in the stratigraphic record. $\delta^{13}C_{org}$ values ranged from -28.9% to -27.7% and were the most variable in the $\delta^{13}C_{org}$ record. Values gradually decreased towards the top of Zone 4 from -27.7% to -28.4%. $\delta^{15}N$ values in Zone 4 ranged from -0.30% to 0.20% and were similarly variable as in Zone 3. Values increased very gradually from -0.06% to -0.09% to the top of the record. C/N values ranged from 9.9 to 11.2 and showed little variability. Values decreased at the base of Zone 4 (from 10.2 to 9.9) and then increased from 9.9 to 11.1 until ~1979 AD. C/N ratios ranged narrowly between 10.4 and 10.9 from ~1979 AD to the top of the core.

Throughout Zone 4, C/N ratios remained close to 10, indicating that the dominant source of organic matter had not changed from Zone 3 and remained autochthonous. Similarly, δ^{15} N values remained close to zero (-0.3‰ to 0.2‰) suggesting that nitrogen remained limited throughout Zone 4. Continued autochthonous deposition of organic matter and high aquatic productivity are consistent with continued high organic matter content, high organic carbon content and high organic nitrogen content at the top of the core. However, applying conventional interpretation of productivity-driven changes in $\delta^{13}C_{DIC}$ to decreasing $\delta^{13}C_{org}$ values within Zone 4 is inconsistent with high productivity indicated by all other parameters. This suggests that other factors may have caused a change in the $\delta^{13}C_{org}$ values.

4.2 SD34

4.2.1 Core Description

In order to maximize length and integrity of the SD34 sediment record, SD34 KB-2 and SD34 RC-2 were aligned and analyzed. Results from LOI analysis indicated that alignment could be achieved by shifting the SD34 RC-2 record down so that the top was positioned at 4.5-cm core depth (Figure 14). Between 39.0-cm and 12.5-cm, the organic matter content profiles diverge slightly, offset by as much as ~10 % (Figure 14). The offset in organic content between SD34 KB-2 and RC-2 could be related to the slightly different coring locations. The overlap indicates that SD34 RC-2 was missing the uppermost 4.5 cm of sediment and that it spanned 75.5 cm to 4.5 cm.

Visual observations of SD34 RC-2 revealed an abrupt contact in the sediment core at 62.5-cm depth, which was not observed in the shorter KB-2 gravity core (Figure 13). From the base of the core to 62.5 cm, the sediment was light brown silty clay, lacking any distinguishable plant material. Similar to the basal sediment of SR1 KB-2, sediment below 62.5-cm core depth in SD34 RC-2 was very dense and had the lowest percent organic matter values in the core (5.4% to 17.6%) (Figure 14). From 62.5 cm to 4.5 cm in SD34 RC-2, sediment was darker brown and composed of organic-rich material including many visible plant fibres (Figure 13). Organic matter content values were considerably higher through this interval and increased from 20.3% to 66.5% to the top of the core (Figure 14). The entire length of SD34 KB-2 was composed of dark brown sediment similar to SD34 RC-2. There was an increase in organic matter content (from 30.0% to 85.0%) towards the top of the core similar to the upper sediment of SD34 RC-2. However, there are two very low organic matter content values at 1 cm (16.9%) and 0.5

cm (27.9%) core depth in SD34 KB-2 (Figure 14) that are not accompanied by any observable sedimentary evidence of change.

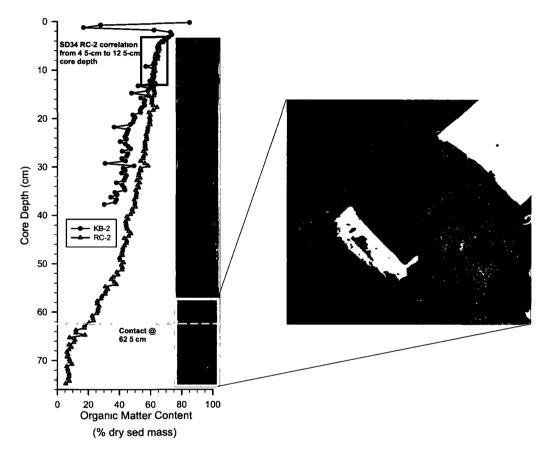


Figure 14 Correlation between SD34 RC-2 and SD34 KB2 using organic matter content values from LOI analysis. Top of SD34 RC-2 overlaps SD34 KB-2 at 4.5-cm core depth. An image of SD34 RC-2 core prior to sectioning is scaled to fit the core depth axis. A second image shows the contact close up. Dashed line denotes visible sediment contact at ~62.5-cm core depth.

4.2.2 Sediment Core Chronology

Total ²¹⁰Pb activity for SD34 KB-2 (38 cm to 0 cm) ranged from 0.015 Bq/g to 0.325 Bq/g and the ²¹⁰Pb activity profile generally declined from 0 cm to 15.25 cm (Figure 15a). Below 15.25-cm midpoint depth, ²¹⁰Pb activity became relatively constant ranging between 0.015 Bq/g and 0.044 Bq/g. Supported ²¹⁰Pb levels were estimated to be reached at approximately 15.25-cm midpoint depth (0.030 Bq/g). This resulted in a basal Constant Rate of Supply (CRS) ²¹⁰Pb date of ~1856 AD at 15.25-cm midpoint depth, providing a mean sampling resolution of 5.0 years from 0 cm to 15.25 cm (Figure 15b). Despite a broad but relatively well-defined ¹³⁷Cs peak at 7.25-cm midpoint depth, this occurs at a CRS ²¹⁰Pb date of ~1980 AD, ~17 years after peak fallout from above-ground nuclear bomb testing. This suggests diffusion of ¹³⁷Cs has modified the peak position in the sediment profile of SD34 KB-2. Diffusion of ¹³⁷Cs can occur in sediment with high organic matter content such as SD34 KB-2 (Figure 14) (Longmore, 1982; Foster et al., 2006). Diffusion has also been invoked as a process possibly influencing ¹³⁷Cs activity profiles in paleolimnological studies from the upstream PAD (Hall et al., 2004).

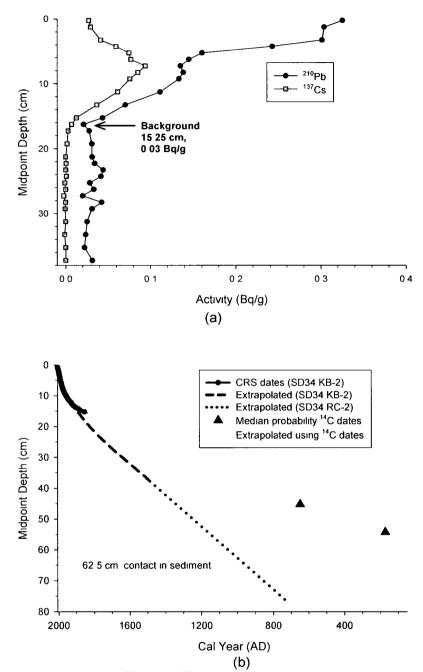


Figure 15 a) Activity profiles of 210 Pb and 137 Cs in Bq/g for SD34 KB-2, dashed grey line denotes background levels of supported 210 Pb b) SD34 sediment core chronology based on the Constant Rate of Supply (CRS) model, extrapolated down core for both KB-2 and RC-2 Median probability 14 C dates of two seed samples are indicated

Sediment chronology below unsupported ²¹⁰Pb levels in SD34 KB-2 (14.75 cm to 38 cm) was extrapolated using a linear regression of the cumulative dry mass and CRS modeled ²¹⁰Pb dates through the 0 cm to 14.25 cm interval, resulting in a basal date of ~1496 AD for SD34 KB-2 at 37.75-cm midpoint depth (Figure 15b). Samples from 0 cm to 14.25 cm midpoint depth were used and not 0 cm to 15.25 cm (where supported levels of ²¹⁰Pb were estimated to be reached) as samples from 14.75 cm to 15.25 cm spanned relatively large time intervals (~23-58 years) that were likely over estimated and deemed less reliable (Figure 15b). The chronology of SD34 was extended to include SD34 RC-2 (37.75-cm to 75 25-cm midpoint depth) using a linear regression of extrapolated dates through the 14.75-cm to 37.75-cm interval of SD34 KB-2. This yielded a date of \sim 998 AD for the observed sediment contact at 62.5 cm and a basal core date of ~ 762 AD at 75.25-cm midpoint depth (Figure 15b) Based on this analysis, the sediment record for SD34 spans from ~762 AD to ~2007 AD (~1245 years) (Figure 15b). However, because the abrupt change in sediment characteristics below the contact is likely accompanied by a change in sedimentation rate, there is increased uncertainty in sediment age below 62.75-cm midpoint core depth.

Radiocarbon (¹⁴C) dating of two macrofossil samples (seeds from the aquatic plant *Potamogeton*) from SD34 RC-2 taken from organic sediment above the 62.5-cm depth contact resulted in calibrated median probability ¹⁴C dates of 649 AD (42.25-cm midpoint core depth) and 173 AD (54.25-cm midpoint core depth) (Table 3, Figure 15b). These dates are considerably older than the corresponding extrapolated ²¹⁰Pb dates (~815 years at 45.25 cm and ~1018 years at 54.25 cm depth) (Figure 15b). Constraining the SD34 ²¹⁰Pb chronology using these ¹⁴C dates would require a sedimentation rate

substantially slower (~0.023 cm/year) than the one based on ²¹⁰Pb extrapolation (0.061 cm/year). The sedimentation rate based on ²¹⁰Pb extrapolation (0.061 cm/year) is also similar to average sedimentation rates of other closed-drainage basins upstream in the PAD (0.069, 0.056, and 0.069 cm/year for PAD 5, 9 and Bustard Island North Pond, respectively; Wolfe et al., 2008a). Additionally, observations of the SD34 RC-2 core above the contact reveal no noticeable change in sediment appearance and no evidence of sediment loss due to erosion (Figure 14). Therefore, a marked change in sedimentation rate (~3 times slower) below 15.75-cm is unlikely. Thus, it was concluded that the samples used for radiocarbon (¹⁴C) dating were significantly older than the sediment matrix. For this reason, the radiocarbon dates were dismissed and the extrapolated ²¹⁰Pb dates were determined to be most reliable for constructing the sediment core chronology

Table 3 Results of seed samples from SD34 RC-2 submitted for radiocarbon dating with 2 sigma standard deviations (95% probability) Radiocarbon dates were calibrated to calendar years before present using the program CALIB (version 6 0) (Stuiver and Reimer, 1993) with the calibration data set of Reimer et al (2004)

Lab Number	Material	δ ¹³ C (‰)	Core Depth (cm)	Reported Age (¹⁴ C yr BP)	Calibrated Age (Year AD)	Relative Area under the distribution	Median Probability
Beta- 259576	Potamogeton seed	-13 6	42 0 to 42 5	1380 +/- 40 BP	582-694, 704-705 and 748- 765	0 971 0 002 0 027	649
Beta- 259577	Potamogeton seed	-169	54 0 to 54 5	1840 +/- 40 BP	75-255 and 305-312	0 991 0 009	173

4.2.3 Geochemical Stratigraphy

Assessment of the Inorganic Nitrogen Fraction: Correction for C/N Ratios

Using methods outlined by Talbot (2001), percent nitrogen and percent organic carbon were plotted against each other to determine the quantity of inorganic nitrogen for SD34 KB-2 and RC-2. Because of the significant change in sediment composition at the visible contact in SD34 RC-2, values from above and below the contact were plotted separately. Above the visible contact (~998 AD to ~2007 AD), the linear regression intercepts the x-axis indicating that bulk nitrogen values from this interval do not need correction. In contrast, below the visible sediment contact (~762 AD to ~998 AD), the linear regression intercepts the y-axis at 0.041% (Figure 16). The 95% confidence interval for values below the visible contact is relatively narrow and closely follows the regression line (Figure 16). Therefore, a correction of 0.041% was applied to bulk nitrogen values from this interval. The correction resulted in increases to C/N ratios below the contact ranging in value from 0.7 to 1.7. The entire corrected geochemical record is shown in Figure 17.

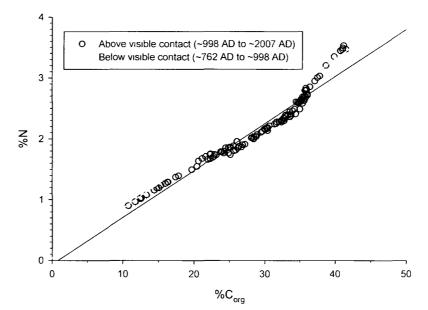


Figure 16 Percent nitrogen and percent organic carbon cross-plot of SD34 KB-2 and RC-2 Solid lines denote linear regression lines Note that for the interval below the visible contact (~762 AD to ~998 AD), the linear regression line intersects the y-axis The value of the yintercept indicates the average amount of inorganic nitrogen for this interval (Talbot, 2001) Dotted lines denote the 95% confidence intervals for above and below the visible contact

Geochemical Results and Interpretation

Four stratigraphic zones in the SD34 sediment record (KB-2 and RC-2 cores) have been identified using organic carbon and nitrogen content and elemental and stable isotope analyses (Figure 17). These zones were established based on horizons of change in the geochemical proxies. The transition from Zone 1 to 2 is based on changes in organic matter content, organic carbon content, organic nitrogen content, $\delta^{13}C_{org}$ and the C/N ratio. These stratigraphic changes lie at the same horizon as the visible contact between silty clay sediment and organic sediment in SD34 RC-2. Zone 3 was established at an abrupt shift in $\delta^{13}C_{org}$ values and Zone 4 was established at another prominent shift in $\delta^{13}C_{org}$ values. The four zones are described and interpreted below.

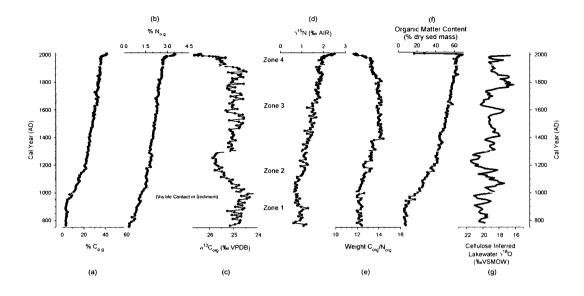


Figure 17 Geochemical records for SD34 showing a) percent organic carbon, b) percent organic nitrogen (light grey line denote uncorrected values), c) $\delta^{I3}C_{org}$, d) $\delta^{I3}N$, e) C/N (dark grey line denotes values before N correction), f) organic matter content, and g) cellulose-inferred lake water $\delta^{I8}O$ Black line through $\delta^{I8}O$ values is a 3-point running mean Dashed lines distinguish different stratigraphic zones SD34 KB-2 and RC-2 values are overlapped from 4 5 cm to 8 cm Plotted values through this interval are an average of KB-2 and RC-2 values

Zone 1 (~762 AD to ~998 AD)

In Zone 1, organic matter content narrowly ranged from 6.0% to 20.3% and were the lowest in the sedimentary record. Values were initially constant (narrowly ranging from 7.0% to 9.0%), and then gradually increased at ~909 AD from 9.0% to 20.3%. Similarly, organic carbon and nitrogen content in Zone 1 were the lowest in the record ranging from 3.0% to 9.6% and 0.3% to 1.3%, respectively. Both parameters gradually increased upcore. Zone 1 included some of the highest $\delta^{13}C_{org}$ values in the record ranging from - 25.9‰ to -24.2‰. Values in Zone 1 had a relatively narrow range in comparison to values higher in the core and exhibited a gradual increase towards the top of the zone (from -25.3‰ to -24.2‰). $\delta^{15}N$ values ranged from 0.6‰ to 1.3‰ and were the lowest in the entire record. The C/N ratios ranged from 12.0 to 12.6 and were relatively constant

throughout Zone 1. Cellulose-inferred lake water δ^{18} O values (δ^{18} O_{lw}) ranged from - 22.0‰ to -17.7‰ and were highly variable throughout Zone 1. δ^{18} O_{lw} values in Zone 1 were among the lowest in the record.

C/N ratios in Zone 1 were higher than values of organic material aquatic in origin (4-10), suggesting that the organic material deposited on the lake bed was predominantly allochthonous (Meyers and Teranes, 2001). δ^{15} N values in Zone 1 may also indicate a terrestrial supply of organic material as values (0.6% to 1.3%) are similar to the $\delta^{15}N$ signature of land plants (~0.5‰) (Meyers and Teranes, 2001). δ^{13} C values in Zone 1 were among the highest in the SD34 sediment record. Conventionally, elevated δ^{13} C values are associated with elevated aquatic productivity (Schelske and Hodell, 1991; Hodell and Schelske, 1998; Meyers and Teranes, 2001). Elevated aquatic productivity is not consistent with physical observations of the sediment below the visible contact, low organic matter, low percent organic carbon and low percent organic nitrogen or with the interpretation of C/N ratios. Therefore, the $\delta^{13}C_{org}$ signature in Zone 1 is most likely reflecting the allochthonous source of organic material being deposited in SD34. An allochthonous source of organic material may have compromised the $\delta^{18}O_{1w}$ values in Zone 1. However, the raw cellulose values within Zone 1 range from 5.4 ‰ to 9.6 ‰ (Appendix E) and are significantly lower than those expected for terrestrial cellulose (>20‰) (e.g., Saurer at al., 1997). Therefore, the $\delta^{18}O_{1w}$ values in Zone 1 do not appear to be compromised by terrestrial organic material and likely reflect the $\delta^{18}O_{lw}$ signature of SD34.

Zone 2 (~998 AD to ~1292AD)

The transition from Zone 1 to 2 was characterized by changes in many parameters and is also associated with the visible sediment contact in SD34 RC-2. Organic matter content gradually increased within Zone 2 from 20.3% to 41.9%. Organic carbon content increased from 9.6% to 22.8% at a faster rate than Zone 1. In Zone 2, Organic nitrogen content increased from 1.3% to 1.7%, but at a slower rate than Zone 1. At the onset of Zone 2, $\delta^{13}C_{org}$ values abruptly reversed trend and gradually decreased from -24.8% to -25.9%. $\delta^{13}C_{org}$ values through the ~1214 AD to ~1292 AD interval were among the lowest in the sediment record (between -25.9% and -25.7%). $\delta^{15}N$ values gradually increased throughout Zone 2 from 0.7% to 1.1%. C/N ratios ranged from 11.9 to 13.4 and increased throughout the zone. $\delta^{18}O_{lw}$ values ranged from -22.4% to -16.6% and were highly variable.

The increase in C/N ratios throughout Zone 2 could indicate that the source of the organic material is allochthonous. However, the change in sediment composition from inorganic to organic at the onset of Zone 2 coupled with increases in organic matter, organic carbon and organic nitrogen contents throughout the zone may alternatively suggest that deposition of organic matter in SD34 is associated with increased aquatic productivity. Teranes and Bernasconi (2000) have documented increases in productivity being accompanied by higher δ^{15} N values. Thus, increasing δ^{15} N values in Zone 2 may further indicate increased aquatic productivity above the visible sediment contact. Increased aquatic productivity contradicts the conventional C/N interpretation of relatively high C/N ratios reflecting allochthonous organic material deposition, indicating that elevated C/N values in Zone 2 may alternatively be the result of diagenetic alteration.

C/N ratios derived from algae can increase during sedimentation in lakes having high productivity due to active microbial denitrification of organic matter (Meyers and Teranes, 2001). Therefore, because of strong evidence from a variety of parameters, the organic material source for SD34 throughout Zone 2 is interpreted to be autochthonous despite increasing C/N ratios.

Conventional interpretation of $\delta^{13}C_{org}$ does not agree with the above interpretation of the other geochemical parameters. With the onset of Zone 2, $\delta^{13}C_{org}$ values began to decrease, a trend that is usually interpreted as a decline in productivity (Schelske and Hodell, 1991; Hodell and Schelske, 1998; Meyers and Teranes, 2001). As a result, the conventional interpretation of $\delta^{13}C_{org}$ is likely not appropriate for Zone 2. $\delta^{18}O_{lw}$ values in Zone 2 remained highly variable and difficult to interpret. However, low $\delta^{18}O_{lw}$ values at the onset of Zone 2 may indicate periods of low evaporative enrichment.

Zone 3 (~1292 AD to ~1918 AD)

In Zone 3, organic matter content gradually increased throughout the zone from 41.9% to 63.2%. Organic carbon and nitrogen contents ranged from 22.8% to 35.4% and 1.8% to 2.7%, respectively. Both sets of values gradually increased within Zone 3. $\delta^{13}C_{org}$ values ranged from -25.3‰ to -24.5‰ and were the most variable in the record. The transition from Zone 2 to 3 was associated with an abrupt +0.8‰ shift in $\delta^{13}C_{org}$ values (-25.7‰ to -24.9‰). Values remained high and variable for the duration of the zone. In Zone 3, $\delta^{15}N$ values increased from 1.2‰ to 1.8‰. C/N ratios ranged from 13.9 to 15.2 with little variability. From the onset of Zone 3 until ~1381 AD, C/N ratios were relatively constant (ranging from 13.9 to 14.4). There was an abrupt increase in C/N

ratios (from 14.3 to 15.2) between ~1381 AD and ~1390 AD, followed by a gradual decrease in values (from 14.1 to 13.6) to the top of the zone. $\delta^{18}O_{1w}$ values ranged from - 20.6‰ to -15.1‰ and were highly variable. Despite this, there was a noticeable oscillation in $\delta^{18}O_{1w}$ values within Zone 3. An interval of low values occurred between ~1607 AD and ~1736 AD with values generally ranging between -20.6‰ to -19.0‰. An interval of high $\delta^{18}O_{1w}$ values occurred between ~1745 AD and ~1837 AD ranging from - 18.5‰ to -15.1‰, and included several of the highest $\delta^{18}O_{1w}$ values in the record.

C/N ratios in Zone 3 are higher (13.9 to 15.2) than those aquatic in origin (4-10). Similar to Zone 2, elevated values in Zone 3 may be explained by diagenetic alteration. C/N ratios produced by aquatic algae under highly productive conditions can increase during sedimentation due to active microbial denitrification of organic matter (Meyers and Teranes, 2001). High productivity in Zone 3 is suggested by elevated organic matter deposition as indicated by high organic matter, organic carbon and organic nitrogen contents. High aquatic productivity is further supported by increasing δ^{15} N values in Zone 3. Increased productivity can be accompanied by higher δ^{15} N values as observed by Meyers and Teranes (2000). $\delta^{18}O_{1w}$ values in Zone 3 were higher than Zones 1 and 2, possibly indicating that evaporative enrichment had increased.

Zone 4 (~1918 AD to ~2007 AD)

In Zone 4, organic matter content ranged from 59.1% to 84.9% with the exception of two outlier values (2004: 16.9%; 2006: 27.9%) that are very low. Similar changes are not observed at these horizons in any other proxy. Organic matter content increased throughout the zone from 63.2% to 84.9%. Organic carbon and nitrogen contents

narrowly ranged from 35.4% to 41.0% and 2.7% to 3.5%, respectively. Values increased throughout Zone 4 with greater rates of increase occurring after ~1980 AD. $\delta^{13}C_{org}$ values ranged from -26.6‰ to -25.3‰ and are less variable than the previous zone. Values sharply decreased at the onset of Zone 4 from -25.3‰ to -26.3‰ to top of the record. $\delta^{15}N$ values gradually increased from 1.8‰ to 2.5‰. Similar to percent organic carbon and nitrogen values, $\delta^{15}N$ values exhibited a greater rate of increase after ~1980 AD. C/N values ranged from 11.7 to 13.9 with less variability than Zone 3 and remained relatively constant until ~1980 AD. C/N ratios declined after ~1980 AD from 13.6 to 11.8. $\delta^{18}O_{lw}$ values remained highly variable through this zone ranging from -19.9‰ to -15.8‰ and had no discernable pattern.

Relatively high C/N ratios (11.7 to 13.9) may suggest an allochthonous source of organic material for Zone 4. However, preferential loss of nitrogen from organic matter can cause C/N ratios derived from algae to increase (Meyers and Teranes, 2001). As a result, the high C/N ratios may be the result of microbial denitrification of organic matter in the lake sediment under highly productive conditions, similar to that observed by Sarazin et al. (1992). Bulk organic, organic carbon and organic nitrogen contents and δ^{15} N values in Zone 4 are all high, suggesting high productivity. C/N ratios after ~1980 AD decreased rapidly and are lower than values at the base of the zone. These values most likely represent C/N ratios that have not yet been altered by diagenetic effects inferred lower in the core. Similarly, percent organic matter, percent organic carbon and percent nitrogen all rapidly increase after ~1980 AD, possibly indicating that diagenesis has not altered the uppermost sediments.

The lowest $\delta^{13}C_{org}$ values occur at the top of Zone 4 with the greatest rates of decrease occurring after ~1980 AD, similar to other parameters measured for SD34. The shift to lower values at the onset of Zone 4 would conventionally correspond to decreased productivity, contradicting interpretations of the other geochemical variables. This would suggest that similar to Zone 1 and 2, the conventional interpretation of $\delta^{13}C_{org}$ values is not appropriate for Zone 4. As well, $\delta^{18}O_{lw}$ values continued to be highly variable. The range of values in Zone 4 is similar to Zone 3 making any interpretation of hydrologic change based on $\delta^{18}O_{lw}$ difficult.

4.3 GSL1

4.3.1 Core Description

To maximize the length and integrity of the GSL1 sediment record, GSL1 KB-1 and GSL1 RC-1 were aligned and analyzed. The organic matter content profile from GSL1 RC-1 (upper 43.5 cm) was shifted down by 0.5 cm to achieve the best observed overlap with the organic matter content profile of GSL1 KB-1 (0 cm to 26.5 cm) (Figure 18). This indicated that GSL1 RC-1 was only missing the uppermost 0.5 cm of sediment and the core spanned 0.5 cm to 100 cm of the GSL1 sediment profile (Figure 19). Therefore, overlapping the top of GSL1 RC-1 at 0.5 cm of GSL1 KB-1 generated a 100-cm-long sediment record.

The depth interval of 20 cm to 15 cm in GSL1 RC-1 included a large piece of plant material that corresponded with anomalously high and erratic percent organic matter content values (Figure 18). Thus, only GSL1 RC-1 samples below 20-cm depth and GSL1 KB1 samples from 26.5 cm to 0 cm were further analyzed for geochemical

parameters. Percent organic carbon values from this continuous record are used to accompany visual observations of the sediment core because LOI (organic content) was only conducted on the uppermost 43.5 cm of GSL1 RC-1.

Visual observations of GSL1 RC-1 revealed a lithologic contact between 73 and 68cm core depth that was gradational, in contrast to the abrupt contact visible in SR1 and SD34 (Figure 18). However, similar to the previously described cores, the gradational contact in GSL1 RC-1 separated two distinct stratigraphic units in the GSL1 sediment profile. The basal sediment (100-cm to 73-cm) was light brown silty clay and absent of plant material. Faintly visible laminations were observed throughout the lower strata (Figure 18) and a change in sediment particle size was observed from 92-cm to 88-cm where sediment was visibly coarser. These sediments are characterized by very low percent organic carbon values ranging from 1.2% to 4.6% (Figure 19). At 73-cm core depth, a gradual shift from light brown inorganic material to dark brown organic-rich material was observed. This observation was accompanied by an abrupt increase in percent organic carbon values from 4.6% to 25.8% through the 73 cm to 68 cm gradational contact (Figure 19). From 68 cm to 0 cm, sediment was dark brown and composed of organic-rich material including visible plant material that increased in abundance towards the top of the core (Figure 19). These sediments were characterized by high percent organic carbon values (30.6% to 45.2%) that increased towards the top of the core (Figure 19).

Figure 18. Correlation between GSL1 RC-1 and GSL1 KB-1 using organic matter content from LOI analysis. Top of GSL1 RC-1 overlaps GSL1 KB-1 at 0.5-cm core depth An image of a tuber which affected the percent organic content values within GSL1 RC-1 is shown at 15 cm to 20 cm

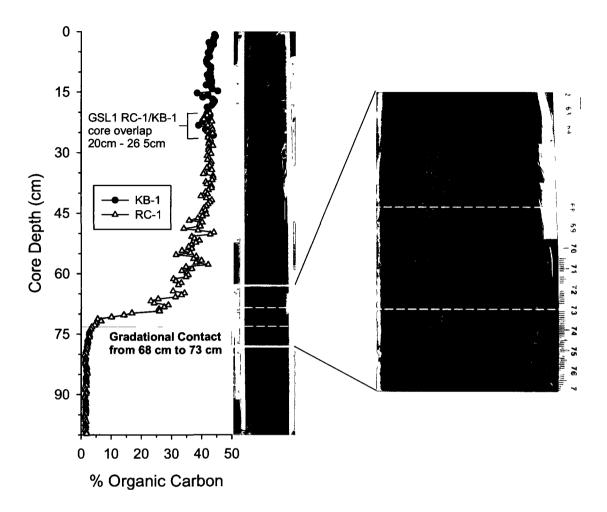


Figure 19 Organic carbon content for GSL1 KB-1 (26.5 cm to 0 cm) and GSL1 RC-1 (100 cm to 20 cm). The two cores are overlapped between the 20 cm to 26.5 cm interval. An image of GSL1 RC-1 prior to sectioning is scaled to fit the core depth axis. A second image shows the contact close up. Grey dashed lines denote visible gradational contact from 73 cm to 68 cm

4.3.2 Sediment Core Chronology

Total ²¹⁰Pb activity for GSL1 KB-1 ranged from 0.005 Bq/g to 0.260 Bq/g. Values declined from 0.250 Bq/g at 0-cm to 0.037 Bq/g at 11.75-cm midpoint core depth and become less variable between 12.25-cm and 26.25-cm midpoint core depth (ranging from 0.005 Bq/g to 0.023 Bq/g). Supported ²¹⁰Pb levels were estimated to be reached where ²¹⁰Pb activity becomes constant at ~12 25-cm midpoint depth (0.018 Bq/g) (Figure 20a). This resulted in a CRS ²¹⁰Pb date of ~1860 AD at 12.25-cm midpoint depth and provided a mean sampling resolution of 11.5 years through the 0-cm to 12.25-cm interval (Figure 20b). ¹³⁷Cs values from GSL1 KB-1 lacked a well-defined peak, and instead declined steadily from the top of the core to 12.25-cm midpoint depth (Figure 20a). The absence of a peak likely indicates diffusion of ¹³⁷Cs which occurs more frequently in organic-rich sediments (Longmore, 1982; Foster et al., 2006) such as those as the top of GSL1 KB-1 (Figure 18). Therefore, ¹³⁷Cs from GSL1 is unreliable for constraining the sediment core chronology.

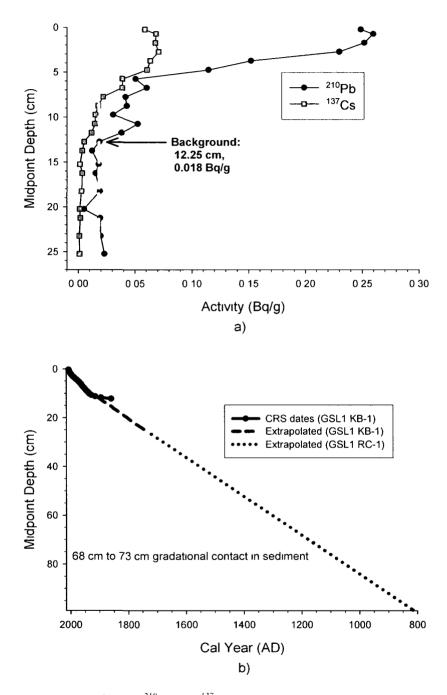


Figure 20 a) Activity profiles of 210 Pb and 13 Cs in Bq/g for GSL1 KB-1, Dashed grey line denotes supported 210 Pb b) GSL1 sediment core chronology based on the Constant Rate of Supply (CRS) model, extrapolated down-core for both KB-1 and RC-1

A linear regression of the cumulative dry mass and CRS modeled ²¹⁰Pb dates through the 0-cm to 11 25-cm interval of GSL1 KB-1 was used to extrapolate dates below unsupported ²¹⁰Pb levels in GSL1 KB-1. Dates were extrapolated from 11.25-cm depth to the bottom of the core and not from 12.25-cm where supported levels of ²¹⁰Pb were estimated to be reached, as calculated CRS dates for samples from 11.75 cm to 12.25 cm spanned relatively large time intervals (~21-35 years) that ware likely overestimated and were deemed to be less reliable Extrapolation resulted in a basal date of ~ 1728 AD for the gravity core at 26.25-cm midpoint depth (Figure 20b). Using a linear regression of extrapolated dates through the 11.25 cm to 26.75 cm interval of SD34 KB-1 and midpoint depth, the chronology of GSL1 was extended to include GSL1 RC-1 (26.75 cm to 99.75 cm) This yielded a dated interval of \sim 1142 AD to \sim 1199 AD for the gradational contact observed in the sediment core between 73-cm and 68-cm depth and a basal core date of \sim 803 AD at 99.75-cm midpoint depth (Figure 20b). Therefore, the sediment record for GSL1 spans from ~803 AD to ~2007 AD (~1204 years) (Figure 20b). However, similar to SR1 and SD34, the change in sediment characteristics below the contact is likely accompanied by a change in sedimentation rate, increasing the uncertainty in sediment age below 68 cm.

Radiocarbon (¹⁴C) dating was not used to constrain the chronology of GSL1 because there were no plant macrofossils found in the core. Bulk samples were not submitted for ¹⁴C dating because the presence of bitumen in the Peace and Athabasca river basins (upstream of the Slave River) has previously resulted in dates that are too old (e.g., Wolfe et al., 2006). Unreliable radiocarbon dates obtained for SD34 coupled with an absence of reliable dating material resulted in the decision to not attempt radiocarbon dating as a tool for constraining the ²¹⁰Pb-extrapolated sediment chronology.

4.3.3 Geochemical Stratigraphy

Assessment of the Inorganic Nitrogen Fraction: Correction for C/N Ratios

Because of the significant change in sediment composition at the gradational contact in GSL1 KB-1, percent nitrogen and percent organic carbon values from above, below and within the gradational contact were plotted separately. Above the visible contact $(\sim 1199 \text{ AD to} \sim 2007 \text{ AD})$, the linear regression intercepts the x-axis indicating that organic carbon is present in excess of nitrogen and that bulk nitrogen values from this interval do not need correction. In contrast, within and below the visible sediment contact (~1155 AD to ~1199 AD and ~803 AD to ~1199 AD), linear regressions intercept the yaxis at 0.0409 % and 0.0165 %, respectively (Figure 21). Although these values are relatively small, the percent organic carbon and nitrogen values are also relatively small, making the correction factor meaningful. The 95% confidence intervals for ~1155 AD to ~1199 AD and ~803 AD to ~1199 AD are very narrow and closely follow the regression line (Figure 21). Therefore, corrections of 0.0409 % and 0.0165 % were applied to bulk N values from within and below the gradational contact, respectively. The correction resulted in increases to C/N ratios at the gradational contact ranging in value from 0.3 to 1.3 and below the gradational contact ranging from 0.5 to 3.7. The entire corrected geochemical record is shown in Figure 22.

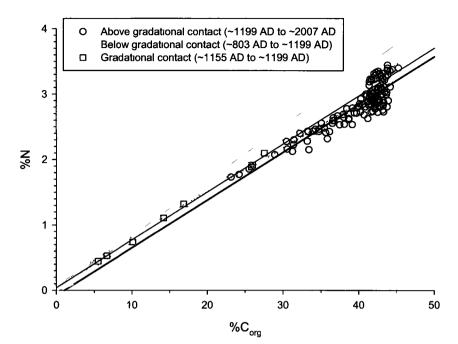


Figure 21 Percent nitrogen and percent organic carbon cross-plot of GSL1 KB and RC-1. Solid lines denote linear regression lines Note that for the interval within (~1155 AD to ~1199 AD) and below (~803 AD to ~1199 AD) the gradational contact linear regression lines intersect the y-axis. The value of the y-intercept indicates the average amount of inorganic nitrogen for this interval (Talbot, 2001) Dotted lines denote the 95% confidence intervals for above and below the visible contact

Geochemical Results and Interpretation

Assessment of the geochemical results has identified five stratigraphic zones in the GSL1 sediment record including the gradational contact (Figure 22). The transition from Zone 1 to the gradational contact is based on changes in all variables. The gradational contact is characterized by sharp trends in all parameters. Similarly, Zone 2 was based on changes in trend observed in all parameters. The base of Zone 3 is characterized by shifts in $\delta^{13}C_{org}$, $\delta^{15}N$ and C/N values and Zone 4 was based on changes in trends for $\delta^{13}C_{org}$, percent organic carbon and percent organic nitrogen. The four zones and gradational contact interval are described and interpreted below.

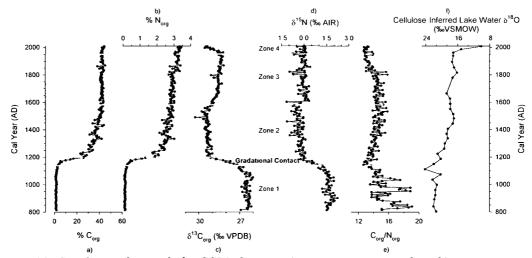


Figure 22 Geochemical records for GSL1 showing a) percent organic carbon, b) percent organic nitrogen (dark grey line denotes uncorrected values), c) $\delta^{13}C_{org}$, d) $\delta^{13}N$, e) C/N (dark grey line denotes values before N correction), f) cellulose-inferred lake water $\delta^{13}O$ Dashed lines distinguish different stratigraphic zones GSL1 KB-1 and RC-1 values are overlapped from 20 cm to 27 cm Plotted values through this interval are an average of KB-1 and RC-1 values

Zone 1 (~803 AD to ~1142 AD)

In Zone 1, organic carbon and nitrogen contents narrowly ranged from 1.5% to 1.9% and 0.05% to 0.19%, respectively. Values were the lowest in the record for both parameters. $\delta^{13}C_{org}$ and $\delta^{15}N$ values in Zone 1 ranged from -27.0% to -26.0% and 1.2% to 2.2%, respectively, with little variability and were the highest in the record. Both proxies remained relatively constant throughout the zone. C/N ratios ranged from 13.6 to 19.1 and were highly variable. Values weakly increased towards the top of the zone and were the highest in the record. $\delta^{18}O_{lw}$ values are the lowest in the record ranging between -24.1% to -20.2% and remain relatively constant throughout the zone.

High C/N ratios (>15) in Zone 1 are higher than those typically produced by aquatic plants (<10), suggesting that the dominant source of organic material deposited is allochthonous (Meyers and Teranes, 2001) $\delta^{13}C_{org}$ values in Zone 1 were the highest in

the GSL1 record. However, the $\delta^{13}C_{org}$ signature in Zone 1 is most likely reflecting the $\delta^{13}C_{org}$ signature of the allochthonous source of organic material deposited in GSL1 and not aquatic productivity. Similarly, low percent organic carbon and nitrogen values may also reflect the allochthonous source of organic material. However, similar to SD34, raw δ^{18} O values in Zone 1 (ranging from 3.2‰ to 7.2‰; Appendix E) are considerably lower than those typically produced by terrestrial plants (>20‰) (e.g., Saurer et al., 1997) suggesting that these values were not compromised by terrestrial organic material and that they do reflect the $\delta^{18}O_{1w}$ signature of GSL1. Low $\delta^{18}O_{1w}$ values likely reflect lake water that has undergone minimal evaporative isotopic enrichment.

Gradational Contact (~1142 AD to ~1199 AD)

Across the gradational contact, organic carbon and nitrogen contents increased substantially from 3.5% to 25.8% and 0.3% to 1.9%, respectively. $\delta^{13}C_{org}$ and $\delta^{15}N$ values decreased from -29.1‰ to -27.2‰ and -0.2‰ to 1.2‰, respectively. C/N ratios ranged from 12.7 to 14.4 with less variability than Zone 1. Values shifted to lower ratios at the onset of the gradational contact and remained relatively constant. $\delta^{18}O_{lw}$ values within the gradational contact increased from -21.9‰ to -20.2‰.

The gradational contact represents an interval of rapid change within the GSL1 sediment profile. The shift to lower C/N ratios is towards values representative of organic material that is aquatic in origin (4-10), indicating a possible change in the dominant source of organic material deposited in the basin from allochthonous to autochthonous (Meyers and Teranes, 2001). However, C/N ratios in the gradational contact are still relatively high compared to values typically observed for organic material that is aquatic

in origin. The higher values are most likely the result of nitrogen-limiting conditions, which has been shown to elevate C/N ratios (Meyers and Teranes, 2001). Nitrogenlimiting conditions throughout the gradational contact are supported by $\delta^{15}N$ values that decrease towards 0‰. $\delta^{15}N$ values close to 0‰ may be associated with high abundances of nitrogen-fixing algae. Increases in percent organic carbon and nitrogen throughout the gradational contact, suggest an increase in aquatic productivity, which is consistent with a high abundance of nitrogen-fixing algae. An autochthonous source of organic material and increased aquatic productivity is consistent with the transition from silty clay to organic sediment observed in the sediment core. As well, increasing $\delta^{18}O_{tw}$ values may suggest increased evaporative loss of water from GSL1 characteristic of a lake transitioning into an isolated basin. However, conventional interpretation of $\delta^{13}C_{org}$ values through this interval suggests a decline in productivity, contradicting all other interpretations.

Zone 2 (~1199 AD to ~1577 AD)

In Zone 2, organic carbon and nitrogen content were more variable than Zone 1 and gradually increased from 25.8% to 43.2% (%C_{org}) and 1.8% to 2.8% (%N) towards the top of the zone. $\delta^{13}C_{org}$ values ranged from -30.2‰ to -29.0‰ with little variability. $\delta^{15}N$ values in Zone 2 ranged from -1.1‰ to 0.1‰ and were more variable than Zone 1. C/N ratios increased slightly from 13.3 to 16.0 and were slightly more variable than Zone 2. $\delta^{18}O_{lw}$ values gradually increased from -21.0‰ to -16.9‰ to the top of the zone.

Despite a slight increase in C/N ratios throughout Zone 2, values were consistently lower than Zone 1. This would suggest that the dominant source of organic material

remained unchanged from the gradational contact and was most likely autochthonous. Similar to the gradational contact, C/N ratios were likely elevated due to nitrogenlimiting conditions. δ^{15} N values in Zone 2 were close to 0‰, indicating that nitrogenfixing algae may have been an abundant source of organic matter Consistently high values of percent organic carbon and nitrogen indicate high levels of organic matter deposition and aquatic productivity in Zone 2. High aquatic productivity in GSL1 throughout Zone 2 is consistent with organic sediment observed above the gradational contact in GSL1 RC-1. $\delta^{18}O_{lw}$ values that increase throughout the zone may indicate continued evaporative enrichment within GSL1 that began at the gradational contact. Once again, conventional interpretation of $\delta^{13}C_{org}$ values proved inappropriate as low $\delta^{13}C_{org}$ values in Zone 2 would suggest low productivity through this interval, contradicting interpretations from all other parameters.

Zone 3 (~1577 AD to ~1957 AD)

In Zone 3, percent organic carbon ranged from 38.4% to 45.2% and was less variable than Zone 2. Values remained relatively constant throughout Zone 3. Percent nitrogen increased gradually from 2.6% to 3.2% with variability remaining similar to Zone 2. $\delta^{13}C_{org}$ values ranged from -29.1% to -28.1% and were less variable than values from Zone 2. $\delta^{13}C_{org}$ values abruptly increased through the transition of Zone 2 and 3 (from -29.3% to -28.9%), and gradually increased throughout the remainder of the zone (from -28.9% to -28.2%). $\delta^{15}N$ values ranged from -1.1% to 0.4% with variability similar to Zone 2. Values rapidly shifted at the base of Zone 3, increasing from -0.7% to 0.4% in ~31 years. After the shift, $\delta^{15}N$ values decreased gradually throughout the remainder of the zone from 0.4‰ to -0.3‰. C/N ratios gradually decreased from 16.8 to 13.7 and maintained variability similar to Zone 2. $\delta^{18}O_{1w}$ values are relatively constant ranging from -18.7‰ to -17.0‰.

C/N ratios throughout Zone 3 had a similar range (13.7 to 16.8) as Zone 2 (13.3 to 16.0). This similar range of values indicates that the source of organic material deposited in GSL1 had not likely changed from Zone 2 to 3 and that it remained autochthonous despite relatively high C/N ratios. As well, throughout most of Zone 3, δ^{15} N values ranged close to 0‰, indicating nitrogen-limiting conditions. Similar to Zone 2, nitrogenlimitation was likely the cause of elevated C/N ratios in Zone 3. Additionally, consistently high percent organic carbon values and increasing percent nitrogen values suggest that high aquatic productivity and organic matter deposition continued from Zone 2 to 3. High aquatic productivity and autochthonous deposition of organic material is consistent with visibly organic sediment observed through this interval of the GSL1 sediment profile. Additionally, the positive shift in δ^{15} N values at the onset of Zone 3 may indicate a brief change in nitrogen cycling within GSL1. Elevated δ^{15} N signatures at the bottom of Zone 3 may reflect a brief influx of nitrogen from outside the basin. $\delta^{18}O_{1w}$ values are higher in Zone 3 than Zone 2, suggesting an increase in evaporative enrichment within GSL1. Similar to δ^{15} N, δ^{13} Corg values abruptly increased at the onset of Zone 3, a shift that is conventionally associated with increased aquatic productivity. However, there is a lack of evidence in any other parameter to support an abrupt increase in aquatic productivity, therefore it is unlikely that a conventional interpretation of $\delta^{13}C_{org}$ is appropriate for this zone

Zone 4 (~1957 AD to ~2007 AD)

In Zone 4, percent organic carbon and nitrogen values gradually increased from 41.4% to 44.4% and 2.9% to 3.3%, respectively. $\delta^{13}C_{org}$ values decreased from -29.5‰ to -28.2‰. $\delta^{15}N$ values ranged from -0.5‰ to 0.1‰ with a similar variability to Zone 3 and remained constant. C/N ratios ranged from 13.4 to 14.6 and were among the lowest in the record. Variability remained the same as Zone 3 and values were relatively constant throughout the zone. $\delta^{18}O_{lw}$ values in Zone 4 increased markedly from -17.1‰ to -10.1‰ and were the highest in the record.

C/N ratios in Zone 4 (13.4 to 14.6) were among the lowest in the GSL1 record. These ratios were the closest in the record to ratios typically reported as aquatic in origin suggesting that the supply of organic material in Zone 4 was from an autochthonous source. As well, in Zone 4, δ^{15} N values of around 0‰ suggest that nitrogen was limited. Nitrogen-limiting conditions are then likely the reason C/N ratios in Zone 4 are slightly higher than those expected from autochthonous organic material. Zone 4 also represents the highest percent organic carbon and nitrogen values in the GSL1 record. These values indicate high aquatic productivity and deposition of organic material similar to Zone 3. Percent organic carbon and nitrogen values in Zone 4 that are slightly higher than Zone 3 are likely the result of recently deposited sediment that has not yet undergone diagenesis. An autochthonous source of organic material and high aquatic productivity is consistent with visibly organic sediment at the top of the GSL1 sediment record. $\delta^{18}O_{1w}$ values that increase to the highest in the record may suggest that the highest degree of evaporative enrichment occurred in Zone 4. As well, the $\delta^{18}O_{1w}$ value of -10.1‰ at the top of Zone 4 is typical of values found in the evaporation-dominated lakes of SRD (Brock et al., 2007). Declining $\delta^{13}C_{org}$ values are conventionally associated with declining aquatic productivity (Schelske and Hodell, 1991; Hodell and Schelske, 1998; Meyers and Teranes, 2001). Such an interpretation would contradict all other parameters, suggesting that conventional interpretation is not appropriate for Zone 4. As well, diagenesis can cause an increase in $\delta^{13}C_{org}$ values (Herczeg, 1988). Therefore, the sharp decrease in $\delta^{13}C_{org}$ values near the top of Zone 4 may be the result of uppermost sediments not having undergone diagenesis.

Chapter 5 - *Discussion*

Constructing a millennial-scale hydrologic history for the Slave River system requires a systematic examination of data obtained from the stratigraphic records of SR1, SD34 and GSL1. A change in depositional environment interpreted from a change in almost all parameters at the visible contact in each of the stratigraphic records will initially be discussed. This will help to determine the timing, and potential drivers of change at each study site. In addition, a variety of factors that have caused conventional interpretation of C/N ratios to be contradictory to other measured parameters at each study site will be discussed. An open-drainage diatom indicator record for GSL1 is then explored to aid in the paleohydrological reconstruction and is compared to parameters measured for GSL1 within this study. A second interval of hydrologic change not widely identified in the geochemical record of GSL1 is evident in the diatom record. This change appears to be captured in only the $\delta^{18}O_{1w}$ and $\delta^{13}C_{org}$ records, highlighting the sensitivity of these two records to hydrologic change that occurred at GSL1. Complications with conventional interpretation of $\delta^{13}C_{org}$ in GSL1 and SD34 are then addressed in order to establish a $\delta^{13}C_{org}$ interpretation consistent with all other parameters. Lastly, interpretations of key parameters from each study lake are used in conjunction with published reconstructed climate and hydrologic records to detail a ~1200-year record of hydrologic variability within the Slave River system.

5.1. A Change in Depositional Environment at the Sediment Contacts of SR1, SD34 and GSL1

A prominent stratigraphic change occurs at the inorganic-organic sediment contact common to all study sites. At each site, the inorganic sediment occurred at the base of the record and more organic-rich sediment extended from the contact to the top of the record. Interpretation of the organic material source above and below the contacts within each study lake was complicated by factors affecting the C/N ratio that differed among these lakes. The interpretation of C/N ratios at SR1 was conventional. At SR1, ratios below the contact were higher than values typically produced by aquatic sources (<10) (Figure 23), clearly suggesting that organic material below the contact was from an allochthonous source. C/N values above the contact approach the range typically produced by aquatic sources (Figure 23) more so than the values below the contact, suggesting that organic material above the contact in SR1 was autochthonous.

In contrast to SR1, C/N ratios below the contact in SD34 were among the lowest in the record (Figure 23). An abrupt change in all parameters (Figure 17) was interpreted to suggest that diagenesis had affected the geochemical parameters below ~1980 AD, indicating that elevated ratios above the contact were likely attributed to nitrogen loss as a result of diagenesis. An increase in aquatic productivity indicated by percent organic matter content, percent organic carbon and percent organic nitrogen values indicated that organic material above the contact was likely from an autochthonous source, similar to SR1. Additionally, low percent organic matter content, percent organic carbon and percent organic nitrogen values coupled with mineral-rich sediment (Figure 17), suggested an allochthonous source of organic material below the contact despite comparatively low C/N ratios.

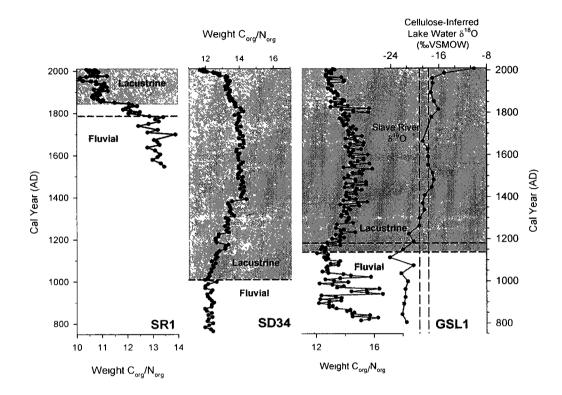


Figure 23 C/N ratios for study lakes, SR1, SD34 and GSL1 Visible sediment contacts are marked by horizontal dashed lines (bottom and top of GSL1 gradational contact are marked with dashed lines) Cellulose-inferred lake water $\delta^{18}O$ is also included for GSL1 with the range of Slave River $\delta^{18}O$ as reported by Brock et al (2008) identified as a vertical dashed lines

In the GSL1 record, C/N ratios below the contact were higher than those typically derived from aquatic sources (Figure 23), suggesting that organic material in this interval was allochthonous. Similar to SD34, C/N ratios above the contact in GSL1 remained high. However, δ^{15} N values close to zero above the contact (Figure 22) suggested nitrogen-limiting conditions that have been shown to elevate C/N ratios (Meyers and Teranes, 2001). Therefore, elevated C/N ratios due to nitrogen-limiting conditions coupled with high percent organic carbon and percent organic nitrogen values suggested

autochthonous organic mater deposition above the contact in GSL1, similar to SD34 and SR1. The shift in organic material source observed at the contact of each study lake was accompanied by a change in sediment composition, likely indicating a change in depositional environment.

Allochthonous organic material below the visible contact corresponds with low percent organic carbon and percent organic nitrogen values in each study lake and because the source of organic material is from outside the study basins, these values reflect the allochthonous source of organic material. Therefore, low percent organic carbon and organic nitrogen values below the visible contacts of each study lake indicate that any supply of in-lake, aquatic organic material to each study basin is diluted by the high inorganic content of the allochthonous source.

Geochemical analysis of freshly deposited Slave River flood sediment collected in 2005 reveals that Slave River sediment has low organic carbon and organic nitrogen contents and high C/N ratios, not unlike the values observed below the visible contacts of SR1, SD34 and GSL1 (Table 4). As well, laminations observed at the base of the GSL1 sediment profile likely represent sporadic pulses of sediment to the basin suggesting riverine influence below the contact. Laminations in the sediment of GSL1, geochemical and isotopic characteristics similar to Slave River sediment and close proximity to relict Slave River distributary channels (Figure 24) suggest that the Slave River is a likely source of allochthonous organic material deposition in the lower strata of SR1, SD34 and GSL1. Additionally, $\delta^{18}O_{1w}$ values measured from the Slave River and below the contact in GSL1 (Brock et al, 2008) are both low (Figure 23), likely reflecting water that has undergone minimal evaporative isotopic enrichment. However, $\delta^{18}O_{1w}$ values below the

contact of GSL1 (-24.1‰ to -20.2‰) are noticeably lower than contemporary Slave River values (-17.7‰ to -19 2‰) and may represent a Slave River δ^{18} O signature that is more depleted than the present, possibly due to increased snowmelt runoff from headwater regions.

Table 4 Comparison of percent organic carbon, percent nitrogen and C/N ratios measured from recently deposited Slave River flood sediment (Brock et al, 2010) to values measured below the sediment contacts of SR1, SD34 and GSL1

Sample	%C _{org}	%N (SR1, SD34, GSL1 values corrected for inorganic nitrogen)	C/N (SR1, SD34, GSL1 values corrected for inorganic nitrogen)
Slave River	10	0 06	15 9
SR1	26-102	0.22 - 0.81	11 4 - 13 9
SD34	30-96	0 30 - 1 30	12 0 - 12 6
GSL1	15-19	0 06 - 0 19	136-191

GSL water proximal to the SRD is turbid due to sediment supplied by the Slave River (Rawson, 1950). As a result, suspended sediment in GSL would have a similar geochemical signature to that of the Slave River. Therefore, GSL is also a potential source of allochthonous organic material to SD34 and GSL1 as both lakes are similarly elevated from the present-day shore of the lake (Figure 7). Reconstructions of the delta front using radiocarbon ages of wood samples by Vanderburgh and Smith (1988) have indicated that at ~1180 years BP, the delta front was located northwest of both SD34 and GSL1 (Figure 24). This would suggest that the position of the delta front likely did not cause the current positions of SD34 and GSL1 to be inundated by GSL within the last ~1200 years. Time intervals for sediment deposited below the contact (SD34: ~762 AD to ~998 AD, GSL1: ~803 AD to ~1142 AD) for both SD34 and GSL1 correspond to extremely low lake levels reconstructed for Lake Athabasca upstream (Wolfe et al., 2008a). Lake Athabasca and GSL are both large natural reservoirs in the same river system that have been shown to respond similarly during wet and dry years in the observational record (Bennett, 1970), making it unlikely that GSL water levels were high enough ~1000 years ago to mundate the two study lakes. Relatively low lake levels in GSL coupled with a documented SRD front that was lakeward of the current positions of SD34 and GSL1 would suggest that GSL is likely not the source of inorganic sediment below the contacts.

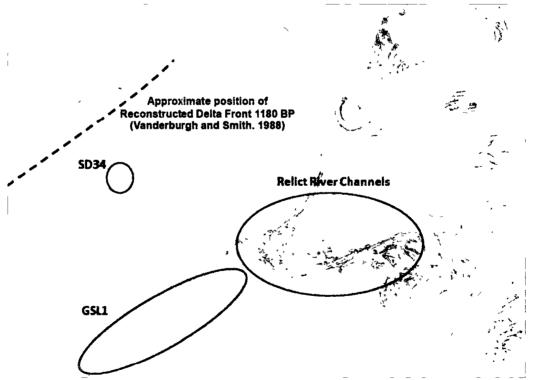


Figure 24. Soil map of Slave River Delta and surrounding area (Canada Department of Agriculture, 1971). Study Sites GSL1 and SD34 are highlighted as well as relict river channels located to the north of GSL1. Approximate position of SRD front at ~1180 years BP is drawn as a dashed line (Vanderburgh and Smith, 1988).

The change in the source of organic matter above the contacts of SR1, SD34 and

GSL1 from allochthonous to autochthonous marks a change in the depositional

environment of each study lake Autochthonous deposition of organic material and high aquatic productivity (as indicated by percent organic carbon, percent organic nitrogen, $\delta^{13}C_{org}$ and $\delta^{15}N$) indicate depositional conditions within SR1, SD34 and GSL1 that are lacustrine above the visible contact. As well, ²¹⁰Pb background is reached at similar depths for all three study sites (SR1: 15.25 cm, SD34: 15.25 cm, GSL1: 12.25 cm) indicating that sedimentation rates in the uppermost sediments are relatively consistent among study sites. These sedimentation rates (SR1: 0.082 cm/year; SD34: 0.061 cm/year; GSL1: 0.083 cm/year) are similar to rates from lacustrine environments upstream in the PAD (0.069, 0.056, 0.069 cm/year for PAD 5, 9, Bustard Island North Pond, respectively; Wolfe et al., 2008a).

A change in depositional environment from fluvial to lacustrine occurs at the contact within each study lake. However, this transition does not appear to occur simultaneously at SR1, SD34 and GSL1. In the shorter record of SR1, the sediment contact occurs at ~1786 AD and geochemical parameters shift at ~1818 AD. At SD34, the sediment contact is coupled with a change in geochemical parameters at ~1000 AD, indicating a shift to lacustrine conditions at the onset of the last millennium, much earlier than SR1. The sediment record of GSL1 is similar in length to SD34, however, the timing of the sediment contact and geochemical changes appears to occur ~144 years later than SD34. The significance of the temporal offset of the contact between SD34 and GSL1 is difficult to evaluate as dates for both sediment records have been extrapolated based solely on the ²¹⁰Pb stratigraphy and may be associated with uncertainties associated with modeling.

5.2 Diatom Record at GSL1

A diatom record was established for GSL1 to supplement the geochemical stratigraphy. Diatom counts were conducted on GSL1 RC1 by Michelle Tai from the University of Waterloo Environmental Change Laboratory. Diatom algae are sensitive to changes in physical, chemical and biological conditions and microhabitat availability and have been shown to be useful biomonitors of hydrologic change (Hall et al. 2004). Upstream in the PAD, small benthic and epipsammic diatom *Fragilaria* taxa have been shown to dominate in turbid open-drainage lakes and under flood conditions (Hall et al., 2004), making these taxa a likely indicator of past open-drainage intervals at GSL1.

High percent abundance of *Fragilaria construens v venter* below the gradational contact in GSL1 suggest open-drainage conditions consistent with the fluvial depositional environment interpreted from physical and geochemical data (Figure 25). As well, the shift to a lacustrine depositional environment above the contact is associated with low abundance of *Fragilaria construens v venter* However, at ~1550 AD there is a reemergence of these open-drainage diatom indicators. The re-emergence of *Fragilaria construens v venter* However, at ~1550 AD there is a reemergence of these open-drainage diatom indicators. The re-emergence of *Fragilaria construens v venter* suggests a change in hydrological conditions at GSL1. Hydrological change at ~1550 AD is not evident in the sediment composition of GSL1 and a second interval of open-drainage conditions appears to be captured by only two geochemical parameters ($\delta^{13}C_{org}$ and $\delta^{18}O_{lw}$) (Figure 25). Changes in the GSL1 $\delta^{18}O_{lw}$ and $\delta^{13}C_{org}$ records coincide with those in the diatom record (Figure 25). However, conventional interpretation of increased $\delta^{13}C_{org}$ corresponding to increased aquatic productivity within GSL1 has been contradictory to other geochemical parameters thus far. Therefore, because the $\delta^{13}C_{org}$ record appears to be one of two sensitive geochemical parameters that capture a second interval of open-drainage conditions was suggested by the GSL1 diatom record, further investigation is required to evaluate the factors that influence the carbon isotope signature of organic material in these sediments.

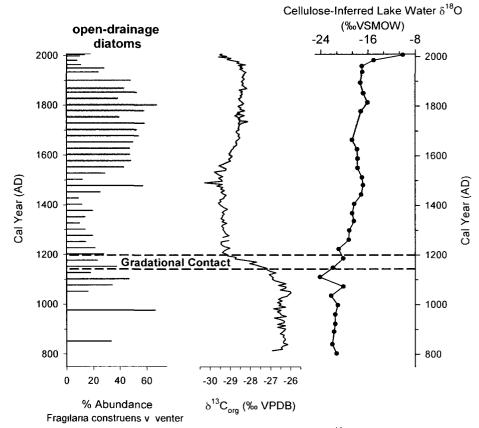


Figure 25 GSL1 open-drainage diatom indicator record, GSL1 $\delta^{3}C_{org}$ record and GSL1 cellulose-inferred lake water $\delta^{*}O$ record Shaded interval indicates interval of open-drainage conditions above the gradational contact at GSL1 captured by the three parameters

5.3 Establishing an Alternative Interpretation of $\delta^{13}C_{org}$ at GSL1 and SD34

Correspondence of the diatom and $\delta^{13}C_{org}$ records from GSL1 suggests that $\delta^{13}C_{org}$ is a sensitive indicator of hydrologic change. However, conventional interpretation of lake sediment $\delta^{13}C_{org}$ proved to be contradictory to all other measured parameters in the GSL1 record. Therefore, an alternative interpretation of $\delta^{13}C_{org}$ is required. In order to develop an alternative interpretation for $\delta^{13}C_{org}$, factors influencing the carbon isotope signature of organic material in the sediment record from GSL1 were evaluated.

 $\delta^{13}C_{org}$ in lake sediment is primarily determined by the $\delta^{13}C$ of the dissolved inorganic carbon source ($\delta^{13}C_{DIC}$). Processes controlling the $\delta^{13}C_{DIC}$ include the source and supply of inorganic carbon (e.g., from catchment runoff), ¹³C-enrichment from preferential uptake of ¹²C by phytoplankton during photosynthesis, isotopic exchange with atmospheric CO₂, recycling of ¹³C-depleted CO₂ from respiration/decay of water column and bottom sediment organic matter, and uptake of bicarbonate (HCO₃⁻_(aq)) at elevated pH (Wolfe et al., 2000).

Recent studies in the upstream PAD by Light (2010) and Lyons (2010) provide a basis for interpretation of $\delta^{13}C_{org}$ in lake sediment core records. Investigation of water chemistry in PAD lakes of varying hydrologic classifications (open-drainage, closed-drainage and restricted-drainage) by Lyons (2010) revealed that at the beginning of the open-water season (May), closed-drainage basins had much higher dissolved inorganic carbon (DIC) concentration than open- and restricted-drainage basins (Figure 26). Early season productivity, as indicated by chlorophyll *a* values, was also greatest in the closed-drainage basins early in the open-water season (Figure 25). Lyons (2010) observed that in early spring, $\delta^{13}C_{phytoplankton}$ of closed-drainage basins was lower than the open-drainage basins (Figure 26). This is opposite what might be anticipated, as higher productivity would be expected to cause an increase in the $\delta^{13}C_{phytoplankton}$ of closed-drainage basins (Hall et al., 2004). The lower $\delta^{13}C_{phytoplankton}$ values in closed-basins was attributed to high DIC

concentrations allowing for high carbon isotope fractionation between the DIC and phytoplankton (Figure 26), as is typically observed when carbon is not limiting (Keeley and Sandquist 1992). The low $\delta^{13}C_{phytoplankton}$ values of closed-drainage lakes observed in the early spring may translate to lower $\delta^{13}C_{org}$ values in the sediment record of these lakes in comparison to sediments deposited in open-drainage lakes.

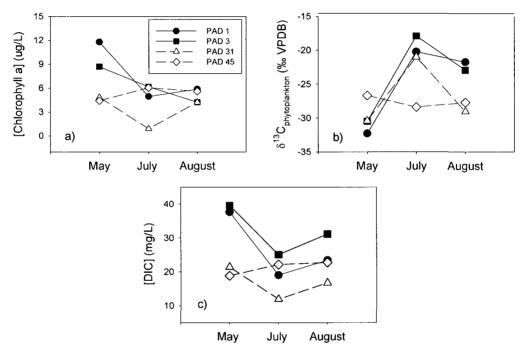


Figure 26 Spatial and temporal variability of a) concentration of chlorophyll a, b) carbon isotope composition of phytoplankton and c) concentration of DIC from four PAD lakes based on samples from the 2007 open-water season and the spring of 2008 The May values represent an average of the 2007 and 2008 data Drainage type is indicated by symbol type closed-drainage basins are solid, restricted-drainage basin is shaded, and open- drainage basin is an open symbol (from Lyons, 2010)

Insight into the controlling factors influencing carbon isotope dynamics in PAD lakes by Lyons (2010) has been used by Light (2010) to interpret a lake sediment $\delta^{13}C_{org}$ record from PAD1, a closed-drainage lake. Multi-proxy paleolimnological analysis has revealed westward expansion of Lake Athabasca into the low lying interior of the PAD during the Little Ice Age (LIA), a period of increased summer discharge in the Peace-Athabasca system (Wolfe et al., 2008a; Sinnatamby et al., 2010; Johnston et al., 2010). Light (2010) developed a ~600-year $\delta^{13}C_{org}$ record for PAD 1 (Figure 27) which was situated at the margin of Lake Athabasca water levels during the LIA. $\delta^{13}C_{org}$ values at the top and bottom of the PAD1 record were lower than those during the LIA (~1600 AD to ~1900 AD) (Figure 27). High $\delta^{13}C_{org}$ values during the LIA correspond to a variety of parameters that suggest open-drainage conditions at PAD1 as a result of Lake Athabasca inundation (Johnston et al., 2010). This suggests that the early season $\delta^{13}C_{phytoplankton}$ signature is captured in the lake sediment of PAD1 and that $\delta^{13}C_{org}$ signatures during highly productive closed-drainage conditions.

PAD1 and GSL1 are both closed-drainage basins and are hydrologically isolated from lake or river influence. These basins have noticeable similarities in their $\delta^{13}C_{org}$ stratigraphic records. Both profiles are characterized by low $\delta^{13}C_{org}$ values at the top of the record and high values during the LIA (Figure 27). The low values at the top of the GSL1 record correspond to closed-drainage conditions, similar to PAD1. Therefore, it appears that the early season $\delta^{13}C_{phytoplankton}$ signature captured in the lake sediment of PAD1 is also captured in the sediment of GSL1. Interpreting high GSL1 $\delta^{13}C_{org}$ values to correspond with open-drainage conditions, is consistent with interpretation of fluvial, open-drainage conditions below the sediment contact and is also consistent with diatom and $\delta^{18}O_{lw}$ records that suggest GSL1 has experienced three hydrologic shifts in the past ~1200 years (Figure 27).

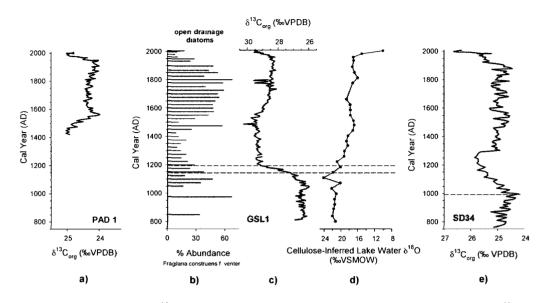


Figure 27 Comparison of $\delta^{I3}C_{org}$ records from three closed-drainage basins a) PAD1 $\delta^{I3}C_{org}$ record (from Light, 2010), b) GSL1 open-drainage diatom indicator record, c) GSL1 $\delta^{I3}C_{org}$ record, d) GSL1 cellulose-inferred lake water $\delta^{I8}O$ record and e) SD34 $\delta^{I3}C_{org}$ record Shaded intervals indicate open-drainage conditions Dashed black lines indicate sediment contacts for GSL1 (gradational contact) and SD34 (abrupt contact)

SD34 is classified as a closed-drainage basin and is currently hydrologically similar to both GSL1 and PAD1. The SD34 $\delta^{13}C_{org}$ profile shows some similarities to the $\delta^{13}C_{org}$ profile profiles from GSL1 and PAD1 (Figure 27). Low $\delta^{13}C_{org}$ values at the top of the SD34 record that correspond to closed-drainage conditions suggest that, similar to GSL1 and PAD 1, the early season $\delta^{13}C_{phytoplankton}$ signature is captured in the lake sediment. It is then likely that low $\delta^{13}C_{org}$ values in the SD34 record correspond to closed-drainage conditions and high values correspond to open-drainage conditions. The interpretation of high $\delta^{13}C_{org}$ values below the contact of SD34 is consistent with other geochemical parameters that suggest fluvial, open-drainage conditions. However, the $\delta^{13}C_{org}$ record of SD34 suggests a second interval of change above the contact. New interpretation of the SD34 $\delta^{13}C_{org}$ record suggests a re-emergence of open-drainage conditions at ~1300 AD that is not captured by any other geochemical parameter in the SD34 record.

5.4 Paleohydrology of the Slave River and Great Slave Lake over the Past Millennium

New understanding of GSL1 and SD34 $\delta^{13}C_{org}$ records contribute to developing a ~1200-year paleohydrologic reconstruction of the Slave River and GSL. The paleohydrology of the PAD, an upstream delta similar to the SRD that has been extensively studied will be used to compare with paleohydrologic interpretation downstream. Discussion of the paleohydrologic record of the Slave River and GSL is separated into five time intervals based on interpreted hydrologic change at the study basins and are discussed in chronological order: Early Medieval Period, Medieval Period, Little Ice Age and Post Little Ice Age.

5.4.1 Early Medieval Period (~750 AD to ~1150 AD)

At the beginning of the last millennium, the climate at the headwaters of the Peace-Athabasca river system was characterized by warm winter temperatures and high growth season relative humidity of the MP (Edwards et al., 2008). The warm climate was coupled with a spring melt of annual snowpack that was too rapid to adequately sustain streamflow, which caused low summer discharge through the Peace-Athabasca river system (Edwards et al., 2008; Wolfe et al., 2008a). The rapid melt of the annual snowpack in the headwaters of the Peace-Athabasca river system caused a very large, but "flashy" spring freshet (Wolfe et al., 2008a). Because the Peace and Athabasca rivers are major tributaries of the Slave River, it is likely that a flashy freshet occurred downstream as well. Additionally, research by Jarvis (2008) has identified the MP as a time of high ice-iam flood frequency in the PAD. Years of increased ice-jam flood frequency in the PAD have been shown to correspond to similar conditions downstream in the SRD (Mongeon, 2008; Brock et al., 2010). Therefore, it is likely that during the Early MP, ice-jam flood frequency at the SRD was also high. Frequent ice-jam flood events coupled with a large flashy spring freshet early in the last millennium could deliver river water, heavily laden with inorganic sediment to SRD lakes and could account for fluvial depositional environments below the contacts of SD34 and GSL1. $\delta^{13}C_{org}$ values below the contact in SD34 (-25.9% to -24.2%) are similar to those measured from Slave River flood sediment (-24.6‰) by Brock et al. (2010), suggesting frequent Slave River flooding at SD34 Frequent Slave River flooding at GSL1 at the beginning of the last millennium is supported by laminations in the basal sediment as well as high abundances of opendrainage indicator diatoms. Additionally, $\delta^{18}O_{lw}$ values below the contact are low (-24.0% to -20.2%) (Figure 28), likely reflecting water that has undergone minimal evaporative isotopic enrichment characteristic of an open-drainage basin. However, $\delta^{18}O_{1w}$ values below the contact of GSL1 (-24.1% to -20.2%) that are noticeably lower than contemporary Slave River values (-17.7% to -19.2%) may represent a Slave River δ^{18} O signature that is more depleted than the present, possibly due to increased snowmelt runoff from headwater regions.

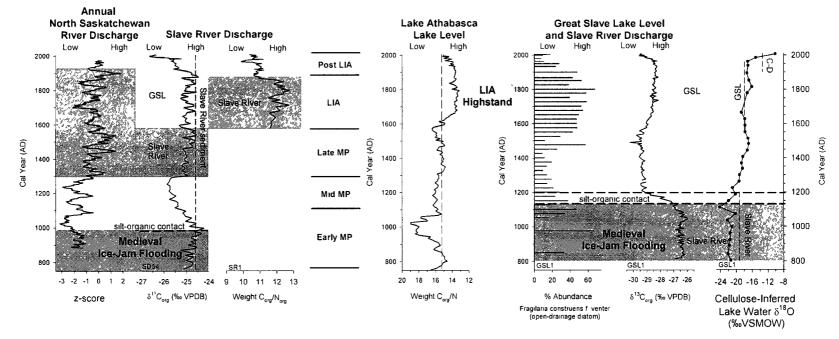


Figure 28 Records of Slave River discharge (SD34 and SR1) compared to modeled North Saskatchewan River discharge (Model 1)(Case and MacDonald, 2003) and Great Slave Lake level record compared to Lake Athabasca lake level record (Bustard Island North Pond C/N ratios) (Wolfe et al, 2008a) SD34 Slave River discharge developed using $\delta^{13}C_{org}$ values (vertical dashed line indicates the $\delta^{13}C_{org}$ (-24 6‰) of 2005 Slave River flood sediment (Brock et al, 2010)), SR1 Slave River discharge record developed using C/N ratios and GSL1 Great Slave Lake level record developed using $\delta^{13}C_{org}$ values and open drainage diatom indicators Vertical dashed lines within $\delta^{18}O_{hi}$ record indicate $\delta^{18}O$ values of the Slave River (-19 2‰), GSL (-17 9‰) and an average value for closed-drainage lakes in the SRD (-13 4‰) (Brock et al, 2007) Dark grey shaded intervals denote open-drainage conditions because of direct inundation of SD34 and GSL1 by the Slave River Light grey shaded intervalsfor SD34 and GSL1 denote open-drainage conditions caused by high GSL water levels during the LIA

5.4.2 Middle Medieval Period (~1150 AD to ~1300 AD)

Slave River influence on the hydrology of GSL1 and SD34, indicated by fluvial conditions depositing inorganic sediment, appears to end at the mineral-organic contact common to both sites. Isolation from Slave River flooding is characterized by a change in sediment composition from mineral-rich to organic-rich, accompanied by shifts in all geochemical parameters above the contacts of SD34 (~1000 AD) and GSL 1 (~1150 AD to ~1200 AD) and likely represents a shift to a lacustrine depositional environment.

 $\delta^{13}C_{org}$ in SD34 declines to values lower than Slave River sediment after ~1000 AD and GSL1 open-drainage diatom indicators decline after ~1150 AD suggesting a reduced influence of Slave River flooding on the two study sites above their respective contacts (Figure 28). Increased $\delta^{18}O_{lw}$ values at GSL1 above the contact indicate increased evaporation, further supporting a reduction in Slave River flood waters entering GSL1 above the contact. However, ice-jam flooding upstream in the PAD remains high until the end of the MP (Jarvis, 2008; Wolfe et al., 2008a), ~400 years later than reduced SRD icejam flood frequency suggested by the hydrologic isolation of SD34 and GSL1.

Chronological uncertainties within the SD34 and GSL1 sediment records could account for a temporal offset in the establishment of closed-drainage conditions between the SRD sites and the PAD. However, uncertainties in chronological modeling of GSL1 and SD34 are likely not large enough to account for a ~400 year offset. Geomorphologic setting of SD34 and GSL1 could account for the ~400 year offset, as the SRD sites may have had higher sill elevations than the PAD sites, making them less susceptible to river flooding. Additionally, shifts in distributary channel routing within the SRD may have contributed to the isolation of the basins during the Middle MP. Reduced hydrological influence of the Slave River at the contacts of SD34 (~1000 AD) and GSL I (~1150 AD to ~1200 AD), however, does occur during an interval (~1000 AD to ~1300 AD) of low reconstructed North Saskatchewan River discharge inferred from tree-ring records (Case and MacDonald, 2003) (Figure 28). The North Saskatchewan River shares headwaters with the Peace-Athabasca-Slave river system, in the Columbia Icefields in the eastern Rocky Mountains. The Athabasca Glacier at the head of the Athabasca River is only ~6 km from the Saskatchewan Glacier, a key headwater source for the North Saskatchewan River. Therefore, the discharge histories of these two river systems are likely to be similar.

Middle MP closed-drainage conditions at SD34 (~1000 AD to ~1300 AD) parallels low North Saskatchewan River discharge as well as an interval of Rocky Mountain glacier expansion during the MP (~1100 AD to ~1380 AD) outlined by Edwards et al. (2008) and the "Medieval Megadrought" (~900 AD to ~1300 AD), a period of widespread hydrologic drought throughout western North America (Cook et al., 2004; Meko et al., 2007). Glacier expansion may have reduced inflow to glacier-sourced rivers such as the North Saskatchewan, Peace, Athabasca and Slave. Therefore, glacier expansion coupled with drought conditions within the Slave River basin, likely reduced Slave River discharge similar to the North Saskatchewan River and may have contributed to the establishment of closed-drainage conditions at SD34 and GSL1.

The emergence of closed-drainage conditions at SD34 (~1000 AD) precedes similar closed-drainage conditions at GSL1 by ~140 years (Figure 28). The apparent delay in the isolation of GSL1 could be the result of uncertainties within the extrapolation of both SD34 and GSL1 chronologies. However, the ~140-year offset may alternatively represent

a delay in GSL1 isolation from Slave River influence, possibly due to the hydrologic setting of GSL1 in the landscape. GSL1 is a relict river channel and may have been connected to the main drainage network of the Slave River during the early MP by a small channel active during high water periods. Evidence of other relict river channels that lead back to the Slave River can be observed a short distance north of GSL1 (Figure 24). Therefore, GSL1 may have been temporarily connected to these channels during frequent ice-jam flooding below the gradational sediment contact (~800 AD to ~1150 AD), as is suggested by laminations and the $\delta^{13}C_{org}$, $\delta^{18}O_{lw}$ and open-drainage diatom indicator records. A channel connecting GSL1 to the main drainage network of the Slave River may account for the ~ 140 year delay in isolation of GSL1 compared to SD34. indicating that early MP ice-jam flooding was prolonged at GSL1 because its hydrogeomorphological setting was more susceptible to flooding than SD34. Additionally, the gradational contact of GSL1 (~1150 AD and ~1200 AD) may also suggest that isolation of the basin occurred more gradually than at SD34, which had a much more abrupt sediment contact suggesting a sudden change in hydrological conditions.

5.4.3 Late Medieval Period (~1300 AD to ~1550 AD)

Closed-drainage conditions during the Middle MP at SD34 appear to end at ~1300 AD as $\delta^{13}C_{org}$ values shift back to values similar to Slave River flood sediment (Figure 28). High $\delta^{13}C_{org}$ values in the SD34 record indicate that a second period of opendrainage conditions occurred between ~1300 AD ~1918 AD. The change in the hydrology of SD34 at ~1300 AD suggested by the $\delta^{13}C_{org}$ record corresponds to increasing North Saskatchewan River discharge as indicated by the Case and MacDonald (2003) record (Figure 28) North Saskatchewan River discharge increased to some of the highest levels observed in the last millennium at the end of the 11th century and remained high from the late MP-LIA transition to the end of the Little Ice Age (LIA) (~1300 AD to ~1900 AD) (Figure 28). The increase in discharge at this horizon is likely in response to cooler climatic conditions during the transition from the Late MP to LIA, resulting in a more prolonged melt of the annual snowpack in the eastern Rocky Mountains (Case and MacDonald, 2003; Edwards et al., 2008). High North Saskatchewan River discharge coupled with the re-emergence of open-drainage conditions at SD34 suggests that Slave River discharge was high throughout the Late MP.

5.4.4 Little Ice Age (~1550 AD to ~1860 AD)

The SD34 $\delta^{13}C_{org}$ record suggests that Slave River discharge becomes high during the Late MP and the sediment record of SR1 that spans ~480 years indicates that it remained high throughout the LIA. High C/N values suggest allochthonous deposition of organic material at SR1 between ~1550 AD and ~1860 AD, indicating a fluvial depositional environment (Figure 28). Since SR1 is located on an island in the Slave River upstream of the SRD and has no apparent inlets or outlets, it is expected that the basin would only receive Slave River flood water during a period of anomalously high discharge. Therefore, a fluvial depositional environment at SR1 between ~1550 AD and ~1860 AD suggests that during the LIA, Slave River discharge was considerably higher than present.

The onset of a second interval of open-drainage conditions at GSL1 during the L1A occurs ~250 years later than a similar re-emergence of open-drainage conditions at SD34. The shift to open-drainage conditions in GSL1 is indicated by high $\delta^{13}C_{org}$ values between ~1550 AD and ~1960 AD that correspond to increased open-drainage diatom abundance and $\delta^{18}O_{lw}$ values (-17.8‰ to -17.0‰) similar to that of GSL (-17.9‰) (Brock et al., 2007) (Figure 28). $\delta^{18}O_{lw}$ values similar to GSL and open-drainage conditions indicated by $\delta^{13}C_{org}$ and increased abundance of open-drainage diatoms appear to parallel increased Lake Athabasca water levels during the LIA (Wolfe at al., 2008a; Sinnatamby et al., 2010; Johnston et al., 2010) (Figure 28). Because Lake Athabasca and GSL are both large reservoirs within the same river system, it is likely that high LIA Lake Athabasca water levels would correspond to high LIA GSL water levels. Therefore, the re-emergence of open-drainage conditions during the LIA at GSL1 appears to represent inundation of GSL1 by GSL levels that are considerably higher than the present. This is the first evidence that GSL experienced a high-stand during the LIA, similar to that of Lake Athabasca and that the high-stand may have occupied the strandline visible in the landscape to the south of the SRD (Figure 3).

The approximate elevation range of GSL1 (between 161 masl and 163 masl) is between ~3.6 m and ~5.6 m above the highest gauged GSL water level (~157.4 masl) (Gibson et al., 2006a) (Figure 7), indicating that GSL water levels during the LIA would have to be at least ~3.6 m higher than the present to inundate GSL1. GSL water levels ~3.6 m greater than the present would be slightly larger than the average lake level change estimated for Lake Athabasca (2.3 m) during the LIA (Johnston et al., 2010). An increase in GSL water levels by at least 3.6 m would not only have inundated GSL1, but would have also inundated SD34 because the approximate elevation of SD34 (~159 masl) is lower than GSL1 (Figure 7). This would suggest that during the LIA, SD34 was inundated by GSL. It is likely that open-drainage conditions in SD34 at the transition from late MP to LIA were initially the result of high Slave River water levels inundating the lake and that during the LIA (~1550 AD to ~1960 AD), elevated GSL lake levels began to inundate SD34. Additionally, the strandline observed in the landscape to the south of the SRD intersects GSL1 across its western end (Figure 3), suggesting that at present, it may have a similar elevation as GSL1. Therefore, the high-stand of GSL that inundated both GSL1 and SD34 during the LIA would likely have occupied the strandline as well.

The C/N record of SR1 indicates high water levels in the Slave River during the LIA. Because the water level of GSL is strongly influenced by riverine input and output (Gibson, 2006a), prolonged high Slave River discharge would expectedly raise lake levels. However, the large outlet at the mouth of the Mackenzie River results in water residence times that are relatively short for a lake the size of GSL (Gibson et al., 2006). These short residence times likely act to slow lake level rise in response to increased Slave River discharge. For GSL to inundate GSL1, Slave River input to the lake would likely have been high well before the onset of open-drainage conditions in GSL1 at ~1550 AD. The $\delta^{13}C_{org}$ record of SD34 suggests that Slave River discharge increased at ~1300 AD and remained high throughout the Late MP. Therefore, because GSL water level is closely linked to Slave River input it is likely that GSL water level began to rise at ~1300 AD and that ~250 years of high Slave River discharge elevated GSL water levels enough to inundate GSL1 throughout the LIA. In order to inundate GSL1, GSL water levels would have to increase \sim 3.6 m in \sim 250 years, at an average annual rate of \sim 0.01 m/year. An increase of GSL water levels by \sim 0.01 m/year is considerably less than typical GSL annual water level fluctuations (0.4 m) (Gibson et al., 2006), suggesting that the estimated rate of lake level rise is plausible.

5.4.5 Post Little Ice Age (~1860 AD to ~2007 AD)

Interpretation of SR1, SD34 and GSL1 sediment records characterize the LIA as an interval of high discharge within the Slave River-GSL system. Alternatively, the sediment records of all three sites suggest that the transition from the LIA to the 20th century is characterized by declining water levels. C/N ratios similar to those expected from an autochthonous source suggest a shift in depositional environment at SR1 from fluvial to lacustrine at the onset of the 20th century (Figure 28). A lacustrine depositional environment at SR1 indicates isolation of the basin due to declining Slave River discharge. As well, declining $\delta^{13}C_{org}$ values after ~1918 AD in SD34 suggest closeddrainage conditions as a result of reduced Slave River discharge and GSL water level (Figure 28). In the GSL1 record, declining $\delta^{13}C_{org}$ values and open-drainage diatom indicator abundance (Figure 28) also suggest closed-drainage conditions early in the 20th century, likely the result of lower GSL water levels. 20th century GSL lake levels that are lower than the LIA are also indicated by GSL1 $\delta^{18}O_{lw}$ values (-15.1% to -10.1%) that diverge from values similar to GSL and become similar to present-day measurements from closed-drainage basins in the SRD (Figure 28) (-16.2‰ to -10.6‰; Brock et al., 2007).

Declining Slave River discharge as indicated by multi-parameter paleolimnological analysis corresponds to similar declines in discharge reconstructed for the North Saskatchewan (Case and MacDonald, 2003), Peace and Athabasca rivers (Schindler and Donahue, 2006: Wolfe at al., 2008a) at the onset of the 20th century, Reduced summer discharge through these river systems is thought to be the result of warmer 20th century climate causing a flashy spring freshet that is significantly lower in magnitude than that observed during the MP (Wolfe et al., 2008a). A low-magnitude, flashy spring freshet coupled with low summer discharge in the Slave River at the onset of the 20th century appears to have caused SR1 to become isolated from riverine influence. The $\delta^{13}C_{ore}$, $\delta^{18}O_{1w}$ and open-drainage diatom records of GSL1 coupled with the $\delta^{13}C_{org}$ record of SD34 indicate closed-basin conditions in the 20^{th} century (Figure 28). This indicates that GSL water levels have declined since the end of the LIA in response to reduced Slave River discharge, resulting in the hydrological isolation of GSL1 and SD34. Declining GSL levels throughout the 20th century is consistent with declines in riverine input from the Slave River suggested by SR1 as well as declining Lake Athabasca water levels throughout the 20th century as indicated by Wolfe et al. (2008a), Sinnatamby et al. (2010) and Johnston et al. (2010).

Analysis of lake sediment from SD34, GSL1 and SR1 suggests that water levels in the Slave River system have varied considerably over the past ~1200 years. Water levels declined throughout the 20th century from millennial high levels reconstructed for the L1A. Low water levels throughout the 20th century and the beginning of the 21st century have resulted in closed-drainage conditions at the three study sites. In the past ~1200 years, closed-drainage conditions appear to occur only twice at SD34 and GSL1: from the 20^{th} century to the present and during the MP. This suggests that currently, hydrological conditions within the Slave River system may have become similar to that of the Middle MP. However, high $\delta^{18}O_{lw}$ values throughout the 20^{th} century at GSL1 that are unique within the record may suggest that hydrological conditions at this site are unprecedented over last ~1200 years.

Chapter 6 - Conclusions

6.1 Summary

Multi-proxy analysis of lake sediment cores collected from SD34, GSL1 and SR1 provided a ~1200-year record of water level variation within the Slave River and Great Slave Lake. Sediment composition and elemental and stable isotope geochemistry proved to be sensitive indicators of hydrologic change for the three study basins. This study was also able to highlight complexities inherit in the interpretation of lake sediment records of C/N ratios and $\delta^{13}C_{org}$ values.

Interpretation of lake sediment C/N ratios and $\delta^{13}C_{org}$ values from SD34, GSL1 and SR1 revealed that conventional, straightforward interpretation of these commonly applied paleolimnological measurements is not always appropriate. Conventional interpretation suggests that high C/N ratios (>10) correspond to an allochthonous source of organic material. However, interpretation of the high ratios above the contacts of SD34 and GSL1 using a conventional approach contradicted all other measured parameters. Interpretations from other geochemical parameters measured at the two study sites revealed that C/N ratios of autochthonous organic matter were elevated due to nitrogen limitation at GSL1 and diagenesis at SD34. Conventional interpretation of $\delta^{13}C_{org}$ suggests that high values correspond to high productivity (Schelske and Hodell, 1991; Hodell and Schelske, 1998; Meyers and Teranes, 2001). Interpreting the SR1 $\delta^{13}C_{org}$ record in this way appeared appropriate, however similar interpretation of the SD34 and GSL1 $\delta^{13}C_{org}$ records from SD34 and GSL1 were both deemed sensitive records of hydrologic change only after new

understanding of sediment $\delta^{13}C_{org}$ from upstream in the PAD provided a basis for nonconventional interpretation.

Interpretation of geochemical parameters such as C/N ratios, $\delta^{18}O_{1w}$ and $\delta^{13}C_{org}$ in conjunction with sediment composition indicated riverine inundation of SD34 (~760 AD to ~1000 AD) and GSL1 (~800 AD ~1200 AD) during the Early MP. River inundation of SD34 and GSL1 before the last millennium was attributed to Slave River discharge dominated by a large flashy spring freshet and high ice-jam flood frequency that delivered riverine sediment to the two study lakes. These hydrologic conditions are similar to that reconstructed for the upstream PAD and were likely caused by warm MP climate resulting in early, rapid melt of snowpack in headwater regions (Wolfe et al., 2008a; Jarvis, 2008).

A shift from a fluvial to lacustrine depositional environment at the contacts of SD34 (~1000 AD) and GSL1 (~1150 AD to ~1200 AD) appeared to mark a shift to closeddrainage conditions early in the last millennium. Closed-drainage conditions at SD34 coincided with the "Medieval Megadrought" (~900 AD to ~1300 AD), a period of widespread hydrologic drought throughout western North America (Cook et al., 2004; Meko et al., 2007) and corresponded to an interval of extremely low North Saskatchewan River discharge reconstructed by Case and MacDonald (2003). Drought conditions in western North America coupled with low North Saskatchewan River discharge likely correspond to low annual Slave River discharge from ~1000 AD to ~1300 AD. Low Slave River discharge may have contributed to the onset of closed-drainage conditions by reducing the impact of ice-jam flood events at SD34 and GSL1. However, reduced ice-jam flood frequency indicated by closed-drainage conditions at SD34 and GSL1 precede similar conditions in the PAD by ~400 years. Different geomorphic settings between SRD and PAD sites, shifts in the distributary channel network of the SRD and low Slave River discharge likely combined to account for the ~400 year offset and explain why SD34 and GSL1 became isolated during the MP when ice-jam flood frequency was high (Jarvis, 2008)

Low Slave River discharge appeared to end at ~1300 AD with a re-emergence of open-drainage conditions indicated by the SD34 $\delta^{13}C_{org}$ record. Open-drainage conditions were attributed to high Slave River discharge inundating SD34 throughout the Late MP. High Slave River discharge appeared to continue throughout the LIA as the SR1 sediment record identified high discharge from ~1550 AD to ~1863 AD. These records indicate that Slave River discharge increased through the transition from Late MP to LIA and that discharge remained high throughout the LIA (Figure 29). Increased discharge was attributed to a delay in snowmelt generated runoff that sustained higher annual river discharge as a result of a shift to cooler climate conditions characteristic of the LIA (Wolfe et al., 2008a)

Cooler LIA climate and increased Slave River discharge appeared to cause high water levels in GSL during the LIA, similar to that observed upstream in Lake Athabasca (Sinnatamby et al., 2010, Johnston et al., 2010). Open-drainage diatom indicator abundance and $\delta^{13}C_{org}$ records of GSL1 indicated open-drainage conditions in GSL1 throughout the LIA and $\delta^{18}O_{lw}$ values that were similar to GSL suggested that the open-drainage conditions were the result of GSL inundation. GSL inundation of GSL1 during the LIA further indicated that the GSL strandline visible to the landscape south of the SRD was likely been occupied during the LIA. Therefore, the SD34, SR1 and GSL1

sediment records indicated that GSL water levels began to rise at ~1300 AD as a result of elevated Slave River discharge at the transition from MP to LIA, reaching maximum levels during the LIA.

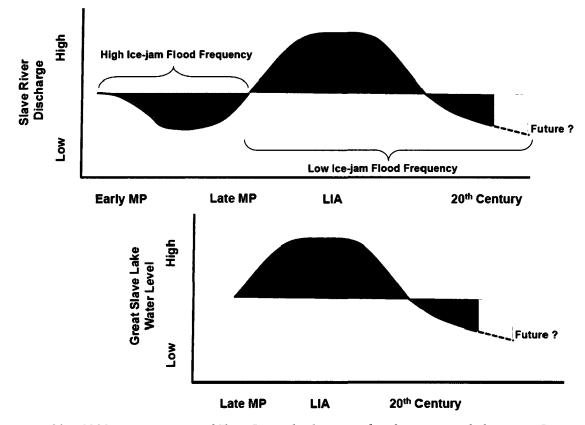


Figure 29. ~1200 year variation of Slave River discharge and multi-centennial change in Great Slave Lake water level. Schematic discharge profile is based on paleohydrologic records from SRD study sites GSL1, SD34 and SR1. Future discharge (dashed line) is based on expected discharge trends for upstream Peace and Athabasca rivers (Barnett et al, 2005; Wolfe et al., 2008a) Schematic water level profile is based on interpretation of GSL1 sediment record.

Millennial high water levels within the Slave River system during the LIA declined at the beginning of the 20th century (Figure 29). A decline in Slave River discharge at the onset of the 20th century appears to be captured in the SR1 and SD34 sediment records as a re-establishment of closed-drainage conditions. A decline in discharge through the Slave River system at the end of the LIA is further supported by $\delta^{18}O_{lw}$ and $\delta^{13}C_{org}$ records of GSL1 that suggest isolation of the basin from GSL likely due to 20th century declines in GSL lake level (Figure 29).

 20^{th} century decline in discharge parallels a shift to a warmer climate regime that has been shown to cause an earlier, more rapid melt of the spring snowpack in the headwaters of the Peace and Athabasca rivers (Wolfe et al., 2008a). The sediment records of the three study lakes indicated that water levels within the Slave River system have declined from the high levels that characterized the LIA, falling to levels potentially similar to the Middle MP. However, high $\delta^{18}O_{1w}$ values throughout the 20^{th} century at GSL1 that are unique within the ~1200 record may suggest that hydrological conditions at this site are unprecedented in the last ~1200 years.

These findings are able to establish a link between hydrologic conditions within the Slave River system and those upstream in the PAD and Lake Athabasca. Sediment records from SD34, GSL1 and SR1 demonstrated that in response to shifting climate regimes, the hydrology of the Slave River system responded broadly similar to the PAD. This indicates that hydrologic change upstream in the headwaters of the Slave River has historically translated downstream to the SRD and GSL. River discharge in the Peace-Athabasca river system is expected to continue to decline throughout the 21st century as a result of reduced glacier extent and snow pack depth in its headwater regions (Wolfe et al., 2008a). Therefore, Slave River discharge and GSL water levels that have declined over the last ~200 years are also likely to continue declining throughout the next century, possibly reaching levels unprecedented in the last ~1200 years, if such levels have not already been reached.

6.2 Management Implications

This study has established a ~1200-year paleohydrologic record for the Slave River and GSL. It has shown the interconnectedness in the hydrology of the SRD and PAD and has been able to demonstrate how the Slave River system responds to changes in climate. Although climate and water levels in the Slave River system appear to have returned to those similar to the Middle MP (increasing winter temperatures, growth season relative humidity, flashy spring freshet and lower discharge), it is likely that the flashy freshet will be considerably smaller than earlier in the millennium (Wolfe et al., 2008a). Snowpack depth and alpine glaciers in Peace-Athabasca-Slave river headwater regions that have historically contributed to annual flow have been shown to be in decline (Barnett et al., 2005; Lapp et al., 2005; Rood et al., 2005). A decline in source water entering the Peace-Athabasca-Slave system that is expected to continue would suggest that water levels may be heading toward unprecedented low levels in the context of the last millennium.

Declining streamflow will likely amplify current challenges in the management of water within Peace-Athabasca-Slave system as various stakeholders depend on this water resource. As the water available for stakeholder use declines, balancing the natural environment, water supply for hydroelectric facilities and consumptive use by humans will be a major challenge for future management of this river system. Of principle concern is the Athabasca Tar Sands development, which continues to expand, removing water from the Athabasca River for use in oil extraction. If declining streamflow in the Peace-Athabasca-Slave system is not managed carefully in the future, it may lead to unprecedented water shortages throughout the basin.

6.3 Future Recommendations

The ~1200-year hydrologic record for the Slave River system could be strengthened in a variety of ways. Interpretation of C/N ratios from GSL1 attributed elevated ratios to nitrogen limitation and pigment analysis of GSL1 sediment could be used to test this hypothesis. Additionally, establishing a diatom record for SD34 would supplement geochemical parameters and may possibly strengthen SD34 $\delta^{13}C_{org}$ interpretation.

Because GSL1 appears to lie at the margin of the LIA GSL high-stand, the GSL1 water level record only represents maximum GSL levels. Sampling several other lakes south of GSL1 that are closer to the GSL shoreline would provide insight into the timing, rate and extent of GSL expansion during the LIA. As well, locating a study site on GSL similar to the Bustard Island North Pond on Lake Athabasca (Wolfe et al., 2008a; Johnston et al., 2010) would most likely provide a more detailed long-term record of GSL water level change. The record of GSL water level established in this thesis is based on high-water intervals, thus a record that captures low-water intervals (such as the Bustard Island North Pond record) would improve understanding of long-term GSL hydrology.

References

- Appleby, P.G., 2001. Chronostratigraphic Techniques in Recent Sediments. In Tracking Environmental Change Using Lake Sediments: Volume 1: Basin Analysis, Coring, and Chronological Techniques, Developments in Paleoenvironmental Research. W.M. Last and J.P. Smol (Eds). Kluwer Academic Publishers, Dordrecht, pp 171-203.
- Atlas of Canada, 6th Edition, 2006. 85H4.
- Barnett, T.P., Adam, J.C., Lettenmaier, D.P., 2008. Human-induced changes in the hydrology of the western United States, Science, 319: 1080–1083.
- Bennett, R.M., 1970. Lake Athabasca Water Levels 1930-1970. Water Survey of Canada.
- Bernasconi, S.M., Barbieri, A., Simona, M., 1997. Carbon and nitrogen isotope variations in sedimenting organic matter in Lake Lugano. Limnology and Oceanography, 42: 1755-1765.
- Birks, S.J., Edwards, T.W.D., Gibson, J.J., Drimmie, R.J., Michel, F.A., 2004. Canadian Network for Isotopes in Precipitation http://www.science.uwaterloo.ca/ ~twdedwar/cnip/cniphome.html.
- Björk, S., Wohlfarth, B., 2001. ¹⁴C Chronostratigraphic Techniques in Paleolimnology. In Tracking Environmental Change Using Lake Sediments: Volume 1: Basin Analysis, Coring, and Chronological Techniques, Developments in Paleoenvironmental Research. W.M. Last and J.P. Smol (Eds). Kluwer Academic Publishers, Dordrecht, pp 205-245.
- Brenner, M., Whitmore, T.J., Curtis, J.A., Hodell, D.A., Schelske, C.L., 1999. Stable isotope (δ^{13} C and δ^{15} N) signatures of sedimented organic matter as indicators of historic lake trophic state. Journal of Paleolimnology, 22: 205-221.
- Brock, B.E., Wolfe, B.B., Edwards, T.W.D, 2007. Characterizing the hydrology of shallow floodplain lakes in the Slave River Delta, NWT, Canada, using water isotope tracers Arctic, Antarctic and Alpine Research, 39: 388–401.
- Brock, B.E, Wolfe, B.B., Edwards, T.W.D, 2008. Spatial and temporal perspectives on ice-jam flooding in the Slave River Delta, NWT. Hydrological Processes, 22: 4058-4072.

- Brock, B.E., Martin, M.E., Mongeon, C.L., Sokal, M.A., Wesche, S.D., Armitage, D., Wolfe, B.B., Hall, R.I., Edwards, T.W.D., 2010. Flood frequency variability during the past 80 years in the Slave River Delta, NWT, as determined from multi-proxy paleolimnological analysis. Canadian Water Resources Journal, 35: 281-300.
- Campbell, D., Spitzer, A., 2007. High and Dry. Up Here, Accessed April 5, 2008: http://www.uphere.ca/node/141.
- Case, R.A., MacDonald, G.M., 2003. Tree ring reconstruction of streamflow for three Canadian prairie rivers Journal of American Water Resources Association, 39: 7 03-716.
- Cook, E.R., Woodhouse, C.A., Eakin, C.M., Meko, D.M., Stahle, D.W., 2004. Long-term aridity changes in the western United States, Science, 306: 1015-1018.
- Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology, 44: 242- 248.
- Canada Department of Agriculture, Cartography Section, Soil Research Institute, Research Branch, 1971. Soil Map: Slave River Lowland, Northwest Territories, Sheet 1. Surveys and Mapping Branch, Department of Energy, Mines and Resources.
- Dery, S.J., Wood, E.F., 2005. Decreasing river discharge in northern Canada. Geophysical Research Letters, 32: doi:10.1029/2005GL022845.
- Dery, S.J., Hernandez-Henriquez, M.A., Burford, J.E., Wood, E.F., 2009. Observational evidence of an intensifying hydrological cycle in northern Canada. Geophysical Research Letters, 36: doi:10.1029/2009GL038852.
- Edwards. T.W.D., McAndrews, J.H., 1989. Paleohydrology of a Canadian Shield lake inferred from ¹⁸O in sediment cellulose. Canadian Journal of Earth Sciences, 26: 1850-1859.
- Edwards, T.W.D., 1993. Interpreting past climate from stable isotopes in continental organic matter. In Climate Change in Continental Isotopic Records. Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S. (Eds). Geophysical Monograph 78, American Geophysical Union, Washington, pp 333-341.
- Edwards, T.W.D., Birks, S.J., Luckman, B.H, MacDonald, G.M., 2008. Climatic and hydrologic variability during the past millennium in the eastern Rocky Mountains and northern Great Plains of western Canada. Quaternary Research, 70: 188-197.

- English, M.C. 1984. Implications of upstream impoundment on the natural ecology and environment of the Slave River Delta, Northwest Territories. In Northern Ecology and Resource Management. Olsen, R.,Geddes, F. and Hastings, R. (Eds).The University of Alberta Press, Edmonton, Alberta, pp 311-336.
- English, M.C., Hill, R.B., Stone, M.A., Ormson, R., 1997. Geomorphological and botanical change on the outer Slave River Delta, NWT, before and after impoundment of the Peace River. Hydrological Processes, 11: 1707–1724.
- Environment Canada, 2002 Canadian Climate Normals 1971–2000. Environment Canada.
- Evans, M.S. 2000. The large lake ecosystems of northern Canada. Aquatic Ecosystem Health and Management, 3: 65-79.
- Fogel, M L., Cifuentes, L A., 1993. Isotope fractionation during primary production. In Organic Geochemistry: Principles and Applications. Engel, M.H. and Mako, S.A. (Eds). Plenum Press, New York, pp 73-98.
- Foster, I, Mighall, T., Proffitt, H., Walling, D., Owens, P., 2006. Postdepositional ¹³⁷Cs mobility in the sediments of three shallow coastal lagoons, southwest England.Journal of Paleolimnology 35: 881-895.
- Gardner, J.T., English, M.C., Prowse, T.D., 2006. Wind forced seiche events on Great Slave Lake: hydrologic implications for the Slave River Delta, NWT, Canada. Hydrological Processes, 20. 4051–4072.
- Gibson, J.J., Prowse, T.D., Peters, D.L., 2006a. Partitioning impacts of climate and regulation on water level variability in Great Slave Lake. Journal of Hydrology, 329: 196–206.
- Gibson, J.J., Prowse, T D., Peters, D.L., 2006b. Hydroclimate controls on water balance and water level variability in Great Slave Lake. Hydrological Processes, 20: 4155-4172.
- Glew, J.R., 1989. A miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology, 5: 285-287.
- Glew, J.R., Smol, J.P., Last, W.M., 2001. Sediment core collection and extrusion.In Tracking Environmental Change Using Lake Sediments: Volume 1: Basin Analysis, Coring, and Chronological Techniques, Developments in Paleoenvironmental Research. W.M. Last and J.P. Smol (Eds). Kluwer Academic Publishers, Dordrecht, pp 88-89.

- Hall, R.I., Wolfe, B.B., Edwards, T.W.D., Karst-Riddoch, T.L., Vardy, S.R., McGowan, S., Sjunneskog, C., Paterson, A., Last, W.M., English, M.C., Sylvestre, F., Leavitt, P.R., Warner, B.G, Boots, B., Palmini, R., Clogg-Wright, K., Sokal, M., Falcone, M.D., van Driel, P., Asada, T., 2004. A Multi-Century Flood, Climatic, and Ecological History of the Peace-Athabasca Delta, Northern Alberta, Canada. Final Report to B.C. Hydro, 163
- Hannaford, N., 2008. If cutting CO₂ is the key, there's much more to be said for hydro. Calgary Herald, Tuesday March 25, 2008.
- Heiri, O., Lotter, A. F., Lemcke, G., 2001 Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25: 101-110.
- Herczeg, A.L., Fairbanks, R.G., 1987 Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis. Geochimica et Cosmochimica Acta, 51: 895-899.
- Herczeg. A.L., 1988. Early diagenesis or organic matter in lake sediments: A stable c arbon isotope study of pore waters. Chemical Geology, 72: 199-209.
- Hodell, D.A., Schelske, C.L., 1998. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario. Limnology and Oceanography, 43: 200-214.
- Hollander, D.A., MacKenzie, J.A., 1991. CO₂ control on carbon isotope fractionation during aqueous photosynthesis: A paleo barometer. Geology, 19: 929-932.
- Hollander, D.A., MacKenzie, J A., ten Haven, H.L., 1992. A 200 year sedimentary record of progressive eutrophication in Lake Greifen (Switzerland): Implications for the origin of organic carbon rich sediments. Geology, 20: 825-828.
- Jarvis, S., 2008. Reconstruction of Peace River flood frequency and magnitude for the past ~600 years from oxbow lake sediments, Peace-Athabasca Delta, Canada. MSc Thesis, Wilfrid Laurier University, Waterloo, Ontario, Canada.
- Johnston, J.W., Köster, D., Wolfe, B.B., Hall, R.I., Edwards, T.W.D., Endres, A.L., Martin, M.E., Wiklund, J.A., Light, C., 2010. Quantifying Lake Athabasca (Canada) water level during the Little Ice Age highstand from paleolimnological and geophysical analyses of a transgressive barrier-beach complex. The Holocene, 20: 801-811.
- Keeley, J.E., Sandquist, D.R., 1992. Carbon: freshwater plants. Plant, Cell and Environment, 15: 1021-1035.

- Lapp, S., Byrne, J., Townshend, I., Kienzle, S., 2005. Climate warming impacts on snowpack accumulation in an alpine watershed, International Journal of Climatology, 25: 521–536.
- Light, C., 2010. Identifying potential carbon flux responses to shifting hydroecological and climatic regimes in the Peace-Athabasca Delta. MSc Thesis, Wilfrid Laurier University, Waterloo, Ontario, Canada.
- Laws, E.A., Popp, B.N., Bidigare, R.R., Kennicutt, M.C., Macko, S.A., 1995. Dependence of phytoplankton isotopic composition on growth rate and [CO₂]aq: Theoretical considerations and experimental results. Geochimica et Cosmochimica Acta, 59: 1131-1138.
- Longmore, M.E., 1982. The cesium dating technique and associated applications in Australia.In: Ambrose, W., and Duerden, P., (Eds). Archaeometry: An Australian Perspective. ANU Press, Canberra, pp 310-321.
- Lyons, S., 2010. Evaluating the influence of flooding on aquatic food-webs in basins of the Peace-Athabasca Delta using isotopic tracers. MSc Thesis, University of Waterloo, Waterloo, Ontario, Canada
- McKenzie, J.A., 1985. Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm, W. (Eds). Chemical Processes in Lakes, Wiley, Toronto, pp 99–118.
- Meko, D.M., Woodhouse, C.A., Basian, C.A., knight, T., Lukas, J.J., Hughes, M.K., Salzer, M.W., 2007. Medieval drought in the upper Colorado Rover basin, Geophysical Research Letters, 34, L10705, doi:10.1029/2007GL029988.
- Meyers, P.A., 1997. Organic geochemical proxies of paleooceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry, 27: 213-250.
- Meyers, P.A., Lallier-Verges, E., 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology, 21: 345-372.
- Meyers, P.A., Teranes, J.L., 2001. Sediment organic matter. In Tracking Environmental Change Using Lake Sediments: Volume 2: Basin Analysis, Coring, and Chronological techniques, Developments in Paleoenvironmental Research. W.M. Last and J.P. Smol (Eds). Kluwer Academic Publishers, Dordrecht, pp 239-270.

- Milburn, D., MacDonald, D.D., Prowse, T.D., Culp, J.M., 1999. Ecosystem maintenance indicators for the Slave River Delta, N.W.T., Canada. In Environmental Indices Systems Analysis Approach. Pykh, Y.A., Hyatt, D.E., and Lenz, R J.M. (Eds). EOLSS Publishers Co LTD, Oxford, UK, pp 329-348.
- Mongeon, C., 2008. Paleohydrologic reconstruction of three shallow basins. Slave River Delta, NWT, using stable isotope methods. MES Thesis. Wilfrid Laurier University, Waterloo, Ontario, Canada.
- Prowse, T.D., Conly, F M., Church, M., English, M. C , 2002. A review of hydroecological results of the Northern River Basins Study, Canada. Part 1. Peace and Slave River. River Research and Applications, 18: 429–446.
- Rawson, D.S., 1950. The Physical Limnology of Great Slave Lake. Journal of Fisheries Research Board of Canada, 8: 3-66.
- Reimer P.J., M.G.L., Baillie, E., Bard, A., Bayliss, J.W., Beck, C.J.H., Bertrand et al., 2004. IntCal04 terrestrial radiocarbon age calibration, 26–0 ka BP. Radiocarbon, 46: 1029–1058.
- Rood, S.B., Samuelson, G.M., Weber, J.K., Wywrot, K.A., 2005 Twentieth-century decline in streamflows from the hydrographic apex of North America, Journal of Hydrology, 306: 215–233.
- Rouse, W.R., Bello, R.L., Lafleur, P.M., 1997: The low arctic and subarctic. In The Surface Climates of Canada. W.G. Baily, T. Oke, and W.R. Rouse (Eds). Montreal, Canada: McGill-Queens University Press, pp 198-221.
- Rouse, W.R., Oswald, C.M., Dinyamin, J., Dianken, P.D, Schertzer, W.M., Spence, C., 2003. Interannual and seasonal variability of the surface energy balance and temperature of central Great Slave Lake. Journal of Hydrometeorology, 4: 720-730.
- Sarazin, G.G., Michard, G., Al Gharib, I., Bernat, M., 1992. Sedimentation rate and early diagenesis of particulate organic nitrogen and carbon in Aydat Lake (Puy de Dome, France). Chemical Geology, 98: 307-316.
- Saurer, M., Aellen, K., Siegwolf, R., 1997. Correlating δ^{13} C and δ^{18} O in cellulose of trees. Plant, Cell and Environment, 20: 1543-1550.
- Schelske, C.L., Hodell, D.A., 1991. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments. Limnology and Oceanography, 36: 961-975.
- Schelske, C.L., Hodell, D.A., 1995. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnology and Oceanography, 40: 918–929.

- Schindler, D.W., Donahue W.F., 2006. An impending water crisis in Canada's western prairie provinces. Proceedings of the National Academy of Sciences, 103: 7210-7216.
- Sear, D.A. and Arnell, N.W., 2006. The application of paleohydrology in river management. Catena, 66: 169-183.
- Sinnatamby, R.N., Yi, Y., Sokal, M., Clogg-Wright, K., Vardy, S., Karst-Riddoch, T., Last, W., Johnston, J., Hall, R., Wolfe, B.B., Edwards, T.W.D., 2010. Historical and paleolimnological evidence for expansion of Lake Athabasca (Canada) during the Little Ice Age. Journal of Paleolimnology, 43:705-717.
- Sokal, M. A., Hall, R.I., Wolfe, B.B., 2008. Relationships between hydrological and limnological conditions in lakes of the Slave River Delta (NWT, Canada) and quantification of their roles on sedimentary diatom assemblages. Journal of Paleolimnology, 39: 533-550.
- Stuiver M., P.J., Reimer, 1993. Extended ¹⁴C database and revised CALIB radiocarbon calibration program. Radiocarbon, 35: 215–230.
- Teranes, J.L., Bernasconi, S.M., 2000. The record of nitrate utilization and productivity limitation provided by δ^{15} N values in lake organic matter-A study of sediment trap and core sediments from Baldeggersee, Switzerland. Limnology and Oceanography, 45: 801-813.
- Talbot, M.R., Laerdal, T., 2000. The Late Pleistocene-Holocene paleolimnology of Lake Victoria, East Africa, based upon elemental and isotopic analyses of sedimentary organic matter. Journal of Paleolimnology, 23: 141-164.
- Talbot, M.R., 2001. Nitrogen isotopes in Paleolimnology. In Tracking Environmental Change Using Lake Sediments: Volume 2: Basin Analysis, Coring, and Chronological Techniques, Developments in Paleoenvironmental Research. W.M. Last and J.P. Smol (Eds). Kluwer Academic Publishers, Dordrecht, pp 401-439.
- Townsend, G.H., 1984: Wildlife Resources of the Slave River and Peace-Athabasca Delta. Journal of the National and Provincial Parks Association of Canada, 20: 5-7.
- Vanderburgh, S., Smith, D., 1988. Slave River Delta: geomorphology, sedimentology, and Holocene reconstruction. Canadian Journal of Earth Sciences, 25: 1990–2004.
- Wolfe, B.B., Edwards, T.W.D., Aravena, R., 1999. Changes in carbon and nitrogen cycling during tree-line retreat recorded in the isotopic content of lacustrine organic matter, western Taimyr Peninsula, Russia. The Holocene, 9: 215–222.

- Wolfe, B.B., Edwards, T.W.D., Duthie, H.C., 2000. A 6000-year record of interaction between Hamilton Harbour and Lake Ontario: quantitative assessment of recent hydrologic disturbance using ¹³C in lake sediment cellulose. Aquatic Ecosystem Health and Management, 3: 47–54.
- Wolfe, B.B., Edwards, T.W.D., Elgood, R.J., Beuning, K.R.M., 2001. Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. In Tracking Environmental Change Using Lake Sediments: Volume 2: Physical and Geochemical Methods. Last, W.M., and Smol, J.P. (Eds). Kluwer Academic Publishers, Dordrecht, pp 373-400.
- Wolfe, B.B., Karst-Riddoch, T.L., Vardy, S.R., Falcone, M.D., Hall, R.I., Edwards, T.W.D, 2005. Impacts of climate and river flooding on the hydro-ecology of a floodplain basin, Peace-Athabasca Delta, Canada since A.D. 1700. Quaternary Research, 64: 147-162.
- Wolfe, B.B., Hall, R.I., Last, W.M., Edwards, T.W.D., English, M.C., Karst-Riddoch, T.L., Paterson, A., Palmini, R., 2006. Reconstruction of multi-century flood histories from oxbow lake sediments, Peace-Athabasca Delta, Canada. Hydrological Processes, 20: 4131-4153.
- Wolfe, B.B., Karst-Riddoch, T.L., Hall, R.I., Edwards, T.W.D., English, M C., Palmini, R., 1 McGowan, S., Leavitt, P.R., Vardy, S.R., 2007a. Classification of hydrological regimes of northern floodplain basins (Peace–Athabasca Delta, Canada) from analysis of stable isotopes (δ¹⁸O, δ²H) and water chemistry. Hydrological Processes, 21: 151-168.
- Wolfe, B.B., Falcone, M.D., Clogg-Wright, K.P., Mongeon, C.L., Yi Y, Brock, B.E., St. Amour, N.A., Mark, W.A., Edwards, T.W.D., 2007b. Progress in isotope paleohydrology using lake sediment cellulose. Journal of Paleolimnology, 37: 221-231.
- Wolfe, B.B., Hall, R.I., Edwards, T.W.D., Jarvis, S.R., Sinnatamby, R.N., Yi, Y., Johnston, J.W., 2008a. Climate-driven shifts in quantity and seasonality of river discharge over the past 1000 years from the hydrographic apex of North America. Geophysical Letters, 35: L24402, doi:10.1029/2008GL036125.
- Wolfe, B.B, Hall, R.I., Edwards, T.W.D., Vardy, S.R., Falcone, M.D., Sjunneskog, C., Sylvestre, F., McGowan, S., Leavitt, P.R., van Driel, P., 2008b. Hydroecological responses of the Athabasca Delta, Canada, to changes in river flow and climate during the 20th century. Ecohydrology, 1: 131-148.

Appendix A: ²¹⁰Pb and ¹³⁷Cs results

SR1 KB-2 Coring Date 24-Mar-07 Total Activity - Corrected to coring date

			Measured		Interpolated		
			²¹⁰ Pb	¹³⁷ Cs	²¹⁰ Pb	¹³⁷ Cs	
Depth Inte	erval (cm)	Depth					
		(cm)	(dpm/g)	(dpm/g)	(dpm/g)	(dpm/g)	
00	05	0 25	6 065	0 587	6 065	0 587	
05	10	0 75			6 556	0 698	
10	15	1 25	7 048	0 809	7 048	0 809	
15	2 0	1 75			7 198	0 834	
20	2 5	2 25	7 349	0 859	7 349	0 859	
2 5	30	2 75			7 682	0 861	
30	3 5	3 25	8 016	0 864	8 016	0 864	
40	4 5	4 25			6 933	0 933	
45	50	4 75	5 849	1 003	5 849	1 003	
50	5 5	5 25			5 060	1 112	
5 5	60	5 75	4 271	1 221	4 271	1 221	
60	65	6 25			4 420	1 176	
65	70	6 75	4 570	1 130	4 570	1 130	
70	75	7 25			4 194	1 114	
75	80	7 75	3 818	1 097	3 818	1 097	
80	85	8 25			3 851	1 257	
85	90	8 75	3 884	1 417	3 884	1 417	
90	95	9 25			4 212	1 967	
95	100	9 75	4 539	2 518	4 539	2 518	
10 0	10 5	10 25			3 865	1 773	
10 5	110	10 75	3 191	1 029	3 191	1 029	
110	11 5	11 25			3 031	0 769	
115	120	11 75	2 872	0 510	2 872	0 510	
12 0	13 0	12 50			2 882	0 326	
13 0	13 5	13 25	2 892	0 143	2 892	0 143	
13 5	14 0	13 75			3 938	0 107	
14 0	14 5	14 25	4 984	0 072	4 984	0 072	
14 5	15 0	14 75			3 711	0 066	
15 0	15 5	15 25	2 439	0 061	2 439	0 061	
15 5	16 0	15 75			2 454	-0 006	
16 0	16 5	16 25	2 469	-0 072	2 469	-0 072	
16 5	170	16 75			2 474	-0 108	
170	17 5	17 25	2 480	-0 143	2 480	-0 143	
17 5	180	17 75			2 580	-0 129	
180	18 5	18 25	2 681	-0 115	2 681	-0 115	
18 5	190	18 75			2 418	-0 070	
190	19 5	19 25	2 155	-0 025	2 155	-0 025	
19 5	20 0	19 75	1		2 873	-0 081	
20 0	20 5	20 25	3 592	-0 136	3 592	-0 136	
20 5	21 0	20 75			2 800	-0 132	
210	21 5	21 25	2 008	-0 127	2 008	-0 127	
21 5	22.0	21 75	1	1	2 102	-0 103	
22 0	22 5	22 25	2 196	-0 079	2 196	-0 079	
22 5	23 0	22 75		1	2 444	-0 069	
23 0	23 5	23 25	2 692	-0 058	2 692	-0 058	
23 5	24 0	23 75	1		2 698	-0 055	
24 0	24 5	24 25	2 705	-0 051	2 705	-0 051	
24 5	25 0	24 75			2 526	-0 036	
25 0	25 5	25 25	2 348	-0 021	2 348	-0 021	
25 5	26 0	25 75	2 3 70	0.021	2 414	-0 042	
25 5	26 5	26 25	2 480	-0 062	2 414	-0.042	
200	20.5	2025	2 40U	-0.002	2 400	1 -0 002	

26 5	27 0	26 75			2 050	-0 033
27 0	27 5	27 25	1 620	-0 004	1 620	-0 004
27 5	28 0	27 75			1 770	-0 034
280	28 5	28 25	1 920	-0 063	1 920	-0 063
28 5	29 0	28 75			2 138	-0 048
29 0	29 5	29 25	2 356	-0 033	2 356	-0 033
29 5	30 0	29 75			2 237	-0 044
30 0	30 5	30 25	2 117	-0 056	2 117	-0 056
30 5	31 0	30 75			2 195	-0 050
31 0	31 5	31 25	2 273	-0 044	2 273	-0 044
31 5	32 0	31 75			2 123	-0 057
32 0	32 5	32 25	1 972	-0 070	1 972	-0 070
32 5	33 0	32 75			2 221	-0 044
33 0	33 5	33 25	2 470	-0 017	2 470	-0 017
33 5	34 0	33 75			2 515	-0 036
34 0	34 5	34 25	2 560	-0 055	2 560	-0 055
34 5	35 0	34 75			2 324	-0 054
35 0	35 5	35 25	2 088	-0 054	2 088	-0 054
35 5	36 0	35 75			2 294	-0 057
36 0	36 5	36 25	2 499	-0 059	2 499	-0 059
36 5	37 0	36 75			2 281	-0 031
37 0	37 5	37 25	2 063	-0 003	2 063	-0 003
37 5	38 0	37 75			2 470	-0 021
38 0	38 5	38 25	2 878	-0 039	2 878	-0 039
38 5	39 0	38 75			2 679	-0 036
39 0	39 5	39 25	2 480	-0 034	2 480	-0 034

SD34 KB-2 Date Cored: 24-Mar-07 Total Activity - Corrected to coring date

		Measured		Interpolated		
Dej	Depth Mic		²¹⁰ Pb	¹³⁷ Cs	²¹⁰ Pb	¹³⁷ Cs
Inte	rval	Depth				
<u>(</u> cr	n)	(cm)	(dpm/g)	(dpm/g)	(dpm/g)	(dpm/g)
00	05	0 25	19 522	18 563	19 522	1 750
05	10	0 75			18 881	1 824
10	15	1 25	18 241	17 281	18 241	1 898
15	20	1 75			19 307	1 980
20	2 5	2 25	20 373	19.413	20 373	2 063
25	30	2 75			19 320	2 371
30	35	3 25	18 267	17 308	18 267	2 679
35	40	3 75			16 353	3 203
40	45	4 25	14 439	13 480	14 439	3 727
45	50	4 75			12 209	4 288
50	55	5 25	9 979	9 020	9 979	4 849
55	60	5 75			9 549	4 920
60	65	6 25	9 120	8 160	9 120	4 991
65	70	6 75			8 822	5 528
70	75	7 25	8 525	7 566	8 525	6 066
75	80	7 75			8 589	5 797
80	85	8 25	8 654	7.695	8 654	5 528
85	90	8 75			8 497	5 217
90	95	9 25	8 340	7 381	8 340	4 906
95	10 0	9 75			7 431	4 560
10 0	10 5	10 25	6 521	5 562	6 521	4 215
10 5	110	10 75			6 720	4 081
110	11 5	11 25	6 919	5 960	6 919	3 947
11 5	12 0	11 75			5 383	3 828
12 0	12 5	12 25	3 848	2 888	3 848	3 709
12 5	13 0	12 75			4 136	3 046
13 0	13 5	13 25	4 425	3 466	4 425	2.383
13 5	14 0	13 75			3 636	1 789
14 0	14 5	14 25	2 847	1 887	2 847	1 195
14 5	15 0	14 75			2 805	1 010
15 0	15 5	15 25	2 764	1 804	2 764	0 824
15 5	16 0	15 75			2 063	0 641
16 0	16 5	16 25	1 362	0 403	1 362	0 457
16 5	17 0	16 75			1 549	0 322
17 0	175	17 25	1 735	0 776	1 735	0 188
17 5	18 0	17 75			1 817	0 234
18 0	18 5	18 25	1 899	0 940	1 899	0 280
18 5	19 0	18 75			1 903	0 196
19 0	19 5	19 25	1 907	0 948	1 907	0 112
19 5	20.0	19 75			1 883	0 209
20 0	20 5	20 25	1.858	0 899	1 858	0 306

20 5	210	20 75			1 924	0 155
210	215	21 25	1 990	1 031	1 990	0 005
215	22 0	21 75			2 032	0 019
22 0	22 5	22 25	2 074	1 115	2 074	0 033
22 5	23 0	22 75			2 354	0 024
23 0	23 5	23 25	2 633	1 674	2 633	0 015
23 5	24 0	23 75			2 587	0 034
24 0	24 5	24 25	2 541	1 582	2 541	0 054
24 5	25 0	24 75			2 155	-0 007
25 0	25 5	25 25	1 768	0 809	1 768	-0 069
25 5	26 0	25 75			1 911	-0 037
26 0	26 5	26 25	2 054	1 095	2 054	-0 006
26 5	270	26 75			1 666	-0 073
270	27 5	27 25	1 278	0 318	1 278	-0 141
275	28 0	27 75			1 967	-0 075
280	28 5	28 25	2 656	1 697	2 656	-0 008
28 5	29 0	28 75			2 320	-0 023
29 0	29 5	29 25	1 985	1 026	1 985	-0 037
29 5	30 0	29 75			1 441	-0 017
30 0	30 5	30 25	0 898	-0 062	0 898	0 004
30 5	310	30 75			1 238	0 004
310	31 5	31 25	1 578	0 618	1 578	0 004
31 5	32 0	31 75			1 788	-0 008
32 0	32 5	32 25	1 998	1 039	1 998	-0 021
32 5	33 0	32 75			1 759	-0 047
33 0	33 5	33 25	1 519	0 560	1 519	-0 074
33 5	34 0	33 75			1 793	-0 013
34 0	34 5	34 25	2 066	1 107	2 066	0 048
34 5	35 0	34 75			1 824	0 033
35 0	35 5	35 25	1 581	0 622	1 581	0 019
35 5	36 0	35 75			1 981	0 003
36 0	36 5	36 25	2 380	1 421	2 380	-0 014
36 5	37 0	36 75			2 157	-0 006
37 0	37 5	37 25	1 933	0 974	1 933	0 002
37 5	38 0	37 75	l	<u> </u>		

GSL1 KB-1

Date Cored: 25-Mar-07

Total Activity - Corrected to coring date

			Measured		Interpolated		
		Midpoint	²¹⁰ Pb	¹³⁷ Cs	²¹⁰ Pb	¹³⁷ Cs	
Depth Inter	rval (cm)	Depth					
		(cm)	(dpm/g)	(dpm/g)	(dpm/g)	(dpm/g)	
05	10	0 25	14 912	14 552	14 912	3 527	
10	15	0 75	15 571	15 211	15 571	4 111	
15	20	1 25			15 333	4 090	
20	2 5	1 75	15 096	14 736	15 096	4 069	
25	30	2 25			14 440	4 158	
30	3 5	2 75	13 784	13 425	13 784	4 246	
35	40	3 25			11 452	4 027	
40	4 5	3 75	9 120	8 761	9 120	3 809	
4 5	50	4 25			7 996	3 722	
50	5 5	4 75	6 871	6 512	6 871	3 634	
55	60	5 25			4 948	2 978	
60	65	5 75	3 025	2 665	3 025	2 322	
65	70	6 25			3 319	2 320	
70	75	6 75	3 613	3 254	3 613	2 317	
75	80	7 25		_	3 048	1 811	
80	85	7 75	2 483	2 123	2 483	1 305	
85	90	8 25			2 519	1 172	
90	95	8 75	2 555	2 195	2 555	1 038	
95	10 0	9 25			2 193	0 970	
10 0	10 5	9 75	1 832	1 473	1 832	0 902	
10 5	11 0	10 25			2 487	0 887	
11 0	11 5	10 75	3 141	2 781	3 141	0 872	
11 5	12 0	11 25			2 708	0 781	
12 0	12 5	11 75	2 275	1 915	2 275	0 690	
12 5	13 0	12 25			1 692	0 497	
13 0	13 5	12 75	1 109	0 749	1 109	0 305	
13 5	14 0	13 25			0 913	0 251	
14 0	14 5	13 75	0 718	0 358	0 718	0 198	
14 5	15 0	14 5	1		0 892	0 138	
15 0	15 5	15 25	1 066	0 707	1 066	0 078	
15 5	16 0	15 75			0 982	0 135	
160	16 5	16 25	0 897	0 537	0 897	0 192	
16 5	17 0	16 75			0 955	0 184	
10 5	17 5	17 25			1 013	0 177	
17 5	180	17 75			1 015	0 169	
180	18.5	18 25	1 128	0 769	1 128	0 165	
18 5	19 0	18 75	1 120		0 923	0 102	
19 0	19 5	19 25	+		0 718	0 140	
19 5	20 0	19 23	+		0 512	0 0 113	
200	20.0	20 25	0 307	-0 053	0 312	0 0 0 7 6	
20 0	20.5	20 25	0.307	-0 055	l	0 092	
20 5	210	2075	1 164	0 804	0 735	0 1092	
210	213	2125	1 104	0 804	1 104	0 109	

21 5	22 0	21 75			0 746	0 065
22 0	22 5	22 25	-		0 892	0 061
22 5	23 0	22 75			1 039	0 058
23 0	23 5	23 25	1 185	0 826	1 185	0 054
23 5	24 0	23 75			1 235	0 057
24 0	24 5	24 25			1 285	0 061
24 5	25 0	24 75			1 335	0 064
25 0	25 5	25 25	1 386	1 026	1 386	0 067
25 5	26 0	25 75			1 193	0 067
26 0	26 5	26 25			1 000	0 067

Appendix B: Study Site Chronologies

SR1-KB2 Chronology

Background 210Pb @15 25 cm (Average value 15 25-39.25cm) 2.439 dpm/g

Mid- point	Cum Dry	Interpolated	Unsupported Pb-210	Unsupported Pb-210	Unsupported Pb-210 cumulative	$\begin{bmatrix} t = \frac{1}{\lambda} \ln\left(\frac{\Delta(0)}{A}\right) \end{bmatrix}$	*Extrap below	* dates extrapo		
Depth	Mass	Pb-210	(Interpolated	per interval	mass	CRS Date	13 75 cm	below 1	3 75-cm	
(cm)	(g/cm^2)	(dpm/g)	- background)	(dpm/cm2)	(dpm/cm2)	(Year AD)	mid pt depth	depth u	sing	
			(dpm/g)					linear r	egression	
0 25	0 0424	6 065	3 683	0 16	4 34	2007.0	2007 0	of cumu	llative	
0 75	0 0827	6 556	4 175	0 17	4 19	2005.8	2005 8	dry mas	s	
1 25	0 1305	7 048	4 666	0 22	4 02	2004.5	2004 5	and CRS	dates	
1 75	0 1828	7 198	4 817	0 25	3 80	2002.7	2002 7	(extrap	date =	
2 25	0 2356	7 349	4 967	0 26	3 54	2000.5	2000 5	cum dry	mass	
2 75	0 2835	7 682	5 301	0 25	3 28	1998.0	1998.0	-b/ m)		
3 25	0 3382	8 016	5 634	0 31	3 03	1995.4	1995 4			
4 25	0 3880	6 933	4.551	0.23	2 72	1992.0	1992 0			
4 75	0 4450	5 849	3 468	0 20	2 49	1989.2	1989 2			
5 25	0 5086	5 060	2 679	0 17	2 29	1986.5	1986 5	Cum. Dı	ry	
								mass Re	gression	
5 75	0 5726	4 271	1 889	0 12	2 12	1984.0	1984 0	Line:		
6 25	0 6451	4 420	2 039	0 15	2 00	1982.2	1982 2	Slope	-0.02601	
6 75	0.7064	4 570	2.188	0 13	1 86	1979.7	1979 7	y-inter	52.23721	

Unsupported Pb-210 (CRS Model):

Extrapolating Entire

Core

7 25	0 7845	4 194	1 812	0 14	1 72	1977.3	1977.3
7.75	0 8537	3.818	1 437	0 10	1 58	1974.5	1974 5
8 25	0.9339	3 851	1 470	0 12	1 48	1972.4	1972.4
8 75	1 0149	3 884	1 502	0 12	1 36	1969.8	1969.8
9 25	1.0815	4 212	1.830	0.12	1 24	1966.8	1966 8
9 75	1 1569	4.539	2.157	0.16	1 12	1963.4	1963.4
10 25	1.2406	3.865	1 483	0.12	0 96	1958.4	1958 4
10.75	1 3069	3.191	0.809	0 05	0.83	1953.9	1953.9
11 25	1 3900	3 031	0 650	0 05	0 78	1951.8	1951.8
11.75	1.4728	2 872	0 491	0 04	0 72	1949.5	1949.5
12 5	1 7016	2 882	0.500	0.11	0 68	1947.6	1947 6
13.25	1.7832	2 892	0 510	0.04	0 57	1941.7	1941 7
13.75	1 8737	3.938	1 556	0 14	0 53	1939.3	1939.3
14 25	1 9712	4 984	2 602	0 25	0 39	*1929 3	1932 2
14 75	2 0672	3.711	1 330	0 13	0 13	*1895.1	1928 5
15 25	2 1628	2 439	0 057	0 01	0 01	*1792 7	1924 8
15.75	2 2462	2 454	0 072	0 01			1921 6
16.25	2 3449	2 469	0 087	0 01		*not used	1917 8
16.75	2 4386	2 474	0 093	0 01		IN	1914 2
17 25	2 5468	2 480	0 098	0 01		chronology	1910 1
17 75	2 6379	2 580	0 199	0 02			1906.6
18 25	2.7207	2 681	0 299	0 02			1903 4
18 75	2 8972	2 418	0 036	0 01			1896 6
19 25	2 9668	2 155	0 010	0 00			1893 9
19 75	3 0628	2 873	0 492	0 05			1890 2
20 25	3 1636	3 592	1.211	0 12			1886 4
20 75	3 2455	2 800	0 418	0 03			1883 2

21 25	3 3440	2 008	-0 374	-0 04	1879 4
21 75	3 4482	2 102	-0 280	-0 03	1875 4
22 25	3 5496	2.196	-0 186	-0 02	1871 5
22 75	3 6574	2 444	0 062	0 01	1867.4
23 25	3 7595	2 692	0.310	0 03	1863 5
23 75	3 8666	2 698	0.317	0 03	1859.3
24.25	3 963246	2 705	0.323	0 03	1855.6
24 75	4.079397	2.526	0 145	0.02	1851 2
25 25	4 213455	2 348	-0 034	0 00	1846.0
25 75	4.360471	2 414	0 032	0 00	1840 4
26.25	4.508909	2.480	0 099	0 01	1834 6
26 75	4 655532	2 050	-0 331	-0 05	1829 0
27 25	4 784355	1 620	-0 762	-0 10	1824 1
27 75	4.937649	1 770	-0 612	-0 09	1818.2
28 25	5 073119	1.920	-0.462	-0 06	1813 0
28 75	5 237426	2 138	-0 244	-0 04	1806.6
29.25	5 402184	2 356	-0 025	0 00	1800 3
29.75	5 553589	2 237	-0 145	-0.02	1794 5
30 25	5 751164	2 117	-0 265	-0 05	1786 9
30 75	5.863134	2 195	-0 187	-0 02	1782 6
31 25	6.126097	2 273	-0 108	-0 03	1772 5
31 75	6 389748	2 123	-0.259	-0 07	1762 3
32.25	6 683234	1.972	-0 409	-0 12	1751 1
32 75	6 948176	2 221	-0 160	-0 04	1740 9
33 25	7 426934	2 470	0 089	0 04	1722 5
33.75	7 751756	2 515	0 133	0 04	1710 0
34 25	7 99587	2.560	0 178	0 04	1700 6

34.75	8 671802	2 324	-0.058	-0 04	1674 6
35 25	8.935582	2 088	-0 293	-0.08	1664 5
35 75	9 288564	2 294	-0 088	-0 03	1650.9
36 25	9 607569	2 499	0 118	0 04	1638.7
36 75	9 973961	2 281	-0.100	-0 04	1624 6
37.25	10.4579	2 063	-0.319	-0 15	1606 0
37 75	10 76425	2 470	0 089	0 03	1594 2
38 25	11 12714	2.878	0.496	0.18	1580.2
38.75	11 58337	2 679	0 297	0 14	1562 7
39 25	11 99617	2 480	0 098	0 04	1546.8

SD34 Chronology

Background 210Pb @15 25 cm

(Average value 15 25-37 25cm): 1.895 dpm/g

Cum. Dry mass Regression Line:

Slope	-0.019
y -	
inter	38.272

*dates are extrapolated below 13 75-cm depth using linear reg of cumulative dry mass and CRS dates (extrap date=cum dry mass-b/m) **dates are extrapolated below 37 25-cm depth using linear reg of depth and CRS dates from 0-37 25 cm

Extrap. KB Core

Unsupported Pb-210 (CRS Model):

						-			
Mid- Point	Cum Dry	Inter- polated	Unsupported Pb-210	Unsupported Pb-210	Unsupported Pb-210	$\begin{bmatrix} t = \frac{1}{\lambda} \ln \left(\frac{A(0)}{A} \right) \end{bmatrix}$	*Extrap below	SD34	**Extrap below
Depth	Mass	Pb-210	(Interpolated	per interval	cumulative mass	CRS Date	12 75 cm	RC-2	37 25 cm
(cm)	(g/cm^2)	(dpm/g)	- background) (dpm/g)	(dpm/cm2)	(dpm/cm2)	(Year AD)	mıd pt depth	Depth	mid pt depth
0 25	0 0164	19 522	17.627	0 29	12.52	2007.2	2007.2	37 75	1489.1
0 75	0 0491	18 881	16.986	0 55	12 23	2006.4	2006.4	38 25	1479.3
1.25	0 1192	18.241	16.345	1.15	11 67	2005.0	2005.0	38 75	1469.5
1.75	0 1465	19 307	17 411	0 48	10 53	2001.6	2001.6	39.25	1459.7
2.25	0 1712	20 373	18 477	0 46	10.05	2000.2	2000.2	39.75	1449.9
2 75	0 2033	19.320	17.425	0 56	9.59	1998.7	1998 7	40 25	1440.0
3 25	0 2328	18 267	16 372	0 48	9 03	1996.7	1996 7	40 75	1430.2
3.75	0 2637	16 353	14.458	0 45	8.55	1995.0	1995.0	41 25	1420.4

<u>Extrap. RC</u> <u>Core</u>

1410.6	1400.8	1391.0	1381.1	1371.3	1361.5	1351.7	1341.9	1332.1	1322.2	1312.4	1302.6	1292.8	1283.0	1273.2	1263.4	1253.5	1243.7	1233.9	1224.1	1214.3	1204.5	1194.6	1184.8	1175.0	1165.2	1155.4
41 75	42.25	42.75	43 25	43 75	44 25	44 75	45.25	45.75	46.25	46 75	47 25	47.75	48 25	48 75	49 25	49 75	50 25	50.75	51 25	51 75	52.25	52 75	53.25	53.75	54 25	54.75
1993.2	1991 3	1989.4	1987.3	1985 0	1982.2	1980.0	1977.5	1974.3	1970 5	1966.9	1961.3	1956.4	1951.7	1945.6	1938 1	1930 5	1925 7	1918.7	1912.1	1906.8	1899.4	1893.1	1886.7	1878.1	1872.7	1866.6
1993.2	1991.3	1989.4	1987.3	1985.0	1982.2	1980.0	1977.5	1974.3	1970.5	1966.9	1961.3	1956.4	1951.7	1945.6	1938.1	1930.5	1925.7	19171	1905 1	1889 6	1879 2	1856 5				
8 11	7 64	7 18	6 73	6 26	5 74	5 37	4.96	4 50	3 99	3.57	3 00	2 57	2 22	1 84	1 46	1 15	66 0	0 76	0.52	0 32	0.23	0 11	0 02			
0 47	0 46	0 45	0.47	0 52	0 37	0.40	0.47	0 51	0 42	0 57	0 43	0.35	0.38	0 38	0.31	0 16	0 23	0 24	0.20	0.09	0 12	0.10	0.02	-0 08	-0 03	-0.02
12 544	10.314	8.084	7.654	7.224	6 927	6.630	6.694	6.759	6.602	6 445	5.536	4.626	4.825	5 024	3 488	1 952	2 241	2 530	1 741	0 951	0 910	0.869	0 168	-0 533	-0 347	-0 160
14 439	12 209	9 979	9.549	9 120	8.822	8.525	8 589	8 654	8.497	8.340	7 431	6.521	6 720	6 919	5 383	3.848	4 136	4 425	3 636	2.847	2 805	2 764	2.063	1 362	1.549	1.735
0 3008	0 3453	0 4007	0 4621	0 5347	0 5886	0.6492	0.7192	0.7942	0 8581	0 9459	1 0228	1.0988	1 1783	1 2546	1 3424	1 4247	1 5280	1 6216	1 7365	1.8297	1 9593	2 0697	2 1809	2 3317	2 4262	2 5326
4 25	4.75	5 25	5 75	6 25	6.75	7 25	7.75	8.25	8.75	9.25	9.75	10 25	10 75	11 25	11 75	12.25	12 75	13 25	13.75	14 25	14 75	15.25	15 75	16 25	16 75	17 25

1145.6	1135.7	1125.9	1116.1	1106.3	1096.5	1086.7	1076.8	1067.0	1057.2	1047.4	1037.6	1027.8	1017.9	1008.1	998.3	988.5	978.7	968.9	959.0	949.2	939.4	929.6	919.8	910.0	900.2	890.3
55.25	55 75	56.25	56.75	57 25	57.75	58.25	58.75	59 25	59 75	60 25	60.75	61 25	61.75	62 25	62 75	63 25	63.75	64 25	64 75	65.25	65 75	66.25	66 75	67 25	67 75	68 25
1859.1	1852.8	1846.0	1838.0	1829.6	1822.8	1814.7	1807.1	1797.6	1789.7	1781.6	1774.0	1764.4	1756.3	1746.0	1736.2	1728.7	1718.9	1709.3	1699.5	1690.4	1680.2	1670.4	1655.6	1648.2	1636.2	1627.5
-0 01	00 0	0 00	00 0	00 0	0 00	00 0	0 01	0 02	0.02	0 07	0.10	0.12	0.09	0 05	-0 02	0.00	0 03	-0 04	-0 11	0 01	0 14	0 07	0.02	-0.06	-0 21	-0.10
-0 078	0.004	0 008	0 012	-0.013	-0 037	0 029	0 095	0 137	0.179	0 459	0 738	0 692	0 646	0.259	-0 127	0 016	0 159	-0 229	-0 617	0 072	0 761	0 425	060 0	-0 454	-0.998	-0.658
1 817	1 899	1 903	1 907	1 883	1.858	1 924	1.990	2.032	2.074	2.354	2 633	2.587	2.541	2 155	1.768	1 911	2.054	1 666	1 278	1 967	2.656	2.320	1.985	1.441	0 898	1 238
2 6650	2 7743	2 8940	3 0337	3 1808	3 2997	3 4422	3.5747	3 7411	3 8787	4 0211	4 1542	4 3217	4 4642	4.6439	4.8157	4 9470	5 1186	5 2860	5 4568	5 6160	5 7945	5 9675	6.2261	6 3545	6.5659	6 7176
17.75	18 25	18 75	19 25	19.75	20.25	20.75	21.25	21.75	22.25	22.75	23.25	23.75	24.25	24.75	25 25	25.75	26 25	26 75	27 25	27 75	28 25	28.75	29 25	29 75	30.25	30.75

880.5	870.7	860.9	851.1	841.3	831.4	821.6	811.8	802.0	792.2	782.4	772.5
68 75	69.25	69 75	70 25	70 75	71 25	71 75	72.25	72 75	73 25	73 75	74 25
1617.4	1607.8	1598.3	1587.1	1576.8	1566.3	1557.7	1546.5	1537.0	1526.0	1515.2	1506.2
-0.06	-0 02	0 02	-0 03	-0 07	-0.02	0 03	-0 01	-0.05	0 02	60 0	0 04
-0 318	-0.107	0 103	-0 136	-0 376	-0.103	0 171	-0.072	-0.314	0 086	0 485	0.261
1.578	1 788	1 998	1.759	1 519	1 793	2 066	1 824	1.581	1 981	2 380	2.157
6 8937	7 0623	7 2292	7 4242	7 6050	7 7880	7 9394	8.1344	8.3011	8 4929	8 6827	8 8408
31.25	31.75	32 25	32 75	33 25	33 75	34 25	34 75	35.25	35 75	36.25	36.75

GSL1 Chronology

Background 210Pb @12.25 cm (Average value 12 25-26 25cm) 1.082 dpm/g Cum. Dry mass Regression Line:

Slope	-0.0146
y-	
intercept	29.2099

*dates are extrapolated below 11 25-cm depth using linear reg of cumulative dry mass and CRS dates (extrap date=cum dry mass-b/m) **dates are extrapolated below 26 25-cm depth using linear reg of depth and CRS dates from 0-26.25 cm

Unsupported Pb-210 (CRS Model):

<u>: Extrap. KB Core</u>

<u>Extrap. RC</u> <u>Core</u>

. Marka sust	Currenteture		Unsupported	Unsupported	Unsupported	$t = \frac{1}{\lambda} \ln \left(\frac{A(0)}{A} \right)$	*Extrap.	0004	**Extrap
Midpoint	Cumulative	Interpolated	Pb-210	Pb-210	Pb-210 cumulative		below	SD34	below
Depth	Dry mass	Pb-210	(Interpolated	per interval	mass	CRS Date	11 25 cm	RC-2	26 25 cm
(cm)	(g/cm^2)	(dpm/g)	- background)	(dpm/cm2)	(dpm/cm2)	(Year AD)	mid pt depth	Depth	mıd pt depth
			(dpm/g)						
0 25	0 0124	14 912	13.830	0 17	5.38	2007.2	2007.2	26.75	1720.8
0 75	0 0378	15 571	14 489	0 37	5 21	2006.2	2006.2	27 25	1714.5
1 25	0.0603	15 333	14 252	0 32	4 84	2003.8	2003.8	27.75	1708.2
1.75	0 0960	15.096	14 014	0 50	4 52	2001.6	2001.6	28.25	1702.0
2 25	0 1183	14 440	13.358	0.30	4 02	1997.8	1997.8	28.75	1695.7

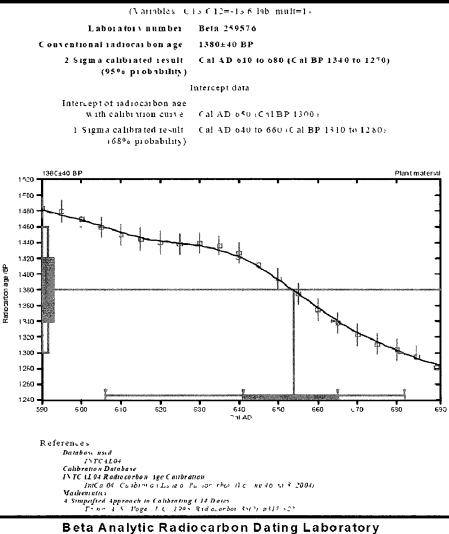
1689.4	1683.1	1676.8	1670.5	1664.3	1658.0	1651.7	1645.4	1639.1	1632.8	1626.6	1620.3	1614.0	1607.7	1601.4	1595.1	1588.9	1582.6	1576.3	1570.0	1563.7	1557.4	1551.1	1544.9	1538.6	1532.3	1526.0
29 25	29 75	30 25	30 75	31 25	31 75	32 25	32 75	33 25	33 75	34 25	34 75	35 25	35 75	36.25	36 75	37.25	37 75	38 25	38.75	39 25	39 75	40 25	40 75	41 25	41 75	42 25
1995.4	1990.8	1985.9	1981 3	1976 6	1972 0	1968 3	1964.2	1962 1	1958.4	1954 4	1951.2	1947.5	1942 7	1938.5	1935 1	1928 6	1916.1	1906.5	1900.3	1894.6	1888.5	1881.3	1868.2	1862.2	1856.1	1852.2
1995.4	1990.8	1985.9	1981.3	1976.6	1972.0	1968.3	1964.2	1962.1	1958.4	1954.4	1951.2	1947.5	1942.7	1938.5	1935.1	1928.6	1916.1	1895.4	1860.1							
3 72	3 22	2 77	2 40	2 07	1 80	1 60	141	1 32	1 18	1 04	0 94	0 84	0 72	0 63	0 57	0 46	0 31	0 17	0 06							
0 50	0 46	0 37	0 33	0 28	0 19	0 19	60 0	0 14	0.14	0 10	0 10	0 12	0 0	0 06	0 10	0 15	0.15	0 11	0 06	0 00	-0 02	-0.04	-0 04	0 00	-0.01	-0 01
12 703	10 371	8 039	6 914	5 790	3 867	1 944	2 238	2 532	1.966	1 401	1 437	1 473	1 112	0 751	1 405	2.059	1 626	1.193	0 610	0 027	-0 168	-0.364	-0 190	-0 015	-0 100	-0 185
13 784	11.452	9 120	7 996	6 871	4 948	3 025	3 319	3.613	3.048	2 483	2 519	2.555	2 193	1 832	2.487	3 141	2 708	2 275	1.692	1 109	0 913	0 718	0 892	1 066	0 982	0 897
0 1575	0 2013	0 2471	0 2946	0 3422	0 3924	0 4905	0 5313	0 5873	0.6574	0.7278	0 7989	0.8779	0 9591	1 0436	1 1179	1 1907	1 2826	1 3749	1 4653	1 5487	1 6380	1 7433	1 9345	2.0213	2 1112	2 1678
2 75	3 25	3 75	4 25	4 75	5 25	5 75	6 25	6 75	7 25	7 75	8 25	8 75	9 25	9 75	10 25	10 75	11 25	11 75	12 25	12 75	13 25	13 75	14 5	15 25	15.75	16.25

1519.7	1513.4	1507.2	1500.9	1494.6	1488.3	1482.0	1475.7	1469.5	1463.2	1456.9	1450.6	1444.3	1438.0	1431.7	1425.5	1419.2	1412.9	1406.6	1400.3	1394.0	1387.8	1381.5	1375.2	1368.9	1362.6	1356.3
42 75	43 25	43 75	44 25	44 75	45 25	45 75	46 25	46 75	47 25	47.75	48 25	48 75	49.25	49 75	50 25	50 75	51 25	51 75	52.25	52.75	53.25	53 75	54 25	54 75	55.25	55 75
1844.6	1839.7	1833.0	1827.3	1821.1	1815.0	1807.5	1801.9	1796.8	1790.5	1784.8	1779.0	1772.5	1765.9	1759.9	1753.0	1746.5	1739.4	1735.6	1728.3							
																-										
-0 01	0 00	0 00	0 00	-0 01	-0 03	-0 06	-0 06	-0 03	0 01	-0 03	-0 02	0 00	0 01	0 01	0 02	0 02	0 03	0 01	-0 01							
127	069	-0 011 0	0 047 0	-0 159 -0	-0 364 -0	569		-0 346 -0	0 082 0	-0 336 -0	-0 189 -0	-0 043 0		154	204	254	304		082							
0.955 -0	1 013 -0	1 070 -(1.128 C	0 923 -(0 718 -(0 512 -0	0 307 -(0 735 -(1 164 C	0 746 -(0 892 -(1.039 -(1 185 0	1 235 0	1 285 0	1 335 0	1 386 0	1 193 C	1 000 -0							
2 2791	2 3508	2 4485	2 5315	2 6220	2 7116	2 8211	2 9024	2 9764	3 0679	3 1518	3 2370	3 3312	3 4282	3 51594991	3.61627848	3 71058632	3.81525064	3 87085222	3 9762659							
16 75	17 25	17 75	18 25	18 75	19 25	19.75	20 25	20 75	21 25	21.75	22 25	22 75	23 25	23 75	24.25	24.75	25 25	25.75	26 25							

1350.1	1343.8	1337.5	1331.2	1324.9	1318.6	1312.4	1306.1	1299.8	1293.5	1287.2	1280.9	1274.6	1268.4	1262.1	1255.8	1249.5	1243.2	1236.9	1230.7	1224.4	1218.1	1211.8	1205.5	1199.2	1193.0	1186.7
56 25	56 75	57 25	57 75	58 25	58 75	59 25	59 75	60 25	60 75	61 25	61 75	62.25	62 75	63.25	63.75	64 25	64 75	65 25	65 75	66 25	66 75	67 25	67 75	68 25	68 75	69 25
																		5								

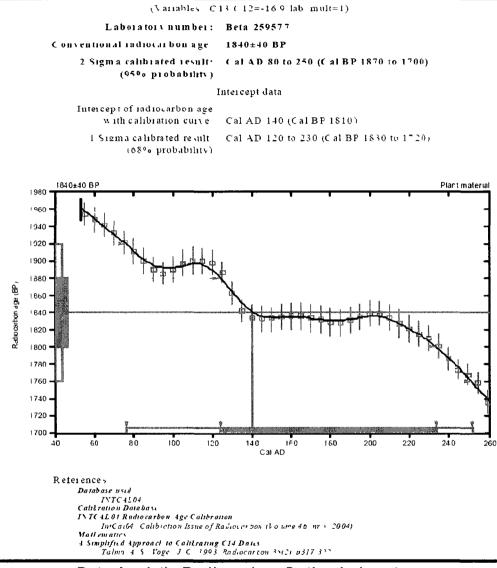
1180.4	1174.1	1167.8	1161.5	1155.3	1149.0	1142.7	1136.4	1130.1	1123.8	1117.5	1111.3	1105.0	1098.7	1092.4	1086.1	1079.8	1073.6	1067.3	1061.0	1054.7	1048.4	1042.1	1035.9	1029.6	1023.3	1017.0
69 75	70 25	70 75	71.25	71 75	72 25	72 75	73 25	73 75	74 25	74 75	75 25	75 75	76 25	76 75	77 25	77 75	78.25	78.75	79 25	79 75	80 25	80 75	81 25	81 75	82 25	82 75
										-																

1010.7	1004.4	998.2	991.9	985.6	979.3	973.0	966.7	960.4	954.2	947.9	941.6	935.3	929.0	922.7	916.5	910.2	903.9	897.6	891.3	885.0	878.8	872.5	866.2	859.9	853.6	847.3
83.25	83 75	84 25	84.75	85 25	85.75	86 25	86 75	87 25	87.75	88 25	88 75	89 25	89 75	90 25	90.75	91 25	91.75	92 25	92 75	93 25	93 75	94 25	94.75	95 25	95 75	96 25
											-													-		
						-																				
													-													
													-													


841.0	834.8	828.5	822.2	815.9	809.6	803.3
96 75	97 25	97 75	98 25	98 75	99 25	99 75
			-			
:						
						-
						

Appendix C: ¹⁴C Results from Beta Analytic

LAB NUMBER: Beta - 259576 1190 SAMPLE: SD34RC21 ANALYSIS : AMS-Standard delivery MATERIAL/PRETREATMENT : (plant material): acid/alkali/acid RADIOCARBON AGE: +/- 40 BP 13C/12C RATIO: -13.6 ‰ CONVENTIONAL RADIOCARBON AGE: 1380 +/- 40 BP 2 SIGMA CALIBRATION : Cal AD 610 to 680 (Cal BP 1340 to 1270)


LAB NUMBER: Beta - 259577 1710 SAMPLE : SD34RC22 ANALYSIS : AMS-Standard delivery MATERIAL/PRETREATMENT : (plant material): acid/alkali/acid RADIOCARBON AGE: 1710 +/- 40 BP 1840 +/- 40 BP 13C/12C RATIO: -16.9 ‰ CONVENTIONAL RADIOCARBON AGE: 1840 +/- 40 BP 2 SIGMA CALIBRATION : Cal AD 80 to 250 (Cal BP 1870 to 1700)

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

 γ^{0} S S δ^{-1} 4th Court Martin Formula S $1 \rightarrow T_{c}$ (10)100 = 0 For (10)003 0004 -E V m head matter do ration co

CALIBRATION OF RADIOCARBON AGE TO CALENDAR YEARS

Beta Analytic Radiocarbon Dating Laboratory

49855 R "44 Cour, Miana Forian Salas Te Burion" 15" · Fex (105)00 · 0901 · E Mar beta@radiocerbon.com

Appendix D: LOI Results

SR1 KB-2 Coring Date: 24-Mar-07 Loss-on-Ignition Results

Sed De	epth (cm)	Midpoint	%H2O	%ОМ	%MM	LOI 1000	%CaCO3
(Тор)	(Bottom)	depth (cm)		(% dry wt)	(%dry wt)	(% dry wt)	(% dry wt)
00	05	0 25	90 23	25 37	72 07	2 56	5 82
05	10	0 75	89 01	30 15	67 28	2 57	5 85
10	15	1 25	89 05	29 58	68 24	2 18	4 95
15	20	1 75	87 70	27 35	69 74	2 91	6 62
20	25	2 25	88 21	26 73	69 91	3 36	7 64
2 5	30	2 75	87 64	30 51	67 33	2 16	4 90
30	35	3 25	87 06	30 30	67 42	2 27	5 17
40	4 5	4 25	86 72	28 63	68 05	3 32	7 54
4 5	50	4 75	86 32	28 26	68 79	2 95	6 71
50	55	5 25	85 91	28 35	68 06	3 60	8 18
55	60	5 75	84 81	27 93	69 37	2 70	6 14
60	65	6 25	83 96	25 07	72 13	2 80	6 36
65	70	6 75	84 57	26 47	71 04	2 50	5 67
7 0	75	7 25	83 91	28 69	68 74	2 56	5 83
75	80	7 75	83 51	29 74	67 04	3 22	7 32
80	85	8 25	83 19	26 10	70 75	3 15	7 16
85	90	8 75	83 37	28 50	67 87	3 62	8 23
90	95	9 25	84 60	26 66	70 27	3 07	6 98
95	10 0	9 75	84 79	26 09	71 29	2 62	5 96
10 0	10 5	10 25	83 62	25 94	71 31	2 74	6 23
10 5	11 0	10 75	83 70	27 24	70 11	2 64	6 01
11 0	11 5	11 25	82 46	24 94	71 99	3 07	6 98
11 5	12 0	11 75	80 95	23 94	73 49	2 57	5 84
12 0	13 0	12 50	79 97	26 51	70 88	2 61	5 93
13 0	13 5	13 25	78 59	22 46	75 17	2 36	5 37
13 5	14 0	13 75	80 92	23 91	73 85	2 24	5 09
14 0	14 5	14 25	79 88	24 16	73 23	2 61	5 94
14 5	15 0	14 75	81 18	23 38	73 77	2 85	6 47
15 0	15 5	15 25	80 62	26 68	70 92	2 39	5 44
15 5	16 0	15 75	80 96	24 03	73 23	2 73	6 21
16 0	16 5	16 25	79 20	22 38	74 79	2 83	6 44
16 5	17 0	16 75	79 73	22 43	74 38	3 19	7 25
17 0	17 5	17 25	79 84	22 89	74 27	2 84	6 45
17 5	18 0	17 75	80 16	22 95	74 55	2 50	5 67
18 0	18 5	18 25	81 09	24 24	73 03	2 73	6 20
18 5	19 0	18 75	80 09	23 10	73 29	3 61	8 20
19 0	19 5	19 25	82 04	24 20	72 91	2 88	6 55
19 5	20 0	19 75	79 02	23 17	74 51	2 32	5 27
20 0	20 5	20 25	78 99	21 35	76 54	2 12	4 81
20 5	21 0	20 75	78 74	23 56	74 74	1 70	3 87
21 0	21 5	21 25	80 02	22 73	74 81	2 46	5 60

215	22 0	21 75	79 18	22 98	74 77	2 25	5 12
22 0	22 5	22 25	79 88	23 29	73 98	2 73	6 20
22 5	23 0	22 75	78 75	23 12	74 98	1 90	4 33
23	23 5	23 25	78 61	21 24	76 15	2 61	5 93
23 5	24 0	23 75	77 34	21 59	75 93	2 48	5 64
24	24 5	24 25	79 36	22 91	74 65	2 44	5 55
24 5	25 0	24 75	77 23	22 91	73 90	3 19	7 24
25	25 5	25 25	74 49	20 95	76 48	2 57	5 85
25 5	26 0	25 75	71 24	20 90	76 88	2 22	5 04
26	26 5	26 25	70 84	19 11	78 32	2 57	5 84
26 5	27 0	26 75	73 63	22 44	75 32	2 24	5 08
27 0	27 5	27 25	72 77	24 36	73 70	1 94	4 40
27 5	28 0	27 75	74 87	24 56	73 76	1 68	3 82
28 0	28 5	28 25	73 11	25 53	72 43	2 05	4 65
28 5	29 0	28 75	69 31	24 01	73 72	2 27	5 15
29 0	29 5	29 25	66 67	21 31	76 23	2 46	5 58
29 5	30 0	29 75	74 55	28 60	69 18	2 22	5 05
30 0	30 5	30 25	66 21	18 63	78 51	2 86	6 49
30 5	31 0	30 75	66 08	21 98	76 10	1 92	4 36
31 0	31 5	31 25	59 89	18 70	79 21	2 09	4 75
31 5	32 0	31 75	57 51	18 49	79 59	1 92	4 36
32 0	32 5	32 25	50 37	14 80	83 23	1 97	4 47
32 5	33 0	32 75	50 77	13 10	84 72	2 18	4 96
33 0	33 5	33 25	43 75	11 64	86 64	1 71	3 89
33 5	34 0	33 75	46 86	12 02	85 80	2 18	4 96
34 0	34 5	34 25	48 69	14 24	83 56	2 19	4 99
34 5	35 0	34 75	43 41	10 30	87 76	1 94	4 42
35 0	35 5	35 25	51 02	18 29	79 83	1 87	4 26
35 5	36 0	35 75	41 28	10 95	87 22	1 83	4 16
36 0	36 5	36 25	47 56	15 54	82 66	1 80	4 10
36 5	37 0	36 75	46 62	14 63	83 73	1 63	3 71
37 0	37 5	37 25	43 09	8 08	86 83	5 09	11 56
37 5	38 0	37 75	40 42	10 37	87 63	2 00	4 55
38 0	38 5	38 25	41 35	12 11	86 21	1 68	3 82
38 5	39 0	38 75	44 24	12 17	86 47	1 35	3 07
39 0	39 5	39 25	36 20	8 90	89 63	1 47	3 34
39 5	40 0	39 75	37 31	8 26	89 85	1 89	4 29

SD34 KB-2

Coring Date: 24-Mar-07 Loss-on-Ignition Results

	anth (ana)		0/1/00	0/014	0/ 8.88.4	LOI	<i>«</i>
Sea D	epth (cm)	Midpoint	%H2O	%OM	%MM	1000	%CaCO3
(Тор)	(Bottom)	depth (cm)		(% dry wt)	(%dry wt)	(% dry wt)	(% dry wt)
00	0 5	0 25	98 27	84 95	13 98	1 08	2 44
05	10	0 75	89 26	27 86	71 77	0 37	0.84
10	15	1 25	80 69	16 87	82 36	0 77	1 75
15	20	1 75	94 04	62 09	35 95	1 96	4 46
20	2 5	2 25	93 53	72 59	25 30	2 11	4 79
25	30	2 75	92 90	73 47	25 20	1 33	3 01
30	35	3 25	92 59	71 53	26 24	2 23	5 06
35	40	3 75	92 65	68 78	28 43	2 79	6 35
40	4 5	4 25	91 38	67 96	30 32	1 72	3 91
45	50	4 75	89 06	65 37	32 59	2 04	4 63
50	5 5	5 25	88 70	64 40	33 82	1 78	4 05
55	60	5 75	86 93	64 60	34 19	1 21	2 75
60	65	6 25	87 17	64 70	33 00	2 31	5 24
65	70	6 75	86 93	63 29	34 56	2 15	4 89
70	7 5	7 25	87 00	64 70	33 38	1 92	4 36
75	80	7 75	86 46	62 94	35 31	1 75	3 98
80	8 5	8 25	85 38	62 71	35 31	1 98	4 49
85	90	8 75	86 74	62 95	35 24	1 81	4 11
90	95	9 25	83 65	56 87	41 48	1 65	3 76
95	10 0	9 75	86 23	62 27	35 60	2 13	4 85
10 0	10 5	10 25	86 49	61 88	36 05	2 07	4 71
10 5	11 0	10 75	85 86	62 01	35 41	2 58	5 86
11 0	11 5	11 25	84 85	61 96	36 23	1 81	4 12
11 5	12 0	11 75	83 49	61 67	36 12	2 21	5 03
12 0	12 5	12 25	84 52	59 43	38 33	2 24	5 09
12 5	13 0	12 75	82 10	60 98	37 33	1 70	3 86
13 0	13 5	13 25	81 57	51 87	46 14	1 99	4 52
13 5	14 0	13 75	81 48	59 78	38 34	1 88	4 27
140	14 5	14 25	81 95	58 18	40 06	1 76	4 00
14 5	15 0	14 75	76 08	47 70	50 68	1 62	3 69
15 0	15 5	15 25	80 65	58 60	39 14	2 26	5 13
15 5	16 0	15 75	78 95	53 67	44 72	1 61	3 66
16 0	16 5	16 25	79 31	56 36	40 96	2 67	6 08
16 5	17 0	16 75	79 11	55 74	41 94	2 32	5 26
17 0	17 5	17 25	78 87	56 20	41 79	2 02	4 58
17 5	18 0	17 75	78 78	54 29	43 63	2 08	4 72
18 0	18 5	18 25	77 49	53 38	44 25	2 37	5 39
18 5	19 0	18 75	77 04	53 48	44 11	2 41	5 47
19 0	19 5	19 25	75 18	48 36	49 58	2 06	4 68
19 5	20 0	19 75	75 24	49 83	47 54	2 63	5 97
20 0	20 5	20 25	75 34	48 96	48 81	2 24	5 09
20 5	210	20 75	76 17	48 52	49 16	2 32	5 27

20 S	5 23	EL L9	30 03	1919	57 75	38 0	575
6 43	58.2	00 09	2T ZE	LE 89	SZ 75	S 7 S	32.0
2 54	5 30	6Z 6S	06 Z E	LE 89	SZ 98	0 <u>7</u> E	392
66 S	7 97	ST 89	34 53	ZS 99	36 25	3 9 E	39.0
67 S	5 33	88 65	38 30	95 89	52 SE	39 0	32.5
۲ ۲ ۲	7 35	SZ 09	86 98	Z9 Z9	32 32	3 S E	32.0
08 5	5 33	24 35	43 32	ττ ο Ζ	34 75	32 0	342
2 15	52.22	24 68	45 JJ	ZL 0L	34 22	34 2	340
۷6 5	5 63	89 55	69 T7	SS 69	33 75	34 0	332
97 S	7 35	08 65	68 <u>/</u> E	τ6 99	33 22	332	33.0
487	2 14	S0 SS	45 83	S9 69	37 J2	33 0	32.5
87 9	58 7	23 63	43 25	9112	37 25	3 Z E	35.0
£6 S	T9 Z	23 18	44 5 1	99 OL	57 75	35.0	372
4 80	117	0Z 9S	41 18	58 89	37 TE	5 I E	0 T E
76 7	9T Z	24 33	ts 87	80 02	52.08	310	302
65 7	Z0 Z	6 <u>7</u> 22	45 16	EZ 89	30 SS	305	30.0
<u> </u>	5 36	57 87	46 J 6	60 Z L	SZ 67	30.0	S 67
3 05	1 33	60 89	6S 0E	80 79	52 62	S 6Z	0 67
58 E	89 I	24 60	43 72	8£ 0Z	SZ 87	0 6Z	582
95 S	5772	6T 9S	98 It	57 02	58 25	5 82	58 0
20 S	5 23	55 55	74 45	29 T.L	5 <i>L L</i> Z	0 87	575
<u>\$8 9</u>	3 05	SZ IS	42 54	86 T.L	57 ZZ	S / Z	0 2 2
82 7	0T Z	TE 95	6S I7	9t 0L	52.92	0 <i>L</i> Z	5 97
Ζτς	5 28	t/ 05	66 97	72 48	52 92	S 97	0 97
66 7	517	25 24	42 57	72 S3	52 57	0 97	5 57
۲۲ ۲	5 5 J	24 15	79 87	8S I L	52 52	S SZ	0 52
60 S	5 24	8772	40 28	L6 69	54 J2	0 SZ	542
08 5	5 33	05 85	LT 44	72 20	57 52	542	540
LIS	2 Z Z	24 43	43 56	2T EZ	52 82	540	582
92 S	5 23	23 J2	74 35	61 74	53 23	5 23 2	53.0
2 J 3	5 J	25 6¢	44 80	£0 £2	57 J2	53.0	5 2 2
07 S	5 38	25 J3	67 St	52 EZ	57 72	5 7 Z	55.0
LS t	T0 Z	t79 T9	58 98	69 43	51 IZ	52 0	512
019	89 7	<u> 49 05</u>	t9 9t	97 SZ	57 52	512	510

SR1 RC-2 Coring Date: 24-Mar-07 Loss-on-Ignition Results

Sed De	pth (cm)	Midpoint	%Н2О	%OM	%MM	LOI 1000	%CaCO3
(Tam)	(D	-1		(% dry	(%dry	(% dry	(% dry
(Top)	(Bottom)	depth (cm)	07.05	wt)	wt)	wt)	wt)
00	05	0 25	87 85	66 46	31 25	2 29	5 20
05	10	0 75	86 22	64 96	32 84	2 20	5 00
10	15	1 25	85 75	65 37	32 18	2 44	5 55
15	20	1 75	85 24	65 53	31 32	3 15	7 15
20	25	2 25	84 33	64 90	32 81	2 29	5 21
25	30	2 75	84 70	63 10	34 62	2 28	5 19
30	35	3 25	83 48	62 77	34 80	2 43	5 52
35	40	3 75	81 15	64 46	33 86	1 68	3 82
4 0	4 5	4 25	84 08	62 14	35 36	2 51	5 70
45	50	4 75	82 47	61 53	36 22	2 26	5 13
50	55	5 25	82 47	62 12	35 82	2 06	4 67
55	60	5 75	82 12	62 19	36 02	1 79	4 07
60	65	6 25	82 08	62 88	35 17	1 94	4 42
65	70	6 75	82 13	61 07	36 30	2 63	5 97
70	75	7 25	80 74	62 08	36 04	1 88	4 28
7 5	80	7 75	81 62	60 59	36 90	2 51	5 71
80	85	8 25	82 20	61 40	36 46	2 14	4 87
85	90	8 75	81 45	63 25	34 99	1 77	4 01
90	95	9 25	81 46	61 78	36 30	1 92	4 36
95	10 0	9 75	81 73	61 82	35 81	2 37	5 39
10 0	10 5	10 25	81 94	62 24	35 57	2 20	4 99
10 5	110	10 75	82 11	62 58	35 32	2 10	4 76
11 0	11 5	11 25	81 54	62 17	35 72	2 11	4 79
11 5	12 0	11 75	81 14	60 84	36 73	2 43	5 53
12 0	12 5	12 25	79 91	60 82	36 91	2 28	5 18
12 5	13 0	12 75	80 31	60 64	36 53	2 82	6 42
13 0	13 5	13 25	79 49	61 59	36 14	2 26	5 15
13 5	14 0	13 75	80 34	64 15	33 85	2 00	4 54
14 0	14 5	14 25	79 23	61 66	36 14	2 20	5 01
14 5	15 0	14 75	79 45	58 78	38 86	2 37	5 38
15 0	15 5	15 25	79 19	59 63	37 92	2 46	5 58
15 5	160	15 75	78 11	59 11	38 71	2 19	4 97
16 0	16 5	16 25	78 61	59 40	38 43	2 17	4 93
16 5	170	16 75	79 28	59 19	38 59	2 22	5 05
17 0	175	17 25	78 42	59 53	38 71	1 76	4 00
17 5	180	17 75	78 18	58 01	40 11	1 88	4 27
18 0	18 5	18 25	76 91	57 88	39 82	2 30	5 22
18 5	190	18 75	78 04	57 64	40 27	2 09	4 75
19 0	19 5	19 25	77 38	56 93	40 84	2 23	5 07
19 5	20 0	19 75	77 34	57 18	41 12	1 69	3 85
20 0	20 5	20 25	78 28	57 35	40 73	1 92	4 36
20 5	210	20 75	78 29	56 15	41 39	2 46	5 59

210	215	21 25	77 00	56 30	41 87	1 83	4 17
215	22 0	21 75	78 49	56 32	41 86	1 82	4 14
22 0	22 5	22 25	77 58	56 63	41 32	2 05	4 65
22 5	23 0	22 75	76 62	55 19	42 64	2 17	4 93
23 0	23 5	23 25	77 59	56 53	41 88	1 59	3 62
23 5	24 0	23 75	76 69	55 27	42 67	2 06	4 67
24 0	24 5	24 25	76 21	55 12	43 07	1 81	4 12
24 5	25 0	24 75	78 25	53 33	44 51	2 16	4 91
25 0	25 5	25 25	76 66	56 15	42 01	1 84	4 18
25 5	26 0	25 75	76 85	58 27	39 86	1 87	4 24
26 0	26 5	26 25	75 33	53 27	44 80	1 92	4 37
26 5	27 0	26 75	75 38	53 78	44 52	1 70	3 86
27 0	27 5	27 25	75 63	52 35	45 30	2 35	5 34
27 5	28 0	27 75	75 45	52 08	45 79	2 12	4 83
28 0	28 5	28 25	75 47	53 19	45 16	1 65	3 76
28 5	29 0	28 75	75 24	50 94	47 25	1 81	4 11
29 0	29 5	29 25	76 50	52 93	45 23	1 84	4 18
29 5	30 0	29 75	75 07	51 57	46 91	1 52	3 46
30 0	30 5	30 25	75 54	52 20	45 93	1 86	4 24
30 5	31 0	30 75	75 40	50 24	47 96	1 80	4 10
310	315	31 25	75 02	50 86	47 42	1 72	3 92
315	32 0	31 75	72 81	50 58	47 57	1 85	4 21
32 0	32 5	32 25	73 35	50 61	47 54	1 85	4 21
32 5	33 0	32 75	72 21	49 27	48 51	2 22	5 04
33 0	33 5	33 25	73 97	49 90	48 57	1 54	3 50
33 5	34 0	33 75	73 15	49 66	49 11	1 23	2 80
34 0	34 5	34 25	73 43	50 11	48 00	1 90	4 31
34 5	35 0	34 75	72 10	47 96	50 23	1 80	4 10
35 0	35 5	35 25	72 13	48 39	48 53	3 09	7 01
35 5	36 0	35 75	71 66	46 93	50 91	2 16	4 91
36 0	36 5	36 25	70 21	44 57	52 74	2 70	6 13
36 5	37 0	36 75	70 60	45 34	52 60	2 06	4 69
37 0	37 5	37 25	69 13	43 82	54 12	2 06	4 68
37 5	38 0	37 75	69 62	44 11	53 31	2 58	5 86
38 0	38 5	38 25	67 51	44 30	53 70	2 01	4 56
38 5	39 0	38 75	70 23	44 63	53 05	2 32	5 26
39 0	39 5	39 25	70 78	45 82	51 69	2 49	5 66
39 5	40 0	39 75	71 01	47 27	50 37	2 36	5 37
40 0	40 5	40 25	71 98	45 79	52 43	1 79	4 06
40 5	410	40 75	71 38	42 95	54 80	2 26	5 13
410	41 5	41 25	71 59	44 54	53 64	1 82	4 14
41 5	42 0	41 75	70 43	44 35	53 37	2 29	5 19
42 0	42 5	42 25	68 49	43 01	54 55	2 44	5 55
42 5	43 0	42 75	67 88	42 06	55 90	2 04	4 63
43 0	43 5	43 25	70 02	41 92	55 71	2 37	5 38
43 5	44 0	43 75	68 78	41 41	56 17	2 42	5 50
44 0	44 5	44 25	68 61	41 77	56 15	2 08	4 73
44 5	45 0	44 75	69 76	39 93	56 95	3 13	7 11
45 0	45 5	45 25	68 39	40 36	57 61	2 03	4 61
45 5	46 0	45 75	70 21	42 49	55 53	1 98	4 50

46 0	46 5	46 25	68 24	41 07	56 63	2 30	5 23
46 5	47 0	46 75	69 71	41 77	55 73	2 50	5 69
47.0	47 5	47 25	69 43	41 52	56 27	2 21	5 01
47 5	48 0	47 75	68 20	38 18	59 75	2 07	4 70
48.0	48 5	48 25	68 60	38 94	58 64	2 42	5 50
48 5	49 0	48 75	66 85	35 93	61.86	2 20	5 01
49 0	49 5	49 25	66 97	34 54	62.94	2 52	5 72
49 5	50 0	49 75	67 70	36 63	60 85	2 52	5 72
50 0	50 5	50 25	68 23	37 93	59 82	2 25	5 11
50 5	510	50 75	63 20	30 77	66 96	2 26	5 14
510	515	51 25	63 73	32 36	65 34	2 29	5 21
515	52 0	51 75	64 11	30 97	66 35	2 67	6 08
52 0	52 5	52 25	62 14	30 74	66 74	2 52	5 73
52 5	53 0	52 75	60 85	28 53	69 37	2 10	4 77
53 0	53 5	53 25	60 47	28 11	69 77	2 12	4 82
53 5	54 0	53 75	59 10	25 72	71 80	2 48	5 64
54 0	54 5	54 25	59 28	25 67	71 84	2 49	5 66
54 5	55 0	54 75	60 20	26 86	70 89	2 25	5 12
55 0	55 5	55 25	60 19	26 26	71 33	2 41	5 47
55 5	56 0	55 75	57 35	26 13	71 68	2 19	4 98
56 0	56 5	56 25	57 61	25 37	72 72	1 91	4 34
56 5	57 0	56 75	53 44	22 39	75 39	2 22	5 05
57 0	57 5	57 25	56 77	22 83	74 64	2 53	5 74
57 5	580	57 75	56 34	23 28	74 54	2 18	4 96
580	58 5	58 25	56 35	20 26	75 48	4 26	9 68
58 5	59 0	58 75	49 48	17 60	80 05	2 34	5 33
590	59 5	59 25	52 10	17 37	80 34	2 24	5 19
59 5	60 0	59 75	44 77	11 90	85 57	2 53	5 74
60 0	60 5	60 25	43 42	11 90	85 62	2 49	5 65
60 5	610	60 75	49 80	11 90	80 13	2 49	4 89
61 0	615	61 25	34 07	7 86	89 21	2 93	6 66
615	62 0	61 75	42 97	11 37	86 04	2 59	5 88
62 0	62 5	62 25	42 57	10 60	86 72	2 68	6 09
62 5	63 0	62 75	31 31	7 44	89 44	3 12	7 09
63 0	63 5	63 25	35 91	9 01	88 46	2 54	5 76
63 5	64 0	63 75	32 13	7 43	89 97	2 54	5 93
64 0	64 5	64 25	31 03	6 12	91 16	2 01	6 16
64 5	65 0	64 75	+	6 82	90 05	3 12	7 10
65 0	65 5	65 25	32 38 31 72	6 18	90 36	3 46	7 86
65 5 66 0	66 0 66 5	65 75 66 25	35 36 35 11	7 88 8 05	88 86 88 87	3 27 3 07	7 43 6 99
			1	9 48	1	2 93	
66 5	670	66 75 67 25	39 01		87 59		6 65 7 71
670	675	67 25	30 14	5 96	90 64	3 39 3 50	7 71
67 5 68 0	68 0 68 5	67 75 68 25	30 87 32 29	6 67 6 94	89 83 89 59	3 50	7 96
					· · · ·		•
68 5	69 0 69 5	68 75	33 36	7 62	88 93 89 10	3 45	7 84
69 0	69 5 70 0	69 25	35 37	7 57		3 32	7 55 8 13
69 5	700	69 75 70 25	35 20	7 00	89 42	3 58	
70 0	705	70 25	38 00	787	88 42	3 71	8 43
70 5	710	70 75	28 91	5 36	91 17	3 46	7 86

GSL1 KB-1 Coring Date: 25-Mar-07 Loss-on-Ignition Results

Sed D	epth (cm)	Midpoint	%н20	%OM	%MM	LOI 1000	%CaCO3
(Тор)	(Bottom)	depth (cm)		(% dry wt)	(%dry wt)	(% dry wt)	(% dry wt)
00	05	0 25					
05	10	0 75	94 30	71 21	24 49	4 30	9 77
10	15	1 25	93 66	76 99	20 73	2 28	5 18
15	20	1 75	93 87	76 43	21 84	1 73	3 94
20	25	2 25	92 74	76 57	22 25	1 17	2 66
25	30	2 75	93 06	76 36	21 56	2 09	4 74
30	35	3 25	91 71	74 60	23 23	2 16	4 92
35	40	3 75	90 50	73 45	24 12	2 42	5 51
40	4 5	4 25	90 40	73 80	23 37	2 83	6 43
4 5	50	4 75	90 39	73 39	24 56	2 05	4 67
50	55	5 25	90 40	73 31	23 64	3 05	6 94
55	60	5 75	88 67	71 24	25 79	2 98	6 76
60	65	6 25	85 39	70 72	26 87	2 42	5 4 9
65	70	6 75	86 97	70 76	26 32	2 92	6 65
70	7 5	7 25	88 07	71 09	26 08	2 83	6 4 3
75	80	7 75	85 91	69 97	26 99	3 04	6 92
80	85	8 25	86 92	70 71	25 98	3 32	7 54
85	90	8 7 5	85 10	70 76	26 71	2 53	5 74
90	95	9 25	84 97	70 12	26 59	3 29	7 49
95	10 0	9 75	84 63	69 76	27 41	2 83	6 4 3
100	10 5	10 25	85 29	70 12	27 38	2 50	5 67
10 5	110	10 75	84 96	70 39	27 97	1 64	3 72
110	11 5	11 25	85 62	69 88	27 21	2 92	6 63
11 5	12 0	11 75	84 04	71 56	25 71	2 7 3	6 20
12 0	12 5	12 25	84 02	70 42	26 87	2 70	6 14
12 5	13 0	12 75	83 47	71 00	26 08	2 92	6 64
13 0	13 5	13 25	82 99	72 16	25 15	2 68	6 09
13 5	14 0	13 75	83 11	71 70	25 43	2 87	6 53
14 0	14 5	14 25	82 59	71 55	25 57	2 88	6 54
14 5	15 5	15 00	81 90	71 84	25 46	2 70	6 13
15 5	16 0	15 75	83 55	70 68	26 10	3 22	7 32
16 0	16 5	16 25	83 25	71 60	25 60	2 80	6 37
16 5	170	16 75	83 31	71 71	25 90	2 40	5 44
170	17 5	17 25	82 88	71 18	25 90	2 92	6 64
17 5	180	17 75	82 71	71 94	25 12	2 94	6 68
180	18 5	18 25	82 54	69 80	27 53	2 67	6 07
18 5	190	18 75	83 63	70 32	26 74	2 93	6 66
190	195	19 25	83 04	71 37	25 82	2 81	6 38
195	200	19 75	82 92	71 67	25 68	2 65	6 03
200	20 5	20 25	81 93	70 70	26 49	2 81	6 38
20 5	210	20 75	82 88	71 82	25 33	2 85	6 48
210	215	21 25	81 97	69 86	27 35	2 79	6 35
215	22 0	21 75	82 53	70 78	26 36	2 86	6 50
22 0	22 5	22 25	81 86	68 49	28 74	2 77	6 29
22 5	23 0	22 75	82 05	68 94	28 42	2 64	6 01

23 0	23 5	23 25	82 41	70 73	26 46	2 80	6 37
23 5	24 0	23 75	82 53	70 96	26 31	2 73	6 20
24 0	24 5	24 25	82 77	70 95	26 14	2 91	6 62
24 5	25 0	24 75	82 44	69 62	27 56	2 81	6 39
25 0	25 5	25 25	82 20	70 29	27 05	2 66	6 04
25 5	26 0	25 75	82 39	69 58	27 72	2 70	6 14
26 0	26 5	26 25	82 32	70 10	27 02	2 88	6 55
26 5	27 0	26 75	82 01	69 18	27 91	2 90	6 59

GSL1 RC-1 Coring Date: 25-Mar-07 Loss-on-Ignition Results

Sed De	epth (cm)	Midpoint	%H2O	%OM	%MM	LOI 1000	%CaCO3
(Top)	(Bottom)	depth (cm)	,	(% dry wt)	(%dry wt)	(% dry wt)	(% dry wt)
0 00	0 50	0.25	88.47	76.63	21.13	2 23	5 08
0 50	1.00	0.75	89.62	76 61	20 47	2 92	6 65
1 00	1 50	1 25	87 76	75.16	23 53	1 31	2 97
1 50	2.00	1 75	87.82	74.62	23 04	2.34	5 31
2 00	2 50	2 25	88 63	74 26	23 83	1 91	4 35
2 50	3 00	2 75	89 51	79 96	18 54	1 50	3 40
3 00	3 50	3 25	87 66	77.43	24.88	-2 31	-5 24
3 50	4.00	3 75	87.17	73.29	25 78	0.93	2.12
4.00	4 50	4.25	88.50	73.78	24.31	1.91	4 34
4.50	5 00	4 75	88 20	74 14	22 91	2 95	6 70
5 00	5.50	5 25	86.17	72 78	25 47	1 75	3 97
5.50	6 00	5 75	86 44	73.39	24.66	1 94	4 42
6.00	6 50	6.25	85 77	74.57	23 86	1 57	3 57
6 50	7 00	6 75	87.23	73 59	25 16	1 25	2 84
7 00	7 50	7 25	86 68	72 60	25 00	2 40	5 44
7 50	8 00	7 75	84 34	71 45	26 49	2 07	4.70
8 00	8 50	8 25	85 95	73 15	25 14	1.70	3 87
8.50	9 00	8 75	87.74	73 92	24 09	1 99	4 53
9 00	9 50	9 25	85 17	71 60	25 87	2 53	5 76
9.50	10 00	9 75	84 00	72 20	25.53	2 26	5 15
10 00	10 50	10 25	84.27	71.32	26 87	1 81	4 11
10.50	11 00	10 75	82 50	71 46	26 58	1.96	4 45
11 00	11 50	11 25	83 28	72 52	25 12	2 36	5 36
11 50	12 00	11 75	82.77	69.76	27 77	2 46	5 60
12 00	12 50	12 25	82 79	68.39	27 91	3 70	8 41
12.50	13 00	12 75	82 80	69.59	28 34	2 07	4 71
13 00	13 50	13 25	83 10	70 99	27.13	1 87	4 25
13 50	14 00	13 75	82 78	70.24	27 80	1 96	4 46
14 00	14 50	14.25	86 39	<u>7</u> 6 33	22 24	1 43	3 26
14 50	15 00	14 75	87.46	73 40	25 20	1.41	3 20
15 00	15 50	15 25	84 81	69.82	28.37	1 81	4 12
15 50	16 00	15 75	84 27	71 21	27.76	1 04	2 36
16 00	16 50	16 25	88 13	72 85	25.69	1 46	3 33
16 50	17 00	16.75	83 82	70 78	27 38	1 83	4 17
17 00	17 50	17 25	88 62	77 91	20 03	2 05	4 67
17 50	18 00	17 75	88 35	73 09	25 17	1 74	3 95
18 00	18 50	18 25	94 02	83 72	15 61	0 66	1 51
18 50	19 00	18 75	80 52	72 18	722 75	-694.93	-
19.00	19.50	19 25	82 19	70 81	27 52	1 66	3 78
19 50	20.00	19 75	81 94	70 45	28 89	0 66	1 50
20.00	20 50	20 25	82 06	70 96	26 53	2 51	5 71

20 50	21 00	20 75	81 75	71 27	27.29	1 44	3 26
21 00	21 50	20 75	81.73	71 75	25.61	2 65	6 01
21 50	22 00	21 75	82 14	73 21	25 60	1.19	2 71
22 00	22 50	22.25	81 04	72.15	26 34	1 51	3 42
22 50	23 00	22.75	81 30	72.13	26.49	1 38	3.14
23 00	23 50	23 25	81 83	72.67	25 44	1 89	4 29
23 50	24 00	23.75	81 30	68 92	27 37	3.71	8 43
24 00	24 50	24.25	79.92	70.42	27.87	1.71	3 89
24 50	25.00	24 75	81.49	82.19	27.10	-9.29	-21 11
25 00	25 50	25 25	82.70	72.83	24 24	2 93	6 66
25 50	26 00	25 75	82.02	72 26	26.32	1.43	3 24
26 00	26 50	26.25	81 89	73 23	25.05	1 71	3 89
26.50	27 00	26.75	81.64	69.62	25 27	5 12	11.63
27 00	27.50	27.25	81.16	73.58	23.74	2.68	6 10
27.50	28 00	27 75	81 31	71.61	26.15	2 24	5 09
28.00	28.50	28.25	82 22	71.71	26 33	1 96	4 45
28 50	29 00	28.75	82 15	72 26	26.43	1 32	2 99
29 00	29 50	29.25	81 57	70 26	28 04	1.69	3 85
29.50	30 00	29 75	82 01	70.74	27 39	1.87	4 25
30 00	30 50	30 25	81 49	71 12	26 60	2 28	5 18
30 50	31 00	30 75	81 00	71 56	26.88	1 56	3 55
31.00	31 50	31 25	81.59	70 59	27 49	1 91	4 34
31.50	32 00	31 75	81 56	71 22	27 51	1.28	2 91
32.00	32 50	32 25	81 11	71 26	27.79	0 95	2 15
32 50	33 00	32 75	81.42	70.25	27 66	2 09	4.74
33.00	33 50	33 25	81 27	69.80	28 72	1.48	3 36
33 50	34 00	33 75	81 17	69 16	27 60	3 25	7 38
34.00	34.50	34 25	81 46	71.96	26 76	1.28	2 91
34 50	35 00	34 75	81 58	69 44	29.37	1 19	2 70
35.00	35 50	35 25	81.75	68.67	29.59	1.75	3 97
35 50	36 00	35 75	82 66	69.90	25.42	4 68	10 64
36.00	36.50	36 25	80.93	69 75	28 45	1.80	4 10
36 50	37 00	36.75	81 90	71.02	27 44	1.54	3 49
37 00	37.50	37 25	80 24	69.60	28.92	1.48	3.37
37.50	38 00	37 75	81 49	70 24	31.74	-1 98	-4 49
38.00	38 50	38 25	81 49	70.70	28.08	1.21	2 75
38 50	39.00	38 75	82.78	70.62	-737 93	767.31	1743 89
39.00	39.50	39 25	81 72	70 46	28.99	0.56	1 27
39.50	40 00	39 75	81 01	69 29	28 75	1 96	4.47
40 00	40.50	40 25	80 77	69 78	29.19	1 03	2 34
40 50	41 00	40 75	80 96	68 65	29 71	1 64	3 73
41 00	41 50	41 25	80 74	69 48	29 57	0 95	2 16
41.50	42 00	41 75	80 57	67 12	30.91	1 98	4 49
42 00	42 50	42 25	81 79	67 19	30.80	2.01	4 57
42 50	43 00	42 75	80 69	69.18	30.51	0 31	0 71

Appendix E: Organic Carbon and Nitrogen Elemental and Stable Isotope Geochemistry

SR1 KB-2

Coring Date: 24-Mar-07 Organic Carbon and Nitrogen Elemental and Stable Isotope Geochemistry

Midpoint	Year	C _{org}			N			Corrected N	$\delta^{13}C_{org}$			∂ ¹⁵ N			C/N
Depth (cm)	(AD)	(%)	Rpt	Avg	(%)	Rpt	Avg	(%) (-0 0304)	(‰)	Rpt	Avg	(‰)	Rpt	Avg	
0 25	2007 00														
0 75	2005 82	13 00		13 00	1 25		1 25	1 25	-28 36		-28 36	-0 08		-0 08	10 38
1 25	2004 51	13 56		13 56	1 27		1 27	1 27	-28 13		-28 13	-0 08		-0 08	10 72
1 75	2002 67	13 38		13 38	1 27		1 27	1 27	-28 44		-28 44	0 10		0 10	10 50
2 25	2000 47	14 01		14 01	1 30		1 30	1 30	-28 57		-28 57	0 17		0 17	10 78
2 75	1998 00	14 34		14 34	1 35		1 35	1 35	-28 75		-28 75	-0 05		-0 05	10 62
3 25	1995 41	14 35		14 35	1 37		1 37	1 37	-28 87		-28 87	0 02		0 02	10 48
4 25	1991 96	14 31		14 31	1 32		1 32	1 32	-28 41		-28 41	-0 01		-0 01	10 86
4 75	1989 17	14 18		14 18	1 31		1 31	1 31	-28 26		-28 26	0 01		0 01	10 79
5 25	1986 51	12 57		12 57	1 18		1 18	1 18	-28 23		-28 23	-0 10		-0 10	10 64
5 75	1984 03	12 28	12 25	12 27	1 16	1 16	1 16	1 16	-28 31	-28 25	-28 28	-0 20	-0 18	-0 19	10 62
6 25	1982 15	11 92		11 92	1 12		1 12	1 12	-28 50		-28 50	-0 26		-0 26	10 61
6 75	1979 69	12 58		12 58	1 18		1 18	1 18	-28 17		-28 17	-0 09		-0 09	10 65
7 25	1977 28	11 30		11 30	1 07		1 07	1 07	-28 21		-28 21	-0 05		-0 05	10 54
7 75	1974 53	13 33		13 33	1 19		1 19	1 19	-27 68		-27 68	-0 07		-0 07	11 19
8 25	1972 44	12 10		12 10	1 12		1 12	1 12	-27 94		-27 94	-0 19		-0 19	10 84
8 75	1969 77	13 66		13 66	1 32		1 32	1 32	-28 16		-28 16	-0 06		-0 06	10 38
9 25	1966 77	11 77		11 77	1 16		1 16	1 16	-28 46		-28 46	-0 15		-0 15	10 14

97 1963 1289 128 127 127 3877 3875 016 017 1125 1993 103 103 103 103 103 103 103 101<																											
	10 14	9 92	9 88	10 25	10 57	10 77	11 10	10 77	11 08	11 01	11 19	10 96	11 02	10 68	11 01	11 23	10 88	10 77	10 83	10 92	10 64	10 84	10 62	10 65	10 69	10 84	11 04
	-0 16	-0 06	-0 26	-0 02	-0 18	-0 02	-0 25	-0 12	-0 21	-0 17	-0 20	-0 01	0 07	00 0	0 00	0 04	-0 04	-0 28	-0 13	-0 08	-0 15	-0.03	0.01	0 07	-0 10	-0 02	-0 07
			-0 41									0 08											0.09				
	-0 16	-0 06	-0 11	-0 02	-0 18	-0 02	-0 25	-0 12	-0 21	-0 17	-0 20	-0 10	0 07	00 0	00 0	0 04	-0.04	-0 28	-0 13	-0 08	-0 15	-0.03	-0 07	0 07	-0 10	-0 02	-0 07
	-28 27	-28 05	-27 66	-27 50	-27 47	-27 60	-27.44	-27.61	-27 19	-27 61	-27 45	-27 56	-27 49	-27 39	-27 33	-27 41	-27 44	-27 52	-27 55	-27 33	-27 57	-27 38	-27 49	-27 40	-27 51	-27 35	-27 33
			-27 67																								
1963.45 1289 1289 127 127 1958.40 1181 1181 1181 119 119 1958.40 1185 1180 1181 119 119 1953.94 1185 1180 1182 106 119 1947.63 1957 1957 1957 182 104 1947.63 1957 1131 102 102 1947.63 1957 1131 102 102 1947.55 1132 1131 102 102 1947.53 1156 1132 1132 103 1947.53 1132 1132 103 102 1932.20 1155 1132 1132 103 1928.50 1132 11132 103 103 1924.83 1114 1114 101 104 1924.83 1114 1114 101 104 1924.83 1114 1114 101 103 1924.83 1114 1114 101 104 1924.83 1114 1114 101 104 1924.83 1114 1114 101 103 1924.83 1114 1114 1114 101 1924.83 1114 1114 1014 104 1924.83 1114 1114 1014 104 1920.85 1114 1114 1114 104 1920.85 11134 103 103 1906.57 11	-28 27	-28 05	-27 65	-27 50	-27 47	-27 60	-27 44	-27 61	-27 19	-27 61	-27 45	-27 55	-27 49	-27 39	-27 33	-27 41	-27 44	-27 52	-27 55	-27 33	-27 57	-27 38	-27 44	-27 40	-27 51	-27 35	-27 33
1963 45 1289 127 1181 119 $1958 40$ 1181 1181 1181 119 119 $1953 94$ 1185 1180 1182 120 119 $1953 94$ 1185 1180 1182 120 119 $1951 80$ 1088 1008 106 106 101 $1949 49$ 1098 1008 106 104 106 $1947 63$ 1957 1192 1098 104 104 $1947 63$ 1957 1131 1102 1102 102 $1947 63$ 1155 1131 11122 102 103 $1947 63$ 1157 11152 11132 104 $1947 63$ 11152 11132 11132 103 $1932 20$ 1155 11132 11132 103 $1932 20$ 11322 11132 11132 103 $1924 83$ 1157 11132 1132 103 $1924 83$ 1114 1114 101 104 $1924 83$ 11141 11141 101 $1924 83$ 11141 11141 101 $1924 83$ 11157 11332 11332 $1924 83$ 11141 11111 104 $1992 832$ 11332 11133 1124 $1992 832$ 1134 11141 101 $1992 832$ 1134 11127 1027 $1892 32$ 1134 11149 1067 $1892 42$ 1092	1 27	1 19	1 20	1 06	1 04	1 82	1 02	1 02	1 04	1 03	1 03	0 98	1 01	1 04	1 04	1 01	1 06	1 05	1 05	1.06	1 03	1 06	1 03	1 02	1 00	1 02	1 01
1963 45 $12 89$ $12 81$ $11 81$ $11 81$ $11 9$ $1953 94$ $11 81$ $11 81$ $11 81$ $11 9$ $11 91$ $1953 94$ $11 85$ $11 80$ $11 82$ $12 0$ 1 $1953 94$ $11 85$ $11 80$ $11 82$ $10 6$ 1 $1951 80$ $10 88$ $10 0 8$ $10 6$ $10 6$ $10 4$ $1941 75$ $11 31$ $11 02$ $10 38$ $10 6$ $10 4$ $1941 75$ $11 31$ $11 02$ $11 31$ $10 2$ $10 4$ $193 31$ $11 02$ $11 32$ $11 31$ $10 2$ $10 4$ $193 31$ $11 02$ $11 32$ $11 32$ $10 3$ $10 2$ $193 31$ $11 02$ $11 32$ $11 32$ $11 32$ $10 3$ $193 220$ $11 32$ $11 32$ $11 32$ $10 3$ $10 4$ $192 850$ $11 32$ $11 32$ $11 32$ $10 3$ $10 4$ $191 83$ $11 11$ $11 11$ $11 41$ $10 4$ $10 4$ $191 83$ $11 57$ $11 33$ $11 33$ $10 1$ $10 4$ $190 657$ $11 33$ $11 34$ $11 33$ $10 1$ $10 4$ $190 657$ $11 31$ $11 14$ $11 14$ $10 4$ $10 4$ $190 657$ $11 33$ $11 34$ $11 27$ $10 3$ 11 $190 657$ $11 33$ $11 34$ $10 2$ $11 27$ $10 3$ $190 6560$ $11 32$ $11 34$ $11 27$ $10 3$ $11 34$ $190 6560$ $11 34$ $11 6$ <	1 27	1 19	1 19	1 06	1 04	182	1 02	1 02	1 04	1 03	1 03	1 00		1 04	1 04	1 01	1 06	1 05	1 05	1 06	1 03	1 06	1 03	1 02	1 00	1 02	1 01
1963 45 $12 89$ $12 89$ $12 89$ $1958 40$ $11 81$ $11 81$ $11 81$ $1953 94$ $11 85$ $11 80$ $11 81$ $1953 94$ $11 85$ $11 80$ $11 82$ $1953 94$ $10 88$ $10 98$ $10 98$ $1947 63$ $10 98$ $10 98$ $10 98$ $1947 63$ $10 98$ $10 98$ $10 98$ $1947 63$ $10 957$ $11 31$ $1947 63$ $10 57$ $11 31$ $1947 63$ $10 57$ $11 32$ $1947 63$ $11 57$ $11 127$ $1932 31$ $11 02$ $11 132$ $1932 32$ $11 32$ $11 14$ $1917 83$ $11 14$ $11 11$ $1917 83$ $11 14$ $11 14$ $1917 83$ $11 14$ $11 14$ $1917 83$ $11 14$ $11 14$ $1917 83$ $11 14$ $11 14$ $1917 83$ $11 14$ $11 14$ $1917 83$ $11 14$ $11 14$ $1918 660$ $11 27$ $11 33$ 1906.57 $11 34$ $11 13$ $1903 38$ $11 57$ $11 27$ $1896 60$ $11 27$ $11 34$ $1893 22$ $11 34$ $11 34$ $1886 36$ $10 97$ $10 27$ $1886 36$ $10 97$ $10 77$ $1886 321$ $11 49$ $1875 42$ 10.77 10.77 $1877 42$ 10.73 10.77 $1877 52$ 10.73 10.73 $1877 52$ 10.73 10.73 $1877 52$ 10.73 10.73			1 19									1 03	-										1 03				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 27	1 19	1 20	1 06	1 04	1 82	1 02	1.02	1 04	1 03	1 03	0 98	1 01	1 04	1 04	1 01	1 06	1 05	1.05	1 06	1 03	1.06	1 03	1 02	1 00	1.02	1 01
1963 4512 891958 4011 $R1$ 1953 9411 $R5$ 1953 9411 $R5$ 1951 $R0$ 10 88 1951 $R0$ 10 88 1949 4910 98 1949 4910 98 1947 6319 57 1947 6319 57 1947 6319 57 1947 6319 57 1947 6319 57 1947 6319 57 1947 6319 57 1941 7511 31 1924 83 11 50 1924 83 11 50 1924 83 11 50 1924 83 11 14 1917 83 11 14 1917 83 11 14 1910 07 11 41 1910 07 11 41 1990 24 11 57 1896 60 11.271896 52 11 34 1893 22 11 49 1886 36 10 97 1886 36 10 97 1875 42 10.911875 42 10.911875 42 10.911875 42 10.911875 38 11 04 1875 38 11 04	12 89	11 81	11 82	10 88	10 98	19 57	11 31	11.02	11 55	11 32	11 50	10 84			11 41			11 27	11 34	11 61	10.97	11 49	10 85	10.91	10.73	11 04	11 14
1963 45 1958 40 1953 94 1953 94 1951 80 1951 80 1949 49 1949 49 1949 49 1949 49 1949 49 1947 63 1947 63 1947 63 1947 63 1947 63 1947 63 1947 63 1947 63 1944 23 1928 50 1924 83 1924 83 1924 83 1924 83 1924 83 1924 83 1924 83 1990 24 1890 24 1886 36 1886 36 1883 21 1875 42 1875 42 1875 42 1875 38 1875 38		,	11 80									10 95											10.77				
	12 89	11 81	11 85	10 88	10 98	19 57	11 31	11 02	11 55	11 32	11 50	10 74	11 14		11 41	11 33	11 57	11.27	11 34	11 61	10 97	11 49	10 92	10.91	10.73	11 04	11 14
975 10 25 10 75 11 25 11 25 11 75 12 50 13 75 13 75 14 75 13 75 14 75 13 75 14 75 14 75 15 75 16 75 16 75 16 75 16 75 19 75 19 75 19 75 20 25 20 25 20 25 20 25 20 25 21 25 21 75 21 75 21 75 22 25 22 25 22 75	1963 45	1958 40	1953 94	1951 80	1949 49	1947 63	1941 75	1939 31	1932 20	1928 50	1924 83	1921.62	1917 83	1914 23	1910 07	1906.57	1903 38	1896 60	1893 92	1890 24	1886 36	1883 21	1879 43	1875 42	1871.52	1867 38	1863 45
	9 75	10 25	10 75	11 25	11 75	12.50	13.25	13 75	14 25	14 75	15 25	15 75	16 25	16 75	17 25	17 75	18 25	18.75	19.25	19 75	20 25	20 75	21 25	21 75	22 25	22 75	23 25

															•											
10 91	10 97	11 50	12 06	12 19	12.38	12 04	11 94	11 83	12 12	12 49	12 05	12 45	12 87	13 41	13 10	13 23	12 66	12 43	13 19	12 79	13 89	13 04	13 18	13 26	12 79	13 09
0 06	0 06	0 15	0 28	0 27	0 32	0 49	0 67	0 94	0 96	0 82	0 74	0 64	0 65	071	0 69	0 49	0 70	0 65	0 75	0 92	0 53	0 83	0 86	1 10	0 85	1 27
						0 45											0 65									
0 06	0 06	0 15	0 28	0 27	0 32	0 53	0 67	0 94	0 96	0 82	0.74	0 64	0.65	071	0 69	0 49	0 76	0 65	0.75	0 92	0 53	0.83	0 86	1 10	0.85	1 27
-27.21	-27 59	-27 74	-28 02	-28 23	-28 35	-28 23	-28.20	-28 05	-27.95	-28 03	-27 77	-27 84	-27 94	-27 91	-27 87	-27 81	-27 88	-27 87	-27 79	-27 78	-27 65	-27 80	-27 66	-27 71	-27 81	-27 79
						-28 28											-27 81									
-27 21	-27 59	-27 74	-28 02	-28 23	-28 35	-28 18	-28.20	-28 05	-27 95	-28 03	-27 77	-27 84	-27 94	-27 91	-27 87	-27 81	-27 94	-27 87	-27.79	-27 78	-27 65	-27.80	-27 66	-27 71	-27 81	-27 79
1 01	0 92	0 87	0 82	0 86	0.90	06 0	0 87	0 85	0 89	0 81	0 75	0 69	0 63	0 59	0 53	0 48	0 40	0 37	0 36	0.33	0.34	0 33	0 33	0 36	0 29	0 27
1 01	0 92	0 87	0 82	0 86	0 90	0 91	0 87	0 85	0 89	0 81	0 75	0 69	0 66	0 62	0 56	0 51	0 43	0 40	0 39	0.36	0 37	0 36	0 36	0 39	0 32	0 30
						0 91											0 44									
1 01	0 92	0 87	0.82	0 86	06 0	06.0	0 87	0 85	0 89	0 81	0 75	0 69	0 66	0 62	0 56	0 51	0 43	0 40	0 39	0.36	0 37	0 36	0 36	0.39	0.32	0 30
11 05	10 06	66 6	9.93	10 52	11 16	10 93	10 34	10 07	10 80	10.17	9 08	8 62	8 17	7 97	6 97	6 31	5 20	4.63	4 77	4 21	4 67	4 34	4.36	471	3 75	3 58
						10 99											5 28									
11.05	10 06	66 6	9 93	10 52	11 16	10 87	10.34	10 07	10 80	10 17	9 08	8 62	8 17	7 97	6 97	631	5 12	4 63	4 77	4.21	4.67	4 34	4 36	471	3 75	3 58
1859.34	1855 62	1851 16	1846.00	1840 35	1834.65	1829.01	1824 06	1818.17	1812 96	1806 64	1800 31	1794.49	1786 90	1782 59	1772 48	1762 35	1751 07	1740.88	1722.48	1709 99	1700.61	1674.63	1664 49	1650 92	1638 66	1624 57
23.75	24 25	24 75	25.25	25 75	26.25	26.75	27 25	27 75	28 25	28 75	29 25	29.75	30 25	30 75	31 25	31.75	32 25	32 75	33 25	33.75	34.25	34 75	35 25	35 75	36.25	36 75

13 29	13 19	12 99	13 31	13 45
0 91	0 95	1.13	1 17	1 10
0 91	0 95	1.13	1 17	1.10
-27 74	-27 62	-27 75	-27.51	-27.42
-27.74	-27 62	-27.75	-27 51	-27.42
0 27 -	0 26 -	0 26 -	0 22 -	0 19
0 30	0 29	0 29	0 25	0 22
0 30	0 29	0.29	0.25	0 22
3.56 0.30	3 44	3.42	2 94	2.57
56	44	42	94	57
1605 97 3 56	1594 20 3 44	1580.25 3 42	1562 71 2 94	1546 84 2 57
37 25	37.75	38.25	38 75	39 25

SD34 KB-2

Coring Date: 24-Mar-07

Organic Carbon and Nitrogen Elemental and Stable Isotope Geochemistry

Midpoint Depth	Year	C _{org}			N			$\delta^{13}C_{org}$			$\delta^{15}N$			C/N
(cm)	(AD)	(%)	Rpt	Avg	(%)	Rpt	Avg	(‰)	Rpt	Avg	(‰)	Rpt	Avg	
0.25	2007 20	41.04		41 04	3 46		3.46	-26.35		-26 35	2 50		2 50	11 85
0 75	2006 45	41.50		41 50	3.47		3 47	-26 41		-26 41	2.36		2 36	11 95
1 25	2004 96	41 19		41 19	3 53		3 53	-26 49		-26.49	2 43		2.43	11 67
1 75	2001.64	41 07		41 07	3.49		3 49	-26 49		-26 49	2 31		2 31	11 76
2 25	2000.16	40 75		40 75	3 44		3 44	-26 63		-26 63	2 22		2 22	11 83
2 75	1998 66	40.75		40 75	3 45		3 45	-26 58		-26.58	2 41		2 41	11 82
3 25	1996.73	39 85		39 85	3.35		3 35	-26 64		-26 64	2.36		2.36	11 90
3 75	1994 97	38 68		38 68	3 20		3 20	-26 47		-26 47	2.17		2.17	12 08
4 25	1993.25	38 49		38 49	3 15		3 15	-26 28		-26.28	2 03		2.03	12.22
4 75	1991 35	37 67	36 31	36 99	3.12	2 96	3 04	-26 00	-26 02	-26 01	2 11	1 96	2 03	12 17
5.25	1989 36	35 99		35 99	2 94		2 94	-25 70		-25.70	2 02		2 02	12 23
5 75	1987 29	35 32		35.32	2 86		2 86	-25 67		-25.67	1 98		1 98	12 34
6 25	1984 97	35 78		35 78	2 87		2 87	-25 43		-25.43	1 91		1 91	12 48
6.75	1982.16	35.17		35 17	2 84		2 84	-25 39		-25 39	1 90		1 90	12 39
7 25	1980 00	34 66		34 66	2 80		2 80	-25 22		-25 22	1 95		1 95	12 40
7 75	1977.50	35 20		35 20	2 84		2 84	-25 11		-25 11	1 94		1 94	12.39
8.25	1974 32	34 90		34.90	2 84		2 84	-25 02		-25 02	1 89		1 89	12 29
8 75	1970 47	36 14		36 14	2 87		2 87	-25 10		-25 10	2 06		2 06	12 60
9.25	1966 88	34 52		34 52	2 79		2 79	-24 96		-24 96	1 92		1 92	12 36
9 75	1961.34	35 12	34.64	34 88	2 85	2 81	2 83	-24 96	-24 92	-24 94	1.91	1 86	1 88	12 33
10.25	1956 42	34 62		34 62	2 81		2 81	-24 83		-24 83	1 84		1 84	12 34
10 75	1951 71	34 46		34 46	2 77		2 77	-24 85		-24 85	1 78		1 78	12 45

12 38	12 59	12 53	12 57	12 70	12 71	13.05	12 83	12.99	13 06	13 07	12 89	13.56	13 62	13 80	13 53	13 24	13 74	13 78	13 68	13 54	13.55	13 56	13 53	13 36	13 17	13 17
1 83	1 76	164	1.55	1.81	177	1 78	1.69	1.64	1.66	1.76	1 64	1.84	1 79	1 89	1.68	1 73	1.56	1 46	1.44	1 40	1.34	1.35	1 39	1.46	1 63	1.78
							1 69														1.45					
1 83	1.76	1 64	1.55	181	1 77	1 78	1 68	1.64	1 66	1.76	164	184	1 79	1 89	1 68	1 73	1 56	1.46	1 44	1.40	1 24	135	1 39	1 46	1.63	1 78
-24 83	-24 87	-24 81	-24 65	-24 91	-24 92	-24 96	-24 96	-24.92	-24 92	-25.05	-24 99	-25 30	-25.30	-25 44	-25 36	-25.23	-25 39	-25 48	-25 62	-25 54	-25 65	-25 66	-25 59	-25 71	-25 72	-25 70
							-24.95														-25 67					
-24 83	-24 87	-24 81	-24 65	-24 91	-24 92	-24 96	-24 97	-24 92	-24 92	-25.05	-24 99	-25 30	-25 30	-25 44	-25 36	-25 23	-25 39	-25 48	-25 62	-25 54	-25 62	-25 66	-25.59	-25 71	-25 72	-25 70
2.80	2 7 2	2 74	2 73	2 61	2.65	2 55	2.57	2.62	2 59	2 58	2 54	2 33	2 27	2 25	2 21	2 29	2 04	2.07	2 03	2 02	1 95	1 94	1.97	1.95	1 89	2 01
							2 60														1.98					
2.80	2 72	2.74	2.73	2.61	2 65	2.55	2.55	2.62	2.59	2.58	2 54	2 33	2 27	2.25	2.21	2.29	2 04	2.07	2 03	2 02	1 92	1 94	1.97	1.95	1 89	2 01
34 64	34.30	34 32	34 32	33 19	33.64	33.25	33.03	33.98	33.80	33 68	32.80	31 58	30 91	31 04	29 95	30 30	28 03	28 51	27 73	27 30	26 41	26.32	26 68	26 08	24 87	26.45
							33.30									_					26.74					
34 64	34 30	34 32	34 32	33 19	33 64	33 25	32 77	33 98	33 80	33 68	32 80	31 58	30 91	31 04	29.95	30.30	28.03	28.51	27 73	27 30	26.09	26 32	26 68	26 08	24 87	26.45
1945 63	1938 12	1930 54	1925 71	1918 68	1912 12	1906.79	1899.39	1893 08	1886.73	1878.11	1872 71	1866 63	1859 06	1852 82	1845 98	1837 99	1829 59	1822 79	1814 65	1807 08	1797 57	1789.71	1781 57	1773 96	1764 39	1756 25
11 25	11 75	12 25	12 75	13 25	13 75	14.25	14 75	15 25	15 75	16 25	16 75	17 25	17 75	18 25	18 75	19.25	19 75	20 25	20 75	21 25	21.75	22.25	22.75	23 25	23 75	24 25

13 15	13 22	13 51	13.56	13 59	13 40	13 60	13 52	13 43	13 68	13 55	13 68	13 57	13 54	13 51	13 42	13 32	13 15	13 32	13 40	13 26	12 84	13 28	12 91	12 92	12 82	12 48
1 70	1 69	141	1 35	1.38	1.53	1 22	1.30	1 39	1.30	1 33	1 27	1.41	136	1 40	1.28	1.28	1.32	1.12	1.36	1 16	1 23	0 94	1 00	86 0	0 89	1 17
				1 30										1 36										0 91		
1 70	1 69	141	1 35	1 46	1.53	1 22	1.30	1 39	1.30	1.33	1 27	141	1 36	1.45	1 28	1.28	1.32	1 12	1 36	1.16	1 23	0 94	1 00	1.04	0.89	1 17
-25 47	-25.68	-25 72	-25 68	-25 61	-25 61	-25 60	-25.54	-25 53	-25 66	-25.61	-25.63	-25 67	-25 71	-25 74	-25 75	-25.64	-25 78	-25 76	-25.74	-25 77	-25.63	-25 78	-25.64	-25 63	-25 64	-25 64
				-25 59										-25 79										-25.63		
-25 47	-25 68	-25 72	-25 68	-25 62	-25 61	-25 60	-25 54	-25 53	-25 66	-25 61	-25 63	-25 67	-25 71	-25 69	-25 75	-25 64	-25 78	-25 76	-25 74	-25 77	-25 63	-25 78	-25 64	-25.62	-25 64	-25 64
1 97	196	1 89	1.93	1 89	1 92	1 90	1.94	1 87	1.88	1 97	1 78	1.90	1 98	1 89	1 77	1 62	1 72	1 78	1.81	1.77	1.76	1 76	1.62	1 64	1 52	1.62
				1 90										188										1 62		
1 97	1 96	1.89	1 93	1 88	1.92	1.90	1.94	1.87	1.88	1 97	1 78	1 90	1 98	1 89	1 77	1 62	1 72	1 78	181	1.77	1 76	1.76	1 62	1.66	1.52	1 62
25 90	25 94	25 57	26.11	25 67	25 71	25 87	26.17	25.08	25 75	26.71	24.36	25 78	26.77	25 47	23 70	21.62	22 65	23.66	24.29	23 47	22 64	23.39	20 92	21.19	19 54	20.16
				25.78							,			25.41										20 84		
25.90	25 94	25 57	26 11	25 55	25 71	25.87	26.17	25 08	25 75	26 71	24 36	25.78	26 77	25 52	23 70	21 62	22 65	23 66	24 29	23 47	22 64	23 39	20 92	21.54	19 54	20.16
1745 98	1736.17	1728.66	1718.86	1709.29	1699.53	1690.43	1680.23	1670.35	1655 57	1648 23	1636 15	1627 49	1617 42	1607 79	1598.25	1587.11	1576 78	1566 32	1557 67	1546.52	1537 00	1526.04	1515 19	1506.16	1496.39	1489 12
24 75	25 25	25.75	26 25	26.75	27 25	27 75	28.25	28 75	29 25	29.75	30.25	30 75	31 25	31.75	32 25	32.75	33 25	33 75	34 25	34 75	35 25	35 75	36 25	36 75	37 25	37.75
			L	L	L	L J									L	·	L		L	L	<u>ــــــــــــــــــــــــــــــــــــ</u>	1		h	L	

SD34 RC-2

Coring Date: 24-Mar-07

Organic Carbon and Nitrogen Elemental and Stable Isotope Geochemistry

Midpoint Depth	Year	C _{orq}			N			Corrected N	$\delta^{13}C_{org}$			δ^{15} N			C/N
(cm)	(AD)	(%)	Rpt	Avg	(%)	Rpt	Avg	(%) (-0 0414)	(‰)	Rpt	Avg	(‰)	Rpt	Avg	
4 25	1993.25	36.48		36.48	2.86		2 86	2.86	-25 99		-26.0	21		2.1	12 8
4 75	1991.35	37 97		37.97	2 94		2 94	2.94	-26 00		-26.0	21		21	12 9
5.25	1989.36	38 23		38 23	2.95		2.95	2.95	-25.79		-25.8	20		2.0	12.9
5.75	1987 29	36 40		36 40	2 80		2.80	2 80	-25.80		-25.8	20		2.0	13 0
6 25	1984 97	36 17		36 17	2.74		2 74	2 74	-25 24		-25.2	19		1.9	13 2
6 75	1982 16	37 69		37.69	2 87		2.87	2 87	-25 76		-25 8	20		20	13.1
7 25	1980 00	36 81		36 81	2 79		2 79	2.79	-25 55		-25 6	21		21	13 2
7 75	1977 50	36 53		36 53	2 75		2 75	2 75	-25 57		-25.6	2.0		2 0	13 3
8.25	1974.32	35 72		35.72	2 70		2 70	2 70	-25 57		-25.6	19		19	13 2
8.75	1970 47	35 17	35.46	35 31	2.64	2 68	2.66	2 67	-25.70	-25.64	-25 7	19	20	1.9	13 2
9 25	1966.88	36 08		36.08	2.73		2 73	2 73	-25 56		-25.6	19		19	13 2
9 75	1961.34	35 76		35 76	2 70		2 70	2 70	-25.56		-25 6	18		18	13.3
10.25	1956.42	35 72		35 72	2 70		2 70	2.70	-25 45		-25 5	1.9		19	13 2
10 75	1951 71	35 74		35 74	2 66		2 66	2 66	-25.47		-25 5	19		19	13 4
11 25	1945 63	36 06		36 06	2.71		2 71	2 71	-25 52		-25 5	20		20	13.3
11 75	1938 12	35 84		35 84	2.68		2 68	2 68	-25.39		-25 4	19		19	13 4
12 25	1930 54	35 54		35 54	2.68		2 68	2 68	-25.33		-25 3	19		19	13 3
12.75	1925.71	35 41		35 41	2.69		2.69	2 69	-25 56		-25 6	20		20	13 2
13.25	1918 68	35.37		35 37	2.66		2 66	2.66	-25.31		-25 3	18		1.8	13 3
13 75	1912.12	34 45	34 96	34 71	2 61	2 63	2.62	2 63	-25 01	-24.93	-25 0	17	18	17	13.2
14 25	1906.79	34 82		34.82	2 59		2.59	2 59	-24 84		-24 8	18		18	13 4

1899.39 3516 351 2.62 2.67 2.475 2.47 18 17 17 1899.08 3514 263 263 263 263 2475 248 17 17 17 1899.08 3511 3511 261 260 260 2455 245 18 18 1878.11 3496 3496 261 261 261 261 256 253 18 18 1872.11 3496 3550 252 252 253 2546 250 18 18 1872.13 3560 3550 253 253 256 250 18 19 19 1872.79 3573 3533 253 254 254 250 19 20 19 19 1872.79 3496 33.72 239 234 249 246 246 19 19 19 19 187.82 33.35 34.58 </th <th></th> <th>r</th> <th></th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>· · · · ·</th> <th></th>		r					_				_						· · · · ·										
1899.39 3516 3516 263 267 263 247 18 17 18 1899.30 3514 3514 263 263 263 2479 248 17 18 1886.73 3467 367 260 260 260 265 2478 248 18 1886.73 3466 34.96 261 261 261 261 252 18 18 1886.73 3560 3560 262 262 255 255 18 18 19 18 1885.83 3560 3553 258 247 260 247 20 19 24 1895.96 3395 3496 249 246 240 247 20 19 26 1895.96 3395 3496 249 249 249 246 250 18 19 26 1897.08 3395 3496 249 249 246											13 8			14 3	14.0	13 7	14 0	14 0	14 0			14.1			14 0	14.1	14.2
1899.39 35 16 35 16 262 263 267 2475 18 17 18 1899.13 35 14 35 14 263 263 267 2475 18 17 1886.73 34 67 34 67 260 263 261 245 18 17 1886.73 34 67 34 67 260 261 261 245 18 17 1875.71 35 60 35 60 253 261 251 252 18 19 18 1866.63 35 60 35.60 253 258 246 247 20 18 1866.83 35 60 35.60 253 246 247 20 19 2 1867.88 32.95 34.96 34.96 249 249 248 19 2 1887.89 33.95 34.96 34.96 249 249 248 19 2 1887.89 34.95 34.96 </td <td>18</td> <td>1 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19</td> <td>1.9</td> <td></td> <td>19</td> <td>1.8</td> <td></td> <td></td> <td>1.7</td> <td></td> <td></td> <td>1.8</td> <td></td> <td></td> <td></td> <td>1.7</td> <td></td> <td></td> <td>1.8</td> <td>18</td> <td>1.8</td>	18	1 1						19	1.9		19	1.8			1.7			1.8				1.7			1.8	18	1.8
1899.3935 1635 16 2.62 2.63 2.47 2.47 2.47 1893 0835 1435 14263263263 2.47 2.46 2.46 1878 1135 1135 11261261260 2.45 2.46 2.46 1878 1135 1135 11261261261 2.55 2.247 2.245 1872 7134963476261261261 2.55 2.47 2.247 1872 8135 3335 33258258258 2.476 2.47 185 96637 934792582582479 2.47 2.47 185 9835 3325835 332582462479 2.47 2.47 185 9934 9534 95249249249 2.47 2.47 2.47 185 9933 9534 9634 96249249 2.49 2.47 2.46 185 9333 9534 95249249249 2.47 2.46 2.50 187 9333 9333 93234234234234 2.51 2.52 188 9533 9534 9534 95249249 2.46 2.50 2.47 188 79933 9333 93234234234 2.49 2.47 2.76 189 7033 9333 93241234234251 2.52 2.52 177 9532632392312332																											
1899.39 3516 3516 262 263 -2475 1893.08 3514 3514 263 2479 -2479 1886.73 3467 260 263 2479 -2479 1878.11 3511 3511 261 261 -2458 -2479 1878.11 3511 3511 261 261 261 2528 -2479 1872.11 3496 34.96 263 256 250 -2467 - 1850.63 3560 3556 253 249 2547 - - 1850.68 3375 239 253 249 - - - 1850.68 33.72 239 253 246 2 - - - 1850.58 33.72 239 253 249 - - - - - 1852.79 3496 246 2.46 2.46 2.46 - - - <td< td=""><td>18</td><td></td><td></td><td></td><td></td><td>1.8</td><td></td><td></td><td></td><td></td><td></td><td>1.8</td><td>1.9</td><td></td><td>17</td><td>1.8</td><td>1.7</td><td>18</td><td>1.7</td><td></td><td></td><td>17</td><td></td><td></td><td></td><td></td><td>18</td></td<>	18					1.8						1.8	1.9		17	1.8	1.7	18	1.7			17					18
1899.39 35 16 35 16 2.62 2.67 -24 75 1893 08 35 14 35 14 2.63 2.60 2.60 -24 76 1885 73 34 67 35 11 2 61 2 61 2 61 -24 76 1878 11 35 11 35 11 2 61 2 61 2 61 -24 76 1878 71 35 60 3 5 60 3 5 60 2 62 2 61 2 61 -2 5 05 1850 66 3 75 60 3 5 60 2 62 2 61 2 61 -2 61 -2 4 76 1850 66 3 479 3 479 2 58 2 56 2 64 2 64 -2 60 -2 4 75 1850 66 3 479 3 47 2 39 2 53 2 46 -2 46 -2 50 1850 68 3 3 77 2 39 2 53 2 46 2 56 -2 56 -2 4 57 1882 79 3 3 45 2 49 2 49 2 49 2 56 -2 56 1882 89 3 3 72 3 3 46 2 49 -2 4 57	-24 7	-24 8	-24 6	-24 5	-25.2	-25 0	-24.7	-24.8	-24.7	-24 6	-25 0	-24 8	-25 0	-25 0	-25 1	-24 6	-25 2	-25.2	-25 1		-25 2	-24 9	-25 0	-24.7	-24 7	-25.1	-24 9
1899.39 3516 3516 262 262 263 1893.08 3514 3514 263 263 263 1886 73 3467 3467 260 260 260 1886 73 3467 3467 260 260 260 1878 11 3511 261 261 261 261 1872 71 3496 3479 258 262 262 1872 71 3496 3479 258 261 261 1872 71 3496 261 261 261 261 1872 71 3496 263 253 258 258 1850 66 3479 258 258 258 258 1852 79 3496 249 249 249 249 1852 79 33.95 246 249 249 1822 79 33.95 246 249 249 1822 79 33.72 239 246 249 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-24 60</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-25.28</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									-24 60										-25.28								
1899.39 35 16 35 14 2.62 2.62 1899.08 35 14 35 14 2.63 2.63 1886 73 34 67 34 67 2 60 2 63 1886 73 34 67 34 67 2 60 2 63 1886 73 34 67 34 67 2 60 2 61 2 61 1887 13 35 11 35 11 2 61 2 61 2 61 1887 13 35 11 3 5 11 2 61 2 61 2 61 1887 96 34 79 35 56 2 52 2 62 2 63 1885 96 34 79 2 53 2 46 2 49 2 49 1887 93 33 95 3 4 96 2 49 2 49 2 49 1887 93 33 95 3 4 96 2 49 2 49 2 49 1887 93 33 72 2 39 2 49 2 49 2 49 1887 93 33 75 2 49 2 49 2 49 2 49 1887 93 3 3 77 2 39 2 49	-24 75	-24 79	-24 58	-24 46	-25 22	-25 05	-24 67	-24 79	-24 70	-24.59	-25 04	-24 85	-25 03	-25 01	-25 10	-24 57	-25 17	-25.23	-24 92	-25 26	-25 17	-24 94	-25 04	-24 70	-24.66	-25.11	-24.88
1899.39 $35 16$ $35 16$ $35 14$ 2.62 1893.08 $35 14$ $35 14$ 2.63 1886 73 $34 67$ $34 67$ 2.60 1872 71 $35 11$ $35 11$ $2 61$ 1872 71 34.96 34.96 2.61 1872 71 34.96 34.79 34.79 1872 71 34.96 34.79 2.58 1875 96 34.79 34.79 2.58 1859 06 34.79 34.79 2.58 1855 96 34.79 34.79 2.58 1855 96 34.79 34.79 2.58 1855 96 34.79 34.79 2.58 1855 96 34.79 34.79 2.58 1855 96 34.79 34.79 2.549 1825 99 33.95 34.36 34.32 1825 99 33.95 34.38 2.41 1827 99 33.95 2.49 2.49 1827 99 33.72 34.38 2.41 1827 99 33.72 33.35 2.49 1827 91 33.72 33.35 2.41 1797 57 32.69 33.30 2.37 1781.57 32.76 33.30 2.37 1781.57 32.69 33.30 2.37 1781.57 32.69 33.30 2.41 1798.71 33.69 33.30 2.41 1798.71 33.69 33.30 2.37 1773.96 33.09 33.29 2.40 1776.86 33.20 33.29 2.40 <tr< td=""><td>2 62</td><td>2 63</td><td>2 60</td><td>2 61</td><td>2 61</td><td></td><td>2 58</td><td></td><td></td><td></td><td></td><td>2.49</td><td>2.39</td><td></td><td>2 34</td><td></td><td></td><td>2 37</td><td>2 39</td><td></td><td>2 38</td><td>2 29</td><td></td><td></td><td>2.25</td><td>2 31</td><td>2 36</td></tr<>	2 62	2 63	2 60	2 61	2 61		2 58					2.49	2.39		2 34			2 37	2 39		2 38	2 29			2.25	2 31	2 36
1899.3935 16 $35 16$ 2.62 1893.08 $35 14$ $35 14$ $2 63$ 1886 73 $34 67$ $34 67$ $2 60$ 1872 71 $35 11$ $35 11$ $2 61$ 1872 71 34.96 34.96 $2 61$ 1872 71 34.96 34.96 $2 61$ 1872 71 34.96 34.79 2.58 1872 71 34.96 34.79 2.69 1872 71 34.96 34.79 2.69 1872 96 34.79 34.79 2.58 1852.82 35.95 34.79 2.58 1852.82 35.95 34.22 34.22 1852.82 35.395 34.22 34.26 1837.99 34.22 34.26 34.26 1837.99 34.22 34.36 2.49 1837.99 34.22 34.36 2.49 1837.99 33.95 34.36 2.49 1837.99 33.95 34.36 2.49 1822.79 33.95 34.36 2.49 1822.79 33.95 34.36 2.49 1822.79 33.95 33.35 2.49 1822.79 33.95 33.35 2.49 1814.65 33.72 34.36 2.49 1827.79 33.35 34.36 2.49 1879.6 33.30 33.35 2.49 1773.96 33.03 33.30 23.76 1774.98 32.30 33.295 2.40 1775.98 37.6 32.30 32.30 1775.98 <td>2 62</td> <td>2 63</td> <td>2 60</td> <td>2 61</td> <td>2 61</td> <td></td> <td>2 58</td> <td>2 58</td> <td>2.46</td> <td>2.49</td> <td>2.46</td> <td>2.49</td> <td>2 39</td> <td>2 41</td> <td>2.34</td> <td>2 45</td> <td></td> <td></td> <td></td> <td></td> <td>2 38</td> <td>2 29</td> <td>2 18</td> <td>2.28</td> <td>2.25</td> <td>2.31</td> <td>2 36</td>	2 62	2 63	2 60	2 61	2 61		2 58	2 58	2.46	2.49	2.46	2.49	2 39	2 41	2.34	2 45					2 38	2 29	2 18	2.28	2.25	2.31	2 36
1899.39 35 16 35 14 2 6 1893.08 35 14 35 14 2 6 1886 73 34 67 34 67 3 4 67 2 6 1886 73 34 67 34 67 34 67 2 6 1878 11 35 11 35 11 2 6 34 67 2 6 1878 11 35 11 35 11 35 11 2 6 3 4 79 2 6 1872 71 34.96 34 79 34 79 3 4 79 2 7 3 1866.63 35 60 34 79 3 4 79 2 7 3 1873 09 34 79 3 4 79 3 4 79 2 7 3 1885 06 34 79 3 4 36 3 4 36 2 4 3 1887 09 34 72 3 4 36 3 4 36 2 4 3 1887 09 34 78 3 4 36 2 4 3 2 4 3 1887 09 34 78 3 4 36 2 4 3 2 4 3 1887 09 3 4 36 3 4 36 3 4 36 2 4 3 1880 08 3 4 36 3 4 36 3																											
1899.39 35 16 1893.08 35 14 1886 73 34 67 1886 73 34 67 1886 73 34 67 1886 73 34 67 1886 73 34 67 1886 13 34 66 1872 71 34.96 1872 71 34.96 1872 71 34.96 1872 73 35 50 1885 906 34 79 1885 906 34 79 1885 906 34 79 1885 906 34 79 1885 906 34 79 1885 906 34 79 1885 906 34 72 1885 906 34 96 1887 99 33 95 1887 99 34 96 1881 4.65 33 72 1881 4.65 33 72 1881 5.7 32 59 1897 0.8 34 96 1797 57 32 59 1798 5.7 33 295 1773 96 33 295 1775 32 33 295 1775 32 33 295 1776 5.08 33 295 </td <td></td> <td></td> <td>. –</td> <td>_</td> <td>-</td> <td>-</td> <td></td> <td>ഗ</td> <td>m</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>n l</td> <td>2</td> <td>7</td> <td>\sim</td> <td></td> <td></td> <td>2 36</td>			. –	_	-	-		ഗ	m				1								n l	2	7	\sim			2 36
1899.39 35 16 1893.08 35 14 1886 73 34 67 1886 73 34 67 1886 73 34 67 1886 73 34 67 1886 73 34 67 1886 73 34 67 1886 73 34 67 1872 71 34.96 1872 71 34.96 1872 71 34.96 1872 71 34.96 1852 82 35 33 1852 95 34 22 1852 95 34 22 1837.99 34 22 1837.99 34 22 1837.99 34 22 1837.99 34 22 1837.99 34 32 1837.99 34 32 1837.99 33 72 1807.08 34 38 1797 57 32 56 1780.71 33 57 1775.5 33 29 1764 39 33 29 1776.53 32 95 1775.66 37 26 1775.66 33 29 1776.73 32 30	35 16	35 14	34 67	35 11	34.96	35.60	34 79	35.33	33 77	34.22	33.95	34.96	33.72	34.38	32.69	33 54	32 76	33 03	33.39	33 29	32 95	32 30	30 24	31 68	31.60	32.41	33.55
1899.39 1899.39 1886 73 1886 73 1886 73 1886 73 1886 73 1886 73 1886 73 1886 73 1886 73 1886 73 1886 73 1886 66 1872 71 1872 96 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1837.99 1797.57 1797.57 1797.58 1764.39 1764.39 1764.39 1764.39 1764.39 1764.39 1764.39 1773.66 1773.66 1773.66 1773.67 1778.66 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>34 58</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>33 09</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									34 58										33 09								
	35 16	35 14	34 67	35 11	34.96	35 60	34 79	35 33	32 95	34 22	33.95	34 96	33 72	34 38	32 69	33 54	32 76	33 03	33 69	33 29	32 95	32 30	30 24	31 68	31.60	32 41	33.55
$\begin{array}{c} 14\ 75\\ 15\ 25\\ 15\ 75\\ 15\ 75\\ 16\ 75\\ 16\ 75\\ 17\ 25\\ 17\ 20\ 75\\ 19\ 75\\ 19\ 75\\ 19\ 75\\ 19\ 75\\ 19\ 75\\ 20\ 75\\ 20\ 75\\ 21\ 75\\ 21\ 75\\ 22\ 75\\ 22\ 75\\ 22\ 75\\ 22\ 75\\ 22\ 75\\ 25\ 25\\ 26\ 75\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 27\ 25\\ 27\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 27\ 25\\ 27\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 27\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 27\ 25\\ 27\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 26\ 25\\ 27\ 25\\ 27\ 25\\ 27\ 25\\ 27\ 25\\ 27\ 25\\ 27\ 25\\ 26\ 25\\ 26\ 25\\ 27\ 25\\ 26\ 25\\ 27\ 25\ 25\ 25\ 25\ 25\ 25\ 25\ 25\ 25\ 25$	1899.39	1893 08	1886 73	1878 11	1872 71	1866.63	1859 06	1852.82	1845 98	1837.99	1829 59	1822.79	1814.65	1807.08	1797 57	1789.71	1781.57	1773 96	1764 39	1756.25	1745.98	1736 17	1728.66	1718.86	1709.29	1699 53	1690.43
	14 75	15 25	15 75	16 25	16.75	17.25	17 75	18.25	18 75	19 25	19.75	20 25	20.75	21.25	21 75	22 25	22 75	23 25	23 75	24 25	24 75	25 25	25.75	26 25	26 75	27.25	27 75

14 0	14 2	14 3	14 0	14.2	13 8	13.8	14 0	13 9	13 9	14 0	14 2	14 1	14.0	14 0	14.1	14 0	13 9	14 2	13.9	14 2	14.2	141	143	14.0	14 3	14 2
17	16	17	15	15	15	12	15	1.5	15	1.6	15	1.3	1.7	14	1.4	14	1.6	15	1.5	15	1.3	14	11	15	1 2	1.5
	15										15										12					
17	1.6	17	15	1.5	15	12	15	15	1.5	1.6	1.5	1.3	1.7	14	1.4	1.4	16	15	1.5	1.5	14	14	11	15	12	15
-24 6	-24 9	-25 0	-25 2	-25 0	-25 0	-25 0	-24.8	-25.3	-25.2	-24.9	-24 7	-24.8	-24.6	-24 6	-25.2	-24 8	-24 6	-24 7	-24 9	-24 7	-24.7	-25 2	-25 1	-25.0	-25 0	-25 0
	-24.77										-24.69										-24.62					
-24 60	-24 98	-25 04	-25 17	-24.99	-25 05	-25 04	-24 83	-25 31	-25 24	-24 93	-24.61	-24 77	-24.57	-24 57	-25 17	-24.77	-24.60	-24 67	-24 86	-24.73	-24 76	-25 16	-25 11	-25 02	-25 04	-24 98
2 25	2 28	2 29	2 28	2 28	2 16	2 22	2 17	2 18	2 16	2 07	2.09	2 04	2 12	2 11	2 04	2 03	2.02	2 00	2 02	2 01	1 92	1 90	1 87	1 87	1 82	1 80
2 25	2 29	2 29	2 28	2 28	2 16	2 22	2 17	2.18	2.16	2 07	2.11	2 04	2 12	2.11	2 04	2 03	2 02	2 00	2 02	2 01	1.92	1 90	1.87	1.87	1.82	1.80
	2 28										2 08										1 92					
2 25	2 30	2.29	2.28	2 28	2 16	2 22	2 17	2.18	2.16	2 07	2.14	2.04	2.12	2.11	2.04	2 03	2 02	2 00	2.02	2 01	1.91	1 90	187	187	1.82	1 80
31 39	32.42	32.68	32 03	32.37	29 94	30.61	30 37	30.41	30 04	28 90	29.62	28.69	29.63	29.45	28.78	28.44	28.17	28.40	28.10	28.41	27 18	26 85	26 68	26.31	25 88	25 63
	32 07										28 86		i								27 17					
31 39	32 77	32 68	32 03	32 37	29 94	30.61	30.37	30 41	30 04	28 90	30 38	28 69	29 63	29 45	28.78	28.44	28 17	28 40	28 10	28 41	27 19	26 85	26 68	26 31	25.88	25 63
1680 23	1670.35	1655 57	1648 23	1636 15	1627 49	1617 42	1607.79	1598.25	1587.11	1576 78	1566.32	1557.67	1546 52	1537 00	1526 04	1515.19	1506 16	1496 39	1489 12	1479.31	1469 49	1459 67	1449 86	1440.04	1430.23	1420 41
28 25	28.75	29.25	29 75	30 25	30 75	31 25	31.75	32 25	32 75	33 25	33 75	34 25	34 75	35 25	35 75	36 25	36.75	37 25	37.75	38.25	38 75	39 25	39 75	40 25	40 75	41 25
	-																		-							

141	141	144	13 6	13.3	13 4	13 4	13 5	13 4	13 5	13 7	13 2	13 4	13 3	13.4	13 1	13 3	13.2	13 4	12.8	12 8	12 6	12.6	12 7	13 1	13 2	13.2
14	14	13	13	1.2	13	11	1 2	1.2	1 2	10	10	1 2	1.1	11	1.1	12	1.2	60	10	12	13	60	1.1	11	1.1	1.1
				12										10										12		
1.4	14	1.3	13	1.2	1.3	1.1	1 2	1.2	12	1.0	1.0	1 2	11	11	11	12	1.2	0.9	10	12	13	0.9	11	11	11	11
-25 0	-25 1	-25 0	-24 9	-25 1	-25 2	-25 1	-25.1	-25 2	-25 0	-25 1	-24 9	-25 7	-25.7	-257	-25.8	-25.9	-25 7	-25 7	-25 7	-25 8	-25 7	-256	-25 5	-25.5	-258	-25 5
				-25 14										-25.72										-25.51		
-25 00	-25 09	-25 04	-24 90	-25 14	-25 21	-25 07	-25 07	-25 22	-25 03	-25.10	-24 92	-25 65	-25 73	-25 76	-25 79	-25 87	-25 73	-25 73	-25 72	-25 78	-25 71	-25 63	-25 47	-25 59	-25.77	-25 48
185	1 77	1 74	1 88	1 94	185	1 86	1 86	1 78	1 79	1 77	1 85	171	1 79	1 77	1 74	1 73	1 66	1 69	1.74	1 75	1 68	1 64	171	1 72	1 55	1.50
1 85	1 77	1 74	1 88	1 95	1 85	1 86	1.86	1 78	1.79	1.77	1 85	1 71	1.79	1 77	1 74	1 73	1 66	1 69	1.74	1 75	1 68	1.64	1.71	1 70	1.55	1.50
				1 93										1 76										1.73		
1.85	1 77	1 74	188	1 96	1 85	1 86	1.86	1 78	1 79	1.77	1 85	171	1.79	1.79	1.74	1 73	1 66	1 69	1.74	1 75	1.68	1.64	1.71	1 67	1.55	1.50
26 16	24 87	25.12	25 56	25 87	24.82	25.05	25 14	23 93	24 28	24.17	24.45	22.80	23 77	23 70	22 90	23 12	21 98	22.61	22 26	22.35	21.13	20 64	21 64	22.55	20.41	19.68
				25.67										23.59										22.81		
26 16	24 87	25 12	25 56	26.06	24.82	25 05	25 14	23 93	24 28	24 17	24.45	22 80	23 77	23 81	22 90	23 12	21 98	22 61	22 26	22 35	21 13	20 64	21 64	22 29	20 41	19.68
1410 59	1400 78	1390 96	1381 14	1371.33	1361.51	1351 70	1341 88	1332.06	1322 25	1312 43	1302 62	1292.80	1282 98	1273 17	1263.35	1253 53	1243 72	1233 90	1224.09	1214 27	1204 45	1194 64	1184 82	1175 01	1165 19	1155 37
41 75	42 25	42 75	43 25	43 75	44 25	44 75	45.25	45 75	46.25	46 75	47 25	47 75	48 25	48 75	49 25	49.75	50 25	50.75	51 25	51.75	52.25	52 75	53 25	53 75	54 25	54.75

		_	-																							
12 8	12 7	12 6	12 7	12 6	12 4	12 6	12 4	12 5	12 3	12 3	12 2	12 2	12 2	12 0	12 6	12 1	12 1	12 0	12 4	12 3	12 1	12 1	12 2	12.4	12 5	12 3
11	10	1 0	0 8	0 8	60	0 8	0 8	07	08	0.7	0.8	07	07	90	0.8	07	08	0.7	0.9	07	0.8	07	60	08	1.0	13
							1.0										60									
11	10	10	0 8	0 8	60	0 8	0 7	07	0 8	0.7	08	0.7	2 0	90	0.8	0.7	0 8	0.7	0 9	07	0 8	07	0.9	08	1.0	13
-25 4	-25 4	-25 4	-25 5	-25 3	-25 0	-25 2	-25 1	-25 0	-24 8	-24 9	-25 0	-24 6	-24 7	-249	-24 2	-24.4	-24 5	-24 3	-24.4	-24.8	-24 8	-24 5	-24 8	-24 6	-24 9	-24 5
							-25 14										-24.38									
-25 38	-25 40	-25 37	-25 52	-25 27	-25 02	-25 17	-25.10	-25 05	-24 77	-24.88	-25 05	-24.56	-24 67	-24 88	-24.22	-24 43	-24.67	-24 33	-24.44	-24.76	-24.78	-24 53	-24 80	-24 63	-24 93	-24 54
1 39	1 37	1 27	1 29	1 20	1 19	1 29	1 24	1 16	1 08	1 02	1 03	1 01	0 97	06 0	0 76	0 54	0 73	0 68	051	0.38	0 38	0 35	0 32	0 30	0 26	0 25
1 39	137	1 27	1 29	1 20	1 19	1 29	1 24	1 16	1.08	1 02	1 03	101	0 97	06 0	080	0 58	0 78	0.72	0.55	0.42	0 42	0.39	0 36	0.34	0 30	0.29
							1 25										0 76									
1 39	137	1 27	1 29	1 20	1 19	1.29	1.23	1 16	1 08	1 02	1 03	1.01	0 97	06 0	0 80	0 58	0.79	0 72	0 55	0 42	0.42	0 39	0.36	0.34	0.30	0.29
17 83	17 40	15 98	16 37	15 06	14 79	16.28	15 40	14.43	13 32	12 55	12 58	12 41	11 73	10 76	9.61	6 53	8 86	8 10	6 33	4.62	4 62	4.24	3 87	3 72	3 27	3.08
							15.45										8 73									
17 83	17 40	15 98	16 37	15 06	14 79	16 28	15.35	14 43	13.32	12 55	12 58	12 41	11 73	10 76	9 61	6 53	8.98	8 10	6.33	4 62	4 62	4 24	3 87	3 72	3 27	3.08
1145 56	1135 74	1125 92	1116.11	1106 29	1096 48	1086 66	1076 84	1067 03	1057.21	1047 39	1037 58	1027 76	1017.95	1008.13	998.31	988.50	978 68	968 87	959.05	949.23	939 42	929.60	919 78	909.97	900 15	890 34
55 25	55 75	56.25	56 75	57 25	57.75	58 25	58.75	59 25	59 75	60 25	60 75	61 25	61 75	62 25	62 75	63.25	63.75	64.25	64 75	65 25	65 75	66 25	66.75	67.25	67 75	68.25

			,										
12 3	12 0	12 1	12 4	12 1	12 4	12 2	12 1	12 4	12 2	12.0	12 3	12 4	
60	10	09	09	10	08	10	09	0 9	07	07	12	11	
0 8										0.8			
10	10	60	60	10	0 8	10	60	60	07	06	12	11	
-24 7	-25 3	-25 0	-24 7	-25.1	-24.7	-24.8	-25 0	-24 7	-24 7	-24 8	-24 9	-25 1	
-24 83										-24.82			
-24 62	-25 25	-24 96	-24 67	-25 06	-24 68	-24.84	-25 03	-24 71	-24.73	-24 76	-24 93	-25 14	
0 27	0 30	0 43	0 32	0 32	0 32	0 29	0.28	0.25	0 25	0 30	0 26	0 26	
0 31	0 34	0 47	0 36	0.36	0 36	0.33	0 32	0 29	0 30	0 34	0 30	0.30	
0 32										0 34			
0 30	0 34	0.47	0 36	0 36	0 36	0 33	0.32	0 29	0 30	0 35	0 30	0 30	
3 29	3.61	5.14	3.94	3.90	3 99	3.49	3.38	3.13	3 10	3 62	3 20	3 25	
3 35										3 60			
3 23	3 61	5 14	3 94	3 90	3 99	3 49	3 38	3 13	3 10	3.64	3 20	3 25	
880 52	870 70	860 89	851 07	841 26	831.44	821 62	811 81	801 99	792 17	782 36	772.54	762 726	
68.75	69 25	69 75	70 25	70.75	71 25	71 75	72 25	72.75	73 25	73 75	74 25	74 75	

GSL1 KB-1

25-Mar-

Coring Date: 07 Organic Carbon and Nitrogen Elemental and Stable Isotope Geochemistry

Midpoint	Year	Corg			N			$\delta^{13}C_{org}$			$\delta^{15}N$			C/N
Depth														
(cm)	(AD)	(%)	Rpt	Avg	(%)	Rpt	Avg	(‰)	Rpt	Avg	(‰)	Rpt	Avg	
0 75	2007 2	44 13		44 13	3 35		3 35	-29 37		-29 37	0 06		0 06	13 17
1 25	2006 2	44 42		44 42	3 38		3 38	-29 50		-29 50	-0 04		-0 04	13 16
1.75	2003 8	43 83		43 83	3 29		3 29	-29 51		-29 51	-0 45		-0 45	13 30
2.25	2001 6	43 79		43 79	3 44		3 44	-29 45		-29 45	-0 03		-0 03	12 72
2 75	1997 8	42 25		42 25	3 24		3 24	-29 17		-29 17	0.03		0 03	13 05
3 25	1995 4	43 80		43 80	3 40		3 40	-29.57		-29 57	0 00		0 00	12 90
3 75	1990 8	42 72		42 72	3 31		3 31	-28 95		-28 95	0 10		0 10	12 89
4.25	1985 9	42 93		42 93	3 28		3 28	-29 15		-29 15	-0 27		-0 27	13 08
4 75	1981 3	42 57		42 57	3 35		3 35	-28 89		-28 89	0.04		0 04	12 72
5.25	1976 6	42 01		42 01	3 31		3 31	-28 55		-28 55	-0 02		-0 02	12 69
									-					
5 75	1972 0	41 60	42 27	41 94	3 31	3 33	3 32	-28 73	28 67	-28 70	0 10	0 05	0 07	12 64
6 25	1968.3	42 52		42.52	3.09		3 09	-28 49		-28 49	-0 52		-0 52	13 76
6 75	1964 2	41 68		41 68	3 23		3 23	-28 22		-28 22	-0 16		-0 16	12 92
7 25	1962.1	41 41		41 41	3 19		3 19	-28.60		-28 60	0 14		0 14	12 99
7.75	1958 4	41 48		41 48	3 23		3 23	-28.42		-28 42	-0.10		-0 10	12 86
8.25	1954 4	41 98		41 98	3 01	-	3 01	-28 50		-28 50	-0.75		-0 75	13 93
8.75	1951 2	42 89		42.89	3 08		3.08	-28 37		-28 37	-0.48		-0 48	13 93
9 25	1947 5	42 92		42.92	3 09		3 09	-28.53		-28 53	-0 64		-0 64	13 90
9.75	1942 7	42 68		42 68	3 31		3 31	-28 40		-28 40	0 10		0 10	12 91
									-					
10.25	1938 5	42.72	42 35	42 54	3 31	3 2 9	3 30	-28 34	28 10	-28 22	-0 07	-0.17	-0 12	12 89
10 75	1935 1	41 70		41 70	3 21		3 21	-28 22		-28 22	-0 25		-0 25	12 99
11 25	1928.6	42 90		42 90	3.27		3 27	-28 28		-28.28	0 01		0 01	13 12

12 83	13 04	13 34	13 21	13.49	13 50	13 31	13 89	13 04	13 76	13 36	14 21	13 01	15 67	13 75	14 59	14 95	13.31	13 12	13 63	13 40	13 01	13 27	13 04	12 98	13.02	13 49	13 98	13 50	14 29
-0 13	017	-0 11	0 07	-0 16	0 12	0 07	0 32	0 00	-0.30	-0 11	-0 45	0 06	-0.95	0 06	-0 72	-0.84	-0 13	-0 03	-0 58	-0 30	-0 48	-0 42	-0 21	-0 35	-0 14	-0 70	-0 48	-0 42	-0 50
							0 43										-0 33										-0 50		
-0.13	017	-0 11	0.07	-0 16	0 12	0 07	0.21	0 00	-0 30	-0.11	-0 45	0.06	-0.95	0 06	-0 72	-0 84	0 06	-0 03	-0 58	-0 30	-0 48	-0.42	-0 21	-0 35	-0 14	-0 70	-0 46	-0 42	-0 50
-28 38	-28.28	-28 36	-28 43	-28.34	-28 39	-28 16	-28.46	-28.44	-28 39	-28.48	-28 43	-28 56	-28 51	-28 42	-28 33	-28 43	-28 61	-28 47	-28 48	-28 27	-28 61	-28 50	-28 75	-28 62	-28 51	-28 53	-28 33	-28 43	-28 55
							-28 3										-28 6										-28.5		
-28 38	-28 28	-28 36	-28 43	-28.34	-28.39	-28 16	-28 54	-28.44	-28 39	-28.48	-28 43	-28 56	-28.51	-28 42	-28 33	-28 43	-28.60	-28 47	-28.48	-28 27	-28 61	-28 50	-28 75	-28 62	-28 51	-28.53	-28 12	-28 43	-28.55
3 29	3.31	3 23	3 13	3 20	3 21	3 40	2.94	3 22	2 93	3 26	3 11	3 36	2.76	3 03	2 88	2 82	3 15	3 26	3 07	3 12	3 09	3 13	2 98	3 22	3 16	3 15	3 13	3 25	2 96
							3 11										3 16										3.24		
3 29	3 31	3.23	3.13	3 20	3 21	3.40	2 78	3 22	2 93	3 26	3 11	3 36	2 76	3 03	2 88	2 82	3 14	3 26	3.07	3 12	3 09	3 13	2 98	3 22	3 16	3 15	3 02	3 25	2 96
42 18	43 20	43 16	41.37	43 11	43 40	45 24	40.88	41 98	40 27	43 57	44 18	43 78	43 19	41.69	42 02	42 11	41.92	42 74	41.91	41 76	40 26	41 58	38 88	41 74	41 17	42.47	43 76	43 85	42 23
							43 35										42.14										44.52		
42 18	43 20	43.16	41.37	43 11	43 40	45 24	38 41	41 98	40 27	43 57	44 18	43 78	43 19	41.69	42 02	42 11	41 69	42 74	41.91	41.76	40 26	41 58	38 88	4174	41.17	42 47	43.00	43 85	42.23
1916 1	1906 5	1900 3	1894 6	1888 5	1881.3	1868 2	1862 2	1856 1	1852 2	1844 6	1839 7	1833 0	1827 3	18211	1815 0	1807 5	1801 9	17968	1790 5	1784.8	1779 0	1772 5	17659	1759 9	1753 0	1746 5	1739 4	1735 6	1728.3
11.75	12 25	12.75	13.25	13 75	14 25	15 00	15 75	16.25	16 75	17.25	17 75	18.25	18 75	19 25	19 75	20.25	20 75	21 25	21 75	22.25	22 75	23 25	23 75	24 25	24 75	25 25	25 75	26 25	26.75

GSL1 RC-1	
-----------	--

Coring Date: 25-Mar-07

Organic Carbon and Nitrogen Elemental and Stable Isotope Geochemistry

Midpoint Depth	Year	C _{org}			N			Corrected N	$\delta^{13}C_{org}$			δ^{15} N			C/N
(cm)	(AD)	(%)	Rpt	Avg	(%)	Rpt	Avg	(%)	(‰)	Rpt	Avg	(‰)	Rpt	Avg	
20 25	1801 88	42 65		42 65	2 69		2 69	2.69	-28 7		-28.7	-0 51		-0.51	15 9
20 75	1796 81	41 65		41.65	2 92		2 92	2 92	-29 6		-29.6	0 18		0 18	14 3
21 25	1790 55	40 65		40 65	2 92		2 92	2 92	-28 7		-28 7	0 38		0 38	13 9
21 75	1784 80	40 62		40 62	2 82		2 82	2 82	-28 7		-28 7	0 20		0 20	14 4
22.25	1778 96	43.30		43 30	2 99		2.99	2 99	-29.5		-29 5	0.44		0 4 4	14 5
22 75	1772.51	41 62		41 62	2 97		2 97	2 97	-28 5		-28.5	0 18		0 18	140
23.25	1765 87	41 96		41 96	2.87	-	2 87	2 87	-28 6		-28.6	0.33		0.33	14 6
23 75	1759 86	43 21		43 21	2.97		2.97	2 97	-28 3		-28 3	0 08		0 08	146
24 25	1752.99	43 47		43 47	3 03		3 03	3 03	-28 5		-28 5	0.29		0 29	14 4
24 75	1746.53	41 91		41 91	2 87		2 87	2 87	-28 6		-28 6	0 06		0 06	14 6
25 25	1739 36	43 52	40 94	42 23	3 08	2 64	2 86	2 75	-28 5	-28 5	-28 5	0 44	-0 37	0 03	15 4
25 75	1735 55	42 06		42 06	2 89		2.89	2 89	-28 5		-28 5	0 25		0 25	14 6
26 25	1728 33	41 98		41 98	2 90		2.90	2 90	-28 6		-28 6	0 29		0 29	14 5
26 75	1720 82	42 85		42 85	2 85		2 85	2 85	-28 5		-28 5	-0 30		-0 30	15 0
27 25	1714 53	42 38		42 38	2 98		2 98	2 98	-28 6		-28 6	0 34		0 34	14 2
27.75	1708 25	42 21		42 21	2 96		2 96	2 96	-28 6		-28 6	-0 02		-0 02	14 3
28 25	1701 96	43.66		43 66	3 00		3 00	3 00	-28 5		-28 5	0 17		0 17	14 6
28 75	1695 68	42 22		42 22	2 96		2 96	2 96	-28 7		-28 7	0 20		0 20	14 3
29.25	1689.40	42 16		42 16	2 77		2 77	2 77	-28 6		-28 6	-0 33		-0 33	15 2

																			·····							
14 2	14 0	14 7	14 9	15 3	14.4	15.3	14 1	14 2	14.6	146	14 3	14 4	156	14 3	146	15 3	14.4	149	14 4	15 7	14 5	14 7	13 9	159	15 2	15 0
-0 14	0 34	0.24	0 05	-0 36	017	-0 03	0.18	0 13	0 08	0 28	0 09	0.35	-1 13	-0 19	-0 21	-0 30	-0 19	-0 71	-0 32	-0 45	-0 53	-0 50	-0 18	-0 82	-0 59	-0 47
-0 05									0 07								0.28									
-0.23	034	0.24	0.05	-0.36	0 17	-0 03	0.18	0 13	0.09	0.28	0 09	0 35	-1.13	-0 19	-0 21	-0 30	-0.65	-0 71	-0 32	-0 45	-0 53	-0 50	-0 18	-0 82	-0 59	-0 47
-28 5	-28.6	-28 5	-28 6	-28.7	-28 7	-28 7	-28.7	-28 8	-28.9	-28 9	-29 0	-29 0	-29.0	-28.9	-29 0	-29 1	-29 0	-29 2	-29 3	-29 5	-29 4	-29 2	-29 2	-29 8	-29 7	-29 5
-28.5									-28.9			-					-28 9									
-28 5	-28.6	-28.5	-28.6	-28 7	-28 7	-28 7	-28 7	-28 8	-28 8	-28 9	-29 0	-29 0	-29 0	-28 9	-29.0	-29 1	-29 0	-29 2	-29 3	-29 5	-29 4	-29 2	-29 2	-29 8	-29 7	-29 5
3 00	3 06	2 83	2 84	2.73	3 00	2 81	3 03	2 93	2 94	2.81	2 84	3 03	2 81	3 03	2.83	2 73	2 99	2 90	2 93	2 63	2 89	2 71	2 98	2 73	2 80	2 80
2 97	3.06	2 83	2 84	2 73	3 00	2 81	3 03	2 93	2.92	2 81	2 84	3 03	2 81	3 03	2.83	2.73	2.93	2 90	2 93	2 63	2 89	2 71	2.98	2 73	2 80	2 80
3 03									2.97								3.04									
2 91	3.06	2.83	2 84	2 73	3 00	2 81	3 03	2.93	2.87	2 81	2 84	3 03	2 81	3 03	2.83	2 73	2.83	2 90	2.93	2 63	2 89	271	2 98	2 73	2 80	2 80
42.64	43.05	41.69	42 28	4187	43 10	42.89	42 61	41.64	43 01	40 89	40 50	43.69	43 75	43 41	41 29	41 65	42.96	43 20	42 16	41 21	41 88	39 72	41 46	43 30	42 71	42 06
42 77									42.72						-		42 68									
42 52	43 05	41.69	42 28	4187	43 10	42.89	42.61	41 64	43 31	40 89	40 50	43 69	43.75	43 41	41 29	41.65	43.23	43.20	42 16	41 21	41 88	39 72	41 46	43 30	42 71	42 06
1683 11	1676 83	1670 54	1664 26	1657 98	1651 69	1645 41	1639.12	1632 84	1626 56	1620 27	1613 99	1607.70	1601 42	1595.14	1588 85	1582 57	1576 28	1570 00	1563 72	1557 43	1551 15	1544 86	1538 58	1532 29	1526.01	1519 73
29 75	30 25	30 75	31 25	31 75	32 25	32 75	33.25	33 75	34 25	34 75	35 25	35.75	36 25	36 75	37.25	37.75	38 25	38.75	39 25	39 75	40 25	40 75	41 25	41 75	42 25	42 75

						_						-		· · · · ·					_						·····	
14.6	15 2	14 2	14 2	13 9	147	147	15.5	141	15 5	14 5	14.0	148	15 2	14 7	14.1	14 8	141	14 1	14 6	148	13 9	15 5	14 9	13 7	15 0	13 9
-0 31	-0 66	-0 30	-0.42	-0 02	-0 04	-0 46	-0.43	-0 24	-1 12	-0 21	0 00	-0 39	-0.29	-0.63	-0 01	-0 40	-0 13	-0 04	-0 38	-0 60	-0 23	-0 82	-0 42	-0 11	-0 94	-0 29
-0.34										-0.37									-0 36							
-0.27	-0.66	-0 30	-0 42	-0 02	-0 04	-0.46	-0.43	-0 24	-1 12	-0.05	0.00	-0 39	-0 29	-0 63	-0.01	-0 40	-0.13	-0 04	-0.39	-0 60	-0.23	-0 82	-0 42	-0 11	-0 94	-0 29
-29.4	-29 6	-29.4	-29 4	-30 2	-29.4	-29 7	-29 4	-29 5	-29 3	-29 4	-29 4	-29 2	-29 3	-29.3	-29 5	-29 4	-29 6	-29 5	-29 4	-29 3	-29.1	-29 3	-29 4	-29 3	-29 4	-29 4
-29 4										-29 4									-29.3							
-29 4	-29.6	-29 4	-29 4	-30 2	-29 4	-29 7	-29 4	-29.5	-29 3	-29 4	-29.4	-29 2	-29 3	-29 3	-29 5	-29 4	-29 6	-29 5	-29 4	-29 3	-29 1	-29 3	-29 4	-29 3	-29 4	-29 4
2 83	2 68	2 90	2 81	2 98	2 73	2 63	2 32	2 85	2 53	2 69	2 43	2 61	2 90	2 90	2 59	2 53	2 79	2 69	2.49	2 41	2 64	2 15	2 43	2 30	2 54	2 67
2 83	2 68	2 90	2.81	2 98	2 73	2 63	2.32	2.85	2 53	2 70	2 43	2 61	2 90	2 90	2 59	2 53	2.79	2.69	2 51	2 41	2.64	2 15	2 43	2 30	2.54	2 67
2 82										2 68									2.47							
2.85	2.68	2.90	2 81	2 98	2 73	2 63	2.32	2 85	2 53	2 71	2 43	2 61	2.90	2 90	2 59	2 53	2.79	2 69	2.55	2.41	2.64	2 15	2 43	2 30	2 54	2 67
41.36	40 71	41 16	40 01	4151	40 21	38 69	35 83	40 12	39 15	38 87	33 99	38.67	43 92	42 72	36.59	37 47	39 16	37 95	36 38	35 60	36 63	33 39	36 14	31 42	38 10	37 20
41 30										38 33									36 25							
41 43	40 71	41 16	40 01	4151	40 21	38 69	35.83	40 12	39.15	39 42	33 99	38 67	43 92	42 72	36.59	37 47	39 16	37 95	36 51	35 60	36.63	33.39	36 14	31 42	38 10	37 20
1513.44	1507 16	1500 87	1494 59	1488 31	1482 02	1475 74	1469 45	1463 17	1456 89	1450 60	1444 32	1438 03	1431 75	1425.47	1419 18	1412 90	1406 61	1400.33	1394.05	1387 76	1381 48	1375 19	1368 91	1362 63	1356.34	1350 06
43.25	43 75	44 25	44.75	45.25	45.75	46 25	46.75	47.25	47 75	48 25	48 75	49.25	49 75	50.25	50 75	51 25	51 75	52.25	52 75	53 25	53 75	54 25	54 75	55 25	55 75	56 25

14 3	14.4	14.3	14 1	14 1	13 7	13.7	14.3	14 3	141	14 1	14 6	13 4	13.4	13 9	13 7	14 7	13.8	13 4	13.7	13 9	13.3	14 0	13 9	13 2	13 3	14 4
-0 32	-0.03	-0.32	0 11	-0 14	-0 36	-0.16	-0.12	-0 19	-0 41	-0 21	-0 34	-0 02	-0 08	-0 32	-0 06	-0 53	0.08	0 08	-0.25	-0 11	0 05	-0.20	0 12	0.01	-0 23	-0 03
		-0.58																			0 12					
-0 32	-0 03	-0.06	0.11	-0 14	-0.36	-0.16	-0.12	-0.19	-0 41	-0 21	-0.34	-0.02	-0 08	-0.32	-0.06	-0.53	0 08	0.08	-0 25	-0 11	-0 01	-0 20	0 12	0.01	-0 23	-0.03
-29 5	-29.3	-29 4	-29.2	-29 4	-29 4	-29 3	-29.4	-29 3	-29 2	-29 2	-29 0	-29 3	-29.1	-29 4	-29.4	-29.4	-29.3	-29 0	-29.2	-29 3	-29.3	-29 2	-29 1	-28 7	-28 8	-28.2
		-29.4																			-29.3					
-29 5	-29 3	-29 4	-29 2	-29 4	-29 4	-29 3	-29 4	-29 3	-29 2	-29 2	-29 0	-29 3	-29 1	-29 4	-29 4	-29.4	-29 3	-29.0	-29.2	-29.3	-29 4	-29 2	-29 1	-28 7	-28 8	-28 2
2 79	2 64	2 92	2 46	2 60	2 42	2 55	2 48	2 43	2 16	2 23	2 28	2.40	2 27	2 46	2 43	2.12	1.85	1 73	1.77	2 07	2 05	1.85	1 87	1.28	1 07	0 70
2 79	2.64	2 96	2.46	2 60	2 42	2 55	2 48	2 43	2 16	2 23	2 28	2.40	2 27	2 46	2.43	2.12	1.85	1 73	1.77	2.07	2.09	1.89	191	1 32	1 11	0 74
		2.89																			2 08					
2 79	2.64	3 03	2.46	2 60	2 42	2.55	2.48	2 43	2 16	2 23	2 28	2 40	2 27	2 46	2 43	2 12	1 85	1 73	1.77	2.07	2.10	1.89	191	1 32	1 11	0 74
39 84	38.02	41.68	34 74	36 70	33 33	35.08	35 45	34 71	30 55	31 38	33 18	32 21	30 44	34.27	33 27	31.23	25 52	23.13	24 19	28 88	27 16	25 80	25 97	16 87	14 20	10 11
		41.30																<u> </u>			26 81					
39 84	38.02	42.06	34.74	36.70	33 33	35 08	35 45	34 71	30 55	31 38	33 18	32 21	30 44	34 27	33 27	31 23	25 52	23.13	24.19	28.88	27 51	25 80	25 97	16 87	14.20	10.11
1343 77	1337 49	1331 21	1324.92	1318 64	1312 35	1306.07	1299 78	1293 50	1287 22	1280 93	1274 65	1268.36	1249 51	1243.23	1236 94	1230 66	1224 38	1218 09	1211 81	1205 52	1199 24	1192 96	1186.67	1180 39	1174 10	1167 82
56.75	57.25	57.75	58.25	58 75	59.25	59.75	60 25	60 75	61 25	61 75	62 25	62 75	64.25	64 75	65.25	65 75	66.25	66.75	67.25	67 75	68 25	68.75	69 25	69 75	70 25	70.75

				,								_														
13.7	13 0	12.8	13 2	13 2	12.7	13 7	13 7	13 4	13 7	13 8	14 9	148	14 3	148	14 2	14 3	14 3	15 2	13 9	14 5	16 2	16 8	175	15 1	14 0	14 6
0.54	0 19	0.64	0 53	0 94	1 22	1 23	134	0 96	1 10	1 44	1 30	1 65	151	1 48	1.57	171	158	164	1 98	1 76	1.52	1 60	181	1 65	1 57	154
				0 99										1 53									1 61			
0 54	0 19	0.64	0.53	0 88	1.22	1 23	1.34	0.96	1.10	144	1 30	1 65	1.51	1.43	1.57	1.71	1.58	1.64	1.98	1 76	1 52	1.60	2.00	1.65	1 57	1.54
-27 7	-28.0	-27 7	-27 4	-27 1	-27.2	-27 0	-26.7	-27.1	-27 0	-26.9	-26 9	-26 8	-26.5	-26 3	-26 6	-26 2	-26.3	-26 5	-26 0	-26.0	-26.1	-26.2	-26.4	-26 6	-26 4	-26.6
				-27.0										-26 4									-26.3			
-27 7	-28 0	-27 7	-27 4	-27 2	-27.2	-27 0	-26.7	-27.1	-27.0	-26 9	-26 9	-26 8	-26 5	-26.2	-26 6	-26 2	-26 3	-26 5	-26 0	-26 0	-26.1	-26 2	-26.5	-26 6	-26 4	-26 6
0 40	0 51	0 39	0 35	0 27	0 25	0 20	0.20	0 21	0 20	0 16	0 15	0 14	0 14	014	0 13	0 11	0.11	0 07	0 11	0 10	0 08	0.08	0 10	0 13	0 13	0.13
0 44	0 53	0.40	0 36	0 28	0 27	0.22	0.21	0 22	0.21	017	0 17	0.16	0 15	0 15	0 14	0 12	0 13	0 09	0 12	0 12	0.09	0.10	0 11	0 14	0 14	0.15
				0.28										0 15									0 11			
0 44	0 53	0.40	0.36	0 28	0.27	0 22	0.21	0 22	0 21	017	0 17	0 16	0 15	0 15	0 14	0 12	0 13	0.09	0 12	0 12	60 0	0.10	0 11	0 14	0 14	0 15
5 52	6 67	4 96	4.55	3.51	3 22	2 75	2.67	2 81	2.75	2 17	2 25	2 14	1 99	2 01	1 77	1 53	1 62	1 10	1.54	1.49	1 29	1 36	1 69	1 89	1 77	1 95
				3.48										1 99					-				1 64			
5 52	6 67	4 96	4 55	3 54	3 22	2 75	2.67	2 81	2 75	2.17	2 25	2 14	1 99	2.04	1 77	1 53	1 62	1.10	1 54	1 49	1 29	1.36	1 73	1 89	1.77	1.95
1161.54	1155 25	1148 97	1142.68	1136 40	1130 12	1123 83	1117.55	1111 26	1104 98	1098 70	1092 41	1086 13	1079 84	1073.56	1067 27	1060 99	1054 71	1048 42	1042 14	1035 85	1029.57	1023 29	1017 00	1010 72	1004 43	998 15
71 25	71 75	72 25	72.75	73 25	73 75	74 25	74 75	75 25	75 75	76.25	76 75	77.25	77 75	78 25	78.75	79 25	79 75	80 25	80 75	81 25	81 75	82 25	82.75	83 25	83 75	84 25

									_		·			······												
15 6	13 6	14 7	15 6	15 0	18 9	175	17 4	18 2	18.9	13 7	15 5	16 2	13 8	15 9	14 5	13 7	14.4	14 7	14 5	15 2	17 5	16 7	16 7	16.3	18 5	16 5
1 49	1 86	1 65	1 67	1 76	134	1 63	1.73	147	1.27	196	1 74	1 40	2 06	1 93	1 83	2 23	196	1 78	2 04	1 96	1 44	1 78	1 79	1 78	154	151
					1 48									2 02									1 94			
1.49	1 86	1 65	1 67	1.76	1 21	1.63	1.73	1.47	1.27	1 96	1.74	1.40	2 06	184	1 83	2.23	1.96	1.78	2.04	1 96	1 44	1 78	1.64	1 78	154	151
-26 5	-26 6	-26 2	-269	-26 5	-26 7	-26 5	-26.5	-26 2	-26 8	-26 5	-26.3	-26 3	-26 6	-26 2	-26 6	-26 2	-26.3	-26 4	-26.5	-26 3	-26 4	-26.3	-26 2	-26 4	-26.4	-26 1
					-26.7									-26 2									-26 2			
-26 5	-26 6	-26.2	-26 9	-26 5	-26 7	-26 5	-26.5	-26 2	-26 8	-26 5	-26 3	-26.3	-26.6	-26 3	-26 6	-26 2	-26.3	-26 4	-26 5	-26 3	-26 4	-26 3	-26 3	-26 4	-26 4	-26 1
0 14	0 12	0 11	0 11	0 12	60 0	0.10	0 07	0 08	0.10	0 12	0 08	0 07	0 11	0 10	0 11	0 10	0 11	0 11	0.11	010	0.06	0 07	60 0	0 11	0 08	0 10
0 15	0.14	0 12	0 13	0 13	0.10	0 12	0.08	60 0	0 11	0 14	0 10	0.09	0.13	0.11	0 12	0 12	0 12	0 13	0.12	0 12	0 07	60 0	0 11	0 12	60 0	0 11
					010									011									0 11			
0 15	014	0 12	0 13	0 13	0.10	0 12	0.08	60 0	0 11	0.14	0 10	60 0	0.13	0 11	0 12	0.12	0 12	0 13	0.12	0.12	0.07	0.09	0.10	0 12	60 0	0 11
2 12	1.69	1 60	1 73	1 77	1 64	177	1 15	141	1 85	1.67	1 28	1 21	1.52	154	1 59	1 44	1 60	1.64	1.59	1.53	1 07	1.25	1 53	1 73	141	1 60
					1 62									1 55									1 59			
2 12	1 69	1 60	1.73	1 77	1 65	1 77	1.15	1 41	1 85	1 67	1 28	1 21	1 52	1 52	1 59	1.44	1 60	1 64	1 59	1 53	1 07	1 25	1.46	1 73	141	1.60
991 87	985 58	979 30	973.01	966 73	960.45	954 16	947 88	941 59	935 31	929 03	922 74	916 46	910 17	903 89	897 61	891 32	885 04	878 75	872 47	866 19	859 90	853 62	847 33	841 05	834 76	828.48
84 75	85 25	85 75	86 25	86 75	87 25	87.75	88 25	88 75	89 25	89 75	90 25	90.75	91 25	91.75	92 25	92 75	93 25	93 75	94.25	94 75	95 25	95 75	96 25	96.75	97.25	97 75

19 1	18 6	17.2	15.0
1 59	1.60	157	1 52
1 59	1.60	1.57	1 52
-26.4	-26 5	-26 4	-26 9
-264	-26 5	-26.4	-26 9
0 08	0 07	010	0 13
60 0	60 0	0 11	0 14
60 (0 0	0.11	0.14
49 0		69 0.	
14	1.32	16	1.89
1 49	1.32	1.69	1 89
822 20	815 91	809 63	803.34
98 25	98.75	99 25	99 75

Appendix F: Cellulose Oxygen Isotope Results

SD34 RC-2

Date Cored:

Cellulose Inferred Oxygen Isotope Analysis

24-Mar-07

	r		r			
					10	5-pt
Midpoint Depth	Year	Result			$\delta^{18}O_{iw}$	Run
(cm)	(AD)	(VSMOW)	Rpt	Avg	(‰)	Mean
4 25	1993 25	11 81		11 81	-15.75	-15.75
4 75	1991 35	9 94		9 94	-16.65	-17 57
5 25	1989 36	10 91		10 91	-17 73	-17 59
5 75	1987 29	8 47		8 47	-18 20	-18 22
6 25	1984 97	8 48		8 48	-18 98	-18.64
6 75	1982.16	8 53		8 53	-19 19	-19.16
7 25	1980 00	7 81		7 81	-19 28	-19.12
7 75	1977 50	8 20		8 20	-19 22	-19.14
8 25	1974 32	8 71		8 71	-19 04	-19 19
8 75	1970 47	8 54	8 19	8 37	-19 24	-19.25
9 25	1966.88	7 57		7 57	-18 76	-18 76
9 75	1961 34	10 20		10 20	-18 83	-18 90
10 25	1956 42	8 16		8 16	-17 48	-18 08
10 75	1951 71	11 73		11 73	-18 10	-18.30
11 25	1945 63	8 28		8 28	-18 10	-18 19
11 75	1938 12	8 16		8 16	-19 27	-18.59
12 25	1930 54	8 12		8 12	-19 08	-18.45
12 75	1925 71	8 89	-	8 89	-19 00	-19 10
13 25	1918 68	8 39		8 39	-18 67	-18 93
13 75	1912 12	9 42	8 89	9 15	-18 91	-18.83
14 25	1906 79	8 15		8 15	-18 73	-18 83
14 75	1899 39	8 95		8 95	-18 83	-18 81
15 25	1893 08	8 85		8 85	-18 50	-18 70
15 75	1886 73	9 16		9 16	-18 78	-18 70
16 25	1878 11	8 07		8 07	-19 00	-18.84
16 75	1872 71	8 19		8 19	-18 98	-18 83
17 25	1866.63	9 20		9 20	-18 54	-18 78
17 75	1859 06	9 44		9.44	-18 40	-18 67
18 25	1852 82	8 62		8 62	-18.20	-18 77
18 75	1845.98	9 74	9 92	9 83	-18.15	-18.43
19 25	1837 99	9 58		9 58	-16 89	-18 22
19 75	1829 59	12 49		12 49	-16 74	-18.13
20.25	1822 79	10 29		10 29	-16 89	-17 38
20 75	1814 65	9 13		9 13	-17 87	-16 97
21 25	1807 08	9 47		9 47	-17 28	-17.14
21 75	1797 57	12 11		12.11	-17 34	-17.32
22 25	1789 71	8 95		8 95	-16.63	-16 83
22 75	1781 57	12 28	11.00	11.64	-17 20	-17 52

23 25	1773 96	10 35		10 35	-16 20	-17 26
23.75	1764 39	12 03		12 03	-17 07	-16 98
24 25	1756 25	8 97		8 97	-16 81	-16 77
24 75	1745 98	11 14		11 14	-18 06	-16.79
25 25	1736 17	8 19		8 19	-18 71	-16 78
25 75	1728 66	6 98		6 98	-19 65	-16 90
26 25	1718 86	8 24		8 24	-19 61	-17 38
26.75	1709 29	8 30		8 30	-19 14	-18 03
27 25	1699 53	8 44		8 44	-19 42	-18 77
27 75	1690 43	7 36		7 36	-18 79	-18 90
28 25	1680 23	10 26		10 26	-19 27	-19 43
28 75	1670 35	6 63	7 24	6 93	-19 24	-19.59
29 25	1655 57	7 46	/ _ / _ /	7 46	-19 95	-18 95
29.75	1648 23	8 07		8 07	-19.86	-19.20
30.25	1636 15	7 23		7 23	-20 08	-19.21
30.25	1627 49	6 78		6 78	-20 32	-19 45
31 25	1617 42	7 33		7 33	-19 89	-19 28
31 75	1607 79	8 54		8 54	-18 89	-20 02
32 25	1598 25	9 87	-	9 87	-18 25	-20 05
32 75	1587 11	9 30		9 30	-17 39	-20 06
33 25	1576 78	11 21		11 21	-17 52	-19.85
33 75	1566 32	9 28	9 67	9 47	-17 81	-19 50
34 25	1557 67	8 39	5.07	8 39	-18 73	-19 10
34 75	1546 52	8 36		8.36	-19 08	-18.24
35 25	1537 00	8 40		8 40	-19 35	-17.82
35 75	1526 04	7 56		7 56	-19 22	-17 55
36 25	1515 19	8 78		8 78	-19 08	-17 90
36 75	1515 15	8 82		8 82	-19 26	-18 13
37 25	1496 39	7 01		7 01	-19 19	-18 82
37 75	1489 12	8 99		8 99	-19.24	-19.28
38 25	1479 31	8 67	+	8 67	-19 02	-19 17
38 75	1469 49	7 93	7.46	7 70	-19 02	-19.08
39 25	1459 67	8 97	7.10	8 97	-18 83	-19 34
39.75	1449 86	9 26		9 26	-18 46	-19 23
40.25	1440 04	8 85		8 85	-18 51	-19 01
40.25	1430 23	8 81		8 81	-18 78	-19 22
40 75	1420 41	8 41		8 41	-18.07	-19 37
41 75	1410 59	11 04		11 04	-18 07	-18 89
42 25	1410 78	8 84		8 84	-17 89	-18 82
42 75	1390 96	8 96		8 96	-18 87	-18 78
43 25	1381 14	8 01		8 01	-19 50	-18 51
43 75	1371.33	6 93	6 88	6 90	-19 75	-18 62
44 25	1361 51	8 17		8 17	-19.12	-18 22
44 75	1351.70	9 97		9 97	-18 57	-18.30
45 25	1331.70	8 60		8 60	-18 57	-18.30
45 75	1332 06	8 00	+	8 00	-19.16	-18 28
L	1552.00	0.00	1		1	10 45

5112-	-20.04	978		8 46	02 028	SZ 69
-19 [.] 82	-20.26	6 43	Z6 9	7 6 S	22 088	52 69
12 61-	+207-	89 9		6 63	46 068	SZ 89
72 ZZ 91-	20 72-	86 9		86 9	ST 006	52 89
65.91-	-50 11	2 1 3		643	LE 606	SZ 29
₽2 6I-	62 61-	9S 6		99 6	82 6T6	57 75
08 6T-	40 e1-	0S 6		09 6	676 00	SZ 99
8E 6I-	£9 6T-	6 22		6 22	639 42	52 99
78 67-	69 OZ-	7 7 t		7 74	649 23	SZ 59
££.81-	-20 82	6 23		6 23	S0 6S6	52 59
-18 00	-51,15	٤٤ ٢		6 7 3	L8 896	S7.4ð
-18.33	-20,29	8 8 9	87 9	81 Z	89 8/6	94 52
-13 O3	56 8T-	98 8		98 8	05 886	SZ 89
-18 62	8S 8T-	S8 6		98 6	TE 866	52 29
-16 45	TT 6T-	86 L		86 Z	1008 13	SZ 79
779 74	-16 33	72 L		7 22	S6 2T0T	62 25
-20 20	£7 91-	616		616	J027.76	SZ T9
₽2 6I-	75 8T-	SZ 9		975	85 <u>/</u> 80T	97 52
L9 6۲-	-18 30	56 OT	-	96 01	1042 36	52.09
41 61-	££ /1-	<i>L</i> 8 6		<i>L</i> 8 6	TC 250T	SZ 09
47 81-	-18 08	٤٢ ٤		٤٢ و	E0 290T	SZ 6S
+10 0t-	-18 J8	798	57.6	8 03	7076 84	SZ 6S
∠‡ 61-	72 61-	95 6		99 6	99 980T	52 85
-50 56	LS 81-	25 9		6 52	37 960T	28 52
-20 82	T9 6T-	10 64		10 64	67 9011	SZ ZS
-20 88	-16 46	98 9		98 9	1119111	57 75
-20 72	720 S7	68 9		68 9	76 5711	SZ 95
LI IZ-	57 61-	18 Z		187	1132 24	26.25
-50 25	£9 8T-	T8 6		18 6	95 StTT	52 55
-50 26	-18 1 8	6 45		6 45	LE SSTT	22 52
-20.58	92.61-	£7.8		178	1102 10	57 75
-20 36	-50 J	t 63	215	4 7 4	το ςζττ	24 32
-20.17	-20 [.] 02	60 8		60 8	1184.82	57 23
-20 24	-20.58	28.9	-	6 32	1164 64	52.55
₽7 91-	-57 55	21.9		6 15	1204 42	SZ 7S
-16 56	-51 48	21.9		6 15	1214 27	22 25
78 ST-	-51 20	25 5		29 25	1524 00	57 J2
-18 85	-50 00	90 9		90 9	1233.90	57 TS
66 81-	-50 48	06 8		06 8	1243 72	SZ 0S
77 81-	-50 36	<u> </u>		28 9	1523 23	52 05
-18 8C	-57 54	6 45		9 45	1563 35	57 64
67 81-	<u>-</u> 20 82	E0 Z	9 20	58 Z	1273 17	52 64
90 6T-	88 GT-	976	<u> </u>	976	86 Z8ZT	57 84
07 61-	-19 05	98.8	-	98 8	1592.80	48 52
-16 44	-18 46	1798		8 64	1305 62	57 75
-18 J3	ST 6T-	TE 8	-	15.8	1322 25	46.25

70 25	860 89	7 29		7 29	-20 34	-21 28
70 75	851 07	5 52		5 52	-20 51	-21 48
71 25	841 26	7 95		7 95	-20 33	-20 79
71 75	831 44	7 85		7 85	-19 43	-19 86
72 25	821 62	8 59	7 99	8 29	-19 77	-20 09
72 75	811 81	6 88		6.88	-19 43	-20 30
73 25	801 99	8 91		8 91	-20 15	-20 12
73 75	792 17	6 08		6 08	-20 38	-20 75
74 25	782 36	6 16		6 16	-20 52	-21 48
74 75	772 54	8 48		8 48	-19 77	-18 99
75 25	762 73	8 40		8 40	-19 07	-19 068

GSL1 KB1 and RC1 Date Cored: 25-Mar-07 Collulose Inferred Oxygen

Cellulose Inferred Oxygen Isotope Analysis

Midpoint	Year	Result			$\delta^{18}O_{iw}$
Depth			_		
(cm)	(AD)	(VSMOW)	Rpt	Avg	(‰)
0 25	2007 2	17 61		17 61	-10 1029
3 75	1985 9	12 50		12 50	-15 075
6.75	1962.1	10 43	8 96	9 70	-17 804
9 75	1938 5	10 52		10 52	-17 0044
12.75	1894.6	10 21		10 21	-17 3089
16 25	1852 2	10 73	_	10 73	-16 7996
19 25	1815 0	11 49	_	11 49	-16 0579
22 25	1779 0	10 30	8 79	9 55	-17 947
31 25	1664 3	8 45	9.13	8 79	-18 687
34 25	1626 6	9 67		9 67	-17 7693
37 25	1588 9	9 73		973	-17 0398
40.25	1551 1	9 73		9 73	-16 8551
43 25	1513 4	10 48		10 48	-17 1654
45.75	1482 0	10 67	8 35	9 35	-18 1420
48 75	1444.3	10 35		10 35	-18 6886
51 75	1406 6	9 14		9 14	-18 3906
54 75	1368 9	8 79		8 79	-19 1798
57.25	1337 5	9 09		9 09	-19 2718
60 25	1299 8	8 28	7 42	7 85	-19 6011
63.25	1262 1	8 19		8 19	-20 2018
66 25	1224.4	6 42		6 42	-21 9453
69 25	1186 7	7 23		7 23	-24 1497
72 25	1149 0	5 44		5 44	-20 2181
75 25	1111 3	3 17		3 17	-22 2558
78.25	1073 6	7 22		7 22	-21 1471
81 25	1035.9	5 12		5 12	-21 5548
84.25	998 2	6 26		6 26	-21 5593
87 25	960 4	5 84		5 84	-21 7833
90 25	922 7	5 84		5 84	-22 0677
92 75	891 3	5 61		5 61	-21 3653
96 75	841 0	5 31		5 31	-27 2374
99 75	803 3	6 04		6 04	-27 2374

-