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Abstract 

This research examines spatial and temporal variations in N2O flux from 

agricultural clay loam in corn-wheat and corn-oat rotations in southern Ontario. Gas 

samples are collected by the chamber method following significant precipitation events, 

thaw events, fertilization events, and otherwise every two weeks over a two-year period. 

Crop type appears to influence the magnitude of N2O emissions, whereas N2O fluxes do 

not otherwise seem to vary by landscape position. The seasonal pattern of in situ N2O 

flux at Strawberry Creek (SC) indicates that the highest N2O emissions are occurring 

during the spring and growing season. Soil moisture and fertilization appear to be the 

prevailing flux drivers at these times. This pattern is common to most of the literature, 

although SC fluxes are up to two orders of magnitude lower than those from several 

studies in similar agricultural regions. Although field data appear to indicate that N2O 

fluxes are insignificant during the winter, other researchers, in southern Quebec and in 

northern Europe, have found significant winter N2O fluxes, especially during winter 

thaws. Soil temperature appears to be the predominant driver of N2O flux during the 

winter and fall. 

The SC field data is compared to that collected during an intensive non-growing 

season simulation, whereby intact soil mesocosms are exposed to winter and spring 

temperatures in a laboratory environment, and gas samples are collected daily. Increases 

and decreases in N20 flux parallel fluctuations in soil temperature through 0°C during the 

winter simulation. N2O fluxes quickly drop off following an initial spike in emissions as 

soil temperature increases during the spring simulation. The laboratory fluxes from the 
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simulation exceed those from the field by up to two orders of magnitude. It may be that 

high N2O fluxes exist during in situ winter thaws, but are undetected because of the 

timing of field sampling. It is also possible that the laboratory methodology created 

extreme and rapid soil temperature changes, which may not be representative of typical in 

situ conditions. Dramatic increases and decreases in soil temperature may cause a high 

level of physical, chemical and/or microbiological disturbance to the soil cores, which, in 

turn, may drive higher N2O fluxes. 

Strong SC correlations between N2O flux and binned soil temperature data, by 

soil moisture category, may allow general predictions of N2O flux based on readily 

available records, or estimates, of these two parameters. Derived N2O flux estimates may 

be reliable predictors of N2O emissions in northern temperate regions, from agricultural 

clay loams growing corn and grains. Predictive models would likely be improved by 

increasing the intensity of empirical measurements during winter and spring thaw 

conditions, and by incorporating antecedent soil temperature and soil moisture terms into 

the models. 
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1 Introduction 

Next to the halocarbons, nitrous oxide (N2O) is the most powerful of the long-

lived greenhouse gases. Its global warming potential is 298 times that of carbon dioxide 

(C02) per unit mass over 100 years (Forster et al. 2007). Between 1750 and 2005, N20 

contributed approximately 6% of the radiative forcing due to the long-lived greenhouse 

gases (Forster et al. 2007). Thus, with a tropospheric lifetime of 114 years, and an annual 

increase in annual atmospheric concentration of 0.26% (Forster et al. 2007), enhanced 

understanding of the dynamics of N2O emissions is critical. Such understanding could not 

only improve the effectiveness of strategies to reduce N2O emissions (Corre et al. 1996), 

but could also contribute to the understanding and modelling of global climate. 

Agricultural practices, including fertilization, cultivation, and the burning of 

biomass, are the most significant sources of N2O, representing 37% of total global 

emissions (Isermann 1994). Worldwide, agriculture produces 81% of total anthropogenic 

N20 (Isermann 1994). Although agriculture is practiced over less than 4% of the surface 

area of Canada (Statistics Canada 2007), it is the greatest source of all (anthropogenic 

and natural) Canadian N2O emissions (Rochette and McGinn 2008). Southern Ontario is 

one of Canada's most intensively farmed regions (Figure 1.1). Therefore, research into 

N20 dynamics in this region is important to understand the role Canada plays in a global 

climate change context. 

In temperate agricultural regions, both the denitrification of nitrate (NO3), and the 

nitrification of ammonium (NH/), can result in the production of N20. Some authors 
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Figure 1.1. Direct agricultural N 20 emissions in eastern Canada, 1991 (Janzen et al. 1998). 

find that denitrification is the predominant source of N2O in agricultural soils (e.g. 

Williams et al. 1998). However, in an analysis of the relative contributions of 

denitrification and nitrification to N2O production, Godde and Conrad (2000) find that 

either can predominate in various agricultural soils, when held at constant temperature 

(25°C) and moisture content (60% water-filled pore space). The quantity of N2O 

produced by nitrification, however, is generally small compared to that by denitrification 

(Spoelstrapers. comm.). Pihlatie et al. (2004) find that nitrification prevails in loamy 

sand, clay, and organic agricultural soils at 60% water-filled pore space (WFPS), and, 

unexpectedly, in agricultural loamy sand at 100% WFPS, while denitrification 

predominates in this soil at 80% WFPS. 



N2O production is generally understood to be directly proportional to soil 

temperature (Bouwman 1990), likely as a result of microbial stimulation. However, 

research reveals that winter and spring N2O losses must be considered when assessing 

total N2O emissions from agricultural soils in temperate climatic zones, as N2O emissions 

during the non-growing season may be as significant as those of the growing season. 

Kaiser and Ruser (2000), amalgamating results from five field sites over several seasons 

in Germany, conclude that approximately 50% of annual N20 emissions are released 

during the winter. During a 12-month field experiment in Germany, Rover et al. (1998) 

find that 70% of annual N2O emissions occur from December to February. Flessa et al. 

(1995) find that 46% of N2O emissions occur in December and January, during another 

year-long field experiment. A 2.5-year study in southern Quebec finds that non-growing 

season emissions can be up to two to four times greater than those of the growing season, 

including emissions through snow cover and during spring thaw (van Bochove et al. 

2000). 

Most non-growing season agricultural N2O research to date has been conducted in 

Europe (e.g. Flessa et al. 1995, Kaiser et al. 1996, Kaiser et al. 1998, Rover et al. 1998, 

Ruser et al. 1998, Kaiser and Ruser 2000, Ruser et al. 2001, Flessa et al. 2002a, Flessa et 

al. 2002b, Cannavo et al. 2004, Dorsch et al. 2004, Koponen et al. 2004, Koponen et al. 

2006, M0rkved et al. 2006, Ruser et al. 2006). Some North American non-growing 

season research has been undertaken, especially in semi-arid agricultural regions of 

Canada and the United States (e.g. Nyborg et al. 1997, Lemke et al. 1998, Phillips 2007, 

Dusenbury et al. 2008). Research on the non-growing season dynamics of N2O emissions 

from agriculture in southern Ontario exists (e.g. Burton and Beauchamp 1994, Wagner-
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Riddle et al. 1997, Wagner-Riddle et al. 2007, Wagner-Riddle et al. 2008), but is scant. 

In the temperate climate of southern Ontario, frequent mid-winter thaw cycles may 

augment the importance of non-growing season N2O emissions. Thus, quantifying flux 

during these periods is essential to understanding overall N2O contributions from this 

very important regional land use class. 

The objective of this thesis research is to contribute to the understanding of 

growing and non-growing season N2O dynamics in southern Ontario. Of specific interest 

is the timing, and soil moisture and soil temperature conditions, under which the highest 

magnitudes of N2O flux occur. Both growing and non-growing season data are collected 

from three conventionally tilled and managed agricultural fields, sown to crops typical of 

this region. The non-growing season field work is coupled with a laboratory experiment, 

to more intensively examine the dynamics of winter and spring N20 emissions. 
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2 Literature review of N2O production and flux 

2.1 Overview of the nitrogen cycle and N2O production 

Most transformations of nitrogen (N) (Figure 2.1) are driven by terrestrial 

Inorganic 
Nitrogen (s) 

nitrogen 
fixation 

Figure 2.1. The nitrogen cycle. "Dissimilatory nitrogen reduction" includes both ammoniaflcation of NO3" or 
N()2", and denitrification. Denitrification terminates in either N 20 or N2 production, and eventual gaseous loss to 
the atmosphere. Content from Bohlke et al. (2006). aq = liquid, g = gas, s = solid, anammox = anaerobic 
ammonium oxidation (chemically coupled to N02" reduction) 

microorganisms. When applied to agricultural soils, manure provides organic N, which is 

mineralized to ammonium (NH4+). Crop residues contribute to the agroecosystem via the 

same process. At this point, N loss to the atmosphere can occur as ammonia gas (NH3) 

through the process of volatilization. Inorganic fertilizers yield NH4
+, nitrate (NO3), or 

both to the terrestrial N pool. N H / may be assimilated into growing crops or nitrified to 
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NO3", which may also be assimilated into vegetation. Non-assimilated NO3" can be lost 

from agricultural soils via leaching or denitrification. 

Denitrification is reported as the main source of N2O in agricultural soils in 

Schlesinger (1991) and Knowles (1982, citing Denmead et al. 1979b, Matthias et al. 

1980). This is the assumption made in much of the agricultural N2O research. That is, 

depending on how far denitrification proceeds, in favourable conditions, NO3-N is lost 

from the system as N2O or in the benign form of N as dinitrogen gas (N2). N2O is lost at 

higher proportions, with respect to N2, when NO3" is abundant in the soil, because NO3" is 

preferred to N2O as an electron receptor. Denitrification is driven by predominantly 

heterotrophic facultative anaerobes, able to utilize NO3", instead of O2, as an electron 

receptor during respiration. At high levels of O2, denitrifiers cease NO3" reduction, and 

switch to aerobic metabolism (reviews by Bouwman 1990, Schlesinger 1991, Wrage et 

al. 2001). 

Though not always acknowledged as a source of N2O (e.g. Figure 2.1, Evangelou 

1998), nitrification, in addition to denitrification, is another source of N2O in aerobic soils 

(Figure 2.2, Schlesinger 1991). Nitrification occurs in aerobic environments, and is 

driven mainly by obligate autotrophic bacteria. N2O can be formed during nitrification by 

chemodenitrification of hydroxylamine (NH2OH) or nitrite (NO2). N2O may also be 

produced from the incomplete oxidation of NH2OH during the nitrification process 

(Bouwman 1990, Wrage et al. 2001). In cold conditions, NO2", and not NO3, may be the 

terminal N species of nitrification. Bouwman (1990) cites research finding that 

Nitrosomonas spp., which drive the oxidation of NH4
+ to NO2", are less sensitive to low 
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Figure 2.2. Potential sources of N^O during nitrification. Illustration from Wrage et al. (2001). 

temperatures than Nitrobacter spp., which drive the oxidation of NO2" to NO3. 

Denitrification processes may start, therefore, as seasons change, and soil warms and 

wets. 

Nitrification may be the primary source of N2O production in aerobic soils with 

low oxygen pressure (Bouwman 1990, citing Levine et al. 1984). Ruser et al. (2006) find 

that the primary source of N2O, at WFPS < 60%, is nitrification, although the quantity of 

N20 produced by this process is relatively low compared to denitrification. In aerobic 

soils, N2O production may be correlated with the quantity of substrate available for 

nitrification, i.e. that applied as urea- or NH^-based fertilizer, while not with added NO3" 

or glucose (Bouwman 1990, citing Bremner and Blackmer 1978, Breitenbeck et al. 1980, 

Seiler and Conrad 1981, Minami and Fukushi 1983). 

Coupled nitrification-denitrification occurs at aerobic-anaerobic interfaces. 

Although these conditions are sub-optimal for both nitrifiers and denitrifiers, total N2O 

Ammonia Hydrojtylamme 
monooKygenase oxxforedurtase 

NzO 

V 
NHa^*^NH2OH 

if "̂  
02 + 2 H* H 

ammonia oxidation 
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production is high (Wrage et al. 2001). Bouwman (1990) reports that simultaneous 

increases in soil NO3" and N2O have been observed, suggesting evidence for this coupled 

process. 

Wrage et al. (2001) and Bouwman (1990) report that in addition to the standard 

nitrification and denitrification pathways of N transformation (Figure 2.1), "nitrifier-

denitrification" may occur (Figure 2.3). This appears to take place in the same low-

Nitriftcatlon 

N,0 

NO, -» NO N,0 N2 

NOa-
Denitrificalion 

NH, NHjOH • NOj r * NO • N20 • N2 

Pathway: Nitnfier Denitrification 

Figure 2.3. Nitrifier-denitrification. Illustration from Wrage et al. (2001). 

oxygen conditions as coupled standard nitrification/denitrification. The difference is that 

the same bacteria drive both the oxidation and reduction reactions, and the end product of 

nitrification is NO2", rather than NO3". Microbiologists believe that the bacteria are 

autotrophic NH3-oxidizers. However, there is not a consensus on whether nitrifier-

denitrification is a significant source of N2O. Some researchers report that this process 

may produce up to 30% of evolved N2O (Webster and Hopkins 1996), while others find 

its contribution to N2O production to be insignificant (Robertson and Tiedje 1987). 
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Wrage et al. (2001) suggest a three-dimensional model for partitioning the 

possible modes of nitrification and denitrification, based on the relative O2, N, and carbon 

(C) status of the soil (Figure 2.4). In this model, autotrophic nitrification occurs where 

ty Is increasing Oz content 

Figure 2.4. Hypothetical partitioning of modes of nitrification and denitrification. As heterotrophic nitrification 
and aerobic denitrification take place in N-poor, low-pH environments (Wrage et al. 2001), atypical of 
agricultural soils, this process is not discussed in the text. Illustration from Wrage et al. (2001). 

soil O2 and N content is relatively high, and C content relatively low. Conversely, 

heterotrophic denitrification occurs where soil O2 and N content are limited, and C 

content relatively high. Both processes are coupled at moderate levels of O2, N, and C, 

where conditions for each process are sub-optimal, as discussed above. Nitrifier-

denitrification predominates where both O2 and C are relatively limited, but N content is 

relatively high. 
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2.2 Variables influencing N2O production and flux 

In the agroecosystem, N2O can be produced from nitrification, denitrification, and 

potentially nitrifier-denitrification, as discussed above. N20 flux is highly variable, as a 

result of this range in potential sources, each with their own specific controls. For 

example, acetylene (C2H2) inhibition and isotopic studies (Ryden and Lund 1980, cited 

by Knowles 1982), find that N2O represents between 5% to 30% of the total N products 

of denitrification, and from 1% to 52% of applied fertilizer N. Peak N20 fluxes are up to 

7.5 kg N2O-N ha"1 d"1 (1.2 x 103 mg N2O m"2 d"1) in these studies. Because soil pores are 

generally open under nitrifying conditions, more of the N2O produced during nitrification 

may be lost to the atmosphere, than that produced from denitrification (Byrnes et al. 

1990). Surface flux from nitrification is relatively constant, decreasing temporarily during 

rain events, while N2O emissions due to denitrification are short-term and episodic 

(Byrnes et al. 1990). 

Fourteen field studies reviewed by Knowles (1982) show a high variation in N20 

flux rates, with peak fluxes occurring two to seven days following fertilizer application, 

and shortly after irrigation or rainfall. The highest flux rates are associated with enhanced 

denitrification, due to the augmentation of soil moisture, soil temperature, organic C, and 

fertilizer. These variables, and their interactions over time, are discussed in detail below. 

2.2.1 Soil moisture content 

In general, nitrification is limited at low O2 levels and high C:N ratios, which 

favour denitrification. Ruser et al. (2006) report maximum N2O fluxes from soils at 90% 

WFPS. Bouwman (1990) reports a denitrification threshold of 65% field capacity (FC). It 
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is possible for anaerobic microzones to serve as possible denitrification sites in otherwise 

aerobic soil (Knowles 1982, Bouwman 1990, Schlesinger 1991). There may be anaerobic 

intra-aggregate water-filled soil pores which support denitrification (Knowles 1982, 

citing Craswell and Martin 1974, Smith 1980). 

Knowles (1982) reports that concentrations of soil water and O2 can vary on a 

scale of micrometres. A water film as thin as 200 um may provide a suitable 

denitrification zone (Knowles 1982, citing Greenwood 1961). Parkin (1987) speculates 

that denitrifying microsites may be as thin as 16 um, as discussed below. Although 

precipitation increases the total anaerobic soil volume, denitrification levels may also be 

more dependent on the quantity and distribution of microbial respiratory activity, and the 

rate of gas diffusion in the soil (Knowles 1982). The rate of gas diffusion is influenced by 

the "geometry of the diffusion path" (Knowles 1982), which would be driven by soil 

texture and the level of soil compaction, in addition to soil moisture content. 

Rochette et al. (2004) compare subsurface N2O concentration and surface N20 

flux from arable sandy loam, clay loam, and clay soils. They find, that although there are 

differences in both concentration and flux from the three soil types, the differences are 

small and inconsistent. One might expect a clear difference in N2O flux from the soil 

types, with finer textured soils retaining more soil water, and therefore increasing N2O 

flux due to increased levels of denitrification. The authors speculate, however, that 

inconsistent patterns in flux, for the three soil types, reflect the complex effect of soil 

texture on the interaction between N2O production, consumption, and diffusion (Rochette 

et al. 2004). 
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Cycles of wetting and drying promote denitrification (Bouwman 1990, citing 

Letey et al. 1981). Additionally, such cycles increase available C (Knowles 1982, citing 

Patrick and Wyatt 1964, Reddy and Patrick 1975, Galsworthy and Burford 1978, Patten 

et al. 1980). More N2O is produced during wetting, and, if the soil is then quickly dried, 

the reduction of N2O to N2 is prevented (Bouwman 1990, citing Letey et al. 1981). Thus, 

mean N2O flux is higher in irrigated soil (alternating dry and wet conditions), than during 

frequent rains of a winter, when soils are continuously wet (Bouwman 1990, citing Letey 

et al. 1981). When soil water content is relatively low, there may be a simultaneous 

production of N20 and N03" as soil moisture increases, indicating that nitrification is the 

dominant process in N2O formation at this time (Bouwman 1990, citing Parton et al. 

1988). It is possible that coupled nitrification-denitrification is also occurring in such 

conditions. When volumetric water content (VWC) is very high, in contrast, only N2O 

concentration increases, indicating denitrification (Bouwman 1990, citing Parton et al. 

1988). 

Nitrogen oxide reductases are believed to be repressed by O2. Knowles (1982) 

reports that dissimilatory nitrogen reduction is activated within 40 minutes to three hours 

after soil wetting or re-wetting (citing Payne et al. 1971, Payne 1973, Firestone and 

Tiedje 1979, Smith and Tiedje 1979). Gradual depletion of O2, or a semi-anaerobic 

condition, allows the synthesis of dissimilatory nitrate reductase, and perhaps the 

reductases associated with the subsequent products of denitrification, which are shown in 

Figure 2.1 (Knowles 1982, citing Payne et al. 1971, Calder et al. 1980). A rapid shift in 

soil moisture status does not appear to support this synthesis (Knowles 1982, citing Payne 

et al. 1971, Zumft and Vega 1979). 
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Nitrite reductase is more strongly repressed by O2 than nitrate reductase (Knowles 

1982, citing Sacks and Barker 1949, Krul and Veeningen 1977, Meiberg et al. 1980), 

requiring a higher increase in soil moisture to be activated. The threshold level of 

anaerobiosis for N2O reductase is unknown (Knowles 1982). At low levels of O2, where 

denitrification occurs at a slower rate than in anoxic environments, the relative mole 

fraction of N20 is higher than that of N02~ or N2 (Knowles 1982, citing Focht 1974). The 

role of nitrogen monoxide (NO) in the denitrification process is uncertain (Knowles 

1982). 

Parsons et al. (1991) examine denitrifier enzyme activity (DEA) and denitrifier 

populations, with respect to N20 production in soil. DEA measures the rate of synthesis 

of new denitrifying enzymes. Parsons et al. (1991) find that N20 production is more 

highly correlated with soil moisture and soil respiration, than with DEA and population 

counts. Although DEA appears not to be important with respect to N20 production, 

Parsons et al. (1991) postulate that the activation or de-activation of existing denitrifying 

enzymes, due to fluctuating 0 2 levels, may play a role in N20 production. 

Higher N20 flux may occur from aerated versus anoxic soil (Bouwman 1990, 

citing Levine et al. 1984). The reduction of N20 may be slowed by competition from 0 2 

as an electron receptor (Bouwman 1990). Aerated conditions may also stimulate the 

production of N20 from nitrification (Bouwman 1990). Bremner et al. (1981) find that 

the N sources urea, (NH2)2CO, and ammonium sulphate, (NH4)2S04, form significantly 

more N20 at 60% WFPS, when compared to N20 from the denitrification of potassium 

nitrate (KNO3). Pihlatie et al. (2004) find that 78%, 44%, and 74% of N20 emissions 
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originate from nitrification, from an arable loamy sand, at 60%, 80%, and 100% WFPS, 

respectively. Nitrification or nitrifier-denitrification may be the dominant process, until 

soils become very wet or saturated (Bouwman 1990, citing Parton et al. 1988). In 

Christianson et al. (1979), Breitenbeck et al. (1980), and Conrad and Seiler (1980) (all 

cited by Knowles 1982), N2O flux is predominantly attributed to the nitrifiable 

compounds N H / , anhydrous NH3, and (NH2)2CO, rather than to NO3, implying that 

nitrification is the main source of N2O (Knowles 1982, citing Bremner and Blackmer 

1979). However, N2O fertilizer loss in these conditions is low, at less than 0.1% of 

fertilizer N (Knowles 1982, citing Breitenbeck et al. 1980, Seiler and Conrad 1981). 

Ruser et al. (2006) report on the influence of soil moisture and soil compaction on 

N2O flux, from fine silt loam growing potatoes in controlled conditions. They consider 

differences in N20 flux between potato ridge soil, uncompacted interrow soil, and 

compacted interrow soil, 15 days after fertilization. At constant moisture conditions (> 

70% WFPS), ridge soil has a higher N2O flux than uncompacted interrow soil, which in 

turn has higher N20 flux than compacted interrow soil. The higher ridge soil flux is 

attributed to the higher C content of the ridged topsoil. The opposite pattern, than that 

described above for high soil moisture conditions, is found at low moisture content, i.e. 

the compacted interrow soil has the highest levels of N2O flux when all soils are 

maintained at the same moisture content. Doran et al. (1990, cited by Parkin 1993) find 

higher denitrification rates in compact versus less compact soil. During an earlier 

growing season field study, Ruser et al. (1998) find that WFPS in ridge soil is low (50%), 

while uncompacted and compacted interrow soils have significantly higher WFPS (68% 

and 85%, respectively), complicating the role of soil moisture and soil compaction in 
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driving in situ N2O flux. During average growing season conditions, with only compacted 

interrow soils having high WFPS, in situ fluxes may in fact be limited. 

2.2.2 Soil temperature 

Soil temperature influences the rate of denitrification, the rate of nitrification, and 

the terminal products of these processes (Bouwman 1990). Denitrification rates have 

been found to increase up to 60°C, or even 75°C (Bouwman 1990, citing Alexander 

1977). The rate of denitrification increases exponentially (Q10 = 2) between 0°C and 

25°C (Rochette et al. 2004, citing experimental work by Castaldi 2000). Dhont et al. 

(2004) report that N20 flux is an order of magnitude higher at 15°C than at 5°C. The 

optimum denitrification rate occurs at temperatures > 25 °C, with the lowest rates of 

denitrification occurring at < 15°C (Bouwman 1990, citing Keeney et al. 1979). 

However, at these lower temperatures, relatively large mole fractions of N20 are 

produced (Bouwman 1990, citing Keeney et al. 1979; Knowles 1982, citing Nomrnik 

1956). The same quantity of N2O is produced at < 15°C than at 25°C even though the 

denitrification rate is low at these temperatures (Bouwman 1990, citing Keeney et al. 

1979). Denitrification is measurable down to between 0°C and 5°C (Knowles 1982, 

citing Bremner and Shaw 1958, Bailey and Beauchamp 1973, Smid and Beauchamp 

1976). For nitrification, the optimum rate occurs between 30°C and 35°C (Bouwman 

1990, citing Alexander 1977). Nitrification is negligible at temperatures < 5°C and > 

40°C (Bouwman 1990, citing Alexander 1977). 

The greatest variations in N2O flux in the literature are reported in soils at high 

temperatures with high rates of fertilization (Bouwman 1990). Significant losses of N2O 
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may occur at sub-optimal temperatures when manures are applied to soil (Bouwman 

1990:106, citing unpublished evidence). 

2.2.3 Temporal variability of N2O flux 

Parsons et al. (1991) find highly variable N2O production from soil, with the 

greatest production occurring during the spring. With respect to spring rates, the release 

of winter-produced N2O, previously trapped by ice, is also possible (Bouwman 1990, 

citing Bremner et al. 1980, Goodroad and Keeney 1985). Parsons et al. (1991) find that 

denitrification in the summer and fall is low or below detection limits. They cannot 

correlate N2O production with soil temperature, the relationship possibly confounded by 

changes in soil moisture, O2 solubility, and C availability over different temperature 

ranges. Schmidt et al. (1988, cited by Bouwman 1990) find that high denitrification rates 

may occur during the late autumn, in addition to those during the early spring, evidence 

that high VWC due to precipitation and/or rising water tables, may drive significant 

production at low temperatures. 

Soil temperature may create significant short-term temporal variations in N2O 

flux. Several studies show a marked diurnal variation in N2O flux (Bouwman 1990, citing 

Ryden etal. 1978, Denmead et al. 1979b, Keeney et al. 1979, Blackmer et al. 1982, 

Conrad et al. 1983, Minami 1987), with flux maxima coinciding with temperature highs 

in the early afternoon (Knowles 1982, citing Denmead et al. 1979a, b, Matthias et al. 

1980). 
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2.2.4 Soil organic matter 

Parsons et al. (1991) find that the rate of denitrification in pasture is strongly 

correlated with the level of soil respiration, and not with NO3" concentration. This 

suggests that soil C provides denitrifying microsites within the subsurface, and that 

denitrifiers may use NO3" below detection limits (Parsons et al. 1991). 

"Hotspots" of denitrification, due to high variability of particulate organic matter, 

occur in a study by Parkin (1987) on undisturbed silt loam soil. Parkin (1987) measures 

the denitrification and CO2 production rates from a 100-g soil sample, which contains a 

0.08-g piece of decaying pigweed. By isolating the pigweed through successive divisions 

of the sample, Parkin (1987) finds that the pigweed contributes 85% of the total 

denitrification in the original 100 g of soil. Assuming that CO2 production occurs over 

100% of the pigweed surface, and using the diffusion coefficient of O2 in water, Parkin 

(1987) determines that a water film, of only 160 um thick, results in denitrification rates 

as high as those from bulked soil under ideal anaerobic conditions, with additions of 

glucose and NO3". If CO2 production occurs over only 10% of the pigweed, these 

denitrification rates could occur in water films as thin as 16 um (Parkin 1987). Van 

Kessel et al. (1993) find that hotspots exhibit a distinct temporal pattern, tending to 

increase in number only in drier conditions, and thus generating N2O flux outliers only 

when the overall rate of denitrification is low. Van Kessel et al. (1993) conclude, 

therefore, that hotspot activity is of limited importance when estimating seasonal rates of 

denitrification. 
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In a review of studies on biotic sources of N2O, Umarov (1990) concludes that 

organic C is the main driver of denitrification, naming soil moisture and soil temperature 

as secondary drivers. Knowles (1982) speculates that freeze-thaw cycles break down 

organic matter, making C more available to denitrifying organisms. Rochette et al. 

(2004), however, point out that decomposition of crop residues may be slow in wet and 

cool soil, producing minimal quantities of substrate required for denitrification. Even 

where soil N is high, therefore, there may be a low denitrification rate and N2O yield. 

Van Kessel et al. (1993) find that water-soluble organic carbon (WSOC) does not limit 

denitrification during the growing season in a pea (Pisum sativum) field. 

2.2.5 Soil chemistry 

The rate of denitrification is optimal between pH 7.0 and 8.0 (Knowles 1982, 

citing Wijler and Delwiche 1954, Nb'mmik 1956, van Cleempt and Patrick 1974, 

Delwiche and Bryan 1976, Miiller et al. 1980). Many nitrifiers and denitrifiers are 

sensitive to low pH, but pH is rarely low enough to be limiting in arable soils in Ontario, 

as most soils range from pH 6.5 to 7 (Zwart 2006). Practices, such as fertilization and 

irrigation, may alter other aspects of soil chemistry, which are more relevant to N2O 

production in an agricultural setting. 

Spatial and temporal variation in N transformation is enhanced by amendments of 

inorganic fertilizers, manure, and additions of plant residues to agricultural soil. These 

create localized zones of mineralization, nitrification, and denitrification (Knowles 1982, 

citing Burford 1976, Burford et al. 1976, Guenzi et al. 1978). Pulsed inputs of manure, 

inorganic fertilizer, and precipitation into agricultural soils cause periods of enhanced 
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bacterial activity of short or long duration (Knowles 1982, citing Burford et al. 1976). 

For example, Bouwman (1990) reviews ten studies on cultivated unirrigated grain crops 

on mineral soils, which report flux ranges from 0.08 mg N2O m"2 d"1 on unfertilized rye, 

to 3.4 mg N20 m"2 d"1 on rye fertilized with NO3-N or NH4NO3-N. Annual emission 

rates range from 0.2 kg N ha"1 y"1 on the unfertilized rye, to 8.0 kg N ha"1 y"1 on the 

fertilized rye. The mass of N applied per unit area correlates with N2O flux (Bouwman 

1990). High soil concentrations of NO3" delay the reduction of N20 to N2 (Bouwman 

1990, citing Fillery 1983). N20 production may be higher in soil treated directly with 

NH4+-yielding fertilizer, than in soil treated with NO3-N (Bouwman 1990, citing Bolle et 

al. 1986). Bouwman (1990) reports the following N20 losses by fertilizer type from Bolle 

etal. (1986): 0.04% of NO3" fertilizer, 0.15% to 0.19% of NH3 and (NH2)2CO fertilizers, 

and 5% of anhydrous NH3 fertilizer. One study (Breitenbeck et al. 1980, cited by 

Bouwman 1990) finds that higher fertilizer application rates lower the fraction of 

fertilizer N lost as N20 from the agricultural system. Van Kessel et al. (1993) find that 

denitrification in agricultural systems is only limited by soil N when the potential rates of 

denitrification are high, i.e. when both soil moisture and soil temperature are high. 

Rochette et al. (2004) find that flux is high when soil N20 is high, but observe that the 

reverse is not always true. In one year of their two-year study, for example, April and 

early May N20 fluxes increase while soil N20 decreases. 

Soil texture may play a role in the proportion of fertilizer N lost as N20. Byrnes et 

al. (1990) report N20 flux from silt loam, silt clay loam, and clay loam (85% FC), with 

applications of two fertilizers at the rate of 50 kg N ha"1. Emission rates are 1.8%, 0.1%, 

and 0.05% of urea-based fertilizer, respectively. Emissions are 1.5%, 0.2%, and 0% of 
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NH3- based fertilizer (Byrnes et al. 1990). These results indicate that soil type may be 

more important than fertilizer type in constraining N2O flux, at least from the nitrification 

of NH4+-yielding fertilizers. 

Phosphate (PO4"3) and calcium carbonate (CaCOs) may contribute to favourable 

conditions for N2O formation (Bouwman 1990, citing Minami and Fukushi 1983). PO4"3 

may act as a microbial nutrient, and CaCC>3 would increase pH in acidic agricultural soils, 

thus favouring N2O production by creating more favourable conditions for microbes 

(Spoelstra, pers. comm.). Although, in order to maintain crop health, farmers may need to 

add these compounds to their soils, slow release forms of PO4" and CaCC>3 may 

minimize increases in N2O emissions. 

2.2.6 Spatial variability of N20 flux 

The spatial variability of N2O flux is high. Folorunso and Rolston (1984, cited by 

Bouwman 1990) conclude that 350 samples are required to get a N20 flux value within 

10% of its true mean for a 90-m2 plot, and 14 samples to get an accuracy of +/- 50%. 

Also, it is impossible to separate spatial from temporal variability. For example, the 

spatial and temporal heterogeneity of denitrification is enhanced by the evolving 

chemistry, mass, and location of plant roots in soil over a growing season. Roots exude 

sugars and C, and act as an O2 sink in loose, unrestricted soils (Knowles 1982). 

Denitrifier populations may be one to two orders of magnitude greater in these zones 

(Parkin 1993). However, if nitrates are in relatively short supply, or inorganic N is 

strongly assimilated by plants, denitrification in the rhizosphere may be lower than in the 

greater pedosphere (Bouwman 1990, citing Haider et al. 1985). 
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The variables that drive N2O production via microbial activity differ with the 

scale of investigation (Parkin 1993). Thus, at the microscale (4 mm2), localized variations 

in NO3", organic matter, anaerobiosis, and even pH, are relevant. At the plot scale, crop 

type, fertilization rate, and fertilization method are central. Crop type, in turn, influences 

the temporal variation in organic matter content, and the spatial distribution of the 

rhizosphere; the spatial pattern of soil moisture due to variations in throughfall, stemflow, 

and interception; and the solar impact due to differences in the morphology of the plant 

canopy. For example, due to plant physiology, corn leaves funnel up to 50% of total areal 

rainfall directly to the base of corn plants (Parkin 1993, citing Parkin and Codling 1990). 

Notable effects on soil moisture may be brief, however, because, at least in the case of 

corn, redirected water may rapidly be taken up by the crop. Fertilization also contributes 

to the heterogeneity of microbial activity at the plot scale via application method (Parkin 

1993, citing Rice et al. 1988) and fertilizer type. Applications may be banded (interrow 

or intrarow) or broadcast, surface or subsurface, liquid or solid. The spatial distribution of 

solid organic amendments is especially patchy. The effects of pesticides on microbiota 

are heterogeneous at the plot scale as well (Parkin 1993, citing Parkin and Shelton 1992). 

Other interconnected variables predominate to constrain N2O flux at the larger 

landscape scale. Soil type integrates the plot-scale and microscale effects of soil texture, 

depth of topsoil, organic content, pH, and nutrient levels (Parkin 1993). Surface 

topography contributes to topsoil depth and soil moisture levels (Parkin 1993, van Kessel 

et al. 1993). Together, soil type and topography are appropriate summary variables for 

water distribution, which is the third main variable driving N2O flux at the landscape 

scale (Parkin 1993). Parkin (1993) asserts that climate, land use pattern (with specific 
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vegetation type), and physiography are appropriate summary variables for understanding 

N20 flux at the regional scale. 

2.2.7 Summary of N2O flux drivers 

There is no one N2O flux driver, and researchers debate the relative importance of 

the variables which influence flux timing and magnitude. Umarov (1990) states that, in 

addition to a threshold soil moisture level, organic C content is the main constraint on 

denitrification. Nearly all bacteria are able to denitrify, and NO3", soil temperature, and 

pH are flux drivers which are secondary to soil moisture and soil C (Umarov 1990). 

Other findings suggest that fertilizer concentration may be more important than soil C 

content (e.g. Bouwman 1990, citing Conrad et al. 1983). The predominance of one factor 

or one interaction may shift over time. Bouwman (1990) concludes that the variability of 

N2O flux is a function of time-dependent interactions between soil temperature, microbial 

populations, organic C content, O2 diffusion rate, soil moisture content, and occurrence 

and condition of root matter. It is therefore impossible to decouple spatial from temporal 

variability in the field. 

2.3 Research Objectives 

This research examines spatial and temporal variations in N2O flux from an 

agricultural area in southern Ontario, and the linkage of these variations to landscape 

position, crop type, soil temperature, and soil moisture. The seasonal pattern, of in situ 

N20 flux at Strawberry Creek (SC), is investigated to determine when the highest N2O 
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emissions are occurring, and whether seasonal emissions reported in the literature are 

comparable, in terms of pattern and magnitude. 

In addition to year-round field sampling, the non-growing season is examined in 

depth via a laboratory incubation, to better understand the sensitivity of winter and spring 

N20 fluxes to soil temperature fluctuations at controlled soil moisture conditions. The 

pattern and magnitude of N2O flux changes following a soil temperature increase or 

decrease are observed, with a focus on N2O fluxes at soil temperatures near 0°C. Fluxes 

are tracked in the laboratory with daily measurements accompanied by continuous soil 

temperature and soil moisture logging. 

Field and laboratory N20 flux observations are compared. Correlations between 

N2O flux, soil temperature, and soil moisture are examined to determine whether there 

might be a simple predictive model for in situ flux based on these two environmental 

parameters. 
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3 Spatial and temporal patterns in N2O fluxes from agricultural soil in a 
temperate climate 

Spatial variations of in situ N2O flux at SC are compared by landscape position, 

that is, by field, and by crop type. Daily, seasonal, and monthly variations in N2O flux are 

examined to determine flux patterns and to determine when the highest N2O emissions 

are occurring. For the seasonal comparisons, the SC data is subdivided into spring 

(March and April), growing season (May through August), fall (September and October), 

and winter (November through February). The temporal patterns are compared to soil 

temperature and soil moisture conditions. The relative magnitude and absolute magnitude 

of SC N2O fluxes are compared to those in the agricultural N2O flux literature from 

similar climatic regions. When the literature uses parametric statistics to report N2O flux 

data (see Table A 1), comparable parametric statistics for the SC dataset are calculated, as 

discussed in section 3.2.5. This may lead to skewed comparisons, as the SC data are non-

parametric. 

3.1 Site description 

Nine field sites were located in the Strawberry Creek (SC) catchment in southern 

Ontario (Figure 3.1, Figure 3.2a). SC is an ephemeral first order stream in the Grand 

River watershed, approximately 15 km northeast of Waterloo, Ontario (43° 33' 28" N, 

80° 23' 58" W), which flows through a gently rolling agricultural landscape of low 

widely-spaced glacial features including drumlins and eskers. The sites are situated at 

approximately 340 m above sea level, with relief ranging over 15 m. Surface geology at 

SC consists of a few metres of sand-silt till, over < 3 m of clay till, over 3 - 7 m of stony 
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•M^T: 

Figure 3.1. Location of SC (*) within the Grand River watershed. Inset shows the location of the Grand River 
within the Great Lakes basin of southern Ontario. Illustration from the Grand River Conservation Authority 
(http://www.grandriver.ca/index/document.cfm?Sec=12&Subl=55&Sub2=24). 
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(a) 

(b) 

Figure 3.2. (a) SC with catchment boundary. Flow is southeast, (b) Nine SC field sites. Site S3 is near the creek 
origin which drains a forested wetland across the road to the north (upper left corner of photo). 
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till overlying bedrock (Vries and Dreimanis 1960, Karrow 1968, Karrow 1974, Karrow et 

al. 1993, cited by Harris 1999) The soil in this area is a clay loam (27% sand, 44% silt, 

29% clay, Rashid, unpublished data). Mean annual air temperature (1971-2000) is 7°C, 

with monthly means ranging from -7°C (January) to 20°C (July). Mean total annual 

precipitation (1971-2000) is 910 mm, with mean monthly totals ranging from 50 mm 

(February) to 90 mm (July, Figure 3.3). 
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Figure 3.3. Climate normals 1971-2000, Waterloo-Wellington Station A (43°27'N, 80°23'W, elevation = 317 m, 
Environment Canada 2008). Mean daily average air temperature and total precipitation by month. 

Three 16-m field sites were located in each of three privately owned tile-drained 

agricultural fields, within a 1-km2 area in the upper catchment (Figure 3.2b). The three 

fields were conventionally tilled and managed in terms of organic and inorganic 

fertilizers (Table 3.1, Table 3.2), and the sites were located within corn-oat and corn-

wheat rotations (Zea mays - Avena sativa, Zea mays - Triticum aestivum), common crops 

in southern Ontario (Table 3.3). 
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Table 3.3. Area in grain crops in Ontario in 2006 (McGee 2009). Highlighted crops indicate those studied at SC. 

by Area 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

Crop 

Hay 

Soybeans 

Grain corn 

Winter wheat 

Silage corn 

Barley 

Spring wheat 

Mixed grain 

Dry field beans 

Oats 

Fall rye 

Tobacco 

Canola 

Area (ha) 

1,037,062 

872,455 

638,538 

416,209 

129,807 

89,447 

82,112 

70,194 

61,775 

53,399 

25,565 

12,816 

7,517 

Three sites, designated Rl, R2, and R3, were situated in field R (43° 33' 16" N, 

80° 23' 38" W). Three sites, designated SI, S2, and S3, were situated in field S (43° 33' 

23" N, 80° 24' 0" W). The last three sites, designated Tl, T2, and T3, were situated in 

field T (43° 33' 24" N, 80° 23' 25" W). The nine sites were chosen to represent the full 

range of soil moisture conditions in each field. Sites 1 were selected to be drier than sites 

2, which were selected to be drier than sites 3 (Figure 3.2b). This pattern was consistent 

for the sites of field R during all seasons, for field S during the spring and winter, and for 

field T during the spring, growing season, and winter (Figure 3.4). 
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Figure 3.4. Relative moisture content by site at SC. All 2006 through 2008 data is illustrated. 

3.2 Methods 

3.2.1 Field methods 

Soil gas flux samples were collected from August 2006 through October 2006, 

March 2007 through February 2008, and April 2008 through August 2008, with three 

replicates at each of the nine field sites. Sampling followed significant precipitation 

events, fertilization (in 2007 only), and otherwise every two to four weeks. During the 

winter (November 2007 through February 2008), samples were taken during thaw events, 

defined as > 3 days at a daytime air temperature of > 4°C. Otherwise, winter sampling 
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occurred every two to four weeks. Sampling occurred three times between Jan 5/08 and 

Jan 13/08, during an extreme thaw event (Figure 3.5). Air temperature during this period 

Figure 3.5. Mid-winter thaw conditions, early January 2008, SC, site R2. 

reached a maximum of 14°C (Jan 7/08). During July 2008 and August 2008, sampling 

was carried out every two to four weeks only; there was no additional sampling following 

precipitation events. 

Because of possible diurnal variations in N2O flux (Bouwman 1990), sampling 

would have ideally taken place at the same time of day from each site. However, due to 

the time required for the installation of sampling chambers and for travelling between 
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sites, the six R and T sites were sampled in the morning, and the three S sites were 

sampled in the afternoon. 

Gas samples were collected using equipment and methodology developed by 

Petrone (pers. comm.). After each spring cultivation, three soil gas collars (Figure 3.6), 

Figure 3.6. Soil gas chamber and collar used in the collection of N2() gas flux data from the field at SC. 

constructed from 28 cm of polyvinyl chloride (PVC) pipe with an inside diameter (ED) of 

10 cm, were inserted to a depth of 18 cm at each site. The collars remained in place until 

the following spring. Gas collection chambers were constructed of PVC pipe (10.7 cm 
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ID). Each chamber was 10 cm high, with a Plexiglas® top sealed on with silicone rubber 

sealant (Silicone I®, GE Inc.). A drilled opening in the Plexiglas® was fitted with an 11-

mm Teflon® septum, held in place with a stainless steel and brass fitting enclosed with 

plumbing sealant (Amazing Goop®, Eclectic Products Inc.). Two small holes were 

drilled into the Plexiglas®, one to hold a thermocouple wire, another to hold a 40-mm fan 

(CFA 124010MS DC Brushless Fan, Circuit-Test Electronics). A 9-V battery was 

connected to this fan on the outside of the chamber at sampling time. These small 

openings were enclosed with plumbing sealant. The surface of the chamber was covered 

with aluminum tape to reflect solar radiation. Two 21G1V2 needles (Becton Dickinson & 

Co.) were inserted into the chamber's septum. One was inserted and attached to a three-

way valve. The other was inserted to maintain an equilibrium between the chamber air 

pressure and that of the atmosphere. 

An ambient air sample was taken at the beginning of each sampling day. A 20-mL 

syringe (BD Luer-Lok™, Becton Dickinson & Co.) was attached to a three-way valve. A 

23G1 needle was attached to the opposite end of the valve. The valve was closed to the 

needle and 20 mL of ambient air was drawn into the syringe. The valve was closed to the 

ambient air and the needle was purged using the ambient air in the syringe. The valve 

was closed to the needle once again and another 20 mL of ambient air was drawn into the 

syringe. The valve was closed to the ambient air. A 12-mL glass vial (Labco Exetainer®, 

Labco Ltd.), evacuated to 0.001 mbar, was inserted onto the needle. The syringe was then 

used to inject the 20 mL of ambient air into the vial. 
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The lower inside of each gas chamber was thinly coated with high vacuum 

silicone grease (Dow Corning Corp.). The chambers were positioned firmly over each 

soil collar, with the three-way valve closed to the chamber (Figure 3.6). After 1.5 to 2 

hours, a 9-V battery was connected to the fan on each chamber. After 1 min, and with the 

fan running, the chamber air was sampled, using the same protocol outlined above to 

sample ambient air. 

When there was over 5 cm of fresh snow on the ground, snow gas samples were 

collected using equipment and methodology developed by Spoelstra (pers. comm., Figure 

3.7). Snow gas chambers were constructed were constructed from 27-cm diameter, 

Figure 3.7. Snow gas chamber (background) and gas collection method illustrating 30-mL syringe and 12-mL 
Exetainer® (foreground), winter 2007-2008, SC. 
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15-cm high plastic buckets. An 8-mm diameter eye bolt was fitted into the outer bottom 

centre of the bucket, and sealed in with a rubber washer. A 13-mm blood tube stopper 

was fitted into the outer bottom side of the bucket. Three metres of 3-mm ID rigid plastic 

tubing was inserted into the stopper, projecting < 5 cm above the bottom of the bucket. A 

plastic barbed luer connector (Cole-Parmer Inc.) was inserted into the opposite end of the 

tubing and fitted with a three-way valve. 

The snow gas chambers were inverted. Using a 3-m pole with a hook installed on 

the end, each chamber was lifted via the eye bolt and gently placed on an undisturbed 

area of the snowpack to a depth of 5 cm. Three chambers were placed near each field site, 

radiating out from the centre of each site at 0°, 120°, and 240°. The free end of the plastic 

tubing was secured above the ground at 2 m to 3 m from the snow gas chamber. The 

valves were closed to the tubing leading to the snow chambers. After 1.5 to 2 hours, a gas 

sample was extracted, using the same protocol as above to sample ambient air (Figure 

3.7). 

A time-domain reflectometer (TDR CS620 with CD620 display and two 20 cm 

CS620-20 rods, Campbell Scientific Inc., Logan, UT) was initially used during each 

sampling event to quantify soil moisture. The TDR rods were inserted into the ground, 

providing an average soil moisture value from 0 cm to 20 cm in depth. From March 2007 

through June 2007, single soil moisture measurements were taken in the centre of each 

field site. Beginning in July 2007, a new TDR sensor was employed (PR2/6 with HH2 

logger and PRC/d-HH2 cable, Delta-T Devices Ltd., Cambridge, UK), using three access 

tubes permanently installed at each site (ATL1, Delta-T Devices Ltd., Cambridge, UK). 
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This system allowed soil moisture data to be collected even when soils were relatively 

dry or snow-covered (Figure 3.8). The PR2/6 provided discrete soil moisture 

Figure 3.8. Winter 2007-2008 soil moisture and soil temperature measurements at SC in field S, illustrating 
PR2/6 TDR (left foreground) and multimeter connected to buried thermocouple wires (midground). 

measurements at a depth of 10 cm. Three readings were taken at each access tube: at 0°, 

120°, and 240°. These discrete 10-cm values were assumed to be comparable to the 

CS620 values, which represented the soil moisture average from 0 cm to 20 cm. When 

the PR2/6 was not functioning properly, the CS620 was used. When the CS620 was 

employed after June 2007, nine measurements were taken at each site, three at 

approximately 30 cm from each soil gas collar at 0°, 120°, and 240° from its centre. The 

collection of soil moisture data was occasionally prevented during the winter, due to the 

formation of an ice layer on or above the soil surface. 
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Soil temperatures were initially measured with a thermocouple thermometer 

inserted to a 5 cm depth at the centre of each site (EW-93756-06 and EW-90225-00, 

Cole-Parmer Inc., Vernon Hills, IL). Beginning in July 2007, permanent thermocouple 

wires were installed at three locations within each site (Figure 3.8). 

3.2.2 Laboratory methods 

Gas samples from the field were analyzed for N2O within 7 days by the 

Department of Earth and Environmental Sciences, University of Waterloo, using a Varian 

CP3800 Gas Chromatograph (Varian Inc., Palo Alto, CA) and N2O concentrations 

calibrated against gas standards included in each sample run. The detection limit for N20 

was approximately 3 nmol N2O, and analytical accuracy was ±10 ppbV N2O. 

3.2.3 N2O flux calculation 

N2O fluxes were calculated for each sample using the following formula: 

Fm = Fv x ;••*- x ± x MMNl0 x 103 (3.1) 

where: 

Fm = 
Fv = 
Vh = 
MVg = 

Ac = 
MMN 2 0 
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molar flux, mg m" d" 
volumetric flux, nL L"1 d"1 

volume of headspace, L 
molar volume of a gas corrected for chamber temperature and pressure, L mol"1 

22.414 x (273.16 + T) / 273.16 x 101.32 / P, where T units are K and P units are kPa 
cross-sectional area of the chamber, m 
= molar mass of N 2 0 
= 44.0128 g mol-1 



3.2.4 Soil analysis 

The soil organic matter content was determined through loss on ignition in a 

muffle furnace at 500°C for 1 hour. Total carbon (% TC) and total nitrogen (% TN) were 

determined by the Environmental Isotope Laboratory, Department of Earth and 

Environmental Sciences, University of Waterloo, with an Isochrom Continuous Flow 

Stable Isotope Mass Spectrometer (Micromass UK Ltd., Manchester), coupled to a Carlo 

Erba Elemental Analyzer (CHNS-O EA1108, Thermo Fisher Scientific, Milan). Detailed 

soil analysis methods can be found in Thuss (2010). Molar C:N ratios were calculated 

with the following formula: 

C: N = J£ x £ (3.2) 
TN 12 v J 

3.2.5 Statistical methods 

All statistical analysis was conducted using SPSS version 16.0 (SPSS Inc., 

Chicago, IL). Sets of N2O flux data, subdivided by field, crop, season, month, and soil 

temperature categories, were tested for normality using the Kolmogorov-Smirnov and 

Shapiro-Wilk tests (p < 0.05). The same tests were applied to the climate data. These two 

tests assess the null hypothesis that data is normally distributed. In the majority of cases p 

< 0.05, therefore the null hypotheses were rejected. 

Non-parametric statistics were used to summarize the non-normal N2O flux and 

climatic data, as in van Kessel et al. (1993). Median values with 95% confidence 

intervals were calculated. Median fluxes are accurate to ± 0.04 mg N2O m"2 d"1, given the 

analytical accuracy noted in section 3.2.2. Statistical differences (p < 0.05) in N2O flux 

39 



among fields, crops, seasons, months, and soil temperature categories were determined 

via the non-parametric Mann-Whitney U test. This test was also used to determine 

whether there were significant climatic differences (p < 0.05) among seasons and months 

of different years at SC. When both ngr0up 1 and ngroup2 ^ 20, the U statistic was reported, 

whereas, when both ngroup j and ngroup 2 > 20, the zv statistic was reported, as performed by 

the SPSS software. In contrast, parametric statistics were often reported in agricultural 

N2O flux literature. Therefore, in order to compare the SC results to published studies, 

parametric SC results were calculated on an ad hoc basis, as reported in section 3.3.5. 

3.3 Results and discussion 

3.3.1 Soil physical and chemical properties 

Bulk densities from the R and T sites at SC range from 1.69 to 2.14 g cm"3 (Table 

3.4). Organic content ranges from 5.2% at Rl to 9.0% at Tl (Table 3.4) for the R and T 

fields, except for site R3. R3, uniquely situated at the edge of a forested wetland, which 

remains waterlogged during the non-growing season, has a high organic content of 14%. 

Organic content at all of the S sites is high, from 15% to 20%, even though, in contrast to 

R3, none of these sites is waterlogged. Total carbon (TC) content at the sites ranges from 

2.0% (Rl) to 4.0% (S2), except for R3, which has an anomalous C content of up to 10% 

(Table 3.4). Overall, soils show no obvious increase or decrease in either TC or TN 

between summer and fall. As with TC, TN at site R3 is high, at up to 0.72% (Table 3.4). 

Soils from the other sites range from 0.18% N (at Rl and T2) to 0.32% N (at S2 and T3). 

The C:N ratio for all nine sites ranges from 11.2 (at T3) to 18.6 (at Tl). The C:N ratio at 

site R3 is 16.7. 
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Table 3.4. Soil properties at SC, including soil bulk density (BD) and organic content (OC) from the upper 0-25 
cm of the soil profile, and TC, TN and C:N ratios from the upper 0-15 cm (Thuss, unpublished data), n1 = sample 
size for BD and OC, n2 = sample size for TN, TC, C:N. All data collected in 2006, except * (2007 collected). ** = 
collected in the fall of 2006. n/a = data not available. 

Site _, i Bulk Density Organic Content 
Season n _3 ,n,\ 

(gem ) (%) 

TC (%) TN (%) C:N 

Rl 

Rl 

R2 

R2 

R2 

R2 

R3 

R3 

SI 

S2 

S3 

Tl 

Tl 

T2 

T2 

T3 

T3 

summer 

fall 

summer 

fall 

summer 

fall 

summer 

fall 

summer 

summer 

summer 

summer 

fall 

summer 

fall 

summer 

fall 

27 

9 

27 

9 

-

-

27 

9 

27 

27 

27 

27 

9 

27 

9 

27 

9 

1.96 

n/a 

2.14 

n/a 

n/a 

n/a 

1.85 

n/a 

n/a 

n/a 

n/a 

1.69 

n/a 

1.94 

n/a 

1.98 

n/a 

5.4 

5.2 

6 

6.8 

n/a 

n/a 

14.1 

13.8 

20.2 

14.7 

18.2 

9 

8.4 

6.8 

6.3 

7.1 

7 

1 

1 

6 

8 

1 

1 

1 

1 

-

3 

-

2.0 * 

2.1 * 

2.5 

2.5 

2.7 * 

3.0 * 

10.1 * 

8.6 * 

n/a 

4.0 * 

n/a 

3.3 * 

3.4 * 

2.4 * 

2.4 * 

3.1 * 

2.9 * 

0.18 * 

0.19 * 

0.26 

0.24 

0.23 * 

0.27 * 

0.72 * 

0.60 * 

n/a 

13 * 

13 * 

11 

12 

13 * 

13 * 

16 * 

17 ' 

n/a 

* 0.32 " 14 ** 

n/a 

0.21 * 

0.22 * 

0.19 * 

0.18 * 

0.32 * 

0.30 * 

n/a 

18 * 

19 * 

14 * 

16 * 

11 * 

11 * 

3.3.2 Climatic conditions 

The N2O flux dataset consists of SC samples from the period of August 2006 

through August 2008, over which there are a wide range of climatic conditions (Figure 

3.9). As sampling is precipitation- and thaw-event based, in addition to occurring at least 

biweekly, the data is thought to reflect a representative range of long-term in situ N2O 

flux values. 
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Figure 3.9. Regional daily air temperature (line) and total daily precipitation from 2006 through 2008 (bars), by 
Julian day. Data from Regional Waterloo International Airport meteorological station (43.46°N, 80.38°W) 
(Environment Canada 2009). 

Air temperature during the fall of 2007 is higher than during the fall of 2006 (zu = 

-3.9, p < 0.001). In terms of monthly differences, February and April 2008 are warmer 

than February and April 2007 (Table A2;zu = -2.3, p = 0.02; zv = -2.1, p = 0.04, 

respectively). Conversely, March and May 2008 are cooler than March and May 2007 

(Table A2;zv = -2.4, p = 0.02; zv = -2.0, p = 0.04, respectively). Higher and lower N20 

fluxes may occur during these warmer and cooler inter-annual seasons and months, 

respectively. March 2007 has a notably large range of daily mean temperatures (-18°C 

through +14°C) as compared to March 2008 (-14°C through +5°C, Table A 2). N20 

fluxes sampled during March 2007, therefore, may be higher than those during average 
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March conditions, because the March 2007 temperature fluctuations would likely cause 

bursts of N2O flux of greater magnitude and frequency. Such temperature fluctuations are 

known to cause higher fluxes (e.g. Hu et al. 2006, Henry 2007). 

Precipitation during the growing season of 2008 is significantly higher than 

during the growing season of 2006 or 2007 (zv = -3.5, p < 0.001; Zu = -4.7, p < 0.001, 

respectively). There are more rain events during August 2006 versus August 2007, 

February 2007 versus February 2008, and April 2007 versus April 2008. Conversely, 

there are fewer rain events during June 2007 versus June 2008 (Figure 3.9). There are 

three relatively extreme precipitation events in September 2006, November 2007, and 

July 2008 (37 mm, 32 mm, and 54 mm, respectively, Table A 3, Figure 3.9). These 

events may be reflected in high N2O fluxes. 

High air temperatures during the second week of January 2008 reflect an extreme 

winter thaw which occurred during this time. Precipitation levels were also very high 

during this thaw. 

Soil moisture and soil temperature at SC follow expected seasonal patterns, with 

soil moisture highest during the spring, followed by winter, fall, and growing season 

(Figure 3.10a). Soil temperature is highest during the growing season followed by fall, 

spring, and winter (Figure 3.10a). 

3.3.3 Spatial variation in N2O flux at the landscape scale 

Most differences in N2O flux over the landscape, i.e. among fields, are not 

significantly different. However, certain significant seasonal differences in N2O flux 
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Figure 3.10. (a) Soil moisture content at 10 cm depth (inverted triangles) and soil temperature at 5 cm depth 
(dots) by season, (b) N 20 flux by season (bars) with sample size (dots). Error bars indicate the 95% confidence 
interval for median flux. Spring = March and April, growing season = May through August, fall = September 
and October, winter = November through February. 

among fields do occur during the spring and winter. During the spring, field S has smaller 

N20 fluxes than both field R (U= 81,/? = 0.03, Figure 3.11a) and field T ([/= 55, p = 

0.05, Figure 3.11a). During the winter, field T has greater N2O fluxes than both field R 

(zu = -2.7, p = 0.006, Figure 3.11a) and field S (zv = -2.6, p = 0.009, Figure 3.11a). This 

may be at least partly due to the fact that fields R and T are fall-manured in alternate 

years, with manure of a high nitrogen content (quantitative data not available). Field S 

belongs to a different property owner, and is consequently not fall-manured. 

Additionally, field S corn always has its residue removed from the field, whereas this is 

never the case for fields R and T. 
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Figure 3.11. (a) Seasonal N 20 flux by field, (b) Seasonal N 20 flux (bars) and soil moisture content at 10 cm depth 
(dots) by field, (c) Seasonal N 20 flux (bars) and soil temperature at 5 cm depth (dots) by field. Error bars 
indicate the 95% confidence interval for median N 20 flux. R & T fields are in oat/corn rotations. S sites are in 
spring wheat/corn (2008) or winter wheat/corn (2007) rotations. These plots illustrate data from sampling dates 
where all nine sites have (a) N20, (b) N20 and VWC, and (c) N20 and temperature records, to give a consistent base 
for comparing the three fields. Flux values, therefore, do not represent all sampling dates from August 2006 
through August 2008 at SC. Spring is represented by data from Apr 28/07 and Apr 18/08 only (a, b, c). Growing 
season is represented by data from (a) 15 dates, (b) 10 dates and (c) 12 dates. Fall is represented by data from 12 
Sept 12/07 and Oct 24/07 only (a, b, c). Winter is represented by data from (a) 6 dates, (b) Nov 12/07 and Nov 
25/07 only, and (c) 4 dates. The label in plot (b) indicates the upper confidence limit (off-scale). 
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Although the seasonal differences in N2O flux over the landscape (Figure 3.11a) 

are generally not statistically significant (p > 0.05 by the Mann-Whitney U test), they do 

consistently mirror those of relative soil moisture content (Figure 3.1 lb). These flux 

patterns, however, do not reflect soil temperature, except during the fall (Figure 3.1 lc). 

No comparable landscape scale data in the literature are available for comparison with 

these SC inter-field results. 

3.3.4 Influence of crop type on N2O flux 

At SC, there are several significant differences in N20 fluxes among sites with 

different crops. These are likely due to a difference between organic/inorganic fertilizer 

application rates and timing. During the growing season and fall, the flux from sites with 

corn are higher than those with oats or winter wheat/fallow (zu = -5.4, p < 0.001; Zu = -

4.9, p < 0.001, respectively; Figure 3.12a, Figure 3.12b). This is likely the result of corn 

receiving greater amounts of fertilizer than oats, at rates and timing that may not 

maximize the efficiency of crop nutrient supply with respect to crop nutrient demand. 

(Sites planted in winter wheat in the fall are designated "winter wheat/fallow" during the 

following growing season because they are fallow after a mid-summer harvest. For SC 

data comparison, the "growing season" for winter wheat is the harvest year, and not the 

year of planting.) 

There are two other significant differences in N2O flux among crops during the 

growing season. Sites with spring wheat have a higher N2O flux than oats, and oat sites, 
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(C ) 

Figure 3.12. N20 flux comparisons from different crops during the growing season and fall at SC. Bars illustrate 
N20 flux and dots illustrate sample size. Error bars indicate the 95% confidence interval for median flux. Each 
plot illustrates data from sample dates with records for all of the crops illustrated to give a consistent base for the 
comparisons. Flux values, therefore, do not represent all growing season and fall sampling dates in the SC 
dataset. Sample sizes differ within each plot because there were 6 sites sown to corn each year, 3 sites sown to 
oats, 1 site in winter wheat (2007 only) and 2 sites in spring wheat (2008 only), (a) N20 flux from corn versus 
oats, (b) N20 flux from corn versus oats versus winter wheat (followed by fallow), (c) N20 flux from corn versus 
oats versus spring wheat. 
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respectively, have a higher N2O flux than winter wheat/fallow (zv = -2.1,/? = 0.03; Zu= -

3.4, p < 0.001, respectively; Figure 3.12a, Figure 3.12b). Spring wheat was grown at SC 

in 2008 only. The fertilizer recommendation for spring wheat and oats is 90 kg N ha"1 and 

35 kg N ha"1, respectively (Reid 2008). Although both recommendation levels are 

exceeded at SC (Table 3.2), it is possible that more excess inorganic N was taken up by 

oats. Winter wheat/fallow sites receive neither organic nor inorganic fertilizer, which 

likely explains their low N2O fluxes during the growing season and fall. 

During the non-growing season of winter and spring, sites which grew oats, or 

were seeded to winter wheat during the previous season, have greater N2O fluxes than the 

sites which grew corn during the previous season (zu = -2.9, p = 0.003; U = 52, p 0.02, 

respectively). These N20 fluxes are designated post-oats, winter wheat, and post-corn 

(Figure 3.13a, Figure 3.13c). It is possible that the N20 flux differences, among SC fields 

which succeed different crops, may be explained by differences in soil N levels. At SC, 

the post-oat sites receive a fall manure application, whereas the post-corn sites do not. 

The winter wheat sites are cropped to peas in the fall prior to seeding, which would fix N2 

in the soil, providing a potential source for higher N20 production during the non-

growing season, as compared to the post-corn sites. The pea plants are ploughed into the 

soil, maximizing their contribution to soil N and C. Another possible contributing factor, 

to lower N20 fluxes from post-corn sites, is soil temperature. Mean soil temperatures at 5 

cm depth during the spring are 10°C, 12°C, and 14°C for post-corn, post-oat, and winter 

wheat sites, respectively. There are no significant differences in N2O flux between either 

post-corn or post-oat sites and post-fallow sites (Figure 3.13b), i.e. those which are fallow 

during the previous growing season following a July harvest of winter wheat. 
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Figure 3.13. N 20 flux comparisons from different crops in the winter and spring at SC. Bars illustrate N20 flux 
and dots illustrate sample size. Error bars indicate the 95% confidence interval for median flux. Each plot 
illustrates data from sample dates with records for all of the crops illustrated to give a consistent base for the 
comparisons. Flux values therefore do not represent all non-growing season sampling dates in the SC dataset. 
Sample sizes differ within each plot because there were 6 sites sown to corn each year, 3 sites sown to oats, 1 site 
in winter wheat (2007 only) and 2 sites in spring wheat (2008 only), (a) N20 flux from post-corn versus post-oats, 
(b) N 20 flux from post-corn versus post-oats versus post-fallow, (c) N20 flux from post-corn versus post-oats 
versus winter wheat. 

As in the case of SC, Wagner-Riddle et al. (2007) report higher N2O flux from 

corn versus winter wheat during the growing season. However, in contrast to SC results, 

Wagner-Riddle et al. (2007) find that crop type does not influence N2O flux during the 
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non-growing season. Spring wheat sites in Corre et al. (1996) have higher N2O fluxes 

than those from oat sites monitored over the growing season, fall, and spring (Table A 1). 

These results conform to the significant (p < 0.05) growing season and fall pattern 

between spring wheat versus oat sites at SC during the growing season and fall. 

Because crop type does influence N2O flux year-round at SC, this may indicate 

that N2O production at SC is N-limited, as suggested by Dusenbury et al. (2008). Lemke 

et al. (1998) find that, statistically, NO3-N, NH4
+-N, and water-soluble organic carbon 

(WSOC) explain 95% of spring flux variability, but, most importantly, the authors 

believe that high WFPS is the trigger for flux spikes. Higher WFPS provides higher 

denitrification potential. Lemke et al. (1998) hypothesize that most N2O flux occurs after 

WFPS reaches a threshold value, and, only once initiated, is its magnitude governed by N 

and/or C levels. Rochette et al. (2004) determine that N20 flux highs closely follow rain 

events, but, in their study, N20 flux is not limited by soil N. Using DEA analysis, van 

Bochove et al. (2000) also find that N20 flux appears not to be N- or C-limited, at least 

from January through April. 

3.3.5 Temporal variation in N2O flux 

Daily N20 flux with soil temperature data and soil moisture data is illustrated in 

Figure 3.14 and Figure 3.15. In general, the highest fluxes occur during the growing 

season. However, growing season fluxes are muted in 2008, possibly due to lower levels 

of microbial activity from May through mid-June, due to lower temperatures than 2007 

(Figure 3.9). It is also possible that peak N2O fluxes, following starter and four-leaf 
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Figure 3.14. N20 flux (diamonds) and soil temperature at 5 cm depth (circles) by Julian day (JD) and year, all 
SC data. Vertical reference lines divide seasons as follows: JD 60-120 = spring, JD 121-243 = growing season, JD 
244-304 = fall and JD 305-059 = winter. Note that straight line interpolations are plotted to show N20 flux and 
soil temperature trends only and may not reflect true inter-sample values. 

fertilizer applications during these months, are missed in 2008, because sampling during 

2008 does not intensify following fertilization events, in contrast to the protocol followed 

in 2007. Daily median fluxes in late 2006 peak at 0.4 mg N2O m"2 d"1 at the beginning of 

August when soil temperature, precipitation, and soil moisture are high (Figure 3.14, 

Figure 3.9, Figure 3.15). The 2006 N2O flux data may not be reliably compared to that of 

2007 and 2008, because they only represent that from corn sites. The 2007 and 2008 data 

are from all nine SC sites and represent all crops in this study, that is corn, oats, winter 
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Figure 3.15. N 20 flux (diamonds) and soil moisture content at 10 cm depth (inverted triangles) by Julian day 
(JD) and year, all SC data. Vertical reference lines divide seasons as follows: JD 60-120 = spring, JD 121-243 = 
growing season, JD 244-304 = fall and JD 305-059 = winter. Note that straight line interpolations are plotted to 
show N 20 flux and soil moisture trends only and may not reflect true inter-sample values. 

wheat, and spring wheat. In 2007, relatively high daily spring fluxes occur at the end of 

March (median of approximately 0.25 mg N2O m~2 d"1), corresponding with high spring 

soil temperature (Figure 3.14) and soil moisture content (Figure 3.15). The 2007 daily 

growing season fluxes are especially high (up to a median of 0.5 mg N2O m" d") during 

the first two weeks of June, when sampling occurred for several successive days 

following starter fertilization at the end of May. Although also possibly soil temperature 

driven (Figure 3.14), these high fluxes do not appear to correspond with high soil 

moisture content (Figure 3.15). During the non-growing season, relatively high daily 
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peak fluxes of up to 0.15 mg N2O m"2 d"1 occur during the second week of January 2008, 

during an extreme thaw event, when soil temperature at 5 cm depth reaches 

approximately 10°C (Figure 3.14). The peak fluxes of the growing season of 2008 occur 

at the beginning of May, and at the end of July. The May flux peak of 0.23 mg N2O m"2 

d"1 corresponds with sampling which occurs following starter fertilization (at least for 

oats), high precipitation levels, and high soil moisture content (Figure 3.9, Figure 3.15). 

The late July peak, at the same flux magnitude, corresponds with high precipitation and 

high soil moisture content (Figure 3.9, Figure 3.15). 

Overall, daily N2O fluxes reflect the following patterns: spring N2O fluxes follow 

the pattern of soil moisture in 2007 and soil temperature in 2008, growing season N2O 

fluxes follow the pattern of soil temperature in July and August, fall N2O fluxes follow 

the pattern of soil temperature, and winter N2O fluxes follow the pattern of soil 

temperature during January and February (Figure 3.14, Figure 3.15). On an annual basis, 

therefore, it would appear that soil temperature is a more important driver of N2O flux 

from agricultural land in southern Ontario than soil moisture content. 

As with the daily median N2O fluxes discussed above, all of the seasonal median 

N2O flux values at SC are low. The median N20 flux at SC from all sites is the same in 

the spring, when soil moisture is highest, and in the growing season, when soil 

temperature is highest, at 0.1 mg N2O m"2 d"1. Winter and fall median fluxes are also 

equivalent at 0.05 mg N20 m"2 d"1 (Figure 3.10b, Table A 4). Median spring N2O flux is 

greater than both median fall N2O flux (zu = -3.5, p < 0.001) and median winter N2O flux 

izv = -5.1, p < 0.001). Median growing season N20 flux is also greater than both median 
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fall N20 flux (Zu = -6.6, p < 0.001) and median winter N20 flux (Zu = -UA,p< 0.001). 

When analytical error (± 0.04 mg N20 m"2 d"1) is taken into account, however, the 

differences between seasonal SC N20 fluxes may not be statistically significant (see 

section 3.2.5). 

Wagner-Riddle et al. (2007) measure N20 fluxes by a micrometeorological 

method. Their research also takes place in southern Ontario, from crops and soil which 

are equivalent to those at SC. Wagner-Riddle et al. (2007) subdivide their continuous 

N20 flux data into two, rather than four, seasonal categories: a "growing season" of May 

through October, and a "non-growing season" of November through April. The SC data, 

by the categories of Wagner-Riddle et al. (2007), have a "growing season" median flux 

of 0.2 mg N20 m"2 d"1, from both corn and winter wheat sites (Table A 1). In Wagner-

Riddle et al. (2007), median growing season N20 flux from corn is up to eight times 

greater (Table A 1). For winter wheat, in contrast, the median growing season flux in 

Wagner-Riddle et al. (2007) is comparable to that at SC (Table A 1). It is possible that 

flux values from corn sites in Wagner-Riddle et al. (2007) may be more accurate, as their 

methods may capture a more representative flux range than those at SC. SC fluxes were 

measured as seldom as bi-weekly, and therefore the dataset may exclude sudden flux 

spikes following precipitation (especially precipitation events after a fertilization), and/or 

thaw events. In contrast, growing season winter wheat receives no fertilization in either 

study, which may explain the comparable fluxes at SC and in Wagner-Riddle et al. 

(2007). 
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Wagner-Riddle et al. (2007) find that non-growing season N2O fluxes can be 

significant. For example, non-growing season N2O fluxes, from fields with corn residue, 

can be as high as those from the corn crop itself during the growing season (Table A 1). 

In Wagner-Riddle et al. (2007), non-growing season fluxes for winter wheat are small 

and equivalent to those of the growing season (Table A 1). These N2O fluxes, too, are 

comparable to SC non-growing season winter wheat fluxes (Table A 1). N2O flux 

records, over four non-growing seasons, indicate that these fluxes make up between 38% 

to 88% of annual emissions, from fields in a soy/corn/wheat rotation under conventional 

management practices (Wagner-Riddle et al. 2007). At least for corn sites, the pattern, of 

growing season flux > non-growing season flux, does appear to be the same in both 

studies (Table A 1), although non-growing season post-corn median N2O flux in Wagner-

Riddle et al. (2007), from sites under similar treatment as the SC R & T fields, is higher 

than the growing season median flux for corn sites at SC (Table A 1). 

Only one winter season, that of 2007/2008, is monitored for N2O flux at SC. 

Median November, December, and January N2O fluxes range from 0.04 to 0.09 mg m"2 d" 

\ similar to those of the fall of both 2006 and 2007 (0.03 to 0.13 mg m"2 d"1, Figure 3.16, 

Table A 5). In contrast, February has a very low median N2O flux at 0.01 mg m"2 d"1 

(Figure 3.16, Table A 5, Figure 3.17). Neither December nor February experienced thaw 

conditions during the winter of 2007/2008, as defined in the SC methodology as > 3 days 

at > 4°C. Additionally, given that 2007/2008 was a snowy winter, there are only snow 

flux samples for those two months. The snow gas samples in February are considerably 

smaller than those on Dec 17/07 and Jan 3/08 (Figure 3.17). There are no appreciable 

differences in soil moisture between these periods, while soil temperature appears to be 
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Figure 3.16. N 20 flux (bars) and sample size (dots) for months monitored during the SC field study. Error bars 
indicate the 95 % confidence interval for median N 20 flux. The large confidence interval for median N20 flux 
during March 2007 reflects a wide range of replicate flux values, which reaches a maximum flux of 26.09 mg 
N 20 m 2 d"1 on Mar 22/07. 

higher in February, as compared with the earlier sampling dates, when fluxes would be 

expected to be lower. N2O diffusion from the soil to the snow surface may be limited in 

February due to the possibility of increased snow depth, higher snow density, and the 

possible existence of ice lenses. 

Goodroad and Keeney (1984) report a January mean N2O flux from silt loam soil 

in Wisconsin, which is an order of magnitude higher than that from all SC sites in 

January (Table A 1). However, the comparison may be skewed because Goodroad and 

Keeney (1984) sample on only one date, whereas there are four SC January sampling 
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Figure 3.17. N20 flux during the winter of 2007/2008. Error bars indicate the 95% confidence interval for 
median N 20 flux. Measured N 2 0 flux from snow was significantly lower than that from soil Zu = -5.500, p < 
0.001). 

dates. The crop grown during the growing season preceding the Goodroad and Keeney 

(1984) study is unreported. 

Lemke et al. (1998) report daily geometric mean N2O flux from agricultural soils 

in Alberta. They find no "appreciable" emissions in winter (Table A 1), similar to those 

at SC. In contrast, Lemke et al. (1998) find that flux, during the main spring snowmelt 

alone, contributed 16% to 60% of annual N2O emissions. Spring fluxes in Lemke et al. 

(1998) are up to 50 times greater than at SC (Table A 1). 
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Van Bochove et al. (2000) find that winter and spring fluxes, from southern 

Quebec barley fields over three years, are equivalent or higher than those of the growing 

season. Van Bochove et al. (2000) incorporate snow depth, snow porosity, snow 

resistance to diffusion, and N2O concentrations within the snowpack, into their 

calculations for N2O flux, as opposed to sampling solely at the surface as for SC. In van 

Bochove et al. (2000), mean fluxes, from three winters, range over an order of magnitude 

(Table A 1). These are notably five to 70 times higher than the mean winter flux at SC 

(Table A 1). Perhaps the snow fluxes measured at SC would be higher if the more 

complex method of van Bochove et al. (2000) is used. Conversely, the higher total fluxes 

from van Bochove et al. (2000) versus SC might be explained by climatic differences. 

Soil temperatures remained almost consistently > 0°C in Quebec, due to the insulating 

effect of a continuous snow cover, potentially generating higher total amounts of N2O 

than those in the more temperate southern Ontario climate, which is prone to generally 

lower soil temperatures (Wagner-Riddle et al. 2007, Petrone and Macrae, unpublished 

data), due to a lack of continuous snow cover. 

Van Bochove et al. (2000) attribute annual differences in winter fluxes as at least 

partly due to differences in the duration and thickness of snow cover. They ascribe their 

lowest mean winter flux measurement to lower soil moisture, late snowfall, and early 

snowmelt. They attribute the highest mean winter flux, during year three of their study, to 

high soil moisture, more grain residue, a tripled fertilization rate (70 kg N ha"1 versus 24 

kg N ha"1 in years one and two), and higher soil temperatures, due to a thick snow cover. 

SC fields (grain in rotation with corn) have amendment levels which total approximately 

100 kg N ha"1 y"1 (Table 3.2), representing 40% higher levels than the highest fertilization 
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rate in van Bochove et al. (2000). Curiously, van Bochove et al. (2000) find that, 

although mean December to January N2O fluxes are high (7.6 mg N2O m"2 d"1) during the 

early winter of the year three of their study, the mean flux in April, during the main 

snowmelt period of the same year, is three times smaller (Table A 1). The authors do not 

provide an hypothesis to explain why this would be the case. At SC during the winter of 

2007/2008, mean flux is 0.1 mg N2O m"2 d"1, while mean spring flux is three times higher 

in 2007, and seven times higher than this value in 2008 (Table A 1). Although van 

Bochove et al. (2000) measure N2O fluxes daily during the two weeks following 

snowmelt during the first two years of their study, they do not report these data, so it is 

not possible to observe exactly when their fluxes dropped off to a negligible level 

(defined by the authors as mean flux < 0.17 mg N2O m"2 d"1). 

In van Bochove et al. (2001), spring N2O fluxes are reported from a clay loam 

soil treated with pig slurry in the fall. The authors speculate that, due to the existence of a 

basal ice layer in this later study, and high, short-lived N2O fluxes during melt, N2O 

accumulates in the subsurface and is quickly released when basal ice degrades. Winter 

1998/1999 soil temperatures, reported by van Bochove et al. (2001), are unseasonally 

cold due to a lack of continuous snow cover, and remain frozen to 15 cm through the 

winter, unlike the three winters of 1994/5, 1995/6, and 1996/7 (van Bochove et al. 2000). 

In contrast to van Bochove et al. (2001), Wagner-Riddle et al. (2008) determine, through 

isotopic methods, that spring N2O is mainly newly produced, and not physically released 

from sub-surface storage. The maximum mean flux reported by van Bochove et al. 

(2001) is 19 mg N2O m" d" on Apr 19, an order of magnitude higher than spring flux in 

van Bochove et al. (2000), quickly dropping to a "negligible" mean flux of 0.8 mg N2O 
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m"2 d"1, two days after full snow ablation/melt. The maximum mean spring flux from all 

sites at SC, which occurs on Mar 22/07, is five times smaller, and falls to "negligible" 

levels, as defined by van Bochove et al. (2001), by Mar 29/07 (Table A 1). In 2008, no 

SC measurements were taken during March, so a second main melt period at SC is not 

available for further quantitative or qualitative comparison. 

Burton and Beauchamp (1994) find spring flux maxima that are similar to van 

Bochove et al. (2001), an order of magnitude greater than those at SC (Table A 1). The 

fluxes reported by Burton and Beauchamp (1994) originate from arable loamy sand in 

southern Ontario, with a 50% higher fertilization rate (150 kg N ha"1) than that at SC (100 

kg N ha"1). Dorsch et al. (2004) study January to April N2O fluxes from German 

agricultural sites fertilized, ploughed, and ridged in the previous fall, in preparation for 

growing potatoes during the following growing season. The authors report a maximum 

daily mean flux during an extended thaw in mid-February, which is four times the 

maximum daily mean flux that occurs during the non-growing season at SC (Table A 1) 

on Mar 22/07, as noted above. The higher non-growing season N20 fluxes in Dorsch et 

al. (2004) may largely result from their fall fertilizer and manure applications, along with 

their augmentation of soil organic matter by ploughing in unharvested mustard (Brassica 

alba) in the fall. 

Figure 3.16 illustrates median N20 flux at SC, by year and month. There are no 

March 2008 samples with which to compare the median March 2007 N20 flux of 0.6 mg 

m" d" , the highest of all recorded months. The wide range of sub-zero and above-zero air 

temperatures, during March 2007, may contribute to both the relatively high SC flux 
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magnitude, and the high spatial and temporal variability in N2O flux, during this time 

(Figure A 1), through disruption of soil macropores and organic matter, and consequent 

increase of labile C and N. In April 2008, the N20 flux is higher than April 2007 (0.1 

-9 -1 

versus 0.06 mg N2O m" d" , Table A 5). This may be attributable to the higher air 

temperatures of April 2008, as noted above in section 3.3.2, taking prevalence as the 

major flux driver at his time. 

Goodroad and Keeney (1984) report March N2O fluxes from manured silt loam 

soils in Wisconsin, which are comparable to those at SC. There is an order of magnitude 

difference between mean N2O flux on the two March dates of their study (Table A 1). 

Mean daily N20 flux in March 2007 at SC also ranges through an order of magnitude 

(Table A 1), with a monthly mean of 2.4 mg N20 m"2 d"1. 

In addition to the importance of the spring snowmelt period, Lemke et al. (1998) 

report high N2O fluxes from mid-June to late July, with summer peaks following 

fertilization and precipitation events, a pattern also found in many other studies (e.g. van 

Kessel et al. 1993). In van Kessel et al. (1993), daily median N2O fluxes, measured 

sporadically from May to October, reach a maximum on Jun 4 (Table A 1), while the 

daily maximum median N2O flux for the equivalent time period, at SC in 2007, is 30 

times lower (Table A 1), even though this is a post-fertilization SC flux. Lemke et al. 

(1998), who report geometric means rather than medians, find maximum daily geometric 

mean fluxes that are 30 times higher than the maximum daily geometric mean flux at SC 

(Table A 1). In the first year reported in Lemke et al. (1998), the daily geometric mean 

N2O flux, during a segment of a wet growing season (WFPS > 60%), ranges over 6 mg 
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m"2 d"1, with a maximum single replicate N20 flux of 38 mg m"2 d"1 (Table A 1). For 

growing season spring wheat sites at SC, daily geometric mean fluxes range over 0.3 mg 

N20 m"2 d"1 (Table A 1). At SC, WFPS exceeds 60% only once during the growing 

season, on Aug 12/08, when geometric mean N20 flux is up to two orders of magnitude 

lower than that of Lemke et al. (1998), at 0.1 mg m"2 d"1. 

During a two-year study in New York state, Duxbury et al. (1982) calculate a 

very high maximum mean daily cornfield flux of 57 mg N20 m"2 d"1 from silt loam. This 

high flux occurs in early July. Mosier and Hutchinson (1981) report an equally high 

growing season daily maximum mean flux from irrigated corn in Northern Colorado. 

These fluxes contrast with a SC daily mean growing season flux high which occurs in 

May, at two orders of magnitude lower than these earlier studies. Growing season flux 

maxima reported by Wagner-Riddle et al. (2007) are also lower than those of Mosier and 

Hutchinson (1981) and Duxbury etal. (1982). Compared to contemporary agricultural 

practices, those of the early 1980s may have resulted in a lower efficiency of fertilizer 

uptake in crops. Also, fertilization rates are higher in these two studies, at 130 kg N ha"1 

(Duxbury et al. 1982), and at 200 kg N ha"1 (Mosier and Hutchinson 1981, double the SC 

rate of application). 

For the early growing season months, median fluxes at SC are approximately four 

times higher in 2007 as compared to 2008, at 0.33 versus 0.09 mg N20 m"2 d"1 for May, 

and at 0.29 versus 0.07 mg N20 m"2 d"1 for June (Figure 3.16, Table A 5). This may 

partly result from May and June 2007 data, which includes some samples that 

immediately follow fertilization events, as mentioned above. However, as each 2007 
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sample from these two months is consistently higher than those from 2008 (Figure A 2), 

the higher air temperatures of May 2007 may also play a role. 

Later in the growing season, median N2O flux at SC is virtually equivalent in 

2007 and 2008, at approximately 0.1 mg m~2 d"1 for both July and August at all sites 

(Figure 3.16, Table A 5), apparently not reflecting any difference due to, for example, the 

large storm events of July 2008 and/or the generally high levels of precipitation of the 

growing season of 2008. The August 2006 N2O flux is similar to that of August 2007 and 

August 2008 (Figure 3.16, Table A 5). Typical mean, as opposed to median, daily spring 

and growing season fluxes, reported by Rochette et al. (2004) from sites growing corn, 

are up to 3.6 mg N2O m"2 d"1. These increase at times of elevated WFPS, and peak during 

July 2001 and June 2002 (Table A 1, Rochette et al. 2004). The highest maximum daily 

mean growing season N2O flux reported by Rochette et al. (2004) reaches two orders of 

magnitude higher than that at SC, which occurs in May (Table A 1). Maxima in Rochette 

et al. (2004) are comparable to those in Duxbury et al. (1982) and Mosier and 

Hutchinson (1981), as discussed above. However, Corre et al. (1996) reports maximum 

daily median growing season N2O fluxes for wheat and oat sites, which are up to two 

orders of magnitude lower than the maximum daily mean fluxes in Mosier and 

Hutchinson (1981), Duxbury et al. (1982), and Rochette et al. (2004). The maximum 

daily median growing season flux at SC for oat sites is similar to Corre et al. (1996), 

while the equivalent statistic for SC wheat sites is lower (Table A 1). 

The median N2O flux at SC in September is four times higher in 2006 (0.13 mg 

m"2 d"1) than 2007 (0.03 mg m"2 d"1, Figure 3.16, Table A 5), potentially reflecting the 
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higher temperatures of the fall of 2006. October, however, had equivalent N2O fluxes in 

2006 and 2007 (0.04 mg m"2 d"1). Negligible fall N2O fluxes are also reported elsewhere 

(e.g. Duxbury et al. 1982, van Kessel et al. 1993, Burton and Beauchamp 1994, Lemke et 

al. 1998, Dusenbury et al. 2008). 

Temporal patterns in N20 flux at SC generally follow those reported in the 

literature with high fluxes in the spring and summer, corresponding to soil temperature 

increases, soil moisture increases, and applications of inorganic and organic fertilizer. 

Low N2O fluxes tend to occur in the fall and winter at SC, with only minor increases in 

flux corresponding to the one (greater than two-day) winter thaw which occurs in January 

2008 (Figure 3.17). This finding conflicts with some winter literature (e.g. van Bochove 

et al. 2000, Ruser et al. 2006, Table A 1), but corresponds with other studies (e.g. Lemke 

et al. 1998, Wagner-Riddle et al. 2007). The magnitude of N2O flux during all months at 

SC is low. The highest recorded daily mean flux at SC occurs in March. Daily mean 

maxima in the literature can reach up to two orders of magnitude higher than those at SC 

(e.g. Rochette et al. 2004). The generally low N2O fluxes at SC, as compared with some 

in the literature, may reflect real in situ N2O flux magnitudes. Alternatively, they may be 

partially attributable to SC flux spikes which may have been missed following 

fertilization, precipitation, and thaws at SC. Discrepancies, between SC N2O fluxes and 

some of those reported in the literature, may also be due to differences in sampling 

methodology. There is significant variation in fluxes among replicates at SC, which may 

additionally contribute to these differences. At SC, there are differences of up to three 

orders of magnitude in N2O flux between replicates measured in the spring. 
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3.3.6 Modelling N2O flux using soil temperature and soil moisture data 

As discussed above, some of the temporal differences in N2O flux appear to be 

correlated with climate, and, specifically, its influence on soil temperature and/or soil 

moisture. When the SC N2O flux dataset is divided into soil moisture classes, N20 fluxes 

generally increase as soil temperature increases (Figure 3.18). Median N20 flux generally 
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Figure 3.18. Soil temperature at 5 cm depth versus N 20 flux by soil moisture categories (VWC in m m at 10 
cm depth) at SC with regression lines for moist (y = 0.69 - 0.0111 + 0.00112 , F = 14.1, pF < 0.001, n = 202, r = 
03S,pp=0< 0.01), wet (y = 0.155 - 0.0061 + 0.001 ?,F = 14.1,//F < 0.001, n = 397, r = 0.26,pp=0< 0.01) and very 
wet (y = 0.485 - 0.0581 + 0.00212, F = 9.4,pF < 0.001,« = 147, r = 0.34,pp=0< 0.01) soils. 95% confidence intervals 
bound the regression lines. 
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increases from lows at < 0°C through highs at 30°C, with the ranges by moisture class as 

follows: 0 to 0.3 mg m"2 d"1 (moist soils), 0.05 to 0.3 mg m"2 d"1 (wet soils), and from 0.01 

to 0.4 mg m"2 d"1 (very wet soils) (Table A 8). Moist soils are defined as 0.05 to 0.19 m3 

m 3 VWC, wet soils as 0.20 to 0.34 m3 m"3 VWC, and very wet soils as > 0.35 m3 m"3 

VWC. Between 0°C and 15°C, however, there are anomalies in this pattern of increasing 

flux with increasing soil temperature, especially in the very wet cores (Figure 3.18). 

As discussed above, van Bochove et al. (2000) report significant N20 fluxes from 

snow-covered arable sandy loam during three winter seasons. The authors observe that 

microbes are quite active at cold temperatures, with winter DEA at up to 50% of growing 

season DEA. The incidence of some near-0°C flux spikes at SC (Figure 3.18) suggest 

that there is a temperature threshold to such microbial activity. There may be a more 

rapid biotic response to thaw conditions in wetter soils (Figure 3.18). 

The SC dataset consists of over 1000 samples, taken during a range of spatial and 

temporal (climatic) conditions, and it therefore represents a comprehensive range of N20 

flux values from arable clay loam, over a range of soil temperatures and moisture 

conditions, representative of those found across southern Ontario. The dataset may also 

be representative of N20 fluxes from other clay loams overlying tills in similar climatic 

regions across southern Canada, the upper Midwest and New England states of the U.S., 

the U.K., northern continental Europe, and Scandinavia. The quantitative relationships 

among soil temperature, soil moisture content, and N20 flux are investigated to attempt 

to predict flux based on these parameters, in addition to shedding light on the mechanics 

of the processes that generate N20. The raw data illustrate that there is much variability 
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in N2O flux for any given soil temperature or moisture level. This may be because a 

given temperature can occur over a range of moisture conditions, and vice versa. 

However, when the N2O flux data are grouped according to soil moisture conditions, 

there is still substantial variability even within small ranges of soil temperatures (Figure 

3.18). There is a moderate correlation between the N2O flux and soil temperature in 

moist, wet, and very wet soils (Figure 3.18). Log-transforming the N2O flux only 

marginally improves the correlations for all moisture groups (Figure 3.19), 
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Figure 3.19. Soil temperature at 5 cm depth versus log N 20 flux by soil moisture categories (VWC in m3 m'3 at 
10 cm depth) at SC with regression lines for moist (y = -1-246 - 0.0101 + 0.00112, F = 19.7, pF < 0.001, n = 185, r = 
0A2,pp=o< 0.01), wet (y = -1-124 + 0.00031 + 0.001 ?,F = 27.6,pP < 0.001, n = 377,r = 0.36,pp=„< 0.01) and very 
wet (y = -0.962 - 0.0261 + 0.00212,F = 18.5,pF < 0.001, n = 137,r = 0.47,pp=0< 0.01) soils. 95% confidence 
intervals bound the regression lines. 
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which demonstrates the effect of the other factors which influence N2O flux. In a review, 

Bouwman (1990) summarizes that soil temperature and soil moisture are only two of 

several interconnected and time-dependent factors influencing N2O emission rates. Other 

important factors include microbial populations, redox conditions, and the availability of 

N and organic C. Anaerobic microsites, e.g. water-filled pores or intra-aggregate zones, 

may play a significant role in the production of N20 (Bouwman 1990, Parkin 1993), and 

therefore flux magnitude. Duxbury et al. (1982) find that, although high N2O fluxes 

always occur at high soil moisture levels, the reverse is not always the case, that is a wet 

soil does not always produce high N2O fluxes. Therefore, antecedent soil moisture and 

soil temperature conditions are likely additional critical factors influencing the magnitude 

of N20 flux rates. 

Nevertheless, strong quadratic relationships between summarized N20 flux and 

soil temperature SC data are found when soil temperature is binned and plotted against 

median N20 flux. (Because of an unequal distribution of data over soil temperatures in 

the SC dataset, bin divisions are delineated based on equal percentiles of flux data.) N20 

flux in all soil moisture conditions (VWC = 0.05 - 0.43 m3 m"3) is well correlated with 

soil temperature (r2 = 0.52, Figure 3.20), as is the flux from very wet soil (r2 = 0.49, 

Figure 3.21). The correlation, between the two variables, is even stronger when moist and 

wet soils are examined individually (r2 = 0.79, r2 = 0.78, respectively, Figure 3.21). This 

demonstrates that soil temperature is a key driver of N20 flux at SC, and can be used to 

predict median flux values when general soil moisture levels are known. 
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Figure 3.21. Binned soil temperature (mean value per bin) at 5 cm depth versus median N20 flux (mg m"2 d"1) at 
SC with regression lines for moist (y = 0.068 - 0.0111 + 0.001 f2, F = HA,pF < 0.001, n = 18, r = 0.89,pp=u < 0.01), 
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t + 0.000512, F = 7.3,pF = 0.006, n = 18, r = 0.70,pp=0< 0.01) soils. 95% confidence intervals bound the regression 
lines. 
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4 Importance of freeze-thaw cycles on N2O fluxes from soil 

The sensitivity of winter and spring N20 fluxes to soil temperature change, by 

exposing soil mesocosms to winter and spring air temperature fluctuations while holding 

soil moisture constant, is examined below. The rapidity with which N2O fluxes change in 

response to soil temperature fluctuations through 0°C is examined. Through daily N2O 

flux sampling during multiple freeze-thaw cycles, N2O emissions are quantified and 

compared. 

4.1 Experimental methods 

The Strawberry Creek freeze-thaw (SCFT) experiment was designed to expose 

SC soils to the air temperatures of a typical southern Ontario winter, from the surface 

downward. Soil moisture was held constant to reduce the complexity of the experiment, 

and to isolate the effect of soil temperature on N2O flux. Additionally, space restrictions 

prohibited the incorporation of soil moisture variation into the experiment, in terms of 

total liquid and solid water content. (Due to soil temperature change through 0°C, the 

proportion of liquid water to ice did vary.) 

The freezer used to simulate freezing temperatures during the experiment could 

only accommodate cores from one site. Nine intact soil cores were collected from the SC 

catchment in early November 2007, close to the R2 field site (Figure 3.2b). R2 soils were 

representative of soil properties found in the majority of the field sites (Table 4.1, Table 

3.4). PVC tubes (30 cm high, 10 mm thick, and 16.5 cm ID), were inserted to a depth of 

20 cm into the R2 soils. There was thus 10 cm of headspace above each soil core. Each 
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Table 4.1. Soil properties in the SCFT experiment. 'Estimate based on soil data from SC soils at site R2, 
collected and analyzed in 2006 (Thuss, unpublished data). 

Replicate B"lk Density Organic 
F (g cm ) Content (%) 

Dl 

D2 

D3 

Ml 

M2 

M3 

Wl 

W2 

W3 
mean of 9 

cores 

1.08 

1.07 

1.26 

1.09 

1.20 

1.16 

1.04 

1.03 

1.08 

1.11 

8 

12 

8 

9 

12 

12 

8 

9 

10 

10 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

2.5 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

12 

12 

12 

12 

12 

12 

12 

12 

12 

12 

PVC tube had a 5-mm x 5-mm groove along the top of the rim. The soil cores were 

secured into the PVC tubes from the bottom with Plexiglas® and duct tape. Three cores 

were designated dry (Dl, D2, D3), three medium (Ml, M2, M3), and three wet (Wl, W2, 

W3). The three dry cores were oven-dried at 100°C for 24 hours. The remaining six cores 

were covered with perforated plastic caps. All nine cores were then stored at 4°C until the 

beginning of the SCFT experiment. 

At the end of January 2008, fresh snow was collected from parkland in Kitchener, 

Ontario (43° 25' 6" N, 80° 28' 21" W). The three wet cores were saturated to field 

capacity with meltwater from this snow. Each of these cores was opened from the 

bottom, placed on a fine sieve, and the meltwater slowly added until it dripped through 

the sieve. The wet cores were then placed in 8 cm of meltwater for 24 hours, and then 

allowed to drain freely for an additional 24 hours. The Plexiglas® bottoms for all nine 
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cores were sealed the following day with polyurethane construction adhesive (LePage PL 

Premium®, Henkel Canada Corp.). The medium and wet cores were covered with the 

perforated caps, and all nine cores were returned to storage at 4°C. 

The experiment was delayed until April 2008. By that point the medium and wet 

cores had dried out significantly due to the low humidity of the refrigerator. Prior to the 

initiation of the experiment on Apr 15, the medium cores were watered with 9 mm of 

snowmelt. The wet cores were watered with 14 mm of snowmelt. Ml was still quite dry; 

an additional 7 mm was added to this core. Ml was redesignated W4 because its moisture 

content, after this addition of meltwater, was closer to the three wet cores than to M2 or 

M3 (Figure 4.1). 

Thermocouple wires were inserted into each core, at 5 cm and at 15 cm, to 

measure soil temperature. Additionally, 20-cm TDRs (EC-20, Decagon Devices Inc., 

Pullman, WA) were installed in each core. The soil cores were insulated, from the bottom 

to 10 cm from the top (level with the soil surface), with flexible foil insulation. During 

the experiment, the cores were stored on 2.5-cm rigid foam to insulate the bottom (Figure 

4.2). The temperature data was logged at 15-min intervals (CR10X logger, Campbell 

Scientific Inc., Logan, UT), and moisture data was logged at the same interval using an 

Onset™ weather station logger (H21-001, Onset Inc., Bourne, MA). 

The experiment used temperature manipulations to simulate a series of winter 

thaws, followed by a more prolonged and extreme deep freeze / spring thaw. For the 

winter thaws, air temperature oscillations, representative of average conditions during 

winter freeze-thaw cycles in southern Ontario (Petrone and Macrae, unpublished data), 
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Figure 4.1. Liquid soil moisture content as sensed by the TDR for the 6 moist and wet cores during the SCFT 
experiment by Julian day. Ml was redesignated W4. 

were applied to the soil cores to simulate five 10-day freeze-thaw cycles. Air 

temperature, for the first 7 days of each cycle, was maintained at approximately -5°C. 

The soil cores were then moved to the refrigerator (4°C) for 3 days, for approximately 8 

hours each day, simulating average winter day-length at 43°N latitude. During these 

simulated thaws, the cores were returned to the freezer overnight (-5°C) for 16 hours, 

simulating average overnight sub-zero temperatures during a thaw period in southern 

Ontario. At the end of the winter thaw simulations, the cores were subjected to a "deep 

freeze" followed by a simulated spring thaw, during which they were held in the freezer 

at -10°C for 5 days followed by -5°C for 5 days. The cores were then moved to 
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Figure 4.2. Insulated soil cores with sealed Plexiglas® lids and sampling procedure into Teflon® bags. 

the refrigerator at 4°C for 5 days, to simulate early spring conditions, and then monitored 

at room temperature (~ 20°C) for 4 days, to simulate late spring conditions as best as 

possible. 

Before the beginning of the experiment, Plexiglas® lids were constructed, in 

order to collect N2O samples from the headspace of the soil cores. These were 16.5 cm in 

diameter, with a 5-mm x 5-mm circular piece of flexible foam glued 5 mm from the edge 

of each lid along its bottom, aligned to fit the groove on the top of the rim of the PVC 

cores (Figure 4.3, Figure 4.2). Two holes were drilled into each lid, one 10 mm in 

diameter, and the other 3 mm in diameter. The large hole was fitted with a 10-mm ID 

barbed brass fitting, with the 15-mm barb on the top of each lid. An 8-cm piece of 4-mm 

ID flexible tubing was secured to the barb. A three-way valve was sealed onto the free 
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Figure 4.3. Soil core design, (a) Three-way sampling valve, (b) sampling tube, (c) vent tube, (d) barbed brass 
fitting, (e) Velcro®, (f) Plexiglas® chamber lid, (g) PVC tube, (h) soil core, (i) TDR, (j) thermocouple wire, (k) 
Plexiglas® bottom. 

end of this tubing with plumbing sealant (Amazing Goop®, Eclectic Products, Inc.). Ten 

cm of 2-rara ID rigid plastic tubing was sealed into the small hole, with 8 cm protruding 

from the bottom of each lid, to equalize the pressure between the chamber air and 

ambient air, similar to methods employed by Hutchinson and Mosier (1981). This tubing 

was coiled and taped to the bottom of each lid, to prevent clogging from soil. Four 3-cm 

pieces of hook-type Velcro® were glued near the edge of the top of each lid, at equal 

distances apart. Each PVC core was fitted with corresponding hook-type Velcro® around 

the top sides of its circumference. This allowed each lid to be sealed onto the core when 
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sampling: the foam underlying each lid was tightly held into the groove of the PVC core 

with four free pieces of 6 cm of loop-type Velcro®. 

Soil cores were sampled once a day during the 7-day freeze portion of the 

simulated freeze-thaw cycles. During the 3-day thaw portions, they were sampled in the 

morning, prior to being moved from -5°C to 4°C, and then again in the evening, prior to 

being moved from 4°C to -5°C. During the 19-day deep freeze / spring thaw experiment, 

the cores were sampled approximately once a day. 

Prior to sampling, the perforated plastic caps were removed from the medium and 

wet cores. The lids were secured onto the nine cores, with the three-way valves closed to 

the sampling tube. After 2 hours, a 0.7-L ambient air sample was drawn into a Teflon® 

bag (232-945A, SKC Gulf Coast, Houston, TX), using a manual vacuum apparatus (231-

945, SKC Gulf Coast, Houston, TX, Figure 4.2). The Teflon® bags used during the 

SCFT experiment were purged with N2 gas prior to sampling. Collection of an ambient 

air sample was followed by extraction of gas samples from each enclosed soil core, using 

the same bags and apparatus. Gas samples were analyzed for N2O within 48 hours at the 

Department of Geography and Environmental Studies, Wilfrid Laurier University, using 

a Fourier transform infrared gas analyser (Gasmet DX-4015, Helsinki, FI), with a 

detection limit of approximately 30 ppbV N2O and analytical accuracy of ± 20 ppbV 

N20. 

All statistical analysis was conducted using SPSS version 16.0 (SPSS Inc., 

Chicago, IL). Sets of N2O flux data, subdivided by thaw period, spring period, soil 

moisture and soil temperature categories, were tested for normality using the 
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Kolmogorov-Smirnov and Shapiro-Wilk tests (p < 0.05). These two tests assess the null 

hypothesis that data is normally distributed. In all cases p < 0.05, therefore the null 

hypotheses were rejected. 

In order to summarize the non-normal N2O flux data, non-parametric statistics 

were employed as in van Kessel et al. (1993). Median values with 95% confidence 

intervals were calculated. Median values are accurate to ± 0.045 mg N20 m2 d"1, given 

the analytical accuracy discussed above. Statistical differences (p < 0.05) in N20 flux, 

among thaw and spring periods, soil moisture categories, and soil temperature categories, 

were determined via the non-parametric Mann-Whitney U test. When both ngroup / and 

ngrouP 2 ^ 20, the U statistic is reported, whereas, when both ngr0uP 1 and ngroup 2 > 20, the Zu 

statistic is reported, as performed by the SPSS software. In order to compare the results 

of the experiment to parametric data (when reported) in the literature, parametric SCFT 

results were calculated on an ad hoc basis. 

4.2 Results and discussion 

4.2.1 Overall pattern of N20 flux 

As detailed in the previous section of this chapter, nine soil cores from SC were 

exposed to simulated winter and spring temperature regimes (three dry cores, two moist 

cores, and four wet cores). The winter simulation consisted of five freeze-thaw cycles of 

10 days duration. These were followed by a deep freeze period (-10°C for five days), 

freeze period (-5°C for five days), a simulated early spring (4°C for five days), and a 
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simulated late spring (20°C for four days). Median N2O flux for the dry, moist, and wet 

core replicates over the entire experiment is illustrated in Figure 4.4. N2O flux remains 
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Figure 4.4. Median N 20 flux (dark blue) and mean soil temperature (light green) throughout the SCFT 
experiment for dry (« = 3), moist (n = 2), and wet (n = 4) replicates. 

negligible in the dry cores throughout the incubation. These cores, with a VWC of 0 m 

m" (oven-dried), are included in the simulation for comparison purposes only. No soils 

would be this dry during the non-growing season in southern Ontario. Therefore the 

following discussion pertains to the moist and wet cores only. 

Overall, the wet cores exhibit higher median flux than moist cores (Figure 4.4). 

The effect of the first winter thaw on all six cores is notable (Figure 4.5). During this 
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Figure 4.5. Fluctuations in N 20 flux during the five simulated winter freeze-thaw cycles for the moist (M, n = 2), 
and wet (W,« = 4) replicates. 

simulated thaw, there are only small fluctuations in N2O flux corresponding to soil 

temperature changes. This is the only consistent pattern across all cores. For the 

remaining four winter thaws, five out of the six moist and wet cores exhibit large, 

immediate, and parallel fluctuations in N2O flux in response to soil temperature change. 

However, there is no common pattern in relative flux magnitude among these thaws. For 

example, in replicate Wl, thaw 2 flux > thaw 4 flux > thaw 3 flux > thaw 5 flux, while in 

replicate W4, thaw 4 flux > thaw 5 flux > thaw 3 flux > thaw 2 flux. There is a common 
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intra-thaw pattern across replicates, however, in that no flux maximum occurs on day 1 of 

the 3-day thaws (with one exception out of 30) (see replicate W3, thaw 5, in Figure 4.5). 

Both moist and wet soils have very high N2O flux spikes during the early spring 

simulation (4°C), while N2O flux falls in these soils during the late spring simulation 

(20°C). The maximum moist core N2O flux, during the late spring, is comparable to the 

moist core flux maxima during the winter thaws. The maximum wet core N20 flux, 

during the late spring, falls from that of the early spring, but still remains higher than the 

wet core winter thaw maxima (Figure 4.4). 

4.2.2 N2O flux during the simulated warm periods 

Figure 4.6 illustrates N2O flux during each of the simulated thaw and spring 

periods. Again, the dry core flux is negligible and is excluded from this discussion. 

Although the difference in moisture levels is small (initial VWC of 0.22 m3 m"3 versus 

0.16 m3 m3 , respectively), the wet cores have a significantly higher N2O flux than the 

moist cores during the winter thaw periods (zu = -2.4, p = 0.02) and spring periods (U = 

82, p < 0.001). This suggests that there may be a threshold number of anoxic microsites, 

which is surpassed in the wet cores (but not in the moist cores), triggering a non-linear 

intensification of wet core heterotrophic activity, and therefore an overall greater 

denitrification rate, driving more N2O production and N2O flux. 

The moist and wet cores exhibit distinctly different patterns in relative N2O fluxes 

among thaw and spring periods. For the moist cores, the N2O fluxes are highest during 

winter thaw 2 to winter thaw 5, followed by early spring, winter thaw 1, and finally late 
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Figure 4.6. Median N20 flux during the simulated winter thaws (air temperature = 4°C for 8 of 24 hours), early 
spring (air temperature = 4°C for 5 days), and late spring (air temperature = 20°C for 4 days), by soil moisture 
category. Dry (n = 3), moist (n = 2), wet (n = 4). Error bars illustrate the 95% confidence interval for median 
N20 flux. 

spring (1.0 - 1.5, 0.5, 0.4, and 0.2 mg N20 m"2 d"1). For the wet cores, in contrast, 

maximum N2O flux by period occurs during the early spring, followed by winter thaws 2 

to 5 / late spring (late spring flux was within the range of these winter thaws), and winter 

thaw 1 (8.0, 2.2 to 2.7, and 0.2 mg N20 m~2 d"1, respectively, Figure 4.6, Table B 1). The 

only statistically significant differences in N2O fluxes among thaw or spring periods 

occur in the wet cores, where all thaw and spring periods have significantly higher N2O 

fluxes than that of winter thaw I (0<U<ll,p < 0.001). Additionally, the early spring 
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N2O flux, in the wet cores, is significantly higher than the N2O fluxes during all five 

winter thaw periods (11 < U < 67, p < 0.04). 

Daily moist core (n = 2) and wet core (n = 4) N2O fluxes, on the other hand, 

exhibit a similar pattern in relative magnitude. The maximum daily N2O flux, in the moist 

cores, is highest during the early spring, followed by late spring and winter thaws 2 to 5 

(6.6 and 1.7 to 2.2 mg N20 m"2 d"1, respectively, Table B 2). The N20 flux is lowest 

during winter thaw 1 (0.5 mg m~2 d"1, Table B 2). In the wet cores, the maximum daily 

N2O flux is highest during the early spring as well, closely followed by the maximum 

daily N2O flux of the late spring, and then followed by winter thaws 2 to 5, and lastly 

winter thaw 1 (13.6, 12.1, 2.7 to 4.0, and 0.4 mg N20 m"2 d"1, respectively, Table B 3). 

Daily replicate fluxes provide an additional means for comparison. Throughout 

the SCFT experiment, maximum daily replicate fluxes exhibit a different pattern in 

relative magnitude than those of the thaw period fluxes, however, for the moist cores, 

maximum daily replicate fluxes exhibit the same pattern in relative magnitude as the 

daily (median) N20 fluxes (Table B 1, Table B 2). Moist core winter thaw maximum 

daily replicate fluxes, notably, reach magnitudes as high as the maximum late spring 

daily replicate N2O flux. Overall, the moist core maximum daily replicate fluxes are 

highest during the early spring, followed by late spring and winter thaws 2 to 5, and lastly 

winter thaw 1 (12.7, 4.3/4.0, and 0.9 mg N20 m"2 d"1, respectively, Table B 1). Wet core 

maximum daily replicate fluxes follow a different pattern in relative magnitude than that 

of the moist cores. The wet cores have the highest daily replicate N2O flux during the late 

spring, followed by early spring, winter thaws 2 to 5, and winter thaw 1 (35, 15, 6.4, and 
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0.8 mg N 20 m"2 d"1, respectively; Table B 1). This wet core pattern is different than that 

of the wet core daily (median) fluxes, as well as the wet core pattern in the relative 

magnitude of N2O fluxes among thaw and spring periods, overall. 

4.2.3 Comparison of simulated thaw results to the literature 

There are few published papers on N2O flux from freeze-thaw incubations on 

intact arable soils, but those that are available are compared with the SCFT experiment 

below. Because soils used in the literature are wetter than those in the SCFT experiment, 

SCFT wet core summary statistics are used for these comparisons. The mean initial 

WFPS in the SCFT wet cores is 38%, and is used below to highlight quantitative 

moisture differences between the SCFT soils and those in the literature. Mean initial 

WFPS in the wet cores is calculated using the following formula from Cannavo et al. 

(2004): 

""" = fe) (41) 

where: 

mean initial VWC = 22% for wet cores (n = 4) 
BD = average bulk density of soil cores = 1.11 g cm"3 

PD = particle density (assumed) = 2.65 g cm"3 

N.B.: Because arable surface soils are assumed to have only 3-5% organic matter content, and 
therefore an approximate PD of 2.65 g cm"3 (Brady 1990), SCFT soils, with an average organic 
matter content of 10%, may have particle densities as low as 2.45 g cm"3, which could increase 
actual WFPS to 40% (in the wet cores). 

Although the results from the SCFT experiment suggest that the first freeze-thaw 

cycle has relatively little impact on N2O flux (section 4.2.1), Koponen et al. (2006) report 

a different pattern from a freeze-thaw simulation on wet (85% WFPS) loamy sand 
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previously growing barley. Their soil is exposed to four freeze-thaw cycles of -17°C to 

4°C. Mean fluxes (n = 6) are 3.6, 17, 5.9, and 0.3 mg N2O m"2 d"1, respectively (Koponen 

et al. 2006). Relative flux magnitudes are therefore thaw 2 flux > thaw 3 flux > thaw 1 

flux > thaw 4 flux. Koponen et al. (2006) conclude that there is a clear pattern of 

declining N2O flux after a second thaw. 

SCFT mean wet core flux is 0.3, 2.7, 2.4, 3.1, and 2.4 mg N20 m"2 d"1 for thaws 

one to five, respectively. Relative flux magnitudes show no distinct pattern, except that 

all thaws are greater than thaw 1, as discussed in section 4.2.1 for individual replicates. 

SCFT mean fluxes are comparable to those from thaws 1,3, and 4 in Koponen et al. 

(2006), even though the clay loam soil of the SCFT experiment has a much lower average 

moisture level (38% WFPS). The similar mean flux values may be due to an otherwise 

higher soil N (0.25%, Table 4.1) in the SCFT soils as opposed to the soil N (0.16%) in 

Koponen et al. (2006). There may also be more anoxic microsites in the SCFT clay loam 

than would otherwise be in a loamy sand at the equivalent WFPS, increasing the SCFT 

denitrification rate as compared to Koponen et al. (2006). Additionally, and 

unexpectedly, Koponen et al. (2006), citing Pihlatie et al. (2004), provide evidence that 

nitrification is as important as denitrification for N20 production in loamy sand at this 

high WFPS (85%). This may indicate that high levels of moisture are not necessary for 

significant N20 flux to occur. 

In contrast to the study discussed above (Koponen et al. 2006), Koponen et al. 

(2004) report a maximum mean flux of only 0.1 mg N2O m"2 d"1 at 2°C when loam, at 

42% WFPS and previously growing barley, is thawed from -2°C to 4°C. This compares 
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to a maximum mean flux of 0.4 mg N2O m"2 d"1 at 0.1°C during the first winter thaw 

simulation of the SCFT experiment for the wet cores. Here, as noted above, SCFT WFPS 

is only 38%. In contrast, Koponen et al. (2004) find a large maximum mean flux of 83 

mg N2O m"2 d"1 at 0°C when the same loam is wetted to 90% WFPS and warmed from a 

lower temperature (-8°C to 10°C). (Note that the soil temperature of maximum flux is 

reported from Figure 6b in Koponen et al. (2004), and not from Table 2 of Koponen et 

al.(2004), which appears to contradict Figure 6b.) The flux maximum from the wet cores 

of the SCFT experiment, through a similar temperature increase (simulated deep freeze 

through early spring), is smaller at 10.6 mg N2O m"2 d"1 at 2.7°C. However, this 

represents a surprisingly small difference compared to the findings in Koponen et al. 

(2004) given that, again, SCFT WFPS is only 38%. 

Overall, flux magnitudes during the SCFT experiment are similar to those under 

somewhat similar incubations reported in the available literature (Koponen et al. 2004, 

Koponen et al. 2006). However, it would be premature to assume that this would be the 

case with other work. The only discussion of relative patterns on the effect of successive 

freeze-thaw cycles on N2O fluxes (Koponen et al. 2006) conflicts with those of the SCFT 

experiment. More study on the effect repeat freeze-thaw cycles on N2O fluxes from 

arable soil is needed. Multiple cycles are likely an important consideration in the 

assessment of N2O fluxes during northern temperate winters. The frequency, amplitude, 

and duration of cycles will likely change as climate change evolves through time. 
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4.2.4 Analysis of N2O flux at cold soil temperatures 

This section examines median N2O flux by 2.5°C soil temperature bins using 

freeze as well as winter thaw and early spring data (Figure 4.7, Table B 4). There are 
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Figure 4.7. Median N 20 flux, by 2.5°C soil temperature categories, for all of the simulated winter through to 
early spring soil temperatures. Error bars illustrate the 95% confidence interval for median N 20 flux. 

distinct increases in N2O flux in both the moist and wet cores from -2.4°C to 2.5°C with a 

consequent drop in N2O flux between 2.6°C and 5°C. Although the confidence interval is 

large, the moist cores exhibit a maximum median N2O flux between 0.1 °C and 2.5°C (6.6 

mg m"2 d"1). The wet core maximum median N20 flux occurs between 0.1°C and 2.5°C as 

well (4.0 mg m"2 d"1, Figure 4.7, Table B 4). The high magnitude of the confidence 

intervals for median N2O flux between 0.1 °C to 5°C is primarily driven by the large 
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range of N2O fluxes in the moist core 0.1°C to 2.5°C soil temperature bin (0.4 to 13 mg 

m"2 d"1) and in the wet core 0.1°C to 2.5°C, and 2.6°C to 5°C bins (0.2 to 15, and 0 to 11 

mg m"2 d"1, respectively). 

When differences in N2O flux from the three -2.4°C to 5°C bins are examined 

statistically, the moist core changes in median N20 flux over this range are not significant 

(Mann-Whitney U test, p > 0.05). In the wet soils, the median N20 flux between 0.1 °C 

and 2.5°C is significantly higher than that of -2.4°C to 0°C (zv = -3.6, p < 0.001), but not 

than that of 2.6°C to 5°C. Had it been possible to accommodate a greater number of 

replicates in the SCFT experiment, it is possible that both the moist and wet core N2O 

fluxes would have statistically significant median cold temperature peaks at 0.1 °C to 

2.5°C with respect to the higher 2.6°C to 5°C bin as well as the lower -2.4°C to 0°C bin. 

When the -4.9°C to -2.5°C category is included in these comparisons, all three of 

the -2.4°C through 5°C wet core bins exhibit significantly higher median N20 fluxes than 

that associated with the -4.9°C to -2.5°C wet core bin (zv = -4.8, p < 0.001; Zu = -6.3, p < 

0.001; U = 334, p = 0.04, respectively, for the -2.4°C to 0°C, 0.1°C to 2.5°C, and 2.6°C 

to 5°C bins). These results conform to the general expectation that N20 flux increases as 

soil temperature increases, as discussed in section 2.2.2. However, in the moist cores, 

only the median N2O flux from the -2.4°C to 0°C bin is significantly higher than median 

N20 flux from the -4.9°C to -2.5°C bin (zv = -3.1, p = 0.002). That is, the median flux 

from -4.9°C to -2.5°C is not statistically lower than that from the 0.1°C to 2.5°C or 2.6°C 

to 5°C soil temperature bins. This emphasizes that it is important not to ignore the 
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substantial confidence intervals shown in Figure 4.7, as it may be, generally, that there is 

no appreciable difference between median fluxes from -4.9°C to -2.5°C and those from 

0.1 °C to 5°C. Such findings emphasize the need for additional replicates to make stronger 

conclusions about the temperature effect on N2O flux at cold temperatures. It is important 

to note, also, that fluxes between the soil temperatures of 0.1 °C to 5°C are extremely 

variable. Their magnitude is likely dependent on antecedent conditions as evident in the 

moist and wet cores during the simulated early spring and late spring of the SCFT 

experiment (Figure 4.4, day 63 through day 73). Fluxes may be very high when soil 

temperatures are increasing through 0°C but lower at comparable temperatures that are 

trending downward. Continuous sampling as soils freeze and thaw through 0°C, via 

automated methods, would improve the understanding of when the largest N2O fluxes are 

occurring, and would provide critical data for models. The interpolation of fluxes, 

between values attained by periodic sampling at these temperatures, likely results in 

inaccurate N2O flux estimates. 

4.2.5 Correlating N2O flux with soil moisture and soil temperature 

The dataset from the SCFT experiment consists of approximately 500 moist and 

wet N20 flux samples from soil cores ranging in temperatures from -15°C through 20°C. 

Soil moisture categories for the soil cores are based on those used for categorizing the SC 

field data in section 3.3.6, i.e. dry (< 0.05 m3 m"3), moist (0.05 - 0.19 m3 m3), wet (0.20 -

0.34 m3 m"3), and very wet (> 0.35 m3 m"3) VWC. As no moisture was added during the 

SCFT experiment, moisture classifications are based on initial soil core VWC. Neither 

dry cores nor very wet cores are represented in the SCFT temperature-flux regression 
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analysis. Since the dry cores exhibited no appreciable N2O flux as discussed above 

(section 4.2.1, Figure 4.4), these cores are excluded, and with respect to the very wet 

moisture category, none of the SCFT cores fit this description. 

Most of the sampling was undertaken over the -5°C to 4°C air temperature range, 

as this was the focus of the SCFT experiment. The dataset should therefore represent a 

comprehensive range of N20 flux values from agricultural clay loams within a typical 

range of winter soil temperatures for southern Ontario. If the N2O data is transformed 

(Figure 4.8), there is a moderate temperature-flux correlation for the moist cores (r = 
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Figure 4.8. Soil temperature at 5 cm depth versus log N 20 flux by soil moisture category (VWC in m3 m"3 at 10 
cm depth) during the SCFT experiment, with regression lines for moist (y = 0.0611 - 0.00312 - 0.381, F = 19.3, pF 

< 0.001, n = 149, r = 0.46, p ^ < 0.01), and wet (y = 0.0851 - 0.003 i2 + 0.007, F = 132, pF < 0.001, n = 302, r = 0.69, 
pR=o< 0.01) soils. 95% confidence intervals bound the regression lines. 

0.21), and for the wet cores (r = 0.47). It is notable that the quadratic line of best fit for 

the SCFT experiment's data over its whole temperature range indicates a positive 

quadratic relationship, where the slope of the line of best fit decreases, from 
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-12°C to approximately 10°C for the moist cores, and from -15°C to approximately 15°C 

for the wet cores, at which point the relationship becomes negative. 

The SCFT N2O flux data is next examined within the -15°C to 5°C temperature 

range, as the data gap between 5°C and 20°C (Figure 4.8) may hinder the dependability 

of the correlation between the two variables. Excluding this data from the late spring 

simulation does not appreciably strengthen the temperature - N2O flux relationship, 

although it changes its configuration (Figure 4.9). The quadratic line of best fit between 
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Figure 4.9. Soil temperature (S 5°C) at 5 cm depth versus log N20 flux by soil moisture category (VWC in m3 m' 
3 at 10 cm depth) during the SCFT experiment, with regression lines for moist (y = 0.0741 - 0.00212 - 0.363, F = 
20.3,pF < 0.001, n = 141,r = 0.48,pp=fl< 0.01), and wet (y = 0.1501 + 0.00512 + 0.059, F = 124,pF < 0.001, n = 286, 
r = 0.68,/?p=fl< 0.01) soils. 95% confidence intervals bound the regression lines. 

soil temperature and N2O flux remains positive through this soil temperature range and 

exhibits an increasing slope for the wet cores (Figure 4.9). The increasing slope may be 

more realistic as it follows the trend discussed in section 3.3.6, and illustrated in Figure 

3.19, for the field dataset, which is larger and continuous over the 5°C to 20°C soil 
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temperature range. The moderate relationship between soil temperature and flux suggest 

that other factors are important drivers of N2O flux in these soils. These likely include 

changes in soil structure, microbial activity, labile C, and labile N, which may be related 

to changes in soil temperature through 0°C. 

Unfortunately, it is beyond the scope of the present work to monitor any but the 

temperature and moisture parameters. The data are therefore summarized, by examining 

median N2O flux by soil temperature bins (Figure 4.10). Because the N2O flux data is 
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Figure 4.10. Binned soil temperature (mean value per bin) at 5 cm depth versus median N20 flux (mg m d ) 
during the SCFT experiment, with regression lines for moist (y = 0.0351 - 0.00212 + 0.499, F = 5.8, pF = 0.02, n •• 
16, r = 0.69,pp=0< 0.01), and wet (y = 0.1831- 0.00712 + 1.837, F = 13.4,pF < 0.001, n = 20, r = 0.78,pp=fl< 0.01) 
soils. 95% confidence intervals bound the regression lines. 

unevenly distributed over the soil temperature sampling range of the SCFT experiment, 

soil temperature bin divisions are based on equal percentiles of flux data. A single soil 

temperature is assigned to each bin based on the mean soil temperature within each bin. 

By binning the data, the correlation between soil temperature and N2O flux is stronger, 
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though remains moderate, for the moist cores (r = 0.47), and becomes high for the wet 

cores (r2 = 0.61), with quadratic lines of best fit in this case (Figure 4.10). Again, 

however, the positive line of best fit between soil temperature and N2O flux decreases in 

slope as soil temperatures increase, and thus conflicts with the line of best fit for the 

larger SC dataset, which increases in slope as soil temperature increases (Figure 3.21). If 

only SCFT N2O flux data < 5°C is used for the regression analysis with binned soil 

temperature values, the temperature-flux relationships are further improved. Linear 

relationships between binned soil temperature and flux replace quadratic ones (Figure 

4.11). The correlation between soil temperature and N2O flux becomes more highly 
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Figure 4.11. Binned soil temperature (S 5°C) (mean value per bin) at 5 cm depth versus median N20 flux (mg m" 
2 d'1) during the SCFT experiment, with regression lines for moist (y = 0.0571 + 0.512, F = 14.9, pF = 0.002, n = 
15, r = 0.73,pp=0< 0.01), and wet (y = 0.2691 + 1.991, F = 39.1,pF < 0.001, n = 19, r = 0.84,pp=0< 0.01) soils. 95% 
confidence intervals bound the regression lines. 

correlated (r2
moiSt cores = 0.53, r2

wetcores = 0.70, Figure 4.11). When all N2O flux data is 

used from VWC categories spanning 0.05 through 0.34 m3 m"3, however, the model is 

weaker (r2 = 0.45, v = 1.309 + 0.168 t, F = 26.0, p < 0.001, n = 34, r = 0.67, pp=0 < 0.01). 
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The regression equations presented here make it possible to predict median N2O 

fluxes from SC soil cores based on average soil temperatures, but these are most 

appropriate for wet soils with VWCs between 0.20 and 0.34 m3 m~3, and temperatures < 

5°C. The model for moist soils may be weaker than that for the wet soils because of its 

smaller number of data points (Figure 4.8). (There were two moist cores versus four wet 

cores in the experiment.) Overall, greater sample sizes would likely improve predictive 

models for N2O flux from incubated soil based on binned soil temperature and soil 

moisture values. 
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5 Summary 

5.1 Spatio-temporal patterns ofNzOflux at Strawberry Creek 

There is no consistent pattern in N2O flux among fields at SC, which suggests that 

the flux data collected over the study period is representative of fluxes over the 

landscape, and perhaps even regionally from arable soils throughout southern Ontario. 

There are significant differences among N2O fluxes from different crops, during both the 

growing and non-growing seasons. During the growing season, corn sites have the 

highest N2O fluxes. Both corn sites and spring wheat sites have significantly greater N2O 

fluxes than oat sites, and oat sites have significantly greater N2O fluxes than winter wheat 

sites. During the non-growing season, both sites previously growing oats, and those fall-

planted to winter wheat, have significantly greater N2O fluxes than those previously 

growing corn. These differences among sites growing different crops suggest that the re­

states of the soil at SC may be an important flux driver. 

Seasonally, median spring and growing season N20 fluxes at SC are small (0.1 

mg m"2 d"1), though higher than those during the fall and winter (0.05 mg m"2 d"1). These 

seasonal fluxes are negligible according to levels suggested in the literature (e.g. van 

Bochove et al. 2000, van Bochove et al. 2001, Lemke et al. 1998). SC flux values are 

smaller, though similar, to those of Wagner-Riddle et al. (2007), from a similar 

agroecosystem sampled via micrometeorological methods. While the seasonal flux 

pattern at SC is common to much of the literature, fluxes reported elsewhere are up to 

two orders of magnitude higher than those at SC. It is possible that this is an issue related 

to sampling methods or timing. Alternatively, southern Ontario may not be a significant 
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source of Canadian agricultural N2O emissions. Small winter N2O fluxes at SC are 

particularly notable, as they contradict some reports of high winter fluxes from temperate 

North American agricultural sites (e.g. Goodroad and Keeney 1984, van Bochove et al. 

2000). 

Daily median fluxes at SC are highest during the growing season, with large 

fluctuations in N2O fluxes between sampling dates during May and June, when N2O flux 

spikes likely reflect short-lived fertilizer-driven increases in N2O production. N20 flux 

spikes also occur during the winter thaw and two spring seasons encompassed by the SC 

study. Overall, changes in daily fluxes appear to reflect changes in soil temperatures, and, 

secondarily, changes in soil moisture content. Regression analysis indicates that it is 

possible to predict N2O flux at SC based on soil temperature alone, especially when soils 

are moist to wet (0.2 to 0.4 m3 m~3 VWC). 

5.2 Evaluation of field methods 

There is a considerable range of non-flow-through non-steady-state chamber 

techniques to measure N2O flux from soil (Rochette and Eriksen-Hamel 2008). In a 

review of approximately 360 studies from 1978 to 2007, Rochette and Eriksen-Hamel 

(2008) find that 60% of absolute N20 flux values are unreliable because of inadequate 

methods and reporting. Fifty per cent of the recent studies (2005-2007) that Rochette and 

Eriksen-Hamel (2008) review report unreliable absolute flux values. Using 

recommendations from Hutchinson and Livingston (1993), Livingston and Hutchinson 

(1995), Holland et al. (1999), Davidson et al. (2002), Hutchinson and Livingston (2002), 

Smith and Conen (2004), Rochette and Hutchinson (2005), and Rochette and Bertrand 
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(2007), Rochette and Eriksen-Hamel (2008) establish a quantitative method to evaluate 

chamber methodologies for calculating N2O flux. This evaluation grades methodologies 

by chamber type, chamber height, chamber depth, chamber area/perimeter ratio, chamber 

insulation, chamber vent, timing of gas collection, and collection vial type. Additional 

considerations include having an experimental control and confirming linearity of N2O 

accumulation, if that is the basis of flux calculations (as in equation 3.1). In terms of N20 

field gas sampling and flux calculation methods, the SC methods receive a 64% grade by 

this protocol (Rochette and Eriksen-Hamel 2008, Table A 10). 

Because there is a multitude of methods used to calculate N2O flux (Henry 2007, 

Rochette and Eriksen-Hamel 2008), qualitative comparisons with respect to SC flux will 

be more dependable than quantitative comparisons. Some of the discrepancies, among SC 

N2O fluxes and those in the literature (see section 3.3.5, Table A 1), may be due to 

inaccurate absolute SC N2O flux values. The empirical model developed in section 3.3.6 

may be more valid for predicting flux patterns rather than absolute fluxes. 

For snow flux, van Bochove et al. (2000) use a concentration gradient method, 

measuring N2O within the snowpack at 20-cm intervals. Although Groffman et al. (2006) 

and Maljanen et al. (2003) use snow chambers for the determination of surface N20 

fluxes, van Bochove et al. (2000) assert that this method is inadequate. Snow chambers, 

such as those used at SC, can both underestimate (Mast et al. 1998) and overestimate 

(Winston et al. 1995) gas fluxes. Possible sources of snow chamber error and variability 

include temporary entrapment of gas by snow structures (Mast et al. 1998), dilution of 

snow gas concentrations by wind penetration (Mast et al. 1998), and channelling of soil 
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gas fluxes to the snow surface via melt channels and tree wells (Winston et al. 1995). 

Limited resources, however, prevent the use of a snow gas profiler for N2O flux 

determination at SC. Therefore, the comparison of SC N2O snow fluxes and SC N20 soil 

fluxes, as discussed in section 3.3.5, may not be as reliable as the comparisons among SC 

N20 soil fluxes alone. 

5.3 Patterns in fyOflux during simulated winter and spring conditions 

The SCFT experiment is a detailed investigation into the patterns of N2O 

emissions from soil mesocosms during simulated winter and spring thaws, in response to 

soil temperature manipulations. The first winter thaw triggers only negligible N2O flux 

from the soil cores, otherwise there is no distinct pattern in the N2O flux among 

replicates, as winter thaws increase in frequency through a total of five thaws. Although 

Koponen et al. (2006) report N2O fluxes from successive freeze-thaw simulations which 

are comparable in magnitude to those of the SCFT experiment, the authors find that 

fluxes consistently decline after a second thaw. 

SCFT N2O fluxes measured in the laboratory during the simulated winter thaws 

and spring periods are high, and N2O flux increases parallel soil temperature increases. 

Furthermore, there is no time delay in flux response to soil temperature change. During 

the winter thaw simulations, median daily fluxes reach 2.1 mg N2O m"2 d"1 in moist soil, 

and 4.0 mg N2O m~2 d"1 in wet soil, with spikes recurring on each day of the simulated 

thaws. During the early spring simulation, moist and wet soil N2O fluxes reach daily 

medians of 6.6 and 14 mg m"2 d"1, respectively. While the median daily late spring N2O 

flux does not exceed that which occurs during the winter thaws in the moist soils, the late 
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spring wet soil N2O flux spike is again extremely high, at 12 mg m"2 d"1. In contrast to the 

winter thaw simulations, the fluxes during each of the simulated spring periods spike only 

once. Therefore, the experiment indicates that successive winter thaws, at least those 

simulated ex situ, may produce cumulative N2O fluxes which are as significant, if not 

more significant, than those generated cumulatively during spring periods. 

5.4 Evaluation of experimental methods 

In a review of 28 studies involving freeze-thaw simulations, Henry (2007) 

concludes that a wide-range of findings may be due to experimental artefacts, resulting 

from a lack of scientific consensus on appropriate freeze-thaw methodologies to mimic 

natural systems. As with most of the freeze-thaw experiments reviewed by Henry (2007), 

snow, rain, snowmelt, and icemelt are not simulated in the SCFT experiment. An 

incorporation of these could change the physics, chemistry, and biology of soil cores, and 

could increase or decrease N20 fluxes. Henry (2007) notes that heterotrophs, for 

example, are typically more active under a consistent snow cover at ~ 0°C. Saturation of 

soil is common in lower sections of farm fields in southern Ontario over prolonged 

periods in the winter (November through March), as another example. 

Physical disruption of aggregates may be reduced in the SCFT experiment, 

relative to typical SC in situ conditions, due to rapid freezing and thawing because of 

sudden air temperature change (Henry 2007). This may cause underestimates of typical 

N2O fluxes during freeze-thaw conditions. However, the opposite might be the case, as 

discussed below. 
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Half of the studies reviewed by Henry (2007) do not report the soil collection 

date, although he points out that soil microbial communities change over the year. N2O 

fluxes from freeze-thaw experiments could, therefore, be unrepresentative if soils are not 

collected in the fall (Henry 2007). Although fall-collected, SCFT soils are stored for five 

months prior to the beginning of the winter and spring simulation. This time lapse 

between soil collection and soil incubation may change the response of the soil 

mesocosms to the winter and spring experiment, and therefore change the magnitude 

and/or pattern of N20 fluxes, due to possible changes in soil O2, redox conditions, 

microbial populations and microbial activity. 

In terms of SCFT soil temperature manipulations, the experiment may not 

accurately simulate in situ SC conditions (see Figure 4.4 for soil temperature 

fluctuations). The freezer temperature is low, and the insulation may be insufficient to 

moderate the effect of air temperature on soil temperature fluctuations from the sides and 

bottom of the soil cores. Highly muted diurnal soil temperature fluctuations are reported 

during winter thaws in southern Ontario (Henry 2007, Petrone and Macrae, unpublished 

data). Even when soils are not covered by snow, soil as shallow as 5 cm may not freeze, 

despite air temperatures being well below freezing during cold conditions. However, 

English {pers. comm.) reports in situ observations of frozen SC soils well below 5 cm 

depth, more than once in the last 12 years at SC. During the SCFT experiment, soil 

temperatures frequently reach -5°C at 5 cm depth during the freeze simulations, and 

never exceed 0°C during the thaw simulations (Figure 4.4). 
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Hu et al. (2006) conclude that freeze-thaw experiments using soil cores insulated 

with filled-in soil better simulate natural conditions, and that uninsulated 25-cm soil 

cores, which are exposed to freezing and thawing temperatures from all sides, have 

higher fluxes. Cores insulated with soil have low fluxes, and those with a simulated water 

table at 25 cm depth, in addition to insulation by soil, have moderate fluxes. Hu et al. 

(2006) and Henry (2007) speculate that higher uninsulated core fluxes may be due to a 

greater duration and intensity of freezing. The mechanisms by which freezing intensity 

and duration increase N2O flux might be explained by increased microbial activity during 

the thaw period, due to increased labile C from freezing lysis and disruption of soil 

aggregates; N2O production in a saturated near-surface caused by a sub-surface ice 

barrier as frozen soil thaws; and/or the accumulation, and thus concentration, of ice-

trapped N20, followed by its release (Hu et al. 2006, citing several research papers). High 

N2O fluxes from uninsulated versus soil-insulated cores may therefore represent both 

previously and newly produced N2O (Hu et al. 2006). Hu et al. (2006) find that N20 flux 

is more highly correlated with the intensity and the duration of freezing than with soil 

moisture content, which, in and of itself, would likely increase the production of N20 due 

to increased levels of denitrification. 

In addition to appropriate insulation of soil cores, Hu et al. (2006) recommend 

continuous N20 flux and soil profile measurements to better characterize freeze-thaw 

dynamics. Henry (2007) notes that freeze-thaw experiments need to incorporate controls 

into their design, including soil core replicates maintained at a constant average thaw 

temperature. Also, researchers should compare fluxes from different freeze-thaw cycle 
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lengths and frequencies, in order to characterize emissions from a complete range of 

possible winter conditions (Henry 2007). 

In terms of gas sampling and flux calculation methods, the SCFT experiment 

receives a 49% grade by the protocol established by Rochette and Eriksen-Hamel (2008, 

Table B 5), which is lower than the grade for the SC field sampling and flux calculation 

methods as discussed above in section 5.2. Improvements could be made, therefore, in 

this aspect of the experimental design as well. 

5.5 Comparison of field and laboratory results 

If the field sampling methods and frequency accurately characterize N2O fluxes at 

SC, overall annual, seasonal and monthly emissions are low. Only one thaw longer than 

three days occurs during the winter studied at SC (2007-2008), an extreme thaw event 

over a period of six days when daily air temperatures reach a maximum of 13.6°C on Jan 

7/08. During this thaw, daily median N2O fluxes from three sample dates reach a 

maximum of only 0.1 mg m~2 d"1 from very wet soil (38% VWC). During the laboratory 

simulation, daily winter thaw flux medians are up to 40 times higher at 4.0 mg N2O m"2 d" 

1 from wet soil cores, with an initial mean VWC of only 22%. While individual replicate 

fluxes reach a maximum of only 0.5 mg N2O m"2 d"1 during the in situ winter thaw, the 

maximum individual replicate flux in the laboratory is an order of magnitude higher (6.4 

mg N2O m"2 d"1 during winter thaw 2 in the wet cores, Table B 3). 

For spring thaws, in situ March and April N2O fluxes reach a maximum daily 

median of 0.9 mg N2O m"2 d"1, while individual replicate fluxes reach a maximum of 26 
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mg N2O m"2 d"1 during these months. Although this maximum in situ replicate flux from 

the spring is comparable to that of the SCFT experiment (35 mg N2O m~2 d"1, Table B 3), 

median daily early spring N2O flux from the laboratory simulation reaches 14 mg N2O m" 

2 d"1 (Table B 3), an order of magnitude higher than the median daily in situ N2O flux. 

Median N2O fluxes from moist and wet laboratory soil in the 0°C to 2.5°C soil 

temperature category are two orders of magnitude higher than that from comparable field 

soil temperatures and moisture contents. In the 2.5°C to 5.0°C soil temperature category, 

median N2O fluxes from moist and wet laboratory soil are one order of magnitude higher 

than that from comparable field soil temperatures and soil moisture contents. Moist and 

wet SCFT laboratory soils exceed median SC in situ N2O fluxes by far, even in very wet 

field soils although this moisture category is not represented in the SCFT experiment. 

The laboratory simulation reveals N2O fluxes that are much greater than those 

observed in situ. The gas collection methods employed in the laboratory and field are 

similar. It is possible that in situ winter flux spikes are higher, but not captured by the 

current sampling protocol. However, the laboratory simulation suggests that these pulses 

occur over at least three days during thaws, at least when soil temperatures decrease 

below 0°C at night. Field thaw sampling occurs within this time frame. 

In the field, there were three 2-day winter thaws in addition to the Jan 6-11/08 

thaw. These occurred from Dec 22-23/07, Jan 29-30/08, and Feb 17-18/08. Because these 

thaws did not fit the SC field sampling protocol, i.e. they were not greater than two days 

in duration, no N2O flux data was collected during these periods. However, because the 

SCFT simulation reveals that N2O fluxes respond immediately to soil temperature change 
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(Figure 4.4), it may be that high N20 fluxes occur during these periods, fluxes which may 

be closer in magnitude to those attained during the SCFT winter thaw simulations. 

It is also possible that the differences between in situ and laboratory fluxes are 

due to insufficient soil core insulation, which allows the cores to freeze to soil 

temperatures much lower than those typically found in southern Ontario agricultural soils 

during the winter. In situ soils generally remain warmer than 0°C at 5 cm depth during a 

typical winter. In contrast, soil temperatures at this depth in the SCFT soil cores never 

exceed 0°C, varying between -5°C and 0°C during the winter thaws. The higher 

laboratory fluxes may in fact result from physical, chemical, and/or microbiological 

disturbance, caused by warming soils through sub-zero (°C) temperatures. Hu et al. 

(2006) report that the use of extruded polystyrene (Styrofoam™) coolers, filled with soil 

to insulate soil cores, provides flux results that are more representative of those that occur 

during natural freeze-thaw conditions. In addition to better simulating a gradual freezing 

process from above, which leads to realistic soil temperatures at depth, such a regime 

triggers a natural movement of soil moisture upwards towards the freezing front (Hu et 

al. 2006). It would also slow the freezing process which would create less physical 

disturbance, and possibly lower N2O fluxes. Hu et al. (2006) suggest that a simulated 

water table, at a representative depth, helps to simulate an even more natural soil 

moisture regime. In Hu et al. (2006), N2O fluxes are approximately seven times higher in 

uninsulated versus soil-insulated cores. N2O fluxes are approximately three times higher 

in uninsulated versus soil-insulated cores with a simulated water table. 
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Zero to 5°C soil temperatures are not attained in the laboratory until the spring 

thaw simulation, which occurs after the soils are cooled to -10°C. Therefore, the reason 

for high laboratory versus low field fluxes, in the 0°C to 5°C range, may again be the 

enhancement of physical, chemical, and/or microbiological disturbance, which creates 

large N2O flux pulses near 0°C in laboratory soils. 

The laboratory model is likely inapplicable to the natural SC system due to the 

nature of the data on which it is based. Unrepresentative 5 cm soil temperatures, which 

remain below 0°C, appear to skew the N20 fluxes upward. At this point, predictive 

modeling for in situ N2O fluxes at SC should therefore be based on field data alone. 

Freeze-thaw simulations for SC soils, if improved, may better reveal realistic N2O flux 

patterns during the winter and spring, and guide refinements of in situ sampling methods. 

However, Haag and Matschonat (2001) warn, that regardless of its complexity, the most 

that any experiment can do is to provide a set of "capacities" of how the ecosystem may 

behave. In this conservative view, experimentation cannot give researchers the ability to 

predict ecosystem behaviour. 

5.6 Recommendations 

Ideally this research will be continued, with refined gas collection methods, based 

on those developed for the laboratory incubation. Adding more years and events to the 

field dataset would provide better modeling capabilities. Continuous soil temperature and 

soil moisture logging could provide the capacity to quantify antecedent conditions and 

factor these into the flux model. The incorporation of N-input and N-consumption levels, 

based on crop type, would help refine the model as well. If found significant by 
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comparative study on its effect on N2O flux, a soil texture term would also likely improve 

the N2O flux model, in terms of its applicability at a regional scale. 

More sophisticated snow flux methods, such as those in van Bochove et al. 

(2000), could be used to better characterize the dynamics of N2O emissions through 

snow. Year-round fluxes could be monitored by a continuous flow-through method with 

a portable analyzer such as the Fourier transform infrared gas analyzer (Gasmet DX-

4015, Helsinki, FI). 

For event-based field data, ideally, sampling would begin on the first day of each 

thaw and precipitation event, and on the day prior to each inorganic and organic fertilizer 

application. Sampling would be repeated for several days following each thaw, 

precipitation event, and fertilizer application. Bulk density, organic content, soil N, and 

soil C could be measured on a monthly basis from each site. Additional soil samples for 

these parameters could be obtained following the first significant precipitation event after 

fertilization. Microbial analyses could also be performed on a regular basis, along with 

isotope studies to determine the relative contribution of denitrification and nitrification to 

N20 production during different seasons. 

Van Kessel et al. (1993), Pennock et al. (1994), and Corre et al. (1996) use p < 

0.20 to compare differences in N2O flux between landscape elements. It may be that 

using a higher p-level, than that employed for the SC and SCFT comparisons, would lead 

to different conclusions regarding spatial and/or temporal differences in N20 flux. At/? < 

0.05, field and laboratory spatial differences are largely insignificant, except in the case 

of crop influences on N2O flux. 
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Laboratory work should be repeated using the same air temperatures, but using 

soil as an insulator, along with a simulated water table, as recommended by Hu et al. 

(2006). A greater and more representative range of VWCs could be simulated, in addition 

to realistic snowmelt and icemelt scenarios. As Henry (2007) suggests, freeze-thaw 

cycles of different lengths could be incorporated into the simulation, along with 

appropriate controls. Experimental designs should include soil core replicates maintained 

at a constant average thaw air temperature (Henry 2007), and designs could additionally 

incorporate different freeze-thaw cycle lengths and frequencies, in order to characterize 

emissions from a complete range of possible winter conditions (Henry 2007). The 

simulation of possible climate change scenarios could broaden freeze-thaw experiments 

even more. 

Future research on the effect of various alternative agricultural practices on N2O 

flux might help lower N2O emissions in the future. Some work on the influence of 

conventional farming versus "best management practices", i.e. no tillage and reduced 

fertilization, indicates that BMP reduces N2O emissions from agriculture (e.g. Wagner-

Riddle et al. 2007). Malhi et al. (2006) find that no-till and retention of crop residues 

reduces N2O flux. However, the effect of no-till alone may depend on the method of 

fertilizer application (Venterea et al. 2005). In a review of the no-till literature, Six et al. 

(2004) conclude that no-till increases the global warming potential (GWP) of agricultural 

soils in the short term, and only decreases GWP in humid climates after 10 years. 

Although government agencies strongly encourage farmers to adopt BMP (e.g. Ontario 

Ministry of Agriculture 2008), further examination of the potential of different BMP 

scenarios to reduce N20 emissions in temperate zones is an important area of study. 
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Agroforestry may likewise have the potential to decrease N2O flux from agriculture. 

However research in temperate regions is scant and not yet conclusive (e.g. Evers 2009). 

Along with scientific investigation into the possible role of BMP and agroforestry 

in reducing N2O emissions, there is a lack of research into the potential of organic 

methods to reduce agricultural emissions of N2O. The contribution of organic agriculture 

to the Canadian economy is growing at the substantial rate of 20% (Conference Board of 

Canada 2009), but little research exists on the relative contribution of organic versus 

conventional agriculture to N2O emissions. It is undeniable that eliminating the demand 

for inorganic nitrogen fertilizers would decrease CO2 emissions, due to a decrease in 

energy consumption from the energy-intensive manufacture of inorganic fertilizer 

(Makhijani et al. 1992). In a review, Fortune et al. (2001) find that the results of 

comparative studies between N2O emissions from agricultural soils under organic versus 

conventional management are inconclusive, while other publications conclude that 

organic soil management practices reduce N20 emissions (e.g. El-Hage Scialabba and 

Hattam 2002, Kiistermann and Htilsbergen 2008). Organic agricultural practices are more 

diverse than those in conventional agriculture. Aspects of this diversity include a greater 

variety of crops, more complex crop rotation schemes, and a greater variety of farming 

standards imposed by multiple public and private sector certifying bodies at the 

provincial, national and international level. Although widespread adoption of organic 

methods may significantly reduce agricultural emissions of N2O, research on a full range 

of organic practices could determine this conclusively, and is therefore a worthwhile 

topic for future biogeoclimatic investigation. 
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5.7 Conclusions 

IPCC models may overestimate N2O emissions from agricultural land in Canada 

(e.g. Khakbazan et al. 2004). Much of the flux literature from arable soils reports 

parametric statistics for N2O. If data are not in fact normal, but right-skewed, as the SC 

data are, such parametric results may contribute to overestimates of N2O emissions. 

Hutchinson et al. (2007) determine that revised IPCC estimates are effective, but are 

limited to historical versus predictive modeling. These estimates assume that there is a 

simple linear relationship between N input and N2O emission (Hutchinson et al. 2007). 

For example, they do not account for the influence of climatic factors, such as those 

which drive thaws, or management practices beyond total N input (Hutchinson et al. 

2007). The uncertainty in IPCC estimates for Canadian N2O emissions is 40% 

(Hutchinson et al. 2007). 

Although there are many observational studies on in situ N2O fluxes from arable 

soil, many do not follow fluxes year-round. Some important work, however, is both year-

round and multi-year (e.g. Wagner-Riddle et al. 2007), while some analyzes flux 

dynamics in consecutive winter-spring seasons (e.g. van Bochove et al. 2000). The SCFT 

laboratory simulation contributes to a dearth of N2O flux studies in a controlled 

environment on intact agricultural soils, as most freeze-thaw simulations on N20 in 

agricultural soils focus on N2O production (e.g. Goodroad and Keeney 1984, Chantigny 

et al. 2002, Yanai et al. 2007). There are no other known N2O flux studies which 

combine field and laboratory research on arable soils to date. 

109 



The findings here illustrate that there are few landscape-scale differences in N2O 

flux over time, from arable clay loam in two southern Ontario fields under similar 

management regimes, although significant crop-based spatial differences do occur. This 

research supports conclusive spring and summer trends in the in situ N2O flux literature 

over the last three decades, that is, spring and summer are significant periods of N2O 

emissions from agricultural soils in temperate northern regions, even when soil 

temperatures are low, as during the spring. During the growing season, soil temperature 

would appear to be less significant in driving N20 flux, when precipitation and 

fertilization events prevail. Field results during the winter are less conclusive, in both the 

literature and at SC. The SC sites undergo only one significant thaw period during the 

winter of study, that is, there is only one SC thaw event when daily air temperature 

maxima equal or exceed 4°C for more than two days. Although this thaw is long and 

extreme, and causes soil moisture to reach near-saturation levels, N20 fluxes are not 

exceptionally high. On the other hand, daily fluxes in the laboratory experiment, which 

intensively examines flux dynamics and magnitudes during a series of simulated winter 

thaws, exceed those in the field by an order of magnitude. 

Laboratory results show that winter N2O fluxes increase in response to soil 

temperature increases, and that fluctuations in N2O emissions parallel fluctuations in 

winter soil temperature. These N20 flux spikes and fluctuations exhibit virtually no time 

delay in response to soil temperature change, and fluxes quickly drop following the onset 

of the early spring thaw and late spring simulations (Figure 4.4). The quantification of in 

situ winter thaw N20 fluxes during a more typical winter, when more winter thaws of this 

length (Petrone and Macrae, unpublished data) occur, may reveal that winter thaw fluxes 
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are closer to those quantified in the lab. Alternatively, a laboratory experiment, which 

more closely mimics in situ soil temperatures, may result in lower ex situ N20 fluxes. 

Field results from a typical winter, with multiple thaws, would likely be more closely 

aligned with those from a laboratory simulation, especially when both field and 

laboratory methods incorporate the methodological improvements discussed in sections 

5.2 and 5.4. 

Overall, in situ N20 flux observations at SC indicate that fluxes from arable soils 

in southern Ontario may be low, relative to those of other temperate agricultural regions, 

although they likely vary during both the growing and non-growing seasons based on 

crop type. The work presented here also broadens the understanding of agricultural N2O 

flux dynamics during the non-growing season in southern Ontario, and indicates that their 

significance, in terms of annual N20 emissions from arable soils, may be high. While 

additional research, combining refined field and laboratory work as outlined above, could 

supplement this knowledge, and likely reconcile field and laboratory results, the 

importance of soil temperature and soil moisture as drivers of N2O flux is evident, and 

can be used in the refinement of N20 emission models for agricultural land. 
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Figure A 1. N 20 flux (mg m"2 d'1) (bars) and sample size (dots) by site for all March and April sampling dates. 
Error bars indicate the 95% confidence interval for median N 20 flux. Error bars are infinite where n < 2, and 
therefore not illustrated. For N 20 fluxes > 2.50 mg m"2 d"1, see Table A 6. 
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Table A 2. Regional mean daily air temperature statistics from 2006 through 2008. Data from Regional 
Waterloo International Airport meteorological station (43.46°N, 80.38°W) (Environment Canada 2009). 

Case Summaries 

Month Year 

1 2006 

2007 

2008 

Total 

2 2006 

2007 

2008 

Total 

3 2006 

2007 

2008 

Total 

4 2006 

2007 

2008 

Total 

5 2006 

2007 

2008 

Total 

6 2006 

2007 

2008 

Total 

7 2006 

2007 

2008 

Mean Temp (°C) 

N 

31 

31 

31 

93 

28 

28 

26 

82 

31 

31 

31 

93 

30 

30 

30 

90 

31 

31 

31 

93 

30 

30 

30 

90 

31 

31 

31 

Median 

-1.00 

-4.30 

-4.30 

-2.80 

-5.40 

-10.60 

-6.70 

-8.15 

-.80 

-.70 

-4.70 

-2.40 

7.40 

5.20 

7.45 

6.75 

12.60 

11.70 

10.20 

11.30 

17.50 

18.40 

17.90 

17.95 

21.90 

19.40 

19.90 

Minimum 

-11 

-18 

-14 

-18 

-12 

-17 

-16 

-17 

-9 

-18 

-14 

-18 

0 

-6 

-1 

-6 

4 

6 

5 

4 

11 

11 

12 

11 

16 

13 

16 

Maximum 

6 

8 

11 

11 

2 

-2 

0 

2 

10 

14 

5 

14 

14 

15 

16 

16 

25 

21 

19 

25 

25 

27 

26 

27 

26 

25 

25 
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Total 

8 2006 

2007 

2008 

Total 

9 2006 

2007 

2008 

Total 

10 2006 

2007 

2008 

Total 

11 2006 

2007 

2008 

Total 

12 2006 

2007 

2008 

Total 

Total 2006 

2007 

2008 

Total 

93 

31 

31 

31 

93 

30 

29 

30 

89 

31 

31 

31 

93 

30 

30 

30 

90 

31 

31 

31 

93 

365 

364 

363 

1092 

20.00 

17.70 

18.90 

18.00 

18.50 

14.25 

16.50 

15.05 

15.00 

6.50 

11.10 

7.10 

8.20 

3.35 

1.05 

.70 

1.95 

1.30 

-4.20 

-5.50 

-2.50 

7.60 

8.25 

8.10 

8.10 

13 

14 

14 

14 

14 

6 

7 

11 

6 

1 

2 

0 

0 

0 

-8 

-9 

-9 

-9 

-12 

-14 

-14 

-12 

-18 

-16 

-18 

26 

30 

26 

22 

30 

19 

25 

21 

25 

17 

23 

16 

23 

10 

10 

12 

12 

7 

3 

8 

8 

30 

27 

26 

30 

123 



Table A 3. Regional total daily precipitation statistics from 2006 through 2008. Data from Regional Waterloo 
International Airport meteorological station (43.46°N, 80.38°W) (Environment Canada 2009). 

Case Summaries 

Total Precip (mm) 

Month Year 

1 2006 

2007 

2008 

Total 

2 2006 

2007 

2008 

Total 

3 2006 

2007 

2008 

Total 

4 2006 

2007 

2008 

Total 

5 2006 

2007 

2008 

Total 

6 2006 

2007 

2008 

Total 

7 2006 

2007 

2008 

Median 

.500 

.500 

1.000 

.500 

.250 

.000 

.250 

.000 

.000 

.000 

.500 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.500 

.000 

.000 

.000 

1.000 

.000 

.500 

.000 

.500 

Minimum 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

Maximum 

20.0 

8.5 

19.0 

20.0 

32.0 

2.5 

17.5 

32.0 

31.0 

8.5 

8.5 

31.0 

27.5 

12.5 

21.0 

27.5 

33.5 

23.0 

15.0 

33.5 

5.0 

17.5 

11.5 

17.5 

56.5 

5.5 

54.0 

Sum 

76.5 

44.0 

64.5 

185.0 

79.0 

11.5 

49.5 

140.0 

63.0 

38.5 

52.5 

154.0 

69.5 

48.0 

46.0 

163.5 

93.5 

46.0 

62.5 

202.0 

17.5 

33.0 

81.5 

132.0 

182.5 

28.0 

203.5 
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Total 

8 

9 

10 

11 

12 

Total 

2006 

2007 

2008 

Total 

2006 

2007 

2008 

Total 

2006 

2007 

2008 

Total 

2006 

2007 

2008 

Total 

2006 

2007 

2008 

Total 

2006 

2007 

2008 

Total 

.500 

.000 

.000 

.000 

.000 

.500 

.000 

.500 

.000 

.000 

.500 

.000 

.000 

.000 

.250 

.500 

.000 

.000 

.500 

1.500 

.500 

.000 

.000 

.500 

.000 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

.0 

56.5 

13.0 

4.5 

22.0 

22.0 

37.0 

9.0 

27.0 

37.0 

25.5 

12.0 

10.5 

25.5 

24.0 

32.0 

28.5 

32.0 

27.5 

26.0 

14.5 

27.5 

56.5 

32.0 

54.0 

56.5 

414.0 

38.0 

13.5 

84.5 

136.0 

141.0 

23.5 

112.0 

276.5 

45.0 

24.5 

38.5 

108.0 

58.0 

76.5 

89.0 

223.5 

64.0 

77.0 

89.5 

230.5 

927.5 

464.0 

973.5 

2365.0 
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Table A 4. Median, minimum and maximum N 20 flux by season for all data collected during the SC field study. 

Case Summaries 

N2Oflux(mgmA-2dA-l) 

Season 

spring 

growing season 

fall 

winter 

Total 

N 

112 

634 

89 

244 

1079 

Median 

.1126 

.1461 

.0479 

.0511 

.1111 

Minimum 

-.10 

-.07 

-.10 

-.09 

-.10 

Maximum 

26.09 

3.88 

.70 

.66 

26.09 
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Table A 5. Median, minimum and maximum N 20 flux by month and year for all data collected during the SC 
field study. 

Case Summaries 

N2Oflux(mgmA-2dA-l) 

month Year 

1 2008 

2 2008 

3 2007 

4 2007 

2008 

5 2007 

2008 

6 2007 

2008 

7 2007 

2008 

8 2006 

2007 

2008 

9 2006 

2007 

10 2006 

2007 

11 2007 

12 2007 

N 

86 

52 

30 

37 

45 

67 

80 

135 

54 

76 

80 

36 

53 

53 

18 

26 

18 

27 

52 

54 

Median 

.0702 

.0078 

.5883 

.0589 

.1101 

.3312 

.0894 

.2936 

.0655 

.1420 

.1094 

.1494 

.1338 

.1272 

.1266 

.0323 

.0408 

.0387 

.0859 

.0380 

Minimum 

-.09 

-.02 

.00 

-.04 

-.10 

.00 

.02 

.00 

.01 

-.04 

-.07 

.05 

-.02 

.03 

.01 

-.10 

-.01 

-.08 

.01 

-.04 

Maximum 

.66 

.10 

26.09 

1.19 

4.35 

3.88 

1.20 

2.48 

.62 

1.30 

3.01 

2.25 

1.34 

.89 

.69 

.70 

.62 

.22 

.48 

.52 
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Table A 6. N 20 flux statistics for individual sites on all March and April sampling dates of the SC field study. 

Case Summaries 

N2Oflux(mgmA-2dA-l) 

Date 

2007-03- 15T00:00:00.000 

2007-03-22T00:00:00.000 

2OO7-O3-29T00:00:OO.0OO 

2007-04-19T00:00:00.000 

20O7-04-28T0O:00:O0.OO0 

Site 

Rl 

Tl 

T2 

T3 

Total 

Rl 

R2 

Tl 

T2 

T3 

Total 

Rl 

R2 

Tl 

T2 

T3 

Total 

Rl 

R3 

SI 

S2 

S3 

Tl 

T2 

T3 

Total 

Rl 

N 

2 

1 

2 

3 

8 

3 

2 

1 

3 

3 

12 

3 

2 

1 

1 

3 

10 

3 

2 

3 

2 

2 

1 

1 

3 

17 

3 

Median 

.0480 

1.0529 

.8686 

.9118 

.7663 

1.0381 

.3783 

.0312 

2.3185 

5.8117 

.8868 

.0635 

1.6849 

.5287 

2.4691 

.1963 

.2332 

.0319 

.0534 

.2587 

-.0217 

.0349 

.0222 

.0401 

-.0253 

.0284 

.1179 

Minimum 

.00 

1.05 

.62 

.10 

.00 

.56 

.02 

.03 

.07 

.09 

.02 

.06 

.27 

.53 

2.47 

.09 

.06 

-.04 

.03 

.19 

-.02 

.02 

.02 

.04 

-.03 

-.04 

.05 

Maximum 

.10 

1.05 

1.12 

9.39 

9.39 

1.27 

.74 

.03 

14.04 

26.09 

26.09 

.13 

3.10 

.53 

2.47 

.88 

3.10 

.12 

.08 

.32 

-.02 

.05 

.02 

.04 

.02 

.32 

.12 
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R2 

R3 

SI 

S2 

S3 

Tl 

T2 

T3 

Total 

2008-04-07TOO:00:00.000 Rl 

R2 

Tl 

T2 

T3 

Total 

2008-04-08TOO:00:00.000 SI 

S2 

S3 

Total 

2008-04-18TOO:00:00.000 Rl 

R2 

R3 

SI 

S2 

S3 

Tl 

T2 

T3 

Total 

Total Rl 

R2 

2 

2 

3 

3 

3 

1 

1 

2 

20 

3 

3 

1 

2 

2 

11 

3 

3 

3 

9 

3 

3 

3 

3 

3 

3 

2 

2 

3 

25 

20 

12 

.8431 

.0542 

.0621 

.1504 

.0959 

.0589 

.1209 

.0972 

.1069 

-.0738 

.0587 

.3712 

.9921 

2.1915 

.0587 

.1168 

.0732 

.1070 

.1070 

.0796 

.2058 

.2598 

.0791 

.0772 

.0283 

.2657 

.1360 

.1526 

.1151 

.0716 

.2534 

.50 

.03 

.04 

.03 

.03 

.06 

.12 

.05 

.03 

-.10 

-.08 

.37 

.27 

.03 

-.10 

.02 

.06 

.05 

.02 

.04 

.14 

.19 

.03 

.04 

.03 

.23 

.07 

.10 

.03 

-.10 

-.08 

1.19 

.08 

.29 

.15 

.26 

.06 

.12 

.15 

1.19 

-.07 

.39 

.37 

1.71 

4.35 

4.35 

.16 

.20 

.55 

.55 

.12 

.24 

.45 

.17 

.11 

.05 

.30 

.20 

.16 

.45 

1.27 

3.10 
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R3 

SI 

S2 

S3 

Tl 

T2 

T3 

Total 

7 

12 

11 

11 

8 

12 

19 

112 

.0804 

.1399 

.0732 

.0459 

.2657 

.4478 

.1450 

.1126 

.03 

.02 

-.02 

.02 

.02 

.04 

-.03 

-.10 

.45 

.32 

.20 

.55 

1.05 

14.04 

26.09 

26.09 
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Table A 7. N 20 flux by replicate Illustrating extremely high variation in values between replicates on Mar 22/07, 
with the highest variation at site T3. 

Case Summaries3 

Replicate R1N1 1 

R1N2 1 

R1N3 1 

R2N1 1 

R2N2 1 

T1N2 1 

T2N1 1 

T2N2 1 

T2N3 1 

T3N1 1 

T3N2 1 

T3N3 1 

N20 flux (mg mA-

2dA-l) 

1.27 

.56 

1.04 

.74 

.02 

.03 

2.32 

.07 

14.04 

26.09 

5.81 

.09 

a. Limited to first 100 cases. 
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Table A 8. Median, minimum and maximum N 20 flux by 5°C soil temperature bin from SC, August 2006 
through August 2008. 

Case Summaries 

N2Oflux(mgmA-2dA-l) 

Soil 

temperature 

(C) at 5 cm 

Moisture level depth (Binned) 

dry (< 0.05 m3 m-3) 15.1 - 20.0 

Total 

moist (0.05 - 0.19 m3 m-3) <= 0.0 

0.1 -5.0 

5.1 - 10.0 

10.1 - 15.0 

15.1 -20.0 

20.1 - 25.0 

25.1 - 30.0 

30.1 + 

Total 

wet (0.20 - 0.34 m3 m-3) <= 0.0 

0.1-5.0 

5.1 - 10.0 

10.1 -15.0 

15.1 -20.0 

20.1 -25.0 

25.1-30.0 

30.1 + 

Total 

very wet (0.35+ m3 m-3) <= 0.0 

0.1 -5.0 

5.1 - 10.0 

10.1 - 15.0 

N 

4 

4 

10 

11 

4 

26 

63 

67 

15 

6 

202 

12 

30 

51 

43 

127 

93 

33 

8 

397 

1 

13 

56 

18 

Median 

.2873 

.2873 

-.0052 

.0552 

.0434 

.0571 

.1147 

.1433 

.2639 

.4798 

.1117 

.0509 

.0906 

.0770 

.0732 

.1293 

.1745 

.3175 

.6086 

.1363 

.0088 

.1380 

.0710 

.0891 

Minimum 

.09 

.09 

-.02 

.00 

-.03 

-.10 

-.05 

.00 

-.04 

.10 

-.10 

-.02 

-.01 

-.08 

-.07 

-.07 

-.04 

.03 

.22 

-.08 

.01 

-.05 

-.09 

.03 

Maximum 

.42 

.42 

.23 

.48 

.10 

.29 

1.46 

3.88 

1.30 

1.89 

3.88 

.66 

.53 

1.20 

4.35 

1.31 

1.76 

.87 

2.48 

4.35 

.01 

3.10 

1.19 

.55 
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Total 

15.1 -20.0 

20.1-25.0 

25.1 -30.0 

Total 

<=0.0 

0.1 - 5.0 

5.1 - 10.0 

10.1 -15.0 

15.1 -20.0 

20.1 -25.0 

25.1 - 30.0 

30.1+ 

Total 

24 

21 

14 

147 

23 

54 

111 

87 

218 

181 

62 

14 

750 

.1754 

.3984 

.4415 

.1253 

.0112 

.0773 

.0747 

.0661 

.1353 

.1675 

.3358 

.5342 

.1235 

.02 

.07 

.09 

-.09 

-.02 

-.05 

-.09 

-.10 

-.07 

-.04 

-.04 

.10 

-.10 

.89 

3.06 

2.25 

3.10 

.66 

3.10 

1.20 

4.35 

1.46 

3.88 

2.25 

2.48 

4.35 
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Table A 9. Median, minimum and maximum N 20 flux by 2.5CC soil temperature bin from SC, August 2006 
through August 2008. 

Case Summaries 

N2Oflux(mgmA-2dA-l) 

Moisture level 

dry (< 0.05 m3 m-3) 

moist (0.05- 0.19 m3 m-3) 

wet (0.20 - 0.34 m3 m-3) 

Soil 

temperature 

(C) at 5 cm 

depth (Binned) 

15.1 -17.5 

17.6-20.0 

Total 

<=0.0 

0.1-2.5 

2.6 - 5.0 

5.1 -7.5 

7.6 - 10.0 

10.1 -12.5 

12.6-15.0 

15.1 -17.5 

17.6-20.0 

20.1 -22.5 

22.6 - 25.0 

25.1 -27.5 

27.6 - 30.0 

30.1 -32.5 

32.6+ 

Total 

<=0.0 

0.1-2.5 

2.6-5.0 

5.1-7.5 

7.6 - 10.0 

N 

2 

2 

4 

10 

8 

3 

2 

2 

5 

21 

23 

40 

40 

27 

11 

4 

3 

3 

202 

12 

15 

15 

17 

34 

Median 

.2308 

.3087 

.2873 

-.0052 

.0329 

.0780 

.0836 

-.0078 

.0387 

.0576 

.0657 

.1435 

.0911 

.2228 

.2952 

.2408 

.4774 

.4821 

.1117 

.0509 

.0447 

.1257 

.0918 

.0662 

Minimum 

.09 

.20 

.09 

-.02 

.00 

.07 

.07 

-.03 

-.02 

-.10 

-.05 

.01 

.00 

.05 

-.04 

.08 

.10 

.39 

-.10 

-.02 

-.01 

.04 

.02 

-.08 

Maximum 

.37 

.42 

.42 

.23 

.48 

.14 

.10 

.02 

.12 

.29 

.31 

1.46 

3.88 

.98 

1.08 

1.30 

1.89 

.70 

3.88 

.66 

.53 

.37 

.97 

1.20 
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very wet (0.35+ m3 m-3) 

Total 

10.1 - 12.5 

12.6-15.0 

15.1 - 17.5 

17.6-20.0 

20.1-22.5 

22.6 - 25.0 

25.1-27.5 

27.6 - 30.0 

32.6+ 

Total 

<=0.0 

0.1-2.5 

2.6-5.0 

5.1-7.5 

7.6- 10.0 

10.1 -12.5 

12.6-15.0 

15.1 - 17.5 

17.6-20.0 

20.1 - 22.5 

22.6 - 25.0 

25.1 - 27.5 

27.6 - 30.0 

Total 

<=0.0 

0.1-2.5 

2.6-5.0 

5.1-7.5 

7.6 - 10.0 

10.1 -12.5 

12.6-15.0 

13 

30 

54 

73 

61 

32 

19 

14 

8 

397 

1 

5 

8 

17 

39 

12 

6 

9 

15 

14 

7 

9 

5 

147 

23 

28 

26 

36 

75 

30 

57 

.1057 

.0696 

.1002 

.1490 

.1807 

.1634 

.3142 

.3526 

.6086 

.1363 

.0088 

.1963 

.1003 

.0316 

.1133 

.1232 

.0804 

.1104 

.1843 

.3461 

.3984 

.4697 

.4264 

.1253 

.0112 

.0619 

.1179 

.0582 

.0819 

.1008 

.0629 

-.04 

-.07 

-.07 

.01 

-.04 

.06 

.03 

.10 

.22 

-.08 

.01 

.08 

-.05 

-.09 

-.01 

.03 

.03 

.02 

.09 

.09 

.07 

.09 

.31 

-.09 

-.02 

-.01 

-.05 

-.09 

-.08 

-.04 

-.10 

.30 

4.35 

.70 

1.31 

1.76 

.87 

.87 

.62 

2.48 

4.35 

.01 

2.47 

3.10 

.18 

1.19 

.36 

.55 

.31 

.89 

3.06 

.74 

.75 

2.25 

3.10 

.66 

2.47 

3.10 

.97 

1.20 

.36 

4.35 
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15.1 -17.5 

17.6-20.0 

20.1 -22.5 

22.6 - 25.0 

25.1 -27.5 

27.6 - 30.0 

30.1-32.5 

32.6+ 

Total 

88 

130 

115 

66 

39 

23 

3 

11 

750 

.0897 

.1491 

.1424 

.1865 

.3232 

.3877 

.4774 

.5862 

.1235 

-.07 

.01 

-.04 

.05 

-.04 

.08 

.10 

.22 

-.10 

.70 

1.46 

3.88 

.98 

1.08 

2.25 

1.89 

2.48 

4.35 
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Table B 1. Median, minimum and maximum N 20 flux by soil moisture category during the 5 simulated winter thaws 
and simulated spring period of the SCFT experiment. 

Case Summaries 

N20 (mg/mA2/day) 

Moisture 
Level Thaw cycle 

DRY 

Early spring 

Late spring 

Winter thaw 1 

Winter thaw 2 

Winter thaw 3 

Winter thaw 4 

Winter thaw 5 

Total 

MOIST 

Early spring 

Late spring 

Winter thaw 1 

Winter thaw 2 

Winter thaw 3 

Winter thaw 4 

Winter thaw 5 

Total 

WET 

Early spring 

Late spring 

Winter thaw 1 

Winter thaw 2 

Winter thaw 3 

Winter thaw 4 

Winter thaw 5 

Total 

Total 

Early spring 

Late spring 

Winter thaw 1 

Winter thaw 2 

Winter thaw 3 

Winter thaw 4 

Winter thaw 5 

Total 

N 

172 

15 

12 

9 

9 

9 

9 

9 

244 

116 

10 

8 

6 

6 

6 

6 

6 

164 

231 

20 

16 

12 

12 

12 

12 

12 

327 

519 

45 

36 

27 

27 

27 

27 

27 

735 

Median 

.0000 

.0000 

.0406 

.0231 

.0000 

.0219 

-.0218 

.0223 

.0000 

.0888 

.5204 

.1964 

.3492 

1.0282 

1.0055 

1.2616 

1.5309 

.1590 

.1909 

8.0337 

2.2805 

.2111 

2.2798 

2.2361 

2.6636 

2.4354 

.2824 

.0664 

.6317 

.4477 

.1045 

.4780 

.6647 

1.3297 

.9264 

.0884 

Minimum 

-.23 

-.05 

-.04 

-.02 

-.02 

-.02 

-.07 

-.02 

-.23 

-.35 

.00 

.06 

.00 

.11 

.17 

.21 

.24 

-.35 

-.15 

.21 

.52 

.10 

.35 

.54 

.93 

.56 

-.15 

-.35 

-.05 

-.04 

-.02 

-.02 

-.02 

-.07 

-.02 

-.35 

Maximum 

.33 

.07 

.10 

.05 

.13 

.20 

.05 

.04 

.33 

1.71 

12.73 

4.25 

.88 

3.22 

3.19 

4.03 

3.70 

12.73 

1.84 

14.97 

34.78 

.76 

6.36 

5.20 

5.95 

4.72 

34.78 

1.84 

14.97 

34.78 

.88 

6.36 

5.20 

5.95 

4.72 

34.78 

138 
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Table B 4. Median, minimum and maximum N 20 flux by soil temperature and soil moisture categories during 
the 5 simulated winter thaws and simulated spring period of the SCFT experiment. 

Moisture Soil temperature (C) 
Level at 5cm depth 

DRY -7.4 - -5.0 

-4.9 - -2.5 

-2.4 - 0.0 

0.1 -2.5 

2.6 - 5.0 

17.6 - 20.0 

20.1+ 

Total 

MOIST <= -10.0 

-9.9 - -7.5 

-7.4 - -5.0 

-4.9 - -2.5 

-2.4 - 0.0 

0.1-2.5 

2.6 - 5.0 

17.6-20.0 

20.1+ 

Total 

WET <= -10.0 

-9.9--7.5 . 

-7.4 - -5.0 

-4.9 - -2.5 

-2.4 - 0.0 

0.1 - 2.5 

2.6 - 5.0 

17.6-20.0 

20.1+ 

Total 

Total <= -10.0 

-9.9 - -7.5 

-7.4 - -5.0 

-4.9 - -2.5 

-2.4 - 0.0 

0.1 -2.5 

2.6-5.0 

17.6-20.0 

20.1 + 

Total 

N 

5 

131 

26 

6 

64 

3 

9 

244 

10 

8 

66 

30 

30 

2 

10 

2 

6 

164 

22 

14 

132 

59 

40 

27 

17 

7 

9 

327 

32 

22 

203 

220 

96 

35 

91 

12 

24 

735 

Median 

.0000 

.0000 

.0222 

.0111 

.0000 

.0000 

.0823 

.0000 

.0437 

.1117 

.0889 

.1230 

.5676 

6.5708 

.3481 

.1364 

.2797 

.1590 

.1424 

.1326 

.1703 

.3259 

1.3722 

4.0057 

2.6400 

1.5627 

8.5553 

.2824 

.0982 

.1326 

.1460 

.0229 

.4472 

2.6788 

.0220 

.9605 

.2797 

.0884 

Minimum 

-.02 

-.23 

-.07 

.00 

-.07 

-.02 

-.04 

-.23 

-.02 

.02 

-.35 

-.09 

.00 

.41 

.00 

.06 

.08 

-.35 

.00 

.02 

-.15 

-.12 

.10 

.17 

-.02 

.52 

1.67 

-.15 

-.02 

.02 

-.35 

-.23 

-.07 

.00 

-.07 

-.02 

-.04 

-.35 

Maximum 

.00 

.16 

.33 

.05 

.20 

.00 

.10 

.33 

.21 

.20 

1.71 

1.33 

4.03 

12.73 

2.01 

.21 

4.25 

12.73 

.31 

.28 

.91 

1.84 

4.91 

14.97 

11.38 

5.12 

34.78 

34.78 

.31 

.28 

1.71 

1.84 

4.91 

14.97 

11.38 

5.12 

34.78 

34.78 
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