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Abstract 
 
Forested peatlands in the Western Boreal Plain (WBP) represent hydrologically sensitive 

ecosystems that often support an open-crown forest of Picea mariana and/or Larix laricina. These 

systems store globally significant soil carbon, containing one-fourth to one-third of the world’s 

soil organic carbon pool (Turunen et al., 2002), serving a critical role in regulating atmospheric 

CO2. Recent studies indicate that the hydrological conditions are the critical determinant of a 

peatland’s carbon budget (Price et al., 2005; Aurela et al., 2007). To understand current 

hydrological conditions, it is essential to accurately estimate the rate of ET, due to its dominance 

within a peatland’s water balance (Price and Maloney, 1994; Fraser et al., 2001; Lafleur, 2008). 

The mechanism by which peatlands retain and exchange water with the atmosphere is important 

to maintain the stability of these systems. However, this stability is threatened by the impacts of 

both warmer and drier conditions associated with climate change, and altered hydroclimatic cycles 

as a result of landscape disturbance. Increasing drought (frequency and severity) has the potential 

to increase tree growth, modifying density, size and spatial arrangement of the trees (Kettridge et 

al., 2013). This expansion impedes incoming solar radiation from reaching the peat surface, 

potentially limiting surface evapotranspiration (ET), which at present, represents the main flux 

water loss from these systems. A reduction in surface ET (ETsurf) could further produce a reduction 

in total fen ET, despite predicted increases in canopy transpiration (T) attributed to the higher stem 

density. 

 This research partitions ET between the canopy and understory between two typical fens, 

under current climate conditions, within the oil sands region of Fort McMurray, Alberta. The 

effects of climate, tree canopy and surface vegetation on the energy balance and ET processes were 

analyzed using a micrometeorology (MET) and eddy-covariance (EC) data in two typical Western 

Boreal Plain (WBP) fens during the growing 2013 season. Flux data were partitioned through the 

application of the stem heat balance (SHB) method and dynamic closed chambers. The two fens 

are distinguished as a poor fen with an open canopy composed of Picea mariana, and a rich fen, 

with a dense Larix laricina canopy. Additionally, the two fens are distinguished by differences in 

localized climate, with the poor fen subjected to significantly cooler air (Ta) and soil (Tg) 

temperatures.  

 The energy balance of both fens was regulated by the latent heat flux (QE). The seasonal 

pattern of ET was closely linked with growing season net radiation (Q*), vapour pressure deficit 
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(VPD), Ta and precipitation (P) events, averaging 2.3 mm d-1 and 3.5 mm d-1 between the poor, 

open canopy fen and rich, dense canopy fen, respectively. A strong, positive linear correlation was 

exhibited between the control parameters Q*, Ta, and daily transpiration (T). Seasonal mean T rates 

varied over the four month growing season at the Picea mariana poor fen, averaging 0.3 mm d-1, 

while T rates at the Larix laricina rich fen supplied a higher contribution to the fen’s total ET flux, 

averaging 2.7 mm d-1. Both ET and T reached maxima in conditions of high Q*, Ta, and moderate 

to high VPD, that coincided with lower relative humidity (RH) and moderate windspeed (u). 

Neither ET nor T demonstrated a direct relationship with volumetric moisture content (VMC), due 

to the consistently high water table, generally at or above the peat surface, maintained at both sites.  

 The poor fen’s discontinuous Picea mariana canopy permitted a larger degree of incoming 

radiation to reach the underlying peat surface, while the rich fen’s higher tree density composed 

of the Larix laricina, limited incoming radiation due to shading. Subsequently, surface vegetation 

of the former was dominated by Sphagnum moss, while the latter was composed of a variety of 

feather moss and the brown moss, Tomenthypnum nitens. The poor fen’s open canopy and 

dominant Sphagnum moss resulted in the dominance of the ETsurf, with a mean of 0.8 mm d-1, 

contributing approximately > 80% to the daily ET budget. Conversely, the rich fen’s dense canopy 

diminished the impact of ETsurf to 0.5 mm d-1, contributing < 20% to the total ET flux. Increased 

tree density from a Picea mariana open-canopy, to a Larix laricina dense canopy, reduced average 

PAR reaching the underlying surface to < 500 μmol m-2 s-1 and < 300 μmol m-2 s-1. Although the 

presence of an overstory did not produce a microclimate that was statistically different between 

open and covered plot conditions, it did generally support cooler, wet conditions that inhibited 

ETsurf.  
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Chapter One 
Introduction 

 
Canada’s Western Boreal Plains (WBP) ecozone represents an extremely diverse landscape 

consisting of coniferous and mixed-wood forests and a variety of wetland types (Vitt et al., 2003), 

extending across Alberta to Manitoba (National Working Group, 1988). In this region wetlands 

account for 65% of the landscape, with bog and fen peatlands representing the dominant wetland 

class despite a sub-humid climate (Woynillowicz et al., 2005). From a global perspective, although 

only covering 3% of the terrestrial land surface (Yu, 2012), peatlands store approximately 30% of 

soil carbon (Limpens et al., 2014; Gorham, 1991; Limpens et al., 2008).  

 The WBP is composed of three common landforms including coarse-grained glaciofluvial 

outwash deposits, fine-grained disintegration moraines and low-lying glaciolacustrine plains 

(Devito et al., 2005a). Peatlands persist primarily in areas of poor drainage supported by enhanced 

groundwater flow from glacial deposits in addition to direct precipitation input (Devito and 

Mendoza, 2007). Moreover, it is the persistence of water-deficit conditions that shapes the unique 

hydrology of the WBP. Peatland hydrology, ecological functioning, and development are largely 

dependent on the local energy balance and whether precipitation (P) is balanced by 

evapotranspiration (ET) (Runkle et al., 2014). The WBP peatlands exist within a sub-humid 

climate where P is less than or equivalent to potential evapotranspiration (PET) (van der Kamp., 

2003; Devito et al., 2005b; Brown et al., 2010), therefore ET constitutes a dominant hydrological 

flux (Bridgham et al., 1999; Eaton et al., 2001; Johnson and Miyanishi, 2008). It is the dominance 

of ET and persistence of a sub-humid climate that suggest that these peatland systems may be the 

most sensitive to any climatic variability (Petrone et al., 2011). Previous research has suggested 

that climate-induced expansion of trees and shrubs has the potential to turn these ecosystems from 

net carbon sinks into sources when associated with reduced water tables. Increased water loss 
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through canopy transpiration (T) could further draw down water tables, thus stimulating peat 

decomposition and carbon release (Limpens et al., 2014).  It is evident that future climate change 

scenarios may have profound effects on the maintenance of these systems, altering their capacity 

to store carbon.  

 Further threatening these peatland systems, is the rapid development of natural resource 

based industries that affect vast areas of the WBP. Specifically, mining practices within the oil 

sands region of Fort McMurray, Alberta have caused significant disturbance and/or the complete 

removal of vast areas of wetland (Alberta Environmental Protection, 1998). The Athabasca deposit 

surrounds the city of Fort McMurray, and encompasses approximately 475,000 ha of boreal 

Alberta, of which 99% is already leased (Rooney et al., 2012). Open-pit mining involves the 

complete removal of peat layers, leaving landscapes with very large pits up to 100 m in depth 

(Johnson and Miyanishi, 2008). Constraints imposed by the post-mining landscape coupled with 

the sensitivity of peatland vegetation prevent the natural restoration of the pre-mined landscape 

(Rooney et al., 2012). Threats imposed by climate change will further complicate the future 

trajectories of these systems.  

 Previous hydrologic research has shown that temporal climate patterns exert a strong 

control on the hydrologic processes driving wetland sustainability, vegetation patterns and regional 

groundwater recharge (Ferone and Devito, 2004; Devito et al., 2005b; Smerdon et al., 2005; 

Petrone et al., 2007; Smerdon et al., 2007). Recent attention has focused on the interactions 

between hydrology and the carbon cycle within peatland environments, and there is a general 

consensus that the hydrological cycle is an important first-order control to carbon fluxes, changes 

in vegetation cover, and microtopographic patterning (Billett et al., 2004; Couwenberg and 

Joosten, 2005; Limpens et al., 2008). Thus, quantifying impacts caused by anthropogenic 
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development requires a detailed understanding of the natural variability of the hydrologic 

processes (especially ET) and water cycling unique to this region, under past, present and future 

climatic conditions (Comer et al., 2000; Cleugh et al., 2007; Raddatz et al., 2009). This requires a 

better understanding of the driving factors and controls on ET. This study focuses on the processes 

controlling the surface energy and water budgets within two relatively undisturbed peatlands in 

the Fort McMurray region.  

 Peatland surface vegetation exerts a significant control on the hydrology and microclimate 

of the system (Oechel and Van Cleve, 1986; Bisbee et al., 2001; Heijmans et al., 2001), integrating 

a range of environmental controls that influence the spatial variability of carbon exchange 

processes (Waddington and Roulet, 1996; Swanson and Flanagan, 2001; Bubier et al., 2003). This 

is especially significant within black spruce (Picea mariana) dominated peatlands, which represent 

the most widespread boreal forest system in North America (Oechel and Van Cleve, 1986). 

Because black spruce cover is relatively open due to the narrow structure and low density of the 

trees (Heijmans et al., 2004), a substantial portion of incoming solar radiation is able to reach the 

underlying peat surface, often dominated by Sphagnum species. Thus, the understory/surface 

vegetation exerts a significant role on the system’s CO2 (Goulden et al., 1997; Waddington et al., 

1998) and water exchange (Williams and Flanagan, 1996). As such, moss evaporation rates are 

strongly dependent on the openness of forest canopy (Heijmans et al., 2004). 

 This study seeks to characterize the typical partitioning of ET among ecosystem 

components within two typical WBP fens, and determine how the partitioning of ET varies with 

the density and spatial organization of the trees. Souch et al. (1996) conclude that our 

understanding of ET and the related physical processes are not well characterized for many wetland 

types. Drexler et al. (2004) further state that despite the numerous methods available to quantify 
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wetland ET, it remains insufficiently characterized due to the diversity and complexity of wetland 

types. Therefore, this research will not only reduce uncertainty surrounding wetland ET, but 

understanding how the components of these systems contribute to the overall ET flux is essential 

to understand how a peatland ecosystem may respond to both climate change and anthropogenic 

disturbance. Further, such information will form a baseline study for future fen reclamation 

projects. Specifically, the first objective is to quantify the ecosystem scale energy and ET budgets 

of each fen throughout the growing season. The second objective seeks to understand the climatic 

and vegetational controls governing ecosystem scale ET and T via a comparison of two fens with 

distinct differences in canopy cover. The third objective will examine how surface microclimate 

and ETsurf varies within varying degrees of canopy cover. Lastly, the fourth objective will partition 

ET flux components between peat surface and canopy. 

 This thesis follows the manuscript format and has been organized into seven chapters 

including this introduction, which provides a brief overview of the research objectives and 

questions. General background information on relevant research in the WBP, the nature of ET in 

the WBP and a future climate change scenario, as well as, study rationale and site description are 

provided in Chapter two. Chapter three details the applied field and lab methods including the use 

of micrometeorological (MET) measurements, and the eddy covariance (EC) technique to measure 

ecosystem scale energy balance and ET data. An estimation of canopy transpiration (T) was 

obtained through the application of the stem heat balance (SHB) method.  The use of dynamic 

closed chambers was used to characterize ETsurf. Forest inventory surveys and LiDAR derived land 

surface classification was employed to scale flux data to the fen boundary. Chapter four 

summarizes the results, and Chapter five includes of discussion of results as they pertain to the 
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research objectives. Finally, chapter six provides a summary of results and elaborates on the 

applicability of this research to industry, and within the context of future climate change scenarios.  
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Chapter Two 
Literature Review 

2.1 Western Boreal Plain 

Boreal forest ecosystems constitute the second largest biome on Earth, occupying 10% of the entire 

global land area (McGuire et al., 1995), containing an estimated 22% of the total terrestrial carbon 

pool and more freshwater resources than any other terrestrial ecosystem (Watson et al., 2000). 

Within Canada, the composition of boreal forest vegetation is strongly dictated by climate (Wieder 

et al., 2006; Johnson and Miyanishi, 2008). Limited by long, cold winters and short growing 

seasons, boreal peatlands are typically species poor, dominated by conifer forests and shrub 

vegetation (Walter, 1973; Vitt, 2006; Wieder et al., 2006). However, in much of the WBP, it is the 

sub-humid climate, thick overburden layer and gentle topographic grade, comprising hillslopes 

and poorly drained lowlands that supports a landscape with one of the highest densities of 

peatlands globally (Gorham, 1991; Kuhry et al., 1992; Johnson and Miyanishi, 2008). The systems 

provide unique ecosystem services including the regulation of globally significant carbon stocks 

(Frolking et al., 2006; Wieder et al., 2009), storing one-fourth to one-third of the world’s soil 

organic carbon pool (Turunen et al.,  2002). However, these ecosystems are threatened by climate-

mediated warming and anthropogenic disturbance, of particular concern within the oil sands region 

of northern Alberta.  

 To minimize the impacts produced from oil and gas-based mining, Alberta’s 

Environmental Protection and Enhancement Act (EPEA) requires that the impacted landscape be 

restored as a functioning ecosystem of equivalent capabilities to the pre-disturbed conditions 

(Chymko, 2000; Grant et al., 2008), and that peatlands, specifically fens, be given primary 

consideration for reclamation projects within the region of Fort McMurray (Alberta Environment, 

2008b; Trites and Bailey, 2009). It is essential that the reconstructed system be self-sustaining, 



7 
 

carbon-accumulating, capable of supporting a representative assemblages of boreal species, 

tolerant of normal, periodic stress and can maintain appropriate peat moisture dynamics (Price et 

al., 2011). To successfully construct a fen with equivalent function, it is necessary to understand 

the dominant processes that sustained the pre-disturbed systems and incorporate them into design 

reclamation strategies. Therefore, it is recommended that these processes are first understood 

within naturally occurring peatlands within the area of reclamation (Guo and Sun, 2012).  

2.2 Evapotranspiration in the WBP 

Peatlands within the WBP operate within a sub-humid climate where P is generally less than or 

equivalent to potential evapotranspiration (PET), and ET constitutes a dominant hydrological flux 

(Bridgham et al., 1999; Eaton et al., 2001; Petrone et al., 2007; Johnson and Miyanishi, 2008). It 

is the persistence of a sub-humid climate and the dominance of ET in summer hydrologic budgets 

that indicates that peatlands may be extremely sensitive to any climatic variability (Petrone et al., 

2011). ET is controlled by atmospheric demand (PET), and surface water availability, which are 

in turn influenced by climate, vegetation and soil (Wang et al., 2015). Due to the persistence of a 

sub-humid climate and sensitive linkages between the soil, vegetation and atmosphere, peatlands 

are extremely susceptible to the slightest variability that may disturb the balance between P and 

actual evapotranspiration (AET) (Loiselle et al., 2001; Petrone et al., 2007; Matsumoto et al., 2008; 

Lafleur, 2008; Brown et al., 2010; Phillips, 2014). Therefore, to understand these systems it is 

crucial to understand ET and identify the processes by which different components of the system 

retain and exchange water vapour with the atmosphere (Brown et al., 2010). Previous studies have 

illustrated the importance of air and soil temperatures, position of water table and the atmospheric 

demand (PET) as the primary variables controlling evaporation and transpiration among the 

different layers or components of the peatland (Petrone et al., 2000; Admiral et al., 2006; 
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Overgaard et al., 2006; Admiral and Lafleur, 2007; Petrone et al., 2007, Lafleur, 2008; Brown et 

al., 2010). The cold subsurface exerts a direct thermal regulation on peatland plants, impedes 

drainage thus promoting peatland development and exerts a strong control on the availability of 

soil water (Rouse, 2000). The surface exchange and atmospheric fluxes further influence the 

temperature and wetness of the soil surface, which, by governing the conditions for biological and 

chemical processes are significant for soil carbon balance and methane emissions (Bubier and 

Moore, 1994). Since the process of ET determine both water and heat balance for a peatland 

surface, a detailed description of ET control is essential (Lafleur, 1990).  

 ET can fluctuate both spatially and temporally, according (but not limited) to the variability 

in vegetation cover and water availability. Topographic highs and lows influence the soil moisture 

gradient and the microclimate at the peatland surface, and thus the processes, interactions, and the 

exchange of energy and mass within the system (Raupach and Finnigan, 1997; Drexler et al., 2004; 

Petrone et al., 2007). Within treed peatlands, this interaction is multidimensional with cumulative 

effects occurring at both the canopy and sub-canopy interface. The multi-layer canopy of a typical 

peatland is often dominated by woody evergreen vegetation interspersed with deciduous shrubs, 

underlain by a relatively continuous surface cover of moss species (Sonnentag et al., 2007).  The 

effects of canopy cover on the underlying surface energy exchange is dependent on the density of 

the tree species (Moore et al., 2002; Lafleur et al., 2005; Petrone et al., 2011). However, detailed 

studies focusing on peatland canopy LAI, associated controls and their interactions with ET 

processes are lacking (Sonnentag et al., 2007).   

 Within the WBP, black spruce dominated peatlands represent the most widespread boreal 

forest system (Oechel and Van Cleve, 1986). Because black spruce cover is relatively open due to 

the narrow structure and low density of the trees (Heijmans et al., 2004), a substantial portion of 
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incoming solar radiation is able to reach the underlying peat surface, and consequently provides a 

significant contribution to ecosystem’s flux exchange (Petrone et al., 2011). Previous studies have 

shown that the water loss from the peat surface is strongly governed by canopy cover, which 

creates a microclimate that either boosts or impedes ground surface ET (Limpens et al., 2014). To 

analyze this interrelationship a stratification of ET and T within varying height and degrees of 

canopy cover is needed. Quantifying and characterizing the plant-atmosphere exchange has 

received increased focus within climate change research in order to clarify the potential response 

of specific species (Sellers et al., 1995a). Climate-mediated warming, and associated increase in 

drought conditions (frequency and severity) within the northern hemisphere have been linked to 

higher vascular plant cover (Weltzin et al., 2001; Breeuwer et al., 2009; Limpens et al., 2014), and 

reduced moss vitality (Robroek et al., 2009; Limpens et al., 2014).  

2.3 Future Climate Change Scenario 

 It is anticipated, under future climate change scenarios, that changing P patterns and 

increasing air temperatures could limit the potential for an ecosystem to dissipate its incident 

energy via the sensible heat flux (QH) in favour of the soil (QG) and latent heat flux (QE)  (Worrall 

et al., 2015). The effects of shrub and tree encroachment on peatland functioning and, ultimately, 

their successional pathways are complex (Limpens et al., 2014; Heijmans et al., 2013). Previous 

studies have examined the effects of tree shading on moss ET and species composition (Kettridge 

et al., 2013; Limpens et al., 2014; Thompson et al., 2015). Canopy T is generally limited by low 

stem density, and nutrient poor conditions that are typical of Picea mariana dominant fens (Wieder 

et al., 2009), as well as the persistence of anaerobic conditions (Clulow et al., 2013). Consequently, 

surface ET is maximized by the significant proportion of solar radiation reaching the often 

saturated understory (Kim and Verma, 1996; Heijmans et al., 2004; Brown et al., 2010). It has 



10 
 

been predicted that despite increased T rates that are associated with a warmer climate and higher 

stem density, it may still be insufficient to counteract the reduction in surface ET resulting from 

reduced available energy at the surface (Kettridge et al., 2013). Furthermore, an increase in the 

tree and/or shrub canopy can result in a shift in surface vegetation to be outcompeted by shade-

tolerant species (Marschall and Proctor, 2004; Hájek et al., 2009).  However, current 

understanding of the magnitude and form of this potentially significant feedback mechanism is 

limited (Moore et al., 1998; Waddington et al., 2014). The effect on surface ET cannot be 

considered in isolation and therefore must be examined in parallel with changes to microclimatic 

and surface species composition.     

2.4 Study Objectives 

The objective of this research is to understand the vegetational processes controlling the rates and 

variability of ET and T of two typical fens during the 2013 growing season, within the Athabasca 

oils sands region of Fort McMurray, Alberta. The first objective is of this study is to quantify and 

characterize the magnitude of ecosystem-scale energy partitioning and ET in two typical WBP 

treed fens throughout the growing season. The fens are generally characterized as a poor fen, black 

spruce (Picea mariana) dominant, and a rich fen, larch (Larix laricina) dominant. Canopy cover 

varies significantly between the two sites, with the larch fen possessing a denser tree canopy.  Due 

to the sensitivity of ET and T to environmental and physiological conditions (Brown et al., 2010), 

the second objective is to determine how the dominant controls governing site ET and T vary 

between the two fens. The third objective will quantify the spatial pattern of surface vegetation 

and ETsurf within varying tree density. This relationship will be examined alongside the effects of 

overstory canopy cover on micro- and hydro-climatological controls that regulate ETsurf. Finally, 
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the four objective will partition ET vertically between the canopy and understory, and how it varies 

between the two fens. This research addresses the following research questions:  

1. How does the magnitude of ecosystems-scale energy partitioning and ET temporally vary between 

the two fens with differing canopies (differing dominant species and densities)  

2. What are the dominant controls governing site ET and canopy T? 

3. What are the environmental and physiological controls that govern ETsurf and how do they vary in 

varying degrees of canopy cover? How does the magnitude of ETsurf differ within varying degrees 

of canopy cover? 

4. How is ET partitioned vertically between the peat surface and the tree canopy? 

2.5 Study Sites and Climate Characteristics  

Two fens, Pauciflora and Poplar, are located in close proximity to Fort McMurray, Alberta. 

Pauciflora, an 8 ha,  poor fen, is located approximately 40 km south of the city (56.2230N, 

111.14296W), while Poplar, an 11 ha, rich fen, is located approximately 25 km north (56.56192N, 

111.32550W) (Figure 1). Mean air temperatures within the region vary from -2 to +1°C, with 

summer and winter averages fluctuating between 10 and 16 °C and -18 and -14 °C, respectively 

(Environment Canada, 2013). Both sites reside within the sub-humid climate of the WBP, where 

annual precipitation is approximately 300 to 600 mm, of which 70% typically occurs as rainfall 

during the four month growing season (May to August) (Johnson and Miyanishi, 2008). 
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Figure 1: Map of research sites Poplar and Pauciflora fens within the Western Boreal Plain (WBP) 
in the Fort McMurray region, Alberta, Canada. 
 
 Pauciflora Fen is characterized as a poor (groundwater pH ~ 4.5), treed fen located on a 

regional topographic high (Stoney Mountain, ~740 masl). During the period of data collection, P 

was higher, and temperatures were cooler than the averages collected by Environment Canada at 

the Fort McMurray airport (Environment Canada, 2015). Bocking (2015) reported Pauciflora fen 

as receiving > 50% P and mean Ta that was consistently a few degrees cooler than the Fort 

McMurray airport, between the study periods 2011 to 2014. Canopy cover is dominated by stunted 

Picea mariana with sparse occurrences of Larix laricina, with tree age ranging between 30 to 40 

years. The canopy is discontinuous, consisting of densely treed plots to entirely open plots devoid 
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of any tree species. Average leaf area index (LAI) obtained from forestry inventory surveys 

conducted on 15 100 m2 plots, delineated within the immediate vicinity of the micrometeorology 

(MET) tower at each site (Figure 2), displayed an average LAI value of 0.55 (IEG, 2014). Mean 

fen canopy closure is ≤ 35%. The understory is characterized by a microtopography of hummocks 

and hollows with an average peat depth of 2 m. Hummock vegetation is characterized by few shrub 

species, Betula pumila, dominated by Rhododendron groenlandicum, Smilacena trifolia, as well 

as Carex aquatilis. Other common species include Andromeda polifolia, Rubus chamaemorus, 

Vaccinium vitis-idaea and Carex pauciflora (few-flowered sedge). Groundcover was composed of 

Sphagnum moss, primarily S. angustifolium, S. magellanicum, S. capillifolium; hereinafter 

generalized as Sphagnum ssp. Hollow vegetation consisted of similar species with the addition of 

Carex paupercula and Eriophorum vaginatum¸ but was devoid of shrub species.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Map of Pauciflora fen study site instrumentation and forestry inventory sampling plots. 
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 Poplar Fen, is a rich fen (groundwater pH ~ 6.6) dominated by a dense cover of Larix 

laricina, with sparse occurrences of Picea mariana within the immediate vicinity of the MET 

tower, which represents the focus of this study. Picea mariana is more prevalent within the fen 

and upland ecosites that surround this study area. In comparison to Pauciflora, Poplar supports a 

dense canopy with an average LAI of 2.82, obtained from 7 plots that surround the MET tower 

(Figure 3; IEG, 2014) and average tree age ranges from 25 to 35 yrs. Mean fen canopy closure is 

greater at ≥ 35%. The surface is composed of microtopographic highs and lows consisting of an 

average peat depth of 1 m. Understory vegetation consisted of a dense shrub layer of Betula pumila, 

Equisetum fluviatile, Smilacena trifolia, Carex prairea, and Carex diandra. Groundcover is 

composed of various moss species including the dominant Tomenthypnum nitens (Hedw.) Loeske 

and Aulacomnium palustre (Hedw.) with traces of traces of Pleurozium schreberi (Brid.) Mitt., 

Hylocomium splendens (Hedw.) BSG., Sphagnum capillifolium (Ehrh.) Hedw., Bryum 

pseudotriquetrum (Hedw.) and Drepanocladus aduncus (Hedw.) Warnst. (Goetz and Price, 2015).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Map of Poplar fen study site instrumentation and forestry inventory sampling plots. 
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Chapter Three 
Methods 

 
3.1 Energy Balance 

The surface energy balance can be estimated using, 

Q* = QE + QH + QG                                                      (2.1) 

where Q* represents net radiation (W m-2), QE is the latent heat flux (W m-2), QH is the sensible 

heat flux (W m-2), and QG is the ground heat flux (W m-2).  

 To quantify the energy balance components, a MET tower was installed at each site. 

Measurements included wind and speed direction (Model 05103, R.M. Young Company, USA), 

net radiation (NR-Lite2, Campbell Scientific, Canada; installed 6 m above the surface at Pauciflora 

and 10 m at Poplar, with an additional sensor at 3 m at Poplar), relative humidity (RH) and 

temperature (HOBO U23 Pro v2, Onset Computer Corporation, Bourne, MA; installed at 6 and 1 

m at Pauciflora, and 6, 3 and 1 m above the peatland surface at Poplar). QG was measured in both 

microforms at a 5 cm depth using soil heat flow transducers (Model HFT3.1, Campbell Scientific, 

Canada) and soil temperature profiles of 2, 5, 10 cm depths (Omega copper-constantin, Campbell 

Scientific Inc., USA). Precipitation (P) was measured in close proximity to the MET tower at each 

site using a tipping bucket rain gauge (HOBO U23 Pro v2, Onset Computer Corporation, Bourne, 

MA). Data were sampled every 60 s, and averaged over 30-minute intervals over 151 days (May 

through September). Quality control data filtering and gap filling were done according to Restrepo 

and Arain (2005), Falge et al. (2001), Phillips et al. (2014).     
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3.2 Eddy Covariance Theory  

The eddy covariance (EC) technique was used to measure site-wide surface energy fluxes and ET, 

which requires a determination of turbulent fluxes of water vapour, momentum and sensible heat 

from the covariance of their respective eddies (Peixoto and Oort, 1992; Petrone et al., 2001). The 

mean vertical flux of the sensible and latent heat fluxes were calculated, 

QH = ρ Cp w'T'                                                           (2.2) 

QE = Lρ w'q'                                                             (2.3) 

where ρ (kg m-3) is the density of air, Cp (MJ kg-1 K-1) is the heat capacity of the air, L (MJ kg-1 

kPa-1) is the latent heat of vaporization, w' (ms-1), T' (K) and q' (kPa) are the instantaneous variance 

in the vertical windspeed, air temperature and specific humidity measured at the same height. The 

covariances between w', q' and T' were measured by an electronic analog computation consisting 

of a multiplication and averaging process on the CR23X datalogger. The CR23X sampled w’, q’, 

and T’ at 20 Hz and averages calculated every 30 minutes. ET (mm d-1) was then calculated from 

the product QE,  

ET = QE                                                                (2.4) 
           LV ρw 

 
where Lv is the latent heat of vaporization (J kg-1) and ρw is the density of water (kg m-3) (Oke, 

1987).  

 EC systems were installed June 2013 on the pre-existing MET tower located at 5 and 10 m 

above the peat surface, at Pauciflora and Poplar, respectively, and consisted of  LI-7200 closed 

path IRGAs and flow modules (Li-Cor Biosciences, Lincoln, NE, USA), and sonic anemometers 

(WindMaster Pro, Gill Instruments, Lymington, Hampshire, UK). 
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 Prior to analysis, EC data were first filtered for periods of low turbulence (u* < 0.23 m/s), 

then corrected for density effects (Webb et al., 1980; Leuning and Judd, 1996) and sensor 

separation (Blanford and Gay, 1992; Leuning and Judd, 1996). As a final correction to the flux 

data, the energy balance closure was calculated and forced to close for the study period (Petrone 

et al., 2015). Closure is most reasonably forced by assuming that the measured available energy is 

representative of the plot that the EC sensors are measuring (Petrone et al., 2015; Petrone et al., 

2001), leaving QH and QE to be adjusted (Barr et al., 1994; Blanken et al., 1997; Twine et al., 2000; 

Petrone et al., 2001). To determine contributing areas of the measured EC fluxes, a footprint 

analysis was conducted for each site according to Schuepp et al. (1990). Results from the footprint 

model were used to filter-out data that originated outside the study area.  

3.3 Sapflow Measurements of Transpiration 

The theory of the stem heat balance (SHB) approach to measure sapflow has been described in 

detail by Sakuratani (1979) and Baker and Van Bavel (1987). The SHB method can be used to 

measure sapflow in both woody (Steinberg et al., 1989) and herbaceous (Baker and van Bavel, 

1987) stems. Sapflow systems (Dynamax Flow32-1K, Houston, TX, USA) were installed at each 

site to estimate sapflow rates of selected trees throughout the months of May to September over 

two consecutive years, 2012 and 2013, using the steam heat balance (SHB) method. Continuous 

measurements were stored on a data logger (CR1000, Campbell Scientific Inc., UT, USA) installed 

at each site. Each system was additionally equipped with a 12 volt deep-cycle marine battery 

maintained by a 50-watt solar panel. To obtain a representative estimation of canopy T rates, each 

system was instrumented with seven separate sensors including five trees and two understory 

species. Sapflow systems were installed within close proximity to the MET tower, based on 

representative canopy species, size, and average height as well as proximity to each other due to 
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cable length limitations of the Flow32 monitoring system. System installation complied with size 

requirements outlined by the manufacturer (Dynamax Inc., 2007), with sensors adhering to 

recommended size specifications (Table 2.4.1). Each gauge consists of a flexible heater that is 

wrapped around the stem and enclosed by a layer of cork, insulation and an aluminum coated PVC 

weather shield (Figure 4a). Pairs of thermocouple junctions are embedded in the cork band to form 

a thermopile. Displayed in Figure 2.4.1b, one thermocouple junction is placed on the inner and 

outer surface of the cork to measure radial temperature gradients away from the heater (ΔTr) 

(Steinberg et al., 1989). Additional junctions are positioned axially along the surface of the stem, 

with one junction from each pair staggered above and below the heater to measure temperature 

gradients ΔTa and ΔTb, which are used to calculate components of the heat balance of the stem 

(Figure 4c). 
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Figure 4: (a) Vertical cross-section through a stem heat balance (SHB) gauge. (b) Schematic of 
gauge thermocouples; copper wires shown as solid lines and constantan wires shown as dotted 
lines. For the determination of sapflow, the temperature differentials ΔTa, ΔTb, ΔTr are obtained 
from measurements of voltages across AH, BH and CH, respectively. (c) Schematic of conductive 
heat fluxes within the heated stem segment, where P (Pin) is the applied heat to the stem, qv is the 
rate of vertical heat loss, qr is radial heat loss and qf is heat uptake by the sap stream (Smith and 
Allen, 1996).  
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Site Ref. 
No. 

Sensor Size Species Do  
(cm) 

Height  
(cm) 

PFLORA 1 SGA5 Picea mariana sp. 0.52 42 
 2 SGA5 Picea mariana sp. 0.70 51 
 4 SGB25 Larix laricina 3.24 222 
 5 SGB35 Picea mariana 4.40 308 
 6 SGB35 Picea mariana 4.40 294 
 3 SGB50 Larix laricina 5.40 240 
 7 SGB50 Picea mariana 6.32 440 
POPLAR 1 SGA5 Betula pumila var. glandulifera 0.60 123 
 2 SGA5 Betula pumila var. glandulifera 0.48 82 
 3 SGB25 Larix laricina 2.70 266 
 4 SGB35 Larix laricina 4.45 430 
 5 SGB35 Picea mariana 4.45 445 
 6 SGB50 Larix laricina 6.00 492 
 7 SGB50 Picea mariana 6.30 500 

Table 1: Sapflow monitored trees and understory species, including species size and sensor 
specifications, installed at Pauciflora (PFLORA) and Poplar fen. Sapling trees are denoted by (sp.) 
and tree diameter measured at peat surface (Do). 
 
 The system requires a constant energy input that is balanced by heat flow out of the system 

(Figure 4c). Assuming no heat storage, Pin represents the power input to the stem from the heater, 

and the outward heat flow that is partitioned into conductive fluxes including vertical or axial heat 

conduction (qv) (which has two components including an upward (qu) and downward (qd) heat flux 

(not shown)), radial conduction (qr) away from the stem and mass heat transport by the sap stream 

(qf). Through the measurement of Pin, qr, qu, qd, heat convection carried by the sap (qf) can be 

calculated as the residual of the energy balance expressed as (Sakuratani, 1981; Baker and van 

Bavel, 1987), 

Pin = qr + qv + qf (W)                                                       (2.5) 

The value of Pin is calculated from the electrical resistance and voltage across the heater, while qv 

and qr are determined from measurements of ΔTa, ΔTb and ΔTr. Finally, qf is converted to a mass 

flow rate of sap.   
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 The value of qv is calculated using Fourier’s Law for one-dimensional heat flow from the 

upward and downward temperature gradients (Sakuratani, 1981; Baker and van Bavel, 1987). The 

sum of these gradients is algebraically equivalent to (ΔTb - ΔTa )  (K m-1) (Steinberg et al., 1990b), 

and qv is calculated, 

qv = AstKst (ΔTb - ΔTa)                                                     (2.6) 
                 x 

where Ast is the cross-sectional area of the heated section (m2), Kst is the stem thermal conductivity 

(W m-1 K-1), and x is the distance between the two junctions positioned above and below the heater 

(m) obtained from Dynagage specifications. The value of Kst was taken from the literature as 0.42 

W m-1 K-1 for woody stems (Steinberg et al., 1989). Additionally, the factor 0.040 mV C-1 is applied 

to convert the thermocouple differential signals to degrees C (Dynamax Flow32-1K, Houston, TX, 

USA). 

 Radial conduction, qr, is determined from ΔTr using, 

qr = Ksh ΔTr                                                                                           (2.7) 

where Ksh is the effective thermal conductance of the sheath of materials surrounding the heater 

(W mV-1). The value is dependent on the thermal conductivity of the insulating sheath and stem. 

It generally changes for each new installation and therefore must be calculated from ΔTr and 

additional components of SHB during periods when sapflow is known to be zero (Baker and van 

Bavel, 1987; Baker and Nieber, 1989). 

 Once all other components of the SHB are known, qf is calculated from difference and mass 

flow rate of the sap per unit time (Fm) (g h-1) is calculated using (Sakuratani, 1981; Baker and van 

Bavel, 1987; Steinberg et al., 1990b). This equation takes the residual of the energy balance (W), 

and converts it to a flow rate by dividing by the temperature increase of the sap and heat capacity 

of water, 
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Fm =          2qf                                                                                                     (2.8) 
cs (ΔTa + ΔTb) 

 
where cs is the specific heat capacity of water (4.186 J g-1 C) and  (ΔTa + ΔTb)/2 is the increase in 

sap temperature across the heater, assuming the sap is radially uniform. Once more, the 

temperature increase of the sap (mV) is converted to degrees C by dividing by the thermocouple 

temperature conversion constant (0.040 mV C-1). 

 Previous studies have reported errors in sapflow rates measured using the SHB method if 

changes in heat storage, within the heated section of the stem, are neglected. The size of these 

errors has been determine to increase with stem diameter (Groot and King, 1992; Shackel et al., 

1992; Grime et al., 1995a). However, errors become less important when daily rates of 

transpiration (T) are determined, as the change in heat storage over a 24-hr period is generally zero 

(Weibel and Boersma, 1995), and provides a reasonable estimation of steady state sapflow even 

for larger stems (Perämäki et al., 2001). Fm was calculated for each of the monitored sapflow trees, 

and was then divided by the density of water (1 g cm3 -1), of which resulting sapflow velocities 

(cm3 hr-1) were converted to litres (L hr-1), and finally summed over a 24-hr period to derive the 

total volume of water transpired (Fs) per tree per day (L day-1) (Clulow et al., 2013). Daily 

regression models were fitted to forest inventory mensuration data using sapwood area (SA) (cm2) 

(at the height of the sensor) as the independent function (Ford et al., 2007).  

 To determine SA, 15 sample trees from each site were harvested between the studied 

periods 2012 and 2013, selected based on proximity to the monitored sapflow trees to maintain 

consistency imposed by environmental constraints. Additionally, samples were stratified by 

diameter and species to ensure a statistically significant representation of each the five monitored 

sapflow trees (three samples per monitored tree). Before harvesting, diameter at peat surface (Do, 

cm), determined from the widest diameter flare separating stem from root (Fritts, 1976), height of 
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the live crown (m) and location were recorded. Recognized by Bond-Lamberty et al. (2002), the 

application of Do as the primary, independent allometric variable for small trees and shrubs has 

been successfully used in previous studies (Smith and Brand, 1983). Additionally, Do samples 

provide increased accuracy when estimating the number of growth years (Fraver et al., 2011).  

 Determining the extent of SA contained within the xylem requires a differentiation of the 

hydro-active from the inactive xylem. Located internal to the active SA, the heartwood represents 

primary or old growth rings incapable of water conduction or storage (Taylor et al., 2007). Often 

the heartwood can be determined through visual observation due to its dark pigmentation, 

however, this is not true for all species (Köstner et al., 1998). A commonly used method in 

estimating the hydro-active SA is to dye the xylem. For the purpose of this study, two separate 

dyeing techniques were applied to the harvested stem discs. Ferric nitrate (Fe (NO3)3) and Iodine-

potassium iodide (Lugol’s solution), a known indicator for starch (Vötter, 2005) were selected as 

effective indicator solutions in differentiating the heartwood-sapwood boundary for spruce and 

larch species (Kutscha and Sachs, 1962).  

 Sapwood cross-sectional area was determined on each sample disc by measuring xylem 

and heartwood diameters (cm), calculated as the mean diameter from two perpendicular 

measurements obtained from each sample disc. Measurements were recorded to the nearest 1 mm, 

from which xylem and heartwood cross-sectional areas (cm2) were calculated using an ellipse 

formula (Maguire and Hann, 1987), and estimated SA by subtraction (Husch et al., 1972; Ryan, 

1989). Total SA was estimated assuming a consistent cylindrical shape throughout the stem 

(Quiñonez-Piñó, 2007), with mean SA, obtained from three corresponding samples for each of the 

monitored sapflow trees at each site. Allometric correlations were established with a strong degree 

of confidence as the sample trees were subjected to same environmental constraints and growth 
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conditions as the monitored trees. SA (cm2) at the height of the sensor was calculated from the ratio 

of SA to total stem cross-sectional area at crown base, Fractional Sapwood Area (FSA). The ratio 

was applied to the cross-sectional area measured at the height of the sapflow sensor. Due to the 

narrow structure of the tree stems, variation in SA were negligible. 

Site Ref. 
No. 

Species AVG 
Sapwood 
Area (cm2) 

AVG No. 
Sapwood 
Rings 

Percent of 
Stem Cross-
section (%) 

Fractional 
Sapwood 
Area (FSA) 

PFLORA 4 Larix laricina 7.8 20 62.1  
 5 Picea mariana 15.6 37 81.3 0.8304 
 6 Picea mariana 11.1 29 84.8  
 3 Larix laricina 16.6 21 63.4  
 7 Picea mariana 27.6 39 85.0  
POPLAR 3 Larix laricina 8.3 14 66.2 0.7271 
 4 Larix laricina 20.5 12 73.4  
 5 Picea mariana 15.5 28 89.4 0.8938 
 6 Larix laricina 33.2 15 78.5  
 7 Picea mariana 23.8 27 89.4  

Table 2: Tree specific data required for calculation of sapflow. Fractional Sapwood Area (FSA) 
was determined for each tree species captured in forest mensuration data at each fen. 
 
3.4 Calculating Tree Transpiration 

A bottom-up scaling approach was used to scale sapflow (L day-1) using SA. A sum sapflow of all 

trees within each forest mensuration plot was used to represent plot T, assuming the sum of the 

mass flow within the monitored tree stems is equivalent to total canopy T with a short time lag 

(Ford et al., 2007), 

ŷ = βo + β1 (SA)      (2.9) 

                                              
where βo represents the linear regression model intercept and β1 represents the linear regression 

model slope (Quiñonez-Piñón, 2007). 
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Figure 5: Example of diurnal regression model, stem sapwood area (SA) (cm2) in relation to total 
tree water use (L day-1). 
 
 Diurnal linear regression equations modeling diurnal T (L) against SA (cm2) were 

developed for both species present at each site, Picea mariana and Larix laricina (R2 > 0.95) 

(Vertessy et al., 1995) (specific equations provided in Appendix I, II, III). Total T (L day-1) was 

averaged per plot, expressed per unit LAI, and then averaged across the fen study area (Ford et al., 

2007). T was converted to mm d-1 following a series of conversions described in Allen et al. (1998).  

3.5 Surface ET 

ETsurf measurements were collected between the daylight hours of 08:00 and 16:00 MST using 

dynamic closed chambers, six times per month from May to September 2013 to acquire an 

adequate sample size and to ensure seasonal variation was captured (Brown et al., 2010; Solondz 

et al., 2008). 16 and 14 representative sites were selected at Pauciflora and Poplar, respectively, in 

both hummocks and hollows (Figure 2, 3). Additionally, sites were selected in varying degrees of 

overstory canopy closure. A canopy gap fraction was determined from the LiDAR land 

classification data, and was expressed as a mean percent canopy closure for each fen. Results 

coincided was previous research comparing canopy closure of tree peatlands of Sphagnum and 
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feathermoss-dominated plots (Solondz et al., 2008). Plots classified as covered were selected 

within immediate proximity to a cluster of trees or overstory, whereas plots classified as open had 

no immediate overstory. Due to Pauciflora’s sparse canopy, covered plots were installed adjacent 

to a cluster of two to three trees, measuring ≥ 5 cm in DBH with a LAI of 0. 55 (fen overstory 

average). Covered plots at Poplar were installed in areas with approximately 20 trees, with a mean 

DBH of > 5 cm and an average LAI 2.51. Consequently, covered plots at Pauciflora maintained 

average PAR values ≤ 500 μmol m-2 s-1, while a reduced threshold of ~300 μmol m-2 s-1 was 

demonstrated at Poplar. Both thresholds fell within the range of values presented by Solondz et al. 

(2008). 

 Collars constructed from polyvinyl chloride (PVC) plastic piping with a height of 16 cm 

and an inside diameter of 19 cm were installed 10 cm into the peat at each site (Brown et al., 2010). 

ETsurf was determined through changes in vapour pressure (e) over time, measured in a clear 

enclosed Plexiglas chamber (Waddington and Roulet, 2000; McLeod, et al. 2004; Brown et al., 

2010), recorded over a two minute interval using a CIRAS-SC CO2/H2O Infrared Gas Analyzer 

(IRGA) (PP Systems, Amesbury, MA) (LeCain et al., 2002). The order of sampling sequence at 

each site was randomly varied throughout each sampling day to reduce confounding effects of the 

different light, temperature and moisture regimes that occur throughout the day, and to ensure 

sampling over a wide range of environmental conditions (LeCain et al., 2002; Brown et al., 2010; 

Phillips, 2014). Increases in e within the chamber is proportional to the instantaneous rate of ET, 

estimated using (McLeod et al., 2004), 

 
 

ETsurf = 3.6 MVC                                                        (2.10) 
                    A 
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where ETsurf is the instantaneous rate of evaporation (mm hr-1), 3.6 is a conversion coefficient to 

convert a volume of water into a flux rate (mm hr-1), M is the constant slope of the vapour pressure 

for each interval over the time step (g m-3 s-1), V is the volume inside the chamber (m3), C is the 

calibration factor to account for vapour absorption by the chamber material (dimensionless) 

(described in Stannard, 1988; Brown et al., 2010), and A is the area of the fen surface that is 

covered by the chamber (m2). 

 Environmental variables were sampled along with ETsurf at each site during the incubation 

period included air temperature (Ta) (thermocouple wire sealed in the chamber), photosynthetically 

active radiation (PAR) (Quantum Sensor LI-190SL, LI-COR, USA), peat temperature (2, 5, 10 and 

20 cm; Omega, USA), and volumetric moisture content (VMC) at a depth of 12 cm (HydroSense, 

Campbell Scientific Inc., Canada). The HydroSense was calibrated for each site (specific equations 

and methods referenced in Goetz (2014)). Depth to water table was continuously monitored using 

the OdysseyTM capacitance water level loggers (Dataflow Systems PTY. Ltd., New Zealand) 

located in close proximity to each fen’s MET tower, additional water tables measurements were 

manually recorded in wells installed adjacent to all sites. Finally, ETsurf  values were classified 

using LiDAR land classification data following steps Phillips (2014), described in the following 

sections, and relative surface flux contributions were extrapolated over the daylight hour 08:00 

and 16:00 to coincide with daily ET and T, and to assess the relative contribution of ETsurf. 
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3.6 Meteorological Tower Flux Footprint 

The flux footprint was calculated to correctly identify the measurement signals recorded by the 

meteorological instruments to the original emission area. For this study it was measured using the 

methods described by Scheupp et al. (1990). Every source area will contribute to the flux profile 

downwind to a degree that varies with distance from the source (i.e. max length), elevation of 

observation (instrument elevation), characteristics of the turbulent boundary layer and atmospheric 

stability (Scheupp et al., 1990). Both the position of the peak footprint (xmax), the area to which the 

observation is most sensitive, and the position of 80% flux contribution (xfrac) were determined. 

Periods when fluxes originated from outside the calculated footprint were removed from analysis. 

(Measurements were omitted when > 80% of the flux measured at a height of 5 and 10 m above 

the peat surface were estimated to originate outside the fen boundary, approximately 45 m in the 

east or west direction and 80 m in the north or southward direction from the tower at Pauciflora 

and Poplar, respectively). Vegetation community distributions within each tower’s footprint were 

determined with use of LiDAR land classification data, described in the preceding section.   

3.7 Scaling T and ET Flux Data 

To ensure that both canopy T and surface ET were representative of the larger fen boundary, two 

separate scaling techniques were employed. Canopy mensuration data were obtained through 

forest inventory surveys (IEG, 2014), and used to scale T data to the study area. Additionally, 

airborne light detection and ranging (LiDAR) data were used to classify groundcover within the 

fen boundary.  

3.7.1 Forest Inventory Surveys 

Survey plots, each measuring 100 m2, were delineated within the immediate vicinity of the MET 

tower and sapflow system (Figure 2, 3). In 2013, 17 survey plots were selected for Pauciflora, and 
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8 plots allocated at Poplar. Sampling locations were constructed to ensure sufficient spatial 

coverage to capture the dominant species and size class at each site. The initial survey was 

conducted in August 2013, in which tree species, stem count and density, diameter at breast height 

(DBH, cm), total height (cm), and mean LAI per plot were measured (Table 3, 4). Centered within 

each 100 m2 plot, a second 10 m2 plot was delineated to include sapling species. Supplementary 

measurements included groundcover classification, slope and microtopography. A subsequent 

survey was conducted in 2014 within the original 25 plots; changes including stem count, size and 

species decay were recorded.  

 Canopy LAI values were attained with an LAI-2000 plant canopy analyzer (LI-COR, USA), 

and comprised of understory (LAIU) and canopy (LAIC) measurement, as well as a cumulative LAI 

(LAIT) per plot, following similar techniques described in Vertessy et al. (1995). For a few select 

plots, LAIC was estimated from a formulated regression between measured LAIC and canopy cover 

(%). A conifer correction was applied to all LAIC measurements. Additionally, a sun-scattering 

correction was applied using FV-2200 software (Gower et al., 1999). A bottom-up scaling 

approach was used to scale sapflow estimated T (L day-1), summed for all trees within the forest 

survey plots using SA per tree. Previously described, T was then averaged per plot, expressed per 

unit LAI, and then averaged across the study area, expressed in mm day-1 (Vertessy et al., 1995; 

Ford et al., 2007). 
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PAUCIFLORA 
Plot Plot 

Size 
(m2) 

LAIC 
 
(m2) 

Stem 
Count 

AVG 
DBH 
(cm) 

S.D. AVG  
Height 
(cm) 

S.D 

1 100 0.89 15 5.8 ±1.7 480 ±116 
2  0.36 1     
3  0.45 3 5.4 ±0.9 441 ±6.6 
4  2.61 16 5.8 ±1.1 500 ±87 
5  0.30 5 5.2 ±1.7 255 ±247 
6  0.18 2 5.9 ±0.1 439 ±64 
7  0.41 1 4.8  377  
9  0.77 3 4.4 ±0.4 412 ±25 
10  0.47 2 5.8 ±1.1 430 ±25 
11  0.06 2 5.4 ±0.3 427 ±7.1 
12  0.14 1     
13  0.29 1 4.8  407  
15  0.84 4 4.4 ±0.3 355 ±22 
16  0.35 1 4.2  327  
17  0.15 1     
AVG  0.55  5.5 ±1.3 424 ±148 

Table 3: Forest Inventory Survey data, including plot count, plot size (m2), average canopy LAIC 
(m2), stem count, average DBH (cm) and Height (cm) per plot, at Pauciflora fen. (S.D. represents 
standard deviation). Missing plots indicate no tree canopy. Missing values indicate presence of 
dead tree species. 
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POPLAR 
Plot Plot 

Size 
(m2) 

LAIC 
 
(m2) 

Species Stem 
Count 

AVG 
DBH 
(cm) 

S.D. AVG  
Height 
(cm) 

S.D 

1 100 3.76 Lt 
Sb 

54 
1 

5.1 ±1.0 592 ±109 

2  1.46 Lt 
Sb 

10 
15 

7.4 
7.9 

±5.2 
±2.4 

562 
623 

±154 
±158 

3  3.26 Lt 
Sb 

26 
14 

6.7 
9.1 

±2.8 
4.5 

779 
746 

±220 
±220 

4  2.12 Lt 
Sb 

23 
7 

5.7 
6.1 

±1.2 
±3.3 

556 
574 

±125 
±178 

5  2.53 Lt 
Sb 

37 5.6 ±1.2 556 ±80 

6  2.44 Lt 
Sb 

16 
1 

7.5 
11.8 

±5.5 718 
783 

±204 

7  4.17 Lt 
Sb 

18 
24 

6.9 
8.6 

±4.2 
±3.0 

747 
726 

±213 
±235 

AVG  2.82   6.5 ±3.1 644 ±190 
Table 4: Forest Inventory Survey data, including plot count, plot size (m2), average canopy LAIC 
(m2), tree species (Lt, Larch; Sb, Black Spruce), stem count, average DBH (cm) and Height (cm) 
per plot, at Poplar fen. (S.D. represents standard deviation). Missing values indicate presence of 
dead tree species. 
 
3.7.2 Leaf Area Index and Biomass 

Field measurements of LAI were obtained at each collar with a LP-80 PAR/LAI Ceptometer 

(Decagon, USA) in early August, the late period of peak plant growth (Solondz et al., 2010; Brown 

et al., 2010). Canopy mensuration data were obtained through forest inventory surveys (Figure 

3.2.2, 3.2.3; IEG, 2014). Canopy LAI values were attained with an LAI-2000 plant canopy analyzer 

(LI-COR, USA), and comprised of understory (LAIU) and canopy (LAIC) measurement, as well as 

a cumulative LAI (LAIT) per plot, following similar techniques described in Vertessy et al. (1995). 

For a few select plots, LAIC was estimated from a formulated regression between measured LAIC 

and canopy cover (%). A conifer correction was applied to all LAIC measurements. Additionally, 

a sun-scattering correction was applied using FV-2200 software. Supplementary collar 

measurements were obtained in the lab using the LI-3100C Area Meter (LI-COR, USA) with plant 
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material harvested from each collar in September 2013, which was then used to calculate LAI based 

on the area of the collars (Sims and Bradford, 2001). Following harvest and prior to LAI 

measurements, plants were removed at root depth, grouped by species, oven-dried (24 hours at 

80°C), and weighed for total aboveground biomass (AGB) (Sims and Bradford, 2001). The roots 

were subsequently removed from the peat cores and then oven-dried (24 hours at 80°C), and 

weighed for below ground biomass (BGB) (Sims and Bradford, 2001).  

3.7.3 LiDAR Land Cover Classification 

Land cover classification employed methods described by Chasmer et al. (2016). Optical 

(spaceborne) and active (airborne) remote sensing data were used to characterize vegetation 

species types and structural characteristics as they are found in micro-topographic hummocks and 

hollows and with varying structural vegetation characteristics. Discrete return Airborne Light 

Detection and Ranging (LiDAR) data were acquired using an ALTM3100 on August 4, 2010 by 

Airborne Imaging Calgary and licensed for use by the Government of Alberta. LiDAR data were 

classified into ground and non-ground returns using TerraScan (TerraSolid, FI). Initial data 

products including a digital elevation model (DEM), digital surface model (DSM) and canopy 

height model (CHM = DSM – DEM) and gap fraction were created for an area of exceeding 2300 

km2 in Golden Software Surfer (Golden Software Inc. CO). The DEM was derived from ground 

returns using an inverse distance weighting (IDW) to a resolution of 1 m. The DSM was derived 

from all returns greater than 0.3 m above ground classified returns using the maximum return 

within a 1 x 1 m x z column. Canopy gap fraction at the Poplar site (in particularly due to dense 

shrub and tree vegetation) was rasterised based on the ratio of returns exceeding 1.3 m (often 

associated with DBH, represented by tree canopies) and returns exceeding 0.3 m to total returns 

within each 1 x 1 m x z column, representing canopy and canopy with understory gap fraction, 



33 
 

respectively. Hummocks and hollows were determined at Pauciflora and Poplar (but applied only 

to Pauciflora classification) sites using a 6 m radius search window, subtracted from the DEM at 

both sites for estimates of residual differences above and below the mean planar (normalized) 

surface. 

Optical imagery data processing and analysis 

WorldView2 multi-spectral and panchromatic data were acquired from Blackbridge Inc. 

(Lethbridge, AB) for Poplar fen on August 5, 2011. Digital numbers were converted to radiance 

and then converted to reflectance via atmospheric correction using Fast Line-of-sight Atmospheric 

Analysis of Hypercubes (FLAASH) in Exelis ENVI. Orthorectification was performed using the 

DEM derived from LiDAR data. Pleiades multi-spectral were also acquired from Blackbridge Inc. 

for Pauciflora fen on August 8, 2012. The same procedures were applied for conversion of digital 

numbers to radiance and reflectance in ENVI. Orthorectification was performed using the LiDAR 

DEM. 

Classification of vegetation species types, vegetation structure and micro-topography 

Poplar was classified with a support vector machine supervised classification based on visual 

assessment of vegetation optical characteristics and LiDAR structural data fusion based on a linear 

kernel. Input data included 8-band (WorldView-2), canopy height, and above and below canopy 

gap fraction. Approximately 15-25 training sets were created per species type.  Four species classes 

were created and further aggregated based on a 3 pixel majority filter to remove speckle. Species 

classes were then divided into 2 m binned vegetation height characteristics. As a result of taller 

vegetation and occlusion of ground-cover vegetation, species distribution did not appear to be 

associated with micro-topography (hummocks and hollows), and therefore, micro-topography was 

excluded from the resulting classification.  



34 
 

 Pauciflora was classified with a maximum likelihood classification (MLC) using similar 

methods of 4-band multi-spectral (Pleiades) and LiDAR data fusion based on visual examination 

of optical differences in species characteristics (and other land cover types within and adjacent to 

the fen). Between 15 and 25 training sets were created per species type, and 12 classes were created 

(including road). Species were further classified into hummocks, hollows and flat areas, and have 

naming conventions 1-5 that includes: conifer (Larix laricina), road, deciduous, conifer (Picea 

mariana), and other woody-shrub species, respectively. Numbers 106-312 refer to hummocks 

(100s), mid- or flat (200s) and hollows (300s) wetland ground cover and shrub species growing in 

these areas.  

3.8 Statistical and Error Analysis 
 
The data were delineated by month and by period of plant growth into Early Green (EG, DOY 121 

to 158), Green (G, DOY 158 to 218) and Late Green (LG, DOY 219 to 260) to better understand 

temporal and seasonal trends. EG is generally defined as the period in which vascular species 

emerged but are immature, the G period corresponds with the stage vascular species were 

maturing, and the LG period represents the stage vascular species reached maturity and LAI 

reached a maximum (Solondz et al., 2008). Results were compared using a two-way analysis of 

variance (ANOVA) and independent sample t-tests, reported with the sample mean, if the data 

were normally distributed. If the data did not satisfy the test of normality, the Mann-Whitney or 

the Wilcoxon signed rank test was used to demine the statistical significance between variables. 

Differences were deemed to be statistically significant if they met a significance level of 0.05. 

Literature that has examined flux measurements has generally reported standard deviation (± S.D.) 

to access the daily uncertainty between and within sites (Kellner, 2001; McNeil and Waddington, 

2003; Botting and Fredeen, 2006; Strack et al., 2006; Brown et al., 2014; Runkle et al., 2014). For 
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this study, standard deviation was used to describe the natural variability of the reported mean. 

Multiple regression equations were used to explain the relative contribution of control parameters 

in regulating both ET and T (Clulow et al., 2013). Error associated with EC flux measurements 

was determined following methods in Kroon et al. (2010). The accuracy of the SHB method and 

steady-state assumption was calculated using methods described in Skauratani (1982), Groot and 

King (1992) and Grime et al. (1995). Finally, ventilated chamber error, frequently associated with 

changes to Q* and the underlying microclimate, was calculated following McLeod et al. (2004). 
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Chapter Four 
Results 

 
4.1 Climate  

Over the study period the May to August monthly mean daytime Ta were 11.7 °C, 15.9 °C, 15.9 

°C, and 18.0 °C at Pauciflora, and 13.9 °C, 19.6 °C, 20.5 °C, and 19.6 °C at Poplar, respectively 

(Figures 6). Ta varied significantly between the two sites (Z = -9.149, p < 0.01) (n=113); Poplar 

generally reported higher values with a seasonal mean of 18.4 °C compared to Pauciflora at 15.2 

°C. However, mean Ta averaged between both sites were higher than climate normal for the region 

(1981-2010) (Environment Canada, 2015). Mean daily Tg at Pauciflora were below freezing (mean 

-0.04 °C) between DOY 121 – 131, while mean Tg at Poplar remained above freezing throughout 

the duration of the study period aside from the first two days in May (mean -0.87 °C) (DOY 121 

– 122). The highest Tg recorded at a depth of 2 cm was 19.9 °C and 21.5 °C on DOY 183 at 

Pauciflora and Poplar, respectively. A comparison of Tg reported at both fens demonstrated a 

significant variation (Z = -3.491, p < 0.01) (n=123) between the seasonal means of 13.4 °C and 

13.9 °C, at Pauciflora and Poplar respectively. RH tended to increase over the study period with 

both sites reporting a seasonal mean of approximately 67%; demonstrating spikes that 

corresponded with P events. RH did not significantly vary between the two fens (t = 0.130, p > 

0.05) (n=113).  
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Figure 6: Daily (a)(b) maximum and minimum air temperatures (Ta, °C) (6m)(3m), (c)(d) mean 
soil temperatures (Tg, °C) (2,5,10 cm depths), (e)(f) mean relative humidity (RH, %) (6m)(3m) and 
(g)(h) total precipitation (P, mm) over the 2013 growing season at Pauciflora and Poplar fen, Fort 
McMurray, Alberta, Canada. 
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 The majority of P fell midseason, with Pauciflora and Poplar receiving 327.1 and 320.8 

mm of rain between May to August, respectively (Figure 7). Pauciflora and Poplar received 79.5 

and 73.2 mm more P for this period, respectively, relative to the 30-year average of 247.6 mm for 

May to August (Environment Canada, 2015). Flooding conditions developed early in the season 

at both sites due to multiple high magnitude P events that occurred in early June. Maximum P 

events occurred on DOY 161 and 210 Pauciflora received 66.8 and 39.8 mm of rain, while Poplar 

received 43.8 and 47.4 mm respectively.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Cumulative precipitation recorded at the Pauciflora and Poplar fens over the 2013 
growing season, Fort McMurray, Alberta, Canada. 
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 Monthly average daytime vapor pressure deficits (VPD) ranged between 0.7 and 0.8 kPa 

at Pauciflora, and 1.0 to 1.2 kPa at Poplar. VPD reached maximum values when Q* was also the 

largest, peaking at 2.1 and 3.0 kPa on DOY 182 at Pauciflora and Poplar, respectively. VPD 

fluctuated throughout the study period, generally demonstrating an inverse relationship to 

windspeed (u, m s-1) (Figure 8); seasonal patterns are described in the following section.  

 

 

 

 

 

 

 

 

Figure 8: Monthly average windspeed (u, m s-1) and vapour pressure deficit (VPD, kPa) with 
standard deviation error bars measured during the daylight hours at (a) Pauciflora and (b) Poplar 
fen, Fort McMurray, Alberta, Canada.   
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4.2 Meteorological Tower Flux Footprint 

During the 2013 growing season the upwind location of the xfrac flux originated approximately 100 

m and 120 m from an upwind distance (Table 5) at Pauciflora and Poplar, respectively. The upwind 

flux distance was largest in May, during the EG period of plant growth, at 112 m and 133 m, and 

smallest in August, the LG period, with averages dropping to 48 m and 109 m at Pauciflora and 

Poplar, respectively. Flux source areas are dependent on windspeed (u) (m s-1) and wind direction 

(degrees), in conjunction with the upwind source vegetation and canopy structure. The mean u at 

Pauciflora was 1.7 m s-1; reaching peak momentums throughout the months of June and July 

ranging between 3.0 and 4.6 m s-1. Poplar reported a lower average of 1.0 m s-1, with maxima 

occurring sporadically throughout May to July ranging between 1.8 and 3.0 m s-1. Consistently 

higher u rates at Pauciflora contributed to the fen’s smaller footprint. Frictional velocity (u*) (m s-

1) averaged 0.002 at Pauciflora and 0.39 at Poplar over the entire growing season. Results are 

dictated by roughness height; Pauciflora’s sparse canopy measured at an average height of 4.2 m 

compared to 6.5 m at Poplar (Table 3, 4), while the understory reached a maximum height of ~ 0.4 

m in contrast to Poplar at ~0.7 m. 

Site Month u  u* Wind Footprint Footprint 
  (m s-1)  (m s-1) Direction Length Length 
     (degrees)  xmax (m)  xfrac (m) 
PFLORA MAY 1.88  0.002 194 24.9 112.0 
 JUN 1.74  0.001 203 19.8 88.7 
 JUL 1.85 - 0.002 186 22.0 98.6 
 AUG 1.46  0.000 188 10.6 47.7 
POPLAR MAY 1.19  0.186 170 29.8 133.6 
 JUN 1.00  0.142 179 26.5 118.7 
 JUL 0.93  0.388 160 28.4 127.2 
 AUG 0.69  0.233 176 24.5 109.8 

Table 5: The 2013 growing season mean wind speed (u, m s-1), mean frictional velocity (u*, m s-

1), wind direction (degrees) and averaged flux footprint length of the peak contributing area (xmax, 
m) and the 80 % contribution area (xfrac, m) for the EC tower installed at Pauciflora (PFLORA) 
and Poplar Fen, Fort McMurray, Alberta, Canada. 
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 In addition, it is necessary to define the nature of the flux based on wind direction. The 

upwind source governs the direction of the fluxes and was estimated with a WindRose diagram 

(Figures 10) (Lakes Environmental Software). The results reveal that the majority of the flux 

footprint originated from the east and south-east portion of the fens, with Pauciflora tending 

towards the south and Poplar towards the east. The southern portion of Pauciflora consists of a 

sparse to completely bare canopy that includes the dominant tree species Picea mariana. The 

understory is composed of the dominant shrub species Oxycoccus microcarpus, Rhododendron 

groenlandicum, Andromeda polifolia as well as Carex aquatilis. The eastern portion of Poplar is 

composed of a dense canopy of the dominant tree species Larix laricina, with a dense understory 

consisting of Betula pumila, Ledum groenlandicum, and Equisetum fluviatile.  
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Figure 10: WindRose diagram partitioning wind direction and speed (m/s) over the 2013 growing 
season at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, Canada. 
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4.3 LiDAR Land Cover Classification 

Groundcover species captured within chamber plots, accurately classified ~ 50% and ~ 60% of the 

vegetation communities projected by the LiDAR land-cover classification within the entire fen 

boundary, at Pauciflora and Poplar, respectively. Table 6 and 7 display the results from the fusion-

based spectral and airborne LiDAR derived land-cover classification. Four output maps for each 

fen are shown in Figure 10 and 11, which display classified vegetation cover (Figure 10a, 11a), 

microforms (hummocks, hollows, lawns and saturated areas) (Figure 10b, 11b), dominant 

vegetation cover captured by the flux footprint xfrac (Figure 10c, 11c) and xmax (Figure 10d, 11d). 

 Pauciflora is composed of 35% hummocks and 35% hollows, with remaining ground cover 

either consisting of lawn or saturated areas. In comparison, Poplar’s microtopography is 47% 

hummocks and 53% hollows within the fen area. Poplar’s dense canopy limited the degree of 

ground cover that could be detected and classified through airborne LiDAR, therefore identified 

chamber species were compared against additional vegetation surveys conducted within the fen 

(data not shown). The hummocks at Pauciflora are on average covered by 33% vascular vegetation 

with a mean height of 17 cm, while vascular vegetation cover within hollows are marginally lower 

with a mean of 30% and an average plant height of 16.5 cm. The hummocks at Poplar were on 

average covered by 25% vascular species and sustained a mean height of only a few centimeters. 

This does not account for the dominant Betula pumila sub-canopy that averages a few meters in 

height. Conversely, hollows were covered by < 10% vascular vegetation with a mean height of < 

1 cm. The hollows are concave features that occasionally contained pooling water at Pauciflora 

with a mean VMC of 80%, but a majority remained permanently flooded at Poplar. Conversely, 

hummocks were on average topographically higher than hollows, by 12 cm at Pauciflora and only 

5 cm higher at Poplar.  



44 
 

Class Species Topography Percent cover 
within fen 
boundary 

Percent cover 
within the tower 
footprint (80% 
Contribution) 

4 High cover Rhododendron gro., 
High cover Sphagnum ang. 

Hummock 
Hollow 

6.4 1.4 

5 Medium cover Rhododendron gro., 
High cover Sphagnum ang. 

Hummock 
Hollow 

18.4 26.7 

106 Low cover Rhododendron gro.  
High cover Sphagnum ang. 

Hollow 4.0 1.5 

111 Medium cover Smilacena trifolia,  
High cover Sphagnum ang. 

Hollow 2.4 2.5 

112 Medium cover Carex aquatilis,  
High cover Sphagnum ang. 

Lawn 3.1 2.6 

206 Low cover Carex aquatilis,  
High cover Sphagnum ang. 

Hollow 3.9 2.1 

210 High cover Sphagnum ang. 
 

Lawn 1.7 3.2 

211 Medium cover Sphagnum ang.,  
Medium cover Sphagnum mag. 

Lawn 1.8 2.5 

308 High cover Andromeda polifolia, 
Medium cover Sphagnum mag. 

Hummock 5.9 7.4 

312 Medium cover Rhododendro gro. 
 

Hummock 3.2 2.4 

Table 6: Summary of results from the land-cover classification, derived from fusion-based spectral 
and airborne LiDAR data, Pauciflora fen, Fort McMurray, Alberta, Canada (2013). Associated 
with Figure 10. 
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Class Species Topography Percent cover 
within fen 

boundary (%) 

Percent cover 
within the tower 
footprint (80% 
Contribution) 

41 Low cover Larix laricina 
 

Hummock 8.4 
 

11.4 
 

10.8 
 

2.6 
 

6.0 
 

9.8 
 

9.2 
 

8.0 

5.8 
 

9.4 
 

10.8 
 

2.5 
 

5.5 
 

8.8 
 

8.1 
 

6.6 

42 Medium cover Larix laricina 
 

Hummock 

44 High cover Larix laricina 
 

Hummock 

70 Saturated area 
 

Hollow 

71 High cover Betula pumila 
 

Hummock 
Hollow 

72 Low cover Picea mariana,  
High cover Tomenthypnum nitens 

Hummock 

73 Medium cover Picea mariana,  
Medium cover Tomenthypnum nitens 

Hummock 

74 High cover Picea mariana,  
Low cover Tomenthypnum nitens 

Hummock 
Hollow 

Table 7: Summary of results from the land-cover classification derived from fusion-based spectral 
and airborne LiDAR data, Poplar fen, Fort McMurray, Alberta, Canada (2013). Associated with 
Figure 11. 
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Figure 10: LiDAR output data, groundcover classification with applied maximum likelihood 
classification and fusion with topographic morphology and vegetation structure of species types 
and mixed vegetation cover within microforms, (b) classified microforms, (c) 80% contribution 
footprint vectors (xfrac) and (d) peak footprint vectors (xmax), Pauciflora fen, Fort McMurray 
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Figure 11: LiDAR output data (a) groundcover classification with a vector machine supervised 
classification and fusion with topographic morphology and vegetation structure of species types 
and mixed vegetation cover within microforms, and (b) classified microforms, cb) 80% 
contribution footprint vectors (xfrac), and (d) peak footprint vectors (xmax), Poplar fen, Fort 
McMurray, Alberta. 
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4.4 Energy Flux Densities   

Q* fluctuated throughout the season, peaking in mid-May through to early July, reaching a 

maximum of 201 W m-2 on DOY 172 and 215 W m-2 on DOY 154 at Pauciflora and Poplar, 

correspondingly. Q* declined during the last month of the study period, mean August Q* was 95 

W m-2 compared to the seasonal mean of 111 W m-2 at Pauciflora, and  120 W m-2 compared to 

the seasonal mean of 137 W m-2 at Poplar. Throughout the growing season, mean Q* remained 

significantly higher at Poplar compared to Pauciflora (U = 4963, p < 0.01). However, missing Q* 

data, between DOY 234 and 243, is likely producing an inflated seasonal average. Both sites 

displayed similar seasonality in energy balance components with peaks generally occurring on the 

same DOY, reaching a maximum between 1200-1430 MST (Figure 13) and decreasing in intensity 

in the evening (1700-1900 MST) and early morning (0630-0830 MST). Energy fluxes Q*, QE and 

QH were generally positive during the day and negative at night. 
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Figure 12: Mean daily wetland energy flux densities (W m-2) for the 2013 growing season, at (a) 
Pauciflora, and (b) Poplar fen, Fort McMurray, Alberta, Canada.  
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 QE represented the dominant flux at Pauciflora for a majority of the growing season, 

averaging 65 W m-2. QE reached a seasonal maximum of 134 W m-2 on DOY 182, compared to QH 

that peaked later in the season at 95 W m-2 on DOY 197. Mean QH was 47 W m-2 (Figure 12a). 

Similarly, there was a marked dominance of QE over QH at Poplar throughout a majority of the 

growing season, with the exception of energy fluxes recorded during the early green period (Figure 

12b). QE peaked at 137 W m-2 on DOY 171, 190 and 207, during the defined G period of plant 

growth. Peaks in QE generally followed periods of moderate P (events > 10 mm) and increasing 

Q*. Mean QE was 80 W m-2 compared to the seasonal mean of QH of 53 W m-2. As previously 

mentioned, QH peaked early in the season at 118 W m-2 on DOY 138.  

Site Month Q* 
 

(W m-2) 

S.D. QG 
 

(W m-2) 

S.D. QE 
 

(W m-2) 

S.D. QH 
 

(W m-2) 

S.D. Q*- QG 
 

(W m-2) 

QE / 
Q*-Qg 

QH / 
Q*-Qg 

PFLORA MAY 143.7 ±34.8 8.7 ±3.7 74.4 ±19.7 60.5 ±16.8 135.0 0.55 0.45 
 JUN 111.0 ±62.7 4.7 ±3.2 62.9 ±37.8 43.5 ±23.3 106.3 0.57 0.43 
 JUL 110.4 ±60.5 2.5 ±3.5 63.2 ±36.7 44.8 ±24.6 107.9 0.58 0.42 
 AUG 95.4 ±40.0 - 1.0 ±2.9 71.7 ±26.7 54.0 ±39.5 99.6 0.60 0.40 
POPLAR MAY 173.1 ±26.1 3.0 ±0.6 85.0 ±15.7 85.1 ±16.7 170.1 0.50 0.50 
 JUN 133.2 ±64.7 2.4 ±1.3 81.0 ±41.1 50.0 ±23.7 130.8 0.62 0.38 
 JUL 132.2 ±62.5 1.0 ±1.4 83.3 ±40.0 48.0 ±23.1 131.2 0.64 0.36 
 AUG 117.0 ±44.2 0.9 ±1.1 71.6 ±26.5 44.6 ±20.8 116.1 0.62 0.38 

Table 8: The monthly mean net radiation (Q*), soil heat flux (QG), latent heat flux (QE), sensible 
heat flux (QH) and available energy (Q*-QG); relative latent heat flux (QE/Q*-QG) and relative 
sensible heat flux (QH/Q*-QG) for the 2013 growing season at Pauciflora (PFLORA) and Poplar 
Fen, Fort McMurray, Alberta, Canada. (Pauciflora August means contain missing data; instrument 
failure). 
 
 Energy flux components, expressed as a ratio of Q*-QG, are shown in Table 8. Pauciflora 

was governed by the relative latent heat flux (QE/Q*-QG), peaking following high magnitude P 

events, or multiple low magnitude P events. Conversely, at Poplar there was a shift from the early 

season green period that was equally governed by QH/Q*-QG that switched with the onset of ‘leaf 

out’ to periods regulated by the relative latent heat flux (QE/Q*-QG). 
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Figure 13: Hourly mean wetland energy flux densities (W m-2) for each month in the 2013 growing 
season, at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada. 
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4.5 Total Evapotranspiration 

Pauciflora ET fluctuated over the growing season, averaging 2.3 mm d-1 (± 1.2). Although missing 

data may be inflating the ET fluxes throughout August, as the late study period exhibited a notable 

reduction in Q* and increase in RH. ET reached a maximum on DOY 182 at 4.6 mm d-1. 

Conversely, daily ET at Poplar was less variable, averaging ~1 mm d-1 higher than Pauciflora with 

a seasonal mean of 3.6 mm d-1 (± 0.6). Daily ET demonstrated a noticeable decline throughout 

August with a mean of 3.3 mm d-1 (± 0.4). In contrast to Pauciflora, Poplar recorded multiple peak 

ET events (> 4.5 mm d-1) throughout the green period of plant growth. Both sites displayed similar 

seasonality, peaking mid-season during the period of maximum ‘leaf out.’ Due to Poplar’s dense 

canopy, ET was more reactive to the growth cycles of the vegetation. Overall, Pauciflora reported 

lower seasonal ET rates exhibiting greater variance (σ2), 1.4 (n=77) from the mean, whereas ET 

recorded at Poplar was not only higher but exhibited lower σ2, 0.33 (n=95), from the seasonal 

mean.  
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Figure 14: Daily evapotranspiration (ET) (mm d-1) and precipitation (P) (bars) (mm) by DOY for 
the 2013 growing season, measured at (a) Pauciflora and (b) Poplar fen, Fort McMurray, Alberta, 
Canada. 
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 Pauciflora ET was significantly correlated with available energy (Q*-QG) (F(1,75) = 

21.981, p < 0.01), and formed a strong linear relationship with daily ET (R2 = 0.95) (n=56). ET 

demonstrated a similar response to VPD (F(1,75) = 20.368, p < 0.01; R2 = 0.60) (n=56) but it was 

less responsive to mean daily Ta (F(1,75) = 14.745, p < 0.01; R2 = 0.47) (n=56) (Figure 15). ET 

did not exhibit a distinguishable response to changes in VMC, because the water table remained at 

or above the surface, VMC was never limited. Daily ET at Poplar was significantly correlated with 

available energy ET (F(1,93) = 73.349, p < 0.01), however it provided a weak explanation for the 

variation in ET (R2 = 0.41) (n=74). Daily ET demonstrated a similar response to VPD (F(1,93) = 

84.892, p < 0.01; R2 = 0.48) (n=74), and mean daily Ta (F(1,93) = 67.992, p < 0.01, R2 = 0.42) 

(n=74) (Figure 15). Additionally, peak ET events at both fens generally followed large P events 

(Figure 14). Daily ET peaked between the daylight hours 1100-1300 MST, when Q* reached a 

maximum, followed by a decline when VPD reached a daily maximum (Figure 16). 
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Figure 15: Relationship between ET (mm d-1) and (a)(b) available Energy (W m-2), (b)(c) air 
temperature (Ta)(°C), (d)(e) VPD (kPa), and (f)(g) volumetric moisture content (VMC), Pauciflora 
and Poplar fen, Fort McMurray, Alberta, Canada. 



56 
 

 
Figure 16: Hourly mean (a)(b) evapotranspiration (ET) (mm d-1), (c)(d) net radiation (Q*) (W m-

2) and (e)(f) vapour pressure deficit (VPD) (kPa), Pauciflora and Poplar fen, Fort McMurray, 
Alberta, Canada. 
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4.6 Canopy Transpiration 

Similar to ET, canopy transpiration (T) at Pauciflora remained fairly consistent over the duration 

of the study period, exhibiting a seasonal mean of 0.3 mm d-1. Both ET and T demonstrated 

comparable seasonal trends that peaked during the G period of plant growth, followed by declining 

rates throughout August. T monthly mean was 0.6 mm d-1 (± 0.3), 0.3 mm d-1 (± 0.2) and 0.2 mm 

d-1 (± 0.1) in June, July and August, respectively (Figure 17a). Poplar T and ET displayed similar 

seasonality, with a seasonal mean considerably higher than Pauciflora, averaging 2.7 mm d-1, with 

larch species contributing roughly 1.5 mm d-1 (± 0.5) and black spruce comprising the last 1.2 mm 

d-1 (± 0.3). Monthly means exhibited greater consistency at Poplar than at Pauciflora, with both 

June and July averaging 3.0 mm d-1 (± 0.6), followed by a decline to 2.0 mm d-1 (± 0.5) throughout 

August (Figure 17b).   
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Figure 17: (a) Pauciflora and (b) Poplar fen, evapotranspiration (ET) (mm d-1) (seasonal mean solid 
line) and canopy transpiration (T) (mm d-1) (seasonal mean dashed line) by DOY for the 2013 
growing season, Fort McMurray, Alberta, Canada. 
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Cumulative canopy transpiration measured between May and August was 29 mm at Pauciflora and 

approximately 202 mm at Poplar; not accounting for missing data between DOY 234 to 243 

(Figure 18). Pauciflora was composed of a smaller stem density of 58 trees compared to Poplar 

that supported a substantially higher stem density of 237 trees that were captured in the forest 

inventory surveys (IEG, 2014). 

 
 
 
 
 
 
 
 
 

Figure 18: Daily canopy transpiration (mm d-1) (bars) and accumulated water use (dashed line) 
(mm) at (a) Pauciflora and (b) Poplar fen, by DOY for the 2013 growing season, Fort McMurray, 
Alberta, Canada.  
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Canopy Stem Density and LAI 

The tree canopy at Pauciflora is predominately Picea mariana; the only species captured within 

the forestry industry surveys (IEG, 2014). Tree growth was stunted, with the largest surveyed tree 

measuring 9.0 cm in diameter (DBH). Mean DBH was 5.5 cm (± 1.3) with a corresponding 

sapwood area of 20.7 cm2 (n=43) (Figure 19a). In contrast, the canopy at Poplar is more diverse, 

consisting of both Picea mariana and Larix laricina across a larger size distribution. Picea 

mariana species were generally larger than those at Pauciflora, with the largest tree measuring 

17.5 cm in stem diameter. Mean DBH of black spruce species was 8.4 cm (± 3.5) with a 

corresponding sapwood area of 50.0 cm2 (n=51) (Figure 19b). However, within the immediate 

vicinity of the EC tower (xmax footprint), larch represents the dominant species that were on average 

slightly smaller, with a mean DBH of 6.0 cm (± 2.8), and sapwood area of 25.3 cm2 (n=184). 
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Figure 19: Average DBH (box-plot) and LAI (line) per plot, measured from Forest Inventory 
Surveys at (a) Pauciflora and (b) Poplar fen, during the 2013 growing season, Fort McMurray, 
Alberta, Canada. (Green symbol represent plot LAI) 
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 LAI is the leaf material (m2) per unit of ground area (m2), and is a biophysical property 

closely linked to plant ET (Allen et al., 1998). Pauciflora had a mean LAI of 0.55 (± 0.67) while 

the canopy at Poplar was significantly higher at 2.82 (± 0.96). However, of the 16 plots measured 

at Pauciflora, only one plot reported a LAI above 1.0. The remaining plots were significantly lower, 

with some plots completely devoid of tree cover. Removing the outlier plot reduced mean LAI to 

0.41 (± 0.27). Cumulative monthly T at Pauciflora was significantly correlated with canopy LAI 

(p < 0.01) when analyzed against all 16 plots (Figure 20a). However, removing the outlier plot 

diminished the strength of the relationship and the correlation was not significant (p > 0.01). 

Similarly, cumulative monthly T at Poplar demonstrated a weak to moderate correlation with 

canopy LAI, with an average R2 = 0.30 (Figure 20b). 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 20: Accumulative monthly Transpiration (mm) plotted against plot LAI, for (a) Pauciflora 
and (b) Poplar fen, measured over the 2013 growing season, Fort McMurray, Alberta, Canada.    
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Micrometeorological and Climate Controls 

T was compared to micrometeorological parameters including Q*-QG, Ta RH, P, and VMC to 

determine the individual and combined drivers of T (Figure 21, Table 9).  Additionally, T was 

compared by simple linear regression to VPD (Figure 22, 23). An analysis of the aforementioned 

variables produced a significantly correlated relationship with T (p < 0.05). An individual analysis 

of each variable revealed that Q*-QG was the most significantly correlated with T. The multiple 

regression produced an R2 = 0.50, moderately explaining variation in T; generally exhibiting an 

increase in T that corresponded with an increase in magnitude of the predictor variables. Residuals 

were normally distributed and an analysis of accumulated observed against accumulated predicted 

values produced a strong fit R2 = 0.96. Conversely, Poplar T was not significantly correlated with 

the aforementioned variables. However, T was the most responsive to changes to Q*-QG, 

demonstrating similarity between peak events, and moderately responsive to changes in Ta (Figure 

21, Table 9). 
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Figure 21: T (mm d-1) plotted against (a)(b) max and min daily air temperature (°C), (c)(d) 
available energy (W m-2), and (e)(f) precipitation (mm) by DOY at Pauciflora and Poplar fen, Fort 
McMurray, Alberta. 
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a) PAUCIFLORA 
Period ET T Q*-QG u VPD Ta RH P VMC 

      MIN MAX    
 (mm) (mm) (W m-2) (m s-1) (kPa) (°C) (%) (mm) (%) 

EG 2.5  134.8 1.9 0.8 4.9 19.6 54.8 12.6  
G 2.5 0.4 104.4 1.7 0.7 9.6 20.2 75.0 308.4 57.0 
LG - 0.1 - 1.5 0.8 10.9 22.4 68.5 6.1 54.6 

 
b) POPLAR 
Period ET T Q*-QG u VPD Ta RH P VMC 

      MIN MAX    
 (mm) (mm) (W m-2) (m s-1) (kPa) (°C) (%) (mm) (%) 

EG 3.7 - 165.1 1.2 1.2 3.0 25.9 54.7 20.6 - 
G 3.6 2.9 127.7 0.9 1.1 9.5 26.5 72.2 265.5 63.4 
LG 3.3 1.9 108.1 0.7 1.0 9.1 29.8 73.7 34.6 66.7 

Table 9: Average ET, T and associated predictor variables: available energy (Q*-QG), windspeed 
(u), VPD, air temperature (Ta), RH, P and volumetric moisture content (VMC) by plant growth 
period (early green (EG) (DOY 121-158), green (G) (DOY 159-218) and late green (LG) (DOY 
219-260), over the 2013 growing season, at (a) Paucifora and (b) Poplar fen, Fort McMurray, 
Alberta, Canada.   
 
 Canopy T was monitored at the beginning of the G through to the LG periods of plant 

growth. Q*-QG peaked in the EG period at both sites at with a mean of 135 and 165 W m-2 at 

Pauciflora and Poplar, respectively. Q*-QG was the lowest during the latter part of the growing 

season, Poplar reported a mean of 108 W m-2. Despite missing data for the LG period at Pauciflora, 

Q*-QG likely declined given the similar trends exhibited between the two fens. Although Q*-QG 

was significantly correlated with Ta, air temperatures remained consistently high despite declining 

Q* throughout August.  Mean Ta was lowest during the EG period at 5 and 3 °C and peaked in the 

LG period at 22 and 30 °C at Pauciflora and Poplar, respectively. Average RH reached a maximum 

of ~ 75% mid-season at Pauciflora, and late season at Poplar reaching ~ 74%. However, RH was 

more variable at Pauciflora compared to Poplar. There is a notable spike in RH (RH ≥ 70%) at 

Poplar with the onset of ‘leaf out,’ which parallels a reduction in average windspeed (u < 1 m s-1) 

that is maintained throughout the duration of the study period. Correspondingly, windspeed at 

Pauciflora exhibited greater irregularity, with no noticeable decline following ‘leaf out.’  
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 Two high magnitude P events (P > 40 mm) occurred at the beginning and end of the G 

period at both sites. The first event (DOY 160) was followed by a pronounced spike in T. The 

period was again marked by the onset of ‘leaf out,’ increasing Q* and Ta. The second peak event 

(DOY 209) was, in contrast, followed by a gradual reduction of T that persisted into the LG period. 

The late growing season was marked by a decline in Q*, less frequent P events, increased RH, and 

reduced u. However, it is late season increase in RH (Figure 6) and persistence of cooler Ta at 

Pauciflora that is likely driving the substantial reduction in late season T at Pauciflora, in 

comparison to Poplar. Finally, VMC and groundwater elevation did not fluctuate significantly over 

the study period. As previously shown, fluxes was not significantly correlated with VMC (Figure 

15).  

 Finally, a comparison of T against VPD did not demonstrate a statistically significant 

correlation at either fen however Pauciflora T is more responsive to changes VPD compared to 

Poplar, generally increasing with increasing VPD until the threshold of approximately 1.5 kPa was 

surpassed (Figure 22). Poplar’s Picea mariana displayed a negligible response to changes in VPD, 

whereas Larix laricina not only exhibited greater variability but it peaked in conditions of nearly 

0 kPa, suggesting a log-normal curve (T was negatively correlated with VPD) (Figure 23). 

However, a closer examination for potential outlier variables would be necessary to confirm this 

response. 
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Figure 22: Relationship between T (mm d-1) and VPD (kPa), Pauciflora fen, Fort McMurray, 
Alberta, Canada. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 23: Relationship between (a) Picea mariana and (b) Larix laricina (mm d-1) against VPD 
(kPa), Poplar fen, Fort McMurray, Alberta, Canada. 
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4.7 Groundcover Vegetation Captured within Chamber Plots 
 
Pauciflora was dominated by typical poor fen species, including Rhododendron groenlandicum, 

Oxycoccus microcarpus, and Smilacena trifolia that were equally captured within hummocks and 

hollows. Carex aquatilis was largely present within hollow microforms, while Rubus 

chamaemorus, Vaccinium vitis-idaea, and Picea mariana were present only on hummocks (Table 

10). The dominant species captured within chamber plots at Poplar included Equisetum fluviatile 

and a variety of sedge species, in which Carex aquatilis was the most dominant. Both species were 

present in both hummock and hollow microforms, however E. fluviatile was the only species 

present within completely flooded plots. B. pumila, S. trifolia and Salix species were strongly 

correlated with hummock microforms (Table 11).  

 Microform LAI did not vary significantly between microforms at Pauciflora (U = 30, p > 

0.05) (n=16). Hummocks supported a higher mean of LAI of 0.76 and hollows just slightly less at 

0.70 (Figure 24a). Results were similar when LAI was stratified by canopy (U = 17, p > 0.05) 

(n=16). Differences in microform LAI at Poplar were not significant (U = 24, p > 0.05) (n=14), 

with a mean LAI of 1.04 and 1.08 between hummocks and hollows, respectively (Figure 24b). 

However, when LAI was separated by canopy cover, differences were significant (U = 5, p < 0.05) 

(n=14), supporting a mean LAI 0.92 and 1.26 between open and covered plots, respectively. 

Finally, when surface LAI was cumulatively grouped for each fen, results demonstrated a 

significant difference (U = 37, p = 0.01) (n=30) between the seasonal mean of 0.73 and 1.06 at 

Pauciflora and Poplar, respectively.  
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Figure 24: Mean growing season LAI (m-2 m-2) by canopy cover and microform at (a) Pauciflora 
and (b) Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation 
(S.D.) of variables). 
 
 Mean aboveground biomass (AGB, g m-2) of hummocks at Pauciflora was significantly 

higher than hollow AGB biomass; with means of 1770 and 930 g m-2, respectively (U = 12, p < 

0.05) (n=16). Belowground biomass (BGB, g m-2) measured between microforms at Pauciflora 

was not significantly different, averaging 84 and 585 g m-2 between hummocks and hollows (U = 

23, p > 0.05) (n=16). When results were separated by canopy cover, neither AGB (U = 17, p > 

0.05) or BGB (U = 16, p > 0.05) were determined to be significantly different (Figure 25a.c, Table 

10). Conversely, there was no significant difference between AGB (U = 13, p > 0.05) or BGB (U 

= 17, p > 0.05) between microforms at Poplar, averaging AGB of ~ 490 and 300 g m-2, and BGB 

of ~ 60 and 80 g m-2, between hummocks and hollows, respectively. Finally, when results were 

separated by canopy cover, both AGB (U = 14, p > 0.05) and BGB (U = 23, p > 0.05) exhibited 

consistency between means (Figure 25b.c, Table 11) 
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Figure 25: Mean growing season (a)(b) above (AGB) and (c)(d) belowground biomass (BGB) (g 
m-2) by canopy cover and microform at Pauciflora and Poplar fen, Fort McMurray, Alberta, 
Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).  
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Hummock Hollow 
   Biomass LAI    Biomass LAI 
 Canopy 

Cover 
Dominate 
Vegetation 

AB  
(g m-2) 

BG  
(g m-2) 

Collar 
(m-2 m-2) 

Tree 
(m-2 m-2) 

 Canopy 
Cover 

Dominate 
Vegetation 

AB  
(g m-2) 

BG  
(g m-2) 

Collar  
(m2 m-2) 

Tree 
(m2 m-2) 

1 OPEN Sphagnum sp. 
C. calyculata 
S. trifolia 
R. chamaem. 

2479 171 1.04 - 2 OPEN Sphagnum sp. 
C. calyculata 
V. vitis-idaea 
L. groenland. 

455 1009 0.90 - 

3 OPEN Sphagnum sp. 
S. trifolia 
C. calyculata 
O. microcar. 

620 46 0.94 - 4 OPEN Sphagnum sp. 
S. trifolia 
R. chamaem. 
Carex sp. 

535 2148 0.68 - 

5 OPEN Sphagnum sp. 
L. groenland. 
O. microcar. 
R. chamaem 

3580 23 0.48 - 6 OPEN Sphagnum 
C. calyculata 
S. trifolia 

1108 24 0.53 - 

7 OPEN C. calyculata 
C. pauciflora 
V. vitis-idaea 
O. microcar. 

1784 113 0.73 - 8 COVERED Sphagnum sp. 
C. calyculata 
O. microcar. 
Carex ssp. 

1096 66 0.80 0.45 

9 PART 
COVERED 

Sphagnum sp. 
S. trifolia 
L. groenland. 
C. calyculata 
V. vitis-idaea 

883 110 1.27 0.17 10 COVERED Sphagnum sp. 
S. trifolia 
C. calyculata 
A. polifolia 

837 1266 0.78 0.17 

11 COVERED Sphagnum sp. 
Carex sp. 
S. trifolia 
O. microcar. 

1157 48 0.68 0.45 12 OPEN Sphagnum sp. 
S. trifolia 
O. microcar. 
Carex sp. 

1086 59 0.85 - 

13 OPEN A. polifolia 
C. calyculata 
S. trifolia 

2059 117 0.45 - 14 OPEN Sphagnum sp. 
S. trifolia 
C. calyculata 
Carex ssp. 

669 60 0.40 - 

15 OPEN Sphagnum sp. 
S. trifolia 
C. calyculata 
L. groenland. 
A. polifolia 

1614 46 0.48 - 16 OPEN Sphagnum sp. 
S. trifolia 
A. polifolia 
O. microcar. 
Carex sp. 

1669 49 0.68 - 

Table 10: Dominant vegetation, above and belowground biomass (g m-2) of community-scale 
plots, separated between hummock (even) and hollow (odd) microforms and canopy cover, 
Pauciflora fen, Fort McMurray, Alberta, 2013. OPEN canopy cover, PAR > 500 μmol m-2 s-1, 
COVERED, PAR < 500 μmol m-2 s-1.  
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Hummock Hollow 
   Biomass LAI    Biomass LAI 
 Canopy 

Cover 
Dominate 
Vegetation 

AB  
(g m-2) 

BG  
(g m-2) 

Collar 
(m-2 m-2) 

Tree 
(m-2 m-2) 

 Canopy 
Cover 

Dominate 
Vegetation 

AB  
(g m-2) 

BG  
(g m-2) 

Collar  
(m2 m-2) 

Tree 
(m2 m-2) 

1 OPEN S. trifolia 
E. fluviatile 
B. pumila 

310 15 1.04 - 2 OPEN E. fluviatile 483 95 0.89 - 

3 OPEN T. nitens 
E. fluviatile 
B. pumila 

473 152 0.87 - 4 OPEN E. fluviatile 
Carex ssp. 

133 95 0.75 - 

5 OPEN T. nitens 
S. trifolia 
Carex ssp. 

707 49 1.10 - 6 OPEN T. nitens 
S. trifolia 
Carex ssp. 

532 98 0.86 - 

7 COVERED H. splendens 
S. trifolia 
Carex ssp. 

203 40 1.40 2.12 8 COVERED E. fluviatile 
Carex ssp. 

114 72 1.38 2.12 

9 OPEN S. trifolia 
B. pumila 
E. fluviatile 

804 61 0.67 - 10 COVERED E. fluviatile 10 103 1.00 2.43 

11 OPEN S. trifolia 
E. fluviatile 
Salix ssp. 

354 10 1.14 - 12 COVERED T. nitens 
S. trifolia 
G. trifidum 

565 8 1.27 4.17 

13 COVERED T. nitens 
E. fluviatile 
Carex ssp. 

574 99 1.09 2.12 14 COVERED T. nitens 
S. trifolia 
Carex ssp. 

297 64 1.42 2.12 

Table 11: Dominant vegetation, above and belowground biomass (g m-2) of community-scale 
plots, separated between hummock (even) and hollow (odd) microforms and canopy cover, Poplar 
fen, Fort McMurray, Alberta, 2013. OPEN canopy cover, PAR > 300 μmol m-2 s-1, COVERED, 
PAR < 300 μmol m-2 s-1.  
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 In general, Pauciflora’s Picea mariana produced a low canopy cover that permitted an 

understory that was dominated by Sphagnum, whereas Poplar’s Larix laricina produced a dense 

cover that was dominated by Tomenthypnum nitens and feather moss species regardless of 

topographic position. To access potential differences in understory species, specifically whether 

certain species favoured open or covered canopy conditions, plots were stratified based on moss 

and vascular percent cover. Generally, plots were classified as Sphagnum dominant if they 

comprised < 20% vascular species, whereas plots were classified as mixed if they consisted of at 

least > 20% vascular plant cover. A comparison of LAI, AGB and BGB exhibited no significant 

difference (U =27, 26, 14, p > 0.05) between Sphagnum and vascular dominated plots. However, 

when plots were stratified by both canopy cover and dominant understory, the aforementioned 

variables were generally lower in Sphagnum dominant plots, while vascular dominant plots 

demonstrated lower LAI and AGB values, but higher BGB (Table 10). Conversely, plots at Poplar 

were generally composed of fewer vascular species, with moss dominated plots supporting < 10% 

vascular species and mixed plots ranging from 20 – 80% percent cover. A comparison between 

LAI, AGB and BGB demonstrated no significant difference (U = 17, 14, 9, p > 0.05).Vascular 

dominant plots typically supported lower averages of the aforementioned with the presence of an 

overstory. Moss dominant plots generally exhibited a minimal decrease or no change in AGB and 

BGB averages, however LAI demonstrated a mean increase between open and covered plots (Table 

11). 
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4.8 Temporal and Spatial Variability of Surface ET 

To understand the variation in instantaneous ET throughout the 2013 snow free growing season, 

the community-scale measurements were grouped by month. Seasonal mean ET at Pauciflora was 

≤ 0.1 mm hr-1 (± 0.05) (Figure 26a). ET rates at Pauciflora were not significantly different when 

compared against microform plots (U = 6490.500, p > 0.05); hummocks generally sustained 

slightly higher rates (Figure 26c). Seasonal mean ET at Poplar was comparable ≤ 0.1 mm hr-1 

(Figure 26b). However, a comparison of seasonal rates measured between microforms was 

significantly different (U = 4372.500, p = 0.001), with hummocks generally supporting higher 

rates (Figure 26d). 

 
Figure 26: Period averages ET (mm hr-1) by (a)(b) month, and by (c)(d) microform, at Pauciflora 
and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Error bars signify standard deviation 
(S.D.) of variables). 
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 A comparison of ET when stratified by canopy cover demonstrated no significant 

difference at either fen (U = 3702.000, p > 0.05) (U = 5276.500, p > 0.05), at Pauciflora and Poplar, 

respectively (Figure 27a.b). Finally, when ET rates were further classified by both canopy cover 

and microform, results displayed that open hummocks maintained the highest rates, while covered 

hollows generally supported the lowest rates (Figure 27c.d).  

Figure 27: Monthly averaged ET (mm hr-1) by (a)(b) canopy cover, and by (c)(d) canopy cover 
and microform, at Pauciflora and Poplar fen, Fort McMurray, Alberta, Canada, 2013 (Bars signify 
standard deviation (S.D.) of variables). 
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4.9 Micro- and hydro-climatic Controls on ET  

Microclimatological variables were examined at the same temporal scale as instantaneous ET to 

determine whether there was variation between canopy and microtopographic cover. Pauciflora 

recorded no significant difference in Ta, (ANOVA (F(1,238) = 0.718, p > 0.05), RH (ANOVA 

(F(1,238) = 0.037, p > 0.05), or ice depth (U = 4296, p > 0.05) when results were grouped by 

canopy cover (Figure 28). Conversely, open plots reported statistically higher values of PAR (U = 

2544.5, p < 0.01) and Tg at 2 cm (U = 3303, p < 0.05), while covered plots maintained significantly 

higher VMC (U = 2814, p < 0.01) (Figure 28). A comparison of the same variables when stratified 

by microtopography reported significant differences in Tg (U = 4794, p < 0.01), and VMC (U = 

515.5, p < 0.01) (data not shown). All subsequent variables, including PAR did not display a 

statistical difference (p > 0.05). Conversely, Poplar only displayed significant variation in PAR (U 

= 3579, p < 0.01) when data were grouped by canopy cover. However, when the same variables 

were stratified by microtopography, both Tg (U = 3164.5, p < 0.01) and VMC (U = 2732.5, p < 

0.01) exhibited a statistical difference, while remaining variables demonstrated no significant 

differences (p > 0.05) (data not shown). Due to the relative similarity of results, only microclimatic 

variables stratified by canopy cover are displayed in the following figure (Figure 28). 
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Figure 28: Average seasonal (a)(b) PAR (μmol m-2 s-1) (c)(d) air temperature (Ta, °C), (e)(f) RH 
(%), (g)(h) soil temperature (Tg, °C), (i)(j) volumetric moisture content (VMC, %) and (k)(l) ice 
depth (cm) partitioned by canopy cover at Pauciflora and Poplar fen, Fort McMurray, Alberta, 
Canada, 2013 (Error bars signify standard deviation (S.D.) of variables).   
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 PAR reached maxima in the early to mid-season within open plots, averaging > 1000 μmol 

m-2 s-1, and > 700 μmol m-2 s-1, at Pauciflora and Poplar, respectively. Both Ta and Tg at Pauciflora 

displayed similar seasonality, and were generally higher in open plots, reaching maxima of ~ 25 

°C (± 4.5) and 20 °C (± 3.7), respectively. Conversely, Poplar demonstrated less seasonal and 

spatial variation in the aforementioned variables, with seasonal means of ~ 25 °C (± 3.9) and 20 

°C (± 2.8). RH increased through the study period at both sites. VMC was consistently higher 

within covered plots at Pauciflora, averaging 72%, while open plots averaged 55%. Seasonal mean 

VMC at Poplar was consistent between open and covered plots, with a mean of 63%. Ice depth 

was prevalent early in the season, averaging ~ 56 cm and ~ 28 cm, at Pauciflora and Poplar, 

respectively.  

 An analysis of microclimatic variables against instantaneous ET at Pauciflora exhibited a 

significant, positive correlation between Ta and Tg (p < 0.01), and a significant, negative correlation 

with RH (p < 0.01). Poplar demonstrated analogous results with the addition of PAR, forming a 

positive correlation with ET (p < 0.01) and VMC that produced a negative correlation (p < 0.01). 

A multiple regression analysis of the aforementioned variables (excluding depth to ice) provided 

a weak to moderate explanation for changes in ET at Pauciflora (F(5,232) = 33.776, p < 0.01, R2 

= 0.42) and Poplar (F(5, 187) = 28.561, p < 0.01, R2 = 0.43); without distinguishing between the 

spatial variability of plots. When the same variables were separated by canopy cover, the multiple 

regression reasonably explained changes in ET in open canopy conditions (F(5,8) = 5.213, p < 

0.05, R2 = 0.77) (F(5,8) = 5.333, p < 0.05, R2 = 0.77), at Pauciflora and Poplar, respectively (Figure 

29). Conversely, covered canopy ET at Pauciflora demonstrated a weak response when regressed 

against covered canopy conditions (F(5,8) = 0.900, p > 0.05, R2 = 0.39), whereas Poplar’s covered 

microclimate provided a strong prediction for changes in ET (F(5,8) = 12.507, p = 0.001, R2 = 
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0.89) (Figure 29). The presence of an overstory, significantly reduced mean PAR and Tg, (p < 0.05) 

while significantly increasing VMC (p < 0.01) at Pauciflora; producing a cool, saturated 

microclimatic. Whereas, differences in canopy cover at Poplar significantly reduced PAR (p < 

0.01), while remaining variables remained fairly consistent. However, despite distinct differences 

in canopy structure between the two fens, a comparison of surface ET was not statistically different 

between the two sites (U = 23938, p > 0.05).  
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Figure 29: Relationship between ET (mm hr-1) and (a)(b) PAR (μmol m-2 s-1) (c)(d) air temperature 
(Ta, °C), (e)(f) RH (%), (g)(h) soil temperature (Tg, °C), (i)(j) and volumetric moisture content 
(VMC, %) partitioned by canopy cover at Pauciflora and Poplar fen, Fort McMurray, Alberta, 
Canada, 2013 (Error bars signify standard deviation (S.D.) of variables). 
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4.10 Vertical Partitioning of ET 

The seasonal mean classified ETsurf at Pauciflora was 0.8 mm d-1, and 0.5 m d-1 at Poplar. A 

comparison of hourly total fen ET, T and ETsurf (chamber) exhibited differences in each variable’s 

contribution to the total ET budget. On average, Pauciflora T accounted for < 20% of fen ET, while 

ETsurf (chamber) vegetation generally exceeded T, often contributing > 80%. Conversely, Poplar T 

accounted for > 80% of fen ET, while surface vegetation contributed only < 20% to the total ET 

flux. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 30: A comparison of hourly Fen ET, T and Surface (Chamber) ET scaled within the MET 
tower footprint, recorded over the 2013 growing season, (a) Pauciflora and (b) Poplar fen, Fort 
McMurray, Alberta, Canada. (Error bars signify standard deviation (S.D.) of variables). 
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4.11 Statistical Error Analysis 

EC error was determined using methods by Kroon et al. (2010). Results are comparable with 

studies applying the described and other methods (Kroon et al., 2010; Litt et al., 2015; Wand et 

al., 2015), suggesting normalized sampling error can range 10-12% (Litt et al., 2015; Wang et al., 

2015) from sensible heat and 20-30% for trace gases (Finkelstein and Sims, 2001). The accuracy 

of the SHB gauge design and measurement resolution has been analyzed in detail (Sakuratani, 

1981, 1982; Baker and Nieber, 1989; Ham and Heilman, 1990; Groot and King, 1992) and it has 

been reported at ± 10-15% (Groot and King, 1992). However, it has been recognized that the 

fundamental steady-state assumption produces decreased accuracy in both high and low flow rate 

conditions, the later condition is more common in conifer seedlings (Groot and King, 1992). Groot 

and King (1992) reported inaccuracies of ≤ 48% in low flow rate conditions of conifer seedlings 

when heat storage was not included in the sapflow calculation, while Steinberg et al. (1982) and 

Grime et al. (1995) suggest an error of ≤ 10%. Heat storage was not included in the sapflow 

calculation, however, measurements were rejected when ΔT was ≤ 0.5 °C. Groot and King (1992) 

suggested a similar technique using ΔT threshold of 2.5 °C. Additionally, high flow rates were 

excluded from the sapflow calculation when a maximum velocity was surpassed, specified by the 

manufacturer (Dynamax Inc., 2007). Deviations from the stead-state condition is more problematic 

in larger stems (Perämäki et al., 2001), in which Shackel et al. (1992) reported significant error 

when the SHB method was applied to stems 60 mm in diameter, while Grime and Sinclair (1999) 

concluded significant error with 35 mm stems. Grime and Sinclair (1999) suggest an ideal gauge 

range within 10-30 g hr-1, of which 50-90% of measurements from each of the monitored stems in 

this study generally fell within this range. Recognizing the combined effects of error inherent to 

the system and error introduced from environmental variables (monitored trees ± 2 S.D. from fen 
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mean), Perämäki et al. (2001) concluded that the SHB method is satisfactory despite deviations 

from the basic steady-state assumption. Total SHB error estimated for this study was 15-30% 

(Shackel et al., 1992). Finally, the use of ventilated chambers to measure ET has been criticized 

on the basis that Q* and microclimate within the chamber may not be representative of ambient 

conditions (McLeod et al., 2004). Previous studies have estimated Q* in the chamber at 

approximately 95% of conditions outside the chamber (Greenwood and Beresford, 1979), while 

others have reported a reduction of 8-10% (Reicosky et al., 1983). It has been concluded that 

changes to Q* and the microclimate within the chamber only produced a minimal error on absolute 

ET (Reicosky et al., 1983), which for this study has been estimated at ≤ 7% (Hamel et al., 2015). 

Flux 
Contribution 

Method Description Root Mean 
Square 
Error 
(%) 

Reference 

ET EC One-point 
Uncertainty 

8.3 Kroon et al. 210 

T SHB System 
measurement 
resolution, 
Steady-state 
assumption, 
Heat-storage 
error 

15.0 Groot and King, 1992 
Shackel et al., 1992 
Grime et al., 1995 
Perämäki et al., 2001 

ETsurf Chamber Lower Q*, 
Altered 
Microclimate 

6.6 Reicosky et al., 1983 
McLeod et al., 2004 
Hamel et al., 2015 

Table 12: Overview of error and uncertainties of flux measurements. (See Appendix IV for specific 
equations) 
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Chapter Five 
Discussion 

 
5.1 ET and Energy Balance Components 

5.1.1 Fen ET and Energy Balance Components  

Fen ET generally exhibited “typical” seasonal variability by which peaks in ET are generally 

coupled with the warmest temperatures in July (Rouse, 2000; Brown et al., 2010; Runkle et al., 

2014). ET was fairly consistent throughout the growing season, averaging 2.3 mm d-1 and 3.5 mm 

d-1 at Pauciflora and Poplar, comparable to results displayed in similar studies (Petrone et al., 2003; 

Wu et al., 2010; Brümmer et al., 2012; Kettridge et al., 2013). Over the four-month growing 

season, QE was the dominant flux at both fens which has been commonly demonstrated by other 

studies that have examined northern peatlands and peat swap forest environments (Rouse, 2000; 

Wu et al., 2010; Clulow et al., 2013; Runkle et al., 2014). It is not uncommon for peatlands to 

exhibit a dominance in QH in the pre- and early growing season, as exhibited at Poplar (Table 8), 

and during plant senescence (Brown et al., 2010; Petrone et al., 2000; Petrone et al., 2004; Admiral 

and Lafleur, 2007). However, once the vegetation has reached adequate growth, the plant’s 

physiological processes become the dominant energy consumers driving QE. Q* was highest in the 

first half of the study period (mid-May through early July) and remained distinctly higher at Poplar 

(Figure 12). QG was considerably smaller than the major terms of the surface energy balance 

(Brutsaert, 1982), accounting for ~3% of Q* at Pauciflora and ~1% at Poplar. QG was the largest 

in May when the ice-rich ground was rapidly thawing, ~ 9 and 3 W m-2 at Pauciflora and Poplar, 

respectively. 

5.1.2 Surface ET 

The average range in growing season instantaneous ETsurf averaged < 0.1 mm hr-1 (± 0.05) between 

both fens. Although fluxes represent short duration (2-minute) period midday fluxes, inferred daily 
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fluxes fell within the ranges detailed in other studies (Brown et al., 2010, Brümmer et al., 2012; 

Kettridge et al., 2013, Limpens et al., 2014) (Figure 30), conducted within similar climatic and/or 

peatland ecosystems. ETsurf patterns do not follow the ‘typical’ seasonal variability as depicted by 

previous studies (Rouse, 2000), in which peak ET rates are coupled with the warmest temperatures 

(July). Deviations from the predicted state is especially evident at Pauciflora that exhibited a 

notable peak early in the season (Figure 26). Brown et al. (2010) similarly reported early season 

ET peaks that was attributed to the persistence of an early season ice layer that acts as an 

impermeable layer to moisture close to the surface. This impermeable layer acts to prevent 

infiltration of incoming precipitation events, thus creating a moisture-rich environment that fosters 

early season ET peaks (Petrone et al., 2006). As the ice begins to melt, it competes against ETsurf, 

consuming a significant portion of Q*-Qg, and this period is often characterized by lower ETsurf 

rates. 

5.2 Understanding Canopy T and ETsurf  

The results from this study demonstrate the contribution of T within a treed peatland that increase 

with a higher tree density (Clulow et al., 2013). Poplar T was the principal contributor to ET 

compared to that at Pauciflora where T accounted for < 20% of ET, common of Picea mariana 

dominated peatlands. Due to Pauciflora’s sparse canopy that permitted incoming radiation to reach 

the surface, the major contributors to ET were the understory species, peat and standing water that 

was present as a result of the elevated water table. The understory generally paralleled the seasonal 

trends exhibited by ET and T at both sites (Figure 30). Surface ET peaked on DOY 180 at ~ 0.3 

mm hr-1, during the G period at Pauciflora, whereas Poplar peaked earlier in the season on DOY 

169 at < 0.1 mm hr-1. Figure 30 exhibits substantially low surface ET fluxes recorded at Pauciflora 

on DOY 165, 194 and 201, these measurements days were characterized by high P events, high 



86 
 

RH and cool Ta. This highlights the immediate response of the surface to changes in microclimate. 

Furthermore, the late season conditions that was characterized by lower Q* and higher RH, proved 

unfavourable for T, did not have the same negative impact on surface ET. Pauciflora exhibits a 

typical response of an open canopy, Picea mariana dominated peatland in which surface ET is the 

primary contributor to the ecosystem flux exchange (Petrone et al. 2011). The dense canopy at 

Poplar inhibits incoming solar radiation from reaching the peat surface and therefore reduces the 

surface ET flux contribution. The remaining portion of ET that was not accounted for is likely 

attributed to vascular plants present within the subcanopy, which has been recognized as providing 

an important component to the ET flux within forested peatlands (Lafleur and Schreader, 1994; 

Heijmans et al., 2004; Thompson, 2012).  

5.3 Environmental Controls on T and ETsurf 

5.3.1 Environmental Controls on T 

Despite the proximity of the two sites, each fen is subjected to unique differences in climate. 

Pauciflora is distinctly cooler and has historically received greater P, producing wetter and more 

humid conditions, whereas Poplar is generally warmer, receiving higher Q* and Ta. As such, 

conditions at Poplar are more favourable for higher T, compared to Pauciflora that supported a 

lower T (Figure 17). Additionally, Tg was significantly cooler at Pauciflora compared to Poplar. 

Cold soil can significantly increase the root resistance to water uptake (Lopushinsky and 

Kaufmann, 1984), further inhibiting T rates. External regulation of T has been attributed to 

numerous variables including the radiative transfer of solar energy through the canopy (Clulow et 

al., 2013), canopy atmospheric turbulence and VPD (Dang et al., 1997; Mahrt et al., 2002), 

intercepted precipitation (Ahrends and Penne, 2010), water availability (Oren et al., 1999), as well 

as canopy structure and associated leaf area (Granier et al., 2000). However, it has been determined 
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that trees can have several mechanisms of internal regulation related to specific morphology and 

physiology that is partially uncoupled from external conditions (Zweifel et al., 2002), that have 

not been examined within this study. Nevertheless, in most trees with actively transpiring leaves 

and readily available soil moisture, a diurnal pattern of T results from a combination on internal 

and external conditions, which determines how the canopy contributes to ET. Common trends 

exhibited between both sites demonstrate maximized T, exhibited mid-season during the G period 

of plant growth, rates in conditions of high Q*, Ta and moderate to high VPD, that coincides with 

lower RH and moderate u (Table 9). 

 A separate analysis of VPD on sapflow within conditions of unrestricted water access has 

been previously described by Oren et al. (1999), reporting that half-hourly water uptake was 

linearly related to VPD at < 0.6 kPa. The evaporation from needle surfaces is proportional to the 

gradient of vapour pressure between stomatal cavities and the air and, therefore, the vapour 

pressure deficit of the air. Additionally, VPD and its interaction with Ta strongly impacts stomatal 

conductance to water vapour (Dang et al., 1997). Although T was not significantly correlated with 

VPD at either fen, attributed to the low stomatal sensitivity of conifers to VPD (Dang et al., 1997), 

however the water vapour flux generally becomes limited when VPD exceeds approximately 1.0 

kPa (Dang et al., 1997; Mahrt et al., 2002). The stomata partially close with large vapour pressure 

deficits in order to maintain a constant flow of water within the limits of water availability. As a 

result, T exhibits minimal variation beyond a certain VPD threshold. Pauciflora T is more 

responsive to changes in VPD compared to Poplar, generally increasing with increasing VPD until 

the threshold of approximately 1.5 kPa was surpassed (Figure 22). Poplar’s Picea mariana 

displayed a negligible response to changes in VPD, whereas Larix laricina not only exhibited 

greater variability but seem to peak in conditions of nearly 0 kPa, suggesting a log normal curve 
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(T was negatively correlated with VPD). Larix laricina T became limited once an approximate 

value of 0.5 kPa was surpassed (Figure 23). Results would suggest that tree water-use at Poplar 

increases with no constraints imposed by VMC, coupled with warmer Ta that encourages a higher 

saturated vapour pressure. Conversely, tree water-use at Pauciflora is limited by either an 

environmental or physiological control. 

5.3.2 Environmental Controls on ETsurf 

The study demonstrates that the interaction of P, Ta, Tg and vegetation type in controlling ETsurf 

and their variable influence on the amount and temporal distribution of ET  (Brummer et al., 2012). 

The seasonal course of ETsurf was strongly influenced by P distribution and the length of the 

growing season; Ta and PAR. ETsurf was maximized in favourable conditions following high P 

events that paralleled high PAR and Ta; but plateaued with excess P. Surplus P would likely 

contribute to higher VMC or runoff, rather than being used by surface vegetation. For example, 

there was a notable decline in ETsurf in July at Pauciflora (Figure 26), during which a number of 

measurement days were characterized by high P events, high RH and cool Ta. This highlights the 

immediate response of the surface to changes in microclimate. 

Previous studies that have examined inter-annual ET variability, have observed significant 

differences in fluxes between canopy cover, and microtopography (Admiral and Lafleur, 2007; 

Kettridge et al., 2013; Wang et al., 2015). Although, Pauciflora’s open canopy permitted a greater 

degree of PAR to reach the surface, favourable for the establishment of Sphagnum moss, cooler 

climates of the high altitude fen limited seasonal ET across the entire site. Conversely, aside from 

limiting PAR, Poplar’s dense canopy created a microclimate that was not statistically different 

between open and covered plots, which is typical of a dense canopy (Kettridge et al., 2011). The 

dense canopy was favourable for the establishment of brown and feathermoss.  
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5.4 Vegetation Controls on ETsurf Dynamics 

The presence of a dense tree and/or shrub canopy directly impedes incoming radiation, which has 

been widely recognized to modify the underlying vegetation composition (Petrone et al., 2011; 

Waddington et al., 2014), and localized soil moisture regimes (Solondz et al., 2008). Pronounced 

differences in groundcover between the two fens equally demonstrated the ability of shade-tolerant 

brown and feathermosses to out-compete Sphagnum moss under low-light conditions (Marschall 

and Proctor, 2004; Hájek et al., 2009). Additionally, Sphagnum mosses exist within a less wet 

moisture regime, compared to brown and feathermosses that have the ability to thrive in moisture 

rich environments. Despite drier conditions, Sphagnum have been previously recognized for their 

ability to support higher ET rates compared to feather mosses, as a result of their morphological 

structure and ability to retain moisture (Price, 1997). However, Goetz and Price (2015) compared 

ET rates of Sphagnum and Tomenthypnum and reported that the active-water conducting structures 

of the two species were similar. 

In Sphagnum, water is transported by an external wicking system and adsorption along the 

stem and leaf surfaces (Nichols and Brown, 1980). Such transport mechanism is lacking within 

feathermoss (Callaghan et al., 1978). As such, it is expected that an open canopy, Sphagnum 

dominant fen would sustain significantly higher surface ET rates compared to a covered canopy, 

feathermoss dominant fen. However, ET rates were not statistically different between the two fens. 

This was partially explained by differences in climate, but it could also be attributed to the 

establishment of Tomenthypnum at Poplar. Despite the ability of Sphagnum to retain a large 

amount of water, Goetz and Price (2015) reported similarity in the active water-conducting 

structure of Sphagnum and Tomenthypnum, when the latter species has access to a high water table. 

Analyzing physiological differences between the two species is beyond the scope of this paper, 
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however, it may further explain why there did not exist a statistically significant difference in ET 

fluxes between the two fens, despite the dominance of Sphagnum at Pauciflora.   

5.5 Tree Density Effect  

It has been well documented that the presence of a dense canopy will increase the degree of shading 

on the peat surface and in turn, diffuse radiation reaching the surface (Kettridge et al., 2013). 

However, diffused radiation cannot be considered in isolation as it induces a range of additional 

feedback mechanisms that regulate ET losses. Variations in the density and spatial arrangement of 

trees also impacts the aerodynamic properties of the subsurface, modifying aerodynamic resistance 

to ET. For example, the surface roughness of a treeless poor fen in Sweden and a treed fen in 

Central Alberta, were equal to 0.02 m (Mölder and Kellner, 2002) and 0.22 m (Thompson, 2012), 

respectively. Comparable results were exemplified by the differences in u* from 0.002 to 0.24 m 

s-1 between Pauciflora and Poplar. A higher tree density generally produces a smoother 

aerodynamic surface as the tree canopy fills in, reducing surface roughness, this additionally raises 

the displacement height, which is equal to zero in a treeless peatland (Mölder and Kellner, 2002), 

and therefore increases the resistance from the subcanopy to ET (Niu and Yang, 2004). The 

aforementioned variables were favourable for higher surface ET at Pauciflora within the limits of 

Pauciflora’s cooler climate. The impact of environmental conditions coupled with associated 

differences in understory species, Poplar’s dense canopy was more favourable for the 

establishment of feathermoss which is generally more resistant to ET (Kettridge et al., 2013) 

compared to Pauciflora’s dominant Sphagnum moss, cumulatively controlled understory ET. 

Correspondingly, surface ET at Pauciflora contributed > 80% to the total ET flux whereas at Poplar 

it contributed < 20%. 
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5.6 Microclimate and Canopy Cover on ETsurf Flux Dynamics 

 Both the microtopography and the spatial organization of trees has been shown to produce a 

fundamental control on ET. Although neither fen exhibited statistically significant differences in 

microclimate between canopy or microtopographic relief elements, covered plots and hollow 

microforms were generally cooler and wetter at both sites, and generally sustained lower ET 

(Figure 3.5.7). Sphagnum hummocks at Pauciflora maintained higher flux rates compared to 

Sphagnum hollows. Petrone et al. (2011) reported similar results, again suggesting that Sphagnum 

are better suited for more moderate moisture conditions, generally growing in a lower degree of 

canopy closure. Differences in ET were more pronounced when plots were separated by canopy 

closure; open plots continually supported higher flux rates (Figure 27). Finally, when fluxes were 

grouped by microtopography and canopy, open hummocks and hollows generally maintained 

higher ET compared to covered conditions; suggesting a dominance of Sphagnum to the flux 

budget within those locations. Goetz and Price (2015) reported similar trends as Petrone et al. 

(2011), concluding that Tomenthypnum and feathermosses are poorly suited for open conditions 

due to the species poor water transport structure, attributed to stressed induced by drying, as such, 

conditions at Poplar were more favourable for the establishment of these mosses.  

Poplar demonstrated similar differences in ET that appeared to vary according to 

microtopography. Hummocks maintained higher ET, however unlike Pauciflora, numerous 

hollows at Poplar were under flooded conditions for the entire study period. Consequently, lower 

ET rates could be attributed to flood stress reported in other studies (Phillips, 2014) (Figure 26). 

Once more, when fluxes were separated by microtopography and canopy, both open and covered 

hummock microforms sustained higher ET, compared to open and covered hollows; suggesting 

the hummock microclimate was more favourable for underlying moss species (Figure 27). 
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Chapter Six 
Conclusions and Implications for Climate and Land-use Change 

 
The WBP is a region that encompasses a high density of wetlands, in particular peatlands 

(Woynillowicz et al., 2005), which continually sustains moisture deficit conditions. As such, these 

systems are already at a hydrological risk to future climate change scenarios and land use change 

(Petrone et al., 2011), which has implications for carbon sink status. It is well documented that the 

hydrological response of peatlands represent a first order response to the fate of future carbon 

storage (Billett et al., 2004; Couwenberg and Joosten, 2005; Limpens et al., 2008). Understanding 

the controls on the partitioning of ET within typical WBP peatlands is essential to interpreting the 

influences of climate change on water flux components. Potential increases in global temperatures 

through climate change is considered to directly impact boreal peatlands through water-level 

drawdown due to higher tree density (Laine et al., 1995; Laiho et al., 2003). It has been predicted 

that future, drier systems could increase canopy cover, therefore reducing or furthermore inhibiting 

the underlying peat surface from incoming solar radiant energy. It is anticipated that this shift 

could limit the potential for these peatland ecosystems to dissipate energy via QH, in favour of QE 

(Worrall et al., 2015). Furthermore, this shift has not only been predicted to reduce surface ETsurf, 

but Kettridge et al. (2013) suggest a total reduction in ET across the entire peatland system that 

cannot be offset by increased T, associated with higher stem density. This not only threatens the 

future stability and functioning of peatland systems, but it directly threatens carbon stores, 

providing a positive feedback to atmospheric CO2 concentrations (Flanagan and Syed, 2011). This 

is of particular concern for the low density of P. mariana dominated peatlands that, at present, 

allow incoming solar radiation to reach the underlying surface, often dominated by Sphagnum, and 

recognized for its contribution in regulating atmospheric CO2 (Petrone et al., 2011).  
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 This research emphasized differences in ET and ET partitioning with respect to peatland 

type, climate and vegetation cover. The results indicate that the seasonal pattern of ET was closely 

linked with growing season Q*, Ta and precipitation (P) events, as well, VPD represented a key 

factor in controlling fluxes. Seasonal mean T rates demonstrated little change across Pauciflora’s 

open canopy, averaging 0.3 mm d-1, while Poplar exhibited greater diversity and a higher 

contribution of T to the ET flux, averaging 2.7 mm d-1. Both ET and T reached maxima in 

conditions of high Q* and Ta, moderate to high VPD, that coincided with low RH and moderate 

windspeed (u). Poplar’s dense canopy limited the contribution of understory species to < 20%, 

compared to Pauciflora that maintained surface ETsurf at > 80% contribution.   

 The presence of an overstory did not produce a microclimate that was significantly 

different between the two fens, however, Poplar’s dense canopy generally supported a more-wet 

understory. Subsequently, surface vegetation at Pauciflora was dominated by Sphagnum moss, 

while Poplar was composed of a variety of feather moss and the brown moss, Tomenthypnum 

nitens. Both Ta and Tg formed strong, positive correlations with ETsurf, while RH formed a strong, 

negative correlation. Despite the dominance of Sphagnum at Pauciflora, ETsurf was limited by 

cooler Ta, whereas warmer Ta, coupled with the establishment of Tomenthypnum at Poplar largely 

diminished differences in ETsurf fluxes between the two fens. As such, ETsurf was not significantly 

different between the two fens despite distinct differences in canopy structure. 

 Despite the dominance of high water tables at both sites, the analysis begins to highlight 

the impacts induced from disturbance, in particular, climate-mediated warming that, in its most 

basic terms, has been predicted to increase canopy cover, maintained warmer Ta, and alter 

precipitation patterns. Both ET and T were the most significantly correlated with Q*, Ta and P 

events.. Higher Q* and Ta supported higher ET rates at Poplar, compared to Pauciflora which 
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supported lower seasonal mean Q* and Ta. However, it is important to recognize that this 

represents a small component of the complex response of peatlands to disturbance. 

 The ultimate goal of this research was to accurately assess the partitioning of ET within 

two typical peatland systems with divergent tree canopies. It is essential to quantify energy balance 

and flux components within typically occurring peatlands to provide a better understanding of 

potential feedbacks induced by disturbance. The region of Fort McMurray, Alberta is not only 

subjected to disturbance from resource extraction but climate-mediated warming has been 

predicted to be the most pronounced within northern peatlands. Current multidisciplinary research 

within Fort McMurray has focused on landscape reclamation to create fen ecosystems on post oil 

sands mine sites, which further necessitates a better understanding of the dominant processes that 

sustained the pre-disturbed system. It is evident that any disruption to climate and moisture regimes 

has to potential to disrupt the natural functioning of these systems, altering ET.  

 Industrial pressures will play a significant role in altering local hydrological cycles, for 

example, corridor creation to access prime regions for the extraction of timber, oil and gas 

exploration may cause enhanced aerobic soil respiration due to the lowering of water tables and 

higher peat temperatures due to canopy removal (Devito et al., 2005; Petrone et al., 2005), causing 

the release of stored carbon to the atmosphere. Climate-mediated warming has the potential to 

further intensify drought conditions that will perpetuate the shift to a tree-dominated state, and can 

further increase water level draw-down (Heijmans et al., 2013), and permanently alter peatland 

functioning. This research highlights the role of climate and tree density within treed peatlands, 

and how changes in either variable can produce strong influences on ET. However, further research 

is necessary to understand and assess these changes over a longer period of time. To understand 

the potential feedback mechanisms, it is necessary to account for increased tree biomass and the 
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direct influence on radiation received at the peat surface, potential shifts of the underlying 

microclimate and controls regulating the Sphagnum-feathermoss transition. 
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Appendix I 
PAUCIFLORA Picea mariana 

DOY Daily Regression Model DOY Daily Regression Model 
159 y=1336x-17080 195 y=966.6x-12441 
160 y=-2122x+29930 196 y=944.6x-12064 
161 y=859.1x - 9500 197 y=996x-12807 
162 y= 3840.2x - 48930 198 y=1080.2x-13816 
163 y=4872x-62204 199 y=920.8x-11603 
164 y=2512.6x-32976 200 y=873.6x-11070 
165 y=1957.2x-25421 201 y=1238.8x-15960 
166 y=1738.4x-22556 202 y=744x-9431 
167 y =1882x - 24468 203 y=1099x-14034 
168 y=2209.8x-28721 204 y=33.2x-285.72 
169 y=1774.6x-22959 205 y=1124.8x-14684 
170 y=2696x-34980 206 y=950.2x-12219 
171 y=3159.4x-40903 207 y=908.2x-11500 
172 y=2839x-36734 208 y=1235.6x-15961 
173 y=2809.8x-36352 209 y=455.6x-5852.8 
174 y=2323x-30025 210 y=481.4x-6232.6 
175 y=1881.2x-24409 211 y = 945.64x - 12217 
176 y=1687.2x - 21860 212 y=1133.6x-14661 
177 y=2022.4x-26205 213 y=765.8x-9797.7 
178 y=746.68x - 9657.8 214 y=1168.2x-15044 
179 y=889x-11510 215 y=1637.4x-21169 
180 y=2183.6x-28313 216 y=1111.8x-14349 
181 y=1556.6x-20100 217 y=691x-8833 
182 y=1979.8x-25720  218 y=1129.4x-14664 
183 y=2202.8x-28532 219 y=764.2x-9652 
184 y=2764x-35957 220 y=641.4x-8138.5 
185 y=2160x-27926 221 y=639x-7937.9 
186 y=2410.8x-31291 222 y=405x-4906.9 
187 y = 520.08x - 6750.2 223 y=407.6x-4846.1 
188 y=616.4x-8008.9 224 y=141x-1578.1 
189 y=1143.8x - 14610 225 y=378.6x-4597.7 
190 y=1388.6x-17756 226 y=345.8x-4300.8 
191 y=1633.8x-21055 227 y=120.8x-1128.1 
192 y=1836.2x-23649 228 y=40x-62 
193 y=816x-10360 229 y=290.2x-3607.4 
194 y=905.8x-11662 230 y=345x-4202.3 
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231 y=352.4x-4310 
232 y=399x-4991.4 
233 y=225.2x-2629.2 
234 y = 412.94x - 5188.3 
235 y=508x-6401.2 
236 y=357.6x-4295.3 
237 y=306.2x-3473 
238 y=333.22x - 3855.2 
239 y=387.2x-4465.5 
240 y=499.6x-6365.3 
241 y=475.6x-5828.3 
242 y=323.2x-3790.7 
243 y=404.84x - 4930.2 

Appendix I: Daily regression modelled for Picea mariana at Pauciflora fen. 
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Appendix II 
POPLAR Larix laricina 

DOY Daily Regression Model DOY Daily Regression Model 
159 y = 362.92x - 680.73 195 y = 278.9x + 2342.6 
160 y = 347.26x - 953.35 196 y = 199.79x + 2656.9 
161 y = 347.26x - 953.35 197 y = 319.08x + 1675.9 
162 y = 483.92x - 1271.6 198 y = 251.06x + 2471.7 
163 y = 196.42x - 764.74 199 y = 212.98x + 2791 
164 y = 309.66x - 933.45 200 y = 343.04x + 1332.8 
165 y = 340.52x - 875.82 201 y = -1051x + 20891 
166 y = 355.18x - 1033.9 202 y = -1286.8x + 23987 
167 y = 336.01x - 886.99 203 y = -1933.7x + 33444 
168 y = 383.26x - 1203.9 204 y = -1331.3x + 24494 
169 y = 352.31x - 921.99 205 y = -927.08x + 18282 
170 y = 357.93x - 1006.2 206 y = -1220.9x + 23260 
171 y = 361.18x - 989.02 207 y = -1404.1x + 25823 
172 y = 405.2x - 1319.8 208 y = -1259.1x + 23413 
173 y = 285.57x - 376.31 209 y = -1259.1x + 23413 
174 y = 411.29x - 1099.1 210 y = -1236.1x + 23185 
175 y = 252.03x - 154.77 211 y = -1529.8x + 27023 
176 y = 201.33x + 76.43 212 y = -1689x + 29580 
177 y = 246.57x - 63.542 213 y = -792.35x + 15955 
178 y = 235.61x - 31.037 214 y = 262.9x - 614.11 
179 y = 219.74x + 29.426 215 y = 65.72x + 1367.8 
180 y = 180.26x + 352.35 216 y = 177.63x + 128.52 
181 y = 167.01x + 553.6 217 y = 96.222x + 756.23 
182 y = 195.36x + 285.72 218 y = 224.7x - 828.64 
183 y = 245.12x + 55.294 219 y = 324.95x - 1979.7 
184 y = 211.15x + 301.47 220 y = 227.53x - 808.95 
185 y = 236.06x + 55.97 221 y = 297.09x - 1657.8 
186 y = 292.3x + 1137.5 222 y = 250.94x - 1059.1 
187 y = 246.44x + 1983.8 223 y = 247.87x - 895.64 
188 y = 310.52x + 1001.4 224 y = 157.81x - 65.933 
189 y = 288.77x + 1154.3 225 y = 226.1x - 690.11 
190 y = 357.12x + 310.59 226 y = 182.15x - 297.37 
191 y = 297.92x + 1047.5 227 y = 137.61x + 141.19 
192 y = 276.47x + 1889.8 228 y = 149.62x - 601.87 
193 y = 259x + 2717.9 229 y = 281.32x - 2547 
194 y = 266.35x + 2221.5 230 y = 218.71x - 1895.2 
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231 y = 264.82x - 2514.7 
232 y = 254.95x - 2319 
233 y = 201.13x - 1869 

Appendix II: Daily regression modelled for Larix laricina at Poplar fen. 
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Appendix III 
POPLAR Picea mariana 

DOY Daily Regression Model DOY Daily Regression Model 
159 y = 362.92x - 680.73 195 y = 278.9x + 2342.6 
160 y = 347.26x - 953.35 196 y = 199.79x + 2656.9 
161 y = 347.26x - 953.35 197 y = 319.08x + 1675.9 
162 y = 483.92x - 1271.6 198 y = 251.06x + 2471.7 
163 y = 196.42x - 764.74 199 y = 212.98x + 2791 
164 y = 309.66x - 933.45 200 y = 343.04x + 1332.8 
165 y = 340.52x - 875.82 201 y = -1051x + 20891 
166 y = 355.18x - 1033.9 202 y = -1286.8x + 23987 
167 y = 336.01x - 886.99 203 y = -1933.7x + 33444 
168 y = 383.26x - 1203.9 204 y = -1331.3x + 24494 
169 y = 352.31x - 921.99 205 y = -927.08x + 18282 
170 y = 357.93x - 1006.2 206 y = -1220.9x + 23260 
171 y = 361.18x - 989.02 207 y = -1404.1x + 25823 
172 y = 405.2x - 1319.8 208 y = -1259.1x + 23413 
173 y = 285.57x - 376.31 209 y = -1259.1x + 23413 
174 y = 411.29x - 1099.1 210 y = -1236.1x + 23185 
175 y = 252.03x - 154.77 211 y = -1529.8x + 27023 
176 y = 201.33x + 76.43 212 y = -1689x + 29580 
177 y = 246.57x - 63.542 213 y = -792.35x + 15955 
178 y = 235.61x - 31.037 214 y = 262.9x - 614.11 
179 y = 219.74x + 29.426 215 y = 65.72x + 1367.8 
180 y = 180.26x + 352.35 216 y = 177.63x + 128.52 
181 y = 167.01x + 553.6 217 y = 96.222x + 756.23 
182 y = 195.36x + 285.72 218 y = 224.7x - 828.64 
183 y = 245.12x + 55.294 219 y = 324.95x - 1979.7 
184 y = 211.15x + 301.47 220 y = 227.53x - 808.95 
185 y = 236.06x + 55.97 221 y = 297.09x - 1657.8 
186 y = 292.3x + 1137.5 222 y = 250.94x - 1059.1 
187 y = 246.44x + 1983.8 223 y = 247.87x - 895.64 
188 y = 310.52x + 1001.4 224 y = 157.81x - 65.933 
189 y = 288.77x + 1154.3 225 y = 226.1x - 690.11 
190 y = 357.12x + 310.59 226 y = 182.15x - 297.37 
191 y = 297.92x + 1047.5 227 y = 137.61x + 141.19 
192 y = 276.47x + 1889.8 228 y = 149.62x - 601.87 
193 y = 259x + 2717.9 229 y = 281.32x - 2547 
194 y = 266.35x + 2221.5 230 y = 218.71x - 1895.2 
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231 y = 264.82x - 2514.7 
232 y = 254.95x - 2319 
233 y = 201.13x - 1869 

Appendix III: Daily regression modelled for Picea mariana at Poplar fen. 
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Appendix IV 
Fen Parameter Equation 
  = √(2/Mσ)^(wˈcˈ) 

M represents the number of 
independent measurements of 
wˈcˈ 

PFLORA EC = √(2/3670)^(0.0842) 
POPLAR EC = √92/2194)^(0.0657) 

 
Method Parameter Error 

Percent 
(%) 

Mean 
Error 
(%) 

Root Mean 
Square Error 

Reference 

SHB Measurement 
resolution 

10.0 17.0 4.1 Groot and King, 1992 
Shackel et al., 1992 
Grime et al., 1995 
Perämäki et al., 2001 

Steady-state 
Assumption 

30.0 

Heat Storage  10.0 
Chamber Reduced Q* 10.0 6.7 3.0 Reicosky et al., 1983 

McLeod et al., 2004 
Hamel et al., 2015 

 10.0 

 
Appendix IV: Specific equations used to determine error for each parameter 
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