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Abstract 

In this research, models were developed to analyze leptospirosis incidence in Sri Lanka 

and its relation to rainfall.  Before any leptospirosis risk models were developed, rainfall data 

were evaluated from an agro-ecological monitoring network for producing maps of total monthly 

rainfall in Sri Lanka. Four spatial interpolation techniques were compared: inverse distance 

weighting, thin-plate splines, ordinary kriging, and Bayesian kriging. Error metrics were used to 

validate interpolations against independent data. Satellite data were used to assess the spatial 

pattern of rainfall. Results indicated that Bayesian kriging and splines performed best in low and 

high rainfall, respectively.  Rainfall maps generated from the agro-ecological network were 

found to have accuracies consistent with previous studies in Sri Lanka.  These rainfall data were 

then used as the primary predictor in a family of time series leptospirosis forecasting models at 

varying spatial scales across Sri Lanka.  Several modelling scenarios were evaluated using 

proper scoring rules and numerous other metrics to assess model fit and calibration.  A negative 

binomial integer-valued autoregressive conditional heteroscedasticity (INGARCH) model that 

included current and previous rainfall covariates, as well as regression on previous cases of 

leptospirosis at a local and seasonal time scale was selected as the best performing model.  It was 

found that rainfall did not have a significant correlation with leptospirosis incidence in Sri 

Lanka, but the family of INGARCH models developed was able to forecast leptospirosis 

incidence and effectively provide early warning for leptospirosis outbreaks at the district level 

across Sri Lanka.  
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Chapter 1: Introduction 

1. Research context 

An emerging infectious disease (EID) can be thought of as an infectious disease that has 

recently appeared in existing populations, or that has had its incidence rapidly increase in the 

recent past (Morse, 1995).  Most EIDs are caused by pathogens that are already present in the 

environment, but changes in the underlying environmental conditions and in the human-

environment relationship (e.g., land use change, immigration of human populations to previously 

uncultivated areas), can lead to the emergence or resurgence of such diseases (Mayer, 2000; 

Morse, 1995).  Social, ecological, and geographical changes can all play an important role in the 

emergence or resurgence of infectious diseases, and given the increasing worldwide attention in 

recent decades that has been given to EIDs (e.g., AIDS, SARS) and the ways that they can affect 

society, it is important to continue to develop a better understanding of these drivers of 

emergence so that future EID outbreaks can be prevented (Mayer, 2000).  The first step to 

prevention of the emergence or resurgence of infectious diseases is developing effective global 

disease surveillance systems (Morse, 1995).  By developing surveillance systems for EIDs in key 

areas around the world, early warning of emerging infections or outbreaks can be had which can 

help to prevent and minimize future outbreaks before they become more global issues (Morse, 

1995).  Given the changing geography of the late 20
th

 and early 21
st
 century and increased 

mobility of human populations around the world, it is also important to analyse geographical 

aspects of emergence of infectious diseases (Haggett, 1994). 

Drivers of the emergence of infectious diseases can be difficult to account for, as they are 

often a collection of many different social, ecological, economic, and environmental factors 
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(Mayer, 2000; Morse, 1995).  Many of these factors are anthropogenic, as humans are perhaps 

the most important agents of ecological and environmental change, but natural changes in 

climate and weather can have just as pronounced an effect, and have typically been associated 

with the emergence of infectious diseases (Ashford et al., 2000; Mayer, 2000; Morse, 1995; 

Robertson et al., 2012; Vinetz et al., 2005).  For example, with signs of increasing climate 

change such as rising global temperatures and varying trends in precipitation, it is thought that in 

the future, more drastic global environmental changes will occur (Jayawardene et al., 2005a; 

Pachauri et al., 2007).  These natural environmental changes are likely to impact the emergence 

of infectious diseases and the risks they pose to human populations (e.g., increase in geographic 

range within which disease vectors can survive).  To better understand the relationship between 

environmental change and EID incidence in human populations, work was done to correlate the 

two.  Increased environmental variability influences the incidence of EIDs, and thus was an 

important aspect to consider when trying to understand the dynamics of emergence (Lau et al., 

2010; Morse, 1995).  By developing environmentally-driven forecasting models for disease risk 

and outbreak, progress was made in understanding the dynamics of EIDs. 

Leptospirosis is a waterborne zoonotic disease of worldwide importance, as its incidence 

is continually increasing in developed and developing countries around the world (Vijayachari et 

al., 2008; WHO, 1999).  Incidence of human infection tends to be higher in tropical areas and 

temperate regions (Bharti et al., 2003).  Symptoms of leptospirosis are variable, and can include 

fever, headache, myalgia, nausea, and abdominal pain (Ashford et al., 2000).  Severe and 

potentially fatal forms of leptospirosis can cause more adverse symptoms, and in recent decades, 

endemic and epidemic severe pulmonary haemorrhage has increasingly been identified as a 

symptom of leptospiral infection (Bharti et al., 2003; Levett, 2001).  Leptospirosis incidence is 
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often underestimated due to lack of public awareness of the disease, and its symptoms being 

similar to other more well-known diseases (e.g., malaria) (Bharti et al., 2003).  Human infection 

is caused by exposure to water that has been contaminated by the infected urine of carrier 

mammals (e.g., rodents, dogs) (Bharti et al., 2003).  The occupation of an individual can often 

play a role in contracting leptospirosis – specifically, occupations which put an individual in 

contact with animal reservoirs or occupations that involve increased contact with potentially 

contaminated water (e.g., farming and agricultural work) will put one at greater risk (Levett, 

2001). 

Leptospirosis is known to have an association with environmental variables, and thus it 

was a suitable case for developing forecasting models for EID incidence (Ashford et al., 2000; 

Sarkar et al., 2012, 2002; Vinetz et al., 2005).  Several studies have assessed the effects that 

different environmental variables (e.g., temperature, rainfall) have on leptospirosis transmission 

and incidence (Ashford et al., 2000; Chadsuthi et al., 2012; Pappachan et al., 2004).  While there 

is an observed relationship between environmental factors (e.g., changes in precipitation and 

temperature dictated by seasonality) and leptospirosis, this research aimed to develop a more 

acute understanding of the dynamics of this relationship and as a result, contributions were made 

to the fields of epidemiology and EID modelling, and more specifically, to leptospirosis research.  

This research considered an outbreak of leptospirosis in Sri Lanka as a case study.  Modelling 

methodologies were analyzed for determining correlation between environmental factors and 

leptospirosis incidence.  Through the use of geographic information systems (GIS) and spatial 

analysis, relationships were investigated in a spatial context. 
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2. Research questions and objectives 

Developing an understanding of the relationship between EID incidence and 

environmental factors is required to forecast where new EIDs will emerge and spread.  While 

many studies have speculated certain patterns pertaining to correlation between precipitation and 

EID incidence, most agree that research must continue to be performed – specifically regarding 

leptospirosis – to further clarify the correlation (Ashford et al., 2000; Chadsuthi et al., 2012; Lau 

et al., 2010; Pappachan et al., 2004; Sarkar et al., 2012, 2002; Zhang et al., 2008).  I developed 

leptospirosis risk models (i.e., models that forecasted leptospirosis incidence) and assessed them 

in a spatial context by taking into account information and data specific to the underlying 

landscape to elucidate mechanisms of transmission.  The primary goal of this research was to 

improve and further understanding of EID outbreak, and specifically, leptospirosis outbreak, by 

examining how environmental drivers affect the spatial and temporal distribution of the disease.  

This research was conducted by answering two primary research questions. 

2.1 Can spatial interpolation techniques be employed to effectively predict 

precipitation across Sri Lanka? 

When constructing models that rely heavily on climate variables, using large-scale 

climate data sets can help models yield desirable and realistic results, as incorporating climate 

data specific to the study area into models allows for the relationship between what is being 

modelled and the underlying climate to be more accurately defined.  Data are increasingly 

becoming available due to improvements in different measurement technologies such as remote 

sensing, but most climate and rainfall data are still collected by networks of permanent and 

irregularly dispersed weather stations.  To assess leptospirosis incidence and its correlation to 

precipitation, I predicted rainfall across all of Sri Lanka by generating continuous surfaces of 
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rainfall.  Several spatial interpolation techniques were assessed in an effort to best approximate 

rainfall in Sri Lanka.  Rainfall was then included as a primary predictor for modelling 

leptospirosis incidence in Sri Lanka. 

Spatial interpolation methods including inverse-distance weighting, thin-plate smoothing 

splines, ordinary kriging, and Bayesian kriging were evaluated by applying them to a rainfall 

data set received from the Department of Meteorology of Sri Lanka.  Daily precipitation data 

were obtained from a network of weather stations distributed across Sri Lanka from 2005 to 

2011, but there were considerable gaps between weather stations in the data set.  Spatial 

interpolation was performed on this data set to first, test whether rainfall data values could be 

accurately predicted, and second, compare the interpolation methods against each other.  From 

this, conclusions were drawn as to which method was the most effective at predicting rainfall in 

Sri Lanka.  Once accurate rainfall data were predicted, they were used to model leptospirosis 

incidence in Sri Lanka. 

2.2 Does precipitation data provide a reliable early-warning signal for 

leptospirosis outbreaks in Sri Lanka? 

To investigate the relationship between precipitation and outbreak events of leptospirosis, 

a family of local independent time-series models was explored to analyze and clarify the effect 

that precipitation has on leptospirosis incidence in Sri Lanka.  Using these models, predictions 

were made concerning areas and districts of likely leptospirosis outbreak.  The predictions were 

then evaluated to assess whether the models constructed could be used to provide a reliable early 

warning of leptospirosis outbreak in Sri Lanka, and if rainfall and wetness of the physical 

environment were significant predictors for forecasting leptospirosis risk. 
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3. Contributions 

This research helped to further understanding of the effect that environmental drivers 

have on the distribution of emerging infectious diseases.  Methods that have previously not been 

applied to assessing leptospirosis in Sri Lanka were used in an effort to understand the spatial 

and temporal dynamics of disease outbreak.  Contributions were made to leptospirosis research, 

and more generally, the spatial and temporal analysis of zoonotic diseases (i.e., diseases that can 

be transmitted between animals and humans).  Methodological improvements in the field of 

epidemiology were made through the use of families of local independent time-series models, 

which have not previously been applied to evaluating leptospirosis risk. 

There has been an abundance of research done in the past on factors which influence the 

outbreak of zoonotic diseases.  While anthropogenic factors can be important drivers of disease 

transmission, environmental factors can carry just as much weight, as most of the anthropogenic 

factors are affected by these environmental factors (Morse, 1995).  By conducting this research 

and developing empirically-driven models that incorporate environmental variables to forecast 

leptospirosis incidence in Sri Lanka, understanding was expanded by more acutely exploring the 

links between rainfall and leptospirosis incidence. 

The country of Sri Lanka can benefit greatly from the findings of this research.  The  

forecasting models for leptospirosis risk in Sri Lanka can be used to alert the Sri Lanka Ministry 

of Health of possible upcoming leptospirosis outbreaks.  With this information, early-warning 

protocols can be developed and implemented to help reduce the extent of future outbreaks, and 

prepare the population if a potential leptospirosis outbreak is expected given the underlying 

environmental conditions.  Examples of possible methods of outbreak prevention include 
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improving sanitation measures, administering leptospirosis vaccines, and administering 

equipment to individuals in regions of heightened leptospirosis risk to minimize human contact 

with contaminated water (e.g., waterproof boots and gloves) (Bharti et al., 2003).  Understanding 

drivers of leptospirosis outbreak is relevant and necessary in a developing country like Sri 

Lanka, as this type of information is not generally available, and potential for large-scale 

outbreak is high due to the tropical environmental conditions present.  
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Chapter 2: Comparing interpolation techniques for monthly rainfall 

mapping using multiple evaluation criteria and auxiliary data sources: 

A case study of Sri Lanka 

An edited version of this paper was published in the journal Environmental Modelling & 

Software: 

Plouffe, C.C.F., Robertson, C., Chandrapala, L., 2015. Comparing interpolation techniques for 

monthly rainfall mapping using multiple evaluation criteria and auxiliary data sources: A 

case study of Sri Lanka. Environ. Model. Softw. 67, 57–71. 

doi:10.1016/j.envsoft.2015.01.011 

1. Introduction 

Ecological forecast models that rely on climate data are increasingly used in a variety of 

contexts.  For example, detailed climate data are necessary when modelling outbreak patterns of 

emerging infectious diseases (Briët et al., 2008; Robertson et al., 2012). While data are 

increasingly becoming available due to the advent of smaller and cheaper environmental sensors, 

most climate data – specifically, precipitation data – are still collected by a network of 

geographically dispersed weather stations.  This leads to data that contain considerable gaps in 

coverage of areas where stations are more isolated.  However, additional data sources such as 

citizen sensors (Goodchild, 2007), unofficial and/or semi-official networks of rain gauges 

(Wickramaarachchi et al., 2013), and satellite-derived data products (Kummerow et al., 1998) 

may be used to augment estimates from ground-based stations. To leverage these auxiliary 

sources of data, new approaches are required to integrate data from multiple sources, and to help 

evaluate the best performing models (Bennett et al., 2013). In this paper, I investigate the 

integration of additional sources of data for comparison of rainfall interpolation methods in Sri 

Lanka. Firstly, I aim to evaluate an unofficial network of rain gauges across Sri Lanka by 

comparing different interpolations against official meteorological station recordings. Secondly, 
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as part of the unofficial rainfall station network validation, I examine spatial patterns in predicted 

rainfall in relation to satellite-derived estimates of rainfall. 

Spatial interpolation techniques are widely used to estimate seamless spatial coverage of 

rainfall over large areas, yet there is little consensus on the optimal interpolator for rainfall, 

especially where spatial rainfall pattern is highly variable (Dirks et al., 1998; Price et al., 2000; 

Vicente Serrano et al., 2003).  Table 2.1 displays a summary of several different studies 

evaluating interpolation methods applied for rainfall prediction in different settings.  Previous 

studies have come to different conclusions regarding the most effective techniques for spatial 

interpolation of rainfall data, and more generally, measuring performance for any given 

environmental model is intrinsically case-dependent (Bennett et al., 2013).  Robson (2014) 

suggests that opting for the simplest model possible is desirable unless it has been found to be 

inadequate when compared to more complex models.  The literature reveals that accuracy of 

precipitation interpolation varies greatly by region and temporal scale (Table 2.1). Interpolation 

errors are related to measurement error, the density of the station network, topography, and the 

type of rainfall (Abtew et al., 1993). Tropical and monsoonal environments in particular have 

proven difficult to characterize with seamless spatial coverages of rainfall (Jayawardene et al., 

2005b)(Jayawardene et al., 2005).  The amount of rainfall in the tropics is often highly variable 

in intensity and seasonality (Malhi and Wright, 2004), and interpolating rainfall for these areas 

can be quite difficult, as weather often dramatically changes over space and time. 

The primary differences between the statistical methods used to interpolate rainfall are 

how they are conceptually formulated and mathematically constructed (Burrough and 

McDonnell, 1998).  Some approaches to spatial interpolation are more effective at predicting 

certain types of spatial processes, and thus context-specific applications of interpolation methods 
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are common.  Comparative studies have been conducted to determine which method of spatial 

interpolation is best suited for different contexts, but as of yet, no decisive conclusions have been 

made (Zimmerman et al., 1999).  It is important to continue research in this direction to gain a 

better understanding of proper applications of these interpolation techniques. 

The tropical country of Sri Lanka is used here as a case study for this exploration of 

rainfall interpolators.  It was hypothesized that one of the geostatistical methods would yield the 

most accurate results.  A review of relevant literature found that kriging is the most effective 

interpolation method for precipitation data (Jeffrey et al., 2001; Vicente-Serrano et al., 2003; 

Zimmerman et al., 1999). 

1.1 Objectives 

The objectives of this research were three-fold. Firstly, I aimed to determine the most 

effective spatial interpolation methods for rainfall data for application to countrywide 

environmental modelling in Sri Lanka.  Specifically, I required a methodology for estimating 

seamless spatial coverage of monthly precipitation. While the focus here is Sri Lanka, I aim to 

add to the literature on interpolation comparisons, with specific emphasis on tropical areas that 

exhibit large variability in rainfall throughout the year. To investigate this, four different spatial 

interpolation methods were evaluated: inverse distance weighting (IDW), thin plate smoothing 

splines, ordinary kriging, and Bayesian kriging.  These methods were chosen on the basis that 

many studies in the past have employed these techniques in rainfall interpolation (Daly et al., 

1994; Dirks et al., 1998; Jeffrey et al., 2001; Oke et al., 2009; Vicente Serrano et al., 2003).  The 

results of these comparisons will be used as input for a spatial-temporal model used for 

surveillance and forecasting of waterborne infectious disease risk in Sri Lanka.  The second 
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objective was evaluate the suitability of a novel source of data, community managed weather 

stations which form an agro-ecological monitoring network, as a source of data for mapping 

rainfall over the whole country. Currently in Sri Lanka, these stations are not used for modelling 

rainfall at the country scale. Additionally, given that the infectious disease  being investigated 

(i.e., Leptospirosis) tends to be of greater risk to human populations in agricultural areas, 

accuracy of interpolated rainfall values in these areas was an underlying research goal. Finally, I 

aimed to investigate the use of a novel map comparison method, structural similarity (SSIM) 

index, to evaluate the spatial structure of interpolated rainfall maps derived from station 

readings.  

To meet these objectives, analysis occurred in three distinct stages. Firstly, I interpolated 

rainfall maps for each of the four methods. Secondly, I used official meteorological station 

ground truth data to compare errors of the interpolation methods at different times of year. The 

validation data were independent from the data used for model development, providing an 

objective assessment of map accuracy. Finally, I employed the SSIM index to compare spatial 

rainfall patterns obtained from satellite imagery over corresponding locations and times. By 

evaluating the quality of the rainfall maps using multiple criteria (i.e., across interpolators, 

relative to independent data, and compared to satellite imagery), I hypothesized that I could 

determine the strengths and weaknesses of each interpolation method when dealing with the high 

climatic variability present in tropical climates.  
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2. Material and methods 

2.1 Interpolation 

Spatial interpolation methods can be grouped into four categories: global methods (trend 

surfaces and regression models), local methods (Thiessen polygons, IDW, and splines), 

geostatistical methods (kriging), and mixed methods, which involve a combination of all of the 

previously listed methods (Vicente-Serrano et al., 2003).  While these different types of methods 

present viable options for interpolation, only compared local and geostatistical methods were 

compared.  These were chosen based on a number of factors, including computational 

complexity, ease of implementation in an operational forecasting system in Sri Lanka, the 

capabilities of the software being utilized, the size of the data sets being studied, and a thorough 

review of recent literature.  Given these criteria, IDW, splines, ordinary kriging, and Bayesian 

kriging were chosen as the appropriate spatial interpolation techniques. 

Interpolation techniques predict the variable of interest at a specific location by taking 

known values from the surrounding region into account, and using them to estimate the value at 

a location where it is unknown.  Normally, prediction at a location using interpolation can be 

expressed generally by the following formula: 

 �̂�(𝑠𝑖) = ∑ 𝑓(𝑠𝑖)

𝑛

𝑖=1

+ 𝜖(𝑠𝑖) (1) 

 

Where �̂�(𝑠𝑖) is the estimated value at location 𝑠𝑖, 𝑓 is a function specific to the particular 

interpolation technique that takes in known values to make a prediction at location 𝑠𝑖, and 𝜖(𝑠𝑖) 

are the random errors associated with that particular location.  Based on the type of interpolation 
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being performed, the values predicted at location 𝑠𝑖 will differ. A brief description of the more 

commonly used interpolation methods that were evaluated is outlined in Table 2.2. 

Bayesian kriging differs from ordinary kriging in that prior distributions are put on 

parameters of the semivariogram, and estimation yields a posterior distribution for each of the 

semiovariogram parameters (range, sill, and nugget).  Prior distributions allow inclusion of 

expert knowledge and uncertainty into the estimation procedure and model outputs. Yet typical 

implementations of Bayesian kriging do not include informative prior distributions (Berger et al., 

2001).  I modelled rainfall as a realization of a Gaussian random field, as is common in 

environmental applications of Bayesian kriging, such that  

 
𝑧𝑖|𝑆~𝑁(𝛽(𝑧𝑖) + 𝑆(𝑧𝑖)), 𝜏2) 

(2) 

where rainfall zi is a linear combination of spatial trend β, a Gaussian process S (Diggle and 

Ribeiro, 2002) and the nugget variance  𝜏2. The Gaussian process is  

 
𝑆(𝑧𝑖)~𝑁(0, 𝜎2𝑅(ℎ; 𝜙, Κ) 

(3) 

where R is specified as a Matérn covariance function for spatial lag h, correlation parameter 𝜙, 

smoothness parameter K.  The full parameter vector for the Bayesian kriging model was 

therefore [ 𝛽, 𝜏2, 𝜎2, 𝜙, 𝐾]. Samples from the posterior distributions were obtained from 

simulation (Diggle and Ribeiro, 2002).  

Since full posterior distributions are available for inference, parameter uncertainty was 

incorporated into the spatial predictions of rainfall.  As the initial rainfall values used to perform 

ordinary and Bayesian kriging were not Gaussian, a Box-Cox transformation was performed on 

the data set to satisfy model assumptions.  The interpolated data were later back-transformed for 
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analysis and interpretation. The R package geoR (Diggle and Ribiero, 2007) was used to 

generate spatial predictions from the fitted model. 

2.1.1. Model parameters 

Parameters for each interpolation model were set based on visual inspection and 

qualitative analysis of multiple test interpolations in high and low rainfall scenarios.  Particular 

attention was given to not overfitting the models to the test data.  The purpose of this research 

was to determine a suitable interpolation model for predicting monthly rainfall in Sri Lanka year 

round, and considering the nature of the data being interpolated, it would be an oversight to fit 

the models too closely to only the months used for analysis (i.e., May and November). 

IDW yielded the most accurate predictions by taking into account n = 12 nearest 

neighbours and using an inverse distance power of n = 1.  Jayawardene et al. (2005) found an 

inverse distance power of n = 1 attained the highest correlation coefficient and the lowest RMSE 

of all tested values of n for IDW interpolation of rainfall in Sri Lanka.  Thin-plate smoothing 

spline parameters include the order of the polynomial expansion, and the smoothing parameter. 

The smoothing parameter was chosen by generalized cross validation and polynomial was 

second order based on experimentation and literature review (Alvarez et al. 2014).  A spherical 

semivariogram was used to fit the model for ordinary kriging, which had a range of 15 km, and a 

cutoff of 100 km.  A uniform prior distribution was used for parameters of the semivariogram for 

Bayesian kriging, and a Matérn covariance function was used to define the spatial correlation 

structure. 
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2.2 Study area 

Sri Lanka is situated in the Indian Ocean, off the southeastern tip of the Indian 

subcontinent. The climate is tropical, and weather is characterized by two seasonal monsoons.  

The northeast monsoon typically lasts from December to February, while the southwest monsoon 

lasts from April until September.  The southwest area of Sri Lanka receives significant rainfall 

particularly during the southwest monsoon season, while the northern and eastern regions of the 

country become predominantly dry during this time.  There are also two inter-monsoonal 

seasons, which last from March to April, and October to November.  During these inter-

monsoonal seasons, Sri Lanka can experience considerable amounts of convectional rainfall. 

2.3 Data 

2.3.1. Model development data 

Rainfall data were collected from the Department of Meteorology of Sri Lanka, and 

include daily rainfall measurements (millimeters) from a network of ~370 small-scale 

community-managed weather monitoring stations, many of which were located in agricultural 

areas (Figure 2.1). The spatial distribution of the station network varies considerably with 

population, climate, and land use. Daily rainfall measurements were aggregated into total 

monthly rainfall.  Multiple subsets of these data were extracted for the months of May and 

November for the years of 2006 through 2010. These months were chosen as they coincided with 

periods of peak rainfall for Sri Lanka (Zubair, 2002).  The quality of the data collected at stations 

was largely unknown, as many stations were located in remote areas, and maintenance of each 

station was situation-dependent.  

2.3.2. Model validation data 
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Rainfall validation data were obtained from 20 to 22 (dependent on year) official 

meteorological stations managed by the Department of Meteorology of Sri Lanka (Figure 2.1).  

The data set was aggregated into monthly rainfall for May and November of 2006 through 2010.  

The official meteorological station data (n=~20) were used to validate the interpolations 

generated using the larger (n=~370, varying by year and month) community-managed weather 

monitoring data set. 

2.3.3. Spatial structure evaluation data 

While weather station data are accurate estimates of local rainfall, ‘ground truth’ of 

spatial rainfall patterns across large areas is difficult to assess from point observations. To this 

end, satellite-derived rainfall maps were obtained to represent the general spatial pattern of 

rainfall, which were then compared to interpolated surfaces. Remotely sensed hourly rainfall 

estimates for May and November of 2006 through 2010 were acquired from the Tropical Rainfall 

Measuring Mission (TRMM), a collaborative mission between the National Aeronautics and 

Space Administration (NASA) and the Japan Aerospace Exploration Agency (JAXA) designed 

to monitor and study tropical rainfall.  The GSMaP_MVK rainfall product for global hourly 

precipitation was used, which employs a Kalman filter to estimate surface rainfall rates at a 0.1° 

latitude x 0.1° longitude resolution by incorporating data from LEO microwave and GEO 

infrared radiometers (Ushio et al., 2009).  

2.4 Accuracy assessment 

2.4.1. Evaluation metrics 

To evaluate which interpolation methods generated the most accurate rainfall predictions, 

a number of accuracy assessment metrics were employed.  Comparisons were made between the 

rainfall values obtained from the 20 official meteorological stations, and each of the 
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interpolations’ predictions at those same locations.  Mean absolute error (MAE), median percent 

error (MdPE), and standardized root-mean-square error (SRMSE) were used to evaluate 

interpolations for May and November of 2006 to 2010. 

 MAE =  
1

𝑛
∑|𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 (4) 

 

 MdPE= median(
|𝑦𝑖−�̂�𝑖|

�̂�𝑖
) × 100 (5) 

 

 SRMSE =  

√1
𝑛

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1

1
𝑛

∑ 𝑦𝑖
𝑛
𝑖=1

 (6) 

   

The SRMSE was calculated by taking the RMSE of interpolations’ predicted values compared to 

observed values, and standardizing by mean rainfall for that particular month and year.  It 

provides a dimensionless measure which is beneficial for comparing values between data sets 

with different means and has been used in similar analyses (Chemel et al., 2011).  Statistical 

error (SE), which simply involves subtracting the known values from the predicted values, was 

used to evaluate interpolated values from 2007 and 2010. 

 SE =  �̂�𝑖 − 𝑦𝑖 (7) 

   

MAE, MdPE, and SRMSE were used when evaluating the results averaged over the 20 station 

locations to check for yearly trends, while SE was used to evaluate rainfall at the individual 

station level to investigate regional trends.  Observed vs. predicted error plots were also created 

for all interpolation methods for the years of 2007 and 2010. 
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2.4.2. Justification of metrics 

All evaluation metrics were chosen to evaluate model performance, and account for 

inadequacies of other individual metrics.  In a paper by Bennett et al. (2013) regarding 

characterization of model performance, it was stressed that metrics should be chosen to 

compliment the weaknesses of the other metrics being employed.  MAE was chosen as a 

measure of overall accuracy for the interpolation models.  While RMSE is a more common 

metric to measure accuracy, it gives greater weight to extreme outliers present in the results.  

Given the uncertain quality of the data used to fit the models, giving less weight to extreme 

outliers helped determine which models performed consistently well and were not affected as 

adversely by stations with erroneous data.  MdPE was used in conjunction with MAE as an 

alternative measure of overall accuracy.  MdPE was used to further reduce the impact of extreme 

outlier errors that could considerably skew MAE depending on the magnitude of the outlier.  

Using a percentage as opposed to a unit of measure (e.g., mm) also gave perspective on the 

magnitude of the error for the given month when paired with the MAE. 

SE was used to account for station-level bias for 2007 and 2010 – years with the lowest 

and highest mean rainfall, respectively.  Stations were geographically plotted from north to south 

to monitor spatial trends in the interpolations.  SE indicated whether errors at the station level 

were consistently positive or negative, which helped reveal possible issues with the underlying 

data used to fit the models.  SRMSE allowed for easier cross-seasonal comparison of model fit.   

The SRMSE metric was standardized by mean monthly rainfall for each month being analysed, 

which provided a metric independent of the magnitude of rainfall for any given month of study.  

SRMSE was especially useful when comparing results from years with substantially different 

amounts of rainfall. 
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2.5 Spatial structure evaluation 

Using accuracy assessment statistics is valuable when looking to measure the accuracy of 

results at specific locations, but these metrics fail to account for global spatial trends that are 

present within the data.  In a recent review of model performance evaluation by Bennett (2013), 

the notion of evaluating ‘data pattern’ was highlighted as an important aspect of model 

performance. Typically evaluating pattern preservation is done a-spatially, such as the 

correlation coefficient or more recently for temporal data methods to estimate curve similarity 

have been proposed (e.g., Ehret and Zehe, 2011). I extend these ideas to the spatial domain to 

compare the spatial similarity of rainfall maps using the SSIM index (see Robertson et al., 2014 

for details). Briefly, by comparing interpolated rainfall maps as a whole to other rainfall maps of 

the same study region, it can be determined whether spatial patterns of rainfall are being 

accurately predicted.  Map comparisons were performed between the generated interpolations 

and TRMM remotely sensed rainfall estimates by employing the structural similarity index 

(SSIM), a quality assessment methodology originally intended to assess the quality of image 

compression algorithms (Wang et. al, 2004).  Hagen-Zanker (2006) later suggested this method 

for assessing the structure of continuous maps.  SSIM was employed to extend this notion to 

comparing the differences between multiple interpolation methods’ outputs and remotely sensed 

rainfall estimates. By comparing differences between the spatial patterns and structure of the 

interpolations and the remotely sensed rainfall estimates, an assessment of interpolation quality 

at the pattern-level could be made.  SSIM takes three components into account for map 

comparison: luminance, contrast, and structure, concerning local differences in mean, variance, 

and correlation, respectively (Wang et al. 2004). For this research, only structure will be 

assessed: 
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In these two equations, a and b represent raster maps, the index i iterates through n cells in a set 

region, and wi are the spatial weights that control the smoothness of the local region effect. 

 
3

3

c

c
)b,a(S

ba

ab










 
(10) 

The formula above represents one of the three components that the SSIM is comprised of; 

structure (S).  In the formula, the constant c3 is used for stability in situations where the mean or 

variability is close to zero which would be the case with large homogeneous patches. The 

component S ranges from -1, to 1, indicating a negative or positive correlation coefficient 

between cells in each window. Interpreting maps of S values allows for analyzing local spatial 

patterns.  Where structure is high, the spatial pattern in values will be similar; even if the 

magnitudes of the pixels are dramatically different.  The SSIM and specifically the structure 

component provide a novel methodology for evaluating continuous maps.  It should be noted that 

the original TRMM rasters were recorded at a 0.1° latitude x 0.1° longitude resolution.  These 

rasters were converted to a 5 km x 5 km resolution using bilinear interpolation such that 

comparisons could be made between the rainfall interpolations and the TRMM satellite based 

rainfall estimates. 

2.6 Software 

Several different types of software were used for data management and processing during 

this project.  The programming language Python was used for data preprocessing – specifically, 

parsing the unformatted data sets.  Python was also used to download remotely sensed hourly 
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rainfall estimates acquired from TRMM for the months being studied. The statistical 

programming language R (version 2.14.2) was used for a variety of tasks, including processing 

the official meteorological station data, aggregating the data from daily into monthly rainfall, 

accumulating the TRMM remotely-sensed hourly rainfall estimates into monthly rainfall, and 

generating the IDW, spline, ordinary kriging, and Bayesian kriging interpolations.  The R 

packages gstat (Pebesma, 2004), fields (Nychka et al., 2012), and geoR (Diggle and Ribiero, 

2007) were used to perform all interpolations.  Figure 2.2 depicts a flow chart of the entire 

workflow taken throughout this research. 

3. Results 

Mean yearly rainfall of both official meteorological stations and community-managed 

weather stations for May and November of 2006 to 2010 is presented in Figure 2.3.  Both 

meteorological stations and community-managed weather stations exhibited similar trends of 

mean rainfall by year.  While the magnitude of rainfall tended to be slightly greater for the 

community-managed stations, peak rainfall years of 2006 and 2010 were present for both station 

networks.  Generally, the yearly patterns for the month of May paralleled those for November, 

with the major difference being the larger magnitude of rainfall always present in November (as 

would be expected given the typical seasonal distribution of rainfall in Sri Lanka).  An unusually 

low mean rainfall was found for the year of 2007, specifically when looking at November, which 

will be considered as a dry year in the quantitative analysis.  The years of 2007 and 2010 will be 

analysed specifically, as they represent years with the minimum and maximum mean rainfall, 

respectively. 
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3.1 Accuracy assessment  

Table 2.3 displays MAEs, MdPEs, and SRMSEs for May and November from 2006 to 

2010 for all interpolations methods utilized in this study.  Overall, moderate MAEs were found 

for all interpolation methods, while MdPEs were found to be much more varied, specifically for 

the month of May.  The SRMSEs were perhaps more indicative of the actual predictive error 

associated with each interpolation technique, as they were standardized for each month and year. 

These SRMSEs were found to be relatively moderate in range.  For the interpolations concerning 

the month of November, the MAEs were noted to be considerably larger (occasionally double 

the size) than those concerning the month of May, but this was directly related to the magnitude 

of rainfall being experienced in November, as the MdPEs were found to be lower for November 

than May.  The SRMSEs were consistent in magnitude regardless of month.  The differences 

found between the MAEs and MdPEs were thought to be related to how much the rainfall 

measurements varied given the month being assessed, and extreme station readings dramatically 

affecting the MAEs.  While the majority of Sri Lanka received significant rainfall during the 

peak rainfall month of November, the north of Sri Lanka became dry during May. 

MAEs for the month of May ranged anywhere from 20.81 mm to 87.92 mm given the 

method of interpolation, while MdPEs ranged between 17.58% and 69.55%, and SRMSEs 

ranged from 0.285 to 0.578.  Overall, May experienced much more varied rainfall (relative to the 

norm for that month) than November, and this can be accounted for when evaluating the error 

metrics.  When looking solely at the yearly MdPEs, none of the interpolation methods performed 

particularly well, with Bayesian kriging performing the best of all methods, with an average 

MdPE of 33.32% over the five year study period, and thin plate smoothing splines performing 

the worst, with an average MdPE of 41.93% over the same 5 year span.  The SRMSEs depicted a 
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different trend for May, as while Bayesian kriging performed the best for two of the five years 

(2007 and 2008), it proceeded to perform the worst for all other years studied.  The two years 

that Bayesian kriging attained the lowest SRMSEs coincide with the two years that attained the 

lowest MAEs, and the two years that had the lowest mean yearly rainfall.  No method 

consistently outperformed all other methods, as results were largely dependent on the mean 

rainfall for that year.  In years with low rainfall, Bayesian kriging performed well, while in years 

with high rainfall, the local interpolation methods (IDW and splines) attained the lowest errors. 

The interpolations produced for the month of November generally had larger MAEs than 

those attained from May, but they also demonstrated much lower MdPEs.  Interestingly, the 

SRMSEs were of similar magnitudes of those found for May, with only one year (2010) where 

November SRMSEs were much lower than their corresponding SRMSEs for May 

(approximately half the size of those found in May).  Of all the methods tested, thin plate 

smoothing splines and IDW performed the best, with an average MdPE over the 5 year study 

period of 14.50% and 14.11%, and an average SRMSE of 0.307 and 0.314, respectively.  

Interpolations from November of 2010 (Table 2.3) had the lowest MdPEs and SRMSEs for any 

month of any year in the study period. 

3.2 2007 and 2010 accuracy assessment 

The years of 2007 and 2010 exhibited the lowest and highest mean rainfall, respectively.  

To assess which interpolation methods produced the best results given the underlying conditions, 

these years were selected for in-depth analysis, as they demonstrate some of the most extreme 

conditions that occurred during the study period. 
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The year of 2007 had the lowest mean rainfall when taking into account both months 

being studied.  For both May and November of 2007, Bayesian kriging produced the lowest 

errors when evaluated by all three error metrics (MAE, MdPE, SRMSE).  It is unlikely that this 

is a coincidence, considering all three error metrics were in concordance.  For May of 2007, 

Bayesian kriging attained an SRMSE of 0.360, which was lower than all three other interpolation 

methods tested by at least 0.044.  When evaluating the plots of observed vs. predicted rainfall for 

2007 (Figure 2.4), certain trends can be identified.  May of 2007 tended to have slightly lower 

predicted rainfall than observed rainfall for all four methods.  All error plots for 2007 tended to 

be heteroscedastic, with a general trend of increasing variance as rainfall values increased.  Of all 

the error plots analysed for either of the years being focused on, the plots from November of 

2007 seemed to depict the least linear trend, as the data were relatively isotropic for some 

interpolation methods.  Specifically, stations where between 200 and 300 mm of monthly rainfall 

was observed had weak correlation to the predicted values of all interpolation methods. 

Plots of statistical error (SE) by station (Figure 2.5) revealed interesting regional trends in 

the interpolations.  Each plot depicts how much each interpolation method differs from the 

official meteorological station value at each station, sorted from south (station 1) to north (station 

20).  For May of 2007, generally, SEs in the southernmost stations were much greater than those 

found in the north.  All SEs were within +/- 110 mm of the actual observed rainfall data at each 

meteorological station.  Most of the sizeable SEs in the south of Sri Lanka were overestimations 

by the interpolation techniques, with only one station (station 4) demonstrating a large 

underestimation of rainfall.  Ordinary kriging tended to predict the most extreme values when 

compared to other interpolation methods.  Overall, all interpolation methods followed similar 
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trends with regard to positive and negative predictions, with the main difference between 

methods being the magnitude of the errors found.   

November of 2007 also had its highest SEs present in the southernmost stations of the Sri 

Lanka.  As stations locations moved north, the SEs associated with the interpolations at those 

locations decreased.  SEs were +/-180 mm from the actual observed value, which were slightly 

larger than those found for May.  The SEs can likely be attributed to greater magnitudes of 

convectional rainfall present during the second inter-monsoonal period, and the start of the 

northeast monsoon.  In November, the stations located in the north of Sri Lanka experienced SEs 

larger than those exhibited in May, as the stations received little to no rainfall in May, resulting 

in very low SEs.  The largest SE present was at station 1, where all interpolation methods 

underestimated rainfall at that location.  Again, all interpolation methods followed similar trends 

of positive and negative SE, with only a few minor exceptions. 

2010 had the highest mean rainfall for both months of all the years that were studied.  Thin plate 

smoothing splines attained the lowest errors for both months for the majority of the error metrics.  

The only metric which did not have splines receiving the lowest error was the MdPE for May of 

2010.  The SRMSEs for both May and November of 2010 were considerably lower for splines 

than any other method.  For May, the SRME for splines was 0.318 – 0.056 lower than any of the 

other interpolation methods, while for November, the SRMSE for splines was 0.142 (the lowest 

SRMSE for all years and months being assessed).  The observed vs. predicted rainfall plots for 

2010 (Figure 2.4) showed more concordance between the predicted and observed values than 

those of 2007.  In particular, the error plots for November of 2010 depict quite homoscedastic 

trends for all interpolation methods except Bayesian kriging, which contained one station 

location that was greatly overestimated.  Anisotropy was also observed in the November error 
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plots, and to a lesser extent, for May.  Overall, there was stronger correlation between observed 

and predicted values for 2010 than present in 2007. 

The plots of SE by station (Figure 2.5) are interesting to evaluate for 2010.  It should be 

noted that there were two more official meteorological stations recording rainfall available in 

2010 that were used to evaluate the SEs.  Compared to 2007, the magnitudes of the SEs were 

much greater, but this was largely due to the overall higher rainfall associated with 2010.  For 

May of 2010, the same trend present throughout all of the SE by station plots was apparent; SEs 

tended to be much larger in the south, while as station locations moved north, the SEs decreased.  

The SEs covered a range of +/- 500 mm of the actual observed values at each station location, 

with Bayesian kriging often predicting the most extreme values where there was error among the 

interpolation methods.  Most SEs were underestimates of the rainfall observed, with one notable 

exception being station 8, which exhibited large overestimation of rainfall by all of the 

interpolation methods.  All interpolation methods again followed similar trends with regard to 

positive and negative predictions. 

Plots of SE by station for November of 2010 were quite different than any of the other SE 

plots, as the SEs did not decrease as the station locations moved north.  Instead, all SEs were 

reasonably consistent from south to north, with one particular area of Sri Lanka exhibiting much 

larger errors than the surrounding regions.  Station 8 had very large SEs that were both positive 

and negative depending on the interpolation method.  Bayesian kriging – which overestimated 

rainfall by 537.89 mm, the highest prediction error from all SE plots for both years – and IDW 

both had positive SEs, while splines and ordinary kriging had negative SEs.  It should be noted 

that station 8 had the most extreme SEs for both months studied in 2010. 
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Spatial maps generated from each interpolation method (Figure 2.6) help visualize some 

of the spatial patterns of rainfall in Sri Lanka for 2007 and 2010.  Immediately, it can be noticed 

that the vast majority of Sri Lanka receives little rainfall in May. 

While May is considered a peak rainfall month in Sri Lanka due to the combination of 

convectional rainfall from the first inter-monsoonal season and the onset of the southwest 

monsoon, only the southwest corner of the country experiences significant rainfall, which 

demonstrates the stark contrast between May and November’s rainfall distribution (Zubair, 

2002).   For May of 2007, Bayesian kriging (which attained the best results using the three error 

metrics) appeared to account for more micro-scale changes in the amount of rainfall than any of 

the other interpolation methods.  Thin plate smoothing splines seemed to have the opposite 

effect, and only picked up large-scale variations in rainfall, which was readily apparent when 

evaluating the spatial maps from November of 2007.  Splines again generated spatial rainfall 

patterns dictated by large-scale variations of rainfall across the entire country, whereas Bayesian 

kriging and IDW seemed to interpolate to a much finer scale.  In particular, the Bayesian kriging 

interpolation for November of 2007 did not look reasonable, as there was far more small-scale 

variation than would be expected during a monsoonal rainfall event. 

The spatial outputs from 2010 followed similar patterns to those for 2007, but the 

magnitude of rainfall experienced for this year was much greater.  Again, Bayesian kriging 

interpolated the most small-scale variation in rainfall, which in turn led to the best overall results 

for May.  For November, Bayesian kriging depicted irregular spatial patterns of rainfall.  Splines 

tended to produce interpolated spatial rainfall patterns that closer approximated what would be 

expected for continuous rainfall events, and this is in agreement with the three error metrics 

employed, which found splines to be the best predictor of rainfall for November of 2010. 
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3.3 Map comparison 

Evaluating the SSIM between rainfall interpolations and TRMM remotely sensed rainfall 

estimates for Sri Lanka produced very low SSIM values (means of ~0.4 and ~0.3 for May and 

November, respectively), which represented low correlation in rainfall values associated between 

the two rasters.  Low correlation was likely a product of the differences in the amount of rainfall 

predicted by the interpolation methods versus the amount of rainfall observed in the TRMM 

rasters.  TRMM remotely sensed rainfall estimates have been found to consistently 

underestimate the amount of rainfall when compared to ground-based gauge measurements 

(Wang and Wolff, 2010).  For this reason, the structure component (S) of the SSIM was 

primarily focused on, as it does not take rainfall magnitudes into account, and focuses solely on 

spatial patterns in the data.  Assessing the S component of the interpolation methods compared to 

the TRMM rasters revealed that the spatial patterns for the month of May were considerably 

more similar than spatial patterns for November. 

In May, Bayesian kriging attained the highest mean S value over the 5 year study period 

of 0.85, while thin plate smoothing splines attained the lowest mean S value of 0.77.  The S 

values for all interpolation methods were high, demonstrating correlation between the spatial 

patterns present in the TRMM rasters.  Southern Sri Lanka accounts for the majority of the 

dissimilarity between the interpolations and the TRMM rasters.  The only year that did not 

demonstrate high S (greater than 0.75 for all interpolation methods) was 2010, where Bayesian 

kriging attained the highest S value of 0.69.  November did not demonstrate nearly as high S 

values as May. 

All the interpolations’ mean S values over the 5 year study period for November were 

below 0.70 – a considerable amount lower than May – with thin plate smoothing splines 
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attaining the highest of 0.67, and ordinary kriging attaining the lowest of 0.61.  Spline 

interpolations’ S value for 2008 and 2009 (0.73 and 0.81) were at least 0.15 higher than the next 

closest S value. 

Figure 2.7 depicts maps of the structure component of the SSIM for November of 2009 

which was chosen for analysis because MAEs, MdPEs, and SRMSEs for all interpolation 

methods were similar, so the structure component was the only variable truly being assessed.  

The spline interpolation exhibited much higher S values all around Sri Lanka, while IDW and 

Bayesian kriging interpolations showed much lower and occasionally negative S values, 

depending on the area.  Major differences in structure for IDW were focused in the central areas 

of the country, while for Bayesian kriging, low S values were present from the southwest corner 

of Sri Lanka up through the northeast.  November of 2007 had very low S values for all of the 

interpolation methods, which brought down the mean S values for November considerably and 

should be taken into account when comparing November to May. 

4. Discussion 

Some of the error associated with the results can be accounted for when looking at Sri 

Lanka’s regional rainfall trends.  As a general trend, most of Sri Lanka receives continuous 

rainfall during the second inter-monsoonal season in November.  The southwest monsoon – 

which experiences peak rainfall in May – exhibits very different spatial patterns of rainfall, as 

much of the country is dry, receiving little rainfall.  Given that the north of Sri Lanka is much 

less densely sampled than the south (Figure 2.1), the rainfall discrepancies during the southwest 

monsoon can be problematic, as large regions of the country’s rainfall are being predicted given 

little input data (i.e., trace rainfall and an extremely sparse network of station).  Predicting 



30 

rainfall for areas located in the boundary zones between the south, which is experiencing 

substantial rainfall in May, and the north, which is dry, can be especially difficult, and thought of 

as a key source of error. Finding the boundary zones between the monsoonal south and the dry 

north is a research area that could significantly improve rainfall maps for Sri Lanka, perhaps 

through the use of automated satellite-derived rainfall maps, or densification of the existing 

network in these transition areas.   

It can be speculated that Bayesian kriging, which was generally found to perform the best 

in low rainfall conditions, was able to account for the very local variations in rainfall between the 

north and the south for the southwest monsoon.  Bayesian kriging produced low values from all 

three error metrics when the year was considered to have low rainfall.  However, while Bayesian 

kriging had the lowest SRMSEs in May in years where low rainfall was observed (2007, 2008), 

it also had the highest SRMSEs for 2006, 2009, and 2010 in both May and November.  These 

years can be thought to represent years of medium to high rainfall.   Bayesian kriging was more 

effective when interpolating rainfall for years with very low rainfall, as when rainfall levels 

increase, the errors associated with Bayesian kriging increased at a rapid rate.  The increased 

errors of Bayesian kriging in high rainfall conditions could be a result of oversensitivity to 

erroneous data present in the dataset used to fit the models (i.e., the agricultural weather station 

network), and prior distributions not being properly tuned is another possible source of error. 

Model parameterization can be difficult when dealing with Bayesian inference, specifically when 

trying to determine general parameters that could be used to fit models given different 

underlying conditions (e.g., months with high or low rainfall totals).  Temporally-dynamic prior-

parameterization might improve this aspect of the modelling. It should be noted that for many 

applications of large-area rainfall maps such as diseases risk forecasting, incorrectly estimating 
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rainfall at extremely low magnitudes (i.e. <10 mm) would not have nearly as dramatic an effect 

on the model as incorrectly estimating rainfall at higher magnitudes (i.e. >200 mm). 

When evaluating interpolation methods based on overall performance regardless of 

month or year, thin plate smoothing splines seemed to perform the best.  Looking at SRMSE, 

splines acquired the lowest SRMSEs for four of the ten months studied, the highest percentage of 

any of the interpolation methods assessed.  May of 2007 and 2008 were the only years that 

splines attained the highest SRMSEs.  These years were both noted for particularly low rainfall, 

and given that May in general experiences lower rainfall totals than November, it may be that 

splines predict less accurately with low yearly rainfall.  As rainfall patterns in May revealed 

sharp spatial discontinuities, splines sometimes performed worse than other methods due to the 

smoothing nature of the interpolator (Figure 2.6), while the more continuous nature of rainfall in 

November was more suited to local methods.  The geostatistical methods tested did not 

consistently predict rainfall with greater accuracy, which could be due to the fact that much of 

northern Sri Lanka was sparsely sampled, and spatial non-stationarities were stronger than the 

modelled correlation structure. 

The quality of the rainfall data obtained from the community-managed weather stations 

that were utilized to produce the interpolations in this research were uncertain, and gave 

incentive to test whether results produced using these stations would be on par with the official 

meteorological stations.  While errors varied from year to year, the results were largely accurate 

so long as the areas around the official meteorological station being evaluated were sufficiently 

sampled by community-managed weather stations.  Where this was particularly evident was 

official meteorological station 8 in November of 2010 (Figure 2.5).  Station 8 showed all 

interpolation methods predicting rainfall poorly and inconsistently at that location.  Figure 2.8 
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depicts the locations of community-managed weather stations overlaid on Voronoi polygons 

created from the locations of official meteorological stations.  The highlighted area in the figure 

represents the location of station 8, and how the community-managed weather stations were 

situated around it.  None of the community-managed weather stations were located close to 

official meteorological station 8, thus resulting in poor prediction.  The reason for the lack of 

community-managed weather stations was that this area represents Colombo, the capital city and 

urban center of Sri Lanka.  Most of the community-managed weather stations used for the 

interpolations were located in agricultural areas on farms, and therefore there was not adequate 

sampling in predominantly urban regions, such as the areas surrounding meteorological station 8.  

Inadequate sampling in urban regions is a noted shortcoming of using the network of 

community-managed weather stations for interpolations, but being that there are few urban areas 

in Sri Lanka, most predictions were not dramatically affected by this.  Future interpolations using 

rainfall data from both the official meteorological stations and the community-managed weather 

stations would likely produce the most accurate results in all areas of Sri Lanka and alleviate this 

issue. 

4.1 Map comparison 

In May, the S values for all interpolation methods were high, which implied correlation 

between the spatial patterns present in the TRMM rasters and the interpolations. The correlation 

is thought largely to be due to the areas in northern Sri Lanka that received little to no rainfall 

during the southwest monsoon.  Areas in northern Sri Lanka demonstrated very high S values, as 

the spatial patterns were close to identical since there was very little rainfall.  Finding the 

structure component of these areas would likely results in S values very close to 1, representing 

nearly identical spatial patterns.  One year where May interpolations did not attain high S values 
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when compared to the TRMM raster was 2010.  Looking at the interpolations compared to the 

TRMM raster for this year, it is evident that the spatial patterns between the two are much 

different.  Although the north of Sri Lanka is still experiencing little to no rainfall in all rainfall 

maps, the interpolations depict heavy rainfall only in the southwest of Sri Lanka, while the 

TRMM raster shows rainfall only in the southeast.  2010 was the year that Sri Lanka experienced 

the most rainfall, so this heavy rainfall in the southwest was expected, but the difference in 

spatial pattern between the interpolations and TRMM rasters was unexpected.  The TRMM raster 

depicts a very different trend than is present in all the interpolations, and is clearly the cause of 

the low S values present for this year. 

For November, it was noted before that the spline interpolations’ S value for 2008 and 

2009 (0.73 and 0.81) were at least 0.15 higher than the next closest S value, which is thought to 

be due primarily to the nature of how splines are generated.  Splines ensure a smooth fit of 

rainfall across the study region, which is congruent with the spatial patterns of the TRMM rasters 

for these years.  All of the other interpolation methods demonstrated more local variations in 

rainfall, and when assessing spatial pattern similarity, this caused their S values to be 

considerably lower.  Since Sri Lanka experienced rainfall across the entire country in November, 

the smoothing nature of splines is effective at predicting this continuous spatial pattern of 

rainfall. 

SSIM analysis between interpolations and the TRMM remotely-sensed rainfall estimates 

proved to be a useful tool for assessing the spatial patterns of rainfall in Sri Lanka.  While using 

SSIM analysis on its own does not provide meaningful feedback with regard to the accuracy of 

prediction from interpolation, using it in conjunction with other error metrics helped clarify the 

deficiencies of certain interpolation methods with respect to others.  It can be concluded that 
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employing this type of spatial pattern analysis is beneficial for assessing global patterns in data, 

and is recommended for future studies focused on predicting spatial phenomena. 

It is difficult to contextualize the empirical findings of this study, as there have been few 

scientific studies conducted on interpolating rainfall in Sri Lanka.  This is especially true when 

taking the entire country of Sri Lanka into account – most studies have only aimed at predicting 

rainfall in the dry zones of the country (Jayawardene et al., 2005; Punyawardena and Kulasiri, 

1999).  Jayawardene et al. (2005) examined interpolating daily rainfall totals in the dry zone of 

Sri Lanka between 1970 and 1999.  Ordinary kriging and IDW were employed, and were both 

found to predict rainfall at a similar level of quality.  Since the data being interpolated were daily 

rainfall, it is difficult to compare to the monthly totals being predicted in this study.  

Jayawardene et al. (2005) calculated mean absolute percentage errors for IDW between 34.2% 

and 48.8%; depending on the month being studied, these were in line with the MdPEs calculated 

from this study.   The data used by Jayawardene et al. were thought to be derived from the same 

official meteorological station network used for validation in this research, which based on the 

magnitude of MdPE would suggest that the community-managed station network used to predict 

rainfall was as viable a data source for building interpolation models as the official 

meteorological station network.  Scatterplots depicting observed rainfall versus predicted rainfall 

for both IDW and ordinary kriging exhibited a closer linear relationship than most of the plots 

from this study, but it must be considered that these results were only attained for the dry zone of 

Sri Lanka, where the maximum observed rainfall values were less than 50 mm.  Lower rainfall 

magnitudes would obviously affect the degree of error associated with each rainfall value.  While 

it is encouraging that ordinary kriging and IDW performed similarly well in both studies, 
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drawing any more definitive conclusions about the quantitative findings is difficult due to the 

differences in scale and study region between the two studies. 

Punyawardena and Kulasiri (1998) researched interpolation of weekly rainfall across the 

dry zone of Sri Lanka using an exponential model compared to local interpolation methods (i.e., 

IDW, local mean).  The study found the exponential model to perform marginally better than the 

local methods in the time period of two dry seasons.  Punyawardena and Kulasiri interestingly 

found that no method of spatial interpolation was effective within the dry zone when the distance 

between station locations was greater than 100 km.  The most northern regions of Sri Lanka were 

the only areas where the agricultural weather station network used in this study had any gaps of 

coverage greater than 100 km.  Figure 2.5 which depicts SE of rainfall by meteorological 

validation station shows that station locations found in the northern half of Sri Lanka were 

predicted relatively well by all interpolation methods.  These low SEs provide more evidence 

that the network of community managed weather stations used in this study is a viable data 

source for fitting interpolation models in Sri Lanka. 

Upon reviewing all quantitative analysis performed on the interpolations, it is difficult to 

determine one particular method that consistently produced more accurate results that the others 

in all scenarios (e.g., high and low rainfall years).  What can be seen is that accuracy of rainfall 

prediction in Sri Lanka is very much dependent on season due to the dramatically different 

distributions of rainfall.  Each of the study months could practically be treated as entirely 

different study periods, as where one method performed well for May, it may have performed 

poorly for November.  When low yearly rainfall was observed, Bayesian kriging was often able 

to attain the most accurate results based on the three error metrics employed.  However, as yearly 

mean rainfall increased, Bayesian kriging’s prediction accuracy quickly deteriorated.  When 
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moderate to high yearly mean rainfall was present, thin plate smoothing splines produced the 

most accurate results.  It also was found to most closely approximate the spatial structure of 

rainfall events in Sri Lanka, specifically during the second inter-monsoonal season.  In future 

research of rainfall in Sri Lanka, it may be beneficial to determine a threshold value for yearly 

mean rainfall, under which it can be assumed that Bayesian kriging would produce accurate 

results.  If the yearly mean rainfall exceeds the threshold value, thin plate smoothing splines 

could be employed to interpolate rainfall. 

5. Conclusions 

This study assessed four different interpolation techniques and their ability to accurately 

predict monthly rainfall in Sri Lanka.  IDW, splines, ordinary kriging, and Bayesian kriging were 

selected as appropriate methods for interpolating rainfall for May and November of 2006 

through 2010.  Community managed weather stations were used to interpolate rainfall and 

evaluated using official meteorological station readings to validate the quality of the results.  

TRMM remotely sensed rainfall estimates were also used to compare to the interpolations and 

assess the spatial pattern of rainfall in Sri Lanka.  Certain methods performed better dependent 

on the month being interpolated, and the spatial pattern of rainfall.  Splines tended to perform 

well in situations where all of Sri Lanka experienced high rainfall, whereas Bayesian kriging 

performed well when the north of Sri Lanka experienced dry conditions, and the south 

experienced rainfall.  Comparing the spatial structure of the interpolation to the remotely sensed 

images demonstrated that most methods approximated the spatial distribution of rainfall at a 

similarly high level for May, largely due to much of Sri Lanka experiencing uniformly low 

rainfall other than the southwest portion of the country.  November showed thin plate smoothing 

splines closely approximating the spatial pattern of the TRMM rasters, which was thought to be 
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due to the smooth spatial pattern that spline interpolations produce.  The community managed 

weather stations attained similar performance.  

Interpolating a climate variable such as rainfall is very much dependent on the setting, 

and thus more methods must be tested to determine the best means of prediction. Involving all 

other months in this research would help elucidate which methods perform well on a consistent 

basis, and will be taken into account in future research. Similarly, interpolation models are, like 

all models, context-specific representations of more complex processes. The data and models 

analyzed in this paper will eventually be used to forecast the spatial distribution of waterborne 

infectious disease risk in Sri Lanka.  With accurate precipitation maps, models can be 

constructed that will identify correlation between rainfall and disease incidence and reveal when 

and where rainfall-driven outbreaks are likely. While the models presented here have 

demonstrated the utility of including both community-managed data and satellite imagery in the 

rainfall mapping methodology, I suspect the insights from this analysis will be applicable to a 

wide array of environmental modelling contexts.
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5.1.1. Abbreviations 

IDW – Inverse Distance Weighting 

MAE – Mean Absolute Error 

MdPE – Median Percent Error 

SE – Statistical Error 

SRMSE – Standardized Root Mean Square Error 

SSIM – Structural Similarity Index 

S – Structure component of SSIM 

TRMM – Tropical Rainfall Measuring Mission 
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Figure 2.1. Locations of official meteorological stations and community-managed weather 

stations in Sri Lanka. 
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Figure 2.2. Flow chart illustrating steps taken to carry out research. 

 

Figure 2.3. Mean monthly rainfall by year of official meteorological stations and community-

managed community-managed weather stations for May and November of 2006 – 2010. 
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2007 (May on top, November on bottom) 

 

2010 (May on top, November on bottom) 

 

Figure 2.4. Scatterplots of Observed vs. Predicted values for all interpolation methods of May 

and November 2007 and 2010.  
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Figure 2.5. Statistical error of rainfall in between interpolation methods and official 

meteorological station rainfall measurements delineated by meteorological station location sorted 

from south (1) to north (20 - 22). 
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2010 

 

Figure 2.6. Spatial outputs of all interpolation methods for 2007 and 2010.  The legend denotes 

the amount of predicted rainfall (mm). 
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Figure 2.7. Maps of structure component for November 2009.  Mean S value over study area: 

Splines, S = 0.81; IDW, S = 0.66; Bayesian kriging, S = 0.63. 

 

Figure 2.8. Locations of community-managed weather stations for November 2010 with 

Voronoi polygons based on official meteorological station locations. Highlighted area focuses on 

official meteorological station 8. 
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Table 2.1. Summary of studies of rainfall interpolation.  Studies are sorted by author, process, 

the interpolation methods being employed, and the overall findings of each study. 

Study Process Interpolation 

Methods Employed 

Findings 

Hutchinson 

(1995) 

Interpolated annual 

rainfall for a region of 

south eastern Australia 

-Thin plate smoothing 

splines 

-Splines required no prior estimation of the 

spatial auto covariance structure, which could 

prove beneficial when the data set being used 

could contain errors distributed across entire 

spatial network of observation stations 

 

Dirks et al. 

(1998) 

Interpolated rainfall 

obtained for Norfolk 

Island, of the coast of 

Australia 

-Areal-mean 

-IDW 

-Kriging 

-Thiessen polygons 

 

-All methods found to perform at a similar level 

-Thiessen polygons produced most unrealistic 

results, due to discrete rainfall boundaries 

-IDW deemed most appropriate method, due to 

accurate interpolations produced, and low 

performance requirements 

Price et al. (2000) Interpolated monthly 

mean climate data for 

study sites in British 

Columbia/Alberta, and 

Ontario/Quebec, 

Canada. 

-ANUSPLIN, a 

software based on thin 

plate smoothing splines  

-GIDS, a regression-

based model 

 

-Extreme outliers that exceeded 100% 

difference between observed and predicted 

values present for precipitation interpolations 

-ANUSPLIN produced slightly more accurate 

predictions, as it could more easily account for 

changes in elevation 

-Regions with sparse data occasionally exhibited 

negative precipitation values being predicted 

Vicente-Serrano 

et al. (2003) 

Analysed validity of 

precipitation and 

temperature maps of 

the Ebro Valley in 

northeast Spain 

-Empirical regression 

models 

-IDW 

-Kriging methods 

-Thiessen polygons 

-Thin plate smoothing 

splines 

-Trend surfaces 

-Regression modelling and kriging methods 

produced the highest correlation between 

observed and predicted rainfall 

-Trend surfaces and Thiessen polygons were 

determined to produce the least accurate 

predictions according to validation statistics 

Oke et al. (2009) Investigated prediction 

of rainfall across 

Australia 

-Cokriging 

-Ordinary kriging 

-Simple kriging with a 

locally varying mean 

-Prediction errors from all three methods found 

to be similar (negative errors implying 

underestimation of gauge rainfall present for all 

methods) even with the inclusion of satellite-

based TRMM rainfall estimates for some 

methods 

-Satellite rainfall data potentially improved 

spatial prediction in areas that were not adequate 
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sampled 

-Errors were consistently negative in coastal 

regions, while errors in higher inland areas 

tended to be positive 

Newlands et al. 

(2010) 

Evaluated three 

interpolation methods 

for precipitation and 

temperature across 

much of the Canadian 

landmass 

-ANUSPLIN, a 

software based on thin 

plate smoothing splines 

-HYBRID inverse-

distance/natural-

neighbour model 

-DAYMET Weighted-

truncated Gaussian 

filter 

-All models predicted reasonably well, with 

ANUSPLIN producing the most accurate daily 

mean precipitation values at a 10 km scale 

-High error variance for precipitation was 

exhibited in summer along the coasts and in 

winter in the Prairies region 

-Authors recommend employing a 

Bayesian/mixed models methodology for future 

climate prediction in Canada 

 

  



48 

Table 2.2. Brief descriptions and formulas of several commonly used interpolation methods 

employed in this research. 

Interpolation 

Method 

Formula Description 

Inverse distance 

weighting 
 

�̂�(𝑠𝑖) =  ∑
1

𝑑𝑖𝑗

𝑛

𝑖 ≠𝑗

𝑧(𝑠𝑖) 

�̂�(𝑠𝑖) is the estimated value at location 𝑠𝑖, 𝑑𝑖𝑗  is the 

distance between 𝑠𝑖 (unknown value) and 𝑠𝑗  (known 

value), n is the number of known value locations 

within the set radius, and 𝑧(𝑠𝑖) is the sampled value 

within the set radius 

-IDW is based on the assumption that a climatic 

value at an unsampled site is the distance weighted 

average of climatic values from all sampled sites 

surrounding it within a given radius. 

-As distance increases between the sampled location 

and the location being interpolated, the weight 

associated with the sampled value decreases. 

Spline interpolation  

�̂�(𝑠𝑖) = ∑ 𝑓(𝑠𝑖)

𝑛

𝑖=1

+ 𝜖(𝑠𝑖) 

�̂�(𝑠𝑖) is the estimated value at location 𝑠𝑖, 𝑓 is a 

radial basis function, and 𝜖(𝑠𝑖) are the random 

errors associated with that location 

-Spline interpolation generalizes IDW by expanding 

the local function to a group of continuous functions 

adapted to local variations in the sampled data. 

-A radial basis function is created for all of the 

sampled data within the radius of each estimation 

location. 

-A bivariate spline function was used to model the 

spline surfaces in this study, where there was a 

spatially varying dependence on rainfall.  

Ordinary kriging  

�̂�(𝑠𝑖) = ∑ 𝑤𝑖𝑗(𝑠𝑗)

𝑛

𝑖=1

 

�̂�(𝑠𝑖) is the estimated value at location 𝑠𝑖, and a 

graph of semivariance is used to select a model to 

make predictions at unsampled locations by deriving 

the optimal set of weights wij to use in a linear 

combination of neighbouring values 

-In ordinary kriging, the continuous variable used to 

generate the surface consists of a spatially-correlated 

random component. 

-The spatial variance of the climate variable being 

interpolated is used in a function that is determined 

using a semivariogram model which estimates 

semivariance as a function of spatial distance. 

-In this research, spherical semivariogram models 

were used for rainfall, which is a commonly 

available model in most geostatistical software 

packages. 
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Table 2.3. Mean absolute errors (MAE), median percent errors (MdPE), and standardized root-

mean-square errors (RMSE) between interpolations and official meteorological station rainfall 

measurements (mm) for May and November of 2006 – 2010. RMSEs were standardized by mean 

official meteorological station rainfall of all stations given year and month. 

MAEs and MdPEs (in brackets). 

May 

      IDW Splines Ordinary Kriging Bayesian Kriging 

2006 30.24 (23.29%) 29.23 (35.11%) 30.94 (38.42%) 35.65 (29.94%) 

2007 27.49 (45.23%) 32.17 (46.74%) 29.50 (59.59%) 25.38 (39.67%) 

2008 23.70 (53.73%) 26.60 (69.55%) 21.70 (27.55%) 20.81 (22.48%) 

2009 27.91 (39.18%) 29.45 (33.95%) 24.87 (44.52%) 31.93 (56.92%) 

2010 67.27 (28.69%) 56.20 (24.32%) 71.42 (20.87%) 87.92 (17.58%) 

     November 

     IDW Splines Ordinary Kriging Bayesian Kriging 

2006 74.78 (9.73%) 86.04 (13.97%) 79.24 (14.2%) 96.08 (26.26%) 

2007 34.30 (14.54%) 40.52 (16.92%) 39.14 (17.3%) 33.74 (14.96%) 

2008 83.81 (20.45%) 69.28 (14.68%) 88.26 (22.51%) 75.05 (19.41%) 

2009 76.49 (16.15%) 76.59 (16.69%) 76.10 (18.44%) 82.87 (16.57%) 

2010 57.44 (11.65%) 49.61 (8.31%) 66.35 (12.18%) 80.10 (12.76%) 

 

Standardized RMSEs. 

May 

  IDW Splines Ordinary Kriging Bayesian Kriging 

2006 0.316 0.285 0.288 0.360 

2007 0.406 0.460 0.404 0.360 

2008 0.423 0.501 0.418 0.385 

2009 0.355 0.422 0.362 0.481 

2010 0.374 0.318 0.405 0.578 

 

November 

  IDW Splines Ordinary Kriging Bayesian Kriging 

2006 0.283 0.317 0.262 0.323 

2007 0.296 0.347 0.349 0.295 

2008 0.513 0.427 0.601 0.589 

2009 0.317 0.301 0.293 0.366 

2010 0.162 0.142 0.196 0.312 
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Chapter 3: Forecasting leptospirosis risk in Sri Lanka using 

interpolated rainfall 

1. Introduction 

The drivers behind the emergence of an infectious disease are often difficult to identify 

and account for, as they are usually an assemblage of several varied factors, including ecological 

changes, human demographics and behaviour, travel and movement of people and goods through 

space and time, and failings in pre-existing public health measures (Morse, 1995).  Trying to 

account for all of these social, environmental, and economic factors can become an increasingly 

complex problem, and in many situations, may not be feasible.  As an alternative, it can be a 

more viable approach to look to more tangible underlying conditions, such as the physical 

environment, that are known to have a meaningful relationship with these complex drivers of 

emergence. 

When assessing emerging infectious disease (EID) risk in a spatial context, 

environmental factors can often play a major role when trying to predict areas of future outbreak 

(Briët et al., 2008; Robertson et al., 2012).  In developing countries where data can be sparse or 

are often not available, if climate data can be obtained, they can provide a means for developing 

disease risk forecasting models, and can act as a proxy to more complex drivers of transmission.  

Leptospirosis is an EID whose incidence is increasing in developed and developing countries 

around the world (Vijayachari et al., 2008).  This increase in incidence – specifically in 

developing countries where outbreak events can have major health repercussions and 

administering treatment may be difficult due to financial cost and physical distribution 

limitations – provides incentive to develop leptospirosis risk models to establish early warning 

protocols to limit future outbreak events.  If effective early warning can be successfully 
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implemented, it can help prevent future outbreaks from occurring when environmental 

conditions are present that indicate high probability of leptospirosis transmission, thus limiting 

potential costs associated with trying to mitigate disease transmission after an outbreak event is 

already underway.  In this paper, I employed a modelling approach for forecasting leptospirosis 

risk in the country of Sri Lanka.  A variety of different modelling techniques were considered  to 

identify the best rainfall variables predictive of suspected leptospirosis cases across several 

districts of Sri Lanka.  If models can be developed that effectively project leptospirosis risk 

based on local meteorological data, they will be suggested for use in early warning systems in 

districts of Sri Lanka where major leptospirosis outbreaks have occurred in the past. 

1.1 Leptospirosis 

Leptospirosis is a globally significant EID, as it is thought to be the most widespread 

zoonotic disease in the world (Levett, 2001; Sarkar et al., 2012; WHO, 1999).  In the recent past, 

leptospirosis incidence has increased in developed and developing countries  around the world 

(Vijayachari et al., 2008). For example, in Sri Lanka, a general trend of increasing leptospirosis 

incidence has been observed since 2006 with a country-wide outbreak in 2008 (Table 3.2).  

Human infection is caused by exposure to the pathogenic Leptospira species.  This pathogen is 

usually spread to humans through contact with water contaminated by urine of infected animals 

(Bharti et al., 2003).  Leptospirosis is often misdiagnosed, as it has variable symptoms that 

mimic many other infectious diseases (Lau et al., 2010).  Fast recognition of leptospirosis is 

important because early treatment is crucial if morbidity and mortality are to be limited.  Direct 

human-to-human transfer of leptospirosis is noted to be very rare, and will not be considered as a 

realistic means of infection in this research (Levett, 2001).  The incidence of this disease is much 

higher in tropical climates than in temperate zones, as the Leptospira species is able to survive 
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much longer in warm, humid environments (Bharti et al., 2003; Levett, 2001).  This also can be 

attributed to the fact that most warm climate countries are developing countries as well, where 

exposure to animal hosts is increased due to the greater role of agriculture in national economies 

(Bellack et al., 2006; Madsen and Shine, 1999; Mendelsohn and Dinar, 1999).  Usually, 

leptospirosis is contracted through cuts or skin abrasions and subsequent immersion in 

contaminated water.  Occupation often plays a role in leptospirosis risk, and occupations which 

involve interaction with animal reservoirs put one at greater risk (Levett, 2001).  The most 

important vectors of leptospirosis are often small mammals, of which the most significant in Sri 

Lanka are rodents.  These rodents may transfer the infection to other domestic farm animals, 

dogs, and humans.  The extent to which leptospirosis is transmitted relies on many variables, 

such as climate, population density, and the degree to which there is contact between hosts and 

sources of infection. 

1.2 Environmental Risk Factors for Leptospirosis 

Precipitation is thought to have a pronounced effect on the incidence of many rodent-

borne diseases.  Several different authors have demonstrated a link between fluctuations in 

rodent reservoir populations and oscillations in new human cases of disease (Heyman et al., 

2001; Mills and Childs, 1998; Olsson et al., 2003; Rose et al., 2003).  This link is a mechanism 

of changes in densities of rodent populations due to ecological factors, such as abundant food 

supply, causing corresponding changes in frequency of contact between humans and infected 

rodents (Heyman et al., 2001).  Also, a number of studies have linked large amounts of rainfall 

with an increased number of human cases of rodent-borne disease (e.g., Davis and Calvet, 2005; 

Enscore et al., 2002).  It has been hypothesized from this that high precipitation can lead to 

increased rodent populations, which consequently results in higher rodent-borne disease 
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incidence.  While monitoring fluctuations and movements of rodent populations may be the most 

effective way to model leptospirosis incidence, it is very difficult to do, and thus using rainfall as 

a proxy for rodent populations is a potential tool for early warning systems for rodent-borne 

disease.   

The prevalence of leptospirosis is significantly higher in warm, humid regions (Levett, 

2001).  In some tropical climates, rodent-borne disease incidence is tied to seasonality, which is 

characterized by large monsoonal events, for example, the northeast monsoon season in Sri 

Lanka (Robertson et al., 2011).  The substantial rainfall in monsoon season is speculated to 

increase food sources for rats, which in turn improves conditions for rat reproduction (Madsen 

and Shine, 1999).  This results in a spike in rat populations following the monsoonal rainfall, 

which allows for increased contact between humans and rats, and thus, increased disease risk.  

Another means in which rainfall can affect the incidence of disease which occurs over a smaller 

time scale, is concerning flooding events.  In massive rainfall-induced flood events, rats can be 

displaced from their normal burrows into areas where there is potential for more human exposure 

(e.g. households, urban environments) (Madsen and Shine, 1999).  This is perhaps the most 

common association found between rainfall and incidence of rodent-borne disease (Madsen and 

Shine, 1999).  Lastly, agricultural activity is regularly dictated by seasonal variation in rainfall, 

which can increase exposure risk for agricultural workers.  In Sri Lanka, agriculture makes up a 

large portion of the workforce.  Such occupational exposures are thought to be the leading cause 

of infection of leptospirosis (Sri Lanka Epidemiology Unit, 2008). 
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1.3 Exposure Risk and Relation to Environmental Variables 

To properly assess how environmental variables such as precipitation can affect the 

distribution and risk of EIDs, efforts must be made to assess whether there is significant 

relationship between these factors and increased EID risk to the human population.  

Leptospirosis has traditionally been associated with occupational exposures, with high incidence 

groups being farmers, miners, construction workers, and sewer workers.  Studies have found that 

working in outdoor environments with exposure to sewage, floodwater, or mud, can lead to 

higher leptospirosis risk (Sarkar et al., 2002).  Conditions of heavy rain and flooding will 

increase the amount of exposure to these listed outdoor factors, and thus will increase exposure 

risk.  Activities such as gathering wood, grinding grain, and husking corn which would be 

performed on a daily basis for certain occupations, have also shown significant correlation with 

leptospirosis infection (Ashford et al., 2000).  Reasoning behind this correlation can be drawn to 

heightened exposure to infected animals, and contaminated surfaces or mud.  When precipitation 

levels are high, infected hosts such as rats, are often forced out of their regular burrows to areas 

of higher human contact (Madsen and Shine, 1999).  This leads to an abundance of contaminated 

surfaces and mud, as the amount of rainfall causes the infected urine of animals to be dispersed 

throughout the environment.  It is important to note that direct exposure to rats is not thought to 

be a significant agent for transmission, suggesting that the primary mechanism is through 

exposure to environments which are contaminated by the urine of rodent reservoirs (Sarkar et al., 

2002). 

Ashton et al. (2000) used multivariate logistic models to evaluate preventive measures 

against leptospiral infection.  When assessing transmission of leptospirosis in developing 

countries where low socio-economic status dictates the availability of basic amenities, it was 
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found that having an indoor water source may be the most effective preventive measure against 

leptospiral infection, implying that ingestion of contaminated water can be a significant risk 

factor.  In heightened rainfall events, large amounts of runoff from the groundwater tables can 

seep into outdoor water reservoirs and wells.  If the surrounding environment was previously 

contaminated, all those obtaining and ingesting water from the reservoirs will be at increased risk 

of infection.  Also, high temperatures can lead to need for higher water consumption, and thus 

can be considered in conjunction with this risk factor as a means of increased infection.  Many of 

the environmental conditions Ashton et al. (2000) assessed are present in Sri Lanka, specifically 

after large seasonal monsoonal events, so they are of particular interest to consider when 

constructing models for the region.  While leptospirosis risk may be indirectly affected by 

precipitation, it is clear that precipitation is important to consider when assessing risk factors of 

the disease. 

Given recent trends such as climate change, increased extreme weather events such as 

floods, population growth, and urbanization, many have speculated leptospirosis incidence will 

continue to increase (Lau et al., 2010).  Enhanced surveillance techniques must be used to 

understand how these environmental factors affect the transmission dynamics of leptospirosis.  

Space-time surveillance can be a potentially useful tool for estimating current and future disease 

burden as a result of environmental change (Robertson et al. 2010). 

1.4 Objectives 

There were two primary objectives of this research.  Firstly, I looked to identify a 

significant relationship between rainfall and leptospirosis by evaluating important lag times 

between leptospirosis cases and weekly rainfall.  Secondly, I aimed to use these identified lags to 
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develop a surveillance model for early warning of leptospirosis in Sri Lanka.  In 2008, there was 

a country-wide outbreak of leptospirosis across much of Sri Lanka.  By employing leptospirosis 

case count data from 2006 through 2010 to fit the models, I hoped to develop a framework that 

could in time be used by the Ministry of Health (MOH) of Sri Lanka to mitigate future 

leptospirosis outbreaks.  By incorporating rainfall as the primary model covariate within the 

modelling framework, I assessed if it could be used to accurately predict leptospirosis outbreak 

events in Sri Lanka.   

  Practical considerations must be made when evaluating realistic methods for predicting 

disease outbreak in developing countries.  Factors such as computational complexity and ease of 

use are of prime importance if the proposed methods are expected to be employed in any nation-

wide surveillance system where financial and computational resources may be limited.  It should 

also be noted that literature suggests that model parsimony is desirable unless the model has been 

found to be inadequate when compared to more complex models (Robson, 2014).  The modelling 

approaches considered in this research were selected to take these factors into account so that 

once models were developed, they could be implemented and maintained by the Sri Lanka MOH 

workers with variable experience with probabilistic modelling and spatial data processing. 

To accomplish the objectives set out, analysis was performed in several stages.  Firstly, I 

compared rainfall and leptospirosis notified case counts at a weekly regional scale to identify 

optimal time lags for previous rainfall events for forecasting notable leptospirosis outbreaks.  A 

variety of modelling scenarios were then evaluated that incorporated these varying lags of 

weekly rainfall as covariates to forecast leptospirosis risk.  Lastly, I assessed model fit quality 

and prediction accuracy for three districts of Sri Lanka where there is a history of known 

leptospirosis outbreaks using several metrics to determine if the models produced were of high 
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enough quality to be used for nation-wide early warning in Sri Lanka.  Through the use of 

geographic information systems (GIS), I evaluated model fit and forecast quality over time and 

space, which is of critical importance when building and operating spatially explicit disease risk 

models (Robertson, 2015). 

2. Material and methods 

2.1 Modelling EID risk 

It is important to consider previous approaches to EID surveillance to be able to make an 

informed decision on the best methods to employ given the study area and research objectives.  

Model-based approaches to disease surveillance have been shown to be successful and yield 

accurate results in a variety of different research settings (Ashford et al., 2000; Chien and Yu, 

2014; Guisan and Zimmermann, 2000; Held et al., 2006; Hii et al., 2012; Kleinman et al., 2004; 

Robertson et al., 2011; Tassinari et al., 2008). 

Traditionally, disease surveillance has been carried out using standard hypothesis-testing 

statistical methods, where an outbreak is detected as a significant departure from the null 

hypothesis (Waller, 2003).  In a study by Kleinman et al. (2004), a Generalized Linear Mixed 

Models (GLMM) approach was proposed to provide predictions of the expected number of cases 

in absence of an outbreak, and then compared to the observed number of cases.  Though the 

objective of these two methods appear similar, hypothesis-testing statistics generate a “yes/no” 

(detection/no detection) binary answer to the research question, while the GLMM approach 

places much more emphasis on describing the pattern found in the data (Waller, 2004).  In the 

field of disease surveillance, issues arise with traditional methods, as often the nature of 

surveillance is continuous through time with no discrete endpoints, and conducted for several 
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areas/outcomes simultaneously.  While modelling does not necessarily negate these problems, it 

shifts focus to characterizing and understanding patterns in the data, and has the potential to 

accommodate expected values that vary over time.  Thus, modelling could be better suited for 

exploring observed trends (Waller, 2004).   

In Kleinman et al. (2004), GLMMs were used for detecting cases of acute lower 

respiratory infection as a method of early recognition of possible bioterrorism events.  Logistic 

regression was used to predict the probability of a person being a case on a given day by using 

various predictors to describe the day of observation.  It is important to take the spatial 

distribution of disease risk into account when modelling, as there could be areas where certain 

populations may be more likely to become infected than others.  Kleinman et al. (2004) 

introduced the following formulae to account for changes in risk based on location, time and the 

individual: 

E(yijt|bi) = pijt       (1) 

logit(pit) = Xijtβ + bi      (2) 

where yijt denotes if person j in area i is a case on day t, pijt is the probability that he/she is a case, 

Xijt is a set of covariates measured for person j and/or area i and/or day t,  β is a vector of fixed 

effects, and bi is a random effect for area i.  While this model did consider different probabilities 

of disease risk for each region, it was not truly spatial, as it weighed the random effect for an 

area based on the population for that region, as opposed to the neighbouring areas (Kleinman et 

al., 2004). 

GLMM techniques have been used in the past to assess risk factors for leptospirosis 

(Tassinari et al., 2008).  In a study by Tassinari et al. (2008), a GLMM approach was taken to 

evaluating risk factors for comparison between cluster and non-cluster cases of leptospirosis in 
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Rio de Janeiro, Brazil.  A cluster case was defined as a leptospirosis case that belonged to a 

cluster, which was found using spatial scan statistics (Tassinari et al., 2008).  The study 

incorporated two spatial scales: individual level, and 32 Voronoi polygons that were situated 

around meteorological measurement stations.  Cases were related to mean daily rainfall 

(measured at the nearest meteorological station) that had occurred anywhere between 3-20 days 

preceding the onset of symptoms.  What was found was that the summer season – associated 

with high rainfall and flooding – had correlation to leptospirosis case clusters (Tassinari et al., 

2008).  When comparing a cluster case to a non-cluster case, it was found that a threshold value 

of greater than 4 mm mean daily rainfall had significant association with leptospirosis cluster 

events (Tassinari et al., 2008). 

Another type of modelling that can be considered for disease surveillance is ecological 

niche modelling.  The ecological niche of a species of disease can be modelled by evaluating 

relationships between observations of disease occurrence and predictor variables of the abiotic 

conditions present in that area (Guisan and Zimmermann, 2000).  With the use of GIS, ecological 

niche models can produce spatially explicit predictions of the probability of EID spread to 

unsampled locations (Meentemeyer et al., 2008).  Ecological niche models do not take into 

account the current distribution of the disease, but produce predictions based on underlying 

environmental conditions suitable for growth (Meentemeyer et al., 2008).  Using this type of 

model can be very effective for early detection of disease outbreak, as the model is not 

dependent on the current disease distribution, but the environmental variables associated with 

disease occurrence. 

When evaluating ecological niche models as a viable method for disease surveillance, it 

must be considered that they are prone to false positives, as they do not take the pathogen being 
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studied into account in their predictions.  This can result in the flagging of many areas that are 

'potentially' suitable for heightened disease risk, but in actuality, there may be no observed cases 

in these areas.  In certain research contexts, these false positives may not be a major issue, but 

when working in a disease surveillance setting, false positives are not ideal, specifically when 

considering the implications of early warning and the associated financial costs.  When looking 

to incorporate previous case counts to improve prediction accuracy, time-series based modelling 

methods offer an effective solution, as they account for temporal autocorrelation and seasonal 

variations in the data. 

Time series regression models incorporate current and past observations of predictor 

variables ordered by time to predict the response variable (e.g., leptospirosis case counts).  An 

important component of time series models is the use of the previous values of the response 

variable to predict future values (i.e., autoregressive dynamics).  Incorporating an autoregressive 

component in a model is very useful when assessing any process where there is a strong serial 

dependence on previous values of the response, for example, infectious disease outbreak.  Time 

series models take the general form: 

𝑦𝑡 = 𝑋𝑡𝛽 + 𝑒𝑡 (3) 

where 𝑦𝑡 is the observed response at time t, 𝑋𝑡 is a time-varying covariate vector, 𝛽 represents 

the contributions of individual predictors, and 𝑒𝑡 are the errors associated with t. 

While incorporating spatial dynamics into a model can often yield accurate predictions, 

implementing a family of time series models for regions of a given study area can also produce 

meaningful, accurate results.  Hii et al. (2012) implemented Poisson a multivariate regression 

model that incorporated mean temperature and cumulative rainfall as covariates to predict 

dengue fever incidence in Singapore.  The forecasting model was developed to provide timely 
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early warning of dengue in Singapore.  Weekly dengue cases from 2000 through 2011 were used 

in conjunction with daily mean rainfall to predict weekly cases of dengue for 2011 and 2012.  

Several time lags between dengue and weather variables were considered to determine the 

optimal period for dengue forecasting.  A lag of 16 weeks was found to predict dengue most 

accurately.  The model developed was able to distinguish between outbreak and non-outbreak 

events with 96% confidence from 2004-2010, and 98% confidence in 2011, and was able to 

predict an known outbreak in 2001 accurately with less than a 3% chance of false alarm (Hii et 

al., 2012).  Perhaps the most intriguing aspect of this research was that Hii et al. (2012) were able 

to forecast dengue accurately with relatively simple models that only incorporated rainfall and 

temperature.  This finding is of particular importance, as the models in this research are planned 

to be used for early warning of disease outbreak in the developing country of Sri Lanka.  Data 

and computational resources for Sri Lanka are limited, and thus developing simple, low 

computational cost models could aid in national surveillance. 

Due to the strong serial dependence that must be considered when assessing EID risk, 

and considering the financial and computational limitations that were discussed in the objectives, 

I chose to implement a family of time series multivariate regression models at multiple spatial 

scales: the MOH area level, and the district level (Figure 3.1).  

2.1.1. Model construction 

Given that one of the primary goals of this research was to detect an early warning signal 

for leptospirosis outbreaks, regions where notable outbreaks had occurred in the past were 

selected for detailed analysis, and regions where no known outbreaks had been reported were not 

evaluated (Figure 3.1).  Three districts of Sri Lanka – Colombo, Kalutara, and Matale – were 

selected to represent regions of high and medium leptospirosis risk and were assessed in detail.  
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These districts were composed of 13, 10, and 12 MOH areas respectively.  The models 

constructed for the MOH area level and the district level forecasted weekly leptospirosis cases 

and were fit by regressing on multiple independent variables that included retrospective 

leptospirosis cases, weekly total rainfall at varying time lags, lagged weekly cumulative rainfall, 

and seasonal factors.   Models were analysed by employing a variety of performance metrics to 

determine if leptospirosis could be accurately forecasted using rainfall as the primary covariate. 

We developed eight different multivariate regression models for each MOH area and 

district of interest in Sri Lanka.  All models were integer-valued autoregressive conditional 

heteroskedasticity (INGARCH) models (Ferland et al., 2006; Heinen, 2003).  INGARCH models 

used were of the general form 

 
𝑔(λ𝑡) =  𝛽0 +  ∑ 𝛽𝑘

𝑝

𝑘=1

�̃�(𝑌𝑡−𝑖𝑘
) +  ∑ 𝛼𝜄𝑔(

𝑞

𝜄−1

λ𝑡−𝑗𝜄
) + 𝜂𝑋𝑡 

(4) 

where 𝑔 is a link function, �̃� is a transformative function, Yt denotes a count time series, Xt is a 

time-varying covariate vector, λt is the conditional mean, and 𝜂 is a parameter vector 

corresponding to the effects of the covariates (Liboschik et al., 2015).  The main advantages of 

using this type of model is that they are flexible, parsimonious, and generally easy to estimate 

using maximum-likelihood based methods (Heinen, 2003).  Four INGARCH models with a 

negative binomial distribution as well as four INGARCH models with a Poisson distribution 

with varying permutations of covariates were then compared for each MOH area in a given 

district of study, and for each district.  Table 3.1 provides an outline of all of the different models 

that were fit, and their respective covariates. 

2.1.2. Serial correlation of leptospirosis cases and weekly rainfall 
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One notable characteristic that must be taken into account when modelling EID risk is the 

serial dependence of current cases on past cases (Hii et al., 2012).  With regard to leptospirosis, 

this research hypothesized that there may also be dependence on prior rainfall.  Probable lag 

times were estimated for serial correlation of leptospirosis cases and cross-correlation of rainfall 

by analysing data using autocorrelation functions (ACF) and cross-correlation functions (CCF), 

and reviewing qualitative findings on leptospirosis transmission.  Seasonality of the dependent 

variable was captured by regressing on λt-52 – the unobserved conditional mean of leptospirosis 

cases from 52 weeks (i.e., one year) before.  CCF analysis of weekly rainfall and weekly 

leptospirosis case counts indicated the strongest correlation between leptospirosis and the current 

week's rainfall, and with rainfall at a lag of 23 weeks (i.e., correlation between rainfall at t-23 

and leptospirosis cases at t).  To account for the overall wetness of the environment at time t, a 

moving windowed sum of cumulative rainfall from weeks t-12 through t (i.e., the past three 

months)  was incorporated as a model covariate.  Using a three-month window would adequately 

account for overall wetness of the environment in the case of flooding after a major rainfall 

event. 

2.1.3. Model evaluation criteria 

To assess model performance, model fitted values were compared with actual observed 

values using the standardized root-mean-square error (SRMSE).  The SRMSE can be defined as  

SRMSE =  

√1
𝑛

∑ (𝑦𝑖 − �̂�𝑖)2𝑛
𝑖=1

1
𝑛

∑ 𝑦𝑖
𝑛
𝑖=1

 (5) 

where 𝑦𝑖  is an observed value, and �̂�𝑖 is a predicted or fitted value.  Standardizing the value by 

the mean of the observations is useful for comparing values from different data sets (e.g., 

different districts of Sri Lanka) and it provides a meaningful dimensionless measure which has 
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been used in model evaluation in a variety of different contexts including forecasting disease 

incidence (Chemel et al., 2011; Hii et al., 2012; Plouffe et al., 2015).  This metric was found to 

be especially useful for evaluating prediction accuracy of the models at both the MOH area level 

and the district level, as by standardized the errors found, all models were able to be compared 

and contrasted without needing to consider the magnitude of the values being predicted (i.e., 

leptospirosis case counts). 

For select MOH areas and districts of interest, the probability integral transform (PIT) 

was used to assess calibration of the respective model's predictive distribution.  A predictive 

distribution can be thought to be correctly calibrated if events with a probability q occur a 

proportion q of the time on average (Gneiting et al., 2005; Jones and Spiegelhalter, 2012).  The 

PIT will assess that this is true by checking that if you supply a random model variable into the 

model's respective cumulative distribution function (CDF), it will output a uniform distribution 

(Jones and Spiegelhalter, 2012).  Gneiting et al. (2007) stress that uniformity of the PIT is a 

necessary but not sufficient indicator that a forecasting model is ideal.  Jones and Spiegelhalter 

(2012) and Gneiting et al. (2007) suggest employing proper scoring rules to assess models' 

predictive distributions and model sharpness.  A 'sharp' or well calibrated model should have 

high statistical consistency between its predictive distribution and its observations (Christou and 

Fokianos, 2015).  Proper scoring rules provide numerical values (i.e., scores) that measure the 

predictive performance of the model, and are usually employed when looking to compare 

competing forecasting models (Christou and Fokianos, 2015). 

We calculated both the mean logarithmic score and the ranked probability score (RPS) 

for all models being evaluated.  The mean logarithmic score is defined as  
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 − log(𝑓(𝑦𝑖)) (6) 

where f is a predictive density function specific to the model, and yi is an observed value.  This is 

a commonly used scoring rule that has been employed in a variety of different modelling 

contexts, for example, weather forecasting (Bröcker and Smith, 2008).  One notable issue when 

employing the mean logarithmic score is that it has been found to be highly sensitive to 

individual extreme cases (Gneiting and Raftery, 2007).  Given the possibility of extreme 

individual case counts in the case of an outbreak event, other complimentary scoring rules can be 

used to help assess model calibration.  The ranked probability score (RPS) has been 

recommended as a more robust scoring alternative (Christou and Fokianos, 2015; Gneiting and 

Raftery, 2007).  The RPS is defined as 

 𝑅𝑃𝑆(𝑃𝑡, 𝑦𝑡) =  ∑(𝑃𝑡(𝑥) − 1(𝑦𝑡  ≤ 𝑥))2

∞

𝑥=0

 (7) 

where 𝑃𝑡 is the forecast probability CDF for the time t, and 𝑦𝑡 is an observed value.  The average 

RPS is calculated over all modelling units to determine the model's mean RPS value.  The mean 

RPS reduces to |𝑦�̂� − 𝑦𝑡| (Gneiting and Raftery, 2007), and as such can be considered a 

generalization of the mean absolute difference for probabilistic forecasting models (Jones and 

Spiegelhalter, 2012).  This allows for easy evaluation and interpretation of the mean RPS.  Both 

of the  scoring rules used to assess model calibration are 'proper', in that the calculated score is 

minimized if one's beliefs are reported honestly (Jones and Spiegelhalter, 2012).  Lastly, the 

Akaike information criterion (AIC) was evaluated for all models in the selected districts.  The 

AIC measures the relative quality of a model for a given set of source data, and includes a 

penalty term for higher model complexity that favours model parsimony.  In practice, I attempted 

to minimize the values of all the above model evaluation metrics to produce the best calibrated 

models for the selected areas of study. 
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To assess the values predicted by the leptospirosis risk models in a surveillance context, a 

Cumulative Sum (CUSUM) analysis was performed between the predicted and observed values 

for the best performing model based on the criteria above.  The objective of CUSUM analysis is 

to detect a change (e.g., an outbreak) given an underlying process (Robertson et al., 2010).  For a 

given region, a moving sum of deviations for each time period is calculated as follows: 

 𝑆𝑡 = max(0,  𝑆𝑡−1 + 𝑦𝑡 − 𝑘) (8) 

where 𝑆𝑡 is the cumulative sum alarm statistic, 𝑦𝑡 is the case count at time t, and k represents the 

slack term which allows one to adjust the sensitivity of the CUSUM analysis.  Observed counts 

that exceed k are then accumulated, and an alarm is triggered if 𝑆𝑡 is greater than a set threshold 

parameter h (Robertson et al., 2010).  CUSUM analysis can be used as a concrete decision 

support tool to use a model to flag time periods of possible outbreak, and signal an alarm for 

early warning of leptospirosis. 

2.2 Study area 

Sri Lanka is a country that is found off of the southeastern coast of the Indian 

subcontinent.  Sri Lanka's climate is tropical, and annual seasonal variations in weather are 

characterized by the northeast monsoon and the southwest monsoon.  The northeast monsoon 

generally begins in December, and last until the following February, whereas the southwest 

monsoon begins in April, and lasts until September.  The most populous area of Sri Lanka is 

located in the southwest (e.g., Colombo), which experiences heavy rainfall particularly during 

the southwest monsoon.  The less populous northern and eastern areas of Sri Lanka become 

predominantly dry during the southwest monsoon, and generally have not experienced 

leptospirosis outbreak events of the same magnitude as the areas located in the southwest.  Two 

separate inter-monsoonal rainfall seasons – during which Sri Lanka can experience relatively 
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large amounts of convectional rainfall – last from March until April and from October until 

November.  Leptospirosis is endemic across Sri Lanka, but there were notable leptospirosis 

outbreaks in the years of 2008 and 2009.  Table 3.2 outlines leptospirosis case counts by year for 

all of Sri Lanka, and case counts at the district level by year. 

2.3 Data 

2.3.1. Leptospirosis data 

Reported and confirmed leptospirosis weekly case counts for the years of 2006 through 

2010 were obtained from the Epidemiology Unit of the MOH in Sri Lanka.  These data were 

aggregated by MOH administrative areas and by district (Figure 3.1).  Weekly counts were 

separated into two categories:  reported leptospirosis cases (i.e., suspected cases), and confirmed 

leptospirosis cases (i.e., clinically tested cases).  A reported leptospirosis case was recorded if an 

individual visited a clinic and exhibited symptoms associated with leptospirosis, whereas a 

confirmed leptospirosis case was recorded when an individual's blood and urine were 

serologically tested and a leptospiral infection was confirmed.  In this research, I opted to use the 

reported case counts in the models developed.  When looking to detect an early warning signal in 

a leptospirosis surveillance context, minimizing the amount of time between when a person 

contracts leptospirosis and when that case is first recorded is of importance, and thus the reported 

cases were selected to be used in the models over the confirmed cases.  A drawback of using 

reported cases is that there is a higher degree of uncertainty introduced into the models, as they 

were recorded based only on clinical suspicion, which is variable.  To be recorded as a confirmed 

case, subjects were required to get tested at a local clinic, which in some of the more rural areas 

of Sri Lanka, were not easily accessible.  It is believed that this may have led to a slight 
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underestimation of actual leptospirosis cases, and thus, for all the reasons stated, the reported 

case counts were preferred for fitting the models. 

2.3.2. Rainfall data 

Rainfall data were obtained from the Department of Meteorology of Sri Lanka, and 

consisted of daily rainfall measurements recorded in millimetres for the years of 2006 through 

2010.  These data were collected from two separate meteorological station networks:  a network 

of small-scale community-managed weather monitoring stations, and a network of official 

meteorological stations maintained by the Department of Meteorology in Sri Lanka. 

The network of small-scale community-managed stations was composed of ~370 weather 

monitoring stations (varying by year), many of which were located in agricultural areas.  The 

spatial distribution of these stations varied considerably based on factors such as population, 

climate, and land use.  The quality of measurements taken from these stations could not be 

verified, as many stations were located in remote areas of Sri Lanka where station maintenance 

was situational.   The network of official meteorological stations was composed of 20 to 22 

meteorological stations (varying by year), where measurements were verified as accurate by the 

Department of Meteorology of Sri Lanka.  These stations were irregularly distributed across the 

country, with the majority of stations being situated in the more populous southwest region of Sri 

Lanka. 

Data obtained from both station networks were combined into a master rainfall data set 

for use in this study.  This data set was then aggregated by week and used to interpolate weekly 

rainfall for the years of 2005 through 2010.  In previous research (Chapter 2), the quality of the 

network of community-managed weather stations was evaluated for use in a modelling context 
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by comparing interpolated rainfall surfaces to remotely-sensed imagery of Sri Lanka (Plouffe et 

al., 2015).  The network of community-managed stations was found to be as viable a data source 

as the network of official meteorological stations for building interpolation models so long as the 

network of community-managed stations had adequate spatial coverage across the area being 

interpolated (Plouffe et al., 2015).  Many of the gaps in coverage from the network of 

community-managed stations were accounted for by incorporating data from the network of 

official meteorological stations, which was the reasoning behind combining both rainfall data 

sets for interpolating rainfall in this research.  Several different interpolation methods were also 

evaluated for use in context of predicting rainfall in Sri Lanka.  Findings indicated that when 

magnitude rainfall was low, Bayesian kriging performed best, whereas in high rainfall 

conditions, thin-plate smoothing splines produced the most accurate rainfall predictions (Plouffe 

et al., 2015).  Since rainfall magnitudes at the temporal scale (i.e.., weekly) investigated were 

considered low with respect to the monthly rainfall totals examined in the previous study, 

Bayesian kriging was used to produce the most accurate rainfall predictions. 

Once weekly interpolations were produced, a spatial mean of rainfall for each MOH area 

was extracted from the interpolated surfaces for each week included in the study period (i.e., 

2006 to 2010), and included in the leptospirosis risk models.  It should be noted that due to the 

civil war between the Sri Lankan Army and the Tamil Tigers (LTTE) during the period of study 

(e.g., the year of 2008), there were many missing rainfall measurements in the north of the 

country due to lack of maintenance at community-managed weather stations.  These null 

measurement values were not considered in the interpolations, and may have had an effect on the 

quality of the produced interpolations, however Bayesian kriging can leverage prior distributions 

and nearby values to ‘fill-in’ data gaps.  These effects were assumed to be minimal, as most of 
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the missing rainfall values were in the north where leptospirosis outbreak was much less 

pronounced than in the southwest. 

2.4 Software 

Several different types of software were used in this research for data management, data 

processing, and modelling.  The programming language Python was used for initial extraction 

and parsing of rainfall and leptospirosis data from large text-based files.  The statistical 

programming language R (version 3.1.1) was used for all other analyses, including data 

processing and aggregation, interpolating rainfall, and modelling disease risk.  The R packages 

gstat (Pebesma, 2004) and geoR (Ribeiro Jr and Diggle, 2001) were used to produce 

interpolations, and the package tscount (Liboschik et al., 2015) was used for model construction 

and scoring.  

3. Results 

Total leptospirosis case counts by district from 2006 to 2010 are presented in Figure 3.2.  

The districts located in the southwest region of Sri Lanka experienced much higher case counts 

than districts in the north and the east.  Weekly leptospirosis case counts and weekly rainfall for 

each district being assessed in this study (i.e., Colombo, Kalutara, and Matale) from 2006 to 

2010 are presented in Figure 3.3.  Generally, no common trends for leptospirosis cases by district 

can be observed, whereas periods of heightened rainfall can be seen to be more congruent 

between the districts being studied.  Certain spikes in number of leptospirosis cases (e.g., the 

second half of the year of 2009) can be observed in multiple districts at the same time, which can 

be thought to signify an epidemic period of leptospirosis outbreak.  Visual inspection of Figure 

3.3 for meaningful lags between the amount of rainfall and the number of leptospirosis cases 
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does not yield any easily discernable pattern, but for the year of 2008, it can be seen that rainfall 

from the southwest monsoon midway through the year may have corresponded with increased 

leptospirosis incidence in the latter half of the year.  This would be consistent with the 

correlation observed between rainfall at t-23 and leptospirosis cases at t during the CCF analysis.  

Having perspective on these global trends can help explain some of the behaviour exhibited by 

the models that were evaluated in this study. 

3.1 Model selection 

3.1.1. MOH area level 

To keep analysis concise, all modelling scenarios being analysed in this study will be 

referred to by the letter assigned to them in Table 3.1.  ACF analysis and visual inspection of 

leptospirosis case counts were used to determine that regressing on the previous four weeks of 

observations would be suitable to account for serial dependence.  To compare modelling 

scenarios and select the most appropriate model for further analysis, ranks of the various model 

evaluation metrics were assessed.  If any of the values being ranked were sufficiently similar 

(i.e., were equivalent up to three decimal places), they were assigned the same rank.  Ranks were 

attributed in ascending order with a rank of 1 indicating a model attained the best result from all 

modelling scenarios.  In all model assessment tables for MOH areas, MOH areas 101 through 

113 correspond to Colombo, 301 through 310 correspond to Kalutara, and 501 through 512 

correspond to Matale.  MOH area 512 exhibited very low leptospirosis case counts (i.e., under 20 

leptospirosis cases for the entire period of study) and thus was not included in this analysis, as 

the primary goal was to effectively model areas that experienced an outbreak of leptospirosis and 

detect epidemic status.   First, the ranks of SRMSEs between observed and predicted case counts 

will be assessed. 
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Table 3.3 presents SRMSE ranks for all fitted models for each MOH area in each district 

of study.  A trend that is immediately apparent is that all models fit with the same covariates for 

both negative binomial and Poisson distributions attained the same rank.  In general, models D 

and H (i.e., models incorporating rainfall, rainfall lagged by 23 weeks, summed cumulative 

rainfall, and leptospirosis cases lagged by a year as covariates) attained the lowest SRMSEs 

relative to other models for their respective MOH area.  Models D and H received the highest 

rank in 15 of the 34 different MOH areas, and the second highest rank in 11 of the MOH areas.  

By assessing the total summed rank at the bottom of the Table 3.3, it can be observed that 

models D and H achieved a lower SRMSE value than other competing models the majority of 

the time.  Models A and E (i.e., models incorporating only rainfall and rainfall lagged by 23 

weeks) consistently received the highest SRMSE, and in 20 of the 34 MOH areas, were ranked 

as the worst performing models when being assessed using SRMSE.   

Comparing the ranked RPSs (Table 3.4) followed some of the same trends as the ranked 

SRMSEs, but there was a much more pronounced difference when comparing between models 

that were fit using negative binomial regression versus Poisson regression.  Overall, model D 

attained the lowest RPS in the majority of the MOH areas, and was the best calibrated model in 

19 of the 34 MOH areas.  When comparing the RPSs attained by models A, B, C, and D, which 

were fit using negative binomial regression, to models E, F, G, and H, which were fit using 

Poisson regression, a very distinct trend is apparent.  In the majority of the MOH areas, the 

negative binomial models exhibited lower RPSs than any of the Poisson models.  This trend is 

especially evident when evaluating the summed total RPS ranks at the bottom of Table 3.4, 

where the most poorly calibrated negative binomial model, model A, had the same summed total 

RPS as the as the best calibrated Poisson model, model H.  This indicates that the leptospirosis 
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count data being used to fit the models were likely overdispersed, as negative binomial models 

are known to account for overdispersion better than Poisson models.  Overdispersion in the count 

data seems like a likely possible occurrence, given the highly variable nature of leptospirosis 

counts, and that the mean case counts at the MOH area level was likely very close to zero 

provided that there were very few if any cases of leptospirosis when an outbreak event was not 

being observed (i.e., most weeks of the study period).  Overall, the worst performing model, 

model E, was ranked last in RPS in 15 of the 34 MOH areas. 

The ranked mean logarithmic scores followed an almost identical pattern to that of the 

ranked RPSs.  The four negative binomial regression models consistently produced lower ranked 

mean logarithmic scores than the Poisson regression models, with models C and D generally 

ranked first or second.  Model D yielded the lowest mean logarithmic score in 19 of the 34 MOH 

areas, while model C yielded the lowest mean logarithmic scores in 13 of the MOH areas. 

Lastly, the ranked AIC was evaluated for each MOH area to best select the appropriate 

model.  Many of the same trends that were observed for the ranked RPSs and ranked log mean 

scores were also present in the ranked AIC.  All of the negative binomial regression models 

generally attained lower AIC values than the Poisson regression models, with very few 

exceptions.  A notable difference is that model C actually yielded the lowest AIC values in 21 of 

the 34 MOH areas, where as model D only ranked first in 8 MOH areas.  AIC is a useful 

indicator of goodness of fit, but it also penalizes for incorporating more covariates in a given 

model, which is likely the reason for model C's comparatively low AIC value to with respect to 

model D.  I opted to calculate the mean AIC value yielded from all MOH areas to elucidate if 

model C's higher AIC rank was a realization of a notably lower AIC score.  Mean values for all 

model assessment metrics can be found in Table 3.5.   What can be deduced by inspecting Table 
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3.5 is that the mean AIC value for model C (512.22) was only marginally lower than model D 

(513.46), and this difference is orders of magnitude smaller than the observed mean AIC values 

thus making it negligible. 

As a last means of model selection, several PIT histograms were produced as spot checks 

to assess calibration of the respective model's predictive distribution.  Figure 3.4 depicts three 

PIT histograms comparing models C, D, and H for MOH area 102.  Model D and C both exhibit 

uniformity across the histogram indicating that the models were properly calibrated, although 

model D does exhibit slightly stronger uniformity than model C.  Model H exhibits a strong U-

shaped histogram, which indicates that the predictive distribution (i.e., in this case, the Poisson 

distribution) is underdispersed (Czado et al., 2009; Dawid, 1984).  This confirmed the 

supposition that the leptospirosis case count data were likely overdispersed at the MOH area 

level, and that a Poisson regression model would not be able to adequately account for that. 

3.1.2. District level 

The same trends that were observed at the MOH area level were also observed at the 

district level.  The negative binomial models consistently outperformed the Poisson models when 

evaluating model calibration using either of the proper scoring rules and when evaluating the 

AIC.  Model D generally yielded the lowest values, but with a few exceptions, e.g., the AIC 

produced for model B for the Kalutara district was slightly lower than the AIC for model D 

(1435.699 and 1437.007, respectively).  The SRMSEs at the district level were found to be less 

consistent, which is thought to be due to the fact that only one model was being evaluated for 

each district.  When finding the mean SRMSE over all MOH areas, I was able to assess how well 

each model predicted over a larger sample size.   
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One notable difference between the MOH area level and the district level models was the 

PIT histograms.  At the district level, model D still exhibited the most uniform PIT histograms, 

but they were not of the same level of uniformity as many of the models that were spot checked 

at the MOH area level.  Figure 3.5 presents model D's PIT histograms for each of the three 

districts being studied.  Model D for Colombo produced an inverse-U shaped histogram, which 

may signify that the data were underdispersed, while both Kalutara's and Matale's histograms 

were relatively uniform.  Unfortunately, the PIT histograms for the Poisson models demonstrated 

that the models were not able to account for this less dispersed data, and still produced strong U-

shaped histograms.  

By taking all model evaluation metrics into account at both spatial scales, it was deduced 

from this model selection analysis that model D (i.e., a negative binomial model that 

incorporated rainfall at t, rainfall at t-23, leptospirosis at t-52, the sum of cumulative rainfall, a 

regression on the previous four observations to account for serial dependence, and a regression 

on unobserved conditional mean at t-52) was the best fitting and best calibrated model at the 

MOH and district level, and that it would be able to perform the most consistently across both 

spatial scales being assessed.  As such, it was employed in all further modelling and analysis. 

3.2 Model assessment 

Further analysis was carried out to assess how well the selected model was calibrated and 

how accurately it was fitted in different scenarios.  Figure 3.6 depict SRMSEs between fitted and 

observed leptospirosis case count values mapped for each MOH area (labelled by MOH ID) that 

was assessed.  MOH area 512 was not included in this analysis for reasons noted earlier, and thus 

it is coloured grey on the map to reflect that.  Models constructed for MOH areas 105 and 106 
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both produced some of the highest SRMSEs of any of the MOH areas.  Table 3.6 presents the 

exact values for all model assessment metrics used in this study.  Interestingly, MOH area 106 

had the highest SRMSE of any of the MOH areas, but it also had the lowest value for AIC, RPS, 

and the mean logarithmic score, which demonstrates that even if a model is thought to be 

properly calibrated, it can still perform quite poorly when assessing accuracy of prediction.  The 

opposite can also be true, and interestingly, the MOH area with the highest value for both of the 

proper scoring rules and the AIC also was one of the lowest SRMSEs.  To gain a better 

understanding of these MOH areas,  a time series plot of fitted and observed values from each 

model (Figure 3.7) was investigated.  By inspecting predicted and observed leptospirosis cases 

over time, it can be seen that the total number of cases in MOH area 106 was very low.  Given 

that SRMSE is standardized to minimize the effect of magnitude on the observed error, the 

SRMSE is very high, as the model is underpredicting leptospirosis cases during periods of 

relatively high leptospirosis incidence.  This MOH area is a good example of a situation where 

the magnitude of the response variable being predicted must be taken into account.  While the 

SRMSE is high for this particular MOH area, it is not of importance to this study, as predicted 

values in MOH areas where there are very few leptospirosis cases does not need to be considered 

when looking to develop an early warning system for outbreak events.   

The model for MOH area 106 can easily be contrasted with the model for MOH area 103 

(Figure 3.7).  MOH area 103 exhibited the highest leptospirosis case counts of any MOH area in 

Colombo by a large margin (456 cases more than the next highest MOH area), with 1106 cases 

observed between 2006 and 2010.  Upon inspection, it can be seen that the observed versus fitted 

case counts for this MOH area during periods of outbreak (e.g., early and late 2008, late 2009), 

were quite different, with the model considerably underpredicting the magnitude of the number 
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of cases.  This underprediction of case counts is thought to be the primary reason why the highest 

values in both of the proper scoring rules and AIC across all MOH areas in this study were 

observed.  Other than the two noted outbreak events, the model fit well to the observed values.  

The SRMSE calculated for MOH area 103 was one of the lowest observed, which gives strengths 

to the idea that while the model may not be calibrated as well for this area, it was still fit 

relatively well if the extreme magnitudes of the case counts were not taken into account.  When 

evaluating the plot, this is evident, as the fitted values closely approximated the more global 

trends of the observed values – just not to the same magnitude. 

We also evaluated each of the three models that were fit at the district level.  Figure 3.8 

depicts fitted and observed leptospirosis case counts over the study period.  Many of the same 

trends that were present in the MOH area models were also present in the district level models – 

while model fit approximated the overall pattern of the observed values, each model tended to 

underpredict as case counts approached more extreme magnitudes.  This tendency was much less 

pronounced in the districts of Kalutara and Matale, but it was noticeable in Colombo during a 

time of major outbreak (e.g., late 2009). 

Overall, models fit at the MOH and district level varied in quality of fit and prediction 

depending on several factors, such as the number of leptospirosis case counts, and how fast the 

onset of an outbreak event was.  The effect of rainfall on outbreak events tended to be minimal in 

both the family of MOH area models and the district models, with the standard error of the 

rainfall-related covariates often being larger than the estimates themselves.  For example, the 

model fit for the district of Colombo had estimates of 1.92e
-8

, 2.34e
-5

, and 2.92e
-7

 for rainfall, 

rainfall at t-23, and the windowed cumulative sum of rainfall, respectively.  The standard errors 

associated with these estimates were 4.17e
-4

, 4.03e
-4

, and 1.03e
-6

, respectively, all of which are 
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larger than the estimates they are associated with.  This finding indicates that there was no 

observable or meaningful relationship between leptospirosis incidence and rainfall in Sri Lanka 

during the study period. 

3.2.1. Prediction accuracy case study 

To determine if the models developed in this study were of high enough quality to be 

employed as a means of early warning for leptospirosis in Sri Lanka, the district level model for 

Colombo was refit for 2006 and 2007,and was then used to forecast weekly leptospirosis cases 

from 2008 to 2010 using 1-step-ahead and 2-step-ahead prediction.  Colombo's model was 

selected as it represented an area where a major leptospirosis outbreak had occurred.  Refitting 

the model for the years of 2006 and 2007 was performed so that the effectiveness of the model to 

detect outbreak events could be assessed.  In more ideal conditions, the models already produced 

could be used to forecast a more recent outbreak event, but due to the unavailability of more 

recent data, this approach was thought to be the next best alternative.  The precision of the 

forecasted values were analysed by comparing the predicted leptospirosis case counts to the 

observed.  Predicted and observed leptospirosis case counts for Colombo from 2008 to 2010 can 

be seen in Figure 3.9.  Similar trends to those present in the fit models are noticeable when 

comparing the predicted case counts to the observed.  In outbreak events, the model tended to 

underpredict the number of cases, with a noticeable lag in prediction.  Otherwise, the model did 

approximate the trends in observed values, with no notable periods of time where the model 

consistently overpredicted the number of leptospirosis cases. 

One of the primary objectives of this research was to determine if an early warning signal 

could be detected for leptospirosis before the onset of an epidemic state (i.e., an outbreak).  This 

was assessed this by performing a CUSUM analysis to determine if periods of outbreak could be 
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effectively predicted by the Colombo model, and identified as periods of outbreak to signal an 

alarm.  The CUSUM analysis was performed using predicted values from the Colombo model 

and previously observed values from 2008 to 2010.  The k (as defined in the Methods sections) 

for the CUSUM analysis was set to 5, to allow for leniency in sensitivity of the analysis up to 

plus or minus 5 case counts per unit of time.  Setting k to 5 ensured that the CUSUM analysis 

was not oversensitive to slight under- or overpredictions of leptospirosis cases by the Colombo 

model when looking to identify periods of leptospirosis outbreak.  Figure 3.10 depicts the results 

from the CUSUM analysis, indicating points in time to signal an alarm of a potential outbreak 

event.  What can be seen is that the Colombo model was reasonably effective in determining 

states of outbreak, and signaling an alarm relatively early at the onset of an outbreak event.  

While the magnitudes of outbreak events were not adequately predicted by the model, it was able 

to effectively detect periods of outbreak, which is of prime importance when determining if a 

model can be used to detect an early warning signal of leptospirosis outbreak.  

4. Discussion 

The goals of this research were to 1) elucidate the relationship between rainfall and 

leptospirosis incidence, and 2) assess whether models could be developed to provide early 

warning for leptospirosis in Sri Lanka.  What was found was that rainfall was not a significant 

predictor of leptospirosis risk, and that trying to use rainfall as a proxy for other factors that 

influence leptospirosis risk may not be an adequate way to explain variations in leptospirosis 

incidence within the model.  Instead, identifying specific mechanisms that are believed to have a 

more direct effect on leptospirosis risk may be a more suitable approach.  Figure 3.11 presents a 

theoretical leptospirosis risk model that incorporates many different mechanisms of leptospiral 

transmission that were not explicitly considered in the models developed in this research.  
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Accounting for environmental factors such as presence of animal reservoirs, and type of land 

cover may be attainable if appropriate data sets can be obtained.  Also, consideration of different 

mechanisms of outbreak, e.g., cultivation of previously uncultivated land with large preexisting 

rodent reservoir populations, could help lead to more accurate model predictions. 

In spite of rainfall not being a significant predictor of leptospirosis incidence, simple 

models that could be used in an early warning context in Sri Lanka were still able to be 

developed.  It was important in this research to limit the complexity of the models that were 

developed and to fit models as best as possible given the relatively limited number of covariates 

available.  While it is believed that the models were calibrated as best as possible given the data 

available, issues still arose when attempting to characterize trends across many different regions 

(i.e., MOH areas across Sri Lanka).  This study aimed to find the best overall model that could be 

fit for many different regions, each of which had its own unique environmental conditions.  This 

led to certain regions' models performing much differently than others. 

While one of the research questions of this study was based on rainfall as a predictor for 

leptospirosis outbreak, there is not an abundance of prior academic evidence proving or denying 

this as a meaningful relationship.  Pappachan et al. (2004) studied leptospirosis risk in the Indian 

state of Kerala for the year of 2002, and found that there was a strong relationship between heavy 

rainfall events and the onset of leptospirosis cases at a 7 to 10 day lag.  While this is an 

interesting finding, the amount of leptospirosis cases was quite low when compared to the study 

area that was evaluated in this paper, and the period of study was also much shorter.  The models 

developed for this research were able to predict leptospirosis incidence accurately when dealing 

with a low number of leptospirosis cases.   
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Chadsuthi et al. (2012) developed an Autoregressive Integrated Moving Average 

(ARIMA) to study seasonal trends of climate factors and their effects on leptospirosis incidence 

in Thailand.  They noted the strong seasonality of reported leptospirosis cases that was present 

year round.  When inspecting Figure 3.3 from this research, there is a weak seasonal pattern of 

leptospirosis outbreak at the district level that shows both major outbreak events occurring in the 

latter half of the year, but there is no strong seasonal trend in total weekly rainfall, especially 

when looking for a meaningful lag at which leptospirosis incidence increased.  Instead, serial 

dependence on previous leptospirosis cases tended to play a much more pronounced role than 

correlation with previous rainfall, especially when experiencing outbreak conditions.  This can 

be seen when assessing any of the fitted or predicted case counts compared to the observed, and 

was reflected when evaluating the proper scoring rules.  For example, calculating the Pearson 

correlation coefficient between RPS and leptospirosis cases for the district level model of 

Colombo yielded a value of 0.99, whereas the correlation between RPS and rainfall at t-23 for 

that same model yielded a value of 0.11. 

The CUSUM analysis in this study indicated that by using predicted values from the 

leptospirosis risk models, it was possible to detect an early warning signal for outbreak events, 

even if the number of leptospirosis cases during outbreak were underpredicted.  It is a notable 

finding that the models produced were able to accurately assess periods of leptospirosis outbreak, 

and employing these models in an early warning context would aid with signaling alarms when 

there is a high probability of a future outbreak occurring in the near future for a given district or 

MOH area.  This is an important finding, as one of the primary objectives of this research was to 

be able to develop models suitable for early warning of leptospirosis in Sri Lanka. 
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While data for other covariates to include in the leptospirosis risk models (e.g., if a 

location is within an agricultural area, the distance of a location from rivers and animal 

reservoirs) are not easily obtainable for Sri Lanka, it is believed that the inclusions of other 

meaningful predictors into the models would yield better results, and allow for more effective 

prediction of leptospirosis cases with a shorter lag time, and with higher sensitivity to the number 

of cases.  Even considering this, the models that were produced were able to detect early warning 

signals of leptospirosis outbreak effectively, and will be recommended as a starting point for a 

nation-wide leptospirosis surveillance system in Sri Lanka. 

To use the models that were constructed in this research and present the results in a 

meaningful way, development of a graphic user interface (GUI) for Sri Lanka MOH workers that 

would allow for dynamic calibration of models without any programming would be a useful 

extension unto the research outlined in this paper.  The R package Shiny, which provides a 

framework for developing Web applications that are powered by R in the backend, would be a 

suitable medium for developing such a GUI, and will be considered for future research projects 

(Chang et al., 2015). 

5. Conclusions 

In this study, it was assessed whether a modelling approach could be taken to forecasting 

leptospirosis incidence in Sri Lanka.  Firstly, meaningful lags between rainfall and leptospirosis 

were identified by performing correlation analyses.  A notable dependence between rainfall 

events and leptospirosis cases was found at a lag of 23 weeks..  Next, several INGARCH time 

series regression models were evaluated and compared at two different spatial scales: the MOH 

area level, and the district level.  Numerous model calibration and predictive quality metrics 
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were employed to select the most performant model from a set of modelling scenarios.  The best 

calibrated model was a negative binomial INGARCH model with covariates for rainfall at t, 

rainfall at t-23, leptospirosis at t-52, and a windowed cumulative sum of rainfall from the past 12 

weeks.  What was found was that models at the MOH area level and district level were able to 

approximate trends in leptospirosis outbreak quite well, and also predict periods of high and low 

leptospirosis risk with a reasonable degree of certainty.  District level models were validated by a 

CUSUM analysis of the predicted case counts versus previously observed leptospirosis cases, 

and demonstrated that the models developed in this research could be beneficial if employed in 

an early warning context in Sri Lanka.  Interestingly, it was found that the suspected relationship 

between rainfall and leptospirosis incidence in Sri Lanka was insignificant, and in future 

modelling efforts, more data concerning numerous other covariates will be obtained to help 

capture significant relationships that were not explained by the models in this research.  While 

the models presented in this study were able to adequately provide early warning for 

leptospirosis in Sri Lanka, it is hoped that the methods demonstrated and insights gained during 

this study can be used in the future to help provide early warning for leptospirosis and other 

waterborne EIDs. 
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Figure 3.1. Map of Sri Lanka with districts and MOH areas.  Areas that were selected for 

extensive analysis given known leptospirosis outbreak events during the study period are 

highlighted in green.  
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Figure 3.2. Map of total leptospirosis case counts from 2006 to 2010 by district.  
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Figure 3.3. Weekly leptospirosis case counts and rainfall for each district of study from 2006 to 

2010. 

 

Figure 3.4. PIT histograms comparing models C, D, and H for MOH area 102. 
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Figure 3.5. PIT histograms for model D in Colombo, Kalutara, and Matale. 

 

Figure 3.6. SRMSEs between fitted and observed leptospirosis case count values mapped for 

each MOH area (labelled by MOH ID). 
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Figure 3.7. Fitted and Observed leptospirosis cases from 2006 to 2010 for MOH area 106 and 

MOH area 103. 

 

 

Figure 3.8. Fitted and observed leptospirosis cases from 2006 to 2010 for Colombo, Kalutara, 

and Matale district level models. 
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Figure 3.9. Predicted and observed leptospirosis cases in Colombo from 2008 to 2010. 

 

 

Figure 3.10. CUSUM analysis of Colombo model predicted values from 2008 to 2010.  Red 

triangles indicate periods of time where alarm of an outbreak should be triggered. 
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Figure 3.11. Theoretical leptospirosis risk model. 
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Table 3.1. Outline of all different models that were fit for each MOH area, and their respective 

covariates.  t denotes the current week. 

Model ID Model Distribution Covariates 

A Negative binomial  Rainfall at t 

 Rainfall at t-23 

B Negative binomial  Rainfall at t 

 Rainfall at t-23 

 Leptospirosis at t-52 

C Negative binomial  Rainfall at t 

 Rainfall at t-23 

 Sum of cumulative rainfall 

D Negative binomial  Rainfall at t,  

 Rainfall at t-23 

 Leptospirosis at t-52 

 Sum of cumulative rainfall 

E Poisson  Rainfall at t 

 Rainfall at t-23 

F Poisson  Rainfall at t 

 Rainfall at t-23 

 Leptospirosis at t-52 

G Poisson  Rainfall at t,  

 Rainfall at t-23 

 Leptospirosis at t-52 

 Sum of cumulative rainfall 

H Poisson  Rainfall at t,  

 Rainfall at t-23 

 Leptospirosis at t-52 

 Sum of cumulative rainfall Sum of cumulative 
rainfall 
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Table 3.2.  A) Leptospirosis case counts by year for all of Sri Lanka, and B) leptospirosis case 

counts at the district level for each year of study. 

A) 

Year Leptospirosis cases 

2006 1582 

2007 2198 

2008 7419 

2009 4980 

2010 4554 

 

B) 

District 2006 cases 2007 cases 2008 cases 2009 cases 2010 cases 

Ampara 17 9 27 16 36 

Anuradhapura 47 41 270 102 127 

Badulla 39 49 74 103 92 

Batticaloa 6 0 12 16 14 

Colombo 143 163 1073 1195 610 

Galle 78 170 447 262 192 

Gampaha 211 311 830 499 597 

Hambantota 53 57 142 111 116 

Jaffna 3 0 2 1 1 

Kalmunai 1 1 4 7 3 

Kalutara 139 221 692 596 440 

Kandy 102 151 537 242 195 

Kegalle 290 247 594 347 431 

Killinochchi 0 0 2 0 3 

Kurunegala 75 87 694 194 397 

Mannar 1 2 0 0 15 

Matale 32 178 855 342 141 

Matara 175 289 501 251 393 

Moneragala 31 56 104 18 50 

Mulattivu 0 0 0 0 0 

Nuwara Eliya 12 14 76 48 36 

Polonnaruwa 22 22 112 81 101 

Puttalam 21 31 69 99 82 

Rathnapura 79 84 262 419 434 

Trincomalee 3 12 34 23 45 

Vavuniya 2 3 6 8 3 
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Table 3.3. SRMSE ranks for all fitted models for each MOH area of study.  MOHID denotes the 

MOH area which the rank can be attributed to, while each column labeled by letter denotes the 

model being evaluated (see Table 3.1).  Red text indicates lowest total SRMSE. 

MOHID A B C D E F G H 

101 4 3 2 1 4 3 2 1 

102 4 2 3 1 4 2 3 1 

103 4 2 3 1 4 2 3 1 

104 3 4 2 1 3 4 2 1 

105 2 3 1 4 2 3 1 4 

106 4 3 1 2 4 3 1 2 

107 4 1 3 2 4 1 3 2 

108 2 3 1 4 2 3 1 4 

109 4 3 2 1 4 3 2 1 

110 3 4 2 1 3 4 2 1 

111 3 4 1 2 3 4 1 2 

112 4 2 1 3 4 2 1 3 

113 4 3 2 1 4 3 2 1 

301 4 3 1 2 4 3 1 2 

302 4 2 3 1 4 2 3 1 

303 4 3 2 1 4 3 2 1 

304 2 4 3 1 2 4 3 1 

305 4 2 3 1 4 2 3 1 

306 4 3 1 2 4 3 1 2 

307 4 2 3 1 4 2 3 1 

308 4 3 1 2 4 3 1 2 

309 4 2 3 1 4 2 3 1 

310 4 1 3 2 4 1 3 2 

501 1 2 3 4 1 2 3 4 

502 3 1 4 2 3 1 4 2 

503 3 1 4 2 3 1 4 2 

504 4 2 3 1 4 2 3 1 

505 4 3 1 2 4 3 1 2 

506 2 1 4 3 2 1 4 3 

507 2 4 1 3 2 4 1 3 

508 3 4 2 1 3 4 2 1 

509 4 3 1 2 4 3 1 2 

510 3 2 1 4 3 2 1 4 

511 2 1 4 3 2 1 4 3 

Total 114 86 75 65 114 86 75 65 
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Table 3.4. RPS ranks for all fitted models for each MOH area of study.  MOHID denotes the 

MOH area which the rank can be attributed to, while each column labeled by letter denotes the 

model being evaluated (see Table 3.1).  Red text indicates lowest total RPS. 

MOHID A B C D E F G H 

101 4 3 2 1 4 3 2 1 

102 4 2 3 1 4 2 3 1 

103 4 2 3 1 4 2 3 1 

104 3 4 2 1 3 4 2 1 

105 2 3 1 4 2 3 1 4 

106 4 3 1 2 4 3 1 2 

107 4 1 3 2 4 1 3 2 

108 2 3 1 4 2 3 1 4 

109 4 3 2 1 4 3 2 1 

110 3 4 2 1 3 4 2 1 

111 3 4 1 2 3 4 1 2 

112 4 2 1 3 4 2 1 3 

113 4 3 2 1 4 3 2 1 

301 4 3 1 2 4 3 1 2 

302 4 2 3 1 4 2 3 1 

303 4 3 2 1 4 3 2 1 

304 2 4 3 1 2 4 3 1 

305 4 2 3 1 4 2 3 1 

306 4 3 1 2 4 3 1 2 

307 4 2 3 1 4 2 3 1 

308 4 3 1 2 4 3 1 2 

309 4 2 3 1 4 2 3 1 

310 4 1 3 2 4 1 3 2 

501 1 2 3 4 1 2 3 4 

502 3 1 4 2 3 1 4 2 

503 3 1 4 2 3 1 4 2 

504 4 2 3 1 4 2 3 1 

505 4 3 1 2 4 3 1 2 

506 2 1 4 3 2 1 4 3 

507 2 4 1 3 2 4 1 3 

508 3 4 2 1 3 4 2 1 

509 4 3 1 2 4 3 1 2 

510 3 2 1 4 3 2 1 4 

511 2 1 4 3 2 1 4 3 

Total 114 86 75 65 114 86 75 65 

  



95 

Table 3.5. Mean model assessment metric values by all MOH areas in districts of study.  Red 

indicates the minimum value for that particular metric. 

Model 

Assessment 

Metric 

A B C D E F G H 

AIC 520.02 518.61 512.22 513.46 578.87 575.4 570.33 569.76 

SRMSE 2.0275 2.0151 2.016 2.007 2.0275 2.0151 2.016 2.007 

Mean log 

score 0.9654 0.9589 0.9466 0.9451 1.0824 1.0719 1.0622 1.0572 

RPS 0.49689 0.4908 0.48527 0.48321 0.51191 0.50846 0.50555 0.50341 
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Table 3.6. Table of Model Evaluation metrics for each MOH area in each district of study.  Red 

indicates the highest (or worst scoring) values, while blue indicates the lowest (or best scoring) 

values for the given metric. 

MOH ID SRMSE AIC RPS Mean Logarithmic Score 

101 2.075 425.388 0.298 0.776 

102 1.514 824.723 0.948 1.544 

103 1.444 1083.983 2.119 2.042 

104 1.669 615.708 0.589 1.142 

105 3.212 286.876 0.189 0.509 

106 3.287 207.270 0.107 0.356 

107 1.644 653.337 0.633 1.214 

108 2.098 449.424 0.324 0.822 

109 2.353 329.474 0.211 0.591 

110 2.470 288.600 0.164 0.513 

111 2.015 681.852 0.928 1.269 

112 2.741 263.249 0.142 0.464 

113 1.621 717.257 0.680 1.337 

301 1.862 456.257 0.328 0.835 

302 1.578 604.095 0.509 1.119 

303 1.922 524.698 0.421 0.967 

304 1.722 446.754 0.330 0.817 

305 1.317 780.818 0.824 1.459 

306 1.724 653.986 0.582 1.215 

307 1.730 667.486 0.639 1.241 

308 1.360 797.433 0.797 1.491 

309 2.139 329.557 0.212 0.591 

310 1.528 576.306 0.474 1.066 

501 2.156 492.879 0.488 0.906 

502 2.350 422.975 0.356 0.771 

503 2.663 279.332 0.170 0.495 

504 1.927 450.674 0.368 0.824 

505 1.773 335.781 0.199 0.603 

506 2.898 396.107 0.332 0.719 

507 1.501 572.995 0.516 1.060 

508 1.552 616.879 0.559 1.144 

509 2.057 509.095 0.499 0.937 

510 2.096 375.925 0.264 0.681 

511 2.239 340.338 0.229 0.612 

 

  



97 

Chapter 4: Conclusions 

1. Discussion and Conclusions 

The goal of this research was to advance the understanding of the role that specific 

environmental drivers can play in the emergence of infectious diseases.  This goal was 

considered and addressed in a spatial context, and as a case study, rainfall and its effect on 

leptospirosis incidence was assessed in Sri Lanka.  To accomplish this goal, I set out two primary 

research objectives: 1) determine if spatial interpolation techniques could be employed to predict 

rainfall effectively across the country of Sri Lanka, and 2) determine if precipitation data could 

provide a reliable early-warning signal for leptospirosis outbreaks in Sri Lanka.  I was able to 

compare a variety of spatial interpolation methods successfully, and determine the most effective 

methods for predicting rainfall in a tropical setting based on specific underlying environmental 

conditions.  I then used insights from this research to interpolate weekly rainfall data across Sri 

Lanka for use as a primary predictor to model leptospirosis incidence at numerous spatial scales, 

and evaluate whether models could be employed to forecast leptospirosis incidence.  Forecasted 

results were found to be of high enough quality to allow the models to be used as a starting point 

by the Sri Lanka Ministry of Health (MOH) to provide timely early warning for leptospirosis 

outbreak events in Sri Lanka. 

Chapter 2 demonstrated that by using a network of small-scale community-managed 

stations, accurate country-wide rainfall predictions could be made across the country of Sri 

Lanka.  By comparing inverse distance weighting, thin-plate smoothing splines, ordinary kriging, 

and Bayesian kriging, it was determined that in a tropical setting with extremely variable 

climatic conditions over space and time such as Sri Lanka, interpolation method selection should 

be based on evaluating specific conditions present in the environment at that point in time.  For 
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example, it was found that in high rainfall conditions, thin-plate smoothing splines were able to 

predict the magnitude of rainfall most accurately, as well as approximate the global spatial 

pattern associated with large monsoonal and convectional rainfall events (i.e., continuous over 

space).  It was also found that Bayesian kriging was a more effective method when considering 

relatively low rainfall conditions, as it was able to approximate the more discrete nature of minor 

rainfall events, and predict rainfall with higher accuracy at lower magnitudes.  Several 

complimentary error metrics were employed to evaluate the interpolated results against ground 

truth data.  The Structural Similarity Index was also used to assess overall spatial patterns and 

similarity between the interpolations and remote-sensed imagery (Robertson et al., 2014).  I 

believe that this research will help others looking to predict rainfall in a tropical setting by 

providing novel ways to evaluate and select appropriate interpolation methods.  Additionally, 

this research added to previous modelling literature on situation-specific (e.g., in Sri Lanka) 

selection of interpolation techniques, as measuring performance for any environmental model is 

intrinsically case-dependent (Bennett et al., 2013). 

In Chapter 3, time-series regression models at two different spatial scales were used to 

predict leptospirosis risk in Sri Lanka, and determine if rainfall was a meaningful predictor for 

future leptospirosis incidence.  Based on research performed in Chapter 2, Bayesian kriging was 

selected as the most appropriate interpolation method to generate rainfall surfaces at a weekly 

time scale.  Rainfall values for each MOH area and district across Sri Lanka were extracted from 

the Bayesian kriging interpolations.  Using various forms of correlation analysis, meaningful lags 

between rainfall and leptospirosis incidence were identified.  These lags were then used to help 

select several different permutations of covariates and predictive distributions to include in the 

leptospirosis risk models.  After careful evaluation of all models produced across varying spatial 
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scales using a multitude of model calibration metrics, a negative binomial integer-valued 

autoregressive conditional heteroscedasticity (INGARCH) model that included current and 

previous rainfall covariates, as well as regression on previous cases of leptospirosis at a local and 

seasonal time scale was selected for modelling leptospirosis incidence.  Regions of interest based 

on a known leptospirosis outbreak events in 2008 and 2009 were used to model leptospirosis risk 

in Sri Lanka.  It was found that while there was no significant correlation between previous or 

current rainfall events and leptospirosis incidence in Sri Lanka, there was a strong serial-

dependence on previous leptospirosis cases that allowed for accurate prediction of future 

leptospirosis risk and outbreak events.  A CUSUM analysis of forecasted leptospirosis cases for 

the Colombo district of Sri Lanka indicated that the model was able to provide early warning for 

major leptospirosis outbreaks in Sri Lanka. 

2. Research limitations 

Through this research, I was able to complete the objectives set out for this thesis 

successfully, but there were several limitations that affected the quality of results and 

implementations.  Limitations in both the amount and quality of the data used in these studies 

must be taken into account when assessing any of the results that were produced.  In developing 

countries such as Sri Lanka, data are often sparse or completely missing in certain regions of the 

study area, and when performing analysis in a spatial context, irregularly distributed data can 

lead to biased results for a given area.  For example, in the interpolation assessment in Chapter 2, 

it was found that the most populous district of Sri Lanka, Colombo, experienced very large 

prediction errors due to the spatial network of community-managed stations not providing 

adequate coverage for particular regions.  Other than incorporating a more complete data set in 

the analysis (which was not available at the time this research was conducted), the research was 
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limited by the quality and distribution of the data sets used, and thus certain results attained 

could be more indicative of data quality than the relationships that were observed and assessed. 

Given that this research occurred in two separate stages – one which was dependent on results 

from the on the other – it is important to mention that any errors encountered due to data quality 

may have potentially compounded when those data were employed in further research. 

This research was also limited by the associated computational and financial costs that 

would be required if automation of this workflow was implemented (e.g., by the Sri Lanka MOH 

and Department of Meteorology to develop an early warning system for leptospirosis outbreak).  

While powerful processors have become more affordable over the last decade, mathematically 

complex algorithms, such as those used to generate Bayesian kriging interpolations, still require 

a relatively large amount of computational power to be completed in a timely fashion.  I 

considered these costs as criteria for selecting methods in all of the research conducted, but 

minimum computational requirements for implementing a workflow where results are needed in 

for real-time disease surveillance may still be an issue.  A concerted effort was made to select 

methods that would be able to generate accurate and usable results using the simplest methods 

available without incurring a cost on the quality of predicted outputs. 

3. Research Contributions 

The research conducted in this thesis made contributions to elucidating the relationships 

between environmental factors and EID incidence.  Specifically, by employing novel modelling 

methods to assess the EID leptospirosis and evaluating the effect that precipitation has on its 

incidence in Sri Lanka, I was able to determine that serial dependence on previous leptospirosis 

cases plays a more important role in the dynamics of leptospirosis transmission.  Little research 
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has been done assessing drivers of leptospirosis risk in Sri Lanka, and with a known outbreak in 

2008 where greater than 7000 people were affected, it is important determine which 

environmental variables should and should not be considered as drivers of outbreak when 

attempting to prevent future outbreaks. 

Another contribution of this research was in the field of spatial interpolation, and 

specifically, assessment of rainfall in tropical settings which observe highly variable climates.  I 

was able to determine the strengths and weaknesses of various interpolation methods when 

dealing with variable weather patterns in a relatively small study area, and from that, make 

suggestions as to the best method to employ provided certain underlying conditions.  I was also 

able to characterize global monsoonal and convectional rainfall patterns, and evaluate their 

spatial structures using SSIM – a novel image comparison algorithm – in conjunction with more 

standard error metrics.  This approach of using spatial structure evaluation in conjunction with 

standard empirical error metrics provided a means to better understand how well interpolation 

methods were approximating actual rainfall magnitudes and distribution, and could be used in a 

spatial modelling context when evaluating congruency in pattern between ground truth data and 

predicted results. 

Through completing this research, a master data set was constructed by aggregating 

several different data sets together (e.g., leptospirosis case count data, rainfall data, Sri Lanka 

district level and MOH area level spatial data). This new data set is a vast improvement over any 

previous data sets available for assessing leptospirosis in Sri Lanka, as it has been standardized 

both spatially and temporally.  MOH area boundaries were subject to change for each year of the 

study period and required a considerable amount of manipulation to standardize to a set of 

common boundaries for the entire study period.  This new master data set will be of use to the 
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Ministry of Health in Sri Lanka, as never before has a data set containing leptospirosis data and 

rainfall data been available for analysis.  Moreover, as a script was written to assemble this data 

set, other social, ecological, economic, or environmental variables can potentially be appended to 

the data set with relatively little programming.  

Lastly, by developing an effective INGARCH time series modelling framework for Sri 

Lanka, I was able to provide a means of early warning for leptospirosis outbreak in Sri Lanka.  I 

plan to continue refining the leptospirosis risk models and have them assessed for 

implementation at the nation-wide scale, and to work with the Ministry of Health in Sri Lanka to 

improve leptospirosis surveillance efforts, and attempt to develop early warning protocols for 

leptospirosis risk. 
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