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ABSTRACT OF DISSERTATION 

 

 

 

 

THE RESPONSIVENESS OF MIGRATION TO LABOR MARKET CONDITIONS 

 

This dissertation explores how migration responds to economic conditions, 

particularly differences in responsiveness for various segments of the population.  After a 

brief introduction and motivation of my work in Chapter One, Chapter Two estimates the 

responsiveness of households’ interstate migration to origin state labor market conditions 

and surrounding state labor market conditions.  Each percentage point increase in origin 

state unemployment insurance claims leads to a 3.2 percent increase in household’s 

propensity to migrate interstate and each percentage point increase in the unemployment 

insurance claims rate of surrounding states reduces interstate migration propensity by 5.2 

percent.  I then examine how this responsiveness varies by demographics and how it has 

changed over time.  I determine that the responsiveness of migration to labor market 

conditions is weaker for several groups at high poverty risk, including less educated, non-

employed and rural households and households with children present.  I also show that 

between the early 1980s and mid 1990s labor market conditions became a smaller factor 

in household migration decisions, but since then labor market conditions have gained in 

importance.   

While Chapter Two examines short-run migration responsiveness, Chapter Three 

explores the size of the long-run outflow (or inflow) of skilled labor occurring in local 

areas in response to economic conditions, amenities and other area characteristics.  I 

estimate the extent of this brain gain and brain drain within localities in the United States 

between the early 1990s and late 2000s, describing both absolute changes (percentage 

growth in the stock of educated individuals) and relative changes (growth in the share of 

educated individuals).  For each of three measures of brain gain estimated, I show 

substantially more positive flows of educated individuals towards local areas with strong 

initial economic conditions.  I also show that non-metropolitan areas are more likely to 

experience all three measures of brain drain.  I present evidence that nonmetropolitan 

areas’ inability to attract and retain educated individuals stems primarily from labor 

market disparities including the urban-rural wage differential.   
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1 INTRODUCTION 

 

 

The following two chapters consider migration’s responsiveness to economic 

conditions and other area characteristics, focusing on how individual characteristics 

affect this responsiveness.  Both of these chapters particularly emphasize education’s 

effect on migration’s responsiveness to economic conditions.  In Chapter Two the unit of 

analysis is the household (head) and I examine: 1) the effect of short-run changes in 

origin and surrounding state labor market conditions on households’ propensity to 

migrate, 2) how demographic characteristics, including education, influence the relative 

importance of labor markets in the migration decision, and 3) how the effect of labor 

market conditions on migration has changed over time.  An important finding in this 

chapter—and what helps motivate Chapter Three—is that labor markets play a larger role 

in the migration decisions of more educated households.  Coupled with educated labor’s 

high base migration rates, this suggests that, over time, spatial differentials in labor 

market conditions within the United States could lead to sizeable net flows of educated 

labor from depressed areas to thriving areas.  In light of my findings in Chapter Two, 

Chapter Three then examines the issue from the perspective of local areas (counties and 

groups of less populous counties).  To what extent do local area characteristics, including 

economic conditions, determine whether an area attracts and retains human capital over a 

period of almost two decades? 

Chapter Two uses three different measures of state labor market conditions—the 

unemployment insurance claims rate, unemployment rate, and employment growth rate—

with few qualitative differences in the results.  I find that a percentage point increase in 

the origin unemployment insurance claims rate of the median household increases their 
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propensity to migrate interstate by 3.2 percent.  Likewise a percentage point increase in 

the unemployment insurance claims rate in surrounding states (within a 1,000 mile 

radius) decreases migration propensity by 5.2 percent.  The relative importance of labor 

markets in influencing migration decisions fell between 1982 and the mid-late 1990s, but 

increased from the late 1990s through 2012.  This responsiveness also varies 

considerably according to demographic characteristics.  Household heads who are college 

educated, labor force participants, metropolitan and those without children present are 

especially responsive to labor market conditions.  Interestingly the household 

characteristics associated with lower responsiveness also imply higher poverty risk.  

Chapter Three shows that the differential responsiveness of more and less educated 

individuals has lasting effects on the distribution of human capital in the United States.  

The results suggest that, ceteris paribus, a typical county with a one percentage point 

higher unemployment rate and a one percentage point higher poverty rate in the early 

1990s would have 3.2 percent fewer 30-something high school graduates in the late 

2000s.  Similarly such counties could expect the share of individuals with high school 

diplomas and college degrees to both increase by 0.4 percentage points less over the 

period among the cohorts being tracked.  Nonmetropolitan areas similarly struggle to 

attract and retain human capital. 

The propensity of households to migrate in response to labor market conditions—

and any changes in this propensity—may affect the efficiency of national labor markets 

by affecting the likelihood that labor is located where it can be most productively 

employed.  A perceived strength of U.S. labor markets is their flexibility (Partridge, et al., 

2012); migration’s responsiveness to labor market incentives is an important aspect of 



 
 

3 
 

this flexibility.  The demographic differences in migration’s responsiveness found in this 

dissertation—high poverty groups having only a weak tendency to move out of poor 

labor markets and towards thriving ones—should be of concern to policy-makers in 

economically depressed states, counties and cities.  On top of slow or non-existent 

growth of tax bases due to a weak economy and net outmigration, detrimental 

demographic shifts may cause short-run and long-run harm to public finances in these 

places.  Differential migration responses to labor market conditions may also contribute 

to long-term divergence in economic growth and productivity.  Although there is 

disagreement among economists about the relative importance of the various mechanisms 

underlying human capital externalities, large net flows of educated labor across labor 

markets certainly affect the existing residents of both brain gain areas and brain drain 

areas in some way.  A better understanding of exactly how human capital spillovers arise 

is necessary before judging the efficiency of these net flows of human capital.  Although 

the particular policy implications of the following chapters are not obvious, the findings 

in this dissertation may be informative for understanding the benefits and costs of place-

based policies, tax deductions for moving expenses, and education subsidies in rural and 

depressed areas. 

The recent economic literature is broadly in agreement that migration responds to 

both general labor market conditions and the particular economic incentives faced by 

individuals (Saks and Wozniak, 2011; Wozniak, 2010; Bound and Holzer, 2000; Kennan 

and Walker, 2011; Sasser, 2010).  Therefore I look at the general effect of labor market 

conditions on migration as a starting point for my study, not as a unique contribution.  

There has been considerably less research differentiating between the responsiveness of 
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various groups.  Wozniak (2010) shows using Census data that among individuals with 

five to eight years of potential experience, their state of residence is more sensitive to 

state labor market conditions at the implied time of labor market entry (based on Mincer 

Equation) if the individual is college-educated.  By looking at changes in residence state 

over a twelve month period (and by not assuming that one’s birth state was their state of 

residence at the time of labor market entry), I more directly estimate differences in 

migration’s responsiveness to current labor market conditions by educational status.  I 

also am able to identify previously unidentified differences in responsiveness along other 

demographic characteristics: labor force participation, presence of children, and 

metropolitan status.  While previous research (Partridge et al., 2012) showed labor 

demand shifts led to smaller net population shifts in the early 2000s (2000-2007) than in 

the 1990s, I show that the relative role of (general) labor market conditions in 

determining household migration decisions increased in the 2000s.  So while my 

dissertation is silent on what caused the secular decline in interstate migration in the 

1990s and 2000s, it shows that the primary reason for the decline is not a reduced 

responsiveness to labor market conditions.  Finally, the third chapter contributes to our 

understanding of the determinants of brain gain and brain drain within the United States 

by tracking specific cohorts over time.  Previous research looking at the determinants of 

areas’ human capital accumulation has often looked at changes in educational attainment 

among the population as a whole (Artz, 2003; Bound and Holzer, 2000; Berry and 

Glaeser, 2005) rather than tracking changes over time among specific cohorts.  Such a 

strategy may conflate net inmigration of educated labor with either: 1) reductions over  
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time in the net outmigration of educated labor or 2) improvements in the educational 

system leading to higher rates of high school graduation and college attainment. 
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2 WHICH LABOR MARKET CONDITIONS AFFECT MIGRATION AND 

WHOSE MIGRATION IS AFFECTED?  

 

 

2.1 Introduction 

 Almost 53 percent of all working-age households migrating to a different state 

between 2011 and 2012 cited work-related factors as the main reason for their move.1  It 

should come as little surprise then that migrants are more likely to move from areas with 

poor labor market conditions to areas with strong labor market conditions.  The size of 

migration’s responsiveness to state labor market conditions—and whose migration 

responds—has important implications on public policy.  Free mobility of labor is 

generally regarded as efficiency-enhancing: workers move from regions with a surplus of 

labor to regions where labor is in more demand (Marston, 1985).  Reductions in barriers 

to migration, such as tax deductions for moving expenses, are then defended as 

promoting labor market efficiency.  But if factors other than labor market conditions 

prompt most moves, such policies may just subsidize consumption of area amenities over 

consumption of other goods and services without having leading to a more efficient 

allocation of labor.  Migration’s responsiveness to labor market conditions may also be 

relevant when considering the merits of place-based policies.  Place-based policies, 

which direct federal funds toward economic development in the neediest areas, are one 

set of tools policy makers use to reduce inequality.  Such policies could be misguided if 

they substantially counteract migration’s natural response to spatial differences in labor 

market conditions.  This chapter shows that low poverty groups are more likely to 

                                                            
1 Author’s tabulation based on household heads age 18-65 surveyed in the 2012 Annual Social and 

Economic Supplement to the Current Population Survey (the March CPS).  Employment related factors 

include: New job or job transfer, to look for work or lost job, to be closer to work/for easier commute, 

retired, and other job related reasons. 
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migrate in response to labor market conditions.  This result suggests the possibility that if 

place-based policies improve general economic conditions in an area (rather than 

targeting job growth among groups at high poverty risk), they may have a particularly 

large effect on the migration of low-poverty groups. 

Also, if labor market conditions drive the migration of skilled workers more than 

unskilled workers, then states whose employment prospects are historically the bleakest 

may wind up with an even less employable workforce than if no differentials in 

responsiveness existed.  Therefore, beyond potentially influencing the effectiveness of 

place-based policies, differences in demographic groups’ migration response to economic 

conditions may also prolong or compound chronic labor market differentials across 

states.  The loss of a state’s skilled and high-income workforce and the retention of the 

high poverty population could also cause additional strain on the budgets of state 

governments facing tight labor markets.  

 In this chapter I show that demographics do lead to stark differences in 

households’ migration response to transitory changes in labor market conditions.  In 

general, the migration of groups at highest poverty risk is the least responsive to labor 

market conditions.  Researchers have previously identified a positive relationship 

between educational attainment and responsiveness of migration to labor market 

conditions (Bound and Holzer, 2000; Wozniak, 2010).  This essay, though, is the first I 

am aware of to verify this result using yearly microdata.2  Using a household level 

migration model of migration and controlling for year-to-year changes in unemployment, 

                                                            
2 Bound and Holzer (2000) looked at how differences in MSA labor demand affect the net population 

changes of different subpopulations.  Wozniak (2010) finds that workers with some higher education are 

more likely to be located in a state which had high labor demand when they entered the labor market, 

controlling for state of birth. 
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I determine how much educational attainment affects the responsiveness of migration to 

differentials in labor market conditions.  I also find that non-employment, children in the 

household, and living in nonmetropolitan areas all reduce migration’s responsiveness to 

labor market conditions.  Inability or unwillingness to relocate to strong labor markets 

may therefore be another factor contributing to high poverty among household heads who 

experience employment gaps, are less educated, live in rural areas, or have children.  

Surprisingly, the economics literature has been relatively silent on this issue.  Finally, I 

also present evidence that household migration propensity became less responsive to 

labor market conditions through the 1980s and into the 1990s, but increased thereafter. 

 

2.2 Literature Review 

Most research on labor markets’ influence on internal migration addresses (at 

least) one of three general questions.3  First, considerable research explores how 

migration into and out of a state (or other geographic unit) responds to local labor market 

conditions—typically defined by some measure of unemployment, employment growth, 

real wages, industry specific wages, shocks to labor demand, or a combination of similar 

variables—or to differentials in labor market conditions (Blanchard et al., 1992; Bound 

and Holzer, 2000; Greenwood and Hunt, 1984; Hughes and McCormick, 1989; Kennan 

and Walker, 2011; Partridge and Rickman, 2006; Pissarides and Wadsworth, 1989; 

Wozniak, 2010).  Second, some of the literature estimates migration’s response to 

changes in national labor markets (Pissarides and Wadsworth, 1989; Saks and Wozniak, 

2011).  Third, some researchers examine how migration is affected by labor policies and 

                                                            
3 A complementary literature looks at the effect of migration on labor markets.  Many of these papers seek 

to determine the effectiveness of migration in bringing spatial equilibrium when heterogeneous shocks 

occur across labor markets (Blanchard et al., 1992; Partridge and Rickman, 2006).  
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institutional features of labor markets, including welfare policies (Gelbach, 2004; 

Kaestner et al., 2003; McKinnish, 2005), regional transfers (Obstfeld and Peri, 1998), 

state tax policies (Conway and Rork, 2012; Coomes and Hoyt, 2008; Young and Varner, 

2011), and unemployment insurance benefits (Day and Winer, 2006), to name a few.  

This chapter focuses primarily on the first category of research, the responsiveness of 

migration to local labor market conditions in origin, destination, and other surrounding 

states, and briefly addresses the effect of national conditions on migration.  

Most early research concluded that migration is only slightly—if at all—more 

likely to occur from high unemployment areas to low unemployment areas (Gallaway, et 

al., 1967; Rogers, 1967; Wadycki, 1974).  Another common feature of early papers was 

the finding that even when researchers found that inmigration decreased with local 

unemployment (as expected), outmigration unexpectedly decreased with local 

unemployment (Greenwood, 1975).  Lansing and Mueller (1967) claimed that early 

studies found that area unemployment has a perverse effect on outmigration because high 

unemployment is most prominent among less educated, less skilled workforces, but such 

workers also tend to be less mobile.  With greater controlling for the demographics of an 

area, and more widely available individual and household level data, more recent 

research typically finds unemployment significantly affects outmigration and inmigration 

in the expected directions (Bound and Holzer, 2000; Greenwood and Hunt, 1989; Saks 

and Wozniak, 2011; Sasser, 2010.)  The results in this chapter are based on three decades 

of micro data, allowing for detailed household controls. 

Research examining the procyclicality of migration with respect to aggregate 

labor market conditions typically finds that improvements in national conditions are 
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associated with higher migration (Pissarides and Wadsworth, 1989; Saks and Wozniak, 

2011), though until recently studies (particularly in the U.S.) have been limited by the 

availability of microdata or sufficient longitudinal data to draw strong conclusions.  

Moreover, the recent secular decline in interstate migration (falling from an annual rate of 

3.5% to 1.5% between 1982 and 2012)4 further complicates researchers’ task of 

deciphering the influence of aggregate labor market conditions on migration, particularly 

when relying on macrodata.  In perhaps the most exhaustive attempt yet to examine the 

relationship between the aggregate business cycle and migration, Saks and Wozniak 

(2011) conclude that migration is indeed procyclical.  However, using household level 

data from the March Current Population Survey, their estimates imply that the 

procyclicality of interstate migration applies only to household heads aged 18-35. 

Relatively little is known about demographic differentials in migration’s elasticity 

with respect to labor market conditions.  Bound and Holzer (2000) demonstrate that the 

growth rate of the college-educated population in a MSA between 1980 and 1990 was 

more responsive to changes in MSA labor demand than the growth rate of the high 

school-educated.  Similarly they show that the growth rate of the young populations in a 

MSA appear to be especially sensitive to changes in labor demand.  They find 

inconclusive evidence regarding the responsiveness of blacks.  Wozniak (2010) shows 

that individuals’ current state of residence is more responsive to initial state labor market 

conditions (at the time of labor market entry) if the individual is college-educated.  Saks 

and Wozniak (2011) find that the migration of blacks, women, labor force participants, 

and college-educated are more responsive to changes in the national business cycle, 

                                                            
4 Author’s tabulations based on household heads aged 18 to 65 in the March CPS.  Imputed observations 

are dropped, based on the findings of Kaplan, and Schulhoger-Wohl (2010). 
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ceteris paribus, but they do not test for differential responsiveness to local labor market 

conditions.  I am unaware of research which examines how family structure (marital 

status and presence of children) or metropolitan status affects the responsiveness of 

migration to local labor market conditions.   

There has also been limited research explicitly examining how migration’s 

responsiveness to labor market conditions has changed over time.  Partridge et al. (2012) 

find that county population growth (a proxy for net migration) became significantly less 

responsive to shocks in labor demand (based on predicted employment growth rates for a 

county’s industrial composition) between the periods 1990-2000 and 2000-2007.  With 

dramatically lower migration rates in the latter period, it is perhaps unsurprising that 

labor demand shocks (or any other impetus to move) exhibit reduced effects on 

population growth.  Households are much less likely to migrate than they were in 1990.  

This could be because people are not as responsive to labor market incentives to move, 

because people are not as responsive to non-labor market incentives to move, or because 

the incentives to move have declined (i.e. the benefits of moving have declined relative to 

the costs).  For instance, any non-labor factor that increased the costs of moving during 

this period may have reduced internal migration, making it appear that household 

migration became less responsive to labor market conditions.  Besides changes in 

migration’s responsiveness to labor market conditions, several other theories have been 

put forth that might explain the decline in migration.5  The findings of Partridge et al. 

certainly do not imply that labor market conditions are a less important factor in 

households’ migration decision than they were in 1990.  By looking at the effect of labor 

                                                            
5 Kaplan and Schulhofer-Wohl (2013), for instance, present evidence that migration rates fell largely 

because labor markets have become less heterogeneous in returns to occupations and because of 

improvements in information and communication technology.   
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market conditions on household’s (log) propensity to migrate, this chapter will explore 

how the importance of labor market conditions in the migration decision has changed 

relative to other factors in the migration decision. 

 

2.3 Model and Empirical Strategy 

Recently some researchers—notably Kennan and Walker (2011)—have modeled 

the household migration decision using a structural approach, though reduced form 

modeling remains the dominant approach in literature examining the effect of labor 

markets on migration (Molloy et al., 2013; Partridge et al., 2012; Saks and Wozniak, 

2011; Sasser, 2010; Wozniak, 2010).  This essay also adopts a reduced form model of 

migration.  Modern economic literature examining the effect of labor market conditions 

(henceforth LMCs) on migration generally assumes, explicitly or implicitly, that 

individuals or households make migration decisions to maximize utility.  Household 𝑖’s 

expected utility in some locale, 𝑠, is a function of  real after-tax income (𝑌𝑖,𝑠), transitory 

labor market conditions (𝐿𝑀𝐶𝑠), moving costs (𝐶𝑖,𝑠), state attributes (𝐴𝑖,𝑠), and 

household characteristics (𝑋𝑖): 

 𝐸𝑈𝑖𝑠 = 𝐸[𝑈(𝑌𝑖,𝑠(𝐿𝑀𝐶𝑠, 𝑋𝑖) − 𝐶𝑖,𝑠(𝑋𝑖), 𝐴𝑖,𝑠(𝐿𝑀𝐶𝑠), 𝑋𝑖)]    (2.1) 

𝐴𝑖,𝑠 represents household 𝑖’s valuation of fixed characteristics of state labor markets and 

measurable amenities like climate, average commute time, school quality, and proximity 

to water and recreation.  𝐴𝑖,𝑠 also includes amenities that are typically unobservable such 

as family, social networks and scenic quality.  I postulate that transitory changes in LMCs 

affect a locale’s amenity value, because of their effect on governments’ budgets and 

hence their ability to fund programs that enhance residents’ quality of life.  Letting the 
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subscript 𝑜 denote household 𝑖’s origin state, I assume that 𝐶𝑖𝑜 = 0.  If 𝑠 ≠ 𝑜, then 𝐶𝑖𝑠 >

0 and 𝐶𝑖𝑠 increases with 𝑠’s distance from the origin.  Transitory increases in local 

unemployment are also associated with transitory decreases in real income, because 

workers face a higher probability of not having labor income and because the wages of 

workers tend to decrease in slack labor markets.  This chapter utilizes three measures of 

LMCs: unemployment insurance claims rates (UI claims rate for short), unemployment 

rates, and employment growth rates.  

Household migration is observed as a binary variable.  Let 𝑀𝑖 = 1 if household 𝑖 

moves across state borders during a 12 month period, and let 𝑀𝑖 = 0 otherwise.  Suppose 

𝑠∗ represents the most attractive potential destination for a household considering a 

move: 

 𝐸𝑈𝑖𝑠∗ = 𝑀𝑎𝑥[𝐸𝑈𝑖𝑠]    for all 𝑠 ≠ 𝑜    (2.2) 

Household 𝑖’s migration decision, then, is based on whether the latent variable 𝑀𝑖
∗ > 0:   

 𝑀𝑖
∗ = 𝐸𝑈𝑖,𝑠∗ − 𝐸𝑈𝑖,𝑜 (2.3a) 

 
𝑀𝑖 = {

0    if 𝑀𝑖
∗ ≤ 0 

1    if 𝑀𝑖
∗ > 0

 
(2.3b) 

Based on this framework, the household outmigration decision can be modeled 

approximately by the general equation shown in (2.4).   

 𝑀𝑖 = 𝑀(𝐿𝑀𝐶𝑜 , 𝐿𝑀𝐶−𝑜, 𝐴𝑖,𝑜, 𝐴𝑖,−𝑜, 𝐶𝑖,−𝑜, 𝑋𝑖)    (2.4) 

𝐿𝑀𝐶−𝑜 refers to labor market conditions in all states besides the origin which are relevant 

to the migration decision.  In cross-sectional analyses of household migration researchers 

face the task of controlling for all relevant amenity variables and for the cost of migration 

between various states.  However when longitudinal or panel data is available, as in this 
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essay, it is possible to simply include state dummies, if one assumes that the amenity 

value and moving costs of different states do not vary considerably over the sample 

period.6 

Consistent with theory, most recent evidence indicates the propensity of 

households to migrate increases as origin LMCs deteriorate or as potential destinations’ 

LMCs improve.  In modeling the effect of LMCs on migration, an important, unresolved 

question is which non-origin states’ LMCs are actually relevant to the household 

migration decision, especially given the concentration of interstate moves to nearby 

states.  Some past empirical work allows for LMCs in closer states to be more important 

to the migration decision (Hughes and McCormick, 1989; Saks and Wozniak, 2011), 

typically controlling for potential destinations’ LMCs using a gravity model or by 

applying weights based only on distance.  I explicitly test for the effects of LMCs at 

different distances from the origin.  I model the household migration decision using a 

logistic (logit) model, so it is assumed that household 𝑖’s propensity to migrate across 

state lines is equal to: 

𝑃(𝑀𝑖,𝑡 = 1|𝒁) = 𝑃(𝑀𝑖,𝑡
∗ > 0|𝒁) =

exp(𝒁𝜷)

1+𝑒𝑥𝑝(𝒁𝜷)
(2.5) 

Household interstate migration, 𝑀𝑖,𝑡, takes a value of one if migration occurs, zero

otherwise.  The latent propensity variable, 𝑀𝑖,𝑡
∗ , is unbound and equals:

𝑀𝑖,𝑡
∗ = 𝒁𝜷 = 𝛽0 + 𝛽1𝐿𝑀𝐶𝑜,𝑡 + 𝛽2𝐿𝑀𝐶−𝑜,𝑡 + 𝛽3𝑋𝑖,𝑡 + 𝛽4𝜏𝑡 + 𝜎𝑜 + 𝜖𝑖𝑜𝑡 (2.6) 

𝑀𝑖,𝑡
∗  describes the propensity of household 𝑖 to outmigrate from state 𝑜 between years 𝑡

and 𝑡 + 1.  The term 𝐿𝑀𝐶𝑜,𝑡 denotes the UI claims rate, unemployment rate, or

6 Even if this assumption is invalid, it is possible to allow for state specific time trends that capture changes 

in amenities and moving costs over time.  State-specific time trends were tried but excluded for parsimony 

because they had little effect on results when they were added to the model. 
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employment growth rate in household 𝑖’s origin state 𝑜 in year 𝑡.  The term 𝐿𝑀𝐶−𝑜,𝑡 

describes the (population-weighted) average of the UI claims rate, unemployment rate, or 

employment growth rate of states within some distance of the origin state (excluding the 

origin state).  Several variations on the spatial specification of 𝐿𝑀𝐶−𝑜,𝑡 are considered, 

though I use a radius of 1,000 miles in my preferred specification.  The term 𝑋𝑖,𝑡 includes 

various individual (household head) characteristics largely corresponding to the 

individual controls used by Saks and Wozniak (2011), including gender, education, race, 

employment status, metropolitan status, marital status, presence of children and a cubic in 

age.7  In the specification that uses employment growth as the measure of LMCs, I also 

include controls for population growth in the origin and in surrounding states.  The 

concern is that even population growth that is not caused by shocks to labor demand will 

still lead to employment growth.  By controlling for population growth, I differentiate 

between shocks to labor supply and shocks to labor demand.  Finally, origin state 

dummies, denoted by 𝜎𝑜, are included in every specification and a cubic in year is 

included in the preferred specification.  I also consider alternative controls for year.   

The baseline model in (2.6) resembles the final model in Saks and Wozniak 

(2011) with two primary differences8 which in part reflect the different objectives of our 

essays—Saks and Wozniak seek to identify the effect of national LMCs on migration 

propensity, while this chapter primarily focuses on the effect of relative area LMCs on 

migration.  First, Saks and Wozniak control for aggregate U.S. LMCs, whereas I 

separately estimate the effects of non-destination LMCs at various distances from the 

                                                            
7 I also considered including an index of state and national home prices, but these controls proved 

inconsequential in the model.  They were therefore omitted for parsimony. 
8 Two other differences should be noted: Saks and Wozniak (2011) employ a linear probability model (not 

a logit) and instead of taking the natural logarithm of UI claims rates, they normalize UI claims rates to 

have a mean zero and standard deviation of one. 
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origin.  Second, Saks and Wozniak control for migrants’ destination state LMCs, whereas 

I control for origin state LMCs.9  Explicitly controlling for both origin and destination 

LMCs proves problematic within this model.  Depending on the year, upwards of 98% of 

households do not move to another state within a 12 month span, so measures of origin 

and (actual) destination LMCs are identical for most households.  Multicollinearity 

therefore becomes a major problem if origin and destination LMCs are both included.  I 

include origin LMCs (instead of destination LMCs) because potential migrants have 

better information about LMCs in the origin than anywhere else and because potential 

destinations’ LMCs are partially controlled for in (2.6) with 𝐿𝑀𝐶−𝑜,𝑡.  The effects of the 

actual destination and potential destinations are not, however, separated in this model.  

As a result, the significance of 𝐿𝑀𝐶−𝑜,𝑡 may depend on its ability to capture the LMCs of 

actual destination states.  I will present evidence in subsection 2.5.3 that 𝐿𝑀𝐶−𝑜,𝑡 is a 

good proxy for destination state conditions. 

Within the framework of (2.6), if the relevant labor market conditions are being 

captured by 𝐿𝑀𝐶𝑜,𝑡 and 𝐿𝑀𝐶−𝑜,𝑡, it is also possible to test whether migration is 

procyclical with respect to aggregate LMCs by summing the coefficients on 𝐿𝑀𝐶−𝑜,𝑡 and 

𝐿𝑀𝐶𝑜,𝑡 (i.e. 𝛽1 + 𝛽2).  Procyclical migration implies that a uniform increase in national 

unemployment should reduce households’ propensity to migrate, so 𝛽1 + 𝛽2 should be 

negative when LMCs are measured with the UI claims rate or the unemployment rate.  

                                                            
9 In unreported results I find that use of origin state characteristics instead of destination state 

characteristics affects estimates of the procyclicality of migration with respect to the national labor market.  

However, including origin state characteristics also comes at a cost.  Ten years of potential observations 

must be dropped (1964-71, 1976 and 1981) because until 1982 the CPS did not ask migrants where they 

lived one year prior.  Individual outmigration data is missing altogether in the years 1972-1975 and 1977-

1980, so these years are not used by Saks and Wozniak (2011).  In a replication of Saks and Wozniak, I 

show that the results are not substantially altered by the omission of pre-1982 data.  Data limitations in this 

paper are alleviated somewhat because three additional years of data have come available (2010-2012) that 

were not used by Saks and Wozniak (2011).   
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Similarly, procyclical migration would imply that 𝛽1 + 𝛽2 should be positive when 

LMCs are measured with employment growth.  

 I then extend the model described by (2.6) to allow for the possibility that LMCs’ 

effects vary by household characteristics and by year.  Equation (2.7) describes this 

regression. 

 𝑀𝑖,𝑡
∗ = 𝛽0 + 𝛽1(𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) + 𝛽2𝑋𝑖,𝑡 + 𝛽3𝜏𝑡

+ 𝛽4(𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) × 𝑋𝑖,𝑡 

+𝛽5(𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) × 𝜏𝑡 + 𝜎𝑜 + 𝜖𝑖,𝑜,𝑡 

 

(2.7) 

Equation (2.7) models household migration as a function of differentials in LMCs (origin 

state conditions relative to surrounding states), household characteristics, year, 

interactions between LMC differentials and household characteristics, interactions 

between LMC differentials and year, and origin state indicators.  If a particular 

demographic subgroup is especially likely to migrate interstate when origin LMCs are 

weak relative to their states’ neighbors, this will be revealed by significantly positive 

(negative) values in 𝛽4 when LMCs are a measure of unemployment (employment).  The 

coefficient 𝛽4 measures each group’s LMC-driven migration: how important are LMCs in 

the migration decision (relative to non-labor factors)?  Groups with high labor force 

attachment and those facing large potential economic gains to migration theoretically 

should have more LMC-driven migration.  Conversely, low levels of LMC-driven 

migration might be expected, for example, among groups who are especially reliant on 

family and social networks and who therefore face higher social costs of migration.  

Finally, if migration’s responsiveness to LMCs has changed over time, this will be 

captured in the coefficients on the interactions of LMCs with year (𝛽5).   
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 Each of the measures of LMCs used control for general changes in state labor 

demand and cannot be used to distinguish between different causes of shifts in labor 

demand, nor can the measures help distinguish between labor demand shocks that 

differentially affect different types of labor.  Technological innovation, labor supply 

shocks, changes in consumer tastes and changes in the prices of production inputs will 

have different impacts on the demand for an individual’s labor depending on their 

education, experience, industry and occupation.  It cannot necessarily be assumed, then, 

that any differences in responsiveness to general labor market conditions that are 

observed across groups imply that the groups differ in their responsiveness to the 

particular labor market incentives that they face.  Because of heterogeneity in demand for 

different types of labor, some states may have strong employment opportunities for 

certain subpopulations despite a weak overall economy.  However there is reason to 

suspect that the measures of unemployment better capture the labor market opportunities 

of high poverty groups, because skilled labor is less prone to unemployment than 

unskilled labor.10  Thus, if anything, it is likely that there is a bias towards finding higher 

responsiveness among less educated and other high poverty groups.11 

 The final model employed in this paper allows me to separate the effects of LMCs 

                                                            
10 According to the Bureau of Labor Statistics, high school dropouts in 2013 had an unemployment rate of 

11.0%, high school graduates had 7.5% unemployment, individuals with an associate’s degree had 5.4% 

unemployment, individuals with a bachelor’s degree had 4.0% unemployment, individuals with a master’s 

degree had 3.4% unemployment, and individuals with a professional degree or doctoral degree had 2.3% 

unemployment. 
11 A concern unique to the measure of UI claims is that states with generous unemployment insurance 

might also have more generous welfare systems.  Could an apparent diminished responsiveness among  

high poverty groups arise because increases in UI claims coincide with increases in welfare generosity that 

are in actuality what prevent high-poverty groups from out-migrating?  Although I cannot rule out this 

effect entirely, I think it is unlikely that this is driving my results.  The most obvious reason is that the 

results that follow are largely consistent across the three measures of LMCs, and such a concern does not 

apply to the unemployment rate and employment growth rate.  Second, since the UI claims rate measures 

the rate of initial claimants, many common changes to UI rules, such as extending UI benefits for 

additional weeks, would not effect this measure.  Finally, any persistent difference in UI rules such as 

higher replacement rates would be captured by the state dummies. 
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in the destination state from the effects of LMCs of other surrounding states.  The model 

closely corresponds to (2.6) but instead of predicting whether any interstate move will 

occur, it predicts whether a household will move into a specific state, 𝑑. 

 𝑀𝑖,𝑑,𝑡
∗ = 𝒁𝜷 = 𝛽0 + 𝛽1𝐿𝑀𝐶𝑜,𝑡 + 𝛽2𝐿𝑀𝐶𝑑,𝑡 + 𝛽3𝐿𝑀𝐶−𝑜,𝑡 + 𝛽4𝑋𝑖,𝑡 + 𝜎𝑜 

+𝑡 + 𝑡2 + 𝜖𝑖𝑠𝑡    

(2.8) 

The dependent variable, 𝑀𝑖,𝑑,𝑡
∗ , describes households’ propensity to move to state 𝑑.  

Because of the small number of migrants to most states observed in the CPS, I limit the 

number of potential destination states being considered to the 12 most common 

destinations in my sample.  Each of these 12 regressions model migration into one 

particular state.  The only difference in independent variables between (2.6) and (2.8) is 

the inclusion of 𝐿𝑀𝐶𝑑,𝑡 in (2.8).12  This variable captures the effect of a state’s LMCs on 

the propensity of households to migrate to that state.  Thus, in this model, 𝛽1 and 𝛽2 

describe, respectively, the push effect of origin LMCs and the pull effect of destination 

LMCs, while 𝛽3 describes the effect of other states’ LMCs on migration to 𝑑.  Note that 

households from state 𝑑 and households from states with fewer than 20 observed 

migrants to 𝑑 over the period 1982-2012 are omitted from the regression modeling 

migration into state 𝑑.13  This implies non-random sampling of households in each state’s 

regression, with heavier sampling from nearby states and more populous states.  As a 

result, the coefficients may be biased estimates of the population parameters.  The 

direction of any potential bias is not obvious.  Nonetheless, the relative sizes of 𝛽2 and 𝛽3 

and the regressions’ sensitivity to the inclusion of 𝐿𝑀𝐶𝑑,𝑡 and 𝐿𝑀𝐶−𝑜,𝑡 will be instructive 

                                                            
12 Note also that by design (2.8) controls for trends in flows to particular states whereas (2.6) only captures 

migration trends within the nation as a whole. 
13 The migration regressions to each state 𝑑 include households from an average of 8.1 other states.  All 

others must be omitted due to an insufficient number of observed moves to state 𝑑.  
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in determining: 1) the relative extent to which the labor markets in 𝑑 and −𝑜 affect the 

migration decision and 2) whether 𝐿𝑀𝐶−𝑜,𝑡 acts as an adequate proxy for 𝐿𝑀𝐶𝑑,𝑡 in (2.6) 

and (2.7).   

 In addition to reporting results from regressions for each destination state, I also 

report results of a logistic regression in which each of these destination state-specific 

regressions are pooled together into one regression. 

 𝑀𝑖,𝑑,𝑡
∗ = 𝛽0 + 𝛽1𝐿𝑀𝐶𝑜,𝑡 + 𝛽2𝐿𝑀𝐶𝑑,𝑡 + 𝛽3𝐿𝑀𝐶−𝑜,𝑡 + 𝛽4𝑋𝑖𝑡 

+𝛽5𝐿𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒) + 𝜎𝑜 + 𝜎𝑑 + 𝑡 + 𝑡2 + 𝜖𝑖𝑠𝑡    

(2.9) 

The unit of observation in this pooled regression is not the household, but the household-

potential destination state interaction.14  This pooled regression includes each distinct 

household—whether they moved or not—as up to 12 different observations (once for 

each potential destination state).  An observation takes the value of one if the household 

moved to 𝑑, a value of zero otherwise, but 𝑑 takes each of 12 values for different 

observations.  Two additional controls are necessary in (2.9) to control for heterogeneity 

in moving costs between states: a dummy for the potential destination state being 

considered and the log of the distance between the household’s origin state and the 

potential destination state.  These controls would be superfluous in (2.8) where a single 

potential destination is considered in each regression.  Since the potential destination 

state is designated a priori for each observation (independent of the household’s eventual 

migration decision) a clear distinction is made between the labor markets of the origin 

                                                            
14 Since each household can only move to a maximum of one state, each household-potential destination 

state observation is not independent of all other observations.  Ideally this would be remedied by clustering 

standard errors by household, but it is not feasible to run regressions with more than a million clusters.  

Instead I continue to cluster standard errors by origin state.  Because all variables based on this regression 

are either highly statistically significant or not remotely significant (see Table 2.7), qualitative results likely 

would not be affected by the violation of independent observations. 
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state, the potential destination state, and “other” surrounding states.  In contrast, since 

over 98% of the sample lives in the same state at the end of the period as they did at the 

beginning, if 𝐿𝑀𝐶𝑑,𝑡 was added to (2.6), origin and destination LMCs would be identical 

for most observations, thereby creating collinearity problems.  By allowing for the 

inclusion of both 𝐿𝑀𝐶𝑑,𝑡 and 𝐿𝑀𝐶−𝑜,𝑡, (2.9) provides a test of whether only origin and 

destination states’ LMCs affect household interstate migration propensity, or whether 

LMCs in other surrounding states have some additional effect on households’ migration 

decisions.  Knowing whether “other” states affect migration flows may offer insights into 

the mechanism through which labor markets influence migration and can inform future 

modeling of the effects of LMCs on migration.   

 

2.4 Data 

All household level data comes from the 1982-2012 Annual Social and Economic 

Supplement of the Current Population Survey (the March CPS).  Household data are 

restricted to heads between the ages of 18 and 65.15  Each state’s UI claims rate is defined 

as the ratio of the number of initial claimants in a year to the sum of public employment 

and covered private employment.  Initial claimants and covered private employment data 

are available from the Department of Labor in the Unemployment Insurance Financial 

Data Handbook.  State unemployment rates, employment growth rates, and (civilian non-

institutionalized) population growth rates are reported by the Bureau of Labor Statistics.   

By measuring how many people are claiming unemployment for the first time in a 

period, initial UI claims rates may measure current conditions for potential migrant job 

                                                            
15 Furthermore I drop observations where the origin or destination state is imputed to a household. 
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seekers better than unemployment rates, which measure the stock of unemployed workers 

rather than the flow into or out of unemployment at a point in time.  Employment growth, 

similarly captures the flow into and out of employment.  However, unlike employment 

growth and unemployment rates, UI claims rates have the added advantage that they are 

based on the state in which a job was lost.  Thus, the initial UI claims rate is unaffected 

by whether someone who loses their job subsequently migrates (making it less 

susceptible to endogeneity concerns).  For these reasons, the preferred specifications in 

this paper will utilize the initial UI claims rates as the measure of LMCs, though I also 

explore how migration is affected by unemployment rates and employment growth.16 

The March CPS asks households about any changes in residence between March 

of year 𝑡 − 1 and March of year 𝑡, so it is difficult to pinpoint the exact timing of the 

LMCs that were most relevant to the move, though it seems sensible to allow for some 

lag between a change in LMCs and a resulting move.  Monthly and quarterly state UI 

claims data are not available, so I predict migration in the March CPS as a function of the 

average of the UI claims rate in year 𝑡 − 1 and year 𝑡 − 2.17  The Bureau of Labor 

Statistics reports monthly estimates of state unemployment rates and employment levels.  

To predict moves between March of 𝑡 − 1 and March of 𝑡, I use estimates of employment 

growth between March of 𝑡 − 2 and March of 𝑡 − 1.  I use a somewhat later measure of 

unemployment—March of 𝑡 − 1—since the current share of unemployed workers is the 

result of several lags of accessions and separations.   

                                                            
16 Some states may have persistently high unemployment rates and high unemployment insurance claims 

rates.  The risk of unemployment in such states may be balanced by other considerations such as high 

wages or state amenities.  Therefore outmigration from a state would not necessarily be associated with 

high unemployment, but with increases in unemployment.  However, it is not necessary to model LMCs 

using changes in the unemployment rate or the UI claims rate because persistent differences in the level of 

unemployment across states will be captured by the state dummies.  
17 Results were insensitive to variations in the weighting of UI claims in 𝑡 − 1 and 𝑡 − 2. 
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When constructing 𝐿𝑀𝐶−𝑜,𝑡 , state weights were determined based on 2000 Census 

data on state populations and distances between state centers of population (e.g. to 

determine the states within a 1000 mile radius of the household’s origin).  Distances 

between states are based on estimates of the latitudes and longitudes of each state’s 

population center in the 2000 Census’s State Centers of Population dataset.   

Table 2.1 reports summary statistics of household characteristics, disaggregated 

by migrant status (non-migrant, intrastate-intercounty migrant and interstate migrant).  

This table reveals several well-known statistical differences between migrants and non-

migrants.  Compared to non-migrants, interstate migrants between 1982 and 2012 were 

on average 7.5 years younger, 80% more likely to be unemployed and 44% more likely to 

have a college degree.  Migrants were also more likely to be white, unmarried and to 

have no children present.  As expected, interstate migrants’ destination states had better 

LMCs (whether measured with UI claims rate, unemployment rate, or employment 

growth) than their origin states.18   

 Figure 2.1 describes the proportion of household heads aged 18-65 migrating 

across various distances and jurisdiction lines and how these migration rates have 

changed over time.  Notice the large drop in all definitions of household mobility in the 

last 30 years.  Short and long distance migration experienced comparable steady declines, 

with every category of moves falling by more than 50% over the period 1982-2012.  

Figure 2.1 also shows that most moves cover relatively short distances.  Between 1982 

and 2012, roughly one third of all moves crossed county lines.  The figure then shows 

                                                            
18 Note that initial UI claims rates and interstate migration rates both trended down since 1982, so there are 

relatively more interstate migrants in the early part of the period 1982-2012, which also tended to have high 

UI claims.  This has the effect of inflating the average UI claims rates of interstate migrants relative to non-

migrants. 
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that of those crossing county lines each year, fewer than half crossed state borders.  

While about half of all of the  
48×47

2
 pairs of state population centers (excluding Alaska 

and Hawaii) are more than 1,000 miles apart, only about a quarter of interstate moves in 

a typical year are between states separated by more than 1,000 miles, suggesting 

interstate migrants tend to migrate to nearby states.  In sum, fewer than 4% of all moves 

cover more than 1,000 miles. 

Table 2.2 shows that among 18-65 year old household heads in the March CPS, 

intrastate-intercounty migrants were about equally likely to cite housing factors and job-

related factors as the reason for moves between 1998 and 201219; interstate migrants were 

most likely to cite job-related factors.  Housing factors are cited as the primary reason for 

moving among 32.9% of household heads moving to a different county in the same state, 

among 16.7% of heads migrating to a bordering state, and among 6.1% of heads 

migrating to non-border states.  Job-related factors are cited as the primary reason for 

moving among 31.8% of household heads moving to a different county in the same state, 

among half of heads migrating to a bordering state, and among 57.7% of heads migrating 

to non-border states.  Family and “other” reasons together account for roughly one-third 

of each type of move.  The large share of interstate migrants moving for a new job, a 

transfer or to look for work reveals why differences in state LMCs have the potential to 

substantially affect interstate migration. 

Indeed, Figures 2.2 and 2.3 show preliminary evidence that interstate migrants, on 

average, are more likely to move from states with poor LMCs towards states with better 

LMCs.  Figure 2.2 plots a time series of the U.S. UI claims rate over the period 1982-

                                                            
19 Respondents were not asked to report why they moved prior to 1998. 
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2012 (plotted against a time series of the interstate migration rate).  Figure 2.3 shows 

(again for 1982-2012) the UI claims rate in interstate migrants’ origin state, destination 

state, and surrounding states, minus the U.S. UI claims rate in the same year.  The graph 

shows that the average migrant’s destination UI claims rate is lower than their origin UI 

claims rate, and their destination UI claims rate is lower on average (by 0.31 percentage 

points) than the national UI claims rate.  This provides preliminary evidence, then, of 

movement toward states with strong LMCs.  However the graph also shows that interstate 

migrants are somewhat more likely to move from states with low unemployment, as 

origin UI claims rates are on average 0.12 percentage points below the national rate.  This 

is the type of asymmetric response to origin and destination LMCs that early research 

struggled to explain, but—consistent with the explanation of Lansing and Mueller (1967) 

described in section 2.2—this asymmetry is much smaller in the regressions of Section 

2.5 which include household controls and state dummies.  

Though job-related factors are important in migration and though there appears to 

be a tendency for migrants to move to states with lower UI claims, many migrants move 

“against the grain” either because of heterogeneity in demand for different types of labor 

(by education, industry, occupation, or unobservable worker qualities) or because they 

are moving for housing or family reasons.  To examine the state-level relationship 

between UI claims and migration rates, I plot state population growth against state UI 

claims rates (based on annual Census estimates) in Figure 2.4, where population growth 

acts as a proxy for net migration.20  Panels A, B and C show graphs for the periods 1982-

1992, 1993-2002, and 2003-2012, respectively.  For each of these periods, the years 

                                                            
20 Birth rates and death rates do not vary considerably across states, so differences in immigration will 

account for most of the difference between population change and net internal migration. 
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selected include one business cycle trough, one business cycle peak, and the midpoint 

between a trough and a peak. 21  In each graph displayed, at least a weak negative 

correlation exists between state UI claims and population growth, though an especially 

weak relationship exists in the early 2000s.  The graphs displayed are fairly 

representative of the period.  Figure 2.5 graphs the correlation between state UI claims 

rates and population growth for every year between 1982 and 2012, showing an average 

correlation of -0.23, with stronger negative relationships in the earliest years shown 

(1982-1988) and in the most recent years (2006-2012).  

Figure 2.4 also reveals regional trends in population growth that appear to be 

independent of LMCs.  Mountain West States like Nevada, Arizona, Utah, Colorado, and 

Idaho, for example, exhibit consistently more rapid population growth than their UI 

claims rate would suggest (except in 2009-2010).  Conversely, Central Plains States like 

Nebraska, South Dakota, Kansas, and Iowa have persistently low population growth, 

regardless of UI claims rate.  Amenity differences, differences in state unemployment 

insurance rules, or persistent differences in real wages may contribute to these 

differences.  A priori, it is unclear whether these effects strengthen or weaken the 

negative correlation between state UI claims rate and population growth.  Therefore, 

Figure 2.6 aims to filter out relatively permanent differences in states’ ability to attract 

migrants.  Each state’s UI claims rate (for each year) is normalized relative to that state’s 

average over the 1982-2012 period; likewise each state’s population growth is 

normalized relative to that state’s average over the 1982-2012 period.  These standard 

normally distributed variables are then plotted against each other in Figure 2.6.  

                                                            
21 Identification of troughs and peaks are based on the latest announcement from the NBER’s Business 

Cycle Dating Committee (9/20/2010).  Note that the years 1990-1991 actually include both a trough and a 

peak. 
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Comparing the graphs of Figure 2.6 to those in Figure 2.4 shows that the negative 

correlation between the normalized UI claims rate and normalized population growth is 

stronger than the negative correlation between their un-normalized counterparts.  The 

correlation between normalized UI claims rate and normalized population growth 

between 1982 and 2012 is graphed in Figure 2.7.  The average correlation over the period 

is -0.42 (compared to 0.23 when the measures are not normalized).  These descriptive 

exercises support the notion that LMCs substantially affect interstate migration, 

particularly year to year variation in the propensity to migrate.  In the following section 

this is tested more rigorously. 

 

2.5 Results 

 Subsection 2.5.1 presents results based on the model in (2.6), estimating 

households’ propensity to migrate interstate as a function of origin LMCs, surrounding 

LMCs and household head characteristics.  Interstate migration occurs when a household 

head reports living in a different state 12 months prior.22  I examine the robustness of the 

results to alternative time controls (a quadratic in year, a cubic in year, and year 

dummies) and I defend the choice of spatial controls (LMCs of states within a 1,000 mile 

radius) in the preferred specification.  Section 2.5.2 describes results from (2.7) where 

LMCs are interacted with household head characteristics to determine the relative 

responsiveness of various groups’ migration to changes in LMCs and to determine how 

responsiveness has changed over time.  Section 2.5.3 describes the findings from 

                                                            
22 Ideally migration would be defined as a move to a different labor market, perhaps best described by 

MSAs or similar metropolitan boundaries.  Data limitations in the CPS preclude this.  Interstate moves tend 

to understate the number of moves across labor markets while intercounty moves would overstate the 

number of moves across labor markets (Molloy, et al., 2011). 
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regressions based on (2.8) and (2.9), which model household migration separately into 

each of 12 states popular destination states.  Based on the results of these 12 distinct 

regressions, I describe the effect of origin and destination conditions on households’ 

propensity to move to these states (2.8).  Then, I examine the effect of “other” (non-

origin, non-destination) LMCs using the pooled regression (across all 12 potential 

destination states) described by (2.9).   

 

2.5.1 Effect of Origin and Surrounding Labor Market Conditions 

 Table 2.3 displays the key results of the logistic regression based on (2.6), 

modeling the propensity to migrate interstate as a function of origin LMCs and the 

population weighted average of LMCs in states within 1000 miles of the origin.  Panel A 

shows results using state UI claims rates as the measure of LMCs, Panel B shows results 

using state unemployment rates and Panel C shows results using employment growth 

rates.  The highlighted column in the top panel represents the preferred specification 

where the time control is a cubic in year, the other columns control for time using a 

quadratic in year and using year dummies.  Because I employ a logistic model, regression 

coefficients have little intuitive meaning.  Therefore Table 2.3 and all subsequent tables 

report the semi-elasticity of household migration with respect to the explanatory variables 

(evaluated at median or modal values). 23  Below these elasticities I report standard errors.  

(Appendix Table A.1 presents full results of the regressions described in Table 2.3, 

including the effects of household characteristics, state and year on household migration 

propensity.)  Panel A of Table 2.3 shows that origin and surrounding states’ UI claims 

                                                            
23 The median/modal characteristics at which elasticities were evaluated are: employed, some college, 

unmarried, no children, 42 years old, male, white, metropolitan, resident of California in the year 2000. 
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rates each affect households’ propensity to migrate out of a state in the expected 

direction.  The preferred specification implies that for the median household, a one 

percentage point increase in the origin UI claims rate increases household migration 

propensity by 3.2 percent, ceteris paribus, while a one percentage point increase in 

surrounding states’ UI claims rates reduces households’ migration by 5.2 percent, ceteris 

paribus.  Estimates are comparable using the quadratic time controls, but the coefficient 

on 𝐿𝑀𝐶−𝑜,𝑡 is substantially closer to zero and statistically insignificant when time 

dummies are used.  Including time dummies has a similar effect on the coefficient on 

𝐿𝑀𝐶−𝑜,𝑡 when measuring LMCs with the unemployment rate or employment growth rate.  

This seems to be because the year dummies capture the bulk of the between-year 

variation in national LMCs, which is highly correlated with the LMCs of one’s 

neighbors.  This problem grows less stark as 𝐿𝑀𝐶−𝑜,𝑡 controls for a progressively smaller 

radius, as more within-year variation exists in 𝐿𝑀𝐶−𝑜,𝑡, thus limiting the extent to which 

the coefficients on the time dummies are confounded with the coefficients in 𝐿𝑀𝐶−𝑜,𝑡.  

(However, as I will show, narrower spatial definitions of relevant labor markets seem to 

miss some of the changes in surrounding LMCs that are relevant to potential migrants.)  

As reported in Appendix Table A.1, controls for household head characteristics generally 

take the expected sign (consistent with previous research) and are generally highly 

significant.  Higher interstate migration is associated with being male, educated, non-

black, non-Hispanic, young, unmarried, and childless. 

Note that in each of the panels of Table 2.3, column 2 implies that simultaneously 

increasing unemployment in a household’s origin state and in all surrounding states by 

one percentage point would have an insignificant effect on interstate migration.  That is, 
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since the sum 𝛽1 + 𝛽2 is not significantly different from zero, I cannot reject the 

hypothesis that interstate migration would be unaffected by a uniform national increase in 

UI claims.  Although statistically insignificant, for each of the three panels the direction 

and size of the sum of 𝛽1 and 𝛽2 does imply that there may be an economically 

meaningful increase in household migration when national LMCs improve.  In each case, 

a one percentage point decrease (increase) in unemployment (employment) is estimated 

to increase household migration propensity by about 2 percent.  Moreover, consistent 

with Saks and Wozniak (2011), if the sample is limited to sufficiently young household 

heads (ages 18-35) the resulting coefficients do suggest that interstate migration is 

procyclical with respect to national LMCs. 

Though in Table 2.3 I control only for the UI claims rate of the origin state and 

states within 1,000 miles, this particular classification of “relevant” labor markets is 

arbitrary.  Table 2.4 explores a few alternate specifications which control for different 

ranges of surrounding LMCs (see Table A.2 for full results.)  Otherwise these regressions 

are identical to column 2 of Panel C (the preferred specification).  Column 1 of each 

panel displays results of a regression including the UI claims rate at the origin (𝐿𝑀𝐶𝑜,𝑡), 

the population-weighted average of the UI claims rate of states within some range of the 

origin (continue to refer to this as 𝐿𝑀𝐶−𝑜,𝑡), and the population-weighted average of the 

UI claims rate of states outside of that range (𝐹𝐴𝑅𝑜,𝑡 for short).  Column 2 of each panel 

excludes 𝐹𝐴𝑅𝑜,𝑡.  Each panel classifies near states and distant states using a different 

range.  Panel A classifies surrounding states as those that share a border with the origin 

state, Panel B classifies surrounding states according to whether their center of 

population was (as of 2000) within 500 miles of the origin state’s center of population, 
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Panel C classifies states—as in Table 2.3—using a 1,000 mile radius, and Panel D 

controls only for the origin and national UI claims rate.  Note that in column 1 of Panels 

A and B, the coefficient on 𝐹𝐴𝑅𝑜,𝑡 is substantially larger than the coefficient on 𝐿𝑀𝐶−𝑜,𝑡.  

Two things may explain this.  First, note from Figure 2.1 that moves to bordering states 

and moves to states within 500 miles comprise fewer than half of all interstate moves.  

Moreover, because relatively few pairs of states border one another or lie within 500 

miles of one another, the average UI claims rate in these groups is measured with more 

error than the average UI claims rate outside those ranges.  Therefore, in these 

specifications 𝐿𝑀𝐶−𝑜,𝑡 may actually do a worse job than 𝐹𝐴𝑅𝑜,𝑡 of approximating the 

typical LMCs in migrants’ potential destinations.   In contrast, Panel C shows that the 

effect of UI claims rates of states within 1000 miles dominates the effect of the more 

distant states’ UI claims rates.  It is also problematic for the specifications in Panel A that 

the coefficient on 𝐿𝑀𝐶𝑜,𝑡 is somewhat sensitive to the inclusion of the more distant 

states’ UI claims rates.  Results are much less sensitive in the preferred specification.  

When including 𝐹𝐴𝑅𝑜,𝑡 in the model using the 1,000 mile designation (Panel C), the table 

implies that a percentage point increase in all UI claims rates decreases household 

migration propensity by 5.7%.  When excluding 𝐹𝐴𝑅𝑜,𝑡, the same panel implies that a 

percentage point increase in all UI claims decreases household migration propensity by 

5.2%.  Note, though, that the inclusion of 𝐹𝐴𝑅𝑜,𝑡 does increase the collinearity in the 

model, as evidenced by the higher standard errors on 𝐿𝑀𝐶−𝑜,𝑡.24  While this exercise 

lends support to the notion that the LMCs of the origin and states within 1000 miles of 

the origin largely capture the relevant factors in household migration, there is nothing 

                                                            
24 𝐿𝑀𝐶𝑜,𝑡 is less susceptible to collinearity than 𝐿𝑀𝐶−𝑜,𝑡 because the former is not averaged across many 

states, therefore it exhibits much more variation within year. 
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magical about this particular radius, as findings were quite similar in unreported results 

when ranges of 800, 1,200, or 1,500 miles were used instead.  Indeed, in subsection 2.5.3 

I present suggestive evidence that only the origin and destination states’ LMCs matter in 

the migration decision.  Thus, 𝐿𝑀𝐶−𝑜,𝑡 “works” in this model only by approximating the 

UI claims rate of migrants’ actual destinations (which are concentrated in nearby states).  

 

2.5.2 Effect of Demographics and Year on Elasticity of Migration 

 Given that household migration changes with origin and surrounding LMCs, it is 

of considerable interest whether the size of the response varies over time or varies with 

household characteristics.  Based on (2.7), I explore this with a series of regressions 

which model household migration as a function of LMC differentials (𝐿𝑀𝐶𝑜,𝑡 −

𝐿𝑀𝐶−𝑜,𝑡), household characteristics, a cubic in year, state of origin, interactions of LMC 

differentials with household characteristics, and interactions of LMC differentials with 

the year cubic.  Coefficients on characteristic interactions with (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) 

suggest differences across groups in the relative importance of LMCs in the migration 

decision.  Full results of this regression are reported in Appendix Table A.3.  The effects 

of demographics and year on responsiveness to LMCs are more succinctly summarized in 

Table 2.5.  For each of the characteristics listed (including year), I report the effect (at the 

median) of possessing that characteristic (or increasing it by one unit) on the semi-

elasticity of migration with respect to LMCs.  That is, I report estimates of 𝛽4 (and 𝛽5) in 

(2.7).  Column 1 displays results using UI claims rates as the measure of LMCs, column 

2 uses unemployment rates and column 3 uses employment growth.  A positive 

(negative) value in column 1 and column 2 (column 3) indicates that characteristic is 
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associated with a large, “correctly-signed” response to UI claims differentials (that is 

households with this characteristic are especially likely to migrate interstate when origin 

unemployment is high and surrounding unemployment is low.)  A negative (positive) 

value in column 1 and column 2 (column 3) indicates that characteristic is associated with 

an attenuated or perverse response to UI claims differentials.  I use the term “LMC-

driven migration” to refer to high responsiveness to these differentials.25   Results in each 

of the columns are generally qualitatively consistent with one another, and suggest that, 

ceteris paribus, households whose heads are employed, educated, childless, metropolitan, 

black, and young exhibit more LMC-driven migration than other households.  Results in 

each column also imply that LMC-driven migration declined in the early part of the 

period 1982-2012 before rebounding in later years. 

Groups with the most LMC-driven migration tend to be those with higher 

potential benefits to job-related migration and those with lower social costs to migration.  

It is certainly unsurprising that LMCs apparently drive the migration of employed 

household heads more than labor force nonparticipants, since the latter can only 

indirectly benefit from living in a state with a strong labor market.  It is more surprising 

that ceteris paribus, employed household heads would exhibit more LMC-driven 

migration than unemployed household heads.  However, note that employment status is 

measured after the potential move would have occurred.  The positive effect of 

employment (relative to unemployment) on responsiveness could be spurious, since 

employment is based on the week before the survey, after any potential moves could take 

                                                            
25 Implicit in this terminology is the idea that if interstate migration does not respond to differentials in 

LMCs, then the decision to move must be driven by other factors (amenities, family and social networks, 

etc). 
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place.26  Perhaps the larger responsiveness of employed relative to unemployed reflect 

that by moving to a state with stronger LMCs, people are more likely to find employment 

and less likely to become or remain unemployed.  A stronger case can be made that the 

labor force participation of the household head is unlikely to change based on whether or 

where the household chooses to migrate (at least in the short run).  Note that if the 

household heads are defined only by whether they are labor force participants, the 

interaction of labor force participation with LMC differentials implies that labor force 

participants are more responsive to LMCs than nonparticipants.   

Higher LMC-driven migration among more educated household heads may stem 

from higher labor force attachment or from less reliance on nearby family and social 

networks for support (financial assistance, child care, etc.).  Also, educated workers may 

have skills that are demanded by industries concentrated in particular parts of the country, 

leading to more variability in their earnings potential in various cities.  Seeking the right 

job in the right location may be especially important for educated workers in order to 

maximize their present earnings and their earnings trajectory.  Thus, the potential benefits 

of LMC-driven migration are higher for educated workers.  Households with children 

present, on the other hand, may face higher costs of LMC-driven migration if moving 

involves leaving the area of a child’s (divorced or unmarried) parent, grandparent or other 

close family members.  More generally, parents with children may be less willing to 

accept employment in another state because of the disruptive effect of moving on their 

children’s lives and education; the timing and destination of any move for these families 

will be dictated more by the children’s needs and less by area LMCs at a specific time.   

                                                            
26 Alternatively I could have used responses to whether an individual worked at any time in the last year, 

but that too would be influenced by current employment. 
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Residents of nonmetropolitan areas may exhibit an attenuated response to LMCs 

for several reasons.  With fewer high-paying jobs available in rural areas, the choice to 

live in such a locale may demonstrate a high valuation on amenities or proximity to 

family and other social networks.  It is also possible that the apparent attenuated response 

for nonmetropolitan households arises because state LMCs do not capture the LMCs of 

rural areas as precisely as the LMCs of the metropolitan areas.  A typical state may have 

two or three metropolitan areas which comprise the vast majority of the population.  

States’ UI claims rates, unemployment rates, and employment growth rates are largely 

determined in these metropolitan areas.  Moreover there is probably a stronger correlation 

between LMCs of distinct metropolitan areas in the same state than between a 

metropolitan and nonmetropolitan area in the same state because nonmetropolitan labor 

markets are less diverse and more susceptible to shocks to specific industries (e.g. 

agriculture, coal, forestry, etc.)  

It is not immediately obvious why the migration of blacks should be more 

responsive to LMCs.  One possibility is that employers with a “taste for discrimination” 

face higher costs if they pass over a qualified black candidate when local labor markets 

are tight than when local labor markets are slack (see Becker, 1971 for a discussion of the 

economics of discrimination.)  In this case, blacks would have especially high returns to 

LMC-driven migration.  Blacks are, however, 40% less likely than non-blacks to migrate 

interstate, ceteris paribus, so the difference between black and non-black migration is 

that blacks are less likely to migrate for non-labor reasons (not that they are more prone 

to migrate due to labor considerations.)  

In each of the columns of Table 2.5, the interactions with the age cubic suggest 
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that LMC-driven migration falls throughout early adulthood.  Panels A, B and C of 

Figure 2.8 plot the implied semi-elasticity of household migration with respect to each of 

the three measures of LMC differentials for household heads aged 18-65.27  All three 

graphs show high responsiveness for the youngest adults that declines into the 30s or 40s.  

The three measures of LMCs paint somewhat different pictures, though, for midlife and 

beyond.  Panel A of Figure 2.8 (UI claims) depicts an increase in responsiveness leading 

up to the retirement years, while the other graphs show more modest changes in 

responsiveness after age 30.28  Even 50 years ago economists realized that LMC-driven 

migration represents an investment in human capital (Sjaastad 1962).  Just as young 

adults invest more in education, they should also be more willing to incur moving costs in 

order to move to a better job, because they have a longer window to reap the returns on 

that investment.  Young adults may also have fewer familial obligations that keep them 

tied to a place, such as an aging parent or a child living with another parent.  

Panels A, B, and C of Figure 2.9 plot time-series of the implied semi elasticity of 

household migration with respect to LMC differentials based on the interactions with the 

cubic in time.  These graphs closely correspond with one another.  Each graph shows that 

differentials in LMCs played a large role in determining migration at the start of the 

period (1982), LMCs decreased in relative importance until the mid-late 1990s, and then 

increased through 2012.  Unlike Partridge et al. (2012) who showed that county 

population growth (a reasonable proxy for net migration) grew less responsive to local 

labor demand shocks between the 1990s and the 2000-2007 period, these graphs show 

                                                            
27 Semi-elasticities are evaluated at the median or mode of household characteristics and LMCs. 
28 One explanation for why the graphs do not show declines in responsiveness to LMCs later in life is that 

the graphs depict semi-elasticities at different ages for individuals with median and modal characteristics.  

The modal employment status is employed, so these graphs represent the semi-elasticity of migration at 

different ages among employed household heads only (ignoring retirees). 
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that household migration was at least as responsive in the latter period.  There are 

important differences in how our essays define responsiveness to LMCs.  Besides 

differences in the unit of observation (county vs. household), Partridge et al. (2012) 

consider how labor demand shocks affect levels of population growth whereas this paper 

reports percent changes in household migration propensity.  Given that overall migration 

rates fell considerably since the 1990s, it is possible for LMCs to now have a smaller 

absolute effect on net population growth, while simultaneously playing a larger role in 

determining household migration, relative to other factors.  In fact simple tabulations in 

the CPS of the primary reason for interstate moves show a decline in job-related moves 

but a larger decline in moves for all other reasons.  Between 1998-2000 (the first three 

years the March CPS asked migrants their reason for moving) and 2010-2012, job-related 

interstate moves fell 38%, while all other types of moves fell 47%.29  So, apparently 

while the number of people engaging in LMC-driven migration declined since the 1990s, 

the number of people migrating for all other reasons declined even more.  

 

2.5.3 Effect of Other Labor Markets 

Table 2.6 shows results of the model described by (2.8), estimating households’ 

propensity to move to particular destination states.  Recall that households are excluded 

from a regression if they originate in a state with fewer than 20 observed migrants to the 

destination state being modeled.  Because each person has a very small likelihood of 

actually migrating to a specific destination state in any given year, the standard error for 

each individual state regression is large, particularly for less common destinations.  So 

although I ran separate regressions for each potential destination state, I present results 

                                                            
29 Author’s calculations based on household heads aged 18-65. 



 
 

38 
 

only for the 12 destination states with at least 500,000 (non-excluded) potential migrants.  

As I show below, 𝐿𝑀𝐶−𝑜,𝑡 has an insignificant effect on migration when 𝐿𝑀𝐶𝑑,𝑡 is 

included in the pooled model, so for the sake of parsimony I report individual state results 

only for a preferred specification which includes just 𝐿𝑀𝐶𝑜,𝑡 and 𝐿𝑀𝐶𝑑,𝑡.  Coefficients 

on 𝐿𝑀𝐶𝑜,𝑡 and 𝐿𝑀𝐶𝑑,𝑡 are reported in columns 1 and 3, respectively, alongside their 

standard errors in columns 2 and 4 respectively.  The coefficient on 𝐿𝑀𝐶𝑜,𝑡 is significant 

and positive at the 10% level in 3 of 12 regressions; it is never significant and negative 

(perversely signed).  The coefficient on 𝐿𝑀𝐶𝑑,𝑡 is significant and negative in 4 out of 12 

state regressions and it is never significant and positive.  Coincidentally, in spite of large 

standard errors for the models of migration to each individual state, the estimate of the 

semi-elasticity of household migration with respect to 𝐿𝑀𝐶𝑜,𝑡, averaged across these 12 

states (0.031) is almost identical to the semi-elasticity reported in the preferred 

specification in Table 2.3 (0.032).  Likewise the average semi-elasticity with respect to 

𝐿𝑀𝐶𝑑,𝑡 for these 12 states is also very close to the estimate of the semi-elasticity with 

respect to 𝐿𝑀𝐶−𝑜,𝑡 in the baseline model (-0.050 and -0.052 respectively).   

If 𝐿𝑀𝐶𝑑,𝑡 and 𝐿𝑀𝐶−𝑜,𝑡 are included together in (2.8) there is more imprecision in 

the individual destination state regressions due to multicollinearity.  To increase precision 

in determining whether “other” states’ LMCs (besides origin and destination) affect 

migration, Table 2.7 reports results from (2.9), pooling observations from each of the 12 

state regressions.  Before describing the estimates, it is important to reiterate that most 

possible state-to-state combinations are not represented in this regression because of data 

limitations (too few households were observed moving between the states.)  Therefore 

the elasticities reported in Table 2.7 must be viewed with caution, as they may not be 
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representative of the United States.  Still, the table suggests that models of interstate 

migration are far more sensitive to the inclusion of 𝐿𝑀𝐶𝑑,𝑡 than to the inclusion of 

𝐿𝑀𝐶−𝑜,𝑡 and they also suggest that 𝐿𝑀𝐶−𝑜,𝑡 serves as an adequate proxy for 𝐿𝑀𝐶𝑑,𝑡.  The 

first two columns of Table 2.7 show that a one percentage point increase in origin UI 

claims rate increases the likelihood of a move to other states by about five percent and a 

one percentage point increase in the UI claims rate in a potential destination decreases the 

likelihood of a move to that state by just over seven percent.  These elasticities are almost 

identical whether 𝐿𝑀𝐶−𝑜,𝑡 is included in the model or not, providing evidence that origin 

and destination LMCs satisfactorily capture the conditions relevant to the migration 

decision.  Column 1 shows that when 𝐿𝑀𝐶𝑑,𝑡 is included in the model, 𝐿𝑀𝐶−𝑜,𝑡 has an 

insignificant effect on households’ propensity to move to the destination, with an 

estimated elasticity very close to zero.  This finding is relevant to the literature examining 

the procyclicality of migration with respect to aggregate LMCs.  Note that if the only 

LMCs that affect interstate migration are those of the origin and the destination, interstate 

migration can only be procyclical if it responds more to changes in destination LMCs 

than to changes in origin LMCs.  Column 3 estimates the model controlling for 𝐿𝑀𝐶𝑜,𝑡 

and 𝐿𝑀𝐶−𝑜,𝑡, while excluding 𝐿𝑀𝐶𝑑,𝑡. 30  When I drop 𝐿𝑀𝐶𝑑,𝑡 from the model (column 

3), 𝐿𝑀𝐶−𝑜,𝑡 acts as a good proxy for 𝐿𝑀𝐶𝑑,𝑡; almost the whole effect of 𝐿𝑀𝐶𝑑,𝑡 is 

swallowed up in the coefficient on 𝐿𝑀𝐶−𝑜,𝑡.  The coefficient on 𝐿𝑀𝐶𝑜,𝑡 is only slightly 

affected by the omission of 𝐿𝑀𝐶𝑑,𝑡.  This suggests that when data or model limitations 

preclude controlling for destination LMCs (as in subsections 2.5.1 and 2.5.2), including a 

measure of surrounding LMCs should roughly capture the conditions relevant to the 

                                                            
30 The demographic controls in Tables 2.6 and 2.7 are identical to those in Table 2.3 and Table 2.4. 
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household’s decision.   

 

2.6 Conclusion 

 Labor markets drive much interstate migration as households move in an effort to 

improve their employment prospects.  This paper investigated which labor market 

conditions matter in the household migration decision, how important they are, to whom 

they are important, and how that importance has changed over time.  I find that origin and 

destination state labor market conditions significantly influence household migration, but 

that “other” states’ labor market conditions are insignificant in the migration decision.  

“Other” surrounding states’ labor market conditions can, however, act as a decent proxy 

for destination labor market conditions when the latter is omitted.  In the baseline model 

with the preferred specification, I estimate that a percentage point increase in the origin 

state unemployment insurance claims rate leads to a 3.2 percent increase in household 

propensity to migrate interstate.  I estimate that a percentage point increase in the 

unemployment insurance claims rate of surrounding states reduces interstate migration 

propensity by 5.2 percent.  Since I find that “other state” labor market conditions have a 

small, insignificant effect on migration, any procyclicality of interstate migration with 

respect to national business cycle—which I find marginal evidence to corroborate—must 

arise because the pull effect of improvements in potential destinations’ labor market 

conditions dominates the decreased push effect when households’ origin conditions 

improve.   

 The migration of household heads with several characteristics that suggest small 

potential benefits to migration (including less educated and labor force nonparticipants) 
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or high social costs to migration (including children present and nonmetropolitan) are 

especially unresponsive to differentials in labor market conditions.  Importantly, these 

include several characteristics associated with high poverty risk.  One consequence of 

this low responsiveness to labor market conditions among high poverty groups is that a 

state experiencing a prolonged economic decline could also undergo a sizeable increase 

in the proportion of household heads that are uneducated, that have children and whose 

heads have employment gaps.  The high rates of outmigration of low-poverty groups 

could reduce a state government’s ability to remain solvent by reducing the tax base due 

to: 1) low rates of population growth and 2) declines in per-capita income and wealth due 

to this demographic shift.  The inability or unwillingness of high-poverty groups to 

escape from states with inferior employment opportunities may also affect our 

understanding of place-based policies.  This chapter suggests that whatever mechanism 

causes individuals to migrate away from states with a labor surplus to states with a labor 

shortage has a smaller effect on several high poverty groups.  Since high poverty groups 

move infrequently in response to labor market conditions, place-based policies that 

stimulate depressed local economies probably have a limited effect on the migration of 

high poverty groups out of depressed areas, but may help depressed areas attract and 

retain households at low poverty risk.  The welfare effects of such a redistribution of 

labor are unclear. 

 The economics literature increasingly differentiates between education-specific 

labor demand shocks.  A fruitful extension of this chapter would allow for heterogeneity 

in shocks to labor demand by educational attainment and for heterogeneity in shocks 

based on other demographic characteristics.  Also, while this chapter examines the 
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determinants of migration’s responsiveness to general labor market conditions, current 

research does little to address what effect migration has on households.  There has been 

some research to date that shows that migration tends to improve migrants’ lifetime 

earnings (Kennan and Walker, 2010; Kennan and Walker, 2011) and has either zero 

effect or a negative effect on short-run employment after controlling for selection into 

migration (Pekkala and Tervo, 2002).  There is a clear need for future research that 

determines how migration affects other outcomes such as health, leisure, income 

volatility, consumption, fertility, and children’s educational attainment.  This will 

improve our understanding of the advantages and disadvantages of policies that affect 

migration, such as the tax-deductibility of moving expenses and place-based policies that 

benefit depressed areas. 
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Tables 

Table 2.1  Summary Statistics  
 

VARIABLES Non-Migrants 

Intrastate-Intercounty 

Migrants Interstate Migrants 

Employed 0.779 0.789 0.745 

Unemployed 0.044 0.067 0.079 

Not in Labor Force 0.177 0.144 0.176 

Female 0.390 0.384 0.372 

Less than High School 0.153 0.126 0.109 

High School 0.324 0.303 0.260 

Some College 0.255 0.283 0.245 

College Degree or Higher 0.268 0.288 0.386 

Hispanic 0.129 0.090 0.082 

Black 0.115 0.088 0.083 

Married  0.602 0.447 0.507 

Children Present 0.460 0.383 0.394 

Nonmetropolitan 0.212 0.241 0.220 

Age 42.8 34.2 35.3 

Origin UI Claims 7.53% 7.60% 7.59% 

Destination UI Claims  7.53% 7.60% 7.45% 

UI Claims (1-1000 miles) 7.62% 7.86% 7.85% 

Origin Employ. Growth 0.52% 0.67% 0.66% 

Destination Employ. Growth 0.52% 0.67% 0.78% 

Employment Growth (1-1000 miles) 0.52% 0.66% 0.67% 

Origin Unem. Rate 6.41% 6.47% 6.50% 

Destination Unem. Rate 6.41% 6.47% 6.26% 

Unem. Rate (1-1000 miles) 6.51% 6.62% 6.59% 

    

*Observations 1,301,316 35,174 28,577 

Among household heads aged 18-65 in 1982-2012 March CPS data, excluding 1985 and 1995.  Observations are dropped if 

state of origin is imputed.  CPS weights are applied.  Intrastate-Intercounty migrants refers to households that live in a 

different county within the same state than they did 12 months prior.   

 

 

 

Table 2.2: Reasons for Moves: Intrastate-Intercounty Migrants, Contiguous State 

Migrants, Non-Contiguous State Migrants 
 

Type of Move Intrastate-Intercounty Contiguous State Non-Contiguous State 

Work Related 31.8% 49.9% 57.7% 

    New Job/Transfer 17.2% 35.4% 44.1% 

    Look for Work 2.2% 4.9% 4.9% 

    Commute 9.4% 4.3% 1.1% 

    Retire 0.6% 1.3% 1.6% 

    Other (Job-Related) 2.6% 4.1% 6.0% 

Housing 32.9% 16.7% 6.1% 

Family 25.0% 21.7% 21.0% 

Other 10.0% 11.7% 15.2% 

Authors tabulations based on household heads aged 18-65 in 1998-2012 March CPS data.  CPS weights are applied.   
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Table 2.3  Logistic Regressions of  Household Propensity to Move Interstate 
Panel A 

VARIABLES 

Interstate 

Moves 

Interstate 

Moves 

Interstate 

Moves 

Origin UI Claims % 0.035* 0.032* 0.035* 

(SE) (0.009) (0.009) (0.009) 

UI Claims % (1-1000 mi) -0.059* -0.052* -0.016 

(SE) (0.011) (0.010) (0.024) 

Time Control Quadratic Cubic Year Dummies 

Observations 1,365,067 1,365,067 1,365,067 

Panel B 

VARIABLES 

Interstate 

Moves 

Interstate 

Moves 

Interstate 

Moves 

Origin Unemployment Rate % 0.016* 0.015* 0.019* 

(SE) (0.007) (0.007) (0.007) 

Unemployment Rate % (1-1000 mi) -0.018* -0.033* 0.061* 

(SE) (0.009) (0.009) (0.027) 

Time Control Quadratic Cubic Year Dummies 

Observations 1,365,067 1,365,067 1,365,067 

Panel C 

VARIABLES 

Interstate 

Moves 

Interstate 

Moves 

Interstate 

Moves 

Origin Employment Growth % -0.033* -0.031* -0.034* 

(SE) (0.011) (0.011) (0.010) 

Employment Growth % (1-1000 mi) 0.072* 0.057* -0.007 

(SE) (0.014) (0.013) (0.047) 

Origin Population Growth % 0.007 0.008 0.009 

(SE) (0.013) (0.012) (0.012) 

Population Growth % (1-1000 mi) -0.064 -0.030 0.011 

(SE) (0.043) (0.035) (0.049) 

Time Control Quadratic Cubic Year Dummies 

Observations 1,365,067 1,365,067 1,365,067 

Results based on household heads aged 18-65 in 1982-2012 March CPS data, excluding 1985 and 1995.  Reported values 

indicate the estimated change in (log) household migration propensity associated with a percentage point change in the UI 

claims/unemployment/employment growth rate, when evaluated at median/modal characteristics and median LMCs.  

Observations are dropped if state of origin is imputed.  UI Claims (1-1000 mi) is constructed by taking the population-

weighted average of UI claims rates of states within 1,000 miles of the household’s origin. Unemployment Rate (1-1000 mi) is 

constructed by taking the population-weighted average of unemployment rates of states within 1,000 miles of the household’s 

origin.  Employment Growth (1-1000 mi) is constructed by taking the population-weighted average of unemployment rates of 

states within 1,000 miles of the household’s origin. Additional controls include: four indicators for education, a cubic in age, a 

quadratic in year, and indicators for employed, unemployed, female, black, Hispanic, marital status, presence of children, 

metropolitan status and state of origin.  Standard errors are clustered by origin state.  Full results in Appendix Table A.1. 

* Significant at 5% level

ᶧ  Significant at 10% level 
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Table 2.4  Logistic Regressions of Household Propensity to Move Interstate, Alternative 

Spatial Specifications 
Panel A 

 

VARIABLES 

(1) 

Interstate Move 

(2) 

Interstate Move 

Origin UI Claims % 0.038* 0.032* 

(SE) (0.009) (0.008) 

UI Claims (Border) % -0.017 -0.037* 

(SE) (0.008) (0.007) 

UI Claims (Non-Border) % -0.044*  

(SE) (0.012)  

Panel B 

 

VARIABLES 

(1) 

Interstate Move 

(2) 

Interstate Move 

Origin UI Claims % 0.033* 0.031* 

(SE) (0.009) (0.009) 

UI Claims (1-500 mi.) % -0.018 -0.039* 

(SE) (0.011) (0.009) 

UI Claims (500+ mi.) % -0.037*  

(SE) (0.012)  

Panel C 

 

VARIABLES 

(1) 

Interstate Move 

(2) 

Interstate Move 

Origin UI Claims % 0.033* 0.032* 

(SE) (0.009) (0.009) 

UI Claims (1-1000 mi.) % -0.036* -0.052* 

(SE) (0.015) (0.010) 

UI Claims (1001+ mi.) % -0.021ᶧ  

(SE) (0.013)  

Panel D 

 

VARIABLES 

 

(1) 

Interstate Move 

 

(2) 

Interstate Move 

Origin UI Claims %  0.036* 

(SE)  (0.009) 

National UI Claims %  -0.058* 

(SE)  (0.011) 

Results based on household heads aged 18-65 in 1982-2012 March CPS data, excluding 1985 and 1995.  Reported values 

indicate the estimated change in (log) household migration propensity associated with a percentage point change in the UI 

claims/unemployment/employment growth rate, when evaluated at median characteristics and median LMCs.  Observations 

are dropped if state of origin is imputed.   LMC (Border) and LMC (Non-Border) are constructed by taking the population-

weighted average of all bordering/non-bordering states’ LMCs.  LMC (1-1000 mi.) and LMC (1-500 mi.) are constructed by 

taking the log of the population-weighted average of the LMCs of states within 1000 and 500 miles, respectively, of the 

household’s origin.  LMC(1001+ mi.) and (501+ mi.) are constructed by taking the population-weighted average of LMCs of 

all states over 1000 miles and 500 miles, respectively, from the household’s origin.  Additional controls include: four 

indicators for education, a cubic in age, a cubic in year, and indicators for employed, unemployed, female, black, Hispanic, 

marital status, presence of children, metropolitan status and state of origin.  In each panel the number of observations is 

1,365,067.  Standard errors are clustered by origin state.  Full results from the regressions in column (2) are available in 

Appendix Table A.2. 

*  Significant at 5% level 

ᶧ  Significant at 10% level 
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Table 2.5  Effect of Household Characteristics on Responsiveness of Household 

Migration to Labor Market Differentials 

 

VARIABLES 

(1) 

Interaction with Diff. 

UI Claims 

(2) 

Interaction with Diff. 

Unemployment Rate 

(3) 

Interaction with Diff. 

Employment Growth 

Employed 0.039* 0.060* -0.071* 

(SE) (0.007) (0.013) (0.022) 

Unemployed -0.040* -0.045* 0.125* 

(SE) (0.010) (0.017) (0.027) 

Less than HS -0.008 0.026ᶧ -0.006 

(SE) (0.009) (0.014) (0.028) 

Some College 0.026* 0.035* -0.002 

(SE) (0.010) (0.014) (0.021) 

4 Year Degree 0.032* 0.048* -0.008 

(SE) (0.011) (0.014) (0.021) 

Married 0.000 -0.003 -0.010 

(SE) (0.007) (0.010) (0.015) 

Child Present -0.021* -0.005 0.030* 

(SE) (0.006) (0.009) (0.015) 

Age 0.005* -0.019ᶧ 0.043* 

(SE) (0.001) (0.011) (0.015) 

Age Squared × 100 -0.019* 0.048ᶧ -0.099* 

(SE) (0.005) (0.027) (0.037) 

Age Cubed × 10,000 -0.020* -0.037ᶧ 0.072* 

(SE) (0.005) (0.021) (0.030) 

Female -0.006 -0.004 0.041* 

(SE) (0.006) (0.011) (0.018) 

Hispanic 0.043* -0.020 -0.039 

(SE) (0.019) (0.020) (0.034) 

Black 0.045* 0.015 -0.092* 

(SE) (0.016) (0.025) (0.026) 

Nonmetropolitan -0.068* -0.023 0.129* 

(SE) (0.017) (0.027) (0.032) 

Time -0.005 -0.011ᶧ 0.008 

(SE) (0.004) (0.006) (0.008) 

Time Squared × 100 0.026 0.034 0.009 

(SE) (0.036) (0.049) (0.060) 

Time Cubed × 10,000 -0.029 0.002 -0.135 

(SE) (0.077) (0.109) (0.130) 

Results based on household heads aged 18-65 in 1982-2012 March CPS data, excluding 1985 and 1995.  Observations are 

dropped if state of origin is imputed.  LMC(1-1000 mi) is constructed by taking the population-weighted average of LMCs 

of states within 1,000 miles of the household’s origin.  Each regression included the following independent variables: 

Difference between Origin LMC and LMC(1-1000 mi), all of the household head characteristics and time variables listed 

above, interactions of the difference between LMCs with household head characteristics and with the cubic in year and 

indicators for origin state.  Reported values indicate the coefficients on these interaction terms.  Standard errors are 

clustered by origin state.  All regressions are evaluated at median/modal characteristics and median LMCs.  Full results 

are in Appendix Table A.3.   

*  Significant at 5% level 

ᶧ  Significant at 10% level 
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Table 2.6  Logistic Regressions of Household Propensity to Move to Specific States   
 

Dep. Variable:  

Propensity to Move 

to: 

(1) 

 

Indep Var: 

Ln Orig UI Claims 

(2) 

 

 

(SE) 

(3) 

 

Indep Var: 

Ln Dest UI Claims 

(4) 

 

 

(SE) 

California 0.017 (0.028) -0.023 (0.034) 

Colorado 0.039 (0.024) -0.121* (0.059) 

Florida 0.058* (0.023) -.0149* (0.038) 

Georgia  -0.029 (0.035) -0.069 (0.061) 

Illinois -0.065 (0.055) -0.009 (0.057) 

Massachusetts 0.055 (0.055) -0.047 (0.059) 

Nevada 0.100ᶧ (0.056) -0.074ᶧ (0.045) 

North Carolina 0.013 (0.027) -0.053 (0.036) 

Ohio 0.027 (0.046) 0.043 (0.071) 

Pennsylvania 0.061 (0.055) 0.006 (0.068) 

Texas 0.071* (0.025) -0.084* (0.041) 

Virginia 0.027 (0.037) -0.016 (0.099) 

Average 0.031  -0.050  

Results based on household heads aged 18-65 in 1982-2012 March CPS data, excluding 1985 and 1995.  Observations are 

dropped if state of origin is imputed.  Only households from states with at least 20 observed migrants to the destination state 

are considered in each regression.  Additional controls include: four indicators for education, a cubic in age, a cubic in year, 

and indicators for employed, unemployed, female, black, Hispanic, marital status, presence of children, metropolitan status 

and state of origin.  Standard errors are clustered by origin state. 

*  Significant at 5% level 

ᶧ  Significant at 10% level 
 

 

 

Table 2.7  Logistic Regressions of Household Propensity to In-migrate, Pooled Across 

All Potential Destination States 
 

VARIABLES 

(1) 

State to State Move 

(2) 

State to State Move 

(3) 

State to State Move 

Origin UI Claims 0.052* 0.049* 0.045* 

(SE) (0.009) (0.008) (0.009) 

Destination UI Claims -0.073* -0.074*  

(SE) (0.006) (0.006)  

UI Claims (1-1000 mi) -0.009  -0.068* 

(SE) (0.015)  (0.013) 

    

Observations 5,648,008 5,648,008 5,648,008 

Pseudo R-Squared 0.065 0.065 0.064 

Regression pooled across all state regressions listed in Table 2.6.  Unit of observation is the household-potential destination 

state (equals 1 if the household moved to that state).  Results are based on household heads aged 18-65 in 1982-2012 March 

CPS data, excluding 1985 and 1995.  Observations are dropped if state of origin is imputed.  Only households from states with 

at least 20 observed migrants to the destination state are considered in each regression.  Additional controls include: four 

indicators for education, a cubic in age, a cubic in year, and indicators for employed, unemployed, female, black, Hispanic, 

marital status, presence of children, metropolitan status, state of origin, (potential) destination state, and log distance between 

origin and potential destination.  Standard errors are clustered by origin state. 

*  Significant at 5% level 

ᶧ  Significant at 10% level 
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Figures 

Figure 2.1: Migration Rates by Year, 1982-2012 

 
Percentage of households reporting that 12 months ago they lived in a different jurisdiction (county, state, 

non-contiguous state, state more than 500 miles away, or state more than 1000 miles away), 1982-2012. 

 

 

Figure 2.2: U.S. Unemployment Insurance Claims & Interstate Migration Rates, 1982-

2012 

 
U.S. unemployment insurance claims rate and interstate migration rate—the percentage of household heads 

aged 18-65 reporting that 12 months ago they lived in a different jurisdiction, 1982-2012.  UI claims 

represents a two year average including the previous year. 
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Figure 2.3: Origin, Destination and Surrounding Unemployment Insurance Claims Rates 

Relative to U.S., Among Interstate Migrants 

 
Difference between various unemployment insurance claims rates and the U.S. unemployment insurance 

claims rate, among interstate migrants 1982-2012. 
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Figure 2.4: Yearly State UI Claims and Population Growth Scatterplots  

 

Panel A:  State UI Claims and Population Growth (1982-83, 1986-87, 1990-91) 

 

 

Panel B:  State UI Claims and Population Growth (1995-96, 2000-01, 2001-02) 

 

 

Panel C:  State UI Claims and Population Growth, (2004-05, 2007-08, 2009-10) 
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Figure 2.5: Correlation between State UI Claims & Population Growth, 1982-2012 

 

Time series of a simple correlation between two-year average of state’s initial unemployment insurance 

claims rate and state’s population growth. 
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Figure 2.6: Yearly Normalized State UI Claims and Population Growth Scatterplots  

 

Panel A:  Normalized State UI Claims and Pop. Growth (1982-83, 1986-87, 1990-91)  

    
 

Panel B:  Normalized State UI Claims and Pop. Growth, (1995-96, 2000-01, 2001-02) 

 
 

Panel C:  Normalized State UI Claims and Pop. Growth, (2004-05, 2007-08, 2009-10) 

 
State population growth and state UI claims are normalized using that state’s average and standard 

deviation values over the period 1982-2012. 
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Figure 2.7: Correlation between Normalized State UI Claims & Pop. Growth by Year 

 

Time series of a simple correlation between two-year average of state’s initial unemployment insurance 

claims rate and state’s population growth.  State population growth and state UI claims are normalized 

using that state’s average and standard deviation values over the period 1982-2012. 
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Figure 2.8: Responsiveness of Household Migration to Labor Market Differentials by 

Age 

Panel A: Responsiveness of Migration to UI Claims Differentials by Age 

Panel B: Responsiveness of Migration to Unemployment Rate Differentials by Age 

Panel C: Responsiveness of Migration to Employment Growth Differentials by Age 

Based on the interactions of the cubic in age with 𝐿𝑀𝐶𝑜,𝑡 and 𝐿𝑀𝐶−𝑜,𝑡 in Appendix Table A.3.  Semi-

elasticities calculated for median/modal characteristics and median LMCs.  Gray bars represent 95% 

confidence intervals for the age cubic. 
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Figure 2.9: Responsiveness of Household Migration to Labor Market Differentials by 

Year 

 

Panel A: Responsiveness of Migration to UI Claims Differentials, 1982-2012 

 

Panel B: Responsiveness of Migration to Unemployment Rate Differentials, 1982-2012 

 

Panel C: Responsiveness of Migration to Employment Growth Differentials, 1982-2012 

 

Based on the interactions of the cubic in age with 𝐿𝑀𝐶𝑜,𝑡 and 𝐿𝑀𝐶−𝑜,𝑡 in Appendix Table A.3.  Semi-

elasticities calculated for median characteristics and median LMCs.  Gray bars represent 95% confidence 

intervals for the time cubic. 
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3 GIVE ME YOUR MOTIVATED, RICH, EDUCATED MASSES: BRAIN 

GAIN AND BRAIN DRAIN IN AMERICA  

 

 

3.1 Introduction 

 With steady population growth and rising educational attainment, both the 

number and the share of educated people are rising in almost all areas of the United 

States.  Artz (2003) points out that the share of residents with college degrees declined in 

only five U.S. counties over the period 1970-2000.  In contrast, skilled worker outflows 

in many developing and less developed countries severely limit their human capital 

development.  In 2000, 44 percent of all working-age (aged 25 and above) individuals 

with a tertiary education who were born in Melanesia had immigrated to an OECD 

nation, compared to just 2.5 percent of those with a secondary education or less 

(Docquier and Marfouk, 2006).  If policymakers in Melanesia, the Caribbean, 

Micronesia, Southeast Asia and much of Africa wish to develop human capital at home, 

they are fighting an uphill battle thanks to the brain drain.31  It is unsurprising, then, that 

the topic of brain gain and brain drain within the United States garners less widespread 

attention than international brain drain does in these nations.  Yet despite almost 

universal growth in human capital in the U.S., there are substantial differences among 

local areas in their ability to attract and retain human capital.  There are winners and 

losers from domestic migration and in some pockets of the U.S., business owners, 

community leaders and policymakers correctly perceive that they are on the wrong end of 

                                                            
31 Such countries on net may benefit from brain drain through remittances and the educational incentives 

that arise from higher international and domestic returns to human capital (Beine et al., 2008; Grubel and 

Scott, 1966).  (Brain drain’s negative effect on the domestic supply of high skill labor increases the returns 

to education.) 
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this exchange, lamenting the loss of the best and brightest from their cities and towns.32 33 

34  These cries may spread and grow louder in the future if declining global fertility and 

increasing global income parity limits the extent to which international flows can plug the 

areas of brain drain in the United States.  Slower national population growth inevitably 

means that more cities and towns will face population decline, and the inability to attract 

and retain young educated workers will presage many communities’ gradual demise.   

This chapter will paint a picture of brain gain and brain drain in America, 

describing flows of young high school graduates and young to middle-aged college 

graduates and determining the principal determinants of these flows.  I focus on the effect 

of initial economic conditions and urbanicity (metropolitan status and area density) on 

three measures: absolute gains in the high school-educated, relative gains in the high 

school-educated (compared to high school dropouts) and relative gains in the college-

educated (compared to non-college-educated).  In the previous chapter I showed that the 

migration of well-educated household heads responds more to short-run labor market 

conditions, suggesting a role for labor market conditions in area brain gain and brain 

drain if the response is not transitory.  In fact this chapter shows that the strength of initial 

labor market conditions leads to sizeable positive long-run effects (over a 16 to 20 year 

period) on an area’s stock and share of educated workers.  I also find that 

nonmetropolitan areas struggle to attract and retain educated residents.  Both central 

cities and suburban areas fare well in attracting educated workers, but they apparently 

                                                            
32 Rich Lord, “City Hall Hobbled by Brain Drain,” Pittsburgh Post-Gazette, August 5, 2007. 

http://www.post-gazette.com/local/city/2007/08/05/City-hall-hobbled-by-brain-drain/stories/200708050100 
33 Jennifer Hemmingsen, “Building Blocks for Reversing the Brain Drain,” The Gazette, May 30, 2010. 

http://thegazette.com/2010/05/30/building-blocks-for-reversing-the-brain-drain/ 
34 Tom Still, “Brain Gain is what Wisconsin Needs to Work on,” Milwaukee Wisconsin Journal Sentinel, 

March 22, 2014. http://www.jsonline.com/business/brain-gain-is-what-wisconsin-needs-to-work-on-

b99226633z1-251708091.html 
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appeal to workers at different points of the lifecycle.  Central cities are relatively 

attractive to young educated migrants while suburban areas are more attractive later in 

life. 

Most economists believe that a concentration of human capital in a place leads to 

positive externalities.  Businesses and individuals benefit from proximity to workers, 

from improved networking, and from the development and rapid exchange of ideas 

(Duranton and Puga, 2004).  Public coffers expand due to the affluence of a skilled labor 

force.  Families with children may benefit from lower crime rates (Lochner and Moretti, 

2004) better public schools, and positive peer effects due to the intergenerational 

transmission of education (Burke and Sass, 2013; Choy, 2001).  Perhaps for any of these 

reasons, Whisler et al. (2008) discovered that people are almost universally less likely to 

migrate out of areas with large and growing stocks of human capital.  Such migration 

behavior suggests that the external benefits of human capital are real.  Flows of educated 

workers matter to individuals in both the origin and destination, but perhaps especially to 

the areas negatively affected by brain drain.  For local, state or national policymakers to 

develop informed policy to deal with brain drain, they first must understand who is 

affected and why.  This chapter is one step towards answering these questions.   

 

3.2 Literature Review 

The migration behavior of educated workers is of policy interest in part because 

economists believe that human capital externalities exist.  If neighbors, coworkers, and 

employers of educated individuals benefit from their human capital, flows of human 

capital in and out of cities affect the residents of these cities.  Moretti (2004) provides a 
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thorough account of the state of economic theory and empirical evidence of human 

capital externalities.  Theories abound explaining why human capital spillovers exist.35  

Economists have suggested that a concentration of educated workers increases the 

productivity of other workers in an area by facilitating knowledge transfer (Lucas, 1988; 

Marshall, 1890; Moretti, 2004), by encouraging the development of physical capital and 

skill-intensive technology (Acemoglu, 1996; Acemoglu, 1998).  Others have credited 

increases in educational attainment with reducing criminal activity (Lochner and Moretti, 

2004), encouraging civic involvement (Milligan et al., 2004), and increasing support of 

free speech (Dee, 2004).  Although residents of local areas with high levels of human 

capital benefit from spillovers in aggregate, in some cases residents of an area might 

benefit from marginal outmigration of skilled labor because of reductions in congestion.  

Likewise flows of human capital could lead to net external benefits through improved 

labor market matches, differences across local areas in the complementarity of types of 

labor, or by improved Tiebout sorting.   

Whatever form human capital externalities take, which local attributes cause an 

area to attract or repel the human capital that confers these externalities?  There is little 

research directly addressing how area poverty or labor market conditions influence the 

long-term growth of an area’s more educated and less educated populations through 

migration (though economists have certainly observed that human capital is more 

concentrated in places with strong economic conditions).  Research identifying higher 

migration responsiveness to labor market conditions among more educated individuals 

                                                            
35 Some instead contend that education leads to negative externalities because education increases 

individuals’ wages primarily by signaling to employers that one is a productive worker (rather than causing 

large productivity gains).  Because less educated workers lack the positive signal, their labor market 

outcomes are worse in the presence of a highly educated workforce. 
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provides suggestive evidence that strong labor market conditions cause relative 

population gains among college-educated cohorts, but the aggregate effects on local labor 

markets is unknown.  The second chapter of this dissertation shows that the migration of 

more educated households is particularly responsive to current labor market conditions.  

Looking over a longer time horizon, Wozniak (2010) has similar findings.  Using Census 

microdata, she finds that a positive labor demand shock in a state at the time of labor 

market entry (approximated by the year when age is equal to years of education plus six) 

causes a particularly large increase in college-educated worker’s propensity to reside 

there.  While Wozniak convincingly demonstrates the high responsiveness of college-

graduates’ migration to distant labor market conditions over the medium term, there are 

several ways that data limitations and methodology cause the results to be poorly-suited 

for assessing the extent of local area brain gain and brain drain caused by economic 

conditions. 36  

Given the strong link between educational attainment and income, a positive 

relationship between initial human capital and growth of human capital would suggest 

that brain gain is more prevalent where LMCs are (initially) most favorable.  Waldorf 

(2009) observes that the share of a county’s initial population that is college-educated 

positively predicts the share of a county’s inmigrants that are college-educated.  Note, 

                                                            
36 First, the use of state of birth as a proxy for potential migrants’ initial residence causes moves between 

birth and labor market entry to be confounded with later moves.  Second, since only state-to-state moves 

can be identified, moves between labor markets within states are not captured and heterogeneity of labor 

market conditions within states is ignored.  Third, because labor market entry is based on the Mincer 

formula, any individuals that took time off between high school and college (and any individuals that took 

longer than four years to complete their degree) are assigned initial state labor market conditions that 

coincide with when they were still in college or before they started college.  This leads to some attenuation 

of the estimates of the responsiveness of college graduate’s migration to actual labor market conditions at 

the time of labor market entry.  Fourth, since the unit of observation is the individual, the results reveal 

causes of heterogeneity in the responsiveness of individuals to labor market conditions, but do not reveal 

how other state characteristics (besides initial labor market conditions) affect brain gain. 
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however, that this need not imply that migration leads to growing divergence in county 

educational attainment, since it is probably also true that outmigrants from more educated 

counties are more educated than outmigrants from less educated counties.  However, 

Berry and Glaeser (2005) show that, ceteris paribus, metropolitan areas with large 

proportions of college-educated workers also had higher growth rates of shares of 

college-educated workers in the 1980s and 1990s.37  This evidence of divergence in 

college attainment appears whether shares and growth rates are measured in levels or 

logarithms.  Moretti (2004) shows a similar divergence in city educational attainment in 

the 1990s.  These authors do not seek to explain the initial differences in college 

attainment, though, so it is unclear whether economically-motivated migration or other 

factors cause this divergence.  For that matter, it isn’t clear whether and to what extent 

migration caused this divergence, as a failure of less educated metropolitan areas to 

educate young residents would affect human capital growth just as a failure to attract 

more educated migrants would.   

Along a similar vein, some recent economic literature explores the link between 

where the college-educated received degrees and where they eventually live.  Using the 

NLS72 and the Mellen Foundation’s College and Beyond data, Groen (2004) finds only a 

weak link between where students attended college and where they live and work 15 

years later (controlling for where students applied to college).  Graduates tend to locate 

where income opportunities and amenities are maximized (Borjas 1992; Kennan and 

Walker 2011), which often differs from where they receive their education.  Bound et al. 

(2004) find that at the state level, the elasticity of the stock of BAs with respect to the 

                                                            
37 Note that any potential time-varying measurement error biases estimates towards finding convergence, 

not divergence. 
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number of BAs conferred is less than 0.3 and the number of people with MDs in a state 

has practically zero relationship with the number of MDs conferred.38   

If more affluent individuals tend to migrate toward more affluent areas, this 

would again be suggestive that brain gain would be more likely in areas with strong 

initial economic conditions.  Nord (1998) seeks to determine whether high poverty 

counties attract more impoverished migrants.  He explores this question using five-year 

county-to-county migration data in the 1990 decennial census.  He shows that there was 

net migration of the poor into high poverty counties and net migration of the “nonpoor” 

into low poverty counties.  There is, however, some concern that an individual’s 

migration influences their poverty status (Nord determined poverty based on income after 

any moves had already occurred.)  The differences in net migration of poor and nonpoor 

could therefore be explained if moving from rich counties to poor counties causes 

declines in individual income (perhaps as a tradeoff for better amenities or lower cost of 

living) while moving from poor counties to rich counties causes increases in individual 

income.  Thus the inmigration of initially poor individuals may not have been any higher 

in high poverty counties.  By estimating the effect of area poverty on growth of the 

college-educated, the present paper will similarly address the reinforcement or widening 

of demographic differences between high and low poverty areas, but because educational 

attainment is relatively fixed after a certain age, it is less susceptible to endogeneity. 

In addition to local economic conditions, I also consider the effect of urbanicity 

                                                            
38 The authors of this paper note that these results are consistent with the extent of state subsidization of 

recipients of these degrees.  That is, since recipients of bachelor’s degrees are apparently more likely to end 

up where they received that education, states find it worthwhile to subsidize their education to a large 

degree.  However since doctors operate in a national market, states gain little by subsidizing their education 

(hence states subsidize medical students less.)  If the same rationale is applied to primary and secondary 

educations, one would expect that counties that retain a large proportion of their high school graduates 

would have somewhat higher education expenditures, ceteris paribus.   
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on the migration of the educated.  Waldorf (2008) and others have shown that more 

educated people are more prevalent in metropolitan areas, particularly central cities, and 

that this urban-rural gap has been increasing over time.  Metropolitan wages are about 

one-third higher than nonmetropolitan wages, and about two-thirds of this pay gap cannot 

be explained by differences in skill or cost of living (Glaeser and Mare, 2001).  The 

higher productivity and lower costs possible for firms that locate near a high 

concentration of other related firms are known as urban agglomeration economies or 

simply agglomeration economies.  Economists have suggested that skilled workers 

particularly benefit from the spread of ideas in densely populated areas and other 

advantages of being in close proximity to many firms (Glaeser and Mare, 2001).  

Adamson et al. (2004) posit instead that the concentration of skilled workers results 

primarily from their preference for urban amenities.  Results presented in this chapter 

support the contention that labor markets, not urban amenities, are the primary reason 

educated workers congregate in cities. 

Some recent research examines the effect of urbanicity on the relative growth of 

skilled and unskilled labor.  Artz (2003) uses a shift-share analysis of 1970-2000 Census 

county data to determine the proportion of total population growth (ages 25 and up) over 

that period that was attributable to growth in the share of the county’s college-educated 

population.  Population growth in metropolitan counties, particularly large metropolitan 

areas, was characterized by particularly high growth of the college-educated.  A crucial 

difference between the present chapter and Artz (2003) is that my data follows specific 

age cohorts so I can more closely determine the extent that migration (in key periods of 

the lifecycle) causes this metropolitan human capital growth.  Franklin (2003) found 
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markedly higher rates of inmigration to central cities among single, college-educated 25-

39 year olds compared to the general population.  However, Franklin also found that 

single, non-college-educated 25-39 year olds have a relatively high propensity to migrate 

into central cities, so the effect of college education on the urban-rural migration 

decisions of this cohort is not clearly distinguished from the effect of being young and 

single.  Moreover Franklin considers only inmigration and not outmigration, so the effect 

of urbanicity on net brain gain of young adults remains unclear. 

Even if depressed or rural areas suffer from brain drain, does it make sense to 

attack such a problem, or even to worry about it?  Aren’t regional losses balanced out by 

regional gains elsewhere, so wouldn’t any policies designed to stop such flows amount to 

rent-seeking activity?  These questions tie into the larger discussion of the merits of 

“place-based policies.”  People-based policies are designed to “[improve] the welfare of 

deserving people as individuals, regardless of where they live”, while place-based 

policies are designed to “[improve] the welfare of groups of deserving people defined by 

their spatial proximity in places,” (Bolton 1992).  Some economists have argued that 

place-based policies are at best a zero-sum game, and at worst prolong the structural 

imbalances in the economy that they are meant to improve (Edel, 1980).  Winnick (1966) 

described place-based policies as “clumsy, expensive, and often inequitable devices” for 

redistribution.  Bartik (1991), for one, disputes this notion.  He acknowledges that there 

are winners and losers from local economic development policies, but argues that well-

targeted policies may lead to net societal gains and may be progressive in nature.39  

                                                            
39 Since chronically unemployed people tend to have lower reservation wages, the utility gains that they 

receive from additional employment opportunities are the largest.  Therefore Bartik argues that the benefits 

of regional development policies in depressed regions will greatly outweigh the benefits of similar 

programs enacted in high employment areas.  Because the benefits of place-based policies tend to be largest 
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Bolton (1992) further makes the case for place-based policies by pointing to economic 

evidence that people value “sense of place” as evidenced by sacrifices they make to 

strengthen their local community (e.g. buying local).  Additionally, people seem to place 

either option value or existence value on the sense of place in areas they don’t live, as 

people expend financial and political resources to preserve local landmarks, historical 

sites and so forth to maintain the character of these places.  Bolton thus argues that 

preventing decline in cities and towns with a unique character is a type of public good, 

which will tend to be underprovided by private interests. 

 

3.3 Brain Gain Measures 

The terms brain gain and brain drain most often refer to the international 

outmigration of college-educated (or beyond) individuals from developing countries to 

developed countries, but sometimes they are applied to the growth or loss of educated 

populations in local areas within a developed nation.  International brain drain (gain) is in 

some ways easier to conceptualize than domestic brain drain (gain).  Internationally, 

educated workers flow fairly consistently out of developing nations and to developed 

nations.  Across local areas within the United States, outflows of educated workers from 

a given area are often countered by comparable inflows of educated workers with 

different labor market and life cycle considerations.   

Some areas that attract young high school-educated workers may not attract 

young college-educated workers and some areas that attract young college-educated 

workers may not attract middle-aged college-educated workers, so it is important to 

                                                                                                                                                                                 
in distressed areas, Bartik claims the political pressures to enact such policies should also be greater there.  

Given these considerations and some “back of the envelope” calculations, he concludes that sensible 

regional economic development can be simultaneously second-best optimal and progressive.   
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define the type of brain gain or brain drain of interest.  I identify three types (and timings) 

of brain gain in this paper: absolute gain in high school graduates (or “absolute high 

school gain” for short), relative gain in high school graduates (“relative high school 

gain”), and relative gain in college graduates (“relative college gain”).  I briefly describe 

these measures and their relevance in this section, but a more thorough explanation of the 

construction of each of these measures appears in section 3.4.  Roughly speaking, 

absolute high school gain refers to changes in the level of high school-educated workers 

in an area, while relative high school gain and relative college gain refer to changes in the 

share of educated workers in an area.  Changes in levels of educated workers and changes 

in shares of educated workers both matter for the residents of affected areas.  In light of 

the literature on human capital externalities, it is more obvious why shares matter.  If 

receiving an education reduces an individual’s criminal behavior and increases their civic 

participation and other pro-social behaviors, then areas with large shares of educated 

workers should have lower crime rates, better voting outcomes, etc.  Similarly if a highly 

educated workforce encourages investment in physical capital, research and development 

and technology, then the external benefits of education will increase with the share of 

educated workers.   

However, if human capital spillovers occur because interactions with educated 

individuals in related fields lead to diffusion of knowledge, then both shares and levels 

matter.  Shares matter because the average interaction in a more educated city is with a 

more educated worker, hence more knowledge should be diffused with a random 

interaction.  Levels matter because interactions are not generally random.  A pair of 

individuals is more likely to interact if they work in related fields or have knowledge that 
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is valuable to one another.  Cities with a high level of educated workers have more 

diverse skills and knowledge, so it is more likely that an individual will interact with 

someone with knowledge pertinent to them.  Changes in either the level or share of 

educated workers also impacts local areas’ fiscal situations.  An increase in the level of 

educated workers without an increase in the share of educated workers implies local 

population growth.  Population growth leads to higher housing demand, higher property 

values and an expansion of the tax base since local revenues are primarily collected 

through property taxes.  Local property owners also benefit from such shocks.  Though 

each property owner bears a larger tax liability their wealth increases with the increase in 

property values.  On the other hand, an increase in the share of educated workers 

improves a locality’s fiscal situation by reducing the average citizen’s dependence on 

social services and increasing their ability contribute to local taxes.  Thus, both absolute 

brain gain and relative brain gain in a locality may benefit residents. 

I define a locality’s absolute high school gain as the percentage growth in the 

number of high school graduates for a cohort in that locality since the time of that 

cohort’s expected graduation.  If 𝑁𝑟,18
𝐻  describes the total number of high school 

graduates from a specific class residing in 𝑟 in the year of their graduation, and 𝑁𝑟,𝑡2
𝐻  

describes the total number of high school graduates in the same age cohort in some 

subsequent year, then absolute high school gain in locality 𝑟 for this cohort is defined as: 

 𝐴𝐺𝑟,18
𝐻 = ln (𝑁𝑟,𝑡2

𝐻 ) − ln (𝑁𝑟,18
𝐻 )  (3.1) 

Note that changes in the population of high school dropouts within a locality do not affect 

𝐴𝐺𝑟,18
𝐻 .  Absolute high school gain is the only measure used in this paper explicitly 

affected by population growth (or decline) that occurs proportionally by educational 
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attainment.  Indeed area absolute high school gain closely mirrors area population 

growth.   

Second, I define relative high school gain.  Relative high school gain measures 

the percentage growth in the share of an area’s cohort with a high school diploma or 

higher since expected graduation, relative to expected growth (expected growth is based 

on the initial share with a high school diploma.) 

 
𝑅𝐺𝑟,18

𝐻 = ln (
𝑁𝑟,𝑡2

𝐻

𝑁𝑟,𝑡2
𝑇 ) − ln (

𝑁𝑟,18
𝐻

𝑁𝑟,18
𝑇 ) − 𝑅𝐻∗

≈ Δ𝐻𝑆% − 𝑅𝐻∗
  

(3.2) 

Terms in (3.2) with a 𝑇 superscript refer to the total number of people of all education 

levels in the cohort in that period.  The term 𝑅𝐻∗
 denotes the expected percentage growth 

in a cohort’s share with a high school diploma.  It is determined by performing a simple 

linear regression of area-cohorts’ growth in high school share as a function of their 

graduation rate, then using the coefficient (and constant) to predict areas’ growth in high 

school population (this is explained in more detail in subsection 3.5.1.)  𝑅𝐺𝑟,18
𝐻  increases 

with growth in the high school-educated population and decreases with growth in the 

population of high school dropouts.  This measure should be neutral with respect to 

population growth or decline, but it captures a locality’s ability to attract (or retain) the 

high school-educated relative to its ability to attract (or retain) high school dropouts.   

In some cases relative high school drain may be a transient lifecycle phenomenon.  

The second period in which high school graduates and dropouts are measured (𝑡2) occurs 

when that cohort is in their early to mid-30s.  Some localities that are unattractive to 

young high school graduates (for instance distant suburbs) might be more attractive later 

in life.  The next measure of brain gain considers the relative attractiveness of a locality 

among the college-educated somewhat later in life. 
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Relative college gain measures the percentage growth in the share of an area’s 

cohort with a bachelor’s degree or higher since the cohort was aged 25-34, relative to 

expected growth (expected growth is based on initial college graduate share):   

 
𝑅𝐺𝑟,25

𝐶 = ln (
𝑁𝑟,𝑡2

𝐶

𝑁𝑟,𝑡2
𝑇 ) − ln (

𝑁𝑟,25
𝐶

𝑁𝑟,25
𝑇 ) − 𝑅𝐶∗

≈ Δ𝐶𝐺% − 𝑅𝐶∗
  

(3.3) 

This equation is basically analogous to (3.2), except that it measures college graduates 

(superscript 𝐶) instead of high school graduates and the timing of the population 

measurements differ (the initial measurement of the college-educated in a locality occurs 

when they are between the ages 25 and 34, the subsequent measurement occurs when 

most of the cohort is in their late 40s.)  Since middle-aged, college-educated people are 

among the highest earners, relative college drain—if it represents permanent rather than 

lifecycle changes—may especially harm area productivity.   

 

3.4 Theory and Empirical Model 

Unlike Chapter 2, in this chapter the geographical unit of observation is small 

enough (counties or groups of less populous counties) that many people may live and 

work in observably different geographic areas.  Recent estimates from the Census suggest 

that 27.4 percent of American workers reside in a different county than their place of 

employment.40  Potential migrants must jointly weigh employment prospects in one 

county with the residential opportunities in that county and in a number of nearby 

counties.  I model the expected utility of an individual residing in 𝑟 and working in 𝑠 (𝑟 

may equal 𝑠, but it is not necessary) using a variation on (2.1): 

                                                            
40 https://www.census.gov/newsroom/releases/pdf/2006-10_commuting_flows_paper.pdf 
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 𝐸𝑈𝑖,𝑟,𝑠 = 𝐸[𝑈(𝑌𝑖,𝑠(𝐿𝑀𝐶𝑠, 𝑋𝑖) − 𝐶𝑖,𝑟,𝑠(𝑋𝑖), 𝐴𝑖,𝑟(𝐿𝑀𝐶𝑟 , 𝑋𝑖))]  (3.4) 

Again, the utility an individual receives in a locale is a function of the income they can 

receive (less area costs), amenities (amenities are based on the place of residence not the 

place of employment), and heterogeneous individual preferences for income and various 

amenities.41  Area costs, 𝐶𝑖,𝑟,𝑠, are expanded to include both moving costs and commuting 

costs, thus they depend on both the place of residence and the place of employment.  

Equation (3.4) hints at the intricate relationship that exists between local brain gain and 

surrounding labor markets.  On the one hand, strong labor market conditions in nearby 

counties might reduce net migration of a county’s educated population if residents (or 

potential migrants to the county) are persuaded to move to the thriving nearby counties.  

On the other hand, since workers in 𝑠 have the option of residing in 𝑟, a thriving 

metropolitan center’s labor market might cause positive population spillovers, for 

instance, in surrounding suburban counties. 

 The regression models (3.5a-3.5c) estimate growth in a cohort’s educated stock 

(share) as a function of: 1) initial educated stock (share), 2) urbanicity, 3) proximity to a 

four-year state college, 4) other amenities, 5) initial economic conditions, 6) industrial 

composition, 7) region, and 8) share of population that is non-native born:  

 

 

  Δ𝐿𝑛 𝐻𝑆𝑟,𝑡2  = 𝛽0 + 𝛽1𝐿𝑛 𝐻𝑆𝑟,𝑡1 + 𝛽2𝑈𝑟𝑏𝑟,𝑡1  

                                                            
41 Since gross migration between areas within the United States dwarfs net migration, heterogeneous 

individual preferences and heterogeneity in earnings potential across counties are the factors that drive the 

most (gross) migration.  Without such individual heterogeneity, the wide array of city sizes and 

characteristics we observe would probably be impossible.  However, since the results in this chapter focus 

on net changes in the educated and less educated populations, individual heterogeneity mostly cancels itself 

out (except for differences between the preferences of educated and less educated labor).   
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+𝛽3𝐶𝑜𝑙 𝑃𝑟𝑜𝑥𝑟 + 𝛽4𝐴𝑚𝑒𝑛𝑟 + 𝛽5𝐿𝑀𝐶𝑟,𝑡1 

+𝛽6𝐼𝐶𝑟,𝑡1 + 𝛽7𝑅𝑒𝑔𝑖𝑜𝑛𝑟 + 𝛽8𝐼𝑚𝑚𝑖𝑔𝑟,𝑡2 + 𝜖  

(3.5a) 

  

Δ𝐿𝑛 𝐻𝑆%𝑟,𝑡2 = 𝛽0 + 𝛽1𝐿𝑛 𝐻𝑆%𝑟,𝑡1 + 𝛽2𝑈𝑟𝑏𝑟,𝑡1 

+𝛽3𝐶𝑜𝑙 𝑃𝑟𝑜𝑥𝑟 + 𝛽4𝐴𝑚𝑒𝑛𝑟 + 𝛽5𝐿𝑀𝐶𝑟,𝑡1 + 𝛽6𝐼𝐶𝑟,𝑡1 

+𝛽7𝑅𝑒𝑔𝑖𝑜𝑛𝑟 + 𝛽8𝐼𝑚𝑚𝑖𝑔𝑟,𝑡2 + 𝜖  

 

 

(3.5b) 

  

Δ𝐿𝑛 𝐶𝐺%𝑟,𝑡2 = 𝛽0 + 𝛽1𝐿𝑛 𝐶𝐺%𝑟,𝑡1 + 𝛽2𝑈𝑟𝑏𝑟,𝑡1 

+𝛽3𝐶𝑜𝑙 𝑃𝑟𝑜𝑥𝑟 + 𝛽4𝐴𝑚𝑒𝑛𝑟 + 𝛽5𝐿𝑀𝐶𝑟,𝑡1 + 𝛽6𝐼𝐶𝑟,𝑡1 

+𝛽7𝑅𝑒𝑔𝑖𝑜𝑛𝑟 + 𝛽8𝐼𝑚𝑚𝑖𝑔𝑟,𝑡2 + 𝜖  

 

 

(3.5c) 

Based on (3.4) any characteristic of a local area that generally increases residents’ 

expected incomes, reduces their costs, or adds to their quality of life should, ceteris 

paribus, encourage inmigration (or deter outmigration) and therefore lead to absolute 

high school gain.  So, clearly greater area amenities and area economic opportunities 

should lead to more absolute high school gain.  Economic opportunity for skilled and 

unskilled workers is measured with traditional measures in 𝐿𝑀𝐶𝑟,𝑡1 (unemployment rate 

and poverty rate), but also with urbanicity (𝑈𝑟𝑏𝑟,𝑡1) and industrial composition (𝐼𝐶𝑟,𝑡1).  

Given the agglomeration economies that exist in cities, urbanicity should positively affect 

absolute high school gain (at least up to a point) by improving economic opportunity.  It 

is generally expected that a concentration of industries with more educated workers (e.g. 

professional services and information services) will lead to more absolute and relative 

brain gain while concentration of blue-collar industries like forestry and fishing, mining, 

and manufacturing will be associated with less brain gain.  Some standard area amenities 
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are included in 𝐴𝑚𝑒𝑛𝑟 (average July high temperature, average January low temperature, 

an indicator for coastal areas, and the share of compensation in the arts and entertainment 

industry).  Ceteris paribus the attraction of nice weather and culture (proxied by arts and 

entertainment share) should help attract (or retain) high school-educated migrants.  

𝑅𝑒𝑔𝑖𝑜𝑛𝑟 may capture omitted differences in amenities or economic opportunity.  College 

proximity is expected to increase absolute (and relative) high school gain by directly 

leading to the migration of individuals pursuing college degrees.  Although county of 

residence in the latter period is not measured until long after most people go to college 

(age 31-37), there is residential inertia for new college graduates (or college dropouts).  

By attending a college in or near 𝑟, they are more likely to live there when they are in 

their 30s because of the costly nature of migration.  The focus of this chapter is domestic 

migration, so to control for population changes related to immigration, I also include the 

percentage of local area that is foreign-born (in the latter period). 

It is not obvious which direction to expect certain variables to affect relative high 

school gain or relative college gain.  Chapter 2 described how the migration of more 

educated households (and others at low poverty risk) seems to be more responsive to 

labor market conditions, at least in the short run.  To the extent that local labor market 

conditions are persistent, it would follow that long run relative brain gain is also more 

likely to occur where initial labor market conditions are strong.  An urban-rural wage gap 

exists for both educated and uneducated workers, but ceteris paribus this wage gap may 

favor more skilled workers in urban areas because: 1) Their productivity may be 

especially enhanced by the high level of physical capital and technology and 2) The steep 
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housing costs in urban areas will swallow a larger share of income for the less affluent.42  

There seems to be increasing consensus that amenities are normal goods (Adamson, et 

al., 2004; Whisler et al., 2008), so it is generally expected that relative brain gain will be 

higher in areas with higher amenity value.  However individuals’ valuation of amenities 

also vary over the lifecycle as the young and single, for example, tend to favor urban 

amenities, while marriage, middle-age, and kids leads people to prefer suburban 

amenities (Whisler et al., 2008).   

I also extend the model to consider: 1) whether there is heterogeneity in the 

determinants of brain gain for central cities, suburban areas, and nonmetropolitan areas 

and 2) whether neighbors’ economic conditions affect brain gain.  I stratify the sample by 

central cities, suburban areas and nonmetropolitan areas, adding an average of the initial 

unemployment rates in adjacent areas as an explanatory variable in (3.5a) - (3.5c).  

Strong labor demand in one county may lead to absolute or relative brain gain for its 

neighbors by attracting educated workers who then opt to reside in surrounding counties.  

Since people are more apt to commute from less densely populated areas to more densely 

populated areas, I expected that proximity to central cities with strong labor market 

conditions might cause positive (educated) population spillovers to suburban areas.  On 

the other hand, to the extent that adjacent areas compete with one another over (educated) 

residents, strong neighboring labor markets may cause brain drain. 

 

                                                            
42 Likewise, if more educated people have stronger preferences for urban amenities, we should expect more 

metropolitan areas to experience relative brain gain (Adamson, et al., 2004).   
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3.5 Data  

3.5.1 Data Collection and Construction 

I use three different datasets to construct the measures of brain gain: two are used 

to estimate initial stocks of educational attainment (The National Center for Education 

Statistics’ Common Core of Data and the 1990 decennial Census) and one provides the 

number and share of people in various age cohorts in the second period with different 

levels of educational attainment (the 2006-2010 American Community Survey).  The 

most basic measure of brain gain I use is absolute high school gain, the percentage 

growth of an area-cohort’s number of high school graduates in approximately sixteen 

years following their graduation.  Using the number of high school diplomas conferred to 

estimate an area-cohort’s initial stock of high school graduates is the ideal way to 

measure gains or losses of the high school-educated, because any measurement of the 

stock of high school graduates in a cohort that isn’t made immediately after high school 

graduation may overlook the many high school graduates who leave their home county 

within months of graduating.  The particular timing of the second measurement (13-19 

years after expected graduation) is the result of data availability, but the timing is suitable 

to identify the areas that benefit from brain gain and those that are harmed by brain drain.  

I assert this because: 1) It is sufficiently long to allow a great deal of intercounty 

migration to occur, particularly given the high migration rates of younger adults, 2) It is 

sufficiently long so that the high school-educated population in the second period are old 

enough (mid-30s) to be important contributors to local economic production and 3) It is a 

short enough period to identify movements within a specific stage of life (young 

adulthood) rather than confounding movements in different stages of life. 
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The Common Core of Data (CCD) reports annual county high school enrollment 

numbers by grade and the number of high school diplomas conferred by county, thus 

providing an estimate of counties’ stock of (public) high school graduates and high 

school dropouts in the graduation year of a given cohort.  The number of high school 

diplomas conferred by schools in a county should fairly accurately measure the number 

of public high school graduates residing in a county upon graduation.  This measure will, 

however, miss any students that graduate from a private high school or from a school in a 

county other than their county of residence.  I estimate the number of high school 

dropouts from the same cohort based on the difference between the cohort’s freshman 

enrollment and the number of high school diplomas conferred to that cohort.  A cohort’s 

estimated number of high school dropouts will fail to capture any students who drop out 

prior to ninth grade.  Estimates of a cohort’s number of dropouts will also fail to account 

for net migration of that cohort between ninth grade and graduation.  To reduce some of 

the noise related to these issues, I use a three-year average of the number of graduates 

and dropouts in each county for the cohorts in the high school graduating classes of 1991, 

1992 and 1993 (I will sometimes refer to these three cohorts as the 1992 cohort for 

short.)43   

Then, to determine the extent of absolute high school gain or drain occurring over 

roughly a 16 year period, I obtain the number of people in a cohort with a high school 

diploma residing in a geographic area (namely Public Use Microdata Areas or PUMAs) 

from the American Community Survey’s (ACS) 5-year (2006-10) 5% Public Use 

Microdata Sample (PUMS).  Unfortunately because this is a five-year data set, even with 

                                                            
43 Likewise, using the 1990 Decennial Census I construct the initial level of all measures of educational 

attainment in 1990. 
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people’s age it is impossible to determine respondents’ high school graduating classes 

precisely.  Since about one-fifth of the ACS respondents were surveyed in each year 

between 2006 and 2010, it is possible to approximate the probability they are members of 

one of the three cohorts.  Table 3.1 illustrates.  For an individual who was 18 in their 

graduating year, this table lists the age they were in each of the ACS survey years.  Based 

on this table, the probability that an individual surveyed in the 2006-10 ACS is in one of 

the three cohorts is 
1

5
 if the individual is 31, 

2

5
 if the individual is 32, 

3

5
 if the individual is 

between 33 and 35, 
2

5
 if the individual is 36, and 

1

5
 if the individual is 37.  Then using the 

2008 population of the PUMA, the proportion of the PUMA’s respondents for each age, 

and applying weights44 (based on the above probabilities) to each age between 31 and 37, 

I estimate the stock of high school graduates and dropouts residing in the PUMA at the 

time of the ACS survey.  Clearly, there is some measurement error in determining the 

stock of graduates and dropouts in the three cohorts, since about half (by weight) of the 

individuals used to determine these stocks actually belong to cohorts other than 1991-93.  

However this measurement error will appear on the left-hand side of the regressions that 

follow, so it will lead to imprecision but not bias in the estimates of the determinants of 

brain drain and brain gain.     

The second brain gain measure, relative high school gain, is constructed using the 

same data (CCD and ACS) and the same weights as absolute high school gain, but 

relative high school gain is based on the percentage change in the share of an area’s 

cohort with at least a high school diploma.  Relative high school gain (along with other 

relative brain gain measures) is then adjusted to account for any reversion to the mean.  

                                                            
44 The weights are 

1

15
 for ages 31 and 37, 

2

15
 for ages 32 and 36, and 

1

5
 for ages 33 to 35. 



 
 

77 
 

Panel A of Table 3.2 demonstrates the first step in this process.  I perform a simple linear 

regression of growth in the share of a cohort with a high school diploma as a function of 

the natural logarithm of the initial share of the cohort with a high school diploma.  Then, 

based on these regression results, I compute predicted growth in high school share as a 

function of initial share.  The difference between an area’s actual and predicted growth in 

high school share is defined as the relative high school gain.  The timing of an area’s 

relative high school gain is the same as for absolute high school gain (roughly between 

age 18 and age 34).  Table 3.2 shows that areas with higher observed graduation rates 

experience substantially smaller gains in their cohorts’ share of high school graduates.  

There is measurement error associated with all of the brain gain measures, so regression 

to the mean contributes to the negative coefficients in Table 3.2.  Also, if high school 

dropouts are equally likely to obtain a GED regardless of area graduation rates this would 

cause areas with more dropouts to have more growth in the high school share, ceteris 

paribus. 

The third measure of brain gain, relative college gain, is largely analogous to the 

relative high school gain measure, measuring growth between two periods in an area’s 

share of college graduates in a specific cohort.  There are some differences, though, in the 

timing of this growth measure, the cohort being observed, and the data used to measure 

the initial share.  I use the 1990 decennial Census to obtain the initial number of 

individuals in an area’s cohort with and without a college degree.  Clearly it would be 

nonsensical to measure the number of 18 year old college graduates in the initial period; 

instead I use the cohort of 25-34 year olds at the time of the 1990 Census.  I then use the 

2006-2010 ACS to determine growth of the college-educated and non-college-educated 
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within cohorts.  In the initial period (1990) the cohort is aged 25-34, therefore at the time 

of the 2006-2010 ACS, such individuals were between the ages 41-54.  However, 

depending on which year of the ACS a respondent was surveyed, some 41-44 year olds 

and some 51-54 year olds may not have been in the initial 25-34 year old cohort, so I use 

the number of 45-50 year olds in the 2006-2010 ACS to approximate the share of 

college-educated individuals in the cohort in the latter period.  The timing of the surveys 

and age of the cohorts are suitable again because: 1) Most people who obtain college 

degrees do so by age 25 and 2) By the second period (at age 45-50), most college 

graduates are entering the prime earning years of their career.  Otherwise, relative college 

gain is constructed in the same way as relative high school gain, including the adjustment 

for predicted growth.  Panel B of Table 3.2 shows the regression of the growth in the 

share of college graduates as a share of initial college graduate shares.  Relative college 

gain is the difference between an area’s actual growth in college share and its predicted 

growth based on Table 3.2.  Though it is not a focus of the paper, I also construct relative 

growth in graduate degrees for the same cohort (Panel C). 

One difficulty arising from using the ACS’s microdata sample is that its finest 

geographical unit of measurement is the Public Use Microdata Area (PUMA); the closest 

geographical unit in the CCD is the county.  State governments draw PUMA boundaries 

so that all PUMAs have sufficiently large populations (100,000 or more persons).  Most 

PUMAs contain one or more undivided counties or are contained entirely within a single 

county (depending on whether county populations in an area tend to be much larger or 

much smaller than 100,000.)  In order to consolidate PUMAs and counties, I reduce both 

data sets to their lowest common denominator.  That is, I construct statistics for the 
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smallest geographic units possible in both data sets.  Usually these geographic units are 

either single counties or single PUMAs.45  Hereafter I will refer to these as consolidated 

geographic areas (or CGAs for short).  Data exists for a total of 915 of these CGAs in the 

contiguous United States.46 

 The explanatory variables used in this chapter were obtained from several 

sources.  The county is the unit of observation for all explanatory variables.47  Each of 

these variables was then modified to reflect the sum or population-weighted average of 

all counties within a CGA.  1990 decennial Census data was used to determine counties’ 

initial population and population density of counties.48  I also use 1990 Census estimates 

of county poverty rates in the Census of Population and Housing Poverty Statistics.49  I 

use Bureau of Labor Statistics estimates of 1991-1993 county unemployment rates.50  

The percentage of a CGA’s population that is foreign-born is based on the 2006-10 ACS.  

Counties’ distances from public four-year colleges are based on information in the 

Integrated Postsecondary Education Data System, made available by the National Center 

for Education Statistics.51  Maximum July temperatures and minimum January 

temperatures are based on 1990-2010 averages in the North America Land Data 

Assimilation System.52  The Federal Emergency Management Agency (FEMA) defines a 

coastal shoreline county as those which are adjacent to an ocean, major estuaries, or the 

Great Lakes.  I create an indicator variable for whether a CGA is coastal based on 

                                                            
45 Occasionally because of the way certain PUMA boundaries are drawn, the smallest geographic unit I can 

construct consists of multiple PUMAs and multiple counties. 
46 Some counties’ high school enrollment and graduation statistics were unavailable for pertinent years in 

the CCD. 
47 In an extension, I test the effect of area wages on brain gain, using PUMA-based wage data. 
48 http://www.census.gov/main/www/cen1990.html 
49 https://usa.ipums.org/usa/voliii/pubdocs/1990/cph-l/cph-l.shtml 
50 http://www.bls.gov/lau/#cntyaa 
51 http://nces.ed.gov/ipeds/datacenter/ 
52 http://wonder.cdc.gov/controller/datarequest/D60a 

http://wonder.cdc.gov/controller/datarequest/D60a
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whether FEMA classifies any of the counties within the CGA as coastal shoreline 

counties.53  Finally the Bureau of Economic Analysis provides county industrial 

composition data based on NAICS classifications beginning in 1998.54  I use 1998 shares 

of county compensation within two-digit industry codes to describe county industrial 

composition.  In a model extension I also use college graduate and non-college graduate 

earnings data from the 5% percent sample of Integrated Public Use Microdata Sample of 

the 1990 Census.55 56 

 

3.5.2 Descriptive Statistics 

Table 3.3 displays summary statistics.  Absolute high school gain is the first bold 

variable in the table.  Among the 915 CGAs, the average growth in cohorts’ number of 

high school graduates between 1992 and 2008 is 29.5 percent.  This is an overestimate of 

the true average, partly because private high school diplomas conferred between 1991 

and 1993 are not captured in the CCD’s count of initial high school graduates.  The first 

row shows that cohorts averaged a 24.8 percent decline in high school dropouts, pointing 

to one factor working to increase the observed absolute high school gain: delayed 

completion of high school equivalencies (GEDs).  On average CGAs experienced 9.9 

percent growth in the share of their cohorts with a high school diploma.  More growth in 

cohorts’ college shares occurred over the period, with an average 27.5 percent increase 

across CGAs.  Relative high school (college) gain is based on the growth in high school 

                                                            
53 http://coastalsocioeconomics.noaa.gov/coast_defined.html 
54 http://www.bea.gov/regional/ 
55 https://usa.ipums.org/usa-action/samples 
56 Individuals’ wages are calculated as their annual earnings divided by the product of weeks worked last 

year and typical hours of work per week.  I aggregate PUMA wages for college graduates and non-college 

graduates based on full year workers (at least 40 weeks) who worked between 35 and 50 hours per week. 
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(college) share, but is adjusted to account for predicted growth based on initial share of 

high school (college) graduates (see equations 3.2 and 3.3).  Thus both of these means 

equal zero.   

 Tables 3.4, 3.5, and 3.6 display mean characteristics by quintile of absolute high 

school gain, relative high school gain, and relative college gain, respectively.  These 

tables put in context the stark differences between the characteristics of CGAs that 

experience brain gain and those that experience brain drain.  CGAs in the bottom quintile 

of absolute high school gain began the period with 44% more poverty and 40% more 

unemployment than CGAs in the top quintile.  CGAs in the bottom quintile of relative 

high school gain had about 33% more poverty and 36% more unemployment than those 

in the top quintile.  CGAs in the bottom quintile of relative college gain had 55% more 

poverty and 15% more unemployment.  High brain gain and high brain drain areas 

exhibit similarly glaring differences in metropolitan status and density.  About 72% of 

CGAs in the bottom quintile of absolute high school gain are nonmetropolitan and only 

7% in the top quintile are nonmetropolitan.  Nonmetropolitan CGAs comprise 57% 

(48%) of the bottom quintile of relative high school (college) gain, but these CGAs 

comprise only 18% (27%) of the top quintile of relative high school (college) gain.  All 

categories of metropolitan CGAs (high density, medium density, and low density) are 

noticeably more likely than nonmetropolitan CGAs to experience all types of brain gain.  

High density metropolitan CGAs (more than 400 people per square mile) are especially 

likely to experience absolute high school gain, but lag behind less dense metropolitan 

CGAs in relative college gain. 
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3.6 Spatial Distribution of Brain Gain in United States  

 Figure 3.1A illustrates levels of absolute high school gain with a map of 915 

CGAs in the United States.  Figures 3.2A and 3.2B do the same for relative high school 

gain and relative college gain, respectively.  Each of these maps divides the 915 CGAs 

into five quintiles ranging from the highest levels of brain gain (dark blue) to the highest 

level of brain drain (white).57  (For comparison purposes I also include a map of 

population density in Figures 3.1B and 3.2C.)  While there are some similarities between 

the maps of brain gain, important differences exist between them, exemplifying various 

regional issues.  In this section I discuss the spatial distribution of these three types of 

brain gain in turn. 

 

3.6.1 Absolute High School Brain Gain in U.S. 

Some regional patterns are immediately apparent in the map of absolute high 

school gain (Figure 3.1A) coinciding with well-known regional patterns of overall 

population growth.  The highest rates of absolute high school gain are concentrated in the 

South and also to the west of the Rockies.  The CGAs with the lowest levels of absolute 

high school gain are highly concentrated in the Great Plains.  Table 3.7 shows that when 

CGAs are weighted by population the Mountain, South Atlantic, and Pacific Census 

Divisions all average about 60 percent absolute high school gain.  The Middle Atlantic, 

West North Central, and East North Central Census Divisions all average less than 30 

percent absolute high school gain.58  With some exceptions, state rankings in absolute 

high school gain closely align with state rankings in population growth since the early 

                                                            
57 CGAs in black are missing relevant data (for the relevant years) in the NCES’s Common Core of Data. 
58 Note that weighted averages of states’ absolute high school gain tend to be higher than unweighted 

averages because more populous CGAs typically have higher rates of absolute high school gain. 
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1990s.59  Since more than 85 percent of adults have a high school diploma or equivalent, 

it should be unsurprising that gains in cohorts’ high school graduates resemble overall 

population gains.  The exceptions are instructive.  Several high density states with low 

population growth rank fairly high in absolute high school gain, including the District of 

Columbia, Connecticut, Illinois, and Rhode Island.  On the other hand, low density states 

tend to rank lower in absolute high school gain than their population growth rates would 

suggest, including the Dakotas, Montana, and Wyoming.  Figure 3.1A also shows this 

tendency of high density areas to attain higher absolute high school gain than low density 

areas; high absolute high school gain is prevalent in eastern and coastal states and low 

absolute high school gain is common in the Midwest.  But a closer look reveals that 

density is also associated with absolute high school gain at a more local level, as absolute 

high school gain is typically higher in major metropolitan areas.  (This can be seen by 

comparing Figure 3.1A with the map of CGA population density in Figure 3.1B.)  These 

are the first of several clues suggesting there are sizeable flows of young high school 

graduates (between graduation and their mid-30s) from low density to high density areas. 

The first column of Table 3.8 lists the percentiles of absolute high school gain for 

the principal counties in the 30 most populous metropolitan areas (as of 1990) for which 

no data is missing.60  The next column shows the absolute high school gain percentile of 

the CGAs adjacent to the principal county (“suburban CGAs” for short).61  Of the 30 

                                                            
59 See https://www.census.gov/prod/2001pubs/c2kbr01-2.pdf for Census estimates of population growth in 

the 1990s and http://www.census.gov/prod/cen2010/briefs/c2010br-01.pdf for Census estimates of 

population growth in the 2000s. 
60 Because these are large metropolitan centers, these counties alone compose their CGA.  The only 

exception among these 30 counties is Virginia Beach.  
61 I first determine a weighted average of absolute high school gain for these CGAs.  Then treating this 

weighted average, I determine its percentile relative to the 915 CGAs with available data.  The absolute 

high school gain measure for these areas will be less likely to take extreme values than individuals CGAs 

since averaging multiple CGAs together tends to push their values toward the mean. 

https://www.census.gov/prod/2001pubs/c2kbr01-2.pdf
http://www.census.gov/prod/cen2010/briefs/c2010br-01.pdf
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principal counties, 20 are in the top quintile of absolute high school gain.  Like the maps 

of absolute high school, Table 3.8 shows that counties’ absolute high school gain largely 

reflects the counties’ overall population growth over the period.  The counties 

encompassing San Jose, San Francisco, Phoenix, and Atlanta are all in the 97th percentile 

or above of absolute high school gain.  The counties including New Orleans, Pittsburgh, 

Detroit, and Cleveland are the only large metropolitan centers below the 60th percentile.  

Of the 30 sets of suburban CGAs, only two (the CGAs adjacent to Pittsburgh and 

Cleveland) were below the median level of absolute high school gain.  With a few 

exceptions, the suburban CGAs have slightly lower (but similar) levels of absolute high 

school gain relative to the principal counties they surround, again indicative of a tendency 

of young high school graduates to move to more densely populated CGAs. 

The left side of Table 3.9 lists the largest city in the 30 CGAs with the highest 

absolute high school gain.  If the CGA falls within a Census-designated metropolitan 

statistical area (MSA) the second column lists the MSA, along with the driving distance 

(in miles) between the CGA’s largest city and the MSA’s principal city.  This table shows 

that among the areas attracting the most absolute high school gain there is a mix of large 

metropolitan centers, small metropolitan centers, and suburban CGAs (only the CGA 

containing Aspen, Colorado is nonmetropolitan.)  Each of these 30 areas more than 

doubled the size of their high school graduate cohorts (see column 3.)  The right side of 

Table 3.9 shows the largest city in the 30 CGAs experiencing the most severe absolute 

high school drain, each of which saw net declines in their high school graduate cohorts of 

between 27 and 60 percent.  In stark contrast with the high brain gain areas, only one of 

these 30 high brain drain areas (Pine Bluff, AR) is in a metropolitan area.  Moreover, 
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only three of the 30 highest absolute high school gain CGAs have population densities 

below 90 per square mile; all of the 30 highest absolute brain drain CGAs have 

population densities below 90 per square mile.  Again, we see evidence of a flow of high 

school graduates from rural America to urban America.  The table also captures the flow 

of high school graduates out of the Midwest and to the South.  Eighteen Midwestern 

CGAs are among the 30 biggest net senders of high school graduates.  Twenty-three 

Southern CGAs are among the biggest net recipients of high school graduates, including 

20 that are either in Florida, Georgia, Texas, or Virginia.   

 

3.6.2 Relative High School Gain and Relative College Gain in U.S.  

 Patterns of relative high school gain differ considerably from the patterns of 

absolute high school gain just discussed.  The correlation between absolute and relative 

high school gain is just 0.28.  Though there appears to be some positive correlation 

within states, the broad regional patterns visible in the relative high school gain map 

(Figure 3.2A) have little in common with the regional patterns in the absolute high school 

gain map (Figure 3.1A).  A number of areas, in fact, look almost the opposite in the two 

maps.  The Southwestern states of California, Nevada and Arizona (and parts of Texas) 

experienced among the highest rates of absolute high school gain, but these states 

experienced some of the lowest rates of relative high school gain.  Indeed, Table 3.7 

shows that the five states with the lowest relative high school gain are California (8th in 

absolute high school gain), Nevada (1st), Texas (12th), New Mexico (27th), and Arizona 

(3rd).  On the other hand, many northern states including those in New England and 

various states stretching from Montana to Iowa are characterized by low absolute high 
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school gain but high relative high school gain.  An obvious explanation for this set of 

observations is that the high rate of immigration to the Southwest increases the size of 

cohorts of all educational levels, but it causes particularly large increases in the stock of 

high school dropouts (thus leading to relative high school drain).  Northern states which 

receive fewer immigrants have less absolute growth of the high school-educated, but 

attract particularly small numbers of high school dropouts. 

 Figures 3.2A and 3.2B uncover little obvious association between states’ relative 

high school gain and relative college gain; the correlation between the two measures of 

brain gain is not statistically different than zero (-0.03).  In fact, from Figure 3.2B alone 

few states can be identified as high relative college gain or high relative college drain 

states because most states contain numerous CGAs experiencing relative college gain and 

numerous CGAs experiencing relative college drain.62  Table 3.10 shows states ranked by 

their relative college gain (it also shows relative “graduate school gain.”)  This table 

(contrasted with Table 3.7) illustrates a striking difference between relative high school 

gain and relative college gain in the West.  Whereas the Mountain and Pacific Census 

divisions experienced among the lowest relative high school gain (ranked seventh and 

ninth among the nine Census divisions), they experienced the highest relative college 

gain of any of the Census divisions.  As will be further demonstrated, brain gain is not a 

homogenous phenomenon.  Areas or characteristics that tend to attract one group of more 

educated migrants do not necessarily attract other groups of educated migrants.  One 

exception is that metropolitan areas benefit from all measures of brain gain relative to 

nonmetropolitan areas.  The pattern of metropolitan areas experiencing relative college 

                                                            
62 One-way analysis of variance (ANOVA) reveals that only 10 percent of variation in relative college gain 

can be explained by state. 
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gain can be observed by comparing the map of relative college gain (3.2B) with the map 

of population density (Figure 3.2C). 

 The last two columns of Table 3.8 confirm the low relative high school gains in 

the Southwest, specifically among the major cities.  Of the 30 largest CGAs, the most 

relative high school drain occurred in the counties containing Riverside, Dallas, Houston, 

Los Angeles, and Phoenix.  With the exception of these and other Southwestern cities, 

the counties containing the 30 largest cities generally experienced high relative high 

school gain.  Fourteen of these 30 counties are in the top quintile of relative high school 

gain, with the District of Columbia, St. Louis, Baltimore, New Orleans, Atlanta, and 

Virginia Beach all at or above the 97th percentile.  The suburban CGAs adjacent to these 

30 principal counties tend to have lower relative high school gain than the populous 

CGAs they surround.  The higher relative high school gain in principal counties 

compared to the surrounding suburbs may reflect at least two things.  First, it may reflect 

rapid attenuation of the positive human capital spillovers associated with urban 

agglomerations as distance from urban centers increases (Rosenthal and Strange, 2008).  

Second, it may reflect life cycle migration of the middle and upper class.  Because of the 

gap in the safety and school quality of suburban areas compared to urban centers, parents 

of school-age children flock to the suburbs if they have the means to do so, suggesting 

freshly-minted high school graduates (and dropouts) will be concentrated in suburban 

areas.  However, while quality public schools tend to be located in suburban areas, 

quality jobs are often concentrated in large cities, attracting young, skilled workers.  

(Recall that in the second period the cohort is between the ages of 31 and 37, so a large 

share of educated households will not yet have school-age children of their own.)   
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   Whereas relative high school gain tends to be somewhat higher in principal 

counties than in suburban CGAs, suburban CGAs have markedly higher relative college 

gain than principal counties.  Table 3.11 lists the relative college gain percentiles for the 

principal counties of the 30 largest MSAs and the adjacent suburban CGAs.  Eighteen of 

the suburban CGAs rank more than 20 percentiles above their corresponding principal 

county in relative college gain, including ten suburban CGAs that are more than 50 

percentiles higher.  No principal counties rank more than 15 percentiles above their 

suburban CGAs.  This apparent outmigration of college-educated people from principal 

counties to the suburbs is likely the corollary of the migration of young high school-

educated people to the principal counties.  Relative college gain tracks the movement of 

the college-educated (initially between the ages of 25-34) over a period of almost two 

decades, putting most of them in their late 40s in the second period.  Just as life-cycle 

considerations lead many young high school graduates (including future college 

graduates) from the suburbs to the principal cities, as they enter mid-life they are 

increasingly drawn to suburban areas (especially those with school age children). 

Tables 3.12 and 3.13 show the same pattern of relative high school gain 

concentrated in large urban centers and relative college gain concentrated in suburban 

areas.  Low density metropolitan centers and nonmetropolitan areas are 

disproportionately likely to experience the highest rates of relative high school drain and 

relative college drain.  As Table 3.12 shows, many of the 30 CGAs with the most relative 

high school gain are high and medium density metropolitan centers, including the 

counties that include Washington, Baltimore, St. Louis, Norfolk, Virginia Beach, New 

Orleans, Atlanta, and Jacksonville (each of these counties has more than 500 people per 
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square mile.)  On the other hand, the 30 CGAs experiencing the most relative high school 

drain are predominantly less-dense metropolitan centers and rural areas in California and 

Texas (in bold).  Of these 30 areas only Dallas County has a population density above 

300 per square mile.63  As Table 3.13 shows, areas experiencing the most relative college 

gain tend to be suburban.  Among the 30 CGAs with the highest relative college gain, 

only four CGAs are nonmetropolitan, and none of them contain the principal city of the 

MSA.  The remaining 26 CGAs are all suburban.  On the other hand, only three of the 30 

highest relative college drain CGAs could be considered suburban.   

 

3.7 Determinants of Brain Gain and Brain Drain  

 Table 3.14 displays results from ordinary least squares regressions of absolute 

high school gain over the period 1992-2008.  Column 1 displays results of a simple 

growth regression based on the initial stock of high school graduates.  It shows that a 

large number of high school graduates in a CGA are associated with more absolute high 

school gain.  This result is unsurprising if young adults are more likely to move to large 

cities.  Column 2 adds the additional explanatory variables shown in equations (3.5a)-

(3.5c), seeking to determine which local area characteristics contribute to brain gain or to 

brain drain.  Columns 3-5 then estimate the determinants of absolute high school gain 

separately for metropolitan centers, suburban CGAs and nonmetropolitan CGAs, adding 

neighbors’ labor market conditions as an additional explanatory variable.  A CGA is 

                                                            
63 It is also notable that a number of college towns are among the 30 areas with the most relative high 

school gain, including Monroe (LA), Gainesville (FL), and Morgantown (WV).  Of course one would 

expect that these places would especially attract the college-educated (or more accurately the soon-to-be 

college-educated), but the relative college gain measure will not capture such gains because it tracks a 

cohort whose initial age is 25-34 (most of the movement to college towns would occur between the ages 18 

and 25.) 
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classified as a metropolitan center if it contains one or more counties that are included in 

a MSA and no adjacent CGAs have a higher population density.  All other metropolitan 

CGAs are considered suburban in the regressions described in Tables 3.14, 3.15 and 3.16.   

 Column 2 of Table 3.14 shows that, ceteris paribus, nonmetropolitan CGAs 

experienced 10.1 percentage points lower growth rates in their high school-educated 

cohorts than low density CGAs (less than 200 people per square mile).  Nonmetropolitan 

CGAs also experienced 6.4 percentage points lower absolute high school gain than 

medium density (200-400 people per square mile) metropolitan CGAs.  Wages are higher 

in metropolitan areas, and many young high school-educated individuals can benefit from 

this and the diversity of urban employment.  Contrary to the descriptive evidence 

presented in Tables 3.4, 3.8 and 3.9, Table 3.14 suggests that high density of a 

metropolitan CGA reduces absolute high school gain relative to less dense metropolitan 

CGAs, though this particular result seems to arise because the effect of population 

density is confounded with the effect of the initial (log) number of high school 

graduates.64   

As expected, the table also provides evidence that proximity to state universities 

increases growth of the high school-educated.  This seems to be primarily true of 

nonmetropolitan CGAs where remoteness most severely limits access to higher education 

(column 5).  The amenity variables provide evidence that temperate climates and culture 

(as proxied by the size of the arts and entertainment industry) attract young high school 

graduates; these effects are robust to the inclusion and exclusion of alternative amenity 

                                                            
64 In Appendix Table A.4, I show that removing initial (log) number of high school graduates from the 

regression causes the coefficient on “Metro > 400 per square mile” to fall from a very highly significant 

value of -0.147 to a statistically insignificant value of -0.054.  Otherwise the results in Appendix Table A.4 

differ very little relative to Table 3.14. 
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variables.  Amenity variables, especially the size of the arts and entertainment sector, 

primarily affect the absolute high school gain of nonmetropolitan CGAs (column 5).  

Surprisingly coastal CGAs experienced less absolute high school gain, ceteris paribus, 

though this result is not robust to the exclusion of climate or region variables.  There are 

residual regional effects on absolute high school gain, unexplained by the other 

explanatory variables.  Consistent with Table 3.5 and Figure 3.1A, CGAs in the South 

and West tended to experience the most absolute high school gain, ceteris paribus.65   

 Strong local economic conditions, as expected, positively affect growth of high 

school graduates.  Column 2 of Table 3.14 shows that each percentage point increase in 

the local poverty rate is associated with 1.1 percentage points less growth in the local 

high school-educated cohort.  Likewise each percentage point increase in the local 

unemployment rate is associated with 2.1 percentage points less growth in the local high 

school-educated cohort.  This is noteworthy since the regression only included initial 

(1991-1993) poverty and unemployment rates, demonstrating either (or both) the 

persistence of weak local economies or that transient economic downturns negatively 

affect long-term growth of high school graduates.  In either case, local labor market 

conditions have more than a transient effect on absolute high school gain.  CGAs with 

high concentrations of blue-collar industries like mining and manufacturing experienced 

somewhat lower growth of high school graduates.  Conversely a concentration of 

professional, scientific, and technical services positively affects absolute high school gain 

in metropolitan centers (column 3).  Column 4 shows that unemployment in neighboring 

CGAs negatively affects absolute high school gain in suburban CGAs.  Given the extent 

                                                            
65 Unlike the descriptive analysis, the regression shows that, ceteris paribus, CGAs in the South experience 

significantly more absolute high school gain than CGAs in the West.  



 
 

92 
 

that suburban areas depend on the labor markets of the central cities they surround, this 

result is unsurprising. 

Table 3.15 shows how the same explanatory variables affect the relative growth 

of the young high school-educated population compared to young high school dropouts 

(i.e. relative high school gain).  This table displays results from Ordinary Least Squares 

regressions of the growth in the high school-educated population as a share of a cohort’s 

population.  Recall that relative high school gain is the difference between a CGA’s 

actual growth in the share with a high school diploma and their predicted growth based 

on column 1 of this table (equivalent to Panel A of Table 3.2).  When the additional 

covariates in columns 2-4 are added, we explain the deviations between actual and 

predicted high school share growth that I have been referring to as relative high school 

gain.  For a CGA with a high school graduation rate of 80 percent, a coefficient of 0.01 

would imply that each unit change results in 0.8 percent more of the cohort being high 

school-educated in the second period.  Likewise, Table 3.16 shows the effect of the 

explanatory variables on the growth of those with a bachelor’s degree or higher relative 

to the growth of those without a bachelor’s degree (between ages 25-34 and 45-50).  For 

a CGA in which 20 percent of a cohort initially has a college degree, a coefficient of 0.01 

in Table 3.16 would imply that each unit change results in a 0.2 percent higher share of 

the population having a college degree in the latter period.   

In subsection 3.6.2 I noted that relative high school gain appeared to be higher 

among high density counties and relative college gain appeared to be lower among high 

density counties.  I suggested crime, school quality and the prevalence of high-paying 

jobs might explain these stylized facts; as the young and high school-educated set off on 
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their own, the high wages and diverse labor markets of densely populated cities attracts 

them, but as they approach middle age the quality schools, comfort and safety of the 

suburbs attract college-educated individuals with children (less educated individuals tend 

to be less mobile.)  Table 3.15 shows that, ceteris paribus, metropolitan CGAs attract 

relatively more growth of high school-educated workers than nonmetropolitan CGAs.  

Moreover within metropolitan areas, high population density is associated with more 

relative high school gain.  Table 3.16, meanwhile, suggests that a CGA with an initial 

college share of 20 percent would have about one percentage point more expected growth 

in its college share if it was either a low density or medium density CGA (compared to 

either high density CGAs or nonmetropolitan CGAs).   

Tables 3.15 and 3.16 demonstrate some residual regional differences in relative 

high school gain and relative college gain.  Ceteris paribus, CGAs in the West experience 

more relative high school drain and more relative college gain than CGAs in other 

regions.  This could indicate either that the West Region: 1) offers unobserved amenities 

or labor market opportunities that benefit college graduates over those with only a high 

school diploma, 2) offers unobserved amenities or labor market opportunities that 

especially benefit 30 and 40-somethings over younger adults, or 3) offers some 

combination of 1) and 2).  It seems likely, though, that some of the observed relative high 

school drain in the West results from unexplained differences in their propensity to attract 

less educated immigrants.  The share of the population that is foreign-born negatively 

affects relative high school gain, as immigrants are disproportionately likely to have less 

than a high school diploma.  The share of the foreign-born population is, however, an 

imperfect proxy for the effect of immigration on brain gain, as local areas differ in the 
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share of recent immigrants and in the distribution of immigrants’ country of origin, age 

and education level.  The West region dummy likely captures some of these unobserved 

differences, which may partially account for the West region’s observed negative effect 

on relative high school gain.  Nonetheless the size of the West region effect on relative 

high school gain (equivalent to the effect of a 4-5 percentage point increase in the share 

of the population that is foreign-born) suggests that immigration alone does not fully 

account for the relative high school drain in the West.  The reason for the relative college 

gain in the West is not obvious. 66     

With the possible exception of the arts and entertainment industry in 

nonmetropolitan areas, the amenities included in these regressions do not apparently 

attract disproportionately high net migration of more educated individuals (relative to 

their effect on the migration of less educated individuals).  In fact there is more relative 

high school gain, ceteris paribus in colder climates (though this result, too, may 

indirectly stem from unobserved differences in immigration in hot climates).  There is 

also some evidence that proximity to a four year state college positively affects relative 

high school gain, but not relative college gain.  Given the ages of the high school and 

college cohorts, this result is logical, as proximity to colleges should primarily attract 

young migrants who are seeking college degrees, not those who already have them.  

Strong initial economic conditions increase all measures of brain gain (unlike the 

effects of density, amenities, region, and state college proximity).  Consistent with 

                                                            
66 Kodrzycki (2001) similarly finds that Western states experience high rates of domestic net migration of 

young college graduates, though she uses high school location for the state of origin, so it also encompasses 

moves for college.  She argues the domestic migration of college graduates to the West is partly the result 

of the extensive, low-cost state college system of states in the West.  Only 13 percent of young people from 

the West went out of state for college compared to over 35 percent of young people from the Northeast in 

the National Longitudinal Survey of Youth data used by Kodrzycki. 
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Chapter 2, CGAs with strong economies tend to attract disproportionately high growth 

among more educated populations (in addition to the higher absolute high school gain 

discussed above).  Both initial poverty rates and initial unemployment rates negatively 

impact relative high school gain and relative college gain.  Consider a CGA with a 1992 

high school graduation rate of 80% in which 20% of 25-34 year olds had a bachelor’s 

degree or higher in 1990.  Ceteris paribus, if the initial poverty rate and unemployment 

rate in that CGA were each one percentage point higher, by 2008 the expected share of 

the 31-37 year old cohort with a high school diploma would be about 0.4 percentage 

points lower and the expected share of the 45-50 year old cohort with a college degree 

would also be about 0.4 percentage points lower.  Unsurprisingly, like absolute high 

school gain, relative high school gain and relative college gain seem to be more (less) 

prevalent in CGAs whose economies are concentrated in white (blue)-collar industries.  

CGAs with large shares of total compensation for military jobs experience somewhat 

higher relative high school gain, but somewhat lower relative college gain, while other 

public sector employment has an insignificant effect on relative growth of the high school 

or college-educated. 

I consider the effects of labor market conditions in adjacent CGAs on relative 

high school gain and relative college gain in the last three columns of Tables 3.15 and 

3.16.  Recall that strong adjacent labor market conditions led to positive absolute high 

school-educated population spillovers within metropolitan areas (Table 3.14).  Adjacent 

area labor market conditions do not significantly affect relative high school gain (Table 

3.15).  Column 3 of Table 3.16 shows that central metropolitan CGAs experience more 

relative college gain when surrounding CGAs have high unemployment.  On the other 
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hand, neighbors’ unemployment does not significantly affect relative college gain in 

suburban or nonmetropolitan CGAs.  This suggests that central metropolitan CGAs 

largely compete with surrounding CGAs to retain 25-50 year old college graduates rather 

than benefitting from positive spillovers from these areas. 

 Finally in Table 3.17, I estimate an alternative specification which includes 

average log wages of college graduates and average log wages of non-college graduates 

as additional explanatory variables.  Because average wages by educational attainment 

are not available at the county level, and because many PUMA boundaries changed 

between the 1990 decennial Census and the 2006-10 ACS, the geographic unit used for 

the regressions in Table 3.17 is based on Census-defined “Consistent PUMAs” which 

consolidate the two sets of PUMA definitions.  By using broader geographic areas—these 

regressions include 312 observations instead of 915—this table also acts as a sensitivity 

check of the earlier regressions.  Column 1 of Table 3.17 replicates the earlier regression 

of absolute high school gain (column 2 of Table 3.14) using this alternative unit of 

observation.  Likewise columns 3 and 5 replicate the regressions explaining relative high 

school gain and relative college gain (column 2 of Table 3.15 and 3.16, respectively).  

Bold coefficients indicate that the value differs by more than 1.5 standard errors relative 

to the corresponding value in Tables 3.14-3.16.  Italics are used to denote coefficients 

that lose statistical significance when the alternative geographic units are used (from 

significant at the 5% level to insignificant at the 10% level) or coefficients that gain 

statistical significance.   

The results in Table 3.17 largely support the qualitative findings of the previous 

regressions.  Only the regression of absolute high school gain (column 1) shows much 
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sensitivity to using Consistent PUMAs as the unit of analysis.  Most notably, using the 

broader geographic units has large effects on the coefficients on the initial stock of high 

school graduates and on the indicators for high and medium-density metropolitan areas.  

There are two factors that seem to lead to this sensitivity.  First, by combining low 

density and high density PUMAs to form Consistent PUMAs, many areas switch 

metropolitan type (e.g. high density to medium density).  Second, metropolitan density in 

the absolute high school regression—as mentioned earlier—is confounded with the initial 

stock of high school graduates.  (Comparison of Appendix Tables A.4 and A.5 shows that 

the metropolitan density indicators are less sensitive to the change in geographic unit 

when the initial stock of high school graduates is omitted.)   

Given that the change in geographic unit has modest effects, what effect do 

college and non-college wages have on brain gain?  Columns 2 and 4 show that each 

percent increase in (initial) non-college wages leads to 0.5 percent more absolute growth 

in the high school-educated cohort, and 0.15 percent more of the cohort being college-

educated in the latter period. 67  College wages have an insignificant effect in both 

regressions.68  The high school-educated cohorts may be more likely to migrate to areas 

with high wages for unskilled labor—even though a subset of this group is highly 

educated—because the group is also young and relatively unskilled due to their lack of 

work experience.  Inclusion of the wage variables eliminates the effect of the poverty rate 

on each of the brain gain measures, but it strengthens the effect of the unemployment 

rate. 

                                                            
67 This assumes an 80 percent graduation rate. 
68 College wages have a significant positive effect on both absolute high school gain and relative high 

school gain when non-college wages are omitted. 
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Higher college wages lead to higher growth of the share of college-educated in a 

cohort, but higher non-college wages do not reduce the share of college-educated 

individuals.  One percent higher initial college wages are associated with 0.1 percentage 

points higher growth in the college share,69 again demonstrating the high responsiveness 

of college-educated migration to labor market stimuli.   

Finally note that the effect of nonmetropolitan status on relative high school gain 

and relative college disappears with the inclusion of the wage variables.  In fact, when 

wages are included, nonmetropolitan areas and less dense metropolitan areas outperform 

medium density and high density metropolitan areas in terms of relative college gain.  

Since specifically urban and rural amenities are not included in these regressions, this 

result strongly suggests that metropolitan areas’ advantage in attracting educated 

migrants stems primarily from the strength of labor market opportunities, not from 

educated workers having stronger preferences for urban amenities.   

 

3.8 Conclusion 

In this chapter I describe three measures of growth or decline of local educational 

attainment and estimate these measures and their determinants in localities across the 

United States.  Gains in any of these measures potentially benefit public finances, local 

industry, business owners, and others through the positive externalities of human capital.  

Absolute high school gain describes the total growth of the population of the high school-

educated after (expected) graduation.  Rising property values in cities and counties 

experiencing this type of growth strengthens the fiscal position of these localities.  

Relative high school gain and relative college gain—rapid growth of the high school-

                                                            
69 This assumes that 20 percent of the cohort had a bachelor’s degree at the beginning of the period. 
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educated and college-educated compared to the growth of less educated people—

similarly expand local tax bases because of education’s positive effect on earnings. 

Unlike brain gain and brain drain between countries, many places are neither clear 

winners nor clear losers as a result of brain gain and brain drain within the United States.  

Warmer localities tend to attract more absolute high school gain but experience less 

relative high school gain.  Localities in the West attract disproportionate shares of high 

school dropouts, but also attract disproportionate shares of college graduates.  

Immigration explains at least some of this difference as Border States attract more 

population growth because of immigration, but this population growth tends to be less 

educated than the native population.  Some regional brain gain differences, then, partly 

stem from the familiar issue of immigration to the Southwest.  

Within metropolitan areas, this chapter yields mixed evidence about whether high 

density is associated with more brain gain.  Some descriptive evidence suggests that more 

dense metropolitan areas attract more absolute growth of young high school graduates, 

but the regression results suggest that, all else being equal, low density metropolitan 

areas experience at least as much absolute high school gain as high density metropolitan 

areas.  As a share of (25-50 year old) cohort populations, low density metropolitan areas 

experience more growth of college graduates than high density metropolitan areas.  This 

finding partially reflects the lifecycle pattern where more educated (and more mobile) 

populations are especially likely to migrate to more urban areas early in their working 

life, but then flow to suburbs later in life.  No obvious policy implications emerge from 

this type of life-cycle migration, as these differences in migration patterns between young 

and old educated workers reveal differences in preferences and not obvious inefficiencies 
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or major equity concerns between high density and low density metropolitan areas (since 

the flows of educated workers often balance each other).   

There are, however, two area characteristics that cause unambiguously negative 

effects on brain gain: nonmetropolitan status and poor initial labor market conditions.  

Nonmetropolitan areas attract less absolute growth of the high school-educated 

population and the growth they do experience is disproportionately high among young 

high school dropouts and is disproportionately low among young to middle-aged college 

graduates.  The same bleak story is true of localities which began the period with high 

unemployment rates, high poverty rates, or low wages.  Such areas experience lower 

absolute high school gain, lower relative high school gain and lower relative college gain.    

The absolute and relative decline in educated individuals from these areas is large 

enough to be a concern for areas that are rural or economically depressed, but the solution 

to the problem is less obvious.  Informing policy makers of a city with high 

unemployment and poverty that poor economic conditions will have detrimental long-

term effects on their ability to attract educated workers is not particularly helpful, except 

perhaps to add to the urgency to find a solution.  From a federal or state standpoint, it is 

debatable whether lack of growth of educated populations in nonmetropolitan and 

economically depressed areas warrants any action, and if it does, what kind of actions it 

warrants.  Combined with the previous chapter, the results in this essay have some 

bearing on the use of place-based policies in areas with poor labor market conditions.  

Current general economic conditions lead to particularly large changes in the propensity 

of educated individuals to move in or out of an area, and such spatial differences in labor 

market conditions give rise to important differences in net flows of skilled labor.  
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Therefore, depending on the specific nature of a place-based policy (for example the 

extent that development is targeted to blue-collar industries or that the policy targets 

general development), it may lead to substantial net changes in the amount of skilled 

labor, but smaller effects on unskilled labor.  Stanching the outflows of skilled labor from 

depressed areas may limit the demographic shifts that exacerbate economic problems in 

these areas.  The welfare implications of such changes depend on the complementarity of 

skilled and unskilled labor and the nature of human capital spillovers, among other 

things.   Note also that a failure to retain high school graduates in these places causes a 

larger share of the benefits of that education to accrue elsewhere, potentially leading to an 

underinvestment in education.  Therefore a case can also be made for larger subsidies for 

primary and secondary education in nonmetropolitan areas and economically depressed 

areas on both equity and efficiency grounds.    
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Tables 

Table 3.1  Age at Time of ACS Survey, Based on High School Class and Survey Year 

 

HS Class    |    Survey Year 2006 2007 

 

2008 2009 

 

2010 

Class of 1991 33 34 35 36 37 

Class of 1992 32 33 34 35 36 

Class of 1993 31 32 33 34 35 

Age assumes someone was 18 in their expected high school graduating year. 

 

 

Table 3.2  Basic Educational Attainment Growth Regressions 

Panel A 

Growth High School Share Coefficient Standard Error 

Ln(High School Share 1992) -0.720** (0.016) 

Constant -0.071** (0.004) 

   

R-squared = 0.696   

Panel B 

Growth College Share Coefficient Standard Error 

Ln(College Share 1990) -0.176** (0.013) 

Constant -0.050* (0.024) 

   

R-squared = 0.176   

Panel C 

Growth Graduate School Share Coefficient Standard Error 

Ln(Grad School Share 1990) -0.256** (0.016) 

Constant -0.141* (0.055) 

   

R-squared = 0.222   

Initial (1992) high school share is estimated based on an area’s 1991-1993 high school graduates and 1988-1991 

freshmen enrollment, based on the National Center of Education Statistics’ Common Core of Data.  Initial (1990) 

college and graduate school shares are based on 1990 decennial Census estimates of the population of 25-34 year olds 

by educational attainment.  Growth of high school share subtracts the initial high school share from a weighted average 

of the share of 31-37 year old high school graduates in the 5% Public Use Microdata Sample of the 2006-2010 

American Community Survey.  Growth of college (graduate school) shares subtracts the initial shares from an average 

of the share of 45-50 year old college (graduate school) graduates in the 5% Public Use Microdata Sample of the 2006-

2010 American Community Survey. Regressions employ Hubert-White robust standard error corrections. 

** Significant at the 1% level 

* Significant at the 5% level 
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Table 3.3  Summary Statistics  
 

VARIABLES Mean 

Standard 

Deviation 

 

Minimum Maximum 

 

Observs. 

Absolute growth dropouts (’92-‘08) -0.248 0.631 -2.633 1.653 915 

Abs. high school gain (’92-‘08) 0.295 0.366 -0.596 1.800 915 

Growth high school share (’92-‘08) 0.099 0.113 -0.260 0.700 915 

Relative high school gain (’92-‘08) 0.000 0.062 -0.361 0.207 915 

Abs. college gain (’90-’08) 0.433 0.372 -1.634 2.803 915 

Growth college share (’90-‘08) 0.275 0.186 -0.494 1.108 915 
Relative college gain (’90-’08) 0.000 0.169 -0.670 0.753 915 
Abs. grad school gain (’90-‘08) 0.894 0.450 -1.116 3.496 915 
Growth grad school share (’90-‘08) 0.737 0.300 -0.230 1.942 915 
Relative grad school gain (’90-‘08) 0.000 0.264 -0.943 0.826 915 
Population 1990 246,012 436,129 57,508 8,863,164 915 
Population 2008 301,559 515,610 92,274 9,862,049 915 
Pop. density (/sq. mile) 1990 404.6 1521.3 1.2 32,633.5 915 
High school grad. rate 1991-93 % 79.6 10.0 42.9 96.0 915 
College enrollment per 100 6.1 5.5 0 36.6 915 
Dist. to four-year state college (miles) 35.4 32.7 0 193.3 915 
Non-native born % 7.1 6.8 44.6 0.5 915 
July average temperature (F) 85.5 6.0 56.8 106.9 915 
January avg. temperature (F)  27.1 11.5 -2.9 59.4 915 
Industry Herfindahl Index 0.134 0.044 0.067 0.373 915 
Poverty Rate (1990) % 14.4 6.6 2.6 44.1 915 
Unemployment Rate (1991-93) 6.7 2.6 2.1 28.4 915 
Forestry and fishing % 0.44 0.93 0 13.36 915 
Mining % 1.18 3.21 0 29.80 915 
Utilities % 9.77 1.36 0 17.92 915 
Construction % 5.78 2.26 0 19.99 915 
Manufacturing % 19.53 10.95 0.58 59.42 915 
Wholesale % 4.31 2.46 0 42.21 915 
Retail % 8.22 1.90 1.16 20.24 915 
Transportation % 3.39 2.94 0 45.87 915 
Information services % 2.10 1.89 0.23 33.65 915 
Finance services % 4.05 2.82 0.78 24.98 915 
Real Estate % 0.89 0.60 0.17 5.81 915 
Professional % 4.08 3.31 0 27.38 915 
Management % 1.36 2.02 0 27.74 915 
Educational services % 0.85 1.04 0 10.66 915 
Administrative % 2.74 1.73 0.45 33.08 915 
Health care services % 9.35 3.74 0 40.26 915 
Arts and entertainment % 0.74 0.90 0.01 9.98 915 
Accommodation services % 3.22 2.33 1.04 33.72 915 
Other services % 3.29 0.79 1.23 10.51 915 
Federal government % 3.04 3.46 0.30 33.76 915 
Military % 1.59 4.69 0.07 54.87 915 
State and local government % 18.88 7.60 4.50 48.82 915 
Initial (1992) high school share is estimated based on an area’s 1991-1993 high school graduates and 1988-1991 

freshmen enrollment, based on the National Center of Education Statistics’ Common Core of Data.  Initial (1990) 

college and graduate school shares are based on 1990 decennial Census estimates of the population of 25-34 year olds 

by educational attainment.  Growth of high school share subtracts the initial high school share from a weighted average 

of the share of 31-37 year old high school graduates in the 5% Public Use Microdata Sample of the 2006-2010 

American Community Survey.  Growth of college (graduate school) shares subtracts the initial shares from an average 

of the share of 45-50 year old college (graduate school) graduates in the 5% Public Use Microdata Sample of the 2006-

2010 American Community Survey.  See Section 2.5.1 for sources of explanatory variables. 
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Table 3.4  Mean Characteristics by Quintile of Absolute HS Gain (1992-2008) 
 

VARIABLES 

Brain Gain 

Quintile 1 

Brain Gain 

Quintile 2 

Brain Gain 

Quintile 3 

Brain Gain 

Quintile 4 

Brain Gain 

Quintile 5 

Abs. high school brain gain (’92-‘08) % -15.5 7.8 25.5 45.2 84.8 

Rel. high school brain gain (’92-‘08) % -1.7 -0.7 0.3 -0.4 2.4 

Absolute college brain gain (’90-‘08) % 33.9 39.9 39.8 44.1 58.7 

Relative college brain gain (’90-‘08) % -5.9 -3.4 -1.1 2.6 7.8 

Rel. grad school brain gain (’90-‘08) % -8.6 -5.8 0.3 3.7 10.4 

Population 1990 133,626 176,786 210,356 276,670 434,025 

Population 2008 135,384 194,702 237,811 341,770 600,344 

Pop. density (/sq. mile) 1990 63.7 324.4 295.0 437.9 905.1 

Metro > 400 per square mile (dummy) 0.011 0.060 0.153 0.268 0.330 

Metro 200-400 per square mile (dummy) 0.033 0.120 0.180 0.224 0.181 

Metro < 200 per square mile (dummy) 0.240 0.293 0.339 0.339 0.418 

Non-metro (dummy) 0.716 0.527 0.328 0.169 0.071 

College enrollment per 100 5.3 5.4 6.4 6.5 7.0 

Dist. to four-year state college (miles) 54.4 47.6 30.2 23.9 20.9 

Non-native born % 3.5 4.8 6.0 9.2 12.2 

July average temperature (F) 84.3 84.8 85.4 85.5 87.4 

January avg. temperature (F)  20.4 25.7 27.3 29.0 33.0 

Coast (dummy) 0.142 0.174 0.251 0.284 0.324 

Poverty Rate (1990) % 16.8 16.7 14.2 12.7 11.7 

Unemployment Rate (1991-93) % 7.4 7.6 6.6 6.4 5.3 

Industry Herfindahl Index 0.150 0.143 0.133 0.130 0.114 

Forestry and fishing % 0.62 0.59 0.36 0.47 0.19 

Mining % 2.28 1.73 1.01 0.49 0.41 

Utilities % 1.37 1.11 0.73 0.91 0.76 

Construction % 4.68 5.54 5.75 5.92 7.01 

Manufacturing % 22.58 21.90 20.25 18.94 13.94 

Wholesale % 3.94 3.72 4.02 4.47 5.41 

Retail % 8.31 8.21 8.33 8.17 8.06 

Transportation % 3.90 3.39 3.16 3.20 3.29 

Information services % 1.51 1.63 1.89 2.23 3.22 

Finance services % 3.27 3.32 3.64 4.49 5.57 

Real Estate % 0.53 0.74 0.88 0.99 1.31 

Professional % 2.24 2.91 4.09 4.60 6.60 

Management % 0.79 0.90 1.28 1.80 2.03 

Educational services % 1.85 2.25 2.80 3.01 3.79 

Administrative % 0.68 0.77 0.91 0.88 1.00 

Health care services % 9.72 9.35 9.80 9.29 8.55 

Arts and entertainment % 0.51 0.58 0.77 0.75 1.07 

Accommodation services % 2.84 3.20 3.19 3.32 3.58 

Other services % 3.32 3.29 3.33 3.19 3.33 

Federal government % 2.81 3.16 3.07 3.18 2.98 

Military % 0.72 1.40 2.02 1.79 2.03 

State and local government % 21.55 20.33 18.72 17.92 15.88 

Northeast 0.137 0.158 0.180 0.153 0.033 

Midwest 0.546 0.288 0.230 0.219 0.137 

South 0.257 0.418 0.492 0.475 0.665 

West 0.060 0.136 0.098 0.153 0.165 

Initial stock of high school graduates is based on the National Center for Education Statistics’ Common Core of Data, 

1991-1993.  Growth of high school graduate stock is then based on 31-37 year olds in the 2006-2010 5% Public Use 

Microdata Sample of the American Community.  See Table 3.2 or Section 3.5.1 of the text for details of the 

construction of brain gain measures.  See Section 3.5.1 for sources of explanatory variables. 
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Table 3.5  Mean Characteristics by Quintile of Relative High School Gain (1992-2008) 
 

VARIABLES 

Brain Gain 

Quintile 1 

Brain Gain 

Quintile 2 

Brain Gain 

Quintile 3 

Brain Gain 

Quintile 4 

Brain Gain 

Quintile 5 

Abs. high school brain gain (’92-‘08) % 19.9 22.0 26.9 33.4 45.1 

Rel. high school brain gain (’92-‘08) % -9.3 -2.0 1.0 3.3 7.0 

Absolute college brain gain (’90-‘08) % 44.4 45.7 42.6 44.3 39.4 

Relative college brain gain (’90-‘08) % -3.8 -1.0 -0.6 1.9 3.4 

Rel. grad school brain gain (’90-‘08) % -6.7 -3.1 0.1 3.0 6.5 

Population 1990 273,603 207,699 265,042 228,060 255,544 

Population 2008 350,731 257,084 323,223 272,026 304,649 

Pop. density (/sq. mile) 1990 205.1 255.8 353.9 350.5 857.1 

Metro > 400 per square mile (dummy) 0.098 0.110 0.180 0.196 0.235 

Metro 200-400 per square mile (dummy) 0.082 0.132 0.126 0.179 0.219 

Metro < 200 per square mile (dummy) 0.251 0.297 0.361 0.348 0.372 

Non-metro (dummy) 0.568 0.462 0.333 0.277 0.175 

College enrollment per 100 5.1 5.6 5.9 6.1 7.8 

Dist. to four-year state college (miles) 47.3 41.8 33.5 30.2 24.4 

Non-native born % 10.6 6.1 6.6 5.7 6.7 

July average temperature (F) 88.4 85.8 85.0 84.3 84.1 

January avg. temperature (F)  32.0 27.9 25.6 24.2 25.6 

Coast (dummy) 0.219 0.209 0.219 0.239 0.290 

Poverty Rate (1990) % 17.1 15.6 13.5 13.0 12.9 

Unemployment Rate (1991-93) % 8.0 6.9 6.4 6.1 5.9 

Industry Herfindahl Index 0.141 0.143 0.137 0.130 0.119 

Forestry and fishing % 1.02 0.40 0.31 0.25 0.25 

Mining % 1.70 1.33 1.06 0.88 0.95 

Utilities % 1.10 0.92 0.86 1.07 0.94 

Construction % 5.63 5.46 5.49 6.28 6.03 

Manufacturing % 19.32 21.86 20.86 20.34 15.26 

Wholesale % 4.02 3.92 4.26 4.60 4.73 

Retail % 8.39 8.26 8.18 8.18 8.07 

Transportation % 3.51 3.75 3.23 3.24 3.23 

Information services % 1.74 1.83 2.03 2.17 2.70 

Finance services % 3.42 3.47 4.27 4.32 4.79 

Real Estate % 0.85 0.84 0.83 0.89 1.02 

Professional % 3.06 3.56 4.05 4.45 5.30 

Management % 1.04 1.32 1.33 1.38 1.72 

Educational services % 2.50 2.60 2.71 2.94 2.95 

Administrative % 0.56 0.83 0.93 0.82 1.12 

Health care services % 8.71 9.09 9.62 9.58 9.71 

Arts and entertainment % 0.64 0.62 0.79 0.77 0.86 

Accommodation services % 3.25 3.25 3.36 2.97 3.29 

Other services % 3.33 3.32 3.26 3.30 3.26 

Federal government % 3.15 2.87 2.80 2.54 3.83 

Military % 1.45 0.86 1.53 1.51 2.61 

State and local government % 21.61 19.64 18.23 17.53 17.40 

Northeast 0.033 0.143 0.142 0.152 0.191 

Midwest 0.208 0.231 0.344 0.348 0.290 

South 0.481 0.527 0.443 0.429 0.426 

West 0.279 0.099 0.071 0.071 0.093 

Initial share of high school graduates is based on the National Center for Education Statistics’ Common Core of Data, 

1991-1993.  Growth of high school graduate share is then based on 31-37 year olds in the 2006-2010 5% Public Use 

Microdata Sample of the American Community Survey.  See Table 3.2 or Section 3.5.1 of the text for details of the 

construction of brain gain measures.  See Section 3.5.1 for sources of explanatory variables. 
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Table 3.6  Mean Characteristics by Quintile of Relative College Gain (1990-2008) 
 

VARIABLES 

Brain Gain 

Quintile 1 

Brain Gain 

Quintile 2 

Brain Gain 

Quintile 3 

Brain Gain 

Quintile 4 

Brain Gain 

Quintile 5 

Abs. high school brain gain (’92-‘08) % 18.6 20.0 26.2 35.0 47.9 

Rel. high school brain gain (’92-‘08) % -1.3 -0.9 0.9 0.6 0.7 

Absolute college brain gain (’90-‘08) % 9.9 28.3 39.1 49.9 89.6 

Relative college brain gain (’90-‘08) % -22.9 -8.0 -0.2 7.3 23.9 

Rel. grad school brain gain (’90-‘08) % -27.4 -10.5 0.0 12.4 25.8 

Population 1990 176,564 288,493 280,117 268,890 215,301 

Population 2008 196,372 324,842 329,414 352,014 304,785 

Pop. density (/sq. mile) 1990 413.8 648.1 320.3 383.1 254.7 

Metro > 400 per square mile (dummy) 0.120 0.201 0.164 0.223 0.110 

Metro 200-400 per square mile (dummy) 0.109 0.109 0.169 0.163 0.188 

Metro < 200 per square mile (dummy) 0.290 0.288 0.339 0.277 0.436 

Non-metro (dummy) 0.481 0.402 0.328 0.337 0.265 

College enrollment per 100 8.0 6.5 6.5 5.9 3.6 

Dist. to four-year state college (miles) 36.9 34.8 30.5 34.5 40.5 

Non-native born % 5.9 7.0 6.2 8.4 8.2 

July average temperature (F) 87.1 85.4 85.1 85.3 84.6 

January avg. temperature (F)  28.5 26.5 23.8 26.9 29.5 

Coast (dummy) 0.164 0.207 0.191 0.293 0.320 

Poverty Rate (1990) % 18.8 15.2 13.6 12.5 12.1 

Unemployment Rate (1991-93) 7.5 6.9 6.3 6.1 6.5 

Industry Herfindahl Index 0.144 0.138 0.130 0.131 0.126 

Forestry and fishing % 0.64 0.51 0.35 0.27 0.46 

Mining % 1.85 0.90 1.11 1.13 0.93 

Utilities % 0.94 1.15 0.86 0.83 1.11 

Construction % 5.00 5.15 5.79 5.84 7.14 

Manufacturing % 19.73 20.95 19.55 19.83 17.55 

Wholesale % 3.89 4.19 4.41 4.90 4.14 

Retail % 7.88 7.81 8.21 8.27 8.91 

Transportation % 3.99 3.33 3.36 3.15 3.12 

Information services % 1.82 2.00 2.08 2.41 2.17 

Finance services % 3.50 4.27 4.32 4.24 3.94 

Real Estate % 0.76 0.82 0.86 1.01 0.99 

Professional % 3.00 3.90 3.91 4.86 4.76 

Management % 1.00 1.31 1.50 1.51 1.48 

Educational services % 2.31 2.51 2.77 3.07 3.03 

Administrative % 0.78 0.90 0.90 0.83 0.85 

Health care services % 9.66 9.68 9.37 9.22 8.78 

Arts and entertainment % 0.50 0.72 0.69 0.82 0.95 

Accommodation services % 2.91 2.87 3.44 3.25 3.66 

Other services % 3.29 3.25 3.26 3.22 3.44 

Federal government % 3.14 2.90 3.10 2.65 3.42 

Military % 1.78 1.29 1.54 2.11 1.23 

State and local government % 21.64 19.60 18.63 16.61 17.93 

Northeast 0.104 0.196 0.148 0.152 0.061 

Midwest 0.262 0.299 0.350 0.293 0.215 

South 0.579 0.435 0.388 0.435 0.470 

West 0.055 0.071 0.115 0.120 0.254 

Initial share of college graduates is based on 25-34 year olds in the 1990 decennial Census.  Growth of college graduate 

share is then based on 45-50 year olds in the 2006-2010 5% Public Use Microdata Sample of the American Community 

Survey.  See Table 3.2 or Section 3.5.1 of the text for details of the construction of brain gain measures.  See Section 

3.5.1 for sources of explanatory variables. 
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Table 3.7  State Absolute HS and Dropout Gain 1992-2008 (Graduation to Age 31-37) 

 

State 

Rank Abs. 

High School 

Gain 

 

Abs. High 

School Gain 

Rank Abs. 

HS Dropout 

Gain 

Abs. HS 

Dropout 

Gain 

Rank Rel. 

High School 

Gain 

 

Rel. High 

School Gain 

Nevada 1 1.113 1 1.172 46 -0.07 

District of Columbia 2 1.043 43 -1.045 1 0.137 

Arizona 3 0.878 5 0.297 43 -0.026 

Florida 4 0.775 18 -0.183 15 0.025 

Colorado 5 0.705 12 -0.015 24 0.014 

Georgia 6 0.66 19 -0.199 32 0.005 

Delaware 7 0.598 14 -0.056 31 0.007 

California 8 0.563 3 0.453 47 -0.083 

Oregon 9 0.559 23 -0.239 27 0.010 

Maryland 10 0.552 6 0.229 19 0.022 

North Carolina 11 0.55 20 -0.207 40 -0.006 

Texas 12 0.518 15 -0.063 45 -0.056 

Virginia 13 0.50 17 -0.173 13 0.027 

Tennessee 14 0.489 32 -0.431 20 0.020 

Connecticut 15 0.468 35 -0.526 6 0.047 

New Jersey 16 0.459 34 -0.505 35 0.003 

South Carolina 17 0.448 37 -0.653 9 0.033 

Illinois 18 0.43 7 0.088 39 -0.004 

Utah 19 0.406 8 0.04 29 0.010 

Rhode Island 20 0.388 30 -0.41 26 0.012 

Missouri 21 0.383 29 -0.358 18 0.023 

Kentucky 22 0.36 31 -0.422 23 0.016 

Minnesota 23 0.31 11 -0.011 12 0.028 

Louisiana 24 0.306 42 -0.903 8 0.036 

New Hampshire 25 0.306 4 0.383 17 0.024 

Idaho 26 0.303 25 -0.282 38 -0.002 

New Mexico 27 0.303 13 -0.029 44 -0.043 

Pennsylvania 28 0.301 16 -0.141 14 0.027 

Alabama 29 0.288 38 -0.698 22 0.010 

Wisconsin 30 0.288 2 0.494 28 0.018 

Mississippi 31 0.263 40 -0.783 33 0.005 

Indiana 32 0.247 24 -0.258 34 0.003 

Michigan 33 0.231 27 -0.349 11 0.028 

Kansas 34 0.224 21 -0.225 36 0.0 

Ohio 35 0.221 36 -0.618 10 0.032 

Oklahoma 36 0.22 26 -0.292 41 -0.008 

Arkansas 37 0.177 33 -0.46 42 -0.008 

Maine 38 0.164 46 -1.329 2 0.081 

Wyoming 39 0.137 45 -1.319 4 0.008 

Vermont 40 0.128 44 -1.245 5 0.075 

New York 41 0.12 22 -0.239 30 0.010 

Nebraska 42 0.119 9 0.003 37 -0.001 

Iowa 43 0.111 10 0.0 25 0.013 

South Dakota 44 0.085 28 -0.35 16 0.024 

Montana 45 0.074 41 -0.845 7 0.046 

West Virginia 46 -0.021 39 -0.709 21 0.020 

North Dakota 47 -0.043 47 -1.459 3 0.079 

New England 6 0.351 9 -0.564 1 0.046 

Middle Atlantic 8 0.262 3 -0.040 5 0.015 

East North Central 7 0.289 4 -0.195 6 0.015 

West North Central 9 0.25 5 -0.202 2 0.019 

South Atlantic 2 0.593 6 -0.213 2 0.019 

East South Central 5 0.367 8 -0.559 4 0.016 

West South Central 4 0.419 7 -0.258 8 -0.031 

Mountain 1 0.623 2 0.068 7 -0.008 

Pacific 3 0.563 1 0.393 9 -0.075 

State and Census division brain gain based on population-weighted averages of CGAs.  See Table 3.2 and text for details. 



 
 

108 
 

Table 3.8  High School Gain Percentile for Counties Containing Largest U.S. MSA 

Centers (as of 1990) and Adjacent Areas 

County (City) 

Abs. High 

School Gain  

Percentile 

(MSA Center) 

Abs. High 

School Gain  

Percentile 

(Suburban) 

Rel. High 

School Gain  

Percentile 

(MSA Center) 

Rel. High 

School Gain  

Percentile 

(Suburban) 

Los Angeles (Los Angeles, CA) 81 70 8 4 

Cook (Chicago, IL) 82 70 40 23 

Philadelphia (Philadelphia, PA) 89 67 85 64 

Wayne (Detroit, MI) 58 63 76 73 

District of Columbia (Washington, DC) 95 88 99 27 

Dallas (Dallas, TX) 84 95 3 38 

Harris (Houston, TX) 88 87 7 56 

San Francisco (San Francisco, CA) 99 84 89 29 

Fulton (Atlanta, GA) 97 95 98 43 

Riverside (Riverside, CA) 91 74 2 4 

St. Louis (city), MO  98 48 99 79 

Hennepin (Minneapolis, MN) 85 76 60 63 

San Diego (San Diego, CA) 83 69 28 4 

Allegheny (Pittsburgh, PA) 49 16 81 76 

Baltimore (city), MD 98 80 99 75 

Maricopa (Phoenix, AZ) 96 91 20 38 

Cuyahoga (Cleveland, OH) 59 42 70 78 

Hillsborough (Tampa, FL) 93 86 82 57 

Hamilton (Cincinnai, OH) 68 73 92 72 

Jackson (Kansas City, MO) 72 74 80 66 

Santa Clara (San Jose, CA) 99 81 89 10 

Multnomah (Portland, OR) 94 90 71 63 

Providence (Providence, RI) 71 53 24 87 

Sacramento (Sacramento, CA) 86 72 27 13 

Virginia Beach (city), VA 71 90 97 99 

Milwaukee (Milwaukee, WI) 74 51 44 68 

Bexar (San Antonio, TX) 79 57 52 21 

Franklin (Columbus, OH) 87 74 87 63 

Marion (Indianapolis, IN) 82 74 53 74 

Orleans (New Orleans, LA) 40 78 99 71 

Suburbs defined as CGAs that contain at least one county that is adjacent to the central county.   Initial high school graduation 

rate data is unavailable for New York County (New York City), Suffolk County (Boston), King County (Seattle), Denver 

County (Denver), and Miami-Dade County (Miami).  See Table 3.2 or Section 3.5.1 of the text for details of the 

construction of brain gain measures.   
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Table 3.9  Thirty Areas with Highest and Lowest Absolute High School Gain  
Brain Gain: 

 

Area’s  

Largest City  

MSA  

(Distance to 

Central City)  

 

 

Absolute 

Brain Gain 

Pop. 

Density 

Brain Drain: 

 

Area’s  

Largest City 

Absolute 

Brain Gain 

Pop. 

Density 

Stockbridge, GA Atlanta (21) 1.80 182.0 Andrews, TX -0.60 3.1 

Newport News, VA Va. Beach (40) 1.69 7,266.9 Great Falls, MT -0.56 2.0 

Arlington, VA Washington (6) 1.61 6599.8 Scottsbluff, NE -0.47 4.6 

Denton, TX Dallas (39) 1.54 307.9 Woodward, OK -0.42 7.0 

Cumming, GA Atlanta (39) 1.53 101.6 Caro, MI -0.42 49.9 

Amarillo, TX Amarillo (0) 1.45 98.1 Salina, KS -0.42 6.2 

San Francisco, CA San Francisco (0) 1.45 15,502 Levelland, TX -0.41 11.0 

Woodstock, GA Atlanta (30) 1.44 212.9 Marshall, MN -0.41 22.6 

Las Vegas, NV Las Vegas (0) 1.41 93.7 Aberdeen, SD -0.39 7.7 

Plano, TX Dallas (19) 1.39 311.5 Marquette, MI -0.38 24.1 

Leesburg, VA Washington (40) 1.37 110.9 Jamestown, ND -0.38 6.4 

Delaware, OH Columbus (29) 1.36 151.3 Gladwin, MI -0.37 42.1 

Cartersville, GA Atlanta (43) 1.35 126.1 Presque Isle, ME -0.36 13.2 

San Marcos, TX Austin (31) 1.34 385.1 Forest City, AR -0.35 34.6 

St. Louis, MO St. Louis (0) 1.31 6,408.5 Oil City, PA -0.35 62.1 

Kissimmee, FL Orlando (22) 1.31 81.5 Bluefield, WV -0.35 88.7 

Raleigh, NC Raleigh (0) 1.30 507.7 Houghton, MI -0.35 17.6 

Alabaster, AL Birmingham (24) 1.25 125.0 Fergus Falls, MN -0.35 17.0 

*Ponte Vedra Beach, 

FL 

Jacksonville (22) 

 

1.23 

 

137.7 

 

Fremont, NE 

 

-0.34 

 

19.8 

 

Charlotte, NC Charlotte (0) 1.22 969.7 North Platte, NE -0.33 6.4 

Aspen, CO ------- 1.21 6.7 Macomb, IL -0.32 38.5 

Round Rock, TX Austin (19) 1.20 124.1 Beatrice, NE -0.32 18.4 

Casa Grande, AZ Phoenix (48) 1.18 15.4 Worthington, MN -0.29 22.6 

Atlanta, GA Atlanta (0) 1.16 1227.4 Pampa, TX -0.29 7.7 

Winder, GA Atlanta (50) 1.14 139.0 Carroll, IA -0.29 22.4 

Orlando, FL Orlando (0) 1.13 746.5 Pine Bluff, AR -0.29 48.3 

Port. St. Lucie, FL Port St. Lucie (0) 1.13 262.3 Williamson, WV -0.28 76.8 

New Port Richey, FL Tampa (38) 1.12 377.4 Waverly, IA -0.28 28.8 

Peachtree  

Corners, GA 

Atlanta (20) 

 

1.12 

 

815.2 

 

Sayre, PA 

 

-0.28 

 

39.6 

 

Shakopee, MN Minneapolis (27) 1.09 148.1 Alpena, MI -0.28 25.5 

Initial stock of high school graduates is based on the National Center for Education Statistics’ Common Core of Data, 

1991-1993.  Growth of high school graduate stock is then based on 31-37 year olds in the 2006-2010 5% Public Use 

Microdata Sample of the American Community.  See Table 3.2 or Section 3.5.1 of the text for details of the 

construction of brain gain measures.   

*Unincorporated community 
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Table 3.10  State Relative College Gain (1990-2008), (Between Age 25-34 and 45-50) 

 

State 

Rank Rel. 

Brain Gain  

Some 

College 

 

Rel. Brain 

Gain  

Some Coll. 

Rank Rel. 

Brain Gain  

Bachelor’s 

Rel. Brain 

Gain  

Bachelor’s 

Rank Rel. 

Brain Gain  

Graduate 

School 

Rel. Brain 

Gain 

Grad School 

Vermont 1 0.079 1 0.136 2 0.222 

Colorado 10 0.028 2 0.118 3 0.199 

Utah 18 0.009 3 0.113 1 0.278 

Oregon 2 0.057 4 0.107 4 0.174 

Nevada 25 -0.010 5 0.105 19 0.049 

New Mexico 4 0.042 6 0.100 13 0.093 

Florida 12 0.021 7 0.087 15 0.091 

Montana 3 0.050 8 0.078 10 0.110 

California 24 -0.009 9 0.073 18 0.053 

Arizona 20 0.001 10 0.057 12 0.094 

Idaho 13 0.020 11 0.050 22 0.030 

Virginia 11 0.021 12 0.049 6 0.154 

Georgia 5 0.041 13 0.045 16 0.087 

Minnesota 6 0.035 14 0.045 5 0.156 

New Hampshire 9 0.029 15 0.041 7 0.149 

Nebraska 26 -0.011 16 0.024 23 0.025 

Maryland 16 0.010 17 0.023 8 0.126 

Maine 8 0.034 18 0.020 11 0.105 

Michigan 23 -0.007 19 0.020 20 0.045 

North Carolina 7 0.034 20 0.013 26 -0.011 

South Carolina 15 0.013 21 0.007 34 -0.027 

North Dakota 41 -0.044 22 0.004 45 -0.147 

District of Columbia 43 -0.047 23 -0.008 30 -0.020 

Kentucky 21 -0.001 24 -0.013 38 -0.073 

Connecticut 28 -0.015 25 -0.015 17 0.079 

New York 38 -0.036 26 -0.018 33 -0.026 

New Jersey 35 -0.027 27 -0.021 30 -0.020 

Kansas 22 -0.002 28 -0.022 27 -0.011 

Wyoming 14 0.014 29 -0.025 14 0.092 

South Dakota 30 -0.020 30 -0.026 24 0.018 

Ohio 32 -0.023 31 -0.027 28 -0.012 

Wisconsin 32 -0.023 32 -0.027 28 -0.012 

Missouri 19 0.005 33 -0.029 21 0.040 

Delaware 17 0.010 34 -0.032 9 0.114 

Texas 46 -0.058 35 -0.038 36 -0.058 

Tennessee 31 -0.021 36 -0.046 39 -0.074 

Illinois 34 -0.025 37 -0.048 25 -0.008 

Indiana 36 -0.029 38 -0.051 43 -0.128 

Oklahoma 40 -0.043 39 -0.062 42 -0.126 

Arkansas 27 -0.013 40 -0.063 44 -0.144 

Iowa 29 -0.019 41 -0.064 32 -0.022 

Rhode Island 37 -0.030 42 -0.072 35 -0.041 

Alabama 39 -0.042 43 -0.072 37 -0.063 

Louisiana 47 -0.075 44 -0.075 47 -0.179 

West Virginia 45 -0.056 45 -0.081 46 -0.167 

Pennsylvania 44 -0.048 46 -0.101 40 -0.111 

Mississippi 42 -0.046 47 -0.110 41 -0.112 

New England 3 0.006 4 0.004 2 0.089 

Middle Atlantic 8 -0.038 8 -0.050 7 -0.057 

East North Central 6 -0.014 6 -0.020 6 0.002 

West North Central 4 0.003 5 -0.009 5 0.043 

South Atlantic 1 0.019 3 0.037 3 0.065 

East South Central 7 -0.026 9 -0.056 8 -0.077 

West South Central 9 -0.055 7 -0.049 9 -0.093 

Mountain 2 0.016 1 0.086 1 0.135 

Pacific 5 -0.003 2 0.076 4 0.064 

State and Census division brain gain based on population-weighted averages of CGAs.  See Table 3.2 and text for details. 
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Table 3.11  Relative College and Graduate School Gain Percentile for Counties 

Containing Largest U.S. MSA Centers (as of 1990) and Adjacent Areas 

County (City) 

Rel. College 

Gain  

Percentile 

(MSA Center) 

Rel. College 

Gain  

Percentile 

 (Suburban) 

Rel. Grad 

School Gain  

Percentile 

(MSA Center) 

Rel. Grad 

School Gain  

Percentile 

 (Suburban) 

Los Angeles (Los Angeles, CA) 53 78 28 62 

Cook (Chicago, IL) 24 83 34 74 

Philadelphia (Philadelphia, PA) 0 51 2 63 

Wayne (Detroit, MI) 46 61 35 72 

District of Columbia (Washington, DC) 28 52 45 72 

Dallas (Dallas, TX) 15 59 21 62 

Harris (Houston, TX) 24 87 27 69 

San Francisco (San Francisco, CA) 28 82 61 73 

Fulton (Atlanta, GA) 88 78 81 70 

Riverside (Riverside, CA) 80 72 63 56 

St. Louis (city), MO  0 92 4 84 

Hennepin (Minneapolis, MN) 65 66 75 77 

San Diego (San Diego, CA) 82 83 79 70 

Allegheny (Pittsburgh, PA) 31 59 36 44 

Baltimore (city), MD 0 72 4 78 

Maricopa (Phoenix, AZ) 62 69 62 60 

Cuyahoga (Cleveland, OH) 26 78 43 73 

Hillsborough (Tampa, FL) 70 87 58 69 

Hamilton (Cincinnai, OH) 46 47 40 47 

Jackson (Kansas City, MO) 22 37 50 50 

Santa Clara (San Jose, CA) 28 70 61 59 

Multnomah (Portland, OR) 80 81 84 83 

Providence (Providence, RI) 12 71 22 60 

Sacramento (Sacramento, CA) 39 78 39 63 

Virginia Beach (city), VA 80 70 90 72 

Milwaukee (Milwaukee, WI) 42 77 66 78 

Bexar (San Antonio, TX) 57 92 57 95 

Franklin (Columbus, OH) 24 94 31 83 

Marion (Indianapolis, IN) 5 78 16 51 

Orleans (New Orleans, LA) 50 53 52 47 

Suburbs defined as CGAs that contain at least one county that is adjacent to the central county.   Initial high school graduation 

rate data is unavailable for New York County (New York City), Suffolk County (Boston), King County (Seattle), Denver 

County (Denver), and Miami-Dade County (Miami).  Initial share of college graduates is based on 25-34 year olds in the 

1990 decennial Census.  Growth of college graduate share is then based on 45-50 year olds in the 2006-2010 5% Public 

Use Microdata Sample of the American Community Survey.  See Table 3.2 or Section 3.5.1 of the text for details of the 

construction of brain gain measures. 

  



 
 

112 
 

Table 3.12  Thirty Areas with Highest and Lowest Relative High School Gain  
Brain Gain:  

 

Area’s Largest  

City 

MSA 

(Distance to 

Central City)  

 

Rel. 

Brain  

Gain 

Area 

Pop. 

Dens. 

Brain Drain:  

 

Area’s Largest 

City 

 

MSA 

(Distance to 

Central City) 

Rel. 

Brain 

Gain 

Area 

Pop. 

Dens. 

St. Marys, PA ------- 0.207 24.9 Madera, CA Madera (0) -0.361 41.2 

Van Wert, OH ------- 0.184 64.7 Garden City, KS ------- -0.339 8.7 

St. Louis, MO St. Louis (0) 0.161 6,409 El Centro, CA El Centro (0) -0.264 26.2 

Washington, DC 

 

Washington 

(0) 

0.137 

 

9,884 

 
Visalia, CA 

 

Visalia (0) -0.263 

 

64.7 

 

Charleston, SC Charleston (0) 0.132 321.6 Merced, CA Merced (0) -0.260 92.5 

Norfolk, VA 

 

Va. Beach 

(18) 

0.128 

 

4,856 

 
Kingsville, TX 

 

------- 

 

-0.252 

 

15.4 

 

New Orleans, LA 

 

New Orleans 

(0) 

0.119 

 

2,752 

 
Hanford, CA 

 

Hanford (0) -0.236 

 

73.0 

 

Jamestown, ND ------- 0.114 6.4 Salinas, CA Salinas (0) -0.231 83.3 

Jacksonville, FL 

 

Jacksonville 

(0) 

0.111 

 

502.9 

 
Bakersfield, CA 

 

Bakersfield (0) -0.226 

 

66.8 

 

Chesapeake, VA 

 

Chesapeake 

(0) 

0.110 

 

446.1 

 
Colusa, CA 

 

------- -0.204 

 

12.1 

 

Norwich, CT Norwich (0) 0.108 382.8 Fresno, CA Fresno (0) -0.186 111.9 

Baltimore, MD Baltimore (0) 0.107 9,109 Clinton, NC ------- -0.186 49.5 

Pearl, MS Jackson (6) 0.104 112.5 McAllen, TX McAllen (0) -0.181 244.4 

Vernon, CT 

 

Hartford (14) 

 

0.101 

 

313.8 

 
Santa Maria, CA 

 

Santa Maria 

(0) 

-0.181 

 

135.0 

 

Gainesville, FL Gainesville (0) 0.101 207.7 Clearlake, CA ------- -0.180 27.5 

Atlanta, GA Atlanta (0) 0.101 1,227 Lamesa, TX ------- -0.179 5.3 

Fargo, ND Fargo (0) 0.099 17.1 Sebring, FL ------- -0.177 34.3 

Skowhegan, ME ------- 0.099 17.1 Lumberton, NC ------- -0.175 110.8 

Va. Beach, VA Va. Beach (0) 0.098 1,583 Gallup, NM ------- -0.169 8.5 

Morgantown, 

WV 

Morgantown 

(0) 

0.097 

 

103.6 

 

Woodward, OK 

 

------- -0.169 

 

7.0 

 

Portsmouth, VA 

 

Va. Beach 

(21) 

0.096 

 

241.8 

 
Napa, CA 

 

Napa (0) -0.157 

 

146.9 

 

*Ponte Vedra 

Beach, FL 

Jacksonville 

(22) 

0.095 

 

137.7 

 
Andrews, TX 

 

------- -0.157 

 

3.1 

 

Burlington, VT Burlington (0) 0.094 140.7 De Queen, AR ------- -0.154 21.4 

Portland, ME Portland (0) 0.093 186.0 Modesto, CA Modesto (0) -0.153 247.9 

Brunswick, OH Cleveland (32) 0.092 290.2 Riverside, CA Riverside (0) -0.152 162.4 

Bangor, ME Bangor (0) 0.092 22.4 Dalton, GA Dalton (0) -0.151 135.1 

Lakeside, FL 

 

Jacksonville 

(28) 

0.091 

 

176.3 

 

Mt. Vernon, OH 

 

------- -0.147 

 

76.4 

 

Huntington, WV 

 

Huntington (0) 

 

0.091 

 

171.0 

 

Brownsville, TX 

 

Brownsville 

(0) 

-0.145 

 

287.2 

 

Davenport, IA Davenport (0) 0.087 329.7 Dallas, TX Dallas (0) -0.141 2,106 

S. Kingstown, RI 

 

Providence 

(32) 

0.087 

 

330.4 

 
Bay City, TX 

 

------- -0.141 

 

27.5 

 

Initial stock and share of high school graduates are based on the National Center for Education Statistics’ Common 

Core of Data, 1991-1993.  Growth of high school graduate stock and share are then based on 31-37 year olds in the 

2006-2010 5% Public Use Microdata Sample of the American Community.  See Table 3.2 or Section 3.5.1 of the text 

for details of the construction of brain gain measures.   

*Unincorporated community 
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Table 3.13  Thirty Areas with Highest and Lowest Relative College Gain  
Brain Gain: 

  

Area’s Largest  

City 

MSA 

(Distance to 

Central City)  

 

Rel. 

Brain  

Gain 

Pop. 

Dens. 

Brain Drain: 

 

Area’s Largest 

City 

 

MSA 

(Distance to 

Central City) 

Rel. 

Brain 

Gain 

Pop. 

Dens. 

Cumming, GA 

 

Atlanta (39) 

 

0.753 

 

101.6 

 

Colonial Beach, 

VA 

------- -0.670 48.9 

Casa Grande, AZ Phoenix (48) 0.718 15.4 St. Louis, MO St. Louis (0) -0.606 6,408 

Monroe, NC Charlotte (25) 0.622 132.1 Emporia, VA ------- -0.596 34.1 

Hollins, VA Roanoke (5) 0.611 131.5 Clarksdale, MS ------- -0.549 40.7 

New Port Richey, 

FL 

Tampa (38) 

 

0.476 

 

377.4 

 

Columbus, MS ------- -0.546 55.3 

Las Vegas, NM 

 

------- 

 

0.438 

 

5.2 

 

Philadelphia, PA Philadelphia 

(0) 

-0.522 11,736 

Delaware, OH Columbus (29) 0.435 151.3 Anniston, AL Anniston (0) -0.495 190.7 

Pt. Charlotte, FL 

 

Punta Gorda 

(4) 

0.434 

 

160 

 

Athens, OH ------- -0.488 67.2 

Manassas, VA 

 

Washington 

(33) 

0.428 

 

715 

 

Jacksonville, TX ------- -0.445 38.5 

Heber City, UT ------- 0.426 3.9 Greeneville, TN ------- -0.436 95.1 

Monroe, GA Atlanta (46) 0.394 55.6 Alice, TX ------- -0.432 16.7 

Kenosha, WI Chicago (64) 0.393 469.9 Enid, OK ------- -0.411 42.8 

Peachtree City, 

GA 

Atlanta (32) 

 

0.392 

 

203.6 

 

Blacksburg, VA Blacksburg (0) -0.405 104.7 

Fairfax, VA 

 

Washington 

(20) 

0.378 

 

110.9 

 

Greenville, MS ------- -0.384 68.6 

Waxahachie, TX Dallas (30) 0.372 90.6 Aberdeen, SD ------- -0.382 7.7 

Stockbridge, GA Atlanta (21) 0.366 182.0 Kirksville, MO ------- -0.375 17.5 

Shakopee, MN 

 

Minneapolis 

(27) 

0.364 

 

148.1 

 

Bastrop, LA ------- -0.367 27.3 

Bentonville, AR 

 

Fayetteville 

(27) 

0.363 

 

115.6 

 

Troy, NY Albany (8) -0.364 236.1 

Port Huron, MI Detroit (63) 0.356 159.8 Huntsville, TX ------- -0.355 30.1 

Washington, MO St. Louis (51) 0.354 65.0 Kingsville, TX ------- -0.347 15.4 

Kalispell, MT ------- 0.352 8.2 Richmond, VA Richmond (0) -0.342 3,379 

Shelbyville, KY Louisville (32) 0.352 87.8 Oil City, PA ------- -0.341 62.1 

Denham Springs, 

LA 

Baton Rouge 

(13) 

0.350 

 

137.0 

 

Sioux City, IA Sioux City (0) -0.337 112.6 

Richmond, KY Lexington (26) 0.349 85.4 Indiana, PA Pittsburgh (58) -0.334 110.2 

Florissant, MO St. Louis (18) 0.347 1,957 Greenville, NC Greenville (0) -0.319 165.6 

*Ponte Vedra 

Beach, FL 

Jacksonville 

(23) 

0.343 

 

137.7 

 

Danville, IL Danville (0) -0.316 48.7 

Palm City, FL 

 

Port St. Lucie 

(13) 

0.343 

 

181.6 

 

Sweetwater, TX ------- -0.311 10.4 

Ashland, VA 

 

Richmond 

(19) 

0.325 

 

91.1 

 

Live Oak, FL ------- -0.309 22.8 

McMinnville, OR Portland (38) 0.320 79.0 Bardstown, KY Louisville (41) -0.307 43.9 

Barre, VT ------- 0.317 42.0 Lafayette, IN Lafayette (0) -0.303 178.6 

Initial share of college graduates is based on 25-34 year olds in the 1990 decennial Census.  Growth of college graduate 

share is then based on 45-50 year olds in the 2006-2010 5% Public Use Microdata Sample of the American Community 

Survey.  See Table 3.2 or Section 3.5.1 of the text for details of the construction of brain gain measures. 

*Unincorporated community 
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Table 3.14  Absolute High School Gain, 1992-2008 (Ordinary Least Squares) 

VARIABLES (1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

Ln (HS grads (1991-93)) 0.270** 0.144** 0.051 0.164** 0.379** 

(SD) (0.016) (0.021) (0.031) (0.031) (0.042) 

Metro > 400 per square mile  -0.147** -0.068 -0.207** -- 
(SD)  (0.034) (0.058) (0.046) -- 
Metro 200-400 per square mile  -0.037 0.007 -0.051 -- 
(SD)  (0.025) (0.043) (0.033) -- 
Non-Metro  -0.101** -- -- -- 
(SD)  (0.020) -- -- -- 
Ln (dist. to four-year state coll.)  -0.015* -0.011 -0.006 -0.047** 

(SD)  (0.007) (0.012) (0.010) (0.012) 

July average high temperature (F)  -0.005* -0.004 0.007 -0.012** 

(SD)  (0.002) (0.004) (0.004) (0.003) 

January avg. low temperature (F)   0.005** 0.005 0.006* 0.012** 

(SD)  (0.001) (0.003) (0.002) (0.002) 

Coast dummy  -0.080** -0.043 -0.044 -0.090* 

(SD)  (0.020) (0.053) (0.030) (0.035) 

Poverty rate (1990) %  -0.011** -0.006 -0.016** -0.004 

(SD)  (0.002) (0.007) (0.004) (0.003) 

Unemployment rate (1991-93) %  -0.021** -0.032 -0.023** -0.017** 

(SD)  (0.004) (0.019) (0.007) (0.006) 

Neighbors’ unemployment %   -0.017 -0.024* 0.003 

(SD)   (0.015) (0.010) (0.008) 

Mining %  -0.015** -0.019* -0.016** -0.009** 

(SD)  (0.003) (0.009) (0.005) (0.003) 

Manufacturing %  -0.004** -0.006* -0.005** 0.000 

(SD)  (0.001) (0.003) (0.002) (0.002) 

Information services %  0.006 -0.012 0.008* 0.030 

(SD)  (0.005) (0.013) (0.004) (0.018) 

Professional %  0.006 0.027** -0.004 0.003 

(SD)  (0.005) (0.009) (0.005) (0.009) 

Arts and entertainment %  0.036** 0.007 0.016 0.081** 

(SD)  (0.012) (0.025) (0.013) (0.019) 

Federal government %  -0.002 -0.001 -0.008* -0.002 

(SD)  (0.003) (0.006) (0.004) (0.004) 

Military %  0.001 -0.002 -0.001 0.007* 

(SD)  (0.002) (0.005) (0.003) (0.003) 

State and local government %  0.001 -0.001 0.001 0.001 

(SD)  (0.001) (0.003) (0.002) (0.002) 

Midwest  0.099** 0.171** 0.068 0.100* 

(SD)  (0.027) (0.065) (0.038) (0.043) 

South  0.305** 0.306** 0.218** 0.165** 

(SD)  (0.036) (0.086) (0.056) (0.047) 

West  0.159** 0.203* 0.093 0.145** 

(SD)  (0.037) (0.087) (0.051) (0.047) 

Non-Native %  0.008** 0.013** 0.008* 0.004 

(SD)  (0.002) (0.004) (0.003) (0.004) 

Constant -1.788** -0.349 0.351 -1.156** -1.865** 

(SD) (0.118) (0.229) (0.312) (0.376) (0.409) 

Sample 

 

All  

CGAs  

All  

CGAs  

Metro 

Center 

Suburb Non-Metro 

Observations 915 915 203 380 332 

R-squared 0.324 0.614 0.589 0.583 0.646 

Regressions employ Hubert-White robust standard error corrections.  Initial stock of high school graduates is based on 

the National Center for Education Statistics’ Common Core of Data, 1991-1993.  Growth of high school graduates is 

then based on the 2006-2010 5% Public Use Microdata Sample of the ACS.  See Table 3.2 for details.  

** Significant at the 1% level   * Significant at the 5% level 
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Table 3.15  Growth in High School Share, 1992-2008 (Ordinary Least Squares)   
 

VARIABLES (1) 

 

(2) 

 

(3) 

 

(4) 

 

(5) 

Ln(HS grad % (1991-93)) -0.720** -0.864** -0.904** -0.849** -0.871** 

(SD) (0.018) (0.022) (0.029) (0.031) (0.045) 

Metro > 400 per square mile  0.011* -0.005 0.017* -- 

(SD)  (0.005) (0.008) (0.008) -- 

Metro 200-400 per square mile  0.003 -0.001 0.006 -- 

(SD)  (0.004) (0.008) (0.006) -- 

Non-Metro  -0.019** -- -- -- 

(SD)  (0.004) -- -- -- 

Ln (dist. to four-year state coll.)  -0.003* 0.000 -0.002 -0.008 

(SD)  (0.001) (0.002) (0.002) (0.005) 

July average high temperature (F)  -0.0018** -0.0036** 0.0000 0.0005 

(SD)  (0.0005) (0.0006) (0.0007) (0.0008) 

January avg. low temperature (F)   -0.0006* -0.0001 -0.0005 -0.0018** 

(SD)  (0.0003) (0.0005) (0.0005) (0.0006) 

Coast dummy  0.005 0.002 0.007 0.008 

(SD)  (0.004) (0.008) (0.006) (0.008) 

Poverty rate (1990) %  -0.0013** -0.0011 -0.0010 -0.0028** 

(SD)  (0.0005) (0.0009) (0.0008) (0.0009) 

Unemployment rate (1991-93) %  -0.0035** -0.0034** -0.0066** 0.0025 

(SD)  (0.0011) (0.0025) (0.0024) (0.0019) 

Neighbors’ unemployment %   -0.0001 -0.0002 -0.0011 

(SD)   (0.0019) (0.0027) (0.0023) 

Mining %  -0.0006 -0.0023* -0.0006 -0.0001 

(SD)  (0.0006) (0.0011) (0.0008) (0.0006) 

Manufacturing %  -0.0010** -0.0013** -0.0010** -0.0006 

(SD)  (0.0002) (0.0005) (0.0003) (0.0004) 

Information services %  0.0036** 0.0029 0.0025** 0.0083** 

(SD)  (0.0010) (0.0021) (0.0008) (0.0030) 

Professional %  0.0023** 0.0011 0.0026** 0.0027 

(SD)  (0.0007) (0.0013) (0.0010) (0.0016) 

Arts and entertainment %  0.0040 0.0021 0.0050 0.0050 

(SD)  (0.0024) (0.0043) (0.0029) (0.0035) 

Federal government %  0.0000 0.0004 -0.0004 0.0009 

(SD)  (0.0005) (0.0011) (0.0007) (0.0012) 

Military %  0.0011** 0.0008 0.0010 0.0019* 

(SD)  (0.0004) (0.0005) (0.0006) (0.0009) 

State and local government %  -0.0004 0.0003 -0.0001 -0.0007 

(SD)  (0.0003) (0.0005) (0.0004) (0.0005) 

Midwest  -0.004 -0.001 -0.004 0.018 

(SD)  (0.005) (0.010) (0.007) (0.011) 

South  -0.007 -0.007 -0.017 -0.007 

(SD)  (0.006) (0.012) (0.009) (0.012) 

West  -0.024** -0.026* -0.040** 0.002 

(SD)  (0.008) (0.013) (0.011) (0.013) 

Non-Native  -0.0047** -0.0032** -0.0042** -0.0101** 

(SD)  (0.0006) (0.0007) (0.0006) (0.0012) 

Constant -0.071** 0.167** 0.293** 0.028 -0.001 

(SD) (0.004) (0.039) (0.058) (0.059) (0.064) 

Sample 

 All CGAs 

All  

CGAs 

Metro 

Center 

Suburb  Non-Metro 

Observations 915 915 203 380 332 

R-squared 0.696 0.846 0.914 0.833 0.853 

Regressions employ Hubert-White robust standard error corrections.  Initial share of high school graduates is based on 

NCES Common Core of Data, 1991-93.  Growth of high school graduate share is then based on 31-37 year olds in the 

2006-2010 5% Public Use Microdata Sample of the American Community Survey.  See Table 3.2 for details.  

** Significant at the 1% level   * Significant at the 5% level 
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Table 3.16  Growth in College Share, 1990-2008 (Ordinary Least Squares)  
 

VARIABLES (1) (2) 

 

(3) 

 

(4) 

 

(5) 

Ln (college grad % (1990)) -0.176** -0.358** -0.331** -0.383** -0.358** 

(SD) (0.013) (0.023) (0.050) (0.035) (0.045) 

Metro > 400 per square mile  -0.048** -0.035 -0.037 -- 

(SD)  (0.017) (0.024) (0.025) -- 

Metro 200-400 per square mile  0.007 0.005 -0.001 -- 

(SD)  (0.014) (0.022) (0.021) -- 

Non-Metro  -0.044** -- -- -- 

(SD)  (0.013) -- -- -- 

Ln (dist. to four-year state coll.)  0.005 -0.002 -0.001 0.001 

(SD)  (0.004) (0.006) (0.005) (0.012) 

July average high temperature (F)  -0.004* -0.001 -0.001 -0.005* 

(SD)  (0.001) (0.002) (0.002) (0.003) 

January avg. low temperature (F)   0.000 -0.001 0.002 0.000 

(SD)  (0.001) (0.001) (0.001) (0.002) 

Coast dummy  0.014 -0.030 0.027 -0.028 

(SD)  (0.014) (0.025) (0.018) (0.033) 

Poverty rate (1990) %  -0.009** -0.007** -0.010** -0.006* 

(SD)  (0.001) (0.003) (0.002) (0.002) 

Unemployment rate (1991-93) %  -0.013** -0.034** -0.020** -0.006* 

(SD)  (0.003) (0.009) (0.005) (0.006) 

Neighbors’ unemployment %   0.024** 0.000 -0.004 

(SD)   (0.006) (0.005) (0.008) 

Mining %  -0.004 -0.001 -0.009** -0.002 

(SD)  (0.002) (0.003) (0.003) (0.003) 

Manufacturing %  -0.003** 0.000 -0.003** -0.002 

(SD)  (0.001) (0.001) (0.001) (0.001) 

Information services %  0.002 -0.002 0.003 0.000 

(SD)  (0.003) (0.007) (0.003) (0.010) 

Professional %  0.008** 0.005 0.009** 0.006 

(SD)  (0.002) (0.004) (0.002) (0.006) 

Arts and entertainment %  0.008 -0.011 0.000 0.029 

(SD)  (0.007) (0.010) (0.008) (0.015) 

Federal government %  0.000 0.000 0.001 0.001 

(SD)  (0.002) (0.003) (0.002) (0.003) 

Military %  -0.002* 0.001 -0.004** -0.001 

(SD)  (0.001) (0.002) (0.001) (0.002) 

State and local government %  -0.001 -0.002* -0.003* -0.001 

(SD)  (0.001) (0.002) (0.001) (0.002) 

Midwest  0.037* 0.050 0.051* 0.036 

(SD)  (0.018) (0.031) (0.025) (0.039) 

South  0.065** 0.074 0.044 0.056 

(SD)  (0.022) (0.042) (0.034) (0.042) 

West  0.118** 0.122** 0.086** 0.131** 

(SD)  (0.022) (0.041) (0.029) (0.044) 

Non-Native  0.002 0.004* 0.001 0.003 

(SD)  (0.001) (0.002) (0.002) (0.003) 

Constant -0.050 0.102 -0.105 -0.052 -0.150 

(SD) (0.023) (0.119) (0.182) (0.199) (0.236) 

Sample 

 

All  

CGAs 

All  

CGAs 

Metro  

Center 

Suburb  Non- 

Metro 

Observations 915 915 203 380 332 

R-squared 0.176 0.433 0.552 0.501 0.331 

Regressions employ Hubert-White robust standard error corrections.  Initial share of college graduates is based on 25-

34 year olds in the 1990 decennial Census.  Growth of college graduate share is then based on 45-50 year olds in the 

2006-2010 5% Public Use Microdata Sample of the American Community Survey.  See Table 3.2 for details.  

** Significant at the 1% level   * Significant at the 5% level 
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Table 3.17  Brain Gain, “Consistent PUMAs” (Ordinary Least Squares) 
 

VARIABLES 

Abs. HS 

Gain 

Abs. HS 

Gain 

Rel. HS 

Gain 

Rel. HS 

Gain 

Rel. Coll. 

Gain 

Rel. Coll. 

Gain 

Ln (Initial Stock or Share) 0.045* 0.045* -0.834** -0.852** -0.462** -0.478** 

(SD) (0.019) (0.019) (0.037) (0.034) (0.053) (0.048) 

Metro > 400 per square mile 0.078 0.031 0.001 0.016 -0.094* -0.155** 

(SD) (0.061) (0.063) (0.011) (0.011) (0.040) (0.037) 

Metro 200-400 per square mile 0.024 -0.006 -0.002 0.012ᶧ -0.015 -0.065* 

(SD) (0.037) (0.037) (0.007) (0.007) (0.031) (0.030) 

Non-Metro -0.092** -0.067* -0.013ᶧ -0.005 -0.070** -0.011 

(SD) (0.032) (0.032) (0.008) (0.007) (0.026) (0.026) 

Ln (dist. to four-year state coll.) -0.016 -0.010 -0.004ᶧ -0.002 0.006 0.014 

(SD) (0.011) (0.011) (0.002) (0.002) (0.009) (0.008) 

July average high temperature (F) -0.006 -0.004 -0.0025** -0.0019* -0.004 -0.002 

(SD) (0.004) (0.004) (0.0008) (0.0008) (0.003) (0.003) 

January avg. low temperature (F)  0.008** 0.007* 0.0002 -0.0003 0.002 -0.001 

(SD) (0.003) (0.003) (0.0005) (0.0005) (0.002) (0.002) 

Coast dummy -0.065* -0.069* 0.006 0.005 0.049ᶧ 0.037 

(SD) (0.031) (0.031) (0.005) (0.005) (0.025) (0.024) 

Poverty rate (1990) % -0.005ᶧ 0.000 -0.0011 0.0004 -0.006ᶧ 0.001 

(SD) (0.003) (0.004) (0.0008) (0.0009) (0.003) (0.004) 

Unemployment rate (1991-93) % -0.028** -0.035** -0.0029 -0.0052** -0.020* -0.033** 

(SD) (0.007) (0.008) (0.0018) (0.0017) (0.010) (0.010) 

Ln average college wage (1990)  -0.105  -0.059  0.508** 

(SD)  (0.219)  (0.041)  (0.160) 

Ln avg. non-college wage (1990)  0.502*  0.182**  0.287 

(SD)  0.243  (0.043)  (0.184) 

Mining % -0.012* -0.018** -0.0002 -0.0021ᶧ -0.002 -0.008 

(SD) (0.005) (0.006) (0.0011) (0.0012) (0.005) (0.005) 

Manufacturing % 0.000 0.000 -0.0007ᶧ -0.0011** -0.002 -0.004** 

(SD) (0.002) (0.002) (0.0004) (0.0004) (0.002) (0.001) 

Information services % 0.026 0.022 0.0060* 0.0046ᶧ 0.005 0.001 

(SD) (0.018) (0.018) (0.0027) (0.0025) (0.009) (0.008) 

Professional % 0.008 0.004 0.0017ᶧ 0.0009 0.011* 0.000 

(SD) (0.008) (0.008) (0.0009) (0.0008) (0.005) (0.005) 

Arts and entertainment % 0.023 0.022 0.0041 0.0043 0.018ᶧ 0.012 

(SD) (0.018) (0.018) (0.0033) (0.0031) (0.010) (0.010) 

Federal government % 0.001 0.000 0.0006 0.0002 0.002 0.004 

(SD) (0.007) (0.007) (0.0010) (0.0009) (0.004) (0.004) 

Military % 0.006** 0.008** 0.0008 0.0013* -0.003ᶧ -0.002 

(SD) (0.002) (0.002) (0.0006) (0.0006) (0.002) (0.002) 

State and local government % 0.002 0.001 0.0001 -0.0002 0.003 0.002 

(SD) (0.003) (0.002) (0.0005) (0.0005) (0.002) (0.002) 

Midwest 0.063 0.047 0.003 -0.003 0.058 0.047 

(SD) (0.047) (0.048) (0.008) (0.008) (0.037) (0.036) 

South 0.230** 0.240** -0.002 0.001 0.047 0.044 

(SD) (0.060) (0.061) (0.010) (0.009) (0.043) (0.040) 

West 0.185** 0.177** -0.002 -0.026* 0.069 0.088* 

(SD) (0.065) (0.065) (0.012) (0.012) (0.046) (0.044) 

Non-Native 0.014** 0.014** -0.0040** -0.0037** 0.008** 0.007** 

(SD) (0.003) (0.003) (0.0011) (0.0012) (0.003) (0.003) 

Constant -0.180 -0.730 0.180 0.093 0.099 -2.308** 

(SD) (0.347) (0.535) (0.069) (0.110) (0.284) (0.484) 

Sample = Consistent PUMAs 

Observations 312 312 312 312 312 312 

R-squared 0.603 0.614 0.869 0.879 0.444 0.524 

Regressions use Hubert-White robust standard error corrections.  Column 1, 3, and 5 are identical to column 2 of Table 

3.14, 3.15, and 3.16, respectively, except the geographic unit is broadened to consolidate 1990 PUMAs with 2005-2010 

PUMAs.  Bold indicates > 1.5 SD difference from Table 3.14, 3.15, or 3.16.  Italics indicate change in significance. 

** Significant at the 1% level   * Significant at the 5% level  ᶧ  Significant at 10% level  
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Figures 

Figure 3.1A: Absolute High School Gain in the United States (1992-2008)  
 

 

  

 

 

 

 

Figure 3.1B: Population Density in the United States (1990) 
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Figure 3.2A: Relative High School Gain in the United States (1992-2008) 
 

 
 

 

 
 

Figure 3.2B: Relative College Gain in the United States (1990-2008)  

 

 

 

Figure 3.2C: Population Density in the United States (1990) 
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Appendix 

 

Appendix Table A.1  Complete Results of Logistic Regressions in Table 2.3 
  

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Origin UI Claims % 0.035* 0.032* 0.035*       

(SE) (0.009) (0.009) (0.009)       

UI Claims (1-1000 mi) -0.059* -0.052* -0.016       

(SE) (0.011) (0.010) (0.024)       

Origin Unem Rate %    0.016* 0.015* 0.019*    

(SE)    (0.007) (0.007) (0.007)    

Unem. Rate (1-1000 mi)    -0.018* -0.033* 0.061*    

(SE)    (0.009) (0.009) (0.027)    

Origin Emp Growth %       -0.033* -0.031* -0.034* 

(SE)       (0.011) (0.011) (0.010) 

Emp Growth (1-1000 mi)       0.071* 0.057* -0.007 

(SE)       (0.014) (0.013) (0.047) 

Origin Pop Growth %       0.007 0.008 0.009 

(SE)       (0.013) (0.012) (0.012) 

Pop Growth % (1-1000 mi)       -0.064 -0.030 0.011 

(SE)       (0.043) (0.035) (0.049) 

Employed -0.480* -0.481* -0.478* -0.478* -0.480* -0.479* -0.479* -0.481* -0.481* 

(SE) (0.030) (0.030) (0.030) (0.029) (0.030) (0.029) (0.029) (0.030) (0.03) 

Unemployed 0.225* 0.223* 0.222* 0.223* 0.223* 0.223* 0.228* 0.226* 0.225* 

(SE) (0.032) (0.032) (0.032) (0.032) (0.032) (0.033) (0.032) (0.033) (0.033) 

Less than HS -0.097* -0.096* -0.096* -0.096* -0.095* -0.096* -0.096* -0.096* -0.096* 

(SE) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) (0.032) 

Some College 0.209* 0.210* 0.210* 0.206* 0.210* 0.209* 0.208* 0.210* 0.210* 

(SE) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

College Graduate 0.732* 0.735* 0.732* 0.730* 0.733* 0.732* 0.731* 0.735* 0.735* 

(SE) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059) (0.059) 

Married -0.111* -0.108* -0.107* -0.110* -0.107* -0.107* -0.110* -0.108* -0.107* 

(SE) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) (0.022) 

Child Present -0.319* -0.318* -0.317* -0.318* -0.317* -0.317* -0.318* -0.318* -0.318* 

(SE) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) (0.024) 

(Table Continued Below) 
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Appendix Table A.1 (Continued)  Complete Results of Logistic Regressions in Table 2.3 
 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

Age -0.118* -0.123* -0.122* -0.118* -0.123* -0.122* -0.119* -0.123* -0.123* 

(SE) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) (0.019) 

Age Squared (× 100) 0.079ᶧ 0.093* 0.092* 0.080ᶧ 0.091* 0.090* 0.082ᶧ 0.092* 0.091* 

(SE) (0.045) (0.045) (0.046) (0.045) (0.045) (0.045) (0.045) (0.045) (0.045) 

Age Cubed (× 100,000) -0.085 -0.096 -0.088 0.063 0.100 -0.090 -0.015 -0.101 -0.093 

(SE) (0.343) (0.343) (0.343) (0.344) (0.344) (0.344) (0.343) (0.344) (0.344) 

Female -0.096* -0.092* -0.091* -0.096* -0.092* -0.091* -0.096* -0.092* -0.091* 

(SE) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) (0.016) 

Hispanic -0.534* -0.533* -0.530* -0.531* -0.530* -0.529* -0.530* -0.531* -0.530* 

(SE) (0.114) (0.114) (0.113) (0.114) (0.114) (0.113) (0.114) (0.114) (0.114) 

Black -0.397* -0.396* -0.394* -0.397* -0.396* -0.395* -0.396* -0.397* -0.396* 

(SE) (0.076) (0.076) (0.076) (0.076) (0.076) (0.076) (0.076) (0.076) (0.076) 

Nonmetropolitan 0.281ᶧ 0.283ᶧ 0.280ᶧ 0.278ᶧ 0.281ᶧ 0.278ᶧ 0.279ᶧ 0.282ᶧ 0.281ᶧ 
(SE) (0.162) (0.162) (0.161) (0.161) (0.161) (0.161) (0.161) (0.161) (0.161) 

Time -0.003 0.049*  0.011 0.062*  0.007 0.057*  

(SE) (0.008) (0.020)  (0.010) (0.021)  (0.009) (0.020)  

Time Squared (× 100) -0.098* -0.498*  -0.137* -0.580*  -0.118* -0.510*  

(SE) (0.025) (0.146)  (0.031) (0.157)  (0.027) (0.143)  

Time Cubed (× 1,000)  0.083*   0.101*   0.082*  

(SE)  (0.028)   (0.032)   (0.027)  

1983   -0.169*   -0.303*   -0.196* 

(SE)   (0.045)   (0.070)   (0.062) 

1984   -0.113*   -0.348*   -0.116* 

(SE)   (0.054)   (0.104)   (0.050) 

1986   0.026   -0.014   0.039 

(SE)   (0.101)   (0.078)   (0.107) 

1987   -0.033   -0.068   -0.054 

(SE)   (0.096)   (0.076)   (0.084) 

1988   -0.006   -0.008   -0.019 

(SE)   (0.118)   (0.097)   (0.108) 

1989   0.188   0.242*   0.160 

(SE)   (0.133)   (0.108)   (0.111) 

(Table Continued Below) 
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Appendix Table A.1 (Continued)  Complete Results of Logistic Regressions in Table 2.3 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

1990 0.221ᶧ 0.329* 0.200ᶧ 

(SE) (0.137) (0.117) (0.116) 

1991 0.106 0.216* 0.072 

(SE) (0.119) (0.105) (0.094) 

1992 0.011 0.021 -0.066 

(SE) (0.094) (0.083) (0.087) 

1993 0.041 0.004 0.008 

(SE) (0.102) (0.089) (0.089) 

1996 -0.172 -0.077 -0.187 

(SE) (0.133) (0.108) (0.114) 

1997 -0.189ᶧ -0.102 -0.248* 

(SE) (0.117) (0.093) (0.078) 

1998 -0.135 -0.032 -0.173ᶧ 

(SE) (0.134) (0.104) (0.099) 

1999 -0.224 -0.093 -0.283* 

(SE) (0.142) (0.114) (0.088) 

2000 -0.240ᶧ -0.073 -0.307* 

(SE) (0.149) (0.131) (0.099) 

2001 -0.323* -0.150 -0.396* 

(SE) (0.158) (0.135) (0.105) 

2002 -0.357* -0.199 -0.444* 

(SE) (0.146) (0.137) (0.107) 

2003 -0.426* -0.362* -0.530* 

(SE) (0.125) (0.108) (0.106) 

2004 -0.498* -0.446* -0.567* 

(SE) (0.125) (0.110) (0.106) 

2005 -0.480* -0.423* -0.552* 

(SE) (0.138) (0.111) (0.101) 

2006 -0.442* -0.361* -0.518* 

(SE) (0.157) (0.115) (0.099) 

2007 -0.567* -0.445* -0.631* 

(SE) (0.160) (0.120) (0.104) 

(Table Continued Below) 
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Table A.1 (Continued)  Complete Results of Logistic Regressions in Table 2.3 
 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

2008   -0.591*   -0.447*   -0.670* 

(SE)   (0.149)   (0.117)   (0.101) 

2009   -0.719*   -0.609*   -0.815* 

(SE)   (0.145)   (0.121)   (0.104) 

2010   -0.873*   -1.019*   -1.012* 

(SE)   (0.096)   (0.084)   (0.130) 

2011   -0.798*   -1.026*   -0.872* 

(SE)   (0.103)   (0.109)   (0.099) 

2012   -0.714*   -0.890*   -0.763* 

(SE)   (0.127)   (0.104)   (0.099) 

NH 0.658 0.656 0.658 0.606 0.606 0.613 0.587 0.586 0.584 

(SE) (1.688) (1.689) (1.681) (1.68) (1.681) (1.678) (1.682) (1.687) (1.685) 

VT -0.445 -0.442 -0.437 -0.371 -0.373 -0.360 -0.393 -0.397 -0.395 

(SE) (1.55) (1.551) (1.543) (1.548) (1.549) (1.546) (1.548) (1.552) (1.551) 

MA 1.164 1.156 1.152 1.169 1.156 1.160 1.145 1.137 1.132 

(SE) (1.569) (1.572) (1.564) (1.565) (1.568) (1.565) (1.566) (1.572) (1.571) 

RI 0.056 0.064 0.061 0.157 0.161 0.161 0.157 0.158 0.156 

(SE) (1.511) (1.513) (1.505) (1.507) (1.508) (1.505) (1.508) (1.512) (1.510) 

CT 1.11 1.112 1.107 1.148 1.148 1.148 1.128 1.130 1.127 

(SE) (1.504) (1.505) (1.497) (1.499) (1.500) (1.497) (1.500) (1.505) (1.503) 

NY 1.078 1.074 1.073 1.036 1.032 1.041 1.035 1.033 1.033 

(SE) (1.473) (1.475) (1.468) (1.466) (1.468) (1.465) (1.467) (1.472) (1.471) 

NJ 0.975 0.974 0.985 1.030 1.022 1.029 1.022 1.013 1.009 

(SE) (1.47) (1.472) (1.464) (1.466) (1.468) (1.465) (1.466) (1.471) (1.469) 

PA 0.88 0.886 0.901 0.976 0.973 0.983 0.984 0.980 0.978 

(SE) (1.453) (1.455) (1.447) (1.447) (1.449) (1.446) (1.448) (1.453) (1.451) 

OH 0.811 0.812 0.831 0.795 0.790 0.806 0.811 0.806 0.804 

(SE) (1.462) (1.463) (1.454) (1.458) (1.46) (1.456) (1.458) (1.463) (1.462) 

IN 1.159 1.170 1.200 1.167 1.171 1.186 1.172 1.173 1.172 

(SE) (1.455) (1.456) (1.444) (1.449) (1.45) (1.447) (1.449) (1.454) (1.452) 

IL 0.99 0.993 1.016 0.984 0.981 0.993 0.998 0.994 0.993 

(SE) (1.458) (1.459) (1.451) (1.450) (1.452) (1.449) (1.451) (1.456) (1.454) 

(Table Continued Below) 
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Table A.1 (Continued) Complete Results of Logistic Regressions in Table 2.3 
 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

MI 0.549 0.554 0.563 0.651 0.646 0.657 0.683 0.682 0.680 

(SE) (1.443) (1.444) (1.436) (1.443) (1.445) (1.441) (1.448) (1.453) (1.452) 

WI 0.651 0.663 0.684 0.796 0.797 0.809 0.788 0.786 0.785 

(SE) (1.459) (1.460) (1.452) (1.453) (1.454) (1.451) (1.454) (1.458) (1.457) 

MN 1.197 1.203 1.219 1.176 1.180 1.183 1.171 1.174 1.174 

(SE) (1.477) (1.478) (1.468) (1.472) (1.473) (1.470) (1.473) (1.477) (1.476) 

IA 0.854 0.862 0.889 0.902 0.902 0.911 0.888 0.887 0.885 

(SE) (1.463) (1.465) (1.454) (1.460) (1.462) (1.459) (1.459) (1.463) (1.462) 

MO 1.38 1.390 1.422 1.405 1.407 1.417 1.410 1.408 1.406 

(SE) (1.464) (1.466) (1.454) (1.459) (1.46) (1.457) (1.459) (1.464) (1.462) 

ND 0.354 0.353 0.378 0.348 0.347 0.334 0.318 0.318 0.318 

(SE) (1.484) (1.486) (1.477) (1.479) (1.481) (1.478) (1.479) (1.484) (1.482) 

SD 0.135 0.133 0.181 0.059 0.057 0.049 0.031 0.022 0.022 

(SE) (1.479) (1.480) (1.473) (1.472) (1.474) (1.470) (1.470) (1.475) (1.473) 

NE 0.857 0.856 0.898 0.750 0.749 0.745 0.715 0.707 0.704 

(SE) (1.471) (1.473) (1.466) (1.465) (1.466) (1.463) (1.468) (1.473) (1.471) 

KS 0.852 0.857 0.892 0.851 0.852 0.851 0.835 0.828 0.825 

(SE) (1.475) (1.476) (1.465) (1.469) (1.47) (1.468) (1.467) (1.472) (1.471) 

DE -0.238 -0.237 -0.220 -0.223 -0.229 -0.214 -0.236 -0.245 -0.246 

(SE) (1.48) (1.481) (1.473) (1.475) (1.476) (1.473) (1.476) (1.480) (1.479) 

MD 1.411 1.411 1.423 1.357 1.357 1.365 1.346 1.344 1.344 

(SE) (1.482) (1.484) (1.474) (1.475) (1.477) (1.473) (1.476) (1.481) (1.479) 

VA 1.553 1.553 1.563 1.467 1.467 1.473 1.453 1.451 1.450 

(SE) (1.455) (1.456) (1.446) (1.451) (1.452) (1.449) (1.452) (1.456) (1.455) 

WV 0.307 0.316 0.334 0.366 0.367 0.373 0.398 0.397 0.396 

(SE) (1.461) (1.463) (1.455) (1.458) (1.459) (1.456) (1.458) (1.462) (1.460) 

NC 0.75 0.745 0.762 0.803 0.787 0.799 0.796 0.782 0.780 

(SE) (1.467) (1.470) (1.462) (1.461) (1.465) (1.462) (1.464) (1.471) (1.469) 

SC 0.981 0.987 1.011 1.023 1.020 1.029 1.031 1.023 1.020 

(SE) (1.473) (1.475) (1.465) (1.469) (1.470) (1.467) (1.470) (1.474) (1.472) 

GA 1.386 1.394 1.422 1.411 1.411 1.426 1.418 1.414 1.415 

(SE) (1.461) (1.462) (1.452) (1.456) (1.457) (1.454) (1.458) (1.463) (1.461) 

(Table Continued Below) 
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Table A.1 (Continued) Complete Results of Logistic Regressions in Table 2.3 
 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

FL 1.321 1.320 1.351 1.248 1.242 1.254 1.264 1.250 1.250 

(SE) (1.543) (1.545) (1.534) (1.533) (1.535) (1.532) (1.531) (1.538) (1.538) 

KY 0.772 0.781 0.809 0.817 0.817 0.829 0.840 0.835 0.834 

(SE) (1.464) (1.466) (1.457) (1.460) (1.461) (1.458) (1.461) (1.466) (1.464) 

TN 1.254 1.263 1.290 1.298 1.299 1.311 1.316 1.313 1.311 

(SE) (1.454) (1.455) (1.446) (1.449) (1.45) (1.447) (1.450) (1.454) (1.452) 

AL 0.879 0.890 0.919 0.968 0.971 0.980 0.976 0.974 0.972 

(SE) (1.45) (1.451) (1.443) (1.448) (1.449) (1.446) (1.449) (1.453) (1.451) 

MS 0.650 0.654 0.689 0.672 0.667 0.671 0.703 0.692 0.690 

(SE) (1.462) (1.463) (1.455) (1.457) (1.459) (1.456) (1.457) (1.462) (1.461) 

AR 0.690 0.699 0.733 0.801 0.798 0.804 0.818 0.808 0.806 

(SE) (1.466) (1.467) (1.454) (1.460) (1.462) (1.458) (1.460) (1.465) (1.463) 

LA 1.404 1.414 1.457 1.412 1.417 1.419 1.434 1.429 1.427 

(SE) (1.47) (1.471) (1.461) (1.465) (1.466) (1.463) (1.466) (1.470) (1.468) 

OK 1.084 1.086 1.125 1.028 1.029 1.028 1.021 1.013 1.012 

(SE) (1.479) (1.481) (1.470) (1.472) (1.473) (1.47) (1.472) (1.476) (1.473) 

TX 1.207 1.210 1.262 1.164 1.158 1.177 1.189 1.173 1.173 

(SE) (1.483) (1.484) (1.473) (1.484) (1.486) (1.482) (1.485) (1.490) (1.486) 

MT 0.425 0.426 0.447 0.427 0.426 0.421 0.451 0.425 0.425 

(SE) (1.494) (1.496) (1.488) (1.489) (1.491) (1.488) (1.492) (1.497) (1.494) 

ID 0.553 0.558 0.566 0.658 0.661 0.634 0.697 0.666 0.665 

(SE) (1.475) (1.476) (1.469) (1.472) (1.474) (1.471) (1.469) (1.475) (1.473) 

WY 0.497 0.506 0.546 0.512 0.516 0.522 0.506 0.491 0.493 

(SE) (1.465) (1.466) (1.460) (1.459) (1.460) (1.457) (1.457) (1.461) (1.457) 

CO 1.512 1.519 1.550 1.450 1.458 1.450 1.470 1.457 1.455 

(SE) (1.477) (1.479) (1.468) (1.471) (1.472) (1.469) (1.474) (1.478) (1.475) 

NM 0.671 0.677 0.731 0.634 0.634 0.633 0.666 0.644 0.643 

(SE) (1.477) (1.478) (1.471) (1.468) (1.47) (1.467) (1.470) (1.475) (1.473) 

AZ 1.708 1.717 1.760 1.676 1.681 1.669 1.710 1.686 1.683 

(SE) (1.469) (1.470) (1.467) (1.464) (1.466) (1.462) (1.471) (1.474) (1.470) 

UT 1.072 1.078 1.100 1.032 1.037 1.034 1.054 1.032 1.032 

(SE) (1.485) (1.487) (1.48) (1.479) (1.481) (1.477) (1.488) (1.493) (1.490) 

(Table Continued Below) 
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Table A.1 (Continued) Complete Results of Logistic Regressions in Table 2.3 
 

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) 

NV 0.856 0.861 0.859 0.866 0.877 0.832 0.923 0.891 0.887 

(SE) (1.478) (1.480) (1.471) (1.473) (1.475) (1.476) (1.474) (1.477) (1.479) 

WA 1.421 1.427 1.411 1.444 1.459 1.405 1.483 1.461 1.456 

(SE) (1.482) (1.484) (1.478) (1.479) (1.480) (1.481) (1.472) (1.476) (1.471) 

OR 0.963 0.975 0.974 1.062 1.076 1.035 1.116 1.091 1.086 

(SE) (1.475) (1.476) (1.469) (1.467) (1.468) (1.466) (1.464) (1.469) (1.465) 

CA 1.087 1.095 1.121 1.143 1.144 1.141 1.192 1.157 1.154 

(SE) (1.503) (1.504) (1.492) (1.501) (1.503) (1.500) (1.506) (1.512) (1.507) 

Constant -0.553 -0.700 -0.997 -0.849 -0.791 -1.386 -0.807 -0.922 -0.783 

(SE) (1.14) (1.132) (1.136) (1.124) (1.127) (1.128) (1.126) (1.125) (1.133) 

          

Observations = 1,365,067          

Pseudo R-Squared 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 

See Table 2.3 

*  Significant at 5% level 

ᶧ  Significant at 10% level 
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Appendix Table A.2  Complete Results of Logistic Regressions in Table 2.4 
  

VARIABLES 

Interstate  

Moves 

Interstate  

Moves 

Interstate  

Moves 

Interstate  

Moves 

Origin UI Claims % 0.032* 0.031* 0.032* 0.036* 

(SE) (0.008) (0.009) (0.009) (0.009) 

UI Claims (Border) % -0.037*    

(SE) (0.007)    

UI Claims (1-500 mi) %  -0.039*   

(SE)  (0.009)   

UI Claims (1-1000 mi) %   -0.052*  

(SE)   (0.010)  

U.S. UI Claims %    -0.058* 

(SE)    (0.011) 

Employed -0.481* -0.481* -0.481* -0.482* 

(SE) (0.030) (0.030) (0.030) (0.030) 

Unemployed 0.224* 0.224* 0.223* 0.223* 

(SE) (0.033) (0.033) (0.032) (0.032) 

Less than HS -0.096* -0.096* -0.096* -0.101* 

(SE) (0.032) (0.032) (0.032) (0.033) 

Some College 0.209* 0.210* 0.210* 0.213* 

(SE) (0.019) (0.019) (0.019) (0.019) 

College Graduate 0.734* 0.735* 0.735* 0.733* 

(SE) (0.059) (0.059) (0.059) (0.059) 

Married -0.108* -0.108* -0.108* -0.107* 

(SE) (0.022) (0.022) (0.022) (0.023) 

Child Present -0.318* -0.318* -0.318* -0.316* 

(SE) (0.024) (0.024) (0.024) (0.025) 

Age -0.123* -0.124* -0.123* -0.127* 

(SE) (0.019) (0.019) (0.019) (0.019) 

Age Squared (× 100) 0.091* 0.092* 0.093* 0.100* 

(SE) (0.045) (0.045) (0.045) (0.044) 

Age Cubed (× 100,000) -0.094 -0.098 -0.096 -0.167 

(SE) (0.345) (0.345) (0.343) (0.338) 

Female -0.092* -0.092* -0.092* -0.093* 

(SE) (0.016) (0.016) (0.016) (0.016) 

Hispanic -0.533* -0.533* -0.533* -0.530* 

(SE) (0.114) (0.114) (0.114) (0.114) 

Black -0.397* -0.397* -0.396* -0.395* 

(SE) (0.076) (0.077) (0.076) (0.077) 

Nonmetropolitan 0.280 0.282ᶧ 0.283ᶧ 0.275ᶧ 

(SE) (0.162) (0.162) (0.162) (0.161) 

Time 0.060* 0.056* 0.049* 0.047* 

(SE) (0.020) (0.020) (0.020) (0.021) 

Time Squared (× 100) -0.536* -0.518* -0.498* -0.491* 

(SE) (0.144) (0.144) (0.146) (0.149) 

Time Cubed (× 1000) 0.087 0.085* 0.083* 0.081* 

(SE) (0.279) (0.028) (0.028) (0.028) 

NH 0.734 0.644 0.656 0.657 

(SE) (1.690) (1.691) (1.689) (1.694) 

VT -0.392 -0.451 -0.442 -0.451 

(SE) (1.552) (1.553) (1.551) (1.555) 

MA 1.217 1.131 1.156 1.150 

(SE) (1.571) (1.575) (1.572) (1.574) 

(Table Continued Below) 
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Table A.2 (Continued)  Complete Results of Logistic Regressions in Table 2.4 

  

VARIABLES 

Interstate  

Moves 

Interstate  

Moves 

Interstate  

Moves 

Interstate  

Moves 

RI 0.152 0.044 0.064 0.054 

(SE) (1.513) (1.514) (1.513) (1.516) 

CT 1.171 1.089 1.112 1.097 

(SE) (1.504) (1.508) (1.505) (1.508) 

NY 1.191 1.071 1.074 1.070 

(SE) (1.483) (1.476) (1.475) (1.476) 

NJ 1.087 0.971 0.974 0.990 

(SE) (1.469) (1.474) (1.472) (1.473) 

PA 0.973 0.899 0.886 0.908 

(SE) (1.456) (1.457) (1.455) (1.457) 

OH 0.985 0.830 0.812 0.832 

(SE) (1.464) (1.465) (1.463) (1.465) 

IN 1.316 1.218 1.170 1.197 

(SE) (1.457) (1.457) (1.456) (1.457) 

IL 1.112 1.024 0.993 1.021 

(SE) (1.459) (1.461) (1.459) (1.46) 

MI 0.659 0.555 0.554 0.559 

(SE) (1.449) (1.446) (1.444) (1.448) 

WI 0.810 0.690 0.663 0.680 

(SE) (1.459) (1.46) (1.460) (1.462) 

MN 1.340 1.229 1.203 1.219 

(SE) (1.477) (1.478) (1.478) (1.479) 

IA 0.961 0.889 0.862 0.894 

(SE) (1.468) (1.467) (1.465) (1.467) 

MO 1.491 1.414 1.390 1.440 

(SE) (1.466) (1.467) (1.466) (1.467) 

ND 0.387 0.283 0.353 0.388 

(SE) (1.485) (1.486) (1.486) (1.488) 

SD 0.193 0.118 0.133 0.199 

(SE) (1.479) (1.481) (1.480) (1.482) 

NE 0.915 0.848 0.856 0.883 

(SE) (1.474) (1.476) (1.473) (1.473) 

KS 0.885 0.833 0.857 0.888 

(SE) (1.476) (1.478) (1.476) (1.474) 

DE -0.111 -0.245 -0.237 -0.232 

(SE) (1.48) (1.483) (1.481) (1.478) 

MD 1.503 1.418 1.411 1.395 

(SE) (1.485) (1.486) (1.484) (1.486) 

VA 1.633 1.556 1.553 1.570 

(SE) (1.457) (1.458) (1.456) (1.455) 

WV 0.411 0.333 0.316 0.347 

(SE) (1.464) (1.464) (1.463) (1.465) 

NC 0.809 0.748 0.745 0.752 

(SE) (1.468) (1.471) (1.470) (1.471) 

SC 1.101 0.981 0.987 1.026 

(SE) (1.475) (1.476) (1.475) (1.476) 

GA 1.471 1.378 1.394 1.428 

(SE) (1.464) (1.463) (1.462) (1.464) 

FL 1.433 1.337 1.320 1.362 

(SE) (1.536) (1.545) (1.545) (1.544) 

KY 0.872 0.822 0.781 0.822 

(SE) (1.466) (1.468) (1.466) (1.468) 

(Table Continued Below) 
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Table A.2 (Continued)  Complete Results of Logistic Regressions in Table 2.4 
  

VARIABLES 

Interstate  

Moves 

Interstate  

Moves 

Interstate  

Moves 

Interstate  

Moves 

TN 1.371 1.277 1.263 1.297 

(SE) (1.455) (1.457) (1.455) (1.457) 

AL 0.946 0.889 0.890 0.928 

(SE) (1.453) (1.453) (1.451) (1.454) 

MS 0.803 0.640 0.654 0.686 

(SE) (1.465) (1.464) (1.463) (1.464) 

AR 0.760 0.691 0.699 0.755 

(SE) (1.465) (1.465) (1.467) (1.469) 

LA 1.458 1.399 1.414 1.473 

(SE) (1.472) (1.473) (1.471) (1.473) 

OK 1.114 1.029 1.086 1.148 

(SE) (1.481) (1.481) (1.481) (1.483) 

TX 1.305 1.225 1.210 1.270 

(SE) (1.481) (1.484) (1.484) (1.483) 

MT 0.508 0.456 0.426 0.436 

(SE) (1.497) (1.498) (1.496) (1.498) 

ID 0.687 0.600 0.558 0.559 

(SE) (1.478) (1.478) (1.476) (1.478) 

WY 0.531 0.454 0.506 0.567 

(SE) (1.466) (1.468) (1.466) (1.469) 

CO 1.521 1.416 1.519 1.569 

(SE) (1.478) (1.481) (1.479) (1.475) 

NM 0.702 0.604 0.677 0.739 

(SE) (1.478) (1.481) (1.478) (1.48) 

AZ 1.854 1.774 1.717 1.776 

(SE) (1.473) (1.470) (1.470) (1.471) 

UT 1.102 1.012 1.078 1.099 

(SE) (1.486) (1.489) (1.487) (1.487) 

NV 0.956 0.857 0.861 0.844 

(SE) (1.478) (1.481) (1.480) (1.481) 

WA 1.607 1.501 1.427 1.400 

(SE) (1.481) (1.484) (1.484) (1.486) 

OR 1.095 1.038 0.975 0.964 

(SE) (1.474) (1.476) (1.476) (1.480) 

CA 1.202 1.042 1.095 1.125 

(SE) (1.509) (1.502) (1.504) (1.508) 

Constant -0.974 -0.831 -0.700 -0.638 

(SE) (1.134) (1.136) (1.132) (1.142) 

     

Observations  1,365,067 1,365,067 1,365,067 

Pseudo R-Squared  0.082 0.082 0.082 

See Table 2.4 

*  Significant at 5% level 

ᶧ  Significant at 10% level 
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Table A.3  Complete Results of Logistic Regressions in Table 2.5 

  

VARIABLES 

Interstate Moves 

(LMC = UI Claims) 

Interstate Moves 

(LMC = Unemp. Rate) 

Interstate Moves 

(LMC = Employ. 

Growth) 

UI Claims Diff (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶𝑜,𝑡)  0.019*   

(SE) (0.009)   

Unemp. Rate Diff (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶𝑜,𝑡)  0.236ᶧ  

(SE)  (0.140)  

Emp Growth Diff (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶𝑜,𝑡)   -0.658* 

(SE)   (0.178) 

Origin Population Growth     0.911 

(SE)   (1.308) 

Population Growth, 1-1000 mi   -1.126 

(SE)   (3.441) 

Employed -0.475* -0.477* -0.480* 

(SE) (0.030) (0.029) (0.030) 

Employed × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) 0.039* 0.060* -0.071* 

(SE) (0.007) (0.013) (0.022) 

Unemployed 0.230* 0.229* 0.229* 

(SE) (0.032) (0.033) (0.033) 

Unemployed  × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) -0.040* -0.045* 0.125* 

(SE) (0.010) (0.017) (0.027) 

Less than HS -0.096* -0.091* -0.096* 

(SE) (0.032) (0.032) (0.032) 

Less than HS × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) -0.008 0.026ᶧ -0.006 

(SE) (0.009) (0.014) (0.028) 

Some College 0.214* 0.213* 0.208* 

(SE) (0.019) (0.019) (0.019) 

Some College × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) 0.026* 0.035* -0.002 

(SE) (0.010) (0.014) (0.021) 

4 Year Degree 0.738* 0.738 0.733* 

(SE) (0.060) (0.060) (0.059) 

4 Year Degree × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) 0.032* 0.048* -0.008 

(SE) (0.011) (0.014) (0.021) 

Married -0.108* -0.107* -0.108* 

(SE) (0.021) (0.021) (0.022) 

Married × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) 0.000 -0.003 -0.010 

(SE) (0.007) (0.010) (0.015) 

Child Present -0.320* -0.317* -0.317* 

(SE) (0.024) (0.024) (0.025) 

Child Present × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) -0.021* -0.005 0.030* 

(SE) (0.006) (0.009) (0.015) 

Age -0.122* -0.125* -0.123* 

(SE) (0.019) (0.019) (0.019) 

Age × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) 0.005* -0.019ᶧ 0.043* 

(SE) (0.001) (0.011) (0.015) 

Age2 × 100 0.089* 0.095* 0.091* 

(SE) (0.045) (0.044) (0.045) 

Age2 × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) × 100 -0.020* 0.048ᶧ -0.099* 

(SE) (0.005) (0.027) (0.037) 

Age3 × 10,000 -0.006 -0.012 -0.009 

(SE) (0.030) (0.034) (0.034) 

Age3 × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) × 10,000 -0.020* -0.037ᶧ 0.072* 

(SE) (0.005) (0.021) (0.030) 

(Table Continued Below) 
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Table A.3 (Continued) Complete Results of Logistic Regressions in Table 2.5 

  

VARIABLES 

Interstate Moves 

(LMC = UI Claims) 

Interstate Moves 

(LMC = Unemp. Rate) 

Interstate Moves 

(LMC = Employ. 

Growth) 

Female -0.094* -0.092* -0.093* 

(SE) (0.016) (0.016) (0.016) 

Female × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡)  -0.006 -0.004 0.0410* 

(SE) (0.006) (0.011) (0.018) 

Hispanic -0.529* -0.528* -0.530* 

(SE) (0.117) (0.113) (0.114) 

Hispanic × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡)  0.044* -0.020 -0.039 

(SE) (0.019) (0.020) (0.034) 

Black -0.400* -0.395* -0.397* 

(SE) (0.078) (0.076) (0.077) 

Black × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) 0.045* 0.015 -0.092* 

(SE) (0.016) (0.025) (0.026) 

Non-Metro 0.268 0.277ᶧ 0.278ᶧ 
(SE) (0.163) (0.162) (0.161) 

Non-Metro × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡)  -0.069* -0.023 0.129* 

(SE) (0.017) (0.027) (0.032) 

Time 0.048* 0.065* 0.064* 

(SE) (0.020) (0.023) (0.021) 

Time × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡)  -0.005 -0.011ᶧ 0.008 

(SE) (0.004) (0.006) (0.008) 

Time2 × 100 -0.502 -0.555* -0.548 

(SE) (0.444) (0.154) (0.145) 

Time2 × (𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) × 100   0.027 0.034 0.009 

(SE) (0.036) (0.049) (0.006) 

Time3 × 10,000 0.830 0.894* 0.874* 

(SE) (0.281) (0.287) (0.271) 

Time3×(𝐿𝑀𝐶𝑜,𝑡 − 𝐿𝑀𝐶−𝑜,𝑡) ×10,000   -0.030 0.002 -0.135 

(SE) (0.078) (0.109) (0.133) 

NH 0.614 0.605 0.592 

(SE) (1.688) (1.687) (1.685) 

VT -0.399 -0.409 -0.413 

(SE) (1.545) (1.558) (1.551) 

MA 1.142 1.165 1.153 

(SE) (1.568) (1.572) (1.57) 

RI 0.01 0.150 0.156 

(SE) (1.509) (1.51) (1.511) 

CT 1.076 1.145 1.147 

(SE) (1.501) (1.503) (1.503) 

NY 1.067 1.046 1.044 

(SE) (1.471) (1.471) (1.47) 

NJ 0.936 1.021 1.018 

(SE) (1.467) (1.471) (1.47) 

PA 0.867 0.975 0.99 

(SE) (1.45) (1.452) (1.451) 

OH 0.799 0.787 0.813 

(SE) (1.458) (1.462) (1.461) 

IN 1.146 1.152 1.186 

(SE) (1.452) (1.453) (1.453) 

IL 0.973 0.980 0.998 

(SE) (1.455) (1.455) (1.454) 

MI 0.536 0.652 0.685 

(SE) (1.439) (1.447) (1.451) 

WI 0.656 0.772 0.788 

(SE) (1.453) (1.458) (1.457) 

(Table Continued Below) 
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Table A.3 (Continued) Complete Results of Logistic Regressions in Table 2.5 

  

VARIABLES 

Interstate Moves 

(LMC = UI Claims) 

Interstate Moves 

(LMC = Unemp. Rate) 

Interstate Moves 

(LMC = Employ. 

Growth) 

MN 1.181 1.173 1.179 

(SE) (1.476) (1.476) (1.476) 

IA 0.86 0.889 0.907 

(SE) (1.458) (1.466) (1.462) 

ND 1.383 1.401 1.413 

(SE) (1.463) (1.463) (1.462) 

SD 0.331 0.335 0.361 

(SE) (1.483) (1.485) (1.482) 

MO 0.007 0.020 0.028 

(SE) (1.484) (1.477) (1.474) 

NE 0.782 0.718 0.721 

(SE) (1.471) (1.469) (1.472) 

KS 0.828 0.838 0.841 

(SE) (1.475) (1.476) (1.47) 

DE -0.248 -0.246 -0.237 

(SE) (1.478) (1.478) (1.479) 

MD 1.444 1.372 1.367 

(SE) (1.481) (1.481) (1.48) 

VA 1.549 1.467 1.465 

(SE) (1.455) (1.457) (1.455) 

WV 0.415 0.439 0.44 

(SE) (1.455) (1.459) (1.46) 

NC 0.741 0.766 0.778 

(SE) (1.466) (1.468) (1.47) 

SC 0.980 1.001 1.027 

(SE) (1.471) (1.472) (1.473) 

GA 1.387 1.403 1.405 

(SE) (1.458) (1.461) (1.463) 

FL 1.325 1.237 1.261 

(SE) (1.539) (1.539) (1.536) 

KY 0.817 0.836 0.858 

(SE) (1.462) (1.465) (1.464) 

TN 1.270 1.292 1.318 

(SE) (1.451) (1.453) (1.453) 

AL 0.910 0.961 0.982 

(SE) (1.446) (1.451) (1.452) 

MS 0.681 0.704 0.718 

(SE) (1.460) (1.465) (1.462) 

AR 0.768 0.813 0.825 

(SE) (1.463) (1.466) (1.465) 

LA 1.398 1.431 1.432 

(SE) (1.468) (1.469) (1.469) 

OK 1.030 1.029 1.035 

(SE) (1.481) (1.476) (1.474) 

TX 1.216 1.180 1.195 

(SE) (1.48) (1.488) (1.489) 

MT 0.415 0.445 0.481 

(SE) (1.493) (1.493) (1.495) 

ID 0.620 0.668 0.671 

(SE) (1.473) (1.477) (1.475) 

WY 0.474 0.498 0.491 

(SE) (1.464) (1.471) (1.462) 

CO 1.521 1.447 1.452 

(SE) (1.475) (1.474) (1.476) 

NM 0.639 0.650 0.647 

(SE) (1.480) (1.473) (1.474) 

AZ 1.710 1.658 1.678 

(SE) (1.467) (1.468) (1.472) 

UT 1.078 1.019 1.037 

(SE) (1.481) (1.484) (1.491) 

(Table Continued Below) 
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Table A.3 (Continued) Complete Results of Logistic Regressions in Table 2.5 

  

VARIABLES 

Interstate Moves 

(LMC = UI Claims) 

Interstate Moves 

(LMC = Unemp. Rate) 

Interstate Moves 

(LMC = Employ. 

Growth) 

NV 0.831 0.844 0.888 

(SE) (1.476) (1.478) (1.475) 

WA 1.409 1.439 1.458 

(SE) (1.481) (1.485) (1.474) 

OR 0.952 1.064 1.101 

(SE) (1.474) (1.472) (1.468) 

CA 1.046 1.146 1.156 

(SE) (1.500) (1.505) (1.512) 

Constant -0.687 -0.932 -0.955 

(SE) (1.129) (1.119) (1.122) 

    

Observations 1,365,067 1,365,067 1,365,067 

Pseudo R-Squared 0.083 0.082 0.083 

See Table 1.5 

*  Significant at 5% level 

ᶧ  Significant at 10% level 
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Table A.4: Absolute High School Gain (OLS, Compare to Table 2.14)  

VARIABLES 

 

(1) 

 

(2) 

 

(3) 

 

(4) 

Metro > 400 per square mile -0.054 -0.037 -0.091* -- 
(SD) (0.033) (0.056) (0.043) -- 
Metro 200-400 per square mile 0.000 0.017 -0.010 -- 
(SD) (0.026) (0.044) (0.035) -- 
Non-Metro -0.124** -- -- -- 
(SD) (0.022) -- -- -- 
Ln (dist. to four-year state coll.) -0.026* -0.014 -0.018 -0.066** 

(SD) (0.007) (0.012) (0.009) (0.013) 

July average temperature (F) -0.003 -0.002 0.010* -0.012** 

(SD) (0.002) (0.004) (0.004) (0.004) 

January avg. temperature (F)  0.005** 0.004 0.005 0.012** 

(SD) (0.002) (0.003) (0.002) (0.003) 

Coast dummy -0.080** -0.033 -0.059 -0.111** 

(SD) (0.021) (0.053) (0.031) (0.040) 

Poverty rate (1990) % -0.011** -0.006 -0.016** -0.008** 

(SD) (0.002) (0.007) (0.004) (0.003) 

Unemployment rate (1991-93) % -0.021** -0.034 -0.030** -0.009 

(SD) (0.004) (0.019) (0.007) (0.006) 

Neighbors’ unemployment %  -0.013 -0.014 -0.001 

(SD)  (0.015) (0.009) (0.010) 

Mining % -0.015** -0.020* -0.018** -0.008* 

(SD) (0.003) (0.009) (0.004) (0.004) 

Manufacturing % -0.004** -0.006* -0.006** 0.000 

(SD) (0.001) (0.003) (0.002) (0.002) 

Information services % 0.013* -0.006 0.013* 0.033* 

(SD) (0.005) (0.012) (0.004) (0.017) 

Professional % 0.010* 0.030** -0.004 0.010 

(SD) (0.005) (0.009) (0.005) (0.009) 

Arts and entertainment % 0.040** 0.011 0.016 0.096** 

(SD) (0.012) (0.025) (0.014) (0.017) 

Federal government % -0.005 -0.002 -0.009* -0.005 

(SD) (0.003) (0.006) (0.004) (0.004) 

Military % 0.000 -0.002 -0.002 0.010** 

(SD) (0.002) (0.005) (0.003) (0.003) 

State and local government % -0.001 -0.002 -0.001 0.000 

(SD) (0.002) (0.003) (0.002) (0.002) 

Midwest 0.116** 0.172** 0.104 0.124* 

(SD) (0.027) (0.065) (0.039) (0.052) 

South 0.313** 0.289** 0.237** 0.241** 

(SD) (0.037) (0.087) (0.059) (0.054) 

West 0.202** 0.221* 0.142** 0.195** 

(SD) (0.037) (0.088) (0.053) (0.055) 

Non-Native % 0.012** 0.015** 0.014* 0.006 

(SD) (0.002) (0.004) (0.003) (0.004) 

Constant 0.622** 0.564 -0.129 -0.994** 

(SD) (0.192) (0.300) (0.341) (0.325) 

     

Sample All CGAs Metro Center Suburb Non-Metro 

Observations 915 203 380 332 

R-squared 0.584 0.583 0.543 0.540 

Regressions employ Hubert-White robust standard error corrections.  Initial stock of high school graduates is based on 

the National Center for Education Statistics’ Common Core of Data, 1991-1993.  Growth of high school graduates is 

then based on the 2006-2010 5% Public Use Microdata Sample of the ACS.  See Table 3.2 for details.  

** Significant at the 1% level 

* Significant at the 5% level 
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Appendix Table A.5:  Absolute High School Gain, “Consistent PUMAs” (OLS) 

VARIABLES 

 

(1) 

 

(2) 

Metro > 400 per square mile 0.079 0.033 

(SD) (0.062) (0.063) 

Metro 200-400 per square mile 0.006 -0.026 

(SD) (0.035) (0.036) 

Non-Metro -0.120** -0.092** 

(SD) (0.032) (0.031) 

Ln (dist. to four-year state coll.) -0.013 -0.007 

(SD) (0.011) (0.011) 

July average temperature (F) -0.006 -0.004 

(SD) (0.004) (0.004) 

January avg. temperature (F)  0.007** 0.005 

(SD) (0.003) (0.003) 

Coast dummy -0.042 -0.048ᶧ 
(SD) (0.028) (0.028) 

Poverty rate (1990) % -0.004 0.001 

(SD) (0.003) (0.004) 

Unemployment rate (1991-93) % -0.029** -0.037** 

(SD) (0.007) (0.008) 

Average college wage (1990)  -0.025 

(SD)  (0.226) 

Average non-college wage (1990)  0.451ᶧ 
(SD)  (0.248) 

Mining % -0.013* -0.018** 

(SD) (0.005) (0.005) 

Manufacturing % 0.001 0.000 

(SD) (0.002) (0.002) 

Information services % 0.029ᶧ 0.026 

(SD) (0.017) (0.017) 

Professional % 0.009 0.005 

(SD) (0.008) (0.008) 

Arts and entertainment % 0.026 0.025 

(SD) (0.018) (0.018) 

Federal government % 0.001 0.000 

(SD) (0.007) (0.007) 

Military % 0.006** 0.008** 

(SD) (0.002) (0.002) 

State and local government % 0.001 0.001 

(SD) (0.002) (0.002) 

Midwest 0.065 0.050 

(SD) (0.047) (0.048) 

South 0.245** 0.252** 

(SD) (0.059) (0.060) 

West 0.200** 0.195* 

(SD) (0.066) (0.065) 

Non-Native % 0.015** 0.016** 

(SD) (0.003) (0.003) 

Constant 0.491 -0.513 

(SD) (0.319) (0.516) 

Sample = Consistent PUMAs 

Observations 312 312 

R-squared 0.594 0.606 

Regressions use Hubert-White robust standard error corrections.  Column 1 is identical to column 1 of Appendix Table 

A.4 except the geographic unit is broadened to consolidate 1990 PUMAs with 2005-2010 PUMAs.  Bold indicates > 

1.5 SD difference from Appendix Table A.4.  Italics indicate change in significance. 

** Significant at the 1% level   * Significant at the 5% level  ᶧ  Significant at 10% level  



 
 

136 
 

 

 

 

 

 

 

  



 
 

137 
 

Bibliography 

 

Chapter Two Bibliography 

 

Bartik, Timothy. 1993. “Who Benefits from Local Job Growth: Migrants or the Original  

 Residents?” Regional Studies, 27(4): 297-311. 

 

Blanchard, Olivier, Lawrence Katz, Robert Hall, and Barry Eichengreen. 1992. “Regional  

Evolutions,” Brookings Papers on Economic Activity, 23(1): 1-76. 

 

Blomquist, Glenn, Mark Berger, and John Hoehn. 1988. “New Estimates of Quality of  

Life in Urban Areas,” The American Economic Review, 78(1): 89-107. 

 

Bound, John and Harry Holzer. 2000. “Demand Shifts, Population Adjustments, and  

Labor Market Outcomes During the 1980s,” Journal of Labor Economics, 18(1): 

20-54. 

 

Conway, Karen and Jonathan Rork. 2012. “No Country for Old Men (or Women): Do  

State Tax  Policies Drive Away the Elderly?” National Tax Journal, 65(2): 313- 

56. 

 

Coomes, Paul and William Hoyt. 2008. “Income Taxes and the Destination of Movers to  

Multistate MSAs,” Journal of Urban Economics, 63(3): 920-37. 

 

Costa, Dora and Matthew Kahn. 2000. “Power Couples: Changes in the Locational  

Choice of the College-educated, 1940-1990,” Quarterly Journal of Economics,  

115(4): 1287-1315. 

 

Cushing, Brian and Jacques Poot. 2004. “Crossing Boundaries and Borders: Regional  

Science Advances in Migration Modeling,” Papers in Regional Science, 83(1): 

317-38. 

 

Dahl, Gordon. 2002. “Mobility and the Return to Education: Testing a Roy Model with  

Multiple Markets,” Econometrica, 70(6): 2367-2420. 

 

DaVanzo, Julie. 1978. “Does Unemployment Affect Migration? Evidence from Micro  

Data,” The Review of Economics and Statistics, 60(4): 504-14. 

 

DaVanzo, Julie. 1981. “Repeat Migration, Information Costs, and Location-Specific  

Capital,” Population and Environment, 4(1): 45-73. 

 

Day, Kathleen and Stanley Winer. 2006. “Policy-Induced Internal Migration: An  

Empirical Investigation of the Canadian Case,” International tax and Public  

Finance, 13(5): 535-64. 

 

  



 
 

138 
 

Ferreira, Fernando, Joseph Gyourko, and Joseph Tracy. 2008. “Housing Busts and  

Household Mobility,” Journal of Urban Economics, 68(1): 34-45.  

 

Fields, Gary. 1976. “Labor Force Migration, Unemployment, and Job Turnover,” The  

Review of Economics and Statistics, 58(4): 407-15. 

 

Frey, William. 2009. “The Great American Migration Slowdown: Regional and  

Metropolitan Dimensions,” Washington DC: Brookings Research Report. 

 

Gallaway, L.E., R.G. Gilbert, and P.E. Smith. 1967. “The Economics of Labor Mobility:  

An Empirical Analysis,” Western Economic Journal, 5(3): 211-23. 

 

Gelbach, Jonah. 2004. “Migration, the Life Cycle, and State Benefits: How Low is the 

Bottom?” Journal of Political Economy, 112(5): 1091-1130. 

 

Glaeser, Edward and David Mare.  2001. “Cities and Skills,” Journal of Labor  

Economics, 19(2): 316-42 

 

Greenwood, Michael. 1975. “Research on Internal Migration in the United States: A  

Survey,” Journal of Economic Literature, 13(2): 397-433. 

 

Greenwood, Michael. 1997. “Internal Migration in Developed Countries,” In Mark  

Rosenzweig and Oded Stark, eds.  Handbook of Population and Family  

Economics, vol 1B. North-Holland, Amsterdam, pp. 647-720. 

 

Greenwood, Michael and Gary Hunt. 1984. “Migration and Interregional Employment 

 Redistribution in the United States,” American Economic Review, 74(5): 957-69. 

 

Haurin, Donald and R. Jean Haurin. 1988. “Net Migration, Unemployment, and the  

Business Cycle,” Journal of Regional Science, 28(2): 239-54. 

 

Herzog, Henry, Jr. and Alan Schlottmann. 1983. “Migrant Information, Job Search and  

the Remigration Decision,” Southern Economic Journal, 50(1): 43-56. 

 

Hughes, G. and B. McCormick. 1989. “Does Migration Reduce Differentials in Regional  

Unemployment Rates?” In Van Dijk, J., H. Folmer, Henry Herzog, and Alan 

Schlottman (eds) Migration and Labour Market Adjustment, Kluwer Academic, 

Dordrecht, pp. 85-108. 

 

Hunt, Jennifer. 2006. “Staunching Emigration from East Germany: Age and the  

Determinants of Migration,” Journal of the European Economic Association,  

4(5): 1014-37. 

 

Kaestner, Robert, Neeraj Kaushal, and Gregg Van Ryzin. 2003. “Migration  

Consequences of Welfare Reform,” Journal of Urban Economics, 53(3): 357-76.  

 



 
 

139 
 

Kambourov, Gueorgui and Iorii Manovskii. 2008. “Rising Occupational and Industry 

Mobility in the United States: 1968-97,” International Economic Review, 49(1): 

41-79.  

 

Kaplan, Greg and Sam Schulhoger-Wohl. 2010. “Interstate Migration Has Fallen Less  

Than You Think: Consequences of Hot Deck Imputation in the Current 

Population Survey,” NBER Working Paper: No. 16536. 

 

Kaplan, Greg and Sam Schulhoger-Wohl. 2013. “Understanding the Long-Run Decline  

in Interstate Migration,” NBER Working Paper: No. 18507. 

 

Kennan, John and James Walker. 2010. “Wages, Welfare Benefits, and Migration,”  

Journal of Econometrics, 156(1): 229-38. 

 

Kennan, John and James Walker. 2011. “The Effect of Expected Income on Individual  

Migration Decisions,” Econometrica 79(1): 211-51.  

 

Lansing, John and Eva Mueller. 1967. The Geographic Mobility of Labor. Survey  

Research Center: Ann Arbor, MI. 

 

Marston, Stephen. 1985. “Two Views of the Geographic Distribution of Unemployment,”  

The Quarterly Journal of Economics, 100(1): 57-79. 

 

McCormick, Barry.  1997. “Regional Unemployment and Labour Mobility in the UK,”  

European Economic Review, 41(3): 581-89. 

 

McKinnish, Terra. 2005. “Importing the Poor: Welfare Magnetism and Cross-Border  

Welfare Migration,” Journal of Human Resources, 40(1): 57-76. 

 

Mincer, Jacob. 1974. Schooling, Experience and Earnings. New York: Columbia  

University Press (for NBER). 

 

Molloy, Raven, Christopher Smith and Abigail Wozniak. 2011. “Internal Migration in the  

United States,” Journal of Economic Perspectives, 25(2): 1-24. 

 

Molloy, Raven, Christopher Smith and Abigail Wozniak. 2013. “Declining Migration  

Within the U.S.: The Role of the Labor Market,” Finance and Economics 

Discussion Series, Divisions of Research and Statistics and Monetary Affairs, 

Federal Reserve Board, Washington, D.C., 27. 

 

Obstfeld, Maurice and Giovanni Peri. 1998. “Regional Nonadjustment and Fiscal Policy:  

Lessons for EMU,” In Begg, David, Juergen Von Hagen, Charles Wyplosz, and  

Klaus Zimmermann, eds. EMU: Prospects and Challenges for the Euro.  

Blackwell, London, pp. 207-59. 

 

 



 
 

140 
 

Partridge, Mark and Dan Rickman. 1997. “The Dispersion of U.S. State Unemployment  

Rates: The Role of Market and Non-Market Equilibrium Factors,” Regional  

Studies, 31(6): 593-606. 

 

Partridge, Mark and Dan Rickman. 2006. “An SVAR Model of Fluctuations in Migration  

Flows and State Labor Market Dynamics,” Southern Economic Journal, 72(4):  

958-80. 

 

Partridge, Mark, Dan Rickman, M. Rose Olfert, and Kamar Ali. 2012. “Dwindling U.S.  

Internal Migration: Evidence of Spatial Equilibrium or Structural Shifts in Local 

Labor Markets?”  Regional Science and Urban Economics, 42(1-2): 375-88. 

 

Pekkala, Sari and Hannu Tervo. 2002. “Unemployment and Migration: Does Moving  

Help?” The Scandinavian Journal of Economics, 104(4): 621-39.  

 

Pissarides, Christopher and Jonathan Wadsworth. 1989. “Unemployment and the Inter- 

regional Mobility of Labor,” The Economic Journal, 99(397): 739-55. 

 

Rogers, A. 1967. “A Regression Analysis of Interregional Migration in California,”  

Review of Economic Statistics, 49(2): 262-67. 

 

Rosenbloom, Joshua and William Sundstrom, 2004. “The Decline and Rise of Interstate  

Migration in the United States: Evidence from the IPUMS, 1850-1900,” Research  

in Economic History, 22: 289-325. 

 

Rosenthal, Stuart and William Strange, 2008. “The Attenuation of Human Capital  

Spillovers.  Journal of Urban Economics, 64(2), 373-89. 

 

Saks, Raven and Abigail Wozniak. 2011. “Labor Reallocation over the Business Cycle:  

New Evidence from Internal Migration,” Journal of Labor Economics, 29(4):  

697-739. 

 

Sasser, Alicia. 2010. “Voting with their Feet: Relative Economics Conditions and State  

Migration Patterns,” Regional Science and Urban Economics, 40(2-3): 122-35. 

 

Schultz, Theodore. 1961. “Investment in Human Capital,” American Economic Review,  

51(1): 1-17. 

 

Shelley, Mark and Steven Koven. 1993. “Interstate Migration: A Test of Competing  

Interpretations,” Policy Studies Journal, 21(2) 243-61.  

 

Sjaastad, Larry. 1962. “The Costs and Returns of Human Migration,” Journal of Political  

Economy, 70(5): 80-93. 

 

Stark, Oded and David Bloom. 1985. “The New Economics of Labor Migration,” The  

American Economic Review, 75(2): 173-78. 



 
 

141 
 

Treyz, George, Dan Rickman, Gary Hunt and Michael Greenwood. 1993. “The Dynamics  

of U.S. Internal Migration,” The Review of Economics and Statistics, 75(2): 209-

14. 

 

Wadycki, W.J. 1974. “Alternative Opportunities and Interstate Migration: Some  

Additional Results,” Review of Economics and Statistics, 56(2): 254-57. 

 

Wozniak, Abigail. 2010. “Are College Graduates More Responsive to Distant Labor  

Market Opportunities?” Journal of Human Resources, 45(4), 944-70. 

 

Young, Cristobal and Charles Varner. 2011. “Millionaire Migration and State Taxation of  

Top Incomes: Evidence from a Natural Experiment,” National Tax Journal, 64(2,  

Part 1): 255-84. 

  



 
 

142 
 

Chapter Three Bibliography 

 

Acemoglu, Daron. 1996. “A Microfoundation for Social Increasing Returns in Human  

Capital Accumulation,” Quarterly Journal of Economics, 111(3): 779-804. 

 

Acemoglu, Daron. 1998. “Why do New Technologies Complement Skills?  Directed  

Technical Change and Wage Inequality,” Quarterly Journal of Economics 113(4):  

1055-89. 

 

Adamson, Dwight, David Clark, and Mark Partridge. 2004. “Do Urban Agglomeration  

Effects and Household Amenities Have a Skill Bias?” Journal of Regional  

Science, 44(2) 201-23. 

 

Artz, Georeanne. 2003. “Rural Area Brain Drain: Is it a Reality?” Choices, 4th Quarter:  

11-15. 

 

Bartik, Timothy. 1991. Who Benefits from State and Local Development Policy?  

Kalamazoo, MI: W.E. Upjohn Institute. 

 

Beine, Michel, Frederic Docuqier, and Hillel Rapoport. 2008. “Brain Drain and Human  

Capital Formation in Developing Countries: Winners and Losers,” The Economic  

Journal, 118(528): 631-52. 

 

Berry, Christopher and Edward Glaeser. 2005. “The Divergence of Human Capital  

Levels Across Cities,” Papers in Regional Science, 84(3): 407-44. 

 

Black, Dan and Seth Sanders. 2012. “Inequality and Human Capital in Appalachia, 1960- 

2000,” James Ziliak (ed) Appalachian Legacy: Economic Opportunity After the  

War on Poverty, Brookings Institution Press, Washington D.C., pp. 45-80. 

 

Bollinger, Christopher, James Ziliak, and Kenneth Troske. 2011. “Down from the  

Mountain: Skill Upgrading and Wages in Appalachia,” Journal of Labor  

Economics, 29(4): 819-57. 

 

Bolton, Roger. 1992 “Place Prosperity vs. People Prosperity Revisited: An Old Issue with  

a New Angle,” Urban Studies, 29(2): 185-203. 

 

Borjas, George. 1992. “Self-Selection and Internal Migration in the United States,”  

Journal of Urban Economics, 32(2): 159-85. 

 

Bound, John, Jeffrey Groen, Gabor Kezdi, and Sarah Turner. 2004. “Trade in University  

Training: Cross-State Variation in the Production and Stock of College-Educated  

Labor,” Journal of Econometrics, 121(1): 143-73. 

 

Burke, Mary and Tim Sass. 2013. “Classroom Peer Effects and Student Achievement.”  

Journal of Labor Economics, 31(1), 51-82. 



143 

Choy, Susan. 2001. “Students Whose Parents Did Not Go to College: Possecondary 

Access, Persistence, and Attainment,” 2001,” In J. Wirt, et al. (ed) The Condition 

of Education 2001, National Center for Education Statistics, U.S. Government 

Printing Office, Washington D.C., pp. 18-43. 

Costa, Dora and Matthew Kahn. 2000. “Power Couples: Changes in the Locational 

Choice of the College-educated, 1940-1990,” Quarterly Journal of Economics, 

115(4): 1287-1315. 

Dee, Thomas. 2004. “Are There Civic Returns to Education?” Journal of Public 

Economics, 88(9): 1697-1720. 

Docquier, F and A Marfouk. 2006. “International Migration by Education Attainment in 

1990-2000.” In C. Ozden and M. Schiff (ed) International Migration, 

Remittances, and the Brain Drain, The World Bank, Washington, D.C., pp. 151-

99. 

Duranton, Gilles and Diego Puga. 2004. “Micro-foundations of Urban Agglomeration 

Economies.”  Handbook of Regional and Urban Economics 4, 2063-2117. 

Edel Matthew 1980. “People Versus Places in Urban Impact Analysis,” In Norman 

Glickman (Ed.) The Urban Impact of Federal Policies, Johns Hopkins University 

Press, Baltimore, MD, pp. 175-91. 

Feser, Edward, Stuart Sweeney. 2003. “Out-Migration, Depopulation and the Geography 

of U.S. Economic Distress,” International Regional Science Review 26(1): 38-67. 

Franklin, Rachel. 2003. “Migration of the Young, Single, and College-educated: 1995 to 

2000,” Census 2000 Special Reports. Washington, D.C.: U.S. Census Bureau. 

Gabriel, Paul and Susanne Schmitz. 1995. “Favorable Self-Selection and the Internal 

Migration of Young White Males in the United States,” The Journal of Human 

Resources, 30(3): 460-71. 

Goldin, Claudia. 1998. “America’s Graduation from High School: The Evolution and 

Spread of Secondary Schooling in the Twentieth Century,” The Journal of 

Economic History, 58(2): 345-74. 

Greene, Kenneth. 1977. “Spillovers, Migration and Public School Expenditures: The 

Repetition of an Experiment,” Public Choice. 29(1): 85-93. 

Groen, Jeffrey. 2004. “The Effect of College Location on Migration of College-Educated 

Labor,” Journal of Econometrics, 121(1-2): 125-42. 

Grubel, Herbert and Anthony Scott. 1966. “The International Flow of Human Capital,” 

International Economics. 56(1): 268-74. 



 
 

144 
 

Justman, Moshe and Jacques-Francois Thisse. 1997. “Implications of the Mobility of  

Skilled Labor for Local Public Funding of Higher Education,” Economics Letters,  

55(3): 409-12. 

 

Kennan, John and James Walker. 2011. “The Effect of Expected Income on Individual  

Migration Decisions,” Econometrica 79(1): 211-51.  

 

Kahn, Matthew. 2012. “Cities, Economic Development, and the Role of Place-Based  

Policies: Prospects for Appalachia,” In James Ziliak (ed) Appalachian Legacy:  

Economic Opportunity After the War on Poverty, Brookings Institution Press,  

Washington D.C., pp. 149-67. 

 

Kodrzycki, Yolanda. 2001. “Migration of Recent College Graduates: Evidence from the  

National Longitudinal Survey of Youth,” New England Economic Review,  

Federal Reserve Bank of Boston. Jan./Feb.: 13-34. 

 

Lochner, and Enrico Moretti, 2004. “The Effect of Education on Crime: Evidence from  

Prison Inmates, Arrests, and Self-Reports,” The American Economic Review, 

94(1): 155-89. 

 

Lucas, Robert. 1988. “On the Mechanics of Economic Development,” Journal of  

Monetary Economics, 22(1): 3-42. 

 

Milligan, Kevin, Enrico Moretti, and Philip Oreopoulos. 2004. “Does Education Improve  

Citizenship? Evidence from the United States and the United Kingdom,” Journal  

of Public Economics, 88(9): 1667-95.   

 

Marshall, Alfred. 1890. Principles of Economics, Macmillan. 

 

Moretti, Enrico. 2004. “Human Capital Externalities in Cities,” In J. Vernon Henderson  

and Jacques-Francois Thisse, eds. Handbook of Regional and Urban Economics,  

vol 4. North-Holland, Amsterdam, pp. 2243-91. 

 

Nakosteen, Robert and Michael Zimmer. 1980. “Migration and Income: The Question of  

Self-Selection,” Southern Economic Journal. 46(3): 840-51. 

 

Nord, Mark, 1998. “Poor People on the Move: County to County Migration and the  

Spatial Concentration of Poverty,” Journal of Regional Science, 38(2): 329-51. 

 

Partridge, Mark and Dan Rickman. 1997. “The Dispersion of U.S. State Unemployment  

Rates: The Role of Market and Non-Market Equilibrium Factors,” Regional  

Studies, 31(6): 593-606. 

 

Ravallion, Martin and Quentin Wodon. 1999. “Poor Areas or Only Poor People?”  

Journal of Regional Science, 39(4): 689-711. 

 



 
 

145 
 

Sawhill, Isabel. 1988. “Poverty in the U.S.: Why is it so Persistent?” Journal of  

Economic Literature, 26(3): 1073-1119. 

 

Tiebout, Charles. 1956. “A Pure Theory of Local Expenditures,” The Journal of Political  

Economy, 64(5): 416-24. 

 

Turley, Ruth Lopez. 2009. “College Proximity: Mapping Access to Opportunity,”  

Sociology of Education, 82(2): 126-46. 

 

Waldorf, Brigitte. 2009. “Is Human Capital Accumulation a Self-Propelling Process?  

Comparing Educational Attainment Levels of Movers and Stayers?”  The Annals  

of Regional Science, 43(2): 323-44. 

 

Whisler, Ronald, Brigitte Waldorf, Gordon Mulligan, and David Plane. 2008. “Quality of  

Life and the Migration of the College-Educated: A Life-Course Approach,” 

Growth and Change, 39(1): 58-94. 

 

Winnick, Louis. 1966. “Place Prosperity vs. People Prosperity: Welfare Considerations in  

the Geographic Redistribution of Economic Activity,” Essays in Urban Land  

Economics, 273-83. 

 

Ziliak, James. 2012. “The Appalachian Regional Development Act and Economic  

Change,” In James Ziliak (ed) Appalachian Legacy: Economic Opportunity After  

the War on Poverty, Brookings Institution Press, Washington D.C., pp. 19-43. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

146 
 

Vita 

 

Preston M. Brashers 

 

Birthplace: Fort Huachuca, Arizona 

 

 

Education 

 

Master of Science, University of Kentucky, Lexington, KY, December, 2010 

 

Bachelor of Science, University of Washington, Seattle, WA, March, 2005 

 

 

Professional and Research Experience 

 

Instructor, Contemporary Economic Issues, Spring 2014 

 

Instructor, Economic and Business Statistics, Fall 2014 

 

Graduate Research Assistant, University of Kentucky Center for Poverty Research, July 

2011-June 2013 

 

Instructor, Principles of Economics I (Microeconomics), Spring 2011 

 

Instructor, Principles of Economics II (Macroeconomics), Summer 2010, Fall 2010, 

Summer 2011 

 

Graduate Teaching Assistant, University of Kentucky Department of Economics, August 

2009-May 2010 

 

 

Working Papers 

 

Brashers, Preston. 2014. “Which Labor Markets Affect Migration and Whose Migration 

is Affected?”  

 

Brashers, Preston. 2014. “Give me your Rich, Motivated, Educated Masses: Brain Gain 

and Brain Drain in America” 

 

Brashers, Preston. 2014. “Local Governments’ Choice of Earnings Taxes and Property 

Taxes in a Life-Cycle Model”  


	University of Kentucky
	UKnowledge
	2014

	The Responsiveness of Migration to Labor Market Conditions
	Preston M. Brashers
	Recommended Citation


	THE RESPONSIVENESS OF MIGRATION TO LABOR MARKET CONDITIONS
	ABSTRACT OF DISSERTATION
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	2 WHICH LABOR MARKET CONDITIONS AFFECT MIGRATION AND WHOSE MIGRATION IS AFFECTED?
	2.1 Introduction
	2.2 Literature Review
	2.3 Model and Empirical Strategy
	2.4 Data
	2.5 Results
	2.5.1 Effect of Origin and Surrounding Labor Market Conditions
	2.5.2 Effect of Demographics and Year on Elasticity of Migration
	2.5.3 Effect of Other Labor Markets

	2.6 Conclusion
	Tables
	Figures

	3 GIVE ME YOUR MOTIVATED, RICH, EDUCATED MASSES: BRAIN GAIN AND BRAIN DRAIN IN AMERICA
	3.1 Introduction
	3.2 Literature Review
	3.3 Brain Gain Measures
	3.4 Theory and Empirical Model
	3.5 Data
	3.5.1 Data Collection and Construction
	3.5.2 Descriptive Statistics

	3.6 Spatial Distribution of Brain Gain in United States
	3.6.1 Absolute High School Brain Gain in U.S.
	3.6.2 Relative High School Gain and Relative College Gain in U.S.

	3.7 Determinants of Brain Gain and Brain Drain
	3.8 Conclusion
	Tables
	Figures

	Appendix
	Bibliography
	Vita

