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Abstract

STRUCTURED COVARIANCE ESTIMATION FROM SPATIAL SPECTRA FOR ADAP-
TIVE BEAMFORMING

Joseph James Schwarzwalder, PhD

George Mason University, 2010

Dissertation Director: Dr. Kathleen E. Wage

The covariance matrix for a sensor array observing a stationary space-time process is

determined by the individual sensor element locations, the directional response and noise of

those elements, and the spatial spectrum of the process. Under this model the covariance

matrix has a particular structure that can be exploited, improving adaptive beamformer

performance both in terms of the number of snapshots required for good performance and

robustness against correlated signal and interference environments. These performance

improvements are particularly beneficial for large aperture arrays with large numbers of

sensor elements that are operating in non-stationary and multi-path environments. No

closed form solution exists for estimating structured covariance for the general problem of

an unknown number of signals in non-white noise. We look to exploit the naturally intuitive

interpretation of the process in the azimuth-elevation or frequency-wavenumber domains to

address the problem.

This dissertation develops a covariance from spatial spectrum (CSS) method by first

estimating the spectrum of the process, and then applying standard spectral to covariance

transforms. The initial characterization in the transform domain, either direction of arrival

or wavenumber, provides a natural reinforcement of the underlying space-time process



model. Additionally, spectral estimation techniques take advantage of the number of spatial

samples, in particular for arrays with many elements, in a manner simple snapshot averaging

cannot. While ad-hoc, such a structured covariance technique can provide near optimal

performance for passive signal detection or recovery with very few snapshots.

The first objective of this work is to understand the performance of minimum vari-

ance distortionless response adaptive beamforming when covariance is estimated from the

spatial spectrum. Positive definiteness of the covariance matrix and estimation bias are

investigated. Performance predictions are developed for the case of a uniform line array

and classical power spectral estimation techniques. This analysis highlights the need to

explicitly deal with mixed spectra that arise in environments containing both point source

and spatially-spread signals. Thomson’s multi-taper spectral estimation neatly combines

both the convenience of the non-parametric spectral estimation algorithms and the required

harmonic analysis to handle such mixed spectra. Adaptive beamformer performance is as-

sessed for various interference and noise environments against existing snapshot deficient

algorithms. Extensions to support arbitrary array geometry are considered.

A correlated signal and interference environment cannot be modeled as a stationary

space-time process. A second objective of this work is to investigate how constraining the

covariance to a stationary space-time process model mitigates signal cancellation due to

correlation between the signal and interference. Reduction in correlation, and the resultant

covariance bias are investigated. Adaptive beamformer performance in the presence of

correlated signal and interference is assessed.

Structured covariance methods may suffer performance losses when real world conditions

violate model assumptions. The final objective of this work is to understand the impacts

of non-ideal array manifold response. The CSS techniques developed in the dissertation

are extended to account for such non-ideal response. Adaptive beamformer performance

is assessed for various interference and noise environments in the presence of random and

deterministic array manifold response errors. Benefits to spectral estimation when using

the non-ideal response processing are also seen.



Chapter 1: Introduction

1.1 Motivation

The deployment of long aperture arrays with large numbers of sensor elements has been en-

abled by the evolution of sensor, telemetry, and digital processing technology. Large arrays

promise significant benefits in terms of theoretical processing gain and spatial resolution

and are, for instance, employed regularly across a range of undersea acoustic applications.

Adaptive beamforming algorithms have been successfully applied to these arrays to maxi-

mize a system’s ability to perform well in complicated signal and interference environments.

Beyond the theoretical gain, the ability of an algorithm to converge quickly provides many

benefits, including minimizing data collection requirements, allowing the processor to adapt

quickly to non-stationary environments, or providing better and more timely outputs to fol-

low on processors such as target trackers. For many algorithms, increasing the number of

sensor elements works against the desire to adapt quickly. Additionally, multipath en-

vironments introduce unique challenges that may cause substantial performance loss for

algorithms not designed to handle them.

Figure 1.1 illustrates the general array processing problem. An array of sensors, shown

in a linear arrangement, spatially samples the environment and provides the time varying

outputs to an array processor that operates on the data. Signals or interference and noise

may be originating from discrete point sources (arrows) or spatially spread fields (shown

as distributed across space). There are several standard operations for the array processor.

For a particular range and or direction of arrival, the processor may decide if a signal is

present or not, the detection problem, or attempt to reconstruct the time domain waveform,

the beamforming problem. Knowledge of the temporal characteristics of the signal may be

exploited, such as in communications or active radar or sonar processing, or the signal may
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Figure 1.1: The array processing problem: The array of sensors spatially sample the en-
vironment, and provide the time varying outputs to an array processor. Standard functions
for the array processor are detection or signal reconstruction.

be unknown. This work focuses on the unknown signal problem, where the processor is

guided only by what it is able to estimate of the environment and a desired direction of

arrival, i.e., the look direction.

The objective of an adaptive array processing algorithm is to suppress the noise-plus-

interference components of the environment, while enhancing the response to the desired

signal spatial signature, s . For narrowband linear processors, this is accomplished by means

of a weighting vector, w, that is used to combine the N sensor array outputs, xm, at time

index m to produce a scalar output, ym = wHxm . Given the covariance matrix for the

array outputs, R = E
{
xmxH

m

}
, several different formulations for determining an optimal

set of weights lead to a solution of the form [1]

wopt = γR−1s (1.1)

where s is referred to as the steering vector, and γ is a normalization factor determined

by the optimization. In practice, the covariance matrix R is not known a priori, and must

be estimated. When the noise and interference are Gaussian, the unconstrained maximum

likelihood (ML) estimate of R is the sample covariance matrix, R̂SCM , [2]
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R̂SCM =
1
M

M∑

m=1

xmxH
m (1.2)

In practice, (1.2) is only valid over the duration that the environment can be considered

stationary. Nonstationarity in the environment itself is a common condition that arises in

both sonar and radar applications, and becomes a limiting factor in the ability to estimate

R from the data. In the case of sonar, the combination of the continuous motion of sound

sources relative to the array at short ranges and the corresponding small resolution cells of

the array ultimately set the time scale wherein short-term stationarity assumptions are valid

[3]. In space-time adaptive processing (STAP) for radar, the resolution of range-Doppler

cells is susceptible to nonstationarity in the form of heterogeneous clutter, caused by ground

clutter varying over the surface of the earth [4]. These non-stationary conditions result in

a limited amount of snapshot data available for processing that may be insufficient for an

algorithm to converge, a condition referred to as snapshot deficient operation. Adaptive

array processing algorithms that converge rapidly are important for achieving near the

theoretical performance for larger arrays in nonstationary environments.

In addition to concerns caused by snapshot deficient operation due to nonstationarity,

the problem of correlated signal and interference also arises in adaptive beamforming. Cor-

related interference arises in multipath or smart jamming scenarios, resulting in the signal

cancellation effect [5]. Applications that have no a priori knowledge of the inbound signal

at the desired direction of arrival, such as passive sonar, are subject to this effect. Algo-

rithms based on the minimum variance distortionless response (MVDR) criteria [1, 6] pass

the desired direction of arrival undistorted, but subsequently align the correlated interfer-

ence component for maximum destructive interference, e.g., summing sinusoids 180o out of

phase, to minimize the total output power. This results in an overall loss in output signal

to interference and noise ratio (SINR). The signal cancellation effect can dominate perfor-

mance, and occurs regardless of snapshot limitations. Adaptive array processing algorithms

that mitigate the signal cancellation effect without a priori knowledge of the incoming signal
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at the desired direction of arrival are also of great interest.

1.2 Adaptive Beamforming Algorithms

Adaptive beamforming algorithms have been actively researched over the past five decades.

Many approaches for covariance estimation have been proposed, implemented and analyzed

and work well within their design assumptions. Snapshot deficient operation and correlated

signal and interference are the two main areas addressed by this thesis. We begin with a

review of previous work in these areas, followed by a discussion of the techniques developed

in the thesis.

Table 1.1 provides a listing of algorithms, developed specifically to address the snapshot

deficient condition that occurs when the number of available snapshots is too small to obtain

good covariance estimates using (1.2). Reduced rank algorithms reduce the dimensionality

of the problem from the full rank, which is the number of array elements N , to a lower

rank, r < N , such that the available snapshots, M , are no longer deficient with respect

to the reduced dimension. Subspace, eigenspace, and reduced rank methods are similar

in this regard, although the algorithms vary in how they are implemented. Table 1.2 lists

some techniques that have been developed to address the correlated signal and interference

problem.

1.2.1 Snapshot Deficient Algorithms

The very first adaptive beamforming techniques relied on adaptation of the weight vector

using a feedback loop, such as the maximized signal to noise algorithm (MSN) of Howells

[25] and Applebaum [26] or the classic least mean squares processor (LMS) developed by

Widrow [27]. Frost extended these approaches to be space-time in nature by introducing an

adaptive filter behind each array sensor [28]. Convergence rates, and therefore the snapshot

data requirements of these techniques, were dominated by the adaptation constant and the

eigenvalue spread of the underlying covariance. Sample matrix inversion (SMI) dramatically
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Table 1.1: Snapshot deficient / reduced rank adaptive algorithms
YEAR METHOD AUTHOR AREA

1973 diagonal loading Cox [7] mismatch

1977 Toeplitz constrained Morgera [8] structured covariance

1981 diagonal loading Abramovich [9, 10] snapshot deficient

1983 Hung-Turner projection (HTP) Hung, Turner [11] projection method

1988 Expectation Maximization (EM) Fuhrmann, Barton, Robey [12–17] structured covariance

1994 principal components inverse (PCI) Kirsteins, Tufts [18] reduced rank

1997 cross spectral metric (CSM) Goldstein, Reed [19] reduced rank

1998 multistage Wiener filter (MWF) Goldstein,Reed,Scharf [20] reduced rank

2004 indirect dominant mode rejection (IDMR) Santos, Zoltowski [21–23] snapshot deficient

2007 physically constrained ML (PCML) Kraay, Baggeroer [24] structured covariance

improved convergence times by inverting the estimated covariance matrix found using (1.2)

directly [6]. Reed, Brennan, and Mallett [29] analyzed the performance of SMI as a function

of the number of available snapshots, showing that for Gaussian interference and noise

processes SMI achieves SINR within 3 dB of optimal on average, using M = 2N snapshots.

This represented an appreciably faster convergence than previously accomplished using LMS

type methods. This result was also significant for showing that performance for SMI, under

the stated Gaussian assumptions, was a function of the number of snapshots only. This

is not the case when the desired signal was also present within the snapshot data used to

estimate the covariance. For this situation, Miller showed that the convergence rate of the

output SINR was severely degraded [30], and in addition, the required number of snapshots

was also a function of the signal to noise ratio (SNR).

Signal mismatch occurs when the assumed steering vector, s, is perturbed from the

true steering vector. This can occur as a result of random perturbations of the array

element positions, or variations in individual sensor amplitude or phase characteristics, or a

combination of both. It may also occur due to inexact knowledge of the steering direction.

The result is a degradation in adaptive beamformer performance. Krolik and Swingler [31]

showed that errors in R̂SCM due to limited snapshot support can also cause unintentional

signal mismatch as a result of improper estimation of the noise subspace. Carlson showed

that another symptom of this improper estimation was poor sidelobe performance [32].
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Diagonal loading was developed as a simple method to address some of these performance-

related issues. Diagonal loading adds an additional constant diagonal term to the sample

covariance matrix, i.e.,

R̂DL = R̂SCM + σ2
DLI (1.3)

Cox used diagonal loading to help with the signal mismatch problem, due to either array

manifold errors or snapshot deficient processing [7]. Abramovich analyzed the impact of

doing this, which he referred to as regularization for dealing with finite M [9]. He showed

that when there were K interferers, diagonal loading could be used to reduce the number of

required snapshots to be proportional to K, with as little as M = K to achieve good results.

His analysis went on to show that when M < K, no important interference suppression

could be expected from diagonally-loaded sample covariance matrix inverse techniques [10].

This result was significant, in that it quantified the minimum snapshot support required for

algorithms using the sample covariance matrix. Determination of an optimal value for the

diagonal load factor, σ2
DL , has been of considerable interest with many published results

[9, 32–35].

Chang and Yeh [36], and Yu and Lee [37] performed similar types of analysis for

eigenspace adaptive beamformers, processors based on subsets of the eigenvectors of the

covariance matrix. They showed that within R, the signal and interference subspace is or-

thogonal to the noise subspace. These authors also indicated that SMI is degraded mostly

by perturbed estimates of the noise subspace. Generally, for this class of subspace proces-

sors the number of required snapshots, M , is a function of the number of interferers, K, the

desired signal SNR, and sometimes the number of array elements, N . As a rule of thumb,

M ≥ K · SNRi achieves within 3 dB of the optimal SINR, where SNRi is the input signal

to noise ratio. In terms of convergence, this result for subspace methods is comparable to

the result of Abramovich for diagonal loading.

Hung and Turner [11] introduced a method that used Gram-Schmidt orthogonalization
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Table 1.2: Correlated signal and interference algorithms
YEAR METHOD AUTHOR AREA

1982 spatial dither Widrow, et al. [39] spatial smoothing

1985 spatial smoothing (SS) Shan [40] sub array processing

1989 forward / backward avg. (FB/SS) Pillai [41] sub array processing

1990 redundancy averaging (RA) Linebarger [42] structured covariance

2004 indirect dominant mode rejection (IDMR) Santos, Zoltowski [21–23] structured covariance

to determine a set of basis vectors for the observed interference and noise. The steering

vector, s, was then projected onto the corresponding interference and noise null space. This

method is efficient and can operate with fewer snapshots than interferers, at the expense of

some of the interferers remaining completely unsuppressed. Kirsteins and Tufts considered

processing with the subspace defined by the dominant eigenvalue / eigenvector pairs in

the sample covariance matrix with the principal components inverse (PCI) method [18].

Goldstein and Reed adapted this approach by using a metric to determine the relevance of

the eigenvectors not by their eigenvalue magnitude alone but also incorporating a correlation

with the steering vector, s [19]. This method was labeled the cross spectral metric (CSM).

Goldstein further extended the approach to efficiently form the weight vector, w, directly

from the snapshots, xm, without the need to explicitly form the sample covariance matrix

or invert it. This multi-stage Wiener filter (MWF) [20] was demonstrated to outperform

PCI and CSM as a function of reduced rank, r, and number of available snapshots, M [38].

1.2.2 Correlated Signal and Interference Algorithms

Table 1.2 lists techniques that have been developed to address the correlated signal and

interference problem. Widrow, et al. [39] studied this problem and presented solutions to

address it. One of them, called “spatial dither”, is to move the array spatially (or elec-

tronically) to modulate emissions received away from the look direction without distorting

the desired signal. This technique evolves naturally into the concept of spatial smoothing,

introduced by Shan and Kailath [40, 43]. Their approach partitions the overall array into

subarrays, and combines the individual subarray sample covariance matrices to arrive at a
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smoothed sample covariance matrix for the array. The spatial smoothing asymptotically

decreases the effective correlation between the desired direction signal and the interfering

signals with progressive smoothing, thereby reducing the effects of correlation and signal

cancellation. The drawback for this type of approach is a decrease in effective array aperture

due to the partitioning into subarrays. Pillai and Kwon [41] extended the spatial smooth-

ing technique for arrays with conjugate symmetric array manifold response by including a

forward and backward spatial smoothing component. The showed that for K interferers an

array of length 3K/2 was required, better than the 2K necessary using the original spatial

smoothing algorithm.

Ragnunath and Reddy [44] summarized several key points with respect to correlated

interference and spatial smoothing. First, more snapshots do not improve interferer sup-

pression when interference is correlated with the desired signal, nor does diagonal loading.

When sources are uncorrelated performance does improve with more data. Correlated sig-

nal and interference situations are dominated by the signal cancellation effect. This can

be addressed with spatial smoothing, which is also helpful in dealing with finite data, but

effectively decreases the array aperture due to the subarray processing.

1.2.3 Structured Covariance Algorithms

Structured covariance methods incorporate some a priori knowledge of the problem space to

add additional constraints to the problem. These constraints may be, for instance, Toeplitz

or block Toeplitz structure within the covariance matrix. The a priori knowledge may be

based on established models, such as the space-time process observed being stationary, or

the geometry of the array elements. In essence these constraints reduce the number of

unknown quantities to estimate, or the size of the allowable solution space, and have been

demonstrated to show convergence to the final solution with very little data in some sce-

narios. Thus, they offer the potential for meaningful adaptive processor performance with

lower snapshot requirements then sample covariance methods and its reduced rank deriva-

tives. Structured covariance algorithms have been applied to both the snapshot deficient

8



and correlated signal and interference problems, as indicated in Tables 1.1 and 1.2.

Morgera used knowledge that the covariance matrix has Toeplitz structure in many

problems to increase the effective sample size of the available data by averaging down the

diagonals of the sample covariance matrix [8]. Simplified performance expressions similar to

the results for sample covariance methods could not be obtained, instead he observed that

the performance of each instance maintained a dependence on the underlying covariance

of the data. This implies that each situation encountered is its own problem in terms of

performance.

Miller and Snyder [45] established a framework for using the expectation maximization

(EM) algorithm to determine the ML estimate of a Toeplitz covariance matrix. Fuhrmann,

and his students Robey and Barton continued development of this EM approach and further

defined the Toeplitz or block-Toeplitz structure inherent in many array processing problems

[12–17]. An important theoretical issue was to demonstrate that EM would converge to a

positive definite solution given the data constraints. With this established, the technique

was demonstrated to have good performance with limited snapshot data. For some problems

it is necessary to embed the solution desired, a N×N matrix, into a larger circulant matrix

problem, NEM × NEM , to allow EM to operate properly in an efficient form, a technique

known a circulant matrix extension. Dembo determined a bound for the optimal value for

NEM [46] in terms of the eigendecomposition of the sample covariance matrix and the initial

estimate of the covariance, with a value no less than 2N . For larger values of N and high

dynamic range spectra the resultant computational order becomes very large.

Linebarger [42] introduced redundancy averaging (RA), similar in form to Morgera’s

algorithm, as a method to enforce a Toeplitz structure on the covariance matrix for uniform

linear arrays. Correlated signal and interference perturb this structure in the sample covari-

ance matrix. Redundancy averaging forms a new covariance matrix estimate by replacing

the diagonals of the sample covariance matrix with their averaged values. This operation

helps mitigate the influence of the signal cancellation effect, but has the potential to pro-

duce an indefinite covariance matrix estimate. Discussion of the existence and significance
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of the residual covariance matrix bias can be found in [47,48].

Indirect dominant mode rejection (IDMR) was developed to address both snapshot

deficient processing and the residual correlated signal and interference in the covariance

due to the limited snapshot support [21–23]. This technique forms the sample covariance

matrix, then estimates the number of interferers and their respective directions of arrival

via conventional beamforming or high resolution spectral analysis, e.g. MUSIC, in addition

to estimating the spatially white noise variance. The algorithm then uses these estimates to

formulate the covariance following the stationary process plane waves in white noise model.

IDMR relies on MUSIC for best performance, and therefore requires an eigendecomposition

of the sample covariance matrix. Because of this it also exhibits the M > K limitation. Nor

does IDMR present a way to neatly handle spatially spread interference, i.e., non-spatially

white noise.

Kraay and Baggeroer [24] developed a computationally-intensive iterative technique,

physically constrained maximum likelihood (PCML), that relied on further restricting the

structure of the covariance by requiring that it correspond to physically propagating plane

waves arriving at the array with valid elevation and azimuth. This technique has also been

applied to shallow water mode filtering, with appropriate modification of the physical con-

straint to reflect the propagating mode structure in the water column [49]. For adaptive

beamforming, the likelihood function was believed to be highly multimodal with respect

to the estimate of the sensor noise, and determining the best choice of multiplicative up-

dates, additive updates or more sophisticated minimization techniques, such as simulated

annealing, remains an open issue.

1.2.4 Summary

In summary, snapshot deficient processing, signal mismatch, and correlated signal and in-

terference are practical problems that need to be addressed by adaptive beamforming al-

gorithms. Sample covariance matrix techniques have dominated the research space and

10



worked to address these issues but appear to be limited at the lower end of snapshot sup-

port by requiring the number of snapshots to be greater than or equal to the number of

interferers, M ≥ K, the peformance bound indicated by Abramovich [9]. Structured co-

variance techniques offer a way to break through this barrier by incorporating additional

knowledge of the problem into the algorithm. These techniques have been demonstrated to

converge with very little snapshot data and provide near theoretically optimal performance.

Several open issues exist with these methods, including computational intensity, structured

model specification and parameter estimation, proof of convergence, positive definiteness of

covariance, and performance in the presence of model errors.

1.3 Structured Covariance Based on Spatial Spectrum

The spatially and temporally stationary space-time random process is a common model for

the observed environment in many applications in array signal processing. This model of

the space-time process can be described using the Cramér spectral representation theorem

[50]. This theorem provides a description of the random process as the sum of uncorrelated

plane waves, distributed across the visible region of the array as a function of azimuth and

elevation or across the visible region in the frequency-wavenumber domain. These domains

are related to each other, and each properly describes the space-time process observed. The

theory of second order characterizations of space-time random processes shows how either

of these descriptions can be related to the space-time covariance of the process at the output

of the observing array. This is directly analogous to the relationship between power spectral

density and auto-correlation in the case of time series analysis.

Because the space-time covariance can be related to either of these representations,

this dissertation considers estimating these spectral quantities first in order to compute the

covariance at the output of the array. We refer to this as covariance from spatial spectrum

(CSS). Several factors motivate this approach. First is the wealth of available research in

the area of spectral estimation techniques, in particular those techniques that do not require

a covariance matrix estimate a priori, and that are designed to operate on as little data
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as possible. Second, the spectral representation model consists of uncorrelated plane wave

components. When encountering correlated signal and interference scenarios, processors

typically degrade in performance due to the signal cancellation effect. Constraining the

estimated covariance to the stationary model significantly reduces the contribution of the

correlation within the matrix, mitigating signal cancellation. Third, the stationary model

imparts a structure to the covariance. As noted in Section 1.2.3, structured covariance

matrix techniques have been demonstrated to converge much more rapidly than traditional

sample covariance matrix techniques. While it is known that there is no simple closed form

solution for the ML estimate for a structured covariance for the general problem of unknown

number of signals in non-white noise [51], this thesis looks to exploit the naturally intuitive

interpretation of the process in the azimuth-elevation or frequency-wavenumber domains to

address the problem.

The space-time process may be modeled, via the spectral representation theorem, in the

context of angle of arrival to the array. Sensor noise, typically modeled as an uncorrelated

noise component within each sensor, is also a necessary part of the covariance observed by

the adaptive processor. CSS processing for uniform linear and regularly-spaced array ge-

ometries is shown to be straightfoward using standard power spectral estimation techniques

and FFT processing. The expected value of the covariance estimate is investigated for the

case of a uniform linear array using classical windowed averaged periodogram techniques

since they are straightforward to analyze. The covariance estimate is shown to be biased.

Adaptive beamformer performance is evaluated using the normalized SINR loss metric [29].

The impact of discrete, or point source interference may degrade performance significantly

when the spatial separation from the steering vector, s , is small. This motivates an addi-

tional step in the algorithm to detect, estimate, and subtract this type of discrete component

from the available snapshot data to iteratively develop an estimate of the smooth continu-

ous background noise covariance. The detected discrete components are then reintroduced

to form the final covariance estimation. This allows operation with negligible normalized

SINR loss under a large range of conditions. Thomson’s multi-taper spectral estimation [52]
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is a technique that neatly combines both the convenience of the non-parametric spectral

estimation algorithms and the required harmonic analysis techniques that works well in this

application. A processing flow incorporating Thomson’s method is developed. Performance

assessment of the final technique is carried out through simulation of various interference

and noise environments, with excellent normalized SINR loss performance obtained below

the M = 2K requirement necessary for sample covariance type algorithms. Extensions to

support arbitrary array geometry are developed.

A correlated signal and interference environment cannot be modeled as a stationary

space-time process. The correlated component perturbs the Toeplitz structure of the co-

variance matrix in the uniform linear array case. The expected value of the estimated co-

variance for this problem, while constrained to the uncorrelated plane waves model, contains

a bias term related to the original correlated data. Impact of this bias term is investigated,

and it is seen that it is neglible as the array length increases. Adaptive beamformer per-

formance is assessed through simulation, and compared to performance of the algorithm

for the uncorrelated data case. Performance is seen to be practically identical between the

two scenarios. Comparison to sample covariance based techniques, using the effective SINR

metric, is also used to demonstrate successful mitigation of the signal cancellation effect.

This is accomplished without loss in effective aperture, and provides the same low snapshot

support requirements as the stationary space-time process case. The development of these

results is used to show the relationship of the CSS approach to the techniques of covariance

matrix tapers (CMT) [53] and the structured covariance algorithm of redundancy averag-

ing. CSS is shown to provide an increase in effective sample size, similar to redundancy

averaging, while maintaining a positive definite covariance matrix estimate, and differs from

CMT in its ability to mitigate the effects of correlated signal and interference in the data.

This structured covariance approach relies on the assumption of an ideal array manifold

response. A real-world array manifold response may be non-ideal due to random variation

in gain, phase, and directionality in the sensors. Non-ideal response may also result from

deterministic positional errors, e.g., the bending experienced by an underwater towed array.
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Performance impact for both random and deterministic array manifold response errors is

investigated, and the techniques developed earlier are extended to account for non-ideal

response. Adaptive beamformer performance is assessed for various interference and noise

environments in the presence of random and deterministic array manifold response errors,

and improvements to spectral estimation when using this type of processing are seen.

The techniques developed in this dissertation provide the best benefit in situations with

large aperture and large numbers of sensors, with ideal or partially perturbed array manifold

response, and non-stationary environmental conditions. Underwater acoustic processing

provides several application areas where these are the operational conditions of interest.

This work reflects a desire to investigate areas of most interest to that processing space.

1.4 Dissertation Outline

The remainder of the dissertation is organized as follows. Chapter 2 defines the array

processing models used in the work, and the reviews the relevant background material in

stochastic processes, spectral estimation, and optimal beamforming. Chapter 3 looks at the

sensitivity of optimal beamforming algorithms to estimation errors, presents the algorithm

for covariance estimation from spatial spectra, and investigates performance for the uni-

form line array case using classical spectral estimation techniques. Chapter 4 incorporates

Thomson’s multitaper spectral estimation with harmonic analysis into the approach, and

assesses performance in relevant inteference and noise environments. Chapter 5 considers

the correlated signal and interference case, and the resultant covariance estimation bias

and its impact in mitigating the signal cancellation effect. Chapter 6 analyzes the impact

of non-ideal array manifold response, and extends the techniques developed to account for

such conditions. Chapter 7 extends the techniques of Chapter 4 to non-uniformly spaced

arrays. Chapter 8 summarizes the contributions of the work and discusses future research.
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Chapter 2: Background

2.1 Introduction

In this chapter we review the theoretical material and concepts that are the foundation

for the remainder of the work. Section 2.2 introduces the notations employed in the dis-

sertation. Section 2.3 reviews the data models and assumptions used throughout, namely

the narrowband process, independent snapshot model. This is also referred to as the fre-

quency domain snapshot model. Section 2.4 reviews the wide sense stationary space-time

random process and its representation via the Cramér spectral representation theorem.

This representation of the process, as a sum of uncorrelated plane waves, is used to relate

the familiar 2nd order characterizations of space-time random processes, specifically the

frequency-wavenumber spectrum and space-time covariance. Section 2.5 reviews optimal

beamforming for the data models of interest, and the normalized signal to interference and

noise ratio (SINR) performance measure. The chapter concludes with a review of relevant

spectral estimation techniques in Section 2.6. The discussion centers on the relationships

for the time series problem as it is usually the most familiar and may be directly applied to

uniform linear array processing. Natural extensions to the larger dimension spatial problem

are explained. Our particular focus is on non-parameteric techniques that do not require

formation of a covariance matrix. Classical techniques such as the averaged windowed peri-

odogram are such an approach. Thomson’s multi-taper spectral estimation, a more powerful

technique derived from the Cramér spectral representation, is also reviewed with a focus on

its strengths in dealing with minimal data support and mixed power spectrum, i.e., those

containing both smooth functions and line components.
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2.2 Notation

The dissertation uses the following notational conventions. The italicized lower case, x ,

is a scalar variable, and x∗ is the complex conjugate of x. A P × 1 dimensional vector is

represented as the bolded lowercase, x ∈ CP , and is complex (or real-valued) as indicated.

xT is the transpose of x , and xH is the conjugate transpose of x. The matrix of dimension

P×Q is the bolded uppercase, X ∈ CP×Q , and is also complex (or real-valued) as indicated.

In describing matrices, we may use the compact notation X = ((xrc ))rc to indicate a matrix

consisting of the elements (row, column) indicated by xrc. This is sometimes useful in

showing the values when they are a function of the position indices, e.g., x = (( cos[ωp ] ))p ∈

RP is an P element vector containing the values [ cos(ω ), cos( 2ω ), cos( 3ω ), · · · ]T . Similar

notation applies for vectors or higher dimensional matrices. The notation diag(x1, x2, · · · )
describes a diagonal matrix consisting of entries x1, x2, · · · on the main diagonal.

The expectation operator is given by E {x }. When describing random variables, x
d→

fx (x ) , indicates that the random variable, x , is distributed according to the probability

density function, fx ( x ) . Gaussian random variables are commonly encountered and have

a specific notation for the appropriate density function. The P -variate Gaussian random

variable, x ∈ RP , with mean m = E {x } and covariance Rx = E{ (x−m) (x−m)T }

has the notation x d→ RNP (m, Rx ) . Similarly, the P -variate complex Gaussian random

variable, x ∈ CP , with mean m = E {x } and covariance Rx = E{ (x−m) (x−m)H } has

the notation x d→ CNP (m, Rx ) . We assume that all complex Gaussian random variables

are circularly symmetric of the type described by Goodman [2]. The acronynm i.i.d. stands

for independent and identically distributed.
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2.3 Data Models

2.3.1 Assumptions

Throughout the dissertation, we assume that the observed space-time process is narrowband

and propagates in a homogeneous medium with velocity c and temporal frequency f = c/λ.

The process consists of plane waves that are solutions to the homogeneous wave equation.

This places a restriction on wavenumber, k, such that |k | = 2π/λ, or said another way,

plane waves must correspond to physically propagating angles of arrival to the array. We

typically assume that the process is spatially wide sense stationary (WSS) and zero mean.

The spatially wide sense stationary property implies the spatial covariance is a function

of difference in position only. Additional, WSS requires that the plane wave components

making up the process are uncorrelated. This restriction is relaxed when dealing with the

special condition of correlated signal and interference, as it violates the spatially stationary

model. Snapshots are assumed independent over time index, m. Several formulations

of narrowband bandwidth and sampling period may be used to reasonably support this

assumption.

2.3.2 General Model

The general model of an N element array with arbitrary sensor positions subject to an

incident plane wave is shown in Figure 2.1. The nth element location, specified in Cartesian

coordinates, is given as pn = [ xn, yn, zn ]T . The array element outputs resulting from this

incident plane wave are described by the array manifold response vector, v = (( vn(~u) ))n.

For an array of omni-directional sensors, under the narrowband assumption, the effect on

the plane wave as it propagates across the array in space is approximated by a phase shift,

and the array manifold response vector is v = (( exp(−jkTpn ))n = (( exp(j 2π
λ ~uTpn ))n.

Each array element is sampled simultaneously at time index m to produce a snapshot,

xm ∈ CN , where the elements of the snapshot vector are the individual sensor outputs,

xm = ((xn(m) ))n. There are M snapshots available for processing.
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Figure 2.1: Plane wave impinging on an arbitrary array: The plane wave propagates
with wavenumber, k, opposite to unit directional vector, ~u, and impinges on an arbitrary
array. Under the narrowband assumption, the effect on the plane wave as it propagates
across the array in space is approximated by a phase shift. This is described by the array
manifold response vector, v = (( exp(j 2π

λ ~uTpn ))n .
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We want to consider the output of the array observing a space-time process. The

snapshot model consists of three terms and is given by

xm =
K∑

k=1

vkak(m) + nb,m + nw,m (2.1)

Each of the individual terms are described as follows. The space-time process may consist of

two types of sources. The first type corresponds to point sources in the environment. These

arrival as discrete plane waves at the array. We assume K such sources exist. Each source

has a given direction of arrival, ~uk, with corresponding array manifold response vector,

vk, as well as a source amplitude at each sampling instant, ak(m) . Combining the array

manifold responses, V = [v1, v2, · · · , vK ], and point source amplitudes, am = (( ak(m) ))k,

we can write (2.1) more succintly as

xm = Vam + nb,m + nw,m (2.2)

Going forward we will assume that the discrete source amplitudes, am , are i.i.d. am
d→

CNK (0, Ra ) . This is standard model for passive sonar reception of far field discrete

sources. The point sources may be correlated with each other or not. Specifying this

attribute is a distinguishing feature between models. For a spatially stationary space-time

process, the sources are uncorrelated by definition and Ra = diag
(
σ2

1, σ2
2, · · · , σ2

K

)
.

The second component of the space-time process is the background or environmental

noise. This noise is spread spatially, and has a smooth, continuous distribution across some

region of angle of arrival to the array. The background noise at each snapshot, nb,m, is i.i.d.

nb,m
d→ CNN (0, Rb ), and is uncorrelated with the discrete components of the process.

Each sensor also produces an internal noise, uncorrelated with the other sensors and

also independent across snapshots. This noise is modeled as nw,m
d→ CNN

(
0, σ2

wI
)

. The

sensor noise is uncorrelated with either component of the space-time process.

19



Because it is a linear combination of uncorrelated, zero mean, complex Gaussian random

vectors, the snapshot xm is a zero mean complex Gaussian random vector. It is distributed

as

xm
d→ CNN (0, Rx ) , Rx = VRaVH + Rb + σ2

wI (2.3)

Eqn. (2.3) is the general plane waves in non-white noise model, and can represent line

component, continuous, or mixed spectra type of processes.

2.4 Space-Time Random Processes

This section begins with a review of the 2nd order characterization of WSS space-time

random processes. These characterizations are all that is necessary to develop minimum

variance linear array processors, and additionally, for the class of Gaussian space-time

processes provide complete specification the process. We review the relationships between

covariance and frequency-wavenumber spectrum. Under the assumptions stated in Section

2.3.1, the process can additionally be described as the sum of uncorrelated plane waves

allocated according to a distribution across all angles of arrival to the array. The relationship

of the covariance to this model is also given.

This is followed with a review of the Cramér spectral representation, which provides a

description of a stochastic process in terms of an orthogonal process in the transform do-

main. We review this concept for several reasons. First, the spectral representation can be

used to develop the more familiar second order characterizations for the process and their

relationships, rather than by stated definition. Second, from the spectral representation it

becomes clear how a process may be characterized by one of the following: i) a smooth,

continuous power spectral density, ii) a discrete (or line component) spectrum, or iii) a

mixed spectrum, containing both smooth and line components. This formulation is funda-

mental to developing techniques to deal with mixed spectrum when they are encountered,

which we will see in later chapters is essential for good adaptive beamformer performance.
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Finally, while they are multiple methods for introducing the multitaper spectral estimator,

Thomson’s original formulation [52], reviewed in Section 2.6, is developed from the spectral

representation.

2.4.1 2nd Order Characterization of Space-Time Random Processes

The zero mean, WSS complex space-time process, { f( t, p ) } , is defined for −∞ < t < ∞,

and over some dimensionality of Cartesian space, RC , typically R3 so that p = [ px, py, pz ]T .

The following relationships define the important 2nd order central moments of the process

[1].

2nd Order Characterizations

The space-time covariance between two points ∆p = p1−p2 and times τ = t1−t2 is defined

as

Rf ( τ, ∆p ) = E { f( t, p )f∗( t− τ, p−∆p ) } (2.4)

The temporal frequency spectrum-spatial correlation function, also referred to as the cross

spectral density, is related to Rf ( τ, ∆p ) by the Fourier transform of the time lag variable.

Sf ( ω, ∆p ) =
ˆ ∞

−∞
Rf ( τ, ∆p )e−jωτdτ (2.5)

The frequency-wavenumber spectrum is related to Sf ( ω, ∆p ) by Fourier transform of the

Cartesian spatial coordinate, ∆p, with note of the reverse sign convention of the complex

exponential. The wavenumber vector, k, has dimension C, similar to ∆p.

Pf (ω, k ) =
˙

RC

Sf (ω, ∆p )ejkT ∆pd∆p (2.6)
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Because of the Fourier transform pair relationships, the following inverse transforms may

also be used.

Rf ( τ, ∆p ) = (2π)−1

ˆ ∞

−∞
Sf ( ω, ∆p )ejωτdω (2.7)

Sf ( ω, ∆p ) = (2π)−C

˙

RC

Pf ( ω, k )e−jkT ∆pdk (2.8)

Rf ( τ, ∆p ) = (2π)−1(2π)−C

ˆ ∞

−∞
ejωτdω

˙

RC

Pf ( ω, k )e−jkT ∆pdk (2.9)

We now look at specializing these results for the narrowband, independent snapshot model.

For a narrowband, or monochromatic process at ωo, we may write formally Pf ( ω, k ) =

Pf (k ) ·2πδ(ω−ωo) . This simplifies the relationship between the covariance and frequency-

wavenumber spectrum.

Rf ( τ, ∆p ) = (2π)−Cejωoτ

˙

RC

Pf (k )e−jkT ∆pdk (2.10)

Further, under the assumption of independent snapshots the covariance is zero for τ 6= 0,

further simplifying the relationship to

Rf (∆p ) ≡ Rf ( 0, ∆p ) = ( 2π )−C
˙

RC

Pf (k )e−jkT ∆pdk (2.11)

This shows that the narrowband, independent snapshot problem is principally a spatial

problem, the temporal related aspects are not considered.
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Matrix Representation

Consider an N element array of omni-directional sensors at locations pn , n = 1, 2, · · · ,

observing the process { f( t, p ) } . The covariance matrix for the array outputs, ignoring

any sensor noise component, is the matrix consisting of elements

Rf = ((Rf (pr − pc ) ))r,c (2.12)

which can be expressed in matrix form succintly using the frequency-wavenumber spectrum

and array manifold response vector, v(k) .

Rf = (2π)−C

˙

RC

Pf (k )v(k)vH(k)dk (2.13)

Directional Distribution of Plane Waves

The space-time process may also be intrepreted another way. The wavenumber restriction,

|k | = 2π/λ, implies that plane waves observed by the array must correspond to angles of

arrival that may physically propagate to the array, i.e., 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π as shown

in spherical coordinates in Figure 2.2 (following Van Trees [1], Figure 2.1). The stationary

space-time process in this case may be modeled as the sum of uncorrelated plane waves,

that are distributed according to a directional distribution, Gf ( ω, θ, φ ) , across all angles

of arrival to the array. Gf ( ω, θ, φ ) is similar to a probability density, and

1
4π

ˆ π

0

ˆ 2π

0
Gf ( ω, θ, φ ) sin θdθdφ = 1 (2.14)

Cox demonstrated the process for relating the covariance to the directional distribution

[54]. Consider two sensors in the field at locations p1, p2. Each sensor has a respective

frequency and directional response, Hi ( ω, θ, φ ) , i = 1, 2. The difference in position, ∆p =

p1 − p2, can be described in Cartesian or spherical coordinates.
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Figure 2.2: Spherical coordinate system: The spherical coordinate system is convenient
for describing a space-time process by its directional distribution of uncorrelated plane wave
components in azimuth and elevation [54].
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∆p = p1 − p2 =





[∆px, ∆py, ∆pz ]T

[ s sin γ cos ζ, s sin γ sin ζ, s cos γ ]T
(2.15)

The cross-spectral density between the two sensors is expressed in spherical coordinates as

Sf ( ω, s, γ, ζ ) = ( 4π )−1 Sf ( ω )
´ π
−π

´ π
0 Gf ( ω, θ, φ ) H1 ( ω, θ, φ ) H∗

2 ( ω, θ, φ )

× exp
(
j ωs

c [ sin θ sin γ cos(φ− ζ) + cos θ cos γ ]
)
sin(θ)dθdφ

(2.16)

The function Sf ( ω ) in front of the integral translates the relative levels specified by the

directional distribution, Gf ( · ), to the absolute levels observed at the array. The cross-

spectral density and space-time covariance are a Fourier transform pair.

Rf ( τ, s, γ, ζ ) =
1
2π

ˆ ∞

−∞
Sf ( ω, s, γ, ζ ) exp ( jωτ ) dω (2.17)

For a narrowband process, we have Sf ( ω, s, γ, ζ ) = Sf ( s, γ, ζ ) · 2πδ ( ω − ωo ). Computing

the space-time covariance at τ = 0, the covariance and cross spectral density are seen to be

the same.

Rf ( 0, s, γ, ζ ) = 1
2π

´∞
−∞ Sf ( s, γ, ζ ) · 2πδ ( ω − ωo ) exp ( jωτ ) dω

= Sf ( s, γ, ζ )

(2.18)

Using (2.16), (2.18) with Hi ( ω, θ, φ ) = 1 , i = 1, 2, the covariance, Rf ( s, γ, ζ ), between two

omnidirectional sensors in a given noise field, Gf (ω, θ, φ ), can be found. This is particularly

convenient if the noise field has a known form that can be conveniently represented in
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spherical or cylindrical harmonics (see Cox [54]). The covariance matrix for an array of

sensors is populated by values of this function, where ∆p = pr − pc .

Rf = ((Rf ( s, γ, ζ ) ))r,c (2.19)

2.4.2 Cramér Spectral Representation

The spectral representation theorem for stationary random processes, due to Cramér [55] ,

provides a mechanism for describing the properties of a WSS temporal or space-time ran-

dom process in the respective transform domain, e.g., frequency or frequency-wavenumber.

With this representation, the quantities of interest for a physically generated process have

intuitive interpretation and representation, namely we can relate the distribution of power

as a function of frequency (temporal or spatial) to the process. The following sections review

the definition and properties of this representation, and show how it can be used to develop

the relationships between the more common 2nd order moment characterizations of random

processes. We start with WSS temporal random process, as this is simpler notationally

The spectral representation and its properties for the continuous time random process is

introduced, followed by the discrete time random process. The relationship between the two

types when uniform sampling is applied to a continuous time random processes is presented.

Extensions for WSS space-time random processes, in light of the model assumptions, fol-

lows. These sections make explicit use of Ω (radians/sec) as the continuous time frequency

variable, and ω as the discrete time frequency variable (radians/sample). Further detail on

the spectral representation theorem can be found in the references [50,56–58].

Continuous Time

Let { f ( t ) } be a zero mean, complex-valued stationary random process defined over time

−∞ < t < ∞. Additionally, let { f ( t ) } be stochastically continuous, a mild regularity

condition that holds if and only if the autocorrelation function, R ( τ ) , is continuous at

the origin. Then by the Cramér spectral representation theorem there exists an orthogonal
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process, {Z (Ω ) }, such that for all t, a realization of the process, f ( t ) , can be expressed

as

f ( t ) =
ˆ ∞

−∞
ejΩtdZ (Ω ) (2.20)

where equality is in the mean square sense and (2.20) is a Riemann-Stieljes integral. The

orthogonal process is zero mean

E { dZ (Ω ) } = 0 (2.21)

and its corresponding covariance

E { dZ (Ω1 ) dZ∗ (Ω2 ) } =





0 Ω1 6= Ω2

dS(I) (Ω1 ) Ω1 = Ω2

(2.22)

implies that disjoint frequencies are uncorrelated. The function S(I) (Ω ), known as the

integrated spectrum of { f ( t ) }, is a bounded, non-decreasing function. If S(I) (Ω ) is dif-

ferentiable, then we may write

dS(I) (Ω )
dΩ

= S (Ω ) (2.23)

and the covariance then becomes

E { dZ ( Ω ) dZ∗ (Ω ) } = S (Ω ) dΩ (2.24)

The function S (Ω ) is refered to as the power spectral density function. The integrated

spectrum S(I) (Ω ) plays a role similar to a random variable cumulative distribution function,

and many of the results for distribution functions may be applied to it. In analog to the

Lebesgue decomposition theorem for distribution functions, the integrated spectrum can be
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written as consisting of three components

S(I) (Ω ) = S
(I)
1 (Ω ) + S

(I)
2 ( Ω ) + S

(I)
3 (Ω ) (2.25)

• S
(I)
1 (Ω ) is absolutely continuous, meaning its derivative exists for almost all Ω such

that S(I) (Ω ) =
´ Ω
−∞ S

(
Ω
′
)

dΩ
′
. A process with an integrated spectrum consisting

of only this term, S(I) (Ω ) = S
(I)
1 (Ω ), has a smooth background spectral component.

White or colored noise processes (AR, MA, ARMA) are of this type. We refer to this

as a process with purely continuous spectrum.

• S
(I)
2 (Ω ) is a step function with jumps of size pl at frequencies Ωl, l = 1, 2, . . .. A

process with an integrated spectrum consisting of only this term, S(I) (Ω ) = S
(I)
2 (Ω ),

has a purely discrete spectrum or line spectrum. The harmonic random process,

{ f ( t ) } =
∑K

l=1 Ale
jΘlejΩlt , where Θl is uniform [−π, π ] and Al is a real-valued

random variable, has this type of spectrum.

• S
(I)
3 (Ω ) is a continuous singular function. This type of pathologic function is not of

practical use for spectral estimation, and we will assume that it is identically equal to

0 from now on.

From this classification of spectra, and the decomposition described by (2.25), we may

encounter three types of stationary random processes. First, those with purely continu-

ous spectrum. Second those with purely discrete spectrum. And last, those which are a

combination of both types that we will call mixed spectrum processes.

The autocorrelation function, R ( τ ), and power spectral density, S (Ω ), of the process

can be related through the spectral representation and the properties of the orthogonal

process. Starting with the definition of the autocorrelation function

R ( τ ) = E { f ( t ) f∗ ( t− τ ) } (2.26)
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and replace f ( t ) with its spectral representation (2.20)

R ( τ ) =
ˆ ∞

−∞
ejΩ1t

ˆ ∞

−∞
ejΩ2( τ−t )tE { dZ (Ω1 ) dZ∗ (Ω2 ) } (2.27)

Using the uncorrelated property of the covariance at disjoint frequencies, (2.22), this sim-

plifies to

R ( τ ) =
ˆ ∞

−∞
ejΩτdS(I) (Ω ) =

ˆ ∞

−∞
S (Ω ) ejΩτdΩ (2.28)

where the well known result of the last integral assumes S(I) (Ω ) is differentiable. Because

R ( τ ) is an absolutely integrable, deterministic function, (2.28) indicates that R ( τ ) and

S (Ω ) form a Fourier transform pair, such that

S (Ω ) =
1
2π

ˆ ∞

−∞
R ( τ ) e−jΩτdτ (2.29)

Discrete Time

The spectral representation also applies to discrete time random processes, { f [n] }, with

only slight modifications as outlined here. Given a stationary, discrete time random process,

{ f [n] } − ∞ < n < ∞, a realization the process, f [n] , has spectral representation using

the orthogonal process, {Z ( ω ) } , given by

f [ n ] =
ˆ π

−π
ejωndZ (ω ) (2.30)

where equality is in the mean square sense. The limits of integration are restricted to ±π

to reflect the unambiguous range of the discrete time frequency. The orthogonal process is

zero mean, E { dZ ( ω ) } = 0, with covariance

29



E { dZ ( ω1 ) dZ∗ ( ω2 ) } =





0 ω1 6= ω2

dS(I) ( ω ) ω1 = ω2

(2.31)

where the bounded, non-decreasing function S(I) ( ω ) is the integrated spectrum of { f [n] }.

The covariance implies disjoint frequencies are uncorrelated. If S(I) ( ω ) is differentiable,

then we may write

dS(I) ( ω )
dω

= S ( ω ) (2.32)

and the covariance of the increments becomes

E { dZ ( ω ) dZ∗ ( ω ) } = S ( ω ) dω (2.33)

The function S (ω ) is referred to as the power spectral density function. Following the same

procedure as in the continuous time case, the autocorrelation, R [ l ] = E {x ( n ) x∗ ( n− l ) }
and integrated spectrum are related via the spectral representation by

R [ l ] =
ˆ π

−π
ejωldS(I) ( ω ) =

ˆ π

−π
S ( ω ) ejωldω (2.34)

where the final familiar expression assumes S(I) (ω ) is differentiable. The power spectral

density and autocorrelation form a Fourier transform pair such that

S ( ω ) =
1
2π

∞∑

l=−∞
R [ l ] e−jωl (2.35)

where equality is in the mean square sense.
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Sampling and Aliasing

A sampled WSS continuous time random process { fc ( t ) } , −∞ < t < ∞ , with uniform

sampling period T , produces a WSS discrete random process { fd [ n ] } , −∞ < n < ∞.

The subscripts c and d are used to reinforce the distinction between the continuous and

discrete time domains. As a stationary discrete time random process, fd [ n ] = fc ( to + nT )

has a spectral representation

fd[n] =
1
2π

ˆ π

−π
ejωndZd ( ω ) (2.36)

where the orthogonal process {Zd ( ω ) } has the properties outlined in Section 2.4.2. Follow-

ing Section 2.4.2, the autocorrelation and power spectral density form a Fourier transform

pair.

Rd [ l ] =
ˆ π

−π
Sd ( ω ) ejωldω , Sd ( ω ) =

1
2π

∞∑

l=−∞
Rd [ l ] e−jωl (2.37)

Now we are interested to relate the discrete time process 2nd order characterizations, Rd [ l ]

and Sd ( ω ), to the original continuous time counterparts, Rc ( τ ) and Sc (Ω ). The discrete

time autocorrelation function samples its continuous time counterpart. This follows directly

from its definition

Rd [ l ] = E {xd [n ] x∗d [ n− l ] }

= E {xc ( to + nT ) x∗c ( to + nT − lT ) }

= Rc ( lT )

(2.38)
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Two approaches may be taken to determine the form of the discrete time process power

spectral density. The first considers both Rc ( τ ) and Sc (Ω ) as deterministic functions, and

utilizes the properties of the Fourier transform and the continuous time sampling indicated

in (2.38) to arrive at

Sd ( ω ) =
1
T

∞∑

β=−∞
Sc

(
ω − 2πβ

T

)
, |ω | ≤ π (2.39)

Details can be found in Oppenheim and Schafer, problem 11.8 [59]. The second approach

utilizes the spectral representation directly to arrive at the same result. Details can be

found in Percival and Walden [56].

The relationship in (2.39) can be used to determine requirements on the sampling period,

T , such that the resultant discrete spectrum is an accurate representation of the underlying

continuous spectrum, i.e., the Nyquist sampling criteria. However, consider an alternate

interpretation of (2.39). Even if the Nyquist sampling criteria is not met, using an estimate

the discrete spectrum, although it is aliased version of the true spectrum, it is possible to

determine the correct values for the covariance at the sample points indicated by (2.38).

This is clearly insufficient to completely reconstruct the underlying spectrum, but still allows

estimation of covariance matrix values necessary for adaptive processing.

In practice only a finite number of samples are available for processing. This is the

effect of a finite duration observation window, and has a direct impact on the ability to

estimate the discrete spectrum. Thomson dealt with this problem directly in formulation

of the multitaper spectral estimator, which is reviewed in Section 2.6.

These concepts may be applied directly to uniform linear array processing problems. For

regular arrays, those based on a multiple of a fixed spacing such as minimum redundancy

arrays, additional complexity is introduced due to the impact of the equivalent windowing

function, and its influence in the frequency domain, on the ability to estimate the discrete

spectrum. Arbitrary array design also has this issue, and adds potentially unusual spectral

combinations due to the non-uniform spacing compared to the uniform structure described
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by (2.39).

Continuous Space-Time

The spectral representation extends to the case of a spatially and temporally stationary

multidimensional random process, { f ( t, p ) } . Given a realization of the process, f ( t, p ),

there exists an orthogonal process, {Z( ω, k ) } , such that for all t, p

f ( t, p ) =
ˆ ∞

−∞
· · ·

ˆ ∞

−∞
ej(ωt−kT p)dZ( ω, k ) (2.40)

The orthogonal process, {Z( ω, k ) } , is zero mean E { dZ( ω, k ) } = 0, and and uncorre-

lated across disjoint frequency-wavenumber bands.

E { dZ( ω1, k2 )dZ∗( ω3, k4 )} =





0 (ω1, k2 ) ∩ ( ω3, k4 ) = 0

P ( ω, k ) dωdk ω1 = ω2 , k2 = k4

(2.41)

where we have assumed that the integrated frequency-wavenumber spectrum, P
(I)
x ( ω, k ),

is differentiable.

The relationships between covariance, cross spectral density, and frequency-wavenumber

spectrum, stated earlier in Section 2.4.1, may be derived from the multidimensional spectral

representation in (2.40).

Directional Distribution of Plane Waves

As an alternative to the frequency-wavenumber domain in (2.40), one may define the or-

thogonal process across all angles of arrival on a sphere [1, 50,54].

dZ( ωo, p ) =
1
4π

ˆ π

0
sin θdθ

ˆ 2π

0
e−jkoaT

r ( θ, φ )pdZ( ωo, θ, φ ) (2.42)
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where

f ( t, p ) =
ˆ ∞

−∞
ejωtdZ( ωo, p ) (2.43)

with ko = 2π/λ, and ar ( θ, φ ) is a unit vector in the radial direction. The orthogonal

process, { dZ( ωo, θ, φ ) }, defines an integrated spectrum, S ( ω ) G(I) ( ω, θ, φ ), where we

have used G ( · ) to be consistent with Section 2.4.1 and the function S ( ω ) scales the relative

levels defined in G ( · ) to the absolute levels seen at the array. Assuming G(I) ( ω, θ, φ ) is

differentiable

E { dZ ( ω1, θ1, φ1 ) dZ∗ ( ω2, θ2, φ2 ) } =





0

θ1 6= θ2

φ1 6= φ2

ω1 6= ω2

S (ω ) G ( ω, θ, φ ) 2π
sin θdω

θ1 = θ2

φ1 = φ2

ω1 = ω2

(2.44)

The cross spectral density is defined by

E { dZ( ωo, p )dZ∗( ωo, p−∆p ) } = Sf ( ωo, ∆p )
dω

2π
(2.45)

Relating (2.45) to (2.42), and using (2.44) we have

Sf ( ωo, ∆p ) =
1
4π

S ( ω )
ˆ π

−π

ˆ π

0
Gf ( ω, θ, φ ) e−jkoaT

r ( θ, φ )∆p sin(θ)dθdφ (2.46)
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One may compare this to the earlier expression (2.16), which also included directional

response of the individual sensor elements and expanded the aT
r ∆p terms in spherical

coordinates. By defining the directional distribution, Gf ( ω, θ, φ ), and requiring disjoint

regions in angle space to be uncorrelated (2.44) this shows how the spectral representation

underlies the model of the stationary space-time process as the sum of uncorrelated plane

waves distributed over all directions of arrival to the array.

2.5 Optimal Beamforming

This section reviews optimal beamforming techniques given observation of the interference

and noise environment, and the related problem when the desired signal is also present in

the data. The normalized SINR loss metric is a measure of the decrease in output SINR of

an implemented beamformer compared to an optimal processor. The metric is frequently

used to assess the performance of a given adaptive beamforming algorithm. This metric

and its general application are reviewed.

2.5.1 Minimum Variance Distortionless Response (MVDR)

Given the series of snapshots, xm ∈ CN with E
{
xmxH

m

}
= Rx, the adaptive processor uses

a weighted linear combination of the sensor outputs to produce the scalar output signal

ym = wHxm (2.47)

The processor should pass the desired direction of arrival, specified with steering vector s,

undistorted. This constraint is expressed

wHs = 1 (2.48)

The expected output power of the processor is
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E
{
| ym |2

}
= E

{ ∣∣wHxm

∣∣2
}

= wHRxw (2.49)

The design criteria is to minimize the expected output power, subject to the distortionless

constraint. It can be shown that this design criteria is the same as maximizing the output

SINR [1]. The optimization problem is then

arg min
w

wHRxw s.t. wHs = 1 (2.50)

Using the method of Lagrange multipliers [60], the constrained cost function to be minimized

is then

J (w ) = wHRxw + λ
(
wHs− 1

)
+ λ∗

(
sHw − 1

)
(2.51)

The cost function is quadratic in w. Taking the complex gradient with respect to w, and

setting to zero

∂J (w )
∂w∗ = Rxw + λs = 0

∣∣∣∣
w=wopt

(2.52)

the optimal set of weights is

wopt = −λR−1
x s (2.53)

Using (2.53) in (2.48) to solve for the Lagrange multiplier, we have λ = − (
sHRxs

)−1 ,

and combining the two produces the final weight vector

wopt =
R−1

x s
sHR−1

x s
(2.54)
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When the snapshot data used to estimate Rx contains only the noise and interference envi-

ronment, this processor is refered to as minimum variance distortionless response (MVDR).

In the event the desired signal is also present in the snapshot data, the same solution for

the weight vector results, but is sometimes referred to as minimum power distortionless

response (MPDR) to indicate the difference in the observed data [1]. In practice, the dis-

tinction makes a significant difference in terms of the required snapshot support to achieve

good performance [30].

2.5.2 Normalized SINR Loss

For cases involving uncorrelated signal and interference, the standard metric for performance

of an adaptive beamformer is degradation in the output signal to interferer and noise ratio

(SINR) compared to that obtainable with an optimal processor [29]. The normalized SINR

loss, ξ, is defined as

ξ =
SINRa

SINRo
(2.55)

The subscript o represents true quantities or optimal values, while the subscript a represents

the actual or estimated values. For convenience, normalized SINR loss can be expressed on

a dB scale, as ξdB = −10 log10 ( ξ ) . In this way, ξdB = 1 implies an output SINR that is

1 dB lower than obtainable by an optimal processor. For the optimal processor, SINR is

computed as

SINRo =

∣∣wH
o s

∣∣2
wH

o Rowo
(2.56)

while for an implemented processer, SINR is computed as

SINRa =

∣∣wH
a s

∣∣2
wH

a Rowa
(2.57)
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The general expression for ξ, not assuming a particular form for the weights, is therefore

ξ =

∣∣wH
a s

∣∣2
wH

a Rowa
· w

H
o Rowo

|wH
o s |2

(2.58)

We consider adaptive beamformers with weights designed using the minimum variance

distortionless response (MVDR) criteria. Using (2.54) in (2.56), the SINR for the optimal

processor is

SINRo = sHR−1
o s (2.59)

while using (2.54) in (2.57) yields the SINR for an implemented processor

SINRa =

(
sHR−1

a s
) (

sHR−1
a s

)

sHR−1
a RoR−1

a s
(2.60)

Using (2.59) and (2.60) in (2.55) , the expression for ξ becomes

ξ =
sHR−1

a s
sHR−1

o s
· sHR−1

a s
sHR−1

a RoR−1
a s

(2.61)

This is a general expression for ξ when the beamformer weights are found via MVDR, but

doesn’t give any insight into performance as it relates to the quantities estimated for the

underlying model. The matrix inverse operations also make it difficult to follow directly how

model parameters influence the performance, except under some simplifying assumptions.

2.6 Spectral Estimation Techniques

This thesis investigates estimation of covariance for adaptive beamforming by first estimat-

ing the spatial or wavenumber spectrum. Clearly, techniques that require an estimate of

the covariance a priori, such as Capon’s MVDR [6] or MUSIC [61], are not usable for this
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purpose. Two main techniques for spectral estimation based upon the data are reviewed

briefly in this section. First, the classical windowed, averaged periodogram is a standard

non-parametric technique that has efficient computation and ease of analysis related to the

adaptive processor performance that will be carried out in Chapter 3. This is preferable

to other parametric methods, or model based techniques, even though they may perform

better in some scenarios. The section concludes with a review of Thomson’s multitaper

spectral estimation, in some ways a generalization of the classical windowed techniques.

This algorithm provides benefits in terms of minimal data support, incorporation of har-

monic analysis to deal with mixed spectrum processes, and can be extended to work with

irregular sampled data.

2.6.1 Classical (nonparametric) Spectral Estimation

The windowed, averaged periodogram [59,62] is a standard technique for spectral estimation

for uniform sampled data series. By applying a predetermined fixed window function or

taper, w = (( w[n] ))n , to the data the behavior of the spectral estimate can be controlled

with regard to frequency resolution and spectral leakage, e.g., sidelobe suppression. These

quantities must be traded off against each other. Performance aspects of well known window

functions has been long established [63].

For simplicity, we assume a single dimension time series or uniform linear array process-

ing. For either the time series or array processing problem the procedure is identical once

the snapshots have been established. Time series processing typically considers a contigu-

ous collection of NTOTAL samples. This collection is then subdivided into M snapshots of

N samples each. Within the time series the snapshots may be specified such that there is

overlap of samples between adjacent snapshots. For the array processing application, each

snapshot represents the simultaneous sampling of each of the N array elements. In either

application, once obtained, each snapshot, xm, is multiplied element by element with the

windowing function, w[n] .
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ym = ((xm[n]w[n] ))n = xm ¯w (2.62)

where ¯ is the element by element, or Hadamard product. This windowed snapshot data

is then Fourier transformed, typically using efficient FFT algorithms

Ym[l] =
N−1∑

n=0

ym[n] exp
(
−j

2πln

NFFT

)
, l = 0, 1, · · · , L− 1 (2.63)

The value of NFFT may be selected to more finely sample the underlying spectrum, e.g.,

zero-padding, but the fundamental “resolution” of the transform is constant based on the

amount of available samples, N . The final estimated spectrum is the averaged, magnitude

squared of the outputs of (2.63)

P̂ [ l ] =
1
M

M∑

m=1

|Ym[l] |2 (2.64)

We reference the frequency domain as the transform domain of the time series, although

for array processing the wavenumber is the spatial frequency, and once normalized by their

respective sample period or sensor separation the two are equivalent. The averaged, modified

periodogram processing shown here using the FFT provides a fixed resolution and sidelobe

(leakage) performance across the frequency domain, based on the characteristics of the

selected window. The array problem encounters the non-linear mapping between physical

angle of arrival and wavenumber. If a fixed response across angle space is desired, the

window function will necessarily become a function of angle of arrival, or wl = ((wl[n] ))n,

such that (2.63) becomes

Ym[l] =
N−1∑

n=0

wl[n]xm[n] exp
(
−j

2πln

NFFT

)
, l = 0, 1, · · · , NFFT − 1 (2.65)
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2.6.2 Multitaper Spectral Estimation (MTSE)

The multitaper algorithm, originally developed by Thomson [52], formulates the spectral

estimation problem as one of estimating the second order moments of the spectral repre-

sentation of the process. This section reviews the important concepts for MTSE, and some

of the details in its implementation for this dissertation. More thorough treatment can be

found in the seminal work [52], as well as [56]. Development of spectral estimation as an

averaged power measurement behind a filter bank has a good engineering intuition to it,

and consideration of MTSE as a multi-rank estimator of this type can be found in [64,65].

While intuitive, this approach loses some of the depth of Thomson’s work in terms of the

underlying spectral representation, harmonic analysis, and the ability to adaptively combine

the multiple spectral estimates to minimize local and broadband bias. The original work

was in consideration of uniform sampled time series, which we follow here. Application of

the method to uniform linear array processing in wavenumber space is immediate. For ar-

bitrary array geometries, or operation in angle space, the concepts are the same and require

only a specialized multitaper design [66], and more computationally intensive processing.

Fundamental Problem of Spectral Estimation

This review follows [52], where for clarity the temporal “centering” term, ej(N−1)/2, has

been omitted, and the relationships are shown for M > 1 available snapshots. Given the

stationary discrete random process, {x [n ] } ,−∞ < n < ∞, we know from Section 2.4.2

that a realization of the process, x [n ], has spectral representation

x [n ] =
ˆ 1/2

−1/2
ej2πfndZ ( f ) (2.66)

where the covariance of the orthogonal increment process defines the power spectral density.

E { dZ ( f ) dZ∗ ( f ) } = S ( f ) df (2.67)
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The problem of spectral estimation is to estimate the covariance of this process. However,

dZ ( f ) is not observable directly from the available, limited samples x [ n ] , 0 ≤ n < N .

While the impact of this data limiting operation, or projection onto a finite number of

samples, is obvious in the time domain its effect on the spectral representation of the

process is less immediate. Taking the Fourier transform of the samples

y ( f ) =
N−1∑

n=0

x [ n ] e−j2πfn (2.68)

and inserting (2.66) into (2.68) gives what Thomson refers to as the fundamental equation

of spectral estimation

y ( f ) =
ˆ 1/2

−1/2

sinNπ ( f − v )
sinπ ( f − v )

dZ ( v ) (2.69)

This result is a linear Fredholm integral equation of the 1st kind, and cannot be solved

explicitly for dZ ( v ). This is inline with our inability to reconstruct the entire realization

of the process, x [ n ] ,−∞ < n < ∞, from the limited sample observation. Eqn. (2.69)

can be solved approximately, for a local region ( fo −W, fo + W ) using an eigenfunction

expansion of the kernel sin Nπ( v )
sin π( v ) and a local least squares error criterion. The eigenfunction

equation is given by

λd ( N, W ) Qd ( N, W, f ) =
ˆ W

−W

sinNπ ( v )
sinπ ( v )

Qd ( N, W, v ) (2.70)

where 0 < W < 1/2 is a design choice and N is the number of available samples. There are

N solutions to (2.70), indexed by the subscript d . The eigenvalues, 0 < λd ( N, W ) < 1,

give a measure of the concentration of the eigenfunction Qd ( N, W, f ) within the desired

region, [−W, W ]. For this particular problem, the solutions to (2.70) are known. The
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Qd ( N, W, f ) are the discrete prolate spheriodal wave functions (DPSWF), which are re-

lated to qd ( N, W, n ), the discrete prolate spheriodal sequences (DPSS) by the Fourier

transform

Qd ( N, W, f ) = εd

N−1∑

n=0

qd (N, W, n ) e−j2πfn (2.71)

where εd = 1 for d even, j for d odd. These sequences are also known as the Slepian

sequences. From Slepian [67], there are approximately 2NW signficant eigenvalues for

these functions. Defining the Fourier transform of the windowed samples, y
(d)
m ( f ), as the

dth eigencoefficients of the data

y(d)
m ( f ) =

N−1∑

n=0

1
εd

qd ( N, W, n ) xm [ n ] e−j2πfn (2.72)

The dth eigenspectra, Ŝd ( f ), is computed by averaging the magnitude squared of y
(d)
m ( f )

over all snapshots

Ŝd ( f ) =
1
M

M∑

m=1

∣∣∣ y(d)
m ( f )

∣∣∣
2

(2.73)

Due to the orthogonality of Qd (N, W, f ) over the interval [−W, W ], for locally near flat

spectra the eigenspectra are approximately uncorrelated. By averaging them the overall

variance of the final estimate is improved. Before considering the best method for combining

the eigenspectra, one might be interested to use all N available eigenfunctions to improve

the variance by increased averaging. The next section looks at why this is not recommended.
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Looking at Multiple Tapers

To develop a better understanding of the difference between using a multitaper technique

and a single taper classical technique consider a simple example illustrated in Figure 2.3. For

a single snapshot of N = 64 samples, the example considers three approaches to estimating

the spectrum using a windowed technique. Averaging multiple, uncorrelated estimates

improves estimation accuracy. This can be accomplished using 4 non-overlapping Hann

windows as illustrated in the top left in the Figure. Alternatively, a multitaper design also

develops 4 overlapping, but orthogonal windows as shown on the top right. Both achieve

the same improvement due to averaging uncorrelated estimates, but visually one would

expect the multitaper design to perform better overall as it incorporates more of the sample

data in each estimate. Looking at the lower plot in the Figure showing the magnitude

squared of the equivalent window transfer function, the multitaper approach (shown in

blue) has better frequency resolution than the non-overlapped Hann design (shown in red).

In order to improve the resolution using the Hann window one may increase the length of the

window, at the expense of providing fewer uncorrelated estimates. In the extreme, a single

Hann window (shown in magenta) has better resolution than the multitaper but achieves no

improvement due to averaging. Alternate formulations of the Hann based approach exist,

such as 50% overlap, etc., but in general the multitaper has the best performance in terms

of frequency resolution and overall improvement in variance due to averaging [68].

There is a limit to the number of tapers that may be applied meaningfully, based on

N and the W selected. The rule of thumb established is that there are 2NW significant

eigenvalues (sometimes more conservatively estimated as 2NW−1), indicating 2NW tapers

are highly concentrated in the region [−W, W ]. Continuing the example of Figure 2.3,

Figure 2.4 shows the magnitude squared of the DPSWF for the six largest eigenvalues.

In this example, W (shown as the red dash-dot line) is selected so that 2NW = 4. The

first four eigenfunctions have a mainlobe concentrated largely within [−W, W ], but for

higher numbered windows the main lobe is mostly outside the desired region, and the

sidelobe level has increased substantially. What this implies is that power estimates based
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Figure 2.3: Comparison of resolution for multitaper spectral estimation: The
general form of multi-taper spectral estimation also encompasses traditional weighted over-
lapped, segment averaged (WOSA) techniques. The upper left plot shows a time series
divided into four nonoverlapping segments using a Hann window. The upper right shows
the same time series with four orthogonal multitaper windows. Both provide an improve-
ment in estimate variance via averaging by a factor of 4, but the windows on the right use all
the sample data in each estimate. Also, as seen in the lower plot, the frequency resolution is
improved compared to the four Hann window approach. A single Hann window has better
resolution, but does not achieve any averaging.
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on these windows are heavily influenced by frequency content outside the area of interest.

Thomson referred to this type of effect as the broad band bias. This type of influence is

undesirable, in particular for high dynamic range non-flat spectra. Limiting the number

of employed windows such that D ≤ 2NW provides some robustness against broad band

bias automatically. This can also be improved by appropriate combining of the individual

eigenspectra as discussed in the next section.

Combining Eigenspectra

With N given, and W and D specified, the multitaper method computes the individual

eigenspectra, Ŝd ( f ), using (2.73). For an assumed flat spectrum there is a fixed optimal

weighting scheme for combining the individual Ŝd ( f ), however, this is of limited use. If

one had a priori knowledge that the spectrum was white, altogether different estimations

techniques could be applied [51]. For non-flat spectrum, adaptive weighting schemes have

been developed to minimize the contribution of broadband bias while maintaining estima-

tion accuracy. Defining the eigenspectra weighting function as hd ( f ), an iterative method

for determining hd ( f ) for non-white noise that is optimal in mean-squared error sense is

given by Percival and Walden [56]. Begin with an initial estimate of the spectrum, Ŝ
(0)
f ( f ),

using the flat spectrum fixed weighting

Ŝ
(0)
f ( f ) =

∑D
d=1 λdŜd ( f )∑D

d=1 λd

(2.74)

where the superscript indexing is introduced to indicate the appropriate iteration. Estimat-

ing the variance of the process as σ2 =
´ 1/2
−1/2 Ŝ

(0)
f ( f ) df , the following iterative procedure

is carried out.

h
(n)
d ( f ) =

Ŝ
(n−1)
f ( f )

λdŜ
(n−1)
f ( f )− ( 1− λd ) σ2

(2.75)
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Figure 2.4: Comparison of multiple tapers: There are generally 2NW significant tapers
that provide frequency content largely concentrated in the desired region. Additional tapers
have significantly higher sidelobes and introduce the potential for broad band bias in the
spectral estimate.
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Ŝ
(n)
f ( f ) =

∑D
d=1 |hd ( f ) |2 Ŝd ( f )∑D

d=1 |hd ( f ) |2 (2.76)

Typically, only 3 iterations of (2.75) followed by (2.76) are necessary for convergence.

Free Parameter Expansion

The formulation for multitaper spectral estimation develops an estimate of the power spec-

tral density at fo by considering the region [ fo −W, fo + W ]. This estimate is valid for

any f in this region. For this reason, for a specific Ŝf

(
f
′
o

)
, there remains a question of

which fo in the range f
′
o−W ≤ fo ≤ f

′
o + W is most appropriate as all are valid. Thomson

refers to this choice as the free parameter expansion of fo . The final Ŝf

(
f
′
o

)
should be a

weighted average of these estimates, typically over the range
∣∣∣ f

′
o − fo

∣∣∣ ≤ 0.8W . In prac-

tice, the eigencoefficients in (2.72) are computed using FFT techniques for efficiency. The

most direct method of generating the additional eigencoefficients necessary for free param-

eter expansion is to continue to use the FFT with additional zero-padding. Throughout

the dissertation, we refer to the scalar multiplier NFPE as the value such that the full

zero-padded FFT size is NFFT = N × NFPE. Thus, NFPE indicates the number of

sampled “between points” available for free parameter expansion averaging.

Harmonic Analysis

As discussed in Section 2.4.2, the discrete random process may have a mixed spectrum,

such that it consists of two independent processes - one with continuous spectrum and one

with discrete spectrum. In terms of its spectral representation, a realization of a mixed

spectrum stationary discrete random process {x [ n ] } has spectral representation

x [ n ] =
ˆ 1/2

−1/2
ej2πfn [ dZ1 ( f ) + dZ2 ( f ) ] (2.77)
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where dZ1 ( f ) corresponds to the continuous spectrum process and has increments in con-

tinuum from −1/2 ≤ f ≤ 1/2, while dZ2 ( f ) corresopnds to the line spectrum process and

has increments only at the discrete locations of the frequencies in the harmonic process,

fk for k = 1, 2, · · · ,K . The line components (impulses) in the spectrum, caused by a

portion of the process being a harmonic random process, cause difficulties with both clas-

sical and multitaper techniques. This is a result of the familiar modulation property of the

Fourier transform. Windowing of the data in the time domain results in convolution in the

frequency domain. If a line component has large SNR, the result is unintended spectral

leakage across frequency, even for the multitaper algorithm. Thomson applied a harmonic

analysis approach for dealing with this phenomenon.

At each frequency fo , the multiple tapers define a region in the frequency domain,

[ fo −W, fo + W ]. The continuous spectrum portion of the process, { dZ1 ( f ) }, is non-zero

throughout the region [ fo −W, fo + W ]. For now, assume only a single line component

may exist in this region. If a line component exists at fo, the increment process { dZ2 ( f ) }
is only non-zero at fo within [ fo −W, fo + W ]. Each realization of the process, dZ2 ( f ),

provides a complex valued constant at fo. This allows us to establish an analysis of variance

(ANOVA) test to detect the presence of the potential line component. For a single snapshot,

this detection problem is termed the constant false alarm rate (CFAR) matched subspace

detector by Scharf [69]. The procedure of [70] is used to extend the detector to multiple

snapshots. Within the region [ fo −W, fo + W ], define the subspace located at fo only.

Define a vector, qo , that consists of the mean value of each of the tapers

qo =

[
N−1∑

n=0

q1(n),
N−1∑

n=0

q2(n), · · · ,
N−1∑

n=0

qD(n)

]T

(2.78)

and use this to form a projection matrix, Pq, for the subspace

Pq = qo

(
qH

o qo

)−1
qH

o (2.79)
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The null projector for the subspace, P⊥
q ,

P⊥
q = I−Pq (2.80)

defines “everywhere else” in the region [ fo −W, fo + W ]. Forming a vector of the eigenco-

efficients, ym ( fo )

ym ( fo ) =
[
y(1)

m ( fo ) , y(2)
m ( fo ) , · · · , y(D)

m ( fo )
]T

(2.81)

the detection statistic is formed by taking the ratio of the power of the eigencoefficients

in the fo subspace to the power of the eigencoefficients outside that subspace. Formally,

following [70], the detection statistic F ( fo ) is computed as

F ( fo ) =
∑M

m=1 yH
m ( fo )Pqym ( fo )∑M

m=1 yH
m ( fo )P⊥

q ym ( fo )

H1

≷

H0

γTH (2.82)

and compared to an appropriate threshold, γTH .

The importance of the detection of the line components in the spectrum is that they

may be identified, and after estimation of their unknown parameters (amplitude, frequency,

and phase) subtracted from the original data. The residual sample data is then subject to

the spectral estimation algorithm, now with line components removed. The final spectral

estimate numerically “adds” the line components to the continuous spectrum, with appro-

priate scaling for SNR and estimation accuracy. Figure 2.5 illustrates this process. M = 20

snapshots of N = 64 samples are available for processing. The snapshots contain a white

noise process, with power spectrum indicated by the dash-dot black line at 0 dB. The snap-

shots also contain a harmonic process consisting of 3 sinusoids at the locations indicated by

the vertical dash black lines. In the upper subplot, MTSE is shown in blue for NW = 3.

The characteristic “brick” from the equivalent window function is evident around the line
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Figure 2.5: Example of MTSE with harmonic analysis: Prior to harmonic analysis,
the standard MTSE algorithm shown in blue in the upper subplot, behaves similar to the
classical Hann PSD shown in red. It provides lower variability in the spectrum, but its
effective window width is much wider than the Hann window, evidenced as the line compo-
nents are not resolved. With harmonic analysis, shown in the lower subplot, the spectral
estimate clearly identifies the three line components and provides a smoother estimate of
the background white spectrum.

component on the left. On the right, the two remaining line components are close enough

so that the windows overlap. For comparison, a classical Hann window spectral estimate is

shown in red. By itself, it has the resolution to identify all three peaks, but in general has

more variability in the spectrum. The lower subplot shows the final MTSE product after

harmonic analysis. The improvement from the incorporation of the harmonic analysis is

evident.
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Chapter 3: Structured Covariance Matrices

Based On Frequency Wavenumber Spectral Estimation

3.1 Introduction

In this chapter we investigate how the frequency-wavenumber spectrum can be used as a

basis for covariance matrix estimation for WSS space-time processes. We start by con-

sidering the sensitivity of a model based adaptive beamformer to errors in estimates of

the model parameters. Performance of these processors with respect to the estimation of

individual model parameters, such as interferer angle-of-arrival or interferer to noise ratio

(INR), is investigated. The purpose is not to define a particular algorithm at this point,

but to understand what features of the underlying problem are most significant in devel-

oping one. Where possible, estimation requirements are compared to Cramér Rao bounds

as a method to confirm that we are not expecting too much in order to achieve a desired

level of beamformer performance. Next, we review the relationships between the model for

the array processing problem and the desired covariance. In addition to the contribution

from physically propagating waves seen by the array, to maintain robustness it is necessary

to also include contributions due to the sensor noise component. This requires defining a

model that contains both of these elements, and that produces the proper covariance matrix

estimate after transformation to the space-time domain. This leads to a straightforward

approach for covariance estimation from spatial spectrum (CSS) for uniform arrays, and

guides the development in Chapter 7 for arbitrary arrays. Concentrating on the uniform

linear array case, the classical power spectral estimation techniques reviewed in Chapter

2 are applied to the problem. Expected values for the resulting covariance are developed

and used to predict normalized SINR loss performance. These predictions show the need
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to incorporate some form of harmonic analysis to mitigate the effects of line components in

the spectrum. This allows the processor to maintain operation in the low normalized SINR

loss region for a wide range of conditions.

3.2 Sensitivity of a Model Based Beamformer

This section assesses the performance of a model-based adaptive beamformer, based on

the optimal beamformer, where the model parameters are estimated. Analysis is done to

determine performance sensitivity to estimation errors for the individual model components.

Without specifying the exact form of the processor, this analysis gives insight into what

parameters within the model matter most in terms of impact to beamformer performance.

Bounds are developed indicating the required estimation accuracy necessary to obtain an

acceptable performance for an acceptable normalized SINR loss, ξ. The bounds are found

to be well within accuracies obtainable for limited quantity data.

3.2.1 Single Plane Wave in Spatially White Noise

Consider the simple case of a single plane wave interferer in spatially white noise. This

provides a basic understanding of sensitivity to error in estimation of the interferer INR

or wavenumber, and develops a basis for more complicated models. The model for the

covariance matrix for this problem is

Ro = σ2
nvovH

o + σ2
wI (3.1)

where vo = (( e−jkT
o pn ))n is the array manifold response for wavenumber ko. The unknown

quantities are

• σ2
w, the variance of the uncorrelated sensor noise

• σ2
n, the variance of the plane wave interferer

• ko, the wavenumber of the plane wave interferer
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The optimal beamformer weights for desired wavenumber, ks, specifying steering vector,

s, are given by (2.54). Given its simple structure, there is a closed form using the matrix

inversion for R−1
o .

R−1
o = σ−2

w

[
I− σ2

n/σ2
w

1 + σ2
n/σ2

wvH
o vo

vovH
o

]
(3.2)

Recall that the projection matrix for the subspace spanned by a single vector, v, is defined

as Pv = v
(
vHv

)−1 vH which can be rearranged as vHvPv = vvH . Defining the quantity

βo = vH
o vo

(
σ2

w/σ2
n + vH

o vo

)−1, the matrix inverse is represented as

R−1
o = σ−2

w [ I− βoPvo ] (3.3)

Eqn. (3.3) is similar to a projection matrix on the null space of vo. It is a weighted

subtraction of the projection onto the range space of vo. As shown in Appendix B, βo is

a measure of the interferer to noise ratio, so the operation of the optimal beamformer can

be interpreted as projecting out the interferer based on its relative strength against the

spatially white noise. The complete expression for the weight vector is

wo =
[ I− βPvo ] s

sH [ I− βPvo ] s
(3.4)

Note that the denominator is a scalar, and does not affect the shape of the beampattern

other than as a gain.

We imagine a model based adaptive processor that knows the form of the covariance, es-

timates the unknown parameters, and uses the estimates to determine the adaptive weights

using (3.4). We continue to use the convention of the subscript o to reflect the true or optimal

quantity, while the subscript a reflects the estimated quantity. The estimated quantities

reflect the true value and the estimation error, σ2
w,a = σ2

w + ∆σ2
w , σ2

n,a = σ2
n + ∆σ2

n ,

ka = ko +∆k . The estimated covariance matrix, Ra, and the corresponding weight vector,
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wa , are

Ra = σ2
n,avavH

a + σ2
w,aI (3.5)

R−1
a = σ−2

w,a [ I− βaPva ] (3.6)

wa =
[ I− βaPva ] s

sH [ I− βaPva ] s
(3.7)

Because the weight vector does not depend on the absolute values of σ2
w,a and σ2

n,a, only

their ratio, we define the quantities

INRo ≡ σ2
n

σ2
w

, INRa ≡
σ2

n,a

σ2
w,a

= INRo ·∆INR (3.8)

where 0 < ∆INR < 1 indicates an underestimate, and ∆INR > 1 indicates an overes-

timate. We now investigate the sensitivity of ξ to under/over-estimation of INR, and if

there is a range of ∆k that is also tolerant such that ξ is near unity.

Over/Under-estimate of INR, ∆INR 6= 1

For this analysis set ∆k = 0, so that Pva = Pvo , to concentrate on the behavior w.r.t.

∆INR. βa may be expressed as

βa =
N

( σ2
n/σ2

w )−1(∆INR )−1 + N
(3.9)

We’ll consider the four scenarios given in Table 3.1 , which result in only two different

approximations for performance. We have the additional condition on the upper right case

that ( INR )−1( ∆INR )−1 ≤ 1, or ∆INR ≥ ( INR )−1. This puts a limit on the amount of

underestimation considered, and eliminates the situation of gross underestimation of INR
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Table 3.1: INR estimation error cases, single plane wave interferer:
overestimate INR underestimate INR

∆INR ≥ 1 ∆INR ≤ 1
INR > 1 ( INR )−1(∆INR )−1 ¿ 1 , βa ≈ 1 ( INR )−1(∆INR )−1 ≤ 1 , βa ≈ 1
INR < 1 ( INR )−1(∆INR )−1 ≤ 1 , βa ≈ 1 ( INR )−1(∆INR )−1 À 1 , βa ≈ 0

when the interferer is strong. As seen in the Table, the two approximations to consider are

Case 1. βa ≈ 1 and Case 2. βa ≈ 0.

Case 1. Overestimate or slightly underestimated INR, βa ≈ 1 As given in

Appendix B, the general expression for the SINR loss is approximately

ξ ≈ N − (1/N)
∣∣sHvo

∣∣2

N − (βo/N) |sHvo|2
(3.10)

The performance depends on the number of elements, N , the INR, and the wavenumber

separation. For a uniform linear array with element spacing d, with broadside as the desired

steering vector, s, (3.10) becomes

ξ ≈ N − (1/N) sin2(kodN/2)/ sin2(kod/2)
N − (σ2

w/σ2
n + N)−1 sin2(kodN/2)/ sin2(kod/2)

(3.11)

Define the normalized frequency as the ratio of the operational frequency to the design

frequency of the array, fnorm = f/fo , f ≤ fo, the expression can be written in terms of the

angle of incidence to the array, θ. Note the normalized wavenumber kod = −πfnorm cos θ .

ξ ≈ N − (1/N) sin2(πfnorm cos[θ]N/2)/ sin2(πfnorm cos[θ]/2)
N − (σ2

w/σ2
n + N)−1 sin2(πfnorm cos[θ]N/2)/ sin2(πfnorm cos[θ]/2)

(3.12)

As θ moves away from the mainlobe at broadside this expression is ≈ 1. Figure 3.1 on the

left shows several curves for approximate SINR loss (in dB) for a 16 element ULA, each
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Figure 3.1: Approx. and exact, ξdB ( INR, [ ks − ko ] ), ∆INR Case 1 - single plane
wave interferer: When INR is overestimated, or is strong and not substantially underes-
timated, the model based adaptive processor is fairly insensitive to INR estimation error.
The plot on the left shows the approximate ξdB for several INRs, and is only a few tenths
of a dB when the interferer is away from the mainlobe. The plot on the right shows the
exact ξdB, which agrees closely except when the estimate of INR is grossly underestimated.

corresponding to different INR levels. This approximation is for cases of high INR, either

overestimated or underestimated within a reasonable range, and low INR that is accurately

or overestimated. Observe that outside the mainlobe, the loss is very low, a few tenths of

a dB. In the Figure on right the exact expression for SINR loss is plotted for several test

cases of INR, with ∆INR = ± 10 dB . All curves show low values in reasonable agreement

with the approximation on the left when away from the main lobe. The exception is the

blue trace for the case of 0 dB INR underestimated by 10 dB. This condition is outside

the range restriction indicated earlier, ∆INR ≥ ( INR )−1, and represents a fairly large

mis-estimation of the INR. In general, overestimating the INR is not a problem.

Case 2. Largely underestimated INR, βa ≈ 0 As given in Appendix B, the expres-

sion for the SINR loss for a uniform linear array in this case is approximately

ξ ≈ N

sHR−1
o s

· N

sHRos
(3.13)
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Figure 3.2: Approx. ξdB ( INR, [ ks − ko ] ), ∆INR Case 2 - single plane wave in-
terferer: When INR is largely underestimated, the adaptive beamformer reduces to the
conventional beamformer. Normalized SINR loss is highly dependent on INR , as the
processor takes no action to specifically suppress the interferer.

This is the normalized SINR loss for the conventional (non-adaptive) beamformer.

ξ ≈ N

N − (βo/N) |sHvo|2
· N

N + σ2
n/σ2

w |sHvo|2
(3.14)

Figure 3.2 shows the SINR performance for INR = 0,−10 dB. Large underestimation of

the INR results in performance of the non-adaptive beamformer, effectively failing to take

any corrective action in the weight determination to null the interference. The normalized

SINR loss for this case shows the strong dependence between SINR loss and INR. This is

expected for a non-adaptive processor, the larger the interferer the worse the performance.

The zeros in the normalized SINR loss response occur due to the fortunate coincidence of

the interferer and an existing null of the conventional beamformer beampattern.

Wavenumber Offset, ∆k 6= 0

Now consider the impact of ∆k 6= 0 on the performance. Assume that ∆INR = 1, i.e.,

there is no error in estimating the INR , so that βa = βo. As given in Appendix B, the

expression for the approximate SINR loss in this case is
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ξ ≈
[

σ2
n/σ2

w

∣∣vH
o P⊥

va
s
∣∣2

∣∣P⊥
va

s
∣∣2 + 1

]−1

(3.15)

We use this expression to determine a ∆k that achieves an acceptable SINR loss, ξOK . This

can then be compared to the Cramér Rao bound to see how reasonable it is in terms of

our imagined model based processor. This results in the general expression for the single

interferer in uncorrelated white noise case.

∣∣∣vH
o P⊥

va
s
∣∣∣
2
≤

∣∣∣P⊥
vo

s
∣∣∣
2 1− ξOK

ξOKσ2
n/σ2

w

(3.16)

To simplify further requires some assumptions about the array geometry. We consider a

ULA and analyze performance in terms of ∆k, with an assumed desired steering vector

corresponding to broadside, ks = 0. Due to the choice of ks, the interferer wavenumber ko

is the separation in wavenumber between the two. From Appendix B we have the following

expression.

∆kd ≤
(

1
Ḋ2(kod)

·
[

N − 1
N

sin2(kodN/2)
sin2(kod/2)

]
· 1− ξOK

ξOKσ2
n/σ2

w

)1/2

(3.17)

Ḋ(kd) =
1
2
· N sin(kd/2) cos(kdN/2)− sin(kdN/2) cos(kd/2)

sin2(kd/2)
(3.18)

(3.17) contains oscillations that indicate there are areas in kd space that are more tolerant

to the estimation error, ∆k. These correspond to nulls in the conventional beam pattern

that provide sufficient attenuation against the interference, simply by fortunate coincidence.

We are interested in a smoother bound for the expression that eliminates oscillations and

neatly spans the lower values. The final smoothed expression is
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Figure 3.3: Bounds for ∆kd for a specified ξ, single plane wave interferer: Eqn.
(3.19), shown in the bolded blue, bounds the wavenumber estimation accuracy required to
achieve a specified normalized SINR loss. This example shows the necessary accuracy to
achieve ξOK,dB = 1 dB for an N = 16 element uniform linear array operated at design
frequency, for an INR = 20 dB.

∆kd ≤ 2 | sin(kod/2) |
N

( [
N − 1

N

sin2(kodN/2)
sin2(kod/2)

]
1− ξOK

ξOKσ2
n/σ2

w

)1/2

(3.19)

An example of the bounds produced for ∆kd are shown in Figure 3.3. Eqn. (3.17)

produces oscillations, shown as the thinner line in the Figure. Eqn. (3.19), shown as the

thick line, smoothly bounds the bottom values. To be conservative, we use (3.19), although

it is possibly too conservative as the separation between the interferer and the desired

steering vector approaches zero. This corresponds to the interferer residing in the main

lobe of the beamformer.

Comparison to the Cramér Rao Bound The spatial frequency / direction of arrival

estimation accuracy specified by (3.19) results in a prescribed amount of normalized SINR

loss, ξOK . This required accuracy can be compared to the Cramér Rao bound for the case

of a single plane wave in noise. From [1], Eqn. (8.130) provides the CR bound for a given

number of snapshots, M ,
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CCR(kd) =
1
M

[
1

Nσ2
n/σ2

w

+
1

(Nσ2
n/σ2

w)2

]
6

(N2 − 1)
(3.20)

Figure 3.4 and Figure 3.5 show the comparison for the case of a N = (32, 16) uniform

linear array operating at the design frequency. In Figure 3.4 , the left side graphs show the

∆kd required to achieve a normalized SINR loss of ξOK = (1, 2, 3) dB according to (3.19).

The upper plot is for an INR of 50 dB, per element, while the lower plot is for INR of 20 dB.

The change in required accuracy reflects the dependence on INR, strong interference must

be nulled more accurately. The Cramér Rao bound is shown for M = (1, 2, 10) snapshots.

As can be seen in the Figure, the bound is significantly below the required accuracy, except

very close to the desired signal AOA. On the right in the Figure, the plots shows the exact

SINR loss for the required ∆kd , expressed in dB, found using (2.61). The peaks of the

exact value, ξ , are in close agreement with the specified ξOK , showing the prediction for

required direction of arrival accuracy is accurate. The exact ξ experiences periodic dips,

corresponding to the nulls of the quiescent response of the beamformer. Figure 3.5 presents

similar plots for the case of N = 16 elements.

3.2.2 Multiple Plane Waves in Spatially White Noise

Analysis was carried out to extend the results of Section 3.2.1 to the case of K plane wave

interferers in spatially white noise. Due to the increased complexity of the problem the

resulting expressions become tedious, and to produce results similar to that presented in

Figure 3.4 and Figure 3.5 requires assumptions regarding the orthogonality, placement, and

relative strength of the interferers. These assumptions make it difficult to draw conclusions

about the general case. For large aperture arrays with many sensors, being able to resolve

individual interferers results in performance that is dominated by the worst case single

interferer as given in Section 3.2.1.

61



0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

(k
o
−k

s
) d / π

∆k
d 

/ π

∆kd For Desired ξ, 32 ULA, fNorm=1.00, INRdB=50.0

 

 

 1 snapshot(s)

ξ = 1.0 dB
ξ = 2.0 dB
ξ = 3.0 dB
CR bound

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

(k
o
−k

s
) d / π

ξ 
(d

B
)

Exact ξ For ∆kd, 32 ULA, fNorm=1.00, INRdB=50.0

 

 

ξ
OK

 = 1.0 dB

ξ
OK

 = 2.0 dB

ξ
OK

 = 3.0 dB

0 0.2 0.4 0.6 0.8 1

10
−4

10
−3

10
−2

10
−1

(k
o
−k

s
) d / π

∆k
d 

/ π

∆kd For Desired ξ, 32 ULA, fNorm=1.00, INRdB=20.0

 

 

 1 snapshot(s)

 2 snapshot(s)

10 snapshot(s)

ξ = 1.0 dB
ξ = 2.0 dB
ξ = 3.0 dB
CR bound

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

(k
o
−k

s
) d / π

ξ 
(d

B
)

Exact ξ For ∆kd, 32 ULA, fNorm=1.00, INRdB=20.0

 

 

ξ
OK

 = 1.0 dB

ξ
OK

 = 2.0 dB

ξ
OK

 = 3.0 dB

Figure 3.4: AOA accuracy requirements for specified ξ, N = 32 ULA, single
interferer: The Cramér Rao bound is compared to bounds for required accuracy for an
acceptable normalized SINR loss. This shows that even for a single snapshot, a model based
adaptive processor can achieve within 1 dB of optimal. Estimation accuracy requirements
and performance both increase with higher INR. Exact expressions for ξ for a given
accuracy show good agreement with the requirement bound.
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Figure 3.5: AOA accuracy requirements for specified ξ, N = 16 ULA, single
interferer: Compared to the N = 32 case shown in Figure (3.4), more snapshots, M , are
required for N = 16 to achieve the necessary wavenumber estimation accuracy close to the
main lobe. This is a reflection of the CR bound (3.20) being proportional to M−1 compared
to N−2.
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3.3 Model For Covariance

We start the development for estimating the covariance matrix by considering a model that

incorporates the components that make up the covariance at the output of an N element

array for the narrowband, stationary space-time process, f( t,∆p ). Using the spectral

representation theorem, the space-time process can be represented as a sum of uncorrelated

plane waves distributed as function of angle of arrival to the array, G( θ, φ ), or wavenumber,

G(k ). The corresponding wavenumber spectrum for the process is proportional to this

normalized distribution, Pf (k ) = αG(k ) , where α accounts for scaling the relative levels

defined by G(k ) to the absolute power level seen at the array.

From the review in Chapter 2, a stationary random process may consist of two un-

correlated components, one corresponding to a continuous spectrum process, and another

corresponding to a discrete spectrum, i.e., harmonic, process. The independent, white

sensor noise adds a third component to the array output covariance. The mth snapshot

containing these components is

xm =
∑K

k=1 vkak(m) + nb,m + nw,m

= Vam + nb,m + nw,m

(3.21)

where vk is the array manifold response vector at spatial frequency kk. The covariance for

this model consists of three uncorrelated parts based on these components

Rx = VRaVH + Rb + Rw (3.22)

where Ra = E
{
amaH

m

}
, Rb = E

{
nb,mnH

b,m

}
, Rw = E

{
nw,mnH

w,m

}
= σ2

wI , and spatial

stationarity requires the plane waves be uncorrelated, so that Ra = diag
(
σ2

1, σ2
2, · · · , σ2

K

)
.

We may then write
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Rx =
K∑

k=1

σ2
kvkvH

k + Rb + σ2
wI (3.23)

Alternatively, grouping the terms for the space-time process, Rf = VRaVH + Rb , sepa-

rately from the sensor noise component we have

Rx = Rf + Rw (3.24)

The matrix Rf includes all terms that correspond to physical propagating waves and can

be decomposed via eigendecomposition

Rf = QfΛfQH
f

=
∑N−1

n=0 λf,nqf,nqH
f,n

(3.25)

Depending on the particular form of the space-time process, f( t, ∆p ) , and the array

geometry, Rf may have rank Nf < N . In that event, some of the eigenvalues will be zero

valued.

Rf =
Nf−1∑

n=0

λf,nqf,nqH
f,n (3.26)

Regardless of the rank of Rf , the N eigenvectors Qf form a complete orthonormal set for

the space CN×N . Using (3.25) in (3.24), with QfQH
f = I the matrix Rx can be expressed
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Rx = QfΛfQH
f + σ2

wQfQH
f

=
∑Nf−1

n=0

(
λf,n + σ2

w

)
qf,nqH

f,n +
∑N−1

n=Nf
σ2

wqf,nqH
f,n

= QfΛxQH
f

(3.27)

As evident in (3.27), the white noise contribution from Rw guarantees that all the eigen-

values are non-zero, so that overall covariance, Rx, is full rank.

3.3.1 Estimating Visible Space Covariance, R̂vs

Consider the covariance associated with the space-time process only, Rf . As reviewed in

Chapter 2, the transform relationship between the frequency-wavenumber spectrum, Pf (k ),

and the space-time covariance, Rf , is

Rf = (2π)−C

˙

vs
Pf (k )v(k)vH(k)dk (3.28)

where C in this expression is the dimension of the wavenumber used, C = 1,2 or 3. The

range of integration is restricted to the visible region for the array, corresponding to physical

propagating waves arriving at the array with some azimuth, 0 ≤ φ ≤ 2π, and elevation,

0 ≤ θ ≤ π . For a given estimate of the visible region frequency-wavenumber spectrum,

P̂vs(k ), the corresponding covariance of the space-time process can be determined using

(3.28)

R̂vs = (2π)−C

˙

vs
P̂vs(k )v(k)vH(k)dk (3.29)

Spectral estimation techniques used to form the estimate P̂vs(k ) will not be able to distin-

guish between the contribution of the space-time process, f( t,∆p ), and the sensor noise
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component apparent within the visible space. Any basis projection or steered beam power

measurement technique will see both the content from f( t, ∆p ) and the sensor noise.

P̂vs(k ) = P̂f (k ) + σ̂2
w (3.30)

R̂vs from (3.29) will contain the sum of both.

R̂vs = R̂f + σ̂2
w(2π)−C

˙

vs
v(k)vH(k)dk (3.31)

Observe from (3.31) that the contribution due to the sensor noise component, when viewed

only across the visible region, appears as an additional isotropic noise in the environment.

3.3.2 Visible and Virtual Space

For certain array geometries, or when operating below the design frequency, there may

be a significant additional virtual space in addition to the visible space available to the

array. Here we define what is meant by virtual space. Denote the subspace spanned by

the columns of a matrix A as span (A ) ≡ 〈A 〉 . As shown earlier, with a sensor noise

component present, Rx ∈ CN×N , and is full rank, thus 〈Rx 〉 =
〈
CN×N

〉
. The visible

space is defined by those plane waves that may physically propagate to the array with a

given angle of arrival. For a particular geometry and operational frequency, the visible

space may only occupy a subspace of CN×N . 〈Rx 〉 then consists of two subspaces, one

corresponding to the visible region, indicated with subscript vs, and one corresponding to

the virtual region, indicated with subscript vr.

〈Rx 〉 = 〈Rvs 〉+ 〈Rvr 〉 (3.32)

Wavenumbers in the virtual space do not correspond to physical propagating waves. Use

of (3.29) directly as an estimate of covariance with failure to account for the sensor noise

component within the virtual region subspace leads to poor sidelobe behavior within the
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virtual region, and adaptive beamformers developed using this covariance alone suffer an

overall loss in SINR.

This effect is illustrated in Figure 3.6. In this example, an N = 8 element uniform

linear array has element spacing d = λ/4 , essentially operating at half the design frequency

for the array. Spectra are shown in normalized wavenumber space, ψ
′
= ψN/(2π), where

ψ = −kzd (this makes the units directly comparable to FFT bin centers). Specifying power

as per sensor element, there is an interferer at ψ
′
= −1.5 with power of 5 dB, indicated by

the dash-dot arrow. There is a 3D isotropic noise component with power of -5 dB shown as

the horizontal black line for
∣∣∣ ψ

′
∣∣∣ ≤ 2 . Additionally, there is an uncorrelated sensor noise

component with power of -15 dB, shown as the horizontal black line for 4 >
∣∣∣ψ

′
∣∣∣ > 2. The

effect of operation below design frequency is evident in the pedestal shape of the isotropic

noise component, as it is spatially bandlimited. In this instance the visible region occupies

the region |ψ′ | ≤ 2 . The sensor noise component occupies the entire region |ψ′ | ≤ 4.

In the upper subplot, the power pattern, shown in blue, is for an MVDR beamformer

computed from R̂vs only (3.29). This processor has large sidelobe levels in the virtual

region, 4 > |ψ′ | > 2 , since it believes that subspace to be unoccupied. The lower subplot

shows the power pattern for an MVDR beamformer using the ensemble covariance (both

visible and virtual space), and properly accounts for the sensor noise in the virtual space.

This processor is optimal for the problem and exhibits better sidelobe behavior. The sensor

noise is, of course, present throughout the space and the beamformer based on the visible

space alone suffers a normalized SINR loss of ξdB = 8.4 dB . The loss in performance is due

to the noise amplification attributable to the sidelobes in the virtual region.

3.3.3 Regularly and Uniformly Spaced Array Geometry

A regularly spaced array geometry is described by an interelement spacing that is a multiple

of a fixed quantity, d , in Cartesian coordinates. Uniform arrays are a special case of this

with the interelement spacing simply the constant, d . The uniform linear array, in terms
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Figure 3.6: Impact of covariance estimated from visible space only: In this example
a N = 8 ULA with spacing d = λ/4 observes a single point source in isotropic noise.
In the upper subplot, the covariance matrix only accounts for the visible space and the
resultant adaptive beamformer has poor sidelobe behavior in the virutal space, as it believes
it is unconstrained in this area. In lower subplot, the covariance matrix is the ensemble
covariance, accounting for the visible space and the sensor noise component in the virtual
space. The visible space covariance results in a normalized SINR loss of 8.4 dB due to the
unintended noise amplification cause by its elevated sidelobe levels.
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of spatial sampling, is directly analogous to uniform sampled time series and the results

of stationary processes and Fourier transform pairs and properties apply directly. This

section concentrates on the uniform linear array, with some discussion of the implications

of regularly spaced arrays at the conclusion. Extensions to higher dimension processing are

straightforward.

The narrowband space-time process, f( t,∆p ), at frequency ω consists of plane waves

propagating in a homogeneous medium with velocity c. These waves are solutions to the

homogeneous wave equation, and are constrained in wavenumber such that |k | = ω/c =

2π/λ. This requires that the frequency-wavenumber spectrum, Pf (ω, k ), for this process

exist on the surface of a sphere in wavenumber space with radius |k |.
Consider an N element uniform linear array with design frequency ωo ( spacing d = λo/2

) and sensor elements at locations on the z axis, pn = (n− 1 ) d for n = 0 , · · · , N−1 . With

no ability to resolve spatial components in the kx or ky direction, the frequency-wavenumber

spectrum, Pf ( ω, k ), may be projected down onto the kz axis. After projection the spectrum

maintains the strict bandlimiting to the range | kz | ≤ 2π/λ . From the review of sampling

of random processes in Chapter 2 we have

Rf (∆p ) =
1
2π

ˆ 2π/λo

−2π/λo

Pf ( kz ) e−j∆pkzdkz (3.33)

where ∆p = ld for integer l . For operation below the array design frequency, ω < ωo , the

wavenumber spectrum Pf ( kz ) is non-zero only over the range corresponding to the visible

region of the array, | kz | ≤ 2π/λ , and the range of integration may be reduced to
´ 2π/λ
−2π/λ.

Now consider the uncorrelated sensor noise component

Rw (∆p ) = σ2
wδ (∆p ) (3.34)

Even though it does not correspond to a component of a physically propagating space-time

process, we can still define a wavenumber-spectrum and covariance Fourier transform pair
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Pw ( kz ) =
∞∑

m=−∞
Rw (∆p ) ej∆pkz = σ2

w (3.35)

Rw (∆p ) =
1
2π

ˆ 2π/λo

−2π/λo

Pw ( kz ) e−j∆pkzdkz (3.36)

The difference between Pf ( kz ) and Pw ( kz ) is that Pw ( kz ) is non-zero over the entire

interval, | kz | ≤ 2π/λo . The covariance for the output of the array that we are interested

in is the sum of the two

Rx (∆p ) = Rf (∆p ) + Rw (∆p ) (3.37)

We can add the two wavenumber spectra, one for the space-time process and the other for

the sensor noise component, to produce a composite spectrum

Px ( kz ) = Pf ( kz ) + Pw ( kz ) , | kz | ≤ 2π/λo (3.38)

so that the covariance is related via

Rx (∆p ) =
1
2π

ˆ 2π/λo

−2π/λo

[ Pf ( kz ) + Pw ( kz ) ] e−j∆pkzdkz (3.39)

For convenience we can convert the expressions to normalized wavenumber, ψ = −kzd

space. Defining the ψ spectrum as

Pψ,α ( ψ ) =
1
d
Pα ( k )

∣∣
k=−ψ/d , α = x, f, w (3.40)

the covariance sequence Rl,x ( l ) and ψ spectrum are related
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Rl,x ( l ) = Rx ( ld ) =
1
2π

ˆ π

−π
Pψ,x ( ψ ) ejψldψ (3.41)

Pψ,x ( ψ ) is readily estimated over the entire range, |ψ| ≤ π , from the snapshot data, xm,

using classical power spectral estimation techniques. By accepting a fixed resolution in ψ

space ( which is non-uniform in angle space, θ ) this can be done efficiently with FFT based

processing. Using the estimate P̂ψ,x ( ψ ) in (3.41)

R̂l,x ( l ) =
1
2π

ˆ π

−π
P̂ψ,x ( ψ ) ejψldψ (3.42)

As long as the limits of integration in (3.42) are over the entire range,
´ π
−π , the covariance

estimate will contain the appropriate components for both the space-time process and the

uncorrelated sensor noise.

One might arrive directly at (3.42) by inspection of the ULA problem, by observing

that it is equivalent to the uniform sampled time series problem. We have followed this

approach to be clear in how the space-time process and the sensor noise contribute to the

overall covariance. The important concepts are that the process itself may be bandlimited,

and that if the sensor noise component is estimated in the transform domain it must have the

appropriate form such that it equates to σ̂2
wI within the final covariance matrix estimate.

This is straightfoward for the ULA, but may be more involved in the case of arbitrary

geometry arrays.

3.3.4 Positive Definiteness

In order for the estimated covariance to have value for adaptive beamforming, it is necessary

to for it be Hermetian, R̂x = R̂H
x , and invertible. The Hermetian property and invertibility

requirement implies the eigenvalues of R̂x are all real valued and greater than zero, or more

simply that the matrix R̂x is positive definite. For arbitrary vector x , not equal to the null
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vector (xHx 6= 0), the matrix A is positive semi-definite if

xHAx ≥ 0 (3.43)

and is indicated notationally as A ≥ 0 . The matrix A is positive definite if

xHAx > 0 (3.44)

and is indicated notationally as A > 0.

Consider the regularly spaced linear array (higher dimension regular arrays follow natu-

rally). From (3.42), the covariance matrix estimate is based on the estimate of the wavenum-

ber spectrum, given in normalized wavenumber space, ψ = −kd

R̂x =
1
2π

ˆ π

−π
P̂ψ,x( ψ )vψ(ψ)vH

ψ (ψ)dψ (3.45)

We restrict the ψ-spectrum estimates, P̂ψ,x (ψ ) , to be real-valued and greater than zero.

This will have implications later in choice of algorithm but is a reasonable requirement for

a power spectral estimator when the observed process has a white noise component. With

this restriction we can express P̂ψ,x( ψ ) in the form

P̂ψ,x( ψ ) = P̂ψ,f ( ψ ) + σ̂2
w (3.46)

where P̂ψ,f ( ψ ) is the estimate of the space-time process spectrum, P̂ψ,f ( ψ ) ≥ 0, and σ̂2
w

is the estimate of the sensor noise, σ̂2
w > 0. Now

xHR̂xx = xH
(

1
2π

´ π
−π

[
P̂ψ,f (ψ ) + σ̂2

w

]
vψ(ψ)vH

ψ (ψ)dψ
)
x

= xH
(
R̂f + R̂w

)
x

(3.47)
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The first term is

xHR̂fx =
1
2π

ˆ π

−π
P̂ψ,f ( ψ )

∣∣xHvψ(ψ)
∣∣2 dψ (3.48)

Both quantities in the integral in (3.48), P̂ψ,f ( ψ ) and
∣∣xHvψ(ψ)

∣∣2 , are real-valued and

greater than or equal to zero, therefore R̂f ≥ 0 . The second term is evaulated as

xHR̂wx = σ̂2
wxH

[
1
2π

ˆ π

−π
vψ(ψ)vH

ψ (ψ)dψ

]
x (3.49)

From Section (3.3.3) the integral reduces to

1
2π

ˆ π

−π
vψ(ψ)vH

ψ (ψ)dψ = I (3.50)

so that

xHR̂wx = σ̂2
wxHx > 0 (3.51)

and R̂w is positive definite. The sum of a positive semidefinite matrix and a positive definite

matrix is positive definite, so we have R̂x > 0 when P̂ψ,x( ψ ) is real-valued and greater than

zero.

3.4 Performance When Using Classical PSD Techniques

3.4.1 Background

We begin the analysis of performance of estimating covariance from spatial spectrum (CSS)

by considering estimates of the wavenumber spectrum found using classical spectral estima-

tion techniques. We continue to focus on the uniform linear array with spacing d = λo/2.

For a given fixed window function (or taper), w = ((w[n] ))n , the windowed snapshot data
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is

ym = ((xm[n]w[n] ))n = xm ¯w (3.52)

The windowed data is used to form an averaged windowed periodogram estimate of the

spectrum. Writing the array manifold response vector, vk(kz) = (( e−jkzdn ))n in ψ = −kzd

space, vψ(ψ) = (( ejψn ))n, the estimate is developed in two steps. First, compute the

Fourier transform of the windowed data.

Ym ( ψ ) =
N−1∑

n=0

ym(n)e−jψn = vH
ψ (ψ)ym (3.53)

The final spectral estimated is the averaged, magnitude squared value of the Fourier trans-

forms

P̂y (ψ ) = 1
M

∑M
m=1 |Ym (ψ ) |2

= 1
M

∑M
m=1 vH

ψ (ψ)ymyH
mvψ (ψ)

(3.54)

P̂y ( ψ ) is periodic in ψ with period 2π . We refer to the range |ψ| ≤ π as the region of

support. The visible region of the array, when operating at frequency f = c/λ, ( f ≤ fo ),

is restricted to the range |ψ | ≤ π(λo/λ). As discussed in Section 3.3.2, the remainder

outside the visible region is referred to as the virtual region. The fixed window function,

w, provides a fixed resolution, i.e., “bin width”, across ψ space. This allows P̂y ( ψ ) to

be computed efficiently at several equal spaced locations throughout the supported region

using FFT techniques.1

1It is possible to have the window function vary as a function of ψ , represented as wψ . In this way
one can design for a fixed resolution in angle space. This results in non-uniform “bin width” in ψ space.
Multi-taper spectral estimation techniques lend themselves to this method of design. FFT techniques are not
directly applicable, though, when the window function is not fixed so there a computational cost associated
with the approach.
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We can look at an alternate perspective on the estimated P̂y (ψ ) spectrum, in terms of

an auto-correlation sequence ρ̂y[n] defined by the windowed sensor outputs. Based on the

Fourier transform property

|Ym ( ψ ) |2 = F



N−1∑

β=0

ym[β]y∗m[β − n]


 (3.55)

The sample autocorrelation per snapshot is

ρ̂y,m[n] =
N−1∑

β=0

ym[β]y∗m[β − n] , 0 ≤ n < N, ρ̂y,m[−n] = ρ̂∗y,m[n] (3.56)

where the sequence ym[β] has value only in the range [0, N − 1] , and is zero elsewhere. As

a convention, we use ρ̂[n] to represent a sample autocorrelation from the data itself, while

reserving R[n] to indicate an auto-correlation based on the ensemble, E { · }. The overall

sample autocorrelation is the average over all snapshots

ρ̂y[n] =
1
M

M∑

m=1

ρ̂y,m[n] (3.57)

Using (3.55), (3.56), and (3.57), in (3.54) we have

P̂y ( ψ ) =
N−1∑

n=−(N−1)

ρ̂y[n]e−jψn (3.58)

The estimated power spectrum and auto-correlation sequence are a familiar Fourier trans-

form pair, with corresponding inverse transform relationship

ρ̂y[n] = (2π)−1

ˆ π

−π
P̂y ( ψ ) ejψndψ (3.59)
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The covariance matrix for the array is formed from the ρ̂y[n] values in a Toeplitz structure

R̂y = (( ρ̂y[r − c] ))r,c (3.60)

Expressed directly in matrix notation based on (3.59) this can be also be expressed as

R̂y = (2π)−1

ˆ π

π
P̂y( ψ )vψ(ψ)vH

ψ (ψ)dψ (3.61)

It is also useful when comparing related techniques to understand how the formation of

R̂y relates to the operations used in the traditional sample covariance matrix. We start

by examining (3.57), which is equivalent in result to (3.59) , but operates directly on the

snapshot data in space-time domain. First, define a windowed sample covariance matrix

Rw,SCM =
1
M

M∑

m=1

(xm ¯w ) (xm ¯w )H (3.62)

The classical sample covariance matrix, RSCM = 1
M

∑M
m=1 xmxH

m, uses (3.62) with w = 1,

the all one’s vector. Showing the entries in the matrix in (3.62) explicitly

Rw,SCM = 1
M

∑M
m=1




xm,[0]w[0]x
∗
m,[0]w

∗
[0] xm,[0]w[0]x

∗
m,[1]w

∗
[1] · · · xm,[0]w[0]x

∗
m,[N−1]w

∗
[N−1]

xm,[1]w[1]x
∗
m,[0]w

∗
[0] xm,[1]w[1]x

∗
m,[1]w

∗
[1]

xm,[2]w[2]x
∗
m,[0]w

∗
[0] xm,[2]w[2]x

∗
m,[1]w

∗
[1]

...
. . .

xm,[N−1]w[N−1]x
∗
m,[0]w

∗
[0] xm,[N−1]w[N−1]x

∗
m,[N−1]w

∗
[N−1]




(3.63)
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Comparing (3.56) to (3.63) we see that ρ̂y,m[n] is the sum down each of the diagonals in the

inner matrix in (3.63), where the diagonals correspond to the numbered index n as main,

sub, or super diagonal according to




0 −1 −2 · · · −(N − 1)

1 ↘ ↘ ↘
2 ↘
... ↘

N − 1




(3.64)

By averaging over multiple snapshots, therefore, ρ̂y[n] is the sum down the diagonals of

Rw,SCM . The covariance matrix R̂y is then populated with entries from ρ̂y[n] . Going

forward as a convention, we will define this operation as diagonal-sum-replace (DSR), with

a notation indicating the operation as

R̂y = DSR (Rw,SCM ) (3.65)

The DSR operation acts in a linear fashion for addition of matrices A,B ∈ CN×N

DSR (A + B ) = DSR (A ) + DSR (B ) (3.66)

as well as in regards to the expectation operator

E {DSR (A ) } = DSR ( E {A } ) (3.67)

3.4.2 Expected Value - Stationary Random Process

We now look at the expected value of the covariance, R̂y, for the WSS space-time process.

From (3.58), the expected value of P̂y ( ψ ) is related to the sample autocorrelation, ρ̂y[n] ,
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E
{

P̂y ( ψ )
}

=
N−1∑

n=−(N−1)

e−jψnE { ρ̂y[n] } (3.68)

The expected value of E { ρ̂y } = E { ρ̂y,m } .

E { ρ̂y,m[n] } = Rx[n]
N−1∑

β=0

w[β]w∗[β − n] (3.69)

where Rx[n] is the ensemble covariance. The remaining summation term is the sample

autocorrelation of the window, ρw[n] =
∑N−1

m=0 w[m]w∗[m − n] . The final result for the

expectation is then

E { ρ̂y[n] } = Rx[n]ρw[n] (3.70)

From (3.70) directly, the expected value of the covariance matrix is

E
{

R̂y

}
= Rx ¯Rw (3.71)

where Rw = DSR
(
wwH

)
= (( ρw[r − c] ))r,c. Looking at the result in the frequency

domain, using (3.70) in (3.68), we have

E
{

P̂y (ψ )
}

=
N−1∑

n=−(N−1)

Rx[n]ρw[n]e−jψn (3.72)

This can be expressed in the ψ domain as the convolution of the power pattern of the

window, Cw( ψ ) = |W (ψ) |2 = F ( ρw[n] ), with the underlying model spectrum, Px,ψ( ψ )
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E
{

P̂y ( ψ )
}

= Cw( ψ ) ~ Px,ψ(β )

= 1
2π

´ π
−π Cw( ψ − β )Px,ψ( β )dβ

(3.73)

3.4.3 Performance Based On Expected Value

The result for the expected value of the covariance, (3.71), can be used assess performance of

the algorithm. For a given window function (a.k.a. taper), w , that we choose first determine

the matrix Rw = DSR
(
wwH

)
. For each particular problem of interest, e.g., single plane

wave in uncorrelated noise, form the known model ensemble covariance, Rx. Using these in

the normalized SINR loss expression (from Chapter 2) we can analyze adaptive beamformer

performance using CSS.

ξ =
sH (Rx ¯Rw )−1 s

sHR−1
x s

· sH (Rx ¯Rw )−1 s

sH (Rx ¯Rw )−1 Rx (Rx ¯Rw )−1 s
(3.74)

Because of the Hadamard product nature of the relationship several things become apparent.

1. As the window function becomes ideal, the corresponding ρw[n] = 1 , and Rw = 1,

the Hadamard product identity ( the all 1’s matrix ). The estimated covariance goes

to the ideal, R̂y → Rx, and there is no performance loss. This corresponds to an

idealized power pattern Cw( ψ ) = 2πδ( ψ ). Such a power pattern requires an infinite

number of elements in the array. For practical arrays there will be a bias to the

resultant covariance matrix because of the non-zero width of Cw( ψ ), indicating that,

in general, this approach will not converge to the optimal solution. What we are

interested in is the impact of the bias, and if there are conditions where the impact

to performance is negligible.

2. It is difficult to simplify analysis because of the element-by-element nature of the
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operation. There is no easy expression for the inverse of a Hadamard product, and

other properties that are available are not helpful in the analysis of normalized SINR

loss. This means we have to consider defined scenarios, and simulate over the range

of parameters, such as (ψs − ψo) and σ2
n/σ2

w in the single plane wave interferer case.

3. The particular form of the classical window functions used for spectral estimation

result in Rw that is a normalized diagonally homogeneous correlation matrix, meaning

is has a constant value on its main diagonal. From the eigenvalue majorization theorem

[71], the eigenvalue spread of Rx ¯Rw is less than or equal to the eigenvalue spread

of Rx . One can arrive at the same conclusion intuitively based on the following two

points: 1) the eigenvalues are bounded by the min/max of the power spectrum [72]

2) the technique used here effectively convolves the underlying power spectrum with

a smoothing window (the power pattern), which will decrease the resultant min/max

of the smoothed spectrum compared to the original. Related details are available in

the context of covariance matrix tapers in [53]. This property, while desirable because

it lowers the condition number of the matrix, cond(A) = λmax(A)
λmin(A) , does not give any

further insight into performance, in particular since the matrix product, Rx ¯Rw, is

biased compared to the ensemble covariance Rx.

4. The analysis is for expected value, and assumes that the P̂y ( ψ ) spectrum is the ideal

Px(ψ ) convolved with the function Cw( ψ ). In practice, classical PSD techniques

will average over the M snapshots to reduce the variability in the estimate of the

spectrum.

3.4.4 Prototype Power Pattern

To assist in the normalized SINR loss analysis we define a “prototype” window function.

The idea here is that the power pattern, Cw( ψ ) , is defined by an ideal bandlimited portion

useful for identifying the impacts of mainlobe width, and a constant offset portion useful

for identifying the impacts of sidelobes, or spectral leakage. Given definition for these
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regions, the analysis is more straightforward and we can look at the two factors individually.

Classically defined windows incorporate both features together, in some trade-off related

to their design, making the analysis of individual window functions less insightful. We use

subscripts in defining the prototype window as follows: lb stands for local bias and relates

to the main lobe region, bb stands for broadband bias and corresponds to the sidelobe levels.

Cw( ψ ) is a periodic function with period 2π, and is defined explicitliy over the region of

support, |ψ| ≤ π , as

Cw(ψ) = Clb(ψ) + Cbb(ψ) (3.75)

The mainlobe is defined by an ideal bandlimited function

Clb(ψ) =





Alb |ψ| ≤ ψlb

0 |ψ| > ψlb

(3.76)

and the sidelobe level is defined by a constant

Cbb(ψ) = Abb |ψ| ≤ π (3.77)

The scale factors, Alb and Abb, are constrained according to the normalization

1
2π

ˆ π

−π
Cw( ψ )dψ = 1 (3.78)

By specifying two of the three parameters, {Alb, Abb, ψlb } , typically the latter two,

and varying them separately, we can see their respective influence on performance. This

provides a general feel for behavior of normalized SINR loss using classical PSD techniques.

We have already shown that E
{

R̂y

}
= Rx¯Rw, so all that is necessary is to find Rw for

the prototype window. For the definition in (3.75), there is a closed form solution based on
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the parameters, so it is straightfoward to find ρw[n]. Starting with the Fourier transform

relationship

ρw[n] =
1
2π

ˆ π

−π
Cw( ψ )ejψndψ (3.79)

we substitute in the definition for Cw( ψ ) showing the explicit local and broadband bias

terms

ρw[n] =
1
2π

ˆ π

−π
[ Clb(ψ) + Cbb(ψ) ] ejψndψ (3.80)

The solution consists of two terms, ρw[n] = ρlb[n] + ρbb[n] . For the first term, ρlb[n], we

have

ρlb[n] =
1
2π

ˆ π

−π
Clb(ψ)ejψndψ = Alb(ψlb/π)sinc( [ψlb/π]n ) (3.81)

where sinc (x ) ≡ sin (πx) /(πx) . The second term, ρbb[n], is

ρbb[n] =
1
2π

ˆ π

−π
Cbb(ψ)ejψndψ = Abbδ[n] (3.82)

The complete autocorrelation sequence, ρw[n] , is the sum of the two

ρw[n] = Alb(ψlb/π)sinc( [ψlb/π]m ) + Abbδ[m] (3.83)

Expressed in matrix form, where Rlb,bb = (( ρlb,bb[r − c] ))r,c , we have

Rw = Rlb + Rbb (3.84)

The resultant expected value of the estimated covariance matrix is then
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E
{

R̂y

}
= Rx ¯ [Rlb + Rbb ] (3.85)

Observe in (3.85) that the broadband bias term, Rbb , is a diagonal matrix with constant

diagonal Abb . The overall affect of the broadband bias term is the same as a diagonal

loading in that it increases the main diagonal of the estimated covariance matrix. This is

accomplished as a multiplicative, not additive, effect.

The prototype window described by (3.75) is not realizable with any array of finite

length. So it is not possible to determine a set coefficients, w, that would result in a power

pattern of this type. This does not prevent our analysis, however, since we assume that the

estimated spectra is available, P̂y ( ψ ) = Cw( ψ ) ~ Px,ψ( ψ ), and not how it was computed.

The intent is to use the analysis to understand performance issues when using classical

techniques. The conditions where the process works well and doesn’t work well can be

identified, and then used to guide development to extend the range of situations allowing

useful operation.

3.4.5 Prototype Window Normalized SINR Loss

We now use (3.84) in the expression for SINR loss (3.74). The Hadamard product structure

within the expression, (3.74) prevents a more compact form. Strictly speaking, the value of

ξ found using (3.74) is not a random variable but a constant, since we are using the expected

value of the estimated covariance, E
{

R̂y

}
. To understand the statistical behavior of ξ,

we would need to insert the computational form of the estimated covariance given in (3.65)

into (3.74). This is also not easily reducible to a more compact form. Morgera encountered

similar difficulties for a Toeplitz structure constrained covariance estimator [8].

The conclusion is that for this type of structured covariance matrix estimation algorithm,

the normalized SINR loss cannot be simplified into an expression that does not involve

the particular covariance, Rx, for the problem. This is unlike sample covariance matrix

methods, where the performance can be derived in closed form as a random variable and
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shown to be function of number of elements and snapshots only [29]. Performance of this

structured covariance method depends on the problem. We can still use (3.74) to understand

SINR loss performance, but have to be specific in defining the scenarios analyzed.

By specifying the parameters of our prototypical window function ( [Alb or Abb], ψlb ), for

particular types of interference problems we will use the (3.74) to predict performance. We

consider with the single plane wave interferer in uncorrelated noise case, signal of interest

not present. This case, while simple, will highlight some of the features and weaknesses of

the approach.

Single Plane Wave Interferer

Using (3.74) we analyze the impact of using CSS for the single plane wave in uncorrelated

noise case. Normalized SINR loss is computed as a function of distance between the desired

signal direction of arrival and the interferer location in ψ-space, ∆ψ = (ψs − ψo). For each

∆ψ we vary the difference between the per element INR and a fixed sidelobe level, Abb.

This is done for three values of ψlb , set to multiples of the mainlobe half width of the

array, (1, 2, 3)2π
N . By increasing ψlb we get an indication of performance when using wider

mainlobe windows, or operating below the design frequency.

Figures (3.7) - (3.8) show the results, plotting ξdB = −10 log10 ξ. In each Figure there

are four plots. In the upper left is an image showing the ξdB surface as a function of

∆ψ and (INRPE + Abb) in dB for the particular case of ψlb = 2π/N . This subplot

provides some general behavior for the SINR loss surface. The values shown range from

[0, 1] dB, with ξdB > 1 being clipped at 1. This is to allow detailed visualization of the

near optimal normalized SINR loss performance. For the purpose of analysis, we consider

ξdB < 1 as good performance, and are not overly concerned with the behavior in higher

normalized SINR loss regions. The upper right plot shows contour lines on the same x− y

plane, but for a fixed value of ξdB = 0.2 dB. Three curves are present, one for each of

ψlb = 2π/N · { 1, 2, 3 } analyzed. The lower left and right plots show the same family of

constant valued SINR loss contours, for values of ξdB = 0.5, 1.0 dB respectively. In Figure
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3.7, the array has N = 32 elements, with Abb = −40 dB. The same array is used in Figure

3.8, with an increased sibelobe suppression, Abb = −60 dB. Figure 3.9 has increased array

length N = 64 elements, with Abb = −40 dB.

Several points become evident looking at the Figures. First, there is a large expanse in

the ∆ψ - (INRPE + Abb) plane where the normalized SINR loss performance is ≤ 0.5 dB.

Clearly we would like to operate within this region. As ∆ψ approaches zero we begin to see

real performance impacts. This effect gradually decreases as the (INRPE + Abb) value gets

very small, indicating that if there were no interferer present performance would be nearly

optimal.

As (INRPE + Abb) becomes large, > 10 dB, performance impacts are also observed.

For sidelobe levels of most standard window functions, Abb > 30 dB, so this occurs at INR

greater than 40 dB per element. It is also interesting to note that it is not simply the

spectral leakage due to the window that causes the performance loss. We can see this by

comparing two cases with the same Abb, the first with ψlb = 2π/N , and the second with

ψlb = 0, an idealized window. The second case isolates the impact of the sidelobe level.

Figure 3.10 shows the results for N = 32, Abb = −40 dB, and INRPE = 40 dB. The upper

plot is the complete normalized SINR loss performance as a function of ∆ψ. The blue

trace is for non-zero mainlobe width, ψlb = 2π/N . Below ∆ψ = 0.20π the SINR loss is

substantial. The same curve for the ψlb = 0 case, shown in red, is negligible. The lower plot

is a zoomed area of the top plot, highlighting the loss range [0,1] dB. Without mainlobe

width, the sidelobe level has an equivalent impact to a diagonal load, which would cause the

equivalent of underestimation of INR. As was seen earlier in Section 3.2, this particular

interference and noise environment is relatively insensitive to errors in estimate of INR .

These results indicate that for CSS covariance matrix estimation based on classical power

spectral based methods, near optimal SINR loss performance can be achieved when the

interference has sufficient separation from the desired signal, or in the event the interferer is

near the desired signal, its power per sensor element is substantially below the sidelobe level

of the window used. In practical situations these conditions cannot be guaranteed. This
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Figure 3.7: N = 32, Normalized SINR loss (dB) for Abb = −40 dB: An analysis of
normalized SINR loss shows near optimal performance when the interferer is far from the
desired angle of arrival and sufficiently suppressed by the sidelobe of the window. Near the
mainlobe, performance degrades quickly even as the INR is low.

leads us to consider methods to reduce the (INRPE + Abb) without modifying the window

function used. One approach to address this is to detect that a discrete interferer is present,

and subtract its influence from the data. The final covariance can then be computed using

the parameters of the subtracted sources and the residual data covariance matrix. This

type of process is similar to the harmonic analysis technique utilized by Thomson as part

of his multi-taper spectral estimation [52], and we will refer to it as such going forward.
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Figure 3.8: N = 32, Normalized SINR loss (dB) for Abb = −60 dB: Increasing sidelobe
suppression while maintaining a fixed width mainlobe improves tolerance to higher interferer
INR, but at the expense of widening the area of degraded performance around the main
lobe. Note that the x-axis units are (INR+Abb) dB, so plots in this Figure represent INR
that is 20 dB higher compared to Figure 3.7.
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Figure 3.9: N = 64, Normalized SINR loss (dB) for Abb = −40 dB: Increasing array
aperture by a factor of 2 increases the region of good performance compared to Figure 3.7
in an absolute sense. When considered relative to the main lobe width they are comparable.
This simply confirms that performance is driven by the array’s resolving capability, which
improves with increased aperture.
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Figure 3.10: Classical PSD, window main-lobe width impacts to performance:
A zero main lobe window (an ideal case shown in red) results in insignicant normalized
SINR loss. A non-zero main lobe with the same sidelobe level (shown in blue) results in
the normalized SINR loss seen in Figure 3.8. Non-zero main lobe width with no sidelobes
(not shown) has the similar performance but lower ripple as (ψs − ψo ) /π increases.
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3.5 Summary

This chapter investigated how to use the frequency-wavenumber spectrum as a basis for

covariance matrix estimation. Analysis of a simple single plane wave interferer in white

noise showed that the adaptive processor is relatively insensitive to estimation error of

INR. Performance is more affected by wavenumber estimation accuracy in direct relation

to the accurate placement of nulls, but the necessary performance is achievable in few or

even one snapshot. The CR bound indicates estimation accuracy is inversely proportional to

the number of snapshots, as M−1, and number of sensors, as N−2. This is in contrast to the

closed form performance of sample covariance matrix techniques, where performance does

not depend on the number of sensors, just the number interferers and snapshots (with use

of diagonal loading). The model for the components in the desired covariance matrix was

reviewed, as was the simple method for relating the covariance to the spatial spectrum using

FFT techniques. Covariance matrix estimates developed in this manner, using classical

power spectral estimation techniques, were seen to be biased. The normalized SINR loss

performance indicated that to broaden the conditions under which useful performance can

be achieved requires an additional step of harmonic analysis, the detection and subtraction

of line components from the data.
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Chapter 4: Structured Covariance Estimation with

Thomson’s MTSE

4.1 Introduction

Section 3.4 investigated performance of adaptive beamforming using covariance matrix es-

timates based on the wavenumber spectrum using classical spectral estimation techniques.

The expected value of the estimated covariance is biased, E {RPSD } = Rx ¯Rw , so in

general adaptive beamformers based on the CSS covariance do not converge to the optimal

Wiener solution. However, analysis of the SINR loss performance for the uniform linear

array case, as function of interferer to desired signal spacing, ∆ψ, window characteristics,

and INR showed that performance is within a few tenths of a dB from optimal under some

conditions.

To maintain good normalized SINR loss performance, the interferer must have sufficient

separation from the desired signal, in proportion to the window mainlobe width, ∆ψ ≥
2ψlb−3ψlb, with an interferer to noise ratio such that ( INRPE + Abb ) ≤ 10 log10(N) (dB).

This was evident in Figures 3.7, 3.8, and 3.9. To continue to achieve good performance

with smaller separation required the condition ( INRPE + Abb ) ¿ 0 (dB). Neither of these

conditions can be guaranteed in practice. These concerns motivate use of Thomson’s multi-

taper spectral estimation (MTSE) in forming the estimate of the frequency-wavenumber

spectra instead of the classical techniques. This is for three reasons.

1. First, while the equivalent MTSE mainlobe width is larger than traditional window

functions it provides two benefits: 1) averaging increased number of uncorrelated esti-

mates of power within a particular band in wavenumber-space results in lower variance

locally 2) estimates of the eigencoefficients within a particular band in wavenumber-

space allow for direct formulation of a detection problem for line components based
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on the underlying model for the stationary process and the Cramér spectral represen-

tation theorem. This eliminates the need to design new detection procedures based

on estimated spectrum only, such as local noise floor averaging, etc., and can be done

prior to forming the covariance matrix.

2. The parameters, amplitude, frequency and phase of the detected line components are

used to coherently cancel (subtract) them from the data and the estimation process

is repeated on the residual. This process is known as harmonic analysis and can be

carried out iteratively [73] .

3. Combination of the various eigenspectra is accomplished via an adaptive weighting

mechanism designed to minimize local and broadband bias [52, 56, 74], which often

results in an equivalent window with very low sidelobe level, typically below -60 dB.

In this chapter we specify the details of incorporating Thomson’s MTSE, reviewed earlier

in Chapter 2, into the covariance estimation procedure. The normalized SINR loss of this

algorithm is then assessed via simulation with various signal and interference environments,

and compared to other reduced rank algorithms as a function of available snapshots.

4.2 Covariance from Spatial Spectra (CSS) with MTSE

4.2.1 Introduction

This section provides the procedural outline for using Thomson’s MTSE with harmonic anal-

ysis as the method of choice for estimating the frequency-wavenumber spectra necessary to

form an estimate of the covariance matrix at the output of the array. The development

considers an N element uniform linear array, extension to more general geometries is con-

sidered in Chapter 7. The process has a mixed spectrum, with K point source signals having

independent, random complex-valued amplitudes, ak(m) d→ CN( 0, σ2
k ). M snapshots are

available for processing. The snapshot model is
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xm =
K∑

k=1

vkak(m) + nb,m + nw,m , xm
d→ CNN (4.1)

An estimate for the frequency-wavenumber spectra, for both process and sensor noise,

P̂x( ψ ), is formed using MTSE, and used to compute an estimate of the covariance.

R̂x = (2π)−1

ˆ π

π
P̂x( ψ )vψ(ψ)vH

ψ (ψ)dψ (4.2)

The integral in (4.2) may be implemented using a numerical summation

R̂x =
∆k

2π

L/2−1∑

b=−L/2

P̂x( l∆k )v(l∆k)vH(l∆k) (4.3)

Alternatively, for the uniform linear array one can take advantage of the frequency-wavenumber

spectrum and covariance being single dimension, and relate them by the 1-D inverse Fourier

transform

R̂x [n ] =
1
2π

L−1∑

l=0

P̂x( l∆k )ejl∆kn (4.4)

and populate the covariance matrix as R̂x = (( R̂x [ r − c ] ))r,c. If the value of L permits

use of fast Fourier transform techniques, this is the most efficient implementation.

4.2.2 Number of Tapers, D

To exploit the efficiencies of FFT based processing when using MTSE to estimate the

spectrum, P̂x(ψ ), we allow the spectral estimation to maintain a fixed resolution in nor-

malized wavenumber space, ψ = −kzd. This allows a single set of tapers to be used. A

necessary design choice is the width of the analysis region, W , where typically choices are
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NW = 1.5, 2.0, 2.5 . The number of significant tapers supported by a particular width,

W , is D = 2NW − 1. The case of NW = 1 results in a single usable taper and reverts to

a standard classical PSD method. No harmonic analysis is possible in this scenario. As a

practical matter we usually select D = 2NW . The last taper is not as concentrated in the

analysis region but still provides useful information. This is done to increase the number of

basis vectors used in the harmonic analysis detection statistic. The D tapers are designed

according to the appropriate eigenvalue or generalized eigenvalue problem [52,66]. For the

ULA case , the resultant tapers are the discrete prolate spheriodal sequences.

qd(n) = dpss (N, NW ) , d = 1, · · · , D (4.5)

4.2.3 FFT and Zero-Padding

Snapshot data are windowed and FFT’d to produce the MTSE eigencoefficients

y(d)
m ( l ) =

N−1∑

n=0

xm (n) qd (n) exp (−j2πln/NFFT ) (4.6)

for the set of points l = 0, · · · , NFFT − 1. We specify the FFT size, NFFT , in (4.6)

independently from the number of array elements, N . The nominal set of points would

be NFFT = N , with a greater number of points, NFFT > N , generated using the zero-

padding technique [59] (NFFT < N is possible using polyphase techniques [75] but not

likely a case of interest as typically applications scan through more points in wavenumber

space, or direction of arrival, than N and not less). The zero-pad operation is important

for several reasons. First, and most importantly, the detection process within harmonic

analysis performs a subtraction of discrete harmonic (point source) components in the

data. This is done by estimating the unknown line component parameters: wavenumber,

amplitude, and phase. Many algorithms exist for estimating parameters of sinusoids in

noise. Assuming that multiple interferers are sufficiently separated, these parameters are

conveniently estimated optimally using FFT techniques [76]. The precision to which this
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can be accomplished, without additional techniques such as curve fitting between FFT bins,

is directly proportional to the fineness of the FFT spacing in wavenumber space. The zero-

padding operation is an efficient method for increasing this fineness. The zero-padding is

also useful in the smoothing operation Thomson refers to as free parameter expansion, FPE

[52]. The zero-padded bins are effectively the values required to perform the operation.

4.2.4 Discrete Line Component Processing (Harmonic Analysis)

The harmonic analysis algorithm operates on the eigencoefficients, Ym,d(l), to determine the

presence of discrete line components as presented in Section 2.6.2. The detection statistic

is computed as the ratio of the power in the line component subspace to the power outside

that subspace in the region [ fo −W < f ≤ fo + W ].

F ( fo ) =
∑M

m=1 yH
m ( fo )Pqym ( fo )∑M

m=1 yH
m ( fo )P⊥

q ym ( fo )

H1

≷
H0

γTH (4.7)

The choice of threshold, γTH , can be determined using a Neyman-Pearson criteria assuming

Gaussian noise statistics. Practically, it is also useful to define a minimum limit allowable

for detection, e.g., γ
(dB)
min = 10 log10 ( γmin ), such that

γTH = max ( γNP , γmin ) (4.8)

with γ
(dB)
min = 3 dB typically. This non-optimal lower limit is a simple mechanism to pre-

vent excessive false detections due to non-Gaussian noise or numerical issues associated

with iterative line component subtraction (below). This has a minimal impact on overall

performance, as the main purpose of the harmonic analysis step is to eliminate high pow-

ered, not low powered, discrete interference. This test is valid for a single line component

present within the analysis region, [ fo −W < f ≤ fo + W ]. If the interference environment

is dense with respect to the array resolution, additional tests such as the double F line test

in [74] may be appropriate.
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For a detected line component, it is assumed that the wavenumber remains constant

across all snapshots. For the kth line component the wavenumber, ψk, is required to estimate

the remaining parameters per snapshot and form the overall covariance matrix. With

sufficient zero-padding, ψk, can be estimated as

ψ̂k = arg max
ψ

F (ψ) > γTH (4.9)

The remaining parameters are estimated per snapshot using matched filter techniques.

Defining the reference sinusoid waveform

sref,k = (( ejψkn ))n (4.10)

the complex-amplitude and interferer power are estimated as

âk(m) =
1
N

sH
ref,kxm , σ̂2

k =
1
M

M∑

m=1

| âk(m) |2 (4.11)

While not required strictly for the processing, the interferer to noise ratio for each detected

discrete component may be estimated. This is useful when generating a composite spectrum

for visualization. A composite spectrum is generated based on the estimated continuous

background spectrum of the residual snapshot data (post harmonic analysis), with numerical

insertion of the discrete components. The insertion technique requires knowledge of the

INR to properly represent the uncertainty of a particular estimate.

IN̂Rk =
∑M

m=1 | âk(m) |2

( D − 1 )−1 ∑M
m=1 yH

m

(
ψ̂k

)
P⊥

q ym

(
ψ̂k

) (4.12)

Influence of the K detected components is removed from the snapshot data to produce the

residual data snapshots, xb,m. This can be accomplished with one of two methods.
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Method 1. Coherent Subtraction

xb,m = xm −
K∑

k=1

âk(m)sref,k (4.13)

Method 2. Null Projection

P⊥
k = I− sref,k

(
sH
ref,ksref,k

)−1
sH
ref,k (4.14)

P⊥
K =

K∏

k=1

P⊥
k (4.15)

xb,m = P⊥
Kxm (4.16)

Method 2 is more computationally intensive, but is not sensitive estimation accuracy of the

amplitude coefficients, âk(m).

4.2.5 Background / Continuous Spectrum

Once harmonic analysis is complete the residual snapshot data is used to compute the final

smooth, continuous background spectrum. The snapshot data are windowed and FFT’d to

produce the eigencoefficients

y
(d)
b,m(l) =

N−1∑

n=0

xb,m (n) qd (n) exp (−j2πln/NFFT ) (4.17)

The eigencoefficients are used to produce the individual eigenspectra.

P̂
(d)
b (l) =

1
M

M∑

m=1

∣∣∣ y
(d)
b,m(l)

∣∣∣
2

(4.18)

The individual eigenspectra are then linearly combined according to a set of weights
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P̂x,b(l) =
D∑

d=1

hd(l)P̂
(d)
b (l) (4.19)

The weights, hd(k), may be fixed, which is optimal for an underlying white spectrum, or

determined adaptively. We use the algorithm in Section 2.6.2, detailed in [56], as it provides

the benefits of adaptivity with less complexity than the approach original presented by

Thomson [52].

4.2.6 Covariance Matrix Computation

The final estimate of the covariance matrix is the formed using line component and contin-

uous background spectrum products.

R̂a = diag
(
σ̂2

1, σ̂2
2, · · · , σ̂2

K

)
(4.20)

V̂ = [ sref,1, sref,2, · · · , sref,K ] (4.21)

R̂MTSE = V̂R̂aV̂H + (2π)−1

ˆ π

−π
P̂x,b( ψ )vψ(ψ)vH

ψ (ψ)dψ (4.22)

4.2.7 Composite Spectrum Generation

Because we develop the estimate of the line and continuous components of the wavenumber

spectrum, P̂x( ψ ), we may also be interested in visualizing this spectrum directly in addition

to forming the covariance matrix. This is, of course, the original purpose of the power

spectral density techniques we have used. The smooth continuous component is the direct

output from the MTSE processing of the residual snapshot data, xb,m, yielding P̂x,b( ψ ).

The discrete components previously estimated and subtracted are then added back into the

numerical spectrum. To avoid implying better resolution than is available with the data,
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peak width is set proportional to estimation accuracy given the estimated SNR of the line

component.

Unbiased Spectral Estimate In White Noise

In this type of spectral estimation, each point in the spectral estimate is scaled such that it

is an unbiased estimate of the noise power for a white noise input. In terms of classical PSD

techniques, this implies that the window function has been scaled such that wHw = 1.0 .

MTSE tapers are scaled in accordance with this approach. Plane wave, or discrete sinusoidal

components experience a processing gain due to the coherent gain of the window function.

The maximum gain achieved is obtained using w = 1√
N

1, and equates to 10 log10 ( N ) dB.

What this is saying is that a snapshot, xm
d→ CNN ( 0, σ2I ), will produce an expected value

at any power spectral estimate, E
{

P̂ (ψ)
}

= σ2, while a snapshot corresponding to a plane

wave component, xm = Aovψ(ψo) will produce a value of E
{

P̂ (ψo)
}
≤ NA2

o . Detailed

discussion of the incoherent and coherent gain of the classical window functions is found in

[63]. The coherent gain of the MTSE tapers can be found by computing

CGMTSE =
1
D

D∑

d=1

∣∣∣∣∣
N−1∑

n=0

qd(n)

∣∣∣∣∣

2

(4.23)

Because the choice of coherent gain is somewhat arbitrary for the re-inserted spectral com-

ponent, it is also sometimes convenient to use the maximum theoretical processing gain,

CG = 10 log10 ( N ), such that the composite spectrum looks similar, on a relative scale, to

that obtained using MVDR techniques.

P̂dB (ψk) = 10 log10

(
1
M

M∑

m=1

|Ak(m) |2
)

+ 10 log10 ( N ) (4.24)

Refer to the earlier Figure 2.5 for a visualization of the effectiveness of harmonic analysis.
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4.3 Performance Simulation

We now look at performance of the covariance from spatial spectrum (CSS) approach using

Thomson’s MTSE as presented in Section 4.2. Chapter 3 analyzed CSS performance us-

ing classical power spectral estimation techniques, and performance predictions highlighted

the need to incorporate harmonic analysis to make the approach effective. Because the

normalized SINR loss cannot be simplified to remove the underlying covariance from the

expression, each type of noise and interference environment encountered may perform dif-

ferently. The following sections look at several common scenarios to assess CSS with MTSE

effectiveness under meaningful conditions.

4.3.1 Discrete Interference

The discrete interference test cases investigate CSS performance when the noise and inter-

ference environment consists of line components in spatially white noise for an N element

uniform linear array. Monte Carlo simulation measures the normalized SINR loss perfor-

mance as a function of the number of available snapshots, M , for the given test configuration.

Four algorithms are run in each test case.

1. CSS using Thomson’s MTSE as the spectral estimation algorithm. The parameters

NFPE, NW , D, γTH are specified.

2. CSS using classical spectral estimation with a Hann window.

3. Sample covariance matrix with optimal diagonal loading. The loading factor is found

via exhaustive search for the level providing the best normalized SINR loss perfor-

mance at each test point.

4. Multistage Wiener Filter (MWF). The MWF rank, r, is set to min ( ropt, M ), where

the optimal reduced rank, ropt, depends on the interference.
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Fixed INR

The fixed INR test case has six high INR point sources located at (−65o, −40o, −25o, 30o,

45o, 60o ) with respect to broadside. All interferers have a per element INR of 50 dB.

The steering vector, s, corresponds to broadside. The optimal MWF rank is ropt = 6,

corresponding to the K = 6 strong interferers in the environment.

N = 32 Element Uniform Linear Array: For an N = 32 element ULA test case, the

MTSE parameters are NFPE = 64, NW = 2, D = 4 and γTH = 4 dB. Figure 4.1 shows

the results. In the top left of the Figure, various wavenumber spectral estimates are shown

for M = 10 snapshots. The true locations of the interferers are indicated by the vertical

black dotted lines, and the spatially white noise floor is indicated by the line at 0 dB. For

MTSE with harmonic analysis all six interferers are clearly indicated. Due to estimation

accuracies, there is residual energy in the interferer line components after subtraction. This

shows in the final spectrum as the sidebands around the discrete lines, noticeable in this

case due to the strong line component power. The lower left plot in the Figure shows the

an example of the adaptive beamformer power pattern for CSS with MTSE in blue. All

discrete interferers are properly nulled and the pattern shape near the mainlobe is in close

agreement with the optimal MVDR pattern.

The normalized SINR loss performance in dB is shown on the right. The upper right

shows the performance for M = 1 to 32, with the lower right showing a zoomed inset.

For each algorithm tested there are two curves provided, one for both the 50th and 90th

percentiles of performance (with the 90th percentile curve at or above the 50th). From the

curves, the CSS with MTSE adaptive beamformer achieves within 1.5 dB from optimal

in 90% of trials with two or more snapshots. Covariance estimated via a classical Hann

windowed PSD is within 2 dB in 90% of trials. Optimal diagonal load and MWF perform

identically, and follow the expected 3 dB in 50% of trials at 2K = 12 snapshots. The CSS

techniques show much faster convergence than the sample covariance based techniques, and

operates with less snapshots than interferers, M < K.
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N = 16 Element Uniform Linear Array: For an N = 16 element ULA test case, the

MTSE parameters are NFPE = 64, NW = 1.5, D = 3 and γTH = 4 dB. Figure 4.2 shows

the results in similar format to Figure 4.1. What is clear from the figure is that with the

lower resolving capability of the array, due to its shorter length, the harmonic analysis is

ineffective and the resulting normalized SINR loss is poor. Optimal diagonal loading and

MWF perform identically to the N = 32 test case. This is because their performance is

dictated by the number of interferers, K, and snapshots, M , and not the number of sensor

elements, N . Approaches such as the double line test used by Haykin [74] could be applied

to improve line component detection for closely spaced interferers. Results for N = 24 (not

shown), show harmonic analysis to be partially effective, with normalized SINR loss slightly

higher than the N = 32 case but still better than the comparative techniques.
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Figure 4.1: ABF performance, fixed INR, N = 32: Normalized SINR loss as a function
of number of available snapshots, M , is shown on the right for a test case using an N = 32
uniform linear array observing K = 6 high INR interferers in spatially white noise. Both
the 50th and 90th percentile performance are shown for each algorithm. This test case
shows an adaptive beamformer derived using CSS with MTSE achieves within 1.5 dB from
optimal in 90% of trials with two or more snapshots (blue trace). Covariance estimated via a
classical Hann windowed PSD is within 2 dB (magenta trace). Optimal diagonal load (SMI
w/DL, black trace) and multi-stage Wiener filter (MWF, red trace) perform identically, and
follow the expected 3 dB in 50% of trials at 2K = 12 snapshots.
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Figure 4.2: ABF performance, fixed INR, N = 16: The performance for the N = 16
test case follows the same layout as Figure 4.1. With only N = 16 elements, the harmonic
analysis is ineffective as seen in the estimated spectra in the upper left. Correspondingly,
the normalized SINR loss is worse in this case. Optimal diagonal loading and MWF perform
the same as the N = 32 case, because their performance is dictated by K and M which
remain the same. These results indicate that for CSS with MTSE to be effective, the array
must have enough resolution for harmonic analysis to be successful.
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Mixed INR

The mixed INR test case has six INR point sources located at (−65o, −40o, −25o, 30o,

45o, 60o ) with respect to broadside. The per element INR is (−2, −2, −2, −2, 50, 50 )

dB. The steering vector, s, corresponds to broadside. The optimal MWF rank is ropt = 2,

corresponding to the two strong interferers in the environment. The MTSE parameters are

identical to the fixed INR, N = 32 test case. Figure 4.3 shows the results. The harmonic

analysis is successful at identifying 5 of the 6 line components, although this varies with 6

of 6 depending on the trial. The strong INR components have much lower residuals than

before, indicating better estimation accuracy due to fewer strong components in the data as

one would expect. Optimal diagonal loading and MWF perform identically, and converge

quicker than the prior test case as the number of strong interferers is only two, within 3

dB at M = 4 snapshots in 50% of trials. Normalized SINR loss performance for the CSS

techniques is comparable to that seen earlier at N = 32. For CSS with MTSE, performance

is within 1 dB of optimal in 90% of trials at M = 2 snapshots.
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Figure 4.3: ABF performance, mixed INR, N = 32: CSS techniques show consistent
performance between the mixed INR and fixed INR test cases, operating within 1 dB of
optimal with M = 2 snapshots in 90% of trials when using MTSE. The performance of
optimal diagonal loading and MWF improves in this test case, as the number of strong
interferers has been reduced, but does not converge as quickly as the CSS methods.
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4.3.2 Spatially Spread Interference

The spatially spread interference test cases assess CSS with MTSE performance when the

interference and noise is a continuous spectrum process only. An N = 32 element uniform

linear array is considered, with possible orientation either in the horizontal or vertical

direction. Additionally, we investigate operation at 1, 1
2 , 1

4 of the design frequency for the

array. The normalized SINR loss is computed as a function of the steering vector angle of

arrival, 90o ≤ θs ≤ 180o, with respect to endfire, and as a function of the number of available

snapshots. A total of eight different scenarios are investigated. Results presented here are

not comprehensive for every scenario, but representative of the results in each environment.

Optimal diagonal loading is used as a comparative algorithm, where the optimal loading

factor is found via exhaustive search at each test point. The MTSE algorithm is configured

with NFPE = 32, NW = 2, D = 4, and γTH = 8 dB.

Figure 4.4 shows the directional distribution in elevation for the combined distant ship-

ping and surface noise model [54]. The distribution is symmetric in azimuth. The array is

oriented vertically (VLA), and the corresponding MVDR wavenumber spectrum for oper-

ation at 1, 1
2 , 1

4 of the design frequency is shown on the right. Note the asymetry in the

spectrum due to the higher noise power at the surface. Simulations for M = 1, 4, 16, 64,

256, and 1024 snapshots were performed. Figures 4.5 and 4.6 show the results. In each

set of figures, the average normalized SINR loss performance is shown for each of the three

operational frequencies as a function of angle. Because harmonic analysis is not expected

to play a factor, we use the expected performance for CSS with classical spectral estimation

techniques using a Blackman window as the expected result for CSS with MTSE, since the

Blackman window and the equivalent multitapered window are similar. The fixed widths,

i.e., FFT bins, in wavenumber space are shown as gray dashed lines in each plot. The spac-

ing is non-uniform when converted to angle-space, and operation below design frequency

reflects the lowered resolving power of the array as indicated by fewer “bins”. Looking

at the performance, CSS with MTSE converges almost instantly, and outperforms optimal
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diagonal loading across the entire range for M < 64. Performance up to M = 1024 is in-

cluded to demonstrate that optimal diagonal loading does approach optimal performance,

ξdB = 0, as M becomes very large. CSS with MTSE in this case behaves like CSS with

classical spectral techniques, and is biased due to the finite N regardless of M , particularly

in the endfire region in this case. This represents a fundamental contrast between the two

approaches.

All noise models tested behave in a similar fashion. For the remainder of the included

cases only the M = 4 results are shown. Figure 4.7 shows the results for 3D isotropic noise.

In the case of operation at the design frequency, the spectrum is white and both algorithms

perform identically. Below design frequency CSS with MTSE outperforms optimal diagonal

loading by 0.25 to 1.00 dB, depending on desired angle of arrival in the M = 4 snapshot

case. It is interesting to note that the diagonal loading follows a similar performance curve

as CSS in the endfire region for the limited amount of snapshot data. Figure 4.8 shows the

results for the distant shipping noise model, vertically oriented array. This is a significantly

non-flat spectrum, and CSS with MTSE clearly outperforms diagonal loading. Figure 4.9

shows the results for the surface noise model, vertically oriented array. Performance is

comparable to that seen for the combined noise model.
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Figure 4.4: Combined surface and shipping noise model characteristics, VLA:
The combined surface and shipping noise model from [54] is appropriate for (100-500)
Hz underwater acoustic processing, and is similar to Urick [77] for moderate shipping.
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Figure 4.5: ξdB ( θ ), combined surface and shipping noise model, M = 1, 4, 16,VLA:
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Figure 4.6: ξdB ( θ ), combined surface and shipping noise model, M =
64, 256, 1024,VLA:
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Figure 4.7: 3D isotropic noise:
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Figure 4.8: Distant shipping noise model, VLA:
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Figure 4.9: Surface noise model, VLA:
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4.3.3 Mixed Spectra

The mixed spectra test case contains both discrete and spatially spread components in the

interference and noise environment. For this test case we use the distant shipping noise

model and include a single discrete component. Two test cases are presented, the first

were the point source has low SNR, and a second where the point source has medium

SNR. Other test cases were investigated and are comparable in performance to those

presented here, but are not shown. For these scenarios we use an N = 64 uniform line

array. CSS with MTSE is configured with NFPE = 64, NW = 2, D = 4, and γTH = 6 dB.

Optimal diagonal loading is used for comparison, with optimal loading factor determined

by exhaustive search. Three levels of snapshot support are tested, M = 4, 16, and 64, with

the steering vector angle of arrival swept across the full visible range 0o ≤ θs ≤ 180o with

respect to endfire. Operation at full and half of the design frequency for the uniform linear

array is investigated.

There is no assignment of signal or interferer designation to the sources in the environ-

ment. The average normalized SINR loss, ξdB, is computed as a function of θs and M . If

the discrete component is a signal of interest, ξdB at or near its location gives an indication

of detector or beamformer performance when the signal is present in the data. This is the

case discussed earlier in Section 2.5.1 in the context of the MPDR beamformer. If it is an

interferer, then ξdB away from its location gives an indication of detector or beamformer

performance in an MVDR context.

Figure 4.10 shows the performance for the weak discrete component case. The MVDR

spectra is shown in the upper left, with the final MTSE spectra shown in the bottom

left for M = 64. The harmonic analysis is unsuccessful in detecting the line component

explicitly, but because of its relatively low SNR we must look at the normalized SINR

loss curves to understand the impact. The upper right plots reflect operation at the design

frequency. The upper right, top subplot, shows ξdB for CSS with MTSE for the three

different amounts of snapshot data. Performance is essentially the same in all cases. There

is some mismatch in the immediate vicinity of the discrete component, and nearly optimal
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performance everywhere else. The upper right, bottom subplot, shows ξdB for optimal

diagonal loading. Here the influence of more available snapshots is visible, as three curves

can be seen. More snapshots provides better performance and a lower ξdB. Comparing

the two, CSS with MTSE outperforms the diagonally loaded sample covariance matrix

across large portions of the visible space by several dB. The lower right plot shows the

performance at 1
2 the design frequency. Performance is comparable to operation at the

design frequency for CSS with MTSE, only slightly worse near endfire. Diagonal loading

has a higher variability in performance than previously, both better and worse performing

depending on the number of available snapshots, however CSS with MTSE is clearly better

across a broad range of the visible space.

Figure 4.11 shows the results for the case where the discrete component is a “medium”

SNR. Both techniques suffer larger normalized SINR loss degradation nearby to the loca-

tion of the discrete component, presumably in response to its higher SNR. Away from the

discrete component ξdB is comparable to the weak discrete case of Figure 4.10.
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Figure 4.10: Mixed spectra performance, weak strength line component: CSS with
MTSE is at least as good as optimal diagonal loading, and substantially better at lower
numbers of available snapshots across a large portion of the visible region. This is the case
at both 1 and 1

2 of the design frequency.
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Figure 4.11: Mixed spectra performance, medium strength line component: Both
CSS with MTSE and optimal diagonal loading experience greater normalized SINR loss
nearby to the line component when its strength is increased. CSS with MTSE still outper-
forms optimal diagonal load across a large portion of the visible region with lower number
of available snapshots.
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4.3.4 Impact of Harmonic Analysis

Performance of the CSS with MTSE algorithm was assessed via simulation for a single

interferer in spatially white noise test case. This is the same type of analysis done for

classical PSD techniques in Chapter 3. As a relative comparison, classical PSD using a

Blackman window is shown also. The purpose of the simulation was to determine the effect

of increased zero-padding for harmonic analysis, and overall impact to adaptive beamformer

performance as a result. Simulations are run for an N = 16 element uniform linear array,

with a single interferer in spatially white noise and M = 4 available snapshots. The per

element INR of the interferer is varied as [ 20, 30, 40 ] dB and the separation between the

desired angle of arrival and the interferer is swept through [ 0o, 90o ]. The normalized SINR

loss curves are shown in Figure 4.12. Also shown in gray dash is half the main lobe null

to null bandwidth for the array, 0.5BWNN . The CSS with classical estimation, indicated

as BLACKMAN, follows the expected performance from Chapter 3, and is proportional

to the INR when the separation is on the order of 1 to 1.5 BWNN . In the upper set

of plots, the CSS with MTSE algorithm uses NFPE = 256 (or NFFT = 16 × 256). The

performance of the CSS with MTSE based adaptive beamformer is substantially better than

the classical PSD approach, within 1 dB for all INR levels at 0.5BWNN . Performance is

directly attributable to the ability to detect and subtract the interferer through the harmonic

analysis process. The residual interferer post cancellation is substantially lower in power,

which creates a much lower (INRPE −Abb). This moves performance into the large “blue”

areas in Figures (3.7) - (3.9). Lowering the NFPE results in less accurate parameter

estimation, with a subsequent increase in normalized SINR loss. The lower set of plots

show the result for NFPE = 64. The performance is worse as expected, but still better

than the classical PSD approach. Other methods may be available to precisely determine

the interferer parameters in the harmonic analysis process, as the performance is clearly

better with improved estimates given the same snapshot sample data.
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Figure 4.12: Impact of estimation accuracy for harmonic analysis: Improved line
component parameter estimation improves overall adaptive beamformer performance. This
test case measures normalized SINR for CSS with MTSE or classical PSD with Black-
man window for an N = 16 element array and M = 4 snapshots. The top figure shows
performance for NFPE = 256, while the bottom uses NFPE = 64. Interferer fre-
quency/phase/amplitude estimation performance is directly related to the fineness of the
search grid, and drives overall beamformer performance.
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4.4 Summary

This chapter outlined the procedure for incorporating Thomson’s multitaper spectral es-

timation as the spectral estimation engine used within CSS. Normalized SINR loss per-

formance was assessed via simulation for a number of interference and noise scenarios.

Performance was seen to converge with very few snapshots to near optimal, and in many

cases with fewer snapshots than interferers. This is a key result, and is possible because

the CSS technique estimates the interferers in the spatial domain. In this domain multiple

interferers may be visible even in a single snapshot. This is significantly better than what

is achievable using diagonal loading or comparable reduced rank sample covariance based

techniques. These techniques require at least as many snapshots as interferers and typi-

cally more to achieve near optimal performance, an result of processing incorporating time

averaging only. Line component, spatially spread, and mixed spectra conditions were con-

sidered. It was observed that performance could be improved by increasing the estimation

accuracy of the harmonic analysis step, providing better cancellation of the line components

within the data.
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Chapter 5: Correlated Signal and Interference

5.1 Introduction

So far we have considered the case of a wide sense stationary narrowband space-time process.

One of the properties of such a process is that it can be represented as a sum of uncorrelated

plane waves, distributed across all directions of arrival to the array. This model does not

describe every situation that may be encountered. An important case of interest is when

there is correlation between two or more plane wave components observed by the array.

This may occur in situations of multipath or smart jamming. Under these conditions

the covariance is function of absolute position, not relative, and the process is not wide

sense stationary. Failure to account for the correlation within the data can lead to signal

cancellation [39], and an overall loss in output SNR.

This chapter considers the scenario where the snapshot data contains both the signal

of interest and interference correlated with it. Wavenumber or spatial spectra provide no

correlation information. Because of this, we intuitively expect that covariance from spatial

spectrum (CSS) will provide a level of robustness against the effects of correlated signal

and interference on performance [78]. In this chapter it is shown that CSS is biased in two

ways. The first bias is in a manner similar to the bias seen in Chapter 3 for the wide sense

stationary process case due to the method of spectral estimation. The second bias is specific

to the correlation within the data. Performance is assessed in comparison to CSS operating

on uncorrelated data, as well with the effective SINR metric [79], an appropriate measure

of output SINR in the correlated signal and interference scenario. The bias attributable to

the correlation component is found to have neglible impact on performance. The chapter

concludes with a comparison of CSS and the related techniques of covariance matrix tapers

[53] and redundancy averaging [42].
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5.2 Covariance for Correlated Signals

In the case where the point source signals are correlated the space-time process is not

spatially stationary. Refering back to the Cramér spectral representation of the station-

ary space-time process, the correlation violates the requirement that disjoint regions in

wavenumber space be uncorrelated. In terms of the covariance, the effect is seen as a

dependence on absolute as well as relative position. This is visible when examining the

covariance matrix based on the model for the snapshot data, xm.

xm =
K∑

k=1

vkak(m) + nm = Vam + nm (5.1)

where we have combined the background noise component and sensor noise component

together, nm = nb,m + nw,m, nm
d→ CNN (0, Rn ). The covariance matrix is

E
{
xmxH

m

}
= Rx = VRaVH + Rn (5.2)

where Ra = E
{
amaH

m

}
. Now, specifically Ra is not a diagonal matrix. The off diagonal

terms represent the cross-correlation between the plane waves. Ra can be expressed as a

combination of a diagonal matrix and an off-diagonal matrix.

Ra = Ra,U + Ra,C (5.3)

The subscript U is used to reinforce that the diagonal matrix relates to uncorrelated plane

waves, while the the subscript C is used to reinforce that the off-diagonal matrix corresponds

to the terms representing the correlation. Now

Rx = VRa,UVH + Rn + VRa,CVH (5.4)
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We recognize the first two terms as the covariance for the stationary process model. We

refer to this portion of the overall covariance as

Rx,U = VRa,UVH + Rn (5.5)

The remaining portion, due to the off-diagonal entries of the matrix Ra, is referred to in a

similar fashion.

Rx,C = VRa,CVH (5.6)

To see the impact of the off-diagonal terms, consider the simple scenario of an N = 2

element array observing two correlated plane waves with no noise. The array manifold

response vectors are v1 = (( exp
[−jkT

1 pn

]
))n and v2 = (( exp

[−jkT
2 pn

]
))n, and the

covariance matrix of the planes waves is

Ra = Ra,U + Ra,C =




σ2
1 ρσ1σ2

ρ∗σ1σ2 σ2
2


 (5.7)

Expanding out the portion of the covariance related to Ra,U , we have

Rx,U =
∑2

k=1 σ2
kvkvH

k

=
∑2

k=1 σ2
k




exp
(−jkT

k [p1 − p1 ]
)

exp
(−jkT

k [p1 − p2 ]
)

exp
(−jkT

k [p2 − p1 ]
)

exp
(−jkT

k [p2 − p2 ]
)




(5.8)

which is a function of the relative difference in position of the elements. For the portion of

the covariance related to Ra,C , we have

125



Rx,C =
[

v1 v2

]



0 ρσ1σ2

ρ∗σ1σ2 0




[
v1 v2

]H

(5.9)

which is expanded out as

Rx,C = ρσ1σ2v1vH
2 + ρ∗σ1σ2v2vH

1

= ρσ1σ2




exp
(−j

[
kT

1 p1 − kT
2 p1

] )
exp

(−j
[
kT

1 p1 − kT
2 p2

] )

exp
(−j

[
kT

1 p2 − kT
2 p1

] )
exp

(−j
[
kT

1 p2 − kT
2 p2

] )




+ρ∗σ1σ2




exp
(−j

[
kT

2 p1 − kT
1 p1

] )
exp

(−j
[
kT

2 p1 − kT
1 p2

] )

exp
(−j

[
kT

2 p2 − kT
1 p1

] )
exp

(−j
[
kT

2 p2 − kT
1 p2

] )




(5.10)

The off-diagonal terms in (5.10) contain mixed products of the wavenumber, kk, and the

sensor positions, pn. This prevents the simplification possible in (5.8), with the result that

Rx,C is not a function of the relative difference in position of the elements alone.

5.3 Expected Value

To proceed in analyzing the expected value of the covariance matrix estimate, we use CSS

with classical power spectral estimation as was done in Chapter 3. Recall from Chapter 3

for a stationary process we have

xm =
K∑

k=1

vkak(m) + nm , xm
d→ CNN

(
0, VRa,UVH + Rn

)
(5.11)
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where we have used the subscript U to re-inforce the process is stationary and that Ra,U

is a diagonal matrix. The CSS covariance matrix estimate is found from the windowed

(tapered) snapshots, ym = xm ¯w, as

R̂y = DSR (Rw,SCM ) = DSR

(
1
M

M∑

m=1

ymyH
m

)
(5.12)

with expected value E
{

R̂y

}
= Rx,U ¯Rw. Alternatively, we may write out the windowed

snapshot model for this case

ym =
∑K

k=1 (vk ¯w ) ak(m) + (nm ¯w )

=
∑K

k=1 vkak(m) + nm

= Vam + nm

(5.13)

where the overbar notation, e.g., vk, reflects a tapered quantity. The tapered snapshots are

distributed as

ym
d→ CNN

(
0, VRa,UVH + Rn

)
(5.14)

From (5.12), the DSR linearity properties from Chapter 3, and (5.14) we have

E
{

R̂y

}
= DSR

(
E

{
ymyH

m

} )
= DSR

(
VRa,UVH + Rn

)

The two expressions for the expectation are equivalent, so we have the relationship

Rx,U ¯Rw = DSR
(
VRa,UVH + Rn

)
(5.15)
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Now we consider that the plane wave components are correlated, so that

ym
d→ CNN

(
0, V [Ra,U + Ra,C ]VH + Rn

)
(5.16)

We continue to use (5.12), so that the expected value of the estimated covariance is now

E
{

R̂y

}
= DSR

(
V [Ra,U + Ra,C ]VH + Rn

)
(5.17)

Using the DSR properties, the expected value consists of two terms

E
{

R̂y

}
= DSR

(
VRa,UVH + Rn

)
+ DSR

(
VRa,CVH

)
(5.18)

From (5.15), the first term is the CSS with classical spectral estimation covariance as if the

process where in fact stationary, so the final result is

E
{

R̂y

}
= Rx,U ¯Rw + DSR

(
VRa,CVH

)
(5.19)

Eqn. (5.19) implies that for a correlated signal and interference problem, the CSS with

classical spectral estimation technique produces a covariance matrix estimate that is an

estimate of the covariance as if the process were uncorrelated, Rx,U¯Rw, with an additional

bias term DSR
(
VRa,CVH

)
. In terms of addressing signal cancellation, the first term

has clearly eliminated the correlation in the estimated covariance and we would expect

an adaptive beamformer based only on this part of the estimate to have a performance

consistent with that seen in Chapters 3 and 4, even if the process itself has correlated

components. In the next section we investigate the impact of the remaining bias term,

DSR
(
VRa,CVH

)
, on performance.
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5.4 CSS Performance with

Correlated Signal and Interference

5.4.1 Introduction

Correlated signal and interference introduces the potential for signal cancellation for some

adaptive beamforming algorithms. The minimum variance distortionless response (MVDR)

beamformer is derived to be optimal for a spatially stationary space-time process, i.e.,

uncorrelated noise and interference [6]. The MVDR approach can be extended when both

the desired signal and interference are present in the snapshot data, the so called minimum

power distortionless response (MPDR) beamformer. MPDR attempts to minimize output

power while constrained to be distortionless in the direction of the desired signal, wMPDR ∝
R−1s [1]. This allows the desired signal through due to the distortionless constraint, but in

the event of correlated interference the processor uses the interferer to destructively cancel

the desired signal in the overall attempt to minimize output power [5, 39].

Figure 5.1 shows an example illustrating the signal cancellation effect on the resultant

power pattern. The desired signal is at broadside, with an interferer located at 45o w.r.t.

broadside. In the upper subplot, the interferer is uncorrelated and is nulled appropriately.

In the lower subplot, the interferer is correlated and the processor steers a beam toward

it to use in cancelling the desired signal to lower total output power. Spatial smoothing

techniques have been developed to deal with correlated signal and interference at the expense

of reducing the effective aperature of the array [40, 41, 43]. The redundancy averaging

approach also addresses the correlated interference problem without reduction in effective

array aperature, but may result in an indefinite covariance matrix [42,48].

MMSE beamformers, wMMSE ∝ R−1E {xma∗m }, in fact use the correlation construc-

tively to improve the output signal quality, therefore they do not suffer from signal cancel-

lation. However, this approach is not applicable when the desired signal is unknown and is

not pursued in the dissertation.
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Figure 5.1: Example beampattern illustrating the signal cancellation effect: When
the interferer at 45o w.r.t. broadside is uncorrelated with the signal at broadside, the MPDR
adaptive beamformer nulls it as seen in the upper subplot. If the interferer is correlated
with the signal at broadside, the MPDR beamformer steers an additional beam towards it
as seen in the lower subplot. The processor uses the interferer to coherently subtract from
the desired signal for an overall loss in output signal power and therefore a lower output
SINR.
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5.4.2 Relative Contribution of Correlated and Uncorrelated Components

There are two main questions of interest for adaptive beamformers based upon the covari-

ance from spatial spectrum estimate, referred to as R̂CSS . First, does R̂CSS convey any

information regarding the correlation component in the data if it exists. Second, how well

do beamformers based upon R̂CSS perform compared to an adaptive processor using a co-

variance for the data where there is no correlation present. We know from Section 5.3 that

the expected value of R̂CSS contains the covariance if the data were uncorrelated plus an

additional term.

E
{

R̂CSS

}
= Rx,U ¯Rw + DSR

(
VRa,CVH

)

= RCSS,U + RCSS,C

(5.20)

The impact of the second term can be considered as a bias in E
{

R̂CSS

}
. Indukumar

investigated this type of bias for the related technique of redundancy averaging [47]. By

considering the case of two interferers with no noise component, explicit expressions for

the bias term showed that for redundancy averaging the bias was not guaranteed to go

to zero even if the array length was extended infinitely. Linebarger demonstrated for the

same case, that the relative contribution of the non-zero bias component went to zero as

the array length was extended to infinity. This was shown using the ratio of the Froebenius

norm squared, ‖ ‖2
F , of the bias component to the unbiased component within the overall

covariance. This implied that while the bias term existed, its impact as measured by the

relative power indicated by ‖ ‖2
F vanished as the array length increased.

We follow a similar line of analysis using a two tone scenario with no noise. The signals

have angles of arrival given by ψ1 and ψ2 with corresponding array manifold response

vectors, v1 and v2, and respective variances σ2
1 and σ2

2. The correlation between the two

signals is described by a magnitude and phase as ζ = E { a1(m)a∗2(m) } = Aζe
j]ζ . The
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ensemble covariance consists of correlated and uncorrelated terms.

R = VRa,UVH + VRa,CVH

= RU + RC

(5.21)

We are interested in determining where the relative ratio of ‖ ‖2
F shows that the bias term

is insignificant within E
{

R̂CSS

}
, compared to the same ratio for the ensemble covariance,

i.e.,

∥∥∥ R̂CSS,C

∥∥∥
2

F∥∥∥ R̂CSS,U

∥∥∥
2

F

¿ ‖RC ‖2
F

‖RU ‖2
F

(5.22)

When (5.22) is valid it indicates that CSS has substantially dimished the contribution of

the correlated component, as measured using ‖ ‖2
F . Consider the problem for an N -element

uniform linear array. It can be shown that the uncorrelated and correlated components for

the ensemble covariance are

‖RU ‖2
F = N2

(
σ4

1 + σ4
2

)
+ 2σ2

1σ
2
2

∣∣vH
1 v2

∣∣2 (5.23)

‖RC ‖2
F = 2σ2

1σ
2
2A

2
ζ

[
N2 + cos ( 2]ζ + ∆ψ[N − 1] )

sin2 ( ∆ψN/2 )
sin2 (∆ψ/2 )

]
(5.24)

where ∆ψ = ψ2−ψ1. The expressions for the components of E
{

R̂CSS

}
use the following

property. For a Hermitian, Toeplitz matrix, A,
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A =




ρ[0] ρ∗[1] ρ∗[2] · · ·
ρ[1] ρ[0] ρ∗[1]

ρ[2] ρ[1] ρ[0]
. . .

...
. . . . . .




(5.25)

the Froebenius norm squared of A is

‖A ‖2
F =

N−1∑

n=−(N−1)

( N − |n | ) | ρ[n] |2 (5.26)

This yields a simplified expression for the ‖ ‖2
F of the uncorrelated component of E

{
R̂CSS

}
.

∥∥∥ R̂CSS,U

∥∥∥
2

F
=

(N−1)∑

n=−(N−1)

( N − |n | ) | ρw[n] |2 [ (
σ4

1 + σ4
2

)
+ 2σ2

1σ
2
2 cos ( ∆ψn )

]
(5.27)

where ρw[n] is the sample autocorrelation of the taper used, w. The correlated component

cannot be similarly reduced because of the summation term in the sample autocorrelation,

ρCSS,C [n], with a simplest expression for arbitrary w given as

∥∥∥ R̂CSS,C

∥∥∥
2

F
=

N−1∑

n=−(N−1)

(N − |n | ) | ρCSS,C [n] |2 (5.28)

where

ρCSS,C [n] =
∑N−1

r=n σ1σ2w(r)w∗(r − n)
[
ζejψ2r−ψ1[r−n] + ζ∗ejψ1r−ψ2[r−n]

]

n ≥ 0, ρCSS,C [−n] = ρ∗CSS,C [n]
(5.29)
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| ρCSS,C [n] |2 = A2
ζσ

2
1σ

2
2

∣∣∣∣∣
N−1∑
r=n

w(r)w∗(r − n)
[
ejψ2r−ψ1[r−n]+]ζ + ejψ1r−ψ2[r−n]−]ζ

] ∣∣∣∣∣

2

(5.30)

Figure 5.2 shows the metric

MF2 = 10 log10

(
‖RCSS,C ‖2

F / ‖RCSS,U ‖2
F

‖RC ‖2
F / ‖RU ‖2

F

)
(5.31)

for the case N = 32, across the range of ∆ψ and with correlation coefficient ζ = ejθζ , θζ ∈

[−π, π]. From the Figure, MF2 ≤ −10 occurs for |N∆ψ/(2π) | ≥ 2.0, with MF2 ≤ −20

occuring for |N∆ψ/(2π) | ≥ 2.5 . As N → ∞, this region becomes more concentrated

around ∆ψ = 0 in a similar fashion to that described by Linebarger.

5.4.3 Normalized SINR Loss w.r.t. Uncorrelated Ensemble Covariance

The type of analysis in (5.31) based on ‖ ‖2
F gives a general idea about what is going on and

may be useful in understanding the limiting behavior as N →∞. A more useful measure for

practical array lengths remains the normalized SINR loss. Because MVDR is not designed

for the correlated signal and interference case, normalized SINR loss calculations based on

the ensemble covariance containing the correlation are inappropriate. They do not predict

the detrimental affects of the signal cancellation described earlier. We continue to use the

normalized SINR loss to understand performance, but for this reason use the ensemble

covariance for the uncorrelated data scenario, Rx,U , as the reference covariance. This

effectively compares the performance of CSS with the optimal beamformer as if there were

no correlation contained in the data. The subscript RC is used to indicate that this is the

normalized SINR loss for correlated data case.
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Figure 5.2: Analysis of impact of bias for correlated signal and interference using
‖ ‖2

F : For an N = 32 uniform linear array, this example shows the ratio specified by (5.31).
This metric shows how much the correlated component is contributing to the estimate of
the covariance, compared to its contribution in the ensemble covariance, as measured using
‖ ‖2

F and expressed in dB. At at value of -10 dB, this implies the correlated component
in the estimated covariance contributes 10% of the correlated component contribution in
the ensemble. For mitigating signal cancellation we would like the value to be as small
as possible. This metric tends to be too conservative as a measure of the region of good
performance (although useful in a limiting sense as N → ∞) , since it is not a direct
indicator of SINR loss.
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ξRC
=

sH( R̂CSS,U+R̂CSS,C )−1
s

sHR−1
x,Us

× sH( R̂CSS,U+R̂CSS,C )−1
s

sH( R̂CSS,U+R̂CSS,C )−1
Rx,U( R̂CSS,U+R̂CSS,C )−1

s

· (5.32)

As a second measure of performance in addition to ξRC
, which is an absolute measure, we

are interested in the relative performance compared to CSS when there is no correlation

within the data. This was the case considered earlier in Section 3.4.5. This performance is

referred to as

ξRU
=

sH
(
R̂CSS,U

)−1
s

sHR−1
x,Us

·
sH

(
R̂CSS,U

)−1
s

sH
(
R̂CSS,U

)−1
Rx,U

(
R̂CSS,U

)−1
s

(5.33)

We are interested in the difference between the two performance measures, (5.32), (5.33)

∆ξdB = ξRC ,dB − ξRU ,dB (5.34)

where ξdB = −10 log10 ξ.

Figure 5.3 shows ∆ξdB and ξRC ,dB for an N = 32 uniform linear array across the range

of ∆ψ and ]ζ, SNR = INR = 10 dB. The Hann window function was selected for w

for CSS with classical spectral estimation. For this Figure, | ζ | = 1.0, which is the most

demanding case. The lower graph shows ∆ξdB is nearly zero except for a limited region

with particular values of ]ζ.

Figure 5.4 shows the result when both the magnitude and angle of ζ are varied. The

upper plot shows the average ξRC ,dB in red for all values of ]ζ and | ζ | ∈ [0.0, 1.0] . The

blue trace represents ξRU ,dB as predicted from Chapter 3. The lower subplot shows averaged

∆ξdB specifically for values of | ζ | = l
10 , l = 0, · · · , 10 and random ]ζ. The simulation

shows normalized SINR loss performance of CSS operating on data with correlated signal

and interference is always less than 0.2 dB from CSS operating on uncorrelated data. In

136



N∆ψ /(2π)

an
gl

e(
ζ)

 (
de

g)

N=32, |ζ|=1.0, SNR=10 (dB), INR=10 (dB)

 

 

ξ
dB

 w.r.t. R
o
=VR

a,U
VH+σ

n
 2I

2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

ξ dB
 (

dB
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N∆ψ /(2π)

an
gl

e(
ζ)

 (
de

g)

N=32, |ζ|=1.0, SNR=10 (dB), INR=10 (dB)

 

 

∆ξ
dB

 = ξ
dB,C

 − ξ
dB,U

2 4 6 8 10 12 14 16

−150

−100

−50

0

50

100

150

∆ξ
dB

 (
dB

)

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 5.3: Performance assessment for correlated signal and interference: For the
case of an N = 32 uniform linear observing correlated signal and interference , the upper plot
shows the predicted normalized SINR loss (dB) of CSS with classical spectral estimation as a
function of separation between the sources and the correlation angle (correlation magnitude
is fixed at | ζ | = 1). Performance is determined with respect to an optimal processor using
an ensemble covariance where the signal and interference are uncorrelated - such a processor
is the best possible since the goal is to reduce the impact of the correlation in the data.
Performance is within 0.2 dB almost everwhere, except when the sources are very close. The
lower plot compares the relative performance of the CSS with classical spectral estimation
for uncorrelated and correlated signal and interference. This shows that CSS performs
nearly identically whether or not the signal and interference are correlated.
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Figure 5.4: Relative CSS performance for correlated and uncorrelated data: Con-
tinuing the case of an N = 32 uniform linear array with two sources, the upper subplot
shows the normalized SINR loss of CSS with classical spectral estimation for both uncor-
related and correlated sources. The close agreement between the results for uncorrelated
data, shown in blue, and for correlated data, shown in red, indicate that CSS largely mit-
igates the potential signal cancellation due to correlation. The lower subplot shows the
difference, ∆ξdB, between the two averaged for all correlation coefficient magnitudes and
angles. Performance when the interference is correlated is nearly identical to when it is not,
with a worst case difference of 0.2 dB.
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most cases is performance is effectively identical.

These results show that while E
{

R̂CSS

}
has a bias component when correlated signal

and interference are present, its impact is negligible as performance is nearly identical to

the uncorrelated signal and interference case. Covariance estimates based on frequency

wavenumber spectrum have a strong decorrelating effect when signal and interference are

correlated, and dramatically reduce the potential for signal cancellation to negatively impact

performance.

5.4.4 Effective SINR

The results from the previous sections indicate that CSS techniques should perform consis-

tently in the presence of correlated signal and interference, regardless of correlation coeffi-

cient or angle. Also, the performance should be inline with CSS performance as if the data

were uncorrelated. We illustrate this with an example and contrast the performance with

MVDR, whose performance degrades due to correlation. To do this we use the effective sig-

nal to interference and noise ratio, SINRe, of Tsai [79]. This metric measures the adaptive

beamformer impact on the desired signal, the portion of the interference correlated with

the desired signal, the portion of the interference uncorrelated with the desired signal, and

the background noise. Closed form solutions predict SINRe for MVDR for the correlated

signal and single interferer case.

The test case is from Example 6.12.1 [1], and has an N = 10 element uniform linear

array with desired signal present and at broadside, and a single interferer at −17o w.r.t.

broadside. For a specified (SNR, INR ) pair simulations are run sweeping the magnitude of

the correlation coefficient, | ζ | , from 0 to 1 with random phase in [ 0, 2π ]. CSS with MTSE

is used with NW = 1.5, D = 3, NFPE = 32, and γTH = 3 dB. The simulation results

are shown in Figure 5.5. CSS with MTSE maintains a consistent performance, regardless

of correlation coefficient, with near optimal effective SINRe.
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Figure 5.5: SINRe comparison of CSS and MVDR for correlated signal and in-
terference: Following the test case of Example 6.12.1 [1], the effective SINR is shown for
SNR = 0 dB, INR = -10, 0, 10 dB. The black curve shows the predicted SINRe for
MVDR. Increasing INR allows greater signal cancellation and results in a progressively
lower curve in the plot. Simulations for MVDR, show as the magenta diamond, match the
theory. The performance for CSS with MTSE is consistent regardless of the magnitude of
the correlation coefficient. Its value is near optimal (the same as MVDR for | ζ | = 0) in all
cases. The lower plot shows SINRe for SNR = 10 dB with INR = -10, 0, 10 dB. MVDR
follows the theoretical curve. CSS with MTSE does not achieve the optimal SINRe, but
maintains a consistent performance for all | ζ |.
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5.5 Related Techniques

This section shows the relationship of covariance matrix estimates found using the CSS

technique with the traditional sample covariance matrix and the techniques of redundancy

averaging and covariance matrix tapers. We assume application to a uniform linear array,

although CSS and CMT techniques are not restricted to only this type of array.

5.5.1 Redundancy Averaging

Redundancy averaging [42, 47, 48] was introduced to address the correlated signal and in-

terference problem. It takes advantage of the multiple available estimates of the space-time

correlation at a given spatial lag by averaging them, and then generates a covariance matrix

using the averaged values. For the uniform line array, this amounts to replacing diagonals

in the sample covariance matrix with the average diagonal values. This same concept has

enjoyed repeated introduction, sometimes to address correlated signal and interference [80],

sometimes to improve effective sample size [8]. Define an averaged diagonal value for the

nth diagonal for the mth snapshot, xm = ((xm[n] ))n

ρRA,m[n] =
1

N − |n|
N−1∑

β=0

xm[β]x∗m[β − n] (5.35)

where we assume the sequence xm[β] = 0 for β < 0, β ≥ N . The sample autocorrelation

for the each snapshot, xm, is

ρx,m[n] =
N−1∑

β=0

xm[β]x∗m[β − n] (5.36)

Observe that (5.35) applies a sample autocorrelation, ρw[n], to the data sample autocorre-

lation, where
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ρw[n] =
1

N − |n| (5.37)

With these, the redundancy averaged values (5.35) can be written as

ρRA,m[n] = ρx,m[n]ρw[n] (5.38)

The final values are then averaged over all snapshots, ρRA[n] = 1
M

∑M
m=1 ρRA,m[n] . The

covariance matrix for redundancy averaging is then formed from the sequence as

RRA = (( ρRA[r − c] ))r,c (5.39)

In terms of the DSR operation,

RRA = DSR (RSCM )¯TRA (5.40)

where

TRA = (( ρw[r − c] ))r,c (5.41)

In comparison, CSS defined via the DSR operation in (5.12) replaces diagonals in the co-

variance with the sum of all the entries on the diagonal, and not their average value as is

done for redundancy averaging. The particular window sample autocorrelation, ρw[n] =

(N − |n | )−1, used for redundancy averaging results in an unbiased expected value, E { ρRA[n] } =

Rx[n] and E {RRA } = Rx, if the data is uncorrelated. However, it is also results in RRA

being an indefinite matrix. This is a familiar result in the context of time series analysis, as

(5.35) is the form of the unbiased estimator for the auto-correlation of a sequence. While

unbiased, its form in (5.38) shows the sequence is a product of two functions. The Fourier

transform of this product is the estimate of the power spectral density. It is the convolution
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P̂RA ( ψ ) =
1
2π

ˆ π

−π
Cw( ψ − β )P̂ρx,ψ( β )dβ (5.42)

where P̂ρx,ψ( ψ ) = F ( ρx[n] ) and Cw( ψ ) = F ( ρw[n] ). For the particular ρw[n] used in

redundancy averaging, Cw( ψ ) is not strictly greater than zero, and as a result portions

of P̂RA ( ψ ) may become negative valued. This is a clearly invalid condition for a power

spectral density. In its matrix form, this condition presents itself by making the covariance

RRA indefinite. This is undesirable, and is mentioned directly in [42] as a realistic concern

for the redundancy averaging approach.

5.5.2 Covariance Matrix Tapers

The method of covariance matrix tapers [53, 81] provides a measure of robustness to sam-

ple covariance matrix processing by modifying the sample covariance matrix with a taper

matrix, TCMT , according to

RCMT = RSCM ¯TCMT (5.43)

The taper matrix, TCMT , is designed specifically to impart null widening properties, di-

agonal loading, or other desirable features. It is required that it be positive semidefinite,

TCMT ≥ 0, and Hermetian, TCMT = TH
CMT . An additional desirable feature is that

TCMT is a normalized diagonally homogeneous (NDH) matrix, meaning it is a constant

down its main diagonal. Because it is based on the sample covariance matrix, CMT does

not attempt to address the correlated signal and interference condition directly. Additional

processing, such as spatial smoothing is necessary to mitigate signal cancellation.

5.5.3 Comparison Summary

Table 5.1 summarizes some of the key comparisons between these techniques when applied

to uniform linear arrays. CSS with classical power spectral density methods is indicated
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Table 5.1: Comparison of CSS and related techniques
R form E { } xHRx conditions

R̂CSS DSR (Rw,SCM )
Rx,U ¯Rw +

DSR
(
VRa,CVH

) > 0
Cw( ψ ) > 0
P̂y ( ψ ) > 0

R̂RA DSR (RSCM )¯TRA
Rx,U +

DSR
(
VRa,CVH

)¯TRA
indefinite

R̂CMT RSCM ¯TCMT Rx ¯TCMT > 0 RSCM > 0

as R̂CSS . The general entry for E
{

R̂CSS

}
developed in Section 5.3 is given, considering

both uncorrelated and correlated point source signals. In the event the underlying process is

stationary, Ra,C = 0, and the expression simplifies. The R̂CSS technique provides benefits

found in both R̂RA and R̂CMT . It uses the DSR operation which is beneficial for correlated

signal and interference, similar to RA. It also provides the equivalent benefits, in expected

value, of covariance matrix tapering. As additional positive attributes, R̂CSS maintains

positive definiteness with reasonable restrictions on the choice of window function and

resultant power spectral density estimate. The DSR processing provides additional data

averaging, or alternatively an increase in effective sample size over R̂CMT which uses only

the sample covariance matrix.

5.6 Summary

This chapter investigated application of CSS techniques to the problem of correlated signal

and interference. It was shown that the correlation introduces an additional bias to the

covariance matrix estimate. The influence of the bias on performance, however, was seen

to be negligible. CSS operating on correlated signal and interference data performs nearly

identically to operation on similar data without correlation. This was verified via simula-

tion considering the effective SINR. While MVDR is known to degrade in performance as

correlation increases, CSS maintains a consistent performance regardless of magnitude of

correlation. The analysis performed provided an opportunity to related CSS to the tech-

niques of redundancy averaging and covariance matrix tapers, and it was seen that CSS
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provides benefits of both techniques with additional advantages of its own.
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Chapter 6: Non-Ideal Array Manifold Response

6.1 Introduction

The CSS methods presented in Chapters 3 and 4 inherently assume an underlying structure

based upon the observed narrowband space-time process consisting of sums of physically

propagating plane waves. For an array of ideal omnidirectional sensors, the array manifold

response takes on a form based on the complex-exponential, v(k) = (( exp[−jkTpn] ))n.

Real-world sensors and arrays may exhibit perturbations to this ideal response that alter

the form of the encountered covariance from its assumed structure. For a uniform linear

array, the ideal manifold response results in a Toeplitz covariance matrix. With any amount

of array manifold response error, this Toeplitz structure no longer holds. This is similar to

the effect encountered when investigating the correlated signal and interference scenario.

The ML estimate of an unstructured covariance [2] is the sample covariance matrix, and

the set of algorithms that build upon it are most applicable if the underlying problem is

unstructured. We are interested in determining if there are conditions where there is partial

structure, i.e., some of the underlying form exploited in Chapters 3 and 4 remains that can

help the problem.

In this chapter we review types of non-ideal array manifold responses and their impact

on structured covariance beamformer performance. We then develop a technique to mitigate

the impact based on data already available via CSS with MTSE processing. This is done

by estimating the array manifold response corresponding to detectable line components in

the spectrum, since these typically dominate the overall performance, and incorporating

this discrete set of non-ideal response vectors into the covariance. Performance is assessed

through simulation for non-ideal array manifold response scenarios of interest.

This approach differs from techniques that concentrate on estimating the steering vector,
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for example using the principal eigenvector of the clutter covariance matrix for radar [82],

or via estimates of the actual sensor positions such as for towed arrays. Techniques applied

to towed arrays have used GPS data for the tow vessel and a water pully model for the array

[83], algorithms to optimize the “focus” or sharpness of the wavenumber spectrum [84], or

observations of broadband signals in the environment [85]. As a narrowband processing

algorithm operating directly on the snapshot data, the technique developed here may be

valuable in concert with these techniques as the array displacement becomes significant,

in particular in light of the similarity between the circular bow array deformity in Section

6.2.2 and observed array behavior during turning maneuvers [83].

6.2 Types of Non-Ideal Array Manifold Responses

6.2.1 Random Errors

Random errors in array manifold response are considered as zero mean perturbations from

the nominal array response values. These may arise from non-ideal sensor gain or phase,

manufacturing precision, or other component tolerances. We use two approaches for describ-

ing these effects. The first, detailed in [1], provides a random error term for each physical

quantity related to each sensor, namely, position, amplitude response, and phase response.

Each error term, ∆i , is specified as a Gaussian random variable, ∆i
d→ N

(
0, σ2

i

)
. Indi-

cating the “actual” value of a quantity, x, using the additional subscript a, e.g., xa, the

effective position of the nth sensor element with nominal position pn is

pn,a = pn + [ ∆x, ∆y, ∆z ]T (6.1)

and the overall array manifold response is

va =
((

[ 1 + ∆A ] exp [ j∆θ ] exp
[−j

(
kTpn,a

) ] ))
n

(6.2)
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This provides complete specification of the potential random errors, (∆x, ∆y, ∆z, ∆A, ∆θ ),

and is useful for analysis of performance impacts in relation to each of the individual quan-

tities. A simpler model reduces the random error contribution to a multiplicative effect on

the amplitude and phase only. Define the vector

h = ch1 + g , g d→ CNN

(
0, σ2

gI
)

(6.3)

where ch is a constant. The non-ideal array manifold response is

va = v ¯ h = chv + vg (6.4)

The constant ch is chosen such that

vH
a va = vHv (6.5)

The ratio σ2
g/c2

h is a single metric that provides a measure of the difference between between

the ideal and actual array manifold responses. Expressed in dB as 10 log10

(
σ2

g/c2
h

)
, this

value gives some indication of how far down the perturbation components are from the

nominal response.

The simpler model of (6.4) is useful for varying array response as a function of angle

of arrival, while the more explicit model of (6.2) is more appropriate for analyzing oper-

ation below the design frequency where there is a non-zero virtual region and isotropic

noise component. For reference, Table 6.1 lists the model parameters that produce average

comparable distortion levels between the two models. For the explicit model, phase and

amplitude variations are set at σθ = 15o, and 3σA corresponds to ± 3 dB. The positional

variation is given in the table in units of percent with respect to array element spacing.
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Figure 6.1: Circular bow and partial circle bow array deformation: The circular
bow deformation, shown on the left, and the partial circular bow deformation, shown on the
right, are models for the types of bending experienced by a towed array. The deterministic
displacement from the nominal linear position cause the array manifold response to be
altered from its assumed ideal form.

6.2.2 Deterministic Errors

In addition to random errors, arrays may also experience determinstic types of array man-

ifold response perturbation. This results from deformation of the array which causes a

non-zero mean, non-random disturbance in the positions of the elements. With underwa-

ter acoustic arrays, such deformation can occur due to hydrodynamics for towed arrays in

motion [84]. Here we consider two types of positional errors for linear arrays, circular and

partial circular bows. Figure 6.1 shows an illustration of these two types of conditions.

Further details on the specific geometries can be found in Appendix A. Positional errors

which simply rotate or translate the array in space are not considered.
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Table 6.1: Random error model parameters for comparable distortion
N = 32 ULA, d = λo/2

f = fo f = fo/2
σ∆x,y,z (%d ) 10 log10

(
σ2

g/c2
h

)
σ∆x,y,z (%d ) 10 log10

(
σ2

g/c2
h

)
1 -21 1 -27
2 -15 2 -21
4 -9 4 -15
8 -5 8 -9
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6.3 Impact to Structured Covariance Matrix

ABF Performance

The technique of computing covariance based on estimates of the wavenumber spectrum is

clearly influenced by factors that impact the ability to accurately estimate that spectrum,

or how accurately that spectrum, based on complex exponentials, represents the true un-

derlying situation. Using the simple model from Section 6.2.1, the actual array manifold

response vector is va = chv + vg. The ideal array manifold response, v, is scaled and the

additional bias term is vg = v ¯ g . The array manifold response v (k ) = (( e−jkT pn ))n.

Multiplication of the individual complex Gaussian elements in g by complex exponential

scale factors does not change the their statistics, so we have

g, vg
d→ CNN

(
0, σ2

gI
)

(6.6)

so that the bias in any given realization is a complex Gaussian random vector. Consider a

single interferer in uncorrelated white noise.

xm = ( chv + vg ) a(m) + nm (6.7)

The covariance for this case for a given instance of vg is

E
{
xmxH

m |vg

}
= σ2

(
| ch |2 vvH + chvvH

g + c∗hvgvH + vgvH
g

)
+ Rn (6.8)

In any given instance of this scenario, the error is unknown but non-random, and will

produce a particular wavenumber spectrum. The covariance over the ensemble of error

vectors, vg, is

E
{
xmxH

m

}
= σ2 | ch |2 vvH + Rn + σ2σ2

gI (6.9)
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The ensemble power spectrum for this case appears as the original with the line component

scaled | ch |2, with an elevated noise floor corresponding to the σ2σ2
gI term. In a given

realization, though, it is a single vector, vg, causing the elevated sidelobes and not an

ensemble of plane waves from all directions. This phenomena is illustrated in Figure 6.2.

As the ratio σ2
g/c2

h increases there is larger and larger array manifold error, and the rise in

the perceived noise floor is clear.

Zatman, in considering the impact of random errors on structured covariance techniques

[86], showed that the normalized SINR loss performance of such techniques would degrade

and was proportional to the difference between the sidelobe levels due to the errors and the

true noise floor. This is also highlighted in Figure 6.2, as the red patched area indicates

this difference. Inset in each plot is the expected increase in normalized SINR loss, ∆ξdB,

which is equal to the rise in the noise floor.

∆ξdB ≈ max
(
0, INRdB + (σ2

g/c2
h)dB

)
(6.10)

Deterministic array manifold response error also causes an impact to the estimated

wavenumber spectrum. This impact is a function of both the positional displacement and

the angle of arrival of the discrete point source. This phenomena is illustrated in Figure

6.3 for the circular bow array deformity. Due to the symetry of the array bend, we expect

that the sidelobe structure resulting from the circular bow is also symmetric in wavenumber

space. In the upper left of Figure 6.3, a center displacement of H/L = 0.002% is shown,

with no visual impact apparent in the estimated wavenumber spectrum. The percentage

increases, left to right and top to bottom, as H/L = [0.02, 0.2, 2.0]% with the increasing

sidelobe level a clear result. The circular bow distortion causes the single discrete source to

appear as a symmteric, spatially spread interference.

Figure 6.4 shows similar effects in the estimated wavenumber spectrum for the partial

circular bow case. For these plots, the length L2 is chosen to be 25% of the overall ar-

ray length, L . Because the deformity is not symmetric, the corresponding influence in
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Figure 6.2: Estimated wavenumber spectrum, impact of random errors: Random
errors in the array manifold response raise the perceived noise in the wavenumber spectrum, acting
as sidebands around the line component in the spectrum. Structured covariance algorithms that
assume ideal array manifold response degrade in performance in direct proportion to the amount
the “raised” noise floor exceeds the true noise floor. The three plots show this elevated noise floor
over the true noise floor, shown in black dash-dot at 0 dB, for increasing magnitude of random
errors.
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Figure 6.3: Estimated wavenumber spectrum, circular bow array bending: A linear
array bent to a circular bow shape causes the appearance of increasingly higher sidebands
around the line component as the severity of the bending increases.

wavenumber space is not expected to be symetric. In the upper left in the Figure, an end

displacement, H, is set such that H/L = 0.002% . Again, there is no visible impact to

the estimated wavenumber spectrum. The percentage increases, left to right and top to

bottom, as H/L = [0.02, 0.2, 2.0]% with increasing and asymetric sidelobe structure still

clearly visible.
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Figure 6.4: Estimated wavenumber spectrum, partial circular bow array bending:
A linear array bent to a partial circular bow shape causes icreasingly higher asymetric
sidebands around the line component as the severity of the bending increases.
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6.4 Mitigation Techniques

6.4.1 Introduction

The non-ideal array manifold response can be expressed in the snapshot model by adding

an error vector (or calibration error), uk, to the ideal response vector, vk, in building the

snapshots.

xm =
K∑

k=1

(vk + uk ) ak(m) + nm (6.11)

The background noise arrives as plane waves at the array and is also affected by the non-ideal

array manifold response. However, we do not consider this impact under the assumption

that the dominant source of performance degradation is cause by the interaction of the

large INR line components and the non-ideal response. Because the error vectors are

additive to the ideal response vector, we can see that the snapshots consist of a set of terms

corresponding to the ideal array manifold response, and the additional error terms.

xm =

[
K∑

k=1

vkak(m) + nm

]
+

K∑

k=1

ukak(m) (6.12)

The ideal array manifold response is what drives the structure in the CSS algorithms. The

case considered here is where the array manifold response errors exist, but are small in

magnitude compared to the true array manifold response. We call this situation “partially

structured”, to reflect that the ideal array manifold response is still somewhat discernible

in the data. The MTSE harmonic analysis still provides the estimates of the observeable

plane wave components, provided they maintain a sufficient SNR over the apparent raised

noise floor such that line component detection is possible. We would like to take advantage

of this information to further estimate the array manifold response errors, uk, contributed

by the large line components to improve performance and overcome the limitations outlined
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by Zatman [86].

We consider the random error case as our starting point, and develop an algorithm

to deal with random array manifold perturbation. This can be done in a straightforward

manner. We do not develop a separate algorithm for deterministic array manifold errors.

An optimal algorithm for such conditions could be envisioned that estimates the error model

parameters, H for circular bow, and H and L2 for partial circular bow, or the parabolic

parameters in [83], and uses that information to assist in estimating the array manifold

errors. Here we simply take the technique developed for random errors, and see to what

extent deterministic errors may be processed effectively for the two types of non-random

errors considered.

6.4.2 MMSE Unbiased Linear Estimate of Calibration Errors

This section develops the minimum mean squared error, linear unbiased estimate of the

calibration errors. Assume there are K line components, and M ≥ K snapshots observed.

We start with the snapshot model containing non-ideal array manifold responses, vk,a =

vk + uk. The collection of snapshots, m = 1, · · · , M can be arranged as a matrix

X = [x1, x2, · · · , xM ] = (V + U )A + N (6.13)

where the individual matrices similarly consist of the original vectors, V = [v1, v2, · · · , vK ],

U = [u1, u2, · · · , uK ], A = [a1, a2, · · · , aM ], and N = [n1, n2, · · · , nM ] . For now, as-

sume that we have a priori knowledge of the ideal array manifold responses, V, and signal

amplitudes, A . In practice we will use the estimates provided by the MTSE harmonic anal-

ysis processing for these values. We can also represent the matrix A in an additional way,

with each row representing the amplitude time series for the corresponding point source

signal.

αT
k = [ ak(1), ak(2), · · · , ak(M) ] (6.14)
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A = [α1, α2, · · · ,αK ]T (6.15)

Given V, A, we want to estimate the array calibration errors U. Perform an initial step by

subtracing out the known line components.

Y = X−VA = UA + N (6.16)

Before continuing we’ll make the following assumptions:

• The array calibration errors, uk, are non-random but unknown, and are different for

each source, k = 1 · · ·K.

• The noise terms are zero mean and independent of the array manifold responses and

signal amplitudes, with covariance, E
{
nmnH

m

}
= Rn .

• The snapshots for different sample indices, m, are independent.

• rank(A) = K . Later we will consider the effects of rank(A) < K . This rank

deficient situation will occur if two signals are perfectly correlated with one another

(the magnitude of the correlation coefficient is unity), or the number of interferers

exceeds the number of snapshots, K > M .

We are interested in a linear processor that can be used to estimate the array manifold

response error vectors from the observations. For each error vector (or all ûk simultaneously)

ûk = Ywk , Û = YW (6.17)

where the matrices are W = [w1, w2, · · · , wK ], Û = [ û1, û2, · · · , ûK ] . We design the

processor to be unbiased, so E { ûk } = uk, E
{

Û
}

= U. Expanding out the expectation

E { ûk } = E {Ywk } = UAwk (6.18)
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This implies that to be unbiased UAwk = uk, or

Awk = ek , or AW = I (6.19)

where ek is the elementary vector which is all zeros with a 1 in the kth position. This places

K constraints on each weight vector, wk. Written out explicitly using the row definition of

A

αT
j wk = δ [ j − k ] (6.20)

where δ [ j − k ] is the Kronecker delta. We want to minimize the estimation error variance

at the output for each filter, wk, given by

σ2
w,k = E

{
(uk − ûk )H (uk − ûk )

}
(6.21)

Using (6.17) in (6.21), the expression for the variance reduces to

σ2
w,k = wH

k E
{
NHN

}
wk (6.22)

To find E
{
NHN

}
recall that N = [n1, n2, · · · , nM ], where the individual nm are i.i.d.

with covariance, Rn .

E
{
NHN

}
= E








nH
1 n1 nH

1 n2 nH
1 nM

nH
2 n1 nH

2 n2

nH
Mn1 nH

MnM








= tr (Rn ) I

(6.23)

Inserting (6.23) into (6.22) gives the noise output power.
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σ2
w,k = tr (Rn )wH

k wk (6.24)

We can now set up the constrained optimization problem to find the individual weights,

wk.

arg min
wk

tr (Rn )wH
k wk subject to αT

j wk = δjk (6.25)

Using the method of Lagrange multipliers we set up the following cost function to be

minimized [60].

J (wk ) = tr (Rn )wH
k wk +

K∑

l=1

λkl

(
αT

l wk − δlk

)
+

K∑

l=1

λ∗kl

(
wH

k α∗l − δlk

)
(6.26)

Taking the gradient w.r.t. wk and setting to 0

∂

∂wk
J (wk ) = 0

∣∣∣∣
wk=wk,opt

(6.27)

yields the following expression

wH
k = − 1

tr (Rn )

K∑

l=1

λklα
T
l (6.28)

Defining the vector λk and matrix Λ respectively,

λk = [λk,1, λk,2, · · · , λk,K ] , Λ =
[
λT

1 , λT
2 , · · · , λT

K

]T
(6.29)

then (6.28) can be written as
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wH
k = − 1

tr (Rn )
λkA (6.30)

We can express the entire solution for all k simultaneously as

WH = − 1
tr (Rn )

ΛA (6.31)

Inserting (6.31) into the constraint equation (6.19), and solving for the constraint matrix,

Λ, we have

Λ = −tr (Rn )
(
AAH

)−1
(6.32)

Our earlier assumption that rank(A ) = K implies that
(
AAH

)−1 exists. Inserting (6.32)

back into (6.31) produces the overall solution for the weights.

W = AH
(
AAH

)−1
(6.33)

which we recognize as the Moore-Penrose pseudo-inverse of A [72]. Using (6.33) in (6.17),

the minimum variance unbiased linear estimate of the non ideal array manifold response

error vectors is

Û = YW = YAH
(
AAH

)−1
(6.34)

In situations where M < K, then rank(A ) < K and the inverse
(
AAH

)−1 does not exist.

As an ad-hoc solution in this situation, we can choose to restrict the processing to estimate

a subset of the array manifold error vectors, ûk, corresponding to the M largest sources. In

practice this may still have issues with the conditioning of the matrix AAH and a value less

than M may work better numerically. Performance will degrade in these scenarios compared

to an optimal adaptive beamformer because there is not enough snapshot information to
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estimate all the random error vectors from the data.

6.4.3 Maximum Likelihood Estimate of Calibration Errors

In Section 6.4.2, we found the minimum mean square error linear unbiased estimate of the

array manifold response error vectors. This required knowledge of the number of point

source signals, K, the signal amplitudes, A, and the ideal array manifold response vectors,

V. Additionally, we assumed that the snapshots were independent. The solution did not

require definition of the statistics of the noise term, nm, other than state the noise was

independent of the other quantities in the data. In this section we derive the maximum

likelihood estimation of the array manifold response error vectors. We make the same as-

sumptions as in Section 6.4.2, and additionally specify the noise terms as complex Gaussian,

nm
d→ CNN (0, Rn ). The individual snapshots

xm = (V + U )am + nm (6.35)

are complex Gaussian random vectors, with non-zero mean, mm = [V + U ]am

xm
d→ CNN (mm, Rn ) (6.36)

Grouping all snapshots, X = [x1, x2, · · · , xM ] and amplitude values, A = [a1, a2, · · · , aM ],

the complex Gaussian random matrix X has non-zero mean M = (V + U )A . With the

snapshots being independent, the probability density for X is [87]

fX (X ) = π−NM det (Rn )−M exp

(
−

M∑

m=1

(xm −mm )H R−1
n (xm −mm )

)
(6.37)

Eqn. (6.37) can be expressed using the trace operator, tr() .
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fX (X ) = π−NM det (Rn )−M exp
(
−tr

[
(X−M )H R−1

n (X−M )
] )

(6.38)

For the available snapshot data, the likelihood function for a given estimate of the array

manifold errors is

fX | Û
(
X | Û

)
= π−NM det (Rn )−M exp

(
−tr

[ (
X−M(Û)

)H
R−1

n

(
X−M(Û)

)])

(6.39)

The maximum likelihood estimate of the array manifold error vectors, ÛML, is the matrix

that maximizes fX | Û
(
X | Û

)
.

ÛML = arg max
Û

fX | Û
(
X | Û

)
(6.40)

To find ÛML we begin with the log-likelihood function, `X | Û
(
X | Û

)
= ln fX | Û

(
X | Û

)
.

`X | Û
(
X | Û

)
= C1 + C2 − tr

[ (
X−M(Û)

)H
R−1

n

(
X−M(Û)

)]
(6.41)

where the constants C1, C2 are not functions of Û. Because it is a maximum of `X | Û
(
X | Û

)

∂

∂Û
`X | Û

(
X | Û

)∣∣∣∣
Û=ÛML

= 0 (6.42)

Expanding out terms in (6.41), and applying the partial derivative through the tr(), we

arrive at
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ÛML = XAH
(
AAH

)−1 −V (6.43)

Alternatively, if we start with

Y = X−VA (6.44)

and apply the same procedure, we have

ÛML = YAH
(
AAH

)−1
(6.45)

Eqn. (6.45) matches the result (6.34) in Section 6.4.2.

6.4.4 Comments

It is not surprising that the MMSE linear unbiased estimator has the same form as the ML

solution for Gaussian noise. Note that the covariance of the noise term nm does not have an

impact on the solution. This is particularly useful, since the noise covariance is not known

at this point in the processing. Also, it establishes that we should not encounter problems

if the underlying noise is non-white.

Where a non-white noise may still cause issues is in situations where the dynamic range

of the noise, spectrally, is very large. This could be the case when operating below design

frequency where the isotropic noise component is much larger than the sensor noise com-

ponent. The apparent increase in noise floor do to the effects of array manifold response

errors accumulated by the spatially spread isotropic noise process may mask the true sensor

noise components. Since we make no attempt to determine the error vectors attributed to

the spatially spread process we would expect a loss in performance. Looking ahead, Figure

6.8 shows an example of this type of scenario, where the total contribution of error vectors

due to the isotropic noise component mask the sensor noise, even though the point source

error vectors are managed.
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6.4.5 Procedure

This section describes the procedure to use the results from Sections 6.4.2 and 6.4.3 to

supplement the CSS with MTSE approach with additional non-ideal array manifold response

error vector information. The dominant sources of normalized SINR loss are the error

vectors associated with the high INR point sources in the data. We use the term partially

structured to indicate that some observation of the underlying structure remains observable.

The figures in Section 6.3 showed how this “looked” in the estimated wavenumber spectrum.

Fundamentally, being partially structured implies that the high INR line components in

the spectrum can still be detected via the MTSE harmonic analysis process. In general,

this requires some amount of positive SNR of the line component above the raised noise

floor caused by the array manifold errors.

The following procedure is used to incorporate non-ideal array manifold response error

vector information into the overall covariance matrix estimate.

1. Use MTSE harmonic analysis to detect and estimate the number of line components,

K, and their parameters, vk, and ak(m).

2. Use (6.44) and (6.45) to estimate array calibration error vectors, uk, for these line

components.

3. Subtract the discrete components from the snapshot data to form the residual, Xres =

X− (V + U )A .

4. (optionally) Iterate steps 1,2,3 .

5. Estimate the final residual “continuous” background spectrum, P̂res ( · ) , and form

RMTSE,res.

6. Form an overall estimate of the covariance matrix

RTOTAL =
K∑

k=1

(vk + uk ) (vk + uk )H 1
M

M∑

m=1

| ak(m) |2 + RMTSE,res (6.46)
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6.5 Performance Simulation

Performance of the algorithm described in Section 6.4.5 is assessed via simulation for several

scenarios. Processing for random array manifold errors, both at and below design frequency

is considered, as well as the two types of deterministic positional errors presented earlier.

We continue to focus on performance for the uniform linear array case, with varying inter-

ference environments. The primary measure of performance is the normalized SINR loss.

We also consider, qualitatively, the estimated wavenumber spectrum in comparison to the

corresponding ensemble MVDR spectrum.

6.5.1 Random Errors

Operation At Design Frequency

Simulations are performed for an N = 32 uniform linear array with spacing d = λ/2

operating at the design frequency, i.e., f = c/λ. We use the simple random error model of

Section 6.2.1, and vary the measure σ2
g/c2

h . Initial simulations contain K = 6 interferers,

each with INR = 50 dB. Figures 6.5 and 6.6 show the results for σ2
g/c2

h = -30 and -10 dB

respectively.

The upper portion of each Figure shows two estimated wavenumber spectra. The top

most is the MTSE spectrum for the data, with the MTSE parameters NFPE = 32, NW =

2, D = 4 and γTH = 5 dB. A single pass of non-ideal response processing is carried out.

In regions away from the line components the noise floor is raised due to the sidelobes

introduced by the non-ideal array manifold response, similar to the observations in Section

6.3. A key difference here is the each interferer contributes to the raised noise floor, so that

the apparent noise floor is

∼ INRdB +
(
σ2

g/c2
h

)
dB

+ 10 log10 ( K ) (6.47)

The lower spectrum is the MTSE spectrum after array manifold response error processing.
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In this spectrum the ideal portions, vk, of detected components are numerically added to

the estimated continuous background spectrum. This estimated background spectrum is

computed from the residual snapshot data, where the line components and their associated

array manifold response error vectors have been subtracted out. The six interferers are

clearly visible, with overall noise floor showing a flat shape, as expected, but biased lower

than its actual level at 0 dB. The lower portion of the Figure shows the normalized SINR

loss (in blue) for the adaptive beamformer based on the final estimated covariance, RTOTAL.

For comparison, the multistage Wiener filter (MWF) with rank r = 6 is shown in red. CSS

with MTSE and MWF both operate on the same snapshot data, and both use the ideal

array manifold response to generate the steering the vector, s. Both 50th and 90th percentile

are shown in the Figure.

Figure 6.5 shows the case of σ2
g/c2

h = −30 dB, with a perceived raised noise floor in

the range 28-32 dB, near the expected 27.8 dB. Again, the final wavenumber spectrum is

reasonable, with the normalized SINR loss tracking well with MWF except near M = 6

snapshots. This is a result of the ad-hoc limiting discussed in Section 6.4.2 restricting the

number of processed interferers to M −1 to improve condition number of the AAH matrix.

Figure 6.6 shows a more stressful scenario with σ2
g/c2

h = −10 dB. The elevated noise

floor is in the range of 50 dB, near the expected 47.8 dB. The final wavenumber spectrum

is reasonable. Here also, normalized SINR loss tracks well with MWF except approaching

M = 6 snapshots. Also evident is that the 90th percentile curve is starting to show higher

loss, indicated that the performance of the technique is starting to break down. Cases with

σ2
g/c2

h > −10 dB showed generally poor performance, indicating that the “partially struc-

tured” condition is no longer applicable and the harmonic analysis is unable to consistently

detect line components in the data.

The behavior seen here is consistent through all simulation scenarios. When error vector

processing works, normalized SINR loss performance tracks with the MWF of appropriate

rank. As the non-ideal array manifold response becomes large the line components are

not consistently detected and performance degrades. When the non-ideal array manifold
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response becomes so large that the line components are undetectable the method does not

work.

Iterative Processing

All line components may not be evident in the initial estimated spectrum as the sidelobes

due to the strongest interferers may mask them. Depending on the INR of these hidden

line components, and the degree of non-ideal response, additional error vector processing

may be required. As mentioned in Section 6.4.5, the array manifold error processing may

be iterated. Figure 6.7 shows an example of such a situation, with σ2
g/c2

h = −10 dB. Here,

two of the point sources are at INR = 50 dB, with the remaining four lowered to INR = 20

dB. The original MTSE spectrum only shows the two peaks corresponding to the strongest

sources. A single iteration of processing does not account for the lower INR source error

vectors. In the figure, two iterations of array manifold error processing are carried out,

with the resultant estimated wavenumber spectrum shown in the middle. All components

are identified, at appropriate power levels and the spectrum is reasonable. The normalized

SINR loss perform tracks similarly to MWF except near M = 6 snapshots, a behavior seen

in the original σ2
g/c2

h = −10 dB test case.

168



−15 −10 −5 0 5 10 15
−20

0

20

40

60

ψ N/(2π)

dB

MTSE, N = 32, M = 12, σ2/c2 = −30 (dB)

−15 −10 −5 0 5 10 15
−20

0

20

40

60

ψ N/(2π)

dB

WITH CALIBRATION ERROR PROCESSING

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

S
IN

R
 L

O
S

S
 (

dB
)

# SNAPSHOTS

SINR LOSS CDF CONTOURS, CALIBRATION ERROR PROCESSING, 32 ELEMENT SLA

 

 

MTSE (HA) 50th

MTSE (HA) 90th

MWF 50th

MWF 90th

Figure 6.5: N = 32, σ2
g/c2

h = −30 dB, constant INR = 50 dB: In this test case the impact
of the non-ideal array manifold response is clearly visible in the original MTSE spectrum,
shown in the upper subplot, as the noise floor is significantly higher than the true noise
floor (indicated by the black dash-dot line). After error vector processing the final estimated
spectrum is much improved, as seen in the middle subplot. As shown in the lower plot, the
normalized SINR loss performance of CSS with MTSE and error vector processing tracks
with MWF performance.
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Figure 6.6: N = 32, σ2
g/c2

h = −10 dB, constant INR = 50 dB: In this test case the
large non-ideal array manifold response almost masks the high INR point sources in the
original MTSE spectrum, shown in the upper subplot. The noise floor exceeds the true
noise floor by 50 dB. After error vector processing the final estimated spectrum is again
much improved, as seen in the middle subplot. Normalized SINR loss performance of CSS
with MTSE and error vector processing follows MWF performance to M = 7 snapshots in
the 50th percentile, and to M = 9 snapshots in the 90th percentile. This indicates that the
magnitude of the non-ideal response is approaching the point where the “partial structure”
concept is no longer applicable.
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Figure 6.7: N = 32, σ2
g/c2

h = −10 dB, variable INR = [20, 50] dB, 2 passes: The
error vectors corresponding to the largest INR line components may mask point sources
that are substantially weaker but present. In this example, the sidelobes of the two highest
INR sources hide the four lower INR sources. These lower sources also contribute their
own array manifold response error vectors. These may require additional processing to
progressively peel back the impact of the line components to observe the true noise floor
(shown as the black dash-dot line). Two passes of error vector processing accomplish this,
as shown in the middle subplot. Overall normalized SINR loss performance tracks well with
MWF performance. Without the second pass, the normalized SINR loss is in line with
expected [86] as illustrated in Figure 6.2, in this case ˜16 dB.
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Operation Below Design Frequency

To simulate operation below the design frequency several parameters need to be specified.

The isotropic noise component, σ2
n, must be specified relative to the uncorrelated sensor

noise component, σ2
w. For simulation we use σ2

w = 0 dB, σ2
n = 20 dB. To properly form

the snapshot data for the isotropic noise requires the isotropic noise covariance matrix,

Rn. This is not straightforward using the simple model of Section 6.2.1, but can be done

using the explicit model. We use σ2
A corresponding to a gain variation in the range ±3 dB

(w.r.t. power) for all sensors, with a phase error of σθ = 15o. With these set, simulations

are run for σ∆x = σ∆y = σ∆z corresponding to 1% and 10% of the interlement spacing,

λo/2. The test cases consider operation at one-half the design frequency. To avoid changing

the wavenumber resolving capability of the array, which impacts the effectiveness of MTSE

harmonic analysis, the uniform linear array has N = 64 elements (compared to N = 32

used earlier). To maintain similar line component cancellation performance as earlier, we

correspondingly lower NFPE to 16 from 32. The remaining MTSE parameters used are

NW = 2, D = 4 and γTH = 5 dB. The same constant INR, K = 6 interferer test case is

used in these scenarios.

Figure 6.8 shows the results for positional errors corresponding to a standard deviation

of 10% of the element spacing. The final estimated wavenumber spectrum is still reasonable,

but the bias in the noise floor in the virtual region is more apparent. This is a result of the

sidelobe contributions from the isotropic noise component, similar to the effect of individual

point sources but for a spatially spread process. Normalized SINR loss performance tracks

closely with the MWF (rank r = 6). Positional errors greater than 12.5% standard deviation

begin to rapidly degrade compared to the unconstrained covariance technique. Performance

results for 1% standard deviation of position (not shown) similarly track with MWF to

M = 6 snapshots.
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Figure 6.8: N = 64, σ∆x,y,z = 10% · λo/2, constant INR = 50 dB, half design fre-
quency: The large positional errors result in large bias in the virtual region after error
vector processing. The algorithm does not attempt to mitigate the effect of non-ideal re-
sponse attributed to spatially spread noise sources such as the isotropic noise environment,
just the line components in the spectrum.
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6.5.2 Deterministic Errors

Circular Bow

This section looks at performance of the array manifold error processing algorithm in the

situation of a circular bow in the array, as discussed in Section 6.2.2. We use the same

K = 6 interferer, INR = 50 dB test case, and vary the amount of deflection of the array at

its center, H, from the nominal line of the array. This is expressed as a percentage of the

overall array length, H/L.

Figure 6.9 shows the results for H/L = 2.0 %, lower values of H/L indicate smaller array

deformation so results are comparable. The original MTSE spectrum shows the impact of

the positional errors and ’sidebands’ around the location of the sources, similar to that

shown in Figure 6.3 for the case of a single interferer. Because of the proximity of the

sources with respect to each other, the overall noise floor appears raised, but this is the sum

of the contribution of the sidebands. The final estimated wavenumber spectrum after array

manifold error processing appears reasonable. The normalized SINR loss performance is

comparable to the MWF (rank r = 6) processor, with some advantage below the point of

M = 6 snapshots.

As the value of H/L exceeds 2.0% performance is seen to degrade in the final MTSE

spectrum as line components are not reliably detected (not shown). This implies that the

error vector processing is not estimating and removing the non-ideal array manifold response

as completely as seen in earlier cases, and that the true covariance matrix itself is becoming

unstructured compared to the assumed model.
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Figure 6.9: Circular bow in array shape, N = 32, H/L = 2.0%, constant INR = 50
(dB): The array bending occasionally results in one of the point sources failing to be
detected in the estimated wavenumber for M = 12, shown in the upper subplot. Error
vector processing operates on the point sources that are detected. The final wavenumber
spectrum, shown in the middle subplot, appears reasonable. The normalized SINR loss
performance, shown the bottom plot, is comparable to MWF. Larger circular bow deformity,
H/L > 2.0%, results in unacceptable performance.
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Partial Circular Bow

This section looks at performance of the array manifold error processing algorithm in the

situation of a partial circular bow in the array, as discussed in Section 6.2.2. Because a

portion of the array maintains its linear form, performance is more tolerable to a higher

deflection, H, from the nominal line of the array. We select the curved portion of the

array to span a distance L2/L = 25% of the overall array length, and vary the deflection

as a percentage of overall array length, H/L. The interference environment is the same

K = 6 interferer, fixed INR = 50 dB test case. Performance was assessed for H/L =

2.0, 3.0, and 4.0 %. Below H/L = 4.0%, the error vector processing successfully identifies

and accounts for the non-ideal response. Similar to circular bow case, the final MTSE

spectrum is reasonable and performance is inline with MWF. Results are not shown as they

are comparable to Figure 6.9.

For H/L = 4.0%, Figure 6.10 shows that the final wavenumber spectrum exhibits arti-

facts, a sign that performance is beginning to degrade. The normalized SINR loss curves

are slightly worse than MWF at the 50th percentile. Additionally, the 90th percentile curve

is not visible, clearly indicating that algorithm is not performing at all some percentage of

the time in this case. For H/L > 4.0%, for L2/L = 25%, performance continues to degrade.

This behavior is similar to that seen in the circular bow case for H/L > 2.0%.
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Figure 6.10: Partial circular bow in array shape, N = 32, H/L = 4.0%, L2/L = 25%,
constant INR = 50 dB: The larger array bending in the partial bow results in one of the
point sources occasionally failing to be detected in the estimated wavenumber for M = 12,
shown in the upper subplot (recall this occured for H/L = 2.0% in the circular bow case,
Figure 6.9). Error vector processing operates on the point sources that are detected and the
final wavenumber spectrum, shown in the middle subplot, shows evidence of the impact of
the overlooked interferer. Near broadside the estimated noise floor is still reasonably close
to the true noise floor, shown as the black dash-dot at 0 dB. The normalized SINR loss
performance, shown the bottom plot, is still comparable to MWF. Larger partial circular
bow deformity, H/L > 4.0% results in unacceptable performance for this particular L2/L.
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6.5.3 Impact of Error Processing with Ideal Array Manifold Response

The previous sections showed scenarios where the addition of array manifold error process-

ing improved upon the normalized SINR losses predicted for structured algorithms, with

performance in line with that seen using MWF processing. This came at the expense of

the fast convergence of the original CSS with MTSE algorithm seen earlier. A remaining

question is if there is a penalty incurred for performing this processing in the event the

array has an ideal array manifold response.

With no array manifold response errors, the test cases considered represent three scenar-

ios. The first, a constant INR, six interferer test case is shown in Figure 6.11. With MTSE

parameters NFPE = 32, NW = 2, D = 4 and γTH = 5 dB, the original MTSE spectrum

(top) shows the characteristic pedestal behavior due to the accuracy of the discrete com-

ponent cancellation. Array manifold error processing eliminates the residual components,

as seen in the final estimated wavenumber spectrum. This is a beneficial byproduct of the

array manifold error processing. The normalized SINR loss curve is only slightly worse

performing than MWF for M > 6, with improved performance below M = 6.

The improved performance below M = 6 deserves some discussion. In general, the error

vector processing attempts to remove array manifold error vectors from the data when, in

fact, there are none. This causes a drop in performance compared to that seen with the

original CSS with MTSE algorithm from Chapter 4. Simulations have shown that using a

large initial NFPE, say ≥ 128, makes this problem worse due to the improved accuracy in

initial harmonic analysis line component cancellation. This makes the error vector estimates

more sensitive to numerical issues. Larger NFPE also produces a much lower biased noise

floor in the final estimated wavenumber spectrum. For this test case all six point sources

are always detected, but when M ≤ 6 snapshots are available the number of point sources

considered is limited to M − 1, to maintain appropriate rank of the matrix A in (6.33).

When this happens, by limiting the additional error vector processing the overall processor

behaves more like the original algorithm of Chapter 4, which is the more appropriate for

the data. At M = 1 no additional error vector processing is attempted at all, and the
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performance is the same as seen for M = 1 in Chapter 4.

Figure 6.12 shows the second test case, identical to the first but with a mix of INR

levels. Two iterations of array manifold response error processing are invoked. Overall

performance is very similar to the first test case, with normalized SINR loss performance

slightly better than MWF, but not by a notable amount.

Figure 6.13 is the test case for operation below the design frequency. MTSE parameters

are NFPE = 16, NW = 2, D = 4 and γTH = 5 dB. The array manifold response error pro-

cessing does produce a good final estimate of the wavenumber spectrum, in both the visible

and virtual regions. The normalized SINR loss performance follows a similar convergence

trajectory as MWF.

In all cases, implementing additional error vector processing results in performance that

is driven by the number of snapshots, M , and interferers, K. The rapid convergence with

near optimal performance of the original CSS with MTSE when applied to ideal array

manifold response data is not exhibited.
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Figure 6.11: Impact of error processing for ideal manifold response, fixed INR:
This test case measures the impact of error vector processing when the array manifold
response is in fact ideal, for the N = 32 with constant INR = 50 (dB) scenario. Above
M = 6 snapshots, performance follows the MWF trajectory within 1 dB. Below M = 6
snapshots performance is better. This is a resultant of the algorithm constraining the error
vector processing due to the limited snapshots versus number of interferers. By limiting
error vector processing, the algorithm behaves more like the basic CSS with MTSE of
Chapter 4, which is the appropriate algorithm for the data. Therefore, as the error vector
processing is “phased out”, performance improves.
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Figure 6.12: Impact of error processing for ideal manifold response, mixed INR,
two pass processing: This test case measures the impact of error vector processing when
the array manifold response is, in fact, ideal for the N = 32, mixed INR = 20, 50 dB
scenario. Two passes of error vector processing are used, although performance is identical
to single pass processing as all line components are detected in the first pass. Above M = 7
snapshots, performance is slightly better than the MWF trajectory. Below M = 7 snapshots
performance is noticeably better due to the “phasing out” of the error vector processing
described earlier.

181



−30 −20 −10 0 10 20 30
−20

0

20

40

60

ψ N/(2π)

dB

MTSE, N = 64, M = 12, NFPE = 16

−30 −20 −10 0 10 20 30
−20

0

20

40

60

ψ N/(2π)

dB

WITH CALIBRATION ERROR PROCESSING

5 10 15 20 25 30
0

2

4

6

8

10

12

14

16

18

20

S
IN

R
 L

O
S

S
 (

dB
)

# SNAPSHOTS

SINR LOSS CDF CONTOURS, CALIBRATION ERROR PROCESSING, 64 ELEMENT SLA

 

 

MTSE (HA) 50th

MTSE (HA) 90th

MWF 50th

MWF 90th

Figure 6.13: Impact of error processing for ideal manifold response, below design
frequency: This test case measures the impact of error vector processing when the array
manifold response is, in fact, ideal and operation is below the design frequency of the array.
In this case, N = 64, INR = 50 dB, and operational frequency is one-half design frequency,
f/fo = 1/2. Error vector processing can be seen impacting noise floor estimation in the
virtual region, as seen in the difference in the MTSE spectrum before (top subplot) and
after processing (middle subplot). This is attributable to estimation errors, as the algorithm
forces a subtraction of what it estimates as the non-ideal response. Performance for M < 6
is consistent with the other cases considered.
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6.5.4 Performance Simulation Recap

Sections 6.5.1 through 6.5.3 looked at performance of the various combinations of ideal

array manifold response, non-ideal array manifold response, and whether or not additional

array manifold response error vector processing was used to supplement the original CSS

with MTSE algorithm of Chapter 4. If the array manifold response was non-ideal, and no

additional processing was done, the normalized SINR loss was degraded predictably [86]

as shown in Figure 6.2. The algorithm of Section 6.4.2 was implemented and different

array manifold response test scenarios were simulated. In general when the algorithm was

able to operate successfully the performance followed a consistent behavior. This was the

case as long as the line components were detectable above the perceived raised noise floor.

As a point of reference, the original CSS with MTSE algorithm applied to ideal array

manifold response data always exhibits better performance. Figure 6.14 recaps the relative

performance that has been observed.

6.5.5 Comparison - MTSE and MVDR Spectra

The error vector processing is a technique for adapting the CSS with MTSE approach to

handle non-ideal array manifold response, where the response retains sufficient “likeness”

to the ideal that the parameters of the large discrete components in the spectrum can

be estimated. Using this information, the error vector(s) can be estimated and used in

the formulation of the final estimate of covariance. The previous sections showed several

examples where this processing was effective and the overall normalized SINR loss was

equivalent to reduced rank processing of the data using MWF. In each scenario, the array

manifold error could be made large enough so that the covariance matrix was effectively

unstructured w.r.t. the assumed model, and the technique was ineffective. So the array

manifold error processing is not a replacement for unconstrained covariance and reduced

rank techniques, but offers a way to extend the basic CSS with MTSE processing based on

available data products to address the issue of non-ideal response.

An additional byproduct of this processing is a final MTSE wavenumber spectrum with
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Figure 6.14: Performance comparison with/without non-ideal response process-
ing: Sections 6.5.1 through 6.5.3 looked at performance of the non-ideal error vector esti-
mation algorithm on overall adaptive beamformer performance. When the algorithm is able
to operate successfully the normalized SINR loss performance generally follows a consistent
behavior as illustrated in this figure, shown for the K = 6 fixed INR test case. When the
array manifold response is ideal, and the original CSS with MTSE algorithm of Chapter 4
is applied the best overall performance results, show as the blue circle trace. When CSS
with MTSE and error vector processing is applied to this data, as shown in red diamond,
performance follows that of MWF (a representative reduced rank algorithm) above M = K
snapshots. Below M = K, performance improves as the algorithm constrains itself to re-
move fewer and fewer estimated error vectors, based on the number of available snapshots.
This performance converges at M = 1 to the original algorithm, since the error vector pro-
cessing is disabled at this point. When the array manifold response is in fact non-ideal, and
the CSS with MTSE and error vector processing is applied, performance generally tracks
with the MWF, shown in black triangle.
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the influence of the error vectors for the large discretes removed. One can qualitatively

compare the utility in this final estimate of the spectrum to MVDR spectra computed

using the ensemble covariance matrix. Figures 6.15 - 6.18 show this comparison for the test

cases used thus far, and also include an additional example (Figure 6.17). In each figure,

three test cases are considered for the scenario corresponding to increasing the amount of

array manifold errors. The green trace is the least error, red a medium amount, and blue

a large amount (but not so large that the processing fails). The traces are offset slightly in

the x-axis to help in being able to interpret the plots. Without this offset the traces overlap

too much and make a visual comparison difficult. In the top left of each figure the initial

MTSE spectra are shown. This is before any array manifold response error processing, and

represents what the standard MTSE processing will produce given the snapshot data. In the

top right of each figure, the corresponding traces are shown for the final MTSE spectra after

all array manifold error processing is complete. Each MTSE plot represents one realization

for M = 50 snapshots. In the lower left of each figure is the MVDR wavenumber spectrum

using the ensemble matrix for the problem, with array manifold response errors included.

In the lower right of each figure is the corresponding MVDR spectrum using the ensemble

matrix as if the array manifold response is ideal. The figure captions describe the scenarios

in greater detail.

Although each test case is different, the behavior observed is consistent. The original

MTSE spectrum is degraded by the non-ideal array manifold response, as evidenced by the

raised noise floor which potentially masks other line components in the spectrum. After

error vector processing, the final MTSE spectrum recovers the true noise floor, or close to it,

and represents the line components with the correct relative power levels. This is contrasted

to an MVDR spectrum, given the ensemble covariance matrix for the data, including the

non-ideal array manifold response. The MVDR spectrum provides the correct locations

for line components, but their relative strength is affected by the array manifold errors.

The final MTSE spectrum is more comparable to an MVDR spectrum for an ensemble

covariance with ideal array manifold response. Effectively, after error vector processing, the
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MTSE spectrum is providing a picture of what the environment looks like if the array were

“fixed” and ideal array manifold response restored.

6.6 Summary

This chapter investigated the impacts to CSS performance when the array manifold response

encountered was non-ideal. Normalized SINR loss degrades in a predictable manner, and

quickly becomes unnacceptable depending on the severity of the non-ideal response. A

technique was developed to estimate the error vectors associated with the strongest INR

line components in the data using the detection and estimation parameters available from

harmonic analysis. Through simulation, this technique was seen to improve performance

in the face of non-ideal array manifold response, and normalized SINR loss was seen to be

comparable to reduced rank techniques provided the harmonic analysis could reliably detect

the line components. The extremely fast convergence of the original CSS when encountering

ideal array manifold response data is no longer seen. This is a result of the error vector

estimation performance being tied to the amount of data averaging provided. As a beneficial

byproduct, MTSE could be made to produce an estimate of the wavenumber spectrum as

if the array manifold had been restored to ideal.
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Figure 6.15: Comparison of final MTSE and MVDR spectra, fixed INR case:
Compare the final MTSE spectra (upper right) to the MVDR spectra given the ensemble
covariance for the data (lower left). While MVDR indicates the line components, their
relative strength is proportional to the magnitude of non-ideal response present. The final
MTSE spectrum (upper right) shows all line components with the correct power. This is
similar to an MVDR spectrum based on an ensemble covariance as if the array manifold
response were ideal (lower right). For all plots the blue, green, and red traces are all for the
same underlying point source locations, but are staggered in the display for visual clarity.
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Figure 6.16: Comparison of final MTSE and MVDR spectra, mixed INR case:
In cases where individual INR is mixed, large point sources may mask out lower INR
point sources, as seen in the initial MTSE spectra (upper left) in blue. These lower INR
sources may also be strong enough to mask the true noise floor. Two passes of error vector
processing are used to address this. The final MTSE spectra (upper right) produces a
correct spectrum. Compare this to the MVDR spectra given the ensemble covariance for
the data (lower left). While MVDR indicates the line components, their relative strength
is impacted by the non-ideal response. The final MTSE spectrum is more like the MVDR
spectrum based on an ensemble covariance for an ideal array manifold response (lower right).
For all plots the blue, green, and red traces are all for the same underlying point source
locations, but are staggered in the display for visual clarity.
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Figure 6.17: Comparison of final MTSE and MVDR spectra, wide range INR
case: This test case extends the scenario of Figure 6.16 by making the separation between
the strong and weak point sources even larger, 50 dB and -3 dB (per element). Final
MTSE spectra performance is similar to other examples, and corrects for the non-ideal
array manifold response. For all plots the blue, green, and red traces are all for the same
underlying point source locations, but are staggered in the display for visual clarity.
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Figure 6.18: Comparison of final MTSE and MVDR spectra, 1
2 design frequency:

Operation below design frequency introduces challenges when the impact of the non-ideal
array manifold and the environmental, e.g. isotropic, noise combine to exceed the sensor
noise in the virtual region. CSS with MTSE and error vector processing addresses only the
non-ideal array manifold response for the detected line components, not the spatially spread
isotropic noise. As a result, the final MTSE spectra, shown in the upper right, contains
residual bias in the virtual region. The relative power of the line components in the visible
region is correct, though, compared to MVDR based on the ensemble covariance for the
data (lower left). For all plots the blue, green, and red traces are all for the same underlying
point source locations, but are staggered in the display for visual clarity.
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Chapter 7: Extensions for Arbitrary Geometry

7.1 Introduction

Arrays with a regular element spacing lend themselves to a convenient simultaneous esti-

mation of visible space components of the space-time process and virtual space sensor noise

using classical spectral estimation techniques and efficient FFT computation. For arbitrary

array geometries, proper estimation of the virtual space sensor noise may require more ef-

fort. This chapter develops an approach for doing this based upon analyzing the covariance

for isotropic noise. The CSS with MTSE techniques are then extended for application to

arbitrary arrays. Performance is assessed for the particular case of a uniform circular array.

7.2 Sensor Noise with Arbitrary Array Geometry

The covariance matrix of interest, Rx, consists of two subspaces corresponding to visible

and virtual regions.

〈Rx 〉 = 〈Rvs 〉+ 〈Rvr 〉 (7.1)

where the notation 〈A 〉 indicates the span of the column space of the matrix A. We may

assume that the subspaces, 〈Rvs 〉 and 〈Rvr 〉 are approximately orthogonal, although due

to the array geometry the transition between the two may not be so sharp. The visible

region subspace is approximately the subspace defined by the covariance associated with

3D isotropic noise.

〈Rvs 〉 ≈ 〈Riso 〉 (7.2)
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This is convenient for two reasons. First, the 3D isotropic noise is specified in terms of

angle of arrival to the array. This has an intuitive physical interpretation regardless of array

geometry. Second, from (3.31) the contribution of the sensor noise component appeared as

a 3D isotropic noise component when restricting attention to the visible region only. This

will be useful later when considering the positive definiteness of the estimated covariance.

Because of the spatial stationarity of the 3D isotropic noise, the covariance is a func-

tion of the difference in position only, ∆p. This difference can be expressed in cartesian

{∆px, ∆py, ∆pz } or spherical coordinates { s, γ, ζ } .

∆p =




∆px

∆py

∆pz




=




s sin γ cos ζ

s sin γ sin ζ

s cos γ




(7.3)

The covariance between two omnidirectional sensors in 3D isotropic noise has a known form

[1,54]

Riso ( s, γ, ζ ) = Riso ( s ) =
sin ( ωs/c )

ωs/c
(7.4)

The covariance matrix for an array of sensors is populated by values of this function where

the relative position is ∆p = pr − pc .

Riso = ((Riso (∆p ) ))r,c = ((Riso ( s ) ))r,c (7.5)

We use (7.4) in (7.5) to compute Riso , and perform an eigendecomposition of the matrix.

The decomposition is ordered according to decreasing eigenvalues.

Riso = QisoΛisoQH
iso =

N−1∑

n=0

λnqnqH
n (7.6)
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The eigenvalues, λn , for Riso are a measure of the concentration of each eigenvector within

the visible region subspace. We divide the eigenvectors into two sets, the first set being

those with large eigenvalues meaning they are mostly concentrated in the visible region.

Those with low concentration, meaning those with eigenvalues near zero, are assigned to

the virtual region subspace. The boundary is somewhat arbitrary but may be immediate

from inspection of the eigenvalues. The upper plot in Figure 7.1 shows the eigenvalues

for an N = 32 uniform linear array operated at and below the design frequency fo . The

distinction between the visible and virtual region is obvious in this case. The eigenvalues

in the Figure show a rapid drop off as n/N > f/fo . Also evident is that there is no virtual

space when operating at design frequency, as the eigenvalues are all equal. The visible and

virtual regions are less clearly defined for a uniform circular array. The lower plot in Figure

7.1 shows the eigenvalues for an N = 50 uniform circular array. Changing the operational

frequency changes the size of the radius as measured in wavelengths. In Figure 7.1, the

results are provided for a radius of Rλ = 5λo, 3.75λo, 2.5λo, and 1.25λo. The cases of

3.75λo, 2.5λo, and 1.25λo show a rapid drop off similar to the ULA, but not immediately

at the point n/N > Rλ/5 . Also, even for operation at the design frequency the eigenvalues

are not all equal valued, showing a gradually decrease from 0 to -3 dB.

Indicating the number of eigenvectors determined to be in the visible space as Nvs ,

show the explicit make up of Riso.

Riso =
Nvs−1∑

n=0

λnqnqH
n +

N−1∑

n=Nvs

λnqnqH
n (7.7)

The visible region subspace is approximately the subspace spanned by the first Nvs eigen-

vectors.

〈Rvs 〉 ≈ 〈q0, q1, · · · , qNvs−1 〉 (7.8)

The eigenvectors, Qiso , make a complete orthonormal set for
〈
CNxN

〉
. The covariance
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Figure 7.1: Eigenvalues for Riso, various arrays: Analysis of the eigenvalues of the
covariance for 3D isotropic noise, Riso, for an array and operational frequency can be used
to determine the visual region and virtual region subspaces. In the top plot, the eigenvalues
for a uniform linear array show a sharp drop off as n/N > f/fo. This makes sense as
the space-time process at lower operational frequencies, f , is spatially oversampled. The
eigenvalues for a uniform circular array, shown in the lower plot, follow a similar trend but
the transition point must be found by inspection. In both cases for operation at the design
frequency, the eigenvalues show that virtual region subspace effectively does not exist, as
the visible region subspace occupies the entire space,

〈
CN×N

〉
.
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matrix Rx is full rank, so from 〈Rx 〉 =
〈
CN×N

〉
= 〈Qiso 〉. So we have

〈Rvr 〉 ≈ 〈qNvs , qNvs+1, · · · , qN−1 〉 (7.9)

Grouping the appropriate eigenvectors together for the visible and virtual region subspaces,

Qvs = [q0, q1, · · · , qNvs−1 ] , Qvr =
[
qNvs , qNvs+1 , · · · , qN−1

]
(7.10)

we form projection matrices for those subspaces

Pvs = QvsQH
vs , Pvr = QvrQH

vr = I−QvsQH
vs (7.11)

Let Nvr = N −Nvs . The sensor noise power component within the virtual region subspace

can be estimated from the available snapshots as

σ̂2
w =

1
M

· 1
Nvr

M∑

m=1

xH
mPvrxm (7.12)

From the form of the projection matrix, Pvr, the sensor noise power estimate in (7.12) is

equivalent to

σ̂2
w =

1
M

· 1
Nvr

M∑

m=1

N−1∑

n=Nvs

∣∣xH
mqn

∣∣2 (7.13)

Eqn. (7.13) shows σ̂2
w is just the average power across each of the orthonormal basis vectors,

qn , in the virtual subspace. The overall estimate for the covariance Rx then uses this

estimate as

R̂x = R̂vs + σ̂2
wPvr (7.14)

Use of the projection matrix Pvr in (7.14) avoids double counting the sensor noise component
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measured in the visible region subspace and contained in R̂vs . If the sensor noise is

significantly below the continuous background noise component of the space-time process

throughout the visible region, one could use the simpler expression

R̂x = R̂vs + σ̂2
w,vrI (7.15)

directly at the expense of double counting the sensor noise in the visible region. In either

case some representation of the sensor noise in the virtual region is required.

7.3 Positive Definiteness

The estimated covariance is required to be positive definite to be meaningful for array

processing. Chapter 3 showed that for regularly spaced arrays this requirement is satisfied

under the conditions that the estimated frequency-wavenumber spectrum, P̂ (k ), and the

estimated sensor noise, σ̂2
w , are > 0 . This section shows the estimated covariance is also

positive definite for arbitrary geometry arrays, where the covariance is estimated as the

sum of the visible space covariance, R̂vs, and the sense noise in the virtual space as in

Section 7.2. As in Chapter 3, it is necessary that the estimate of the frequency-wavenumber

spectrum, P̂vs(k ) , and the estimate for the sensor noise, σ̂2
w,vr , are > 0 .

7.3.1 Method 1

Eqn. (7.14) provided the more accurate method for accounting for the sensor noise in the

covariance matrix.

R̂x = R̂vs + σ̂2
wPvr (7.16)

The estimate for the covariance corresponding to the visible region of the array is

R̂vs = (2π)−C

˙

vs
P̂vs(k )v(k)vH(k)dk (7.17)
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We assume that the estimate of the wavenumber spectrum in the visible region is greater

than zero, P̂vs(k ) > 0. This allows us to express it as consisting of an estimate of the

wavenumber spectrum of the observed process, P̂f (k ) ≥ 0, and an estimate of the sensor

noise seen in the visible region, σ̂2
w,vs > 0.

P̂vs(k ) = P̂f (k ) + σ̂2
w,vs (7.18)

Using (7.18) and (7.17) in the quadratic expression for positive definiteness, we have

xHR̂xx = xH

(
(2π)−C

˙

vs

[
P̂f(k ) + σ̂2

w,vs

]
v(k)vH(k)dk + σ̂2

wPvr

)
x (7.19)

Carrying out the integration, this simplifies to

xHR̂xx = xHR̂fx + xH
(
σ̂2

w,vsRiso + σ̂2
wPvr

)
x (7.20)

The covariance estimate for the space-time process is positive semidefinite, R̂f ≥ 0. This

follows from

xHR̂fx = (2π)−C

˙

vs
P̂f(k )

∣∣xHv(k)
∣∣2 dk (7.21)

where P̂f (k ) ≥ 0 and
∣∣xHv(k)

∣∣2 ≥ 0. For the terms relating to the noise estimates we

replace Riso with its eigendecomposition.

σ̂2
w,vsRiso + σ̂2

wPvr = σ̂2
w,vs

[
N−1∑

n=0

λnqnqH
n

]
+ σ̂2

wPvr (7.22)

The matrix Pvr is also defined in terms of the eigendecomposition of Riso
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σ̂2
w,vsRiso + σ̂2

wPvr =
Nvs−1∑

n=0

σ̂2
w,vsλnqnqH

n +
N−1∑

n=Nvs

(
σ̂2

w,vsλn + σ̂2
w

)
qnqH

n (7.23)

Define the combined eigenvalues, λ
′
n, as

λ
′
n =





σ̂2
w,vsλn 0 ≤ n ≤ Nvs

σ̂2
w,vsλn + σ̂2

w Nvs ≤ n < N
(7.24)

By the selection methods outlined in Section 7.2, the eigenvalues λn for 0 ≤ n < Nvs

are greater than zero, such that all λ
′
n are real-valued and greater than zero. Defining

Λ
′
= diag

(
λ
′
0, λ

′
1, · · · , λ

′
N−1

)
, we have

xH
(
σ̂2

w,vsRiso + σ̂2
wPvr

)
x = xHQisoΛ

′
QH

isox (7.25)

The matrix Qiso is unitary, therefore
∣∣QH

isox
∣∣2 = |x |2 6= 0 for |x |2 6= 0 . With positive,

real-valued entries on the diagonal of Λ
′
, we have

xH
(
σ̂2

w,vsRiso + σ̂2
wPvr

)
x > 0 (7.26)

The overall matrix R̂x is the sum of a positive semidefinite matrix, R̂f , and a positive

definite matrix, xH
(
σ̂2

w,vsRiso + σ̂2
wPvr

)
x, and therefore is positive definite, R̂x > 0.

7.3.2 Method 2

The simpler method for an arbitrary array geometry is

R̂x = R̂vs + σ̂2
w,vrI (7.27)
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Following Method 1, we have R̂vs =
(
R̂f + σ̂2

w,vsRiso

)
≥ 0. The matrix I > 0 and so

directly R̂x > 0 .

7.4 Covariance from Spatial Spectra (CSS) with MTSE

This section outlines the adaptation of the CSS with MTSE algorithm presented in Chapter

4 for application to arbitrary geometry arrays. All steps translate directly in concept, with

the main difference centering on the need to carry out explicit calculations without the

computational benefits of FFT processing.

7.4.1 Design of the Tapers

For arbitrary array geometry the design of the multiple tapers for spectral estimation is

done by dividing the visible region into a search grid, where each grid point defines a region

of analysis as illustrated in Figure 7.2. For convenience, we do this in the angle domain,

( θ, φ ), although it may also be specified in wavenumber. In its most general form, the

search grid covers the sphere, 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π, although the array characteristics

may be exploited to reduce this. For example, a planar array in the x − y plane cannot

measure wavenumber in the z direction. Because of this, its search grid can be restricted

to the hemisphere , 0 ≤ θ ≤ π/2 , 0 ≤ φ ≤ 2π, as the lower hemisphere is identical due to

the ambiguity and provides no additional information.

One approach is to design a set of tapers at each grid location, ( θo ±∆θ, φo ±∆φ ),

based on an eigendecomposition of the matrix

Rθo,φo = 1
4π

´ θo+∆θ
θo−∆θ

´ φo+∆φ
φo−∆φ v ( θ, φ )vH ( θ, φ ) sin θdθdφ

= Qθo,φoΛθo,φoQ
H
θo,φo

(7.28)

where v ( θ, φ ) is the array manifold response vector. The multi-tapers are selected as the
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Figure 7.2: Partition of the visible region for multi-taper design, arbitrary array
geometry: For arbitrary array geometry, the multiple tapers necessary for harmonic anal-
ysis and multi-taper spectral estimation can be designed for each area designated in the
search grid defined throughout the visible region. Alternatively, a single set of tapers can
be designed and steered through out the visible angle space.

eigenvectors corresponding to the D largest eigenvalues of Rθo,φo .

wθo,φo,d = qθo,φo,d−1 , d = 1, · · · , D (7.29)

Alternatively, one may design a single set of tapers, wo,d, perhaps at broadside for the array,

and steer the main response axis (MRA) of this fixed set of weights through angle space.

wθo,φo,d = wo,d ¯ v ( θo, φo ) , d = 1, · · · , D (7.30)

7.4.2 Discrete Line Component Processing (Harmonic Analysis)

Defining the multi-taper weight matrix,

W ( θo, φo ) = [wθo,φo,1, wθo,φo,2, · · · ,wθo,φo,D ] (7.31)

the eigencoefficients are computed for each snapshot, xm, as

ym ( θo, φo ) = WH ( θo, φo )xm (7.32)
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The eigencoefficient output for a line component at ( θo, φo ) is given by

qθo,φo = WH ( θo, φo )1 (7.33)

where 1 is the all one’s vector. This vector defines the subspaces used for computing the

detection statistic.

Pθo,φo = qθo,φo

(
qH

θo,φo
qθo,φo

)−1
qH

θo,φo
, P⊥

θo,φo
= I−Pθo,φo (7.34)

The detection statistic is computed as before

F ( θo, φo ) =
∑M

m=1 yH
m ( θo, φo )Pθo,φoym ( θo, φo )∑M

m=1 yH
m ( θo, φo )P⊥

θo,φo
ym ( θo, φo )

H1

≷
H0

γTH (7.35)

K is the number of detected line components. Each has its parameters estimated,
(

θ̂k, φ̂k,

âk(m) ), and these are used to subtract the line component from the data. The projection or

subtraction methods of Section 4.2.4 are applicable. The variance for each line component

is estimated as

σ̂2
k =

1
M

M∑

m=1

| âk(m) |2 (7.36)

and is used in the formation of the covariance matrix. This process may be iterated to

successively process multiple line components in the data. The final residual snapshot data,

xb,m, contains only the smooth, continous background content

7.4.3 Background / Continuous Spectrum

Once harmonic analysis is complete the residual snapshot data, xb,m, is used to compute

the final smooth, continuous background spectrum. The eigencoefficients are computed
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yb,m ( θo, φo ) = WH ( θo, φo )xb,m = (( y
(d)
b,m ( θo, φo ) ))d (7.37)

The eigencoefficients are used to produce the individual eigenspectra.

P̂
(d)
b ( θo, φo ) =

∣∣∣ y
(d)
b,m ( θo, φo )

∣∣∣
2

(7.38)

The individual eigenspectra are then linearly combined according to a set of weights

P̂b,x ( θo, φo ) =
D∑

d=1

hd ( θo, φo ) P̂
(d)
b ( θo, φo ) (7.39)

The weights, hd(k), may be fixed, which is optimal for an underlying white spectrum, or

determined adaptively. Adaptive weighting algorithms are detailed in [52,56].

7.4.4 Estimate Sensor Noise in Virtual Region

Section 7.2 outlined the process for analyzing the covariance matrix of isotropic noise to

determine an appropriate subspace for the virtual region for the array. This analysis pro-

vides a dimension, Nvr, and projection matrix for that subspace, Pvr. The sensor noise is

estimated from the residual snapshot data, xb,m, as

σ̂2
w =

1
M

· 1
Nvr

M∑

m=1

xH
b,mPvrxb,m (7.40)

7.4.5 Covariance Matrix Estimate

The final estimate of the covariance matrix is formed from the estimated line components,

the covariance from spatial spectrum of the residual continuous background, and the sensor

noise component as
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R̂CSS = V̂R̂aV̂H +(4π)−1

ˆ π

0
sin θdθ

ˆ π

π
P̂b,x ( θ, φ )v ( θ, φ )vH ( θ, φ ) dφ+σ2

wPvr (7.41)

where

R̂a = diag
(
σ̂2

1, σ̂2
2, · · · , σ̂2

K

)
(7.42)

and

V̂ =
[
v

(
θ̂1, φ̂1

)
, v

(
θ̂2, φ̂2

)
, · · · , v

(
θ̂K , φ̂K

) ]
(7.43)

7.5 Performance Simulation

This section assesses performance of CSS with MTSE using (7.41), as applied to a N = 50

uniform circular array in 3D isotropic noise. Three point sources are in the environment as

detailed in Table 7.1. This environment is similar to [24], but does not include the Gaussian

spreading of the line components. To highlight the importance of considering the virtual

space component as discussed in Section 7.2, two different values are used for the array

radius normalized by the wavelength, Rλ. For a value of Rλ = 5, there is no virtual region,

while for Rλ = 2.5 we set the virtual to have a dimension of Nvr = 15. This can be seen by

inspection of Figure 7.1.

The multi-tapers are developed from a single multi-taper set that is steered in angle

space. The reference set of tapers is found as the eigenvectors for the D largest eigenvalues

of the matrix

RMT =
ˆ ∆θ

0
sin θdθ

ˆ 2π

0
v ( θ, φ )vH ( θ, φ ) dφ (7.44)

This corresponds to a region steered at broadside to the array, symetric in azimuth and
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Table 7.1: Environment parameters, uniform circular array example
component ux uy ( θ, φ ) SNR , Rλ = 5 SNR , Rλ = 2.5
source 1 0.500 0.00 ( 30o, 0o ) 12 (dB) 15 (dB)
source 2 -0.275 0.476 ( 33.3o, 120o ) 9 (dB) 12 (dB)
source 3 -0.175 -0.476 ( 30.5o,−110o ) 6 (dB) 9 (dB)

isotropic noise NA NA NA 20 (dB) 20 (dB)
sensor noise NA NA NA 0 (dB) 0 (dB)

Table 7.2: Array and CSS parameters, uniform circular array example
Rλ M D ∆θ Nθ Nφ γTH

2.5 5 7 18.0o 30 180 0.70
2.5 10 7 18.0o 30 180 0.50
2.5 20 7 18.0o 30 180 0.40
5.0 5 9 11.6o 45 180 0.55
5.0 10 9 11.6o 45 180 0.40
5.0 20 9 11.6o 45 180 0.35

extending down from θ = 0 to ∆θ. Since it is a planar array, the visible region search

grid is defined as Nφ locations uniform in azimuth, 0 ≤ φ ≤ 2π, and Nθ locations uniform

in elevation, 0 ≤ θ ≤ π/2. Simulations are performed for M = 5, 10, and 20 snapshots.

MTSE parameters for the different test cases are summarized in Table 7.2.

7.5.1 N = 50 Element Uniform Circular Array, Rλ = 5.0

The MVDR spectrum for the ensemble covariance described by the parameters in Table 7.1

for Rλ = 5 is shown in Figure 7.3. The three point sources are evident in the spectrum.

For this test case the array radius in wavelengths is Rλ = 5. For circular arrays, from Van

Trees [1], when N < 4πRλ ∼ 63 there will be aliasing effects in the beampattern due to the

spatial sampling. This is evident in the Figure as the rise in the noise floor near the ring

u2
x + u2

y = 1, which is the boundary of the visible region, and outside.

Simulation results for M = 5, 10, and 20 snapshots are shown in Figures 7.4, 7.5, and

7.6. At the lowest amount of snapshot support, the weakest source is not consistently

detected during harmonic analysis. The analysis region width is large enough that the

component is smoothed out in the residual background spectrum. As a result, the average
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Figure 7.3: MVDR spectrum for ensemble covariance, N = 50, Rλ = 5 circular
array: The low, medium, and high SNR peaks are clearly visible. The number of elements,
N , is not greater than 4πRλ, resulting in aliasing effects due to the spatial sampling [1].
This explains the elevated noise floor in the range u2

x + u2
y = 1 and towards the corners of

the plot.

MVDR spectrum for the covariance estimated using (7.41) is biased low for this signal.

This steadily improves with increasing snapshots, and at M = 20 the average estimated

spectrum and the ensemble are very close. Average normalized SINR loss, ξ, shown as

ξdB = −10 log10 ξ in the figures, is less than 0.6 dB in most of the visible region even for

M = 5. Increased loss occurs near the point sources, likely due to mismatch of the estimated

point source parameters
(

θ̂k, φ̂k, σ̂2
k

)
. This effect is proportional to source strength, so the

12 dB source has the largest loss, ξdB = 1.6 to 1.8 dB. Of course, due to its greater SNR

this is likely less of an issue, unless the processor is attempting detection nearby to this

source. While comparative performance for another processor is not shown, the performance

indicated in the figures is better than the 3dB within M = 2K = 6 snapshots rule of thumb.
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Figure 7.4: CSS performance, N = 50, Rλ = 5 circular array, M = 5 snapshots: The
upper plot shows the average MVDR spectrum for the covariance estimated using (7.41).
The weak source is biased low in the average, a result of inconsistent detection of the source
in the individual trials. The average normalized SINR loss, ξdB, shown in the lower plot
is less than 0.8 dB in most of the visible region. Mismatch occurs near the point sources,
resulting in elevated ξdB as highlighted in the zoomed insets on the right. Mismatch is
worst for the strongest source (bottom inset), but never higher than 1.8 dB (mean value).
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Figure 7.5: CSS performance, N = 50, Rλ = 5 circular array, M = 10 snapshots:
The upper plot shows the average MVDR spectrum for the covariance estimated using
(7.41). The weak source is more visible than the M = 5 case, but still lower than shown
in the ensemble, Figure 7.3. Detection performance as part of harmonic analysis improves
with more snapshots. The average normalized SINR loss, ξdB, shown in the lower plot,
improves over the M = 5 case with peak of 1.6 dB and less than 0.3 dB in most of the
visible region. Again, peak ξdB occurs in the near vicinity to the point sources, due to
estimation mismatch.
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Figure 7.6: CSS performance, N = 50, Rλ = 5 circular array, M = 20 snapshots:
The average MVDR spectrum in the upper plot is very close to the ensemble spectrum of
Figure 7.3. Average normalized SINR loss, ξdB, continues to improve over the M = 10 case,
however, values at this point are tenths of a dB from optimal. Mismatch still occurs in the
neighborhood of the point sources but is approaching the order of a dB or less.

208



7.5.2 N = 50 Element Uniform Circular Array, Rλ = 2.5

The MVDR spectrum for the ensemble covariance described by the parameters in Table 7.1

for Rλ = 2.5 is shown in Figure 7.7. The three point sources are increased by 3 dB for this

scenario. The isotropic noise power per sensor has remained constant, but due to the lower

operational frequency the noise is concentrated in a smaller wavenumber bandwidth. This

is the reason for increasing the power of the point sources. They appear wider due to the

lower resolution of the array. For this test case the array radius in wavelengths is Rλ = 2.5,

which should result in no aliasing artifiacts due to spatial sampling as N > 4πRλ ∼ 32 [1].

This is clear in the Figure by the sharp transition between visible and virtual space at the

boundary u2
x + u2

y = 1.

Simulation results for M = 5, 10, and 20 snapshots are shown in Figures 7.8, 7.9, and

7.10. At the lowest amount of snapshot support, the weakest source goes mostly undetected.

The average MVDR spectrum for the covariance estimated using (7.41) reflects this and the

source is barely visible. This steadily improves with increasing snapshots, and at M = 20

the average estimated spectrum and the ensemble are very close. Average normalized SINR

loss, ξ, shown as ξdB = −10 log10 ξ in the figures, is less than ( 0.9, 0.5, 0.4 ) dB in most

of the visible region for M = ( 5, 10, 20 ) snapshots. As seen earlier, increased performance

loss occurs near the point sources, and is proportional to source strength. The largest

average loss incurred is ξdB = ( 1.5, 1.1, 1.0 ) dB for M = ( 5, 10, 20 ) snapshots. While

comparative performance for another processor is not shown, the performance indicated in

the figures is better than the 3dB within M = 2K = 6 snapshots rule of thumb.
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Figure 7.7: MVDR spectrum for ensemble covariance, N = 50, Rλ = 2.5 circular
array: The low, medium, and high SNR peaks are clearly visible. The number of elements,
N , is greater than 4πRλ, so aliasing effects due to the spatial sampling are negligible [1].
The drop off in the transition from the edge of the visible region occupied with isotropic
noise to the virtual region containing only sensor noise is clear at the ring u2

x + u2
y = 1.
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Figure 7.8: CSS performance, N = 50, Rλ = 2.5 circular array, M = 5 snapshots:
The upper plot shows the average MVDR spectrum for the covariance estimated using
(7.41). The weak source is barely visible in the average. This is a result limited detection
of the source in the individual trials. The average normalized SINR loss, ξdB, shown in
the lower plot is less than 1.0 dB in most of the visible region. Mismatch occurs near the
point sources, resulting in elevated ξdB as highlighted in the zoomed insets on the right.
Mismatch is worst for the strongest source (bottom inset) but nearly the same in vicinity
of the poorly detected weak source. ξdB is never higher than 1.5 dB (mean value).
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Figure 7.9: CSS performance, N = 50, Rλ = 2.5 circular array, M = 10 snapshots:
The upper plot shows the average MVDR spectrum for the covariance estimated using
(7.41). The weak source is much more visible than the M = 5 case, but still somewhat
lower than shown in the ensemble, Figure 7.7. Detection performance as part of harmonic
analysis improves with more snapshots. The average normalized SINR loss, ξdB, shown in
the lower plot, improves over the M = 5 case with peak of 1.1 dB and less than 0.5 dB in
most of the visible region. Again, peak ξdB occurs in the near vicinity to the point sources,
due to estimation mismatch.
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Figure 7.10: CSS performance, N = 50, Rλ = 2.5 circular array, M = 20 snapshots:
Performance improvement is slight, but visible, compared to the already good results for
the M = 10 case. The average MVDR spectrum in the upper plot is very close to the
ensemble spectrum of Figure 7.7. Average normalized SINR loss, ξdB, values are tenths of a
dB from optimal over most of the visible region. Mismatch still occurs in the neighborhood
of the point sources but is approaching the order of a dB or less.
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7.5.3 Importance of σ̂2
wPvr

To reinforce the importance of estimation and inclusion of the sensor noise component in

the virtual region, we consider an example where the σ̂2
wPvr term in (7.41) is not included.

Section 3.3.2 discussed why this term is important, and provided an illustration for a uniform

linear array. Here we use the uniform circular array described in Section 7.5.2. From the

analysis in Figure 7.1, this particular array has a virtual subspace with dimension Nvr = 15.

One of the side-effects of this is the distinct drop off in noise power at the isotropic to sensor

noise transition at the boundary of the visible and virtual regions. This effect is illustrated in

Figure 7.11, where it is clear that the estimated covariance accurately represents the visible

region for the problem. The average normalized SINR loss, ξ, shown as ξdB = −10 log10 ξ in

the Figure, shows the degradation in performance for neglecting the noise term compared

to Figure 7.10. This is a result of poor adaptive beamformer sidelobe behavior in the

virtual region that results in undesired noise amplification. As shown in the Figure, this

affect is particularly pronounced at the boundary between visible and virtual space, the

ring u2
x + u2

y = 1.

7.6 Summary

This chapter applied the CSS technique to arrays with arbitrary geometry. The importance

of proper estimation and accounting of the sensor noise component in virtual space was em-

phasized, and a method for doing so based on the covariance matrix of 3D isotropic noise was

developed. An example of the application to uniform circular arrays was provided. Uniform

circular arrays maintain a certain structure, and are not strictly speaking arbitrary, but do

result in a covariance matrix which is not Toeplitz. Normalized SINR loss performance and

average MTSE spectra were assessed via simulation. Performance was generally seen to be

very close to optimal with very little snapshot support, with some losses encountered near

line components due to mismatch, and for weak INR line components at very low snapshot

support due to inconsistent detection within harmonic analysis.
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Figure 7.11: Impact of covariance estimated from visible space only: In this exam-
ple, Rλ = 2.5, so the virtual subspace exists and has dimension Nvr = 15. The σ̂2

wPvr term
is not included in (7.41). The estimated wavenumber spectrum, shown in the upper plot,
is correct in representing the visible region of the array. However, the average normalized
SINR loss, ξ, expressed in dB as ξdB = −10 log10 ξ, shown in the lower plot exhibits poor
performance, in particular near the ring u2

x + u2
y = 1 (low elevations w.r.t. the plane of the

array). Even at higher elevations from the array plane, ξdB shows significant ripples with
peaks in the 5 to 6 dB range. This plot should be compared to Figure 7.10, which is the
performance using the same amount of snapshots and properly accounting for the σ̂2

wPvr

term.
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Chapter 8: Summary and Future Work

In summary, the estimation of covariance from the corresponding spatial spectrum is a

valuable technique for adaptive array processing that addresses low snapshot support and

correlated signal and interference conditions. Inherently, spectral estimation enforces a wide

sense stationary model for the data and uses the knowledge of the array geometry in its

development. This defines the structure in the underlying problem, making estimation of

covariance from spatial spectrum (CSS) a structured covariance algorithm. The transform

relationship between spectrum and covariance is well established. The contribution of this

work is in developing an understanding of the performance and limitations of the tech-

nique for adaptive array processing, and developing extensions to the basic techniques to

provide better performance across a broader range of conditions including mixed spectra

environments and non-ideal array manifold response.

The first major contribution of the work is in the area of application of CSS to the nar-

rowband wide sense stationary space-time process. The main line of development focused on

application to the uniform line array. This allows the use of results and relationships from

uniform sampled time series analysis. In particular, the estimate of the space-time process

covariance and sensor noise component can be done simultaneously using fast Fourier trans-

form techniques. While the covariance from power spectrum result is immediately obvious

when considering the problem from a time series perspective, we highlighted the distinction

between the individual contributions of the space-time process within the visible region of

the array and the sensor noise component occupying both visible and virtual space. This

distinction is important when adapting the technique to non-uniformly spaced arrays. To be

meaningful for adaptive beamingforming, the estimated covariance matrix must be positive

definite. The estimated CSS covariance was shown to be positive definite when the power

spectral estimate is real-valued and greater than zero. This is a reasonable assumption
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for most spectral estimation algorithms when the uncorrelated sensor noise component is

present. Initial performance analysis considered using classical spectral estimation tech-

niques - the averaged windowed periodogram, as the basis for the algorithm. It was shown

this was is equivalent to a diagonal sum replace operation, referred to as DSR ( · ), on the

sample covariance matrix of the windowed snapshots and produces a biased estimate of the

covariance matrix. For a single interferer in spatially white noise, the normalized SINR loss

performance is within 1 dB of optimal provided that the interferer is sufficiently separated

from the desired steering vector, and the sidelobe level of the chosen window sufficiently

suppresses the interference. Neither of these conditions can be guaranteed in practice. This

motivates the introduction of a harmonic analysis process into the operation. The purpose

of this process is to successively detect, estimate, and subtract the influence of discrete line

components from the data. Thomson’s multitaper spectral estimation (MTSE) neatly com-

bines a non-parametric spectral estimation algorithm with the required harmonic analysis

in low snapshot support algorithm.

The procedure for using Thomson’s approach with harmonic analysis as the spectral

estimation algorithm was then specified and labeled CSS with MTSE. Being a structured

covariance algorithm, the normalized SINR loss performance prediction maintains a depen-

dence on the true underlying covariance. In other words, every situation encountered is

its own problem when it comes to performance. To this end, performance of CSS with

MTSE was assessed in several relevant interference and noise environments. Performance

was demonstrated to be near optimal in very few snapshots for spatially spread interference,

line component interference and mixed spectra interference as long as the array could resolve

the individual line components (if they existed) within the spectrum. This is one of the

features that makes this technique especially attractive for long aperature arrays with large

numbers of sensors, as these have good resolution properties. Performance is consistently

better than other reduced rank techniques or optimal diagonal loading in terms of nor-

malized SINR loss and convergence time. The sample covariance matrix based techniques

ultimately approach optimal as the number of snapshots approaches infinity. In fact, their
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performance is predictable in closed form based on the number of interferers and snapshots.

On the other hand, CSS with MTSE is biased due to the limits of spectral estimation and

does not converge to the optimal result in general. However, CSS with MTSE does converge

to near optimal extremely fast, typically within two to three snapshots. For the uniform

linear array case, the CSS technique can be represented in terms of the DSR ( · ) operation,

where values in the covariance matrix are replaced by the sum of the respective diagonal in

the windowed sample covariance matrix. This increases the amount of effective averaging

of the data in a manner that sample covariance matrix methods do not.

The second major contribution of the work is in the area of application of CSS to the

problem of correlated signal and interference. This type of space-time process is not spatially

stationary, as the correlation between disjoint wavenumber bands is not uncorrelated. Still,

as the wavenumber spectrum conveys no correlation information we expect CSS to suppress

the impact of the correlation in the data. Analysis of the expected value of the CSS

covariance showed that it is biased in two ways. The first bias is in a manner similar to the

stationary process case and is related to the choice of window function used in the spectral

estimation. The second bias is related to the cross-correlation terms between the signals.

The overall impact to performance of this second bias was investigated in two ways. The

first approach compared the ratio of the contribution of the correlated component within

the covariance to the uncorrelated component, as measured using the Froebenius norm

squared. While the correlated component is non-zero, its influence is concentrated near

the main lobe of the array. For increasing array aperture, the main lobe width steadily

decreases and in the limit as the aperture goes to infinity the influence of the correlation

disappears. This is helpful in understanding the limiting behavior, but for arrays of practical

length the normalized SINR loss is a more valuable measure of performance. It was shown

that CSS applied to correlated signal and interference data performs almost identically

to CSS applied to the same problem where the signal and interference are uncorrelated.

In other words, CSS has a strong suppression effect on the residual correlation reflected

in the covariance. This was demonstrated through simulation using the effective SINR
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metric. This metric correctly predicts the performance loss of traditional MVDR for signal

and correlated interference cases. With an increasing magnitude of correlation coefficient,

MVDR degrades while CSS maintains a consistent level of performance. From the analysis

of CSS under the correlated signal and interference case using the DSR ( · ), we are able to

relate the work to covariance matrix tapers and redundancy averaging, and show that CSS

combines benefits of both algorithms with some of its own - increase in effective sample size

due to DSR ( · ) integration, mitigation of correlated signal and interference, and positive

definiteness.

The third major contribution of the work is in the area of application of CSS with

conditions of non-ideal array manifold response. Because it is a structured covariance tech-

nique CSS relies on knowledge of the array geometry. When the array manifold response is

non-ideal the basic CSS approach suffers a predictable degradation in normalized SINR loss

performance. This is true for other structured covariance techniques as well. Performance

degradation is dominated by the error vectors associated with the largest line components

in the data. A linear MMSE (ML in Gaussian noise) estimate of the non-ideal response

error vectors was developed so that the error vector information could be incorporated into

the covariance. This processing may be applied iteratively as was done for line component

processing in the original harmonic analysis. This approach allows the data to be succe-

sively peeled back so that initially hidden components can be identified and processed in the

data. This technique was applied successfully to random errors in array manifold response,

both at and below design frequency, as well as to the case of deterministic array manifold

response errors due to array bending. As long as the error vectors are not so large as to

prevent detection of the line components the technique works well. Performance is seen

to be comparable to the reduced rank multi-stage Wiener filter (MWF). A consequence of

the error vector processing is that performance no longer exhibits the rapid converge seen

in the ideal array manifold response case. This behavior is also seen when applying the

error vector processing if the array manifold response was, in fact, ideal. An important

concept for the deterministic error case is that the underlying problem is still a structured
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covariance problem as the array displacement does not affect the stationarity of the space-

time process. But the structure as defined by the assumed array geometry and its array

manifold response is different that what is actually encountered. With proper knowledge of

the array geometry the problem reverts back to the ideal array manifold response situation

studied earlier. In all cases a beneficial byproduct of the error vector processing was the

ability to produce an estimate of the wavenumber spectrum that with the influence of the

error vectors removed. This is, effectively, how the situation would appear if we were able

to “fix” the array and may be valuable for some applications in its own right.

The final contribution of the work is the extension of the CSS techniques to arbitrary

array geometries. This is significant in that some structured covariance algorithms that

exploit Toeplitz structure in the covariance for uniform linear arrays are not easily extend-

able. For an arbitrary geometry, the covariance for the space-time process can be estimated

by scanning through the visible space, but this does not typically address the sensor noise

in virtual space. A technique for specifically estimating the sensor noise by partitioning

the N -dimensional space into visible and virtual subspaces based on the covariance for 3D

isotropic noise was proposed. This technique, along with multi-taper spectral estimation

with harmonic analysis, was applied to uniform circular arrays. The normalized SINR

loss performance was seen to be within one dB of optimal throughout most of the visible

space for low numbers of snapshots, with slightly higher loss seen in the vicinity of line

components due to mismatch. Specific cases deliberately ignoring the virtual space noise

component exhibited much higher normalized SINR loss and reaffirmed the need to address

this quantity.

Throughout the work we have focused on representation in the spectral domain, starting

with the Cramér spectral representation of the observed space-time process. This has added

value in understanding how the operations in the spatial covariance domain have been

influenced or impacted the processing. The work has looked at broad concepts that provide

a basis for continuing research. In particular, areas that are suitable for continuing research

are:
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• Convergence time - It was identified that performance could not be reduced to a

simple expression based on the number of interferers and snapshots alone, as is the

case for sample covariance based methods. Simple arguments demonstrated that CSS

techniques provide the equivalent of additional averaging, or the increase in effective

sample size, and this was supported by simulation results showing rapid convergence.

Further research may pursue predictions of convergence time that explicitly incorpo-

rate the number of sensor elements, N .

• Methods to extend CSS processing to arbitrary array geometry were presented, and

performance was simulated for a uniform circular array. Further research may look

into aliasing due to spatial sampling for arbitrary geometry and its impact on estima-

tion of the wavenumber spectrum, and consequently the CSS covariance.

• For deterministic array manifold response errors, further research may explore inte-

gration of the error vector processing with array shape estimation algorithms in a

closed loop manner.

• Application of CSS techniques to acoustic mode processing or vector sensor processing.
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Appendix A: Circular and Partial Circular Array Bending

A.1 Introduction

This appendix provides further information on the geometry and specification of the two

types of deterministic positional errors for uniform linear arrays used in the dissertation.

A.2 Circular Bow

For a linear array with total aperature length, L, the circular bow deformity is shown in

Figure A.1. The linear array is deflected from the linear axis at its center by a displacement,

H. The resulting arc, of length L, lies on a circle with radius, R, whose center is the point

(0, [H − R]). The arc subtends an angle, θ, which is related to the arc length by L = θR.

θ can also be computed from [R−H] = R cos(θ/2), as

θ = 2 cos−1

(
R−H

R

)
(A.1)

Substituting (A.1) into the expression for arc length

L = 2 cos−1

(
R−H

R

)
R (A.2)

which can be rewritten as

cos
(

L

2R

)
+

H

R
− 1 = 0 (A.3)

Equation (A.3) cannot be solved in closed form for R but can be solved numerically, for

example using the fzero() routine in MATLAB. An initial estimate for R , necessary for

some numerical solving routines, can be provided by approximating the chord length, C, as
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L (arc length)

H
(0,0)

x

y

x2+(y-y0)2=R2
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R

(0,[H-R])

H

½ L

~½ C

½ C

Figure A.1: Definition of a circular bow array deformity

the bottom of the right triangle shown inset in Figure A.1.

Ĉ ≈ 2

√(
L

2

)2

+ H2 (A.4)

Using Ĉ , along with the known versine, H, the initial estimated of R can be computed

(via the chord theorem), as

R̂ini =
C2

8H
+

H

2
≈ Ĉ2

8H
+

H

2
(A.5)

A.3 Partial Circular Bow

For a linear array with total aperature length, L, the partial circular bow deformity is

shown in Figure A.2. A portion of the array bends in a circular fashion starting from a

displacement, H, and joins the linear axis after a distance of L2 .The remainder of the

array lies on the linear axis. The curved portion of the array lies on the circle with radius,
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R, whose center is the point (x0, y0) = (0, R) . The second known point on the circle is

(x1, y1) = (−L2,H) . Inserting these values into the equation for a circle

(x1 − x0)
2 + (y1 − y0)

2 = R2 (A.6)

we can solve for R

R =
L2

2 + H2

2H
(A.7)

The remaining steps are to determine the length of the arc, L
′
2 , and the length of the linear

portion of the array, L1. The distance La can be found immediately from the provided

dimensions, La = 1
2

√
H2 + L2

2. The angle θ = 2 sin−1
(

La
R

)
subbtends the arc, yielding an

arc length

L
′
2 = θR = 2 sin−1

(
H

[
L2

2 + H2
]−1/2

) L2
2 + H2

2H
(A.8)

and linear array portion length of

L1 = L− L
′
2 (A.9)
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Figure A.2: Definition of a partial circular bow array deformity
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Appendix B: Sensitivity of Optimal Beamformer to Model

Estimation Errors

B.1 Introduction

This appendix contains the details of the expressions for normalized SINR loss of a model

based adaptive beamformer as a function of estimation accuracies of the model parame-

ters, namely wavenumber and interferer to noise ratio (INR). This analysis supports the

discussion in Section 3.2.

B.1.1 Interferer to Noise Ratio

For an N element array of isotropic sensors, the quantity βo in the expression for the

covariance matrix inverse is

βo =
σ2

n/σ2
wvH

o vo

1 + σ2
n/σ2

wvH
o vo

(B.1)

which is the ratio of the power of the interferer, C, to the total interferer and noise power

at the output of the array, C + W

βo =
C

C + W
(B.2)

where vH
o vo = N , C = σ2

nN , and W = σ2
w.

B.1.2 Over/Under-estimate INR, ∆INR 6= 0

Case 1. βa ≈ 1

This section develops the approximate normalized SINR loss expression for the case of

overestimation of INR, or underestimated INR where ( INR )−1(∆INR )−1 ≤ 1. Starting

with the exact expression for the normalized SINR loss
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ξ =
sHR−1

a s
sHR−1

o s
· sHR−1

a s
sHR−1

a RoR−1
a s

(B.3)

and expanding the matrix and matrix inverse terms, and applying the conditions Pva = Pvo

and βa ≈ 1

ξ ≈ sH [ I−Pvo ] s
sH [ I− βoPvo ] s

· sH [ I−Pvo ] s
sH [ I−Pvo ] [σ2

n/σ2
wvovH

o + I ] [ I−Pvo ] s
(B.4)

Recognizing that P⊥
vo

= [ I−Pvo ] is a projector on the null space of vo, and P⊥
vo

= P⊥
vo

P⊥
vo

,

we can simplify to

ξ ≈ sH [ I−Pvo ] s
sH [ I− βoPvo ] s

· sH [ I−Pvo ] s
sH [ I−Pvo ] [ I−Pvo ] s

(B.5)

which reduces further to

ξ ≈ sH [ I−Pvo ] s
sH [ I− βoPvo ] s

(B.6)

For an N element array of omnidirectional sensors, sHs = N , and the final approximation

for normalized SINR loss is

ξ ≈ N − (1/N)
∣∣sHvo

∣∣2

N − (βo/N) |sHvo|2
(B.7)

Case 2. βa → 0

This is the case where the interferer is weak, and the INR is underestimated. Starting with

the exact normalized SINR loss expression
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ξ =
sHR−1

a s
sHR−1

o s
· sHR−1

a s
sHR−1

a RoR−1
a s

(B.8)

and expanding the matrix and matrix inverse terms, and applying the conditions Pva = Pvo

and βa ≈ 0

ξ =
N

sH [ I− βoPvo ] s
· N

sH [ σ2
n/σ2

wvovH
o + I ] s

(B.9)

We recognize the two terms in the denominator as the covariance matrix and its inverse for

this problem.

ξ =
N

sHR−1
o s

· N

sHRos
(B.10)

This is the normalized SINR loss for the conventional (non-adaptive) beamformer.

B.1.3 Spatial Frequency Offset, ∆k 6= 0

Now we consider the case where the estimate of the interferer wavenumber is non-zero. To

focus on the impact of estimation error, ∆k, assume that the INR is estimated perfectly

so that βa = βo, and the interferer is strength is high (a high INR approximation - we are

less concerned with the impact of weak interferers). Starting with the exact expression for

the normalized SINR loss,

ξ =
sHR−1

a s
sHR−1

o s
· sHR−1

a s
sHR−1

a RoR−1
a s

(B.11)

and expanding the matrix and matrix inverse terms, and applying the condition βa = βo = 1

(the high INR approximation).

228



ξ =
sH [ I−Pva ] s
sH [ I−Pvo ] s

· sH [ I−Pva ] s
sH [ I−Pva ] [ σ2

n/σ2
wvovH

o + I ] [ I−Pva ] s
(B.12)

Using the relationship P⊥ = [ I−P ] and expanding out terms

ξ =
sHP⊥

va
s

sHP⊥
vo

s
· sHP⊥

va
s

σ2
n/σ2

wsHP⊥
va

vovH
o P⊥

va
+ sHP⊥

va
s

(B.13)

Simplify notation by indicating the magnitude squared of the quadratic terms.

ξ =

∣∣P⊥
va

s
∣∣2

∣∣P⊥
vo

s
∣∣2 ·

∣∣P⊥
va

s
∣∣2

σ2
n/σ2

w

∣∣vH
o P⊥

va
s
∣∣2 +

∣∣P⊥
va

s
∣∣2 (B.14)

We leave the left term alone and concentrate on the right. Dividing through the right hand

term by
∣∣P⊥

va
s

∣∣2,

ξ =

∣∣P⊥
va

s
∣∣2

∣∣P⊥
vo

s
∣∣2 ·

[
σ2

n/σ2
w

∣∣vH
o P⊥

va
s
∣∣2

∣∣P⊥
va

s
∣∣2 + 1

]−1

(B.15)

For small ∆k, the left hand term is approximately unity. We don’t expect small changes to

the null space of vo to substantially change the magnitude squared of the projection of the

desired steering vector s within that space.

ξ ≈
[

σ2
n/σ2

w

∣∣vH
o P⊥

va
s
∣∣2

∣∣P⊥
va

s
∣∣2 + 1

]−1

(B.16)

We now use this expression to determine an acceptable ∆k that achieves an acceptable

SINR loss, ξOK

ξOK ≤
[

σ2
n/σ2

w

∣∣vH
o P⊥

va
s
∣∣2

∣∣P⊥
va

s
∣∣2 + 1

]−1

(B.17)
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which simplifies to

∣∣vH
o P⊥

va
s
∣∣2

∣∣P⊥
va

s
∣∣2 ≤ 1− ξOK

ξOKσ2
n/σ2

w

(B.18)

Again, for small ∆k, assume
∣∣P⊥

va
s
∣∣2 ≈ ∣∣P⊥

vo
s
∣∣2. This concentrates the impact of ∆k in a

single term.

∣∣∣vH
o P⊥

va
s
∣∣∣
2
≤

∣∣∣P⊥
vo

s
∣∣∣
2 1− ξOK

ξOKσ2
n/σ2

w

(B.19)

This is a general expression for the single interferer in uncorrelated white noise case. To

simplify further requires some assumptions about the array geometry. We continue by

considering a uniform linear array, and analyze performance in terms of ∆k. We assume a

desired steering vector corresponding to broadside, however, the analysis in the k domain is

invariant to shift in k. Translation back to physical angle of arrival does depend on actual

k value. Expanding out P⊥
va

explicitly

∣∣vH
o s− vH

o Pvas
∣∣2 ≤

∣∣∣P⊥
vo

s
∣∣∣
2 1− ξOK

ξOKσ2
n/σ2

w

(B.20)

Going forward note that for the assumption of the desired steering vector corresponding to

broadside, the variable ko now represents the difference between the interferer location and

ks = 0. In k space only the difference matters. Using the following relationships

sHvo |s=1= e−jkod(N−1)/2 sin(kodN/2)
sin(kod/2)

(B.21)

vH
a vo =

N−1∑

n=0

ej∆kdn = ej∆kd(N−1)/2 sin(∆kdN/2)
sin(∆kd/2)

(B.22)
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vH
a va = N (B.23)

in (B.20) we can work to simplify the left hand side of the expression. Recall ka = ko +∆k.

Eqn. (B.20) becomes

∣∣∣∣ ejkod(N−1)/2 sin(kodN/2)
sin(kod/2)

− (1/N)ejkod(N−1)/2 sin(∆kdN/2)
sin(∆kd/2)

· sin(kadN/2)
sin(kad/2)

∣∣∣∣
2

(B.24)

For small ∆kdN/2, use the small angle approximation for sin(), sin(x) ≈ x, consolidate

terms and apply the magnitude squared operations to yield

[
sin(kodN/2)
sin(kod/2)

− sin([ ko + ∆k ] dN/2)
sin([ ko + ∆k ] d/2)

]2

(B.25)

We use a first order approximation to this difference. Define the function

D(kd) ≡ sin(kdN/2)
sin(kd/2)

(B.26)

Then by the quotient rule

Ḋ(kd) ≡ d

d(kd)
D(kd) =

1
2
· N sin(kd/2) cos(kdN/2)− sin(kdN/2) cos(kd/2)

sin2(kd/2)
(B.27)

and the difference approximation is

sin(kodN/2)
sin(kod/2)

− sin([ ko + ∆k ] dN/2)
sin([ ko + ∆k ] d/2)

≈ Ḋ(kod)∆kd (B.28)

Inserting this back into (B.20) gives an expression for the required wavenumbe accuracy.
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∆kd ≤
( ∣∣P⊥

vo
s
∣∣2

Ḋ2(kod)
· 1− ξOK

ξOKσ2
n/σ2

w

)1/2

(B.29)

Substituting in for
∣∣P⊥

vo
s
∣∣2 yields the following expression.

∆kd ≤
(

1
Ḋ2(kod)

·
[

N − 1
N

sin2(kodN/2)
sin2(kod/2)

]
· 1− ξOK

ξOKσ2
n/σ2

w

)1/2

(B.30)

Eqn. (B.30) contains oscillations that indicate there are areas in k space that are more

tolerant to ∆k. These correspond to nulls in the conventional beam pattern. We are

interested in a smoother bound for the expression that eliminates oscillations and smoothly

spans the lower values. This can be done by substituting

Ḋ(kd) ≈ 1
2
· N sin(kd/2)

sin2(kd/2)
=

N

2 sin(kd/2)
(B.31)

within (B.30). The final expression becomes

∆kd ≤ 2 | sin(kod/2) |
N

( [
N − 1

N

sin2(kodN/2)
sin2(kod/2)

]
1− ξOK

ξOKσ2
n/σ2

w

)1/2

(B.32)
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Appendix C: Table of Variables
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Table C.1: Table of Variables - Scalars

Variable Notation Description
c speed of propagation
d uniform linear array element spacing, also multitaper index
f frequency variable
l index variable
m time sample index
n array element index

r, c row column indices for a matrix
y scalar output of array processor

C dimension of Cartesian space
D the number of multi-tapers used for MTSE
K the number of point source interferers
M the number of available snapshots
N the number of array sensor elements

NFFT number of points taken in FFT processing
NFPE number of free-parameter expansion points

W half-width of analysis region for multitaper design

γ scalar normalization constant
γTH harmonic analysis detection threshold
θ angle from vertical in spherical coordinates
λ wavelength variable, also eigenvalue
ξ normalized SINR loss

ξdB normalized SINR loss in −10 log10 ( · )
σ2

DL diagonal loading factor
σ2

n variance for single discrete interferer
σ2

w variance for uncorrelated sensor noise
σ2

k variance for the kthdiscrete interferer
φ azimuth in spherical coordinates
ψ normalized wavenumber, ψ = −kd

ω radian frequency
Ω radian frequency, continuous time
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Table C.3: Table of Variables - Scalar functions

Variable Notation Description
ak ( m ) complex amplitude of the kth plane wave component
hd ( · ) weighting function for multitaper combining

wd [n ] , wd = ((wd [ n ] ))n dth window or taper function
f ( t, p ) a space-time process
ρ̂ [ n ] sample autocorrelation

ρw [ n ] sample autocorrelation, deterministic sequence, w
y

(d)
m ( f ) , ym ( f ) = (( y

(d)
m ( f ) ))d MTSE dtheigen-coefficient for mthsnapshot

Cw ( · ) power pattern for window, w
F ( · ) harmonic analysis detection statistic

G ( ω, θ, φ ), G ( θ, φ ), G (k ) normalized directional distribution of plane waves
H ( ω, θ, φ ) directional response of sensor element
P ( ω, k ) frequency-wavenumber spectrum

R ( τ, ∆p ) spatial-temporal covariance
S ( ω, ∆p ) cross-spectral density
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Table C.5: Table of Variables - Vectors and Matrices

Variable Notation Description
k wavenumber vector
ks wavenumber vector defining the steering vector, s

nb,m background noise component, mth snapshot
nw,m uncorrelated sensor noise component, mth snapshot
pn position of the nth element of an array
∆p difference in position, Cartesian [∆px, ∆py, ∆pz ]T or spherical [ s, γ, ζ ]T

qo MTSE eigen-coefficient response for plane wave vo

s adaptive beamformer steering vector−→u unit directional vector
uk array manifold response error vector for kth discrete source
v array manifold response vector
w window function, i.e. taper, used for spectral estimation

wopt optimal weight vector
wa an actual weight vector, derived from data or covariance estimate
xm array output snapshot vector
ym tapered/windowed snapshot

Pv, P⊥
v range space and null space projection matrices for subspace defined by v

R covariance matrix
Ra covariance of plane wave component amplitudes
Rb covariance of background noise component
Rw covariance of the uncorrelated sensor noise component
Rw sample autocorrelation matrix, deterministic sequence, w
Rx covariance of the array output snapshots

R̂SCM the sample covariance matrix
V matrix of array manifold response vectors
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