

Lightweight Implementations and Power Measurements of SHA-3 Candidates on FPGAs

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science at George Mason University

By

Kishore Kumar Surapathi
Bachelor of Science

Gayatri Vidhya Parishad College of Engineering, 2009

Director: Jens Peter Kaps, Professor
Department of Electrical and Computer Engineering

Spring 2012
George Mason University

Fairfax, VA

Copyright c© 2012 by Kishore Kumar Surapathi
All Rights Reserved

ii

Dedication

I dedicate this thesis to my parents and friends.

iii

Acknowledgments

I would like to thank Dr. Kaps in guiding me in every aspect of this project. Special
thanks to Dr. Gaj in helping out with the design aspects of Digital Systems through his
courses and motivating me with his projects. I would also like to thank Rajesh Velagaleti
and Panasayya Yalla for their valuable inputs regarding the power measurement setup and
in efficient design of controllers. Also thank Susheel Vadlamudi , Smrithi Gurung, John
Pham, and Bilal Habib for providing me the designs of four of the five finalists. Finally,
would like to thank all the CERG members for their support.

iv

Table of Contents

Page

List of Tables . vii

List of Figures . viii

Abstract . x

1 Introduction . 1

1.1 Hash Function . 1

1.2 SHA-3 Competition . 2

1.3 Previous studies and Motivation . 3

1.4 Thesis Organization . 3

2 Methodology . 5

2.1 Choice of Language, FPGA devices and tools 5

2.2 Performance Metrics . 5

2.3 Interface and Protocol . 7

2.4 Optimization Target and Design Methodology 8

2.5 Power Measurements . 10

2.5.1 Introduction and Previous work . 10

2.5.2 Design of SHA-3 Finalists . 11

2.5.3 Measurement methodology . 11

3 Lightweight Implementations of 4 round two Candidates 19

3.1 AES round . 19

3.2 BMW . 22

3.2.1 BMW Algorithm description . 22

3.2.2 BMW lightweight implementation 24

3.3 Grøstl . 26

3.3.1 Grøstl Algorithm description . 26

3.3.2 Grøstl lightweight implementation 27

3.4 Luffa . 32

3.4.1 Luffa Algorithm description . 32

3.4.2 Luffa lightweight implementation . 37

3.5 SHAvite-3 . 38

v

3.5.1 SHAvite-3 Algorithm description . 38

3.5.2 SHAvite-3 lightweight implementation 42

4 Results and Comparisions . 44

4.1 Implementations results . 44

4.2 Comparision with other groups . 44

5 Scalability of Grøstl . 51

5.1 Grøstl BRAM with 4 sboxes and half GF multiplier

(GrøstlB) . 51

5.2 Grøstl DRAM with 4 sboxes and half GF multiplier (GrøstlD0) 53

5.3 Grøstl DRAM with 4 sboxes and full GF multiplier

(GrøstlD1) . 53

5.4 Grøstl DRAM with 8 sboxes and full GF multiplier

(GrøstlD2) . 54

5.5 Results and Comparisions . 54

6 Power Measurements . 62

6.1 Implementation . 62

6.2 Results . 65

7 Conclusions and Future Work . 74

7.1 Lightweight implementations . 74

7.1.1 Conclusion . 74

7.1.2 Future work . 74

7.2 Power measurements . 74

7.2.1 Conclusion . 74

7.2.2 Future work . 75

Bibliography . 76

vi

List of Tables

Table Page

2.1 State of control signals and the accoiciated power 18

3.1 Throughput formulae for implementations of the four SHA-3 candidates . . 43

4.1 Implementation Results of Lightweight Implementations of Grøstl , Luffa ,

SHAvite-3 and BMW . 45

4.2 Throughput Results of Lightweight implementations of Grøstl , Luffa , SHAvite-

3 and BMW . 46

4.3 Comparison of Lightweight Implementations of Grøstl , Luffa , SHAvite-3

and BMW on Xilinx FPGAs ([TW] – this work)) 48

5.1 Throughput formulae for implementations of Grøstl 52

5.2 Implementation Results of Lightweight Implementations of Grøstl 59

5.3 Throughput Results of Lightweight implementations of Grøstl 60

5.4 Comparison of Lightweight Implementations of Grøstl on Xilinx FPGAs . . 61

6.1 Power Measurements of SHA-3 fianlists . 72

6.2 Energy per bit of SHA-3 fianlists . 72

6.3 Power Estimations of SHA-3 fianlists . 72

6.4 Power Measurements against Power Estimations 73

vii

List of Figures

Figure Page

1.1 Hash Function. 2

2.1 Interface and Protocol . 8

2.2 Block RAM . 9

2.3 Interface. 13

2.4 Signal Transitions and Trigger output. 14

2.5 Xpower design flow. 16

2.6 Xpower tool from Xilinx. 17

3.1 Galois field multiplier (02). 20

3.2 BMW compression function. 23

3.3 Lightweight implementation of BMW . 25

3.4 Grøstl hash function. 27

3.5 Grøstl compression function f. 28

3.6 Grøstl final round function fn. 28

3.7 Grøstl SubBytes. 29

3.8 Grøstl Shiftbytes. 29

3.9 Grøstl Constants. 30

3.10 Grostl Round Function. 31

3.11 Lightweight architecture of Grøstl . 32

3.12 Luffa hash function. 33

3.13 Message Injection Function. 34

3.14 x2 Multiplier (GF (28)32) . 34

3.15 Luffa Step Function. 35

3.16 Luffa SubCrumb. 35

3.17 Luffa MixWords. 36

3.18 Luffa lightweight architecture . 37

3.19 SHAvite-3 hash function. 40

3.20 SHAvite-3 keygeneration unit. 41

3.21 SHAvite-3 lightweight architecture . 42

viii

4.1 Throughput. 47

4.2 Throughput to Area ratio. 48

4.3 Throughput Vs Area plot. 49

4.4 Datapath vs Controller. 50

5.1 Grøstl ShiftByte Operation. 52

5.2 GrøstlB implementation . 53

5.3 GrøstlD1 implementation . 54

5.4 GrøstlD2 implementation . 55

5.5 Throughput. 55

5.6 Throughput to Area ratio. 56

5.7 Throughput Vs Area plot. 57

5.8 Scalability of Grøstl. 58

6.1 Nexys2 Board. 63

6.2 Spartan 3E starter kit. 63

6.3 Bridge Connector. 64

6.4 Digital Oscilloscope. 65

6.5 Power Supply. 66

6.6 Communication between Nexys2 board and Spartan 3E starter board. . . . 66

6.7 Power Measurement Setup. 67

6.8 Power Trace. 68

6.9 Dynamic Power Consumption. 69

6.10 Energy Consumption. 69

6.11 Power vs Area Plot. 70

6.12 Estimated Power vs Measured Power. 71

ix

Abstract

LIGHTWEIGHT IMPLEMENTATIONS AND POWER MEASUREMENTS OF SHA-3
CANDIDATES ON FPGAS

Kishore Kumar Surapathi, MS

George Mason University, 2012

Thesis Director: Dr. Jens Peter Kaps

The National Institute of Standards and Technology (NIST) has opened a public com-

petition for a new Secure Hash Standard, SHA-3 on Nov 2, 2007. Out of the 64 submissions,

51 were selected for the first round in Dec 2008. Among them, 14 algorithms advanced to

the second round in July 2009 and 5 to the third and final round in Dec 2010. The final

result is expected to be announced in 2012. The selection criteria is primarilly security

followed by software, and hardware performance. The hardware performance is evaluated

both in FPGAs as well as in ASICs. In FPGAs, most of the research on the SHA-3 candi-

dates is primarily targeted at high throughput. It is very interesting to see how the SHA-3

candidates perform when area is a constraint.

In this work, 4 of the 14 round two candidates (Grøstl, Luffa, SHAvite-3 and BMW) have

been implemented. Furthermore, the scalability of the finalist Grøestl has been analyzed in

detail. Also, a methodology for measuring power consumption of hash functions on FPGA

has been developed and performed the power measurements of all the finalists. Our study

shows that Grøstl performs well in resource constraint environment because of its scalability.

Chapter 1: Introduction

1.1 Hash Function

A hash function[21] takes in arbitrary length of message and produces a fixed length output

called as the message digest.

A hash function should follow the following properties.

(i) It is impossible to produce the message given the hash value.

(ii)No two messages should produce the same hash output(collision resistant).

(iii)It is impossible to modify the message without modifying the hash.

Applications:

Digital signatures: The digital signature is a function (hash) of the document and

can be stored and send separately independent of the document. Since no two documents

produce the same signature (property of hash function), the signature is unique.

Finger print of a document: The hash value of the document is computed and

when something is changed in the document, it results in a change in the hash value and

thus the modification which can be created by a virus or an intruder is detected.

Storing Passwords: Instead of storing the password directly, the hash of the pass-

word will be stored.

The most commonly used hash functions are MD5 and SHA-1 until they were broken.

1

fixed length

h
function

hash

messsage
 m

arbitrary length

hash value
h(m)

Figure 1.1: Hash Function.

1.2 SHA-3 Competition

SHA-1 was the hash standard followed by the cryptographic world until some serious attacks

have been published against it in Feb 2005, following which NIST called for a workshop to

assess the status and recommended a transition from SHA-1 to SHA-2 hash function. But

even SHA-2 is not secured enough as it is primarily based on SHA-1. So NIST decided to call

for a public competition for a new Cryptographic hash standard[2]. The winning algorithm

will be named ”SHA-3”, and will be added to the hash algorithms currently specified in the

Federal Information Processing Standard (FIPS) 180-3, Secure Hash Standard.

A total of 64 algorithms were submitted, out of which 51 candidates were selected to

advance to the first round on December 10, 2008. After initial study and analysis, 14

algorithms were selected for the second round on July 24, 2009. After extensive research on

the hardware and software performance of these algorithms, based on the public and internal

reviews, NIST selected five finalists - BLAKE, Grøstl, JH, Keccak, and Skein to advance

to the third (and final) round of the competition on December 9, 2010. The submitters

were allowed to make some tweaks to their algorithms before they submit them for the

2

final round of competition. NIST will be announcing the final winner and the new hash

standard, SHA-3 in the second quarter of 2012.

1.3 Previous studies and Motivation

The main criteria NIST follows in deciding the final candidate is primarily security, followed

by software and hardware performance [25]. Hardware performance is evaluated both in

FPGAs as well as in ASICs. Most of the research in FPGAs is targeted at High throughput

like the work done by Kobayashi et al. [21] , Matsuo et al [22], Gaj et al. [11],Homsirikamol

et al [15] and Baldwin et al [4].

In real time scenario, it is not necessary that hash function is the primary application

implemented on the FPGA. In many cases, the hash function may be implemented along

with some other components like soft core processers etc. Also there is massive advance-

ments in low powered devices in recent times which resulted in development of low cost and

low power FPGAs [26]. So implementations on small FPGAs gained prominence.

This drives us towards the lightweight implementations of the SHA-3 candidates target-

ing certain fixed area. Four round two algorithms Grøstl , Luffa, SHAvite-3 and BMW were

selected for my research based on the reported software and hardware results. At the begin-

ning of my thesis, there are hardly any results reported for lightweight implementations. A

result was reported on Grøstl [19], luffa [24] and BMW [8] . No Lightweight implementation

of SHAvite-3 was reported till date.

After the final round candidates were announced, there are many results published on

Grøstl on different platforms [20], [17]. But there is no result reported on Grøstl targeting

the smallest FPGA device of Spartan3 family other than [19].

1.4 Thesis Organization

Chapter 2 explains the assumptions and design methodologies. Chapter 3 deals with the

algorithm descriptions and their implementations. The implementation results and their

3

comparisions with the results posted by other group are explained in chapter 4. The scala-

bility of Grøstl, implementation results and comparisions are discussed in chapter 5. Power

measurement setup and results are explained in chapter 6. Chapter 7 deals with conclusions

and future work.

4

Chapter 2: Methodology

2.1 Choice of Language, FPGA devices and tools

Even though all designs were targeted for Spartan-3 devices, it is interesting to see how our

implementations perform on low-cost devices from another vendor such as Altera Cyclone-

II, newer devices such as Spartan-6 and on high speed devices such as Xilinx Virtex-5.

Complete results are published in the ATHENa results database [1]. All designs were

implemented using the vendor tools: Xilinx ISE 13.3 Web Pack and Altera Quartus II v. 10.0

Web Edition, and verified after place-and-route against known answer test files provided

by the submissions packet of each hash function. All results were generated using the open

source benchmarking tool ATHENa (Automated Tool for Hardware EvaluatioN [12]. Other

than simplifying the result generation, ATHENa also varies the vendor tool parameters to

achieve optimal results.

2.2 Performance Metrics

The number of clock cycles needed to hash N message blocks using our implementations can

be computed from the number of clock cycles required to perform the following functions:

i Initialization (if not precomputed) p Processing one block

h Loading protocol header of message z Finalization

l1 Loading first block o Output of the hash value

l Loading each subsequent block

5

This results in the following formula for the number of clock cycles clk for hashing N blocks

of data.

clk = i+ h+ l1 + l · (N − 1) + p ·N + z + o

This formula can now be simplified to reflect the number of clock cycles needed for the

initial steps before processing can begin st = i + h + (l1 − l), loading and processing one

block of data l + p, and finalization and output of the hash value end = z + o resulting

in (2.1).

clk = st+ (l + p) ·N + end (2.1)

Throughput is defined as the number of input bits processed per unit of time. The precise

formula for throughput of a hash function is dependent on the number of message blocks

N to be hashed, the block size b of the algorithm, the number of clock cycles needed to

hash the message clk and the clock period T . We can derive the formula to compute the

throughput from (2.1).

throughput(N) =
b ·N
clk · T

=
b ·N

(st+ (l + p) ·N + end) · T
(2.2)

Especially in embedded applications, messages can be very short. It is therefore important

to also calculate the throughput for short messages. We use the empty message which after

padding is one block long and therefore set N = 1 in (2.2) to compute the throughput.

When computing the throughput for very long messages, we can neglect st and end as

their influence on the result goes to zero. This leads to the simplified equation (2.3).

throughputlong =
b

(l + p) · T
(2.3)

Resource Utilization of FPGAs is very difficult to define. All FPGAs contain config-

urable logic elements which contain flip-flops (Xilinx: slices, Altera: LE), block RAMs,

6

multipliers and other resources. These resources have different features not only depending

on the vendor but even on the FPGA family. Hence, we can compare implementations using

the metric of throughput over area ratio only within a specific FPGA family and provided

they use the same number of dedicated resources. As area in this formula we use solely

slices for Xilinx and LEs for Altera devices as there is no direct mapping from BRAM

(block RAM) utilization to slice or LE.

2.3 Interface and Protocol

The SHA Core assumes that its inputs and outputs are connected to FIFOs. In its simplest

form a FIFO is a single w-bit wide register with minimal logic to support the handshake of

read/write and ready. This can easily be interfaced to a microcontroller or other circuitry in

an embedded system. Lightweight applications usually have smaller databus sizes than 32 or

64 bits. Therefore, we use a databus width w of 16 bits. The protocol supports two scenarios:

1) when the message length is known and 2) when the message length is not known. In case

1) the message is sent as a single segment starting with the message length after padding

“msg len ap” in 32-bit words concatenated with a ’1’ followed by the message length before

padding “msg len bp” in bits followed by the message. The “msg len bp” is needed by

several algorithms even when the message is already padded. In case 2) the message can

be processed in segments seg0, seg1, · · · , segn−1. Each segment seg0, · · · , segn−2 is headed

by the segment length after padding “seg len ap” concatenated with a ’0’ followed by the

segment of the message. The last segment segn−1 follows the format of case 1). It contain

a block of the message and must contain all padding. The formulae to compute the total

number of bits before padding and after padding are:

msg len ap =

n−1∑
i=0

seg len api · 32

7

din
w

bitsw

seq
n−1

seq_len_ap 1

seq_len_bp n−1

n−1

seq
0

seq_len_ap 00

seq_len_ap 01

seq
1

bitsw

src_ready dst_ready

clk

clk

SHA Core

src_read dst_write

rst

rst

dout
w

msg_len_ap 1

msg_len_bp

message

a)SHA Interface b)SHA Protocol

Figure 2.1: Interface and Protocol.

msg len bp =
n−2∑
i=0

seg len api · 32 + seg len bpn−1

Furthermore in order to conserve logic resources needed for message counters we limit the

total amount of data in a single message to 232 bits i.e. 4Gbits which we believe is sufficient

for lightweight applications.

2.4 Optimization Target and Design Methodology

The design criteria is to extract maximum throughput for a given area budget. Here the

budget is fixed at 500 slices with one BRAM on a Spartan-3 device.

Design Methodology:

Datapath: The key decisions to make are the datapath size, the number of processing

elements to be used, number of pipeline stages to be introduced, etc. The datapath size is

influenced by the natural size of the processing elements in the algorithm like adders, etc.

For compact designs, the two important design rules which results in area reduction are

folding and re-using of processing elements. Folding can be either vertical or horizontal.

Vertical folding reduces the datapath width while horizontal folding reduces the size of

8

data_in data_out data_outdata_in

Mode=read_first
BRAMBRAM

Mode=write_first

Figure 2.2: Block RAM.

the processing elements. Not all algorithms are flexible enough for folding. For example,

BMW is not a right candidate for folding. In such cases the only other option to reduce

its area is re-using the processing elements. But by re-using the elements, the clock cycle

count rises which in turn affects the throughput. Interleaving operations by introducing

pipeline registers helps to some extent in reducing the clock cycle count and boasting the

throughput. This feature helps Grøstl to a great extent

Block Ram: In lightweight designs, the datapath sizes vary from 16 to 64 bits. The

huge state sizes (>= 512) need to be stored somewhere from which data of smaller sizes are

accesed, processed and stored back. Block RAMs (BRAMs) offer a large amount of memory

space for storage but have a limited number of ports and I/O lines. Xilinx Spartan 3 BRAMs

can be configured as single or dual port memories with a maximum data width of 64 bits

or 32 bits per port, respectively. The Spartan-3 BRAM data sheet specifies that data is

written to the address applied in the current clock cycle, but read from the address of the

previous clock cycle. The new Xilinx Spartan-6 and Virtex-6 devices allow for independent

read and write addresses for 64-bit data width. Use of BRAM does not increase the slice

count as it is a dedicated resource of the FPGA.

Controller: Designing a Controller is in fact more challenging than the data path espe-

cially for Low area designs. A pure Finite State Machine (FSM) type controller occupies

9

huge area and is most of the times greater than that of the datapath. So FSM based con-

troller is not at all an option for Lightweight designs. To reduce the area of the controller,

the number of control signals should be reduced. In order to do that, first the signal transi-

tions of all the control signals are noted and patterns and dependencies should be observed.

Sometimes, two or more signals follow the same sequence and hence can be reduced to one.

Also, there can be regular patterns in the signal transitions. So a single pattern can be pro-

duced and is repeated according to the requirement. The total number of states is reduced

and this results in less state transitions. The address signals to the memories and other

control signals are generated from memory words and control words which are implemented

as ROMs. A combination of FSM with few states (< 10) and memory words and control

words of reduced number of signals will significantly reduce the area.

2.5 Power Measurements

2.5.1 Introduction and Previous work

The cryptographic implementations in embedded devices are limited by the power consumed

by them. There are many results published so far on the SHA-3 candidates both on software

and hardware platforms. The hardware performance is charecterized by speed, area and

also power. Power consumptions of all the round 2 candidates on software platform is

performed by Benedict [27]. But there are no reported results on the power consumption

of the SHA-3 candidates on FPGAs.

Hence, it would be interesting to look at the power consumptions of the SHA-3 finalists.

Since we are dealing with lightweight implementations which consume less power compared

to the high speed designs, the power consumption of these designs give us an insight about

the minimum power requirements of these hash functions when implemented on FPGAs.

Even though there are power estimation tools which provide the power information

about the designs, their efficiency is still questionable as reported by Meintanis [23]. To

10

achiveve more accurate results, physical onboard measurements is the only option. Lately,

there is significant amount of work done on the power measurement methodologies on an

FPGA board. The work done by Jevtic et all[16] clearly explained a general methodology

to measure power on an FPGA board.

In this work, designs of SHA-3 final round functions implemented targeting low area

were considered and their power is measured by following a methodology based on [16]

described in section 2.5.3.

2.5.2 Design of SHA-3 Finalists

The following are the hash functions selected for the final round by NIST.

BLAKE

Grøstl

JH

Keccak

Skein

All the five SHA functions were designed within the budget of 500 slices and one BRAM

targeting the low cost FPGA Spartan 3E. A uniform interface is followed while designing

these hash functions.

2.5.3 Measurement methodology

Power measurement on FPGA is not a straight forward task. There are many components

on the FPGA board which consume power and have to be separated from the power con-

sumption of the core FPGA. So the core FPGA is powered separately using an external

power supply. The next step is to differentiate various power components from the total

power consumed by the hash function. The actual logic power of a particular hash function

in the core can be obtained by eliminating the static power, clock power and interconnect

(routing) power of the core FPGA. Therefore, it is important to find ways to measure the

11

static power, clock power and interconnect power of the core. The logic or dynamic power

is dependent on the switching activity. For different input messages, the overall switch-

ing activity would vary which obviously effects the power consumption. The measurement

method should be in such a way that this factor is minimal. So measurements are done for

multiple input messages including messages with all zeroes and all ones.

All hash functions have the following main states.

Ideal state

Loading state

Processing state

Writing state

In ideal state the hash core is ready and waits for the message. In loading state, the

message block is loaded from the FIFO. In the processing state, the message is processed

and intermediate hash is generated. If there are multiple message blocks to be processed,

the next state would be again loading state. If the block already processed is the last block,

then the next state would be writing state.

Static Power: First the design is loaded into the Spartan 3E FPGA and the power is

measured without giving the clock and the input vectors.

Clock Power: In this case, the clock signal along with other input vectors is provided

and the system is kept in reset state with the clock signal running. Static power subtracted

from the power consumed during this state gives us the clock power.

I/O power: When the message is getting loaded into the core FPGA from the control

FPGA, the power consumed is the I/O power.

Total Power: When the Core FPGA starts processing the message, the power consumed

is termed as the Total Power. This includes both static power, clock power, interconnect

and the logic power.

Dynamic power = Total power - Static power - clock power .

12

Figure 2.3: Interface

13

CLK

Src_ready

Src_read

Dst_ready

Dst_write

Trigger

Idle Loading Processing Writing

Figure 2.4: Signal Transitions and Trigger output

Interconnect Power: The other factor which effects the power consumption on the

FPGA is the interconnect power which is quite complex to extract. One way of extracting

this power is by asking the tools to implement the design with very tight area constraints

and with no constraints.

The Dynamic power(includes interconnect power) obtained from the implementation

with area constraints is subtracted from the one which is implemented with no area con-

straints. By taking multiple measurements with different area constraints and subtracting

from each of them, the dynamic power obtained from the design implemented with tight

area constraints, a number of readings will be obtained for the interconnect power and the

average of that will give us an approximate value of the interconnect power. A more effi-

cient way of generating the interconnect power is described in [16] but it is too complex to

implement here and will be done in future.

Logic Power: This is the power consumed due to the logic elements of the design.

Logic Power = Dynamic power - interconnect power.

In this work, only the dynamic power is measured and the interconnect power is ne-

glected. So logic power is asssumed to be the same as the dynamic power.

14

Fig 2.3 shows the interface followed for the measurement. The wrapper talks to the SHA

core with the help of the control signals and sends input messages to it. It also receives

the message digest obtained from the SHA core after processing the message blocks. The

wrapper consists of a BRAM and a Finite State Machine. The BRAM has the message

initialized in it and stores the 256 bit hash digest sent by the core.

The signals rst, start and trigger are the external I/O signals available for the user. Rst

and start are the input signals and trigger is the output signal. The reset (rst) signal is

used to reset the entire system and the clock signal is the only one which toggles in this

scenario. The start signal is used to control the processing of the SHA core. When the start

signal is enabled, the SHA core loads the message from the wrapper and starts processing.

XPOWER: XPOWER of Xilinx allows us to estimate the total dynamic power con-

sumption of the design. The XPOWER tool needs the following files .ncd, .pcf and .vcd.

Firstly, post place and route simulation of the design is run and a VCD file is generated

using the Modelsim simulator. When the tool (Xilinx ISE) launches the simulator Model-

sim for simulation, in the command line prompt of Modelsim, the following instructions are

executed to get VCD file.

vcd file filename.vcd

vcd add -r /*

run 500 ns

vcd checkpoint

quit -f

The run time(here 500 ns) is based on the number of clock cycles the hash function

takes to process the message block. The total clock cycles multiplied by the time perid gives

the run time. Here clock period is taken as 20 ns as the values are compared to measured

values on FPGA run with a clock of frequency 50MHz. The VCD (value change dump) file

15

.vhd
place and route

Xpower

power report

.vcd

ModelSim

Simulation VectorsDesign Desrciption

.ncd and .pcf

Figure 2.5: Xpower design flow

thus generated has all the switching information of all the signals in the design throughout

the run. All the required files are loaded and the output file from the tool is a detailed

power report.

16

Figure 2.6: Xpower tool from Xilinx

17

Table 2.1: State of control signals and the accoiciated power

Control signals Power

No input signals Static Power
Rst = ’1’ Clock Power

Rst = ’0’, Src ready = ’0’ & Src read = ’1’ I/O Power
Rst = ’0’, Src ready = ’0’ & Src read = ’0’ Total Power

Dst ready = ’0’ & Dst Write = ’1’ I/O Power

18

Chapter 3: Lightweight Implementations of 4 round two

Candidates

3.1 AES round

A round of AES consist of SubBytes, ShiftBytes, MixBytes and AddConstant operations.

Basic round functions of few SHA-3 candidates like Grøstl and SHAvite-3 are based on AES

round. The input is arranged in the form of a matrix which is called as the state matrix

and the above operations are operated on this matrix.

Operations in Galois Field: The coefficients of a polynomial are equal to the respec-

tive bits of the binary representation. In AES, multiplication in GF(28) is achieved by

multiplying the corresponding polynomials modulo a fixed irreducible polynomial. Here

the irreducible polynomial is m(x) = x8 + x4 + x3 + x+ 1.

Galois Field Multipliers:

x02: Polynomial representation of 2 is x. Let us assume an 8 bit number represented

by a7a6a5a4a3a2a1a0 where a7, a6, a5, a4, a3, a2, a1 and a0 are the corresponding bits of the

byte which is being multiplied. The polynomial representation of the byte is a7x
7 + a6x

6 +

a5x
5+a4x

4+a3x
3+a2x

2+a1x
1+a0x

0. After multiplication with x, the polynomial becomes

a7x
8 + a6x

7 + a5x
6 + a4x

5 + a3x
4 + a2x

3 + a1x
2 + a0x

1 which is reduced to a6x
7 + a5x

6 +

a4x
5 + (a3 + a7)x

4 + (a2 + a7)x
3 + a1x

2 + (a0 + a7)x
1 + a7 using the irreducible polynomial

m(x)

x03: Since (03) = (02) + (01)

a ∗ (03) = a ∗ (02) + a

19

c7 c5c6 c3 c2 c0

a7 a6 a5 a4 a3 a2 a1 a0

c1c4

*02

Figure 3.1: Galois field multiplier (02)

x04: Polynomial representation of 04 is x2 . This operation can be achieved by

a ∗ (04) = (a ∗ (02)) ∗ (02)

x05: (05) = (04) + (01)

a ∗ (05) = a ∗ (04) + a

x07: (07) = (04) + (03)

a ∗ (07) = a ∗ (04) + a ∗ (03)

SubBytes: SubBytes is a non-linear substitution in which each byte is replaced with an-

other based on a look up table. SubBytes composed of two basic operations, Multiplication

Inversion in the galois field(28) with the reduction polynomial m(x) and affine transforma-

tion over GF(2).

20

LUT Implementation: Sbox (SubBytes) can be described as a 256x8 bit look up

table which is implemented as ROM. The input is given to the 8bit address of the ROM

and the output comes from the databus. The Sbox look up table is of size 256 bytes.

Logic Implementation: The complex function in GF(28) can be decomposed into

GF(24) which can be further decomposed to GF(22) and this in turn to GF(2). All the func-

tionalities in GF(2) can be implemented using XOR(addition) and AND(Multiplication).

Spartan-3 Vs Virtex-5 Each Sbox LUT implementation takes 64 slices on a Spartan-

3 device and just 8 slices on Virtex-5. This is due to the LUT structure of Virtex-5. The

logic implementation takes 32 slices on Spartan-3 device and 16 on Virtex-5. So a logic

implementation is advantageous on Spartan family but a LUT based implementation on

Virtex-5. But the drawback with logic implementation is that the delay is on the higher

side.

ShiftBytes: Each row of the state matrix is shifted towards left . The shift is different

for each row. The shiftByte operation is simple routing if the entire state is being operated

else is taken care by the way the state, stored in a memory, is addressed.

MixBytes: The state matrix is multiplied (GF(28)) with an MDS matrix to produce a

new matrix. The first row of the MDS matrix is multiplied with the first column of the state

matrix to produce byte0 of the first column in the resultant matrix. Similarly, the second

row multiplied with first column produces the byte1 of the first column in the resultant

matrix and so on. The MixBytes can be implemented with two layers of Xor gates, the first

for GF multiplication of the individual bytes and the second, the Xor of all the resultant

bytes of the GF multipliers.

AddConstant: The AddConstant is a byte by byte xor operation of the state matrix

with a constant matrix.

21

3.2 BMW

3.2.1 BMW Algorithm description

Notations

H Double Pipe

Q Quadruple Pipe

H(i) i-th double pipe value

Q(i) i-the quadruple value

H
(i)
j j-th word of i-th double pipe

Q
(i)
j j-th word of i-th quadruple pipe

Q
(i)
a The first 16 words from Q(i)

Q
(i)
b The last 16 words from Q(i)

m number of bits in a Block

M (i) Message block i, of m bits

M
(i)
j j-th word of i-th Message block

XL, XH Temporary words used in computation of double pipe

CONST final 16 constant words used in the finalization round

Description

BMW [14] uses there functions f0, f1 and f2 in computing the hash. The first function

f0 takes in a message block M (i) and the previous double pipe H(i−1)) and computes the

first part of quadruple pipe Q
(i)
a . The second function f1 computes the second part of the

quadruple pipe Q
(i)
b by taking the first 16 words of the quadruple i.e Q

(i)
a along with the

message block M (i) and the previous double pipe H(i−1)). The final folding function takes

in the message block and the complete quadruple Q
(i)
a and Q

(i)
b to produce the new double

pipe H(i). The finalization round of BMW also use the same three functions with different

22

Double Pipe

Message Block

F0

F1

F2

Finalize

H
i

Note: All the bus widths are 512 bits
The final hash is 256 bits

Final Hash

Figure 3.2: BMW compression function.

23

inputs to the functions. They use the final douple pipe HN produced after processing the

final N th block and CONST final. The final hash value Hfinal is produced from the folding

function f2 in the finalization round. The least significant 256 bits of Hfinal is message

digest of the message M.

For i = 1 to N

{

Q
(i)
a = f0(M

(i),H(i−1))

Q
(i)
b = f1(M

(i),H(i−1), Q
(i)
a)

H(i) = f2(M
(i), Q

(i)
a , Q

(i)
b)

}

The finalization is done according to the following set of functions.

{

Qfinal
a = f0(H

(N), CONST final)

Qfinal
b = f1(H

(N), CONST final, Qfinal
a)

Hfinal = f2(H
(N), Qfinal

a , Qfinal
b)

}

3.2.2 BMW lightweight implementation

BMW is a single round hash function. It takes in 32 message words and 32 initialization

words and produces 32 quadruples. The first 16 words of the quadruple are obtained from

F0 and the remaining 16 words of the quadruple are obtained from F1. The function F2 uses

32 quadruples obtained from F0 and F1 along with the message to produce the intermediate

hash. The function F0 consists of multi operand additions/subtractions and xor operations.

The function F1 has multioperand xor operations,multioperand additions/subtractions and

variable rotations and shifts in both directions. The third function F2 is again based

24

Shifter Rotator

Reg0

Addder1

Reg1

Adder2

Add/Sub

Reg2

BRAM

Port−B

Port−Adia

dib

doa

dob S R

din 31
16
15

0

Reg

0

1

dout16

31

15

0

Figure 3.3: Lightweight implementation of BMW

on multioperands additions/subtractions, multioperand xors , variable rotations and shifts.

The BRAM stores the entire state and the initialization vector and the input message block.

Two words are read from the BRAM in each clock cycle and one of the above operations

will be done on the two operands and will be stored in a register if it is a multioperand

operation or stored back into the BRAM. The shifter and rotator are implemented separately

to generate both the shift and rotate operations at the same time which improves the

performance a lot. It takes 636 clock cycles to process a single block of message. The

control logic for BMW is relatively huge as there is no proper sequence followed in the

address bits of the BRAM.

25

3.3 Grøstl

3.3.1 Grøstl Algorithm description

Notations

M Input Message

IV Initialization vector

P & Q State matrices formed from message block and intermediate hash

hi Intermediate hash after round i

mi Input message block in round i

f Compression function

fn finalization function

Description

Grøstl [13] is an AES based algorithm which iterate the compression function f as follows.

hi = f(hi−1, mi) for i = 1,2, . . . ,n.

The input message M is split into 512-bit blocks m1, m2, m3,. . . , mn . Two 8X8 state

matrices P and Q are formed using the message block mi and the initialization vector IV.

The P matrix is formed from the 512 bits obtained from the xor operation of the message

block mi and hi−1(or IV) where as the Q matrix is formed from the message block mi itself.

Ten rounds of AES operations are performed on both P and Q after which the results are

xored with hi−1 to form the new intermediate hash hi.

hi = P(hi−1 xor mi) xor Q(mi) xor hi−1

The finalization round fn is operated on the hn . Once again 10 rounds of AES operations

are performed on the matrix formed from hn abd the result is xored with the input hn to

generate the final hash. The final hash is the least significant 256 bits of the final result.

hash = fn(P(hn) xor hn)

26

512

512

nm1m 3m
2m

...................
fn

IV

f ff f
512

512

512

512 512

512

512 256

H(m)

Figure 3.4: Grøstl hash function.

The following round transformations (AES operations) are performed in each round on

both P and Q.

AddRoundConstant

SubBytes

ShiftBytes

MixBytes

The AddRoundConstant adds a round dependent constant to the state matrix P (and

Q). The round constants are also matrices of the same size as of the state matrix. SubBytes

transformation substitutes each byte in the state matrix by another byte from the S-box

which is the same as the AES s-box. ShiftBytes shifts the bytes within the row towards

left by a certain value. This value is fixed and different for each row. In MixBytes, each

column of the state matrix is multiplied with a constant 8X8 matrix in the finite field F256

which is defined the same way as the AES.

The AddroundConstant matrix is different for P and Q . Also in the ShiftBytes opera-

tion, the number of shifts within the row is different for P and Q.

3.3.2 Grøstl lightweight implementation

The initialization vector is stored in a DRAM and is also used to store the intermediate

hash produced after processing each block. Two S-boxes described as ROMs are used and

a half GF multiplier is implemented. The message block is xored with IV from the DRAM

27

512

512
512

512

512

512

512

P Q

m

512

h

h

i−1

i

Figure 3.5: Grøstl compression function f.

512512
256

512

P 512x
hash

Figure 3.6: Grøstl final round function fn.

28

S().

Figure 3.7: Grøstl SubBytes.

shift by 0

shift by 1

shift by 2

shift by 3

shift by 4

shift by 5

shift by 6

shift by 7

Figure 3.8: Grøstl Shiftbytes.

29

i ff

C [i]QCP[i]

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00 00

00

00

00

00

00

00

00

=and

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

i

=

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

Figure 3.9: Grøstl Constants.

and is loaded into the BRAM through one port(to form P) and the message directly loaded

through the other port of the BRAM(to form Q). First two 32-bit words are accessed from

the BRAM, from which only 16-valid bits are available which are stored in a register. This

is due to the ShiftBytes operation involved. The AddConstant and the SubBytes operations

are performed before loading the 16-valid bits into the register. The constants are generated

by the controller depending on the 16-bit data accessed which then pass through two S-boxes

before the registers. In the same way, the remaining bits are accessed from the memory

and stored into the respective registers which now hold one column. The column goes as

input to GF multiplier and produces the first 32-bits of the new column in one clock cycle

and the remaining 32-bits in the next clock cycle. The P matrix and Q matrix are executed

serially using the same AES resources.

One new column is produced for every 7 clock cycles. Each round of P & Q computes

16 new columns which takes 112 clock cycles. The xor operation after the 10 the round is

implemented on the fly and hence takes 0 clock cycles. Thus a block of message is processed

in 1120(16 * 7 * 10) clock cycles.

30

ShiftBytes

MixBytes

SubBytes

AddRoundConstant

Figure 3.10: Grostl Round Function.

31

BRAM

Port−B

Port−A

counter

Reg Reg Reg

0
1

0
1

dram Reg

0
1

mix0 mix1

7
0

7
0
S−Box

31
0

S−Box

Reg

dout0
1

15
0

31
16 din

Figure 3.11: Lightweight architecture of Grøstl.

3.4 Luffa

3.4.1 Luffa Algorithm description

Notations

M (i) Message Block in i-th round

Qj The permutation dealing with j-th block

H
(i)
j j-th intermediate hash vector in i-th round

Xj j-th output block from Message Injection

a
(r)
j j-th word of X in round r

Description

The round function in Luffa[7] consists of Message Injection (MI) and Permutation which

is further divided into three sub-permutations Q0, Q1 and Q2. The message Injection

Function can be represented using Matrices. The initialization vectors or the intermediate

32

MI P

M

MI P

M

MI P

M

C

C"

’

V

V

V

0

1

w−1

(1) (2) (N)

.....................

.....................

.....................

H

Figure 3.12: Luffa hash function

hash vectors along with the message goes as input to MI and produces three 256 bit vectors

X0, X1 and X2. The output from the Message Injection Xj(j = 0,1,2) is divided into 8

32-bit words b0, b1,. . . b7 which go as inputs to the Permutation Qj . Each permutation Qj

consists of an input tweak which is applied once and a step function, iterated 8 times.

Tweak The last four input words to Qj are rotated j bits to the left.

The main iterative function in Luffa is the Step Function. The step function consists of

the Sub Crumb, Mix Word and Add Constant functions.

SubCrumb The SubCrumb Function takes in 256 bits as 8 32-bit words a0, a1, .a7

and produces 8 new words x0, x1, . . .x7. It consists of 64 4-input s-boxes with 32 S-boxes

in each SubCrumb slice unit. The first four words a0, a1, a2, a3 were given to one Subcrumb

slice and the remaining four words are given to the other unit. Each S-box takes in 4 bits,

one from each word, a3, a2, a1 and a0 (or a4, a7, a6 and a5) and produces 4 new bits using

the following look up table.In this way 8 new words are produced from SubCrumb which

are given to MixWord.

33

x2

x2

x2

M
(i)

X0

X1

X2H
(i−1)
2

H1
(i−1)

H0
(i−1)

Note : All buses are 256 bits

Figure 3.13: Message Injection Function

X[7]

X[6]

X[5]

X[4]

X[3]

X[2]

X[1]

X[0]

Y[0]

Y[1]

Y[2]

Y[4]

Y[3]

Y[6]

Y[7]

Y[5]

note: all buses are 32 bits

Figure 3.14: x2 Multiplier (GF (28)32)

34

a(r−1) a(r−1) a(r−1) a(r−1) a(r−1) a(r−1) a(r−1)a(r−1)

a(r) a(r) a(r) a(r) a(r) a(r) a(r) a(r)

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

SubCrumb SubCrumb

MixWord MixWord MixWord MixWord

Figure 3.15: Luffa Step Function

a l0, a1, l a2, l a3, l

x 0, l x1, l x2, l x3, l..........

..........

..............................

.....

....................

S

1 bit

Figure 3.16: Luffa SubCrumb

35

2<<<

10<<<

14<<<

1<<<
Note: All buses are 32−bit wide

k+4

k k+4

kx x

y
y

Figure 3.17: Luffa MixWords.

36

Port−A

BRAM

Port−B

Reg0 Reg1 Reg2 Reg3

Sub crumb

Mix word

SIPO

PISO

din 16 32

32 16

All buses are 32 bit wide

>>

Figure 3.18: Luffa lightweight architecture.

MixWord The MixWord takes in two words xk and xk+4 and produces two new words

yk and yk+4 (k = 0,1,2,3) by going through the following transformations. Four MixWords

are used to process all the 8 words and produce new words y0, y1, . . . y7.

AddConstants Two words, y0 and y4 are xored with the constants generated from

the constant generator . The Constant generator generates two constants in each round

using a function fl which is an LFSR of Galois configuration.

3.4.2 Luffa lightweight implementation

The message injection function has xor and x2 operations in it. The x2 galois field mul-

tiplication is nothing but shifting of words with couple of xor operations. Thus the entire

message injection function is basically a series of xor operations which can be implemented

with an XOR gate,a MUX and a register. Two words are read from the Block RAM and

are xored and the result is stored in a register which is used as one of the inputs for the

37

next xor operation. This approach is used for multi Operand xor operations. If it is a

single xor operation, the words are read and the result after the xor is again stored back

into the BRAM at the appropriate location. The Step function is implemented with one

SubCrumb and one MixWord. First , 4 words are accessed from the BRAM and stored in

the 4 registers which are then send to the Subcrumb and the output from the SubCrumb

is stored back into the BRAM. The remaining 4 words are stored into appropriate registers

which takes care of the order of the inputs to the Subcrumb. MixWord is operated on two

words at a time and the result is stored back into the memory. The addconstant operation

is also implemented the same way. Instead of the constant generator, the pre-calculated

constants are stored in a ROM and are used in the Addconstant stage in each iteration.

The tweak which effects permutation q1and q2 in the first iteration is implemented by a

3x1Mux. The Mux takes in 3 words , in which the second and third word are the rotated

versions of the first word, rotated by 1 and rotated by 2 respectively. The finalization round

is also implemented the same way using the same resources.

The Message Injection function is executed in 78 clock cycles.Each permutation Qj takes

22 clock cycles which results in 66 clock cycles for one iteration of the step function. The

total number of clock cycles to process one block of message are 78+(8 ∗ 66) = 606

3.5 SHAvite-3

3.5.1 SHAvite-3 Algorithm description

Notations

M Input Message

mc chaining value or Initialization vector

kji Subkey j in i-th round (j = 0 ,1 ,2)

rk[i] i-th 32-bit keyword

cnt0,cnt1 32-bit words formed from the 64-bit counter

38

Description

SHAvite-3 [6] is another AES based algorithm with compression function c256. The com-

pression function has an underlying block cipher E256 which is a 12 round Feistel block

cipher. The block cipher E256 accepts 256 bits treated as eight 32-bit words P[0,. . . ,7]

which are divided into two halves L0 and R0. L0 contains words P[0,1,2,3] and R0 contains

P[4,5,6,7]. Then the following round function is repeated 12 times.

(Li+1, Ri+1) = (Ri , Li xor F
3
RKi

(Ri))

F 3(.) accepts an input of 128 bits, Ri and 384-bit subkey, RKi = (k0i , k1i , k2i) and

three rounds of AES are applied on them.

F 3
(k0i ,k

1
i ,k

2
i)
(x) = AESRound0128(AESRoundk2i

(AESRoundk1i
(x xor k0i)))

The output cipher text C = (L12, R12) is the intermediate hash or the final hash

depending on which block it is processing. There is no finalization round in SHAvite-3.

The message expansion algorithm of C256(the key schedule algorithm of E256) takes in

the message block, a 256-bit salt and a 64-bit counter to produce the 36 subkeys(or 144

32-bit words rk[i]). The first 4 subkeys are generated directly from the message block and

the remaining 32 keys are produced by a series of Non-linear and linear expansion steps.

The non linear process takes four rk[.] words and encrypts them using 4 words of the salt

and the result is xored with four other words to produce the next 4 words(a new subkey).

The linear process takes in 2 words and produces a new word by xoring them. First, 4

sub keys(or 16 words) are produced using Non-linear step and the next 4 are produced by

linear step. This sequence is repeated 4 times to produce 32 subkeys.

Out of the 144 32-bit words produced from the message expansion step, 8 words are

xored with counter, either with cnt0 or cnt1.

39

AESRound AESRound AESRound

AESRound AESRound AESRound

AESRound AESRound AESRound

k0

k0

k0

k
1

k
1

k
2

k
2

k
2

k
1

....

0

0

0 111111

0 0 0

111

128
256

128

256
128 128

Figure 3.19: SHAvite-3 hash function

40

16 1817 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

rk[12]
rk[13]

rk[14]
rk[15]

rk

rk

rk

Message words

AESRound AESRound AESRound AESRound

salt[0,1,2,3] salt[0,1,2,3]salt[4,5,6,7] salt[4,5,6,7]cnt[0]

cnt[1]

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

11

11

12

12

13

13

14

14

15

15

....

Figure 3.20: SHAvite-3 keygeneration unit

41

Reg0 Reg1

S−Box S−Box S−Box S−BoxS−Box

dout0
1

Reg
31

16
15

0

din

Reg2 Reg3

Counter

BRAM

Port−B

Port−Adia

dib

doa

dob

31
24 16

23
8 0

715

15
0

31
16

032 63 31

64 8 8 8 8

Reg

Mix Column

32

32

32

Figure 3.21: SHAvite-3 lightweight architecture.

3.5.2 SHAvite-3 lightweight implementation

SHAvite-3 has two major blocks. One is the key generation unit and the other is the pro-

cessing unit. Both the blocks are based on AES rounds. A single AES round is implemented

and first, the key generation operations are performed using the AES resources and the keys

are stored in the BRAM. Then processing operations are performed using the keys stored

in the BRAM. A 128 bit input is organized in a 4x4 array and the AES operations are

performed on it. The 128 bits are stored in 4 registers from which a byte from each register

is given to the four S-boxes for the sub-byte operation. The first column is formed by taking

in byte0 from reg-0, byte1 from reg-1, byte2 from reg-2 and byte-3 from reg-3. Then the

words are rotated within the registers and the same set of bytes forms second column. In

42

Table 3.1: Throughput formulae for implementations of the four SHA-3 candidates

Algorithm
Speci-
fication

Block
Size
(bits)
b

Clock Cycles to hash
N blocks
clk =

st+ (l + p) ·N + end

Throughput

b

(l + p) · T

BMW [14] 512 2 + (32 + 730) ·N + 757 512/(762 · T)
Grøstl [13] 512 2 + (32 + 1120) ·N + 577 512/(1152 · T)
Luffa [7] 256 2 + (16 + 606) ·N + 647 256/(622 · T)

SHAvite-3 [6] 512 2 + (32 + 744) ·N + 17 512/(776 · T)

this way the shift row operation is taken care of and the required column is obtained which

is sent to sub-bytes and mixbyte operations. The Sbox is implemented as a LUT and four

such S-boxes are used. The MixByte has GF multipliers x2 and x3 and a has a total of 8

such multipliers combined so that it takes in a 32-bit column as input and produces new

column at a go. The AddConstant is performed by the xoring the output word from the

MixByte and the constant stored in the BRAM. The 64 bit counter is split into two halfs

cnt0 and cnt1. Few selective words are xored with the counter values either with cnt0 /cnt1

or with the complement of cnt0/cnt1. The salts are assumed to be ZERO.

One 128 bit non linear key is obtained in 10 clock cycles and one 128 bit linear key is

obtained in 8 clock cycles. So all the keys are produced in 288 clock cycles(10*16 + 8 *16).

Each round of processing takes 38 clock cycles.The total number of clock cycles to process

one block of message are 744(38*12 + 28).

43

Chapter 4: Results and Comparisions

4.1 Implementations results

The results are updated in table 4.1 and 4.2. All the implementations are under the area

constraint of 400-600 slices. The designs are optimized for maximum throughput within

this limit. The delays of Luffa and BMW are on the higher side. Introducing a pipeline

register can improve the delay in Luffa. The large delay in BMW is due to the 32-bit adders

used. The area of BMW is hugely influenced by the controller (Fig.4.4). Since BMW is

a single round function, and there are no regular patterns in the memory addresses, the

controller area is very huge. Luffa has the least area among the four, followed by SHAvite-3

on Spartan device. But the situation changes when it is targeted to Virtex device. SHAvite-

3 has the least area among the four. This is due to the fact that the four S-boxes used in

SHAvite occupy 256 slices(4 * 64) on Spartan-3 whereas it just takes 32 slices(4 * 8) on

Virtex-5. Throughputs of algorithms which have finalization rounds are adversely affected

for short messages.

4.2 Comparision with other groups

Firstly, it is to be noted that our primary design target is Spartan-3 device. So some of

the algorithms perform worse when they are compared to designs on a different platform

as they could not take advantage of that particular device features. The results from other

groups are shown in table 4.3.

Our BMW outperforms the implementation by El Hadedy [8] by a significant margin.

The throughput is much better then theirs as the message block is processed in less number

44

Table 4.1: Implementation Results of Lightweight Implementations of Grøstl , Luffa ,
SHAvite-3 and BMW

Xilinx Xilinx Xilinx Altera
xc3s50-5 xc6slx4csg-3 xc5vlx20-2 ep2c5f256c6

Algorithm A
rea

(slices)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
elay

(n
s)

T

A
rea

(slices)

B
lo
ck

R
A
M
s

M
a
x
im

u
m

D
elay

(n
s)

T

A
rea

(slices)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
elay

(n
s)

T

A
rea

(L
E
s)

M
em

ory
B
its

M
a
x
im

u
m

D
elay

(n
s)

T

BMW 561 1 9.99 183 1 7.15 233 1 5.16 1,104 8,192 9.45
Grøstl 483 1 11.42 148 1 7.66 183 1 4.80 1,157 8,704 11.12
Luffa 474 1 10.17 107 1 6.86 176 1 5.08 946 8,192 7.66

Shavite-3 501 1 7.60 120 1 5.24 136 1 3.37 471 16,384 7.01

of clock cycles. The other implementation of BMW, again by El Hadedy [9] is primarily

based on their previous design and this time published results targeting Virtex family. Both

the designs take huge number of clock cycles to process a block. This is due to their rather

simple design which has an ALU consisting of adders, shifters, rotators and xor gates. Each

instant, two words are accesed from the memory and one of the above mentioned operations

is performed and the result is again stored back into the memory. Our design have multiple

adders and xor gates and also the shifter is separated from the rotater. So operations can

be performed in parallel and this reduces the number of clock cycles by a huge margin at

the cost of marginal increase in area.

There are no lightweight reults for Luffa targeting Spartan 3 Device. Our Luffa is bet-

ter when compared to the lowest(in terms of area) reported result by Shugo [24]. Their

smallest reported result on Virtex 5 family is 355 slices as against our 144 slices. But our

throughput is better than theirs resulting in a very good throughput to area ratio. When

compared to their next higher versions, the result is not promising. The performance of

our luffa is effected due to the area constraint. Given a little more budget, its performance

can be improved by implementing a full step function instead of the half that is implemented.

45

Table 4.2: Throughput Results of Lightweight implementations of Grøstl , Luffa , SHAvite-3
and BMW

Xilinx xc3s50-5 Xilinx xc6slx4csg225-3
Message Long Short Long Short

Algorithm T
h
rou

gh
p
u
t

(M
b
p
s)

T
P
/A

rea
(M

b
p
s/slice)

T
h
rou

gh
p
u
t

(M
b
p
s)

T
P
/A

rea
(M

b
p
s/slice)

T
h
rou

gh
p
u
t

(M
b
p
s)

T
P
/A

rea
(M

b
p
s/slice)

T
h
rou

gh
p
u
t

(M
b
p
s)

T
P
/A

rea
(M

b
p
s/slice)

BMW 67.3 0.12 33.7 0.060 93.9 0.51 47.1 0.257
Grøstl 38.9 0.08 25.9 0.050 58.0 0.39 38.6 0.26
Luffa 40.5 0.09 19.8 0.042 60.0 0.56 29.4 0.275

Shavite-3 86.8 0.17 83.1 0.166 126.0 1.05 120.6 1.005

Xilinx xc5vlx20-2 Altera ep2c5f256c6
Message Long Short Long Short

Algorithm T
P

(M
b
p
s)

(M
b
p
s

/slice)

T
P

(M
b
p
s)

(M
b
p
s

/slice)

T
P

(M
b
p
s)

(M
b
p
s

/L
E
)

T
P

(M
b
p
s)

(M
b
p
s

/L
E
)

BMW 130.3 0.56 65.3 0.280 71.1 0.06 35.6 0.032
Grøstl 92.6 0.50 61.6 0.33 39.9 0.03 26.4 0.022
Luffa 81.1 0.46 39.7 0.225 53.8 0.06 26.3 0.028

Shavite-3 196.1 1.44 187.6 1.380 94.1 0.20 90.1 0.191

46

Figure 4.1: Throughput

Grøstl performs worse then the one reported by Jung [19]. But design is significantly

changed and performs much better than [19]. This is expalined in the next chapter. There

is no reported result on lightweight implementation of SHAvite-3 on any platform.

47

Figure 4.2: Throughput to Area ratio

Table 4.3: Comparison of Lightweight Implementations of Grøstl , Luffa , SHAvite-3 and
BMW on Xilinx FPGAs ([TW] – this work))

Algorithm R
eferen

ce

Device I/
O

W
id
th

D
a
ta
p
a
th

W
id
th

C
lo
ck

C
y
cles

(l
+

p
)

A
rea

(slices)

B
lo
ck

R
A
M
s

M
a
x
im

u
m

D
ela

y
(n

s)

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

T
P
/
A
rea

(M
b
p
s/
slice)

BMW [8] xc3s400a-5 32 32 24832 1,440 0 10.31 2.0 0.001
BMW [TW] xc3s200-5 16 32 762 582 1 8.23 81.6 0.140
Grøstl [19] xc3s200 64 64 160 1,276 0 16.67 192.0 0.150
Grøstl [TW] xc3s200-5 16 32 1120 483 1 11.48 38.7 0.080
Luffa [24] xc5vlx75t-1 256 128 50 503 0 4.57 1120.0 2.227
Luffa [24] xc5vlx75t-1 256 128 50 355 0 20.0 33.0 0.090
Luffa [TW] xc5vlx75t-1 16 32 622 144 1 5.59 81.1 0.460

48

Figure 4.3: Throughput Vs Area plot.

49

Figure 4.4: Datapath vs Controller

50

Chapter 5: Scalability of Grøstl

For round-3 of the SHA-3 competition, a tweak was introduced which changes the shifts in

the ShiftByte operation and introduces a different AddRoundConstant function for Q. This

has minimal efect on the area consumption and does not change the overall architecture.

The drawback of the previous design of Grøstl is that each access of the BRAM can

produce only two valid bytes. This is due to the ShiftByte operation. The matrix before

and after ShiftByte operation is shown in fig 5.1 . Since the shift operation cannot be

achieved within the BRAM, the column is formed by accessing various words and tapping

the required bytes. To avoid this, the state(P & Q) can be removed from the BRAM and

stored in DRAMs in a way described in the following section.

5.1 Grøstl BRAM with 4 sboxes and half GF multiplier

(GrøstlB)

In this implementation the state, consisting of two 512 bit matrices P and Q, is stored in 16

4x8 Distributed RAMs. Each row is stored in one Distributed RAM. In order to get the first

64-bit column we access byte0 from RAM0, byte1 from RAM1. . . etc. This access scheme

performs the ShiftByte operation with which we start each round. The AddRoundConstant

operation is taken care by the controller. Four bytes are accessed from the memory in each

clock cycle. The second and third byte is xored with either zeros or ones based on whther

the bytes belong to a P column or a Q column. The first word is xored with the round

counter of P or ones and the fourth byte is xored with the round counter of Q or zeros, agian

based on which column they belong to. SubBytes is implemented using 4 pipelined S-Boxes

which are described as logic functions. The multiplier takes a column from SubBytes and

51

Table 5.1: Throughput formulae for implementations of Grøstl

Algorithm
Speci-
fication

Block
Size
(bits)
b

Clock Cycles to hash
N blocks
clk =

st+ (l + p) ·N + end

Throughput

b

(l + p) · T

GrøstlB [13] 512 2 + (32 + 515) ·N + 532 512/(547 · T)
GrøstlD0 [13] 512 2 + (32 + 515) ·N + 532 512/(547 · T)
GrøstlD1 [13] 512 2 + (32 + 357) ·N + 374 512/(389 · T)
GrøstlD2 [13] 512 2 + (32 + 187) ·N + 204 512/(219 · T)

Figure 5.1: Grøstl ShiftByte Operation

produces 32 bits of the new column in one clock cycle, the remaining 32 bits in the second

clock cycle. It takes a total 3 clock cycles to produce a new column. Each round of P and

Q computes 16 new columns which takes 48 clock cycles. BRAM is used in dual port mode

and stores the initialization vector and the intermediate hash.

52

012 0120101

A

BRAM

Port−B

Port−A

Reg
din

15
0

31
16

dout 0
1

15
0

31

SBoxSBoxSBoxSBox

Reg

Add Constant

8 8 8 8

4xDRAM 4xDRAM 4xDRAM4xDRAM

0 1

Reg

0 1

Reg

GFMul

0 1

32

32

A
B

B

A

Figure 5.2: GrøstlB implementation.

5.2 Grøstl DRAM with 4 sboxes and half GF multiplier

(GrøstlD0)

The block RAM in the previous design is replaced with a distributed RAM.

5.3 Grøstl DRAM with 4 sboxes and full GF multiplier

(GrøstlD1)

In this implementation, a full Galois field multiplier is used which takes in 64 bit column

from the SubBytes and produces a 64 bit new column. DRAM, instead of BRAM, is used

to store the initialization vector and the intermediate hash. It takes a total 2 clock cycles

to produce a new column. Each round of P and Q computes 16 new columns, a column of

P followed by a column of Q, which takes 32 clock cycles. The total number of clock cycles

to process one block of message are 325(16*2*10 + 5(pipeline))clock cycles.

53

012 0120101

RegReg

GFMul

Reg
din

15
0

31
16

8 8 8 8

SBoxSBoxSBoxSBox

Reg

Add Constant

0
1 15

0

31

B

4xDRAM 4xDRAM4xDRAM 4xDRAM
p0 p1 q0 q1

B

q1

p0
q0

p1

DRAM−A

DRAM−B

dout

32

A0

A1

A0 A1

Figure 5.3: GrøstlD1 implementation.

5.4 Grøstl DRAM with 8 sboxes and full GF multiplier

(GrøstlD2)

In this implementation, SubBytes is implemented using 8 pipelined S-Boxes which are

described as logic functions. A full Galois field multiplier is used which takes in 64 bit

column from the SubBytes and produces a 64 bit new column. It now takes only 1 clock

cycle to produce a new column. Each round of P and Q computes 16 new columns, a column

of P followed by a column of Q, which takes 16 clock cycles. The total number of clock

cycles to process one block of message are 165(16*1*10 + 5(pipeline))clock cycles.

5.5 Results and Comparisions

Grøstl by Jung [19]is the only lightweight implementation targeted at a Spartan Device.

But their area is more than double of our size as they are using 8 S-boxes. Their delay is

also on the higher side as S-boxes used are described as logic without any pipeline registers.

They produce a new column for every clock cycle resulting in a high throughput. But our

throughput to area ratio is better than theirs.

54

012 0120101

Reg
din

15
0

31
16

0
1 15

0

31

Add Constant

B

p0 p1 q0 q1

B

q1

p0
q0

p1

DRAM−A

DRAM−B

dout

32

A0

A1

A0 A1

01
64

64

64

64 64

8 X SBox

GFMul

8XDRAM 8XDRAM

Figure 5.4: GrøstlD2 implementation.

Figure 5.5: Throughput

55

Figure 5.6: Throughput to Area ratio

56

Figure 5.7: Throughput Vs Area plot.

57

Figure 5.8: Scalability of Grøstl.

58

Table 5.2: Implementation Results of Lightweight Implementations of Grøstl

Xilinx Xilinx Xilinx Altera
xc3s200-5 xc6slx4csg-3 xc5vlx20-2 ep2c5f256c6

Algorithm A
rea

(slices)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
elay

(n
s)

T

A
rea

(slices)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
elay

(n
s)

T

A
rea

(slices)

B
lo
ck

R
A
M
s

M
ax

im
u
m

D
elay

(n
s)

T

A
rea

(L
E
s)

M
em

ory
B
its

M
a
x
im

u
m

D
elay

(n
s)

T

GrøstlB 547 1 8.20 180 1 5.44 232 1 3.61 1240 3,072 6.72
GrøstlD0 599 0 8.14 229 0 7.80 262 0 3.40 1196 2,560 7.02
GrøstlD1 790 0 7.80 284 0 6.80 367 0 3.10 1459 2,560 6.78
GrøstlD2 948 0 7.50 342 0 6.36 428 0 3.83 1647 2,560 6.73

The resource efficient implementation of Grøstl by Kerchoff[20] and Jung [17], [18]

are targeted at Virtex-6 and Virtex-5 families. Both the implementations outperform our

GrostlB implementation. Even when they are compared to our GrostlD2 implementation,

they perform better . The implementation of Kerchoff takes agvantage of Virtex-6 family.

They use 8 Sboxes implemented as LUTs and consume only 64 slices. Our GrostlD2 also

uses 8 Sboxes but described as logic functions with pipeline registers which occupy (8 * 17)

136 slices. As result our area is comaparitvely higher than theirs. Additionally the XOR

operation (P XOR Q XOR H) after the 10th round takes 32 clock cycles which is avoided

in [20] by executing them on the fly. The implementation by Jung is almost similar to our

design including the Sbox implementation except that the XOR operation is done on the

fly. Our area is on the higher side due to the controller area. The controller designed for

the BRAM version is slightly tweaked to work for GrøstlD2 and the area can be decreased

significantly if it is designed exclusively for the unfolded version Grøstl(GrøstlD2).

59

Table 5.3: Throughput Results of Lightweight implementations of Grøstl

Xilinx xc3s200-5 Xilinx xc6slx4csg225-3
Message Long Short Long Short

Algorithm T
h
rou

gh
p
u
t

(M
b
p
s)

T
P
/A

rea
(M

b
p
s/slice)

T
h
rou

gh
p
u
t

(M
b
p
s)

T
P
/A

rea
(M

b
p
s/slice)

T
h
rou

gh
p
u
t

(M
b
p
s)

T
P
/A

rea
(M

b
p
s/slice)

T
h
rou

gh
p
u
t

(M
b
p
s)

T
P
/A

rea
(M

b
p
s/slice)

GrøstlB 114.1 0.20 57.8 0.105 172.0 0.95 87.2 0.484
GrøstlD0 114.9 0.19 58.2 0.100 120.0 0.52 60.7 0.270
GrøstlD1 168.7 0.21 85.8 0.100 193.5 0.68 98.4 0.350
GrøstlD2 311.7 0.33 160.6 0.170 367.2 1.07 189.2 0.550

Xilinx xc5vlx20-2 Altera ep2c5f256c6
Message Long Short Long Short

Algorithm T
P

(M
b
p
s)

(M
b
p
s

/slice)

T
P

(M
b
p
s)

(M
b
p
s

/slice)

T
P

(M
b
p
s)

(M
b
p
s

/L
E
)

T
P

(M
b
p
s)

(M
b
p
s

/L
E
)

GrøstlB 259.2 1.11 131.4 0.566 139.3 0.11 70.6 0.056
GrøstlD0 275.3 1.05 139.3 0.530 133.3 0.11 67.6 0.056
GrøstlD1 424.5 1.15 215.9 0.590 194.1 0.13 98.9 0.067
GrøstlD2 610.4 1.42 314.5 0.731 347.4 0.21 179.8 0.109

60

Table 5.4: Comparison of Lightweight Implementations of Grøstl on Xilinx FPGAs

Algorithm R
eferen

ce

Device I/
O

W
id
th

D
a
ta
p
a
th

W
id
th

C
lo
ck

C
y
cles

(l
+

p
)

A
rea

(slices)

B
lo
ck

R
A
M
s

M
a
x
im

u
m

D
ela

y
(n

s)

T
h
ro
u
g
h
p
u
t

(M
b
p
s)

T
P
/
A
rea

(M
b
p
s/
slice)

Grøstl [19] xc3s200 64 64 160 1,276 0 16.67 192.0 0.150
GrøstlB [TW] xc3s200-5 16 32 547 547 1 8.20 114.1 0.200

GrøstlD0 [TW] xc3s200-5 16 32 547 599 0 8.14 114.9 0.190
Grøstl [20] xc6vlx75t-1 64 64 176 285 0 3.57 815.0 2.860

GrøstlD2 [TW] xc6vlx75t-1 16 32 219 403 0 4.51 518.0 1.285
Grøstl [18] xc5v 32 64 160 368 0 3.27 975.0 2.640

GrøstlD2 [TW] xc5v 16 32 219 428 0 3.83 610.4 1.420

61

Chapter 6: Power Measurements

6.1 Implementation

Two FPGA boards are used for the setup. One is the Nexys2 board and the other one is

the Spartan 3E starter kit[29]. The Nexys2 board is used for the wrapper and the Spartan

3E starter kit is used for the hash function. The two boards are connected using a bridge

connecter.

Nexys2 Board : The Nexys2 is USB powered and the Spartan 3E FPGA on it is pro-

grammed with the wrapper. This FPGA produces the trigger signal according to the state

of the HASH function. Digilent’s Adept tool is used for programming the FPGA on the

Nexys2 board.

Spartan 3E starter kit Board : This board is used for loading the hash function and

measuring its power consumption. Firstly, to separate the core FPGA from the rest, the

jumper j7 is removed. Now, the core FPGA is powered using an external power supply. A

series circuit is formed with a 1ohm resistor and the FPGA core with 1.2V DC. The current

flowing through the circuit will be in the range of mA and hence the voltage drop across

the resistor is very negligible. This ensures almost all the voltage is supplied to the core

and is within the acceptable range of 1.14V to 1.26V [30].

The power measurements are taken across the resistor with the help of a digital oscillo-

scope and the power consumed by the core FPGA is calculated accordingly. In one of the

channels, the voltage across the resister is traced and to the other channel the trigger signal

produced by the Nexys2 board is connected.

62

Figure 6.1: Nexys2 Board

Figure 6.2: Spartan 3E starter kit

63

Figure 6.3: Bridge Connector

Bridge connector: The bridge connector connects the Nexys2 board and the Spartan

3E kit. The UCF files are written accordingly so that a proper communication is achieved

between the two boards.

First the two boards are connected using the bridge connector. Then the Spartan 3E

starter kit is externally powered and jumper j7 is removed to separate the core FPGA. The

core FPGA, which is made as part of the series circuit is powered using the power supply

with the voltage fixed at 1.2V. The wrapper is programmed onto the FPGA in the Nexys2

board. The Nexys2 board has the external control signals rst and start and also the trigger

output.

Without giving the inputs, the power consumed by the core FPGA of the starter kit is

measured which is nothing but the static power of the design loaded. When the rst signal

is enabled, all the signals of the hash function remain the same except the clock. So the

power measured in this state is the clock + static power. After that the rst signal is disabled

and start signal is enabled which makes the src ready signal = ’0’. So the hash function

generates a src read signal and starts loading the message block from the wrapper. Now

the power measured includes the I/O power as well. After the message is loaded, the SHA

64

Figure 6.4: Digital Oscilloscope

function startes processing and the power measured is the total power which inludes static,

clock and (logic power + interconnect power). After processing the message, the SHA core

writes output hash digest back to the wrapper by enabling Dst write signal.

The digital oscilloscope is capable of recording multiple number of points and these

recordings are separated into each state with the help of the trigger signal connected to the

other channel of the oscilloscope. The maximum, minimum and also the average value of

the readings are obtained from the readings.

This process is repeated for all the five hash functions and the corresponding logic powers

are measured. Since we know the number of bits the core is processing and also the time it

is taking to process one block, the energy per bit is also calculated.

6.2 Results

The Power measurements of the SHA-3 finalists are shown in Table 6.2. JH consumes more

power among all the finalists and skein consumes the least. When it comes to energy, JH is

again the top among the energy consumptions.But now the order differs slightly. BLAKE

65

Figure 6.5: Power Supply

Figure 6.6: Communication between Nexys2 board and Spartan 3E starter board

66

Figure 6.7: Power Measurement Setup

is the least among all overtaking Skein. This is due to the fact that Skein takes more num-

ber of clock cycles(more than 9 times) to process than BLAKE. Also both the algorithms

process a block of same size. So the energy consumed per bit of Skein is also higher than

BLAKE.

The estimated values obtained by XPOWER are shown in table 6.4. From the results

obtained, it is observed that the difference between the estimated power and measured

power varies from 10% to 42%. BLAKE and Grøstl measurements are close to their esti-

mated values whereas JH and Skein have significant difference.

The Power vs Area plot is shown in fig 6.15. It is observed that Dynamic power con-

sumption is not proportional to area but Staic power is directly proportional to the area

occupied. JH is the least among area but consumes the highest power among all. BLAKE

and Grøstl occupy the same area but Grøstl consume more power comparitively.

67

Figure 6.8: Power Trace

68

Figure 6.9: Dynamic Power Consumption

Figure 6.10: Energy Consumption

69

Figure 6.11: Power vs Area Plot

70

Figure 6.12: Estimated Power vs Measured Power

71

Table 6.1: Power Measurements of SHA-3 fianlists

Algorithm
Speci-
fication Area

(Static
+

Clock)
Power
(mW)

Dynamic
power
(mW)

Total
Power
(mW)

BLAKE [3] 545 110.0 29.1 139.1
Grøstl [13] 537 99.9 48.5 148.4

JH [28] 428 68.4 80.0 148.4
Keccak [5] 582 138.0 23.6 161.6
Skein [10] 491 89.6 10.3 99.9

Table 6.2: Energy per bit of SHA-3 fianlists

Algorithm

Block
Size
(b)

Clock
Cycles

Dynamic
power
(mW)

Energy
(nJ)

Energy
per
bit

(nJ/b)

BLAKE 512 290 29.1 168.78 0.32
Grøstl 512 547 48.5 530.59 1.04

JH 512 800 80.0 1280.00 2.50
Keccak 1088 3764 23.6 1776.61 1.63
Skein 512 2398 10.3 493.99 0.96

Table 6.3: Power Estimations of SHA-3 fianlists

Algorithm
Speci-
fication

(Static
+

Clock)
Power
(mW)

Dynamic
power
(mW)

Total
Power
(mW)

BLAKE [3] 33.6 32.4 66.0
Grøstl [13] 32.4 54.0 86.4

JH [28] 32.4 60.0 92.4
Keccak [5] 31.4 32.2 63.6
Skein [10] 31.2 18.0 49.2

72

Table 6.4: Power Measurements against Power Estimations

Algorithm

Estimated
Power
(mW)

Measured
Power
(mW)

Difference
(%)

BLAKE 32.4 29.1 -10.18%
Grøstl 54.0 48.5 -10.18%

JH 60.0 80.0 33.33%
Keccak 32.2 23.6 -26.70%
Skein 18.0 10.3 -42.77%

73

Chapter 7: Conclusions and Future Work

7.1 Lightweight implementations

7.1.1 Conclusion

From the results obtained, it can be concluded that Grøstl is nicely scalable. Since it is

mainly based on AES, the desigm optimizations made to AES can be adapted to Grøstl.

The relationship between the throughput and area is definitely not linear. As you unfold

the design, there is significant amount of increase in the throughtput. But the performance

of Grøstl implemented with 4 S-boxes and a full GF multiplier is not significant. The

throughput to area ratio is almost the same as that of the one implemented with a lesser

area (4 S-boxes and half GF multiplier). So GrøstlD and GrøstlD2 are better choices

depending on the area constraint. The imact of dedicated resources like BRAM is minimal

for Grøstl.

7.1.2 Future work

The controllers of all the designs are not fully optimized. Allmost all the controller areas

are more than 100 slices. The area of these controllers can reduced atleast by 30% by

optimizing them further.

7.2 Power measurements

7.2.1 Conclusion

Skein consumes the least power and JH, the most. BLAKE consumes the least energy per

bit. The Power estimation tools could not provide accurate information about the power

consumed by designs. They vary considerably from the measured values.

74

7.2.2 Future work

The accuracy of the measurements can be increased further by maintaining the voltage

across the FPGA at a constant value(Vccint = 1.2V). Also, the routing or interconnect

power can be separated from the logic power by following the methodologies described by

Jevtic et all [2]. A dedicated board can developed from the available ones by removing

all additional components with only the core FPGA on it. This eliminates the leakage

currents(if any). The setup can be interfaced with a PC and the data can be sent from

the PC to the FPGA and the HASh digest computed by the SHA function on the core is

returened back to the PC and can be verified.

75

Bibliography

76

Bibliography

[1] ATHENa results database. http://cryptography.gmu.edu/athenadb/, Automated
Tool for Hardware EvaluatioN project

[2] Announcing request for candidate algorithm nominations for a new cryptographic hash
algorithm (SHA-3) family. Federal Register/ Vol. 72, No. 212 (Nov 2007), notices 62212

[3] Aumasson, J.P., Henzen, L., Meier, W., Phan, R.C.W.: SHA-3 proposal BLAKE.
Submission to NIST (Round 3) (2010), http://131002.net/blake/blake.pdf

[4] Baldwin, B., Hanley, N., Hamilton, M., Lu, L., Byrne, A., O’Neill, M., Marnane, W.P.:
FPGA implementations of the round two SHA-3 candidates. Tech. rep., Second SHA-3
Candidate Conference (2010)

[5] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function family
main document. http://keccak.noekeon.org (Apr 2009), version 1.2

[6] Biham, E., Dunkelman, O.: The SHAvite-3 hash function. Submission to NIST (Round
2) (2009), http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.09.09.pdf

[7] De Cannière, C., Sato, H., Watanabe, D.: Hash function Luffa: Specification. Sub-
mission to NIST (Round 2) (Oct 2009), http://www.sdl.hitachi.co.jp/crypto/
luffa/Luffa_v2_Specification_20091002.pdf

[8] El-Hadedy, M., Gligoroski, D., Knapskog, S.: Low area implementation of the hash
function “Blue Midnight Wish 256” for FPGA platforms. In: Intelligent Networking
and Collaborative Systems, INCOS ’09. pp. 100–104. IEEE (2009)

[9] El-Hadedy, M., Margala, M., Gligoroski, D., Knapskog, S.J.: Resource-efficient imple-
mentation of Blue Midnight Wish-256 hash function on Xilinx FPGA platform. Tech.
rep., Second SHA-3 Candidate Conference (2010)

[10] Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J.,
Walker, J.: The Skein hash function family. Submission to NIST (Round 3) (2010),
http://www.skein-hash.info/sites/default/files/skein1.3.pdf

[11] Gaj, K., Homsirikamol, E., Rogawski, M.: Fair and comprehensive methodology
for comparing hardware performance of fourteen round two SHA-3 candidates using
FPGA. In: Mangard, S., Standaert, F.X. (eds.) CHES 2010. LNCS, vol. 6225, pp.
264–278. Springer Berlin / Heidelberg (2010)

77

[12] Gaj, K., Kaps, J.P., Amirineni, V., Rogawski, M., Homsirikamol, E., Brewster, B.Y.:
ATHENa – Automated Tool for Hardware EvaluatioN: Toward fair and comprehensive
benchmarking of cryptographic hardware using FPGAs. In: FPL 2010. pp. 414–421.
IEEE (2010)

[13] Gauravaram, P., Knudsen, L.R., Matusiewicz, K., Mendel, F., Rechberger, C., Schäffer,
M., Thomsen, S.S.: Grøstl – a SHA-3 candidate. Submission to NIST (Oct 2008),
http://www.groestl.info/

[14] Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjølsnes,
S.F.: Cryptographic hash function Blue Midnight Wish. Submission to NIST (Round
2) (Sep 2009), http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/

Supporting_Documentation/BlueMidnightWishDocumentation.pdf

[15] Homsirikamol, E., Rogawski, M., Gaj, K.: Comparing hardware performance of four-
teen round two SHA-3 candidates using FPGAs. Cryptology ePrint Archive, Report
2010/445 (2010), http://eprint.iacr.org/

[16] Jevtic, R., Carreras, C.: Power measurement methodology for FPGA devices. IEEE
Transactions on Instrumentation and Measurement 60(1), 237–247 (Jan 2011)

[17] Jungk, B.: Compact implementations of Grøstl, JH and Skein for FPGAs (May 2011),
ECRYPT II Hash Workshop 2011

[18] Jungk, B., Apfelbeck, J.: Area-efficeint FPGA implementations of the SHA-3 finalists.
In: International Conference on ReConfigurable Computing and FPGAs. ReConfig’11,
IEEE (DEC 2011)

[19] Jungk, B., Reith, S.: On FPGA-based implementations of Grøstl. Cryptology ePrint
Archive, Report 2010/260 (2010)

[20] Kerckhof, S., Durvaux, F., Veyrat-Charvillon, N., Regazzoni, F., de Dormale, G.M.,
Standaert, F.X.: Compact FPGA implementations of the five SHA-3 finalists (May
2011), ECRYPT II Hash Workshop 2011

[21] Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., Ohta, K.: Evaluation of hard-
ware performance for the SHA-3 candidates using SASEBO-GII. http://eprint.

iacr.org/2010/010 (Jan 2010)

[22] Matsuo, S., Knežević, M., Schaumont, P., Verbauwhede, I., Satoh, A., Sakiyama, K.,
Ota, K.: How can we conduct “fair and consistent” hardware evaluation for SHA-3
candidate? Tech. rep., Second SHA-3 Candidate Conference (2010)

[23] Meintanis, D., Papaefstathiou, I.: Power consumption estimations vs measurements for
FPGA-based security cores. In: International Conference on Reconfigurable Computing
FPGAs. IEEE (2008)

[24] Mikami, S., Mizushima, N., Nakamura, S., Watanabe, D.: A compact hardware im-
plementation of SHA-3 candidate Luffa. http://www.sdl.hitachi.co.jp/crypto/
luffa/ACompactHardwareImplementationOfSHA-3CandidateLuffa_20101105.pdf

(2010)

78

[25] Sönmez Turan, M., Perlner, R., Bassham, L.E., Burr, W., Chang, D., jen Chang, S.,
Dworkin, M.J., Kelsey, J.M., Paul, S., Peralta, R.: Status report on the second round
of the SHA-3 cryptographic hash algorithm competition. NIST Interagency Report
7764, NIST, Gaithersburg, MD, USA (Feb 2011)

[26] Tuan, T., Kao, S., Rahman, A., Das, S., Trimberger, S.: A 90nm low-power FPGA
for battery-powered applications. In: FPGA ’06. pp. 3–11. ACM/SIGDA, ACM, New
York, NY, USA (2006)

[27] Westermann, B., Gligoroski, D., Knapskog, S.: Comparision of the power consumption
of the 2nd round sha-3 candidates (2010)

[28] Wu, H.: The hash function JH. Submission to NIST (round 3) (2011), http://www3.
ntu.edu.sg/home/wuhj/research/jh/jh_round3.pdf

[29] Xilinx: Spartan-3E Starter Kit Board User Guide (march 2006)

[30] Xilinx: Spartan-3 FPGA Family Data Sheet (December 2009)

79

Curriculum Vitae

Kishore Kumar Surapathi received his Bachelor of Technology Degree from Gayatri Vidya
Parishad College of Engineering, Visakhapatnam, India in May 2009. He started working
towards his Master of Science degree in Computer Engineering from August 2009 at George
Mason University.

As a Graduate Research Assistant in Cryptographic Engineering Research Group at
George Mason, he worked on several projects and gained hands on experience in design and
implementation of cryptographic algorithms on FPGAs and ASICs. He received several
academic awards for his projects. His work is partially supported by NIST. He also worked
as Graduate Teaching Assistant in the Department of Electrical and Computer Engineering
and achieved very good reviews from the students.

80

