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Abstract

IPSEC IMPLEMENTATION IN EMBEDDED SYSTEMS FOR
PARTIAL RECONFIGURABLE PLATFORMS

Ahmad Salman

George Mason University, 2011

Thesis Director: Dr. Jens-Peter Kaps

Internet Protocol Security (IPsec) provides essential security against attacks on data

transmitted over the Internet through different security services provided by cryptographic

algorithms like encryption modules and hash functions. Due to the importance of IPsec, it

has been implemented in hardware and software with different designs and parameters to

suit different platforms and provide better solutions. Among the popular implementations

of IPsec in hardware are those that target FPGA platforms because of the flexibility they

offer the designer, ease of programming and high speeds that cannot be achieved through

software. Due to the fact that FPGAs are resource limited devices, even efficient imple-

mentations of IPsec with all the services it provides might not fit on low cost devices or

low area devices that are meant for light weight implementations. A solution to this prob-

lem can be Partial Reconfiguration which allows some IPsec services to be available in the

system and the remaining services can be recalled when needed by an application. Partial

Reconfiguration is a configuration method for FPGAs that allows certain portions of the

device to be reconfigured during run-time without affecting other portions in the system

or their functionality. In this thesis we will investigate the effect of implementing IPsec

services using Partial Reconfiguration in terms of speed, area and reconfiguration time.



For that, we built an embedded system controlled through an embedded processor to

provide self reconfiguration of the system through a software application. We also imple-

mented different versions of the embedded system using Microblaze and PowerPC embedded

processors targeting two different platforms (Virtex-4 and Virtex-II-Pro) to perform thor-

ough testing on the proposed design and analyze the results.



Chapter 1: Introduction

1.1 Overview

In the last decade, the number of Internet users has increased by more than one billion

users with a growth rate of 444.8% making the Internet users count to be a little over one

fourth of the world population [1]. The use of the Internet by this huge number of users

and groups vary from social interacting and networking to economical and on-line banking.

This rapid increase in the number of users has opened the door to an increasing number of

security threats and cyber attacks making the need for a secure system for Internet usage

and global networks in general an essential demand. Internet Protocol Security (IPsec)

is a security protocol that provides security against a number of cyber attacks including

Eavesdropping, Hacking, Phishing and IP Spoofing [2] through a number of security services

like confidentiality, data integrity and authentication. Due to the overwhelming amount of

data transfered over global networks, software implementations of protocols like IPsec have

become impractical as software implementations cannot handle this much data processing

and computations within a reasonable response time [3].For this reason, such computations

are performed in hardware.

Hardware implementations not only perform at significantly higher speeds compared to

software, but they also provide better protection to schemes implemented on them against

attacks that software implementations are vulnerable to like viruses. Field Programmable

Gate Arrays (FPGA) have become more popular as platforms for hardware implementa-

tions due to the fact that they provide flexibility, fast production time-line and are cost

effective. For these reasons, they have been used as hardware accelerators in routers and

other network devices to implement protocols like IPsec and Secure Socket Layer (SSL)
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[4]. One of the major advantages FPGA platforms provide is reconfigurability which facili-

tates system updates and upgrades. A relatively new feature of FPGA platforms, is Partial

Reconfiguration in which part of the chip is reconfigured while the remaining portion is

operational giving designers more options to efficiently use available resources.

Design implementations that take advantage of partial reconfiguration have shown promis-

ing results in terms of area saving and reduction in power consumption [5]. Although there

are a number of researches on IPsec implementations on FPGA platforms, non of them

take advantage of partial reconfiguration for efficient resource usage which can be benefi-

cial to light-weight implementations targeting resource limited platforms. We would like to

introduce a System-on-Chip (SoC) embedded system capable of performing IPsec protocol

services in hardware having only the modules that are in use at any given time residing on

the chip using partial reconfiguration.We will examine how useful such systems can be in

terms of saving area and the amount of time needed to partially reconfigure the system. In

the next sections we will present the method we used to achieve our goal and the outline of

the thesis.

1.2 Method

The embedded system we are proposing is composed of an embedded microprocessor, hard-

ware modules to perform IPsec operations in hardware, system supporting peripherals and

software support to create an Application Programming Interface (API) for different on-chip

peripherals. Figure 1.1 shows a high level diagram with major components of the design.

The embedded processor used in the system is either a Microblaze or PowerPC which will

be discussed later. This embedded processor controls partial reconfiguration of the system

through a module called the Internal Control Access Port (ICAP) which allows the system

to be self-reconfigurable without user involvement.

Partial reconfiguration of the system takes place between two Intellectual Property (IP)

Cores one is to perform encryption operations required by IPsec to provide confidentiality

2



Memory

Embedded

Processor
IPsec

Coprocessor

Software ICAP

External

Figure 1.1: A High-Level Diagram of the Design.

and the other core is to perform hash calculations to provide authentication and data in-

tegrity. Depending on the application being processed by IPsec and the services required,

the microprocessor performs partial reconfiguration to load the suitable core for the re-

quested operation.

Xilinx ISE,EDK and PlanAhead tools were used through out different design and im-

plementation phases of the embedded system.The target devices for the created designs are

Virtex-II-Pro and Virtex-4 devices on XUP Virtex-II-Pro and ML403 boards, respectively.

1.3 Thesis Outline

The thesis will be organized as follows. Chapter 2 presents the related work and motivation.

In chapter 3 an overview of the target platforms, the FPGA devices on them, Xilinx tools

used and partial reconfiguration technique will be presented. Chapter 4 explains the hard-

ware architecture with different modules in the system as well as the software. In chapter 5

we present the implementation methodology and different design phases. In Chapter 6 the

results are presented and discussed. Finally, chapter 7 provides the thesis conclusion.
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Chapter 2: Related Work and Motivation

2.1 Hardware Implementations and FPGA

In the past few years, hardware implementations of some network protocols, especially those

related to providing network security services like IPsec and Secure Socket Layer (SSL), have

increased due to the fact that data transfer rates have increased to the level of Tera-bits

per second which demands shorter response time and higher processing speed for data

which cannot be achieved through traditional software implementations that fails to handle

high data throughput rates. One of the known platforms for hardware implementations

of network security protocols is Network Security Processors (NSP) which can perform

various cryptographic operations specified by these network security protocols [6]. But like

Application Specific Integrated Circuit (ASIC) solutions, NSPs do not offer much flexibility

as they are not re-programmable platforms[7]. Field Programmable Gate Arrays (FPGA)

offer a System-on-Chip (SoC) solution with more flexibility for hardware implementations.

The main advantages that FPGA implementations have over ASICs are

• With FPGAs, it is possible to reconfigure the chip for different encryption standards

and hash algorithms to provide the services offered by different security services.

• Bug fixes in an existing implementation or upgrades to new standard can be easily

achieved with little to no cost.

• FPGAs offer lower cost for small volumes, shorter development times and faster time

to market over ASIC technology [8].

Although the throughput achieved by FPGA devices is less than that of ASICs, im-

plementations on FPGA platforms have achieved throughput up to Giga-bits/second [6]
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making it suitable for network security protocols implementations and as hardware accel-

erators for Virtual Private Networks (VPN).

In addition to the previous benefits, FPGA devices can also be partially reconfigurable

allowing reconfiguration of part of the chip without affecting the functionality of other

modules running on it. This technique makes it possible to implement the same design on

FPGAs with fewer resources or add more modules to a design on an existing FPGA without

increasing the area.

Several implementations for network security services and hardware accelerators for

IPsec in specific have targeted FPGA platforms [9] [10] [11] some of which only implemented

only some modules for Authentication and not all services [12] [13] but non of which took

advantage of partial reconfiguration although it would add to the system flexibility specially

in light weight implementations where resources are very limited and area is a key factor.A

partially reconfigurable system is presented in [14] where security is provided to bitstreams

used to partially reconfigure specific regions in a reconfigurable system through IPsec but

the protocol itself was implemented in software. For this reason, we wanted to implement

a hardware accelerator for IPsec with the option of not having all encryption and hash

functions residing on the chip thus taking advantage of partial reconfiguration. Not only that

this will allow the use of less resources available on an FPGA, it will also make implementing

all the supported cryptographic algorithms possible on small FPGA devices giving users the

freedom to choose between all supported algorithms by a protocol and also the possibility

of adding new algorithms in the future if they become part of the protocol standard.

2.2 IPsec

IPsec is a security protocol that provides security for data being transmitted over unsecured

networks like the Internet [15]. operating in the Internet layer of the TCP/IP model, IPsec

provides security to IP packets being transfered between hosts and gateways in IPV4 and

IPV6 through different cryptographic functions.

IPsec provides a number of security services for data protection that can be summarized

5



in the following points as defined in [16]

• Confidentiality: Which is keeping information secret from all but those who are au-

thorized to see it.

• Authentication: Can be corroboration of the identity of an entity or corroborating the

source of information.

• Data integrity: Ensuring information has not been altered by unauthorized or un-

known means.

In addition to the previous services, IPsec also provides key management through Inter-

net Key Exchange (IKE) mechanism which allows the exchange of secret keys over unsecured

networks like the Internet.

These services are provided by IPsec through two main protocols Authentication Headers

(AH) and Encapsulating Security Payload (ESP). The IP AH is used to provide connec-

tionless integrity and data origin authentication for IP datagrams (i.e. integrity) and to

provide protection against replays [17].For this AH uses Hash Message Authentication Code

(HMAC) with a hash function to calculate Integrity Check Value (ICV). The AH format is

illustrated in Figure 2.1 a

TCP/ UDP

TCP/ UDP
Header

ESP

Trailer

ESP

a) AH Authentication

Original

IP Header
Data

Original

IP Header

AH

Header
Data

b) ESP Encryption

Figure 2.1: Authentication Header and Encapsulating Security Payload Formats
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The IP ESP is designed to provide a mix of security services in IPv4 and IPv6. It

can be used to provide confidentiality, data origin authentication, connectionless integrity,

an anti-replay service [18]. For confidentiality, EPS uses encryption ciphers like Data En-

cryption Standard (DES) or Advanced Encryption Standard (AES). It can also be used in

combination with AH to provide Confidentiality and Authentication. Figure ?? b shows

the EPS format.

In addition to AH and EPS, IPsec uses Security Association (AS) concept to provide

necessary parameters needed by AH and EPS like encryption keys. Also Internet Security

Association and Key Management Protocol (ISAKMP) which is used for key exchange

and to authenticate keys. Table 2.1 summarizes the protocols supported by IPsec, their

functionality and the algorithms currently supported.

Table 2.1: IPsec Supported Protocols and Algorithms
Protocol Security Service Provided Supported Algorithm Modes of Operation

ESP Provides Confidentiality through AES and TripleDES CBC and CTR

Encapsulating Security Payload data encryption

AH provide connectionless integrity and HMAC-SHA1-96, AES-MAC-96, XCBC

Authentication Header data origin authentication HMAC-MD5-96 and HMAC-SHA-256

IKE Negotiates connection parameters, Deffie-Hellman and RSA

Internet Key Exchange including keys, for the other two

In some contexts, the term IPsec includes all three of the above but in other contexts

it refers only to AH and ESP [19] . Sometimes not all three are included because of

limitations in resources available on an FPGA platform which can be solved by using partial

reconfiguration that allows same resources to be used with different modules giving the

opportunity to add more algorithms to the protocol and the freedom to choose between the

available ones.
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2.3 IP Cores

Intellectual Property Core (IP Core) is a block unit composed of combinational and sequen-

tial logic to be used as a building block for larger block units or used in different designs

without the need of rebuilding it. Usually, IP Cores are the intellectual property of of one

party which issues licenses for this IP to be used by other parties or it can be solely used

by this party only. IP cores are widely used in designing for FPGA platforms for various

interfaces and embedded modules.

IP Cores comes in the following two different types

• Hard Core: Where the IP is hard-wired to the FPGA or integrated on-chip as a

component. The benefit of hard cores is that they add to the chip performance in

terms of area and time but the problem is that they are very vendor or foundry specific

and not portable to different platforms.

• Soft Core: The soft IP cores are offered as synthesizable Register Transfer Level (RTL)

in the form of hardware description languages like VHDL and Verilog which can be

modified by the designer or they can be offered as netlists to prevent modification if

the vendor chooses so. The benefit of soft IP cores is that if the vendor allows it, they

can be adapted by different platforms like in case of open-source cores.

Lots of Vendors offer IP cores either through their Computer Aided Design (CAD) tools

if the IP Core has copy right protection and they are specific to the vendor’s hardware, or

through open-source hardware language codes that can be adapted by any platform.
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Chapter 3: Background

3.1 Overview

Xilinx is a known supplier for digital Programmable Logic Devices (PLD) which includes

Complex Programmable Logic Devices (CPLD) and Field Programmable Gate Arrays

(FPGA). One of the high end FPGA products by Xilinx is the Virtex family series. Since

the release of the original family in 1998, Virtex has delivered high-performance logic solu-

tions offering more Block rams, Logic Cells, Input/Output (I/O) availability and Look Up

Tables (LUT) than any other FPGA family series offered by Xilinx [20]. For the purpose of

this research we will focus on two specific Virtex families, Virtex II-Pro and Virtex 4 and

the development boards they are embedded on.

3.2 Boards

Xilinx provides hardware development boards with FPGA’s of different families installed

on-board. The boards provide basic and supplementary interfaces and IP cores to create a

hardware environment which facilitates the designer’s job in implementing a design. For this

project, we needed a relatively high density platform that supports partial reconfiguration,

as it is the basic idea of the project, for this reason we chose XUP Virtex-II-Pro Development

System and ML403 Evaluation board as the platform for the research. In this section, we

will be discussing both boards and the peripherals integrated on them.

3.2.1 XUP Virtex-II-Pro Development System

The XUP Virtex-II-Pro Development System is equipped with XC2VP30 FPGA device

that features hight density 13,969 slices (30,816 logic cells), 428 Kb Distributed RAM and

9



2,448 Kb Block RAMs which allows flexibility of device configuration as well as embedded

microprocessor controlled designs using the two PowerPC 405 embedded core blocks [21].

The XUP Virtex II-Pro board also features a number of peripherals as shown in Figure 3.1

, some of which are of importance to us which we can summarize in the following points

Figure 3.1: XUP Virtex II-Pro Board and Some Peripherals

1. Multi-Gigabit Transceivers: with eight rocket I/O Multi- Gigabit Transceivers

(MGTs), the Virtex II-Pro provides high performance and fast communication be-

tween the board modules. Four of the available MGTs are available for user utilization

though the board connectors and the other four are connected to the Serial Advanced

Technology Attachment (SATA) interface. Using MGTs, the XC2VP30 FPGA can

achieve a baud rate up to 3.21 Gb/s [22].

2. System Advanced Configuration Environment Controller: The System Ad-

vanced Configuration Environment (System ACE) controller provides multiple ways

to configure the XUP Virtex II-Pro board. It controls the chain between the FPGA

10



and a number of configuration resources available to choose from. Through the Sys-

tem ACE controller, the FPGA on board can be configured using Joint Test Action

Group (JTAG) port using Universal Serial Bus (USB) cable, Compact Flash Port

using a Compact Flash (CF) card or it can be configured using the Microprocessor

(MPU) port which is connected directly to the FPGA.

3. Serial Ports: Two PS/2 ports and one RS-232 port sums up the serial ports on

XUP Virtex II-Pro board. The PS/2 interfaces are used for keyboard and mouse

connections for user interaction. The RS-232 serial port interface is configured as a

Data Communications Equipment (DCE) to allow communication with a terminal

through a COM port of a host computer using a 9-pin serial connector.

3.2.2 ML403 Evaluation Platform

With a powerful XC4VFX12 Virtex 4 FPGA [23] installed on it, The ML403 Evaluation

Platform provides enhanced high performance and low power programmable logic design

capabilities which makes it an Application Specific Integrated Circuits (ASIC) alternative

with the advantage of low cost and reconfiguration ability. The following illustrates some

of the ML403 Evaluation Platform features as shown in Figure 3.2
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Figure 3.2: ML304 Board and Some Peripherals

1. DDR SDRAM: The ML403 Evaluation Platform has 64MB DDR SDRAM installed

on board divided into two 16-bit wide chips with 32-bit data bus which provides high

data rate up to 266 MHz [24]. The DDR SDRAM chip is upgradeable to 256MB and

can also be expanded through the on board slot which supports 1GB of external DDR

RAM to be installed.

2. System ACE and Compact Flash Connector: Although the The ML403 Eval-

uation Platform can be configured through a Parallel IV JTAG cable, the System

ACE allows the use of Type-I or Type-II compact flash cards to configure the FPGA

through the system ACE. Using the address switch, the System ACE allows the user

to choose between eight different configuration files on a single CF card.

3. Serial Ports: Like the XUP Virtex II-Pro board, the ML403 Evaluation Platform

has two PS/2 interfaces for Keyboard and Mouse connections as well as a single RS-

232 serial interface in which only Tx and Rx pins are connected to the FPGA and the

rest of the 9-pins are not used. The RS-232 is optimized to perform on high 115200

baudrate to provide high speed communication with host devices.
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3.3 FPGA Architecture

The XC2VP30 and the XC4VFX12 are the two FPGA chips installed on the XUP Virtex II-

Pro and ML403 boards respectively as mentioned in the previous section. In this section we

will discuss the architecture of each of these two FPGA chips and focus on the advantages

that each can provide.

3.3.1 XC2VP30 FPGA

The XC2VP30 is packaged in FF896 BGA package which provides a high capacity of logic

units allowing large area designs to be easily configured on the device [22]. The basic

features of the FPGA are illustrated in the following points.

1. RocketIO MGT cores are parallel-to-serial and serial-to-parallel transceivers used to

provide high bandwidth interconnection between buses and inter-system modules.

RocketIO allows a data rate up to 3.125GB/s to be achieved.

2. Configurable Logic Blocks (CLB) contains the basic combinational and sequential

logic units used for implementing designs. XC2VP30 has 3,424 CLBs each has four

slices giving it a total of 13,696 slices making it easy to fit large area designs with

more place and route options. There are two types of CLBs (F and G) which can be

configured as 4 input Look-Up Tables (LUTs) or 16 bit shift registers.

3. Block RAM memory is cascadable memory which facilitates the implementation of

large embedded storage blocks on the chip with the ability to ”read-during-write”

mode. XC2VP30 offers 2,448 Kb of block RAMs which can be configured in single-

port or dual-port mode with a variety of depth and width settings.

4. Multiplier blocks which are used to perform read, multiplication and accumulation

operations with the available 136 multiplier blocks available. The multiplier blocks

can also be used to implement Digital Signal Processing (DSP) structures.
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Table 3.1: XC4VFX12 Basic Features
Feature Available Resources

CLBs 1,368

Slices 5,472

Logic Units 12,312

Distributed RAM 86

Block RAMs 648 Kb

DCMs 4

PowerPC Cores 1

DSP Slices 32

5. Digital Clock Managers (DCMs), eight available, which provides various functions like

implementing a clock Delay Locked Loop (DLL) that can synchronize different input

clocks to the same design. DCMs can also be used to implement Digital Frequency

Synthesizer (DFS) which provides a multiple or division of input clock or they can

also be used to implement a Digital Phase Shifter (DPS).

6. PowerPC 405 (PPC405) Processor block is the on-chip embedded core for embed-

ded systems implementations. There are two available PPC405 blocks for dual-core

implementations. The structure of PPC405 will be discussed in details in the next

chapter.

3.3.2 XC4VFX12 FPGA

The XC4VFX12 is produced on CMOS 90nm copper process technology based on enhanced

basic blocks from Virtex- II and Virtex-II Pro FPGAs making it up to 40% faster than

previous Virtex generations [25]. Packaged in FF668 package, XC4VFX12 provides 320

I/Os giving designers freedom in design interface choices. The basic features of the FPGA

are shown in Table 3.1.

Since Virtex-4 is based on Virtex-II and Virtex-II Pro, the XC4VFX12 FPGA has the

same features as XC2VP30 with some differences in numbers and sizes of the available

resources. The basic features are shown in the following table
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DSP slices can perform all operations performed by the multiplier blocks found in Virtex-

II Pro FPGAs with up to 100 % in speed improvement over previous generation devices.

They also provide more efficient implementation of DSP structures using dedicated DSP

units with the option of using pipeline stages.

3.4 Configuration

Both XUP Virtex II-Pro and ML403 platforms provide several configuration options to the

FPGAs installed on them using on-board jumpers and switch settings. We will discuss the

settings for each board and configuration options bellow.

3.4.1 XUP Virtex-II-Pro Configuration

The XUP Virtex II-Pro board can be configured internally using the on-board Platform

Flash configuration PROM or externally using other JTAG configuration options. There

are two settings for the PROM configuration control switch, which if set to on, allows the

PROM to configure the FPGA directly with a pre-configured Xilinx test configuration and

if set to off, the PROM programs the FPGA using user configuration which must be already

programmed on the on-board Platform Flash configuration PROM using one of the external

configuration options.

Configuring the FPGA externally is done through JTAG which supports three different

methods

1. The Compact Flash (CF) card which can hold up to eight configuration files and using

configuration DIP switches, the desired configuration file can be selected.

2. The Parallel Cable IV (PC4) is connected on board through the JTAG configuration

port which can also be used for hardware debugging.

3. The USB to PC connection which allows bitstreams created by programming tools to

be downloaded to the FPGA through embedded Platform cable USB interface.
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3.4.2 ML403 Configuration

Through the configuration source selector, users can choose between four different methods

to configure the FPGA installed on the ML403 board. Like the Virtex-II Pro Platform, the

ML403 board supports the CF card and Parallel Cable IV JTAG configuration methods

controlled by the system ACE controller. The other two configuration methods are

1. The Platform Flash memory which can hold up to four configuration images selectable

through the configuration address DIP switches. The Platform Flash memory can con-

figure the FPGA with bitstreams in four different modes selectable through iMPACT

programming tools.

2. The Linear Flash which is capable of holding up to eight configuration images that

can be used to configure the FPGA if read by the on-board CPLD in the JTAG chain.

3.5 Tools

Most of the steps in FPGA implementation are done by using CAD tools. From designing

the system using HDL to adding peripherals to running place and route for a desired device,

all is performed by different designing tools. In this section we will be discussing different

tools that were used during the research and their role in building the system.

3.5.1 Xilinx Embedded Development Kit (EDK)

Xilinx Embedded Development Kit (EDK) is a design suite of hardware tools, software

tools and Intellectual Property (IP) which work together to develop a complete embedded

processor SoC to be implemented on programmable platforms and devices [26]. EDK fa-

cilitates, for the designer, the development of the hardware part along with the software

portion of an embedded system through tools offered by the kit which we will illustrate in

the following points.

1. Xilinx Platform Studio (XPS): Using either the command line or the GUI, XPS
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is used to design the hardware portion of the embedded processor system. The GUI

has a wizard called the Base System Builder (BSB) which allows users to choose the

processor they want to use in the system, clock and reference speeds, memory and

IP cores and it creates the Microprocessor Hardware System (MHS) file according to

the chosen options. The MHS file contains the hardware properties of the system and

it can be edited by the user to change peripherals options and memory allocations.

XPS also allows users to choose the bus type and connection interface between the

embedded processor and the system peripherals along with the ability of connecting

different bus types through bus bridges. Each peripheral in the system has an allocated

address space depending on its size. XPS can generate the beginning and the ending

of this address space automatically or the user can specify their own address space or

modify the generated one by modifying the MHS file.

2. Software Development Kit (SDK): Although XPS can be used to implement

the software portion of the embedded processor system, EDK has a supplementary

tool dedicated for that purpose known as the SDK. Based on the open source tool

Eclipse, SDK provides a software development environment for the embedded sys-

tem by compiling the Microprocessor Software System (MSS) file, which contains the

software description of the system peripherals, along with a C/C++ source code and

peripherals drivers to create an Executable and Linker Format (ELF) file which when

combined with the hardware implementation files, they create the bitstream config-

uration used to configure the board with the embedded system configurations. SDK

is also used for debugging the software portion of the system by communicating with

the system processor through the Xilinx Microprocessor Debugger (XMD) interface.

3.5.2 Xilinx Integrated Software Environment (ISE)

Xilinx Integrated Software Environment (ISE) is a collection of software utilities that fa-

cilitates FPGA design and implementation procedure all integrated in a single tool. ISE

provides utilities for design entry, design verification, synthesis, timing analysis, on-chip
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place and route and programming target devices. Design entry in ISE can be done through

an schematic editor or by writing Hardware Description Language (HDL) codes using Ver-

ilog or VHDL programming languages. Design verification is provided by running behavioral

or function simulation through supported simulation tools.ISE has the option to optimize

designs for area or speed depending on user choices when synthesizing a design and the tar-

get device. Although an embedded processor system can be created and implemented using

only EDK, it still needs to call the synthesis libraries from ISE to synthesis and implement

the design or to simulate it for verification.

3.5.3 PlanAhead

PlanAhead is a Xilinx software tool used for design analysis and floorplanning. The role

of PlanAhead in Xilinx FPGA design flow, comes after synthesis and netlists are generated

[27]. If a design synthesis and implementation processes were completed in ISE, PlanAhead

can be used to analyze the implementation results, performs time analyses and checks for

better implementation strategy for the target device if available. Like the FPGA Editor

tool, PlanAhead can be used for floorplanning which allows designers to manually place de-

sign components after synthesis then the tool can check afterwards for timing constrains and

design rules violations. It also issues warnings when not using the best available resources

in the target device as well as recommending the best available resources and strategy to

implement the design. PlanAhead can perform Translate and Place-and-Route of a synthe-

sized design to generate a configuration file. It can also be used to perform floorplanning

for partially reconfigurable designs where static and dynamic regions of the design can be

defined and DCM and other resources are implemented accordingly on the target device

[28].
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3.6 Partial Reconfiguration

3.6.1 introduction

FPGA is a reconfigurable platform where it can be configured and reconfigured by designers

through an implementation process from writing the design specifications using HDL codes

to generating and downloading the bitstream that is used to configure the FPGA. Each

time an FPGA device is being configured, it requires erasing the previous configuration or

overwriting it completely with the new configuration bitstream and the whole device is on

halt until the new configuration is completely downloaded. As mentioned before, Partial

Reconfiguration (PR) is a method of reconfiguring part of the FPGA device while the rest of

the device is up and running without getting affected by the downloaded partial bitstream

configuration. The main advantages of using partial reconfiguration is that it allows for

more logic to fit into an existing device by making the modules in the design partially

reconfigurable and swapping between them as needed, and having the flexibility in adding

more options to the design modules without the need to re-run Place-and-Route.

Partial reconfiguration method is independent of its implementation method meaning

that although the idea of creating a partially reconfigurable designs is one, different compa-

nies and PLD manufacturers like Xilinx, Altera and Actel have their own tools and imple-

mentation methods to create such designs that differ from one another. Xilinx initially in-

troduced two methods for partial reconfiguration on their devices known as Difference-Base

Partial Reconfiguration and Module-Base Partial Reconfiguration [29]. The Difference-Base

is a simple method used for small designs where the partial bitstream includes only infor-

mation about differences between currently running design and the modifications that were

made hence the name. Modifying Difference-Base designs is mainly done by changing the

LUT equations. Module-Base partial reconfiguration divides the design into base or static

region and partial reconfigurable region, the static region holds the part of the design that

will not be replaced at anytime partial reconfiguration of the device takes place. The partial

reconfigurable region is composed of one or more partial reconfigurable modules in which
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the portion of the design which will be dynamically partially reconfigured resides. Both

methods are almost neither used by designers nor supported by Xilinx, instead Xilinx in-

troduced Early Access Partial Reconfiguration method to replace both methods with added

benefits and simplicity to partial reconfiguration process flow.

3.6.2 Early Access Partial Reconfiguration

Early Access Partial Reconfiguration (EA PR) method is based on Module-Base Partial

Reconfiguration in the sense that the design is divided into Base Region (BR) which is the

static part of the design and Partial Reconfigurable Region (PRR) which is the dynamic

part of the system composed of Partial Reconfigurable Modules (PRM) that can be swapped

on the fly while the static part of the chip is operational. It is also based on Difference-Base

Partial Reconfiguration in the sense that the partial bitstream modifies the configuration

memory which includes modifying LUT equations as well as other aspects of user design.

EA PR has seven steps to complete the design flow which we will illustrate in the following

points

1. HDL Design Description and Synthesis: A Partially Reconfigurable design must

first be described using either VHDL or Verilog languages and the design should

be in a specific hierarchical manner which includes all static designs, known as the

Base Design Modules (BDM), all Partially reconfigurable designs, known as Partial

Reconfigurable Modules (PRM), and a system design which is the top-level module.

The system design contains I/O of the entire design, global clock, DCMs, BUFGs and

Bus Macro instantiations. Also all the BDMs and PRMs in the design are instantiated

in the top level as black-box instantiations. BDMs represents the static portion of

the system and it cannot contain any clock primitives and also I/O buffers should

be disabled in the synthesis tools. Like BDMs, PRM cannot have BUFGs or DCMs

or any other clock primitive instantiations and Each PRR should have at least one

and usually multiple PRMs associated with that particular PRR and they should all

have the same interface description and port definition. After the design description
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is fulfilled, each of the modules is synthesized separately and the output is used in the

implementation process.

2. Set Design Constraints: After the previously mentioned design description and

synthesis is done, after synthesis (.ngc) files are generated which can be used to

start the place-and-route process [30]. In addition to timing constraints that any de-

sign flow should follow, PR designs should follow additional area specific constraints

known as Area Group (AG), Area Group Range (AR range), Mode and Location

(LOC)constraints. AG constraints groups the BR logic and each PRR logic in the

system separately to prevent them from merging during implementation. AG range

constraints defines the shape and the area for each PRR in the design where the logic

associated with that specific PRR and its PRMs are placed. The PRR defined by

AG range has a rectangular shape and must include all the BRAMs that fall within

the defined area. The mode constraint prevents NGDBUILD from failing with un-

expanded block errors during base and PR module implementation. LOC constrains

defines the global system logic (DCM, BUFG ... etc.) and bus macros placements.

All these constraints can be defined manually by the user or by using PlanAhead to

perform design floorplanning.

3. Implement the Non-PR Design: Although it is not required, it is recommended

that a design should be synthesized, placed-and-routed and implemented as a non-PR

design before implementing it with PR flow. The purpose of this is to make sure that

the design is bug free and if not, it will simplify the design debugging and aids in

determining the best AG constraints and bus macros placement.

4. Timing/Placement Analysis: After implementing the non-PR design, analyzing

timing and placement of the logic is a very important step as it would reveal whether

the PR region fulfills different constraints requirements and if the bus macros are

placed correctly and do not violate any required conditions.
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5. Implement the Base Design: If timing and placement analysis is successful, im-

plementing the base design takes place. For successful implementation of the base

design, after synthesis (.nmc) files for the bus macros instantiated in the design top

level should be placed in the same folder as the base design. After implementation,

the usual after place-and-route(.ncd) file is generated for the base design as well as

static.used file which contains routing information of the static portion of the system

to avoid using the same routs by the PRMs.

6. Implement PR Modules: Each PRM in the design should be implemented sepa-

rately in its own folder and the generated static.used file from implementing the base

design should be copied from the base folder to all other PRMs being implemented

so that the routes used by the base design can be excluded from route choices when

implementing PRMs. Also like base designs, PRMs require after synthesis (.nmc) files

for bus macros to be included in each PRM folder, otherwise the NGDBuild step will

fail.

7. Merge: The final step in EA PR flow is the merge step in which the base design and

PRMs are being merged together to create a complete design and partial bitstreams.

The completed design chooses the base design along with one of the PRMs to make the

initial configuration bitstream file for the system and partial bitstreams are created

for each PRM to be used during partial reconfiguration of the system.

All the previously mentioned steps can be done manually by the user by editing con-

straint files in ISE or by using PlanAhead which can simplify some of the steps by checking

for violations in the constraints automatically and pointing them out to be fixed.

3.6.3 Internal Configuration Access Port

We have already discussed some of the methods that can be used to configure the FPGA

which require an external source (Like PC or CF card) to load configuration bitstreams.

The Internal Configuration Access Port (ICAP) gives the user design the ability to write
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the configuration memory during run-time. Initially, The FPGA has to be externally con-

figured with a complete design then ICAP can be used to reconfigure some portions of the

FPGA. In embedded systems, the designer writes software programs which compiles to the

microprocessor op-code instructions, these software instructions enables the microprocessor

to read and write the configuration memory through ICAP. Modifying a design using ICAP

is done with a technique known as read-modify-write mechanism where the portion of the

system that needs to be modified is read in frames, one at a time, and stored in a BRAM.

After all the frames have been read and stored in the BRAM, necessary modifications take

place and the modified frames gets written back through ICAP same way they were read

(i.e. one frame at a time) as shown in Figure 3.3.
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Figure 3.3: ICAP Configuration Process

In Early Access Partial Reconfiguration, ICAP is used in the same way as described

except that the modifications that needs to be done are in the form of partial bitsreams

that resides in an external memory source (i.e. CF Card) but the difference between loading

the data into configuration memory from an external source through ICAP and through any

other configuration source (i.e. JTAG) is that ICAP only affects the portion of the design
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that it being modified or swapped through partial reconfiguration without interrupting

the remaining of the design while other configuration sources affect the whole chip and

reconfigures the design completely.

3.6.4 Bus Macros

Because it is forbidden ,in partial reconfiguration, for static regions and partially reconfig-

urable regions to overlap and the routes used by the BDM cannot be used by PRMs, Early

Access Partial Reconfiguration provides a component that allows communication between

BDM and PRMs known as Bus Macros (BM) [30].Bus macros provide a mean of locking

the routing between PRMs and the BDM, making PRMs pin compatible with the base

design as shown in Figure 3.4. With the exception of global clock signals, all other signals

including reset signals must pass through BMs when communications between BDMs and

PRMs occur.

Bus Macros

PRR1PRR2

Static Region

FPGA

Figure 3.4: Bus Macros Used to Lock Routing Between PRMs and BDM

All BMs has a bandwidth of 8-bit and provide enable/disable control but there are three

main factors that defines and differentiates between Bus Macros as provided by Xilinx

1. Signal Direction: As stated, communication between BDMs to PRMs is usually
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through BMs and the logical data direction (input or output) is determined by the

signal direction of a BM as well as its physical placement on the boarder of PRR.

There are two main types of BMs in regard of signal direction Left-to-Right (L2R),

which indicates that a signal flow in a BM is input from the left side and output from

the right side, and Right-to-Left (R2L) which indicates that a signal flow in a BM is

input from the right side and output from the left side. For Example to input data

into a PRM using a L2R BM, it should be placed on the left side of the PRR. Virtex-4

devices can use two additional BM types, Top-to-Bottom (T2B) and Bottom-to-Top

(B2T) which can be placed on the top or the bottom borders of the PRR depending

on the logic direction of the signal passing through them.

2. Physical Width: The physical width of a BM indicates how much area does this

BM uses when implemented and it has nothing to do with the bandwidth provided by

this BM as all BMs provide a bandwidth of 8-bit regardless of thier type or physical

width as indicated before. There are two types of BMs in regard of their physical

width Narrow, which covers an area of two CLBs, and Wide which are four CLBs

wide. The difference between narrow and wide BMs is that the wide BMs has two

extra unoccupied CLBs as shown in fig (insert figure). These unoccupied CLBs inside

a wide bus macro can be used for user logic or for additional wide bus macros, allowing

wide bus macros to be staggered along a single CLB row. Wide bus macros nested in

this fashion can provide up to 24 bits of bus macro bandwidth and need not be of the

same type as L2R and R2L types can be mixed.

3. Synchronicity: In addition to the previously mentioned features that define a BM,

whether signals passing through the BM are synchronous or asynchronous (i.e. regis-

tered or not registered) is another feature that also defines a BM. Synchronous BMs

provide superiority over asynchronous ones in terms of timing performance and are

recommended for designs that can afford some added latency.

Xilinx Provide BMs in the form of Pre-Place-and-Route hard macros with (.nmc) file
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extension. The naming convention that Xilinx uses and recommends for BMs includes all the

previously mentioned properties. For Example, the BM busmacro xc2vp l2r async narrow.nmc

is Left-to-Right in direction, its physical width is Wide and asynchronous [30]. It can also

be noticed from the name that it can be used with Virtex II Pro devices.
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Chapter 4: Implementation Methodology

4.1 Overview

Reconfigurable Platforms like FPGA chips provide hardware solutions that allow the end

product to perform at high speeds that cannot be established through software solutions.

But regardless of the amount of logic that you can have on an FPGA chip, it will always

be limited resources and this is why efficiency in performance is usually measured by a

combination of area and speed. This limitation in resources can be a problem when designing

for hardware depending on the area consumed by a design and the amount of resources

available on the target device on which the design will reside.

Partial Reconfiguration provides a solution for this problem as it can make use of the

same area and resources to be used by different modules in the design without affecting other

modules or their functionality. The idea is to find modules in the design that are not used

all the time when the device is functional and implement them as reconfigurable modules so

that they would be swapped with each other when requested. Not only that implementing

the design in a reconfigurable fashion makes use of the available area efficiently, but it also

produces more power efficient design implementations [5] as power consumption increases

with the increase in area making this method suitable for light-weight implementations

targeting low area devices which are powered by limited energy and power resources and

should be very efficient in power and energy consumption.

We have built a system that makes use of partial reconfiguration and its benefits which

is capable of performing IPSEC operations using reconfigurable modules. In addition to

the previously mentioned advantages, implementing IPSEC using partial reconfiguration

provides flexibility in the choices of algorithms or protocols available to an application as

not all applications require all the operations that IPSEC offers. Within this system, we
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also implemented an embedded processor which is considered to be the static portion in the

system along with its supporting peripherals to controls the reconfiguration procedure of

the reconfigurable modules. The benefit of using an embedded processor can be summarized

in the following point:

• It makes the system more autonomous as it is capable of self-reconfiguring the partial

reconfigurable regions with modules requested by an application being processed.

• It allows faster response to changes happening in the system.

• It adds flexibility to the system by providing control over the system through software

instructions using C language.

• Adding an embedded processor to the implementation could be free if the hard core

embedded processor is used as it exists on the FPGA device anyway.

In the following sections, we will be discussing all modules in the system, their design

descriptions and how they were integrated in the system.

4.2 Design Description Overview

As mentioned, the system is composed of static regions ,which include an embedded proces-

sor and some supporting peripherals, and reconfigurable regions, which include the recon-

figurable modules of the IPSEC protocol. The design targeted two platforms, the Virtex-II

Pro and the Virtex-4 devices described in the previous chapter along with their development

boards. As both devices contain an embedded hard core PowerPC 405 processor, both the

soft core (Microblaze) and hard core processors were used in different versions of the design.
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Figure 4.1: Embedded System Processor and Peripherals

The processor is connected to the BRAM-block peripheral through the Processor Lo-

cal Bus (PLB) BRAM Interface Controller (BRAM IF Ctrl) which is interfaced as a Slave

to the PLB Bus As shown in Figure 4.1. The BRAM-block peripheral gives the processor

access to the BRAM components allowing data and instructions to be stored. The peripher-

als in the system are interfaced to the system through The On-chip Peripheral Bus (OPB)

as Slave to the OPB. The peripherals in the system includes a Universal Asynchronous

Receiver/Transmitter (UART), a System ACE and HWICAP. There is also a custom pe-

ripheral which represents the Partial Reconfigurable Region in the system that holds the

Reconfigurable Modules. This custom peripheral is interfaced to the system through the De-

vice Control Register (DCR) bus. There are also two bus bridges used, the plb2Opb bridge

and opb2dcr bridge, to allow the communication between different buses in the system and

the peripherals interfaced to them. This is a brief description of the system as it can be

seen in Figure 4.1 and in the following sections we will be discussing the processors, buses

and each peripheral in the system with more details.
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4.3 Hardware Architecture

4.3.1 Processor Cores and Buses

The basic components that define an embedded system are the microprocessor that con-

trols the system and the buses on which data and instructions can be transfered from the

microprocessor to other components and peripherals in the system. In this section we will

describe the two processors which were used in different versions of our design and the buses

associated with them.

PowerPC and Microblaze

In EDK, Xilinx offers two microprocessors to be used in embedded system designs PowerPC

and Microblaze [31]. The PowerPC 405 (PPC405) is an embedded 32-bit hard core processor

that was introduced by IBM to fit inside specialized applications like FPGA devices. The

PPC405 can be found in the Virtex-II Pro and Virtex-4 FPGA devices. The main features

of PPC405 can be summarized in the following points:

• A 32-bit Reduced Instruction Set Computer (RISC) processor core which has a 64-

bit architecture with 32-bit subset but only 32-bit implementations are included in

embedded designing environments like EDK.

• It uses IBM User Instruction Set Architecture (UISA) for embedded environment.

• There are thirty two 32-bit General Purpose Registers (GPRs) for data and address

operations.

• Five-stage pipeline with single-cycle execution of most instructions, including loads

and stores.

• Two 16K 2-way set associative cache memories, instruction cache and data cache with

eight words per cache line in each.

30



• Supports hardware debugging through forward and backward instruction tracing using

Xilinx Microprocessor Debugger(XMD) and JTAG

• A Memory Management Unit (MMU) provides address translation, protection func-

tions, and control for memory access.

Microblaze is an embedded 32-bit soft core processor introduced by Xilinx specifically for

Xilinx FPGA devices. It can be implemented on any Xilinx FPGA device that can fit its

size unlike PowerPC which can only be found in some of the Virtex devices. The main

features of the Microblaze processor are:

• It is a 32-bit RISC-based processor core with few optimizations made by Xilinx for

its FPGA implementations

• It has thirty two 32-bit GPRs to perform data and address operations

• Two different pipelining are supported, 3-stage and 5-stage single issue pipeline

• 32-bit instruction word with three operands and two addressing modes

• Optional direct mapped data and instruction cache memory

• Contains a MMU that was implemented based on PowerPC MMU architecture.

The advantages of using PPC405 is fast and has dedicated cache units and does not add

overhead to the the design area consumption as it is already embedded in the FPGA but

the disadvantage is that it is only implemented on few Xilinx devices where as Microblaze

can be implemented in any FPGA device as long as it can fit its logic but the disadvantages

is that it adds to the design area overhead.

Core Bus Architecture

The IBM CoreConnect bus architecture simplifies the integration and reuse of the processor

system and peripheral cores within standard product and custom SoC designs [32]. This

bus architecture includes three bus implementations
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• Processor Local Bus (PLB): With 64-bit data width, the Xilinx PLB Version 3.4

consists of a bus control unit, a watchdog timer, and separate address, write, and

read data path units with a a three-cycle only arbitration feature [33]. It is fully

synchronous and supports 64/32-bit data transfer. It is mainly used to interface high

speed peripherals and peripherals that are local to the processor like the instruction

and data cache. Peripherals can be interfaced to the PLB bus through Master PLB

(MPLB) interface or Slave PLB (SPLB) interface.

• On-chip Peripheral Bus (OPB): The OPB version 2.0 is a full-featured bus architecture

with many features that increase bus performance [34]. It is fully synchronous and

supports 32-bit data. It is used to interface different peripherals in the system with

the processor and with each other by providing Master and Slave interface options

to the bus (MOPB and SOPB). Although the OPB is not as fast as PLB, it can

still be interfaced with it through a plb2opb bridge which allows the processor to

communicate with the peripherals interfaced with the OPB.

• Device Control Register (DCR): The 32-bit wide DCR bus version 2.9 provides fully

synchronous movement of GPR data between CPU and slave logic [35]. It provides

the daisy-chain for the DCR data bus which allows the a single master to be directly

connected to a number of slaves on the bus. The DCR has another important feature

related to PR in which it interfaces the dcr socket to the OPB. The dcr socket disables

bus macros during partial reconfiguration to prevent communication between the PRR

and other Peripherals in the system until the new RM is completely configured. It can

be interfaced with OPB bus through opb2dcr bridge to allow communication between

peripherals interfaced to it and the processor and other peripherals in the system.
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AES and SHA2 Cores

The PRR represents the peripheral in the system that is responsible for performing the

functionality of the IPsec Protocol. As we discussed before, the protocol performs differ-

ent functionality depending on the application being processed and the security service it

demands. For example, if the application requires confidentiality then the data in the appli-

cation should be encrypted to assure confidentiality and if the application requires integrity

then a hash value is calculated from the application data using a hash function and send it

with the original data. For these security services to be provided, the IPsec uses a number

of cryptographic algorithms like the Advanced Encryption Standard (AES) with 128-bit

key which assures confidentiality is provided by the system and Hash-Message Authenti-

cation Code with Secure Hash Algorithm 256 (HMAC-SHA-256) to assure data integrity

and authentication are provided by the system. The AES is a symmetric key cipher which

uses the same key for encryption and decryption. There are four main operations that

take place during encryption of a data and the inverse of these operations is used during

decryption.These four operations as described in [36] are as follows:

1. SubBytes: The subBytes transformation is a non-linear byte substitution that oper-

ates independently on each byte of the State using a substitution table (S-box).

2. ShiftRows: In this transformation, the bytes in the last three rows of the State are

cyclically shifted over different numbers of bytes (offsets).

3. MixColumns: The MixColumns transformation is a mixing operation which operates

on the columns of the state, combining the four bytes in each column.

4. AddRoundKey: In the AddRoundKey transformation, a Round Key is added to the

State by a simple bitwise XOR operation.

We implemented the AES core in hardware as a RM in the PRR region that represents the

hardware accelerator for the IPsec protocol in the system. The datapath for AES encryp-

tion module is 128-bits as shown in Figure 4.2. The state register is also used for debugging
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purposes during the hardware/software synchronization to determine the current state of

AES. Figure 4.3 shows the top-level view for the datapath/controller signal communication

along with the interface with the design top-level.
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Figure 4.2: AES DataPath.

On top of the AES datapath, we created a wrapper to give the datapath an 8-bit interface

through Single Input/ Parallel Output (SIPO) for the input data and Parallel input/ Single

output (PISO) for the output as shown in Figure 4.4. It is also used to interpret whether the

input is actual data or key depending on the command send before the data to wr cmd. The

input is interpreted as key if the value 0x40 was sent before the input and it is interpreted

as data if it was preceded by the value 0x80.
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The AES wrapper is interfaced to the embedded system through the OPB bus in the

user logic as shown in Figure 4.5 as well as the controller/datapath top-level view.
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The HMAC is a combination of Message Authentication Code (MAC) and a hash func-

tion to ensure data integrity and authenticity of a message, it is also known as keyed hash

functions [37] as they perform all hash function operations but they also use a key to assure

authentication. The HMAC operates in the following way:

1. The key is added to a known value specified in [37] HMAC standard known as I-PAD

using simple bitwise XOR operation.

2. The output I-KEY-PAD from the previous step is padded with the message and input

to the hash function

3. The key is also added to another constant value specified in [37] known as O-PAD in

the same way as step one

4. The output O-KEY-PAD from step 3 is padded with the hash value calculated in step

2 and the padded value is input again to the hash function
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5. The output from the hash function is the calculated HMAC value.

SHA−512: All buses are 64−bit wide with z = 512
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Figure 4.6: SHA-256 Datapath

Due to the fact that any hash functions can be used to calculate HMAC value, The

hash function that is being used to calculate a HMAC value should be added to the HMAC

name i.e. HMAC-MD5 indicates that MD5 hash function is being used to perform HMAC

calculations. As IPsec protocol supports different hash functions to be used for HMAC

calculation, Secure Hash Algorithm 256 (SHA-256) is the hash function we used for HMAC

calculations. Figure 4.6 illustrates the SHA-256 datapath we implemented to be used as

another RM in the PRR region to perform the hash function operations to calculate HMAC

as a service provided by the IPsec protocol. The datapath is 256-bit with a 32-bit interface

to the datapath wrapper through PISO similar to AES. The datapath wrapper shown in

Figure 4.7 uses SIPO and PISO to interface the 32-bit output from the datapath to the

common interface it shares with AES. The top-level for the SHA-256 Wrapper shown in
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Figure 4.8(controller/datapath) has the exact same interface as the AES as so that they

can share the same PRR.
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Since hash functions do not use keys for hash calculations, the wr cmd shown in Figure

4.9 is used by SHA-256 controller to determine whether the incoming block is for new data

or it is the next block for the previous data.
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32
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CMD_READ

CMD_CON
FLAGS

Figure 4.9: SHA-256 Command Flag

Hardware Internal Configuration Access Port

As discussed before, the ICAP gives the user design the ability to write the configuration

memory during run-time which makes it a useful configuration technique for partial recon-

figuration. The Hardware Internal Configuration Access Port (HWICAP) is the hardware

peripheral that enables the embedded processor in the system (PowerPC or Microblaze) to

access and modify the configuration memory while the circuit is operational through the

ICAP. The HWICAP is also known as OPB-HWICAP as it is interfaced with the embedded

processor and other peripherals in the system through the OPB bus interface as shown in

Figure 3.3. At run time when the system needs to swap an existing RM with another, HW-

ICAP fetches the partial bitstream from the external memory frame by frame and sends it

to the desired CLBs in the PRR to perform partial reconfiguration of the system. For the

HWICAP to perform correctly, the ICAP interface should be enabled through configuration

mode pin setting and software.
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Other Peripherals

In addition to the peripherals mentioned, there are other auxiliary peripherals interfaced to

the system through the OPB Slave interface (SOPB) as follows:

• Universal Asynchronous Receiver/Transmitter: The Recommended Standard 232 (RS232)

is interfaced with the system through opb uartlite peripheral. Using a serial cable

and a PC, the opb uartlite can transfer characters to a standard VT100 terminal (like

HyperTerminal) or communicate with other external devices that has the RS232 inter-

face. Different baudrates are supported by the opb uartlite peripheral in EDK but the

same baudrate should be set for the terminal program as well for data transmission

to be successful.

• System ACE: As mentioned, partial bitstreams that are being used to reconfigure

the PRR with PMs needs to be stored in an external memory. A FAT32 Compact

Flash (CF) memory card is used as the non-volatile memory that holds the partial

bitstreams and it is being interfaced with the system through opb sysace to allow the

loading and swapping between different PMs.

• DCR Socket: The opb dcr socket peripheral plays an important role in a partial

reconfigurable design. It disables the bus macros during partial reconfiguration of the

PRR through ICAP to prevent signal from passing from the static region to the PRR

and the other way around. Without the existence of such mechanism, a successful

partial reconfiguration would not occur.

4.3.2 Software Architecture

Overview

As much as the hardware portion is to an embedded system, the software portion is of equal

importance to the system. In addition to the software drivers for the hardware peripherals

in the system and some basic C libraries, EDK has a GNU Compiler Collection (GCC)

40



which supports C/C++ software programming languages to compile user written C codes

into opcode instructions for the embedded system processor (PowerPC or Microblaze). The

software that we wrote performs a number of tasks including

• Initialization of the system, ICAP and HWICAP

• An API for the RS232 Serial interface to read data from user and send output to

HyperTerminal

• ICAP API to fetch partial bitstreams from CF card and reconfigures the PRR

• Sending and receiving data to and from AES and SHA-256 cores

• Preparing data before being sent to SAH256 core for HMAC calculations

In this section we will illustrate some of the tasks mentioned above in more details

showing the software/hardware communication and how partial reconfiguration is managed

through software.

HMAC-SHA-256 Padding

As HMAC can be calculated for any message, there should be certain steps, as mentioned in

the previous section, that should be followed for a message to prepare it for the calculation.

calculation of HMAC can be represented by the following formula

HMAC(k,m) = h((k ⊕ opad)//h((k ⊕ ipad)//m))

where m is the input message to calculate the HMAC value for, h is the hash function,

k is the secret key and opad and ipad are the outer and inner padding constants respec-

tively.

Except for calculating the hash value using the SHA-256 core, all the other steps are done

in software. The secret key is of the same size as a message block which is 256-bits saved

in an array of 64 elements each is of 8-bit size. The key is first added to the ipad constant
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by XOR the the elements of the key array to the ipad constant array. The message block,

which is also 256-bit of size, is concatenated with the padded key and the 512-bit data is

sent to the SHA-256 core 8-bits at a time as this is the interface of the SHA-256 core as

explained in the previous section. The 256-bit hash value output from the SHA-256 core

is then again concatenated with the secret key padded with the opad constant in the same

fashion it was padded with the ipad. The 512-bit data is again being sent 8-bits at a time

and the output from the SHA-256 core is the final HMAC value.

Although all the HMAC steps can be done in hardware, but we chose to do the message and

key input as well as the padding process in software to give our design portability as any

hash function can be used by changing only the hardware core and not limit the calculations

of HMAC to only using SHA-256 core.

ICAP-API

To Allow the embedded processor in the system to perform self partial reconfiguration to

the system without interference from the user to reprogram the PRR with different RM,

an API for the ICAP is needed in software. The ICAP API defines methods for access-

ing configuration logic through the ICAP port. The main methods move data between

the configuration cache (BRAM) and the active configuration memory (the device). Other

methods allow the processor to read and write to the configuration cache [38]. For the ICAP

functions to be included, the xhwicap.h and hwicap cf.h header files must be included in

the source code of the design application.

The HWICAP needs to be initialized using XHwIcap Initialize function set with the follow-

ing parameters as defined in [39]

• InstancePtr: A pointer to the XHwIcap instance to be worked on.

• DeviceId: User defined ID for the instance of this component which in our design is

the name of the hardware instance interfaced to the OPB bus.

• DeviceIdCode: IDCODE of the FPGA device to be used. For our design the constants
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that were used are XHI XC4VFX12 for the Virtex-4 board and XHI XC2VP30 for

the Virtex-II-Pro board. The constant XHI READ DEVICEID FROM ICAP can be

used instead of specifying the IDCODE directly.

The return value for this function is XST SUCCESS in the case of a successful initial-

ization or XST INVALID PARAM if the parameters were not set correctly or initialization

fails.

The XHwIcap CF2Icap function is used to allow the HWICAP to fetch the partial bit-

streams from the external CF memory card and reconfigure the PRR with a new RM

through ICAP. There are two parameters for this function

• InstancePtr: A pointer to the XHwIcap instance same as with the initialization func-

tion.

• File Name: Which is the partial bitstream stored on the CF memory card in File

Allocation Table 32(FAT32) format.

4.3.3 Hardware-Software Synchronization

Overview

In a hardware/software co-design as in embedded systems, synchronization between the

hardware and software is essential for the system to perform correctly. As the hardware is

much faster than the software, control signals should be added to the hardware to prevent

events from happening before the software is ready thus preventing loss of data. When

using the Base System Builder (BSB) in EDK, all the hardware modules in the system

created have the control signals which assures that the hardware and the software are

in sync. But when adding a custom IP, it is up to the designer to make sure of the

synchronization between the hardware and the software using a certain handshaking or

protocol. In this section we will discuss the protocol we used in our design to provide

synchronization between the hardware and software along with a brief explanation of the
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interface between the embedded system and the custom IP and the testing and debugging

method we used to make sure that our protocol is working.

Control Signals and FIFO interface

When creating a custom peripheral in EDK, it creates user logic.vhd module to be edit by

the designer to instantiate their own modules. The processor is connected by OPB bus to

other peripherals in the system , so a custom peripheral must be OPB compliant. Meaning

the top-level module of a custom peripheral must contain a set of bus ports that is compliant

to OPB protocol, so that it can be attached to the system OPB bus (maybe a fig). Most of

these signal are being taken care of when creating a custom peripheral using the ”‘Create

Custom Peripheral”‘wizard in EDK, but if the designer is instantiating their own modules

in the user logic, additional control signals are needed to assure the synchronization when

communicating with hardware.

The protocol we offer is composed of four control signals

• src ready: An input signal from the software to the custom peripheral indicating that

the software is ready to send data in

• dst ready: An input signal from the software to the custom peripheral indicating that

the software is ready to receive data out

• src read: An out signal from the custom peripheral to the software indicating that

the custom peripheral is ready to receive data in

• dst write: An out signal from the custom peripheral to the software indicating that

the custom peripheral is ready to send data out

The way it works is simple, For the data to be sent from the software to the hardware,

both src ready and src read signals need to be high for the hardware core to accept a new

input value from the software and both dst ready and dst write signals need to be high

for the software to accept new output data from the hardware. Figure 4.10 shows how the

signals are connected to the hardware and the software. The two flip-flops in the diagram are
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used to prevent the signals from being high for more than one clock cycle which prevents the

hardware from reading more than one input per clock cycle and from sending more than one

output per clock cycle allowing the software to be ready when data is sent. The write ack

is triggered high when any of the software registers are being written by the software thus

enabling the flip-flops only when the software is sending data to the hardware.
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Figure 4.10: Synchronization Circuit Between Hardware and Software

Another problem this interface solves is that caused by consecutive writing to the OPB

bus which results in a bus freeze that prevents new data from being written to peripherals

attached to it. This method gives the OPB bus enough time in between consecutive writes

to be released thus prevents any bus freeze.

Logic Analyzer

As we encountered some troubles with simulating the system during the design and imple-

mentation phases, we thought of debugging the system at run-time using a logic analyzer.

We created two extra ports in the top level of a non-PR embedded system (for testing

purposes) with both hardware cores (AES and SHA-256) attached to the processor through

OPB and mapped all the input and output signals between both cores and the software to

these ports and mapped these ports to the on-board pins through the User Constraints File
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(UCF).

Figure 4.11: Logic Analyzer Waveform Triggered at src ready

Using the logic analyzer, we could trigger different events though the software and

capture the activity on the control and data signals as shown in Figures 4.11 and 4.12

which show the behavior of input and output signals respectively at run-time. Not only

that the data that was collected and sampled by the logic analyzer helped us in debugging

the system, it also allowed us to see exactly what is happening in hardware at run-time

which prevented any defects in the system that may not have been detected by simulation.
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Figure 4.12: Logic Analyzer Waveform Triggered at dst ready
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Chapter 5: Experiment Methodology

5.1 Overview

To implement the proposed design in a PR system, we needed to implement the design in a

non-PR system for a number of reasons. The main reason was to make sure that the AES

and SHA-256 cores perform as expected and producing the correct results at run-time. We

also wanted to test the hardware/software synchronization using the interface discussed in

the previous chapter. Finally, we wanted to see the amount of area consumed by having

both cores implemented on different regions of the FPGA device in the non-PR design.

After we implemented the non-PR design successfully, we started creating the PR design

by defining the static portion and the dynamic portion which will be the PRR

• Static Portion: This portion of the system includes the embedded processor along

with PLB and OPB buses and the supporting peripherals like the UART and CF

card interfaces

• Dynamic Portion: which includes the modules that can be reconfigured during run-

time which are the AES and SHA-256 cores.

In this chapter we will show the steps for building the PR system according to the

specifications we discussed in previous chapters and discuss the problems we encountered

during different design phases and how we solved them.

5.2 Static Portion Of The System

The first step is to build the processor system using the Base System Builder (BSB) wizard

in EDK which includes the following steps
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• Select the target board (Virtex-II-PRO and Virtex-4) so that common peripherals can

be loaded by EDK and available to use.

• Select the processor to be used in the design (Microblaze and PowerPC)

• add supporting peripherals to the system which includes a UART for communication

with PC through HyperTerminal, Compact Flash to store partial bitstreams and

HWICAP to load the partial bitstreams from the Compact Flash during run-time

After the system is created, all peripherals are interfaced with the system processor through

the PLB bus and with each other through the OPB bus by default. The DCM clock instance,

also created by default, is deleted from the processor system as partial reconfiguration

requires for clock instances (i.e. DCM) and BUFG to be instantiated only in the top level

and not in the lower level. We also added dcr socket peripheral to disable the bus macros

during partial reconfiguration. The software application is created which includes ICAP

API to allow self partial reconfiguration of the system, HMAC padding function and UART

functions. The last step in creating the static portion is to generate netlist files and build

user applications to generate library files and drivers for the added peripherals.

5.3 Dynamic Portion Of The System

After the base system is defined, custom peripherals are added which represent the recon-

figurable modules in the system. First we create a custom peripheral and interface it to the

OPB bus using the IP interface (IPIF) with the support of two software registers to allow

communication between the software and the custom hardware core.

Once the peripheral is created, modifications to user logic.vhd generated for the custom

peripheral are made by instantiating the top-level Of the AES module and adding the

hardware/software synchronization circuit that was described in chapter four. the lower

level files of the AES module are added to the Peripheral Analysis Order (PAO) file in

hierarchical order to be included during the design synthesis phase.

The same process is repeated again to create a peripheral for the SHA-256 module.
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5.4 Design Synthesis and Top-Level creation

Although EDK is capable of running synthesis for embedded system designs, partially re-

configurable designs required to be synthesized using a modified version of ISE that follows

the design rules for EA PR mentioned in chapter three. Each of the custom peripheral

created are imported to ISE to be synthesized to generate after synthesis .ngc files. During

synthesis I/O buffer insertion should be disabled as these are lower level modules.

The Top-Level for the design is then created in a separate ISE project. It includes

instantiations of the the two custom peripherals (AES and SHA-256) as black boxes, in-

stantiation of the embedded system, adding the system.xmp file to the project which holds

the information of the embedded system and bus macros instantiations to allow routing of

data between the base system and the RMs. Also DCM and BUFG instances are added to

the top-level before it is synthesized to generate the after synthesis .ngc file.

5.5 Design Floorplanning and Implementation

Now the design is ready to be floorplanned, and for this, a new project is created in PlanA-

head and .ngc files for top-level, SHA-256 and bus macros are added to the project to load

the netlists of the design. Also system.ucf file from the EDK project is added to load the

constraints for the static base module. First the PRR is created by drawing a rectangular

area covering enough slices to fit the SHA-256 logic, the number of slices needed as well as

other resources (BRAM, DSP units ...etc.) can be determined from the synthesis report.

This rectangular area represents the PRR in the system with SHA-256 as its RM then the

AES netlist is added as the second RM to the same PRR. all the bus macros are placed

on the edge of the PRR and other instance like DCM and BUFGs are also placed on the

board. Figure 5.1 and Figure 5.2 represent the floorplanned XC2VP30 and XC4VFX12

FPGAs respectively. Notice that all the bus macros are placed to the left side of the PPR

as we choose L2R bus macros for all inputs and R2L ones for output signals to facilitate

the floorplanning process.
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Figure 5.1: Virtex-II-PRO FPGA After Floorplanning

Figure 5.2: Virtex-4 FPGA After Floorplanning
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After placing all instances and netlists of the design, Design Rule Check (DRC) is

performed to assure that there are no violations committed that will prevent the design

from being implemented successfully. If there are no violations, then the static module as

well as the two RMs are implemented to create partial bitstreams for all three modules

as well as a blank bitstream to allow the reconfiguration of the PRR with a Blank RM

(i.e. no configuration file loaded). The final step is to merge the generated static bitstream

with the software application to create a system ACE (.ace) file which is used to initially

configure the FPGA and the partial bitstreams created are stored on the CF card to be

used to reconfigure the PRR when requested. Figures 5.3 and 5.4show routing information

for XC2VP30 and XC4VFX12 FPGA respectively from the static bitstream file.

Figure 5.3: Virtex-II-PRO FPGA After Implementation
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Figure 5.4: Virtex-4 FPGA After Implementation

5.6 Problems

Although the previous steps mentioned to perform partial reconfiguration seems straight

forward, we encountered a number of problems through different design and implementation

phases that we had to solve for the system to perform as expected. In this section we will

discuss some of these problems and the solution we found

• During the static portion designing phase in EDK, there was a problem regarding the

communication between hardware and software which we solved using the synchro-

nization circuit that prevented the hardware from receiving input or sending output

before the software is ready to send and receive respectively.

• The custom peripheral we created to instantiate the AES and SHA-256 cores to the

system was initially interfaced to the OPB bus using IPIF with the support of FIFO to

allow data to be sent and received faster between the software and the hardware. The
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problem we faced when using the FIFO support is that there are no enough BRAM16

resources available on the Virtex-4 board for the implementation of the read and

write FIFOs from the custom peripheral as well as other logic from the base system

that use the BRAM blocks. To solve this problem we changed the IPIF options from

using FIFO to using the software registers support which does not require the use of

BRAMs.

• placing the PRR during the floorplanning phase is done by drawing a rectangular

block that inbounds this region. The problem is that the PRR has to be rectangular

in shape which does not allow much flexibility when placing the PRR as it might

include resources in the region that are not used by the RMs but may be needed by

other regions in the system. For this we had to do try-and-error to find out the best

area to place the PRR and avoid using unnecessary resources as much as possible to

achieve successful implementation.
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Chapter 6: Results

6.1 Device Utilization Summary

We implemented two different versions of the PR embedded system using PowerPC and

Microblaze on two different platforms, The ML403 and XUP Virtex-II-Pro boards as well

as implementations for the AES and SHA-256 cores as non-PR designs within an embedded

system and as independent cores to compare them to the PR designs in terms of area and

resources used. Table 6.1 represents the results for different implementations on the ML403.

the first two columns summarize the resources of the static and dynamic portions of the

system. columns three and four are implementation results for each of the two cores (AES

and SHA-256) implemented in an embedded system separately and the last two columns

are results for implementing each core independently in non-PR designs.

Table 6.1: Resources Summary for Implementations on ML403 Board

Device Utilization PR Design Non-PR Non-PR

Summary PR Design Embedded System Implementation

Resource Logic Static Dynamic AES SHA-256 AES core SHA-256 core

Number of Slices 1588 2148 4066 2200 1862 924

Number of Slice Flip Flops 1566 1008 2525 2198 807 1008

Number of 4 input LUTs 2059 3600 6951 3118 3600 1620

Number of bonded IOBs 32 0 100 95 320 320

Number of FIFO16/RAMB16s 33 0 34 33 1 0

Number of GCLKs 2 0 2 2 0 0

Number of PPC405s 1 0 1 1 0 0

Number of DCMs 1 0 1 1 0 0
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It can be shown from the results that implementing both cores in a PR design (3736

slices) not only saves more than 40% of the design area compared to the non-PR embedded

design with both cores (6266 slices) but it also makes the implementation of both these cores

within the same embedded system feasible for this platform as the Virtex-4 device on the

ML403 does not have enough resources to implement a non-PR embedded system with both

cores. Also when comparing the static portion in the design to the non-PR implementations,

it can be noticed that the PR design uses 2148 slices compared to 2786 slices used by the

two non-PR designs combined together with more than 25% area improvement and these

area savings are open to further improvement if more reconfigurable modules are added to

the same reconfigurable region.

Table 6.2 shows the results from implementations on the XUP Virtex-II-Pro board using

PowerPC as the embedded processor. We implemented the same designs described above

on the Virtex-II-Pro device. The PR-design uses 3736 slices for both static and dynamic

regions while the non-PR implementations of both cores use 6266 slices showing over 40%

improvement in area optimization similar to results obtained from ML403 implementations.

In addition to implementations similar to those we performed on the ML403 board, we

also implemented the PR and non-PR embedded system designs using Microblaze as the

embedded processor in the system on the Virtex-II-Pro platform.
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Table 6.2: Resources Summary for PowerPC Implementations on Virtex-II-Pro

Device Utilization PR Design Non-PR Non-PR

Summary PowerPC System PowerPC System Implementation

Resource Logic Static Dynamic AES SHA-256 AES core SHA-256 core

Number of Slices 1610 2150 4589 2683 1863 853

Number of Slice Flip Flops 1608 1006 2514 2597 807 976

Number of 4 input LUTs 2024 3621 6951 3511 3602 1444

Number of bonded IOBs 32 0 32 32 556 556

Number of BRAMs 49 1 49 50 0 1

Number of GCLKs 2 0 2 2 0 0

Number of ICAPs 1 0 0 0 0 0

Number of PPC405s 1 0 1 1 0 0

Number of DCMs 1 0 1 1 0 0

The results shown in Table 6.3 are for the Microblaze implementations on the Virtex-II-

Pro platform. The area overhead is caused by resources used by the Microblaze processor

itself as it requires additional resources during synthesis and implementation unlike the

hard core PowerPC which does not require as much resources but the overall area improve-

ments from the non-PR design to the PR one are similar to those obtained from PowerPC

implementations.
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Table 6.3: Resources Summary for Microblaze Implementations on Virtex-II-Pro

Device Utilization PR Design Non-PR Non-PR

Summary Microblaze System Microblaze System Implementation

Resource Logic Static Dynamic AES SHA-256 AES core SHA-256 core

Number of Slices 2114 2148 3693 2763 1863 853

Number of Slice Flip Flops 2108 1063 2648 2849 807 976

Number of 4 input LUTs 2557 4194 6154 4164 3602 1444

Number of bonded IOBs 30 0 32 32 556 556

Number of BRAMs 52 1 52 53 0 1

Number of ICAPs 1 0 0 0 0 0

Number of GCLKs 2 0 2 2 0 0

Number of DCMs 1 0 1 1 0 0

6.2 Time Measurements

In addition to area and resources results, we wanted to perform time measurements for the

amount of time needed to perform partial reconfiguration between the two hardware mod-

ules. Time measurements in [40] are performed by obtaining the amount of time needed

to reconfigure the whole FPGA from the device data-sheet and calculating reconfiguration

time per frame then they estimate amount of time needed to perform partial reconfigu-

ration for the number of frames in the partial bitstream. in [41] they perform real-time

measurements but the method is not explained.

To calculate the partial reconfiguration time, we used xtime library provided by Xilinx

software libraries. it provide access to the 64-bit time base counter inside the PowerPC core

which increases by one at every processor cycle [42]. The XTime GetTime() function writes

the current value of the time base register to a specified variable, we call this function before

partial reconfiguration and we recall it again after the process is done and the difference

between both obtained values is the reconfiguration time. We consider the reconfiguration
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process to start from the time the bus macros are being disabled until they are enabled

again thus taking the enabling/disabling time into consideration when calculating for time

as shown in Figure 6.1.

BM
Enable
BM

ICAP Reconfiguration Disable

Figure 6.1: Total Time Needed for Partial Reconfiguration

Time measurements were performed using the same method described in [43] on the PR

embedded designs with PowerPC processor running at 100 Mhz on both platforms. Table

6.4 shows the results obtained from both platforms for a given design. The first column

represents the platform on which the design was tested and whether the PowerPC cache

was enabled or disabled. The second (Design 1) is for the size and reconfiguration speed for

the reconfigurable design we are researching and the third column (Design 2) is for a smaller

design which we use to show the difference in speed for small and large designs. The fourth
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column is the average reconfiguration speed calculated for both designs on each platform. It

can be noticed that the reconfiguration time is directly proportional to the size of bitstream

used for reconfiguration and the smaller the design gets, the faster partial reconfiguration

can be performed making this process suitable for light-weight designs. It can also be noticed

that enabling the data and instruction cache in the PowerPC improves the reconfiguration

throughput by more than 250% although the overall speed is still relatively low. Adapting

the method used by [41] will certainly improve the throughput but the added overhead

needs to be investigated to find the overall throughput per area value and to see how much

improvemet it adds to the system.

Table 6.4: Average Reconfiguration Speed on Both Platforms For Two Different Designs

Device Design 1 Design 2 Average Reconfigure

ID Bit.Size/Reconf.Time Bit.Size/Reconf.Time Speed

XC2VP30 cache-enabled 557 KB/124 ms 123 KB/30 ms 4.295 MB/s

XC2VP30 cache-disabled 557 KB/352 ms 123 KB/73 ms 1.632 MB/s

XC4VFX12 cache-disabled 176 KB/96 ms 24 KB/15 ms 1.716 MB/s
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Chapter 7: Conclusion

In this thesis, we successfully designed and implemented IPsec protocol on FPGA using

partial reconfiguration allowing the use of less resources. Authentication and confidential-

ity services in IPsec are provided through SHA-256 and AES hardware accelerator cores

implemented as reconfigurable modules in the system.

The implementation process included creating embedded systems with PowerPC and

Microblaze embedded processors as the static portion of the design to allow the system to

be self-reconfigurable. The embedded system is composed of the processor, the OPB,PLB

and DCR buses and the HWICAP, system ACE, UART peripherals. The dynamic portion

in the system or the reconfigurable region is composed of the AES and SHA-256 modules as

reconfigurable modules. Through ICAP, the processor reconfigures the reconfigurable region

with one of the two reconfigurable modules depending on the security service requested

by the application being processed by the software. A synchronization circuit was also

implemented between the hardware and software to provide smooth communication. The

static and dynamic modules were synthesized and floorplanned separately then merged

together in the final PR-assemble phase of the implementation process.

All designs were implemented and tested for functionality on two different Xilinx boards,

ML403 and Virtex-II-Pro, to assure that the design is suitable for different platforms. Re-

sults shows significant improvements in terms of area between the PR and non-PR designs

which can be further improved if more reconfigurable modules are assigned to the same

reconfigurable region. Time measurements for partial reconfiguration shows that reconfig-

uration speed is directly proportional to the partial bitstream size making this technique

more suitable for smaller designs like light-weight implementations.
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