
ON THE RESILIENCE OF CO.M:M.AND AND CONTROL ARCHITECTURES

by

Mark Andrew Pflanz�
A Dissertation�

Submitted to the�
Graduate Faculty�

of�
George Mason University�
in Partial Fulfillment of�

The Requirements for the Degree�
of�

Doctor of Philosophy�
Systems Engineering and Operations Research�

Committee:

~tlhiL ~	 Dr. Alexander H. Levis, Dissertation ,
Director

Dr. Andrew G. Loerch, Committee Member

Dr. Lance Sherry, Conunittee Member

Dr. Lee E. Wagenhals, Committee Member

7.(JVlrt/1 (Xl L~ --.Dr. Stephen Nash, Program Director

Dr. Lloyd 1. Griffiths, Dean, Volgenau
School of Engineering ~

Date:~d 107 / ~O U� Fall Semester 2011
George Mason University
Fairfax, VA

On the Resilience of Command and Control Architectures

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy at George Mason University

By

Mark Andrew Pflanz

Master of Science

Virginia Polytechnic Institute and State University, 2005

Director: Alexander H. Levis, University Professor

Electrical, Computer and Systems Engineering

Fall Semester 2011

George Mason University

Fairfax, VA

ii

Copyright 2011 Mark Andrew Pflanz

All Rights Reserved

iii

DEDICATION

This is dedicated to my best friend and wife Shareen, and our two children: Allison and

Katherine. During the course of my years in graduate school, Shareen has been

unselfishly loving and supportive. Without her patience and support, none of my

graduate school progress would have been possible.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. Alex Levis for the opportunity to learn under his mentorship.

In 2004, while completing my Master of Science degree, I had the distinct pleasure of

attending one of Dr. Levis’ three day courses on architecture development and analysis. I

arrived at the course being very interested in the subject. I left the course knowing

exactly what I wanted to study during my planned doctoral work. I was lucky that Dr.

Levis agreed to be my advisor and accepted me as a research student. Since then, I have

been constantly amazed at his generosity in time to support my research, as well as his

wealth of knowledge and good ideas to expand my intellectual horizons. I am truly

grateful. I would also like to thank the other members of my advisory committee: Drs.

Loerch, Sherry, and Wagenhals. Each of them provided insightful comments and helpful

recommendations during the conduct of this research. Finally, I wish to thank my

supervisors and leadership at work, especially Mr. Chris Yunker, whose flexibility,

patience and support allowed me to work part time over the past few years.

v

TABLE OF CONTENTS

 Page

LIST OF TABLES…………………………………………………………………...…xiii

LIST OF FIGURES………………………………………………………………............ix

ABSTRACT………………………………………………………………………….....xii

INTRODUCTION .. 1

1.1. BACKGROUND .. 1

1.2. MOTIVATION ... 1

1.3. PROBLEM STATEMENT ... 2

1.4. HYPOTHESIS .. 3

1.5. ORIGINAL CONTRIBUTION .. 3

1.6. DOCUMENT ORGANIZATION .. 3

RELATED WORK ... 5

2.1. DEFINING RESILIENCE .. 5

2.1.1. RESILIENCE DEFINED IN VARIOUS DOMAINS .. 5

2.1.2. DISRUPTIONS... 12

2.1.3. RESILIENCE ‘OF WHAT, TO WHAT, AND UNDER WHAT

CONDITIONS’ ... 14

2.1.4. RESILIENCE AND TIME ... 16

2.2. THE ATTRIBUTES OF RESILIENCE ... 18

vi

2.2.1. CAPACITY... 18

2.2.2. TOLERANCE ... 19

2.2.3. FLEXIBILITY .. 19

2.2.4. INTER-ELEMENT COLLABORATION .. 19

2.3. THE ROLE OF ARCHITECTURE .. 20

2.3.1. PETRI NET USE IN ARCHITECTURE MODELING 23

2.3.2. ARCHITECTURE FRAMEWORKS ... 24

2.3.3. BUSINESS PROCESS MODELING ... 25

2.3.4. ORGANIZATIONAL ARCHITECTURES ... 26

2.3.5. PROGRESS IN ARCHITECTURE EVALUATION 27

EVALUATING RESILIENCE ... 29

3.1. MEASURING THE ATTRIBUTES OF RESILIENCE... 30

3.1.1. CAPACITY: BUFFERING, REACTIVE AD , AND RESIDUAL 30

3.1.2. TOLERANCE ... 35

3.1.3. FLEXIBILITY: ... 54

3.2. HOLISTIC APPROACH TO RESILIENCE ... 62

THE RESEARCH APPROACH... 66

4.1. SCOPE .. 66

4.2. TWO CASE STUDIES ... 67

4.3. METHOD ... 68

CASE STUDIES ... 72

5.1. TARGETING SYSTEM CASE STUDY ... 72

vii

5.1.1. BACKGROUND .. 72

5.1.2. ARCHITECTURE .. 75

5.1.3. TARGETING CASE STUDY RESULTS .. 78

5.1.4. TARGETING CASE STUDY: AEROSTAT EXCURSION 98

5.2. DECISION MAKING ORGANIZATION CASE STUDY 109

5.2.1. BACKGROUND .. 109

5.2.2. ARCHITECTURE .. 112

5.2.3. DECISION MAKING ORGANIZATION CASE STUDY RESULTS 117

CONCLUSIONS... 150

6.1. SUMMARY .. 150

6.2. CONTRIBUTIONS .. 155

6.3. FUTURE WORK RECOMMENDATIONS .. 157

REFERENCES ... 160

viii

LIST OF TABLES

Table Page

Table 1: Resilience Attribute Metrics ... 31

Table 2: Cut Vertices .. 50

Table 3: Association of Elements to Information Flow Paths ... 90

Table 4: Common Use .. 94

Table 5: Resilience Required Values and Achieved Performance Values 96

Table 6: Determining Capacity in the MOC .. 121

Table 7: Information Flow Paths in the Base and Augmented MOC 132

Table 8: Augmented MOC: Associating Elements with Information Flow Paths......... 136

Table 9: Base MOC: Associating Elements with Information Flow Paths 137

Table 10: Resilience Metrics for the Base and Augmented MOC 144

ix

LIST OF FIGURES

Figure Page

Fig. 1: Temporal Aspects in Evaluating Resilience .. 18

Fig. 2: Measures of Capacity for a Single Capability ... 33

Fig. 3: Example for Calculating Capacity... 34

Fig. 4: Abstract Visualization of Rate of Departure ... 38

Fig. 5: Rate of Departure Example ... 39

Fig. 6: Petri Net D ... 44

Fig. 7:Minimum Support Components of Petri Net Din Graphical Form 45

Fig.8: Tree Structure of Petri Net D for Each Source ... 46

Fig.9: Tree Structure of Petri Net D with Vertex t1 Removed ... 47

Fig.10: Tree Structure of Petri Net D with Vertex p2 Removed 48

Fig. 11 Determining Localized Failure Effects, qj .. 53

Fig. 12: Associating Information Flow Paths with Each Element 58

Fig. 13: Calculating Elements Within Each Information Flow Path 60

Fig. 14: Resilience Metric Selection ... 63

Fig. 15: Evaluating the Resilience of the System Described by the Architecture 65

Fig. 16: The Architecture Evaluation Process .. 68

Fig. 17: Targeting Case Study Operational View ... 73

Fig. 18: BPMN Architectural Description of Targeting Case .. 76

x

Fig. 19: Petri Net Model Translated from BPMN Architecture 77

Fig. 20: Capacity as a Window of Opportunity ... 79

Fig. 21: Measuring Capacity in the Targeting Case Study .. 80

Fig. 22: Targeting Case Study Parameter Locus .. 81

Fig. 23: Pre-Disruption Performance in the Targeting Architecture 82

Fig. 24: Post Disruption Performance in the Targeting Architecture 83

Fig. 25: Requirements Locus ... 84

Fig. 26: Measuring Rate of Departure (TolRD) ... 86

Fig. 27: Cohesion in the Targeting Architecture .. 92

Fig. 28: Proportion of Use in the Targeting Case Study .. 95

Fig. 29: Resilience Evaluation ... 97

Fig. 30: US Military Aerostat Deployed in Iraq [NRAC, 2005] 100

Fig. 31: Modified BPMN Architectural Description of Targeting Case with Aerostat . 102

Fig. 32: Modified Petri Net Architecture with Aerostat Backup Navigation Signal 103

Fig. 33: Reactive Capacity of the Targeting Architecture with Aerostat 105

Fig. 34: Flexibility (Proportion of Use) in the Aerostat Excursion 107

Fig. 35: Resilience Evaluation of the Aerostat Excursion .. 108

Fig. 36: US 4
th

 Fleet MOC, International Exercise PANAMAX 2008 110

Fig. 37: The Base MOC Organizational Design ... 113

Fig. 38: The Augmented MOC Organizational Design ... 113

Fig. 39: Five Stage Model of Each DM Node ... 114

Fig. 40: The Augmented MOC Universal Net in Petri Net Form 116

xi

Fig. 41: Petri net for the Augmented MOC Used in Simulation 117

Fig. 42: Measuring Capacity in the Augmented MOC ... 120

Fig. 43: Parameter Locus for the MOC ... 123

Fig. 44: Augmented MOC Requirements Locus .. 124

Fig. 45: Augmented MOC Pre-Disruption Performance Locus 125

Fig. 46: Augmented MOC Post-Disruption Performance Locus 126

Fig. 47: Computing Rate of Departure in the MOC Case Study 128

Fig. 48: Area of Minimum Performance versus Numerically Absolute Time 129

Fig. 49: Example Simple Information Flow Path of the Augmented MOC 130

Fig. 50: Calculating Cohesion in the MOC .. 139

Fig. 51: Proportion of Use in the Augmented MOC .. 142

Fig. 52: Proportion of Use in the Base MOC .. 142

Fig. 53: Resilience Evaluation of the Base and Augmented MOC 147

Fig. 54: An Alternative Resilience Evaluation for the Base and Augmented MOC 148

ABSTRACT

ON THE RESILIENCE OF COMMAND AND CONTROL ARCHITECTURES

Mark Andrew Pflanz, PhD

George Mason University, 2011

Dissertation Director: Dr. Alexander H. Levis

From a national defense, as well as a civilian infrastructure perspective, a need exists to

design and develop systems resilient to disruption. Systems able to survive and recover

from disruption are referred to as resilient. In the case of mission critical systems, such

as command and control systems, resilience is a necessary characteristic and must be

considered early in the development cycle. This thesis describes a quantitative approach

to evaluating the expected resilience of a command and control system. The approach

uses a Petri Net based executable model of the system architecture. The rigorous graph-

theoretic and executable properties of Petri Nets are leveraged to support structural and

behavioral measures of the attributes of resilience. These measures are then combined

into a holistic evaluation of resilience for the command and control system under study.

The evaluation results can then be used to support selection among alternative candidate

architectures and to identify areas for improvement in the selected architecture. The

approach is demonstrated in two different case studies.

1

CHAPTER 1

INTRODUCTION

1.1. BACKGROUND

From a national defense, as well as a civilian infrastructure perspective, a need exists to

design and develop systems resilient to disruption. Disruptions are typically difficult to

predict and can potentially be unavoidable. Systems able to avoid, survive and recover

from disruption are referred to as resilient systems [Jackson, 2010]. In the case of

mission critical systems, such as command and control systems, resilience is a necessary

characteristic and must be considered early in the development cycle.

This research describes a quantitative approach to evaluating the expected resilience of a

command and control system based on its architecture. The approach can be used to

support selection among alternative architectures and to identify areas for improvement

in the proposed architecture. The key idea is that resilience can be measured through its

attributes, and that these measures may be combined into a holistic evaluation of

resilience for the command and control system under study.

1.2. MOTIVATION

2

Today’s society is highly dependent on complex command and control systems. In the

civilian sector, examples include systems which control the financial system, the national

air traffic control system, and the power distribution and control systems to name a few.

In the defense sector, command and control systems represent the heart of our

warfighting capabilities, with examples like command and control of strategic (nuclear)

forces, command and control of carrier battle groups, and command and control of land

formations at the tactical, operational and strategic levels. The normal functioning of

these systems can be disrupted due to natural or man-made (unintended or malicious)

actions. We view many of these systems as ‘mission-critical,’ because when they

become unavailable due to a disruption, the impact of that loss is felt broadly and

accomplishment of the overall mission may no longer be possible.

1.3. PROBLEM STATEMENT

From a national defense, as well as a civilian infrastructure perspective, a need exists to

design and develop resilient systems. However, few quantitative means exist to evaluate

the resilience of alternative architectures to assist in selection of a preferred architecture

or to direct an architect’s attention to areas in a design where improvements are needed.

Given a problem, an emergent threat, or a new opportunity, new capabilities are

envisioned and development activities initiated. These early activities are crucial to the

eventual success of the delivered capability. These early activities include the

development of alternative architectures and competitive down-selection to a preferred

architecture. They also include improvements made to the architecture based on

3

structural, behavioral, and performance analyses of the architecture. For mission critical

systems, these early development activities should include an evaluation of resilience.

1.4. HYPOTHESIS

Resilience can be measured through its attributes. For command and control systems, the

attributes can be measured in the architecture before the system is built. In measuring the

attributes, one can improve the architecture to include desirable features, or eliminate

undesirable features. This information can also be used to assist in alternative

architecture down-selection during early system development activities.

1.5. ORIGINAL CONTRIBUTION

No formal quantitative means exist to evaluate the resilience of alternative architectures

to assist in design and selection. This approach develops measures and an integrative

framework from which to quantitatively evaluate resilience. The approach may be used

in alternative architecture down-selection. Additionally, it demonstrates means by which

an architect may use this information to make improvements to the design.

1.6. DOCUMENT ORGANIZATION

This dissertation is organized into six chapters. Chapter One introduces the problem

providing the background and motivation of the research, as well as defining the problem

statement, hypothesis, and original contributions of the work. Chapter Two provides the

context of the research, describing related work on resilience, defining key terms, and

introducing certain original concepts of this research which underpin subsequent sections.

Chapter Two also describes the role of architecture in system development, processes

4

used to develop architectures, and progress in the evaluation of architectures. Chapter

Three describes an approach to evaluating the resilience of a system using the

architecture. It defines metrics, how to select metrics, and the combination of metrics

into a holistic approach to evaluating resilience. Chapter Four describes the overall

research approach and methodology. Chapter Five introduces two case studies to

demonstrate the approach to evaluating resilience. The first case study is a time sensitive

targeting example, with an architecture described using Business Process Modeling

Notation (BPMN). The second case study is a military command and control

organization with an architecture described using a five stage decision making model.

Two different types of systems (a targeting system and an organization) modeled using

two different architectural modeling techniques are deliberately selected to show that the

approach described in this research is domain independent and robust against different

architectural approaches. Chapter Five also describes how the resilience evaluation

approach is applied, and the results of that application both in terms of evaluation of the

design and demonstration of how the approach can highlight areas for design

improvement. Chapter Six concludes this research by summarizing the results, providing

conclusions, and making recommendations for future work based on this research.

5

CHAPTER 2

RELATED WORK

2.1. DEFINING RESILIENCE

2.1.1. Resilience Defined in Various Domains

Resilience as a concept is defined in different ways in various scientific disciplines. The

word ‘resilience’ has its origins in Latin, where ‘resilire’ and ‘resilio’ meant: “the ability

to rebound or jump-back.” In general, one’s definition of resilience can depend upon the

context of the domain being considered. Regardless of the domain, various definitions of

resilience tend to include common themes: disruption, avoidance, survival and recovery.

Therefore, we will use the following definition of resilience from Jackson [2010]: the

ability to avoid, survive and recover from disruptions.

Other disciplines, such as civil engineering, or material sciences define the term

‘resilience’ in different, but highly related ways. The International Council on Systems

Engineering (INCOSE) defines resilience as “the ability of organizational, hardware and

software systems to mitigate the severity and likelihood of failures or losses, to adapt to

changing conditions, and to respond appropriately after the fact” [INCOSE Resilient

Systems Working Group]. INCOSE hosts the Resilient Systems Working Group

(RSWG) as a node within the international Resilience Engineering Network and actively

6

works in support of The Infrastructure Security Partnership (TISP) to develop more

resilient infrastructure. The Resilience Engineering Network defines resilience as the

“ability of a system to adjust its functioning, prior to or following changes and

disturbances, so that it can sustain operations even after a major mishap or in the presence

of continuous stress.” Resilient systems have the ability to respond quickly and

efficiently to disturbances, are able to monitor for potential threats and anticipate

threatening changes in the operating environment [Resilience Engineering Network].

The material sciences definition comes closest to the original Latin where resilience is

defined as the material’s ability to deform and recover under a load [Ashby, 2007]. In

civil engineering, resilience is typically viewed from a perspective of the vulnerability to

seismic hazards. Specifically, for a given set of peak ground and floor accelerations, the

inter-story drift ratios of various longitudinal layers of a building are compared against

the assessed drift ratios of given standards (FEMA-351) to determine a likelihood of

damage [Ray-Chaudhuri and Shinozuka, 2010]. However, civil engineering also

includes non-building related research, where definitions for resilience tend to include the

original Latin meaning where resilience is the ability to ‘bounce back’ after a disturbance

[Reed et al, 2009]. In software engineering, resilience is the resistance of the software to

events which threaten to cause it to fail, and how quickly the system can be brought back

to an acceptable level of functionality [Axelrod, 2009]. In network engineering,

resilience is defined as the expected number of communicating node-pairs in a network.

This is referred to as a 2 terminal resilience and later expanded to a special case of k-

terminal resilience [Farley and Colbourn, 2009]. For larger systems with n nodes, k-

7

terminal resilience is the expected number of communicating k nodes [Farley and

Colbourn, 2007].

Reliability engineering considers resilience as the ability to continue functioning in the

presence of faults. This is a derived definition from the reliability community.

Reliability itself is defined as the ability of the system to perform its intended functions

under stated conditions for a stated duration. Reliability engineers have long looked at

these types of issues, finding a connected view of reliability and resilience. They

describe reliability engineering as focused on failures, their probabilities and effects,

where resilience focuses on an ability to recover once those failures occur [Zio, 2009].

Like reliability engineers, safety engineers have also long examined concepts related to

resilience, with a particular focus on accidents and accident avoidance. The safety

engineering community defines safety as “the sum of all the accidents that don’t occur,”

and resilience is referred to as how well the system handles unanticipated variability

[Hollnagel, Woods and Leveson, 2006].

The ecology and systems sciences describe qualitatively similar definitions of resilience.

Both use the concept of system state space, and the movement of a system into a new

state as a sign of change following a disturbance. An ability to return to an original state

is thereby an indicator of the recovery aspects of resilience. The ecology community

defines resilience as the “ability of a system to return to normal following a disturbance

or stress period” [Mitchell et al, 2000]. A short time to return indicates greater resilience.

The Resilience Alliance, an academic research group primarily focused on ecological

8

sustainability and climate change, defines resilience as “capacity of a system to absorb

disturbance, undergo change and still retain essentially the same function, structure,

identity, and feedbacks” [Resilience Alliance]. The systems sciences and system

dynamics field views resilience from a tipping point or stability perspective. Using a

topology frame of reference, some systems exist in valleys (depressions) and others on

hilltops. Systems in valleys are in stable equilibrium (i.e. more resilient), systems on

hilltops are in unstable equilibrium (i.e. less resilient) with respect to some force.

Resilience is then the amount of ‘force’ required to move a system from one of those

states into another. For example, more force is required to push a marble up out of a

valley into another neighboring valley, than for a marble existing on a hilltop to be

pushed into a valley [Sterman, 2000].

Infrastructure resilience is an emerging, cross-domain field of research. The importance

of assessing and improving the resiliency of domestic infrastructure became markedly

apparent after September 11
th

, 2001. Prior to September 11
th

, most infrastructure

research focused on earthquake resilience for buildings, roads, power-lines, water

systems, etc. This includes the National Earthquake Hazards Reduction Program

(NEHRP), led by Multidisciplinary Center for Earthquake Engineering Research

(MCEER) at the State University of New York at Buffalo. MCEER defines resilience as

“ability of social units (e.g., organizations, communities) to mitigate hazards, contain the

effects of disasters, and carry out recovery activities in ways that minimize social

disruption, while also mitigating the effects of future disasters.” MCEER’s definition of

resilience includes four properties: robustness, redundancy, resourcefulness, and rapidity,

9

and three characteristics: reduced failure probabilities, reduced consequences of failure,

and reduced time to recovery [Bruneau and Reinhorn, 2006]. Mathematically, this

definition can be calculated using an integral of the loss of infrastructure quality over the

recovery time [O’Rourke, 2007].

The attacks of September 11
th

, 2001 broadened the view of infrastructure resilience.

Broad-based non-profit organizations, such as The Infrastructure Security Partnership

(TISP) were established, with stated goals centered on improving the resilience of

national infrastructure. The Department of Homeland Security developed an

Infrastructure Protection Plan [DHS, 2009] and a presidential directive [Homeland

Security Presidential Directive (HSPD) 7] established 17 specific critical infrastructure

sectors of national interest. These include agriculture and food, banking and finance,

chemical, commercial facilities, communications, critical manufacturing, dams, defense

industrial base, energy, information technology, national monuments and icons,

transportation systems, and water. Universities established research centers such as the

George Mason University Center for Infrastructure Protection and Homeland Security

(CIP/HS) in coordination with local and national authorities. CIP/HS promotes a

multidisciplinary definition of resilience as combining the traditional material sciences

definition and the ecological definition, along with a system’s rate of return to normal

following a perturbation, and an organization’s ability to absorb unexpected

challenges[Arsenault and Sood, 2007]. Each of these organizations and their research

presented updated, more cross-disciplinary viewpoints on resilience.

10

Survivability engineering may be thought of as subsumed within resilience, or as an

outright field in and of itself. In military domains, survivability is often considered its

own field, and is defined as the ability to resist the effects of an adversary’s attack, an

accident, or a hostile environment. In the civilian domain, survivability is defined in

Federal Standard 1037C as “A property of a system, subsystem, equipment, process, or

procedure that provides a defined degree of assurance that the named entity will continue

to function during and after a natural or man-made disturbance; e.g., nuclear burst”. Here

we see an overlap in definitions of disturbance with attack and damage, along with the

ability to continue operating after that attack or accident (i.e. disturbance).

Outside the engineering and mathematics fields, the Psychology community also includes

collective descriptions of resilience in its profession. Here, resilience is the ability to

adapt to changing life conditions and recover quickly from stressors (disturbances)

[Waugh, Fredrickson, Taylor, 2008]. The psychology community also defines resilience

as the display of effective functioning despite exposure to stressful circumstances and/or

internal distress [Karoly and Ruehlman, 2006]. Typically, qualitative based scales are

used to measure resiliency in psychology.

Resilience has also been examined in the field of workflow management, where

workflow is the automation of a business process [Weske, 2010]. Tavana, Busch, and

Davis [2011] define the term ‘robustness’ as the ability to avoid failure, and ‘resilience’

as the ability to recover from failure. Modeling workflow nets as high-level Petri nets,

Tavana, Busch, and Davis examine resilience from the perspective of expected workflow

11

system time and expected repair times for the transitions in the workflow. Robustness is

considered using a ratio of best to worst case system times minus a probability that the

workflow net is rendered non-functional. The robustness and resilience of a given

workflow net is then studied using a two dimensional Cartesian coordinate system with

robustness and resilience defining the four quadrants. While substantively different from

the resilience evaluation framework described in this research, Tavana, Busch, and Davis

[2011] present an important advance in how resilience can be modeled and measured.

Research work in resilience has been conducted by the safety engineering community.

Since many systems lacking resilience have resulted in catastrophic failure, much

research includes a post-mortem investigation detailing why an accident occurred, and

the nature of resilience characteristics which might have precluded it.

Finally, we can also consider resilience with regard to what it means to lack resilience. A

lack of resilience is typically referred to as ‘brittleness.’ Brittle systems are those that are

“unable to adapt to unanticipated disturbances or disruptions” [Madni and Jackson,

2009].

The above discussion describes only a representative snapshot of resilience related

research work ongoing across many diverse fields. A broad array of other definitions for

resilience exists from many fields. As these many fields are working independently, the

definitions and approaches are not perfectly consistent. However, each of these

definitions contains common threads: disruptions, avoidance, survival, and recovery.

12

2.1.2. DISRUPTIONS

Resilience includes a notion of disruption and, as with the overall topic of resilience,

multiple definitions exist, but with the key theme of an event associated with a loss of

performance. The INCOSE defines disruptions as “the initiating event of a reduction is

performance. A disruption may be either a sudden or sustained event” [INCOSE Resilient

Systems Working Group]. Madni and Jackson [2009] define disruptions as “conditions

or events that interrupt or impede normal operations by creating discontinuity, confusion,

disorder or displacement.”

Jackson [2010] defines disruptions as events which jeopardize a systems ability to

perform its intended capabilities, noting that disruptions can be internal or external.

External disruptions are changes related to inputs to the system or the environment in

which the system operates. For example, on 15 January 2009 the normal airflow (input)

to both engines of US Airways flight 1549 was disrupted when it flew through a flock of

birds, leading to the aircraft’s spectacular emergency landing in the Hudson River

[NTSB/AAR-10/03, 2009]. The wind-related environment of the Tacoma Narrows

Bridge changed on November 7th, 1940 leading to significant oscillation and collapse.

While the bridge had previously endured higher wind speeds, the 40-50mph winds on the

day of the collapse induced torsional oscillations beyond the capacity of the bridge,

leading to its failure [Plaut, 2007].

Internal disruptions are related to the functionality of the system. They can occur at the

system level or at the component level. They may be caused by unintended interactions,

13

or by unreliability. The NASA Mars Polar Lander crash is an example of a system level

disruption of unintended interactions leading to catastrophic failure. The craft’s descent

engines had to be shut down nearly immediately upon landing to ensure a stable landing.

However, the engine controls received a false positive signal from the vibrating landing

leg components incorrectly indicating touch-down. The flight control system

prematurely shut down the engines, resulting in an uncontrolled descent and crash [JPL,

2000]. The Apollo 13 spaceflight mission is an example of unreliability. During the

Apollo 13 mission, a component level disruption (an oxygen tank explosion) induced a

loss of system power and near loss of the mission and crew [Apollo 13 Review Board,

1970]. The spacecraft power system is an example of a mission critical system, whose

failure jeopardizes the entire mission. On November 19th, 2009, a router failed in the

Salt Lake City location of the FAA flight planning system. The ripple effect of this

failure forced manual filings of all flight plans and the widespread delays of flights across

the entire country [USA Today, 2009]. On May 6
th

, 2010, an event known as the “Flash

Crash” occurred when US financial markets inexplicably tumbled almost 6% within a

matter of minutes but then quickly recovered. The SEC assessed that the built in

functions of electronic trading systems actually caused this decline, where some trades

were performed at more than 60% away from their value minutes before [SEC, 2010].

Disruptions can be naturally precipitated, unintended, maliciously intended, or non-

maliciously intended. Examples of naturally precipitated disruptions include natural

events, such as Hurricane Katrina, or the wind induced oscillation responsible for the

destruction of the Tacoma Narrows Bridge. An unintended disruption typically occurs as

14

a result of human error or poor human-machine interfaces. The Three Mile Island

accident is an example where a combination of human error and mechanical failure

played a role in the uncovering of the reactor core and eventual loss of the reactor

facility. In this case, the operators were unable to resolve a maintenance issue due to

human difficulties in operating the control systems of reactor along with other errors

[Kemeny, 1994]. The Chernobyl disaster is an even more compelling example of the role

the humans can play in disruptions. In the case of Chernobyl, a series of human errors

and non-maliciously intended actions led to the worst accident in civilian nuclear history.

The disruption in this case was an unauthorized system test along with a series of

deliberate unsafe acts by the controlling operators causing the resultant nuclear explosion

[Reason, 1988].

In contrast to naturally precipitated and unintended disruptions, intended disruption are

malicious deliberate acts by human agents seeking to cause damage. Intended

disruptions are often perpetrated with a specific goal in mind. For example, an internet

cyber-weapon computer virus, Stuxnet, targeted and infiltrated the Iranian nuclear

facilities in Natanz and Bushehr. The virus is believed to have caused both physical

damage to plant equipment as well as overall delays to the Iranian nuclear program. The

virus disrupted the centrifuge facilities control processes, forcing them to damage

themselves without revealing the damage to operators until too late [New York Times

29September 2010; CBS News, 2010].

2.1.3. The Resilience ‘Of What, To What, and Under What Conditions’

15

The concept of ‘resilience’ is meaningful only if one considers the resilience ‘of what, to

what, and under what conditions.’ Carpenter [Carpenter et al, 2001] introduces a notion

‘of what to what’ when describing the magnitude of disturbance an ecosystem can

withstand prior to changing states. The work in this research extends the Carpenter et al

notion into the systems engineering and development field to include application of

threshold requirements and the resilience of capabilities to disruptions. Consider the

following examples. A building’s structure may be resilient to an earthquake up to

magnitude 5.0 on the Richter scale. A power system may be resilient to a fluctuation in

voltage up to +/- 10 volts. A human body may be resilient to blast induced accelerations

up to 30g for less than 5ms. Notice that in each case, the concept of resilience included a

statement ‘of what’ (building structure, power system, human body) ‘to what’

(earthquake, voltage fluctuation, blast induced acceleration). Further notice that the ‘to

what’ statement included threshold parameters (5.0 Richter, +/-10 volts, 30g for less than

5ms). Implicit in these statements is the notion of “under what conditions.’

In addition to Carpenter’s ‘of what, to what’ concept, the evaluation of resilience should

also consider ‘under what conditions.’ Here we are concerned with resilience in what

situations or in which scenarios. For example the resilience of a command and control

system may be different if the command and control system experiences a disruption

during peak operations, rather than a disruption that occurs during periods of less intense

activities. In the human body acceleration example above, resilience may be possible up

to 30g for less than 5ms ‘when the person is properly restrained using a seat-belt.’

16

In this research, we will consider the resilience of a capability to a disruption. From

DoDAF 2.0, a capability is “the ability to achieve a desired effect underspecified

performance standards and conditions, thru combinations of ways and means [activities

and resources] to perform a set of activities.” Capabilities are a key consideration in this

research because disruptions inherently affect the capabilities of a system or an

organization. For example, in the case of the disrupted FAA router discussed above,

affected airlines lost the capability to file automated flight plans. This loss affected the

speed of entry into the air traffic control system, thereby delaying flights nationwide.

Westrum introduces furthers the notion of the resilience ‘of what, to what’ and ‘in what

scenario’ through a typology of resilience situations. In regular threat situations, a

disruption (threat) occurs often enough that it can be predicted and therefore preparations

for handling it can be developed. Improvised Explosive Device (IED) attacks during

Operation Iraqi Freedom are an example of regular threat situations where the disruption

is almost certain to occur and preparations can be made. In irregular threat situations, the

low probability of occurrence of many different types of threats makes preparation nearly

impossible. Westrum cites the 2004 suicide bombing of an American mess tent in

Forward Operating Base Marez in Iraq as an example of a one-off irregular threat. The

final situation type is that of the unexampled event, where the disruption is so unexpected

or unimaginable that the response requires an entire change in mental framework. The

9/11 attacks are an instance of unexampled event situations [Westrum, 2006].

2.1.4. Resilience and Time

17

All dynamical systems, such as the ones considered here, include a temporal aspect.

Therefore, an evaluation of resilience must also include time. Timescales vary based

upon the system under consideration. However, the timescale can be normalized to allow

for more equivalent comparisons. Figure 1 illustrates the significance of time when

examining resilience. The evaluation begins at some initial time, defined as time t0. A

disruption occurs at time td. The system reaches some minimum operating performance

at time tmin, and returns to a pre-disruption state at time tret. The avoidance phase of

resilience runs from time t0 to time td, the survival phase runs from time td to tmin, and the

recovery phase runs from tmin to tret. The work in this research is primarily concerned

with the survival phase.

Performance is evaluated using a Measure of Performance (MoP) for a single capability

of the system as described by the architecture. In this research, the evaluation is

restricted to a single capability of the system to avoid value judgments about the relative

importance and relative contributions of certain capabilities with respect to the operation

of some single system. During the avoidance phase, a system is operating at some

normal operating level of capability, defined above as Value2 (V2). When a disruption

occurs at time td, the level of capability decreases to some minimum value, V1, at time

tmin. The system has a minimum threshold level of capability, VT, below which,

performance is deemed un-acceptable, or below which a catastrophic failure could result.

18

Fig. 1: Temporal Aspects in Evaluating Resilience

2.2. THE ATTRIBUTES OF RESILIENCE

On the basis of the existing body of resilience knowledge, Jackson [2010] defines four

primary attributes which characterize resilience: capacity, tolerance, flexibility, and inter-

element collaboration. This research uses Jackson’s resilience attribute descriptions as a

foundation and extends them to support the overall evaluation of command and control

architecture resilience. Each of these attributes is further defined in Chapter 3.

2.2.1. Capacity

Jackson [2006] defines capacity as “the ability of a system to absorb or adapt to a

disturbance without a total loss of performance or structure.” Capacity is further defined

here as the ability to operate at a certain level as defined by a given measure. In the

context of resilience, capacity is the available capability margin between current

operating levels and minimum threshold operating levels. It includes the notions of

residual capacity and reactive (spare) capacity. Capacity includes an inherent time

M
o

P
fo

r
C

ap
ab

ili
ty

t0 td tmin tret tf

Survival Phase Recovery Phase

ValueT

Value2

Value1

Avoidance Phase

Normal Operating
Level of Capability

A Disruption
Occurs at time td

Capability decreases.
Could be stepwise,
smoothly monotonic, or
anywhere in-between

Capability decreases
to some minimum
value V1 at time tmin

A minimum (Threshold) capability
level of acceptable performance; VT

does not necessarily have to be
linear, it could vary with time

System capability level
returns to pre-disruption
performance at time tret

In this case, the capability never dropped
below the minimum threshold value… not
always the case, and temporary drops may
be acceptable depending on the system

19

element because its characteristics may change over time or as a disruption runs its

course.

2.2.2. Tolerance

A tolerant system is defined by Jackson [2006] as “one that exhibits graceful degradation

near the boundary of its performance.” Tolerance is the ability to degrade gracefully

after a disruption or attack. Behaviorally, graceful degradation is the continued operation

(potentially at reduced levels) in the presence of faults. From a performance perspective,

‘graceful’ could mean a stepwise downward change of state, or smoothly monotonic

degradation in performance within acceptable reaction times.

2.2.3. Flexibility

Citing Westrum [2006], Jackson [2010] defines flexibility as “the system’s ability to

restructure itself in response to disruptions.” Flexibility is the ability of a system to

reorganize its elements to maintain its capabilities at degraded or even pre-disruption

levels. Flexibility is also desired in the case of a change of mission or a change of state.

2.2.4. Inter-Element Collaboration

Jackson [2006] describes inter-element collaboration as communication and collaboration

among the elements. Inter-Element Collaboration is the human aspect. It describes

unplanned cooperation within a system (typically an organization) to share resources or

work together in new ways. Inter-element collaboration accounts for the emergent

properties of many systems. Note that while humans tend to be one of the largest

initiating sources of disruptions, they are also typically the most resilient part of any

20

system or organization due to the human’s ability to adapt and collaborate in new ways.

Due to the difficulties in evaluating emergent properties, inter-element collaboration is

not considered in this approach.

2.3. THE ROLE OF ARCHITECTURE

An early definition of the term ‘architecture’ is presented in IEEE 610.12 [1990] as “the

organizational structure of a system or component.” This early definition corresponds to

the traditional, hardware-based perspective of physical systems. However, hardware,

software and human systems are now more closely embedded than ever before, requiring

a broader view of the term ‘architecture.’ This trend is especially true in command and

control systems. ISO 42010 [2007] expands this definition to “the fundamental

organization of a system, embodied in its components, their relationships to each other

and the environment, and the principles governing its design and evolution.” Systems

architecting is described by Maier and Rechtin [2009] as the art and science of creating

and building systems, striving for fit, balance and compromise among competing client

needs, resources, technology, timing, and stakeholder interests.

In simple terms, we can view the architecture as the high-level design of the system.

Architects develop the overall design, while engineers design and deliver systems which

conform to that architecture. By representing the design of a system in a rigorous way,

one can analyze the design for key properties, and simulate the design to examine for

desired behavior and performance aspects. By evaluating the design in this manner, one

21

can make decisions and improvements far earlier in the process, saving time, money and

ultimately delivering better products.

In government and industry, the importance of architectures has increased in response to

a host of challenges: the need for increasingly capable systems often with greater

complexity; time pressure to deliver new capabilities more quickly, and increased cost

pressures. Moreover, requirements tend to change mid-stream in development as a result

of changing operational environments, rapid evolutions in technology, and the emerging

policy goals of higher institutions. These challenges are especially prominent in

command and control systems, which are often considered mission critical and where the

technology and innovation cycle is extraordinarily fast when compared to other domains.

Architecture-based systems engineering has evolved to cope with these challenges.

The architecture can be analyzed to answer key questions prior to building the system.

These include: whether the architecture is logically correct, if it exhibits the intended

behavior, whether instantiations of the architecture will meet given performance

requirements and provide the desired capability, and in comparison of alternative

architectures [Levis, 2008]. Static and dynamic methods have been developed and

demonstrated to address these questions. These methods require that the architecture be

described in a rigorous manner.

Architectures can be developed using several different design methodologies based on

Object Orientation (OO) or Structure Analysis (SA); they can embrace certain

architecture patterns such as Service Orientated Architectures (SOA), and they can be

22

expressed using different languages such as the Unified Modeling Language (UML) or a

specialized profile such as the Systems Modeling Language (SysML). Structured

analysis is a common approach used by many systems engineers. It is based on four

primary topics: process or activity modeling, data modeling, rule modeling, and dynamics

modeling. Object Orientation is a design methodology based around objects, where

objects are unique items with states, properties and behavior which belong to a defined

class [Booch, Rumbaugh and Jacobson, 1998]. The Unified Modeling Language, UML,

is a widely adopted language used to support primarily an object oriented approach. An

extension of UML, SysML is a “graphical modeling language with a semantic foundation

for representing requirements, behavior, structure, and properties of the system and its

components” [Friedenthal, Moore, and Steiner, 2008]. Service Orientation is an

architecture pattern used to challenges in interoperability and is based on “loosely

coupled, standards-based, and protocol independent distributed computing” using the

concept of services, which are “well defined, self-contained modules that provide

standard business functionality and are independent of the state or context of other

services” [Papazoglou and Heuvel, 2007].

The executable model, derived from the architecture description of the architecture, is

developed using the operational concept. Building the executable model requires that the

architecture have progressed sufficiently to generate functional, physical, dynamical and

organizational views of the proposed system. If built in a rigorous way, the executable

model can support the use of structural and behavioral analyses to address the key

questions identified by Levis [2008]. Therefore, generation and analysis of an executable

23

form of an architecture is an essential part of developing complex mission critical

systems. Petri nets are one such rigorous approach to developing executable

architectures supporting the design and development of complex systems.

2.3.1. Petri Net Use in Architecture Modeling

Petri nets were first developed by Carl Adam Petri in 1962 as a part of his PhD thesis

describing communication with automata, where automata are abstract machines. In the

following years, Petri net theory has been expanded and widely adopted in a diverse array

of science, mathematics and engineering fields. Girault and Valk [2003] describe the

advantages of Petri nets for modeling complex system as:

 Rigorous: a formal mathematical model underlying all aspects of Petri net theory

 Graph-theoretical: Petri nets include an interpretation that follows graph theory,

allowing for both visual and mathematical explanations with equivalent meanings

 Support Abstraction and Hierarchy: Petri nets include mechanisms for abstraction

and decomposition to allow for hierarchical modeling

 Support analysis via defined algorithms: structural evaluation methodologies exist

to determine important characteristics of systems to be examined without

resorting to simulation.

 Executable: Petri nets support the use of simulation to assess performance and

dynamic behavior.

24

Formally, Petri nets are bipartite directed multi-graphs. Bipartite, means that the graph’s

vertices can be partitioned into two types of nodes (places and transitions) and the arcs

many not connect two nodes of the same type; directed, means that arcs between nodes

have directionality associated to them; and multi-graph means that multiple parallel

edged may exist between pairs of nodes. Since its inception in 1962, Petri net theory has

been significantly expanded. Excellent descriptions of updated Petri net theory and its

applications are available in [Jensen and Kristensen, 2007] and [Girault and Valk, 2003].

2.3.2. Architecture Frameworks

Architecture frameworks provide a systemic approach to describing an architecture for a

given domain (e.g. defense, commercial, etc.) using a set of inter-related viewpoints (i.e.

perspectives) [Tang, Han, and Chen, 2004]. Each viewpoint addresses different aspects

of the system to answer different questions; the framework ensures that these products

are concordant. Frameworks do not usually include a specific architecture development

methodology (e.g. object orientation or structured analysis). A number of well-

established architecture frameworks exist, including frameworks from the US

Department of Defense (DoDAF), The Open Group (TOGAF), Zachman Framework for

Enterprise Architecture, and others. The two case studies used in this research are

defense related; therefore further information is presented on the DoDAF.

Recognizing the importance of architectures in system development, the US DoD

established the DoD Architecture Framework [DoDAF, 2009], now in version 2.0.

DoDAF2.0 provides overarching architecture concepts, guidance, best practices, and

25

methodologies, to enable architecture development in support of DoD weapon systems or

transformation endeavors. Because all DoD systems of complexity must include a

DoDAF compliant architecture, synergies are beginning to be realized in the inter-

relation and interoperation of these systems at the enterprise level. DoDAF 2.0 is an

improvement because it focuses on the architectural data, rather than the architecture

modeling products, and allows the content to be fit for purpose as opposed to being

normative. The DoDAF definition of terms, including the term ‘architecture’ aligns with

ISO 42010:2007. The collection of models shown as viewpoints is referred to by

DoDAF 2.0 as an architectural description. The DoDAF does not specify a particular

methodology, however DoDAF compliant architectures are very often developed using

structured analysis, a UML form of object orientation, or Business Process Model and

Notation (BPMN).

2.3.3. Business Process Modeling

Business Process Management (BPM) has evolved in response to a need to automate the

processes used to execute a line of business; to automate what is referred to as the

‘workflow’ [Weske, 2010]. BPM uses UML to develop models of business activities and

processes. The BPM extension of UML is referred to as Business Process Modeling

Notation, or BPMN. BPMN is a rigorous graphical notation for modeling business

processes, with the goal of providing an intuitive approach for all users, yet rigorous

enough to be executable. A detailed specification for BPMN was developed in

coordination with the Object Management Group, who has subsequently adopted BPMN

as a standard [White and Meiers, 2008]. The execution language for BPMN is Business

26

Process Execution Language (BPEL), with the detailed translation of BPMN to a BPEL

simulation engine specified in the OMG BPMN approved specification. Well defined

means of translating BPMN to Petri net form are also available including those presented

in Raedts et al., [2007], Dijkman, Dumas, and Ouyang, [2008], Stahl, [2005], and Weske,

[2010].Further details and an example BPMN model are provided in Chapter 5, in the

targeting architecture case study.

2.3.4. Organizational Architectures

To truly examine the resilience of command and control architectures, one must also

consider architectures which describe human-centered organizations. Organizational

models consider the topics common to other forms of architecture, e.g., structure and

inter-relations, but must also consider unique topics such as decision making and

workload. Remy, Levis, and Jin [1988] first described decision making organizations in

Petri net form using a four stage model and a Lattice algorithm. Damael and Levis

[1994] expanded this approach for distributed information systems with variable

structure. These initial models evolved over time to a five stage model of decision

makers making up an organization, with defined rules for interaction between the

decision making nodes [Kansal, AbuSharekh, and Levis, 2007] supporting the design and

analysis of a broad range of organizational architectures. A software implementation,

CAESAR III (Computer Aided Evaluation of System ARchitectures), was developed at

the George Mason University System Architectures Laboratory to assist in the design and

analysis of command and control organizational architectures that include variable and

adaptive structures as well cultural constraints. Further details and an example decision

27

making organizational architecture are provided in Chapter 5, in the organizational case

study.

2.3.5. Progress in Architecture Evaluation

Architecture evaluation describes a process to answer the key questions posed by Levis

[2008]: whether the architecture is logically correct, if it exhibits the intended behavior,

whether instantiations of the architecture will meet given performance requirements and

provide the desired capability, and the comparison of alternative architectures. The goal

is to develop a model that can be analyzed from a structural or behavioral perspective.

Logical analyses include a check of whether a given input yields the intended (correct)

outputs, or whether functions occur in correct sequences. Behavioral analysis can be used

to ensure the architecture is reversible, bounded, and to check for deadlocks, or

conditions where certain activities (represented as transitions) cannot function. Structural

analysis enables connecting structure to behavior by examining the invariants of the

architecture. Behavioral analysis includes methods of examining the state space of the

architecture via reach-ability and occurrence graphs that depend on initial conditions

(initial state). State space analysis allows for a complete examination of all possible

states of a given system as well as detailed looks at individual states or the transitions

between states. Execution via simulation can be used to assess the performance of an

instantiation of the architecture with regard to defined Measures of Performance (MOPs)

from which Measures of Effectiveness can be obtained when performance is compared to

the given user requirements. The key is to ensure that the executable model is derived in

a traceable, rigorous way. The results of these structural and behavioral means of

28

evaluating an architecture can be compared to user requirements and lead to

improvements in the design, or to support the down-selection of alternative candidate

architectures.

Architecture evaluation is possible independently of the methodology used to design the

architecture. This has been demonstrated in Wagenhals et al, [2000], Wagenhals, Haider,

and Levis, [2003], and Wagenhals and Levis, [2008]. This methodology relies on the

translation of the architecture into Petri net form. This translation is necessary to take

advantage of the many strengths of Petri nets described in Section 2.3.1 in support of the

overall architecture evaluation. The translation must occur in a traceable, defined, and

repeatable manner to ensure that the insights gained during the evaluation of the

executable model are relevant to the architecture in its original format. Liles [2008]

demonstrated an automatic means of translating UML based architectures into Petri net

form. Methods of translating BPMN-based architectures are described in Section 2.3.3.

29

CHAPTER 3

EVALUATING RESILIENCE

The approach developed in this research uses the architecture of a command and control

system to evaluate resilience. When developed, the architecture is translated into Petri

net form and evaluated using an approach founded on the attributes of resilience.

Multiple measures are developed for each attribute of resilience. The architect and

development team selects the appropriate measure and maps the architecture’s

performance with regard to that metric. This portion of the approach is further described

in Section 3.1. Section 3.2 describes a holistic approach of comparing the architecture’s

performance with respect to the selected metrics against a required performance level for

each attribute of resilience. This comparison will be further defined in Section 3.1 as the

intersection of requirements and performance. Resilience-related improvements to the

design can now be quantified and alternative architectures can be compared. The idea is

to evaluate the resilience performance of the baseline architecture against the resilience

requirements established by the system developers. Then either compare the baseline

against alternative architectures, or make improvements to the baseline to move its

performance into a desired range.

30

3.1. MEASURING THE ATTRIBUTES OF RESILIENCE

As discussed in Chapter 2, Jackson [2010] identifies and defines four attributes which

characterize resilient systems: capacity, tolerance, flexibility and inter-element

collaboration. The methodology developed as a part of this research begins with the

attributes identified by Jackson and then considerably extends each of them to make them

more specific and to examine multiple facets of each. Multiple metrics are proposed for

two reasons. First, not all C2 systems are the same; therefore, distinct choices in metrics

are needed. Second, metrics are also required to direct an architect’s attention to areas in

the architecture where resilience-related improvements may be warranted. Table 1

summarizes the resilience metrics associated with each attribute of resilience. These

metrics are individually described in detail in the remainder of Section 3.1.

3.1.1. Capacity: Buffering, Reactive ad , and Residual

Capacity is the ability to operate at a given level as described by a given measure.

Absorptive capacity is the available capability margin between current operating levels

and a defined minimum threshold operating level. Absorptive capacity can be considered

from three perspectives: buffering, reactive, and residual. The primary question with

regard to capacity is whether sufficient unused capacity exists, or can be marshaled in a

timely manner in order to buffer the adverse effects of the disruption. Under capacity,

the secondary questions to address and measure include: ‘can the disruption be absorbed

within existing capacity?’, ‘can new capacity be brought on-line in time?’, and (given

survival) ‘what residual absorptive capacity remains’ after a disruption induces its full

effect. The associated capacity measures are ‘buffering capacity at time td’, ‘reactive

31

capacity at time td+trc’, and ‘residual capacity at time tmin.’ trc is defined as the time

required to bring spare (reactive) capacity on-line.

Table 1: Resilience Attribute Metrics

There are three primary means of addressing capacity when time is also considered.

Buffering Capacity is the capability margin available immediately at the time of

disruption or attack. Reactive Capacity accounts for the fact that certain systems are able

to bring additional capacity on line after a given reaction time, defined as trc. This allows

Attribute Metric Measures Question Answered

Buffering Capacity Available capability margin between current

operating levels and a defined minimum

threshold operating level at the time preceding

a disruption.

Can a disruption be absorbed with

immediately available (on-hand) resources?

Reactive Capacity Available capability margin between maximum

operating levels (i.e. including any spare

capacity) and a defined minimum threshold

operating level.

Can a disruption be absorbed with the

addition of spare capacity?

Residual Capacity Available capability margin between operating

levels at the end of the survival phase and a

defined minimum threshold operating level.

Given survival, how vulnerable is the system

to a follow-on disruption that occurs before

the system can recover?

Rate of Departure Rate of change in system performance with

respect to its requirements (ie rate of loss of

effectiveness) after a disruption.

What level of capability is lost per unit of time

during the survival phase?

Fault Tolerance The ratio of simple functionalities which may

be disrupted without a loss of capability to the

total number of simple functionalities.

How many simple functionalities can be

disrupted prior to losing the capability.

Primarily a tool to draw architects attention to

key areas in the design.

Point of Failure Tolerance Relatedness of failures at the element level to

an overall loss of capability

Are element level failures relatively localized,

or do failures incur broad system-level

effects? Primarily a tool to draw the

architect's attention to key design areas.

Cohesion Relatedness of the elements within a node or

module which support a given capability

How difficult is it to reorganize the system at

the node / module level?

Common Use Extent of common use of the elements among

the simple functionalities which support the

overall capability.

Can a system execute multiple functionalities

concurrently, or is it limited by competition

for resources?

Proportion of Use The fraction of the total elements used by any

given simple functionality to deliver the overall

capability

Are most of the elements needed for a given

functionality, making it more difficult to

reorganize?

Capacity:

 "the ability to

operate at a

certain level

as defined by

a given

measure."

Tolerance:

"the ability to

degrade

gracefully

after a

disruption"

Flexibility:

"the ability of

a system to

reorganize its

elements to

maintain its

capabilities"

32

for the system to increase capacity to some improved value. Given a system survives a

disruption, Residual Capacity describes the remaining capacity above the threshold

requirements and captures system vulnerability to a follow-on disruption that might occur

in quick succession to the original disruption. See Fig. 2 for details.

Buffering capacity is the capability margin available immediately at the time of

disruption or attack. Buffering Capacity can be calculated, as shown in Fig.2, as a

proportion of the difference between the normal operating levels of the capability and the

minimum threshold.

Reactive capacity accounts for the fact that certain systems are able to bring additional

capacity on line after a given reaction time, defined as trc. Reactive capacity can be

additive or surrogate. In the case of additive reactive capacity, this allows for the system

to increase capacity to some maximum value, shown as Vmax below. This applies when

the additional capacity can work in concert with the existing capacity to improve

performance above normal levels. Surrogate capacity occurs when the additional

capacity does not add value or cannot be combined with existing capacity. Both cases of

reactive capacity (Additive and Surrogate) can be calculated in a similar manner to

buffering capacity and are also shown in Fig. 2. Chapter 5 includes examples of additive

capacity, in the MOC case study, and surrogate capacity, in the Targeting case study.

Given a system survives a disruption, residual capacity describes the remaining capacity

above the threshold requirements and captures system vulnerability to a follow-on

disruption that might occur in quick succession to the original disruption.

33

Fig. 2: Measures of Capacity for a Single Capability

Figure 3 shows an example for calculating aspects of the capacity attribute. In this

example, the system’s normal operating capacity is defined by Vnorm as 80, and additive

capacity can be brought on-line up to a maximum (Vmax) of 100 following a reaction time

of trc. Following a disruption, performance degrades to a level Vmin, defined here as 60,

but remains above a minimum threshold level of VT, defined here as 50. In the case of

surrogate reactive capacity, spare capacity can be brought on line after a reaction time of

trc to increase performance to a value of 70. The thick line shown in ‘bath-tub’ curve

format represents idealized system performance and the two thin lines arcing upwards

show how additive or surrogate reactive capacity might be introduced to improve

performance.

34

Fig. 3: Example for Calculating Capacity

Note that here we are determining capacity with respect to some minimum threshold

value, and not with respect to some absolute maximum capacity. Examining capacity in

this manner is related to, but somewhat different than typically considered. For example,

we typically say that a given system operates at 80% capacity, meaning with respect to

some absolute maximum level of performance of the system as-built. In this framework,

we are concerned with a minimum threshold level of performance, below which is

deemed unacceptable with respect to a given capability. This is an important change to

the equation and is necessary because, in the development phase, we are interested in

35

system performance versus the requirements, and not necessarily versus an instantiated

system’s absolute capacity.

3.1.2. Tolerance

In addition to capacity, resilience must also consider whether the changing system

operating characteristics are tolerable. Tolerance is the ability to degrade gracefully after

a disruption or attack. Graceful degradation is the continued operation at reduced levels

in the presence of faults, mitigating the effect of the original disruption. A fault is an

element-level failure that may cause a reduction in or loss of capability for a given

portion of a system. In terms of graceful degradation, we can consider the rate of

departure (TolRD) from normal operating conditions as the rate of change of system

effectiveness over time in meeting its requirements. We can also consider fault tolerance,

where fault tolerance describes the ability of a system to continue performing its

functions in the presence of faults[Rausand and Hoyland, 2004]. Here we are interested

in both the fraction of elements that can individually fail prior to a loss of capability

(TolFT), as well as the relatedness of failures to a loss of overall capability (TolPF).Fault

Tolerance (TolFT) and Point of Failure Tolerance (TolPF) connect structure to behavior.

They are useful tools to draw an architect’s attention to areas in the architecture where

redesign may be required. The following paragraphs examine all three of these aspects.

3.1.2.1. Tolerance: Rate of Departure

As stated, rate of departure is the rate of change over time in system effectiveness in

meeting its requirements. This encapsulates both the temporal aspects of resilience (td

36

and tmin), as well as the effectiveness aspects of how the system performs with respect to

its requirements and how effectiveness changes during the survival phase (post

disruption).Effectiveness can be measured by comparing the system performance with

respect to defined Measures of Performance (MoP) against the corresponding

requirements. Cothier and Levis [1986] and Bouthonnier and Levis [1984] describe a

methodology of comparing system performance to system requirements as the

intersection of the locus of performance (Lp) and the locus of requirements (Lr). The two

loci, Lp and Lr, are then depicted in a common reference frame. System effectiveness at

meeting the established requirements is determined by measuring the intersection of the

two loci in the common reference frame. Their metric is shown in Eq. 1.

 p

rp

L

LL 

 (1)

System performance is characterized by the applicable MoP selected by the system

development team. The performance locus (Lp) describes the range of system

performance in the defined MoP space as the parameters of various situations are varied

according to expected conditions. The requirements locus (Lr) defines the required

system performance levels over the same MoP space. This coincidence of the

performance and requirements locus has been demonstrated as an architecture evaluation

technique to show how effectively a proposed architecture (if built) would meet the stated

requirements [Wagenhals and Levis, 2009].

37

Where the Cothier and Levis [1986] approach is static, this approach adds time.

Specifically, the intersection of Lp and Lr is measured at pre-disruption (prior to td) and

post disruption (at tmin) time periods, and computed as shown in Eq. 2, yielding a change

of effectiveness per unit of time between those two points (td and tmin). Rate of departure

applies between the pre- and post-disruption periods, and does not extrapolate beyond

those areas.

 d

p

rp

d

p

rp

tt

t
L

LL
t

L

LL

TolRD













 












 


min

min,,

 (2)

Rate of departure may also be visualized abstractly, as shown in Fig. 4. In essence we are

sampling Eq. 1 at both tmin and td, and then examine the average marginal rate of

departure by dividing by the duration of the survival phase as shown in Fig. 3 and Eq. 2.

This provides a measure of the rate of departure over the interval td to tmin with respect the

system’s performance against the stated requirements.

38

Fig. 4: Abstract Visualization of Rate of Departure

To examine the intersection of the performance and requirements locus, a scenario is

required. Parameters of interest (e.g. response time, or inter-arrival time) are varied to

form a parameter locus. The executable architecture is simulated at each point in the

parameter locus to determine a locus of performance (Lp). Lp is overlaid on Lr to

determine system effectiveness at meeting the established requirements.

Figure 5 demonstrates a notional example of how to compute the rate of departure. On

the left side the intersection of the locus of performance and requirements is shown at

time td, essentially capturing normal system performance before the disruption has had

any effect. On the right side, the intersection of the locus of performance and

requirements is shown at time tmin, the end of the survival phase. The overlap in Lr and

Lp at time td is 0.4 and reduced to 0.05 at time tmin. Using Eq. 2 in Fig. 5, we can

calculate the rate of departure (TolRD) for this example; it is 0.035. A lower value is

‘pre-disruption’

Performance
M

o
P

fo
r

C
a
p
a
b
ili

ty

t0 td tmin tret tf

Survival Phase Recovery Phase

ValueT

Value2

Value1

Avoidance Phase

‘post-disruption’

Performance at tmin

39

considered better. What this TolRD means is that for every unit of time between td and

tmin, on average, 0.035 of the overlap in Lr and Lp is lost. More generally, the system’s

effectiveness is reduced by 0.035 for each unit of time during the survival phase.

Fig. 5: Rate of Departure Example

3.1.2.2. Tolerance: Fault Tolerance

Resilient systems typically exhibit high fault tolerance: they continue providing their

main functionality despite the occurrence of one or more element-level failures. From a

structural perspective, one wants to understand how many faults (failures) can occur in

the system (as represented by the architecture) prior to a loss of a given capability. A

second measure of tolerance, fault tolerance (TolFT) examines the fraction of elements

that can fail prior to a loss of capability.

TolRD Equation

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800

R
e
q

u
ir

e
m

e
n

t
 M

o
P

Average Response Time (sec)

Overlap in Lr and Lp, @ tmin

Requirements Locus

Performance
Locus

d

p

rp

d

p

rp

tt

t
L

LL
t

L

LL

TolRD













 












 


min

min,,

05.0


p

rp

L

LL

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800

R
e
q

u
ir

e
m

e
n

t
 M

o
P

Average Response Time (sec)

Overlap in Lr and Lp, @ td

Requirements Locus

Performance
Locus

If td = 10
tmin = 20,

then

TolRD = 0.03540.0


p

rp

L

LL

40

Applying the graph-theoretical properties of Petri nets, Valraud and Levis [1989]

demonstrated the use of Petri net minimum support place invariants with their associated

components to describe information flow paths and functionalities in an architecture. In

their approach, a simple information flow path corresponds to a simple functionality of

the system described by the architecture. A complete information flow path is obtained

by coalescing all of the simple information flow paths terminating in a common sink. A

complete information flow path corresponds to a complete functionality described by the

architecture. A complete functionality is the partially ordered set of functions that

generate a specific output. A capability is then the instantiation of one or more related

complete functionalities. Petri Net theory subsumes elements of graph theory and

provides an opportunity to evaluate resilience using an already developed graph-

theoretical foundation.

Fault Tolerance (TolFT) can now be defined in this case as the ratio of simple information

flow paths which may be disrupted prior to the loss of the capability to the total number

of simple information flow paths. A capability is said to be ‘lost’ when the sink or set of

sinks (output places) associated with that capability can never have tokens. Relying on

the graph-theoretical properties of Petri nets, we are looking for vertices of the net which,

when removed, either disconnect the sub-graph or, with regards to a complete

functionality, prevent a source input from arriving at its designated sink in the complete

functionality, thereby eliminating a capability. From graph theory, such vertices are

referred to as “cut vertices.” Those elements of the sub-graph (vertices) which can be

removed without disconnecting the sub-graph or eliminating the complete functionality

41

(capability) are those that may be disrupted. An overview of the use of graph theory used

in this research is available in Chartrand, [1997], Chartrand and Lesniak, [1986], and

Grassman and Tremblay, [1996].Equation 3 defines how to compute fault tolerance.

 r

x

r

x i

i


r

1
FT Tol

 (3)

 where:

 x = the number of disrupted information flow paths

 r = total number of information flow paths ℓ

 Vnc = the set of non-cut vertices

 Vc = the set of cut vertices

 1 if ℓi contains a non-cut vertex (Vnc)

 0 if ℓi does not contain a cut vertex (Vnc)

Two methods of finding cut vertices exist. The first is based on depth first search, while

the second is based on comparison of information flow paths. Both methods produce

equivalent results. Returning to graph theory, consider the following lemma [Chartrand

and Lesniak, 1986]. For a connected sub-graph H with a set of sources S and sinks U and

a set of vertices V:

For each ℓ xi =

42

Lemma 1:A vertex v is a cut vertex if H - v increases the number of connected

components in H.

Lemma 2: A vertex v, where v is not contained within U or S, is a cut vertex in a

connected sub-graph H if and only if for each order pair (s,u), v exists on every path from

s to u.

The first method of determining Fault Tolerance (TolFT), uses Lemma 1, and the

following algorithm is used. Given a Petri Net D, which represents the part of the

architecture describing the capability:

1) Determine the minimum support place invariants, K, of the architecture and use

the pre-set and post-set to construct the components,ℓ,corresponding to each

minimum support invariant. (the minimum support components correspond to the

simple information flow paths, and analogously, simple functionalities); such that

K = {k1, k2,k3, … kr } and ℓ = {ℓ1, ℓ2, ℓ3, … ℓr}

2) Coalesce the simple information flow paths into a complete information flow

path, H. H is therefore a connected subgraph of D, consists of one or more

information flow pathsℓ, and represents a single capability. H has a set of input

sources S, as set of output sinks U, and a set of vertices V, where S, V, and U are

disjoint.

43

3) Use a Depth First Search (DFS) algorithm as defined in Cormen et al [1990] to

determine which vertices of V contained within H will disconnect a source S from

a sink U. For each source S:

a. Let Vnc be the set of non-cut vertices within H. Initially, Vnc = Ø

b. Let tree T be the result of a depth-first search, where the root is a member

of S and U is contained within T.

c. Remove a vertex vi from T and repeat step 3.a using each root S. If U is

contained with the updated tree T, then vi is not a cut vertex.

d. If vertex vi is not a cut vertex, then add vi to Vnc and move to step 3.e, else

move directly to step 3.e.

e. Replace vertex vi

4) Iterate step 3 for each vertex v1…vi contained within T.

Those vertices which are not cut vertices represent elements of a functionality which may

be disrupted in some manner without guaranteeing loss of the capability. (Those which

do not disconnect the source and sink are those elements which may be disrupted.)

Identify every simple information flow pathℓ which contains a non-cut vertex Vnc as a

member of ℓ. These represent information flow paths which may be disrupted in some

manner without losing the capability under study.

44

Constructed in this manner, TolFT will vary between 0 and 1, where higher values are

considered better. For example, a TolFT of zero indicates nearly every element in the

design is essential for functionality. This implies very little redundancy, low

interconnectivity, and potentially numerous points of failure. A TolFT of 1 indicates

high levels of redundancy, high levels of interconnectivity and possibly no single points

of failure.

The following example demonstrates each corresponding step of the algorithm. Petri Net

D is shown in Fig. 6 representing a capability (or complete functionality).

Fig. 6: Petri Net D

Step 1) The Farkas [1902] algorithm provides a methodology using Gaussian elimination

to solve systems of linear equations with natural number solutions. Martinez and Silva

[1982] adapted the Farkas algorithm to solve for the minimal support (linearly

t5p7

p8

t1p1

p2

p3

t2

t3

p4

p5

t4 p6

45

independent) place invariants of ordinary Petri nets. Applying the Martinez and Silva

adaptation of the Farkas algorithm to Petri Net D yields three place invariants:

 K = {k 1, k 2,k 3}so that r is now equal to 3:

 k1 = p1, p2, p4, p6 with component ℓ 1 = p1, t1, p2, t2, p4, t4, p6

 k2 = p1, p3, p5, p6 with component ℓ 2 = p1, t1, p3, t3, p5, t4, p6

 k3 = p7, p8, p4, p6 with component ℓ 3 = p7, t5, p8, t2, p4, t4, p6

Fig. 7:Minimum Support Components of Petri Net Din Graphical Form

Step 2) Coalescing the simple information flow paths, {ℓ1,ℓ2, ℓ3}, reveals that D is

included in the union of all three minimum support components.

46

 Therefore, in this simple example case, H = D

 The set of S sources includes {p1, p7}

 The set of U sinks includes {p6}

 The set of V vertices includes {t1,t2,t3,t4,t5,p2,p3,p4,p5,p8}

 S, U, and V are disjoint

Step 3) For each source S, perform a Depth First Search (DFS) of Tree T

 Initially, set Vnc = Ø

 S includes two elements, therefore tree T = {Tp1, Tp7}

Fig.8: Tree Structure of Petri Net D for Each Source

P1

t1

P2 P3

t2 t3

P4 P5

P6

t4

P8

t2

P4

P6

t4

P7

t5

Tp1 Tp7

47

 Note that T includes S, V, and U

 Remove vertex t1from T and perform a DFS for each S

Fig.9: Tree Structure of Petri Net D with Vertex t1 Removed

 Note that U, (i.e. {P6}), is not contained within Tp1, therefore, t1 is a cut

vertex because it disconnects the tree (separates P1 from P6)

 Replace t1 and move to the next vertex.

 Remove vertex p2 from T and perform a DFS for each S in Tree T

P1

P8

t2

P4

P6

t4

P7

t5

Tp1 Tp7

48

Fig.10: Tree Structure of Petri Net D with Vertex p2 Removed

 Note that U is contained within tree T = {Tp1, Tp7}, therefore P2 is not a

cut vertex. Add vi to Vnc, where now Vnc= {P2}

 Replace P2 and iterate Step 3 for every vertex contained in subgraph H

(i.e. check for cut vertices across the entire capability represented in subgraph H)

 The results of Step 4 determine the set of non-cut vertices Vnc

 Vnc= {P2,P3,P5,t3}

 1 if ℓi contains a non-cut vertex (Vnc)

 0 if ℓi does not contain a cut vertex (Vnc)

P1

t1

P3

t3

P5

P6

t4

P8

t2

P4

P6

t4

P7

t5

Tp1 Tp7

For each ℓ xi =

49

 From Step 4 Vnc= {P2,P3,P5,t3}

 From Step 2, recall that:

 k1 = p1, p2, p4, p6 with component ℓ 1 = p1, t1, p2, t2, p4, t4, p6

 k2 = p1, p3, p5, p6 with component ℓ 2 = p1, t1, p3, t3, p5, t4, p6

 k3 = p7, p8, p4, p6 with component ℓ 3 = p7, t5, p8, t2, p4, t4, p6

 ℓ1 contains P2 x1 = 1

 ℓ2 contains P3,P5,t3 x2 = 1

 ℓ3 and Vnc are disjoint x3 = 0

 3

2
 Tol

r

1

FT 




r

x

r

x i

i

In the above example, two information flow paths may be disrupted in some manner

without a loss of capability. A key thrust area of this research is also to provide ways of

directing an architect’s attention to areas where design improvements maybe needed.

One can look at the above results and note that if information flow path (simple

functionality) ℓ3 is disrupted in any way, a loss of capability is more likely than in the

case of the other two simple functionalities.

50

The second method to identify cut vertices uses Lemma 2. Recall Petri Net D

representing a capability. The Farkas algorithm determined that D includes three

invariants: K = {k1, k2, k3} and we found that that r is equal to 3.

 k1=p1, p2, p4, p6 with component ℓ1=p1, t1, p2, t2, p4, t4, p6

 k2= p1, p3, p5, p6 with component ℓ2= p1, t1, p3, t3, p5, t4, p6

 k3= p7, p8, p4, p6 with component ℓ3= p7, t5, p8, t2, p4, t4, p6

Table 2: Cut Vertices

From Lemma 2, we know that any vertex that is on every path from sources Si to Sink Uj

is a cut vertex. Elements t1 and t4 are on every path from source p1 to sink p6. Elements

t5, p8, t2, p4, t4 are on every path from source p7 to sink p6 (there is only one path, so all

elements are cut vertices in that regard). Therefore, the non-cut vertices, (Vnc) are

 Vnc= {p2,p3,p5,t3}, (as found in the previous methodology).

p1 p2 p3 p4 p5 p6 p7 p8 t1 t2 t3 t4 t5 Sinks & Sources

1 1 1 1 1 1 1 1 Cut Vertices

2 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1

Invariant

Elements

Source p1

Source p7

51

 1 if ℓi contains a member of Vnc

 0 if ℓi does not contain a member of Vnc

 r = total number of information flow paths

 ℓ1 contains p2 x1 = 1

 ℓ2 contains p3,p5,t3 x2 = 1

 ℓ3 and Vnc are disjoint x3 = 0

 3

2
 Tol

r

1

FT 




r

x

r

x i

i

The results found using the two methodologies are equivalent.

3.1.2.3. Tolerance: Point of Failure Tolerance

While Fault Tolerance (TolFT) examines the fraction of elements that can fail individually

prior to a loss of capability, Point of Failure Tolerance (TolPF) examines the relatedness

of individual failures to a loss of overall capability. When considering faults, it is

important to understand the relatedness of failures at the element level to a loss of

functionality or a loss of capability; whether single element level failures tend to induce a

failure of the entire system or large portions of the system. In engineering systems, we

For each ℓ xi =

52

refer to these as points of failure, and at the extreme, single points of failure in the design.

The design for any system whose goal is high availability attempts to avoid these points

of failure. A system with high point of failure tolerance means that any given fault at the

element level is less likely to cause a broad system failure because the effects of its

failure are limited to its local simple functionality. Here we define Point of Failure

Tolerance (TolPF) as the ratio of elements whose effects are limited to their local simple

functionality to the total number of elements in that capability.

Here again we use the relationship of information flow paths to simple functionalities,

and coalescence of related simple functionalities to complete functionalities as originally

described in Valraud and Levis and reviewed in the Fault Tolerance metrics section.

Point of Failure Tolerance is defined as the ratio of elements whose effects are limited to

their local simple functionality to the total number of elements in that capability.

 E

q

E

q j

E

j





 Tol
1

PF

 (4)

 where:

 E = total number of elements

 q = number of elements with localized failure effects

53

A localized failure effect means that the element is a member of only one simple

functionality, information flow path ℓi .

 1 if ej is a member of one and only one flow pathℓi

 0 otherwise

Returning to our simple example in Petri Net D, we find that seven elements have

localized failure effects. Elements {p2, p3, t3, p5, p7, t5, p8} are each a member of only

one simple functionality. Therefore, q = 7. Visual inspection of D show there are 13

elements, so E = 13. Refer to Fig. 11.

Fig. 11 Determining Localized Failure Effects, qj

t5p7

p8

t1p1

p2

p3

t2

t3

p4

p5

t4 p6

Element

flow paths

associated

w/ element qj =

p1 2 0

p2 1 1

p3 1 1

p4 2 0

p5 1 1

p6 3 0

p7 1 1

p8 1 1

t1 2 0

t2 2 0

t3 1 1

t4 3 0

t5 1 1

13 21 7

For each element ej,

qj=

54

 13

7
 Tol

1

PF 




E

q

E

q j

E

j

What this means is that 7 of 13 elements are contained within only one information flow

path. Therefore, the effects of their failure are localized to that simple functionality. As

Point of Failure Tolerance increases, a single fault is less likely to have broad effects, and

conversely, as TolPF decreases, a single failure is more likely to have broad system level

effects.

A primary thrust of this research is also to enable a methodology to improve design

outcomes. This aspect of the research directs an architect’s attention to those point

failures of the design, especially focusing attention on those elements in the design with

the highest number of associated information flow paths. For example, element t4 in the

above example is involved in all three simple functionalities. The capability is highly

vulnerable to disruption within element t4. Special attention should be paid to this

aspect of the design.

3.1.3. Flexibility:

In contrast to tolerance, flexibility is the ability of a system to reorganize and adapt itself

to changing conditions. Flexibility is an enabler of adjustment used by many systems to

maintain their functionality during the changing conditions which follow a disruption.

Flexible systems often have multiple means of providing a given capability, are able to

reorganize, and are able to localize failures so that they can be repaired while the

55

remainder of the system continues to function. This may include aspects of redundancy,

loose coupling, and adaptable constituent components. Liles [2008] defines cohesion as a

measure of the relatedness of the elements within a node. A node is defined by Liles as

groupings of elements with internal communication structures, where each element is a

member of only one node. Nodes with low cohesion are easier to reorganize than nodes

with higher cohesion. Liles also introduces a measure to determine the extent to which

the elements of a given node support multiple capabilities, called Degree of Reuse. In

this research, we have renamed Degree of Reuse as Common Use, to emphasize the idea

of multiple functions relying on the same elements. This renaming is made because the

term Degree of Reuse tends to imply a sequencing or temporal aspect which may not be

present in many cases. Common Use, or CU, reflects the ability of a node to perform

multiple capabilities concurrently. High values for Common Use imply competition for

resources, and a low ability to support multiple capabilities concurrently. Low values for

Common Use imply less competition for resources and greater ability to execute multiple

capabilities concurrently. Departing from Liles, Proportion of Use (PoU) normalizes the

Common Use measure. Proportion of Use reflects the relative proportion of the total

elements used by any given simple functionality to deliver the overall capability. For

example, does the average functionality use 10% of the elements, or 80% of the elements

supporting that capability?

3.1.3.1. Flexibility: Cohesion

Liles develops means of measuring the adaptability and agility of system of systems

architectures. To address system of systems issues, Liles introduces the concept of a

56

System Of Systems Instance (SOSI). A SOSI is a subset of the elements available to an

enterprise which are organized together for a particular purpose and deliver a specific

capability. Liles describes measures for Cohesion and Coupling and uses the inverse of

the Cobb-Douglas production function as a measure for Adaptability. Cohesion describes

how tightly bound the elements within a node are (their relatedness), and is measured by

calculating the number of information flow paths (minimum support s-components)

within a node along with its input and outputs. From Liles [2008], Cohesion within a

Node (n) is calculated as:

 ki

ki

x

z
 =)Coh(nki

 (5)

 where,

 k = the specific system of system instance (SOSI)

 zki = number of paths in node nki

 xki = Iki * Qki

 and where,

 Iki= number of inputs for the node

 Qki = number of outputs for the node

57

From our example in the Fault Tolerance section, if we let Petri Net D = node nki; then:

 Iki = 2; Qki = 1; and zki = 3;

Cohesion may then be calculated as

2

3
 =)Coh(nki 

ki

ki

x

z

When a capability (SOSI fk) involves more than one node, then the overall cohesion is

measured as:

 m

i




m

1

ki)Coh(n

 =)Coh(fk
 (6)

 where, m = number of Nodes in SOSI fk

3.1.3.2. Flexibility: Common Use

Common use reflects the ability of a SOSI to support multiple capabilities concurrently.

As common use increases, Liles notes that a SOSI’s ability to conduct multiple

capabilities decreases due to a competition for resources among the elements. Equation 7

below is an equivalent restatement of Liles’ equation for computing degree of reuse.

Common Use (CU):

58

 E

A

E

Aj

E

j





 CU
1

 (7)

 where:

 A= number of information flow paths containing element ej

 E = total number of elements

Returning to our prior example using Petri Net D:

Fig. 12: Associating Information Flow Paths with Each Element

t5p7

p8

t1p1

p2

p3

t2

t3

p4

p5

t4 p6

Element

flow paths

associated

w/ element

p1 2

p2 1

p3 1

p4 2

p5 1

p6 3

p7 1

p8 1

t1 2

t2 2

t3 1

t4 3

t5 1

13 21

59

1.6

13

21
 CU

1





E

A

E

Aj

E

j

This means that each element is involved in, on average, about 1.6 information flow

paths. Stated another way, each element contributes on average to 1.6 of the simple

functionalities associated with that capability. As Common Use increases, competition

for resources may increase in the case of concurrent operations, where a particular node

is attempting to execute more than one capability. Common Use also indicates that a

particular system is able to support more than one functionality with a given element.

Departing from Liles, it is important to understand whether the calculated result for CU is

a ‘low’ or ‘high,’ (good or bad) number. Proportion of Use, defined in the next section,

allows us to consider CU in this perspective.

3.1.3.3. Flexibility: Proportion of Use

It’s also useful to look at the proportion of the elements within a given capability that are

used by any single simple functionality. Proportion of Use (PoU) reflects the fraction of

the total elements used by any given simple functionality to deliver the overall capability.

For example, does the average functionality use 10% of the elements, or 80% of the

elements supporting that capability? Systems with low proportion of use are more

resilient to a disruption, since each element is involved in comparatively fewer simple

functionalities, and easier to reorganize, because elements are less extensively used in the

capability. Systems with high proportions of use are less resilient to disruption, since

elements tend to be involved in comparatively more simple functionalities for a given

60

capability, and more difficult to reorganize, because each element is extensively involved

in the simple functionalities needed to deliver the overall capability.

 rE

B

r

E

B r

i

i
i

i








 1

r

1

 PoU
 (8)

 where:

 r = total number of information flow paths

 Bi= number of elements e contained by path ℓi

 E = total number of elements

Returning to our simple example in Petri Net D we find:

Fig. 13: Calculating Elements Within Each Information Flow Path

t5p7

p8

t1p1

p2

p3

t2

t3

p4

p5

t4 p6

Information

Flow Path ℓ

Elements

Contained

by ℓ

ℓ 1 7

ℓ 2 7

ℓ 3 7

r = 3 21

E =13

61

54.0
39

21

3

13

21

 PoU 

This means that each simple functionality uses just over half (0.54) of the elements

contained within the architecture representing that capability. Stated another way, the

loss of any given element due to a disruption would imply an effect on just over half of

the simple functionalities associated with that capability.

This is essentially the same as normalizing Common Use as a proportion of the number

of simple functionalities associated with that node. This helps determine whether CU is

comparatively low or high with regard to the total number of simple functionalities in that

capability. Recall from the previous section on Common Use that it is difficult to

determine whether a particular value for Common Use is ‘good’ or ‘bad.’ This approach

therefore addresses that concern. In this example, we are saying that each element is

contained within 1.6 out of 3 simple functionalities, or just over half. A disruption of the

average element would therefore affect 0.54 (or about 50%) of the simple functionalities

delivering that capability.

Systems with low Proportion of Use are easier to reorganize because the elements are less

extensively used in simple functionalities needed to deliver the capability. Systems with

high proportions of use are more difficult to reorganize because the elements are more

extensively involved in the simple functionalities.

62

The relationship allows us to examine element usage as a number between 0 and 1, where

numbers close to 1 mean a disruption to any element can be expected to have broad

reaching effect, and a number close to zero implies a disruption will have a limited effect.

Systems with high proportions of use will be less resilient to disruption, since elements

tend to be involved in comparatively more simple functionalities for a given capability.

Therefore a loss of functionality in a certain element will have more broad effects at the

system level. Systems with low Proportion of Use will be more resilient to a disruption,

since each element is involved in comparatively fewer simple functionalities. Therefore

a loss of functionality will have more isolated effects.

3.2. HOLISTIC APPROACH TO RESILIENCE

Section 3.1 defined each of the individual measures of the attributes of resilience. While

each of the individual measures for resilience is useful in assessing one aspect of

performance after a disruption, evaluating the attributes of resilience (Capacity,

Tolerance, and Flexibility) into a single holistic approach is the goal of this research. The

construct presented in this section allows one to map the performance of the architecture

as implemented in the executable model into one such approach.

Resilience can be evaluated using the architecture by: identifying the appropriate measure

for each attribute; mapping the architecture performance for each measure; and

overlaying a requirements locus to assess performance against requirements. Resilience-

related improvements to the design can now be quantified and alternative candidate

architectures can be compared.

63

To assist the architect and the overall system development team, a metric selection

process is presented in Fig. 14. The architect can use a series of questions regarding

each aspect of resilience to gauge in how to proceed with the analysis. For the purposes

of improving the design, all metrics may be applicable. However, it’s likely that only one

of each major area, Capacity, Tolerance, and Flexibility, will be of concern.

Fig. 14: Resilience Metric Selection

As discussed in Section 3.1, certain metrics are identified in Fig. 14 primarily to help

draw an architect’s attention to areas in the design where greater focus may be required.

For example, in terms of Point of Failure Tolerance, if a given element is used in a

Is spare

capacity

available?

Available in

time?

Reactive

Capacity

Is a Follow-

on Disruption

Likely?

Buffering

Capacity

Residual

Capacity

yes yes

yes

no no

no

What’s the greatest

system concern during

Survival Phase?

Rate of

Departure

Quality of Service Degradation

Fault

Tolerance

Simultaneous Loss of Multiple Functions

Point of Failure

Tolerance

Point Failures w/ Broad System-level Effect

Capacity

Tolerance

Flexibility
What’s the greatest

system concern during

Survival Phase?

CohesionLikely adaptation strategies involve intra-
node / module reorganization?

Common

Use

Proportion of

Use

Do I have a modular remove and replace
strategy, resource contention?

Recommended MetricResiliency Metric Differentiation Questions

Primarily
Design

Metrics for
the Architect

64

majority of the simple functionalities supporting a given capability, the architect may

need to investigate whether this situation will be a problem or not. Perhaps the typical

components that might instantiate those aspects of the design have a high failure rate. In

that case, a design change may be warranted. In terms of Fault Tolerance, where cut

vertices are found, the design team may wish to consider alternative architecture designs

that minimize their number or location to minimize potential effects. These metrics take

advantage of one of the benefits of Petri net analysis techniques, where the structure of

the design may be related to behavior. They provide evidence for potential design

changes without resorting to simulation or progressing too far in the design phase.

Under the architect’s judgment, one measure is chosen from each attribute, such that each

axis includes a single measure. Currently, Buffering Capacity, Rate of Departure and

Proportion of Use are shown in Fig. 15. The idea is to map the performance of the

architecture, and then overlay a resilience requirements locus. Determining the resilience

requirements locus requires value judgment and subject expertise. For example, systems

with volatility in demanded capacity may require a large buffering capacity to ensure

capacity resilience is maintained. Or, for systems where quality of service is paramount,

the required tolerance may call for a very low rate of departure to allow for sufficient

reaction times by maintenance crews.

Once the architecture’s performance is mapped against the metrics and the resilience

requirements locus, the architect can either attempt to modify the design to move it into

an ideal sector as defined by the resilience requirements or use this framework to

65

compare alternative architectures in a down-selection process. This approach allows us

to fulfill a goal of this research: evaluating resilience to assist in selection among

alternative architectures or to improve outcomes of design. Figure 15 demonstrates the

approach.

Fig. 15: Evaluating the Resilience of the System Described by the Architecture

0

1
0

1

0

1

Resilience Evaluation Framework

Capacity (Buffering Capacity)

Tolerance
(Rate of Dep.)

F
le

x
ib

ili
ty

(P

ro
p

o
rt

io
n

 o
f
U

s
e

)

Required Sector:
High Buffering Capacity
Low Rate of Departure (Tolerance)
Low Proportion of Use (Flexibility)

Architecture A

Architecture B

66

CHAPTER 4

THE RESEARCH APPROACH

4.1. SCOPE

Of the three phases of resilience identified by Jackson [2010] and included on Fig. 1, this

methodology is focused on the survival phase. The reason for this is simple: disruptions

can be difficult to predict, and even if predictable, difficult to completely prevent.

Therefore, avoidance is important, but not always possible or in some cases cost

effective. For example, the command and control portion of the US electrical grid is

known to be susceptible to malicious disruption via cyber-attack [Nicol, 2011].

However, the funding and manpower resources needed to avoid these potential

disruptions are not often available. Furthermore, this work is focused on survival because

survival is necessary in order to recover. Additional research is required to determine

methods for assessing resilience during recovery phases.

This research considers the resilience of a command and control system’s ability to

implement a capability to a disruption. Many command and control systems can execute

multiple capabilities simultaneously. For example, a Naval Command and Control

system may have the ability to coordinate and control logistical operations, fire support

operations, and expeditionary operations. This research does not simultaneously assess

67

all capabilities a command and control system may have. Doing so would require a

mechanism to compare the relative value of each capability within the context of the

overall mission.

The disruption is defined a priori to the analysis. In the case studies that follow, the

disruption is not an amorphous incident selected during the course of simulation or

analysis. Rather, it is defined ahead of time by the architect based on subject matter

expertise. This allows for a more focused analysis, with more meaningful results.

Additionally, the evaluation occurs in the perspective of a given scenario, providing a

context for the overall evaluation.

These two ideas, ‘the resilience of a capability to a disruption,’ and ‘defining the

disruption a priori’ are in keeping with the concept stated in Section 2.1.3 by Carpenter et

al. [2001]. It is important to consider the resilience ‘of what,’ ‘to what’ to have a

meaningful evaluation of resilience and this research is scoped accordingly.

4.2. TWO CASE STUDIES

Two case studies are presented in Chapter 5, a time sensitive targeting case and a

decision making organization case, each of which is developed using different

architecture styles. The decision making (DM) organization is a US Navy Maritime

Operations Center (MOC). The time sensitive targeting case is a fire support

organization operating in a US Marine Corps ground maneuver unit ashore. Selecting

two disparate case studies to demonstrate the research is important for two reasons. First,

it shows that the approach is adaptable to the architectural style used to develop the

68

architecture. The approach can be used whether the architecture was developed using

Structured Analysis, Object Orientation or other styles. Second, it shows that the

approach is agnostic to the type of command and control system under study. The

approach can be used for various types of command and control systems, from time

sensitive cases to military decision making organizational cases.

4.3. METHOD

This research applies the George Mason University (GMU) System Architectures

Laboratory (SAL)architecture evaluation process (see Fig. 16). This process was

originally developed by Wagenhals, Haider, and Levis [2003], and provides a macro

framework for developing architecture descriptions with rigorous evaluation. The

process contains feedback loops and may be iterated to progressively elaborate details in

the architecture and in the evaluation.

Fig. 16: The Architecture Evaluation Process

M
is

si
o

n

C
O

N
O

P
S

Architecture
Design

- DM Org (MOC)
- Trgtg (Fire Spt)

Executable
Model Constr.

- DM Org (MOC)
- Trgtg (Fire Spt)

Architecture
Evaluation

- DM Org (MOC)
- Trgtg (Fire Spt)

Architecture
Documentation

tools:
• CAESAR III

• Bus Proc Vis Arch

tools:
• CPN Tools

tools:
• MATLAB (.m script)
• MATLAB (SEAT)
• MS Excel (post-processing)

Required Behavior and Performance

Executable
Models

Static Arch
Models

Errors Improvements
& Changes

Resilience
Evaluation

Results

Design for
Systems

Selection
among

alternative
architectures

69

From a given mission statement, a CONOPS is developed describing how the

organization and assets would accomplish the mission, or in system specific cases, it

states how the user would employ the system to conduct the mission. The architecture

design is developed based on the CONOPS and other sources, such as doctrine, operating

procedures, and other factors. This step generates static views of the architecture and

eventually delivers the models and artifacts needed to document the architecture and

design relevant systems. The architecture design is transformed into a Petri net – based

executable model to allow for logical, behavioral, and performance analyses. Errors

identified during the construction of the executable model are fed back into the design.

Construction of the executable model is not in itself an evaluation, although its

construction may result in a better architecture assuming any errors discovered are fed

back into the design. The executable model of the architecture is then evaluated in

support of the analysis needs particular to the system or organization being developed. In

this research, that assessment consists of the resilience evaluation described in Chapter 3.

Improvements are then fed back into the architecture design.

Different tools are used for each case study, and at various stages in the process. The

decision making organization architecture is developed using a tool called CAESAR III

(Computer Aided Evaluation of System ARchitectures). Developed in the SAL at GMU,

CAESAR III is a suite of tools based on Petri net theory to design, analyze, and evaluate

command and control organizations and processes. The time sensitive targeting

architecture is developed in BPMN using a commercial architecture tool called Business

70

Process Visual Architect, v4.0, Modeler Edition, under license to the GMU SAL from

Visual Paradigm ®.

The Petri net-based executable model of the architecture is derived from the original

architecture. In the case of CAESAR III, the executable model is automatically

generated in Petri net form. In the case of Business Process Visual Architect, the Petri

net executable model is generated per the process described by Raedts et al., [2007].

CPN Tools, is a software program developed by the CPN Group at Aarhus University in

Denmark for the development, simulation and analysis of Petri nets. Detailed

information on the modeling and analysis of concurrent systems using CPN Tools is

presented in Jensen and Kristensen [2007].

MATLAB was used to assist in the evaluation of the executable model with respect to the

attributes of resilience involving invariants (simple information flow paths). A

MATLAB script, available on MATLAB Central

(www.mathworks.com/matlabcentral/fileexchange/6501) and attributed to Hanzálek was

used to solve for the invariants of the Petri net executable model. This script, silva.m,

takes the incidence matrix as an input and uses the Martinez and Silva adaptation of the

Farkas algorithm to solve for the invariants of the Petri net model.

A MATLAB add-in tool, called SEAT (Systems Effectiveness Analysis Tool) version

2.0, [1999], was used to execute the analyses required as a part of the Rate of Departure

metric within the tolerance attribute of resilience. The GMU SAL developed SEAT as a

part of a suite of architecture analysis and evaluation tools. SEAT allows for the

http://www.mathworks.com/matlabcentral/fileexchange/6501

71

visualization simulation performance results, and for quantifying the intersection of the

performance and requirements locus.

Post processing of analysis data from the CPN Tools model was accomplished using MS

Excel. The integration of resilience performance with respect to each of the attributes

with the overall resilience requirements locus requires three dimensional graphing

capability and was accomplished again using SEAT.

72

CHAPTER 5

CASE STUDIES

This chapter presents two case studies demonstrating an application of the approach

described in this research: a targeting case study, and a decision making organization case

study. The targeting case study introduces the ideas using a simple example. An

excursion is presented in the targeting case study to show the effects of improvements to

the architecture. The decision making organization case study shows the comparison of

two candidate architectures from a resilience perspective. Each case is introduced with

background information, key aspects of the architecture are provided, and the results of

the approach are demonstrated.

5.1. TARGETING SYSTEM CASE STUDY

5.1.1. Background

The US Army and Marine Corps are replacing portions of the High Mobility Multi-

purpose Wheeled Vehicle (HMMWV) based light tactical fleet with new vehicles. One

of the mission role capabilities for these vehicles is that of fire support coordination and

synchronization, as conducted by the maneuver unit Fire Support Officer (FSO). This is

a time sensitive capability, in which the FSO coordinates fires in support of the maneuver

unit as a part of a fire support team. We use the term C2 FSO Vehicle (C2FSOV) in this

73

case study. The C2FSOV is a part of the larger fire support architecture under study. In

this case study, we will consider the resilience of the targeting architecture to implement

the capability of fire support coordination and synchronization to the disruption (loss) of

the GPS network (for example due to cyber-attack or jamming). This forces the fires

team to revert to manual geo-positioning means for the target and friendly forces. A

high-level operational view of the targeting case study is presented in Fig. 17.

Fig. 17: Targeting Case Study Operational View

Naval Surface Fire Support

Forward
Observer

FSO C2
Vehicle

Firing Battery

Threat Target
Adjacent and

Maneuver Units

III

Higher HQ
Pos/Status
Rpt to HQ

Pos/Status
Rpt to HQ

Pos/Status
Rpt to HQ

Pos/Status
Rpt to HQ

Navigation
Aid Data

Pos/Status
Rpt to HQ

Pos/Status
Rpt to HQ

COP

ESG

Close Air Support

Call For Fire

74

In this case study scenario, illustrated in Fig. 17, a Forward Observer (FO) identifies a

threat in his sector. The FO sends a Call For Fire (CFF) request to the FSO. The FSO

clears the mission using the common operational picture (COP), and assigns a weapon

system to fire the mission using fire support software. A fire mission may be assigned to

ground artillery/mortars, close air support, or naval surface firing units. These firing

units receive the mission, orient their weapons and fire the requested mission. The FO

observes the fire mission’s effects on the target threat and determines whether to adjust

fire based on those effects. Battle command capabilities such as global positioning /

navigational aids (GPS), common operational picture and advanced fire support software

support this capability.

In this case study, we are examining the resilience of the capability to coordinate and

synchronize fire support to disruption of the geo-positioning navigation aid signals

(GPS). During early entry operations, cyber-attack to the GPS satellite constellation

scrambled the GPS signal, rendering it useless. Loss of GPS affects the fire support

process from end to end (FO self-location, target location, clearance of fires, and

allocation of weapons). Each portion of the fire support team can still complete the

process, but the process transitions to pre-GPS era methods which require much longer

times to complete. In this case, soldier common task standards for times to manually

complete tasks, versus GPS enabled times are used. No backup is available to offset this

loss beyond the older manual approaches (i.e., no reactive capacity).

75

5.1.2. Architecture

An architectural description of the fire support coordination capability using Business

Process Model and Notation (BPMN Specification Version 2.0, 2010) was developed as

shown in Fig. 18. BPMN is a standardized Object Management Group (OMG) graphical

modeling representation for modeling business processes. It is intuitive to use, and

importantly, is mathematically underpinned to allow for translation into executable

forms. Critical functions in the fire support coordination capability are fulfilled via

navigation aids from the Global Positioning System (GPS) and fire support information

from the Advanced Field Artillery Tactical Data System (AFATDS), both of which may

be vulnerable to electronic or network attack. In this case study, the approach will

evaluate the effect of disruptions to the critical GPS function with regard to the overall

fire support coordination capability. In Fig. 18, the portions of the capability most

directly affected by a disruption to GPS are colored in light gray.

The BPMN based architecture may be translated into Petri Net form to allow for

structural, behavioral and performance analyses. Figure 19 shows the BMPN model in

Fig. 18 translated into ordinary Petri net format. To execute the architecture,

instrumentation places are added to the model to collect data in support of appropriate

analysis needs. Additionally, timing and stochastic features can be added to represent

how the system would operate in a given command and control scenario.

76

Fig. 18: BPMN Architectural Description of Targeting Case

Light Gray: activities affected by disruption to GPS

7
7

Fig. 19: Petri Net Model Translated from BPMN Architecture

Firing
Unit, (Artillery, or
Close Air Spt, or
Naval Surf Fires)

C2FSOV

Threat

Forward
Observer

Higher HQ

External
Navigation
Aids

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p, ModelTime())

(p,toa)@+10

(p, ModelTime())

(p, ModelTime())

(p, ModelTime())

(p, ModelTime())

(p, ModelTime())

(p,toa)
(p,toa)

(p,toa)

5`(p,toa)

(p,toa)

(p,toa)@+10

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)(p,toa)

(p,toa)

p

(p,toa)(p,toa)(p,toa)(p,toa)(p,toa)(p, toa)

(p, toa)

(p,toa)

(p,toa)

(p,toa)

2`(p,toa)@+Loiter()

(p,toa)(p,toa)(p,toa)(p,toa)(p,toa)

(p,toa)

(p,toa)

(p,toa) (p,toa) (p,toa)(p,toa)(p,toa)

(p,toa)(p,toa)(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)(p,toa)

(FU1)

Signal
Munition
Delivered

(FU1)

Fire
Requested

Mission

@+TOF()

(FU1)
Orient

Weapon

@+OW()

(FU1)

Generate
Firing
Data

@+GFD()

(FU1)

Receive
Fire

Mission

(FU1)
Report
Posn &
Status

@+Rpt()

(FU1)
Maneuver

@+MAN()

Assign
Weapon

@+AW()

Clear
The

Mission

@+CTM()

Receive
Call For

Fire

(FSOV)
Maneuver

(FSOV)
Report
Posn &
Status

@+Rpt()

Threat
Departs

Signal
Threat

Ineffective/
Effective

React
to

Attack

Threat
Arrives

(Tgt)
Signal

Munition
Delivered

Operate
Threat
System

Signal:
Target

Available

Send
EOM

Report

Observe
Effects

Generate
Call For

Fire

@+CFF()

ID
Target

@+ID()

(FO)
Report
Posn &
Status

@+Rpt()

(FO)
Maneuver

@+MAN()

Provide

Posn &
Timing
Data

@+GPS()

Provide

COP

@+COP()

P704

POS

POS

P700

POS

P601

POS

P402

POS

P410

POS

POS

P409

POS

P506

POS

P607

POS

P610

POS

P701

POS

P708

POS

P707

POS

P706

POS

P705

POS

P702

POS

1`p@0

PSN

P609

POS

P608

POS

P606

POS

P605

POS

P604

POS

P602

POS

P505

POS

P504

POS

P508

POS

P503

POS

P500

POS

P407

POS

P507

POS

p502

POS

P501

POS

P408

POS

P406

POS

P404

POS

P403

POS

P400

POS

P401

POS

P201

POS

P200

POS

P100

POS

StartStart
P600

End

P512

Release
Weapon

End

P613

78

5.1.3. Targeting Case Study Results

Once the architecture is developed, sufficiently verified, and any errors / revisions are

addressed, it may be used to support the analyses described in Chapter 3. Figure 14 and

Table 1 in Chapter 3 assist the architect to determine which aspects of resilience are most

applicable to the architecture definition and resilience issues at hand. In this case study,

buffering capacity was determined as the most applicable with respect to capacity.

Reactive capacity is not appropriate since no backup (spare) capacity exists. Residual

capacity is not appropriate since follow-on disruptions were not anticipated. As a time

sensitive targeting case study, Rate of Departure (TolRD) is the most appropriate aspect of

the Tolerance attribute since it addresses quality of service degradation during the

survival phase. Proportion of Use (PoU) is the most appropriate aspect of Flexibility,

because it addresses how widespread (non-localized) the effects of the disruption may be

and assesses the difficulty in reorganizing the system.

5.1.3.1. Targeting Case Study Results: Capacity

To measure capacity in a time-sensitive targeting architecture, the rate at which targets

can be serviced is a critical measure of the fire support capability from the FO all the way

through effects (rounds impact). This is often considered in terms of a ‘window of

opportunity’ as illustrated in Fig. 20. The remaining window of opportunity to engage the

target is a measure of capacity, from the perspective of how quickly a target may be

serviced.

79

Fig. 20: Capacity as a Window of Opportunity

In this scenario, capacity can be measured as tdepart - timpact. When a target departs prior to

rounds impact, capacity = zero, meaning that the fire support team could not deliver

within the window of opportunity. In executing the Petri Net architecture in this scenario,

we find the following results. Recall that the disruption is a loss of the GPS network,

causing many formerly automated fire support coordination methods to revert to manual

methods. This disruption occurs at scenario time td = 5 hours.

Figure 21 shows the results of the capacity analysis for the targeting architecture. In this

scenario, the capacity metric is the remaining window of opportunity to engage the target

prior to its departure. The threshold shown in Fig. 21 was established in conferral with

fire support subject matter experts, and represents a community standard of engaging

targets within a certain period following their identification. Buffering capacity was

calculated as 33%. Since the post disruption performance dropped below the threshold,

residual capacity is effectively zero. Also, since there is no backup (spare) capacity for

the GPS system, no reactive capacity exists. The circles indicate missed opportunities,

where the target departed prior to rounds impacting.

t0 timpact tdepartRemaining window of
opportunity (capacity)

80

Fig. 21: Measuring Capacity in the Targeting Case Study

5.1.3.2. Targeting Case Study Results: Tolerance

Having examined the capacity attribute of resilience, tolerance is also considered. Recall

from Chapter 3, we described Rate of Departure (TolRD)as the rate of change over time in

system effectiveness in meeting its requirements after a disruption occurs. Effectiveness

can be measured by comparing the system performance with respect to defined MoP

against the requirements. A parameter locus is generated to determine system

performance across the varied parameters it may encounter in a scenario. Given the

importance of the window of opportunity in time sensitive cases, the average target loiter

time is considered in the parameter locus. Inter-Arrival time between threats is varied to

allow for simultaneous engagement of multiple threats. In this case, the difficulty of the

task increases as the inter-arrival time decreases and the loiter time increases, meaning

81

effectively more targets. The parameter locus (Fig. 22) allows investigation of the most

time sensitive and the least time sensitive situations to generate a system performance

response surface. In the capacity chart, the middle point was measured.

Fig. 22: Targeting Case Study Parameter Locus

Executing the architecture at each point in the parameter locus yields a locus of

performance. The performance locus is generated prior to disruption, and again at the

minimum point in performance during the survival phase. Recall that rate of departure is

described earlier as the rate of loss of effectiveness in meeting the stated requirements

during the survival phase. Figure 23 displays pre-disruption performance data, where

82

performance data is collected before the disruption occurs. In this base case, response

times are low (i.e. fast) and almost all targets are engaged (i.e., very few missed

opportunities or ‘leakers’). SEAT was used to generate Figs.23-26and to support the

calculations within the rate of departure measure of tolerance.

Fig. 23: Pre-Disruption Performance in the Targeting Architecture

Executing the architecture again at each point in the parameter locus, but after a

disruption, yields a second locus of performance. Figure 24 displays post disruption

0
1

2
3

4
5

6
7

8

120

125

130

135

140

90

95

100

105

110

Percent Leakers (Un-Engaged Tgts)

C2FSOV Performance Locus

Effects on Tgt Resp Time (sec)

C
F

F
 R

e
s
p
 T

im
e
 (

s
e
c
)

83

performance (data is collected after the disruption occurs). In the post-disruption case, as

the loiter time decreased in the parameter locus, the fire support team could not move

quickly enough without being enabled by GPS. In the most challenging cases of the

parameter locus, all targets departed prior to being engaged (i.e. 100% leakers).

Fig. 24: Post Disruption Performance in the Targeting Architecture

The requirements locus (see Fig. 25) is generated based on the particular requirements for

the system. In this time sensitive targeting case, the number of targets departing prior to

0
20

40
60

80
100

305

310

315

320

325

330

160

165

170

175

180

Percent Leakers

Post Disruption Performance Locus

Effects Response Time (sec)

C
F

F
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
)

84

being engaged (referred to here as ‘leakers’), the effects response time, and the call for

fire response time are most important.

 Leakers: Requirement is to engage 3 of 4 targets once identified, or < 25%

leakers. The criterion is to deliver fires prior to a target’s departure.

 Effects Response Time: Time between a target being identified and a munition

being delivered. Should be less than 360 seconds.

 Call For Fire (CFF) Response Time: Time used by the fire support team to deliver

fires once a call for fire is received from the forward observer (FO). Should be

less than 180 seconds.

Fig. 25: Requirements Locus

0
10

20
30

40
50

60
70

80
90

100

0

100

200

300

400

0

50

100

150

200

Leakers (%)

Requirements Locus

Effects Response Time (sec)

C
F

F
 R

e
s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Figure is shown with portions of the
requirements locus removed for clarity.
(Requirements Locus is the inside of the box)

85

By executing the architecture at each point in the parameter locus, we can generate a

performance locus. Figure 26a shows pre-disruption performance. Prior to any

disruption, we can see how effective the Fire Support (FST) Capability is when enabled

by GPS. The FST capability is able to handle even the multiple, fleeting threats case in

the parameter locus. (i.e., very few ‘leakers,’ fast CFF response times and fast Effects

response times). Fig. 26b shows post disruption performance. Here, the simulation

results correspond to reality: fire support operations are highly dependent on GPS to

engage targets in time sensitive missions. Loss of GPS causes a reversion to manual

methods with much longer processing times to geo-locate themselves, targets and to clear

fires. This is seen as missed opportunities varies between 0% in the ‘long loiter, single

target’ parameter, to 100% missed opportunities in the ‘multiple, fleeting targets’ case in

the parameter locus. The time sensitive targeting architecture performance degraded

from 100% to 66% effectiveness over a course of 17 minutes on average. While the

event was instantaneous, its effects took time to occur fully. The rate of departure is ~2%

per minute loss of effectiveness.

8
6

Fig. 26: Measuring Rate of Departure (TolRD)

TolRD =

d

p

rp

d

p

rp

tt

t
L

LL
t

L

LL













 












 

min

min,, TolRD =

Figures shown with portions of the requirements locus removed for
clarity. (The Requirements Locus is the inside of the box)

0

20

40

60

80

100

0

100

200

300

400

0

50

100

150

200

Leakers (%)

Pre-Disruption Performance Locus and Requirements Locus

Effects Response Time (sec)

C
F

F
 R

e
s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Performance

Locus

0
10

20
30

40
50

60
70

80
90

100

0

100

200

300

400

0

50

100

150

200

Leakers (%)

Post-Disruption Performance Locus and Requirements Locus

Effects Response Time (sec)

C
F

F
 R

e
s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Performance

Locus

(a) (b)

02.0
9.2981.315

66.00.1






87

In addition to being executable (supporting simulation), Petri Nets include a graph

theoretic interpretation, supporting the analysis of properties. The identical model used

in the simulations above (see Fig. 19) was also analyzed in static form to assess other

aspects of Tolerance and as well as Flexibility. As described in Chapter 3, examining

these other aspects of Tolerance and Flexibility requires an ability to determine the

information flow paths which form the simple functionalities describing the overall

capability under study. The information flow paths are derived from the place invariants

in the architecture. The minimum support place invariants of the Petri Net form of the

architecture were determined using a MATLAB script (silva.m, available on the

MATLAB Central file exchange) which automates the Martinez and Silva [1983]

algorithm. Once the minimum support place invariants are known, the minimum support

s-components can be determined using the pre-set or post-set of the net.

Fault Tolerance (TolFT) is one such measure which uses the graph-theoretic properties of

Petri nets. Recall that Fault Tolerance (TolFT) is the ratio of simple information flow

paths which may be disrupted prior to the loss of the capability to the total number of

simple information flow paths. Those elements of the sub-graph (vertices) which can be

removed without disconnecting the sub-graph or eliminating the complete functionality

(capability) are those that may be disrupted.

The Martinez and Silva [1983] algorithm finds that the Petri net-based architecture (see

Fig. 19) contains 39 simple information flow paths with one source (p600) and two sinks

(p512, p613). Following Lemma 2 (See Section 3.2.2.2), we find that:

88

 sink p512 includes 11 cut vertices: {p500,p501,p502,p507,p508,transition“Threat

Arrives”, transition “Signal Target Available”, transition “Operate Threat

System”, transition “Threat Departs”, transition “React to Attack”, transition

“Signal Threat Effectiveness”}

 sink p613 includes 1 cut vertex: {transition “release weapon”}

 39 information flow paths are found, therefore, r = 39

Every information flow path contains many non-cut vertices, meaning multiple flow

paths exist to connect each source to its corresponding sink.

 ℓ1…ℓ39 each contain members of Vnc thereforex1..39 = 1

 39

39
 Tol

r

1

FT 




r

x

r

x i

i

Recall that Fault Tolerance is intended to help draw an architect’s attention to areas in the

design where improvements or analysis is warranted. In more simple terms, when the

architect analyzes the net and finds a series of cut vertices, he or she should begin to

analyze these locations. If that cut vertex is associated with a critical simple

functionality, or is likely to be allocated to a component with known high vulnerabilities

or high failure rates, then alternative designs could be considered to minimize the impact

of a disruption occurring at that point. In the targeting architecture, each of the cut

vertices associated with sink p512 are related to activities of the targeted threat. The

89

activities of the targeted threat are important, but not a part of a critical simple

functionality. For example, if the target did not show up (cut vertex: transition “Threat

Arrives” is disrupted), then the fire coordination capability is not affected. In this

particular case, by examining each of the cut vertices found, we can conclude that their

presence does not indicate a potential resilience related weakness in the overall design.

Like Fault Tolerance, Point of Failure Tolerance is intended to draw an architect’s

attention to areas in the design where greater focus may be required. However, where

Fault Tolerance looks at the resilience of the capability from the perspective of disruption

to the simple information flow paths (simple functionalities)supporting a capability, Point

of Failure Tolerance (TolPF) examines the relatedness of individual failures at the element

level to a loss of overall capability. Additionally, for a given disruption it provide a ratio

of simple functionalities to the total required in the capability affected by a disruption.

Table 3 identifies the number of information flow paths associated with each element in

the Petri net architecture of the targeting system (See Fig. 19). It also identifies (in red)

the elements associated with the GPS system.

90

Table 3: Association of Elements to Information Flow Paths

From Table 3, we can see that only 3 of the 71 total elements are associated with only

one information flow path. Recall that elements associated with only one information

flow path have localized failure effects, meaning that a disruption to that element only

affects that single simple functionality represented by the flow path. Table 3 shows that

Complete Functionality Description

Element

Name

Inf Flow Paths

Associated with

Element q = Element Name

Inf Flow Paths

Associated with

Element q =

P100 24 0 P702 12 0

P200 24 0 P704 2 0

P201 24 0 P705 24 0

P400 16 0 P706 24 0

P401 12 0 P707 24 0

P402 12 0 P708 12 0

P403 4 0 Provide Posn & Timing 24 0

P404 8 0 Provide COP 24 0

P406 2 0 (FO) Maneuver 16 0

P407 12 0 (FO) Report Position and Status 24 0

P408 26 0 ID Target 8 0

P409 12 0 Generate Call for Fire 8 0

P410 26 0 Observe Effects 26 0

P500 6 0 Send EOM Report 26 0

P501 6 0 Threat Arrives 6 0

P502 2 0 Signal Target Available 6 0

P503 4 0 Operate Threat System 2 0

P504 1 1 Threat Departs 1 1

P505 1 1 (Tgt) Signal Munition Delivered 13 0

P506 12 0 React to Attack 14 0

P507 14 0 Signal Threat Ineffective/Effective 14 0

P508 14 0 Start 39 0

P512 2 0 (FSOV) Maneuver 15 0

P600 39 0 (FSOV) Report Position and Status 24 0

P601 12 0 Receive Call For Fire 9 0

P602 12 0 Clear the Mission 17 0

P604 15 0 Assign Weapon 33 0

P605 3 0 Release Weapon 37 0

P606 9 0 (FB) Maneuver 14 0

P607 6 0 (FB) Report Posn & Status 24 0

P608 33 0 (FB) Receive Fire Mission 24 0

P609 11 0 (FB) Generate Firing Data 24 0

P610 22 0 (FB) Orient Weapon 24 0

P613 37 0 (FB) Fire Requested Mission 24 0

P700 12 0 (FB) Signal Munition Delivered 12 0

P701 14 0 E = 71 1119 q = 3

91

E = 71, and the sum of the qj = 3. These results imply highly non-localized failures.

This interconnectivity means that a failure in one portion has wider spread effects. Only

about 4% of the elements are associated with one information flow path

71

3
 Tol

1

PF 




E

q

E

q j

E

j

In this case study, we are examining a disruption to the GPS network and its effect on the

capability. The Point of Failure Tolerance metric gives us a means to examine this

disruption in a specific manner. We can see from Table 3 that GPS related activities

(shown in red) play a role in average of 19/39 (~50%) of the simple functionalities in the

targeting architecture, meaning that a disruption to the positioning system has widespread

implications, affecting about half of the simple functionalities that support the overall

capability. These tolerance results correlate well to the behavior shown in the rate of

departure analysis. The loss of GPS sharply affected performance of the capability

against its requirement. In essence, we are linking structure to behavior. The architect

should closely examine whether having fewer simple functionalities rely on GPS might

increase the resilience found in terms of Point of Failure Tolerance. An excursion is

presented after this case study, using an aerostat navigation beacon, to address potential

solutions to this issue of GPS vulnerability.

92

5.1.3.3. Targeting Case Study Results: Flexibility

In contrast to tolerance, flexibility is the ability of a system to reorganize and adapt itself

to changing conditions. From Chapter 3, one measure of flexibility is Cohesion, as

defined by Liles [2008]. The Cohesion metric assesses the average cohesion of the

individual nodes. A set of more cohesive nodes is more tightly bound (it’s inputs and

outputs are highly related) and therefore less flexible and less resilient.

In this case, the nodes are reflected by the swim lanes shown in Fig. 18: Navigation Aids;

Headquarters and Adjacent Units; Forward Observer, Threat, C2FSOV, and the Firing

Unit. Figure 27 demonstrates how to solve for Liles’ metric of Cohesion in the Targeting

Architecture. The cohesion of each node, Coh(nki), is determined by the number of

information flow paths respective to each node/(Inputs x Outputs) of that node. Cohesion

for a capability with multiple nodes, Coh(fk), is the average of cohesion calculated for

each of the nodes.

Fig. 27: Cohesion in the Targeting Architecture

ki

ki
ki

x

z
nCoh)(

m
Coh i

k




m

1

ki)Coh(n

)f(

 Cohesion (Multiple Nodes) Targeting Architecture

Node Inputs Outputs Paths Coh(nki)

Nav Aid 1 4 4 1

HQ 5 1 5 1

FO 6 3 10 0.56

Threat 2 4 6 0.75

C2FSOV 5 2 9 0.9

Firing Unit 3 2 6 1

Complete Functionality Description P = Element Name P =

m= 6 Coh(fk) = 0.87

93

Note, however, that this is really measuring average cohesion of the nodes, and not the

entire capability. What it is saying is that the individual nodes themselves are harder to

reorganize because they are more cohesive. It is silent on connections between nodes.

A second measure of flexibility is Common Use, also introduced by Liles [2008].

Common Use (CU) measures the extent of common use of the elements to support

multiple capabilities. As common use increases, the ability to conduct multiple

capabilities simultaneously decreases due to a competition for resources. Table 4

identifies the number of information flow paths associated with each element in the

targeting architecture.

Executing Eq. (7) we find

8.15

71

1119

A

 (CU) Common Use

E

1





E

j

What this means is that each element in the Fire Support Capability is a member, on

average, of 15.8 simple functionalities. As common use increases, a greater percentage

of the elements are needed to execute each simple functionality. This leads to

competition for resources when multiple functions must occur concurrently. From

Common Use alone, it is difficult to determine whether 15.8 is high or low, good or bad.

Proportion of Use, described next, addresses this issue.

94

Table 4: Common Use

A final measure of flexibility is Proportion of Use (PoU). Recall that Proportion of Use

reflects the relative proportion of the total elements used by any given simple

functionality to deliver the overall capability. As proportion of use decreases, a

Complete Functionality Description q = Element Name q =

m= 6 Coh(fk) = 0.87

Element

Name

Inf Flow Paths

Associated with

Element Element Name

Inf Flow Paths

Associated with

Element

P100 24 P702 12

P200 24 P704 2

P201 24 P705 24

P400 16 P706 24

P401 12 P707 24

P402 12 P708 12

P403 4 Provide Posn & Timing 24

P404 8 Provide COP 24

P406 2 (FO) Maneuver 16

P407 12 (FO) Report Position and Status 24

P408 26 ID Target 8

P409 12 Generate Call for Fire 8

P410 26 Observe Effects 26

P500 6 Send EOM Report 26

P501 6 Threat Arrives 6

P502 2 Signal Target Available 6

P503 4 Operate Threat System 2

P504 1 Threat Departs 1

P505 1 (Tgt) Signal Munition Delivered 13

P506 12 React to Attack 14

P507 14 Signal Threat Ineffective/Effective 14

P508 14 Start 39

P512 2 (FSOV) Maneuver 15

P600 39 (FSOV) Report Position and Status 24

P601 12 Receive Call For Fire 9

P602 12 Clear the Mission 17

P604 15 Assign Weapon 33

P605 3 Release Weapon 37

P606 9 (FB) Maneuver 14

P607 6 (FB) Report Posn & Status 24

P608 33 (FB) Receive Fire Mission 24

P609 11 (FB) Generate Firing Data 24

P610 22 (FB) Orient Weapon 24

P613 37 (FB) Fire Requested Mission 24

P700 12 (FB) Signal Munition Delivered 12

P701 14 E = 71 ∑ A = 1119

95

disruption is more likely to have more isolated effects. Systems with low proportions of

use are easier to reorganize and more resilient to a disruption, since each element is

involved in comparatively fewer simple functionalities. In the targeting architecture, a

disruption to a given element can be expected to affect, on average, about 40% of the

simple functionalities that support the overall capability under study, as shown in Fig. 28.

Fig. 28: Proportion of Use in the Targeting Case Study

5.1.3.4. Targeting Case Study Overall Results

Having examined each of the attributes (capacity, tolerance, flexibility), we can now use

the architecture to evaluate the expected resilience of the proposed design. Earlier in

Section 5.1.3, the key measures for each attribute most applicable to the case study were

%4.40
2769

1119

39 * 71

1119
 

rE

B

r

E

B r

i

i

r

i

i








 1

1

 PoU

Complete Functionality Description P = Element Name P =

m= 6 Coh(fk) = 0.87

Element Name

Information

Flow Path

Elements

Contained by ℓi

Information

Flow Path

Elements

Contained by ℓi

ℓ = 1 15 ℓ = 21 32

ℓ = 2 15 ℓ = 22 32

ℓ = 3 15 ℓ = 23 34

ℓ = 4 17 ℓ = 24 32

ℓ = 5 17 ℓ = 25 34

ℓ = 6 19 ℓ = 26 34

ℓ = 7 13 ℓ = 27 36

ℓ = 8 19 ℓ = 28 37

ℓ = 9 21 ℓ = 29 39

ℓ = 10 21 ℓ = 30 33

ℓ = 11 23 ℓ = 31 27

ℓ = 12 21 ℓ = 32 38

ℓ = 13 23 ℓ = 33 40

ℓ = 14 23 ℓ = 34 40

ℓ = 15 25 ℓ = 35 42

ℓ = 16 29 ℓ = 36 40

ℓ = 17 31 ℓ = 37 42

ℓ = 18 25 ℓ = 38 42

ℓ = 19 19 ℓ = 39 44

ℓ = 20 30 r = 39 ∑ Bi = 1119

E = 71

96

identified and the architecture assessed against each measure. We can now map that

performance against an overlaid requirements locus to evaluate resilience. Determining

the resilience requirements locus requires value judgments by the key stakeholders

responsible for the architecture’s development. In this case, the requirements locus was

specified as shown in Table 5 and drawn as a gray box in Fig. 29.

Table 5: Resilience Required Values and Achieved Performance Values

As shown in Fig. 29, the requirements locus is depicted as the box, where acceptable

performance with respect to the attributes of resilience is defined as the interior of that

box. The proposed architecture design is sufficient with regard to tolerance and

flexibility, but lacks required capacity. Increased buffering capacity is required to

ensure that the system can perform effectively given a disruption to the GPS network.

Improving capacity would move the design into the required space with respect to

resilience.

Attribute Selected Metric Measure Required Value (Lr)

Architecture

Performance

Value (Lp)

Capacity

Buffering Capacity Available capability margin between current

operating levels and a defined minimum

threshold operating level at the time preceding

a disruption.

> 50% Buffering

Capacity
0.33

Tolerance

Rate of Departure Rate of change in system performance with

respect to its requirements (ie rate of loss of

effectiveness) after a disruption.

< 50% Rate of

Departure (Tolerance)
0.02

Flexibility

Proportion of Use The ratio of the total elements used by any

given simple functionality to delivery the

overall capability

< 50% Proportion of

Use (Flexibility)
0.40

97

Fig. 29: Resilience Evaluation

This particular case study examined a single architecture. In this case, the resilience

evaluation methodology identifies areas where design improvements can be made to

move performance into a required sector. Alternatively, given two or more candidate

architectures, this same approach can be used to support the selection between alternative

architectures. In that case, the performance of both architectures could be evaluated to

determine which meets the required resilience performance.

This case study provided a simple, but realistic demonstration of how to quantifiably

evaluate resilience using the architecture. A targeting architecture case study was

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Capacity

Resilience Evaluation Framework

Tolerance

F
le

x
ib

ili
ty

 Current
(0.33, 0.02, 0.4)

Required

98

described in BPMN format per current DoD development practices. The BPMN

architecture was translated to Petri Net form and analyzed to evaluate the effects of a

disruption to GPS availability in the context of the resilience metrics developed in this

approach

5.1.4. Targeting Case Study: Aerostat Excursion

We can see from the overall results, that the targeting case study architecture is deficient

in terms of capacity. The fire support community would like to engage targets in the first

half of the window of opportunity, allowing plenty of time to re-engage as needed. This

leads to a desire for a resilience measure of 50% capacity, as we’ve seen in Fig. 29.

However, the targeting case study did not meet this resilience requirement, achieving

only 33% buffering capacity.

Given the already fast performance of the GPS enabled system, it is unlikely that the

currently organized and equipped fire support team will meet a 50% capacity threshold.

However, the lack of an alternative to GPS is worth investigating in terms of sub-

standard capacity performance. This alternative to GPS is essentially reactive capacity

and is addressed in this excursion.

The targeting case study shows that the US military is highly dependent on GPS for a

wide variety of tasks. Forward observers use it to geo-locate themselves and potential

targets. Fire Support Officers use GPS to assist in clearance of fires. Friendly forces use

GPS to geo-locate themselves and report their position to higher headquarters and

surrounding units as part of the Common Operational Picture. The Point of Failure

99

Tolerance analysis showed that disruption to the GPS network affected ~50% of the

simple functionalities supporting the capability of ‘fire support coordination and

synchronization’ within the targeting architecture.

Well aware of this vulnerability, the US military has been seeking alternatives to GPS

[Hopson, 2010]. LORAN (Long-Range Aids to Navigation), is the only functioning

backup to GPS, composed of a series of ground based transmission towers run by the US

Coast Guard [Pappalardo, 2009]. However, LORAN is being shut down by the US

government for obsolescence reasons, in favor of GPS. While the LORAN program has

been terminated, the GPS program is also experiencing trouble. GPS relies on a

constellation of satellites, some of which need replacement in the near future by the US

Air Force. Unless the satellites are upgrades and replaced soon, GPS users face potential

lack of GPS reliability to ground users. [GAO, 2009].

Some limited alternatives to GPS do exist. The Naval Research Advisory Council,

identified a use for lighter than air systems as a potential navigation beacon [NRAC,

2005]. One such air system is an aerostat. Aerostats are lighter-than-air, large volume

airships which are raised to high altitudes (below 10,000ft), but remain tethered to the

ground. Aerostats have been used in the US wars in Iraq and Afghanistan for various

surveillance purposes (see Fig. 30). At 6,000ft, the aerostat can cover approximately 300

nautical miles, providing a good range of coverage for maneuver forces [NRAC, 2005].

The US Border Patrol also uses aerostats as a part of the US Tethered Aerostat Radar

100

System for surveillance purposes near the US-Mexico border to combat drug smuggling

via aircraft crossing into the United States [Tucson Sentinel, 2011].

Fig. 30: US Military Aerostat Deployed in Iraq [NRAC, 2005]

This excursion will examine architectural changes and their effects on resilience by

adding an aerostat backup to the GPS system in the targeting case study. In this

excursion, the maneuver force is able to react to a disruption and loss of the GPS system

by raising an aerostat with a navigational beacon. Once a disruption occurs, it takes 2

101

hours to get the aerostat into position on the ground, positioned aloft at 6,000ft. in

altitude, and begin transmitting the navigation signal correctly. Therefore, trc = 2 hrs.

However, an aerostat navigation system will have less accuracy and reliability than the

GPS system. Additionally, there will be pockets of dead-space for signal coverage due to

its oblique angles over intervening terrain, as compared to the nearly direct over-head

coverage of GPS. Therefore, users will likely need to double check the aerostat based

navigation signal results against their local terrain to ensure accuracy. This means that

the capability will be improved, but not restored to GPS-level performance.

Additionally, the aerostat is not a permanent capability. Its station keeping ability is

limited from several days to approximately 2 weeks.

The modified BPMN architectural description of targeting case is shown in Fig.31. The

aerostat is represented in Fig.31as a ‘Backup Navigation Aid” and highlighted in yellow.

The Aerostat provides navigation signals to the same users as a GPS signal.

As demonstrated earlier, the BPMN architecture may be directly mapped into Petri net

form via the approaches identified in Raedts et al., [2007], Dijkman, Dumas, and

Ouyang, [2008], Stahl, [2005], and Weske, [2010]. The addition of the aerostat modifies

the Petri net architecture as shown in Fig. 32. The primary difference is the addition of

the backup navigation signal shown at the very top of Fig. 32. To execute the Petri net in

simulation, instrumentation places are added, which do not change the structural

characteristics of the Petri net. Additional inscriptions are added to the arcs and guard

functions to the transitions to account for the delay in availability of the aerostat as well

102

as the improvement (but not complete return to GPS-level) in performance when the

aerostat beacon is functioning.

Fig. 31: Modified BPMN Architectural Description of Targeting Case with Aerostat

1
0
3

Fig. 32: Modified Petri Net Architecture with Aerostat Backup Navigation Signal

Two hours are required to establish
the backup navigation s ignal, including
positioning and rais ing the aerostat,
and beginning reliable transmission.

Firing
Unit, (Artillery, or
Close Air Spt, or

Naval Surf Fires)

C2FSOV

Threat

Forward

Observer

Higher HQ

External
Navigation
Aids

(p,toa)

(p,toa)

(p,toa)

(p,toa)

if ModelTime() > 25200
then 1`(p, ModelTime()) else empty

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p, ModelTime())

(p,toa)@+10

(p, ModelTime())

(p, ModelTime())

(p, ModelTime())

(p, ModelTime())

(p, ModelTime())

(p,toa)
(p,toa)

(p,toa)

5`(p,toa)

(p,toa)

(p,toa)@+10

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)(p,toa)

(p,toa)

p

(p,toa)(p,toa)(p,toa)(p,toa)(p,toa)(p, toa)

(p, toa)

(p,toa)

(p,toa)

(p,toa)

2`(p,toa)@+Loiter()

(p,toa)(p,toa)(p,toa)(p,toa)(p,toa)

(p,toa)

(p,toa)

(p,toa) (p,toa) (p,toa)(p,toa)(p,toa)

(p,toa)(p,toa)(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)

(p,toa)(p,toa)

Provide
Backup
Posn
Timing

@+Aero()

Release
Weapon

(FU1)

Signal
Munition
Delivered

(FU1)

Fire
Requested

Mission

@+TOF()

(FU1)
Orient

Weapon

@+OW()

(FU1)

Generate
Firing
Data

@+GFD()

(FU1)

Receive
Fire

Mission

(FU1)
Report
Posn &
Status

@+Rpt()

(FU1)
Maneuver

@+MAN()

Start

Assign
Weapon

@+AW()

Clear
The

Mission

@+CTM()

Receive
Call For

Fire

(FSOV)
Maneuver

(FSOV)
Report
Posn &
Status

@+Rpt()

Threat
Departs

Signal
Threat

Ineffective/
Effective

React
to

Attack

Threat
Arrives

(Tgt)
Signal

Munition
Delivered

Operate
Threat
System

Signal:
Target

Available

Send
EOM

Report

Observe
Effects

Generate
Call For

Fire

@+CFF()

ID
Target

@+ID()

(FO)
Report
Posn &

Status

@+Rpt()

(FO)
Maneuver

@+MAN()

Provide

Posn &
Timing
Data

@+GPS()

Provide
COP

@+COP()

P000

POS

P704

POS

End
P512

POS

P700

POS

P601

POS

P402

POS

P410

POS

End
P613

POS

P409

POS

P506

POS

P607

POS

P610

POS

P701

POS

P708

POS

P707

POS

P706

POS

P705

POS

P702

POS

Start
P600

1`p@0

PSN

P609

POS

P608

POS

P606

POS

P605

POS

P604

POS

P602

POS

P505

POS

P504

POS

P508

POS

P503

POS

P500

POS

P407

POS

P507

POS

p502

POS

P501

POS

P408

POS

P406

POS

P404

POS

P403

POS

P400

POS

P401

POS

P201

POS

P200

POS

P100

POS

104

5.1.4.1. The Aerostat Excursion and Capacity

As stated, the primary advantage of the aerostat is as a limited backup capacity (i.e.,

reactive capacity) for a disruption to the GPS network, which is so important to the fire

support capability. Figure 33 illustrates the effect on capacity when the aerostat is

present. Prior to the disruption, at td = 5 hours, the system functions normally with an

average remaining window of 559 seconds. As in the original targeting case, once the

GPS network is disrupted and unavailable, performance drops off dramatically to an

average remaining window of 56 seconds, as elements in the fire support system revert to

manual means with much longer processing times. In certain cases, the system

essentially fails, as targets depart prior to being engaged. These departed targets, i.e.,

missed opportunities, are shown as circles on Fig. 33.

After a reaction time of 2 hours, the aerostat is available and begins to operate as a

backup to the GPS. The performance of the aerostat enabled fire support team, as

described in the architecture, does not return to pre-disruption levels, but does improve to

just above the threshold level of performance. With the aerostat in operation, the average

remaining window is 401 seconds. The threshold level remains as previously stated as

390 seconds, based on subject matter expert judgment during the data collection efforts of

this research.

However, here we have a special case of reactive capacity. In certain cases, reactive

capacity is additive, as we will see in the next case study. In this case, however, the

aerostat and GPS navigation signals are not truly additive. Rather, the aerostat provides

105

surrogate capability. For example, a user really only needs either signal. While GPS is

more accurate and reliable, the addition of an aerostat signal does not provide any added

value. In reality, the aerostat is a surrogate for, but not additive to, the GPS-based

capacity.

Fig. 33: Reactive Capacity of the Targeting Architecture with Aerostat

In Chapter 3, Fig. 2, the following equation was introduced for surrogate reactive

capacity. This equation is solved using the results of the aerostat excursion.

106

The capacity results found in the base targeting architecture otherwise still apply. The

aerostat excursion only changes the reactive capacity of the targeting architecture.

5.1.4.2. The Aerostat Excursion: Tolerance and Flexibility

The aerostat excursion’s results for tolerance do not significantly vary from those found

in the base case. In terms of graceful degradation, the additional surrogate reactive

capacity is not available before the disruption incurs its full effect. Therefore, the results

for graceful degradation are the same for both the base and aerostat cases. The revised

architecture retains the same number of simple information flow paths(39), and does not

alter the number or location of cut vertices. Therefore, the results for fault tolerance

remain unchanged. Additionally, the association of elements to information flow paths

also remains essentially unchanged, so the results for point of failure tolerance are also

not significantly different.

5.1.4.3. The Aerostat Excursion: Flexibility

Proportion of Use was selected in the base targeting architecture as the best measure of

flexibility. Figure 34 shows the results for Proportion of Use. As expected, the addition

of the reactive capacity for the aerostat excursion does lower proportion of use (i.e.

increased flexibility), however, this is only by a negligible amount.

107

Fig. 34: Flexibility (Proportion of Use) in the Aerostat Excursion

5.1.4.4. The Aerostat Excursion: Overall Results

As discussed, the primary difference for the aerostat excursion is the addition of reactive

capacity. This excursion demonstrated one type of reactive capacity: surrogate reactive

capacity. In the surrogate case, the reactive capacity cannot be combined with existing

capacity. Other than a slight improvement in flexibility, as measured by Proportion of

Use, the aerostat excursion’s tolerance and flexibility do not significantly change from

the base case.

We can now map performance against an overlaid requirements locus to evaluate

resilience. Determining the resilience requirements locus requires value judgments by

the key stakeholders responsible for the architecture’s development. In aerostat case, the

Base Targeting Case:

%4.40
2769

1119

39 * 71

1119
 

rE

B

r

E

B r

i

i

r

i

i








 1

1

 PoU

Aerostat Excursion of the Targeting Case:

%1.40
2847

1143

39 * 73

1143
 

Complete Functionality Description q = Element Name q =

m= 6 Coh(fk) = 0.87

Element Name

Information

Flow Path

Elements

Contained by ℓi

Information

Flow Path

Elements

Contained by ℓi

ℓ = 1 15 ℓ = 21 33

ℓ = 2 15 ℓ = 22 33

ℓ = 3 15 ℓ = 23 35

ℓ = 4 17 ℓ = 24 33

ℓ = 5 17 ℓ = 25 35

ℓ = 6 19 ℓ = 26 35

ℓ = 7 13 ℓ = 27 37

ℓ = 8 20 ℓ = 28 37

ℓ = 9 22 ℓ = 29 39

ℓ = 10 22 ℓ = 30 33

ℓ = 11 24 ℓ = 31 27

ℓ = 12 22 ℓ = 32 39

ℓ = 13 24 ℓ = 33 41

ℓ = 14 24 ℓ = 34 41

ℓ = 15 26 ℓ = 35 43

ℓ = 16 29 ℓ = 36 41

ℓ = 17 31 ℓ = 37 43

ℓ = 18 25 ℓ = 38 43

ℓ = 19 19 ℓ = 39 45

ℓ = 20 31 r = 39 ∑ Bi = 1143

E = 73

108

requirements locus remains the same as specified earlier in Table 5, with the exception of

measuring reactive capacity, versus buffering capacity. Figure 35 shows the resulting

evaluation. In the base case, the targeting architecture is deficient with regard to reactive

capacity, but meets the requirements for flexibility and tolerance. The aerostat excursion

resolves this deficiency in terms of reactive capacity, bringing the performance of the

architecture into the required performance levels with respect to resilience.

Fig. 35: Resilience Evaluation of the Aerostat Excursion

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Reactive Capacity

Resilience Evaluation: Aerostat Excursion

Tolerance
(Graceful Degradation)

F
le

x
ib

ili
ty

 (
P

ro
p

o
rt

io
n

 o
f
U

s
e

)

Base Targeting
Architecture
(0.0, 0.02, 0.40)

Targeting Case
with Aerostat
(0.86, 0.02, 0.40)

109

5.2. DECISION MAKING ORGANIZATION CASE STUDY

5.2.1. Background

This case study involves a new organization called the Maritime Operations Center

(MOC). As the United States’ presence and engagement continues on a global scale, the

US Navy is transitioning portions of its command and control organizations to a MOC

structure. A MOC is a large, distributed organization at the fleet level, with command

and control responsibilities to “manage [routine] operations and be able to smoothly

transition from peacetime operations to disaster relief operations and major combat

operations, while still handling fleet management functions” [US Navy Public Affairs,

2009]. The MOC is organized beneath a Joint Force Maritime Component Command

(JFMCC). The MOC receives orders from the JFMCC, conducts planning operations,

and generates Operations Orders (OPORD) for execution by the units assigned to the

MOC. Figure 36 shows a picture of ships from the US Navy 4
th

 Fleet undergoing

training exercises during MOC certification accreditation [US Navy Public Affairs,

2009]. Information regarding the MOC used in this case study is based on separate GMU

Systems Architecture Laboratory (SAL) work for the Office of Naval Research (ONR)

under contract number (N00014-08-1-0319). This case study used a baseline and

augmented MOC model constructed by SAL staff as a foundation, made several

modifications, and then applied the approach described in this research.

110

Fig. 36: US 4
th

 Fleet MOC, International Exercise PANAMAX 2008

The MOC in this case study involves six major Decision Making (DM) organizations:

Assessment, Operational Intelligence, Future Plans, Command, Current Plans, and

Current Operations. These organizations work in concert to conduct command and

control of Naval and Joint forces on the surface, below the surface, in the airspace and

ashore.

Like many human organizations, augmentation is a typical strategy for dealing with

crises and uncertainty in work load. This case study will compare two different candidate

architectures for the MOC: a baseline MOC and an Augmented MOC, where the

Augmented MOC adds additional nodes for Operational Intelligence and Future Plans,

111

such that cross talk exists between nodes. These additional nodes, once called, require

time to establish and are available after a given reaction time.

A primary capability of the MOC is to generate mission orders for subordinate unit

execution, based on incoming JFMCC orders (higher HQ). The appropriate Measures of

Performance (MoP) in this case is the mission orders generation rate, stated as number of

mission orders generated per 24 hours, and the Average System Time from when an

order from higher headquarters is received, to the time at which it is disseminated to

subordinate units as an OPORD as a rate per 24 hours. Put another way, if an order takes

4 hours to process, the mission order generation rate is 6 orders per 24 hours.

Orders arrive at the MOC from the JFMCC approximately every 3.5 to 4 hours, with an

execution time of 24 hours later. If the MOC spends more than 8 hours to generate

mission orders for their subordinate units, then the subordinate units do not have

sufficient time to conduct their own planning, move into position, and execute the

mission. This is essentially an extension of the traditional 1/3:2/3 planning rule, where

higher units do not take more than 1/3 of available time to ensure lower units can

successfully execute the mission. Therefore, if the MOC takes longer than approximately

8 hours to generate mission orders (i.e., falls below a mission order generate rate of 3 per

24 hours), the mission is put in jeopardy because subordinate units may not be able to

execute in time.

Like most operations centers, the MOC is dependent upon software to automate and

improve its functioning. In this case study, we are examining the resilience of the

112

MOC’s capability to ‘Generate Mission Orders’ to the disruption ‘loss of situational

awareness software.’ When a new release was received, the update caused both versions

to crash, and attempts to restart were unsuccessful.

Loss of this software affects the Information Fusion stage of each decision making

organization, extending the process time associated with that step. Each DM

organization can still complete the Generate Mission Order process, but the process

transitions to a manual backup, and requires a longer time to complete. In this case, the

manual process takes 3 to 5 times as long as the software supported information fusion

process. The software failure occurs at td = 48 hours. 24 hours are required to bring

additional (augmented) capacity on-line; therefore, trc = 24 hours.

5.2.2. Architecture

An organizational architecture, a potential design for the MOC, is depicted in Fig. 37

(Base MOC) and Fig. 38 (Augmented MOC). Note that in the Augmented MOC an

additional Operational Intelligence and additional Future Plans cells are added, with cross

talk to the original cells. These figures are generated in CAESAR III. Each Decision

Making (DM) organization is shown as a modified rectangle; the arcs represent fixed and

variable connections (interactions) between decision making organizations by which

information (or signals) is passed. Fixed connections between decision nodes indicate

interactions which do not vary, whereas variable connections may change between

situations.

113

Fig. 37: The Base MOC Organizational Design

Fig. 38: The Augmented MOC Organizational Design

Remy and Levis [1986] introduced a four stage (later expanded to a five stage)

interacting decision maker model based upon Petri Net Theory and the lattice algorithm.

114

Each DM organization is modeled using the five stage decision maker model, therefore

each DM organization shown as a rectangle in Figs. 37 and 38 can be mathematically

described using a Petri net with interactions defined in Remy and Levis (1986). See

Fig.39 from Kansal et al. [2007].

Fig. 39: Five Stage Model of Each DM Node

The individual DM nodes receive either a signal from the external environment or from

another DM node. “The Situation Assessment (SA) stage represents the processing of the

incoming signal to obtain the assessed situation that may be shared with other DMs. The

decision maker can also receive situation assessment signals from other decision makers

within the organization; these signals are then fused together in the Information Fusion

(IF) stage to produce the fused situation assessment. The fused information is then

processed at the Task Processing (TP) stage to produce a signal that contains the task

information necessary to select a response. Command input from superiors is also

received. The Command Interpretation (CI) stage then combines internal and external

115

guidance to produce the input to the Response Selection (RS) stage. The RS stage then

produces the output to the environment or to other organization members.” [Kansal et al.,

2007].Using the theory outlined in Remy and Levis [1986], CAESAR III uses the Lattice

algorithm to generate feasible solutions that represent all possible architectures that meet

a set of defined constraints. These solutions are represented as Ordinary Petri Nets.

Figure 40 is a Petri Net representation of the DM organization shown in Fig. 38.

In this case, the primary output of the Generate Mission Orders capability is a mission

order. The places P53 and P55 shown in Fig. 40 are the primary components of that

mission order, where T5 is the transmission of that mission order to subordinate units.

For example, the primary output of the future ops cell is an OPORD, corresponding to

P53. The primary output of the current ops cell is a Fragmentary Order (FRAGORD)

situation report and a synchronization matrix, corresponding to P55. A subordinate unit

will execute the mission when either or both components are present, however, it will not

execute if neither is present.

Using the CAESAR III generated Petri net, we can next add further necessary logic to the

net and instrument it to support simulation. Care is taken to ensure that changes do not

affect the overall structural properties of the original net (for example to change the

nature of the information flow paths). Time was added to the original Petri Net and

appropriate stochastic delays estimated for each step to represent the amount of time

required for each task. The arcs were inscribed to ensure a single incoming mission order

from a higher headquarters is matched up correctly as different organizations within the

116

MOC perform their roles (i.e. when the OPORD is approved in the Command cell, that it

matches the Synch Matrix and FRAGORD from the Current Operations cell.) The

resulting Petri net is shown in Fig. 41.

Fig. 40: The Augmented MOC Universal Net in Petri Net Form

DM1 Assessment

DM2 OpsIntel

DM3 Future

Plans

DM4 Command

DM5 Current

Plans

DM6 Current

Ops

DM7 OpsIntel

Augmentation

DM8 Future Plans

Augmentation

Output 1:

Operations Order

(OPORD)

Output 2:

FRAGORD

with Synch

Matrix

117

Fig. 41: Petri net for the Augmented MOC Used in Simulation

5.2.3. Decision Making Organization Case Study Results

As in the targeting case study, once the architecture is developed, sufficiently verified,

and any errors / revisions are addressed, it may be used to support the analyses described

in Chapter 3. In demonstrating the approach developed in this research, all measures of

capacity, tolerance, and flexibility are calculated. However, an architect with the overall

(e,toa)

(e,toa)

(e,toa)
(e,toa)

(e,toa)@+SA()

(e,toa)

(e,toa)(e,toa)

(e,toa)(e,toa)

(e,toa)

(e,toa)

(e,toa)@+SA()

(e,toa)@+SA()

(e,toa)
e

e@+Arrive()

(e,toa)
(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)
(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)

(e,toa)
(e,toa)

(e,toa)@+CI()

(e,toa)
(e,toa)@+SA()

(e,toa)@+Disrupt()

(e,toa)

(e,toa)(e,toa)
(e,toa)@+CI()

(e,toa)

(e,toa)@+Disrupt()

(e,toa)

(e,toa)@+SA()

(e,toa)@+SA()

(e,toa)

(e,toa)

(e,toa)(e,toa)(e,toa)@+CI()
(e,toa)

(e,toa)@+Disrupt()

(e,toa)(e,toa)@+SA()(e,toa)

(e,toa)(e,toa)

(e,toa)@+CI()

(e,toa)

(e,toa)@+Disrupt()

(e,toa)

(e,toa)@+SA()

(e,toa)

(e,toa)
(e,toa)

(e,toa)

(e,toa)
(e,toa)

(e,toa)@+Disrupt()
(e,toa)@+CI()(e,toa)

(e,toa)
(e,toa)

(e,toa)@+CI()

(e,toa)(e,toa)@+SA()

(e,toa)@+Disrupt()

(e,toa)(e,toa)
(e,toa)@+CI()

(e,toa)

(e,toa)@+Disrupt()

(e,toa)@+SA()

(e,toa)@+SA()
(e,toa)

(e,toa)@+SA()

(e,toa)@+SA()
(e,toa)

(e,toa)

(e, ModelTime())

(e, ModelTime())

(e, ModelTime())

(e, ModelTime())

e

T223

T213

T212

T222

T221

T231

T232

T47T37T17 T27

T46T36T26T16

T45T35T25T15

T44T34T24T14

T43
T23

T33

T42T32T12
T22

T41T31T21T11

T10

T5T0

P272Ext

P261

Ext

P211

Ext

P227

Ext

P216
Ext

P7 Ext
P00

1`e

E

P221

Ext

P2
Ext

P5353

Ext

P5343

Ext

P5732

Ext

P5452

Ext

P5232

Ext

P5671

Ext

P5121Ext

P262

Ext

P217Ext

P206

Ext

P201

Ext

P47

Ext

P37

Ext

P27

Ext

P46

Ext

P36

Ext

P26

Ext

P16

Ext

P55 ExtP45

Ext

P35

Ext

P25

Ext

P15

Ext

P44

Ext

P34

Ext

P24

Ext

P14

Ext

P53

Ext

P43ExtP33Ext

P42

Ext

P32

Ext

P22

Ext

P41

Ext

P31

Ext

P21

Ext

P11

Ext

P10

Ext

P6

Ext

P0

80`e

E

if ModelTime() > 4320

then 1`(e, ModelTime())

else empty

The augmented

capacity is not

available until

d+ 48hours; in this
example, we have a

disruption occur at

time = t0 + 24hrs

118

development team could in principle investigate only those measures of special interest,

as guided by Figure 14 and Table 1 in Chapter 3. More generally, it is not necessary to

calculate all measures if the architect and development team know apriori which

measures are of greatest interest.

5.2.3.1. Decision Making Organization Case Study Results: Capacity

Returning to our method for calculating capacity, we can use the simulation results to

calculate measures for buffering, reactive, and residual capacity. The MOC operates

under normal conditions between times t0 and t48. At t48 (t48 = td), a disruption occurs, in

this case the failure of the information fusion software. The time to execute the

information fusion step in the MOC Mission Order Generation capability increases as the

MOC staff switches from the automated software-based approach to a manual approach.

At time td, augmented capacity is requested, however, it takes 24 hours to stand up this

augmented capacity and integrate it into the existing MOC command and control

structure. Therefore, trc = 24. The augmented capacity comes in the form of an

additional Intelligence Cell, and an additional Future Plans cell. Essentially, the MOC is

augmenting with additional manpower to retain its capability to generate mission orders.

Figure 42 reflects the architecture’s modeled simulation results during the course of the

scenario. The MoP for the Generate Mission Orders MoE is shown on the vertical axis as

Mission Order Generate Rate (Orders/24hrs). The time is shown on the horizontal axis.

Starting at time t0, the MOC performs under normal, pre-disruption performance levels

with respect to the capability Generate Mission Orders. At this point, the MOC is

119

capable of generating mission orders in approximately just over 4 hours. From the model

results, this translates into an average of 5.67 mission orders every 24 hours. The

situational awareness (information fusion) software fails at time t48, and the mission order

generation rate falls off dramatically as the MOC switches to manual backup procedures.

At the minimum point of performance (tmin = t53) , the MOC is barely at the threshold

level of performance of approximately 8 hours to generate a mission order, or 3 mission

orders per 24 hours. By time t72, additional capacity (manpower) has been integrated to

stand up an augmented future plans cell and augmented operational intelligence cell.

These additional cells are able to restore a part, but not all of the original capability in

terms of the mission order generation rate MOP.

In Fig. 42, the red line denotes the threshold capacity, set in this scenario as 3 mission

orders generated every 24 hours, as described earlier. The green line indicates the

maximum performance the MOC could achieve with respect to this capability if the

augmented capacity were in place, but no disruption had occurred. This was calculated

by simulating the architecture with the augmented capacity in place, but without the

effects of the disruption. Comparing the Mission Order Generation Rate to the threshold

value establishes the MOE for this measure.

The primary difference between the two alternative architectures under examination in

this case study is that the Augmented MOC is able to generate reactive (spare) capacity,

and the Base MOC is not. Maximum capacity when augmentation is available was

determined by running the simulation model without the effects of the disruption, and

120

with the spare capacity in place. This was completed by slight modifications to the

inscriptions on the arcs in the Petri net shown in Fig. 41.

Fig. 42: Measuring Capacity in the Augmented MOC

Using the equations for buffering, reactive and residual capacities (see Fig. 2) we find the

results shown in Table 6. When operating under pre-disrupted conditions, approximately

half (47%) of the MOC’s capability was above the required threshold of 3 mission orders

per 24 hours. During the survival phase (post disruption), the MOC was operating at the

0

1

2

3

4

5

6

7

8

9

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

M
is

si
o

n
 O

rd
e

r G
e

n
e

ra
ti

o
n

 R
at

e
 (O

rd
e

rs
 /

 2
4

h
rs

)

Time (hrs)

Mission Order Generation Rate
Max Capacity
(w/Augmentation)
Msn Orders per 24hrs

Threshold Level

Disturbance Occurs

Augmentation
Capacity Brought
On-Line

Reactive

Capacity

Buffering
Capacity

No Residual
Capacity

td + trc

121

threshold of 3 orders per 24 hours. However, as the calculations indicate, no residual

capacity exists, meaning that any further disruption could have resulted in catastrophic

failure in terms of mission completion. The MOC was operating close to an edge in

performance. Additional manpower assisted in raising MOC performance above the

threshold, but did not return it to pre-disruption levels. The simulation results indicate

that only restoration of the failed situational awareness software would return the MOC

to pre-disruption performance levels. If the reactive capacity (the augmentation cells)

were in place with no disruption, then 60% of the MOCs capacity would be above

threshold.

Table 6: Determining Capacity in the MOC

5.2.3.2. Decision Making Organization Case Study Results: Tolerance

As with the capacity related metrics, the rate of departure metric is determined by

employing an executable model of the architecture to assess performance achieved

against performance required. Recall from earlier discussion that we defined Rate of

Max Capacity (w/Augmentation) 7.44 Vmax

Threshold Level 3.00 VT

Normal Opn Level 5.67 V2

Buffering Capacity 47%

Reactive Capacity 60%

Residual Capacity 0% V1

122

Departure (TolRD)as the rate of change over time in system effectiveness in meeting its

requirements after a disruption occurs. This encapsulates both the temporal aspects of

resilience (td and tmin), as well as the effectiveness aspects of how the system performs

with respect to its requirements and how effectiveness changes during the survival phase

(post disruption).

A parameter locus is generated to account for how key parameters affecting performance

may vary during the scenario. The mission order inter-arrival time is an important

parameter because it represents how quickly mission orders arrive from the JFMCC.

Inter-Arrival time of orders from higher HQ (JFMCC) is varied to examine the effect of

queuing as the MOC executes the Mission Order process based on those JFMCC orders.

The disruption involved loss of the situational awareness software supporting the

information fusion stage of the MOC. Since this drives the nodes within the MOC to use

manual means, the time required for the Information Fusion tasks performed is varied to

reflect various manual task durations. These two variables are included in the parameter

locus, shown in Fig. 43.

123

Fig. 43: Parameter Locus for the MOC

As in the targeting case study, the requirements locus is determined based on the specific

variables of interest to the system under study. In the case of the MOC, the average

mission order generation rate and the percent of orders delivered late to subordinate units

are important. Figure 44 shows the requirements locus.

 Average Mission Order Generation Rate: number of mission orders generated per

24 hours. Per the 1/3 : 2/3 planning rule, higher units do not take more than 1/3 of

available time to ensure lower units can successfully execute the mission. If the

MOC takes longer than approximately 8 hours to generate mission orders (3 per

24 hours), subordinate units may not be able to execute in time.

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60 70 80 90 100M
is

si
o

n
 O

rd
e

r
In

te
r-

A
rr

iv
al

 T
im

e
 (

h
rs

)

Average Manual Information Fusion Task Completion Time (min)

Parameter Locus

124

 % Orders Delivered Late: Percentage of Mission Orders delivered to subordinates

more than 8 hours after receipt at MOC, out of the total in the first 48 hours

following the disruption. This addresses the effect on subordinate units. A

threshold of 1 in 4 (25%) is established for this requirement.

Fig. 44: Augmented MOC Requirements Locus

Executing the architecture at each point in the parameter locus (Fig. 43) yields a locus of

performance. Figure 45 displays pre-disruption performance where data is collected

before the disruption occurs. In the Augmented MOC, Mission Order Generation times

2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

Avg Msn Order Generation Rate (per 24 hrs)

%
 O

rd
e
rs

 D
e
liv

e
re

d
 L

a
te

 (
td

,t
d
+

4
8
)

Augmented MOC Requirements Locus

125

are well within requirements, and zero orders are delivered late to subordinate units in

any portion of the parameter space.

Fig. 45: Augmented MOC Pre-Disruption Performance Locus

Executing the architecture again at each point in the parameter locus, but after a

disruption, yields a second locus of performance. Figure 46 displays post disruption

performance where data is collected during the survival phase after the disruption occurs.

After the disruption, the mission order generation rate slowed as the Information Fusion

process required more and more time. For certain cases, up to half of the orders in the 48

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
-0.2

0

0.2

0.4

0.6

0.8

1

Avg Mission Order Gen Rate (per 24hrs)

%
 O

rd
e
rs

 D
e
liv

e
re

d
 L

a
te

Augmented MOC Pre-Disruption Performance Locus

126

hours following the disruption were delivered late. While augmented capacity is

available in the Augmented MOC, it is not available until after the augmentation cells are

established, approximately 48 hours after being called for. Mission order generation is

highly dependent on software to enable tasks. Loss of situational awareness software

causes a reversion to manual Information Fusion methods with much longer processing

times. These problems are reflected in the degraded performance seen post disruption.

Fig. 46: Augmented MOC Post-Disruption Performance Locus

2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

Avg Msn Order Gen Rate (per 24hrs)

%
 O

rd
e
rs

 D
e
liv

e
re

d
 L

a
te

Augmented MOC Post Disruption Performance Locus

127

Prior to the disruption, we can see that the Augmented MOC is very effective at the

Mission Order Generation Process. Zero orders are delivered late to subordinate units

within the parameter space, and the Order Generation Rate is well within the required

level of effectiveness. Prior to time td, the performance of the system meets the

requirements over 100% of the parameter space (see Fig. 47A).After the disruption

occurs, the system performance meets the requirements in only 70% of the parameter

space, showing a significant loss of capability after the disruption (see Fig. 47B). The

MOC Decision Making architecture degraded from 100% to 70% effectiveness over a

course of ~ 1 hour on average (while the event was instantaneous, the effects take time to

occur fully). The rate of departure is ~33% per hour loss of effectiveness. See Fig. 47.

Note here that the because the augmented capacity is not available in time prior to the

disruption reaching its full effect, the Rate of Departure for the Base MOC and

Augmented MOC are essentially equivalent. Additionally, care should be taken in

determining the time at which the minimum performance is assessed using Eq. 2 as

shown in Fig. 47. Since we are typically considering stochastic systems, the absolute

point of minimum performance could skew the calculation of Eq. 2. It is recommended

to use the point at which the system enters this new state of degraded performance, rather

than the numerically absolute minimum performance which could significantly change

the denominator of Eq. 2. In the MOC case study, we used the time at which the system

enters the area of minimum (i.e., disrupted) performance, versus the absolute time of

minimum performance. See Fig. 48.

 1
2
8

Fig. 47: Computing Rate of Departure in the MOC Case Study

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
-0.2

0

0.2

0.4

0.6

0.8

1

Avg Mission Order Gen Rate (per 24hrs)

%
 O

rd
e
rs

 D
e
liv

e
re

d
 L

a
te

Augmented MOC Pre-Disruption Requirements & Performance Locus Superposition

d

p

rp

d

p

rp

RD
tt

t
L

LL
t

L

LL

TOL












 












 


min

min,,

33.0
489.48

70.00.1
 




RDTOL

2 2.5 3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

50

60

70

80

90

100

Avg Msn Order Gen Rate (per 24hrs)

%
 O

rd
e
rs

 D
e
liv

e
re

d
 L

a
te

Augmented MOC Post Disruption Requirements and Performance Locus Superposition

(A) (B)
Figures shown with the requirements locus as a transparent box
for clarity. (The Requirements Locus is the inside of the box)

129

Fig. 48: Area of Minimum Performance versus Numerically Absolute Time

In addition to being executable (supporting simulation), Petri Nets have a graph theoretic

interpretation that enables the analysis of properties. The identical model used in the

simulations above (see Fig. 41- 48) was also analyzed in static form to assess other

aspects of Tolerance and as well as Flexibility. As described in Chapter 3, examining

these other aspects of Tolerance and Flexibility require an ability to determine the

information flow paths which form the simple functionalities describing the overall

capability under study. The information flow paths are derived from the place invariants

in the architecture. CAESAR III generates the simple information flow paths associated

0

1

2

3

4

5

6

7

8

9

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0

M
is

si
o

n
 O

rd
e

r G
e

n
e

ra
ti

o
n

 R
at

e
 (O

rd
e

rs
 /

 2
4

h
rs

)

Time (hrs)

Mission Order Generation Rate
Max Capacity
(w/Augmentation)
Msn Orders per 24hrs

Threshold Level

Enters the

area of min
performance;

t = 48.9

Numerically absolute minimum

performance; t = 57.1

130

with this net. Figure 49 shows an example simple information flow path of the

Augmented MOC.

Fig. 49: Example Simple Information Flow Path of the Augmented MOC

Fault Tolerance (TolFT) is a measure which uses the graph-theoretic properties of Petri

nets. Recall that Fault Tolerance (TolFT) is the ratio of simple information flow paths

which may be disrupted prior to the loss of the capability to the total number of simple

information flow paths. Those elements of the sub-graph (vertices) which can be

131

removed without disconnecting the sub-graph or eliminating the complete functionality

(capability) are those that may be disrupted.

From the universal net shown in Fig. 40, there are 44 simple information flow paths,

containing as many as 37 elements, or as few as 13 elements out of a total of 74 elements

contained in the universal net of the Augmented MOC. This large number of information

flow paths results from the high level of interconnectivity and redundancy within the

augmented MOC organizational design. The Base MOC contains only eight (8)

information flow paths. Table 7 shows the elements contained within each simple

information flow path for both the base MOC (8 paths) and the Augmented MOC (44

paths). Note that the Augmented MOC contains all 8 of the information flow paths

contained by the Base MOC.

 1
3
2

Table 7: Information Flow Paths in the Base and Augmented MOC

Base

Path

Aug

Path 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

0 0 p0 t0 p10 t10 p201 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p53 t5 p6

1 1 p0 t0 p10 t10 p201 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

2 2 p0 t0 p10 t10 p201 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

3 p0 t0 p10 t10 p201 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p53 t5 p6

4 p0 t0 p10 t10 p201 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

5 p0 t0 p10 t10 p201 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

6 p0 t0 p10 t10 p206 t26 p36 t36 p46 t46 p5671 t17 p27 t26 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p53 t5 p6

7 p0 t0 p10 t10 p206 t26 p36 t36 p46 t46 p5671 t17 p27 t26 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

8 p0 t0 p10 t10 p206 t26 p36 t36 p46 t46 p5671 t17 p27 t26 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

9 p0 t0 p10 t10 p206 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p53 t5 p6

10 p0 t0 p10 t10 p206 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

11 p0 t0 p10 t10 p206 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

3 12 p0 t0 p11 t11 p21 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p53 t5 p6

4 13 p0 t0 p11 t11 p21 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

5 14 p0 t0 p11 t11 p21 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

15 p0 t0 p11 t11 p21 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p53 t5 p6

16 p0 t0 p11 t11 p21 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

17 p0 t0 p11 t11 p21 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

18 p0 t0 p11 t11 p216 t26 p36 t36 p46 t46 p5671 t17 p27 t26 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p53 t5 p6

19 p0 t0 p11 t11 p216 t26 p36 t36 p46 t46 p5671 t17 p27 t26 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

20 p0 t0 p11 t11 p216 t26 p36 t36 p46 t46 p5671 t17 p27 t26 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

21 p0 t0 p11 t11 p216 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p53 t5 p6

22 p0 t0 p11 t11 p216 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

23 p0 t0 p11 t11 p216 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

24 p0 t0 p11 t11 p217 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p53 t5 p6

25 p0 t0 p11 t11 p217 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

26 p0 t0 p11 t11 p217 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

6 27 p0 t0 p14 t14 p24 t24 p34 t34 p44 t44 p5454 t25 p35 t35 p45 t45 p55 t5 p6

7 28 p0 t0 p15 t15 p25 t25 p35 t35 p45 t45 p55 t5 p6

29 p0 t0 p16 t16 p26 t26 p36 t36 p46 t46 p5671 t17 p27 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p53 t5 p6

30 p0 t0 p16 t16 p26 t26 p36 t36 p46 t46 p5671 t17 p27 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

31 p0 t0 p16 t16 p26 t26 p36 t36 p46 t46 p5671 t17 p27 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

32 p0 t0 p16 t16 p26 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p53 t5 p6

33 p0 t0 p16 t16 p26 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

34 p0 t0 p16 t16 p26 t26 p36 t36 p46 t46 p5671 t17 p272 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

35 p0 t0 p16 t16 p261 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p53 t5 p6

36 p0 t0 p16 t16 p261 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

37 p0 t0 p16 t16 p261 t21 p31 t31 p41 t41 p5121 t12 p22 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

38 p0 t0 p16 t16 p261 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p53 t5 p6

39 p0 t0 p16 t16 p261 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

40 p0 t0 p16 t16 p261 t21 p31 t31 p41 t41 p5121 t12 p227 t27 p37 t37 p47 t47 p5732 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

41 p0 t0 p16 t16 p262 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p53 t5 p6

42 p0 t0 p16 t16 p262 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5343 t34 p44 t44 p5452 t25 p35 t35 p45 t45 p55 t5 p6

43 p0 t0 p16 t16 p262 t22 p32 t32 p42 t42 p5232 t23 p33 t33 p43 t43 p5353 t35 p45 t45 p55 t5 p6

133

Represented in this fashion, the methodology based on Lemma 2 described in Section

3.1.2.2 is used to determine the cut vertices needed to compute Fault Tolerance. Recall

from Lemma 2 any vertex that is on every path from sources Si to sink Uj is a cut vertex.

The Augmented MOC includes one source (p0) and two sinks (p53, p55). (With sinks

defined as p53 and p55, this eliminates the need to consider elements t5 and p6, which

are elements after the sinks as designated above.) We can partition the above set of

information flow paths into the 14 which have p53 as a sink, and the 30, which have p55

as a sink. Solving for the elements common to every path from source p0 to sink p53,

and from source p0 to sink p55, we find the following cut vertices:

 sink p53 cut vertices: {p33,p43,t0,t23,t33,t43}

 sink p55 cut vertices: {p45,t0,t35,t45}

There are no cut vertices common to both sinks except for t0. The set of non-cut

vertices, (Vnc) includes every other element. In this example, every information flow path

contains many non-cut vertices, meaning multiple flow paths exist to connect each source

to its corresponding sink. In the Augmented MOC, there are 44 information flow paths

so that r = 44. Since every flow path contains multiple non-cut vertices, meaning

multiple flow paths exist to connect each source to its corresponding sink:

 ℓ1… ℓ44each contain members of Vnc therefore x1..44 = 1

134

 44

44
 Tol

r

1

FT 




r

x

r

x i

i

The MOC with Augmented Capacity displays maximum fault tolerance. Every

information flow path can be disrupted in some way without a loss of capability. This

result is not surprising, given the extensive redundancy and interconnectivity built into

the Augmented MOC organizational design. Additionally, the parallel dissemination of

information from t0 fosters an embedded redundancy in the transmission of information.

This parallel transmission structure is typical in military organizations, where a “warning

order” is often broadly disseminated to initiate early planning activities. What this means

is that multiple paths exist connecting the source to each sink, such that the elimination of

a single element does not result in elimination of the overall capability.

Point of Failure Tolerance, (TolPF) examines a situation different from Fault Tolerance.

TolPF captures the relatedness of a local failure of any given element to the broader loss

of functionality or loss of capability. More generally, TolPF addresses whether an

element-level failure induces a system-level failure. This is accomplished by examining

the localization of failures during a disruption. Elements which are a member of only one

simple information flow path are said to have localized failure effects. Table 8 associates

the elements of the Petri net based architecture of the Augmented MOC with the

information flow paths while Table 9 addresses the Base MOC. Executing Eq. 4 from

Section 3.2.1.3 yields:

135

For the Augmented MOC:

0.11

71

8
 Tol

1

PF 




E

q

E

q j

E

j

For the Base MOC:

0.16

50

8
 Tol

1

PF 




E

q

E

q j

E

j

These results imply highly non-localized failures in both the Augmented and Base MOC.

Only about 11% of the elements are associated with one information flow path in the

Augmented MOC, and 16% in the Base MOC. In the case of Point of Failure Tolerance,

higher is better because this indicates a higher proportion of elements with localized

failure effects.

136

Table 8: Augmented MOC: Associating Elements with Information Flow Paths

Element

Flow Paths

Associated

w/Element qi = Element

Flow Paths

Associated

w/Element qi =

p0 44 0 p5232 21 0

p10 12 0 p5343 14 0

p11 15 0 p5353 14 0

p14 1 1 p5452 15 0

p15 1 1 p5671 18 0

p16 15 0 p5732 21 0

p21 6 0 t0 44 0

p22 9 0 t10 12 0

p24 1 1 t11 15 0

p25 1 1 t12 18 0

p26 6 0 t14 1 1

p27 9 0 t15 1 1

p31 18 0 t16 15 0

p32 21 0 t17 18 0

p33 42 0 t21 18 0

p34 1 1 t22 21 0

p35 16 0 t23 42 0

p36 18 0 t24 1 1

p37 21 0 t25 16 0

p41 18 0 t26 18 0

p42 21 0 t27 15 0

p43 42 0 t31 18 0

p44 15 0 t32 21 0

p45 30 0 t33 42 0

p46 18 0 t34 15 0

p47 21 0 t35 30 0

p53 14 0 t36 18 0

p55 30 0 t37 21 0

p6 44 0 t41 18 0

p201 6 0 t42 21 0

p206 6 0 t43 42 0

p216 6 0 t44 15 0

p217 3 0 t45 30 0

p227 9 0 t46 18 0

p261 6 0 t47 21 0

p262 3 0 t5 44 0

p272 9 0 E= 74 1308 q = 8

p5121 18 0

137

Table 9: Base MOC: Associating Elements with Information Flow Paths

Point of Failure Tolerance is also intended to draw an architect’s attention to areas in the

design where greater attention may be required. In the Augmented MOC, of particular

Element

Flow Paths

Associated

w/Element q = Element

Flow Paths

Associated

w/Element q =

p0 8 0 p5121 6 0

p10 3 0 p5232 6 0

p11 3 0 p5343 2 0

p14 1 1 p5353 2 0

p15 1 1 p5452 3 0

p16 0 0 p5671 0 0

p21 3 0 p5732 0 0

p22 6 0 t0 8 0

p24 1 1 t10 3 0

p25 1 1 t11 3 0

p26 0 0 t12 6 0

p27 0 0 t14 1 1

p31 6 0 t15 1 1

p32 6 0 t16 0 0

p33 6 0 t17 0 0

p34 1 1 t21 6 0

p35 4 0 t22 6 0

p36 0 0 t23 6 0

p37 0 0 t24 1 1

p41 6 0 t25 4 0

p42 6 0 t26 0 0

p43 6 0 t27 0 0

p44 3 0 t31 6 0

p45 6 0 t32 6 0

p46 0 0 t33 6 0

p47 0 0 t34 3 0

p53 2 0 t35 6 0

p55 6 0 t36 0 0

p6 8 0 t37 0 0

p201 3 0 t41 6 0

p206 0 0 t42 6 0

p216 0 0 t43 6 0

p217 0 0 t44 3 0

p227 0 0 t45 6 0

p261 0 0 t46 0 0

p262 0 0 t47 0 0

p272 0 0 t5 8 0

E = 50 222 q = 8

138

interest is that 42 of the 44, or about 95%, of the information flow paths use elements:

t23, p33, t33, p43, and t43; and 30 of the 44, or almost 70%, of the information flow

paths use elements: p45 and t45. From Fig. 40, we can see this represents the command

and current operations cells respectively. While it is natural for a military organization to

rely heavily on the commander to make decisions, a disruption affecting this portion of

the organizational design would have broad ranging consequences. The architect should

direct attention at these portions of the architecture to determine if changes are required.

5.2.3.3. Decision Making Organization Case Study Results: Flexibility

The final set of metrics to examine in the decision making organization case study deal

with flexibility, where flexibility refers to the ability of a system to reorganize and adapt

itself to changing conditions. Recall from Chapter 3, one measure of flexibility is

Cohesion, as defined by Liles [2008]. Cohesion looks at the average cohesion of the

individual nodes. A set of nodes with higher cohesion implies that the individual nodes

are less flexible and less resilient.

We will examine flexibility where each decision making organization within the MOC

identified in Figs. 37 and 38 is treated as a node (i.e. Assessment, Operational

Intelligence, Future Plans, Command, Current Plans, and Current Operations). Executing

Eq. 5 and Eq. 6 from Chapter 3 yields the results shown in Fig. 50. These results show

that the Augmented MOC is less cohesive than the Base MOC and therefore more

flexible.

139

Fig. 50: Calculating Cohesion in the MOC

These results are somewhat intuitive. In this case study, we are essentially adding

capacity for the intelligence and future planning functionality through augmentation cells

which provide a redundant capability in those areas. This should naturally increase the

flexibility of the MOC as an organization. This approach quantifies that increase.

Liles [2008] also introduces a second measure of flexibility, which we have renamed as

Common Use. Recall that CU measures the extent of reuse of the elements to support

multiple simple functionalities that comprise the overall capability. Tables 8 and 9

associate the number of simple functionalities that each element is a member. Executing

Eq. 7 yields the following:

Cohesion (Mult Nodes) Augmented MOC

Node Inputs Outputs Paths Coh (nki)

DM1 1 2 2 1.00

DM2 3 3 5 0.56

DM3 3 2 4 0.67

DM4 2 3 6 1.00

DM5 2 1 2 1.00

DM6 3 1 3 1.00

DM7 3 3 5 0.56

DM8 3 2 4 0.67

m = 8 Coh(fk) = 0.81

Cohesion (Mult Nodes) Base MOC (non- Augmented)

Node Inputs Outputs Paths Coh (nki)

DM1 1 1 1 1.00

DM2 2 1 2 1.00

DM3 1 1 1 1.00

DM4 1 3 3 1.00

DM5 2 1 2 1.00

DM6 3 1 3 1.00

m = 6 Coh(fk) = 1.00

ki

ki
ki

x

z
nCoh)(

m
Coh i

k




m

1

ki)Coh(n

)f(

Eq (5)

Eq (6)

140

Augmented MOC:

7.17

74

1308

A

 (CU) Common Use

E

1





E

j

Base MOC:

4.4

50

222

A

 (CU) Common Use

E

1





E

j

From Common Use alone, it is difficult to determine whether 4.4 vs. 17.7 is an

improvement or not. This is because there are 44 information flow paths in the

Augmented MOC, but only 8 in the Base MOC. Therefore, the numbers for Common

Use will be inherently different. The next section helps explain these metrics in a more

comparable fashion to support evaluation.

Recall from Section 3.1.3.3 that we defined Proportion of Use as the relative proportion

of elements used by any given simple functionality to deliver the overall capability. We

note two principal advantages to this metric. First, it describes what proportion of the

elements is contained within the average simple functionality of a capability. For

example, does the average functionality use a relatively small (say 10%) or a relatively

large (say 80%) of the elements? As proportion of use increases, a disruption to a given

element within a capability is more likely to have broad ranging effects. Systems with

high proportion of use are more difficult to reorganize (less flexible), because each

141

element is more related to each functionality. Second, proportion of use normalizes the

Common Use such that one can compare different architectures from a common

perspective. This allows us to determine whether a particular value for Common Use is

comparatively high or low. Figures 51 and 52show the results of computing Proportion

of Use for the Augmented and Base MOC alternatives.

For the MOC with Augmentation, Proportion of Use is 0.4, meaning that each simple

functionality involves about 40% of the elements required to deliver the capability. In

the base MOC without augmentation, each simple functionality involves approximately

56% of the total elements. From this perspective, we can say that the augmented MOC is

more flexible. In the augmented MOC, a disruption to a given element can be expected

to affect about 40% of the overall functionality of the system under evaluation. In the

base MOC, a disruption to a given element can be expected to affect about 56%.

142

Fig. 51: Proportion of Use in the Augmented MOC

Fig. 52: Proportion of Use in the Base MOC

%4.40
3256

1308

44 * 74

1308
 

rE

B

r

E

B r

i

i

r

i

i








 1

1

 PoU

Inf Flow

Path

Elements

Contained

by ℓi

Inf Flow

Path

Elements

Contained

by ℓi

ℓ = 1 27 ℓ = 24 30

ℓ = 2 27 ℓ = 25 37

ℓ = 3 37 ℓ = 26 31

ℓ = 4 31 ℓ = 27 37

ℓ = 5 37 ℓ = 28 31

ℓ = 6 31 ℓ = 29 36

ℓ = 7 19 ℓ = 30 30

ℓ = 8 13 ℓ = 31 37

ℓ = 9 27 ℓ = 32 31

ℓ = 10 26 ℓ = 33 29

ℓ = 11 27 ℓ = 34 23

ℓ = 12 27 ℓ = 35 37

ℓ = 13 26 ℓ = 36 31

ℓ = 14 27 ℓ = 37 37

ℓ = 15 19 ℓ = 38 31

ℓ = 16 27 ℓ = 39 37

ℓ = 17 27 ℓ = 40 31

ℓ = 18 27 ℓ = 41 37

ℓ = 19 27 ℓ = 42 31

ℓ = 20 19 ℓ = 43 29

ℓ = 21 37 ℓ = 44 23

ℓ = 22 31 ∑ B = 1308

ℓ = 23 36 E = 74

r = 44

Inf Flow

Path

Elements

Contained by ℓi

ℓ = 1 27

ℓ = 2 27

ℓ = 3 37

ℓ = 4 31

ℓ = 5 37

ℓ = 6 31

ℓ = 7 19

ℓ = 8 13

∑ B = 222

E = 50

r = 8

%5.55
400

222

8 * 50

222
 

rE

B

r

E

B r

i

i

r

i

i








 1

1

 PoU

143

5.2.3.4. Decision Making Organization Case Study Overall Results

In this case study, we have applied the individual components of the resilience evaluation

approach for both the Base MOC, and the Augmented MOC alternatives. The MOC is

designed as a series of Decision Making Nodes, with each node as a five stage decision

making structure with interactions between nodes. This architecture was transformed

into an ordinary Petri Net using the theory outlined in Remy and Levis, 1986. Necessary

logic and instrumentation were added to the Petri Net such that it became an executable

form of the MOC architecture suitable for behavioral and performance analyses.

The capability under study was the capability to Generate Mission Orders, where the

threshold performance level was to generate the order within 8 hours of receipt from the

High Joint Command.

It is critical to consider the resilience ‘of what’ ‘to what,’ focusing on the resilience of a

capability to a disruption in a particular environment (under what conditions). In this

case study, we examined the resilience of the MOC’s capability to ‘Generate Mission

Orders’ to the disruption ‘loss of situational awareness software.’ When a new release

was received, the update caused both versions to crash, and attempts to restart were

unsuccessful. The MOC, transitioned from automated procedures based on the software,

to manual procedures, and called upon augmented capabilities in the form of additional

Operations Intelligence and Future Plans cells, which required additional time hours to

establish. However, this augmented capability could not be established until well after

the disruption had induced its full effect.

144

For both cases of the MOC, the disruption brought the MOC’s capability to the brink of

not meeting the threshold. If another disruption occurred before the augmented capacity

could be brought online, the MOC would have been incapable of completing one of its

key capabilities, the generation of mission orders. The Augmented capability did return a

portion of the MOC’s mission order generation capability, but not back to pre-disruption

levels. Table 10 reports the results for each metric in the base MOC and the Augmented

MOC.

Table 10: Resilience Metrics for the Base and Augmented MOC

Attribute Metric Measures Question Answered Augmented MOC Base MOC

Buffering Capacity Available capability margin between current

operating levels and a defined minimum

threshold operating level at the time preceding

a disruption.

Can a disruption be absorbed with

immediately available (on-hand) resources?
47% 47%

Reactive Capacity Available capability margin between maximum

operating levels (i.e. including any spare

capacity) and a defined minimum threshold

operating level.

Can a disruption be absorbed with the

addition of spare capacity?
60% 0%

Residual Capacity Available capability margin between operating

levels at the end of the survival phase and a

defined minimum threshold operating level.

Given survival, how vulnerable is the system

to a follow-on disruption that occurs before

the system can recover?
~0% ~0%

Rate of Departure Rate of change in system performance with

respect to its requirements (ie rate of loss of

effectiveness) after a disruption.

What level of capability is lost per unit of time

during the survival phase? 0.33 0.33

Fault Tolerance The ratio of simple functionalites which may

be disrupted without a loss of capability to the

total number of simple functionalities.

How many simple functionalities can be

disrupted prior to losing the capability.

Primarily a tool to draw architects attention to

key areas in the design.

1.0 1.0

Point of Failure Tolerance Relatedness of failures at the element level to

an overall loss of capability

Are element level failures relatively localized,

or do failures incur broad system-level

effects? Primarily a tool to draw the

architect's attention to key design areas.

0.11 0.32

Cohesion Relatedness of the elements within a node or

module which support a given capability

How difficult is it to reorganize the system at

the node / module level?
0.81 1

Common Use Extent of common use of the elements among

the simple functionalities which support the

overall capability.

Can a system execute multiple functionalites

concurrently, or is it limited by competition

for resources?

17.6 4.4

Proportion of Use The ratio of the total elements used by any

given simple functionality to deliver the overall

capability

Are most of the elements needed for a given

functionality, making it more difficult to

reorganize?

0.40 0.56

Capacity:

 "the ability

to operate at

a certain

level as

defined by a

given

measure."

Tolerance:

"the ability to

degrade

gracefully

after a

disruption"

Flexibility:

"the ability of

a system to

reorganize its

elements to

maintain its

capabilities"

145

The architect along with the overall development team must consider which aspects of

resilience are most important to the system under consideration. Figure 14 in Chapter 3

along with Table 10 assist the architect to determine which aspects of resilience are most

applicable to the architecture definition and resilience issues at hand. In the case of the

MOC and capacity, the most appropriate metric is Buffering Capacity. As was shown,

reactive capacity is not available in time to play a role in the survival phase, although it

does distinguish the two candidate architectures and, once in place, the augmented

capacity offers a number of benefits. Further, since this was a non-malicious type of

disruption, the residual capacity is of less concern because a follow-on disruption is not

necessarily likely. For Tolerance, the most appropriate metric is again Rate of Departure.

In this case, Rate of Departure directly measured the time sensitive nature of the MOC’s

capability of generate mission orders by assessing the rate of generation and the number

of “late” orders delivered to subordinate units. In terms of flexibility, Proportion of Use

was also selected because it directly addresses the ability of the system to be reorganized

based on the average use of the elements across the simply functionalities supporting that

capability. The cohesion metric is not as useful, because the disruption is likely to take

effect much more quickly than any reorganization could occur. This makes cohesion a

metric potentially more useful in the ‘recovery’ phase of resiliency. Additionally, the

overlap in the Common Use and Proportion of Use was discussed, leading to a selection

of Proportion of Use for this assessment.

Having determined which metrics are most important, resilience can be considered from

an intersecting requirements and performance locus perspective. The two alternative

146

architectures can be compared in this manner. Determining the resilience requirements

locus requires value judgment. The example is shown with a requirements locus:

 33% Buffering Capacity

 < 50% Rate of Departure (Tolerance)

 < 50% Proportion of Use (Flexibility)

Figure 53 shows the results of the overall evaluation. The Augmented MOC meets the

resilience attribute requirements of capacity, tolerance and flexibility making it the

preferred candidate architecture from the point of view of resiliency. The Base MOC

lacks required flexibility but meets the other requirements.

Figure 54 shows a comparison that better captures the difference of augmentation

between the two candidate architectures. The Augmented MOC is able to bring reactive

capacity on-line, whereas the Base MOC is not. Using the same perspective, the

following graph shows the impact of considering capacity in terms of reactive capacity

rather than buffering capacity. While these results do not change the overall resilience

comparison of alternative architectures, it is shown here as another possible viewpoint

since the two alternatives differ in terms of reactive capacity.

147

Fig. 53: Resilience Evaluation of the Base and Augmented MOC

As we consider the performance of the two designs, Base MOC, and Augmented MOC,

the evaluation framework allows us to make useful, quantitative comparisons. In the case

of capacity, the two designs have equivalent buffering capacity and residual capacity.

While the augmented MOC has greater reactive capacity, the augmented MOC cannot

bring that reactive capacity on line fast enough to make a difference in the survival phase.

In the case of point of failure tolerance, the Base MOC actually performs better. This is

because its failures are the most localized. More specifically, about 1/3 (0.32) of the base

0 0.2 0.4 0.6 0.8 1
0

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Capacity

MOC Resilience Evaluation

Tolerance

F
le

x
ib

ili
ty

Augmented MOC

Base MOC

148

MOC element failures are localized, as compared to ~ 1/10 (0.11) of the augmented

MOC. The greater interconnectivity of the augmented MOC accounts for this difference.

In the case of flexibility, the augmented MOC performs best in terms of Proportion of

Use. A smaller proportion of its elements, on average, are needed for a given

functionality, as compared to the base MOC (40% vs. 56%).

Fig. 54: An Alternative Resilience Evaluation for the Base and Augmented MOC

The primary advantage of the augmented MOC (additional reactive capacity) is not

relevant during the survival phase; the augmented and base MOC perform equivalently in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Capacity (Reactive)

Resilience Evaluation: Alternative Perspective

Tolerance

F
le

x
ib

ili
ty

Augmented MOC

Base MOC

149

terms of buffering capacity. However, the reactive capacity does allow the augmented

MOC to restore performance above the (T), making a future disruption less likely to have

catastrophic effect when compared to the base MOC. In terms of tolerance, the

augmented MOC performs worse because its failures are less localized and therefore

more likely to have broader, system level effects. In terms of flexibility, the augmented

MOC performs better; the fact that fewer elements are needed for the average

functionality will make the augmented MOC more easily reorganized.

This case study provided a simple demonstration of how to compare alternative

architectures in terms of resilience. It applied the same methodologies as in the targeting

case study. A MOC case study was developed in a 5 stage architecture model for

representing Decision Making organizations approach as supported by CAESAR III.

CAESAR III supports the translation of the 5-stage DM model to Petri Net form. From

this point forward the methodology is identical to that used in the targeting architecture

case study. Resilience was evaluated using the architecture by: identifying the

appropriate measure for each resilience attribute and mapping the architecture

performance of each measure against an overlaid requirements locus. The resilience-

related potential improvements to the design were highlighted and alternatives can now

be quantified or compared. This case study demonstrated that the approach to evaluating

resilience is robust to differing architecture methodologies.

150

CHAPTER 6

CONCLUSIONS

6.1. SUMMARY

This research focused on the challenge of resilience. Chapter One identified the well

accepted need for national defense and civilian structure infrastructure systems resilient

to disruption. Today’s society is embarking on engineering challenges of ever greater

complexity, and failures of these new systems often bring significant consequence.

Command and control systems, in particular, tend to be mission critical, where failures in

mission critical systems often mean the failure of the entire mission. Early engineering

activities for mission critical systems should include an evaluation of resilience. A need

exists for quantitative methodologies to measure resilience and implement changes to

systems. The approach developed in this research offers a potential solution to address

this need for command and control systems.

Our hypothesis was that the resilience of command and control systems could be

measured by its attributes using the architecture. In measuring the attributes, the

architecture can be improved to include desirable features, or to eliminate undesirable

ones. By representing the architecture of a system in a rigorous way, one can analyze the

design for key properties, and simulate the design to examine for desired performance

151

and behavior aspects. In this manner, one can make decisions and improvements far

earlier in the process, saving time, money and ultimately delivering better results.

Petri Net based architecture models are used in the approach developed in this research

for a number of reasons. They are rigorous (meaning that defined mathematical models

underlie all aspects of Petri Net theory), visualize-able because of its graph theoretic

underpinnings, and executable. These properties of Petri Nets support analyzing

structural, behavioral, and performance characteristics of the architecture via simulation

as well as static analyses. Finally, established and traceable means exist for translating

other architectural approaches (for example Business Process Model and Notation or

BPMN) into Petri Net format.

The approach developed in this research began with the attributes of resilience already

identified in basic form in the existing literature. Significant work already exists in the

literature, defining key ideas in the definition and characteristics of resilience. However,

existing research relied primarily on heuristics for measuring resilience or as guidelines

for developing resilient systems. The existing work in resilience tends not be quantitative

does not include the architecture. Quantitative results and approaches are required in

engineering systems. The approach demonstrated in this research uses the architecture,

meaning that existing engineering products can be leveraged in novel ways, and the

results of these analyses can be explicitly implemented in the design of the system.

Chapter Two summarized the existing body of research in the field of resilience. It

described the various definitions of resilience in the existing literature, and noted the

152

common thread of disruption avoidance survival and recovery present in the body of

knowledge. Therefore, we used Jackson’s [2010] definition of resilience: the ability to

avoid, survive and recover from disruption. Disruptions were defined as sudden or

sustained events leading to a loss of performance and jeopardizing the system’s ability to

perform its mission [INCOSE Resilient Systems Working Group], [Madni and Jackson,

2008], and [Jackson, 2010]. We additionally used the attributes of resilience summarized

in Jackson [2010]: capacity, tolerance, flexibility, and inter-element collaboration. Inter-

element collaboration is later scoped out of this research due to the difficulties in

assessing emergent properties. This research noted that resilience must consider time,

and acknowledged importance of understanding the resilience “of what to what,” from

Carpenter et al. [2001]. This research focused on the resilience of a command and

control system to implement a capability, where the disruptions were defined to two

separate case studies.

Chapter Three described the approach developed in this research for evaluating resilience

using the architecture. Each of the attributes of resilience: capacity, tolerance, and

flexibility are further defined and extended well beyond the existing literature.

Quantifiable measures are proposed for each, and a holistic framework for combining the

measures is shown. Capacity is divided into buffering, residual, and reactive capacity,

where reactive capacity is further explained with additive and surrogate reactive capacity.

Tolerance is separated into graceful degradation, fault tolerance, and point of failure

tolerance. Flexibility leverages existing measures from Liles [2008]: cohesion and

common use (renamed from degree of reuse), and adds the measure proportion of use.

153

The calculation of each measure is demonstrated using a series of simple examples.

These measures leverage the executable characteristics of Petri Nets (buffering capacity,

reactive capacity residual capacity, and graceful degradation) which assess performance

and behavior, as well as the graph-theoretic aspects of Petri nets (fault tolerance, point of

failure tolerance, cohesion, common use, and proportion of use) which assess behavioral

and structural aspects. For many of these measures, the methodology shows how an

architect’s attention is directed to key aspects highlighted by the metric that support

improvement in the design. Chapter Three also provides a framework to assist the

architect and overall development team in selecting which of these metrics best apply to

their system. Finally, Chapter Three provides a holistic approach to assessing overall

resilience of the system. The system’s architecture’s performance is overlaid upon a

resilience requirements locus to determine where shortfalls in performance and behavior

exist. This final step supports comparison of alternatives, or measuring improvements to

an architecture to move its performance into a desired sector.

Chapter Four described the research approach. It identified two case studies intended to

demonstrate the approach, and to show that it is robust against various architectural

development styles, as well as robust against the type of command and control system

under study. Each case study is developed using the Wagenhals and Levis[2008]

approach, where a Mission and CONOPS are identified, the architecture is designed in

static form, an executable model is constructed and the architecture is evaluated using the

methods described in Chapter Three (see Fig. 16). The first case study examined a time

sensitive targeting example, with a US Marine ground force conducting a fire support

154

coordination capability. The second case study involved a naval decision making system,

call the Maritime Operations Center (MOC), conducting the capability of generating

mission orders. Chapter Four also summarized the key models used in this research,

including CPN Tools, CAESAR III, Business Process Visual Architect, MATLAB,

SEAT, and MS Excel.

Chapter Five developed each of the case studies and fully applied the resilience

evaluation methodology. Each case is introduced with background information, a

description of the architecture, a translation of the architecture into Petri net format, and a

description of the potential disruption. The complete approach to evaluating resilience is

then demonstrated for both case studies.

The targeting case study is presented first, where the disruption is a loss of GPS geo-

location functionality to the capability of conduct fire support coordination. The

targeting case study was shown to be sufficient with regards to tolerance and flexibility,

but lacking required capacity. An excursion to the targeting case study, examines an

aerostat navigation beacon as a reactive capacity to the loss of GPS. The aerostat

excursion shows how a given architecture can be adapted to bring its performance with

respect to resilience into a required sector.

The naval Maritime Operations Center (MOC) is presented next, where the disruption is

the loss of a key software program supporting situational awareness to the capability of

‘generate mission orders.’ This case study presents an example of the comparison of two

alternative architectures for the purposes of down-selection among alternative candidates.

155

A ‘Base MOC’ and an ‘Augmented MOC’ are examined, where the Augmented MOC

contains additional parallel resources for intelligence and future operations planning. The

Base MOC was shown to have sufficient capacity and tolerance, but lacking flexibility.

The Augmented MOC met the requirements for resilience in for all three attributes:

capacity, tolerance and flexibility. The two candidate architectures are also compared in

terms of reactive capacity in a short excursion.

For both of these case studies, the purpose was to demonstrate the approach, detailing

how resilience can be measured through its attributes using the architecture. Subject

matter experts were used to assist in data collection and verification of the architectures.

However, the point was not recommend these architectures or alternatives as definitive

solutions, or to, for example, recommend investments in aerostat navigation beacons or

augmented operations centers. Rather to demonstrate how credible architecture

initiatives can be measured in terms of resilience.

6.2. CONTRIBUTIONS

This research accomplished several important goals and contributes significantly in the

following ways:

1) Developed an Approach to Evaluating Resilience Through its Attributes.

No formal, quantifiable means exist to evaluate the resilience of a proposed architecture

to assist in design and selection alternative architectures. The approach uses the

architecture, and develops measures along with an integrative framework from which to

quantitatively evaluate resilience. The approach may be used in alternative architecture

156

down-selection, or the architect may use this information to make improvements to an

existing design. The approach is important because it shows both how to measure, and

what actions might be taken for improvement. It shows how to improve the resiliency of

a given architecture to move it into the required sector and how to compare alternative

architectures with respect to resilience.

2) Proposed New, and Significantly Extended Existing Measures of

Resilience Attributes. The existing body of knowledge provides a qualitative foundation,

but is not quantifiable. Starting with the existing body of knowledge in resilience, each

of the attributes of resilience were better defined, and extended by provided metrics

measuring key portions.

3) The approach developed in this research is important because it uses the

architecture. The architecture is an existing engineering product. This approach

demonstrates how, if generated in a rigorous way, the architect can use something that

must be generated anyways (i.e. the architecture) to support an evaluation of resilience.

This allows the architect to explicitly measure the architecture and point explicitly to

areas in the design where improvements may be required. Petri nets were selected for

their rigorous ability to support executable analysis as well as the analysis of properties,

connecting structure to behavior.

4) Robust to Architectural Styles and the Type of Command and Control

System. The proposed approach is intentionally demonstrated on two divergent case

studies. One is an organizational architecture for a decision making organization. The

157

other is a time sensitive targeting architecture, focused more on hardware systems. One

was developed using a CAESAR III using a five stage organization model with variable

and static interactions. The other is developed in BPMN. The use of these two case

studies is intended to show this robustness to architectural style and type of system.

5) Organized the conceptual foundations of resilience. Organizations often

view resilience from multiple perspectives. Some focus on redundancy, others on fault

tolerance, others on modularity and repair-ability, etc. By organizing the topics of

resilience along defined measurable terms, this research helps establish a common

understanding of resilience from which further research can be conducted.

6.3. FUTURE WORK RECOMMENDATIONS

The conduct of this research identified several areas where improvements and

advancements remain.

First, this work focused on the survival phase. The avoidance and recovery phases are

important and an end-to-end approach to evaluating resilience will assist system

developers. This work could be extended in the recovery phase by examining the how

systems return to normal performance, either via change of state, or via a re-starting

process. One approach to examine recovery is using state-space analysis. State space

analysis is already supported by Petri nets, and would be an excellent extension. Since

one method used by many systems to account for failures and disruptions is the ‘reboot’,

one could look at potential disruption states, and then determine if a path existed back to

a home state, as defined by a Petri Net model of the system. State space analysis could

158

also be used to identified degraded states from which recovery is not possible. These are

termed “absorbing states” and architects could evaluate the Petri net based architecture to

eliminate such potential states. Additionally, where graceful degradation examined rate

of departure, an analogous metric for recovery could be ‘rate of return’, measured in a

similar way to rate of departure.

Second, this research examined resilience within the boundary conditions of the field of

Command and Control architectures. Further research is needed to determine which

portions of this research could be applied to other fields, specifically to hardware related

fields.

Third, the structural analysis techniques used in this research make the assumption that

each information flow path (simple functionality) is equally important and do not

discriminate between the length or composition of each information flow path. Further

research could be done to assess how relative importance between information flow paths

affects these results. Additionally, further research could examine whether the length of

a simple information flow path affects each appropriate measure used in this research.

Finally, further work could be done to support automatic generation of Petri net

architecture based off of BPMN and other formats. Liles [2008] demonstrated automatic

generation of Petri net models from UML architecture descriptions. However, no

automatic tools exist to generate Petri net forms of BPMN. Given the prevalence of

BPMN in DoD architectures, such a tool would be of great value over the existing BPMN

simulation tools, which are not underpinned by a formal mathematical model.

159

160

REFERENCES

161

REFERENCES

Arsenault, D. and Sood, A., 2007. Resilience: A Systems Design Imperative, CIPP

Working Paper 02-07. Arlington, VA: George Mason University.

Ashby, M., Shercliff, H., & Cebon D, 2007. Materials: engineering, science, processing

and design. Oxford, UK: Butterworth-Heinemann Elsevier.

Axelrod, C.W., Investing in Software Resiliency, CROSSTALK: The Journal of Defense

Software Engineering, September/October 2009, pp.20-25.

Booch, G., Rumbaugh, J., & Jacobson, I., 1998. The Unified Modeling Language User

Guide, Reading, MA: Addison Wesley, First Ed.

Bouthonnier, V., & Levis, A., 1984. Effectiveness of C
3
 Systems, IEEE Transactions on

Systems, Man, and Cybernetics Vol SMC-16, No 14.

Bruneau, M., and Reinhorn, A., Overview of the Resilience Concept [Online] Available

at: mceer.buffalo.edu/research/resilience/resilience_10-24-06.pdf, [Accessed 30

January 2011].

Carpenter, S., Walker, B., Anderies, J., & Abel, N., 2001. From Metaphor to

Measurement: Resilience of What to What?, Ecosystems, vol 4, pp. 765–781.

CBS News, Iran Confirms Stuxnet Worm Halted Centrifuges [Online] Available at:

http://www.cbsnews.com/stories/2010/11/29/world/main7100197.shtml

[Accessed 25 January 2011].

Cameron, A., GPS World: Perspectives - June 2008 [Online] Available at:

http://www.gpsworld.com/gnss-system/perspectives-june-2008-7254 [Accessed

19 August 2011]

Chartrand, G., 1997. Graphs as Mathematical Models, Belmont, CA: Wadsworth.

Chartrand, G., & Lesniak, L., 1986. Graphs and Digraphs 2nd Ed, Monterey, CA:

Wadsworth.

Commodity Futures Trading Commission and the Securities and Exchange Commission,

2010. Findings Regarding the Market Events of May 6th, 2010, Report of the

http://www.cbsnews.com/stories/2010/11/29/world/main7100197.shtml
http://www.gpsworld.com/gnss-system/perspectives-june-2008-7254

162

Staffs of the CFTC and the SEC to the Joint Advisory Committee on Emerging

Market Issues.

Cormen, T., Leiserson, C., & Rivest, R., 1990. Introduction to Algorithms, New York,

NY: McGraw-Hill.

Cothier, P., & Levis, A., 1986. Timeliness and Measures of Effectiveness in Command

and Control, IEEE Transactions on Systems, Man, and Cybernetics Vol SMC-16,

No 6.

Department of Commerce, National Telecommunications and Information

Administration, Institute for Telecommunications Services, Federal Standard

1037C, [Online] Available at: http://www.its.bldrdoc.gov/fs-1037/ [Accessed

June 2011].

Department of Defense (DoD), DoD Architecture Framework (DoDAF) version 2.0, May

28, 2009. [Online] Available at: http://cio-nii.defense.gov/sites/dodaf20/

[Accessed January 2010].

Department of Homeland Security, 2009 National Infrastructure Protection Plan (NIPP),

[Online] Available at: http://www.dhs.gov/xlibrary/assets/NIPP_Plan.pdf

[Accessed March 2010].

Department of Homeland Security, Homeland Security Presidential Directive (HSPD) 7,

[Online] Available at: http://www.dhs.gov/xabout/laws/gc_1214597989952.shtm

[Accessed March 2010]

Damaël, J. J., & Levis, A. H., 1994. On Generating Variable Structure Architectures for

Decision Making Systems, Information and Decision Technologies, vol. 19, pp.

233-255.

Dijkman, R., Dumas, M., & Ouyang, C., 2008. Formal Semantics and Analysis of BPMN

Process Models using Petri Nets, Information and Software Technology,

November, 2008, Volume 50, Issue 12, pp. 1281-1294.

Farley, T.R., & Colbourn, C. J., 2007. Multiterminal Resilience for Series-Parallel

Networks, Networks, pp. 164-172.

Farley, T.R., & Colbourn, C. J., 2009. Multi-Terminal Measures for Network Reliability

and Resilience,” In: 7
th

 International Workshop on the Design of Reliable

Communication Networks, 2009, pp. 107-114, Washington, DC.

Farkas, J., 1902. Theorie der einfachen Ungleichungen, Journal Fur reine und angew,

Mathematik (124).

http://www.its.bldrdoc.gov/fs-1037/
http://cio-nii.defense.gov/sites/dodaf20/
http://www.dhs.gov/xlibrary/assets/NIPP_Plan.pdf
http://www.dhs.gov/xabout/laws/gc_1214597989952.shtm

163

Federal Emergency Management Agency, 2000. FEMA-351, Recommended Seismic

Evaluation and Upgrade Criteria for Existing Welded Steel Moment-Frame

Buildings.

Friedenthal, S., Moore, A., & Steiner, R., 2008. A Practical Guide to SysML The Systems

Modeling Language, Burlington, MA: OMG Press.

Girault, C., & Valk, R., 2003. Petri Nets for Systems Engineering, Berlin, Germany:

Springer.

Grassman K., & Tremblay, J., 1996. Logic and Discrete Mathematics: A Computer

Science Perspective, Upper Saddle River, NJ: Prentice Hall.

Hanzálek, Z., Implementation of the Martinez and Silva Invariant Generation Algorithm

in a MATLAB m file (silva.m) [Online] Available at:

http://www.mathworks.com/matlabcentral/fileexchange/6501 [Accessed May

2010]

Hillion, H., 1986. Performance Evaluation of Decisionmaking Systems Using Timed Petri

Nets, MS Thesis, Dept of Mechanical Engineering, Massachusetts Institute of

Technology, Boston, MA, August 1986.

Hollnagel, E., Woods, D., Leveson, N., 2006. Resilience Engineering: Concepts and

Precepts. Hampshire, England: Ashgate.

Hopson, D.J., Addicted to Satellites? Air Force Searches For Alternatives to GPS,

[Online] Popular Mechanics, March 4
th

, 2010, Available at:

http://www.popularmechanics.com/technology/military/satellites/4343983

[Accessed 20 August 2011]

IEEE Standard Glossary of Software Engineering Terminology, IEEE Standard 610.12,

1990

INCOSE, Resilient Systems Working Group [Online] Available at:

http://www.incose.org/practice/techactivities/wg/rswg/ [Accessed September

2009]

ISO/IEC Systems and software engineering 2007. Recommended practice for

architectural description of software-intensive systems, ISO/IEC 42010.

Jackson, S., 2010. Architecting Resilient Systems: accident avoidance and survival and

recovery from disruptions. Hoboken, NJ: Wiley Series in Systems Engineering

and Management.

http://www.mathworks.com/matlabcentral/fileexchange/6501
http://www.popularmechanics.com/technology/military/satellites/4343983
http://www.incose.org/practice/techactivities/wg/rswg/

164

Jensen, K., & Kristensen, L.M., 2007. Coloured Petri Nets: Modelling and Validation of

Concurrent Systems, Berlin, Germany: Springer.

Jet Propulsion Laboratory, Report on the Loss of the Mars Polar Lander and Deep Space

2 Missions, JPL Special Review Board, JPL D-18709, 22 Mar 2000, [Online]

Available at: spaceflight.nasa.gov/spacenews/releases/2000/mpl/mpl_report_1.pdf

[Accessed April 2011]

Kansal, S.K., AbuSharekh, A.M., & Levis, 2007. A.H., Computationally Derived Models

of Adversary Organizations, In: Proc. IEEE Symp. on Computational Intelligence

for Security and Defense Applications, April 2007, Honolulu, HI.

Karoly, P., Ruehlman, L., 2006. Psychological “Resilience” And Its Correlates In

Chronic Pain: Findings From A National Community Sample, Pain, 123(1-2), pp.

90-97.

Kemeny, J., et al, 1979. Report of the President’s Commission on the Accident at TMI

[Online] Available at: http://www.threemileisland.org/downloads/188.pdf

[Accessed November 2010]

Knight, J.C., & Sullivan, K.J., On the Definition of Survivability [Online] Available at:

www.cse.msu.edu/~cse870/Materials/FaultTolerant/john.dsn.pdf Department of

Computer Science, University of Virginia [Accessed May, 2011].

Leveson, N., 2003. The Role of Software in Spacecraft Accidents, MIT, [Online]

Available at: mit.dspace.org/bitstream/handle/1721.1/35848/16.../0/jsr.pdf

[Accessed January 2011].

Levin, A., Copeland, L., 2009. Delays ripple across country, USA Today, 20 Nov, 2009

Levis, A. H., 2008. Systems 621: System Architecture Design Course Notes. George

Mason University.

Liles, S., 2008. On The Characterization and Analysis of System of Systems Architectures

PhD Dissertation, Dept of Information Technology and Engineering, George

Mason University, Fairfax, VA, August 2008.

Madni, A., Jackson, S., 2009. Towards a Conceptual Framework for Resilience

Engineering, IEEE Systems Journal, Special issue on Resilience Engineering, No

2, pp. 181-191.

Martinez J., & Silva, M., 1982. A simple and fast algorithm to obtain all invariants of

generalized Petri nets, Informatik-Fachbrichte 52, Springer-Verlag, pp. 301 –

303.

http://www.threemileisland.org/downloads/188.pdf
http://www.cse.msu.edu/~cse870/Materials/FaultTolerant/john.dsn.pdf

165

Maier, M. W., & Rechtin, E., 2009. The Art of Systems Architecting. Boca Raton, FL:

CRC Press / Taylor and Francis Group, 3
rd

 Ed.

Mitchell, R., Auld, M., Le Duc, M., & Marrs, R., 2000. Ecosystem stability and

resilience: a review of their relevance for the conservation management of

lowland heaths, Perspectives in Plant Ecology, Evolution and Systematics, vol

3/2, pp. 142-160.

National Transportation Safety Board, Accident Report NTSB/AAR-10/03, May 4, 2010,

[Online] Available at: https://ntsb.gov/Publictn/2010/AAR1003.pdf [Accessed

June 2011]

Naval Research Advisory Council, 2005. Lighter-Than-Air Systems for Future Naval

Missions, [Online] October 4
th

, Available at: http://www.dtic.mil/cgi-

bin/GetTRDoc?AD=ADA444479&Location=U2&doc=GetTRDoc.pdf

[Accessed 24 August 2011]

Markoff, J., & Sanger, D.E., 2010. In a Computer Worm, a Possible Biblical Clue. New

York Times, 29 September 2010.

Nicol, D. M., 2011 Hacking the Lights Out, Scientific American, vol 305, no 1, July

2011, pp70-75.

Nilchiani, R., 2005 Measuring Space Systems Flexibility: A Comprehensive Six-element

Framework, PhD Dissertation, Department of Aeronautics and Astronautics,

Massachussettes Institute of Technology, Boston, MA, September 2005.

Object Management Group, Business Process Model and Notation (BPMN) Specification

Version 2.0, June 2010, [Online] Available at :

http://www.omg.org/spec/BPMN/2.0 (Accessed: January 2011).

O’Rourke, T., 2007. Critical Infrastructure, Interdependencies, and Resilience, The

Bridge, National Academy of Engineering, Vol 37, No 1.

Papazoglouand, M. P., & van den Heuvel, W.J., 2007. Service oriented architectures:

approaches, technologies and research issues, VLDB Journal, 16, pp. 389-415.

Pappalardo, J., 2009. Will Obama Kill Navigation Backup System as GPS Threatens to

Fail? Popular Mechanics, December 18, [Online] Available at:

http://www.popularmechanics.com/technology/military/satellites/4318471

[Accessed 19 August 2011].

Plaut, R., 2008. Snap loads and torsional oscillations of the original Tacoma Narrows

Bridge, Journal of Sound and Vibration, Vol 309, pp. 613-636.

https://ntsb.gov/Publictn/2010/AAR1003.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA444479&Location=U2&doc=GetTRDoc.pdf
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA444479&Location=U2&doc=GetTRDoc.pdf
http://www.omg.org/spec/BPMN/2.0
http://www.popularmechanics.com/technology/military/satellites/4318471

166

Raedts I., et al, 2007. Transformation of BPMN models for Behaviour Analysis,

Modelling, Simulation, Verification and Validation of Enterprise Information

Systems, In: Proceedings of the 5th International Workshop on Modelling,

Simulation, Verification and Validation of Enterprise Information Systems,

MSVVEIS-2007, In conjunction with INSTICC Press, 2007.

Rash, G., GPS Jamming in A Laboratory Environment Naval Air Warfare Center

Weapons Division (NAWCWPNS)/China Lake. [Online] Available at:

www.fas.org/spp/military/program/nav/labjam.pdf [Accessed 20 August 2011]

Ray-Chaudhuri, S., & Shinozuka, M., 2010. Enhancement of Seismic Sustainability of

Critical Facilities Through System Analysis, Probabilistic Engineering

Mechanics, Vol. 25, Issue 2, April, pp. 235-244.

Rausand, M., & Hoyland, A., 2004. System Reliability Theory: Models, Statistical

Methods, and Applications, Hoboken, NJ, Wiley Series in Probability and

Statistics.

Reason, J., 1988. Errors and Evaluations: the Lessons of Chernobyl, In: Conference

Record for 1988 IEEE Fourth Conference on Human Factors and Power Plants,

5-9 June 1988, pp. 537-540.

Reed, D. A., Kapur, K. C., & Christie, R. D., 2009. Methodology for Assessing the

Resilience of Networked Infrastructure, IEEE Systems Journal, 3(2) pp. 174-180.

Remy, P. A., Jin, V. Y., & Levis, A. H., 1988. On the Design of Distributed Organization

Structures, Automatica, 24(1).

Resilience Alliance, Key Concepts, [Online] Available at:

http://www.resalliance.org/index.php/key_concepts [Accessed November 2010].

Resilient Engineering Network, What is resilience? [Online] Available at:

http://www.resilience-engineering.org/faq.htm [Accessed November 2010].

Stahl, C., 2005. A Petri net semantics for BPEL, Berlin Professoren des Inst.

fu rInformatikInformatik-Berichte, Nr. 188, Berlin.

Sterman, J., 2000. Business Dynamics: Systems Thinking for a Complex World, Boston,

MA: Irwin/McGraw-Hill.

Svádová, M., & Hanzálek, Z. MATLAB ToolboxForPetri Nets, Center for Applied

Cybernetics, DCE FEE, Czech Technical University in Prague. [Online]

Available at: citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.658&rep

[Accessed 19 March 2011]

http://www.fas.org/spp/military/program/nav/labjam.pdf
http://www.resalliance.org/index.php/key_concepts
http://www.resilience-engineering.org/faq.htm

167

Tang, A., Han, J., & Chen, P., 2004. A Comparative Analysis of Architecture

Frameworks, Swinburne University of Technology and Australian DSTO,

Department of Defence Technical Report: SUTIT-TR2004.01, CeCSES Centre

Report: SUT.CeCSES-TR001, 25 August 2004.

Tavana, M., Busch, T.E., & Davis, E.L., 2011. Modeling Operational Robustness and

Resiliency with High-Level Petri Nets, International Journal of Knowledge-

Based Organizations, vol 17 April-June 1(2), pp. 17-38.

Tuscon Sentinel, D. Smith, Aerostat balloon crashes in Sierra Vista, May 9, 2011,

Available at:

http://www.tucsonsentinel.com/local/report/050911_aerostat/aerostat-balloon-

crashes-sierra-vista/

US Navy Public Affairs, 2009. US 4th Fleet, Specialist 2nd Class Alan Gragg, U.S. 4th

Fleet Stands Up Maritime Operations Center, 26 March 2009, [Online] Available

at: http://www.navy.mil/search/display.asp?story_id=43775 [Accessed August

2011].

US Navy, Office of Naval Research, Scalable Adaptive Architectures for Maritime

Operations Center Command and Control, ONR Award No: N00014-08-1-0319

to George Mason University Systems Architectures Laboratory.

United States Government Accountability Office, 2009. Global Positioning System:

Significant Challenges in Sustaining and Upgrading Widely Used Capabilities,

May 7
th

, 2009 [Online] Available at: http://www.gao.gov/new.items/d09670t.pdf

[Accessed 20 August 2011]

F. Valraud and A. Levis, On the Quantitative Evaluation of Functionality in C3 Systems,

AFCEA International Press, pp132-139, August 1989.

Wagenhals, L. W., & Levis, A. H., 2009. Service Oriented Architectures, the DoD

Architecture Framework 1.5, and Executable Architectures, Systems Engineering,

12(4) pp. 312-343.

Wagenhals, L. W., Haider, S., & Levis, A. H., 2003. Synthesizing Executable Models of

Object Oriented Architectures, Systems Engineering, 6(4).

Waugh, C., Fredrickson, B., Taylor, S., 2008. Adapting To Life’s Slings And Arrows:

Individual Differences In Resilience When Recovering From An Anticipated

Threat, Journal of Research in Personality, 42(4), pp. 1031-1046.

Weske, M., 2010. Business Process Management: Concepts, Languages, Architectures,

Berlin, Germany: Springer-Verlag.

http://www.tucsonsentinel.com/local/report/050911_aerostat/aerostat-balloon-crashes-sierra-vista/
http://www.tucsonsentinel.com/local/report/050911_aerostat/aerostat-balloon-crashes-sierra-vista/
http://www.navy.mil/search/display.asp?story_id=43775
http://www.gao.gov/new.items/d09670t.pdf

168

Westrum, R., 2006. A Typology of Resilience Situations, appearing in: E. Hollnagel, D

Woods, N Leveson, Resilience Engineering: Concepts and Precepts. Hampshire,

England: Ashgate.

White, S., & Miers, D., 2008. BPMN: Modeling and Reference Guide, Lighthouse Point,

FL: Future Strategies Inc.

Woods, D., 2006. Essential Characteristics of Resilience, appearing in: E. Hollnagel, D

Woods, N Leveson, Resilience Engineering: Concepts and Precepts. Hampshire,

England: Ashgate.

Yourdon, E., & Contantine, L., 1979. Structured Design, Englewood Cliffs, N.J:

Prentice-Hall, Inc.

Zaidi, A., 1994. Validation and Verification of Decision Making Rules, PhD Dissertation,

Dept of Information Technology and Engineering, George Mason University,

Fairfax, VA.

Zio, E. 2009. Reliability Engineering: Old problems and new challenges, Reliability

Engineering and System Safety, vol 94, pp. 125-141.

169

CURRICULUM VITAE

Mark Pflanz graduated from Valley High School, West Des Moines, Iowa, in 1992. He

received his Bachelor of Science from United States Military Academy at West Point in

1996. He served as an infantry officer in the United States Army for five years.

Following service in the Army, he worked briefly for International Paper. He has worked

as a consultant at Booz Allen Hamilton since 2002. In 2005, he received his Master of

Science in Systems Engineering at Virginia Polytechnic Institute and State University.

