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In 2007, National Institute of Standards and Technology has announced a contest for a

new American cryptographic hash function standard, called SHA-3. At the time of writ-

ing, after eliminating 37 algorithms in Round 1, due to security and performance weak-

nesses, only 14 Round 2 candidate algorithms remain in the competition. A comprehensive

methodology for fair comparison of hash algorithms competing in the SHA-3 contest from

the point of view of hardware performance in FPGAs has been proposed in this thesis.

Based on this methodology, hardware designs optimized for the maximum throughput to

area ratio have been developed for all Round 2 SHA-3 candidates. The obtained results

have been compared with results from other groups. In our study, only three candidates,

namely CubeHash, Keccak and Luffa, have consistently outperformed SHA-2 in terms of

the throughput to area ratio for both 256 and 512 bits versions of all hash algorithms.



Chapter 1: Introduction

1.1 Hash Function

Imagine you are a detective who is about to interrogate a suspect. The suspect happens

to fit your witnesses’s description. Based on your outstanding detective instinct, you are

certain that the suspect is the right one. The only task left for you is to verify his identity.

How would you do that? How can you verify his identity even though he may be lying to

you and reinforcing his story by showing a fake identification card. The answer is quite

simple. You would check his fingerprints and verify them against the police database.

A similar situation can occur in digital world. As data are being transferred across

the globe through the internet filled with hackers, the need to verify data integrity (or

identity) is paramount. It is also very important to ensure that data stored in a database

is unique and not tampered with. Hash functions provide a solution to these two problems.

Hashing is a process that reduces an input file or a message to a fixed size output through

a sequence of operations that is computationally fast. This output is called hash value or

message digest (MD). A hash value can be used to verify an integrity of a file by comparing

an output of the hash function applied to the current version of the file with the original

hash value computed when the file was created. It can also be used as a file id for protection

of database records.

Another important application of hash functions is its use in digital signatures. In ma-

jority of practical signature schemes, messages are hashed before applying actual signature

scheme based on a public key cryptosystem. This way, all signatures have the same size,

independent of the size of the original message, and the generation and verification of the

signature is computationally efficient. In order for a hash function to be suitable for use

in digital signatures, it must have a special property called “collision resistance”. A hash
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function has a collision resistance if and only if it is computationally infeasible to find two

different messages that hash to the same value.

One of the most widely used secure hash families is commonly called Secure Hash

Algorithm-2 (SHA-2). This family includes four functions with the following hash value

sizes: 224, 256, 384, and 512. All functions were designed by National Security Agency

(NSA), and approved as an American federal standard by National Institute of Science and

Technology (NIST) in August 2002. The SHA-2 family is based on very similar basic build-

ing blocks and has a very similar overall structure as an earlier American hash function

standard, called SHA-1, which was also designed by NSA. In 2005, a substantial security

flaw was discovered in SHA-1 [1]. Since SHA-2 is based on very similar principles to SHA-1,

it is prudent to expect that the similar attack can be found against SHA-2. Such attack

can either break SHA-2 completely, or at least significantly reduce its strength compared

to the theoretical strength assumed today.

In response to this potential threat, NIST initiated the SHA-3 contest in search of a new

cryptographic hash function family. The winner of this competition will become the next

standard for secure hash algorithm. As of now, the competition has proceeded to Round 2,

with only 14 out of the original 51 candidates remaining.

1.2 Motivation

The selection of the contest winner based only on its security strength is inadequate. Would

user care if one algorithm performed 10 times slower and took 1000 years to break as opposed

to a faster algorithm that takes 800 years to break with the current technology? Most likely

not. This can be seen from the previous cryptographic competitions such as the Advanced

Encryption Standard (AES) contest in 1997-2000. The winner, Rijndael, was chosen based

on its performance in hardware and software, when its security was judged adequate by

NSA and the rest of the cryptographic community [2].

Nevertheless, the criteria used in the AES contest, where performance was considered

equivalent to speed, will most likely be inadequate in the SHA-3 competition. AES contest
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was held before a major boom in low-power portable, hand-held devices. A decade has

changed the usage of low power devices from occasional to ubiquitous. Radio-Frequency

Identification (RFID) tags are being used to track shipments worldwide. Kindergartners

are carrying mobile phones. Laptops are getting smaller. New inventions tend to have

smaller and greener functionality than its predecessors. With all these trends, one can see

that speed and security are not enough in judging the winner of SHA-3 competition. Area,

cost, power and energy consumption will definitely play a role in this contest.

1.3 Previous Studies

As of writing this thesis, relatively few hardware performance reports for SHA-3 candidates

have been published. The summary of existing hardware implementations can be found in

[3]. Thus far, only [4–7] provide comprehensive hardware performance reports, and [8–19]

present reports for specific hash functions. With the exception of [6], all of the hardware

performance papers were focused only on 256-bit versions of SHA-3 candidates and the

implementation goals of all these paper are either throughput or throughput to area ratio.

In compact designs, only [20] presents the study of Blake for low area implementation.

Regarding the interface, [7,21] have proposed uniform interface but none of these interfaces

has been widely adopted by other groups yet. Unclear optimization targets, the use of

different hardware description languages, unclear performance measure, and varying design

methodologies further complicated the comparison procedure. While not all papers contain

these deficiencies, even the ones that report multiple implementations within the same paper

often make at least one mistake.
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Chapter 2: Design Methodology

To avoid the common fallacies in designing toward hardware comparison, this thesis follows

the established ground rules as proposed by [5]. These rules are summarized below:

• FPGAs are selected as our primary implementation platform.

• Uniform input/output interface and protocol is used in implementations of all

of the SHA-3 candidates.

• Optimization target is throughput to area ratio.

• The same basic building blocks are used in implementations of all candidates,

by reusing the same source codes for low level operations. This approach rules out

the possible inconsistencies in optimizations of basic logic operations, possible if these

operations were implemented separately for each candidate.

• Hardware description language is VHDL. Different languages may have different

level of optimization capability. Using the same language ensures that a design will

not get a better result simply because of the different treatment of different languages

by the current generation of CAD tools.

• Same assumptions and simplifications, such as no padding in hardware and no

support for special modes of operation.

• CAD tools selected are tools developed by the FPGA vendors :

– Xilinx : Xilinx ISE Design Suite v. 11.1

– Altera : Quartus II v. 9.1 Subscription Edition Software
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• No dedicated resources. This means that only Configurable Logic Blocks (CLBs)

in Xilinx FPGAs, and Logic Elements or Adaptive Look-Up Tables (ALUTs) in Altera

FPGAs are used for synthesis and implementation. No Block RAMs, memory bits,

DSP units, or multipliers are used.

• Identical and easy to repeat tool options are possible through the use of an open

source benchmarking environment, called ATHENa (Automated Tool for Hardware

EvaluatioN), developed at George Mason University [22].

• Results for several families. The results are generated across 7 FPGA families

from two major FPGA vendors, Xilinx and Altera.

• Generalized design is used for all SHA-3 candidates when applicable. See Section

5 for the detailed diagrams.

• Universal testbench is applied to all of the SHA-3 candidates to ensure the correct

functionality. The testbench accepts test vectors generated by the padding script

developed in Perl. The script uses the Known Answer Test (KAT) test vector files

available as a part of each candidate’s submission package.

Major points are discussed in detail in subsections.

2.1 Uniform Interface and Protocol

Utilizing the same interface and protocol for all algorithms reduces a possible negative

impact that using different interfaces can have on the comparison process. Assuming that

two algorithms accept the same block size of an input message, if one design uses a larger

input bus width than the other, the number of clock cycles required for loading a message

may be different. This difference may give the design with the larger input bus width an

edge over the design with the smaller bus. Different interface or protocol can also cause

different overhead in terms of area. In general, algorithms are required to keep track of

the size of the message. This task can be done inside or outside of the cryptographic
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unit. If an interface assumes performing this task outside the core, the required resources

are minimized, but the requirements on the sophistication of the source circuit increase.

Similarly, padding can be performed either inside or outside of the core, with an impact at

least on the area (and possibly also on speed) of the hash core.

As noted previously, only two interfaces have been developed. The selected interface is

the one proposed by [5]. This interface of our cryptographic core is shown in Figure 2.1a.

The core is assumed to be surrounded by standard FIFO modules. These modules provide

necessary control signals and input/output buses to the core. The core assumes an active

role and makes the decisions about receiving or transmitting data based on its internal state

and two external control signals. In general, the interface has two variable parameters:

• w = the width of the input data bus, din, and the output data bus, dout. These

buses are independent of each other, but both have the same width w.

• rio = dfioclk/fclke, i.e., the ratio of the clock frequency for the fast I/O clock (used

only for the fast communication with the surrounding circuits, typically Input and

Output FIFOs), and the clock frequency for the main clock used for data processing.

If only one clock is used for both functions, rio=1.

A protocol for this interface is shown in Figure 2.2. In essence, the protocol transmits

the length of the message in bits followed by the message itself. This protocol also allows

segmentation of messages. In other words, the message can be split into multiple segments.

The lengths of all but the last segment are required to be multiples of the message block

length. Figure 2.2a describes the format of incoming data in case the message consists of

only one segment. Figure 2.2b describes the case when the message is split into multiple

segments. The latter scenario is useful in case the message is greater or equal than 2w bits,

i.e., its length cannot be represented using a single word, or if the message length is not

known in advance, and becomes available only during message processing.
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Figure 2.1: a) Input/output interface of a SHA core. b) A typical configuration of a SHA
core connected to two surrounding FIFOs.
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Figure 2.2: Format of input data for two different operation scenarios: a) with message
bitlength known in advance, and b) with message bitlength unknown in advance. Nota-
tion: msg len – message length after padding, msg len bp – message length before padding,
seg i len - segment i length after padding, seg i len bp – segment i length before padding,
last – a one-bit flag denoting the last segment of the message (or one-segment message)

2.2 Optimization Target

Optimization Target is one of the most important decisions we have to make in order to

develop a fair comparison. The possible choices include Maximum Throughput, Minimum

Area, Maximum Throughput to Area Ratio, Minimum Latency, etc. All of the aforemen-

tioned targets can be used to make a comparison. Out of them, we have selected Maximum

Throughput to Area Ratio as our criteria of choice. This selection has advantages over other

possible choices. First, it is practical, as hardware cores are typically applied in situations,

where the size of the processed data is significant and the speed of processing is essential.
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Secondly, this optimization criterion is a very reliable guide throughout the entire design

process. At every junction where the decisions must be made, starting from the choice of a

high-level hardware architecture down to the choice of the particular FPGA tool options,

this criterion facilitates the decision process, leaving very few possible paths for further

investigation.

On the contrary, optimizing for Throughput alone, leads to highly unrolled hash function

architectures, in which a relatively minor improvement in speed is associated with a major

increase in the circuit area. In hash function cores, Latency, defined as a delay between

providing an input and obtaining the corresponding output, is a function of the input size.

Since various sizes may be most common in specific applications, this parameter is not a

well-defined optimization target. Finally, optimizing for Area leads to highly sequential

designs, resembling small general-purpose microprocessors, and the final product depends

highly on the maximum amount of area (e.g., a particular FPGA device) assumed to be

available.

With the maximum throughput to area ratio as our optimization target, the main iter-

ative task of each candidate needs to be investigated to ensure the best result. The general

rule applies that if two identical (or similar) tasks are performed in parallel, then there

is no gain in terms of the throughput to area ratio over executing them sequentially. If

however the same two identical (or similar) tasks are performed sequentially, one by one,

then executing them using the same hardware significantly reduces the area of the circuit,

with almost no penalty in terms of the speed. After taking this rule into account, and after

performing the more detailed comparative analysis if needed, the optimum main iterative

tasks used in all our SHA-3 candidate designs are described in Table 2.1.

2.3 Basic Components

The same basic components (if applicable) are used in all our designs. This eliminates the

possibility that the same component when used in one design is more optimized than when

appearing in other designs. The major operations of all SHA-3 candidates that require
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Table 2.1: Main iterative tasks of the hardware architectures of SHA-3 candidates optimized
for the maximum Throughput to Area ratio

Function Main Iterative Task Function Main Iterative Task
BLAKE G0..G3 JH Round function R4

BMW f0, f1, f2 Keccak Round R
CubeHash one round Luffa The Step Function, Step
ECHO AES round Shabal Two iterations

of the main loop
Fugue 2 subrounds SHAvite-3 AES round

(ROR3, CMIX, SMIX)
Groestl Modified AES round SIMD 4 steps of the

compression function
Hamsi Truncated Non-Linear Skein 8 rounds of

Permutation P Threefish-256

logic resources in hardware implementations are summarized in Table 2.2. Fixed shifts,

fixed rotations and fixed permutations are not included as they use only routing resources.

2.4 Generalized Design Template

The general design template is based on the interface as described in the previous section.

2.4.1 Top Level

Top level consists of four control signals and two data buses. The control signals going into

the controller are the signals indicating the availability of the input data and the readiness

of the destination circuit to accept any output from the datapath unit. The output signals

going out of the controller provide the handshake signals. Likewise, the data bus going

into the datapath comes from the source circuit, providing both the message header and its

body. The output from the datapath contains the message digest.

2.4.2 Datapath

For most designs, the datapath can be separated into two main units as shown in Figure 2.4,

the message expansion unit and the hash core. The message expansion unit performs any

necessary modifications to a message block before this block is processed by the hash core.
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Table 2.2: Major operations of SHA-3 candidates (other than permutations, fixed shifts
and fixed rotations)

NTT Linear S-box GF MUL MUL mADD ADD Boolean
code /SUB

BLAKE mADD3 ADD XOR
BMW mADD17 ADD, SUB XOR
CubeHash ADD XOR
ECHO AES 8x8 x02, x03 XOR
Fugue AES 8x8 x04..x07 XOR
Groestl AES 8x8 x02..x07 XOR
Hamsi LC[128, Serpent XOR

16,70] 4x4
JH Serpent x2, x5 XOR

4x4
Keccak NOT:AND:XOR
Luffa 4x4 x2 XOR
Shabal x3, x5 ADD, SUB NOT:AND:XOR
SHAvite-3 AES 8x8 x02, x03 NOT:XOR
SIMD NTT128 x185, x233 mADD3 ADD NOT:AND:OR
Skein ADD XOR
SHA-256 mADD5 NOT:AND:XOR

The core mixes the current state and the expanded message block together to produce the

next state, and finally (after all message blocks have been processed) the message digest.

2.4.3 Controller

The Controller, shown in Figure 2.5, is implemented using three main Finite State Machines,

working in parallel, and responsible for the Input, Main Processing, and the Output, re-

spectively. As a result, each circuit can simultaneously perform the following three tasks:

output hash value for the previous message, process a current block of data, and read the

next block of data. The parameters of the interface are selected in such a way that the time

necessary to process one block of data is always larger or equal to the time necessary to

read the next block of data. This way, the processing of long streams of data can happen

at full speed, without any visible input interface overhead. A generalized design of Finite

State Machine 1, 2 and 3 are shown in Figures 2.6, 2.7 and 2.8, respectively.
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Figure 2.5: Generalized Top Level Controller
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2.5 Performance Metric

Latency, Throughput, Area and Throughput to Area ratio are the basic performance metrics

used in our study.

2.5.1 Latency

Latency is defined as the time to process a single message. This includes the time taken for

reading data from the source circuit (typically Input FIFO), initialization, main processing,

finalization, and writing result to the destination circuit (typically Output FIFO). The

formula for Latency can be written as follows:

Latency = T ·HCycle(N) (2.1)

where T is a clock period of a specific hash function, HCycle(N) is the total number of clock

cycles required to process an N-block message.

The general formula for the time necessary to hash an N-blocks message can be written

as:

HCycle(N) = cinit + dcin
rio
e+ cblock ·N + cfinal + dcout

rio
e (2.2)

In this formula:

• cinit is the number of clock cycles necessary to establish communication with the

source of data (typically, Input FIFO) and read the length of the message (in our

formulas we assume that the length of the message is smaller than 2w).

• cin is the number of clock cycles required to read the very first block of the message.

cin = Block size/w.

• cblock is the number of clock cycles required to process one block of the message.

• cfinal is the number of clock cycles required for the finalization. We assume that only

one finalization is required per entire message (if the finalization needs to be repeated
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for every block of the message, its number of clock cycles is included in cblock).

• cout is the number of clock cycles required to write hash value to the destination circuit

(typically Output FIFO). cout = output size/w.

• rio is the ratio between the frequency of the input/output clock, fioclk, and the fre-

quency of the main clock, fclk, rio = dfioclk/fclke.

2.5.2 Throughput

Throughput is a measure of how many bits of a message can be processed within a given

time. For hash functions, we define throughput based on the circuit performance for long

messages. Hence, the time required for initialization and finalization (performed once per

message) and message input/output are ignored. Under these assumptions, the formula for

Throughput becomes:

Thr =
Block size

T · (HCycle(N + 1)−HCycle(N))
(2.3)

where Block size is the block size of a specific candidate and variant.

Alternatively, throughput can be represented as:

Thr =
Block size

T · (#cycles)
(2.4)

where #cycles is the number of clock cycles required to process one block of the message.

Throughput can also be written as a formula based on latency as:

Thr =
Block size

(Latency(N + 1)− Latency(N))
(2.5)

17



where Latency(N) is the latency required to process an N-block message.

2.5.3 Area

Since our designs contain no dedicated resources such as Block RAMs, DSP units, multi-

pliers, etc., area in our study is defined as follows:

Area = #Basic elements (2.6)

Basic elements are specific to a given FPGA family. For Xilinx, the #Basic elements is

defined as the number of CLB slices (#CLB slices). For the Altera Cyclone families and

Stratix, #Basic elements is defined as the number of Logic Elements (#LEs). For the

Altera Stratix II and more recent high performance families, #Basic elements is defined

as the number of Adaptive Look-up Tables (#ALUTs).

2.5.4 Throughput to Area Ratio

The formula for the Throughput to Area Ratio is:

Ratio =
Thr

Area
(2.7)

where Thr and Area are the metrics described above.
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Chapter 3: Comprehensive Designs of SHA-3 Candidates

The designs of all 14 SHA-3 candidates followed the same basic design principle with the

core separated into two main units, the Datapath and the Controller (see Section 1.2). Only

Datapath diagrams are provided in this chapter as the Controller can be derived from the

Datapath and the specification of the function, and described using ASM charts similar to

those given in Section 1.2. The full specification of each of the algorithms can be found in

[23–37].

3.1 Notations and Symbols

Table 3.1 provides the notation and symbols that are being used throughout this chapter.
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Table 3.1: Notations and Symbols
Word A group of bits used in arithmetic and logic operations, typically

of the size of 32 or 64 bits.
Block A group of words.
X[i] Refers to an array position i in X.
Xi Refers to a bit position i in X.
salt Salt values are always assumed to be zero and as a result they are

omitted from the diagrams.
b Block size in bits.
h Hash value size in bits.
w Word size in bits.
IV Initialization vector

SEXT Sign extension.
ZEXT Zero extension.
<<<R Rotation left by R positions. If R is a constant: fixed rotation;

if R is a variable: variable rotation implemented using a barrel
rotator.

>>>R Rotation right by R positions. If R is a constant: fixed rotation;
if R is a variable: variable rotation implemented using a barrel
rotator.

<<S Shift left by S positions. If S is a constant: fixed shift; if S is a
variable: variable shift implemented using a barrel shifter.

>>S Shift right by S positions. If S is a constant: fixed shift; if S is a
variable: variable shift implemented using a barrel shifter.

|| Concatenation. By default, the buses concatenate back to the
same arrangement as before the separation (split) occurs.

SIPO
Serial-in-parallel-out unit.

PISO
Parallel-in-serial-out unit.

endian word
switch

Wordwise endianness switching.

switch
endian byte Bytewise endianness switching.
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3.2 Basic Component Description

This section describes implementations of basic components used in more than one algo-

rithm. These components include multiplication by 2 in GF(28), SubBytes, MixColumns,

and AES Round.

3.2.1 Multiplication by 2 in the Galois Field GF(28)
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Figure 3.1: Base : X2

3.2.2 Multiplication by n in the Galois Field GF(28)

Galois Field multiplication by n other than 2 is summarized in Table 3.2.

Table 3.2: Galois Field Multiplication by n
x3 = x2(X) ⊕ X
x4 = x2(x2(X))
x5 = x4(X) ⊕ X

x6 = x4(X) ⊕ x2(X)
x7 = x4(X) ⊕ x3(X)

3.2.3 AES

AES is a basic building block of many SHA-3 candidates. An AES round consists of three

basic operations, SubBytes, MixColumns and ShiftRow shown in Figure 3.2. SubByte

operation, shown in Figure 3.3, performs direct substitution on all bytes of its input. Mix-

Columns performs matrix multiplication on each word of its input. A word of AES contains
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32-bit. Hence, 4 instances of MixColumn are required. SBOX and ShiftBytes operation of

AES and its full specification can be found from [38].

key

MIXCOLUMN

SHIFTROW

SUBBYTE

x

y

Figure 3.2: Base : AES Round
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8 8 8 8
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8 8 88
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SBOX
AES

SBOX
AES

128

x

Figure 3.3: Base : AES SubBytes
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Note : All buses are 8 bits

x2x2 x2 x2

b0 b2b1 b3

b’0 b’1 b’2 b’3

Figure 3.4: Base : AES MixColumn
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3.3 Blake

3.3.1 Block Diagram Description

Figure 3.5 shows the datapath of BLAKE. In this design, the combinational CORE im-

plements one half of the BLAKE’s round [23]. Thus, two clock cycles are necessary to

implement the full round. First, a message block is loaded into SIPO. Once done, the block

is stored in a temporary register, used to hold the message block until this block is fully

processed by the CORE. This temporary register allows the next message block to be loaded

simultaneously into SIPO. The message block msg and the constant c are then permuted

and passed to the design’s CORE. Simultaneously, the chaining value is initialized with the

the Initialization Vector, IV , and an input to the CORE, V , is initialized with the value

dependent on the chaining value, the counter, t, and a lower half of the constant c. The

initial value of V is mixed by the CORE with the output of the block PERMUTE, CM ,

for twenty clock cycles (10 rounds). Once this operation is completed, an additional clock

cycle is required for finalization. The output of Finalization is used as the next chaining

value, for intermediate message blocks, or as the final hash value for the last message block.

The Initialization unit performs the following function:



v[0] v[1] v[2] v[3]

v[4] v[5] v[6] v[7]

v[8] v[9] v[10] v[11]

v[12] v[13] v[14] v[15]


←−



h[0] h[1] h[2] h[3]

h[4] h[5] h[6] h[7]

c[0] c[1] c[2] c[3]

t[0]⊕ c[4] t[1]⊕ c[5] c[6] c[7]


The Finalization unit performs the following operation:
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25



Table 3.3: Blake: Permutation Constant
hi low

σ0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
σ1 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3
σ2 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4
σ3 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8
σ4 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13
σ5 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9
σ6 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11
σ7 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10
σ8 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5
σ9 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0

h′[0]← h[0]⊕ v[0]⊕ v[8]

h′[1]← h[1]⊕ v[1]⊕ v[9]

h′[2]← h[2]⊕ v[2]⊕ v[10]

h′[3]← h[3]⊕ v[3]⊕ v[11]

h′[4]← h[4]⊕ v[4]⊕ v[12]

h′[5]← h[5]⊕ v[5]⊕ v[13]

h′[6]← h[6]⊕ v[6]⊕ v[14]

h′[7]← h[7]⊕ v[7]⊕ v[15]

In Figure 3.6, an operation of the BLAKE’s PERMUTE module is presented. A new

value of the variable m is selected depending on the round number using a wide multiplexer

preceded by constant permutations. A permutation table is shown in Table 3.3. The

selection signal of the multiplexer cycles from 0 to 19 (and then again back to 0 for BLAKE-

64) until all BLAKE’s rounds are executed. Each output of the multiplexer is then mixed

with the respective constant using the transformation XOR W CROSS, defined in the

note to Fig. 3.6, and registered afterwards.

The CORE unit is shown in Figure 3.7 and represents one half of the BLAKE’s round.

As specified in [23], there are two levels of G functions and therefore a permutation between

the first and the second half-round is required. This permutation is performed wordwise

and is shown in Table 3.4. LVL2 permute transforms the state matrix (output of 4 parallel
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Figure 3.6: Blake : PERMUTE

G functions) into a new matrix appropriate for the second half-round. LVL1 permute is a

permutation inverse to LVL2 permute.

Table 3.4: Blake : Half Round’s Permutation
LVL2 (forward) 0 1 2 3 5 6 7 4 10 11 8 9 15 12 13 14
LVL1 (revert) 0 1 2 3 7 4 5 6 10 11 8 9 13 14 15 12

The G-function in the CORE unit is shown in Figure 3.8. Note that the XOR operations

used to calculate input values CM2i and CM2i+1, which are normally depicted as a part of

the G-function, are omitted in our design. These operations were placed as a part of the

PERMUTE unit and therefore skipped here. R1, R2, R3 and R4 are rotating constants.

The values of these constants are shown in Table 3.5
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Table 3.5: Blake: Rotating Constants of Blake-32
R1 R2 R3 R4
16 12 8 7

3.3.2 256 vs 512 Variant Differences

Blake-64 doubles the word size of Blake-32, thereby increasing the block size as well. Hence,

the IV and the constant are changed from 512 bits to 1024 bits. These values can be found

in Section 2.2.1 of [23]. Blake-64 introduces also an increase in the number of mixing rounds

from 10 to 14. As a result, the number of clock cycles required in our design for processing

a single block of message increases from 21 to 29. The multiplexer selection signal in the

PERMUTE unit loops back when the round number reaches 10. Hence, after reaching 19,

this selection signal goes back to 0. Finally, the rotating constants are adjusted to reflect

the increased word size. These values are described in Table 3.6.

Table 3.6: Blake: Rotating Constants of Blake-64
R1 R2 R3 R4
32 25 16 11
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3.4 Blue Midnight Wish (BMW)

3.4.1 Block Diagram Description

Our design for Blue Midnight Wish (BMW) hashes a block of data within one clock cycle.

Since the number of clock cycles necessary to read a block of a message is greater than the

number of clock cycles required to hash it, an additional clock signal is used in the circuit

as shown in Figure 3.9. This faster clock (io clk) is used to drive the SIPO and PISO units,

allowing them to read and write data at a faster rate than the operation of other units in

the circuit. The rate of reading and writing is determined by the block size and the number

of cycles required to process a block. Since only one clock cycle is used to process a message

block, the frequency of io clk is block size/word size times higher than the main clock.

This ratio is equal to 8 for BMW-256. BMW requires each message block to go through the

endianness switching before the start of processing. A message block is then mixed with

the chaining value to obtain the next chaining value. Once all blocks of the message are

processed, a finalization round is initiated. Since there is no incoming message block, the

chaining value and the input message block are replaced by the constant and the chaining

value, respectively. The descriptions of F0, F1, F2 and AddElements and its associated

logical operations can be found in Table 1.3 and Table 2.2-2.4 in [24].

3.4.2 256 vs 512 Variant Differences

BMW-512 increases the word size of BMW-256 from 32 to 64 bits. As a result, the block

size is doubled as well. Since the block size increases, the number of clock cycles required

to load a message block also increases for io clk from 8 cycles to 16 cycles. Furthermore,

logic functions, specifically shifts and rotations, are adjusted to accommodate the increased

word size. These changes are shown in Table 1.3 of [24]. All other operations remain the

same.
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3.5 CubeHash

3.5.1 Block Diagram Description

A straight-forward iterative architecture is used in our design. The datapath of CubeHash

is shown in Figure 3.10. Due to endianness issue, the input message is required to go

through endianness switching twice. First, the bytewise endianness switching is applied,

which is then followed by the wordwise endianness switching. A word of CubeHash consists

of 32 bits.

For each message, a chaining value is initialized to IV. The 256 leftmost bits of the

chaining value are xored with an input message block. The state is then transformed for 16

rounds. A round is described in Figure 3.11. All operations inside the round are performed

wordwise. This process repeats until all message blocks are processed. In the last round of

the last message block, an integer one is xored with the position zero of the chaining value,

rp, by activating the control signal final before the chaining value is inserted back into the

state register. Then, the chaining value is transformed for 160 rounds to get the final hash

value. The hash value is required to go through the endianness switching process again to

reach the correct hash output.

3.5.2 256 vs 512 Variant Differences

Everything is the same for both variants with the exception of truncation size. CubeHash16/32-

256 truncates the state to 256 bits to obtain the hash value, as opposed to CubeHash16/32-

512 which truncates the state to 512 bits.
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3.6 ECHO

3.6.1 Block Diagram Description

ECHO’s top level datapath is shown in Figure 3.12. A message block is first concatenated

with the chaining value to produce the state matrix. The state matrix is viewed as an

array of 16 words with each word representing 128 bits. The state then goes through 10

rounds of iteration for ECHO-256. Note that C represents the number of bits hashed so

far. This value also includes bits of the currently processed block. Once the state matrix is

thoroughly mixed, a new chaining value is computed from the state matrix by the BIG.Final

unit. This operation is described as follows:

v′[0]← v[0]⊕m[0]⊕m[4]⊕m[8]⊕ w[0]⊕ w[4]⊕ w[8]⊕ w[12]

v′[1]← v[1]⊕m[1]⊕m[5]⊕m[9]⊕ w[1]⊕ w[5]⊕ w[9]⊕ w[13]

v′[2]← v[2]⊕m[2]⊕m[6]⊕m[10]⊕ w[2]⊕ w[6]⊕ w[10]⊕ w[14]

v′[3]← v[3]⊕m[3]⊕m[7]⊕m[11]⊕ w[3]⊕ w[7]⊕ w[11]⊕ w[15]
B
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Figure 3.12: ECHO : Datapath

In Figure 3.13, operations inside of the ECHO round are shown. In our design, each

ECHO round is executed in three clock cycles. BIG.SubBytes is performed in the first
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two clock cycles and BIG.ShiftRows and BIG.MixColumns in the third cycle. BigSubBytes

operation is shown in Figure 3.14. The unit takes in the state matrix and the message length

counter, C, and produces the next state. In the first clock cycle of the round operation, the

key is chosen to be the length counter plus the numbers between 0 and 15. These added

values follow the word number. Hence, the fourteenth word gets the key as C + 14. In the

next cycle, salt is selected as the key. Since in our implementation, salt is not used, zero is

selected instead.
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Two operations are performed in the third cycle of a round. First, BIG.ShiftRows is

performed. This operation is equivalent to the word permutation given in Table 3.7. Next,

BIG.MixColumns transforms the permuted state to obtain the final value of a round. In

Figure 3.15, a diagram of BIG.MixColumns is shown. BIG.MixColumns separates the state

into 4 blocks, each block containing 4 words. A byte of data from each word is selected to

go through the AES MixColumn. All data is then combined together to produce the final

state.

Table 3.7: ECHO : BIG.ShiftRows
Word 0 1 2 3 5 6 7 4 10 11 8 9 15 12 13 14

Permuted Word 0 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11

512

b1 b2 b3

b0’ b1’ b2’ b3’

b0 b1 b2 b3

b0’ b1’ b2’ b3’

x’[3]x’[0] x’[1] x’[2]

128 128 128

y’[0]

y’[2]y’[1]

y’[3]

MC MC MC

2048

2048

512

512 512512

x [0]

x [1] x [2] x [3]

y [0]
y [3]

y [2]y [1]

0 127 0 127 0 1271270

0 127 0 127 0 1271270

MixColumn
AES

MixColumn
AES

128 128 128 128

x’
MC

128

512

x

512

Note: Buses size are 4 bits unless specified otherwise

y

512

b0

Figure 3.15: ECHO : BIG.MixColumns
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3.6.2 256 vs 512 Variant Differences

ECHO-512 differs from ECHO-256 in its message block and chaining value sizes. The

message block is reduced from 1536 bits to 1024. On the other hand, the chaining value is

increased from 512 to 1024 bits. This change increases the security of ECHO and therefore

a smaller number of rounds is used. Only 8 rounds are used in ECHO-512. Finally, only

BIG.Final is altered. ECHO-512’s BIG.Final is described as follows:

v′[0]← v[0]⊕m[0]⊕ w[0]⊕ w[8]

v′[1]← v[1]⊕m[1]⊕ w[1]⊕ w[9]

v′[2]← v[2]⊕m[2]⊕ w[2]⊕ w[10]

v′[3]← v[3]⊕m[3]⊕ w[3]⊕ w[11]

v′[4]← v[4]⊕m[4]⊕ w[4]⊕ w[12]

v′[5]← v[5]⊕m[5]⊕ w[5]⊕ w[13]

v′[6]← v[6]⊕m[6]⊕ w[6]⊕ w[14]

v′[7]← v[7]⊕m[7]⊕ w[7]⊕ w[15]
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3.7 Fugue

3.7.1 Block Diagram Description
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Figure 3.16: Fugue : Datapath

In Figure 3.16, the datapath of Fugue is shown. For every message, the state register

is initialized to IV. The state is viewed as a matrix of 4 by X bytes, where X is the column

length dependent on the block size of Fugue. For Fugue-32, the block size is equal to 960

bits. Hence, the matrix have dimensions 4 x 30. The state is mixed with input message

blocks through the ROUND unit. Once all message blocks are processed, the state goes

through Finalization. For Fugue-32, Finalization is described below:

Finalization =
S[1..3] || (S[4]⊕ S[0]) ||

(S[15]⊕ S[0]) || S[16..18]

A round of Fugue is shown in Figure 3.17. The path through the ROUND unit is

selected based on the sequence of operations as described in Section 4.3.5 of F-256 in [27].

TIX operates in parallel as follows:
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S′[0] = din

S′[1] = S[1]⊕ S[24]

S′[8] = S[8]⊕ din

S′[10] = S[10]⊕ S[0]

ROR3 and CMIX are performed consecutively. All RORn operations are bytewise ro-

tations by n bytes. This is equivalent to >>> (n ∗ 8). As such, ROR3 can be considered

as >>> 24. CMIX operates as follows:

S′[0] = S[0]⊕ S[4]

S′[1] = S[1]⊕ S[5]

S′[2] = S[2]⊕ S[6]

S′[15] = S[15]⊕ S[4]

S′[16] = S[16]⊕ S[5]

S′[17] = S[17]⊕ S[6]
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Table 3.8: Fugue: F-256 ADDFn and RORFn Operation
i y

0
S′[4] = S[4]⊕ S[0]
S′[15] = S[15]⊕ S[0]

ROR15

1
S′[4] = S[4]⊕ S[0]
S′[16] = S[16]⊕ S[0]

ROR14

Table 3.9: Fugue: Matrix Multiplier Table
X[0] X[1] X[2] X[3] X[4] X[5] X[6] X[7] X[8] X[9] X[10] X[11] X[12] X[13] X[14] X[15]

Y[0] 1 4 7 1 1 1 1
Y[1] 1 1 1 4 7 1 1
Y[2] 1 1 7 1 1 4 1
Y[3] 1 1 1 4 7 1 1
Y[4] 4 7 1 1 1
Y[5] 1 1 4 7 1
Y[6] 1 1 7 1 4
Y[7] 4 7 1 1 1
Y[8] 7 6 4 7 1 7
Y[9] 7 7 1 6 4 7
Y[10] 7 1 6 4 7 7
Y[11] 7 4 7 1 6 7
Y[12] 4 4 5 4 7 1
Y[13] 1 5 4 7 4 4
Y[14] 4 7 1 5 4 4
Y[15] 4 5 4 7 1 5

The ADDFn and RORFn operations are selected by the i control signal. The selection

process is described in Table 3.8.

Finally, the SMIX operation is described in Figure 3.18. The SMIX operation first

splits an input into an array of 128-bit blocks. Then, each block is further splitted into 16

bytes. These bytes are transformed using AES SBOX and the resulting vector of 16 bytes is

used as an input to the Matrix Multiplier. The Matrix Multiplier performs multiplication

of a constant matrix by an input vector. The value of the constant matrix is shown in Table

3.9. The multiplication is performed and based on the multiplication by 2 in GF (28).

3.7.2 256 vs 512 Variant Differences

Fugue-512 increases the state size to 4 x 36 which is equivalent to 1152 bits. Additionally,

TIX, CMIX, ADDFn, RORFn and Finalization have been modified. TIX is now performed
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Figure 3.18: Fugue : SMIX

in parallel as follows:

S′[0] = din

S′[1] = S[1]⊕ S[24]

S′[4] = S[4]⊕ S[27]

S′[7] = S[7]⊕ S[30]

S′[8] = S[8]⊕ din

S′[22] = S[22]⊕ S[0]

CMIX is now performed as follows:
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Table 3.10: ADDFn and RORFn Operation
i y i y

0

S′[4] = S[4]⊕ S[0]
S′[9] = S[9]⊕ S[0]
S′[18] = S[18]⊕ S[0]
S′[27] = S[27]⊕ S[0]

ROR9

2

S′[4] = S[4]⊕ S[0]
S′[9] = S[9]⊕ S[0]
S′[19] = S[19]⊕ S[0]
S′[27] = S[27]⊕ S[0]

ROR9

1

S′[4] = S[4]⊕ S[0]
S′[10] = S[10]⊕ S[0]
S′[18] = S[18]⊕ S[0]
S′[27] = S[27]⊕ S[0]

ROR9

3

S′[4] = S[4]⊕ S[0]
S′[9] = S[9]⊕ S[0]
S′[19] = S[19]⊕ S[0]
S′[28] = S[28]⊕ S[0]

ROR8

S′[0] = S[0]⊕ S[4]

S′[1] = S[1]⊕ S[5]

S′[2] = S[2]⊕ S[6]

S′[18] = S[18]⊕ S[4]

S′[19] = S[19]⊕ S[5]

S′[20] = S[20]⊕ S[6]

The ADDFn and RORFn operations are adjusted to the Fugue-512 and described in

Table 3.10.

Finally, Finalization is performed as follows:

Finalization =
S[1..3] || (S[4]⊕ S[0]) || (S[9]⊕ S[0]) || S[10..12] ||

(S[18]⊕ S[0]) || S[19..21] || (S[27]⊕ S[0]) || S[10..12]
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3.8 Groestl

3.8.1 Block Diagram Description

Groestl is an example of another SHA-3 candidate based on AES. A block diagram in

Figure 3.19 shows datapath used in our design. As opposed to a straightforward design, a

pipelined architecture is applied. The pipeline register is inserted between SubBytes and

ShiftBytes operations. A message block is xored with an initialized chain register to create

an input for the operation P in the first cycle of processing. In the next cycle, an input

message is loaded directly to the state register as an input to the operation Q. At the same

time when the first stage of the pipeline starts executing the operation Q, the second stage

of the pipeline continues the execution of the operation P. The first stage of the pipeline

consists of the ADD SUB unit. The second stage of the pipeline consists of the ShiftBytes

and MixBytes units. A part of the function P is always performed one cycle ahead of the

corresponding part of function Q. Finalization in this design takes two clock cycles. First,

the chaining value is xored with the final value of P, while Q is being still processed. In the

subsequent cycle the final result of Q is mixed with the chaining value as well. The entire

process is repeated until all blocks of a message are thoroughly mixed. Finally, a hash value

is taken from the bottom half of the chaining value.

Figure 3.20, describes how the AddConstant and SubBytes are performed in our design.

A round number is xored with the first byte of a message in the P operation. In the Q

operation, a complemented round number is xored into the 8th byte. After that, all bytes

go through the SBOX of AES.

ShiftBytes operation is performed by rotating all bytes in row i to the right by σi,

where σ is given as σ = [0, 1, 2, 3, 4, 5, 6, 7]. Figure 3.21 describes MixBytes operation.

The MixBytes operation splits an input into b/64 64-bit words. Each word becomes an

input into Groestl matrix multiplication. The constant matrix multiplication table used in

Groestl is given in Table 3.11. All operations are performed in GF (28), the same as in

AES, as shown in Table 3.2.
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Figure 3.19: Groestl : Datapath

Table 3.11: Groestl: Matrix Multiplier Table
B[0] B[1] B[2] B[3] B[4] B[5] B[6] B[7]

B’[0] 2 2 3 4 5 3 5 7
B’[1] 7 2 2 3 4 5 3 5
B’[2] 5 7 2 2 3 4 5 3
B’[3] 3 5 7 2 2 3 4 5
B’[4] 5 3 5 7 2 2 3 4
B’[5] 4 5 3 5 7 2 2 3
B’[6] 3 4 5 3 5 7 2 2
B’[7] 2 3 4 5 3 5 7 2
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3.8.2 256 vs 512 Variant Differences

In Groestl-512 the block size is doubled. This means that the state size is increased by a

factor of two as well. All basic operations of Groestl remain the same with the exception

of ShiftRows. The ShiftRows rotation constants for each row are now changed to σ =

[0, 1, 2, 3, 4, 5, 6, 11]. Finally, the number of rounds for Groestl-512 is increased to 14.

46



3.9 Hamsi

3.9.1 Block Diagram Description

Hamsi’s datapath is shown in Figure 3.22. For every message block, an expanded message

is concatenated with the chaining value to form a state. This state is viewed as an array of

32-bit words. The state is transformed through P or Pf rounds, using ACC, Substitution

Layer and Diffusion Layer in each round. For Hamsi-256, P and Pf are equal to 3 and 8,

respectively. Pf is selected as a number of rounds during processing of the last block of a

message. After completing all rounds, the state is truncated and xored with the previous

chaining value to form a new one.

In Figure 3.23, Message Expansion is shown. Message Expansion expands an input

word of the size of w bits to an output of the size of half of the block size b/2. Each word

is split into an array of bytes. Each byte becomes an input to a ROM-based look-up table,

which produces a 32-bit output. The outputs from w/8 neighboring look-up tables are

xored together to produce a portion of the overall output of the Message Expansion. All

ROMs contain different dataset values, which can be obtained from a reference software

implementation included in the submission package of [29].

Concatenation is performed as follows:

y = m[0..1]||c[0..1]||c[2..3]||m[2..3]||m[4..5]||c[4..7]||m[6..7]

ACC refers to Addition of Constants and Counter step. This step can be described by

the following sequence of operations:

s′ = s⊕ α

s′[2] = s′ ⊕ c

Substitution Layer is shown in Figure 3.24. An input is split into four equal blocks.

Then the corresponding bits of each block form an input to the Hamsi SBOX. This SBOX

is defined in Table 3.12.
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Diffusion Layer is based on the logic function L, shown in 3.25. This function performs

the following sequence of operations:

(s[0], s[5], s[10], s[15]) = L(s[0], s[5], s[10], s[15])

(s[1], s[6], s[11], s[12]) = L(s[1], s[6], s[11], s[12])

(s[2], s[7], s[8], s[13]) = L(s[2], s[7], s[8], s[13])

(s[3], s[4], s[9], s[14]) = L(s[3], s[4], s[9], s[14])

Finally, Truncation is performed as follows:

y = s[0..3] || s[8..11]

Table 3.12: Hamsi: SBOX
X 0 1 2 3 4 5 6 7 8 9 A B C D E F

s[X] 8 6 7 9 3 C A F D 1 E 4 0 B 5 2
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Note : All bus sizes are 32 bits
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Figure 3.25: Hamsi : L

3.9.2 256 vs 512 Variant Differences

An input to Hamsi-512 is increased to 64 bits. As a result, the size of ROMs used in the

Message Expansion unit is increased as well. Similar to Hamsi-256, the data to populate

these ROM-based look-up tables can be found in the reference software implementation. The

rest of the operations remain largely the same with the following exceptions: Concatenation,

Diffusion Layer, and Truncation.

Concatenation of Hamsi-512 is performed as follows:

y =
m[0..1]||c[0..3]||m[2..5]||c[4..7],m[6..9]||c[8..9]||

m[10..11]||c[10..13]||m[12..13]||c[14..5]||m[14..15]

Diffusion Layer of Hamsi-512 is defined using the following sequence of operations:
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(s[0], s[9], s[18], s[27]) = L(s[0], s[9], s[18], s[27])

(s[1], s[10], s[19], s[28]) = L(s[1], s[10], s[19], s[28])

(s[2], s[11], s[20], s[29]) = L(s[2], s[11], s[20], s[29])

(s[3], s[12], s[21], s[30]) = L(s[3], s[12], s[21], s[30])

(s[4], s[13], s[22], s[31]) = L(s[4], s[13], s[22], s[31])

(s[5], s[14], s[23], s[24]) = L(s[5], s[14], s[23], s[24])

(s[6], s[15], s[16], s[25]) = L(s[6], s[15], s[16], s[25])

(s[7], s[8], s[17], s[26]) = L(s[7], s[8], s[17], s[26])

(s[0], s[2], s[5], s[7]) = L(s[0], s[2], s[5], s[7])

(s[16], s[19], s[21], s[22]) = L(s[16], s[19], s[21], s[22])

(s[9], s[11], s[12], s[14]) = L(s[9], s[11], s[12], s[14])

(s[25], s[26], s[28], s[31]) = L(s[25], s[26], s[28], s[31])

Truncation of Hamsi-512 is performed as follows:

y = s[0..7] || s[16..23]
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3.10 JH

3.10.1 Block Diagram Description

The block diagram of JH is shown in Figure 3.26. To process a message, the state register

is initialized to IV, the temporary register takes the value of an input message block and the

key register is initialized to C IV. The state is transformed using R8 for 36 rounds. Each

of these rounds use different keys generated by the key generator, R6. Once processing is

completed, the output from R8 is degrouped and xored with an input message stored in the

temporary register to create a new chaining value. If there are more message blocks, the

chaining value is xored with an input message and grouped together. The aforementioned

steps are repeated until all message blocks are processed. The hash value is taken from the

new chaining value of the last block processed.

The operations Group and Degroup are permutations specific to JH. Group and Degroup

can be described by the following sequence of operations. Note that k is the keysize and b

is equal to the input block size.� �
Group :
f o r i = 0 : k/2−1

y (b−i ∗8−1..b−i ∗8−4) = x(b−1 − i ) | | x (b−1 − ( i+k ) ) | | x (b−1 − ( i+2∗k ) ) | | x (b−1 − ( i+3∗k ) ) ;
y (b−i ∗8−5..b−i ∗8−8) = x(b−1 − ( i + k /2)) | | x (b−1 − ( ( i+k) + (k /2 ) ) ) | |

x (b−1 − ( i+2∗k + k/2)) | | x (b−1 − ( i+3∗k + k /2 ) ) ;
end� �

� �
Degroup :
f o r i in 0 to k/2−1 loop

dg (b−1 − i ) := rd (b−i ∗8−1);
dg (b−1 − ( i+k ) ) := rd (b−i ∗8−2);
dg (b−1 − ( i+2∗k ) ) := rd (b−i ∗8−3);
dg (b−1 − ( i+3∗k ) ) := rd (b−i ∗8−4);
dg (b−1 − ( i + k /2)) := rd (b−i ∗8−5);
dg (b−1 − ( i+k + k/2)) := rd (b−i ∗8−6);
dg (b−1 − ( i+2∗k + k/2)) := rd (b−i ∗8−7);
dg (b−1 − ( i+3∗k + k/2)) := rd (b−i ∗8−8);

end loop ;� �
In Figure 3.27, a generic description of a JH round is shown. The same unit is used for

R6 and R8. The differences are the key and input sizes. Where R6 uses values 64 and 256

for the key and the input sizes respectively, R8 uses values 256 and 1024. In a JH Round,

an input is viewed as an array of 4-bit blocks. These blocks go through either S0 or S1

s-boxes, defined in Table 3.13.
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Next, outputs from these sboxes are selected by a corresponding input key. Two con-

secutive outputs form an input to the linear transformation unit, L. A diagram of this unit

is shown in Figure 3.28. The transformed outputs are then permuted by the PERMUTE

block. PERMUTE can be described by a series of permutations given by the code below.

x, y and k refers to input, output and the size of the key, respectively.� �
f o r i = k/4−1:0

a ( i ∗4 + 0) <= x( i ∗4 + 0 ) ;
a ( i ∗4 + 1) <= x( i ∗4 + 1 ) ;
a ( i ∗4 + 2) <= x( i ∗4 + 3 ) ;
a ( i ∗4 + 3) <= x( i ∗4 + 2 ) ;

end generate ;
f o r i = k/2−1:0

b( i ) <= a( i ∗2 ) ;
b( i + k/2) <= a( i ∗2 + 1 ) ;

end
f o r i = k/2−1:0

y ( i ) <= b( i ) ;
end generate ;
f o r i = k/4−1:0

y ( i ∗2 + k/2) <= b( i ∗2 + 1 + k /2 ) ;
y ( i ∗2 + 1 + k/2) <= b( i ∗2 + k /2 ) ;

end generate ;� �
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Figure 3.28: JH : Linear Transformation

3.10.2 256 vs 512 Variant Differences

All operations are the same for both variants. The only exception is the output selection

function of JH-512, where 512 bits of the chaining value are selected instead of 256 bits in

JH-256.

Table 3.13: JH: SBOX
y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S0[x] 9 0 4 11 13 12 3 15 1 10 2 6 7 5 8 14
S1[x] 3 12 5 13 5 7 1 9 15 2 0 4 11 10 14 8
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3.11 Keccak

3.11.1 Block Diagram Description

Keccak is based on four basic logic operations: xor, and, not and rotate. Based on the

authors’ recommendations, Keccak-1600 is chosen as a candidate for SHA-3. For Keccak-

256, an input message block has the size of 1088 bits. The full details of our datapath are

shown in Figure 3.29. For every message block, an input is zero-extended to produce a

1600-bit state. This state can be viewed as a 5x5 array of 64-bit words as shown in Figure

3.30. An extended input is xored with the chaining value. For the first message block, the

chaining value is zero. The state is then transformed using Keccak Round for 24 rounds.

Finally, a hash value is selected from the chaining value of the last message block. The

description of the Keccak’s Round is shown in Figures 3.31, 3.32.

3.11.2 256 vs 512 Variant Differences

All operations are the same for both variants. The only exception is the output selection

of Keccak-512, where 512 bits of the chaining value are selected instead of 256 bits in

Keccak-256.
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3.12 Luffa

3.12.1 Block Diagram Description

The datapath of Luffa is shown in Figure 3.33. For every message block, an input block is

injected into the chain value via the Message Injection (MI) unit. The initial chaining value

is equal to IV. The MI unit is shown in Figure 3.34. The Galois field multiplication (x2),

used in the MI unit, is also shown in Figure 3.1.
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Figure 3.33: Luffa : Datapath

The state is then rotated wordwise using the Tweak operation shown in Figure 3.35.

The number of positions by which each word is rotated depends on the position of the word

in the input to the Tweak function. Next, the state is transformed through the Step function

for 8 rounds. A diagram of the Step function is shown in Figure 3.36. The Step function

consists of SubCrumb, MixWord and AddConstant operations. SubCrumb and MixWord

are shown in Figures 3.37 and 3.38, respectively. AddConstant is an addition of a constant

to the first and the fifth word of the state array. The constant is selected depending on

the round number. The values of these constants can be found from Appendix B of [32].

The process repeats itself until all message blocks are fully injected. Once processing is

completed, the state’s 256-bit blocks are xored together to form the hash value.
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3.12.2 256 vs 512 Variant Differences

Luffa-512 increases the state array size from 3 to 5. This means that the state’s size is

equal to 1280 bits. The Message Injection block is also redefined appropriately, as shown

in Figure 3.39. Since the finalization process only produces 256 bits at a time, the chain

value is hashed with another message block of value zero to produce the second half of a

512-bit hash value.
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3.13 SHA-2

3.13.1 Block Diagram Description

Our design of SHA-2 is based on [39]. A diagram of our SHA-2 circuit is shown in Figure

3.41. The detailed definitions of all SHA-2 operations shown in our diagram can be found

in [33].

Din

1σ

+ CSA CSA

0σ

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15

Wt

R16

SHA−2 Message Scheduler

Figure 3.40: SHA2 : Message Scheduler

3.13.2 256 vs 512 Variant Differences

The differences between the two variants include: change in the word size from 32 bits to

64 bits, word selection in the Message Scheduling unit, different operations Σ0 and Σ1, and

different constants Kt.
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3.14 Shabal

3.14.1 Block Diagram Description

The block diagram of Shabal is shown in Figure 3.42. W in the diagram represents a

counter. This counter counts the number of message blocks that has been hashed so far.

This value also includes the current message block. At a minimum, W has a value of one.

Shabal contains four state registers, A, B, C and M, each containing an array of 32-bit

words. The Shabal architecture used in this thesis is a twice unrolled architecture. An

input message block has its endianess switched before the start of processing. Hash value

is also required to switch its endianness before the data can be transmitted out.

In the first clock cycle, the following operations are performed:

A← Aiv[0..1]⊕ w[0..1] || Aiv[2..11]

B ← ((Biv +Mw) <<< 7)

C ← Civ

M ← Mw

In the next 24 clock cycles, two rounds of the main iteration unit are executed. This

means that all state registers get their data shifted. The last clock cycle prepares the state

for the next message block, if any. The performed operation, somewhat similar to the

operation executed in the first clock cycle, is shown below:

A← ap[0..1]⊕ w[0..1] || ap[2..11]

B ← (((C −M) +Mw) <<< 7)

C ← B

M ← Mw

Finally, if the message block is the last one, an output is produced out of the truncated

and endian-switched state B.
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3.14.2 256 vs 512 Variant Differences

There is no difference between the two variants except that no truncation is needed for

Shabal-512.

3.15 SHAvite-3

3.15.1 Block Diagram Description

SHAvite-3 works like a block cipher. Three round keys are generated for every round, based

on an input message block. The datapath of SHAvite-3-256 is shown in Figure 3.43. For

SHAvite-3-256, a block of message contains 512 bits, and 128 bits are loaded into the key

generation unit at a time. For every message, the state register and the chain value are

initialized to IV. The state register is then processed for 12 rounds. When the processing

is completed, the obtained output is xored with the current chain value to generate a new

chain value. If it is the last block of the message, the bottom half of the chain value is used

as a hash value.

The SHAvite-3 ROUND unit is shown in 3.44. Each main round, executed by the

ROUND unit, consists of 3 internal rounds. At the beginning of each main round, the top

half of the state is xored with the round key, keyx. The result is applied to the input of

the AES round. All internal rounds are provided with a key from the key generation unit,

with the exception of the last internal round where the string of zeros is used as a key.

After executing three internal rounds, the obtained result is xored with the bottom half of

the state and concatenated back to create a new state. This process is repeated until all

12 main rounds are completed. As a result, 36 clock cycles are required to hash a single

message block.

The key generation unit is shown in Figure 3.45. Key and/or keyx are generated for

each main round using this circuit.
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3.15.2 256 vs 512 Variant Differences

SHAvite-3-512 has the state size doubled compared to SHAvite-3-256. The basic operation

in the top level datapath remains the same. The number of main rounds is increased from

12 to 14. The ROUND unit is also doubled in size. Figure 3.46 illustrates changes in the

ROUND unit for SHAvite-3-512. The same operation as Round256 is performed with the

exception that the number of internal rounds is increased from 3 to 4. Figure 3.47 describes

a new key generation circuit. Once again, one can find similarity in terms of the design,

with the exception that all major building blocks are duplicated. Note that in this design

four clock cycles are required to load a 1024-bit message block, 256 bits per clock cycle.
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Figure 3.47: Shavite3 : Keygen (512 bits)
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3.16 SIMD

3.16.1 Block Diagram Description

The block diagram of SIMD is shown in Figure 3.48. The design executes four steps at

a time, and requires 9 clock cycles to process a message block. The Message Expansion

unit requires a total of 8 clock cycles to fully expand a message block. Assuming that the

message block is expanded, the first block of the message is xored with IV and used as a

state. This state is transformed for 9 clock cycles (or four and a half round). If there is

more than one message block, the chaining value is xored with a new message block and the

same process is repeated again. The final hash value is obtained by truncating the chaining

value. Both the input message block and the output hash value are required to switch their

endianness in order to maintain correct operation.

The Message Expansion unit can be considered as a whole core by itself. In our design,

an additional controller is added between FSM1 and FSM2 to control this unit. This ensures

that we can keep processing an input block while reading the next message at the same

time. The first part of Message Expansion is its NTT unit. The NTT unit is based on a

folded 7-stage DFT that uses a 2-point DFT as its base. First, each byte of an input is

zero-extended to 9 bits. Then, these 9-bit blocks are inserted into the 2-point NTT unit

with its respective twiddle factor as an input. The twiddle factor is chosen based on the

DFT’s stage number. The calculation of the twiddle factors can be performed using the

following VHDL code:� �
type ha l f p t sx8 i s array ( natura l range <>) OF s t d l o g i c v e c t o r (7 downto 0 ) ;

f unc t i on twidd le gen ( po int : i n t e g e r ; pts : i n t e g e r ) return ha l f p t sx8 i s
v a r i ab l e tw i dd l e f a c t o r : ha l f p t sx8 ( 0 to pts /2 −1 ) := tw idd l e f a c t o r g en ( pts ) ;
va r i ab l e y : ha l f p t sx8 ( 0 to pts /2 −1 ) ;
va r i ab l e s tep : i n t e g e r := ( pts / point ) ;
va r i ab l e cu r s t ep : i n t e g e r := 0 ;

begin
i f ( s tep = pts /2 ) then

s tep := 0 ;
end i f ;
f o r i in 0 to pts/2−1 loop

y ( i ) := tw i dd l e f a c t o r ( cu r s t ep ) ;
cu r s t ep := cu r s t ep + step ;
i f ( cu r s t ep >= pts /2) then

cu r s t ep := cu r s t ep − pts /2 ;
end i f ;

end loop ;
return y ;

end twidd le gen ;� �
The function takes two inputs, point and pts, and returns one output, y. point refers
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to the current DFT stage and pts stands for the maximum stage. For SIMD-256, pts is

always equal to 128 as there are seven stages of NTT with 128 points. Seven values of the

twiddle factor need to be generated for NTT with 128 points. These are 2,4,8,16,32,64 and

128. The output, y, returns an array of 64 by 8 bits.

The building base of a 2-point DFT is shown in Figure 3.50. The unit is built using

several repetitions of the butterfly units. The input is viewed as an array of 9 bit values.

Two consecutive values go into each butterfly unit, and their outputs are combined to form

a result. In a Butterfly unit, a modulo 257 reduction is applied to ensure that there is no

bit growth. The Modulo 257 unit is shown in Figure 3.51.

Since there are 7 stages for a 128-point DFT, it is necessary to permute the input before

entering 2-point DFTs so that the unit can perform correctly. The permutation can be

derived from any diagrams showing at least 4 to 8 point DFT (many of such diagrams

are available on the internet). In the last cycle, where a 128-point DFT is performed, the

result is permuted to its correct position. The final operation of the NTT unit involves the

addition between the output of the 128-point DFT and an addition factor. Addition factor

final is selected if the expanded message block is the last block of the message. Addition

factor and addition factor final can be calculated using the following VHDL function, where

final is high for calculation of addition factor final and pts refers to the maximum-point

DFT used in the design (128 for SIMD-256) :� �
type ptsx10 i s array ( natura l range <>) OF s t d l o g i c v e c t o r (9 downto 0 ) ;

f unc t i on a f gen ( f i n a l : i n t e g e r ; pts : i n t e g e r ) return ptsx10 i s
v a r i ab l e y : ptsx10 (0 to pts −1);
va r i ab l e b e t a i : s t d l o g i c v e c t o r (17 downto 0 ) ;
va r i ab l e beta : s t d l o g i c v e c t o r (7 downto 0 ) ;

begin
i f ( pts = 128 ) then

beta := c onv s t d l o g i c v e c t o r ( 9 8 , 8 ) ;
e l s e

beta := c onv s t d l o g i c v e c t o r ( 163 , 8 ) ;
end i f ;
y (0 ) := c onv s t d l o g i c v e c t o r ( 1 , 1 0 ) ;
f o r i in 1 to pts−1 loop

b e t a i := y ( i −1) ∗ beta ;
b e t a i := c onv s t d l o g i c v e c t o r ( ( conv in t eg e r ( b e t a i ) mod 257 ) , 18 ) ;
y ( i ) := b e t a i (9 downto 0 ) ;

end loop ;
i f ( f i n a l = 1 ) then

i f ( pts = 128 ) then
beta := c onv s t d l o g i c v e c t o r ( 5 8 , 8 ) ;

e l s e
beta := c onv s t d l o g i c v e c t o r ( 4 0 , 8 ) ;

end i f ;
b e t a i := "000000000000000001" ;
f o r i in 0 to pts−1 loop

y ( i ) := y ( i ) + be t a i (9 downto 0 ) ;
b e t a i := b e t a i (9 downto 0) ∗ beta ;
b e t a i := c onv s t d l o g i c v e c t o r ( ( conv in t eg e r ( b e t a i ) mod 257 ) , 18 ) ;

end loop ;
end i f ;
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Figure 3.49: SIMD : NTT
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return y ;
end a f gen ;� �

The last step of the Message Expansion unit is to perform Concatenated Code and Per-

mute. These operations are described in Section 1.2.2 of [36]. A diagram of Concat Permute

(CP) is shown in Figure 3.52. To reduce the resource requirements in Concatenated Code,

Permute is performed first. An input is viewed as an array of 9 bit values. For SIMD-256,

this array size is equal to 128. Permute 1 forms a matrix of 32 x 4 of 18 bits each. This

doubles the size of an input. The permutation of Permute 1 is given as follows:

with0 ≤ j ≤ 3

Z ′ij =


x[8i+ 2j] || x[8i+ 2j + 1] when 0 ≤ i ≤ 15

x[8i+ 2j − 128] || x[8i+ 2j − 64] when 16 ≤ i ≤ 23

x[8i+ 2j − 191] || x[8i+ 2j − 127] when 24 ≤ i ≤ 31


Next, the matrix Z ′ is permuted to form W ′ in Permute 2. The permutation table is

given in Table 3.14, where W ′ij = Z
′P (i)
j .

Table 3.14: SIMD: Permute 2
cycle 0 1 2 3
i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P (i) 4 6 0 2 4 5 3 1 15 11 12 8 9 13 10 14
cycle 4 5 6 7
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

P (i) 17 18 23 20 22 21 16 19 30 24 25 31 27 29 28 26

A multiplexer selects appropriate data depending on the cycle number. A selected value

is viewed as an array of 4 x 4 with 18 bits at each location. Each 18-bit value is split in
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half and entered into Lift module shown in Figure 3.53. An output from the Lift module

is then multiplied by a constant. The constant is 185 for the first four cycles and 233 for

the last four cycles. The outputs are combined back into a 4 x 4 matrix of 32-bit words.

Lift
9

9 8
16

32

Permute 1

32

32

c = 2*b+(2*b)/8

NOTE:

0

1

8

185

8

8
233

9

9 8

8

16
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32

c/4

c/4

c/4
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16
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X
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b b
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Figure 3.52: SIMD : Concatenate and Permute (CP)
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The core operation of our SIMD’s design is the Half Round module. This module is

equivalent to four steps of the SIMD round. A block diagram of the Half Round operation

is shown in Figure 3.54. Half Round is based of 16 QS units with quarterstep as its core.

quarterstep is shown in Figure 3.55. There are four inputs to quarterstep. ain comes from

its adjacent quarterstep controlled by a multiplexer. w comes from the message expansion

unit. r and s are rotation constants depending on the round number. Additionally, phi
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is selected to perform IF or MAJ depending on the round number. These constants are

given as follows:

φ(i) r(i) s(i)

IF π0 π1

IF π1 π2

IF π2 π3

IF π3 π0

MAJ π0 π1

MAJ π1 π2

MAJ π2 π3

MAJ π3 π0

Round π0 π1 π2 π3

0 3 23 17 27

1 28 19 22 7

2 29 9 15 5

3 4 13 10 25

Finally, a permutation given for Ain is given as follows :

p(0)(j) = j ⊕ 1

p(1)(j) = j ⊕ 2

p(2)(j) = j ⊕ 3

3.16.2 256 vs 512 Variant Differences

The biggest change in SIMD-512 is the increase in the block size. This change causes the

size of NTT to increase. DFT now requires 8 stages instead of 7 and the size of the butterfly

increases by a factor of two. In the CP unit, Permute 1 is defined as follows:

with0 ≤ j ≤ 7

Z ′ij =


x[8i+ 2j] || x[8i+ 2j + 1] when 0 ≤ i ≤ 15

x[8i+ 2j − 256] || x[8i+ 2j − 128] when 16 ≤ i ≤ 23

x[8i+ 2j − 383] || x[8i+ 2j − 255] when 24 ≤ i ≤ 31
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Additionally, the Feistal Ladder is increased from 4 to 8. This necessitates the change in

the Ain permutation to the mux. The permutation for SIMD-512 of Ain is given as follows:

p(0)(j) = j ⊕ 1

p(1)(j) = j ⊕ 6

p(2)(j) = j ⊕ 2

p(3)(j) = j ⊕ 3

p(4)(j) = j ⊕ 5

p(5)(j) = j ⊕ 7

p(6)(j) = j ⊕ 4
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3.17 Skein

3.17.1 Block Diagram Description

The datapath of Skein is shown in Figure 3.56. This diagram is based on the Skein-256-

256 construction. The datapath of Skein can be separated into two main parts, the key

generation and the Skein’s round. The round includes a layer of 64 bit additions and the

4x unrolled MIX and PERMUTE unit. An input message block is used to initialize the

internal state of Skein. This state is viewed as an array of four 64-bit words. For every

message block, a subkey is added to the state once for every 4 rounds of the MIX and

PERMUTE operation. The total number of rounds for Skein-256 is 72. Because of the 4x

unrolled architecture, these rounds are executed in 18 clock cycles. Then, the finalization

is performed after the last round is executed. The finalization is performed at the end of

each message block processing, in order to generate a new chaining value. This operation is

equivalent to an addition between the state and the key, followed by an xor with the current

message block.

The key generation unit takes two input sources, the chaining value and the tweak. The

chaining value acts as a key to the key generation unit. It is computed from the previous

message block or taken as an initialization vector in the beginning of the message. A tweak

is controlled by the controller. Its full specification can be found under Section 3.4 of [37].

In Figure 3.57, a key generation unit for our design is shown. s is the subkey counter. It

gets reset for every new message block.

In Figure 3.58, a 4-times unrolled MIX and PERMUTE unit is shown. This unit is

based on eight instantiations of the MIX operation. The MIX operation is shown in Figure

3.59. The rotation constants are given in Table 3.15. The round number is calculated

modulo 8. The permutation executed between each round of MIX is also given in Table

3.16.
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Table 3.15: Skein: Rotation Constants, Nw is the number of words
Nw 4 8 16
j 0 1 0 1 2 3 0 1 2 3 4 5 6 7
0 14 16 46 36 19 37 24 13 8 47 8 17 22 37
1 52 57 33 27 14 42 38 19 10 55 49 18 23 52
2 23 40 17 49 36 39 33 4 51 13 34 41 59 17
3 5 37 44 9 54 56 5 20 48 41 47 28 16 25
4 25 33 39 30 34 24 41 9 37 31 12 47 44 30
5 46 12 13 50 10 17 16 34 56 51 4 53 42 41
6 58 22 25 29 39 43 31 44 47 46 19 42 44 25
7 32 32 8 35 56 22 9 48 35 52 23 31 37 20

Table 3.16: Skein: Permutation, Nw is the number of words
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x
4 0 3 2 1

Nw = 8 2 1 4 7 6 5 0 3
16 0 9 2 13 6 11 4 15 10 7 12 3 14 5 8 1

3.17.2 256 vs 512 Variant Differences

Skein-512 as submitted to the SHA-3 contest is based on Skein-512-512. The state size in

this version is doubled compared to the state size in the 256 bit version. Changes in the

key generation unit involve the extension of the register to the right side of the grey area

in Figure 3.57. In essence, k[3] becomes k[7], k[2] becomes k[6] and so on. In the MIX

and PERMUTE unit, the MIX column is expanded to 4 columns instead of 2. Hence, the

permutation and rotation constants are changed. Finally, the
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Chapter 4: Design Summary and Results

4.1 Design Summary

All timing data presented in this paper are based on the equations for the Hash Function

Execution Time (in clock cycles) and Throughput (in Mbit/s) as summarized in Table 4.1.

Additionally, the major parameters of both hash function variants (with a 256-bit and a

512-bit output), and the predicted area and throughput ratios are summarized in Table

4.2.

Table 4.1: The I/O Data Bus Width (in bits), Hash Function Execution Time (in clock
cycles), and Throughput (in Mbits/s) for the 256-bit and 512-bit variants of all SHA-3
candidates and the current standard, SHA-2. T denotes the clock period in µs. Values
different between 256-bit and 512-bit variants are shown in bold.

256-bit variants 512-bit variants
Function I/O Bus Hash Time Throughput I/O Bus Hash Time Throughput

width [cycles] [Mbit/s] width [cycles] [Mbit/s]
BLAKE 64 2+8+20·N+4 512/(20·T) 64 2+16/2+14·N+8/2 1024/(14·T)
BMW 64 2+8/8+N+1 512/T 64 2+16/16+N+8/16 1024/T
CubeHash 64 2+4+16·N+160+4 256/(16·T) 64 2+4+16·N+160+8 256/(16·T)
ECHO 64 3+24+27·N+4 1536/(27·T) 64 3+16+31·N+8 1024/(31·T)
Fugue 32 2+N+18+8 32/T 32 2+4·N+21+16 32/(4·T)
Groestl 64 3+8+21·N+4 512/(21·T) 64 2+16/2+29·N+8/2 1024/(29·T)
Hamsi 32 3+1+3·(N-1)+6+8 32/(3·T) 64 3+1+6·(N-1)+6+8 64/(6·T)
JH 64 3+8+36·N+4 512/(36·T) 64 3+8+36·N+8 512/(36·T)
Keccak 64 3+17+24·N+4 1088/(24·T) 64 2+9+24·N+8 576/(24·T)
Luffa 64 3+4+9·N+9+4 256/(9·T) 64 3+4+9·N+2·9+8 256/(9·T)
Shabal 64 3+8+1+25·N+3·25+4 512/(25·T) 64 3+8+1+49·N+3·49+8 512/(49·T)
Shavite-3 64 3+8+37·N+4 512/(37·T) 64 3+16+57·N+8 1024/(57·T)
SIMD 64 3+8+8+9·N+4 512/(9·T) 64 3+16+9+9·N+8 1024/(9·T)
Skein 64 2+4+9·N+4 256/(9·T) 64 2+8+9·N+8 512/(9·T)
SHA-256 32 2+1+65·N+8 512/(65·T) 64 2+1+81·N+8 1024/(81·T)

In general, area of the circuit is most affected by the state size. As a result, the predicted

area ratio between the 512 and 256-bit variants can be roughly approximated as shown in

Eq. 4.1 below.
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Table 4.2: Major parameters of the 256-bit and 512-bit variants of all SHA-3 candidates
and the current standard, SHA-2. Values different between 256-bit and 512-bit variants
are shown in bold. The first approximations of the predicted area ratio (512 vs. 256-bit
variant) and the predicted throughput ratio (512 vs. 256-bit variant) are given in the last
two columns.

256-bit variant 512-bit variant Predicted Predicted
state Block Round Word State Block Round Word Area Thr
size size no size size size no size Ratio Ratio

BLAKE 512 512 10 32 1024 1024 14 64 2 1.43
BMW 512 512 16 32 1024 1024 16 64 2 2
CubeHash 1024 256 16 32 1024 256 16 32 1 1
ECHO 2048 1536 8 32 2048 1024 10 32 1 0.53
Fugue 960 32 2 32 1152 32 4 32 1.2 0.5
Groestl 512 512 10 64 1024 1024 14 64 2 1.43
Hamsi 512 32 3 32 1024 64 6 32 2 1
JH 1024 512 36 64 1024 512 36 64 1 1
Keccak 1600 1088 24 64 1600 576 24 64 1 0.53
Luffa 768 256 8 32 1280 256 8 32 1.67 1
Shabal 1408 512 48 32 1408 512 48 32 1 1
SHAvite-3 512 512 36 32 1024 1024 56 32 2 1.29
SIMD 512 512 36 32 1024 1024 36 32 2 2
Skein 256 256 72 64 512 512 72 64 2 2
SHA-2 256 512 64 32 512 1024 80 64 2 1.6

Predicted Area Ratio512/256 =
State size512

State size256
(4.1)

Additional factors that can affect the actual area ratio include:

• message block size, which determines the size of the input shift register.

• output size, which determines the size of the output shift register.

• logic of the main round, which may be more complex in case of a 512-bit variant of a

function.

• logic required for message expansion or key generation, which may be more complex

in case of a 512-bit variant of a function.

• logic required for initialization and finalization, which may not follow the datapath

width.

• size of the control unit, which is likely to remain constant between two variants, but

typically contributes only small percentage to the total circuit area.
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Similarly, the throughput ratio between 512 and 256-bit variants can be estimated based

on the equation for throughput, Eq. 2.4, under the assumption that the critical path, and

thus the clock period, are similar in both variants.

Predicted Throughput512/256 =
Thr512

Thr256
=

Block size512
Round512

Block size256
Round256

(4.2)

In the actual circuits, the clock period, T , may change due to the increase in the critical

path in case of a 512-bit variant of a function.

For both predictions, the actual results will most likely vary and be dependent on a

particular FPGA family, and selected tools. This includes:

• Tools performance. The results may vary depending on the tool version and vendor.

• Elementary resource behavior. The compatibility between a logic operation and a

corresponding resource may affect the area, e.g., in case of the look-up table size.

• Design congestion. Particularly in the low cost FPGAs, the low number of available

resources may limit the tool’s ability for successful routing, resulting in longer than

expected critical path and/or increase in resource utilization.

Based on these predictions, we can divide the 15 investigated algorithms into 6 major

groups:

• Group 1: area and throughput are not affected by the change of the output size:

CubeHash, JH, Shabal.

• Group 2: area and throughput both double: BMW, SIMD, Skein.

• Group 3: area and throughput both increase, but area increases more: BLAKE,

Groestl, SHAvite-3, and SHA-2.

• Group 4: area stays the same and throughput decreases: ECHO, Keccak.

96



• Group 5: area increases and throughput stays the same: Hamsi, Luffa.

• Group 6: area increases and throughput decreases: Fugue.

The groups are ranked ascendingly from the point of view of the throughput to area

ratio, with Group 1 being the best and Group 6 the worst.

4.2 Results

In Tables 4.3 and 4.4, the absolute results obtained for our implementations of the current

standard SHA-2 are summarized. The results are repeated across seven selected FPGA

families. In terms of the design, an architecture by Chaves et al. [39] is selected, as it is

considered one of the best known SHA-2 architectures.

Table 4.3: Results for the reference implementation of SHA-256 (architecture with
rescheduling)

Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
Max. Clk Freq. [MHz] 90.84 183.02 207.00 111.04 126.86 158.08 212.81
Throughput [Mbit/s] 715.56 1441.60 1630.49 874.65 999.27 1245.18 1676.29
Area 838 838 433 1655 1653 973 963
Throughput to Area Ratio 0.85 1.72 3.77 0.53 0.60 1.28 1.74

Table 4.4: Results for the reference implementation of SHA-512 (architecture with
rescheduling)

Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
Max. Clk Freq. [MHz] 90.06 168.75 215.84 93.54 113.15 177.34 234.80
Throughput [Mbit/s] 1138.51 2133.31 2728.68 1182.53 1430.44 2241.93 2968.34
Area 1367 1403 646 2916 2915 1639 1620
Throughput to Area Ratio 0.83 1.52 4.22 0.41 0.49 1.37 1.83

In Tables 4.5 and 4.6, the actual performance measures of the 256 and 512-bit variants

of all investigated algorithms are reported for the case of Xilinx Virtex 5 and Altera Stratix

III, respectively.

Tables 4.7 and 4.8 summarize the clock frequencies of the implemented algorithms

across seven selected FPGAs. For 512-bit variants, some algorithms are unable to fit in the

selected FPGAs. These cases are denoted by ‘N/A’ in the following tables. Specifically,

BLAKE is unable to fit in Spartan 3 due to the routing congestion. The same can be said

97



Table 4.5: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Xilinx Virtex 5 FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [CLB slices]

512 256 ratio 512 256 ratio 512 256 ratio 512 256 ratio
BLAKE 27.14 101.98 0.27 1985.02 2610.64 0.76 5429 1851 2.93 0.37 1.41 0.26
BMW 8.45 10.89 0.78 8655.87 5576.70 1.55 10401 4400 2.36 0.83 1.27 0.66
CubeHash 211.00 199.36 1.06 3376.00 3189.79 1.06 775 730 1.06 4.36 4.37 1.00
ECHO 200.97 234.85 0.86 6638.33 13360.47 0.50 5958 5445 1.09 1.11 2.45 0.45
Fugue 138.49 98.47 1.41 1107.88 3151.17 0.35 924 956 0.97 1.20 3.30 0.36
Groestl 180.15 355.87 0.51 6361.09 8676.50 0.73 3466 1884 1.84 1.84 4.61 0.40
Hamsi 171.38 248.08 0.69 1828.05 2646.15 0.69 2201 946 2.33 0.83 2.80 0.30
JH 220.95 282.20 0.78 3142.33 4013.51 0.78 1319 1275 1.03 2.38 3.15 0.76
Keccak 157.18 238.38 0.66 3772.39 10806.51 0.35 1417 1229 1.15 2.66 8.79 0.30
Luffa 220.12 281.53 0.78 7043.81 8008.02 0.88 2164 1154 1.88 3.25 6.94 0.47
Shabal 156.30 128.12 1.22 1633.17 2623.96 0.62 1355 1266 1.07 1.21 2.07 0.58
SHAvite-3 213.45 208.55 1.02 3834.56 2885.89 1.33 1954 1130 1.73 1.96 2.55 0.77
SIMD 36.37 40.89 0.89 4138.55 2325.90 1.78 17016 9288 1.83 0.24 0.25 0.97
Skein 27.20 49.79 0.55 1547.32 1416.14 1.09 2120 1312 1.62 0.73 1.08 0.68
SHA-2 215.84 207.00 1.04 2728.68 1630.49 1.67 646 433 1.49 4.22 3.77 1.12

Table 4.6: Major performance measures of SHA-3 candidates (512-bit and 256-bit variants)
when implemented in Altera Stratix III FPGAs

Max. Clk Freq. Throughput [Mbit/s] Area Throughput/Area
[MHz] [ALUTs]

512 256 ratio 512 256 ratio 512 256 ratio 512 256 ratio
BLAKE 39.07 109.21 0.36 2857.69 2795.78 1.02 10927 1969 5.55 0.26 1.42 0.18
BMW 7.44 16.45 0.45 7618.56 8422.40 0.90 25225 12632 2.00 0.30 0.67 0.45
CubeHash 216.12 237.64 0.91 3457.92 3802.24 0.91 1942 1935 1.00 1.78 1.96 0.91
ECHO 246.00 164.20 1.50 8125.94 9341.16 0.87 20085 21689 0.93 0.40 0.43 0.94
Fugue 206.27 123.64 1.67 1650.16 3956.48 0.42 2775 3594 0.77 0.59 1.10 0.54
Groestl 250.38 270.27 0.93 8841.00 6589.44 1.34 6288 3103 2.03 1.41 2.12 0.66
Hamsi 181.16 294.81 0.61 1932.37 3144.64 0.61 5668 2320 2.44 0.34 1.36 0.25
JH 359.45 364.30 0.99 5112.18 5181.16 0.99 3354 3117 1.08 1.52 1.66 0.92
Keccak 269.61 296.30 0.91 6470.64 13432.27 0.48 3575 4458 0.80 1.81 3.01 0.60
Luffa 268.02 307.31 0.87 8576.64 8741.26 0.98 6888 3304 2.08 1.25 2.65 0.47
Shabal 219.73 126.87 1.73 2295.95 2598.30 0.88 3413 3600 0.95 0.67 0.72 0.93
SHAvite-3 215.38 255.00 0.84 3869.28 3528.65 1.10 5610 2497 2.25 0.69 1.41 0.49
SIMD 43.38 47.40 0.92 4935.68 2696.53 1.83 47671 22376 2.13 0.10 0.12 0.86
Skein 50.91 52.29 0.97 2896.21 1487.36 1.95 6396 3602 1.78 0.45 0.41 1.10
SHA-2 234.80 212.81 1.10 2968.34 1676.29 1.77 1620 963 1.68 1.83 1.74 1.05
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about BMW in Cyclone II, Cyclone III and Stratix II, where the design congestion due

to multi-operand additions exhausts available routing resources. For BMW and SIMD in

Spartan 3 and ECHO in Cyclone II, resource utilization of its 512-bit variant exceeds the

available resources of the largest FPGA device in a given family.

Table 4.7: Clock frequencies of all SHA-3 candidates (256-bit variants) and SHA-256 ex-
pressed in MHz (post placing and routing)

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
BLAKE 41.87 79.82 101.98 52.40 52.37 85.77 109.21
BMW 4.19 12.37 10.89 7.69 8.41 13.45 16.45
CubeHash 84.70 187.58 199.36 115.67 133.83 179.40 237.64
ECHO 52.10 131.90 234.85 0.00 105.70 109.50 164.20
Fugue 39.67 72.86 98.47 53.25 60.71 83.75 123.64
Groestl 105.72 234.74 355.87 132.00 148.46 216.73 270.27
Hamsi 90.37 200.88 248.08 148.83 183.52 193.87 294.81
JH 119.36 221.58 282.20 173.43 215.89 267.45 364.30
Keccak 96.32 202.47 238.38 165.07 174.28 198.65 296.30
Luffa 129.84 260.28 281.53 171.64 173.43 219.88 307.31
Shabal 30.99 114.03 128.12 69.57 68.76 105.40 126.87
SHAvite-3 84.60 152.23 208.55 95.40 114.40 170.00 255.00
SIMD 17.20 29.25 40.89 21.66 23.97 37.07 47.40
Skein 18.22 38.16 49.79 22.30 25.14 38.89 52.29
SHA-256 90.84 183.02 207.00 111.04 126.86 158.08 212.81

Table 4.8: Clock frequencies of all SHA-3 candidates (512-bit variants) and SHA-512 ex-
pressed in MHz (post placing and routing)

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III
BLAKE N/A 25.02 27.14 17.22 21.14 31.01 39.07
BMW N/A 6.03 8.45 N/A N/A N/A 7.44
CubeHash 93.99 183.79 211.00 114.34 130.77 163.00 216.12
ECHO 85.17 190.30 200.97 N/A 135.24 166.64 246.00
Fugue 64.25 122.84 138.49 86.61 100.74 142.05 206.27
Groestl 66.18 202.76 180.15 124.10 133.96 187.72 250.38
Hamsi 69.00 158.05 171.38 103.31 117.16 128.68 181.16
JH 113.66 238.60 220.95 173.55 208.07 265.67 359.45
Keccak 80.39 135.63 157.18 161.39 173.07 207.68 269.61
Luffa 93.41 210.88 220.12 143.53 172.98 192.49 268.02
Shabal 61.97 131.01 156.30 120.16 136.02 181.03 219.73
SHAvite-3 75.31 161.97 213.45 86.71 103.73 140.53 215.38
SIMD N/A 28.57 36.37 20.09 23.87 32.36 43.38
Skein 16.53 32.23 27.20 20.51 24.29 39.16 50.91
SHA-512 90.06 168.75 215.84 93.54 113.15 177.34 234.80

While high clock frequency shows that a cryptographic core can run fast, it is by no

means an indication that an algorithm will perform well in a specific application. A through-

put based on the performance for long messages alone is also not enough to justify the

selection of a candidate. For many applications, an algorithm that can perform really well
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for short messages may be more favorable than another that is exceptionally good for long

messages but terribly slow for short ones. In Figures 4.1 and 4.2, we present the execution

time as a function of the message length for 256-bit variants of all SHA-3 candidates and

SHA-256. Similar graphs for 512-bit variants of all algorithms are presented in Figures 4.1

and 4.4.

Message sizes used in these diagrams represent sizes before padding. Padding is assumed

to be done outside of a hash core (e.g., in software), and its time is not included in the

execution time. Execution time (Latency) is a function of the clock period, T, and the

total number of clock cycles required to process an N-block message, HTime(N), given by

Eq. 2.1. T is equal to an inverse of the clock frequency, which is given in Tables 4.7 and

4.8. The function HTime(N) for each candidate is given in Table 4.1.

For 256 and 512-bit variants, ECHO, Groestl and Luffa perform exceptionally well for

both long (10,000 bits or more) and short (less than 1,000 bits) messages. Keccak also

performs fairly well except in its 512-bit variant for long message sizes. In general, for 256

and 512-bit variants, most functions seem to outperform SHA-256 in terms of the execution

time for long message sizes. For short message sizes (less than 1000 bits), CubeHash, Shabal

and SIMD are not performing so well. Note that the results shown are dependent upon one

specific design and one FPGA device only.

In Tables 4.9 and 4.10, we report ratios of major performance measures (Area, Through-

put, and Throughput to Area Ratio) for a 512-bit variant vs. a 256-bit variant, averaged

(using geometric mean) over:

• all seven FPGA families,

• three Xilinx families (Spartan 3, Virtex 4 and Virtex 5),

• four Altera families (Cyclone II, Cyclone III, Stratix II and Stratix III),

• three Low Cost families (Spartan 3, Cyclone II and Cyclone II), and

• four High Performance families (Virtex 4, Virtex 5 , Stratix II and Stratix III).
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Figure 4.1: Execution time vs. message size for short messages up to 1,000 bits. 256-bit
variants of all SHA-3 Candidates and SHA-256 in Virtex 5.

Comparing averaged throughput to area ratio between Altera and Xilinx families, Xilinx

outperforms Altera in BLAKE, BMW, SHAvite-3 and SHA-256 by at least 15%.

Based on Table 2.2, 3 out of 4 of Xilinx favored algorithms rely heavily on multi-operand

additions (more than three inputs). Interestingly, with the exception of SHAvite-3, which

excels in Xilinx, Altera FPGAs give better results for algorithms that are based on AES

(ECHO, Fugue and Groestl). This may due to the fact that the structure of SHAvite-3 is

more complex than the structure of other AES-based algorithms. Serpent-based algorithms

perform equally well in FPGAs of both vendors. In general, the averaged throughput to

area ratio of 256 and 512-bit variants are within 25% between Xilinx and Altera with the

exception of Keccak where Altera outperforms Xilinx by almost 50%. In terms of the Low

Cost versus High Performance families, all algorithms seem to be equally matched between

the two categories. (Note: Shabal result need to be regenerated in 512 bit version)

The comparisons between predicted throughput and area ratios given in the last two

columns of Table 4.2 and the overall average (or geomeatric mean) of throughput and area

ratios provide a good agreement with the experimental results. The only algorithms, for
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Figure 4.2: Execution time vs. message size for short messages up top 10,000 bits. 256-bit
variants of all SHA-3 Candidates and SHA-512 in Virtex 5.

which the ratios are substantially different are listed below:

Blake: An underoptimized design may have caused the problem.

BMW: The throughput ratio is only half of what expected. This is most likely due to

the increase in the word size for a 512-bit variant, where the word size is increased from 32

to 64-bits, causing the critical path to increase as well. The reduction in throughput is not

by a factor of two because FPGAs are optimized for fast carry chain addition.

Hamsi: The area is larger than expected (2.4 vs. 2) because the message expansion unit

does not increase by a factor of two but rather by a factor of four (256 kbit vs. 1 Mbit). Also,

there is an increase in the area requirement of the main iterative round, where the number

of diffusion layers is increased from 4 to 12 units. Hence, the reduction of throughput (0.69

vs. 1). This tripling of the number of diffusion layers also required the layers to be separated

into two groups. Whereas in a 256-bit variant all 4 layers are computed in parallel, in a

512-bit variant 8 layers must be computed first, and the remaining 4 layers later.

Luffa: The area ratio is larger than predicted (2.08 vs. 1.67). This effect can be

explained by the more complex computations performed in the 512-bit variant of Luffa

during the Message Injection phase. In particular, the GF(28) constants used as inputs in
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Figure 4.3: Execution time vs. message size for short messages up to 1,000 bits. 512-bit
variants of all SHA-3 Candidates and SHA-512 in Virtex 5.

the Galois Field multiplications, change from small values of 1, 2, 3, 4 to the larger values

including 01, 02, 04, 08, 10, 0A, 0F.

Modern FPGA families are created using different fabrication process, layout, and basic

resources, which make comparison across several families in absolute terms difficult, if not

impossible. To mitigate this problem, the normalized results are defined and calculated to

provide a more direct comparison. A normalized result is calculated by dividing an absolute

result for a SHA-3 candidate by the corresponding result for the reference implementation

of the current standard SHA-2 with the same strength. Normalized results have no units,

and can be reasonably compared across multiple families of FPGAs. An overall result is a

geometric mean of results for all investigated FPGA families.

Tables 4.11, 4.12 and 4.13 summarize normalized results for the 256-bit variants of all

SHA-3 candidates in terms of area, throughput, and throughput to area ratio, respectively.

Similarly, Tables 4.14, 4.15 and 4.16 summarize normalized results for the 512-bit variants

of all SHA-3 candidates in terms of the same parameters.

In conjunction with the normalized results, Figures 4.5 and 4.6 provide two-dimensional
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Table 4.9: Ratio of the respective performance measures (Throughput (Thr), Area,
Throughput to Area Ratio (Thr/Area)) for a 512-bit variant vs. 256-bit variant aver-
aged (using geometric mean) over all 7 FPGA families (Overall), 3 families, and 4 Altera
Families.

Overall Xilinx Families Altera Families
512 vs. 256 variant 512 vs. 256 variant 512 vs. 256 variant

Area Thr Thr/Area Area Thr Thr/Area Area Thr Thr/Area
BLAKE 4.29 0.96 0.22 2.88 0.83 0.29 5.23 1.03 0.20
BMW 1.99 1.11 0.56 1.99 1.23 0.62 2.00 0.90 0.45
CubeHash 1.09 0.99 0.91 1.14 1.05 0.92 1.05 0.95 0.90
ECHO 1.02 0.78 0.77 1.07 0.73 0.69 0.97 0.83 0.86
Fugue 0.81 0.41 0.50 0.87 0.39 0.45 0.77 0.42 0.54
Groestl 1.87 1.14 0.61 1.74 0.94 0.54 1.98 1.32 0.66
Hamsi 2.40 0.69 0.29 2.37 0.75 0.31 2.41 0.65 0.27
JH 1.06 0.96 0.91 1.02 0.93 0.91 1.08 0.99 0.91
Keccak 0.92 0.45 0.49 1.03 0.38 0.37 0.85 0.52 0.61
Luffa 2.08 0.94 0.45 1.92 0.87 0.45 2.21 1.00 0.46
Shabal 1.00 0.82 0.83 1.04 0.72 0.69 0.96 0.91 0.94
SHAvite-3 2.07 1.19 0.58 1.91 1.28 0.67 2.20 1.13 0.51
SIMD 2.11 1.86 0.88 2.08 1.86 0.89 2.12 1.85 0.88
Skein 1.80 1.73 0.96 1.77 1.50 0.85 1.82 1.93 1.06
SHA-2 1.67 1.58 0.95 1.36 1.59 1.16 1.72 1.58 0.91

Table 4.10: Ratio of the respective performance measures (Throughput (Thr), Area,
Throughput to Area Ratio (Thr/Area)) for a 512-bit variant vs. 256-bit variant aver-
aged (using geometric mean) over all 7 FPGA families (Overall), 3 Low Cost families, and
4 High Performance Families.

Overall Low Cost Families High Performance Families
512 vs. 256 variant 512 vs. 256 variant 512 vs. 256 variant

Area Thr Thr/Area Area Thr Thr/Area Area Thr Thr/Area
BLAKE 4.29 0.96 0.22 4.88 1.04 0.21 4.02 0.92 0.23
BMW 1.99 1.11 0.56 N/A N/A N/A 1.99 1.11 0.56
CubeHash 1.09 0.99 0.91 1.12 1.02 0.91 1.06 0.96 0.91
ECHO 1.02 0.78 0.77 1.05 0.84 0.80 1.00 0.75 0.75
Fugue 0.81 0.41 0.50 0.79 0.41 0.52 0.83 0.40 0.48
Groestl 1.87 1.14 0.61 1.79 1.17 0.65 1.94 1.11 0.58
Hamsi 2.40 0.69 0.29 2.38 0.70 0.29 2.41 0.69 0.29
JH 1.06 0.96 0.91 1.06 0.97 0.91 1.05 0.95 0.91
Keccak 0.92 0.45 0.49 0.89 0.49 0.56 0.95 0.43 0.45
Luffa 2.08 0.94 0.45 2.18 0.95 0.43 2.00 0.94 0.47
Shabal 1.00 0.82 0.83 0.98 0.97 0.99 1.01 0.73 0.72
SHAvite-3 2.07 1.19 0.58 2.10 1.17 0.56 2.05 1.21 0.59
SIMD 2.11 1.86 0.88 2.10 1.92 0.91 2.11 1.83 0.87
Skein 1.80 1.73 0.96 1.85 1.86 1.01 1.76 1.64 0.93
SHA-2 1.67 1.58 0.95 1.72 1.45 0.85 1.63 1.68 1.03
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Table 4.11: Area (utilization of programmable logic blocks) of all SHA-3 candidates (256-bit
variants) normalized to the area of SHA-256

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
BLAKE 4.96 4.87 4.27 2.17 2.16 2.00 2.04 2.96
BMW 12.07 13.45 10.16 12.00 12.02 12.99 13.12 12.24
CubeHash 1.81 1.81 1.69 1.87 1.88 1.99 2.01 1.86
ECHO 30.87 28.48 12.58 0.00 39.77 22.29 22.52 24.58
Fugue 4.26 4.44 2.21 5.85 5.87 3.70 3.73 4.11
Groestl 15.96 16.01 4.35 4.60 4.50 3.21 3.22 5.86
Hamsi 2.17 2.16 2.18 1.92 1.94 2.40 2.41 2.16
JH 4.84 4.78 2.94 4.37 4.31 3.18 3.24 3.88
Keccak 3.97 3.99 2.84 3.77 3.62 4.20 4.63 3.82
Luffa 3.28 3.29 2.67 2.74 2.77 3.40 3.43 3.07
Shabal 3.75 3.84 2.92 3.67 3.68 3.90 3.74 3.63
SHAvite-3 4.91 4.91 2.61 5.68 5.64 2.57 2.59 3.89
SIMD 20.97 19.99 21.45 18.53 18.57 23.03 23.24 20.39
Skein 3.41 3.45 3.03 3.28 3.34 3.68 3.74 3.41

Table 4.12: Throughput of all SHA-3 candidates (256-bit variants) normalized to the
throughput of SHA-256

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
BLAKE 1.50 1.42 1.60 1.53 1.34 1.76 1.67 1.54
BMW 3.00 4.39 3.42 4.50 4.31 5.53 5.02 4.48
CubeHash 1.89 2.08 1.96 2.12 2.14 2.31 2.27 2.10
ECHO 4.14 5.21 8.19 0.00 6.02 5.00 5.57 5.56
Fugue 1.77 1.62 1.93 1.95 1.94 2.15 2.36 1.95
Groestl 3.60 3.97 5.32 3.68 3.62 4.24 3.93 4.02
Hamsi 1.35 1.49 1.62 1.82 1.96 1.66 1.88 1.67
JH 2.37 2.19 2.46 2.82 3.07 3.05 3.09 2.70
Keccak 6.10 6.37 6.63 8.56 7.91 7.23 8.01 7.21
Luffa 5.16 5.14 4.91 5.58 4.94 5.02 5.21 5.13
Shabal 0.89 1.62 1.61 1.63 1.41 1.73 1.55 1.46
SHAvite-3 1.64 1.46 1.77 1.51 1.58 1.89 2.11 1.70
SIMD 1.37 1.15 1.43 1.41 1.36 1.69 1.61 1.38
Skein 0.72 0.75 0.87 0.73 0.72 0.89 0.89 0.79

Table 4.13: Throughput to Area Ratio of all SHA-3 candidates normalized to the throughput
to area ratio of SHA-256

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
BLAKE 0.30 0.29 0.37 0.71 0.62 0.88 0.82 0.52
BMW 0.25 0.33 0.34 0.38 0.36 0.43 0.38 0.37
CubeHash 1.04 1.15 1.16 1.13 1.14 1.16 1.13 1.13
ECHO 0.13 0.18 0.65 0.00 0.15 0.22 0.25 0.23
Fugue 0.42 0.36 0.88 0.33 0.33 0.58 0.63 0.47
Groestl 0.23 0.25 1.22 0.80 0.81 1.32 1.22 0.69
Hamsi 0.62 0.69 0.74 0.94 1.01 0.69 0.78 0.77
JH 0.49 0.46 0.84 0.65 0.71 0.96 0.95 0.70
Keccak 1.54 1.60 2.34 2.27 2.18 1.72 1.73 1.89
Luffa 1.57 1.56 1.84 2.04 1.78 1.48 1.52 1.67
Shabal 0.24 0.42 0.55 0.44 0.38 0.44 0.41 0.40
SHAvite-3 0.33 0.30 0.68 0.27 0.28 0.74 0.81 0.44
SIMD 0.07 0.06 0.07 0.08 0.07 0.07 0.07 0.07
Skein 0.21 0.22 0.29 0.22 0.21 0.24 0.24 0.23
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Table 4.14: Area (utilization of programmable logic blocks) of all SHA-3 candidates (512-bit
variants) normalized to the area of SHA-512

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
BLAKE N/A 8.24 8.40 5.99 5.98 6.75 6.75 6.95
BMW N/A 13.50 16.10 N/A N/A N/A 15.57 15.01
CubeHash 1.31 1.27 1.20 1.17 1.17 1.19 1.20 1.21
ECHO 19.56 18.43 9.22 0.00 23.89 12.26 12.40 15.15
Fugue 2.22 2.16 1.43 2.54 2.52 1.72 1.71 2.00
Groestl 14.35 18.57 5.37 5.08 5.16 3.71 3.88 6.59
Hamsi 3.19 3.10 3.41 2.61 2.61 3.50 3.50 3.11
JH 3.03 2.90 2.04 2.65 2.69 2.05 2.07 2.46
Keccak 2.27 2.41 2.19 1.81 1.81 2.19 2.21 2.12
Luffa 3.92 3.82 3.35 3.60 3.63 4.28 4.25 3.82
Shabal 2.23 2.51 2.10 2.04 2.05 2.19 2.11 2.17
SHAvite-3 5.85 6.09 3.02 7.01 7.01 3.36 3.46 4.83
SIMD N/A 28.29 26.34 22.09 22.13 29.15 29.43 26.05
Skein 3.79 3.87 3.28 3.50 3.49 3.90 3.95 3.67

Table 4.15: Throughput of all SHA-3 candidates (512-bit variants) normalized to the
throughput of SHA-512

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
BLAKE N/A 0.86 0.73 1.07 1.08 1.01 0.96 0.94
BMW N/A 2.90 3.17 N/A N/A N/A 2.57 2.87
CubeHash 1.32 1.38 1.24 1.55 1.46 1.16 1.16 1.32
ECHO 2.47 2.95 2.43 0.00 3.12 2.46 2.74 2.68
Fugue 0.45 0.46 0.41 0.59 0.56 0.51 0.56 0.50
Groestl 2.05 3.36 2.33 3.71 3.31 2.96 2.98 2.90
Hamsi 0.65 0.79 0.67 0.93 0.87 0.61 0.65 0.73
JH 1.42 1.59 1.15 2.09 2.07 1.69 1.72 1.65
Keccak 1.69 1.53 1.38 3.28 2.90 2.22 2.18 2.07
Luffa 2.63 3.16 2.58 3.88 3.87 2.75 2.89 3.07
Shabal 0.57 0.64 0.60 1.06 0.99 0.84 0.77 0.76
SHAvite-3 1.19 1.36 1.41 1.32 1.30 1.13 1.30 1.28
SIMD N/A 1.52 1.52 1.93 1.90 1.64 1.66 1.69
Skein 0.83 0.86 0.57 0.99 0.97 0.99 0.98 0.87

Table 4.16: Throughput to Area Ratio of all SHA-3 candidates normalized to the throughput
to area ratio of SHA-512

Candidate Spartan 3 Virtex 4 Virtex 5 Cyclone II Cyclone III Stratix II Stratix III Overall
BLAKE N/A 0.10 0.09 0.18 0.18 0.15 0.14 0.14
BMW N/A 0.21 0.20 N/A N/A N/A 0.16 0.19
CubeHash 1.01 1.08 1.03 1.33 1.25 0.98 0.97 1.09
ECHO 0.13 0.16 0.26 0.00 0.13 0.20 0.22 0.18
Fugue 0.20 0.21 0.28 0.23 0.22 0.30 0.32 0.25
Groestl 0.14 0.18 0.43 0.73 0.64 0.80 0.77 0.44
Hamsi 0.20 0.25 0.20 0.36 0.34 0.17 0.19 0.24
JH 0.47 0.55 0.56 0.79 0.77 0.82 0.83 0.67
Keccak 0.75 0.63 0.63 1.81 1.60 1.02 0.99 0.98
Luffa 0.67 0.83 0.77 1.08 1.07 0.64 0.68 0.80
Shabal 0.25 0.26 0.29 0.52 0.48 0.39 0.37 0.35
SHAvite-3 0.20 0.22 0.46 0.19 0.19 0.34 0.38 0.27
SIMD N/A 0.05 0.06 0.09 0.09 0.06 0.06 0.06
Skein 0.22 0.22 0.17 0.28 0.28 0.26 0.25 0.24
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Figure 4.4: Execution time vs. message size for short messages up top 10,000 bits. 512-bit
variants of all SHA-3 Candidates and SHA-512 in Virtex 5.

graphs showing the dependence between the normalized area and the normalized throughput

for Xilinx Virtex 5 and Altera Stratix III families, respectively. Both graphs concern 256-

bit variants of all algorithms. In these diagrams, the higher the gradient, the better the

function in terms of the throughput to area ratio. The dotted line represents a normalized

line drawn based on the reference implementation of SHA-256. Any algorithms that reside

on the left side of the line perform better than SHA-256 in terms of the throughput to area

ratio. We can categorize the results into 3 groups as:

• Group 1: Better than SHA-256 (CubeHash, Groestl, Keccak and Luffa)

• Group 2: Worse than SHA-256 with small area (BLAKE, Fugue, Hamsi, JH, Shabal,

SHAvite-3 and Skein)

• Group 3: Worse than SHA-256 with large area (BMW, ECHO and SIMD)

The similar graphs calculated for the 512-bit variants of all algorithms are presented

in Figures 4.7 and 4.8. The criterion used for the classification of the 256-bit variants of

the SHA-3 candidates cannot be applied towards the 512-bit variants. With the exception
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Figure 4.5: Relative performance of all Round 2 SHA-3 Candidates (256-bit variants) in
terms of the normalized throughput and the normalized area in Xilinx Virtex 5 (with SHA-
256 used as a reference point).)

of CubeHash, for which the performance point barely touches the normalized line in case

of both presented families, other candidates fail to meet the same level of performance

compared to SHA-512. Additionally, by comparing diagrams for Virtex 5 and Stratix III,

it can be seen that the algorithms’ performance vary depending on the FPGA family.

Additionally, the overall normalized graphs for 256 and 512-bit variants are plotted in

Figures 4.9 and 4.10. The same criterion as used earlier for 256-bit variants of SHA-

3 candidates in case of Virtex 5 and Stratix III, can be applied to the case of overall

normalized results. In case of 512-bit variants, two groups can be formed based on the area

requirements of candidates, with BMW, ECHO and SIMD demonstrating prohibitively large

area requirements.

Finally, we present a combined graph representing an overall normalized throughput vs.

overall normalized area of 256 and 512-bit variants normalized to SHA-256 in Figure 4.11.
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Figure 4.6: Relative performance of all Round 2 SHA-3 Candidates (256-bit variants) in
terms of the normalized throughput and the normalized area in Stratix III (with SHA-256
used as a reference point).)

Figure 4.7: Relative performance of all Round 2 SHA-3 Candidates (512-bit variants) in
terms of the normalized throughput and the normalized area in Virtex 5 (with SHA-512
used as a reference point).)

109



Figure 4.8: Relative performance of all Round 2 SHA-3 Candidates (512-bit variants) in
terms of the normalized throughput and the normalized area in Stratix III (with SHA-512
used as a reference point).)

Figure 4.9: Relative performance of all Round 2 SHA-3 Candidates (256-bit variants) in
terms of the overall normalized throughput and the overall normalized area (with SHA-256
used as a reference point).)
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Figure 4.10: Relative performance of all Round 2 SHA-3 Candidates (512-bit variants) in
terms of the overall normalized throughput and the overall normalized area (with SHA-512
used as a reference point).)

Figure 4.11: Relative performance of all Round 2 SHA-3 Candidates (256 and 512-bit
variants) in terms of the overall normalized throughput and the overall normalized area
(with SHA-256 used as a reference point).
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Chapter 5: Results from Other Groups

5.1 Best Results from Other Groups

Table 5.1 presents the best published results in terms of the throughput to area ratio

for 256-bit variants of the SHA-3 Round 2 Candidates, and contrasts them with the best

results reported in this thesis. The implementation platform is Xilinx Virtex 5 family.

This platform has been selected because majority of papers from other groups target this

particular family. The corresponding throughput vs. area graph is also shown in Figure 5.1.

In general, due to our selection of the interface/protocol, the controller associated with

all our designs cost us between 80 and 150 slices. This overhead mainly originates from

the counter required to store the message length, communication module residing between

FSM1, 2 and 3, and some additional control logic. As a result, small designs such as

CubeHash may be at a disadvantage in terms of the throughput to area ratio compared to

the designs from other groups, following different interfaces. However, with the exception

of Shabal, most of our designs perform comparatively close (within 25%), if not better than

the best designs reported in the literature to date. Selected algorithms that underperform

are discussed below:

• BLAKE: The design by Aumasson et al. [23] is much smaller than our design. This

may be due to our inefficient implementation of the Permute unit (Figure 3.6). Ad-

ditionally, the removal of the temporary message block register and its corresponding

multiplexer should be able to further reduce our resource utilization.

• CubeHash: Interface overhead causes our throughput to area ratio to drop.

• Groestl: Interface overhead causes our throughput to area ratio to drop. Also, we may

yet overlook a possible way to reduce resource utilization.
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• Shabal: Detrey et al. [40] utilizes a shift register mode (SRL16) of Xilinx Multipurpose

Look-Up Tables.

• Skein: The differences may have been caused by an inefficient implementation of the

proposed design.

Table 5.1: Comparison of the best designs from other groups in terms of the Throughput
to Area Ratio with designs presented in this paper. All designs concern 256-bit variants of
the SHA-3 candidates.

Other Groups This Paper
Area Thr Thr/Area Source Area Thr Thr/Area

(CLB slices) (Mbit/s) (CLB slices) (Mbit/s)
BLAKE 1217 2438 2.00 Aumasson et al. [23] 1851 2610.6 1.41
CubeHash 590 2960 5.02 Kobayashi et al. [7] 730 3189.8 4.37
ECHO 9333 14860 1.59 Lu et al. [15] 5445 13360.5 2.45
Groestl 1722 10276 5.97 Gauvaram et al. [28] 1884 8676.5 4.61
Hamsi 718 1680 2.34 Kobayashi et al. [7] 946 2646.2 2.80
Keccak 1412 6900 4.89 Bertoni et al. [31] 1229 10806.5 8.79
Luffa 1048 6343 6.05 Kobayashi et al. [7] 1154 8008.0 6.94
Shabal 153 2051 13.41 Detrey et al. [40] 1266 2624.0 2.07
Skein 937 1751 1.87 Tillich [11] 1312 1416.1 1.08

5.2 Best Results

The best results (including our results and results from other groups) in terms of the

throughput to area ratio for 256-bit variants of all SHA-3 Round 2 candidates in Xilinx

Virtex 5 are summarized in Table 5.2. A corresponding throughput vs. area diagram is

shown in Figure 5.2.

There is no significant change in an overall ranking of SHA-3 Round 2 candidates in

terms of the throughput to area ratio compared to the ranking based exclusively on our

own results, with the exception of Shabal, which jumps to the lead. Additionally, Shabal

will most likely retains its lead in comparison of 512-bit variants as there is no functional

change between 256 and 512-bit variants of this algorithm.
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Figure 5.1: Best published results vs. GMU results for all Round 2 SHA-3 Candidates
(256-bit variants) in terms of throughput to area ratio in Xilinx Virtex 5

Table 5.2: Best results in terms of the Throughput to Area Ratio for 256-bit variants of all
SHA-3 Round 2 candidates in Xilinx Virtex 5

.

Area Thr Thr/Area Source
(CLB slices) (Mbit/s)

BLAKE 1217 2438.0 2.00 Aumasson et al. [23]
BMW 4400 5576.7 1.27 GMU
CubeHash 590 2960.0 5.02 Kobayashi et al. [7]
ECHO 5445 13360.5 2.45 GMU
Fugue 956 3151.2 3.30 GMU
Groestl 1722 10276.0 5.97 Gauvaram et al. [28]
Hamsi 946 2646.2 2.797 GMU
JH 1275 4013.5 3.15 GMU
Keccak 1229 10806.5 8.793 GMU
Luffa 1154 8008.0 6.939 GMU
Shabal 153 2051.0 13.41 Detrey et al. [40]
SHAvite-3 1130 2886.9 2.55 GMU
SIMD 9288 2325.9 0.25 GMU
Skein 937 1751.0 1.87 Tillich [11]
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Figure 5.2: Best results for all Round 2 SHA-3 Candidates (256-bit variants) in terms of
throughput vs. area in Virtex 5
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Chapter 6: Conclusions and Future Works

Based on our study, only one candidate, namely CubeHash, consistently outperforms SHA-

2 in terms of the Maximum Throughput to Area Ratio in the Overall category across 7

FPGA families for both 256 and 512-bit outputs. Keccak and Luffa clearly outperform

SHA-2 when 256-bit variants of all functions are taken into account, but fell short in case

of 512-bit variants.

While we can base our decision on choosing the best candidates to advance to the next

round on this study alone, some caution must be exercised. This is because there are at

least two more implementation targets that can be investigated: Maximum Throughput

and Minimum Area. In essence, an algorithm that performs extremely well for one opti-

mization target may fail to produce the same results in other studies. For instance, Keccak

outperforms other candidates in terms of the Throughput to Area Ratio and in terms of

the Maximum Throughput. However, if we were to focus on area, Keccak would not likely

rank equally high. This is due to its extensive use of multiple layers of permutations, which

make it hard to apply folding techniques leading to a compact architecture.

However, one can at least draw some conclusions regarding which candidates should be

dismissed in the next round. The three candidates that require large area, and as a result

demonstrate an extremely bad throughput to area ratio, namely BMW, ECHO and SIMD,

can be easily eliminated. This is due to the fact that even if we applied folding techniques

to their designs, it would be most likely infeasible to produce a reasonable throughput

for their compact (folded) architectures. In fact, a compact design of ECHO has been

developed recently by [41] with the throughput of 72 Mbps in Virtex 5. The throughput of

this design is approximately three times smaller than the throughput of the compact design

for Blake [20]. This comparison is performed under the assumption that the increased

usage of Block RAMs in compact Blake is offset by the increased use of CLB slices in
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compact ECHO. On top of that, it is indisputable that compact ECHO has almost thirty

times smaller throughput with almost the same slice count as the best design for Shabal

from [40]. Needless to say, very area consuming hash functions, such as ECHO should be

eliminated assuming that all candidates guarantee the same security level.

Comparing our results with results from different groups also proves that our designs

are comparable to others with the exception of Shabal which overtakes other candidates

in terms of the throughput to area ratio based on the study from Detrey et al. [40]. In

fact, Shabal’s extraordinary performance in that study will most likely allow this algorithm

to pass to the next round without much of a problem, unless, of course, a security flaw

is found. While this is very promising for Shabal, its victory as a next SHA-3 standard

is not yet assured in light of its ability to optimize for high-speed design. In fact, due to

its highly sequential nature, it is unlikely that the algorithm will be able to perform faster

than reported in the study by Feron and Francq [19]. Moreover, Shabal is quite slow in

hashing messages smaller than 10,000 bits compared to other SHA-3 candidates. As shown

in Figures 4.1, 4.2, 4.1 and 4.4, Shabal consistently underperformed when a message was

under 1000 bits and only performed adequately as compared to SHA-2 for messages in the

range of 10,000 bits.

Even though this thesis presents one of the most comprehensive studies of all SHA-

3 candidates, it is still far from complete. As noted earlier, other optimization targets

could be investigated. However, rather than using these two straightforward targets, it

may be better to investigate the algorithms’ performance and flexibility using folding and

unrolling techniques. This is because optimizing for the Maximum Throughput will most

likely lead to fully unrolled designs, and optimizing for Minimum Area will likely lead to

the microcontroller-like designs. Both of these design types are impractical as the speed-

optimized design will be extremely large and the area-optimized design will be extremely

slow. Assuming that we provide maximum acceptable area and minimum acceptable speed

for each optimization criterion, how do we know that we are not unintentionally giving an

advantage to one or more algorithms that easily meet these specific requirements?
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Rather than optimizing exclusively for Maximum Throughput or Minimum Area, it is

more practical to study a range of designs using our basic architectures presented in this

paper as a base. In general, this should include at least two and four times unrolled and

folded architectures (where applicable). This way, each algorithm would be represented not

by one, but by at least 5 different points. This study would also evaluate the flexibility of

all algorithms in terms of trading area for speed and speed for area. Indeed, maybe the

ability for an algorithm to adjust according to the need of a user is more important than

a specific single performance point in terms of area or speed. As such, our future project

will include investigation of architectures based on folding and unrolling, using our current

designs as a starting point for investigation.

A uniform padding circuit will also be developed and its cost evaluated. Additionally, an

investigation on the cost of the interface and its associated protocol will be performed if the

time permits. Furthermore, an analysis of power and energy will be performed for currently

implemented and future designs. Results across a broader range of FPGA families will be

gathered, including Spartan 6 and Virtex 6 from Xilinx, and Cyclone IV, Stratix IV and

Arria II from Altera. An influence of synthesis tools and high level description languages

will be investigated. A similar methodology will be applied toward designs implemented

using standard-cell ASIC technology. Additionally, candidates’ capability of using dedicated

FPGA resources, such as dedicated multipliers and DSP units, will be analyzed. The

performance of these candidates for other modes of operation will also be studied.

The information obtained from all these studies will allow us to compile a guideline for

developing hardware implementations targeting various hardware performance measures,

such as Maximum Throughput to Area Ratio, Maximum Throughput, Minimum Area,

etc. This will enable us to create a software program that can estimate the cost and

performance of a cryptographic core, or any hardware design for that matter, without the

need to implement this core in a hardware description language at the Register-Transfer

Level. Instead, a high level description, such as data flow diagram or a pseudocode, will be

used as an input sufficient to generate approximate results. While it is unlikely that such
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program would be able to evaluate an algorithm as well as an experienced human designer,

it should have sufficient accuracy to serve as a guide for developing future cryptographic

algorithms.
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G. Neubauer, A. Reiter, A. Köfler, and M. Mayrhofer, “Compact hardware implemen-
tations of the sha-3 candidates arirang, blake, grøstl, and skein,” Cryptology ePrint
Archive, Report 2009/349, 2009, http://eprint.iacr.org/.

[11] S. Tillich, “Hardware implementation of the sha-3 candidate skein,” Cryptology ePrint
Archive, Report 2009/159, 2009, http://eprint.iacr.org/.

[12] M. Bernet, L. Henzen, H. Kaeslin, N. Felber, and W. Fichtner, “Hardware imple-
mentations of the SHA-3 candidates shabal and cubehash,” Circuits and Systems, pp.
515–518, 2009, 52nd IEEE International Midwest Symposium on 2-5 Aug.

[13] J. Fan, “Hardware evaluation of the hash function hamsi,” Hamsi’s website, 2009,
http://www.cosic.esat.kuleuven.be/publications/article-1322.pdf.

[14] M. Long, “Implementing skein hash function on xilinx virtex-5 fpga platform,” Online,
2010, http://www.skein-hash.info/sites/default/files/.

[15] L. Lu, M. O’Neill, and E. Swartzlander, “Hardware evalu-
ation of sha-3 hash function candidate echo,” Online, 2009,
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/
TheClaudeShannonWorkshoponCodingCryptography2009/DocumentFile,75649,
en.pdf.

[16] I. V. Miroslav Kneevic, “Hardware evaluation of the luffa hash family,” COSIC Publica-
tion, Online, 2009, http://www.cosic.esat.kuleuven.be/publications/article-1282.pdf.

[17] A. Namin and M. Hasan, “Hardware implementation of the compression function for
selected SHA-3 candidates,” in CACR 2009-28, July 2009, p. 29.

[18] J. Strømbergson, “Implementation of the keccak hash function in fpga devices,” Online,
2008, http://www.strombergson.com/files/.

[19] R. Feron and J. Francq, “Fpga implementation of shabal: Our first results,”
Online, 2010. [Online]. Available: http://ehash.iaik.tugraz.at/uploads/d/d4/FPGA
Implementation of Shabal - First Results.pdf

[20] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “Compact implementations of blake-
32 and blake-64 on fpga,” Cryptology ePrint Archive, Report 2010/173, 2010, http:
//eprint.iacr.org/.

[21] G. CERG, “Hardware interface of a secure hash algorithm sha v1.4,” Online, 2010,
http://cryptography.gmu.edu/athena/interfaces/.

[22] ——, “Athena project website,” Online, 2010, http://cryptography.gmu.edu/athena/.

[23] J.-P. Aumasson, L. Henzen, W. Meier, and R. C.-W. Phan, “Sha-3 proposal blake,”
Submission to NIST, 2008. [Online]. Available: http://131002.net/blake/blake.pdf

122

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.cosic.esat.kuleuven.be/publications/article-1322.pdf
http://www.skein-hash.info/sites/default/files/
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonWorkshoponCodingCryptography2009/DocumentFile,75649,en.pdf
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonWorkshoponCodingCryptography2009/DocumentFile,75649,en.pdf
http://www.ucc.ie/en/crypto/CodingandCryptographyWorkshop/TheClaudeShannonWorkshoponCodingCryptography2009/DocumentFile,75649,en.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1282.pdf
http://www.strombergson.com/files/
http://ehash.iaik.tugraz.at/uploads/d/d4/FPGA_Implementation_of_Shabal_-_First_Results.pdf
http://ehash.iaik.tugraz.at/uploads/d/d4/FPGA_Implementation_of_Shabal_-_First_Results.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://cryptography.gmu.edu/athena/interfaces/
http://cryptography.gmu.edu/athena/
http://131002.net/blake/blake.pdf


[24] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, J. Amund-
sen, and S. F. Mjolsnes, “Cryptographic hash function blue mid-
night wish,” Submission to NIST (Round 2), 2009. [Online]. Avail-
able: http://people.item.ntnu.no/∼danilog/Hash/BMW-SecondRound/Supporting
Documentation/BlueMidnightWishDocumentation.pdf

[25] D. J. Bernstein, “Cubehash specification (2.b.1),” Submission to NIST (Round 2),
2009. [Online]. Available: http://cubehash.cr.yp.to/submission2/spec.pdf

[26] R. Benadjila, O. Billet, H. Gilbert, G. Macario-Rat, T. Peyrin, M. Robshaw, and
Y. Seurin, “Sha-3 proposal: Echo,” Submission to NIST (updated), 2009. [Online].
Available: http://crypto.rd.francetelecom.com/echo/doc/echo description 1-5.pdf

[27] S. Halevi, W. E. Hall, and C. S. Jutla, “The hash function fugue,” Submission to
NIST (updated), 2009. [Online]. Available: http://domino.research.ibm.com/comm/
research projects.nsf/pages/fugue.index.html/{$}FILE/fugue 09.pdf

[28] P. Gauravaram, L. R. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger,
M. Schlffer, and S. S. Thomsen, “Grstl – a sha-3 candidate,” Submission to NIST,
2008. [Online]. Available: http://www.groestl.info/Groestl.pdf

[29] zgl Kck, “The hash function hamsi,” Submission to NIST (updated), 2009. [Online].
Available: http://www.cosic.esat.kuleuven.be/publications/article-1203.pdf

[30] H. Wu, “The hash function jh,” Submission to NIST (updated), 2009. [Online].
Available: http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh round2.pdf

[31] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche, “Keccak specifications,”
Submission to NIST (Round 2), 2009. [Online]. Available: http://keccak.noekeon.org/
Keccak-specifications-2.pdf

[32] C. D. Canniere, H. Sato, and D. Watanabe, “Hash function luffa: Specification,”
Submission to NIST (Round 2), 2009. [Online]. Available: http://www.sdl.hitachi.co.
jp/crypto/luffa/Luffa v2 Specification 20091002.pdf

[33] N. I. of Standards and T. (NIST), “Secure hash standard (SHS) FIPS publication 180-
3,” Oct 2008. [Online]. Available: http://csrc.nist.gov/publications/fips/fips180-3/
fips180-3 final.pdf

[34] E. Bresson, A. Canteaut, B. Chevallier-Mames, C. Clavier, T. Fuhr, A. Gouget,
T. Icart, J.-F. Misarsky, M. Naya-Plasencia, P. Paillier, T. Pornin, J.-R. Reinhard,
C. Thuillet, and M. Videau, “Shabal, a submission to nists cryptographic
hash algorithm competition,” Submission to NIST, 2008. [Online]. Available:
http://ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf

[35] E. Biham and O. Dunkelman, “The shavite-3 hash function,” Submission to NIST
(Round 2), 2009. [Online]. Available: http://www.cs.technion.ac.il/∼orrd/SHAvite-3/
Spec.15.09.09.pdf

[36] G. Leurent, C. Bouillaguet, and P.-A. Fouque, “Simd is a message digest,” Submission
to NIST (Round 2), 2009. [Online]. Available: http://www.di.ens.fr/∼leurent/files/
SIMD.pdf

123

http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://people.item.ntnu.no/~danilog/Hash/BMW-SecondRound/Supporting_Documentation/BlueMidnightWishDocumentation.pdf
http://cubehash.cr.yp.to/submission2/spec.pdf
http://crypto.rd.francetelecom.com/echo/doc/echo_description_1-5.pdf
http://domino.research.ibm.com/comm/research_projects.nsf/pages/fugue.index.html/{$}FILE/fugue_09.pdf
http://domino.research.ibm.com/comm/research_projects.nsf/pages/fugue.index.html/{$}FILE/fugue_09.pdf
http://www.groestl.info/Groestl.pdf
http://www.cosic.esat.kuleuven.be/publications/article-1203.pdf
http://icsd.i2r.a-star.edu.sg/staff/hongjun/jh/jh_round2.pdf
http://keccak.noekeon.org/Keccak-specifications-2.pdf
http://keccak.noekeon.org/Keccak-specifications-2.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.pdf
http://www.sdl.hitachi.co.jp/crypto/luffa/Luffa_v2_Specification_20091002.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://ehash.iaik.tugraz.at/uploads/6/6c/Shabal.pdf
http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.09.09.pdf
http://www.cs.technion.ac.il/~orrd/SHAvite-3/Spec.15.09.09.pdf
http://www.di.ens.fr/~leurent/files/SIMD.pdf
http://www.di.ens.fr/~leurent/files/SIMD.pdf


[37] N. Ferguson, S. Lucks, B. Schneier, D. Whiting, M. Bellare, T. Kohno, J. Callas, and
J. Walker, “The skein hash function family,” Submission to NIST (Round 2), 2009.
[Online]. Available: http://www.skein-hash.info/sites/default/files/skein1.2.pdf

[38] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” in First Advanced Encryption
Standard AES Conference, Ventura, California, USA, 1998, updated version from 1999.

[39] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis, “Improving sha-2 hardware
implementations,” in Cryptographic Hardware and Embedded Systems - CHES 2006,
Oct 2006, pp. 298–310.

[40] J. Detrey, P. Gaudry, and K. Khalfallah, “A low-area yet performant fpga im-
plementation of shabal,” Cryptology ePrint Archive, Report 2010/292, 2010, http:
//eprint.iacr.org/.

[41] J.-L. Beuchat, E. Okamoto, and T. Yamazaki, “A compact fpga implementation of
the sha-3 candidate echo,” Cryptology ePrint Archive, Report 2010/364, 2010, http:
//eprint.iacr.org/.

124

http://www.skein-hash.info/sites/default/files/skein1.2.pdf
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/


Curriculum Vitae

Ekawat Homsirikamol was born in December of 1986 in Bangkok, Thailand. He received
his Bachelor of Science in Electrical Engineering from the Volgenau School of Information
Technology and Engineering of George Mason University, Fairfax, USA in Spring 2008. He
continued his studies in the same school directly afterwards. During the course of his studies,
he was involved in teaching various undergraduate courses at George Mason University both
as a Teaching Assistant and as a Lab Instructor. He also worked as a Research Assistant in
the Cryptographic Engineering Research Group (CERG) with funding from the National
Institute of Standards and Technology (NIST). His research interest include but are not
limited to efficient hardware implementations of cryptographic algorithms and embedded
hardware design.

125


	List of Tables
	List of Figures
	Abstract
	 Introduction
	Hash Function
	Motivation
	Previous Studies

	 Design Methodology
	Uniform Interface and Protocol
	Optimization Target
	Basic Components
	Generalized Design Template
	Top Level
	Datapath
	Controller

	Performance Metric
	Latency
	Throughput
	Area
	Throughput to Area Ratio


	 Comprehensive Designs of SHA-3 Candidates
	Notations and Symbols
	Basic Component Description
	Multiplication by 2 in the Galois Field GF(28)
	Multiplication by n in the Galois Field GF(28)
	AES

	Blake
	Block Diagram Description
	256 vs 512 Variant Differences

	Blue Midnight Wish (BMW)
	Block Diagram Description
	256 vs 512 Variant Differences

	CubeHash
	Block Diagram Description
	256 vs 512 Variant Differences

	ECHO
	Block Diagram Description
	256 vs 512 Variant Differences

	Fugue
	Block Diagram Description
	256 vs 512 Variant Differences

	Groestl
	Block Diagram Description
	256 vs 512 Variant Differences

	Hamsi
	Block Diagram Description
	256 vs 512 Variant Differences

	JH
	Block Diagram Description
	256 vs 512 Variant Differences

	Keccak
	Block Diagram Description
	256 vs 512 Variant Differences

	Luffa
	Block Diagram Description
	256 vs 512 Variant Differences

	SHA-2
	Block Diagram Description
	256 vs 512 Variant Differences

	Shabal
	Block Diagram Description
	256 vs 512 Variant Differences

	SHAvite-3
	Block Diagram Description
	256 vs 512 Variant Differences

	SIMD
	Block Diagram Description
	256 vs 512 Variant Differences

	Skein
	Block Diagram Description
	256 vs 512 Variant Differences


	 Design Summary and Results
	Design Summary
	Results

	 Results from Other Groups
	Best Results from Other Groups
	Best Results

	 Conclusions and Future Works






