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ABSTRACT 

 

 

 

PASSIVE RF LOCALIZATION BASED ON RSSI USING NON-LINEAR BAYESIAN 

ESTIMATION 

 

Anoop Kumar Palvai, MS 

 

George Mason University, 2008 

 

Thesis Director: Dr. Bijan Jabbari 

 

 

RF localization has gained prominence because of its potential for supporting various 

position based applications. Passive RF Localization based on Received Signal Strength 

Indicator (RSSI) uses the strength of received signal from a target by passive listening to 

infer the range, which is subsequently used for position estimation. The thesis undertakes 

a study of localization techniques and addresses the problem of accuracy of position 

estimation. State space model developed for localization is nonlinear and hence does not 

have a closed form solution. Posterior density for state vector has been derived and 

simulated using a variant of Kalman Filter and Monte Carlo methods to obtain respective 

sub-optimal solutions. Least Squared Error approach tries to obtain an estimate that 

minimizes the squared error whereas and does not reveal any statistical information about 

the target location. Extended Kalman filter approach tries to estimate the posterior 

density of target employing approximations of Gaussian state probability distribution and 

linear state space model and observed to provide better results compared to that of Least 

Squared Error approach. As the localization model is nonlinear, Extended Kalman filter 



 

approximates it with a linear one by employing Taylor series approximation and if the 

nonlinearity is severe the accuracy of the algorithm suffers. Particle filter approach also 

tries to estimate the state posterior density with no restrictions and hence is applicable for 

any generalized system. In this approach probability density function is approximated 

using a weighted set of particles drawn using Monte Carlo methods and will enable in 

computing the all the moments of distribution. Recursive Least Squared Error, Extended 

Kalman and Sampling Importance Resampling Particle Filtering algorithms are designed 

for localization and their performances are compared. The performance of Particle filter 

using Sampling Importance Resampling algorithm is found to be superior to that of 

Recursive Least Squared Error approach and Extended Kalman filter. 
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1. I�TRODUCTIO� 

 

 

RF localization deals with position computation of a wireless device. Research in this 

field has gained prominence because of its potential applications like E911, navigation, 

wireless sensor networks, asset tracking, patient monitoring, and many more. GPS 

navigational tool is one of the most widely used applications employing localization. 

Position computation is performed based on the behavior of electromagnetic signals used 

for communication by wireless devices. Many localization techniques have been 

developed in literature based on electromagnetic signal properties which enable in 

inferring the location information. Quantities that are of interest in predicting the location 

of a wireless device are, received signal strength indicator (RSSI) , time of arrival (TOA), 

and angle of arrival (AOA), associated with it. Existing techniques make use of one or 

more of the above quantities in estimating target location. 

 

Localization techniques can be classified in different ways depending on the type of 

information and communication involved. Localization based on type of information 

used, is classified into range-based and range free techniques. Range-based techniques 

make use of the range information in determining the target location whereas range free 

techniques use proximity to known locations. Range-based techniques are based on RSSI, 

TOA, TDOA (Time Difference of Arrival), AOA and also hybrid techniques which 
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implement combinations of the above four. Range free techniques are designed primarily 

for wireless sensor networks which make use of the proximity of a node to anchors for 

localization. 

 

Localization based on communication involved between wireless devices (nodes) can be 

classified into active and passive techniques. In active techniques, a node has to 

communicate with the neighbors or target for position computation. RADAR introduced 

in [16], employs an active method, where a node transmits an electromagnetic signal and 

detects the echo signal reflected by target to determine the range. In passive techniques, a 

node can determine the position of target, without any communication, but by passively 

listening to the RF emissions present in the environment. MUSIC algorithm in [13], 

computes the direction or angle of received signal arrival, without any need for 

communication between transmitter and receiver, which subsequently is used for 

determining the position. 

 

As range-based techniques rely on distance information from measurements for 

localization, their estimation accuracy is sensitive to variations in the signal properties 

which are random because of the fading nature of wireless channels. Fading affects 

different properties of received signal differently. For instance, RSSI based techniques 

are most sensitive to shadow fading whereas TOA and AOA based techniques are 

sensitive to multipath fading. Therefore, one has to maintain caution while choosing the 

wireless channel models, for obtaining better range estimates. 
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One common requirement of range based techniques is the measurement of received 

signal strength. RSSI based techniques measure accurate signal power to infer the range 

using appropriate path loss models. TOA based techniques also require measurement of 

signal strength, but its main purpose is to identify the instant of signal arrival and same is 

the case with TDOA based techniques. In order to determine the range, time of flight 

(TOF) or propagation time has to be computed, which is possible only when the receiver 

has knowledge about signal transmission time instant. Also, the receiver and transmitter 

have to be synchronized for computation of TOF. AOA based techniques also require 

measurement of received signal strength for identifying the direction of signal arrival. 

Beam-forming is used to steer the antenna beam and measure RSSI from all possible 

directions and then identify the direction having maximum value to be the direction of 

arrival. From the above discussion, one can infer that RSSI technique requires minimum 

requirements among all range based techniques. Also, RSSI allows localizing a target 

passively which is not possible with TOA based techniques because of synchronization 

and TOF computation requirements. AOA based techniques can be used for passive 

localization but at the cost of increased circuitry, as beam-forming requires an array of 

antennas. Apart from the above mentioned reasons, RSSI information is readily available 

from off-the-shelf receivers (e.g. Wi-Fi receivers), making it feasible to apply this 

technique. This motivates us to adopt localization based on RSSI. 

 

Localization techniques based on RSSI use signal strength indicator received at the 

measuring station for two purposes (a) to estimate the target range for applying 
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Trilateration and (b) to generate signatures/fingerprints. In the former case, RSSI is used 

to infer distance travelled by a signal to reach the receiver, according to a path loss 

model. Range thus obtained is used in Trilateration for estimating the position. The main 

drawback of this technique is that its accuracy is sensitive to multipath and shadow 

fading. Ecolocation in [12], makes use of distance constraints based on RSSI and develop 

sequences to determine the relative position of transmitter with respect to known 

reference stations. Disadvantage associated with signature/fingerprint based techniques is 

that they require large amount of training data and complex algorithms. RSSI based 

localization using Trilateration is preferred over the signature based technique as it does 

not require creation of database, and will be the focus of chapter 2. 

 

Besides the above mentioned techniques, localization can be modeled as an estimation 

problem. Aim of the thesis is to apply Bayesian estimation to passively localize target 

based on RSSI measurements. Bayesian approach enables in estimating the state posterior 

density (probability density of system state i.e. target position, conditioned on 

measurements) using prior information and available measurements. Solution thus 

obtained is considered to be complete as the estimated state posterior density will 

integrate all the information about system states. The state space model developed for 

localization is nonlinear, optimal solution does not have closed form and hence 

approximations are to be made for obtaining sub-optimal solutions. Two approximation 

strategies have been explored in this work for constructing the state posterior density. 

First, an Extended Kalman Filtering is used to approximate the state posterior density 

with Gaussian and then linearize the nonlinear measurement equation to apply Kalman 
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Filtering solution. Although this technique does not guarantee optimal solution, it can 

provide better results if nonlinearity is not severe and is widely used in engineering 

applications. Recently a new technique has been developed which approximates the state 

posterior density with Gaussian, represented by a set of points (called sigma points), and 

then apply these points to original nonlinear state model. This technique is found to give 

better results compared to Extended Kalman Filter, but the restriction of Gaussian 

assumption still holds. Second strategy approximates the continuous state posterior 

density with a weighted set of point masses called particles, obtained by recursively 

drawing samples from a chosen distribution and then applying recursive Bayesian 

estimation. Monte Carlo methods have been used to draw random samples such that they 

closely represent the state posterior density. As it is impossible to draw samples from the 

state posterior density directly, an importance sampling density is chosen which closely 

approximates the state posterior density but from which it is easy to draw samples. 

Samples thus drawn are applied to recursive Bayesian estimation and the accuracy of 

estimates depends on how closely the importance density follows the actual posterior 

density. This later approximation is considered to be superior compared to the former as 

it is applicable for any system with no restrictions either on linearity or probability 

distribution of state. However, in order to approximate a probability density function 

accurately, large number of particles are necessary. But, as number of particles increase 

the computational power required will also increase drastically which, ultimately sets the 

limit on accuracy achieved. One has to make a trade-off between the required accuracy 

and computational complexity depending on the application. This work deals with 
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application of Least Squared Error Filter (LSF) using Trilateration, Extended Kalman 

Filter (EKF) and Particle Filter (PF) for localization and compares their performances. 

 

Organization of the thesis is as follows. Chapter 2 provides background information 

about behavior of electromagnetic signals in wireless channels and the significance of 

path loss models in range computation. Basic techniques for localization are described 

and Trilateration is demonstrated mathematically for free space and mobile wireless 

channels. Least Squared Error Filtering (LSF) and its recursive version (RLSF) are 

analyzed and simulation results are presented. Because of the limited knowledge of the 

LSF, a more generalized method for state estimation is desired and hence Bayesian 

approach for state estimation has been used. Chapter 3 deals with introduction to 

nonlinear Bayesian estimation. As the state space model developed for localization based 

on RSSI is nonlinear, approximate solutions are explored in chapters 4 and 5. Application 

of Extended Kalman Filter (EKF) is explored and its simulation results are presented in 

chapter 4. Chapter 5 introduces Monte Carlo estimation and importance sampling. 

Sequential Importance Sampling (SIS) and its variant Sampling Importance Resampling 

(SIR) algorithms, used for constructing the state posterior density, will be presented along 

with simulation results for SIR algorithm. Thesis concludes with chapter 6 presenting the 

comparison results of RLSF, EKF and Particle Filter using SIR algorithms for 

localization. 
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2. BACKGROU�D 

 

 

This chapter provides the required background for localization based on RSSI employing 

Trilateration. As mentioned in chapter 1, Trilateration makes use of distance information 

for estimating the target location. Distance information in general, is not directly 

available and hence needs to be inferred from the measurements available. For 

localization based on RSSI, power of the received signal has to be measured; using 

which, distance travelled by the signal can be inferred based on appropriate path loss 

models. Accuracy of position estimates is dependent on the distance inferred using a path 

loss model and hence it is worth discussing the theory behind development of path loss 

models. 

 

Electromagnetic Propagation 

From antenna theory, it is known that the radiation component of electric field is 

inversely proportional to the distance between source and measured point. 

 

d
E

1
∝   (2.1) 

 

Also, power is proportional to square of the electric field. 

 
2EP ∝  (2.2) 
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Therefore power is inversely proportional to the square of the distance. 

 

2

1

d
P ∝  (2.3) 

 

Ideally, an isotropic antenna radiates power equally in all directions. Locus of points 

having equal power at distance d  units from the source is a sphere of radius d . For free 

space propagation, losses are assumed to be non existent because of the absence of 

obstacles. Therefore, signal power along a sphere of radius d  will equal that at source. 

Although total signal power remains same, its density at a point on the surface of sphere 

gets reduced proportional to 2d . Contrary to the free space case, mobile wireless medium 

consists of obstacles and hence losses are prevalent which affect the signal power 

received at a point d  units from source. Many models characterizing the path loss have 

been developed in literature. 

 

2.1 Free-Space Propagation Model 

The channel model is based on variations of transmitted signal power when propagated 

through a free space medium. Assume that an isotropic antenna transmits electromagnetic 

signal of power tP  in to the free space with signal power being distributed equally in all 

directions. Power density of the signal at a point d   units distant from the transmitter is 

given by 

 

24 d

P
P t

d π
=   (2.4) 
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As it is impossible to implement isotropic antenna in practice, we compensate by 

assuming a directive antenna with gain tG . So, the power density dP  is given by 

 

24 d

GP
P tt

d π
=   (2.5) 

 

Now if a receiver antenna is placed at that point, then the power incident on receiving 

antenna denoted by rP  is given by 

 

edr APP =   (2.6) 

 

Where eA  is the antenna aperture and is expressed as 

 

24πλ
r

e

G
A =   (2.7) 

 

Where λ  is the wavelength of the transmitted signal 

rG  is gain of the receiving antenna 

 

Expression to determine the received power at a distance d units from the transmitter in 

free space is given by 

 
2

4







=
d

GGPP rttr π
λ

 (2.8) 

 

The term ttGP  is called Effective Isotropic Radiated Power (EIRP) and the term 

2

4

−









dπ

λ
 is called free space path loss. 
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2.2 Uncertainties in Mobile Wireless Medium 

 

Free space propagation model discussed in the previous section is not applicable to 

mobile radio environment, as it assumes a  medium free of obstacles and hence its path 

loss is dependent only on distance d  and wavelength λ. In real world cases, apart from 

distance path loss also depends on local terrain characteristics, antenna heights. Therefore 

a need for developing path loss model arises, which accounts for all the losses. Whenever 

an electromagnetic wave propagates through wireless medium, it experiences 

 

(i) Decrease in power level due to path loss 

(ii) Random variations due to multipath and mobility 

 

Because of the above effects, received signal at a measuring station will have reduced 

power with random variations and hence the models used to characterize wireless 

channels are often statistical in nature. This phenomenon of randomness introduced by 

channel is called fading categorized into two types namely ‘Fast/Small-scale fading’ and 

‘Slow/Large-scale fading’. 

 

Fast/Small-scale fading is caused due to multi-path propagation of electromagnetic 

signals. Multi-path propagation arises because of the phenomena of reflection, 

diffraction, scattering during the propagation of electromagnetic signals in the presence 

of obstacles, which results in generation of multiple replicas of transmitted signal. 

Replicas of transmitted signal propagate through different paths and arrive at receiver at 

different time instants with different amplitudes which when combined result in a highly 
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distorted version of the original signal with random fluctuations. Because of this fading, 

instantaneous received signal level varies drastically within a distance of the order of 

transmitted signal wavelength and also it is difficult to retrieve information from it. If the 

received power is averaged over an interval of time/distance, fast fading can be 

eliminated. 

 

Slow/Large-scale fading is mainly caused due to the terrain configuration of area 

surrounding transmitter and receiver. Transmitted electromagnetic signal interacts with 

each obstacle along its transit and looses a fraction of its energy. Number of obstacles 

that that interact with a signal propagating through the wireless medium is random and 

hence the power received becomes a random quantity. Two paths having same distance 

with different terrain configurations will have different received power values measured 

at the receiver. Large scale fading is independent of time and hence cannot be eliminated 

by averaging as in the case of small scale fading. Loss of transmitted signal power 

because of obstacles and propagation distance can be characterized using path loss 

models. 
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Fading affects the basic model of Trilateration in two ways. 

 

1. Measured receiver positions will be random 

2. Measured power will be random 

 

From GPS measurements it has been observed that the position coordinates follow 

Gaussian distribution. In order to obtain an estimate of the actual measurement points 

parameters of the observed probability distribution has to be computed. Fortunately as the 

position coordinates follow Gaussian distribution, optimal estimator (Minimum variance 

unbiased estimator) is the sample mean. 

 

2.2.1. Random variable to characterize the received power 

 

Effect of obstacles on the signal power is multiplicative and is best characterized by a 

Log-normal distribution in linear scale or Gaussian distribution in logarithmic scale. 

From the measurements performed, it has been observed that received power indeed 

follows Gaussian distribution in logarithmic scale. Although, the effect of small scale 

fading can be negated by averaging, large scale fading primarily determines the signal  

power deterioration as the signal propagates through the wireless medium. In order to 

characterize the large scale fading, path loss models have been developed for various 

environments. 
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Generalized Empirical path-loss model 

 

( ) ( ) ( ) εη ++= ddLdL pp 100 log10  (2.9) 

 

Where ( )dLp  is the path loss at distance d  

0d  denotes a reference distance e.g., 1m, 10m, and 100m 

η  is the path-loss exponent 

d  is the distance between transmitter and the receiver 

ε  is a zero mean Gaussian random variable 

 

This model can be applied successfully to various environments by appropriately 

choosing the values of η  and standard deviation ε . Typical values of η  and ε  are in the 

range of 2 – 6, and 3 – 12 dB respectively. Once the path loss is obtained, received power 

equation can be computed as shown below. 

 

( )dLGGPP ptttr −++=   (2.10) 

 

Where rP  and tP  are the received and transmitted powers 

tG  and rG  are the transmit and receive antenna gains respectively 

 

Thus the received power will be a random quantity and is characterized by the 

randomness of ( )dLp . The quantities denoted in equation (2.10) are on dB scale. 
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2.3 Basic Techniques for Localization 

 

Using the range information obtained by various means mentioned above, one of the 

following described techniques is applied to compute the position. 

 

2.3.1 Trilateration 

 

In this technique, relative position of the target is determined using the range information 

of target from reference points. Suppose P  is the point at which target is located, and 

consider three reference points A , B  & C  that are at distances of 1d , 2d  & 3d  

respectively from the target. At location A , the probable region within which the target 

(at a distance of 1d ) can reside is a circle of radius 1d . Similarly, region where the target 

can reside observing from locations B  & C  are also circles with radius 2d  & 3d  

respectively. Then, target location can be determined as the point of intersection of three 

circles with centers at A , B  and C  as depicted in figure 1. Method described here is for 

locating a target in a two dimensional plane. If the target has location has to be estimated 

in a three dimensional space, then the location of target is the intersection of spheres from 

each of the measured locations. 
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Figure 1 : Illustration of Trilateration 

 

2.3.2 Triangulation 

 

In this technique, position of target is determined using a combination of range and angle 

information. Let points A , B  and C  be the vertices of a triangle with target located at 

one of the vertices, say C . Assuming that locations of A  and B  are known and denoting 

the angles subtended to the target C  from other vertices be α  and β  respectively. Using 

the axiom that sum of angles in a triangle is 
0180  (degrees), the angle at C  is obtained 

by βα −−180 . Law of sines (alternatively law of cosines) is applied to determine the 

other sides of triangle as shown below. 

 

CA

 (Sin 
  

BC

 (Sin 

AB

 -  -(180Sin )
=

)
 = 

) βαβα
 (2.11) 

 

A 

B 

C 

P 

d1 

d2 

d3 
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Once length of the sides BC  and CA  is known, coordinates of target can be computed as 

the intersection of arcs from A  and B  with lengths BC  and CA . This technique is 

illustrated using figure 2. 

 

 

 

 

 

 

 

 

 

Figure 2 : Illustration of Triangulation 

 

2.3.3 Multilateration 

 

Position of target is determined using time difference of arrivals (TDOA) of the 

transmitted signal, at three different receivers. This is also called as hyperbolic 

positioning which will be evident shortly. Let A , B , and C  be the reference points and 

X  the location of target in a three dimensional plane. If distances to reference points 

from X  are obtained using time of arrival information, then following equations are 

obtained. 

 

αααα ββββ 
A B 

C 
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( ) ( )

( ) ( ) ( )

( ) ( ) ( )222

222

222

1

1

)(
1
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zzyyxx
c

T

zzyyxx
c

T
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c

T

−+−+−=

−+−+−=

−+−+−=

  (2.12) 

 

The time differences are computed from the time of arrivals which result in equations of 

hyperbolas as given in equation (2.13). 

 

{ ( ) ( ) ( ) ( ) ( ) }

{ ( ) ( ) ( ) ( ) ( ) ( ) }

{ ( ) ( ) ( ) ( ) ( ) }222222

222222

222222

)(
1

1
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1
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zzyyxxzzyyxx
c
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zzyyxxzzyyxx
c
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zzyyxxzzyyxx
c

TT

−+−+−−−+−+−=−=

−+−+−−−+−+−=−=

−+−+−−−+−+−=−=

τ

τ

τ

  (2.13) 

 

The point of intersection of two hyperbolas gives the position co-ordinates of the target in 

a two-dimensional space as depicted in figure 3. For estimation in a three dimensional 

space, four or more reference point measurements have to be included to achieve better 

accuracy. 
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Figure 3 : Illustration of Multilateration 

 

In general, intersection of the circles/arcs/hyperbolas does not coincide exactly because 

of uncertainties in the model used for range/time/angle estimation; as a result solution is 

an overlapped area but not a point, where the target can reside. Accuracy of a technique is 

determined by the intersection region and is proportional to its area. By increasing the 

number of measurements, accuracy of location estimation can be improved by reducing 

the overlapping area. Position estimate in this area can be obtained using any of the 

schemes like least squared error solution or if the position follows a probability 

distribution, then the maximum likelihood estimate can be computed. 

 

 

B 

 

C 

A 
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2.4 Trilateration 

As Triangulation and Multilateration described in the above sections require either AOA 

or TOA information, it is difficult to apply them for localization using RSSI and hence 

are not considered. From the discussion of electromagnetic propagation and path loss 

models thereafter introduced, relationship between distance and power received has been 

established. This relation is used to deduce the distance information from signal power 

measured at random selected points within the coverage area of target. At each of the 

measurement locations, appropriate path loss model will be applied to compute the 

distance used in Trilateration to determine target location. Here, the underlying 

assumption is that position of the measurement points is known; which can be obtained 

independently by measurements. 

 

The locus of points which are equidistant from a fixed point is a circle in two dimensional 

plane and is a sphere in 3 dimensional space. Once the distance estimate is obtained, then 

the location of target can be anywhere along the circle/sphere with radius equal to the 

distance d  between the target and measured position. 

 

2.4.1 Trilateration for free-space 

 

Let ( )11, yx  and ( )22 , yx  be the measurement locations and 1P , 2P  be the power received 

at respective locations. Using the free space power equation (2.8), distance from the 

targets can be computed, denoted by 1d  and 2d . Then the coordinates ( )yx,  of target 

satisfy the following equations. 
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 (2.14) 

 

If the coordinates are so chosen that 21 yy = , then x  is obtained by subtracting one 

equation from the other, and by back substitution y  can be determined. 
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=  (2.15) 

 

( )21
2

11 xxdyy −−±=  (2.16) 

 

Value of y which satisfies both the circle equations is the solution. This method can be 

extended to three dimensional case (3D) as well. If it is possible to obtain more number 

of readings than the dimensions of position vector, following method can also be 

employed. Suppose 4 equations are obtained from as many different locations in a 3D 

space, as given in (2.17). 
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 (2.17) 

 

The above set of equations can be solved by subtracting one equation from the 

proceeding one and hence equations which are linear in ( )zyx ,,  will be obtained. The 

above set of linear equations can be easily solved using linear algebra. 
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As this is an idealistic model, results obtained are quite accurate with zero error. 

 

2.4.2 Trilateration for mobile wireless medium 

 

In this section, application of Trilateration for mobile wireless medium will be described. 

Using the same set of equations of (2.18), with a change in notation can be represented be 

represented as a model given in equation (2.19). 

 

YHX =  (2.19) 
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Quantities id , 4,3,2,1=i  in (2.22) are random variables and coordinates ( )iii zyx ,,  in 

(2.20 & 2.22) are the estimates of measured location coordinates. The solution for 

( )zyx ,,  is obtained from equation (2.23). 

 

THX 'ˆ =  (2.23) 

 

Where, 'H  and T  are defined as in (2.24) and (2.25). 
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=ijR  element in 
thi  row and 

thj  column of matrix R . Where 1−= AR  
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Solutions for the individual coordinates are of the form in equation (2.26). Each variable 

can be represented as weighted sum of the squares of distances and norms obtained from 

each measured point. 
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Where 2222
iiii zyx!orm ++=  

 

As the solution of position vector is available, probability distribution of random vector 

( )zyx ,,  can be obtained. Since the vectors ( )iii zyx ,,  are observed to be Gaussian 

(Material on distributions can be found in [2]), their norms follows either Rayleigh or 

Rician distribution, depending on the variances of individual position coordinates. Rician 

random variable is a better choice for characterizing norm as it also includes Rayleigh 

distribution as its special case. Square of the norm follows chi-square distribution with 3 

degrees of freedom. 

 

Probability distribution of distance id  can be derived using the path-loss model provided 

received power is known. Conditional probability distribution of distance given received 

power has been observed to follow log-normal distribution. The probability distribution 

of coordinates ( )zyx ,,  becomes complex as it involves convolution of multiple log-

normal and chi-square random variables which is not analytically tractable and hence the 

distribution obtained will not have closed form solution. 
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2.5 Least Squared Error Solution 

 

Equations in the Trilateration are inconsistent because of the random errors in 

measurement of power which in turn reflect in the distances computed. If there is no 

knowledge about the behavior of errors, least squared solution is the most desired for 

system of equations. Therefore, one needs to have large number of measurements to 

compute the least square solution. Two desirable properties of the resulting least squares 

error solution are that its mean is unbiased and have minimum variance. 

 

Suppose !  measurements are obtained at as many different locations, then !  equations 

are obtained. Modifying the equations as in (2.18), a set of linear simultaneous equations 

represented in the matrix form as in (2.19) are obtained. As the system now is over-

determined and elements in the matrices are modified to equations (2.27) and (2.28). 
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Least squared solution for the above determined set of equations is of the form as given 

in equation (2.29). 

  

)()(ˆ 1 YHHHX TT −=  (2.29) 

 

Let TT HHHR 1)( −=  which is a !×3  matrix. Perform elementary operations on R  

such that the resultant solution of X  is of the form as shown below. 

 

!ormRDRX ×−×= ''  (2.30) 

 

Where 'R  is the matrix obtained after applying elementary operations. 
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Solution for the individual coordinates is of the form given by equation (2.31). 
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Assuming perfect knowledge of measurement points, variables ( )zyx ,,  are simply 

weighted sum of the random variables 
2

id . As the number of measurement points 

increase, distributions of the target location variables tend towards Gaussian according to 

the central limit theorem. 

 

2.5.1 Error in Position Estimation 

 

In this section, error distribution in estimating variable location by least squared solution 

is analyzed. As the power measured is a random associated with errors, distance 

estimated using this measurement also suffers from error. Suppose 0id  and id  be the 

actual and estimated distances between the measurement location and the target. Ideally, 

if there were no shadowing, received signal power is given by 

 

)( 0dLGGPP prttr −++=  (2.32) 

 

Where )(log10)()( 010000 ddLdL pp η+=  

 

If the shadowing effect has to be accounted for in received power equation, then the 

above path loss equation will be modified to 
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εη ++= )(log10)()( 01000 ddLdL pp  (2.33) 

 

Where ),0( σε Ν=  

 

Rearranging the received power equation (2.32) for distance as 
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Representing the estimated distance in terms of original distance 0d as 
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Let 
η

ε
10

303.2
=k be the exponent of noise term. Expanding the exponential term 

 

.......)
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k

kdd   (2.37) 

 

In general, the value of k  is small, hence it is a good approximation to neglect higher 

order terms in the series (terms with exponent 2≥k ). Therefore, the approximated 

distance is given as 

 

kddd ×+= 00  (2.38) 

 

Let 0X  and X  be the original and estimated position vectors. Then error in estimating 

the position is obtained using (2.30). 

 

XXe −= 0   (2.39) 
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Now substituting the approximated distances in equation (2.42), error in individual 

coordinates can be given as 
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2.6 Simulation Results 

 

The simulation parameters used for LSF are given below 

Shadowing standard deviation dB61 =σ  

Path loss exponent 4=η  

 

It has been observed from simulations that, as the number of measurement points increase 

error tends towards zero. It assumes perfect knowledge of transmission parameters and 

measurement locations. Simulation results are shown in the following figures 4 and 5 for 

varying number of measurement locations. Figure 4 captures the error performance in 

determining the location whereas figure 5 indicates the error in individual coordinates. 

Figure 6 provides the average error performance with number of measurement locations. 
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Figure 4 : Plot of LSF Error vs. �umber of Iterations 
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Figure 5 : Plot of LSF Error in Coordinates vs. �umber of Iterations 
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Figure 6 :  Plot of Average LSF Error (meters) vs. �umber Locations 

 

For each of measurement location number, simulation has been run for 100 times and the 

results are averaged. Main difficulty with the above form of direct solution involves 

computation of inverses for matrices of order !! × , !  being the number of 

measurements. As the number of measurement locations increases, number of operations 

required will increase at the rate of ( )3!O . In order to overcome this computational 

difficulty, one would like to have least squared solution in a recursive form, which 

reduces the number of operations performed to ( )2n!O ×  as mentioned in [3]. Where, n  

is the dimension of position vector. 
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2.7 Recursive Least Squared Filtering 

 

To formulate this problem, let us consider that one has the knowledge of system at time 

1−i  represented by the equation (2.44). 

111
ˆ

−−− = iii XHY  (2.44) 

 

At time i , let ( )iy  and )(ih  be the new set of observation and transformation values 

respectively. Set of equations including the new measurements can be represented by 
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Then the solution for iX̂  is of the form 
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Where [ ]T  represents the transpose operation. Modifying the above equation, iX̂  is 

obtained as 
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If initial conditions 
1

0
−Π  are to be considered, then the above equation has to be 

modified as given by equation (2.49). 
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Where, ( ) 11
0

−− +Π= i
T

ii HHP  (2.51) 

 

One can infer the recursive relation 
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Above equation can also be written as 
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Using Woodbury matrix identity given in equation (2.54) for the above recursive 

equation (2.53) and rearranging results in equation (2.55) 
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Where,  
( )
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i
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Substituting iP  in equation for iX̂  in equation (2.50) and after manipulations, recursive 

solution for least squared estimate is obtained as given by (2.58). 

 

( )
( ) ( )

( ) ( )( )1

1

1
1

ˆ

1

ˆˆ
−

−

−
− −

+
+= i

T

T
i

T
i

ii Xihiy
ihPih

ihP
XX  (2.58) 

 

Equation (2.58) constitutes the recursive solution using deterministic least squared error 

criterion. Direct (batch) and recursive (sequential) solutions are simulated and the results 

are plotted in figures 7 and 8. Figure 7 simulates LSF and RLSF assuming absence of 

shadowing where as simulation in figure 8 uses the parameters of least squared error 

solution. From the simulations it can be verified that both batch and sequential solutions 

provide identical error performance. The reason for adopting recursive solution is to 

reduce the computational and memory costs without affecting the error performance. 
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Figure 7: Plot of Average LSF and RLSF Error vs. �umber of Measurement 

Locations 
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Figure 8 : Plot of Average Error vs. �umber of Measurement Locations 

(Shadowing) 
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3. LOCALIZATIO� USI�G BAYESIA� ESTIMATIO� 

 

 

The least squared error solution approach generates an estimate that minimizes the 

squared error but does not provide any statistical information regarding the target 

location. It is obvious that an estimate with a single value does not provide as much 

information as an estimate which is represented probabilistically over a range of values. 

Thus a solution which can provide the probability density of target in a region is desired 

and hence estimation using Bayesian approach has been explored. Bayesian 

estimation/tracking attempts to construct posterior probability density of system based on 

prior information and available measurements. Posterior density thus obtained is 

considered to be a complete solution as it embeds all the statistical information about 

system states. Possibility of such a construction requires definition of a state space model, 

consisting of state dynamic equation characterizing the evolution of system states with 

time and a measurement equation describing the relation between measured quantities 

and the state of system. 

 

3.1 State Space Model 

 

Any dynamic system can be represented in terms of state space model derived from 

physics of that system. State space model is described by a pair of equations as in (3.1), 
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consisting of state dynamic and measurement equations. Suppose a system is defined by 

an thn  order differential equation, then its state space is completely described by a vector 

consisting of n  state variables. Let p  be the number of outputs that can be measured 

directly and r  be the number of inputs. Then state space model is defined as shown 

below. 

 

DUHXY

BUAXX

+=

+=&
 (3.1) 

 

Where, X  is a 1×n state space vector 

Y  is a 1×p  measurement vector 

U  is a 1×r  input vector  

A  is a nn ×  matrix characterizing the state vector evolution in time 

B  is a rn×  matrix characterizing the relation between state and input vectors 

H  is a np ×  matrix characterizing the relation between output and state vectors 

D is a rp ×  matrix characterizing the relation between output and input vectors 

 

Output measured from a system with no input applied to it, is called the natural response 

of system. State space model of a system which do not have inputs is given by equation 

(3.2). 

 

HXY

AXX

=

=&
 (3.2) 
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In general, measurements obtained are not the actual values but a noise corrupted version. 

Measurement errors arise because of irregularities in the measuring devices and 

uncertainties in modeling the system. Models are developed based on the behavior of 

large amounts of data in a particular scenario; hence it is a good approximation to 

characterize the difference in observations and the model predicted values, as zero mean 

Gaussian random variable (Central Limit Theorem). Therefore, process noise in the state 

dynamic equation is characterized by a zero mean Gaussian random vector with 

covariance say Q . Measurement errors can also be characterized along the same lines 

and hence measurement noise is a zero mean Gaussian random vector with covariance 

denoted by R . In order to accommodate the terms characterizing randomness of state 

space equations model described by equation (3.2) has to be modified as in (3.3). 

 

vHXY

wAXX

+=

+=&
 (3.3) 

 

Where, w  is a 1×n  process noise vector 

v  is a 1×p  measurement noise vector 

The state space model described in equation (3.1) is only applicable for linear systems. A 

more generalized way of describing the state space is given by equation (3.4). 

 

( )
( )kkk

kkk

vXhZ

wXfX

,

, 11

=

= −−
  (3.4) 

 

Where 1−kX , 1−kw  denote the state vector and process noise at time 1−k , kX  is the state 

vector at time k , kZ  and kv  are the measurement and noise at time k . 
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3.1.1 State space model for localization 

 

State Dynamic Equation 

 

11 −− += kkk wXX  (3.5) 

 

Measurement Equation 

 

( ) ( )( ) kkk
T

kkk vYXYXCCZ +−−−= log21  (3.6) 

 

Where 1C  and 2C  are constants depending on the path loss model. kY and kZ  are the 

measured position and power vectors. 

 

3.2 �onlinear Bayesian Estimation 

 

Bayesian state estimation aims to construct the conditional probability ( )kk ZXP :1|  also 

known as posterior density. Assuming that ( )00 | ZXP  is available at time 0=k , 

recursive steps of prediction and update of Bayesian estimator are given by equations 

(3.7) and (3.9) and are depicted in figure 9. Figure 10 depicts the flow chart for Bayesian 

estimation. 

 

Prediction 

In this step, state vector at time k  is predicted using Chapman-Kolmogorov equation as 

given by equation (3.7). 

 

( ) ( ) ( )∫
−

−−−−− =
1

11:1111:1 |||
kX

kkkkkkk dXZXPXXPZXP   (3.7) 
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( )1| −kk XXP  also known as Prior density, is dependent on the state vector at time 1−k  

and state dynamic equation. ( )1:11 | −− kk ZXP  is the posterior probability density at time 

1−k . 

 

Update 

Posterior density of state vector at time k  is computed in this phase. It is dependent on 

predicted density ( )1:1| −kk ZXP , computed in the earlier step and measurement model. 

Recursive method for computing posterior density is derived as shown below. 

 

( ) ( )
( )k

kk
kk

ZP

ZXP
ZXP

:1

:1
:1

,
| =   (3.8) 

 

Applying Bayes rule, 

 

( ) ( ) ( )
( )1:1

1:1
:1

,

|,
|

−

−=
kk

kkkk
kk

ZZP

XPXZZP
ZXP  

 

( ) ( ) ( ) ( )
( ) ( )1:11:1

1:11:1
:1

|

|,|
|

−−

−−=
kkk

kkkkkk
kk

ZPZZP

XPXZPXZZP
ZXP  

 

Applying Bayes rule again, 

 

( ) ( ) ( ) ( )
( ) ( )1:11:1

1:11:11:1
:1

|

|,|
|

−−

−−−=
kkk

kkkkkk
kk

ZPZZP

ZPZXPXZZP
ZXP  

 

Using the independence of measurements, 
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( ) ( ) ( )
( )1:1

1:1
:1

|

||
|

−

−=
kk

kkkk
kk

ZZP

ZXPXZP
ZXP  

 

( ) ( ) ( )
( ) ( )∫ −

−=

kX
kkkkk

kkkk
kk

dXZXPXZP

ZXPXZP
ZXP

1:1

1:1
:1

||

||
|   (3.9) 

( )kk XZP |  also called as likelihood, is determined using the measurement model. 

Although above recursive steps of prediction and update constitute the optimal solution 

of Bayesian estimation, in general it does not guarantee a closed form solution. 

 

 

Figure 9 : Evolution of Bayesian State Estimation with time 
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Figure 10 : Flow chart for Bayesian State Estimation 
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3.2.1 Recursive Bayesian estimation for localization 

 

 Recursive Bayesian estimation consists of prediction and update phases as described 

below. In the first phase, the state probability is predicted using state dynamic equation 

which will be updated using current measurements in the later phase. 

 

Prediction Phase 

Using the state dynamic equation, prior can be obtained as given by equation (3.11). 

 

11 −− += kkk wXX  (3.10) 

 

( ) ( ) ( )1111 −−−− −≤=≤+=≤ kkkkkkkk XxwPxwXPxXP  

 

( ) ( ) ( )111111 || −−−−−− −≤=−≤=≤⇒ kkkkkkkkkk xxwPXXxwPXxXP  

 

( ) ( )111 −−− −=−≤⇒ kkwkkk xxFxxwP  

 

( ) ( )111 || −−− −=∴ kkkwkk XXXPXXP   (3.11) 

 

Predicted probability density of state is now computed as 

 

( ) ( ) ( )∫
∞

∞−
−−−−−− −= 11:11111:1 ||| kkkkkkwkk dXZXPXXXPZXP   (3.12) 

 

As mentioned earlier, ( )wPw  follows Gaussian distribution and ( )1:11 | −− kk ZXP  is the 

posterior distribution obtained from previous recursion. 
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Update Phase 

Two cases arise depending on the nature of locations’ measurements. 

 

1. Perfect knowledge of measured position coordinates. 

2. Position coordinates follow a probability distribution. 

 

Case 1: Perfect knowledge of measured position coordinates 

Using the measurement model, likelihood probability is computed using equation (3.9). 

 

( ) ( ) ( )( )( )kkk
T

kkkwkk XXYXYCCZPXZP |log| 21 −−−−=  (3.13) 

 

Posterior density is now computed as 

 

( ) ( ) ( )( )( ) ( )
( ) ( )( )( ) ( )∫

∞

∞−
−

−

−−−−

−−−−
=

kkkkkk

T

kkkw

kkkkk
T

kkkw
kk

dXZXPXXYXYCCZP

ZXPXXYXYCCZP
ZXP

1:121

1:121
:1

||log

||log
|  (3.14) 

 

Case 2: Position coordinates follow a probability distribution 

For this case equation (3.13) is modified as given in (3.15). 

 

( ) ( ) ( )( )( ) ( ) kkkkkk
T

kkkwkk dYYPYXXYXYCCZPXZP ∫
∞

∞−
−−−−= ,|log| 21

  (3.15) 

 

Therefore, the posterior distribution is computed as 

 

( )
( ) ( )( )( ) ( )

( ) ( )( )( ) ( )∫ ∫

∫

∞

∞−
−

∞

∞−

−

∞

∞−







 −−−−







 −−−−

=

kkkkXkkkk
T

kkkv

kkkXkkkk
T

kkkv

kk

dXZXPdYPYXXYXYCCZP

ZXPdYPYXXYXYCCZP

ZXP

K

K

1:121

1:121

:1

|,|log

|,|log

|

1

1  (3.16) 
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Where )(vPv  is assumed to follow normal distribution with mean vµ  and variance vσ , 

)( kY yP
k

 for simplicity, is also assumed to follow normal distribution with mean 
kYµ  and 

variance
kYσ . 

3.2.2 �eed for approximation 

 

In equation (3.16), the integral in denominator does not have closed form solution. It is 

evident from the above equations that optimal analytical solution is not tractable for 

Localization and hence the need for approximation arises. There are many approximation 

strategies developed in literature that can provide sub-optimal solutions. There are two 

types of models for which the optimal solution exists, one assumes linear systems with 

Gaussian state and noise vectors and application of Kalman Filter. Other model assumes 

discrete state space with application of Grid based filters. Therefore, in order to obtain 

sub-optimal solutions for a given nonlinear continuous state space model, approximations 

can be made to the model. One way of doing approximation is by linearizing the model 

and approximating the state vector with a Gaussian random vector. Extended Kalman 

Filter makes use of this approximation and is widely applied in engineering applications. 

Chapter 4 examines the behavior of this filter for the localization application. One more  

possibility is by approximating the probability density by a set of point masses called 

sigma points, which accurately characterize the Gaussian distribution and then apply 

nonlinear operations on them. This solution is found to give better results than the earlier 

approximation for the cases where state vector is normally distributed and is called 
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Unscented Kalman Filter. Also, one can approximate the continuous state space with a 

discrete one and then apply Grid based filters. 

 

Although above techniques may give acceptable results in applications where 

approximations are valid, they fail to provide a solution which can be applicable for any 

generalized  state space model. One method which can make Bayesian estimation 

applicable for any system approximates the probability density by a set of particles with 

associated weights. ‘Numerical Integration’ and ‘Monte Carlo methods’ are the most 

widely used approximation techniques. Numerical Integration provides good accuracy 

but suffers from high computational requirement as the dimensionality of state vector 

increases. The number of operations to be performed increases exponentially with 

dimensions and hence is not advisable for higher dimensional systems. This limitation of 

numerical integration is also called as ‘Curse of Dimensionality’. Monte Carlo methods 

can be employed to overcome the above mentioned drawbacks, which do not suffer from 

dimensions of the system. Sequential Monte Carlo method is one such approximation 

technique where the state posterior density is computed recursively based on Monte Carlo 

methods and will be dealt more detailed in chapter 5. 
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4. LOCALIZATIO� USI�G EXTE�DED KALMA� FILTERI�G 

 

 

This Chapter deals with the application of Extended Kalman Filtering (EKF) for 

Localization problem. As described in the previous chapter that a probabilistic solution is 

more meaningful than a deterministic one, EKF estimates the state probability density 

function conditioned on measurements by applying Kalman Filtering (KF). Direct 

application of KF is not possible because of the nonlinear state space model of 

localization and also the non-Gaussian nature of conditional state probability density 

function. In order to apply KF, approximations have to be made in the state space model 

as well as probability distribution which will be discussed shortly. Following section 

provides a brief review of KF and will be followed by a section dealing with system 

model for localization and finally application of EKF is presented along with simulation 

results. 

 

4.1 Review of Kalman Filtering 

 

Kalman Filtering (KF) is one of the most widely used algorithms in engineering 

applications. It gained prominence because of its guaranteed optimal solution apart from 

the simplicity in implementation. KF deals with the estimation of system states using 

available measurements and a predefined state space model iteratively. Following section 

reviews the KF analysis. 
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Using the state space model defined in equation (3.3), process noise of state dynamic 

equation is characterized by a zero mean Gaussian random vector with covariance say Q . 

Measurement errors can also be characterized along the same lines and let its covariance 

be denoted by R . The objective of KF is to design an estimator which can minimize some 

function of error ke  in estimating the state vector at time k  based on observation kY . Let 

kX  and kX̂  be the true and estimated state vectors at time k , then the error is given as 

 

kkk XXe ˆ−=   (4.1) 

 

Shape of the function of ke  is dependent on application but, the function has to be both 

positive and increase monotonically. An error function satisfying the above requirements 

is a squared error function 

 

( )2
ˆ

ˆ)( kk
X
k XXef −=   (4.2) 

 

As the vector kX̂  is estimated using the measurement data over time, a meaningful 

metric would be an expected value of the mean squared error function. 

 

( ){ } ( ) ( ){ } { } kk
T

kkk

T

kkkk PeeEXXXXEXXE ==−−=− ˆˆˆ 2
  (4.3) 

 

Where kP  is the error covariance matrix. 

 

Let 
−

kX̂  be the prior estimate of state vector obtained using prediction from system 

dynamics. If a measurement is available, then the state vector can be updated using the 

relation in equation (4.4). 

 

( )−− −+= kkkkk XHYKXX ˆˆˆ   (4.4) 
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Where, the term 
−− kk XHY ˆ  is called innovation and kK , the Kalman gain. 

 

Using the measurement equation of state space model and replacing kY  in the above 

equation will result in equation (4.5). 

 

( )−− −++= kkkkkk XHvHXKXX ˆˆˆ  (4.5) 

 

Substituting the above equation in error covariance equation (4.3), 

 

( ) ( ){ } ( )( ){ }
( )( ){ } 














−−−

×−−−
=−−

−−

−−

T

kkkkk

kkkkk

kk

T

kk

vKXXXHI

vKXXXHI
EXXXXE

ˆˆ

ˆˆ
ˆˆ  (4.6) 

 

Where, ( )−− kk XX ˆ  is the error of prior estimate and is uncorrelated with the 

measurement error kv . Hence the above error covariance matrix is given as 

 

( ) ( )( ) ( ) [ ] T
k

T
kkk

T

k

T

kkkkkk KvvEKXHIXXXXEXHIP +−



 −−−= −−−− ˆˆˆˆ  (4.7) 

 

( ) ( ) T
kk

T

kkkk RKKXHIPXHIP +−−= −−− ˆˆ  (4.8) 

 

Where 
−

kP  is the covariance of error in prior estimate 
−− kk XX ˆˆ , and R  is the 

covariance matrix of measurement noise vector. 

 

Equation (4.8) defines the update of error covariance matrix which has mean squared 

error terms as its diagonal elements. Sum of the diagonal elements in a matrix is called 

trace. Therefore, trace of the error covariance matrix is the sum of mean squared errors 

and it can be minimized by minimizing the trace of the error covariance matrix. 
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Therefore, one needs to find a value of kK  that minimizes the trace of error covariance 

matrix. Using calculus, kK  should satisfy the condition of [ ] 0)( =
∂

∂
k

k

PTrace
K

. 

 

Expanding the error covariance matrix equation (4.8) 

 

( ) T
k

T
kk

T
k

T
kkkkk KRHHPKKHPHPKPP ++−−= −−−−

 (4.9) 

 

Trace of the error covariance can be obtained by the following equation. Note that the 

trace of a matrix and its transpose are equal. 

 

[ ] [ ] [ ] ( )[ ]T
k

T
kkkkkk KRHHPKTHPKTPTPT ++−= −−−

2  (4.10) 

 

Differentiating the above equation with respect to kK  and equating it to zero, we get 

 

( ) ( )RHHPKHP
K

PT T
kk

T

k

k

k ++−==
∂

∂ −−
220

)(
 (4.11) 

 

( ) 1−−− += RHHPHPK T
k

T
kk  (4.12) 

 

Above equation gives the update of gain matrix and substituting it in error covariance 

equation, we get 

 

( ) −−−−− +−= k
T

k
T

kkk HPRHHPHPPP
1

 (4.13) 

 

( ) −−= kkk PHKIP   (4.14) 

 

Equation (4.14) is the update equation for error covariance matrix. Thus, one can obtain 

the update equations for state vector, Kalman gain and error covariance matrix as given 

by equations (4.5), (4.12) and (4.14) respectively. After updating aforementioned 
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quantities for the thk  iteration based on prior estimates, state vector and its error 

covariance for the next iteration has to be predicted. State dynamic equation describing 

the time evolution of system is used for prediction. Therefore, prior estimate for the next 

iteration is computed as 

 

kk XAX ˆˆ
1 =−

+  (4.15) 

 

And the covariance of error in prior estimate is computed as shown below 

 

( ) 



= −

+
−

+
−

+ 111 k

T

kk eeEP  (4.16) 

 

Where, kkkkkkkk wAeXAwAXXXe +=−+=−= −
++

−
+

ˆˆ
111  

 

( ) ( )[ ]kk
T

kkk wAewAeEP ++=−
+1  (4.17) 

 

Error vector ke  and noise vector kw  are uncorrelated because of different sources of 

origin. Hence, equation for error covariance of prior estimate at 
thk  iteration is given as 

in (4.19). 

 

[ ] [ ]k
T

kk
T

k
T

k wwEAeeEAP +=−
+1  (4.18) 

 

QAPAP k
T

k +=−
+1   (4.19) 

 

This equation completes the prediction phase. Update phase and prediction phase 

together constitute an iteration of the Kalman filter. Filter equations are summarized as 

shown below. 
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4.1.1 Steps in Kalman Filter 

 

Initialization 

Initialize the state vector with 0X  and error covariance matrix 0P  with arbitrary large 

values in its diagonal elements and rest all set to zero. 

 

Update Phase 

Gain update 

 

( ) 1−−− += RHHPHPK T
k

T
kk  (4.20) 

 

State update 

 

( )−− −+= kkkkk XHYKXX ˆˆˆ  (4.21) 

 

Error covariance update 

 

( ) −−= kkk PHKIP   (4.22) 

 

Prediction Phase 

State prediction 

 

kk XAX ˆˆ
1 =−

+   (4.23) 

 

Error Covariance prediction 

 

QAPAP k
T

k +=−
+1   (4.24) 
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4.2 System Model for Localization 

 

State Dynamic Model 
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 (4.25) 

 

Measurement Model 
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 (4.26) 

 

Replacing )( 0dLp  with )(log10)( 01000 ddLp η+ , the measurement model is modified as 
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 (4.27) 

 

Vectors w  and v  are the state and measurement noises distributed as zero mean 

Gaussian random variables with covariance matrices Q  and R  respectively. Substituting 

the value of id0 as a function of measurement and target (state vector) locations in the 

measurement equations, measurement vector in terms of state vector is represented as in 

equation (4.28). Where K  is a constant term used to replace the terms 

)( 00dLGGP prtt −++ . 
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 (4.28) 

 

Observing the measurement model of system designed for localization, it is evident that 

direct application of Kalman Filter is not possible. As the measurement vector is a 

nonlinear function of the state vector, the filter has to be modified such that measurement 

can be linearized about its current mean and covariance. Hence it is appropriate to use an 

approximation of the Kalman Filter namely Extended Kalman Filter which extends the 

application of Kalman filter to nonlinear dynamic systems. 

 

4.3 Extended Kalman Filtering 

 

Extended Kalman filtering is applicable for nonlinear systems because of the 

approximation of state space model using Taylor’s series expansion and neglecting 

higher order terms. State space model for the nonlinear systems assuming zero input 

vector can be represented as shown below. 

 

State Model 

 

( )kkk wXfX ,ˆ
1 =+   (4.29) 

 

Measurement Model 

 

( )111 ,ˆ
+++ = kkk vXhZ   (4.30) 
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As one does not have prior knowledge about the value of kw  and kv , estimate of the sate 

and measurement vectors are computed with above noises set to zero. The modified 

model is as shown below 

 

State Model 

 

( )0,ˆˆ
1 kk XfX =+  (4.31) 

 

Measurement Model 

 

( )0,ˆ
11 ++ = kk XhZ  (4.32) 

 

State update and prediction equations for the above system are given below 

 

Update Phase 

Gain update 

 

( ) 1** *
−−− += VRVHHPHPK kkk  (4.33) 

 

State update 

 

( )−− −+= kkkkk XHYKXX ˆˆˆ   (4.34) 

 

Error covariance update 

 

( ) −−= kkk PHKIP   (4.35) 
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Prediction Phase 

State prediction 

 

kk XAX ˆˆ
1 =−

+   (4.36) 

 

Error Covariance prediction 

 
T

k
T

k WQWAPAP +=−
+1  (4.37) 

 

Where the matrices A , H ,W  and V  are Jacobians defined as 

 

( ) )0,ˆ(, 1−∂

∂
= k

j

i X
x

f
jiA   (4.38) 

 

( ) )0,ˆ(, k

j

i X
x

h
jiH

∂

∂
=   (4.39) 

 

( ) )0,ˆ(, 1−∂

∂
= k

j

i X
w

f
jiW  (4.40) 

 

( ) )0,ˆ(, k

j

i X
v

f
jiV

∂
∂

=   (4.41) 
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Flow chart depicted in figure 10 for Bayesian estimation is applicable for Kalman and 

Extended Kalman filters as well. Prediction and update steps are implemented as depicted 

in figure 11. Matrices involved in Extended Kalman filter have to be calculated 

recursively as given in equations (4.38) – (4.41) and 

 

 

Figure 11 : Flow chart for Bayesian State Estimation 
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4.3.1 Localization model for EKF 

 

System model for the localization application was introduced in section 3.2 for Kalman 

Filter. Applying the Extended Kalman Filter for localization model, state prediction stage 

remains the same as the state dynamic equation is linear, but the state update equations 

get modified because of the linearization process, as given in the Extended Kalman Filter 

state update phase. Matrix H  is derived as shown below. 

 

( ) )0,ˆ(, k

j

i X
x

h
jiH

∂

∂
=  (4.42) 

 

Where h  is the measurement function in equation (4.32) and its Jacobian is computed to 

be 
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Matrices A , Q  and R  are identity matrices of order 33×  as they are linearly related to 

state and measurement vectors. Simulation results for the extended Kalman Filter are 

demonstrated in the following section with figures 12 - 15. 
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4.4 Simulation Results 

This section presents the simulation results of the EKF. Parameters for the simulation are 

given below. 

Path loss exponent 4=η  

Standard deviation of process noise 12 =σ meter 

Standard deviation of measurement noise (Shadowing) dB61 =σ  

Standard deviation of location measurements 53 =σ meters 

Number of locations 25=  
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Figure 12 : Plot of EKF Mean Error in coordinates vs. Time 
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Figure 13 : Plot of EKF Error Variance in coordinates vs. Time 
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Figure 14 : Plot of EKF Mean Error vs. Time 
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Figure 15 :  Plot of EKF Mean Error vs. �umber of Locations 

 

Error performance of the Extended Kalman Filter as function of Number of locations is 

given in figure 15. All the parameters are same as that mentioned above except for 

number of locations. For each location, the error is averaged after performing simulations 

for 100 times and is so chosen that average error does not vary much with further 

increase in number of simulations. 

 

Error is computed as the difference between estimated mean and actual location. From 

figure 14, it can be inferred that, as the number of measurement locations increase, the 
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error decreases. This is because of the obvious reason that effect of shadowing will be 

negated. Although EKF provides acceptable results considering the error with respect to 

its mean, this filter limits the amount of knowledge conveyed about actual state 

probability distribution because of Gaussian approximation. As the Gaussian distribution 

is characterized by its mean and Covariance, using this filter, one can only estimate the 

first and second order moments of state posterior density. In order to get more 

information like higher order moments, quantiles about the distribution of location 

coordinates, Gaussian assumption has to be eliminated and a more generalized approach 

has to be applied. 

 

4.5 Comparison of RLSF and EKF 

For a given path loss model and target location, RLSF and EKF are simulated for 100 

times and the average error has been computed for each of the measurement locations. 

i.e. [10:10:50]. Figure 16 provides the average error performance of RLSF and EKF. The 

performance of later algorithm is observed to be superior to that of former. 
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Figure 16 :  Comparison of EKF and RLSF Mean error performance 
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5. MO�TE CARLO METHODS A�D PARTICLE FILTER 

 

 

5.1 Monte Carlo methods 

As the analytical solution is not tractable for localization problem, Monte Carlo 

approximation has been employed for building the posterior density function. Monte 

Carlo methods are a class of algorithms which require repeated random sampling to 

compute estimates. This section gives a brief introduction about Monte Carlo methods 

and importance sampling. These methods are used to compute expectations of complex 

probability functions using a set of independent and identically distributed random 

samples drawn from the probability distribution. Following example illustrates the 

method of approximation using Monte Carlo. Suppose X  is a random variable with 

probability density function ( )xPX , then an expectation of function of X , ( )Xf  can be 

computed as 

  

( ) ( )[ ] ( )( )




== ∑

=

!s

i

i
P Xf

!s
XfEXf

1

1~
  (5.1) 

 

Where ( )iX  are independent random samples drawn from Ω , the sample space of X  

according to the probability density function ( )xPX . ( )Xf
~

 is called the Monte Carlo 

Estimator for expectation of ( )Xf . 
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Monte Carlo methods make use of “law of large numbers” to prove that, as the number of 

samples used for estimation gets large, approximated estimate approaches the original 

estimate, if it exists. Law of Large Numbers states that average of a large number of 

independent random samples from a probability distribution tends towards the theoretical 

average of that distribution. 

 

( ) ( )[ ]( ) 0
~

lim =≥−
∞→

εXfEXfP P!s
!s

  (5.2) 

 

Hence, if s!  is chosen to be large, then the probability that ( )Xf
~

 deviates from 

( )[ ]XfEP  will be very small. 

 

5.1.1 Mean and variance of Monte Carlo estimator 

 

Let us consider the properties of Monte Carlo estimator ( )Xf
~

 as a random variable. The 

mean and variance of the estimate are computed as given by equations (5.3) and (5.4). 
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 (5.4) 

 

One of the important aspects of Monte Carlo estimators is that they are unbiased and 

have a small variance if the number of samples tends to towards infinity. The estimator 

introduced here is also called as crude Monte Carlo. Numerous variance reduction 
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techniques have been developed in the literature among which “Importance Sampling” 

has been widely adopted. 

 

5.1.2 Importance Sampling 

 

Importance Sampling deals with choosing a good distribution from which it is easy to 

generate random samples for computing Monte Carlo (MC) estimates. Basically, the 

integrand in an expectation equation is multiplied and divided by a proposal density to 

compute expectation with respect to the proposal density function. Using this method, an 

expectation of a quantity that varies less than the original integrand over region of 

integration, can be computed. Let ( )Xπ  be the probability density function of X  also 

called as proposal density, which takes values in Ω , satisfying the condition of (5.5). 

 

( ) 1=∫ Ω∈x dxxπ   (5.5) 

 

Expectation for function ( )Xf  with X  having a probability density ( )XP  also called as 

target density over the same region Ω , can be computed as given in (5.6) for the values 

of X  such that ( ) 0≠xπ . 

 

( ) ( ) ( ) ( ) ( )
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π
ππ

π
π

 (5.6) 

 

Monte Carlo estimator can be obtained by drawing the i.i.d random samples from ( )xπ  

and computing the summation. 
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The variance of MC estimator thus computed can be minimized by choosing a proposal 

density which satisfies the condition ( ) ( )XPX ∝π . If the proposal density is chosen such 

that ( ) ( )XPX απ = , then the resulting variance of MC estimator will be zero. Therefore, 

in order to compute a MC estimate using importance sampling, one needs to have the 

knowledge of target density function in order to build a proposal density such that it 

satisfies the above condition for minimum variance. In the ideal case, proposal density 

can be chosen to be the posterior density such that the resultant variance becomes zero. 

But, in general, the target distributions are complex and difficult to draw samples from it 

and hence the need for proposal density construction arises. The main application of 

importance sampling arises in these situations where the proposal density is chosen such 

that it is easy to draw samples and also should closely approximate the target density. For 

state estimation using Monte Carlo methods with importance sampling called particle 

filters have been developed which will be described in the next chapter. 

 

Particle filters are sequential Monte Carlo methods applying Bayesian estimation for a 

generalized state space model. They make use of discrete particles to represent 

probability density function. Particle filter does not impose any restrictions on the 

distribution of state vector or process and measurement noises as is the case with Kalman 

filters and its variants. Following section describes some of the algorithms developed for 

particle filtering employing importance sampling. 
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5.2 Sequential Importance Sampling Algorithm (SIS) 

Sequential Monte Carlo method that provides basic framework for particle filters is the 

algorithm of Sequential Importance Sampling (SIS). This method is also called as 

bootstrap filtering, condensation algorithm, particle filtering, interacting particle 

approximations and survival of the fittest. SIS algorithm is designed for recursive 

Bayesian estimation using Monte Carlo Simulations. It essentially approximates a 

probability density function by a set of particles with associated weights and then 

performs the operations of prediction and update recursively to approximate the posterior 

density. After a sufficient number of iterations, the distribution of particles becomes 

stationary and Monte Carlo estimates can be computed. As the number of particles 

becomes large, closer will be the representation of particles to the original posterior 

density which in turn will result in better estimates. 

 

5.2.1 Prerequisites of SIS 

 

In order to implement the SIS algorithm, one needs to have a set of random samples 

( )i
kX  and their weights 

( )i
kw  where !si ,.....2,1=  at time k  to approximate the posterior 

probability density given measurements as 

 

( ) ( ) ( )( )i
kk

!s

i

i
kkk XXwZXP :0:0

1
:1:0 | −≈ ∑

=
δ  (5.8) 

 

which is a discrete approximation of the original posterior density. Weights 
( )i

kw  are 

obtained using the importance sampling as it is generally difficult if not impossible to 
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draw samples from posterior density directly. Initially at time 0=k , the posterior 

distribution )()|( 000 XPZXP =  is assumed to be known and also have a state space 

model of the system such that state transition density )|( 1−kk XXP  and likelihood 

density )|( kk XZP  are defined. Now, the purpose of particle filter is to recursively 

estimate the posterior density )|( :1kk ZXP   based on a given set of observations kZ :1 . In 

order to compute the weights recursively to approximate the posterior density,  
( )i

kX :0  

has to be drawn from posterior density but as it is impossible to do so, importance 

sampling method using a proposal density has to be employed. The proposal density has 

to be chosen such that it closely approximates the posterior and on the other hand 

samples can be drawn with ease. 

 

Let ( )kk ZX :1:0 |π  be the proposal density from which the samples 
( )i

kX  are drawn and 

the weights are computed as 

 

( )
( )( )
( )( )k
i

k

k
i

ki
k

ZX

ZXP
w

:1:0

:1:0

|

|

π
∝  (5.9) 

 

The optimal choice of importance density is 
( )( ) ( )( )k

i
kk

i
k ZXPZX :1:0:1:0 || =π . In the 

sequential Monte Carlo case, for every iteration samples representing posterior 

( )1:11:0 | −− kk ZXP  from previous iteration will be available and are required to compute 

( )kk ZXP :1:0 |  with a new set of samples. Suppose one chooses an importance density 

such that 
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( ) ( ) ( )∏
=

−=
k

i
kkkkk ZXXZXZX

1
:11:000:1:0 ,||| πππ  (5.10) 

 

then, one can obtain the samples 
( )i

kX :0  from ( )kk ZX :1:0 |π  by augmenting each of the 

existing samples 
( )i

kX 1:0 −  from ( )1:11:0 | −− kk ZXπ  with new state 
( )i

kX  drawn from 

( )kkk ZXX :11:0 ,| −π . 

 

5.2.2 Recursive steps in SIS 

 

Using recursive Bayesian filter equations of prediction and update, the weight of the 

particles are computed recursively as shown below. 

Prediction 

 

( ) ( ) ( )1:11:01:01:1:0 ||| −−−− = kkkkkk ZXPXXPZXP  (5.11) 

 

Update 

 

( ) ( ) ( )
( )1:1

1:1:0
:1:0

|

||
|

−
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kk

kkkk
kk

ZZP

ZXPXZP
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These two equations can be combined to form a single recursive equation for computing 

the weights of particle as 

 

( ) ( )
( )

( )1:11:0

1:1

1:0
:1:0 |

|

)|(|
| −−

−

−= kk

kk

kkkk
kk ZXP
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( ) ( ) ( )1:11:01:0:1:0 |)|(|| −−−∝ kkkkkkkk ZXPXXPXZPZXP  (5.14) 
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Particle weights are computed as 

 

( ) ( )
( )kk

kki
k

ZX

ZXP
w

:1:0

:0:0

|

|

π
∝   (5.15) 

 

Substituting the values of ( )kk ZXP :0:0 |  and ( )kk ZX :1:0 |π  from equations (5.1.7) and 

(5.10) respectively 
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Where 
( )i

kw :0  and 
( )i

kw 1:0 −  are the weights representing posterior density at times k  and 

1−k  respectively. Once the weights are computed, then the posterior density can be 

represented by equation (5.8). Flow chart of the SIS algorithm is depicted in figure 17. 

 

5.2.3 Pseudo Code for SIS Algorithm 

 

1. Initialize by sampling particles from )|( 00 ZXP  at 0=k . 

2. Iterate steps 3 to 5 for every k . 

3. Draw samples at k  using proposal density ( )kkk ZXX :11:0 ,| −π . 

4. Compute weights kw~  using equation (5.17). 

5. Normalize particle weights as 
∑
=

=
!s

i

i
k

i
ki

k

w

w
w

1

~

~
. 



73 

 

 

 

 

Figure 17 : Flow chart for Sequential Importance Sampling Algorithm 
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Figure 18 : Flow chart for drawing random samples from a standard probability 

distribution 
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5.3 Sampling Importance Resampling Algorithm (SIR) 

One of the problems associated with Sequential Importance Sampling algorithm is 

degeneracy of the particles as the number of iterations increase. Due to this phenomenon,  

all but a few particles will have a negligible weight. So, large amount of computation has 

to be expended on particles which will have negligible contribution in the posterior 

density function. Because of degeneracy, the posterior density is represented by a few 

particles based on which if estimates are computed does not guarantee accuracy as well 

the confidence in estimate. In order to overcome the problem of degeneracy, re-sampling 

methods have been proposed which can be introduced after the normalization step in SIS 

algorithm. Resampling avoids the degeneracy by selectively sampling the particles based 

on weights computed in the normalization step. The basic idea used in resampling is to 

replicate the particles with high normalized weights and eliminate the ones with lesser 

weights such that the posterior density is concentrated densely in the areas where 

probability will be high and sparsely where it is low. Figure 19 illustrates the technique of 

resampling. 

 

A suitable measure of degeneracy is the effective sample size denoted as eff! . 

Resampling introduces additional computational cost to the SIS algorithm and hence can 

be applied whenever degeneracy is below the threshold say 
3

S
T

!
! = . A variant of SIS 

with resampling is called Sampling Importance Resampling (SIR) algorithm where 
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resampling is performed in every iteration. Flow chart for SIR algorithm is given in 

figure 20. 

 

 

 

 

 

 

 

 

 

 

Figure 19 : Resampling Illustration 

 

 

5.3.1 Pseudo Code for SIR Algorithm 

 

1. Initialize by sampling particles from )|( 00 ZXP  at 0=k  

2. Iterate steps 3 to 6 for every k  

3. Draw samples at k  using proposal density ( )1| −kk XXP  

4. Compute weights )|(~
kkk XZPw =  

5. Normalize particle weights as 
∑
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i
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6. Resample weights 
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Figure 20 : Flow chart for Sampling Importance Re-sampling Algorithm 
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One of the disadvantages associated with introducing resampling technique is loss of 

diversity known as ‘sample impoverishment’, because of the elimination of particles with 

lesser probability and replication of particles with higher weights. Also correlation 

between the particles increases after few iterations, which is not desirable for computing 

the Monte Carlo estimates. This problem will be more severe when the process noise is 

small and can be eliminated by introducing Markov Chain moves. MCMC methods can 

be implemented using any of the algorithms like Metropolis-Hastings, Gibbs sampling 

and has to be performed whenever the posterior density is resampled. One need not have 

to worry about burn-in period while implementing Markov chain moves in this scenario, 

as the weights are an approximation of posterior density and few moves would make the 

distribution stationary. One drawback of Markov Chain moves is the added 

computational cost to already computationally expensive Monte Carlo methods. 

Alternatively, Rao-Blackwell estimator can also be explored by separating the linear and 

nonlinear parts in the model. 

 

5.4 Simulation Results 

This section provides the simulated results of particle filter using SIR algorithm for 

localization. The initial distribution is assumed to be Uniform in [0,50] for three 

coordinates. Using the same system parameters as that used for Extended Kalman filter, 

the particle filter has been simulated with a size of 10000 particles for 100 iterations with 

a single measurement location. Figure 21 depicts the distribution of particles by means of 
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a scatter plot which is as expected is a circle in two dimensional plane assuming no 

fading. Similarly, figure 22 depicts the distribution of particles for a fading channel 

which are more widely scattered than that in the earlier case. 
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Figure 21 : Distribution of particles for non-fading channel 
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Figure 22 : Distribution of particles for a fading channel 

 

Distribution of particles in the above figures although give some insight about the 

location of target, they are not useful as the probable region is large. In order to narrow 

the probable region, measurements are to be performed at multiple locations which when 

simulated gives the following results depicted in figures 23 - 26. The number of 

measured locations is chosen to be 25, which provides sufficient accuracy in a two 

dimensional coordinate system. 
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Figure 23 : Mean of the coordinates vs. Time (SIR-PF) 
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Figure 24 : Variance of the coordinates vs. �umber of iterations (SIR-PF) 
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Figure 25 : SIR-PF Error vs. �umber of iterations 
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Figure 26 : SIR-PF Scatter plot for distribution of particles 
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6.  COMPARISO�, CO�CLUSIO�S A�D FUTURE SCOPE 

 

 

In the previous chapters we studied the techniques of Least squared error, Extended 

Kalman filtering and Particle filtering with Sampling Importance Resampling algorithms 

for localization. This chapter presents the comparison results of the three algorithms, 

conclusions and the future work. 

 

6.1 Comparison of RLSF, EKF and SIR-PF 

Figure 27 provides the simulation result comparing the performance of RLSF, EKF and 

SIR-PF with mean and maximum likelihood estimates. As observed from chapter 4 

simulation, EKF provides better results than RLSF, and from the below figure it can be 

inferred that SIRPF also performs better than RLSF. Performance of SIR-PF is observed 

to be comparable to that of EKF, and in this application it in fact provided better results. 

This is because of the less number of particles (5000) iterated for 250 times for obtaining 

simulation results; and can be overcome by increasing particle count and/or iteration 

time. But, the computation time required will also increase and hence a trade off has been 

made between accuracy and computation time. 
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Figure 27 : Comparison of RLSF, EKF and SIR-PF error performance 

 

6.2 Conclusions and Future Work 

In this work, three different approaches have been analyzed for localization and their 

performances are compared. Solution obtained using RLSF minimizes the squared error 

with obtained measurements but does not provide any statistical information about target 

location. Whereas the other two solutions EKF and SIR-PF aim to derive the probability 

density of target location conditioned on the measurements using Bayesian Estimation. 

Solution obtained using these techniques are considered to be complete as it embeds all 

the statistical information of system states. As the state space model is found to be 

nonlinear for this particular application, optimal solution does not have closed form 
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solution and hence approximations have to be applied. EKF approximates the nonlinear 

model with a linear one, using Taylor’s series expansion and also assumes that the state 

posterior density is Gaussian. SIR-PF approximates the probability density with weighted 

particles which are applied to recursive steps of prediction and update to derive the state 

posterior density. The solution obtained using SIR-PF is preferred to other two 

techniques because of its generalized approach with out any restrictions on the model or 

the distribution of state vector. Simulation results also confirm that SIR-PF performance 

is superior compared to the other two solutions. 

 

For particle filters, it is desired that proposal density closely approximates the posterior 

density in order to get better estimates with minimum variance. In SIR particle filter, 

prior density is used as the importance density which does not take in to account the 

current measurement and hence the samples are drawn from a wider distribution. On the 

other hand if particles are sampled from a distribution which is conditioned on the current 

measurement are most likely to be closer to the true estimate. Auxiliary particle filter 

introduced in [21], uses a proposal density which generates samples from the previous 

iteration based on current measurement. Performance of this filter has to be explored as it 

claims better results for systems with low process noise. Also, techniques for building 

proposals that approximate the posterior density more closely have to be developed and is 

the area that has to be explored. 
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