
EVALUATION OF THE HARDWARE PERFORMANCE SPACE OF SHA-3
CANDIDATES BLUE MIDNIGHT WISH AND CUBEHASH USING FPGAS

by�

Robert Lorentz�
A Thesis�

Submitted to the�
Graduate Faculty�

of�
George Mason University�
in Partial Fulfillment of�

The Requirements for the Degree�
of�

Master of Science�
Computer Engineering�

Committee:

Dr. Kris Gaj, Dissertation Director ~~-'---

k -/~~.v Dr. Jens-Peter Kaps, Committee Member

Dr. Qiliang Li, Committee Member

Dr. Andre Manitius, Department Chair

Dr. Lloyd J. Griffiths, Dean, Volgenau
School of Engineering

Date:-----l d I o'l/-a 0 l----'--\-- Fall Semester 2011
George Mason University
Fairfax, VA

Evaluation of the Hardware Performance Space of SHA-3 Candidates Blue Midnight

Wish and CubeHash Using FPGAs

A Thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at George Mason University

By

Robert Lorentz
Bachelor of Science

George Mason University, 2006

Director: Kris Gaj, Associate Professor
Department of Electrical and Computer Engineering

Fall Semester 2011
George Mason University

Fairfax, VA

 ii

Copyright 2011 Robert Lorentz

All Rights Reserved

 iii

DEDICATION

I dedicate this Thesis to my entire family for the support, patience, understanding, and
advice that has allowed this research to be performed.

 iv

ACKNOWLEDGEMENTS

I would like to thank all of the people who made this Thesis possible.

I especially thank Dr. Kris Gaj for providing excellent guidance and inspiration and for
sharing his endless enthusiasm for cryptography and for FPGA design, without which I
would have never undertaken this effort or developed such an interest in these subjects. I
also would like to thank Ekawat “Ice” Homsirikamol for his endless patience and support
as I adapted his earlier and ongoing research for use in my experiments, without which
my research could not have been completed in such a thorough and successful manner.
Also, I would like to thank Marcin Rogawski for his advice and assistance regarding my
research.

 v

TABLE OF CONTENTS

 Page
List of Tables……………………………………………………………………………vi
List of Figures…………………………………………………………………………...vii
Abstract..……….viii
Chapter 1: Introduction ...…1

1.1 Cryptographic Hash Function ...1
1.2 Motivation ...4
1.3 Blue Midnight Wish ..6
1.4 CubeHash ..7
1.5 Previous Work ..9

Chapter 2: Design Methodology ...11
2.1 Technique for Basic Iterative Designs ..16
2.2 Technique for Folded Designs ..17
2.3 Technique for Pipelined Multi-Message Designs ...18
2.4 Technique for Multiunit Multi-Message Designs ...20

Chapter 3: Interface and Protocols ..22
3.1 Generalized Circuit Design ...22
3.2 Uniform Interface ..27
3.3 Data Protocol ..29

Chapter 4: Basic Iterative Designs ..30
4.1 Blue Midnight Wish Basic Iterative Design ...30
4.2 CubeHash Basic Iterative Design ...33

Chapter 5: Folded Designs ..38
5.1 Blue Midnight Wish Folded Design ...38
5.2 CubeHash Folded Design ...44

Chapter 6: Multi-Message Designs ...48
6.1 Blue Midnight Wish Pipelined Design ...48
6.2 CubeHash Multiunit Design ...52

Chapter 7: Results ...54
7.1 Discussion of Basic Iterative Designs ...58
7.2 Discussion of Folded Designs ...59
7.3 Discussion of Multi-Message Designs ..62

Chapter 8: Conclusions and Future Work ...64
8.1 Future Work ..68

List of References.……………………………………………………………………...70

 vi

LIST OF TABLES

Table Page
2.1 Generic Equations of Latency and Throughput ..16
4.1 Latency and Throughput Equations for Blue Midnight Wish x133
4.2 Latency and Throughput Equations for CubeHash x1 ..37
5.1 Latency and Throughput Equations for Blue Midnight Wish /32(h)44
5.2 Latency and Throughput Equations for CubeHash /2(h) ..47
6.1 Latency and Throughput Equations for Blue Midnight Wish x1-PPL1851
6.2 Latency and Throughput Equations for CubeHash x1-PARn53
7.1 Results of All Implementations on Xilinx Virtex 5 Family54
7.2 Results of All Implementations on Altera Stratix III Family55
7.3 Results of Basic Iterative Implementation on Xilinx Virtex 5 Family59
7.4 Results of Basic Iterative Implementation of Altera Stratix III Family59
7.5 Results of Folded Implementations on Xilinx Virtex 5 Family61
7.6 Results of Folded Implementations on Altera Stratix III Family61
7.7 Throughput and Area Ratio Comparison on Xilinx Virtex 5 Family for Folded
Architectures ...61
7.8 Throughput and Area Ratio Comparison on Altera Stratix III Family for Folded
Architectures ...62
7.9 Results of Multi-Message Implementations on Xilinx Virtex 5 Family63
7.10 Results of Multi-Message Implementations on Altera Stratix III Family63

 vii

LIST OF FIGURES

Figure Page
1.1 Graphical Representation of the Blue Midnight Wish Hash Algorithm6
2.1 Three Hardware Architectures of a Hash Function ..18
2.2 Detailed Overview of Pipelined Architecture ...…20
2.3 Detailed Overview of Multiunit Architecture ...21
3.1 Generalized Top Level ..23
3.2 Generalized Datapath ..25
3.3 Generalized Controller ..26
3.4 Interface to the SHA Core ...28
3.5 Full Interfaces for Typical Application ...28
3.6 Data Protocol for SHA-3 Designs ...29
4.1 Basic Midnight Wish Basic Iterative Datapath ...32
4.2 CubeHash Basic Iterative Datapath ..35
4.3 CubeHash Basic Iterative Round ..36
4.4 CubeHash Basic Iterative Round Swap Functions ...36
5.1 Blue Midnight Wish /32(h) Folded Datapath ...40
5.2 Blue Midnight Wish /32(h) Folded F0 Function Part 1 ..41
5.3 Blue Midnight Wish /32(h) Folded F0 Function Part 2 ..42
5.4 Blue Midnight Wish /32(h) Folded F1 Function ..43
5.5 CubeHash Round Folded /2(h) ...46
6.1 Blue Midnight Wish Pipelined F0 Function ...49
6.2 Blue Midnight Wish Pipelined F1 Function ...50
6.3 Blue Midnight Wish Pipelined F2 Function ...50
7.1 Xilinx Virtex 5 Family Results – 256 Bit Message Digest56
7.2 Xilinx Virtex 5 Family Results – 512 Bit Message Digest56
7.3 Altera Stratix III Family Results – 256 Bit Message Digest57
7.4 Altera Stratix III Family Results – 512 Bit Message Digest57

ABSTRACT

EVALUATION OF THE HARDWARE PERFORMANCE SPACE OF SHA-3
CANDIDATES BLUE MIDNIGHT WISH AND CUBEHASH USING FPGAS

Robert Lorentz, MS

George Mason University, 2011

Thesis Director: Dr. Kris Gaj

In 2007, the National Institute of Standards and Technology (NIST) announced a public

competition to develop a new cryptographic hash algorithm to become the SHA-3

standard. This algorithm should allow flexibility in the design tradeoff decisions between

performance and circuit area. This study evaluated two SHA-3 Round 2 Candidate

Algorithms, Blue Midnight Wish and CubeHash, to define their performance space in

FPGA hardware. High throughput designs were created using multi-message techniques,

and single-message Basic Iterative and Folded techniques were applied to find designs of

relatively low area. The results show a large performance range for both algorithms, but

the fine granularity achieved with parallel cores of CubeHash is superior to the inflexible

pipelined architecture of Blue Midnight Wish.

 1

CHAPTER 1: Introduction

1.1. Cryptographic Hash Function

In today’s world of digital commerce, telecommuting, and international business there is

an incredible and constant amount of reliance on cryptography to facilitate the lifestyle

that has become the standard. Not only are people living these high-tech lifestyles, but

also they are doing so with the ubiquitous computing model - a wide variety of new types

of mobile devices have become pervasive in our environment and the expectation is that

almost all everyday tasks can be performed with these devices.

 One specific type of cryptography relied upon for security within these tasks is

the cryptographic hash function. Conceptually, a hash function can take any piece of

message or data and give a short piece of data that identifies this input message. Ideally,

it should be infeasible to find another input message that will produce the same hash

function output. If someone receives a piece of data that they have a known good hash

output value for, they can verify that the received data has integrity by running the

received data through the hash algorithm and comparing it to the known good value. An

application for this would be to ensure that a file transfer has completed successfully.

Most commonly, a hash function is used along with as a digital fingerprint to

provide cryptographic authentication services. An example of this would be if Alice

writes a letter to Bob, creates a hash value Hash(M) of the message, and then encrypts

 2

this using a public key encryption system using her private key corresponding to her

public key. This example can be expressed as in equation (1.1).

 A, M || E(Apr, Hash(M)), B (1.1)

The term used for this technique is a digital signature. This scheme implements

authentication because Bob receives and reads the message M, decrypts E(Apr, Hash(M))

using Alice’s public key, and then uses the same hash algorithm locally on M. It is

infeasible to find another message M’ that results in the same hash value Hash(M), so if

the hash value of M matches the received Hash(M) then it can be said with certainty that

Alice did in fact send this message. The reason for the public key encryption algorithm

is to prove that only Alice could have sent the signature due to the properties of a public

key encryption system, which are beyond the scope of this paper. The reason for sending

a signature using Hash(M) for authentication instead of the entire message M is that it is

extremely inefficient to use the entire encrypted M since it will double the storage space

and data transfer bandwidth utilization. In contrast, the value of Hash(M) is a very small

constant size regardless of how large M becomes. Due to the properties of hash

functions, this scheme is theoretically very close to the security of using the entire

encrypted M, and in practical terms it is identical.

 Speaking formally, a cryptographic hash function takes an input message M of

arbitrary length, performs a series of cryptographic transformations on this data, and

 3

results in a hash message digest H of a length defined by the algorithm. Unlike other

cryptographic functions such as symmetric key cryptography, hash functions do not

utilize a change-able key. Since no secret key is needed for the algorithm, the resulting

message digest H for a given M can be computed with no knowledge except the public

specification of the algorithm.

The length of M can be arbitrarily long, and the size of H is of a fixed small size,

so a hash function is a many-to-one function that maps the domain M to the range H.

Being a many-to-one function, there are three cases possible for each given value h of H.

First, the function may be unable to associate any values with a given h value of H.

Secondly, the function may associate one value with a given h. Finally, the function may

associate up to Length M values with a given h. The ideal situation is to have an even

mapping of values such that every given h in the Range of the function has an equal

number of possible messages that can map to it. If too few values map to a given h, then

it effectively reduces the keyspace. If too many values map to a given h, it becomes

easier to find a collision. These situations reduce the security properties of a

cryptographic hash function and are undesirable.

Formally speaking, there are two security requirements of a cryptographic hash

function. First, given Hash(M) it must be computationally infeasible to find M. If it

were possible to do this, then a signature could be used to compromise an encrypted

message. Secondly, it must be computationally infeasible to find a message M’, different

than M, such that Hash(M’) = Hash(M). If this was violated, then a collision would be

said to occur, and a malicious message M’ could be used. The impact of this could be

 4

making it appear as if another party signed something that they did not agree to, or

reducing the confidence of a true signature by pointing out alternate values.

1.2. Motivation

The extreme reliance on cryptographic services makes it crucial that they are secure. If

the security of all commonly used algorithms were compromised, there would be a

catastrophic impact to the global economy, military and government security, and to

many people’s lives.

Therefore, the National Institute of Standards and Technology (NIST)

standardizes cryptographic algorithms for use. These standards are often what are

adopted by commercial, government, and for general use. The previous algorithms

standardized by NIST, using the prefix Secure Hash Algorithm (SHA), have been SHA-

0, SHA-1 and SHA-2. The United States National Security Agency (NSA) developed all

three of these algorithms internally, with the most recent SHA-2 standard being

published in 2001.

Attacks have been found against the strength of these hash algorithms.

Significantly, in 2005 researchers found [1] an attack against SHA-0 that can find

collisions in an unacceptably short amount of time. Similar attacks have been found [2]

against SHA-1 to the extent that NIST has recommended that as of 2010 SHA-1 use be

discontinued in favor of SHA-2. With SHA-2 being the only standardized algorithm not

yet broken, NIST has called an open competition for a completely new SHA-3 algorithm

[3]. This open competition for SHA-3 mimics the earlier move by NIST to call for open

 5

competition for the new Advanced Encryption Standard (AES) symmetric key

cryptography algorithm to replace the Data Encryption Standard (DES) algorithm that

had significant weaknesses exposed. When we talk about an algorithm being broken, it

means that it has become feasible for a well-funded organization such as a national

security agency to be able to find a collision within a reasonable amount of time such as

weeks, instead of hundreds of years or longer as should be the case.

 For these SHA-3 candidate algorithms, the hardware performance and flexibility

is of major interest to NIST [4], with NIST stating that several algorithms were deemed

unacceptable due to area requirements in hardware, and that other algorithms were seen

as better due to providing fine-grained control of the amount of parallelization that they

could be designed with. Therefore, research that further explores the performance space

of hash algorithms is clearly valuable to those evaluating or designing algorithms.

 Blue Midnight Wish and CubeHash were two of the fourteen algorithms to

advance to the second round of the NIST SHA-3 competition. Neither of these

algorithms made it to the final third round of the competition, but they are well-

documented and interesting algorithms to research, hence they have been chosen for this

work. These algorithms also have fundamentally opposite properties in terms of

hardware performance. Blue Midnight Wish is very large but can be pipelined many

times to gain performance. In contrast, CubeHash cannot be pipelined, but is so small in

terms of area that it could be replicated many times on the same FPGA to form parallel

processing units.

 6

1.3. Blue Midnight Wish

The SHA-3 competition round 2 version of the Blue Midnight Wish Algorithm

specification [5] has been used for this work. This hash algorithm, proposed by

researchers from the Norwegian Institute of Science and Technology, has been designed

to be much more efficient than the current SHA-2 standard while also offering the same

or improved security.

 There are variants of Blue Midnight Wish for message digest sizes 224, 256, 384,

and 512. For this research, the 256 and 512 bit variants were examined. The significant

difference between these four variants is the size of the data buses and operations, there

is no significant different to the flow of data or cryptographic operation.

Figure 1.1: Graphical Representation of the Blue Midnight Wish Hash Algorithm [5]

 7

 As shown in Figure 1.1, each block of the message M and previous hash value H

is processed through two non-linear bijective pipe transform function F0 and double pipe

expansion function F1, which creates a quadruple pipe Q. Subsequently, a folding

operation F2 is performed using input of M and Q. The result is the next H, which is

then either processed in the same manner along with the next block of the message M. If

there is no more M, it is run through a finalization compression function invocation of the

datapath using a constant value in place of H and H in place of M.

 By using the quadruple pipe Q as suggested by Joux [6], Blue Midnight Wish is

protected from generic multicollision attacks because it’s chaining pipe is at least twice

the size of its message digest size. Multicollision attacks are of significant concern in

cryptanalysis since they can lead to collisions occurring in practical situations with

iterative hash functions. Unfortunately for the hardware implementation of Blue

Midnight Wish, dealing with a large chaining pipe comes at the price of significantly

increased area.

1.4. CubeHash

The SHA-3 round 2 version of the CubeHash specification [7] has been used for this

work. This hash algorithm, proposed by Daniel J. Bernstein of the University of Illinois

at Chicago, is very different from the current SHA-2 standard as well as from most other

cryptographic hash functions.

 The main design goal of CubeHash is simplicity. Instead of going with more

traditional modes of hash algorithm modes of operation, CubeHash foregoes this in favor

 8

of a very simple series of add, rotate, swap, and xor operations done iteratively in

identical rounds. There are tunable options r and b, where r sets the number of rounds

(multiplied by 10) and b sets the size of the blocks. Due to the tunable variables, there

are several variants of CubeHash. These variants are notated in the form “CubeHash r/b-

MDSize.” The variants used in this study were CubeHash16/32-256 and CubeHash16/32-

512.

 Due to the usage of only very few operations, which are not at all large in terms of

area required on the physical device, CubeHash implements to a very small area on

hardware. The critical path is also very short due to the tight round loop comprised of

fast operations, so a physical implementation of the algorithm achieves high clock

speeds. Another interesting property of CubeHash is that its internal operation is

unchanged based on whether it is the 256 or 512 variant; this parameter simply indicates

how much of the final output is discarded. This final output is computed by outputting

the first h/8 bytes of the internal state as the message digest.

This study compares the 256 and 512 variants of the CubeHash algorithm. A

better examination of the performance space of CubeHash would be to examine what

happens when r and b are set to a range of values. However, the author indicates in the

specification that once the algorithm is standardized (presumably with parameters r and b

similar to those we’ve chosen), these parameters will be firmly set and the only variation

in the practical application of the algorithm will be to change the message digest size.

Therefore, it makes sense to examine the algorithm in this sense even though it is

fundamentally disadvantaged in many of our calculations for 256 bit message digests.

 9

One interesting attribute of CubeHash, due to the way it handles 256-bit and 512-bit

message digest versions, is that one dedicated circuit can be configured to operate in

either 256-bit or 512-bit hash operation based on a single input pin that is configurable in

real-time. Since there is no difference in the main hash core, the only change would be in

how input and output circuitry is configured. This is in contrast to Blue Midnight Hash,

which would require significant modification to the datapath for such functionality.

1.5. Previous Work

Due to the NIST SHA-3 competition, there have been many papers and results published

regarding all of the candidate algorithms, including the ones we are interested in. Some

of this previous work has been the foundation of this research, and some of it has been

duplicated in an attempt to compare the results within the framework of this research and

compare it to other techniques.

 There has been an experiment [8] that created a Multi-message pipelined version

of Blue Midnight Wish for evaluation against single-message a version. This pipelined

version started from a baseline version similar to our Basic Iterative version of Blue

Midnight Wish. The result, although not explicitly named this, was an x1-PPL18 version

that was replicated in this work. The reason for replicating the earlier effort was to

compare the architecture within the ground rules of this work, and also to experiment

with further alternative architectures.

 A very low area implementation of Blue Midnight Wish was created using the

concept of a very basic set of primitives implemented along with a set of instructions

 10

read from memory [9]. Using this type of method can obtain extremely low area

utilization, but at the extreme cost of performance. This approach is so different than the

others that it was not included in the evaluation of performance space being performed in

this paper.

 Although no papers describing a folded hardware design of Blue Midnight Wish

are known to exist, there has been research done [10] towards decomposing the algorithm

further to primitive pieces than is described in the algorithm’s specification or obvious

from simple analysis. The decomposition was done to aid in cryptanalysis, but this is

also very useful knowledge for creating alternate designs. The decompositions described

in the previous research correspond to the folded /32(h) design described in this thesis.

 11

CHAPTER 2: Design Methodology

The goal of this thesis is to explore the overall performance space of Blue Midnight Wish

and CubeHash, and also to compare them in a fair manner with each other. Certain

ground rules must be adopted to ensure the fairest comparison is performed. The ground

rules established in [11] were used as a guideline for this work. The rules are

summarized as follows:

• FPGAs are used as the hardware implementation target.

• Uniform input/output interface are used for all designs.

• The same basic building blocks are used in the implementation of all designs.

Using these same primitives provides maximum consistency between the designs

and allows for more fair comparison of designs.

• The source code for all designs is written in VHDL.

• The same assumptions and simplifications have been made such that no design

gains an unfair advantage in comparison to another. The assumptions are that

external implementation of padding is performed, that extremely high-speed data

interface buses up to and including FIFOs are present and external to the design,

and that the designs are saturated by incoming messages to be hashed.

 12

• The CAD tools used for each FPGA device family are the most recent versions of

commercial tools that are supplied by that device’s vendor. Using the vendor

supplied tools and not using a competitor or third party’s tool ensures that there is

not a negative bias being applied.

o Xilinx: Xilinx ISE Design Suite 13.2

o Altera: Quartus II v. 9.1 Subscription Edition

• No special dedicated hardware resources of a chip are used, including Block

RAM, Memory Bit, DSP unit, or Multiplier resources. Using these resources

makes it extremely difficult to compare designs since these resources are not

standardized between vendors or even device families.

• Identical and easy to repeat tool options are accomplished by using the ATHENa

(Automated Tool for Hardware EvaluatioN) software package, developed at

George Mason University [12].

• Results have been gathered for several FPGA devices, spanning the most popular

two vendors Altera and Xilinx. For both Blue Midnight Wish and CubeHash, for

a specific message digest size such as 256 bit, the same device was used. This

allows fair comparison within the results obtained for the specific algorithm, so

that a meaningful comparison can be made between designs of one algorithm as

well as between the two algorithms. The Stratix III family was selected for Altera

and the Virtex 5 family was selected for Xilinx. These families are of comparable

technology. The devices specifically chosen from these families were chosen due

to their general-purpose nature, and the smallest device that could accommodate

 13

the largest design was used. The fastest speed grade was selected because that

option increases the headroom of the results.

o 256 Altera: ep3sl70f780c2

o 256 Xilinx: xc5vlx85ff1153-3

o 512 Altera: ep3sl110f1152c2

o 512 Xilinx: xc5vlx220tff1738-2

• Generalized design is used for all designs, as shown in section 3.1.

• Designs are verified using a testbench along with Known Answer Test (KAT) test

vector files provided as part of the hash algorithm’s SHA-3 competition

submission package. The KATs that were used to verify the designs include

various lengths of messages for short single block, multiple blocks, and multiple

segments. This gives strong confidence that the designs are all correct.

The deviations that have been made from the guideline rules are summarized as follows,

along with a rationale for each deviation. In general, the deviations have been made to

allow an exploration of the entire performance space to be performed and to allow

exploration of both single-message and multi-message techniques.

• The optimization target differs based on the primary application of interest for the

technique. Folded designs optimize based on area, Basic Iterative designs

optimize for a balance between area and speed, and Multi-Message designs

optimize for throughput. This differs from the guidelines to optimize for

throughput to area ratio, because doing so would not give a comprehensive

assessment of the entire performance space.

 14

• A uniform protocol is used for all Single-message designs, and a uniform protocol

is used for all Multi-message designs. These protocols differ from each other

because a message ID must be added for Multi-message designs to ensure proper

correlation between input messages and output message digest hash values.

• A uniform testbench is used for all Single-message designs, and a uniform

testbench is used for all Multi-message designs. These testbenches differ from

each other because testing of the message ID is required in Multi-message designs

and data input to the circuit is handled differently as well.

Benchmarking of the performance is done with respect to Area, Throughput, and

Latency. Depending on the application of the designer, one of these could be the most

important design constraint. Area can be crucial when designing an architecture that

must be on the most economical devices, or must coexist on a device that has other major

functions. Throughput can be most important if designing for very high performance

situations such as a network interface hardware component, or if expecting heavy traffic

of very long messages. Latency, meaning the time it takes for a hash value to complete,

is also very important. In some applications, specifically those with many small

incoming messages, latency could be the most important design decision.

 The measurement of Area for each of the designs is given in terms of utilized

Slices for Xilinx Virtex 5 family of devices, and ALUTs for Altera Stratix III family of

devices. The reason for the difference is that these vendors do not use the same

terminology or internal device architectures that would allow. Therefore, using these

area measurements allow comparison of devices to each other, but comparisons of area

 15

are not equal. In contrast, throughput can be directly compared between vendors because

that output is in a common unit of Megabits per second.

 For each design in this paper an equation is given for Latency which is measured

as Hash Time in Cycles, and Throughput which is measured in Megabits per Second.

The general equations used to derive these specific equations are given in Table 2.1. In

this table, r is the number of rounds required to complete one hash in the round structure,

T is the clock period in microseconds, k is the factor of folding, n is the number of

messages able to concurrently be in a multi-message architecture, and b is the block size

of the function. Note that the clock period in microseconds T is a value that differs

between all designs and is not a constant.

The most basic derivation is the Basic Iterative x1, where throughput is defined as

the block size divided by the number of rounds required for a single message block

multiplied by the clock period in microseconds. In other words, it takes r clock cycles

that last T microseconds to result in the hashing of one block of size b bits. This equation

is extended to Folded architectures by multiplying the denominator by folding factor k.

The reason is that for each round r, it will now take k clock cycles instead of 1 clock

cycle to complete it. The parallel multi-message architectures are similar to the Basic

Iterative equation except the throughput is multiplied by n, the number of parallel units

that are on the device. This is intuitive because there will be n times the output since all

of those parallel cores operate in parallel. Finally, the pipelined multi-message

architecture is similar to the parallel equation except it requires an additional n clock

 16

cycles to process a single message block. Note that the pipelined equation actually

simplifies to be the same as Basic Iterative when computing throughput.

Table 2.1: Generic Equations of Latency and Throughput

Architecture	
Time	 required	 to	 process	 a	

single	 message	 block	 Throughput	
Basic	 Iterative	 x1	 Tblock	 =	 r*T	 Tp	 =	 b/Tblock	
Folded	 by	 k,	 /k	 Tblock	 =	 r*k*T	 Tp	 =	 b/Tblock	
Multi-‐message	 x1-‐PPLn	 Tblock	 =	 n*r*T	 Tp	 =	 n	 *	 b/Tblock	
Multi-‐message	 x1-‐PARn	 Tblock	 =	 r*T	 Tp	 =	 n	 *	 b/Tblock	

2.1. Technique for Basic Iterative Designs

The Basic Iterative designs used in this exploration were the ones established in a

previous George Mason University paper, and their published source code was used to

generate results and to act as a baseline for the modified designs explored in this paper.

The technique for creating a basic iterative design is to create an architecture that follows

the description of the hash algorithm that is provided or implied by the algorithm’s

specification. Following this technique gives a balanced result simply denoted in the

results listings as BMW x1 as it is assumed to be the baseline.

 The goal of a Basic Iterative design is to find a balanced implementation of the

algorithm. These designs are not typically going to be the fastest, or the lowest area; but

they also won’t be the slowest, or the highest area. It is useful to study balanced designs

because they are representative of the performance of a typical implementation of the

algorithm. It is also an interesting data point to compare different designs of the same

 17

algorithm. As an example, it’s hard to know how much area a folded design has saved or

what impact that savings has had on speed unless there is a basic iterative benchmark to

compare against.

2.2. Technique for Folded Designs

When creating a folded design, there are two different approaches that can be taken.

First, the architecture can be folded horizontally. Horizontal folding is done when the

same round is used repeatedly and the datapath width stays the same size as the original

Basic Iterative x1 architecture. The alternative is vertical folding, which is achieved by

splitting the datapath width in half and concatenating it back at the end of the folded

round. In some circumstances, this is the only feasible approach. In this study, the

folded architectures created were horizontally folded.

 The reason for folding is to conserve physical area on the implemented circuit.

Folding typically shortens the critical path of the circuit, resulting in an increased clock

frequency. Despite the increased clock frequency, more clock cycles must occur for a

block of the message to be processed. Therefore, it is typical to expect a lower

throughput in a folded design, despite the increased clock speed. Similarly, latency is

expected to become worse as a result of folding.

 18

Figure 2.1: Three Hardware Architectures of a Hash Function. a) Basic Iterative: x1, b)
Folded horizontally by a factor of 2: /2(h), c) Folded vertically by a factor of 2: /2(v). R –
round, S1, S2 – selection functions [15].

2.3. Technique for Pipelined Multi-Message Designs

The technique to create a pipelined version of a basic iterative design is to examine the

round and find segmentation between operations that occur in parallel. For example, if

several additions occur in parallel and then their result moves on to be further processed,

a natural point to pipeline the design will be the point between the completion of addition

and the start of the next operations. This is physically achieved by registering all of the

data. The associated control logic will also need to be modified. When segmenting the

architecture in to pipeline stages, the overall approach should be to split it in to segments

that have roughly the same critical path. If an architecture is converted in to an x1-PPL2

two-pipeline stage design, but one of the stages has a much longer critical path than the

 19

other, the throughput of the design will suffer because the clock frequency will remain

similar to the x1 architecture.

As noted in the discussion of the throughput equations, the pipelined equation

simplifies to be the same as Basic Iterative when computing throughput. However, as the

number of pipeline stages increases, the latency grows longer. When designing a

pipelined architecture, this balance must be taken in to account. A designer needs to find

the correct architecture that gets the best throughput while maintaining a latency that is as

low as possible. In general, it may be tempting for a designer to greedily pipeline the

design to a very high degree, and this method will usually produce shortest critical path

and the maximum throughput. However, the side effect is that latency will be very long.

An architecture is likely to exist that has a more modest number of pipeline stages that

attains almost the same throughput while incurring much less latency penalty. In

contrast, a design that has too few pipeline stages may be significantly slower than the

maximum throughput possible to be obtained through the pipelining technique.

 The overall operation of a Pipelined design is to accept data through FIFO units,

have that data read in by FSM1 to a SIPO unit, then to have that SIPO drive one single

datapath and FSM2. The FSM2 unit tracks state for all of the pipeline stages, and

determines logic based on which timeslot of the pipeline is at which portion of the

datapath. Communication between the single FSM2 and FSM3 is done to select when a

PISO should capture the output from the datapath. The single FSM3 controls all PISO

units and muxes them selectively through to a single output FIFO. By having a single

FSM3, the results are able to output through one unified data interface. Using the

 20

Message ID within the data protocol correlates the incoming FIFO data and the outgoing

message digests.

Figure 2.2: Detailed Overview of Pipelined Architecture [15]

2.4. Technique for Multiunit Multi-Message Designs

A Multiunit multi-message design results in several identical Basic Iterative hash cores

being simultaneously placed on the same device. In general, the most suitable type of

algorithm for a Multiunit design would be a lower area design. The reason is that it can

be parallelized with finer granularity than a larger area design, and can therefore

maximize the number of cores held on an FPGA device of a given area. In contrast, if

each core was quite large, then there could be a significant amount of unusable area on a

given FPGA device and that would not be ideal. For this practical purpose, the design

goal should be to fill as much area as possible of a device with operational cores.

HASH UNIT

SIPO

FSM1

SIPO

FSM1

SIPO

FSM1

SIPO

0

1

2

3

PISO

PISO

PISO

PISOFSM1

0

1

2

3

FIFO

FIFO_CTRL

FIFO

FIFO_CTRL

FIFO

FIFO_CTRL

FIFO

FIFO_CTRL

FIFO

FIFO_CTRL

DATAPATH

FSM2 FSM3

b

ww

w

b

w

w

w

w

w

b

b

b

w

b

b

b ww

w

w

b

w

b

 21

 The overall operation of a Multiunit design is to accept data through FIFO units,

have that data read in by FSM1 to a SIPO unit, then to have that SIPO drive one specific

datapath and FSM2, and then driving the data in to a PISO. Up until this point, operation

is exactly like a Basic Iterative design. All FSM2 units in the design communicate with a

single FSM3 that controls all PISO units and muxes them selectively through to a single

output FIFO. By having a single FSM3, the results are able to output through one unified

data interface. Using the Message ID within the data protocol correlates the incoming

FIFO data and the outgoing message digests.

Figure 2.3: Detailed Overview of Multiunit Architecture

HASH UNIT

DATAPATH

FSM2

PISODATAPATH

FSM2

DATAPATH

FSM2

PISO

PISOFSM1

0

1

2

3

FIFO

FIFO_CTRL

SIPO

FIFO

FIFO_CTRL FSM1

SIPO

FSM3

FIFO

FIFO_CTRL FSM1

SIPO

FIFO

FIFO_CTRL FSM1

FIFO

FIFO_CTRL

SIPO

PISO

FSM2

DATAPATH

w

w

w

w

w

ww

ww

ww

ww

w

b

b

b

b

b

b

b

b

 22

CHAPTER 3: Interface and Protocols

The generalized circuit design and uniform interface used in this study were adopted

from earlier work done by Ekawat Homsirikamol as described in his thesis work [13],

which describes the foundation for the George Mason University SHA-3 candidate

algorithm FPGA implementation designs. This framework is general enough that it was

found acceptable for all 14 SHA-3 Round 2 candidates.

3.1. Generalized Circuit Design

The basic concept of the generalized circuit design is that data passes in and out from the

Datapath one word at a time from external FIFO units. The Controller also accesses

these FIFOs to inform them when to read and write, and to analyze the FIFO status to

know when data is ready to read or ready to be written. The controller and datapath then

communicate with each other to accomplish the hash operation.

 23

Figure 3.1: Generalized Top Level [13]

As each word of data comes in from the FIFO, the Datapath accumulates it in to a Serial

In Parallel Out (SIPO) unit. Following hash operation, a Parallel In Serial Out (PISO)

unit sends resulting data from the datapath to the output FIFO. Without these SIPO and

PISO units, an entire block of a hash message would need to come in and out of the

circuit at once. This would require mw number of input pins and b number of output

 24

pins. Typically this is 8 times the quantity of pins, and creates an unrealistic physical

requirement on the FPGA device used. Also, the assumption has been made that the data

interface is extremely fast, so running a faster io_clk to clock the FIFO, SIPO, and PISO

units is acceptable. Assuming a fast data interface matches closer to the reality of the

physical FPGA devices, such as in the Xilinx Virtex 7 Family which includes a

12.5Gb/second serial interface standard [14] yet does not feature any significant increase

in the number of exposed general purpose I/O pins.

The Generalized Controller consists of three Finite State Machines (FSMs) that

generate control logic for the design. FSM1 is responsible for interfacing to the input

FIFOs and loading that data in to the datapath’s SIPO unit to prepare the incoming

message to be input to the hash function. When a piece of the message is ready for the

hash core, FSM1 sends control signals to FSM2 that work can begin. FSM2 is

responsible for all control signals required for the specific hash algorithm in the design.

FSM3 is responsible for taking a completed message digest from the datapath, loading it

in to the PISO unit, and controlling that PISO to load its data in to the external output

FIFO.

 FSM1 and FSM3 are reusable parts that would only need to be modified in rare

circumstances. FSM2 will always require extensive modification because it drives all

control for a unique datapath, although the interfaces FSM2 shares with neighboring

FSM1 and FSM3 will in general stay the same.

 25

Figure 3.2: Generalized Datapath [13]

 26

Figure 3.3: Generalized Controller [13]

 27

3.2. Uniform Interface

A uniform interface has been used for all the designs. This interface was previously

designed for the George Mason University SHA-3 research and is meant to be as simple

as possible and require the fewest pins possible. There is a clock and reset, incoming and

outgoing data buses that are each w pins wide (with w defined as the I/O Data Bus Width,

64 bits for BMW and CubeHash both), and pins for fifo operation and status fifoin_full,

fifoin_write, fifoout_empty, and fifoout_read. There is sometimes an io_clk pin required

due to clocking the FIFO and SIPO units faster than the main hash core. The total pin

requirement for a design is given by the equation (3.1).

 Pins = 6 + 2w + hasIoClk (3.1)

 28

Figure 3.4: Interface to the SHA Core [13]

Figure 3.5: Full Interfaces for Typical Application [13]

 29

3.3. Data Protocol

The George Mason University Cryptographic Engineering Research Group designed the

data protocol used for the experiments done in this paper. The latest version of this

protocol was used, correcting minor bugs present in earlier versions. This protocol is

fully compatible with the Round 2 algorithms being used in this study and allowed for

different lengths of input messages to be used as test vectors. Additionally, the protocol

allows for a Message ID word to be sent when using a multi-message architecture, or

omitted for a single-message architecture.

Figure 3.6: Data Protocol for SHA-3 Designs

 30

CHAPTER 4: Basic Iterative Designs

The Basic Iterative designs, denoted as x1, are meant to be the basic average architectures

of the given algorithms. Creating balanced architectures are of interest because in many

cases a designer may wish to create hardware that has medium performance and takes a

medium amount of chip area.

4.1. Blue Midnight Wish Basic Iterative Design

Blue Midnight Wish, in the Basic Iterative design, takes one clock cycle per round. The

round consists of functions F0, F1, F2. This is a fully unrolled design for the algorithm

and is what the specification for this hash function describes. The only alternative to a

fully unrolled architecture is to perform horizontal folding of the internal functions. The

basic iterative design does not do this because the folding significantly decreases

throughput and also decreases area significantly. A designer looking for an “average”

architecture would be more likely to choose this fully unrolled design.

 There are several “rewiring” type transformations where bits are reorganized, and

there are several data dependencies in the algorithm. Specifically, F1 has a very

significant “triangular” data dependency as described in the cryptanalysis of the

algorithm. While gaining significant cryptographic strength from these attributes, it also

leads to a resulting hardware implementation that is complicated and congested. The

 31

implementation tools from both vendors used in this study had significant problems with

Blue Midnight Wish in its basic iterative architecture, specifically the 512 bit message

digest version. Other than being time consuming and frustrating to work with when

designing, this has another more serious impact in that the tools often were not able to

complete placement and routing of the design on a device that should have been able to

hold the design. For example, choosing an FPGA device that should only have 80% of

its area utilized by Blue Midnight Wish 512-bit would very often fail to complete

placement and routing. The tools would try for 10 to 14 hours and often still give up due

to the extremely dense and congested design. The impact of this problem is that a

designer may have to buy a larger and much more expensive device to hold the

algorithm.

 Since Blue Midnight Wish can potentially complete a hash in two clock cycles

(one round, one finalization round), the number of clock cycles required to hash a

message could be less than the number of clock cycles required to read that message in to

the SIPO and write it out of the PISO. Therefore, a faster clock called io_clk is used to

drive the input and output circuitry. On the 256-bit message digest version this is 8 times

the regular clock speed, and on the 512-bit message digest version this is 16 times the

regular clock speed. This ratio is determined by dividing block_size / word_size.

 32

Figure 4.1: Blue Midnight Wish Basic Iterative Datapath [11]

 33

 The throughput for the Blue Midnight Wish Basic Iterative design is purely

dependent on the clock speed that can be obtained for the unrolled logic. The latency is

slightly impacted by set-up and finalization clock cycles, but is significantly impacted by

the number of blocks in the message that must be processed. In the notation for latency,

the clocks are shown to be /8 on 256-bit message digest version and /16 on the 512-bit

message digest version. This is due to the io_clk that runs at this higher rate, and is

shown for clarity.

Table 4.1: Latency and Throughput Equations for Blue Midnight Wish x1

	
256-‐Bit	 512-‐Bit	

	

Hash	 Time	
[Cycles]	

Throughput	
[Mbit/s]	 Hash	 Time	 [Cycles]	

Throughput	
[Mbit/s]	

BMW	 	
x1	 2+8/8+N+1	 512/T	 2+16/16+N+8/16	 1024/T	

4.2. CubeHash Basic Iterative Design

The Basic Iterative version of the CubeHash algorithm was implemented in a manner

consistent with the specification that allows for a variable number of rounds. Since the

rounds can vary within a wide range, the implementation is of one of these rounds. The

surrounding datapath and incoming control logic is responsible for bringing the message

through the round the correct number of times. When looking at the results, it’s clear

that this architecture does not max out at the top frequency possible for the FPGA

devices, so there is no physical implementation reason that the basic iterative design

should included more than one round within a single clock. If the maximum frequency

 34

of the FPGA devices was being reached with this design though, perhaps in future device

families, a small architecture like this could be more efficient in terms of throughput by

unrolling further.

 Although the round of CubeHash is simple, there is one nuance to the algorithm

that should be noted. When examining the round, it may appear that it would be slow

due to large 512-bit operand adder units. However, all operations within the round are

performed on 32-bit words of the data bus. Therefore, a 512-bit operand adder is actually

implemented as 16 32-bit operand adders with the carry bits being discarded. Due to this

property, the hardware implementation of the round is quite fast due to a short critical

path. This attribute apparently does not lead to any cryptographic weakness, while

keeping the throughput of hardware implementations as high performance as possible.

 35

Figure 4.2: CubeHash Basic Iterative Datapath [11]

 36

Figure 4.3: CubeHash Basic Iterative Round [11]

Figure 4.4: CubeHash Basic Iterative Round Swap Functions [11]

 37

 An interesting property of CubeHash is that internally the structure of the

algorithm is not affected by the selected size for the message digest. The only impact of

the message digest is at the end, when the output of the hash function is truncated to the

message digest size. This is convenient in some ways, but is problematic in terms of

throughput on the 512-bit version in comparison to most of the other SHA-3 candidates

including Blue Midnight Wish. The reason is seen in Table 4.2, that the throughput of

CubeHash is the same for both message digest versions since the message is read and run

in the same manner for both. The latency of CubeHash has a large constant factor to it

since finalization is 10 times the selected number of rounds, with that number being

selected as 16 for our work. Therefore a very short message would incur a relatively high

latency cost as compared to other algorithms that wouldn’t have such a lengthy

finalization.

Table 4.2: Latency and Throughput Equations for CubeHash x1

	
256-‐Bit	 512-‐Bit	

	

Hash	 Time	
[Cycles]	

Throughput	
[Mbit/s]	

Hash	 Time	 [Cycles]	 Throughput	
[Mbit/s]	

CubeHash	
x1	 2+4+16*N+160+4	 256/(16	 *	 T)	 2+4+16*N+160+8	 256/(16	 *	 T)	

 38

CHAPTER 5: Folded Designs

Folded designs are suitable for situations where area is a constrained resource and the

throughput of the design is not of high importance. In these applications, the very low

performance of a true low-area microprocessor-type design may not be acceptable. An

example of a potential application could be a System on Chip that requires the ability to

process SHA-3 hash messages, but where this is not the primary capability of the system.

In general, these designs are of interest for SHA-3 because most nodes of a network or

computing system computing hash message digests are doing so on a very infrequent

basis and would want a low area and inexpensive solution. An exception to this would be

high traffic network hardware that processes hash values.

5.1. Blue Midnight Wish Folded Design

The /32(h) folded Blue Midnight Wish design was created with the intention of reducing

total area at the expense of throughput. Re-using portions of the circuit reduces the total

area of the design. The x1 basic iterative design has a fully unrolled chain of all

operations, and this /32(h) design runs only 1/32nd of the operations per clock. Therefore,

the clock frequency will be significantly increased because the critical path shrinks

significantly. The hope is that the frequency of the circuit will increase enough to

mitigate the fact that the clock must now run 32 cycles to complete a block of the hash.

 39

 In the Blue Midnight Wish x1 design, F0 takes the entire message at once, breaks

it in to 16 parts, and has dedicated circuits to compute each of those 16 parts at once.

The /32(h) design uses one of those circuits, modifies it to be generic enough, and uses

that one circuit sixteen times sequentially. This generic circuit is slightly slower than

having dedicated hardware for each of the 16 parts, due to the large muxes. However,

the resulting area is lower.

 In the Blue Midnight Wish x1 design, F1 accepts the entire message at once. The

/32(h) design instead accepts 16 blocks one at a time after F0 finishes with them. After

the 16 rounds of F0, F1 begins and runs an additional 16 times. The design starts

computing on the 14th round of F0, instead of the 16th. This approach works around

some data dependence issues and allows the large 17-operand addition (bottleneck) to

occur more efficiently over 2 rounds, by grabbing the inputs to the equation early.

Arrangement of the critical path was done such that operations were placed between

folding stages as efficiently as possible.

No changes were done to F2 portion. It runs combinational logic during the last

cycle and there were no obvious optimizations to area that could be done to re-use

hardware components in a reasonable manner.

 40

Figure 5.1: Blue Midnight Wish /32(h) Folded Datapath

 41

Figure 5.2: Blue Midnight Wish /32(h) Folded F0 Function Part 1

i4

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Wj

0

1

0

1

0

1

0

1

5

6

0

0

1

3

4

1

2

0

8

8

1

2

3

12

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

W..

−

−

−

−

M0

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

H0

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

i1 i1

M0

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

H0

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

i2 i2

M0

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

H0

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

i3 i3

M0

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

H0

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

i4 i4

M0

M1

M2

M3

M4

M5

M6

M7

M8

M9

M10

M11

M12

M13

M14

M15

H0

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

i0i0

s1

s2

s3

s4

F0 Folded

7

8

7

1

2

2

0

4

5

3

1

0

3

4

5

4

10

11

9

8

9

10

3

5

6

6

4

2

6

7

8

6

13

14

10

11

11

13

7

7

5

9

10

11

9

12

12

12

14

15

15

13

14

15

13

14

15

14

15

9

10

11

13

12

1

1

1

0

0

1

1

1

1

1

1

1

0

0

1

1

0

0

0

0

0

0

1

1

1

0

1

1

1

0

0

1

0

0

1

1

1

1

1

1

0

1

1

1

1

0

1

1

0

1

0

0

0

1

0

1

1

0

0

0

0

0

1

0

i0 i1 s1 i2 i3s2 s4s3

 42

Figure 5.3: Blue Midnight Wish /32(h) Folded F0 Function Part 2

w

w w w w w w w w w w w w w ww

S0

S1

S2

S3

S4

0

1

2

3

4

Wj

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

j+1 mod 16H

F0 Folded, Part 2

Q14 Q13 Q10 Q9 Q8 Q6 Q1 Q0Q2Q3Q4Q5Q7Q15 Q12 Q11

w

j mod 5

w

w

w

qa=Qj

H0

H1

H2

H3

H4

H5

H6

H7

H8

H9

H10

H11

H12

H13

H14

H15

j+1 mod 16

4

 43

Figure 5.4: Blue Midnight Wish /32(h) Folded F1 Function

 The latency and throughput of the folded /32(h) architecture differs from the basic

iterative x1 architecture only because the number of rounds is increased to 32, so a

multiplier of 32 has been added to the equations. For throughput, this means that the

clock frequency would need to increase by 32 times to obtain the same throughput of x1.

Similarly, latency will become worse if the clock frequency does not increase by 32

times. Since it’s unlikely that the clock frequency gain will be this high, the expected

result is to see a decrease in throughput and higher latency both at factor related to the

ratio of the /32(h) clock frequency compared to the x1 clock frequency.

(All buses width w)

01

0 1

Qj

S
0

S
1

S
2

S
3

Qj

01

Q31

Q30

Q29

Q28

Q27

Q26

Q25

Qj−1

Qj−2

Qj−3

Qj−4

Qj−5

Qj−6

Qj−7

S5

S4

R7

R6

R5

expand1_adder_output

expand2_adder_output

Q23

Q22

Q21

Q20

Q19

Q18

Q17

Q16

Qj−9

Qj−10

Qj−11

Qj−12

Qj−13

Qj−14

Qj−15

Qj−16

R1

Q24
Qj−8

R4

R3

R2

expand2_adder_output

F1 Folded

S
1

S
2

S
3

S
0

expand1_adder_output

add_element

add_element

qa

L
e
ft

A
d

d
e
r

LeftAdder

3 1 023 102

 44

Table 5.1: Latency and Throughput Equations for Blue Midnight Wish /32(h)

	
256-‐Bit	 512-‐Bit	

	

Hash	 Time	
[Cycles]	

Throughput	
[Mbit/s]	

Hash	 Time	 [Cycles]	 Throughput	
[Mbit/s]	

BMW	
/32(h)	 2+8/8+32*N+1	 512/(T*32)	 2+16/16+32*N+8/16	 1024/(T*32)	

5.2. CubeHash Folded Design

The folded design chosen for CubeHash was a conservative /2(h) horizontally folded

design of the algorithm. CubeHash instead shortens the round by a factor of two while

using muxes to select between some functionality, and completes this folded round twice

as many times. In the case of the /2(h) architecture, the rotations and swaps are selected

using muxes, but the adder and xor operations are always used. When compared to x1, it

can be seen that since all the swap and rotation logic remains in place, the savings comes

from only requiring one adder and one xor operation. Two clock cycles through this

round are required to complete one round as defined in the specification.

Overall, this folded architecture saves space on one set 16 32-bit adders, and on

one set of 16 32-bit adders, at the expense of two 512-bit muxes and very minimal

control logic overhead. The expected impact on area is modest, but is important to

explore to determine just how much area can be saved.

There are obviously additional folded architectures that are not explored as part of

this paper, because they were considered too special purpose such that they are really in

the realm of true low-area application. One of these approaches would be to horizontally

fold the adder and xor logic. The addition must start computing first, but as each 32-bit

 45

word of the addition is complete it can be sent to the xor. After 33 clock cycles, the first

addition and xor would be complete and the data would be ready for the second half of

the round following swap operations, at which point another 33 clock cycles would be

required for the round. This would almost certainly make the circuit implement on

hardware at the maximum frequency but would also require approximately 66 clock

cycles per round, although there could be optimization to this with clever analysis of the

swap functions. Even with optimization however, this architecture would clearly have a

severe impact on throughput and latency. This impact was severe enough that the

horizontally folded architecture was not investigated in this research. Another approach

that would definitely be too special purpose, but likely exists in a practical form, is an

instruction-set architecture where only one 32-bit adder and one 32-bit xor exist, along

with swap and rotate logic, with control logic reading instructions from RAM and

performing a long series of operations.

 46

Figure 5.5: CubeHash Round Folded /2(h)

511..0

7<<<

SwapA

11<<<

SwapC

SwapDSwapB

Note : All operations are performed wordwise, with w=32

rp

1024

1024

r

512512

512
512

512

512

512512

512512

512

512

rr
511..0 512...1023

0

1

0

1

rp
1023..512

rp

 47

 The impact to throughput and latency with this /2(h) folded architecture is that the

previously existing constant multipliers of 16 are doubled to 32. In terms of throughput

this means that the throughput would be halved compared to the Basic Iterative x1

architecture at the same clock frequency. The latency suffers similarly with the rounds

each taking twice as long, to include the 10 sets of 16 rounds for finalization also taking

twice as long.

Table 5.2: Latency and Throughput Equations for CubeHash /2(h)

	
256-‐Bit	 512-‐Bit	

	

Hash	 Time	
[Cycles]	

Throughput	
[Mbit/s]	 Hash	 Time	 [Cycles]	

Throughput	
[Mbit/s]	

CubeHash	
/2(h)	 2+4+32*N+320+4	 256/(32	 *	 T)	 2+4+32*N+320+8	 256/(32	 *	 T)	

 48

CHAPTER 6: Multi-Message Designs

Multi-message designs have the potential to be the highest possible throughput

architecture for a given algorithm. Blue Midnight Wish is a large design and much of the

datapath is “idle” in the sense that it computes a result and waits a long time for the next

clock cycle before doing new work. This makes it an ideal candidate for pipelining,

because that long unrolled idle datapath can be made to work much more efficiently.

CubeHash does not have much opportunity for pipelining, but use its small size to its

advantage by having multiple identical cores in parallel on the device all processing

message digests of different messages simultaneously. Since the entire datapath of

CubeHash is generally not waiting, this technique leads to high throughput and efficient

use of area.

6.1. Blue Midnight Wish Pipelined Design

In the x1-PPL18 architecture of Blue Midnight Wish, placing registers at the end of the

F0 function creates the first of the 18 pipeline stages. Next, the 16 expansion functions

of the F1 function all of their outputs registered to create 16 pipeline stages. Finally, F2

has its output registered to make the 18th and final pipeline stage of the design.

 An alternative architecture was designed for this work that split each expand

function in to two pipelined stages. The design of this architecture had the advantage of

 49

splitting up the addition operations in an even manner. Instead of a longer 17 operand

addition, the first pipeline stage of an expand function computed the sum of 9 operands,

and the second stage summed that result along with the other 8 operands. One of the

operands passed to the second stage was add_element, so that the work in computing that

value was not in the critical path. Interestingly, there was almost no improvement to the

critical path and clock frequency of this experimental x1-PPL34 design. The only impact

of moving to this design was to make latency worse, keep throughput basically the same,

and to require almost twice as many flip flops. Therefore, this x1-PPL34 design was

abandoned as inferior.

 Note that not only the quadruple pipe Q is brought through each pipeline stage,

but also the M and H as well except that H is not in the final stage. Registering this much

data is why this design has such a huge utilization of flip flops.

Figure 6.1: Blue Midnight Wish Pipelined F0 Function [8]

 50

Figure 6.2: Blue Midnight Wish Pipelined F1 Function [8]

Figure 6.3: Blue Midnight Wish Pipelined F2 Function [8]

 The significant problems with physical implementation that were encountered on

the Basic Iterative version were mitigated significantly with this architecture due to the

presence of registered pipelined stages. This results in much less congestion in the

design and allows the tools to more successfully place and route the components. As

discussed, an issue encountered with the pipelined design was that there was not enough

 51

flip flops available on devices even though there were plenty of leftover Slices or ALUTs

because so many registers were required to hold intermediate results between the 18

pipeline stages. This is interesting because in general, registers are considered “free” in

FPGAs because they are so abundant. However, the registers do become the limiting

factor, and a larger more expensive device must be used to hold the implemented

architecture. This indicates that in ASIC implementation, where registers require

significant surface area, the x1-PPL18 architecture would be extremely large. In fact,

Savas et al did find that a x1-PPL18 version of Blue Midnight Wish on ASIC consume

almost three times the area of the Basic Iterative x1 architecture.

 The impact of pipelining on latency is that n clock periods must complete for a

round to finish, with n from x1-PPLn. Therefore, similarly to folding, whether latency

improves or worsens depends on how much the clock frequency is increased by breaking

the critical path in to shorter sections. The number of pipeline stages multiplies the

throughput, since that many messages are being concurrently processed. However, that

same factor of pipeline stages multiplies the denominator as well because it now takes n

clock cycles to complete processing a block of the message.

Table 6.1: Latency and Throughput Equations for Blue Midnight Wish x1-PPL18

	
256-‐Bit	 512-‐Bit	

	

Hash	 Time	
[Cycles]	

Throughput	
[Mbit/s]	

Hash	 Time	 [Cycles]	 Throughput	
[Mbit/s]	

BMW	 	
x1-‐PPL18	 2+8/8+N*18+1	 (18*512)/(T*18)	 2+16/16+N*18+8/16	 (18*1024)/(T*18)	

 52

6.2. CubeHash Multiunit Design

The CubeHash Multiunit designs were created as parallel units operating on the same

physical device. Having multiple parallel cores is expected to give a linear increase in

throughput compared to the area spent, with granularity being available in steps as small

as the area of one unit. As more parallel units are implemented on a device, there should

not be any meaningful impact on clock speed or area of the individual units. There is

slight overhead to the FSM3 control and operation, but in general this is negligible.

As described in the general technique for creating a Multiunit design, the most

suitable type of algorithm for a Multiunit design would be a lower area design. This

makes the low area CubeHash a natural choice because it is one of the smallest SHA-3

Round 2 candidates.

There were 5 parallel architectures created with CubeHash. First, an x1-PAR5

design was created as a sort of baseline. This allowed initial benchmark measurement of

the architecture, which was analyzed to get an approximate calculation for area per unit.

Since a goal of the experiment was to compare CubeHash Multiunit architectures with

Blue Midnight Wish pipelined architectures, the area of the corresponding Blue Midnight

Wish x1-PPL18 design was divided by the approximate calculation for area per

CubeHash unit. This calculation of BMW x1-PPL18 Area / One CubeHash Unit Area

gives the number n for CubeHash x1-PARn that should implement to roughly the same

area as the Blue Midnight Wish x1-PPL18 design. Interestingly, this resulted in four

additional CubeHash architectures. When working with 256-bit message digest and 512-

bit message digest sizes, the ratio was different. Additionally, when working in Xilinx

 53

tools and in Altera tools, the ratio was different. This intuitively makes sense because the

area of the discussed architectures was very different between these vendors and message

digest sizes.

The latency of a Multiunit design is calculated exactly as in the Basic Iterative x1

architectures, since there is no change to the actual operation of each independent core.

The throughput of a Multiunit design differs from the Basic Iterative x1 architecture

because the number of parallel cores implemented in the design multiplies the

throughput. Therefore, the throughput of x1-PARn is n times the Basic Iterative x1

throughput.

Table 6.2: Latency and Throughput Equations for CubeHash x1-PARn

	
256-‐Bit	 512-‐Bit	

	

Hash	 Time	
[Cycles]	

Throughput	
[Mbit/s]	

Hash	 Time	 [Cycles]	 Throughput	
[Mbit/s]	

CubeHash	
x1-‐PAR5	 2+4+16*N+160+4	 (256/(16	 *	 T))	 *	 5	 2+4+16*N+160+8	 (256/(16	 *	 T))	 *	 5	
CubeHash	
x1-‐PAR9	 2+4+16*N+160+4	 (256/(16	 *	 T))	 *	 9	 2+4+16*N+160+8	 (256/(16	 *	 T))	 *	 9	
CubeHash	
x1-‐PAR17	 2+4+16*N+160+4	 (256/(16	 *	 T))	 *	 17	 2+4+16*N+160+8	 (256/(16	 *	 T))	 *	 17	
CubeHash	
x1-‐PAR25	 2+4+16*N+160+4	 (256/(16	 *	 T))	 *	 25	 2+4+16*N+160+8	 (256/(16	 *	 T))	 *	 25	
CubeHash	
x1-‐PAR33	 2+4+16*N+160+4	 (256/(16	 *	 T))	 *	 33	 2+4+16*N+160+8	 (256/(16	 *	 T))	 *	 33	

 54

CHAPTER 7: Results

Results were gathered using the ATHENa tool as described in Chapter 2: Design

Methodology. The gathered data for the designs is the maximum clock frequency of the

implemented design, and the area in terms of CLB Slices for Xilinx or ALUTs on Altera

tools. Some of the CubeHash x1-PARn architectures only have results for some vendors

and message digest sizes, because only the x1-PAR5 and the closest match to the

corresponding Blue Midnight Wish x1-PPL18’s area were implemented.

Table 7.1: Results of All Implementations on Xilinx Virtex 5 Family

	

Max	 Clock	 Freq	
[MHz]	 Throughput	 [Mbit/s]	

Area	 [CLB	
Slices]	

Throughput	 /	
Area	

	
512	 256	 512	 256	 512	 256	 512	 256	

BMW	 x1	 4.89	 8.14	 5004	 4168	 12039	 6164	 0.42	 0.68	

BMW	 x1-‐PPL18	 46.51	 70.97	 47628	 36335	 24564	 11610	 1.84	 2.96	
BMW	 /32(h)	 44.27	 69.41	 1416	 1110	 4001	 2211	 0.35	 0.50	

CH	 x1	 152.70	 151.93	 2443	 2430	 745	 672	 3.28	 3.62	
CH	 x1-‐PAR5	 151.26	 151.56	 12101	 12125	 3742	 3490	 3.23	 3.47	

CH	 x1-‐PAR17	 N/A	 150.49	 N/A	 40933	 N/A	 11360	 N/A	 1.91	
CH	 x1-‐PAR33	 150.65	 N/A	 79542	 N/A	 24570	 N/A	 3.24	 N/A	

CH	 /2(h)	 173.52	 184.71	 1388	 1477	 733	 624	 1.89	 2.37	

 55

Table 7.2: Results of All Implementations on Altera Stratix III Family

	

Max	 Clock	 Freq	
[MHz]	 Throughput	 [Mbit/s]	 Area	 [ALUTs]	 Throughput	

/	 Area	

	
512	 256	 512	 256	 512	 256	 512	 256	

BMW	 x1	 9.11	 10.04	 9328	 5140	 24718	 12332	 0.38	 0.42	

BMW	 x1-‐PPL18	 82.72	 95.62	 84705	 48957	 48037	 17233	 1.67	 2.69	
BMW	 /32(h)	 58.30	 73.82	 1865	 1181	 11997	 6057	 0.16	 0.20	

CH	 x1	 185.08	 204.08	 2961	 3265	 1923	 1919	 1.54	 1.70	

CH	 x1-‐PAR5	 211.15	 222.77	 16892	 17821	 9533	 9513	 1.77	 1.87	
CH	 x1-‐PAR9	 N/A	 223.06	 N/A	 32078	 N/A	 17112	 N/A	 1.87	

CH	 x1-‐PAR25	 202.10	 N/A	 80840	 N/A	 47492	 N/A	 1.70	 N/A	
CH	 /2(h)	 329.38	 324.78	 2635	 1477	 1803	 1657	 1.46	 0.89	

 56

Figure 7.1: Xilinx Virtex 5 Family Results – 256 Bit Message Digest

Figure 7.2: Xilinx Virtex 5 Family Results – 512 Bit Message Digest

/32(h)	 x1	

x1-‐PPL18	

/2(h)	
x1	

x1-‐PAR5	

x1-‐PAR17	

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

40000	

45000	

0	 2000	 4000	 6000	 8000	 10000	 12000	 14000	

Th
ro
ug
hp

ut
	 [M

bi
t/
se
co
nd

]	

Area	 [CLB	 Slices]	 BMW-‐256	

CubeHash-‐256	

/32(h)	 x1	

x1-‐PPL18	

/2(h)	

x1	
x1-‐PAR5	

x1-‐PAR33	

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

0	 5000	 10000	 15000	 20000	 25000	 30000	

Th
ro
ug
hp

ut
	 [M

bi
t/
se
co
nd

]	

Area	 [CLB	 Slices]	 BMW-‐512	

CubeHash-‐512	

 57

Figure 7.3: Altera Stratix III Family Results – 256 Bit Message Digest

Figure 7.4: Altera Stratix III Family Results – 512 Bit Message Digest

/32(h)	 x1	

x1-‐PPL18	

/2(h)	
x1	

x1-‐PAR5	

x1-‐PAR9	

0	

10000	

20000	

30000	

40000	

50000	

60000	

0	 2000	 4000	 6000	 8000	 10000	 12000	 14000	 16000	 18000	 20000	

Th
ro
ug
hp

ut
	 [M

bi
t/
se
co
nd

]	

Area	 [ALUTs]	 BMW-‐256	

CubeHash-‐256	

/32(h)	
x1	

x1-‐PPL18	

/2(h)	

x1	
x1-‐PAR5	

x1-‐PAR25	

0	

10000	

20000	

30000	

40000	

50000	

60000	

70000	

80000	

90000	

0	 10000	 20000	 30000	 40000	 50000	 60000	

Th
ro
ug
hp

ut
	 [M

bi
t/
se
co
nd

]	

Area	 [ALUTs]	 BMW-‐512	

CubeHash-‐512	

 58

7.1. Discussion of Basic Iterative Designs

The Basic Iterative results of Blue Midnight Wish and CubeHash tell a very clear story

that CubeHash is much smaller in terms of area and Blue Midnight Wish attains much

higher throughput. Examining the Throughput / Area calculations, it can be seen that

CubeHash is significantly more efficient than Blue Midnight Wish. On Xilinx devices

this is by a factor of roughly 6.27, and on Altera devices this is by a factor of roughly

4.05. The difference in these results can be quantified because when examining as a

ratio, the Altera tools require more area for CubeHash. Also, the Altera tools give a

significant boost to performance of Blue Midnight Wish 512-bit message digest version.

 The Xilinx tools gave results that were expected, with the larger 512-bit message

digest of Blue Midnight Wish requiring approximately twice the area and exhibiting

roughly half the clock speed as compared to the 256-bit version. CubeHash 512-bit and

256-bit message digest versions behaved almost identically, with differences being easily

attributed to random variation between place and route performed by the tools. There is

a slight increase in the 512-bit message digest version’s area because of additional

surrounding and output logic.

In contrast, the Altera results are not what are intuitively expected. In terms of

circuit area, the Altera results are similar to Xilinx and are what is expected. However,

CubeHash’s 512-bit version has a maximum clock frequency of 20MHz less than the

256-bit version, a roughly 10.7% variation. There is no reasonable explanation for this

except that the results obtained were from particularly good or particularly bad placement

and routes when implementing the design.

 59

Table 7.3: Results of Basic Iterative Implementation on Xilinx Virtex 5 Family

	

Max	 Clock	 Freq	
[MHz]	

Throughput	 [Mbit/s]	 Area	 [CLB	
Slices]	

Throughput	 /	
Area	

	
512	 256	 512	 256	 512	 256	 512	 256	

BMW	 x1	 4.89	 8.14	 5004	 4168	 12039	 6164	 0.42	 0.68	
CH	 x1	 152.70	 151.93	 2443	 2430	 745	 672	 3.28	 3.62	

Table 7.4: Results of Basic Iterative Implementation on Altera Stratix III Family

	

Max	 Clock	 Freq	
[MHz]	 Throughput	 [Mbit/s]	 Area	 [ALUTs]	

Throughput	
/	 Area	

	
512	 256	 512	 256	 512	 256	 512	 256	

BMW	 x1	 9.11	 10.04	 9328	 5140	 24718	 12332	 0.38	 0.42	
CH	 x1	 185.08	 204.08	 2961	 3265	 1923	 1919	 1.54	 1.70	

7.2. Discussion of Folded Designs

Examining the results for the Folded Designs shows that Blue Midnight Wish gains much

more in terms of area through folding than CubeHash does. For the Xilinx devices, the

Blue Midnight Wish folded design uses 34.5% the area as the Basic Iterative design. On

those same devices, the CubeHash folded design uses 95.5% the area as the Basic

Iterative design. In terms of throughput, the folded Blue Midnight Wish attains only

approximately 27.5% the throughput of the Basic Iterative design, and the folded

CubeHash attains 59% of the throughput of the Basic Iterative design. The loss of

throughput for Blue Midnight Wish is similar to what is expected for the gains in area,

but for CubeHash the ratio is very poor since a significant amount of throughput is lost

for very little gain in area.

 60

 Altera devices tell a slightly different story. Altera devices show Blue Midnight

Wish using 49% of the area of the Basic Iterative design, and attaining approximately

21.5% of the throughput of the Basic Iterative design. This set of results shows a much

more significant loss in throughput for Blue Midnight Wish, and a less significant ability

to reduce the area. In contrast, CubeHash implements much better on the Altera devices,

showing a utilization of 90% of the area of the Basic Iterative design, and a throughput

that reaches approximately 84.5% of the Basic Iterative design. These results still show

that CubeHash does not gain much area, but the gain in area is accompanied by a much

more reasonable drop in throughput.

 In terms of raw numbers instead of percentages of change, the folded

architectures of the algorithms under both Xilinx and Altera have nearly identical

throughput ability. On average, CubeHash does have a throughput advantage, but it is

very close and on the Xilinx 512-bit message digest version Blue Midnight Wish does

have a higher throughput than CubeHash. This close comparison of throughput shows

that for the 1 to 2 Gbit/second throughput space, CubeHash requires roughly 4 to 6 times

less area than Blue Midnight Wish.

 There is very little granularity to the CubeHash /2(h) architecture. Folding more

than twice is not very practical, and folding any less results in the Basic Iterative design.

With the type of folded architecture used for Blue Midnight Wish /32(h) there is no

reasonable way to further decrease area, but it may be possible to find a /16(h)

architecture that performs with a higher throughput but does not gain as much in terms of

area. This type of architecture may process two pieces of data at once. However, the

 61

added complexity of this approach is likely to produce unattractive results for throughput

as well as area.

Table 7.5: Results of Folded Implementations on Xilinx Virtex 5 Family

	

Max	 Clock	 Freq	
[MHz]	 Throughput	 [Mbit/s]	

Area	 [CLB	
Slices]	

Throughput	 /	
Area	

	
512	 256	 512	 256	 512	 256	 512	 256	

BMW	 /32(h)	 44.27	 69.41	 1416	 1110	 4001	 2211	 0.35	 0.50	

CH	 /2(h)	 173.52	 184.71	 1388	 1477	 733	 624	 1.89	 2.37	

Table 7.6: Results of Folded Implementations on Altera Stratix III Family

	

Max	 Clock	 Freq	
[MHz]	

Throughput	 [Mbit/s]	 Area	 [ALUTs]	 Throughput	
/	 Area	

	
512	 256	 512	 256	 512	 256	 512	 256	

BMW	 /32(h)	 58.30	 73.82	 1865	 1181	 11997	 6057	 0.16	 0.20	

CH	 /2(h)	 329.38	 324.78	 2635	 1477	 1803	 1657	 1.46	 0.89	

Table 7.7: Throughput and Area Ratio Comparison on Xilinx Virtex 5 Family for Folded
Architectures

	
Throughput	 [Ratio]	 Area	 [Ratio]	

	
512	 256	 512	 256	

BMW	 /32(h)	 compared	 to	 BMW	 x1	 0.28	 0.27	 0.33	 0.36	
CH	 /2(h)	 compared	 to	 CH	 x1	 0.57	 0.61	 0.98	 0.93	

 62

Table 7.8: Throughput and Area Ratio Comparison on Altera Stratix III Family for
Folded Architectures

	
Throughput	 [Ratio]	 Area	 [Ratio]	

	
512	 256	 512	 256	

BMW	 /32(h)	 compared	 to	 BMW	 x1	 0.20	 0.23	 0.49	 0.49	
CH	 /2(h)	 compared	 to	 CH	 x1	 0.89	 0.80	 0.94	 0.86	

7.3. Discussion of Multi-Message Designs

The approach for the Multi-Message architectures was to develop and implement the

Blue Midnight Wish x1-PPL18 architecture because it is not flexible in terms of how

much area it uses – there are no design decisions with that Multi-Message architecture

that can easily change the amount of area, so it is considered as a set factor. Then, the

CubeHash Multiunit designs were tweaked using VHDL generics to create designs that

used a very similar amount of area as the Blue Midnight Wish x1-PPL18 for that specific

vendor’s devices and message digest size. The results varied significantly depending on

which vendor’s devices and which message digest size were used.

 For Xilinx devices on 256-bit message digest versions of the algorithms the

CubeHash x1-PAR17 architecture performed modestly better, with approximately 13%

better throughput than the Blue Midnight Wish x1-PPL18 architecture.

 For Xilinx devices on 512-bit message digest versions of the algorithms the

CubeHash x1-PAR33 architecture performed significantly better, with approximately

67% better throughput than the Blue Midnight Wish x1-PPL18 architecture.

 For Altera devices on 256-bit message digest versions of the algorithms the Blue

Midnight Wish x1-PPL18 architecture performed significantly better, with approximately

53% better throughput than the CubeHash x1-PAR9 architecture.

 63

 For Altera devices on 512-bit message digest versions of the algorithms the Blue

Midnight Wish x1-PPL18 architecture performed slightly better, with approximately 5%

better throughput than the CubeHash x1-PAR25 architecture.

Table 7.9: Results of Multi-Message Implementations on Xilinx Virtex 5 Family

	

Max	 Clock	 Freq	
[MHz]	 Throughput	 [Mbit/s]	

Area	 [CLB	
Slices]	

Throughput	 /	
Area	

	
512	 256	 512	 256	 512	 256	 512	 256	

BMW	 x1-‐PPL18	 46.51	 70.97	 47628	 36335	 24564	 11610	 1.84	 2.96	

CH	 x1-‐PAR5	 151.26	 151.56	 12101	 12125	 3742	 3490	 3.23	 3.47	
CH	 x1-‐PAR17	 N/A	 150.49	 N/A	 40933	 N/A	 11360	 N/A	 1.91	

CH	 x1-‐PAR33	 150.65	 N/A	 79542	 N/A	 24570	 N/A	 3.24	 N/A	

Table 7.10: Results of Multi-Message Implementations on Altera Stratix III Family

	

Max	 Clock	 Freq	
[MHz]	

Throughput	 [Mbit/s]	 Area	 [ALUTs]	 Throughput	
/	 Area	

	
512	 256	 512	 256	 512	 256	 512	 256	

BMW	 x1-‐PPL18	 82.72	 95.62	 84705	 48957	 48037	 17233	 1.67	 2.69	

CH	 x1-‐PAR5	 211.15	 222.77	 16892	 17821	 9533	 9513	 1.77	 1.87	

CH	 x1-‐PAR9	 N/A	 223.06	 N/A	 32078	 N/A	 17112	 N/A	 1.87	
CH	 x1-‐PAR25	 202.10	 N/A	 80840	 N/A	 47492	 N/A	 1.70	 N/A	

 64

CHAPTER 8: Conclusions and Future Work

In the Basic Iterative architecture, CubeHash shows a lot of flexibility because it can

attain reasonably high throughput within a very small amount of area. Blue Midnight

Wish gives better performance, but the high area requirement is likely unreasonable for

many applications.

 The folded architecture of Blue Midnight Wish showed a very significant

reduction in the area used. This was a great flexibility and shows that the algorithm is

very adaptable for different applications. The issue however is that, despite showing a

huge improvement, the /32(h) Blue Midnight Wish design is still much larger than the x1

Basic Iterative CubeHash. This shows that, despite the large range of area that can be

selected by a designer, Blue Midnight Wish is still at a very large disadvantage in terms

of hardware area requirements as compared to CubeHash. CubeHash gains a very

modest savings in area by folding in the case of the /2(h) architecture. This savings could

still be important to a designer who is attempting to implement the smallest possible

CubeHash without moving to a specialized true low-area implementation. In the folded

designs, there was variation due to the vendor and devices used, but there was not

significant variation and the results were quite clear to interpret.

 The Multi-message versions of the algorithms showed a significant improvement

in throughput for both Blue Midnight Wish and CubeHash. Selecting the same area for

 65

the two algorithms on each experiment allowed a real comparison to be done between

them without having to extrapolate results that may not reflect reality.

On Xilinx devices, CubeHash a higher throughput than Blue Midnight Wish on

the 256-bit message digest version, and this throughput advantage is significantly

improved when moving to the 512-bit message digest version of the algorithm. This

large improvement is due to the inherent way that CubeHash works with message digests,

since it uses the same area for lower throughput on the 256-bit message digest version.

On Altera devices, Blue Midnight Wish has a much higher throughput than

CubeHash on the 256-bit message digest version, and Blue Midnight Wish has a

modestly higher throughput than CubeHash on the 512-bit message digest version.

Again, this difference between the measures of throughput can be attributed to the fact

that CubeHash exhibits lower throughput to area ratio on the 256-bit message digest

version.

Therefore, it can be seen that the Multi-message CubeHash architectures have a

significant throughput on Xilinx devices when compared to Blue Midnight Wish, and the

opposite is true on Altera devices. The advantage exhibited in favor of CubeHash on the

Xilinx devices is higher than the advantage exhibited in favor of Blue Midnight Wish on

the Altera devices, but only to a modest degree. Therefore, it is not clear which

algorithm attains the higher throughput in general since the results are opposite

depending on which vendor’s devices are used.

The significant difference in which algorithm has the highest throughput is mainly

influenced by the area that the designs require. Although the vendor devices cannot be

 66

directly compared, it can be observed that CubeHash requires more area on Altera and

Blue Midnight Wish requires less area on Altera. Therefore, when designing for the

same area target, fewer parallel cores of CubeHash are used on Altera. This gives Blue

Midnight Wish the advantage. There is also a difference in clock frequency between the

vendor devices, but this difference is not as significant as the overall amount of

CubeHash cores that fit in the same area as the pipelined Blue Midnight Wish

architecture.

Implementing a x1-PAR5 CubeHash design, dividing it to find the area utilization

for one core, and then dividing the area of Blue Midnight Wish x1-PPL18 by that one

core to find the number n for CubeHash x1-PARn was an extremely accurate method.

This resulted in very close comparison between the two algorithms. Additionally, the

results for CubeHash architectures x1, x1-PAR5, and x1-PARn are very nearly linear in

terms of area and throughput. This is true on all vendor devices and both message digest

sizes. The conclusion drawn from this is that parallelization of cores truly does attain a

predictable performance that can be calculated by using the equation 8.1. In terms of

granularity, CubeHash is the clear winner when looking at the Multi-message

architectures. When creating parallel architectures, the granularity in terms of area is

determined by the size of one core. Since CubeHash is so small, it can be parallelized to

a point that nearly exactly fits the resources of the device. The pipelined designs do not

have this granularity available because there are no design choices that affect granularity

of the size of the design.

 67

x1-PARn(area, throughput) = x1(area, throughput) * n (8.1)

In summary, it can be seen that both algorithms do exhibit a wide range of

performance space by utilizing the Basic Iterative, Folded, and Multi-message

architecture techniques. Blue Midnight Wish has a large amount of control in how much

area is saved by the folded design, with a much larger range of granularity than found in

CubeHash’s folded designs, but CubeHash is so much smaller than Blue Midnight Wish

that it would be the preferred algorithm when designing for area. When examining the

Basic Iterative designs of both algorithms, Blue Midnight Wish exhibits higher

throughput than CubeHash, but the throughput to area ratio of CubeHash is 4 to 8 times

higher than Blue Midnight Wish, and the area requirement for CubeHash is significantly

lower than Blue Midnight Wish. Finally, both algorithms gain significant throughput by

implementing Multi-message architectures. The results show Blue Midnight Wish as

having superior throughput on Altera devices, and CubeHash as having superior

throughput on Xilinx devices, which is a mixed result. However, the Blue Midnight

Wish result is very inflexible since there is no control over the amount of area and

maximum throughput attained by the pipelined architecture. In contrast, a designer can

vary n in x1-PARn to utilize an almost arbitrary amount of area, or to reach an almost

arbitrary throughput maximum. This is a very important result because it means that

CubeHash can be made to completely fill an FPGA device, or can be designed to meet an

exact throughput requirement. Blue Midnight Wish would not be able to as easily use a

certain amount of area and cannot scale its throughput up or down. In practice, unless

 68

there is an FPGA device that is exactly the same size as the Blue Midnight Wish x1-

PPL18 architecture, this means that in a dedicated SHA-3 FPGA device that the chip’s

area will be underutilized and that a specific throughput requirement will either not be

met or may be significantly overachieved. For these reasons, it is found that CubeHash is

superior in general due to the flexibility gained from its very small size in conjunction

with the properties of multiunit design that it is well suited for.

8.1. Future Work

 As stated in the discussion of the CubeHash Multiunit architectures, the most

suitable type of algorithms for Multiunit architectures are the lower area design. An

extension of this work would be to create Multiunit versions of all five SHA-3 finalists to

benchmark their performance and flexibility in this respect, since they are all relatively

the same size and are of a medium-low area.

 This research applied the techniques of pipelining and parallelization separately.

For Blue Midnight Wish the design was too large to place two of them on a device. For

CubeHash, pipelining is not practical. If an algorithm could be pipelined significantly

and then also remain small enough to be placed in a Multiunit manner, it would hold a

significant advantage in terms of maximum throughput flexibility over another algorithm

that does not have this property. Therefore, an extension would be to analyze the five

SHA-3 finalists to determine if any of them allow this type of architecture.

 A discussion of an alternative horizontally folded architecture of CubeHash was

given, but was not pursued due to limitations and significant impact to throughput. It

 69

could be possible that this folded architecture could be turned in to a heavily pipelined

architecture. This architecture would likely not use the discussed /66(h) architecture

which aimed for the lowest area, but instead of working with one 32-bit word at a time,

could possibly work with 4 32-bit words at a time for roughly a 10 clock round

architecture which would actually be x1-PPL10. This architecture would require more

area than x1, but would be expected to exhibit higher throughput than x1 as well. If these

were found to be true, a Multiunit pipelined architecture could be created such as x1-

PPL10PARn. Future work would be done to determine impacts to protocol, control

logic, and other aspects of having pipelined parallel architectures.

 Extremely low-area implementations of the algorithms were not done in this study

because the architectures are so different to the point that they were outside of the scope

of the research. Valuable future work would be a full study and comparison of these

architectures to give a clear analysis of the very low area performance space of these

algorithms.

 70

REFERENCES

 71

REFERENCES

[1] X. Wang, H. Yu, and Y. Yin, “Efficient Collision Search Attacks on SHA-0,” volume

3621 of LNCS, pages 1-16, 2005.

[2] X. Wang, Y. Yin, and H. Yu, “Finding Collisions in the Full SHA-1,” volume 3621

of LNCS, pages 17-36, 2005.

[3] ——, “Cryptographic Hash Algorithm Competition,” Online, 2011,

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html.

[4] ——, “SHA-3 Finalists Announced By NIST,” Online, Dec 2010,

http://crypto.junod.info/2010/12/10/sha-3-finalists-announced-by-nist/.

[5] D. Gligoroski, V. Klima, S. J. Knapskog, M. El-Hadedy, Jorn Amundsen and S. F.

Mjolsnes, ”Cryptographic Hash Function BLUE MIDNIGHT WISH,” Submission to
NIST (Round 2) of SHA-3 Competition, September 2009

[6] A. Joux, “Multicollisions in Iterated Hash Functions. Application to Cascaded

Constructions,” CRYPTO 2004, volume 3152 of LNCS, pages 306–316, 2004.

[7] D. J. Bernstein, “CubeHash Specification (2.b.1).” Submission to NIST (Round 2),
2009.

[8] A. Akin, A. Aysu, O. Ulusel, and E. Savas, “Efficient Hardware Implementations of

High Throughput SHA-3 Candidates Keccak, Luffa and Blue Midnight Wish for
Single- and Multi-Message Hashing,” University Faculty of Engineering and Natural
Sciences, Istanbul, Turkey, 2010.

[9] M. El Hadedy, D. Gligoroski, and S. Knapskog, “Single Core Implementation of Blue
Midnight Wish Hash Function on VIRTEX 5 Platform,” Norwegian University of
Science and Technology, Oct. 2010.

[10] V. Klima, D. Gligoroski, “On Blue Midnight Wish Decomposition,” SantaCrypto

2009, submission.

 72

[11] K. Gaj, E. Homsirikamol, and M. Rogawski, “Comprehensive Comparison of
Hardware Performance of Fourteen Round 2 SHA-3 Candidates with 512-bit
Outputs using Field Programmable Gate Arrays,” SHA-3 Workshop, Santa Barbara,
Aug, 2010, submission.

[12] ——, “Athena project website,” Online, 2011, http://cryptography.gmu.edu/athena/.

[13] E. Homsirikamol, “Fair and Comprehensive Comparison of Hardware Performance
of SHA-3 Round 2 Candidates using FPGAs,” Masters Thesis, George Mason
University, Virginia, 2010.

[14] ——, “Virtex 7 FPGA Family,” Online, 2011,
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7/.

[15] E. Homsirikamol, M. Rogawski, K. Gaj, “Throughput vs. Area Trade-offs in High-

Speed Architectures of Five Round 3 SHA-3 Candidates Implemented Using Xilinx
and Altera FPGAs,” CHES, Nara, Japan, Sep. 2011, submission.

 73

CURRICULUM VITAE

Robert Lorentz was born in March of 1982 in Ft. Wayne, Indiana. He received his
Bachelor of Science in Computer Science from George Mason University in Fairfax
Virginia, graduating cum laude in May of 2006. The following year he began his
graduate studies in the Electrical and Computer Engineering department of the same
school. While performing graduate studies, he has worked full time in industry for 7
years in an engineering role for Rockwell Collins’ Aircraft Simulation and Training
division located in Sterling, Virginia. His research interests include reconfigurable
computing, embedded hardware design, and cryptography.

