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Image processing tools to detect human skin in visible band imagery have been well 

explored by many organizations, and approaches have been developed for many security 

and military applications.  Visible cameras are limited to human skin detection during 

daylight or artificial illumination conditions, but the challenge of human skin detection 

during nighttime remains an ongoing research effort.  The most challenging problems are 

to understand skin texture and to develop mathematical tools for discriminating skin 

texture from non-skin textures in images collected using a single thermal band.  To solve 

this problem, a set of image processing algorithms have been designed and developed for 

generating the skin-texture feature set discriminating feature selection, and classification.  

First, Gray Level Co-occurrence Matrix (GLCM)-driven skin-texture features are 

generated based on the skin portions of the imagery.  Principal Component Analysis 

(PCA) is then performed on the feature set to isolate the skin discriminating features.  



 
 

Then, PCA-reported skin discriminating features are employed to construct a fused 

image.  The purpose of this fused image is to represent the skin pixels in terms of the 

skin-discriminating features and use this image for skin discrimination.  In the last 

process, this fused image is used for skin and non-skin classification at the local level. 

For classification, three image processing approaches are adopted: 1) Adaptive optimized 

threshold with Least Mean Square algorithm, 2) Principal Component Analysis (PCA), 

and 3) Linear Discriminant Analysis (LDA).  Results from all three classification 

techniques are analyzed for accuracy confidence levels.  This research provides a 

generalized approach for human skin detection in thermal images, providing a non-

contact, remote, and passive method for human skin detection in day or night imagery for 

security and military applications. 
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1  Introduction and Background 

 
 

Human skin is a biological organ that provides an observer the ability to understand and 

evaluate the instantaneous state of mind of an individual within the constraints of a 

scenario [8] [11] [32].  For many applications related to positive identification, a human 

face may be observed over a period of time during which facial imagery features are 

detected, tracked, and identified.  For many security applications, human facial skin is 

observed closely by the analyst through remote visible (VIS) and Infrared (IR) sensors 

[20] [24].  To understand the stress level of an individual, statistical calculations are 

performed on human facial skin regions of the thermal data [13] [24].  An algorithm to 

discriminate human facial skin will aid in improving these statistical calculations and 

thereby provide a more accurate analysis.  Further, a skin detection algorithm in a single 

IR band will allow detecting skin during day or night conditions. 

Image processing tools to detect human skin in imagery within the visible range of the 

electromagnetic spectrum have been well explored by many organizations, and many 

approaches and applications have been developed [18] [27].  Based on the characteristics 

of the human skin, many researchers of human skin detection methods are focusing on 

the measure of skin reflectivity and skin color proportions in multiple bands [29] [34]. 

Many factors can potentially affect identification such as usage constraints and the state 
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of field tests during skin detection.  The results of skin detection are affected significantly 

by the variety of illumination sources and diverse weather conditions, if observed in the 

visible range [29].  Although there are challenges related to heat signatures in the thermal 

imagery, weather and illumination sources do not affect the thermal imagery [20] [30].  

Moreover, thermal sensors are widely used for security and military application, so we 

can take advantage of existing technology and add to their present functionality by 

modifying sensor parameters.   

Under this research we wish to design a set of human skin detection algorithms for IR 

sensor systems, capable of performing well under various weather conditions such as 

rain, fog, clouds, etc.  Since an IR sensor system is capable of operating during day and 

night conditions, use of this type of sensor system with skin detection capability will 

significantly add to existing technology.  If a human is observed as a target in a high 

resolution scene, a human skin detection capability will add additional features of the 

human as a target.  For medical applications, human skin detection would assist medics to 

conduct stand-off remote triage [8] [17] [32].  For high resolution imagery, skin detection 

can be used for human auto-tracking [27] [28].  Another potential application is 

dimensionality reduction by focusing on a Region of Interest (ROI- human/skin) within 

the scene.  Focusing on the ROI will contribute to reducing the storage space 

requirements and increasing data processing speed [23][28] [32].   
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1.1 Relevant Studies 

Recent research has focused on methods for skin detection in visible imagery, primarily 

for human detection in a scene.  Many algorithms have been developed for human facial 

skin detection in visible images that take advantage of multiple bands (VIS/IR) [18] [27].  

One research group has developed skin color detection algorithms in the visible range 

based on modified Red-Green-Blue (RGB), Cyan-Yellow-Magenta (CYM) and Hue 

Saturation Intensity/Value (HSI/HSV) techniques [23].   

Some work has been done in the areas developing models for understanding human skin 

characteristics in multi-spectral and hyperspectral images.  These models are based on 

human skin reflectance and multi-color information obtained from multiple wavebands 

[22] [29].   Along with the model development to understand human skin characteristics, 

Jing and his team have developed algorithms for skin detection in near infrared (NIR) and 

visible (VIS) bands based on skin color estimation [18]. 

A group of researchers have studied a pixel-based skin color detection technique for color 

images and have developed an algorithm for selecting the best color space.  This group 

has found that smaller selection of color space can reduce the standard deviation of the 

skin and non-skin classes and therefore generates compact classes.  For associating color 

image pixels with skin and non-skin classes, they have employed a Bayesian classifier 

[27]. 
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For post-processing of human detection readings, some work has been performed 

employing hyperspectral sensors.  Airborne Real-time Cueing Hyperspectral Enhanced 

Reconnaissance (ARCHER) is an example of a hyperspectral system used for collecting 

images during day light under minimal cloud cover conditions.  It uses a set of skin 

detection algorithms based on the insight gained from the modeled skin reflectance and 

utilizing the knowledge of the normalized difference of vegetation index (used for 

vegetation segmentation in hyperspectral images) [29] [37].  

For almost all the applications during processing or post-processing, the feature 

classification process is a key component of discriminating targets from anomalies.  A 

group has developed an automated imaging system for the discrimination between 

normal and abnormal tissues in medical images obtained by chest radiography scans.  

They have utilized PCA, LDA, and non-linear Discriminant Analysis (NDA) for features 

reduction methods.  In addition to standard classification algorithms, they have also 

explored the use of an Artificial Neural Network (ANN) classifier for classification [1]. 

A study conducted in computing fingerprint features using texture based co-occurrence 

matrices was successful.  The ANN classifier was employed for separating and 

associating the fingerprints with specified classes [41].     

Through this interesting research for human skin modeling, detection, classification and 

recent threats to national security by individual human actors, we have recognized a gap 

that we must fill under this research, namely detecting human facial skin in a single 

thermal band.   
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1.2 Motivation 

The image processing tools to detect human skin in imagery based on the visible range of 

the electromagnetic spectrum have been well explored and approaches have been 

developed for many applications.  However, visible cameras are limited to human skin 

detection during daylight or under artificial illumination and the challenge of human skin 

detection during nighttime remains an ongoing research effort. Tools for human skin 

detection in thermal imagery add to the capability to detect human skin under both day 

and night conditions [20] [21] .   

An additional motivation for skin detection is derived from recent research involving 

human signature understanding, specifically human facial pore detection and evaluation 

of the pore count signal to analyze stress level [20] [24].  Human skin pores are related to 

the Autonomic Nervous System (ANS) response system.  Although not fully understood 

at a molecular level, Electrodermal Activity (EDA) or Skin Conductance (SC) has often 

been used in psychophysical experiments to monitor ANS response [20] [24].  Often, 

EDA is measured with electrodes attached to the tips of fingers, which is cumbersome 

and not oriented towards use for remote sensing or in a field environment [24].  Recent 

work with high resolution thermal imagers has shown that they provide an emerging 

capability for remotely and passively assessing the ANS response [24] [30][33]. This is 

done by assessing the activation of eccrine skin pores on the face in real time (see Figure 

1) [21] [24]. 
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Detected eccrine sweat gland activation in thermal imagery has been shown to relate to 

EDA measurements from contact electrodes.  By using passive thermal imagery at a 

standoff distance, this potentially provides a non-contact alternative to the widely used 

method of assessing ANS response with contact electrodes.  Figure 1 shows an example 

of a facial image of a person in a low and high stress situation.  Under stress conditions, 

activated pores expand and become larger.  It can be seen by comparing the two 

conditions that a significant number of pores are activated when the subject becomes 

stressed, and these can clearly be seen in the thermal image [21] [24].   

A real-time system was developed to provide pore counts for thermal imagery; however, 

there were significant image processing challenges.  The existing algorithm used a static 

mask around the central portion of the face and relied on tracking to ensure the mask 

stayed in place.  As a subject’s head turned, this mask included areas of the face, such as 

hair, where the pore detection algorithms provided false counts.  A study was conducted 

Figure 1: Facial skin pore characteristics: 1) Subject with no response; 2) Subject with 
high response; 3) Digital zoom of active pore or sweat gland ; 4) X-axis thermal cross 

section ; 5) Y-axis thermal cross section [20]  
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to overcome these issues by designing new techniques to detect the facial skin, generate a 

skin-only mask, and update this skin-only mask from frame to frame [20].  The algorithm 

and the false pore mitigation results were published.  Results demonstrated an 

improvement in the final pore count results by reducing false alarms by 48% [20].  For 

skin detection, the Gray Level Co-occurrence Matrix (GLCM) texture kernel was used 

for skin mask detection and all of possible texture features were considered.  The skin 

detection algorithm produced favorable results, but the theory behind the concept was not 

understood completely.  A lack of understanding of the theory behind skin detection 

algorithm motivated the work presented in this thesis.  Now, the question was “What 

texture properties characterize skin and how can this be proven?”   

1.3 Proposed Methodology and Solution 

To study the texture characteristics, initially we looked at the local skin and non-skin 

portions within Mid-wave-thermal (MWIR) imagery and generated the Gray Level Co-

occurrence Matrix (GLCM).  Figure 2 illustrates a visual difference in skin and non-skin 

textures.  The skin GLCM shows a gray level spread throughout the whole window 

whereas the non-skin GLCM shows a diagonal spread of gray levels.  Further, because a 

human can visually tell the difference between skin and non-skin texture using this tool, 

we concluded that texture could be used to discriminate skin from non-skin portions in an 

image.  
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The most challenging problems were to understand skin texture and to develop a set of 

mathematical tools for discriminating skin textures from non-skin textures in a single 

thermal band.  To solve this problem, a set of image processing algorithms were designed 

and developed for generating the skin-texture feature set for discriminating feature 

selection and classification.  First, GLCM-driven skin-texture features were generated 

based on the skin portions of the imagery [16].  Principal Component Analysis was then 

performed on the feature set to isolate the skin discriminating features [36].  Then, PCA-

reported skin discriminating features were employed to construct a filtered image.  In the 

last process, this filtered image is used for skin and non-skin classification at the local 

level (within the GLCM kernel size). For classification, three image processing 

approaches were adopted: 1) Adaptive optimized threshold with Least Mean Square 

algorithm, 2) PCA, and 3) Linear Discriminant Analysis (LDA) [10] [25] [36] [40].  

Results from all three classification algorithms were analyzed for validating the 

classification algorithms.   

  

Figure 2:  Facial non-skin and skin texture characteristics (Gray Level Co-occurrence 
Matrix) in 11x11 window:  Non-skin locations (left) and Skin locations (right) 
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1.4 Proposed Candidate Algorithms 

As discussed in the previous section, proposed candidate algorithms to solve the problem 

of human skin detection are as listed below.  

1. Feature generation based on the Gray Level Co-occurrence Matrix 

2. Feature reduction using PCA 

3. Classification for skin segmentation with 

a. Adaptive LMS optimized algorithm 

b. PCA algorithm 

c. LDA algorithm employing Fisher’s criteria 

4. Post-processing for cleaning the resulting image using morphological operations 

These algorithms will be discussed in more detail in next few chapters.  
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2 Algorithms for Skin Detection  

 
 

We applied a set of algorithms to a thermal image to separate human facial skin from the 

non-skin areas.  This set of skin detection algorithms has three major parts 1) pre-

processing the data to prepare for processing, 2) processing the data for feature selection 

and then classification for skin detection, and 3) post-processing to remove single 

hanging pixels from the generated skin-only images. Figure 3 illustrates a top level flow 

chart for the skin detection algorithm.   

 
 
 

 
Figure 3: Main algorithm flow chart 
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This chapter covers the pre-processing section of the algorithm whereas the processing 

and post-processing parts of the algorithm covered in the remaining chapters.   

2.1 Pre-processing 

Data preparations include correction for lighting effects, non-uniformity, gray-level 

adjustment, dead-pixels, etc [15].  For our case, a set of operations performed for 

preprocessing include 1) data normalization to bring the gray level of the imagery to a 

common ground (0 ≤ range ≤1), and 2) data smoothing to reduce the dynamic range of 

the facial skin.   

 
 
 

 

 
 
 
 

2.1.1 Normalize Data 

Under the normalization process, gray levels of all the images are brought to a common 

baseline. This process assures a valid comparison between two data sets that are different 

due to illumination conditions or dynamic range variations.  During the normalization 

Normalize Data

Smooth Data
A ο B = (A Ѳ B) ⊕ B

Input Data

Figure 4: Pre-processing algorithm flow chart 
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process two steps are followed.  In step one, we compute an initial minimum intensity 

value of the image (Imin) and use this value to compute each pixel’s new intensity value 

following mathematics in Equation 1.  This step baselines the minimum value of the 

image to zero and therefore defines the minimum range of the data.  In step two 

(Equation 2), we divide the new image generated following Equation 1 by the maximum 

value of the new image itself.  This process defines the maximum range of the data to 

value one.  This process is applied to every frame of the video sequence before 

computing statistics on each frame.   

 

minijnew

min 

III
I Image of valueintensity   MinimumI Let

−=
=

   (Eq. 1) 

max

new
ijnorm

νεωmax 

I

I
I

Ι Image of valueintensity   MaximumI Let

ij=

=

,
   (Eq. 2) 

 

Where:  I = original image 

normI : Normalized image 

2.1.2 Smooth Data 

To automatically extract a sample skin-chip from the scene, a data smoothing operation is 

performed utilizing a morphological operation called opening. An opening is defined as 

erosion followed by dilation. The dilation process adds pixels to the boundaries of objects 
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in an image whereas the erosion process removes pixels from the boundaries of objects in 

an image [9] [15] [16]. 

In general, morphological operations apply a structuring element to an input image and 

produce an output image of the original image size or smaller (based on the operation).  

After performing morphological operation, the value of each pixel in the resultant image 

is based on computed values of the original image within the structuring element 

window. A morphological operation is sensitive to the size of the structuring element 

since the output results are based on the overlapping of structuring element with the valid 

target pixels.  [15]. 

2.1.2.1 Dilation 

Assume that A is an original object onto which we operate with a structuring element B.  

In theory, dilation on A is performed employing the structuring element B and is denoted 

by BA⊕  (Equation 3).  Equation 3 shows that a set of pixels represented by z is the 

output of the dilation function.  Moreover, resultant z pixels are the common pixels 

among original set A and calculated set ( )zB̂  [9] [15]. 

 

},|{)(

},|{

})(|{

^

^

^

BwforzwccB

BbforbwwB

nullABzBA

z

z

∈+==

∈−==
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    (Eq. 3) 

 



14 
 

where   
^
B : Reflection of a set B 

( )zB̂ : Reflection of a set B translated by point z 

Figure 5 visually demonstrates the dilation operation more clearly.  Here, the structuring 

element B of size d/4 is applied to the object A.   After performing the dilation operation, 

size of the dilated object A increases by d/4 in both horizontal and vertical directions [9] 

[15]. 

 
 
 

 

 
 
 
 

2.1.2.2 Erosion 

Erosion on A is performed employing the structuring element B and is denoted by BAΘ  

(Equation 4).  A simplified version of Equation 5 is expressed as Equation 6 [9] [15]. 

 

3

Figure 5: Dilation process: 1) Element A; 2) Square structuring element B; 3) Dilation of A 
by B, shown shaded [15] 
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},|{)(
})(|{

BbforzbccB
ABzBA

z

z

∈+==
⊆=Θ

    (Eq. 4) 

 

where,. ( )zB : set B translated by point z 

Equation 4 shows that a set of pixels represented by z is the output of the erosion 

function. The set z is selected such that resulted eroded output ( )zB is within the set A.  

Figure 6 demonstrates a visual interpretation of the erosion operation.  When structuring 

element B of size d/4 is applied to an object A of size d, the size of eroded object A is 

decreased to 3d/4 in both horizontal and vertical directions.  Erosion operation removes 

edges of object A by half of the size of the structuring element from each side.   

 
 
 

 

Figure 6: Erosion process: 1) Element A; 2) Square structuring element B; 3) 
Erosion of A by B, shown shaded [15] 
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2.1.2.3 Opening 

An opening is defined as erosion of element A followed by dilation of the eroded element 

A.  The structuring element size for both operations may be similar or may differ based 

on the expected results.  Although, opening removes some of the object pixels from the 

object’s boundaries, it preserves the object regions that have a similar shape to the kernel.   

Equation 5 shows the mathematical equation for the opening operation.  The equation 

states that the erosion of A with the structuring element B is performed first, and then the 

dilation operation is performed on the eroded output [9] [15].   

 
BBABA ⊕Θ= )(      (Eq. 5) 

 
 
 

 
 
 
 

Figure 7 shows a visual interpretation of the output object after performing the opening 

operation.  Notice that object A after the opening operation has round edges because the 

Figure 7: Opening process: 1) Element A; 2) Disk structuring element B; 3) Opening of 
A by B, shown shaded light blue [15] 
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structuring element B has a disc shape.  During an erosion operation, the outer boundaries 

of the object are trimmed by half of the structuring element size, and during the dilation 

operation boundaries are increased by half of the structuring element size [9][15]. 
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3 Preparing Ground Truth (GT) Data 

 
 

A Ground Truth (GT) sample skin chip is a key component of our skin detection 

algorithm.  GT preparation includes two major steps 1) skin chip extraction and 2) 

GLCM feature generation for the extracted skin chip (Figure 8).  This chapter discusses a 

method for automatic skin-chip extraction and a set of algorithms for calculating GLCM 

features from the GT. 

 
 
 

 

 
 
 
 

3.1 Automatic Skin-chip Extraction 

A series of operations are performed on the original image to select a sample skin-chip 

automatically (Figure 9).  First, the data is normalized and then a smoothing operation is 

Skin Chip Extraction

GLCM Feature 
Generation

Figure 8:  Flow chart to prepare Ground Truth (GT) 
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performed on the image.  These operations are performed on images to smooth contours, 

replace low intensity areas (i.e., pores) with local neighborhood intensities, and eliminate 

thin lines [20].  After the smoothing operation, the image has a high contrast difference 

between overall skin and non-skin regions.   

 
 
 

 
 
 
 

An average intensity value of the smoothed image is calculated and applied as a threshold 

to the smoothed image itself.  Output of this process generates an image with minimal 

non-skin regions along with skin regions.  Minimal non-skin regions are close to the 

edges of valid skin pixels and thin hair regions.  Since this process of determining the 

Figure 9: Auto skin detector process: 1) Original image; 2) Image after smoothing; 3) 
Image with skin and edges ; 4) All skin image; 5) Skin chip 
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skin is contrast-based, we can distinguish hot spots from the cold spots (high blood flow 

regions have high intensity values and can be called hot spots) within the image, but we 

cannot detect all the skin regions.  Further, because we are experimenting with high 

resolution imagery with small backgrounds, hot spots in the imagery are from human 

facial skin.  Therefore, we use this knowledge obtained from thermal imagery to 

automatically generate a skin ground truth chip.   

Figure 9 , part 3 shows a sample output of the thresholded, smoothed image.  As stated 

previously, this image has skin and non-skin portions; therefore, to derive a skin-only 

image, we apply the morphological operation erosion with a structuring element of size 

60x60 pixels.  This operation removes 30 pixels from the edges of the object and ensures 

the skin pixels in the resultant image.   To ensure that the resultant image has skin-only 

pixels, this algorithm was applied to images from five subjects.  Then three operators 

visually verified that the resultant images had skin-only pixels.  For this particular 

example, the resultant image is shown in Figure 9 part 4 where pixels in white represent 

skin regions and pixels in black represent non-skin regions.  We have designed an 

algorithm to randomly select a skin location to ensure the selected skin location is 

surrounded by all valid pixels within a window size of 11 x 11.  Figure 9 part 4 shows a 

selected sample skin location (blue start).  Then from the original image (Figure 9 part 1), 

centered at the selected skin location, we extract the skin-chip.  

The next section discusses a process to generate the Gray Level Co-occurrence Matrix 

(GLCM) and texture-driven features computations. 
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3.2 GLCM Feature Generation 

To process data for skin detection after the skin-chip extraction, a GLCM matrix is 

generated, and a set of texture-driven features are calculated.   GLCM is an image-

texture-driven matrix that is widely used for many applications to perform texture based 

classification analysis and to estimate image properties related to second-order statistics 

[15] [16] [31].  The GLCM kernel is derived from sample texture chip by following N-to-

1 mapping process for mapping intensity pairs.  Each entry (i, j) in the GLCM 

corresponds to the number of occurrences of the pair of gray levels i and j that are a 

distance d apart in the original chip [15].  The GLCM matrix, denoted by yxC ∆∆ ,  is defined 

mathematically in Equation 6.  Visually, Figure 10 represents a process of constructing a 

GLCM matrix.  For example, an entry for pair (1, 1) is made as 1 at the (1, 1) location in 

the predefined GLCM template because there was only one (1, 1) pair in the original 

image.  However, there are two pairs for (1, 2), so an entry of 2 is made in the (1, 2) 

location in the predefined GLCM template.  Following the horizontal pattern counting 

procedure, the GLCM matrix of the skin sample is constructed as follows. 
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Where: I= Skin Chip  

m = n = 1, 2, …, # of rows/columns of I 

i and j are used for data binning 
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0;1 ≡∆≡∆ yx  

 
 
 

 
 
 
 

 
 
 
 

The GLCM matrix is square and the rows and columns of the matrix represent the image 

data range.  The test image in Figure 10 has gray levels up to 8, but the employed thermal 

data for our experiments has 256 possible gray levels.  We can construct a 256 x 256 

Figure 11:  GLCM kernel: 1) Sample original chip; 2) Transformation process (N to 1 
mapping) [15]; 3) GLCM kernel 

Figure 10:  GLCM kernel mapping  
(Extracted from [15]) 
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square GLCM matrix, but data processing at each pixel will be computationally very 

intense.  Therefore, data binning in a set of 8 bits is adapted to generate a GLCM kernel 

of 8 x 8 pixels.   Figure 11 illustrates a sample GLCM kernel derived from original data.  

Haralick suggested that texture-driven features can be calculated on the GLCM kernel for 

further processing [16]. 

Haralick has proposed fourteen statistical features that can be derived from GLCM. 

However our analysis only explores use for skin discrimination [20].  Equation 7 

normalizes the GLCM matrix and this normalized GLCM is used to derive texture-driven 

features listed, as described in this section.    
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Where: i: the row number; j: the column number 

Ci,j: the value in the pixel (i, j) of the GLCM matrix 

Pi,j: the normalized pixel value at (i, j) 

N: the number of rows or columns.  
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3.2.1 Contrast 

The contrast is a difference between the neighborhood pixels of a normalized GLCM 

P(i,j) and measures the amount of local variation in an image.  The contrast is a spatial 

dependent metric because the gray level difference is measured between the neighboring 

pixels.  This difference is also referred to as a difference between the moments [16].  As 

per Equation 8, contrast is a sum of squared variances at each pixel of the GLCM.   
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Here the contrast value is zero if i and j are equal, but contrast difference is introduced if i 

and j are not equal.  The goal is to add all those differences to report a contrast of the 

GLCM matrix.  A high value of contrast is achieved when the GLCM pixels have wide 

range of intensity variations.  

3.2.2 Entropy 

Entropy measures the disorder of intensity variations within an image and is independent 

of the spatial information.  A difference between the contrast and entropy is the spatial 

dependency.  As illustrated previously, a contrast is a spatially dependent metric and 

difference between the pixels is added to generate a metric whereas the entropy is 

independent of the spatial information.  When the intensity variation between the image 

pixels is small or negligible, entropy of the image is large.  Also, when the image has 
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non-uniform texture, there are not that many repeating intensity pairs, which results in 

small values for the GLCM elements.  Further, small element values over the whole 

image results in a very large entropy [16].  A mathematical Equation 9 is used to compute 

entropy of an image.   
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3.2.3 Homogeneity 

Homogeneity of the image is measured by the inverse difference between moments 

(IDM) where IDM is inversely proportional to GLCM contrast.  Equation 10 returns a 

value that represents the closeness of the GLCM non-zero pixels with respect to the 

GLCM diagonal. The range of this parameter is between 0 and 1, and it achieves the 

largest value when non-zero pixels are centered near the main diagonal [16]. 
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3.2.4 Correlation 

The correlation operation performed on the GLCM measures the relationship of gray 

levels in the neighborhood pixels.  Equation 11 returns a measure of how correlated a 

pixel is to its neighbors over the whole image. The range of this parameter is between 1 
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and -1; any value less than 0 indicates negative correlation and greater than 0 indicates 

positive correlation [2] [16] . 
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where the parameters yxyx  σσµµ ,,,  are calculated employing the equations 12 and 13.   
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3.2.5 Mean 

The mean operation computes an average gray value within a window size kk × and 

replaces the center pixel value with the computed gray value.  Employing Equation 14, 
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this operation is repeated across the whole image and an average GLCM image is 

computed. 
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Although, features calculated in this chapter are derived from the skin-chip, not all the 

features represent variability in the skin data equally.  We are interested using a limited 

set of features; therefore, in the next chapter, we explore a feature reduction process 

employing PCA.   

 

 

  



28 
 

 
 
 
 

4 Applying PCA for Data Reduction 

 
 

Principal Component Analysis (PCA) represents a signal that lies in the direction of the 

principal component.  PCA has been called one of the most valuable results from the 

applied linear algebra.  PCA computes a set of orthogonal components (vectors) passing 

through the data.  Figure 12 shows a sample data where the 
2
signalσ  component is in the 

direction of the maximum data variability and therefore is called the principal 

component.  However the 2
noiseσ  component is an orthogonal component to the 

2
signalσ  

component and represents the direction with less variability.  Thus, PCA provides a 

method for reducing the data’s dimensionality and representing the data in terms of the 

data variability [19] [25] [36]. 

 
 
 

 

 

Figure 12:  Sample data representing signal and noise variability  
(Extracted from [36]) 
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4.1 Feature Reduction 

We apply PCA analysis for understanding the most contributing texture features for skin 

characterization.  We normalize the extracted skin-chip to have a common mean of 0 and 

a standard deviation of 1 following Equation 15.   

 

σ
µ−

= ij
ij

x
x       (Eq. 15) 

 

where: μ is the mean value of the original image x  

 σ is the standard deviation of image  

 
 
 

 

 

Figure 13:  For selected skin portion (top left, original), Gray Level Co-
occurrence Matrix (GLCM) driven texture feature images  
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After normalizing the skin-chip, GLCM-driven feature images are constructed.  Figure 13 

demonstrates calculated feature images.   

These 2-dimensional feature images are arranged in a set of 1-dimensional vectors and a 

matrix is created for PCA analysis.  

 

}FeatureImg ,.....,FeatureImg ,g{FeatureIm  X M21=   (Eq. 16) 

 
where: M is the number of feature images  

 Each feature image has N pixels 

Each feature image is 1×N  in the matrix ‘X’ 

The goal is to reduce the number of features from M to K where K < M.   K represents 

the most contributing eigenvectors, and eigenimages are reconstructed using K 

eigenvectors.  The algorithm for feature reduction from M images to K images involves 

the steps listed below.   

Step 1: Calculate a mean image of matrix X. Figure 14 demonstrates a sample mean 

image. 
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Step 2: Subtract the mean image from each feature image to adjust the data.  For a valid 

comparison between the two or more data sets, we prepare the data with a common 

baseline of zero-mean value [36]. 

 

xx ii −=Φ       (Eq. 18) 

 
Step 3: Form the matrix A  

 

 )(;]....[ 21 matrixMNA M ×ΦΦΦ=    (Eq. 19) 

 

Step 4: We compute the covariance matrix C following Equation 20. The covariance can 

be used to describe relationships between all pairs of measurements in a data set. 

Diagonal values are the variances between the data pairs, and the top and bottom 

triangles in the covariance matrix represent correlation between the set of measurements.  

 

Figure 14:  Mean image  
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where i = 1: M features of the PCA input matrix X. 

Step 5: Then, we compute the eigenvalues and associated eigenvectors of the covariance 

matrix C [25] [36]. The PCA-generated eigenvectors are orthogonal to each other and 

show the variability in the direction of the vectors.  After calculating the eigenvectors and 

eigenvalues, we sort the eigenvalues and associated eigenvectors from highest to lowest.  

The data variability for the arranged eigenvectors varies from maximum to minimum.  

Step 6 demonstrates a procedure to compute a reduced set (K) of eigenvalues and 

associated eigenvectors for further processing. 

Step 6: The K is a number that specifies the dimensionality of the subspace of M that 

preserves the variability of the skin features.  In other words, the K eigenvectors are 

selected such that they demonstrate the maximum variability of the data.  Equation 28 

demonstrates the constraint used for defining K. The expected threshold can be set to any 

number between zero and one.  For example, a threshold of 0.9 is selected and compared 

with the ratio specified in Equation 21 for a possible K value.  The first K number (from 

1 to N) that satisfies the condition in Equation 21 is selected as the K value.   
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Figure 15 demonstrates the eigenvalues rank plot for the sample skin-chip extracted in 

the third chapter.  As clearly shown in Figure 15, first 4 eigenvalues are the most 

contributing and are noticeably higher than the rest of the eigenvalues.  Based on the 

expected threshold value of 0.90, K was determined to be 4 eigenvectors/eigenvalues. 

 
 

 

 
 
 
 

Figure 16 demonstrates a sample image data with three features and the top four 

eigenvectors passing through the data.    

 
 

 

 

Eigenvalues (1 to N)Eigenvalue 

K

 1

2

Figure 16:  Eigenvectors plotted on top of original data for 3 features: 1) 
Overview of data and 2) Zoomed in three orthogonal components 

Figure 15:  Eigenvalue distribution  
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Step 7: Using the K eigenvectors, M eigenimages are generated.  For the previously 

selected skin-chip sample, Figure 17 shows a partial sample set of eigenimages that were 

created employing eigenvectors associated with top 4 eigenvalues.   

 
 
 

 
 
 
 

Step 8: For many data dimensionality reduction applications, step 7 is the last step.  

However, for our case, the goal is to understand which features contribute the most in 

referencing features to represent the skin data.  Therefore after obtaining the skin 

contributing feature sets in step 7, each eigenimage is compared with each feature image 

and the correlation value is computed.  A high correlation value between an eigenimage 

and a feature image represents an association.  Output of this step reports the name of the 

K features associated with the selected K eigenimages.  In other words, output of this step 

is the number and the type of feature images that should be computed for skin detection.   

1 2

3 4

Figure 17:  Eigenimages corresponding to the K eigenvectors - 1) 
Eigenimage#1; 2) Eigenimage#2; 3) Eigenimage#3; 4) Eigenimage#4 
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The process to construct a feature image is to start with a filter window size of the 

original skin-chip.  As demonstrated in Figure 18, the sample image has M rows and N 

columns.  We move the filter window from the left side to the right side of the image 

starting from location one, in steps of a pixel, by following the arrows.  These arrows are 

only one pixel apart in the horizontal and vertical directions.  The purpose of this process 

is to move the filter window on top of each pixel of the original image and calculate the 

GLCM kernel within that window.  From the pixel’s calculated GLCM kernel, calculate 

the K set of features recognized in step 8 by following equations in the third chapter.  At 

each pixel, we calculate the features values within the filter window.  To construct feature 

images, we create K, NM ×  blank images that we use to place the features values and 

construct feature images.  For each pixel location, we place the calculated feature value in 

the blank feature images.  At the end of the process, we have moved our filter window 

from point 1 to point 4 by moving at a step of one pixel at a time in horizontal and 

vertical directions.   

 
 
 

 
Figure 18:  Process to construct a feature image 
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Following the feature image generation process, K feature images are constructed as 

shown in Figure 19.  For this particular data, we have identified that features 1, 3, 6 and 7 

(contrast, energy, mean, and standard deviation, respectively) are the most contributing 

features for skin detection.  Therefore for further analysis, we need to compute only these 

four features for the test images for the skin detection.   

In conclusion, the PCA allows us to recognize a set of features that characterizes the skin.  

As a result, only a limited set of features are computed for the sequence of video frames 

for discriminating skin from non-skin regions.  For this particular data set, four skin 

discriminating features were recognized.  Figure 19 shows four feature images computed 

over a small region of face with hair and skin portion.   

 
 
 

 

 
 
 

Figure 19:  PCA selected GLCM feature images- 1) Contrast; 2) 
Correlation; 3) Energy; 4) Homogeneity 
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4.2 Fused Image Generation  

After performing PCA on a set of features and obtaining a reduced set of skin 

discriminating features, the set of PCA-reported features are calculated for a test image as 

explained in the previous section (see Figure 19).  

We had two options for discriminating skin from non-skin regions- 1) operate on each 

individual feature image or 2) operate on a fused feature image.  For the first option, we 

apply three classification algorithms one at a time on each feature image.  After 

computing K classified images with skin and non-skin regions, we merge results from 

each classifier and construct an image with skin and non-skin regions.   Since we have 

three classification algorithms, this operation is repeated three times for generating skin 

and non-skin regions.  However, for the second option, we combine feature images to 

construct a fused image and then apply classification algorithms on the fused image.  

After running both options, we have learned that the second option is computationally 

less intense whereas results are similar.  Under the scope of this thesis, we have adopted 

the second option and have explored the skin discrimination algorithms listed in the fifth 

chapter.   

Many options are available to combine multiple images to construct a fused image [15].  

Since we are interested in pixel intensity, we choose to weight all features equally and 

compute a root-mean-square (RMS) intensity value at each pixel.  Equation 22 and 

Figure 20 demonstrate a procedure for constructing a fused image.   
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Where: KimgPCA , : PCA reported feature images  

 
 
 

 

 
 
 

Figure 21, part 1 demonstrates an example of a portion of a test image.  First, PCA-

reported features are calculated for this entire portion of the test image and then 

employing the image fusion process explained in this section, a fused image is generated 

(Figure 21, part 2).   

 
 

 

 
 
  

 

Fused Image

1 2

Figure 21:  Fused image results: 1) Original image and 2) Fused image 

Figure 20: Flow chart to generate a fused image  
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5 Classification for Skin Detection 

 
 

Now that we have derived a fused image where each pixel’s gray level is defined by a 

combination of PCA selected features, the next task is to classify these pixels based on 

their gray levels and fused texture characteristics.  Since we have prior knowledge of 

features that were employed to construct a gray level of each pixel, we also have 

knowledge of the skin (ground truth) in terms of texture and the gray levels. 

We utilize this information for differentiating the skin from non-skin portions following 

three classification algorithms: 1) adaptive optimized LMS, 2) PCA, and 3) LDA.  The 

subsequent sections will explain each classification algorithm in more detail. 

5.1 Classification with Adaptive Optimized Least-Mean-Square (LMS) 

This classification algorithm is based on thresholding.  Thresholding is a very 

challenging operation because of the presence of noise in the data.  Moreover, this is an 

application-specific operation and many studies have been performed to find an optimal 

threshold algorithm [40].   Since we understand the properties of the actual skin (Dk), and 

a fused image (Xk), we can design an adaptive optimized threshold algorithm based on 

the Least-Mean-Square (LMS) estimation of the error.  Figure 22 shows a flow diagram 
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of the algorithm that we have designed for segmenting/classifying skin from non-skin 

portions within an image [40].  

 
 
 

 

 
 
 
 

where the variables are defined as follows:  

Xk_In: Fused image  

Xk: Input signal  

Dk: Desired signal computed from the original skin-ship features 

Tk: Threshold value derived from the adaptive algorithm 

Fused Image
Threshold Image

Adaptive Algorithm

∑ Compute 
Desired Signal- +

Dk

ε

Tk

Yk

Xk

Compute 
Output Signal

Χ Original 
Skin-chip 

Features (GT)
Xk Yk_Temp

Yk_OutYk_Out

Yk_Temp

Yk Dk

Tk

ε

Input Signal
Xk

Xk_In

Yk_Out

Yk_Temp

Figure 22:  An adaptive threshold algorithm based on LMS optimization [40] 
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Yk_Temp: Image after applying threshold Tk 

Yk_Out: Image after multiplying the Xk_In with Yk_Temp 

Yk: Output image signal computed from Yk_Temp 

ε: Error between Yk and Dk 

As explained in the previous section, the fused image Xk_In is constructed following 

Equation 22.  To construct Xk signal, we follow the Equation 23. 
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where, 

i = 1,2,…, M; M = number of rows of Xk_In 

j = 1,2,…, N; N = number of columns of Xk_In 

To calculate the desired signal Dk (GT signal) we used the skin chip that was 

automatically selected in the third chapter.  For this skin chip, we calculated all the PCA-

reported GLCM features and calculated the desired signal Dk using Equation 24 and 

Equation 25.  A small random noise wk is added to the Dk signal since in the real-world 

conditions it is not possible to have an exact statistical feature value of a target. 
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where the variables are defined as follows:  

Sk: Fused Ground Truth (GT, i.e., skin image)  

IGT,f#: GT image of the GLCM feature value for PCA selected feature f# (#: 1,2, 3,…) 

Dk: Composite feature signal value at the center of the skin chip 

Initially, the threshold value (Tk) is set to an average value of the fused image (Xk) as 

defined by Equation 26.   
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A few other parameters should be defined for the LMS adaptive threshold algorithm: 1) 

the number of iterations to reach an optimal threshold value and 2) the step size μ, a gain 

constant that regulates the speed and stability of adaption. In the first iteration, the very 

first skin-only image (Yk_Temp) is calculated following Equation 27.  To compute the 

Yk_Out, we multiply the Yk_Temp image with Xk_In image or mathematically, we follow 

Equation 28.  Finally, the Yk signal is computed by following the Equation 29  
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Since kY is the resultant signal after applying kT  constraints onto the k_InX , 

mathematically, kY  is expresses as Equation 30 [40].   

 

k_Inkk XTY =      (Eq. 30) 

 

The error (ε) between the generated signal Yk and desired signal Dk is calculated by 

following Equation 31.   
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Employing the steepest descent type of adaptive algorithm illustrated in Equation 32, we 

compute the next threshold value using Equation 34.  At the first iteration, the threshold 

(Tk) is computed employing the Equation 26 whereas starting from the second iteration, 

Equation 34 is employed to compute the threshold ( 1kT + ).  We estimate the gradient at 

each iteration step following the Equation 33 [40]. 
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kkk1k XTT µε2+=+      (Eq. 34) 

 

where the variables are defined as follows:  

Tk+1: Next threshold value  

μ: Step size  

k∇̂ : Gradient estimate of the squared error  

Figure 23, part 1 illustrates a learning curve to approach an optimal mean-square error 

value and part 2 illustrates a weight convergence plot to reach an optimal weight 

(threshold) which is close to the GT value of the skin (Dk).  Notice that the algorithm 

converges to an optimal weight at about iteration 2000.  The MSE plot shows an effect of 

the quantization error close to the iteration 2000.  At this iteration level, a step-size of 

0.001 and a MSE of <0.001 impact the threshold value in the least significant digits only.  

Therefore, for the next iteration, a small change in the threshold value does not impact 

the MSE in the higher significant digits.  However, when the threshold value increases at 

the higher significant bits level, a sudden change in the MSE is noticed (i.e., close to 
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iteration 2000 in Figure 23, part 1).  The outcome of the algorithm is an image mask with 

skin represented in white (see Figure 24).   

 
 
 

1 2

 

 
 
 
 

Figure 24, part 3 shows an output after applying an optimized adaptive LMS threshold 

algorithm to the fused image. Here the pixels in white represent skin pixels.   

 
 
 

1 2 3

 

 

Figure 24:  Optimized adaptive LMS results: 1) Original image, 2) Filtered image, and 
3) Image after threshold (Skin only image)  

Figure 23:  Adaptive optimized LMS algorithm parameters: 1) Learning curve for 
the MSE over k iterations and 2) Threshold weight convergence over k iterations 
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This algorithm generates a skin-only image, but many skin pixels are not reported as 

such.  Although resultant image statistics are closest to the statistics of our ground truth 

sample, not all skin regions in the original image have the same statistics.  For example, 

statistics of regions close to the edges and hair are biased by the neighboring statistics.  

So instead of reporting these regions as skin regions, they are reported as non-skin 

regions.  To overcome this challenge, in the next section, we explored classification with 

PCA algorithm for discriminating skin from non-skin pixels. 

5.2 Classification with Principal Component Analysis (PCA)  

PCA for classification is widely used for many applications; therefore, by taking 

advantage of the developed theory, we can apply PCA for skin classification [36].   The 

first task is to prepare a set of skin and non-skin samples by manually clicking on 

imagery and extracting NN × chips (see Figure 25).  As an input to the PCA 

classification algorithm, set of extracted chips are used to formulate the skin and the non-

skin classes.  The robustness of the algorithm is achieved by defining multiple samples 

for skin and non-skin classes.  

Figure 25 demonstrates intensity variations for both skin and non-skin classes.  As shown 

in the Figure 25, the intensity range of the skin and non-skin pixels is very close.  

Therefore, classification is a very challenging problem.  After randomly selecting five 

sample skin and five sample non-skin locations, we constructed a matrix as defined in 

Equation 35.  Each column of this matrix is associated with either skin or non-skin class.  
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Multiple skin and non-skin samples are defined to take advantage of the skin variability 

in various subjects or data collected at different times.  

 
 
 

 
 
 
 

}NonSkinSpl,...,NonSkinSpl,...SkinSpl ,{SkinSpl  X L1L1=      (Eq. 35) 

where the variables are defined as follows:  

SkinSplL are the skin samples from the fused image; L = 5 

NonSkinSplL are the non-skin samples from the fused image; L = 5 

A series of steps performed to classify skin and non-skin regions are listed below: 

Steps 1 through 6 are the same as presented in the PCA feature selection section. 

Figure 25:  Manually selected skin (green) and non-skin 
samples (red) to construct two classes 
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Step 7: Each sample iΦ of the set A (calculate in step 3) can be represented as a linear 

combination of the top K eigenvectors.  Following Equation 36, we compute iΦ̂  

eigenimages of the skin and non-skin samples. 

 

)(,ˆ
1

i
T
jj

K

j
jji uwuw Φ==Φ ∑

=
    (Eq. 36) 

 

where: i = total number of skin and non-skin samples  

j = 1,2,…., K;   K is total number of eigenvectors << M 

wj = weight of each class in the set A 

Step 8: Each normalized skin and non-skin sample ( iΦ ) of the set A is represented as 

iΩ  following Equation 37. 
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T
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T
Ki u  (wwww Φ==Ω   (Eq. 37) 

 

Step 9:  For each pixel in the fused image, we extract a NN × chip ( Γ ).  As illustrated in 

Equation 38, prepare the sample chipΦ .   

 

x −Γ=Φ       Eq. 38) 

 

where, x  : mean sample (as per following equation in step 1) 
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Step 10:  We project this sample chip onto the eigenspace to construct an eigenimages 

following Equation 39. 
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Step 11:  Then we represent Φ  as Ω following Equation 40 . 
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Step 12:  Following Equation 41, we compute error between the Ωi and Ω. 

 

222 ))()((....))2()2(())1()1(( kke iiii Ω−Ω++Ω−Ω+Ω−Ω=   (Eq. 41) 

 

Step 13:  As discussed earlier, multiple skin and non-skin samples for two classes were 

constructed to take advantage of data variation in each class.  We defined the first five 

samples as skin class and the last five samples as non-skin class.  Therefore, following 

Equation 42, we determine each pixel’s association with the skin or non-skin class. 
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where, 10,9,8,7,6;5,4,3,2,1 == qp  
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Following steps 9 and 13, we construct a skin-only image with skin pixels in white and 

non-skin pixels in black as demonstrated in the Figure 26.  But we notice that there are 

remaining skin pixels that are not reported as such.  After studying that the skin and non-

skin classes overlap, we explored another classification algorithm called Linear 

Discriminant Analysis (LDA) that we discuss in the next section.   

 
 
 

 
 
 
 

5.3 Classification with Linear Discriminant Analysis (LDA)  

LDA operation is applied to the fused image data to maximize discriminatory power.  

Unlike PCA which represents information in an orthogonal linear space, LDA represents 

discriminatory information in a linearly separable space whose bases are not necessarily 

orthogonal [10] [25]. 

The LDA algorithm finds a linear transformation that is used for transforming the skin 

and non-skin classes to increase separation between these classes.  This can be achieved 

Figure 26:  PCA classification results; 1) Image, 2) PCA transformed image, and 3) PCA 
classified skin mask 
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through scatter matrix analysis [25].  For the scatter analysis, we have adopted Fisher’s 

criterion, defined as the ratio of the determinant of the between-class scatter matrix of the 

projected samples to the within-class scatter matrix of the projected samples [10] 

To apply the LDA algorithm to the data for skin discrimination, the first step is to 

construct skin and non-skin classes by manually clicking on the imagery, as demonstrated 

in the previous section.  Equation 43 demonstrates the format of these two classes.   

 

]ass........ClClass  [Class ][Class

]ass........ClClass  [Class ][Class
]}[Class]  {[Class  X

K21

K21

Feature2,Feature2,Feature2,2

Feature1,Feature1,Feature1,1

21

=

=
=

  (Eq. 43) 

 

where:  Class1: Skin class 

Class2: Non-skin class 

K = total number of PCA selected features 

Our goal is to construct a simplified X matrix with two classes, with each class having 

only two features sets.  Equation 44 demonstrates a simplified version of the class matrix. 

 

}] Class  [Class] Class  {[Class  X
baba Feature2,Feature2,Feature1,Feature1,=  (Eq. 44) 

 
where aFeature and bFeature  are combined features.  For this particular example, 

four features were selected by PCA; therefore, 
aFeaturepClass , and 

bFeaturepClass , are 

computed employing Equation 45. 
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where: p = 1, 2 

The procedure adopted to combine classes was also applied for combining feature 

images.  These combined feature images are later mapped onto the LDA-generated space 

for comparison with the skin and non-skin classes.   

Figure 27 shows a data spread for a sample test image in blue, skin class in green, and 

non-skin class in red stars.  Both skin and non-skin classes overlap; therefore, a confusion 

region exists between classes.  In that confusion region, the PCA algorithm was not able 

to clearly distinguish skin and non-skin pixels.  Therefore, we needed an algorithm that 

could separate these two classes with maximized inter-class distance.   
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Figure 27: Feature data:  Sample test data (blue), Skin class 
(green), and Non-skin class (red) 
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A set of steps followed to employ the LDA algorithm for skin classification are listed 

below:  

Step 1: First we calculate the mean of the classes following the procedure discussed in 

PCA for classification section.  This process generates two mean values, μ1 and μ2. 

Arrange the mean values as per Equation 46. 
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µ      (Eq. 46) 

 
where:  

p = 1, 2. (i.e., Class1, Class 2); a = aFeature ; b = bFeature  (See Figure 27) 

Step 2: Using Equation 47, we compute the covariance matrix for each class.   
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Step 3: We calculate a within-class matrix (Sw) following Equation 48, where the 

covariance matrices are combined to calculate the within-class scatter for both classes.  

Within-class scatter represents the distance between a sample and other samples in that 

class. 
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Step 4: We determine a between-class scatter ( BS ) employing Equation 49. Here the 

covariance is calculated between the means of two classes to represent the closeness 

between the two classes.  Smaller between-scatter value represents a potential overlap 

between the two classes. 

 
T

BS ))(( 2121 µµµµ −−=     (Eq. 49) 

 

Step 5: An optimal, LDA driven projection vector *w  is obtained following Equation 50.  

This projection vector is calculated such that after projecting onto this vector, separation 

between the skin and non-skin classes statistically should increase.  For an improved 

separation between the two classes after projecting both classes onto the LDA driven 

vector 1) the Euclidean distance between the mean locations of the two classes should 

increase and 2) the standard deviation of each class should reduce.   

 

)( 21
1* µµ −= −

wSw      (Eq. 50) 

 

Finally, after calculating the scatter between classes and within classes, Fisher’s criterion 

can be expressed in terms of SW and SB as demonstrated in Equation 51. This implies that 

J(w) is a measure of the difference between class means normalized by a measure of the 

within-class scatter matrix.   
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To find the maximum value of J(w), differentiate and equate the resulting equation to 

zero.  This metric can be used for analyzing the statistics of both classes after projecting 

them onto the projection vector.  

Step 6: The skin and non-skin class data is projected onto the derived projection vector 

by following Equation 52.  Figure 28 illustrates the projected vector within the feature 

domain (part 1) and the classes projected onto the vector domain (part 2).  In these plots, 

red and green arrows show the mean locations for the non-skin class and skin classes, 

respectively.   

 

T
ii wXXp )( *=       (Eq. 52) 

 
 
 

 
 
 
 

Figure 28: LDA results: 1) LDA generated vector projection and 2) Classes 
data projection onto LDA generated vector 

1 2

Projection Vector

Projection Vector Direction

Gray levels
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Following Equation 51, we project every single pixel of the PCA-selected feature data 

onto the LDA space domain.  Figure 29 Part 1 shows each data pixel projection onto the 

LDA-generated vector and the resultant skin-only image mask.  

 
 
 

 
 
 
 

After obtaining the skin-only images as an output from all three classification algorithms, 

a post-processing step is employed to remove artifacts.  The next section discusses an 

adopted post-processing procedure.   

5.4 Post-processing 

In the post-processing step, the goal is to clean the final results by removing any outliers 

(i.e., single or small groups of hanging pixels).  Post-processing can be a very crucial step 

depending on the application.  For our application, we want to identify the maximal skin 

area within the image, so we want to remove hanging pixels that can possibly be thin 

Figure 29: LDA Generated results: 1) Data pixels projection onto the LDA-generated 
vector and 2) Skin mask after LDA classification  

1 2
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hair.   These regions represent false detections and are highly dependent upon the original 

size of the GLCM kernel.  For example, if a kernel size is bigger than a thin hair, 

depending upon the neighboring pixel, the thin hair region will be declared skin or non-

skin region.  

For this part, we have applied a morphological operation called “opening” which is 

discussed in the second chapter.  Figure 30 demonstrates the results after performing 

opening operations on skin-only images generated by each of the classification 

algorithms.  A structuring element size of 3x3 pixels was employed for the opening 

process that helped with removing small hanging pixels. 
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Figure 30:  Sample results after post-processing - 1) Original image; 2) Image after 
adaptive optimized LMS threshold; 3) Skin-only image after post-processing; 4) Image 
after PCA classification; 5) Skin-only image after post-processing; 6) Image after LDA 

classification; 7) Skin-only image after post-processing; 
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6 Validation and Data Analysis 

 
 

For testing purposes, we have used a small set of thermal data that was collected under an 

IRB-approved protocol for human testing using a MWIR (320�240 resolution) imager 

under a controlled environment.  This thermal data includes skin portions of the face and 

non-skin portions such as background, hair, glasses, etc.  Because there are no methods 

available to establish ground truth skin data in thermal imagery, 16 frames were used for 

manually selecting skin and non-skin locations. 

6.1 Algorithm Validation Procedure 

Figure 31 demonstrates an algorithm validation procedure for results generated by three 

skin classification algorithms.  There are three major parts of the process: 1) Algorithm 

generated output skin-only mask, 2) manually-selected GT locations, and 3) comparison 

between the GT, skin, and non-skin locations.   

Figure 31, part 1 is described in the previous chapters in detail.  The first step of the 

algorithm reduces the feature dimensionality by applying PCA.  The second step is to 

apply one of the three classification approaches (LMS or PCA or LDA) to generate a 

skin-only image.  After the skin-only mask is generated, we prepare an inverted skin-only 

image to be compared with the non-skin ground truth locations. 
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Figure 31, part 2, shows a flow chart for generating ground truth (GT) locations and GT 

images with skin and non-skin locations.  For validation process, we have selected 16 

subjects and about 50 skin and 50 non-skin GT locations on each subject using 3 

operators.  As shown in Figure 32, after selecting the GT points from the original image, 

the algorithm locates and generates skin and non-skin GT images using zeros and ones at 

the skin and non-skin GT locations, respectively.   

 
 
 
 
 

 

Figure 31:  Validation procedure flow diagram: 1) Algorithm to generate skin-only 
image; 2) Generate manual ground truth; 3) GT and algorithm output comparison  
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Figure 31, part 3 compares the algorithm generated (LMS, PCA, and LDA) skin and non-

skin locations, and manually-selected skin and non-skin locations.  The outcome of this 

section is a list with number of correctly classified and incorrectly classified pixels.  A 

correctly classified is a number of true detections that includes two cases where: 1) a skin 

pixel is declared as a skin pixel and 2) a non-skin pixel is declared as a non-skin pixel. 

Whereas the incorrectly classified number represents false detections and includes two 

cases where: 1) a skin pixel is declared as a non-skin pixel and 2) a non-skin pixel is 

declared as a skin pixel.   

To compare the GT skin locations with the algorithm-generated skin mask, we multiply 

the inverted skin mask image with the skin GT image.  As demonstrated in Figure 33, the 

output of this process should have ones at the locations where the algorithm failed to 

detect skin.  These ones are the total number of incorrectly classified skin locations. 

 
 

Figure 32:  Ground truth data:  1) Manual ground truth (non-skin in blue 
and skin in green stars); 2) Image with only non-skin locations; 3) Image with 

only skin locations 

1 2 3
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To test the incorrectly classified non-skin locations, the skin mask is multiplied with the 

non-skin GT image as demonstrated in Figure 34.  The output of this process should have 

ones at the incorrectly classified non-skin locations.   Finally, the total incorrectly 

classified skin and non-skin pixels are added, and then subtracted from the total GT 

points to construct a list with correctly and incorrectly classified pixels as demonstrated 

in Figure 35. 

 
 
 

 
 
 
 
 

Figure 34:  1) GT non-skin image 2) Algorithm output skin-only image 
with skin in white; 3) Algorithm missed non-skin locations 

x =

1 2 3

Figure 33:  1) GT skin image 2) Algorithm output non-skin image with non-skin in 
white; 3) Algorithm missed non-skin locations 

1 2 3

x =
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After comparing algorithm outputs with the GT skin and non-skin locations, we notice a 

significant improvement in the results with the LDA algorithm.  To confirm our 

hypothesis that LDA has the highest correct pixel classification rate (true detections) as 

compare to the LMS and the PCA generated results, we perform a set of operations listed 

above on all 16 thermal images and generate a list of correctly and incorrectly classified 

pixels to perform further analysis. 

6.2 Data Analysis 

To perform correctly and incorrectly classified pixels analysis on a set of sixteen subjects, 

we use the list of correctly and incorrectly classified pixels that we have obtained 

Figure 35:  1) GT non-skin image 2) Algorithm output skin-only image with skin in 
white; 3) Algorithm missed non-skin locations; 4) GT skin image 5) Algorithm 
output non-skin image with non-skin in white; 6) Algorithm missed non-skin 

locations 

x =

1 2 3

4 5 6

x =
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performing the operations listed in the previous section.  Figure 36 demonstrates the 

percentage of correctly classified pixels by the LMS, PCA, and LDA algorithms.  As we 

notice from the bar chart, the PCA algorithm has the least number of correctly classified 

pixels and the LDA algorithm has the maximum number of correctly classified pixels. 

We thus conclude that the LDA algorithm is the best algorithm for skin detection of the 

ones tested. 

 
 
 

 

 
 
 
 

Data points for each algorithm shown in Figure 36 are averaged and presented in a 

simpler form as demonstrated in Figure 37.  Figure 37 demonstrates that the LDA 

algorithm outperforms the LMS and PCA algorithms.  Notice that correctly classified 
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Figure 36: Actual true detections with LMS, PCA and LDA algorithms  
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pixels for the LDA algorithm are about 80%, whereas the LMS and PCA correctly 

classified pixels are 68% and 65%, respectively.   Also note that the error bars for the 

LMS and PCA algorithms are overlapping which implies non-significant difference 

between two data sets.  Whereas the error bar for the LDA algorithm is standing alone 

which implies a significant difference between the LDA data and the other two data sets 

(PCA and LMS). 

 
 

 

 
 
 
 

For further verification, we perform a well known and widely used statistical test called 

the paired t-test on the data from all three algorithms.  The paired t-test is used when 

there is one observation for each experiment such as a number of correctly classified 
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 Figure 37:  Average true detections with LMS, PCA and LDA algorithms  
 (After comparing GT with each algorithm output) 
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pixels for each of the classification algorithms [14].  To run a paired t-test, we need two 

inputs, 1) the number of correctly classified pixels for each classification algorithm, and 

2) a set of employed algorithms, (LMS, PCA and LDA).  The number of correctly 

classified pixels varies from subject to subject among the three classification algorithms 

[14].   

By running a repeated measures Analysis of Variance (ANOVA) test on more than two 

sets and a t-test on two data sets, a p-value is computed which is a probability measure 

between 0 and 1.  Moreover, the p-value is a probability measure against our null 

hypothesis.  For our case, null hypothesis is that results from the LMS, and the PCA are 

as good as from the LDA.  A higher p-value shows not a significant difference between 

the two data sets and an agreement with our hypothesis whereas a smaller p-value is a 

probability measure against our null hypothesis [14].   

In order to investigate the significance of differences in classification accuracy between 

the three algorithms, a repeated measures Analysis of Variance (ANOVA) test was 

performed.  The resulting p-value is 0.0008, which indicates the presence of significant 

differences.  Follow-up paired t-test resulted in p-values shown in table 1.  Based on 

Bonferroni corrected threshold of 0.05/3, the difference between LDA and other two 

algorithms is significant [14].  

Table 1 presents a computed p-value between the algorithms’ outputs.  As clearly 

demonstrated in Table 1, the p-value between the PCA and the LMS show a high/not-

significant (~0.20) value whereas the values are much smaller when the LDA is 
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compared with the LMS or the PCA.  Normally, significantly different results with a p 

value << 0.01 are presented as <0.01** to show the importance of the results [14].  A 

lower p-value indicates that the results generated by a limited data set are as good as the 

results generated by a large data set.   

 
 
 

 

 
 
 
 

Since the LDA algorithm outperforms the LMS and the PCA for skin discrimination, we 

hypothesize that the Fisher’s criteria helps with a better separation of the skin and non-

skin classes.  Discussion in the next section proves our hypothesis and explains why and 

how the LDA algorithm takes advantage of the Fisher’s criteria. 

6.2.1 Further Analysis of the LDA performance  

An LDA algorithm employing Fisher's criteria provides a projection vector for the 

original data transformation onto a vector space. The projection vector is calculated such 

that the scatter between the classes is maximized and scatter within each class is 

minimized [10].  This property of the LDA algorithm introduces an increased Euclidean 

LMS PCA LDA
LMS 1 .20 NS <0.01 **
PCA 1 <0.01 **
LDA 1

Table 1:  Paired t-test results between LMS, PCA and LDA algorithms results  
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distance between two classes; therefore, it produces an improved skin-only image as 

compared to the LMS or PCA algorithms.   

Figure 38 demonstrates the data spread for both skin and non-skin classes. As clearly 

demonstrated in Figure 38, both skin and non-skin samples and classes overlap.  This 

implies that the skin and the non-skin classes share some common gray levels and 

common texture patterns.  The pixels in those common gray levels and common texture 

patterns can be interpreted as skin or non-skin pixels.   

 
 
 

 

 
 
 
 

Further, the LDA algorithm-generated projection vector provides a vector space onto 

which both skin and non-skin classes are projected.  Figure 39 shows the projection 

vector along the two classes before projection, whereas Figure 40 demonstrates an 

improved separation between the two classes after projecting onto the LDA-driven 

projection vector. 

1

Figure 38:  LDA data projection- original data scatter 
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Although an improved separation is observed in the data (Figure 40), an analytical metric 

is needed to confirm the improvement.  This improvement is measured in terms of scatter 

between classes and within each class before and after applying the LDA algorithm.   

 
 
 

 

 
 
 
 

2

3

Figure 40:  LDA data projection- data after projecting onto the projection 
vector 

Figure 39:  LDA data projection- original data and projection vector 
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As stated in the fifth chapter, within-class scatter is a measure of data points gray level 

variability in terms of their means and standard deviations.  The between-class scatter is a 

measure of variance between the two clusters (skin and non-skin), which is calculated 

employing the covariance matrix (described in the LDA classification algorithm section).  

Figure 41, part 1 demonstrates a scatter between two classes (SB) and within each class 

(SW1 & SW2).  For both skin and non-skin classes, a convex hull is drawn capturing all the 

associated pixels within a boundary (red for non-skin class and green for skin class) to 

represent the boundary of two classes/clusters.  Approximately half of the skin cluster 

overlaps with the non-skin cluster.  Moreover, between-class scatter is very small and 

their mean values for both clusters reside in the region of non-skin class  
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Figure 41:  Skin (green) and non-skin (red) classes: 1) Before LDA projection; 2) 
After LDA projection  
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The problem of incorrectly classified pixels is resolved after the skin and non-skin class 

data are projected onto the LDA-calculated projection vector.  Figure 41, part 2 

demonstrates the within-class and between-class scatter of both skin and non-skin classes 

after projection onto the LDA-generated projection vector.  After projection, 2-D data is 

transformed into 1-D.  Figure 41, part 2 demonstrates the 1-D data with vertical axis 

showing samples (20 pixels for each class) and horizontal axis showing the projected 

gray level for each class.  As the gray levels are plotted in the horizontal direction, skin 

and non-skin within-class and between-class scatter is measured in the horizontal 

direction.  A close observation of Figure 41, part 2 demonstrates that the scatter within 

each class is almost equal.  Moreover, the scatter between the two classes after LDA 

projection is increased compared to the scatter between the original classes.  Further, we 

notice that after projection, each class’s mean resides within its own class whereas the 

mean of the original skin cluster was within the non-skin cluster (Figure 41 part 1).  This 

implies that projected classes onto the LDA projection vector have a noticeable 

separation.  

 
 
 

 

Gray Levels Orginal Classes 
Classes Afer 

LDA Projection
Scatter Between (SB) 0.0049 0.065
Scatter Within (SW1) 0.19 0.14
Scatter Within (SW2) 0.14 0.15

Table 2:  Between-class and within-class scatter values for skin and non-skin classes  
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Mathematical interpretation of scatter improvement is shown in Table 2.  Table 2 

demonstrates scatter values (between and within classes) for original classes and 

projected classes (classes after applying LDA).  For this particular example, between-

class scatter for the original classes is 0.0049, and is 0.065 after applying LDA, which is 

an improvement factor of 13.   However, within-class scatter for both projected classes is 

adjusted close to the minimum standard deviation of the two classes before (minimum of 

{0.19, 0.14}) they were projected onto the LDA driven projection vector.  This implies 

that both classes become confined clusters with a low standard deviation and therefore 

can help with segmenting skin pixels from non-skin pixels.  Table 2 shows a within-class 

scatter of 0.19 and a non-skin original class scatter of 0.14.  However, after projecting 

both classes onto the LDA projection vector, within-class scatter for skin and non-skin 

classes is adjusted to 0.14 and 0.15 respectively.    
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7 Conclusions 

 
 

There have been many studies in the areas of skin detection in the visible spectrum, but 

we have extended our studies into the infrared band and found a viable end-to-end 

solution for skin detection.  We have developed an understanding of skin texture 

characteristics and an image processing tool to detect human skin in single thermal band 

(MWIR) images.   

As thermal sensors are capable of capturing data during both day and night conditions, 

our methodology now allows for human skin detection during these conditions.  We have 

utilized PCA to understand skin features from Gray Level Co-occurrence Matrix 

(GLCM)-driven skin texture features.  This process has helped with reducing the 

features’ dimensionality, improving results, and increasing processing speed.  The LMS, 

PCA, and LDA algorithms were employed to discriminate skin from non-skin pixels in 

thermal images.   

We have successfully analyzed results from all three classification techniques and 

recognized the best classification algorithm.  After conducting a deeper analysis on a data 

set employing the LDA algorithm, we have learned that projecting both classes onto the 

LDA-driven projection vector improves the between-classes scatter by factor of ~13.  By 
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comparison, after projecting the original classes onto the LDA-driven projection vector, 

the within-classes distance is reduced to about the minimum of original classes scatter 

(~0.14).  Therefore, the mini-max property of the LDA algorithm helps with generating 

the best skin-only results compared to the LMS and PCA algorithm. 

In general, this research provides a generalized approach for human skin detection in 

thermal images, providing a non-contact, remote, and passive method for human skin 

detection in day or night imagery for security and military applications. 

7.1 Open Questions 

We have learned that the algorithm declared skin and non-skin regions are sensitive to the 

GLCM kernel size which is used for generating the GLCM-driven features.  A bigger 

window size falsely determines a given pixel’s association based on the majority of the 

skin or non-skin pixels within that window.  Determining an optimal window size to 

generate the best results (maximal skin-only and minimum non-skin regions) will be a 

valuable addition to this research.   

At present, this algorithm is designed and tested with high-resolution MWIR images 

only.  Future investigations of expanding this research for detecting facial skin in the 

bands of uncooled sensors (LWIR) will also add to the human skin detection community.  
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7.2 Productivity of the Research 

Three papers were published and presented to the scientific community in conferences.  

Two papers cleared for public release are listed below: 

1. Kaur, B., Hutchinson, A.J., Nelson, J.K., A. O’Kane, B.  "Human Facial Skin 

Detection in Thermal Imagery." Military Sensing Symposium (MSS),. 2012 

2. Kaur, B., Hutchinson, A.J, Leonard, K.R, and Nelson, J.K. “Human Facial Skin 

Detection in Thermal Video to Effectively Measure Electrodermal Activity 

(EDA)”. SPIE DSS conference at Fl, Orlando Apr. 2011. 
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