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Abstract

MULTIPATH AND EXPLICIT RATE CONGESTION CONTROL ON DATA NETWORKS

Soonyong Sohn, PhD

George Mason University, 2010

Dissertation Director: Dr. Brian L. Mark

Computer networks based on the TCP/IP (Transmission Control Protocol/Internet Pro-

tocol) employ TCP congestion control and shortest path routing. However, TCP congestion

control can result in under-utilization of link capacity, low session throughput, and unfair-

ness in its throughput performance over impaired links. Conventional shortest path routing

can lead to network congestion and under-utilized links due to uneven distribution of traffic

in the network.

To address these problems, this thesis proposes multipath congestion control algorithms

for data networks, which combine multipath routing with network congestion control. First,

an efficient multipath route discovery algorithm is proposed to find multiple paths in the

underlying network infrastructure. The multipath route discovery algorithm can find mul-

tipath routes with varying degrees of disjointedness. Second, we develop multipath traffic

distribution algorithm to alleviate network congestion by exploiting multipath routes. The

proposed “congestion-triggered multipath protocol” requires relatively minor upgrades to

the existing Internet architecture.



Recently, there have been proposals to introduce explicit rate signaling into the Internet.

Explicit rate signaling has the potential to substantially improve network performance, but

requires routers that can support signaling on a per-flow basis. Along these lines, we

propose an adaptive dynamic rate controller that computes the rate for flows in response to

network status (e.g., network congestion, link underutilization) in order to minimize network

congestion and fully utilize the link capacity. We evaluate its performance in conjunction

with a rate-based transport protocol.



Chapter 1: Introduction

The Internet was originally designed to provide a single level of service (i.e., best-effort) in

which the network does not provide any performance guarantees on data delivery or on the

Quality-of-Service (QoS) level. Most computer networks are designed to provide best-effort

service and employ

1. shortest path routing protocols that provide a shortest path between source and des-

tination pairs, and

2. end-to-end congestion control mechanisms that react to congestion by adapting the

sender transmission rate based on indirect network congestion indications, e.g., packet

loss [2].

The route between source and destination is typically determined by means of shortest

path routing protocols such as Routing Information Protocol (RIP) [3], Open Shortest Path

First (OSPF) [4], and Border Gateway Protocol (BGP) [5]. In these routing protocols, the

path length is typically taken as the hop count, i.e., the link cost is taken to be unity by

default. Another link metric that is often used in conjunction with shortest path routing

algorithms is link capacity. Under shortest path routing, all packets associated with a given

source-destination pair generally traverse a single path of shortest length, even though

other paths may be available. Consequently, shortest path routing can lead to network

congestion due to excessive traffic routed on a single path, even though other paths may be

under-utilized.

Multipath routing has been proposed as a means to alleviate the limitations of short-

est path routing algorithm. In multipath routing, packets belonging to a given source-

destination pair may be transmitted over multiple paths. Some of the potential benefits of

1



multipath routing include load balancing [6], higher network throughput [6,7], reduction of

routing oscillation, the alleviation of congestion [8,9], and improved packet delivery reliabil-

ity [10]. In prior work dating to the 1950’s, the K shortest paths problem has been studied

in a number of papers (e.g., [11–20]). The K shortest paths problem is to determine the

K shortest paths (i.e., the shortest path, the second shortest path, . . ., the K-th shortest

path) between the given pair of nodes. However, K shortest paths problem may not be

ideally suited to controlling congestion over multiple paths.

Equal-Cost MultiPath (ECMP) [4] and Optimized Multipath (OMP) [21] are protocols

that have been proposed to implement multipath routing in the current Internet. ECMP

finds equal cost multipath routes (i.e., multiple paths with equal number of hops or equal

metric) and distributes traffic equally over a multipath route. OMP is an improved version

of ECMP, which allows unequal traffic distribution (i.e., distribution in inverse proportion

to the utilizations of the constituent paths). The paths in the multipath route need not be

of equal length. The set of paths in a multipath route includes the shortest path, obtained

from the shortest path routing protocol, plus alternative paths derived from shortest paths

from each of the neighbors of the source node to the destination node.

Transmission Control Protocol (TCP) [22] has been a dominant protocol for end-to-end

congestion control in Internet (see [23]). The current implementation of TCP congestion

control uses a strategy called Additive Increase Multiplicative Decrease (AIMD) [24]. The

basic idea is that when a packet is acknowledged, the window size is increased by one, but

when a packet is lost, the window is reduced to half of its previous size. However, TCP

has often been found to be inefficient over links with large delays and/or high packet loss

rates [25–28]. TCP throughput is inversely proportional to round trip time (RTT), which

may lead to efficiency and fairness problems. Among multiple connections with different

RTTs sharing a link, connections with shorter RTT will obtain more bandwidth resources.

Due to these problems in TCP, some applications use User Datagram Protocol (UDP) [29]

rather than TCP and are unresponsive to congestion indicators. However, excessive use of

unresponsive applications can lead to congestion collapse of the computer network [30,31].
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To solve the problems of TCP, protocols based on explicit congestion control have

been proposed, such as eXplicit Control Protocol (XCP) [25, 26], Rate Control Protocol

(RCP) [27], and TCP-Explicit Rate (TCP-ER) [28]. In these protocols, congestion control

is based on the feedback of an explicit sending rate determined by the network elements

(e.g., routers or switches) along the path from source to destination. Rather than increase

the window size by one during each RTT, the sender transmits data at an explicit rate

signaled by the network. If congestion occurs in the network, the network feeds back an

adjusted explicit rate to the sender in order to alleviate the congestion.

1.1 Problem Statement

ECMP and OMP provide multipath routing to solve the problem of shortest path rout-

ing. However, ECMP is not guaranteed to determine a multipath route for each source-

destination pair because only equal cost paths are considered for a multipath route. Also,

packets are forwarded in equal proportion, on a packet-by-packet basis, over the paths in the

multipath route, without considering network congestion. As a result, packets may arrive

out-of-order within a flow at the destination which leads to degraded TCP performance.

In OMP, the characteristics (i.e., disjointedness/partially disjointedness) of the multipath

route are not taken into account. OMP is triggered by path utilization information so mul-

tiple nodes sharing common subpaths may simultaneously begin distributing traffic over

multipath routes sharing common links. Although congestion may be avoided over the orig-

inal path, other paths may become congested as an unwanted side effect of the OMP traffic

distribution policy. This could lead to the triggering of OMP at further nodes, which may

eventually result in network instability. In both ECMP and OMP, each path in a multipath

route may have a different propagation delay. Providing a longer delay path to a TCP flow

in a multipath route could result in degraded TCP performance.

Explicit rate control protocols such as XCP [25, 26], and RCP [27] have been proposed

to solve the problems of TCP. The sending rate is determined by the network and fed back

to the sender as an explicit rate. Then, the sender transmits data at the given explicit rate.
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However, these protocols may underestimate or fail to take into account the effect of the

feedback propagation delay between the network and sender. This may lead to congestion

collapse due to the use of outdated rate information. Dynamic rate controllers proposed in

[32–35] take into account this propagation delay in the explicit rate computation. These

controllers are designed based on queue dynamics so that their mechanisms are optimized for

relatively heavy traffic conditions, but not for light traffic conditions. Also, these controllers

result in rate fluctuations even in steady-state conditions, that is, they do not provide a

constant rate in steady state.

1.2 Research objective

The primary goal of this research is to develop multipath and explicit rate congestion con-

trol algorithms to optimize network performance. An essential step towards this goal is the

development of an algorithm to determine multipath routes, which can be implemented on

top of a conventional shortest path routing algorithms without requiring major changes to

the underlying network infrastructure (see Chapter 3). We consider a traffic distribution

mechanism that can distribute traffic over a multipath route using the current Internet in-

frastructure (see Chapter 4). Then, we develop an implementation of a rate-based transport

protocol to improve the throughput performance of the Internet via explicit rate signaling

(see Chapter 5). Finally, we discuss a novel rate computation algorithm for determining

the flow sending rates, which can minimize network congestion and enable high utilization

of the network capacity (see Chapter 6).

The research contributions of this thesis may be divided into two distinct parts:

1. multipath route discovery and traffic distribution (Chapters 3 and 4), and

2. explicit rate transport and explicit rate computation (Chapter 5 and 6).

The first part is targeted at alleviating network congestion by exploiting path redundancy

in the network. The second part focuses on congestion avoidance via explicit rate control

to improve end-to-end throughput for a flow traversing a given path. The two approaches
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to congestion control studied in this thesis can be integrated under a unified framework to

achieve even better network performance and end-to-end throughput. The possibility of

combining multipath routing and explicit rate control is briefly discussed in Chapter 7 as a

potential future research direction.

1.3 Main contributions

The main contributions of this dissertation are summarized as follows.

1.3.1 Multipath route discovery

We propose an algorithm to determine multipath routes, which can be implemented on top

of shortest path routing algorithms without major changes to the network infrastructure.

As a result, the proposed algorithm can eliminate the need for path pre-establishment (e.g.,

RSVP [36] or ATM UNI [37]) or the use of source routing protocols (e.g., DSR [38]) for

packet forwarding, which are required by many of the multipath routing protocols proposed

in the literature (e.g., [10, 39–42]).

The proposed algorithm for finding multiple paths between a source and destination

node involves examining and classifying the set of shortest paths to the destination from

the neighbors of the source node. Ideally, the set of paths in a multipath route should be

link disjoint to maximize routing diversity, but partially disjoint paths may be sufficient for

the purposes of congestion avoidance. An important feature of the proposed algorithm is

that it can discover a larger set of paths by systematically relaxing the requirement of path

disjointedness.

1.3.2 Multipath traffic distribution mechanism

We propose a “Congestion-triggered Multipath Protocol (CTMP)” to respond to link con-

gestion by marking use of multipath routes, which improves the network utilization and

overall end-to-end performance. A link is identified as being congested if the average link

utilization exceeds a given threshold. In case of light link congestion, only the local router

5



(i.e., a router attached to the congested link) responds to this congestion by distributing

traffic over multipath. By contrast, in OMP, path congestion results in a response by all

routers in the network. In CTMP, when heavy congestion occurs such that the local router

alone cannot resolve it, its neighbors (i.e., routers adjacent to the router) are signaled to

respond to the congestion.

1.3.3 Explicit rate congestion control

We propose an explicit rate transport protocol that takes into account both the sending rate

and the feedback propagation delay. The proposed protocol signals both the explicit rate

(ER) and the round trip time (RTT) along the path between a source and destination pair.

This information enables the routers to compute flow sending rates to maximize throughput

while maintaining a desired level of QoS. We study the performance of the proposed protocol

with respect to various link delays and loss rates. In addition, we compare the throughput

performance of the proposed protocol with that of other transport protocols. In particular,

our protocol has better end-to-end performance than existing protocols such as TCP, UDT,

and TCP-ER over impaired links (i.e., lossy links).

1.3.4 Explicit rate computation

We propose a dynamic algorithm to compute the local explicit rate at a given router.

The proposed rate controller computes a per flow sending rate but does not require the

maintenance of per flow state. The rate controller computes a single fair share sending

rate for all flows on an outgoing link. Finally, this can eliminate legacy TCP’s unfairness

to flows with long propagation delays. The proposed controller can resiliently respond to

high/low link utilization by taking into account the link utilization and queue dynamics

simultaneously. This leads to full utilization of the network link capacity, and avoids packet

loss and waste of available bandwidth. Thus, the controller can effectively and efficiently

respond to dynamic changes in the state of the network.
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1.3.5 Summary of thesis

The remainder of this thesis is organized as follows. We provide background and a literature

survey of related work on multipath routing and end-to-end congestion control in Chapter 2.

In Chapter 3, we propose a multipath route discovery algorithm based on shortest path in-

formation. In Chapter 4, we develop an algorithm to distribute traffic over multipath routes

in order to alleviate network congestion. In Chapter 5, we develop an explicit rate signaling

and transport protocol that takes into account the feedback delay and the sending rates

computed by routers along a path. In Chapter 6, we develop and study the performance of

an explicit rate computation algorithm. Finally, we conclude this thesis in Chapter 7.

7



Chapter 2: Background and Literature Survey

We first discuss background and related research on multipath routing and then discuss

related work on explicit rate congestion control protocols.

2.1 Multipath routing

2.1.1 Basic concepts from graph theory

A network can be represented by a directed graph G = (V, E) with node set V and link

or edge set E. The number of nodes and links in the network are denoted by |V | and |E|,

respectively. A link in E between nodes i and j is denoted as an ordered pair (i, j), where i

is referred to as the tail of the link and j is the head of the link. Link (i, j) has an associated

positive cost or length D(i, j).

A path p is a sequence of nodes such that from each node in the path, there is a link to

the next node in the sequence. The first node in the sequence is called the source node and

the last node is called the destination node. The remaining nodes are known as intermediate

nodes. As an example, the path

p = {s, i1, i2, · · · , in, d}

consists of the source node s, intermediate nodes i1 through in, and the destination node

d. The path p can also be represented as a sequence of links as follows:

L(p) = {(s, i1), (i1, i2), · · · , (in−1, in), (in, d)},

where L(p) is called the link representation of the path p. A cycle or loop is a path such
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that the source and destination are the same. A path with no repeated nodes is called a

simple or loop-free path.

Two paths are said to be link disjoint or simply disjoint if the link representations of

the paths are disjoint, i.e., the two paths do not share a common link. A multipath route

is a set of paths, each of which has the same source and destination node. We also refer to

each path in a multipath route as an alternative path. In a network, a packet sent from the

source node on any of the alternative paths will arrive at the same destination node. For

a multipath route, link disjoint paths are desirable because the traffic distributed over the

alternative paths in a multipath route do not contend for common network resources.

2.1.2 Finding multipath routes

The K shortest paths problem has been widely researched since the 1950’s [11–20] in order

to find multipath routes. The K shortest paths problem is to find the K paths between a

source and destination pair with minimum total length. There are two versions of the K

shortest paths problem: loop-allowed and loop-free. We focus on the loop-free problem in

order to avoid routing loops in the path. The algorithms discussed in [12, 14, 16–19] find

loop-free K shortest paths.

The removing path algorithm [17,18] and the deviation path algorithm [14,19,20] have

been mostly utilized to find K shortest paths. The removing path algorithm determines

the K shortest paths such that it finds the shortest path in the current network topology,

removes the path in the current topology, and finds the shortest path in the resulting

topology. This procedure is repeated until the K shortest paths have been determined or

there is no path between source and destination in the resulting topology. However, this

algorithm requires path pre-establishment or source routing in order to deliver data from

source to destination.

The deviation path algorithm is based on the construction of a pseudo-tree. This algo-

rithm attempts to build a tree of K shortest paths. It first determines the first shortest path

in the network topology, then finds the second shortest path based on the first shortest path.
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The third shortest path is determined based on the first and second shortest paths. This

procedure is repeated until K shortest paths are determined. References [14, 19] proposed

protocols that can find disjoint multipath routes using the deviation path algorithm.

Unlike the removing path algorithm, the deviation path algorithm may not require source

routing or path pre-establishment. However, the deviation path algorithm provides no

control on the degree of path disjointedness among alternative paths. This is an important

issue in controlling congestion via multipath routes, as we shall see in the proposed CTMP

(Congestion-Triggered MultiPath) protocol to be discussed in Chapter 4.

In order to find sufficient number of disjoint paths between source and destination nodes

in a network, a number of algorithms have been proposed in the literature [10,39–42]. The

shortest pairs of disjoint paths problem (SPDP) can be defined as follows: Given a destina-

tion node d and for each node s 6= d, find a pair of disjoint paths from s to d of minimum

total length. Ogier et al. [40] present a distributed algorithm to solve SPDP by reducing the

problem to a shortest path problem on a modified graph. Most of the existing algorithms

to find disjoint paths have significant communication and time complexity requirements

and cannot easily be bootstrapped onto an existing shortest path routing infrastructure.

Moreover, forwarding packets over a set of disjoint paths generally requires the support of

source routing [43] or the pre-establishment of switched paths as in ATM (Asynchronous

Transfer Mode) [44] or MPLS (Multi-Protocol Label Switching) [45]. An interesting alter-

native approach for packet forwarding over disjoint paths is proposed in [40], which incurs

significantly less overhead than source routing, but still requires modifications to the routing

infrastructure.

Another approach to finding multipath routes is to exploit shortest path information

derived from a shortest path routing protocol [46–51]. In this approach, the set of paths

in a multipath route includes the shortest path, obtained from the shortest path routing

protocol, plus alternative paths derived from shortest paths from each of the neighbors of

the source node to the destination node. Here, the set of paths in the multipath route is

not guaranteed to be disjoint. An alternative path via a neighbor node j is included in
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the multipath route only if the length of the shortest path from j to the destination node

is strictly less than the length of the shortest path between the source and destination.

Application of this rule avoids the formation of routing loops in the alternative path and

ensures that the length of the alternative path is not significantly greater than that of the

shortest path.

In Chapter 3, we propose an algorithm for finding multipath routes based on shortest

path routing information, but unlike the earlier approaches, it does not require the path from

the neighbor node to the destination to be less than the length of the shortest path between

the source and the destination. This allows us consider more paths to be considered for

possible inclusion in the multipath route. In particular, the paths are classified according

to how disjoint they are with respect to each other. Generally, disjoint paths are more

desirable to improve routing resiliency, but if an insufficient number of disjoint paths is

available, partially disjoint paths may be sufficient to alleviate network congestion. Since our

proposed mechanism for multipath traffic distribution is triggered by local link utilization,

partially disjoint paths may be just as effective as disjoint paths alleviating congestion at.

2.1.3 Multipath traffic distribution

The Equal-Cost MultiPath (ECMP) protocol [4] is a multipath routing extension for Internet

routing protocols such as OSPF and RIP [3]. In ECMP, a node implements multipath

routing when it discovers two or more shortest paths (of equal length) to a destination

node. These paths can be determined via relatively simple extensions of standard shortest

path algorithms such as Dijkstra’s algorithm or the Bellman-Ford algorithm. The paths

making up a multipath route need not be disjoint. Under ECMP, once a multipath route is

discovered, packets are forwarded in equal proportion over the set of paths in the multipath

route. There are several drawbacks of this approach: (1) ECMP is not guaranteed to

determine a multipath route for each source-destination pair; (2) The characteristics of the

multipath route are not taken into account; (3) Packets are forwarded in equal proportion, on

a packet-by-packet basis, over the paths in the multipath route, without considering network
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congestion. As a result, packets may arrive out-of-order within a flow at the destination.

Moreover, ECMP may actually cause more congestion than single path routing in some

scenarios.

The Optimized MultiPath (OMP) protocol [21] is an improved version of ECMP for link

state routing protocols such as OSPF, which allows unequal traffic distribution. Multipath

routes are found using the approach based on shortest path routing. The paths in the

multipath route need not be of equal length. Traffic is distributed over a multipath route in

inverse proportion to the utilizations of the constituent paths. Path utilization information

is inferred from link state information. Unlike ECMP, OMP ensures that packets belonging

to a flow are always forwarded on the same path. Thus, traffic is distributed over a multipath

route at the granularity of a flow, which avoids the out-of-order packet problem of ECMP.

Since OMP is triggered by path utilization information, multiple nodes sharing common

subpaths may simultaneously begin distributing traffic over multipath routes sharing com-

mon links. Although congestion may be avoided over the original path that triggered the

OMP protocol, other paths may become congested as an unwanted side effect of the OMP

traffic distribution policy. This could lead to the triggering of OMP at further nodes, which

may eventually result in network instability.

The multipath traffic distribution mechanism proposed in Chapter 3 is triggered by

link utilization rather than path utilization. The node attached to the local congested

link attempts to resolve congestion by shifting traffic away from the congested link onto

alternative paths. If the congestion cannot be resolved at the local node, the multipath

traffic distribution is pushed back to an upstream neighbor node. This approach introduces

multipath routing in a more controlled fashion in comparison to OMP.

2.2 End-to-end congestion control

Approaches to solve problems of TCP can be categorized as (1) implicit congestion control

or (2) explicit congestion control. In implicit congestion control, the sender infers congestion

from packet losses whereas in explicit congestion control, the sender is notified of the sending
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rate by network elements (e.g., routers or switches).

The basic TCP congestion control algorithm is an example of implicit congestion control.

Variants of the basic TCP congestion control mechanism have been proposed such as TCP-

Tahoe [24], TCP-Reno [52], TCP-NewReno [2], Scalable TCP [53], HighSpeed TCP [54],

and TCP-SACK [55–57]. These protocols provide implicit packet loss information to the

sender in various ways, which the sender uses to adjust its transmission rate accordingly.

Another approach to adjust the transmission rate is based on queue occupancy. The

so-called Active Queue Management (AQM) schemes include Random Early Detection

(RED) [58], Random Early Marking (REM) [59], Proportional Integral Controller [60],

Virtual Queue [61], Adaptive Virtual Queue [62], and Explicit Congestion Notification

(ECN) [63]. These approaches involve signaling the sender about the existence of congestion

to sender based on a queue occupancy threshold at the local router. Low et al. [64] and

Katabi and Blake [65] demonstrate that AQM schemes can make the sender’s transmission

rate become oscillatory and unstable, eventually leading to low link utilization.

In explicit congestion control, rather than using feedback information in the form of

packet loss or congestion indication based on queue occupancy, congestion control is based

on the feedback of an explicit sending rate determined by the network elements (e.g., routers

or switches) along the path from source to destination. According to the type of feedback,

explicit feedback schemes can be categorized as (1) window-based congestion control, such

as eXplicit Control Protocol (XCP) [25, 26], and (2) rate-based congestion control, such as

Rate Control Protocol (RCP) [27] and TCP-Explicit Rate (TCP-ER) [28]. In window-based

congestion control, routers compute an increment or decrement for the sending window

size, which is fed back to the sender. By contrast, in rate-based congestion control, routers

calculate the sending rate and feed this rate back to the sender. While window-based control

allows a sender to inject all the data in a window into the network and then wait for the

window to re-open, a sender employing a rate-based scheme generates a smooth data flow,

similar to the traffic shaping mechanism in ATM (e.g., [37, 44, 66, 67]). References [68, 69]
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demonstrate that rate-based congestion control provides a more efficient solution for high-

speed networks than window-based congestion control.

However, the existing rate-based protocols generally underestimate the effect of the

feedback propagation delay between the network and sender or do not take it into account.

This can potentially lead to congestion collapse. For example, suppose that the rate R is

signaled to the sender from a group of routers along a path and then, the routers decrease

the feedback rate to a value R′ < R. During the time it takes for the new rate R′ to

be signaled to the sender, the sender will continue to send at rate R, which may lead

to network congestion. References [32–34] provide solutions for this problem by utilizing

dynamic rate controllers taking into account the propagation delay. These controllers are

designed based on queue dynamics so that performance is optimized under heavy load

traffic conditions. However, under light traffic conditions (i.e., the queue is empty or almost

empty), these controllers take a longer time to stabilize and in the mean time may cause

network congestion. Reference [34] proposes a queue-based controller, using a so-called a

High Gain Controller (HGC). The HGC responds to light traffic conditions by changing

the controller gains to high values. Nonetheless, the HGC does not guarantee prevention of

queue overflow.
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Chapter 3: Multipath Route Discovery

In this Chapter, a multipath route discovery algorithm is proposed that can reduce the

network overhead for path establishment and provide multiple paths with various degrees

of disjointedness [70]. The proposed algorithm finds a set of paths forming a multipath

route, assuming an underlying shortest path routing infrastructure. Thus, this approach

does not require source routing or additional signaling mechanisms for path setup. We first

formally define the notions of shortest path routing and disjoint alternative paths. Based

on these definitions, we introduce the concept of class-c routes and propose an algorithm to

find class-c routes to form a multipath route.

3.1 Shortest path routing

For the network G = (V, E), a shortest path routing algorithm determines a unique shortest

path, psd, from each node s to every other node d in the network. Shortest paths determined

by a shortest path routing algorithm possess the following important property [71].

Definition 1. Shortest path property: Let psd be the shortest path in G from node s to

node d. Then any subpath of psd is also the shortest path between its two end nodes.

Consider the (unique) shortest path psd from node s to node d, determined by a routing

algorithm. Let N (s) denote the set of neighbor nodes of node s. To obtain alternative

paths from s to d, we consider paths of the form

pj
sd = {s} ⊕ pjd, (3.1)

where ‘⊕’ denotes the concatenation of two (finite) sequences. Thus, the path pj
sd begins
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at node s, proceeds to neighbor node j, and then follows the shortest path route pjd from

node j to node d.

However, pj
sd might form a routing-loop by having node s as an intermediate node. In

order to prevent routing-loops, a restriction is imposed on establishing pj
sd. Note that the

path pj
sd is loop-free provided that s 6∈ pjd.

Lemma 3.1.1. If s 6∈ pjd then pj
sd is loop-free.

Proof. Suppose pj
sd = {s} ⊕ pjd contains a loop. Since pjd is a shortest path, it cannot

contain a loop. Therefore, the loop must contain node s, which implies that s ∈ pjd.

Define a set, Asd, of alternative paths from node s to node d via neighbor nodes as

follows:

Asd = {pj
sd : j ∈ N (s), s 6∈ pjd}. (3.2)

Thus, Asd is the set paths from s to d via a neighbor node j that is not in the path psd. To

form a multipath route from node s to d, we shall consider the set of alternative paths in

the set Asd. To make use of an alternative path pj
sd ∈ Asd, node s merely forwards a packet

to node j. Under conventional single path routing, node j will then forward the packet

along the shortest path pjd to the destination node d.

An important consequence of the shortest path property is as follows.

Proposition 3.1.2. Two alternative paths from a source node s to a destination node d

are disjoint if and only if the only common nodes are s and d, i.e., the paths do not have

any common intermediate nodes.

Proof. Let u and v be two alternative paths from s to d. If u and v share a common link, it

is clear that they must share at least one common intermediate node. Conversely, suppose

that u and v share a common intermediate node i. Then the shortest path property implies

that the shortest path psd is a subpath of both u and v. Hence, u and v are not disjoint in

this case.
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In particular, any two paths in Asd are disjoint if and only if the only common nodes

are s and d.

3.2 Disjoint alternative paths

To maximize routing diversity and resilience, it is often desirable to form a multipath route

from a set of pairwise disjoint paths. Define the set of paths

Psd = {psd} ∪ Asd.

The following lemma gives a condition for two shortest paths to a common destination node

to be disjoint.

Lemma 3.2.1. Consider two shortest paths psd and pjd from two distinct nodes s and

j, respectively, to a common destination node d. If the two paths do not have a common

penultimate (second to last) hop k, then they must be disjoint. Conversely, if paths psd and

pjd are not disjoint, they must share a common subpath pad, which is a shortest path from

node a to d.

Proof. Let k and m be the penultimate hops in paths psd and pjd, respectively, and assume

that k 6= m. Suppose that there exists a common link (a, b) shared by psd and pjd. From the

shortest path property of Definition 1, path pad is a shortest path from node a to node d.

Furthermore, path pad must be a subpath of both psd and pjd. But this implies that k = m,

which contradicts our original assumption. Hence, psd and pjd must be disjoint.

If psd and pjd are not disjoint, then they must share a common link (a, b). By the

shortest path property, the subpath between a and d in psd corresponds to the shortest

path pad. Similarly, the subpath between a and d in pjd corresponds to the shortest path

pad. Thus, pad is a subpath of both psd and pjd.

Corollary 3.2.2. Consider path psd and path pj
sd ∈ Asd. If psd and path pj

sd do not share

a common penultimate hop k, then they must be disjoint.
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Proof. If psd and pj
sd do not share a common penultimate hop, then neither do psd and pjd.

By Lemma 3.2.1, paths psd and pjd must be disjoint. By the definition of Asd, link (s, j) is

not contained in psd. Hence, paths psd and pj
sd must be disjoint.

Using Lemma 3.1.1 and Corollary 3.2.2, the following results are given.

Proposition 3.2.3. Let psd be the shortest path from node s to node d and let pjd be the

shortest path from node j to node d. If psd and pjd are disjoint, then psd and pj
sd are disjoint

and pj
sd is loop-free.

Proof. If psd and pjd are disjoint, they cannot have a common penultimate hop. Hence, by

Corollary 3.2.2, psd and pj
sd must be disjoint. Also, since psd and pjd are disjoint, node s

should not be in pjd. Hence, by Lemma 3.1.1, pj
sd is loop-free.

Proposition 3.2.4. Consider paths pj
sd, p

l
sd ∈ Asd, where j 6= l. If pj

sd and pl
sd do not share

a common penultimate hop, then pj
sd and pl

sd are disjoint.

Proof. If pj
sd and pl

sd do not share a common penultimate hop, than neither do the paths

pjd and pld. Hence, by Corollary 3.2.2, pjd and pld are disjoint. Since j 6= l, pj
sd and pl

sd are

also disjoint.

Proposition 3.2.3 is used to choose a path pj
sd that is loop-free and disjoint from the

shortest path psd. Proposition 3.2.4 is used to ensure that two alternative paths pj
sd and pl

sd

are disjoint from each other.

3.3 Class-c routes

To form a multipath route, we define a set P
(c)
sd of class-c routes between s and d, which

have the property that any two paths p, q ∈ P
(c)
sd have at most c common links, i.e.,

|L(p) ∩ L(q)| ≤ c. (3.3)
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The class P
(c)
sd is defined by Algorithm 1. In particular, the set of class-0 paths consists of

pairwise disjoint paths from s to d. The set of class-1 paths has the property that every

pair of paths shares at most a single common link, i.e., a link (k, d), where k is a neighbor

of node d. The set of class-2 paths has the property that every pair of paths shares at

most two common links, say (k, d) and (k′, k), which form a subpath {k′, k, d}. The sets of

class-3, class-4, etc., can be characterized similarly. Note that the set of class-c routes is

contained in the set of class-(c + 1) paths for c = 0, 1, 2, · · · . Thus,

P
(0)
sd ⊆ P

(1)
sd ⊆ P

(2)
sd ⊆ · · · ⊆ P

(c)
sd ⊆ Psd,

for c > 2.

In Algorithm 1, the set P
(c)
sd is initialized to contain the shortest path psd. The other

paths in P
(c)
sd are selected from the set of alternative paths Asd in increasing order of path

length. The while loop iterates over all paths in the set Asd. In lines 4 and 5, the shortest

path p̃ in the (current) set Asd is removed from the set. In lines 6-13, the candidate path

p̃ is tested against all of the paths in the (current) set P
(c)
sd to check whether the condition

(3.3) is satisfied. If p̃ satisfies (3.3) for all paths p ∈ P
(c)
sd , then p̃ is added to the set P

(c)
sd

(lines 14-16). The computational complexity of Algorithm 1 is O(|N (s)|2) where |N (s)| is

the number of neighbors of node s.

3.4 Finding class-c routes on various network topologies

We applied Algorithm 1 to various network topologies given in [72]. The results are shown in

Table 3.1. Each row in the table indicates the average number of class-0, class-1, and class-

2 paths found by the Algorithm 1 for a given network topology. Each network topology

is characterized by the number of nodes N , the number of (unidirectional) links L, and

the average node degree d. In the example of the “six-node” topology, each node has, on

average, 1.93 class-0 paths, 2.13 class-2 paths, and 2.2 class-3 paths from each source node
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Algorithm 1 Finding class-c routes from s to d.

1: Input: Asd, c, s, d; Output: P
(c)
sd

2: P
(c)
sd ← {psd}

3: while Asd 6= ∅ do

4: p̃← argmin{D(q) : q ∈ Asd}
5: Asd ← Asd\{p̃}

6: size ← |P
(c)
sd |

7: for each p ∈ P
(c)
sd do

8: if |L(p̃) ∩ L(p)| ≤ c then

9: size ← size - 1
10: else
11: break
12: end if
13: end for
14: if size = 0 then

15: P
(c)
sd ← P

(c)
sd ∪ {p̃}

16: end if
17: end while

to every other node. The bottom row of the table shows the average numbers of class-c

routes averaged over all ten topologies. Since the average number of class-1 paths is 2.35, a

given node has, on average, at least two class-1 paths to every other node.

3.5 Conclusion

We have characterized multipath routes and proposed class-c path algorithm to determine

multipath routes over shortest path routing. The proposed algorithm does not require pre-

establishment of paths or support for source routing. The algorithm provides a mechanism

to find both disjoint paths and partially disjoint paths between two nodes. We applied the

algorithm to various network topologies. The results show that there are at least two class-

1 paths between each pair of nodes, on average. The multipath route discovery algorithm

proposed in this Chapter is used in the multipath traffic distribution algorithm developed

in Chapter 4.
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Network Parameters Class-c routes

Topology N L d c = 0 c = 1 c = 2

Six-node 6 16 2.66 1.93 2.13 2.20
Smallnet 10 44 4.4 2.77 3.78 3.88
LATA 11 46 4.18 2.38 3.37 3.58

NSFNET 14 42 3 1.89 2.12 2.23
Citi Multi-ring 15 40 2.67 1.38 1.67 1.83

Bellcore 15 54 3.6 1.72 2.43 2.73
EON 19 64 3.89 1.76 2.61 3.07
ARPA 20 62 3.1 1.66 1.90 2.12
ARPA2 21 50 2.38 1.31 1.41 1.46

US IP backbone 24 86 3.58 1.59 2.05 2.38

Average 15.5 51.4 3.346 1.84 2.35 2.55

Table 3.1: Number of class-c routes for different network topologies.
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Chapter 4: Congestion-Triggered Multipath Routing

We now propose a scheme to alleviate network congestion by means of class-c multipath

routes discussed in Chapter 3. The basic idea of our proposed Congestion-Triggered Mul-

tiPath routing (CTMP) scheme is that when a node detects congestion on a local link,

it distributes traffic over class-c routes according to link utilization and path utilization

measurements so as to resolve the local link congestion.

4.1 Network parameters

In the proposed CTMP scheme, each node manages network information about link and

path utilizations. Let s denote the source node and j be a neighbor of node s under

consideration. Link utilization is a good indicator of link congestion, whereas the path

utilization provides an information on path congestion. Link and path utilization can be

measured by the method introduced in [21]. CTMP controls the link utilization and the

path utilization through three parameters, β, γ, and η. The values of all three parameters

can be set by the network administrator. The parameters are defined below.

• β: A parameter indicating that the link or the path is about to be congested (i.e.,

overloaded). Whenever the utilization of link (s, j), LUsj , reaches β (e.g., β = 95 %),

the node executes multipath routing in order to alleviate the local link congestion.

• γ: A parameter indicating whether an alternative path pj
sd can accept detour traffic

or not, where detour traffic is the traffic moved from shortest path to alternative path.

If the utilization of shortest path from neighbor node j to the destination PUjd is less

than γ (e.g., PUsj < 85 %), this path is considered as a subset of multipath to the

destination d. This condition prevents the path from the congestion caused by the
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injection of detour traffic to the path. It also ensures that the subset of multipath

keeps the available bandwidth.

• η: The expected PUsd in steady-state (e.g., 90% of PUsd). Our approach aims at

managing all of links such that the utilizations of all links in the network are close to

η by distributing traffic over multiple paths.

4.2 Routing and network information exchange

We modify Path Vector (PV) routing to compute class-c routes and to include additional

congestion-related information in the routing control messages. PV routing is similar to

Distance Vector (DV) routing, except that shortest path information is maintained by stor-

ing the ordering of intermediate nodes and the destination by means of a path vector. In

addition to the path vector for PV routing, the CTMP scheme requires the storage and

exchange of additional network state information as follows:

• ECI (Explicit Congestion Indication) and MPI (Multipath Indication).

• The path utilization PU(p) and the path capacity PC(p) along a path p,

The ECI bit is a one-bit flag stored in the routing table for every destination. The ECI

bit is set to 0 by default to indicate no congestion and 1 to indicate congestion on the path

to the destination. The MPI bit is also a 1-bit flag stored in the routing table for every

destination. The MPI bit has a default value of 0 and is set to 1 if a class-c multipath

route is established to the corresponding destination. We assume that every node s in the

network can estimate LU(l), the utilization of each local outgoing link l. Let LC(l) denote

the capacity of link l. The capacity and utilization of path p are defined, respectively, as

PC(p) = min{LC(l) : l ∈ p}, (4.1)

PU(p) = min{LU(l) : l ∈ p}. (4.2)

23



ds

a

b

0090 %10 M{s,b}b

{s,b,d}

{s,a}

PV

d

a

Dest.

90 %

70 %

PU

10 M

10 M

PC

0

0

ECI

0

0

MPI

Table of s

0060 %10 M{a,d}d

{a,s}

{a,d,b}

PV

s

b

Dest.

80 %

60 %

PU

10 M

10 M

PC

0

0

ECI

0

0

MPI

Table of a

0060 %10 M{d,b}b

{d,b,s}

{d,a}

PV

s

a

Dest.

70 %

90 %

PU

10 M

10 M

PC

0

0

ECI

0

0

MPI

Table of d

0080 %10 M{b,d}d

{b,s}

{b,d,a}

PV

s

a

Dest.

90 %

90 %

PU

10 M

10 M

PC

0

0

ECI

0

0

MPI

Table of b

Figure 4.1: Routing tables for CTMP scheme.

The path capacity and utilization can be computed by a given node in a similar way to the

path vector in PV routing. For example, a given node s estimates PC(psd) and PU(psd)

by using routing/network information sent by its neighbors as follows:

PC(psd) = min{LC(s, j), PC(pjd)}, (4.3)

PU(psd) = min{LU(s, j), PU(pjd)}. (4.4)

Thus, node s does not need to directly exchange its local link capacity and utilization

information with every other node in the network.

Figure 4.1 shows an example of the routing/network information exchange. Each node

maintains its own routing table. Whenever the routing table of a node is updated, it

sends a copy of the table to its neighbors. The routing table for each node is shown in the

figure. Each row of the table shows the routing/network information for a given destination,

including the destination node, the path vector (PV), the path capacity (PC), the path

utilization (PU), the MPI bit, and the ECI bit.
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4.3 Congestion resolution procedure

We develop an approach to resolve network congestion by distributing the traffic over class-

c multipath routes obtained using Algorithm 1. Every node periodically estimates the

utilization of its outgoing link l to detect link congestion. The procedure for congestion-

triggered multipath traffic distribution to resolve congestion at the local link is given as

follows:

1. When node s detects local congestion on the outgoing link l (i.e., LU(l) > β), or

receives an ECI=1 bit from its neighbor node connected through link l, it tries to

move some of the traffic on link l onto alternative paths, which are class-c routes

determined using Algorithm 1.

2. Let M = {p ∈ P
(c)
sd : PU(p) < γ}. The parameter γ is called the path availability

threshold.

3. Distribute traffic over the path set M according to the traffic splitting function φ(·)

(see Section 4.4 for more details).

4. Signal ECI=1 to its neighbor nodes if congestion is not resolved by Step 3 or detour

traffic is not acceptable at alternative paths. If the present node is an edge node,

execute the packet drop procedure as described in Section 4.5.

When congestion is detected on link l in Step 1, node s considers all of its shortest paths

which contain link l as alternative paths. Node s also generates the set of class-c routes,

P
(c)
sd , to a given destination node d, if these paths have not yet been computed (i.e., the MPI

bit is set to zero). Each incoming flow is identified by means of a hash function using the

5-tuple consisting of source/destination address, source/destination port, and protocol ID,

i.e., (source IP, destination IP, source port, destination port, protocol ID) forms a flow ID.

Then, the flow is forwarded to one of the class-c routes according to a distribution function,

which will be discussed next.
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4.4 Traffic distribution function

CTMP employs a hash function to identify incoming flows and distribute incoming traffic

over the outgoing multipath routes. Given a network with N nodes, each node maintains

at most N − 1 hash tables for all destination nodes (i.e., one table for each destination).

Nonetheless, if there is no congestion on the network, none of the nodes maintains a hash

table. The input to the hash function is composed of the 5-tuple identifying the flow, which

can be obtained from the packet header. Each packet is forwarded on the path associated

with the associated flow.

The hash function has the property that the output of the hash function (i.e., the

hash value) should be uniformly distributed over the hash space regardless of the input

distribution. A uniform distribution is one for which the probability of occurrence is the

same for all values of the output X. If a uniform distribution is divided into several different

spaces, the probability of occurrence in each space can be obtained by the size of each

space divided by entire space. If a uniform distribution is divided into several equal spaces,

each space has the same probability of occurrence as others. Based on this property, the

equal/unequal traffic distribution over multipath routes has been organized. The entire

hash space is matched to the link utilization. If the link utilization exceeds the congestion

threshold β, the hash table is partitioned a number of hash bins corresponding to the number

of multipath routes. The hash space is determined by the traffic distribution function φ(·).

Figure 4.2 shows the overview of our proposed traffic distribution algorithm. The pro-

posed algorithm is similar to the table-based hashing algorithm introduced in [73]. However,

the proposed algorithm is designed to adjust hash thresholds according to the path utiliza-

tion, while the table-based hashing algorithm assigns the given hash thresholds (i.e., fixed

hash thresholds). Assume that there are N different paths (i.e., N multipath routes) and

M bins in the hash table. The M bins map into N paths according to the traffic split-

ting function. Each packet is forwarded to the associated path according to this mapping.

For example, any packet with flow ID from 1 to S1 is forwarded to path 1. However, this

partition is maintained to agree with the traffic distribution function.
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Figure 4.2: The hash table mapping to a multipath routes.

As discussed in Section 4.3, each node estimates the utilization of its local link. The

amount of traffic Fl traversing the outgoing link l can be expressed as follows:

Fl =
∑

k

∑

p:l∈p

fk
p , (4.5)

where fk
p is kth flow traversing path p, where fk

p ≥ 0. The link utilization is given by

LU(l) = Fl/Cl where Cl is the capacity of link l. Each flow fk
p is identified by hashing

over the 5-tuple to obtain the flow ID at each node. Since flow is classified and maintained

according to destination at node, Fl can be rewritten in terms of the destination node. Let

Xd
l denote aggregate traffic flow traversing link l towards destination d. The aggregate

traffic Xd
l has an associated hash table when link l is congested and its value is given by

Xd
l =

∑

k

∑

p:d(p)=d,l∈p

fk
p , (4.6)

where d(p) is the mapping function of d : p→ d. The total traffic on link l, Fl, can also be
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rewritten in terms of destination node.

Fl =
∑

d

Xd
l =

∑

d

∑

k

∑

p:d(p)=d,l∈p

fk
p . (4.7)

When LU(l) exceeds the link congestion threshold β, we consider the link to be con-

gested. To resolve this link congestion, the node shifts some portion of Fl to an alternative

path p ∈ P
(c)
sd where P

(c)
sd is a class-c multipath route, obtained by Algorithm 1. Again, the

objective here is to decrease the link/path utilization to a more acceptable level by shifting

a portion of the traffic to the alternative paths. To determine how many flows need to be

shifted to alternative paths, Fl is roughly decomposed into two components, F ′
l and F ′′

l ,

where F ′
l is the amount of traffic traversing the shortest path psd, while F ′′

l is the amount of

traffic shifted to traverse the alternative paths, P
(c)
sd \{p}. We refer to the portion of traffic

F ′′
l as detour traffic. Then, we have

Fl = F ′
l + F ′′

l =
∑

d

Xd
l ′+

∑

d

Xd
l ′′ =

∑

d

Xd
l (4.8)

Due to traffic shifting, the hash space for Xd
l is roughly divided into two spaces: one for

the shortest path, and another for the alternative paths in the multipath route. The space

for alternative paths is further divided into several spaces and each space is assigned to its

associated alternative path.

By employing the traffic distribution function, every node may maintain the utilizations

of all local links with a targeted level η or below. We design the traffic distribution function

to maximize the utilization of the shortest path and maintain it just below the congested

threshold β, under assumption that the shortest path is always better unless congestion

occurs on the shortest path. The node detecting link congestion manages outgoing flows Fl

on link l such that

F ′
l = ηCl and F ′′

l = Fl − ηCl. (4.9)
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There might exist the case where the set of alternative paths, P
(c)
sd \{p}, does not have

enough available bandwidth to accept the detour traffic F ′′
l . If this happens, the node

signals ECI to its neighbor nodes. The traffic distribution function is designed in the

inverse proportion to the link/path utilizations. The link/path with higher utilization is

assigned a lower amount of detour traffic and that with lower utilization is assigned to a

larger amount of detour traffic. For the traffic distribution function, let p ∈ P
(c)
sd be the

shortest path containing link l, and let p̃ ∈ P
(c)
sd \{p} be an alternative path. The traffic

distribution function is defined as a mapping φ : p→ [0, 1]. The splitting ratio to path p is

denoted by φ(p), and the proportion of traffic assigned to path p̃ ∈ P
(c)
sd is defined as φ(p̃).

This splitting ratio should satisfy

φ(p) +
∑

p̃∈P
(c)
sd

\{p}

φ(p̃) = 1. (4.10)

This constraint ensures that all flows are forwarded to class-c routes. From this equation,

the proportion of traffic assigned to alternative paths is given by

∑

p̃∈P
(c)
sd

\{p}

φ(p̃) = 1− φ(p). (4.11)

A fraction φ(p) of the hash space of size M is assigned to F ′
l while F ′′

l is mapped to the

rest of the hash space. The rest of the hash space is further partitioned for each alternative

path p̃ in proportion to φ(p̃). The traffic splitting ratios, φ(p) and φ(p̃), are initialized to 1

and 0, respectively. That is, all flows Fl initially traverse the shortest path p so, there is no

detour traffic on any alternative path p̃.

CTMP introduces two phases for the traffic splitting: (1) traffic shift phase and (2)

traffic withdrawal phase. Traffic shift phase is designed to shift some amount of traffic to

the alternative paths. This phase is implemented when the link/path is congested. The
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traffic withdrawal phase withdraws some or all of detour traffic from the alternative paths.

This phase is executed when link congestion has been resolved.

4.4.1 Traffic shift phase

Before implementing the traffic shift phase, the node detecting congestion evaluates the

alternative paths to see if they have enough capacity to carry detour traffic F ′′
l , where F ′′

l

is given by Eq. (4.9). The available bandwidth of all alternative paths, P
(c)
sd \{p}, is given

by

∑

q∈P
(c)
sd

\{p}

PCt(q)[γ − PU t(q)]+, (4.12)

where [x]+ , max{0, x}. If F ′′
l is less than or equal to the available bandwidth of P

(c)
sd \{p},

the node executes the traffic shift phase. Otherwise, the node signals ECI=1 to its neighbors

and initiates the traffic shift phase. By signaling ECI to neighbors, the node can reduce the

incoming traffic from neighbors by performing load-balancing. The neighbor node also can

shift traffic to its alternative paths as much as those paths can accept.

The distribution ratio of φ(p) is updated by adjusting from 1 to a certain level which

is less than 1, such that the link utilization is reduced to max{ηLC(l), LC(l)LU t(l) −

∑

q∈P
(c)
sd

\{p}
PC(q)[γ − PU t(q)]+}. Let t denote the (discrete-time) update time. Define

MAX = max{ηLC(l), LC(l)LU t(l)−
∑

q∈P
(c)
sd

\{p}

PC(q)[γ − PU t(q)]+}.

Then, we have

LC(l)LU t(l)

φt(p)
=

MAX

φ(t+1)(p)
, (4.13)

where LU t(l) and LC(l) are the current utilization of link l and the link capacity, respec-

tively, φt(p) is the present splitting ratio for p, and φ(t+1)(p) is the new splitting ratio for
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p. This is rewritten as, in terms of φ(t+1)(p),

φ(t+1)(p) = φt(p)
MAX

LC(l)LU t(l)
. (4.14)

From Eqs. (4.11) and (4.14), the splitting ratio to alternative paths is obtained as:

∑

p̃∈P
(c)
sd

\{p}

φ(t+1)(p̃) = 1− φt(p)
MAX

LC(l)LU t(l)
. (4.15)

From now on, we seek φ(p̃) for each p̃ ∈ P
(c)
sd \{p}. Each φ(p̃) increases with the proportion

of available bandwidth in alternative paths. The initial value of each φ(p̃) is defined to be

0 because there is no detour traffic under no congestion conditions. φ(p̃) increases by the

function, the decrement of φ(p) multiplied by the proportion of available bandwidth on p̃ to

available bandwidth of all alternative paths. Each φ(p̃) is formulated for each p̃ ∈ P
(c)
sd \{p}

as:

φ(t+1)(p̃) = φt(p̃)

+
PCt(p̃)[γ − PU t(p̃)]+

∑

q∈P
(c)
sd

\{p}
PCt(q)[γ − PU t(q)]+

× (φt(p)− φ(t+1)(p)), (4.16)

where PCt(p̃)[γ − PU t(p̃)]+ is the available bandwidth of path p̃,
∑

q∈P
(c)
sd

\{p}
PCt(q)[γ −

PU t(q)]+ is the available bandwidth of all alternative paths, and (φt(p)− φ(t+1)(p)) repre-

sents the decrement of φ(p).

The neighbor nodes responding to congestion also have their own traffic distribution

function. The expression φ(p̃) for a neighbor node is the same as Eq. (4.16), but φ(p) is the

same as Eq. (4.14) except that the neighbors are concerned with the utilization of the path
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containing the congested link l. Let

MAX = max{ηPC(l), PC(l)PU t(l)−
∑

q∈P
(c)
sd

\{p}

PC(q)[γ − PU t(q)]+},

where PC(l) is the capacity of path containing link l and PU t(l) is the utilization of path

containing link l at time t. We then have

φ(t+1)(p) = φt(p)
MAX

PC(l)PU t(l)
. (4.17)

Therefore, the node detecting congestion assumes the traffic distribution function of Eqs. (4.14)

and (4.16), and the neighbor nodes receiving ECI implement the functions given in Eqs. (4.17)

and (4.16).

4.4.2 Traffic withdrawal phase

When congestion is resolved by load-balancing over class-c routes, some or all of detour

traffic are withdrawn. This phase is executed at a node satisfying the following two condi-

tions:

1. ECI is set to 0 and MPI is set to 1,

2. LU(l) at the node detecting congestion or PU(l) at its neighbors is less than γ.

When ECI=0 and MPI=1, this node establishes class-c routes to respond to congestion

and does not need assistance from its neighbors to resolve congestion. If ECI is set to 1

with MPI=1, the node needs to have its neighbors distribute traffic over multipath routes.

In this case, the traffic withdrawal is not initiated. The condition LU(l) < γ or PU(l) < γ

indicates that the link or path has enough available bandwidth to accept the traffic from

alternative paths that was supposed to traverse the shortest path.
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The value φ(p) is updated by adjusting LC(l)LU t(l) (or, PC(l)PU(l)) to have a targeted

utilization ηLC(l) or ηPC(l), so that the link utilization is increased to η. This is formulated

as:

LC(l)LU t(l)

φt(p)
=

ηLC(l)

φ(t+1)(p)
. (4.18)

From this equation, the traffic distribution function for the node detecting congestion be-

comes

φ(t+1)(p) = φt(p)
η

LU t(l)
, (4.19)

while the distribution function for its neighbors is given by

φ(t+1)(p) = φt(p)
η

PU t(l)
. (4.20)

The value φ(p̃) should be updated as φ(p) increases. The sum of φ(p̃) over the alternative

paths p̃ decreases as φ(p) increases. The decreasing in φ(p̃) is formulated in terms of the

current distribution function φt(p) and the new distribution function φ(t+1)(p). The total

ratio of alternative paths, 1− φt(p), decreases to 1− φ(t+1)(p). Thus, the new ratio of each

alternative paths φ(t+1)(p̃) is given by

φ(t+1)(p̃) = φt(p̃)×
1− φ(t+1)(p)

1− φt(p)
, (4.21)

where 1−φ(t+1)(p)
1−φt(p) represents the ratio to decrease for each φ(p̃), and also for

∑

p̃∈P
(c)
sd

\{p}
φ(p̃).

Therefore, the node detecting congestion has the traffic distribution function of Eqs. (4.19)

and (4.21), and its neighbor nodes receiving ECI implement the function of Eqs. (4.20) and

(4.21).
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Based on the value obtained by φ(·), the hash space for each path is decided by Al-

gorithm 2. This algorithm takes φ(·) and HashMax as inputs where HashMax is the

maximum hash table size supported by the hash function. The algorithm produces a hash

table Hsd for the associated destination as output. It first computes the bin corresponding

to the shortest path p from (lines 4 to 6). The hash space of path p always starts from

the initial value of 0 and ends at the value of HashMax ∗ φ(p). It then finds the bin for

the alternative paths p̃. This hash table is used whenever the packet is forwarded to class-c

routes. The hash value obtained by hashing over 5-tuple from packet header is compared

with each bin in hash table. If this falls into a certain range from val(i) to val(i + 1) then,

the packet is forwarded through val(i + 2), the path associated with the bin.

Algorithm 2 Hash range for each path in P
(c)
sd

1: Input: φ(p), φ(p̃), HashMax; Output: Hsd

2: Hsd ← ∅
3: i← 0
4: val(i)← 0
5: val(i + 1)← HashMax ∗ φ(p)
6: val(i + 2)← p
7: Hsd ← Hsd ∪ {val(i), val(i + 1), val(i + 2)}
8: i← i + 3

9: for each p̃ ∈ P
(c)
sd do

10: val(i)← val(i− 3)
11: val(i + 1)← val(i) + HashMax ∗ φ(p̃)
12: val(i + 2)← p̃
13: Hsd ← Hsd ∪ {val(i), val(i + 1), val(i + 2)}
14: i← i + 3
15: end for

It is important to define the network parameters, which must be maintained in order to

keep the network stable. The three parameters β, η, and γ are related as follows:

0 < γ < η < β < 1. (4.22)

The availability threshold γ should be assigned to be less than both η and β in order to

avoid unwanted link/path congestion by shifting some portion of traffic from the original

path to the alternative path. The targeted threshold η should be less than or equal to
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Figure 4.3: Example of network congestion alleviation.

the congestion threshold β. We investigate the detail of the relationships among the three

parameters through the simulation results presented in Section 4.6. In summary, β can be

set greater than or equal to η. That is, whenever the utilization of the link/path is greater

than or equal to the targeted utilization, CTMP is triggered to balance the load over the

network. Also, γ should be less than η so that the alternative path does not suffer from

network congestion due to the detour traffic.

Figure 4.3 illustrates how the CTMP scheme resolves congestion for a simple network

scenario. The dotted arrows in Figure 4.3(a) represent the shortest path from each node to

node D. As shown in Figure 4.3(b), node E detects local congestion on link (E, D). Thus,

node E computes the class-c routes (in this case c = 0) to node D to alleviate congestion

on link (E, D). Figure 4.3(c) shows the class-0 routes with dotted arrows from node E to

node D. The incoming traffic to node E for the destination node D is distributed according

to the traffic distribution function φ(·) given in Eqs. (4.14) and (4.16). In Figure 4.3(d), the

rate of incoming traffic from node E to node D is too high for congestion to be resolved by

multipath traffic distribution at node E. Thus, node E sends ECI signals to its neighbors A
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and F . Nodes A and F set up class-c routes to node D. Node A establishes two paths,

A− E −D, and A−B −D. Node F has two paths F − E −D and F −G−D. The two

nodes A and F distribute the traffic according to their traffic distribution functions. If their

action does not resolve congestion on link (E, D), node E starts dropping incoming packets

by the packet drop procedure described in Section 4.5. It might happen that link congestion

is resolved by the assistance of neighbors (i.e., neighbors distribute traffic over the class-c

routes), but congestion occurs again on link (E, D). To respond to this congestion, nodes E,

A, and F adjust the traffic distribution ratio. If this adjustment is not effective, nodes A

and F drop incoming packets. Once multipath routes from nodes A and F are no longer

necessary (i.e., there is no detour traffic over alternative paths), those two nodes withdraw

the multipath routes and signal ECI=0 to node E. Node E then sets ECI to 0. By this

ECI exchange, the network condition returns to that of Figure 4.3(c). Also, node E can

withdraw its class-c routes if there is no detour traffic over alternative paths.

4.5 Packet drop procedure

Network congestion may not be resolved even if every node associated with network conges-

tion balances the load over multipath routes. The packet drop procedure is implemented

as a last resort when there are no multipath routes available for the incoming traffic in

the network. In CTMP, packets are dropped at an edge node if and only if the node is an

edge node, and both ECI and MPI are set to 1. The packet drop procedure reduces the

volume of incoming traffic to the entire network while the provisioning of multipath routes

increases network throughput. This procedure is executed at all edge nodes whose paths

to the destination are associated with network congestion and whose paths have congestion

indication information (i.e., ECI = 1). Those edge nodes proportionally drop incoming

packets incoming according to the path utilization. The packet drop procedure is placed

between the hash table and the interface, as illustrated in Figure 4.4. Packets are dropped

at the link associated with the congested path.

The process of packet drop proposed here is similar to RED (Random Early Drop) [58]
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except it employs its own packet drop rate. The packet drop rate is estimated by exploiting

the path utilization that every node maintains. Thus, this procedure enables the packet drop

rate function to be resilient to changes of the link/path utilization. The packet drop rate

function is similar to the slow start phase in TCP congestion control algorithm [22]. The

packet drop rate is set to 0 by default and 1 for the initial drop when the edge node needs

to drop packets. This rate increases and decreases exponentially every utilization update

interval time. The drop rate exponentially increases when the path utilization is greater

than the congestion threshold β, and exponentially decreases when the path utilization is

less than β. When the packet drop rate is set back to 0 (i.e., initial value), the edge node

adjusts the traffic distribution ratio.

4.6 Simulation results

We performed computer simulations to evaluate the CTMP scheme. The performance of

CTMP is compared with that of three existing routing schemes: conventional PV routing,

ECMP, and OMP. Specifically, we discuss the network performance of CTMP in terms of

link utilization and the number of packet drops. In addition, we estimate TCP performance
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as well as network performance with a combination of TCP and UDP traffic. Further, we

evaluate CTMP performance by varying class-c routes so as to estimate the effectiveness of

class-c routes. Simulations are executed using class-0, class-1, and class-2 routes, respec-

tively. Also, we ran simulations to evaluate the impact of three network parameters (i.e. β,

γ, and η), the key parameters of CTMP.

The simulations were carried out using the ns-2 network simulator on the network topol-

ogy shown in Figure 4.5. The topology consists of 14 different nodes and 21 identical links,

each with a capacity of 1 Gbps. All links are bi-directional but links (i, j) and (j, i) are

considered different links, for which separate measurements are taken to estimate the link

utilization and the number of packets dropped on each link.

The traffic generation process is designed to cause congestion on the network. We explain

how four different routing algorithms react to the network congestion with this scenario.

The simulation procedure for ns-2 simulator is organized as follows:

1. Time 0: Begin computations for routing table.

2. Time 1: Generate traffic such that every node launches 20 TCP sessions and 10 UDP

sessions to every other nodes except its neighbors.
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3. Time 10: Start OMP and CTMP functions.

4. Time 100: Finish the simulation.

Traffic is launched after the routing tables of all nodes have stabilized. In order to evalu-

ate the impact of routing, we do not generate self-destined or neighbor-destined traffic. The

traffic distribution procedures of OMP and CTMP are initiated at time 10, after network

condition stabilizes.

We evaluate both network performance and TCP performance in every simulation run.

We estimate the average link utilization and the average packet drop rate for the network

performance. For all links, link utilization is estimated every second and averaged over a

window of one-second intervals. The average packet drop rate is estimated in a similar way

as the average link utilization. We also evaluate goodput and badput for TCP performance.

TCP goodput is the rate at which packets are successfully delivered, whereas TCP badput

is the packet drop rate. The simulation scenarios described above are applied to obtain all

of the results presented in this Chapter.

4.6.1 Comparison with four different routing algorithms

We perform simulations to evaluate four different routing algorithms under congested net-

work conditions. Specifically, the performance of CTMP is compared with that of two ex-

isting Internet routing schemes, i.e., conventional PV routing and ECMP, and OMP which

is an IETF draft proposal. We demonstrate that CTMP provides the best performance

among these four different algorithms by effectively alleviating network congestion.

Network Performance

Figure 4.6 shows the average link utilization on the network for each routing algorithm.

CTMP shows the best performance with 72.6 % on average link utilization. OMP estimate

the average link utilization of 71.8 %, PV of 71.4 %, and ECMP of 70.3 %. As discussed in

[70], ECMP performs the worst among the four algorithms, even worse than the shortest
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Figure 4.6: Average link utilization for four routing algorithms.

path routing algorithm. ECMP employs multipath routing but distributes traffic packet-by-

packet over a multipath route, without taking into account the link conditions. This traffic

distribution results in a poor traffic distribution, which causes other links to be congested.

Nonetheless, OMP allows unequal traffic distribution over multipath by taking into account

the link utilization. OMP traffic distribution overcomes shortcomings caused by SP and

ECMP as observed in simulation results. However, OMP might cause network congestion

on other paths because multiple nodes respond to congested paths, as described in detail in

Chapter 2. CTMP resolves this problem by performing congestion detection only on local

link and then triggering the traffic distribution over a multipath route when congestion

is detected. From the simulation results, we see that CTMP effectively utilizes links by

performing load balancing on the network.

The average packet drop rate for each algorithm is depicted in Figure 4.7. CTMP has

the best packet drop rate of 0.173 % (i.e., 216 Kbytes/sec) on average. ECMP has the

average packet drop rate of 0.191 % (i.e., 238 Kbytes/sec), SP has a drop rate of 0.191 %
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Figure 4.7: Average packet drop rate for four routing algorithms.

(i.e., 239 Kbytes/sec), and OMP has a drop rate of 0.192 % (i.e., 240 Kbytes/sec). The

three algorithms, SP, ECMP, and OMP, show similar rates of packet drops. Although

OMP and ECMP provide mechanisms to distribute traffic over multipath in order to avoid

congestion on the original path, other paths become congested as an unwanted side effect.

These mechanisms do not lead to substantial performance improvement in terms of packet

drop rate. However, as validated by the simulation results, CTMP reduces the packet drop

rate, using the multipath traffic distribution mechanism triggered by local link utilization

rather than path utilization applied to OMP.

TCP performance

The performance of TCP goodput and badput are shown in Figure 4.8 and 4.9, respectively.

ECMP has the worst performance of 796.3 Mbytes/sec on average in terms of TCP goodput

and the highest TCP badput at 6.5 Mbytes/sec among the four routing algorithms. CTMP

has a TCP goodput of 827.2 Mbytes/sec on average and a TCP badput of 7.3 Mbytes/sec on
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Figure 4.8: TCP goodput for four routing algorithms.

average. OMP and SP have TCP goodputs of 816.3 and 809.3 Mbytes/sec, respectively, and

TCP badputs of 7.5 and 7.9 Mbytes/sec, respectively. In ECMP, all packets are forwarded

packet by packet over the multipath route such that packets might arrive out-of-order

within a flow at the destination. Out-of-order packet arrivals negatively impacts the TCP

congestion windows of senders. From the ECMP simulation results, we see that TCP

congestion window is not increased due to packet out-of-order delivery which results in poor

TCP goodput. ECMP has the lowest TCP badput, but this results in the relatively low

TCP goodput, compared with the other algorithms. Unlike ECMP, OMP has a mechanism,

which guarantees that packets belonging to a flow are always forwarded on the same path

unless a new multipath route has been established or the traffic distribution parameters

have been changed. By alleviating the packet out-of-order delivery problem in ECMP,

OMP significantly improves TCP goodput compared to ECMP and SP. However, CTMP

has the better TCP goodput and badput than OMP, by eliminating the unwanted network

congestion caused by load balancing in OMP and increasing the number of multipath.
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Figure 4.9: TCP badput for four routing algorithms.

From the simulation results for ECMP, we see that the simple packet-by-packet distribu-

tion over a multipath route in ECMP can degrade both the network and TCP performance.

OMP eliminates this out-of-order packet delivery problem by applying hash-based packet

distribution. As a result, OMP shows much better performance than ECMP and SP. How-

ever, we also see that OMP introduces the unwanted side effect that other paths can be

congested by the load balancing mechanism of OMP. CTMP eliminates this side effect by

responding to local congestion and employing an advanced multipath setup and traffic dis-

tribution scheme. As can be seen from the simulation results, CTMP has the best network

and TCP performance among the four different routing algorithms. Our simulation re-

sults demonstrate that CTMP can respond to the network congestion more effectively than

existing routing algorithms, resulting in network and TCP performance.
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4.6.2 Evaluation with class-c routes

We conduct a simulation study to evaluate the impact of using class-c routes in the CTMP

algorithm. We focus on class-0, class-1, and class-2 multipath routes, defined as follows (see

Chapter 3):

1. class-0: No common links between a pair of alternative paths.

2. class-1: At most 1 common link between a pair of alternative paths.

3. class-2: At most 2 common links between a pair of alternative paths.

The NSFNET topology shown in Figure 4.5 has 177 multipath routes in class-0, 209

routes in class-1, and 218 routes in class-2. On average, each node establishes 1.89 class-0,

2.12 class-1, and 2.23 class-2 routes to each destination, as described in Chapter 3.

Network performance

Figure 4.10 depicts average link utilization in the network when CTMP is used with each of

the three classes of multipath route. Class-1 and class-2 routes show the best performance

with an average link utilization of 72.6 % while class-0 routes have a link utilization of 72.4 %

on average. Thus, the use of class-1 and class-2 routes results in the better performance

than that of class-0 routes. Class-1 and class-2 routes provide more alternative paths than

class-0 routes, i.e., 32 paths and 41 paths, respectively. CTMP is designed to alleviate the

local link congestion by redistributing the load on the link to a set of alternative paths. If

a node finds more alternative paths, it generally has better chance to reduce the load on

the congested link. Therefore, the use of class-1 and class-2 routes would tend to alleviate

network congestion more effectively than class-0 routes, as demonstrated by our simulation

results.

The average packet drop rate corresponding to each multipath class is shown in Fig-

ure 4.11. Class-1 and class-2 routes provide the best packet drop rate of 0.173 % (i.e., 216

Kbytes/sec) on average. Class-0 routes results in an average packet drop rate of 0.174 %
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Figure 4.10: Average link utilization for class-c routes.

(i.e., 217 Kbytes/sec). Class-1 and class-2 routes result in sightly better average packet

drop rates than class-0 routes. This performance difference is caused by the number of

alternative paths corresponding to class-1 and class-2 routes, respectively.

TCP performance

The performance with respect to TCP goodput and badput are illustrated in Figures 4.12

and 4.13, respectively. Class-1 and class-2 routes achieve the best performance of 827.2

Mbytes/sec in terms of TCP goodput and the best performance of 7.32 Mbytes/sec in

terms of TCP badput among three classes. Class-0 routes result in a TCP goodput of 823.9

Mbytes/sec and the TCP badput of 7.39 Mbytes/sec on average. Here, we see that the

TCP performance is impacted by the number of alternative paths in a multipath route. As

class-1 and class-2 routes establishes more alternative paths than class-0 routes, they lead

to more efficient utilization of the network resources than class-0 routes. This in turn leads

to an improvement in TCP performance.
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Figure 4.11: Average packet drop rate for class-c routes.
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Figure 4.12: TCP goodput for class-c routes.
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Figure 4.13: TCP badput for class-c routes.

From the simulation results, it is observed that class-1 and class-2 routes achieve better

network and TCP performance than class-0 routes. However, notice that class-1 and class-2

routes do not show a remarkable difference in terms of network and TCP performance. Even

in simulations, the use of class-3 and class-4 routes shows similar results compared to the

use of class-1 and class-2 routes. This result comes from the number of alternative paths

associated with each class of multipath route. The numbers of class-1 and class-2 routes are

quite similar to each other, and to those of class-3 and class-4 routes. Any shortest path in

NSFNET consists of a maximum of four hops from a source to a destination node so that

class-1 or higher multipath routes have a similar number of alternative paths. Nonetheless,

class-0 routes and class-c (c > 0) routes provide quite different numbers of alternative paths.

This difference influences on the network and TCP performance. We can conclude that class-

1 or higher multipath routes performs better than class-0 routes. For the NSFNET topology,

we do not observe a substantial improvement in performance associated with class-c routes

as c increases beyond 0.
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Figure 4.14: Average link utilization for various β.

4.6.3 Estimation of network parameters

Next, we study the effect of the CTMP parameter, the congestion threshold beta. We vary

the congestion threshold β to determine its best value and characteristics. The congestion

threshold β is configured to be 90 %, 95 %, and 99 % in different simulation runs. The

other parameters, i.e., the availability threshold γ and the targeted utilization η are set to

85 % and 90 %, respectively.

Network performance

Figure 4.14 shows the average link utilization on the network for different values of β. The

setting β = 90 % shows the best result, with an average link utilization of 72.4 %. When

β = 95 %, the average link utilization is 72.0 % while β = 99 % results in an average link

utilization of 71.5 %.

The performance of average packet drop rate is shown in Figure 4.15. The best packet

drop rate of 0.173 % (i.e., 217.1 Kbytes/sec) is achieved when β = 90 %. When β = 95 %,
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Figure 4.15: Average packet drop rate on various β.

the average packet drop rate is 0.179 % (i.e., 224.3 Kbytes/sec), while β = 99 % results in

an average packet drop rate of 0.179 % (i.e., 223.8 Kbytes/sec). In terms of the average

link utilization and the average packet drop rate, CTMP with β = 90 % performs the best

among three different value of β.

TCP performance

The performance in terms of TCP goodput and badput are shown in Figure 4.16 and 4.17,

respectively. β of 90 % achieves the best TCP performance with 823.96 Mbytes/sec on

TCP goodput and 7.39 Mbytes/sec on TCP badput, on average. β of 95 % and 95 %

carry out the TCP goodput of 816.75 Mbytes/sec and 807.98 on average, respectively and

the TCP badput of 7.61 and 7.75 Mbytes/sec on average, respectively. As seen in network

performance, when β is set to be 90 %, CTMP performs the best.

From overall simulation results obtained by varying β, we observe that the configuration

with β of 90 % produces the best results in both network and TCP performance, and that

49



0 20 40 60 80 100
750

760

770

780

790

800

810

820

830

840

850

Time (second)

T
C

P
 G

oo
dp

ut
 (

M
by

te
s/

se
c)

β=90
β=95
β=99

Figure 4.16: TCP goodput for various β.
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Figure 4.17: TCP badput for various β.
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with β of 99 % introduces the worst. According to this observation, we conclude that as

β becomes closer to targeted utilization η, CTMP achieves better response to the network

congestion. In the network that flows contend each other to get assigned more network

resources, it is important to provide network resources to each flow as much as possible.

Therefore, β of 90 % close to η demonstrates the best simulation results.

4.7 Conclusion

We proposed a congestion-triggered multipath routing scheme to distribute traffic over a

multipath route to avoid network congestion. A link is identified as being congested if the

average link utilization exceeds a given threshold. When a node detects an outgoing link as

being congested, it applies an algorithm to determine a set of alternative paths, thus forming

a multipath route. Traffic is then moved away from the congested link onto the alternative

paths according to a traffic splitting function. Our simulation results demonstrate the ability

of the proposed multipath routing scheme to relieve network congestion and improve overall

network utilization.
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Chapter 5: Explicit Rate Signaling and Congestion Control

In this Chapter, we investigate the performance of an explicit rate transport protocol. Here,

we adapt the explicit rate signaling protocol of the TIA-1039 [1], which employs in-band

signaling standard. According to TIA-1039, the information to compute the explicit rate is

carried in the data packet (i.e., in-band) so that this protocol does not require additional

out-of-band signaling that can impose additional traffic on the network. We develop and

implement an explicit rate transport protocol based on the UDT (UDP-based Data Transfer)

protocol [74]. Therefore, we call this new protocol, ER-UDT (Explicit Rate UDP-based

Data Transfer).

5.1 Background

We provide some background on the TIA-1039 protocol and the UDT transport protocol.

5.1.1 TIA-1039

TIA-1039 [1] is an in-band QoS signaling protocol, designed by Anagran [75] and standard-

ized by TIA (Telecommunication Industry Association). The protocol can allocate resource

on routers for flows via in-band signaling as the flows traverse the network. One difference

from existing algorithms such as XCP, RCP, and SABUL/UDT is that TIA-1039 supports

Quality-of-Service (QoS) in an IP network, in the form of Guaranteed Rate (GR), Maximum

Rate (MR), Variable Rate (VR), and Available Rate (AR) services.

When a flow is initiated by the TIA-1039 protocol, a QoS structure or header is inserted

in the header of the first packet. As the packet traverses routers along a path, if the available

resources on a particular router do not meet the requirement of this flow, the flow will fail

to be established or the values in the QoS header will be modified. After the initial packet
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Figure 5.1: Example of TIA-1039 signaling [1].

reaches the destination, feedback in the form of a response packet is sent to the source. The

source then adjusts its local QoS settings according to the feedback. Thus, the QoS flow is

established in one round-trip time.

Figure 5.1 shows an example of TIA-1039 signaling in which an AR value is signaling

from sender to receiver and then back to the sender. The source of the flow sends a first

packet with AR=100. When the first packet reaches the first router, its AR value will be

reset to 35, because there are only 35 bandwidth units available at this router. When the

packet is processed by the third router, its AR values reset to 30. So when the first packet

arrives to the receiver, its AR value is 30. Then the receiver sends feedback to the sender,

informing it of the final AR setting of this flow. The sender then adjusts its sending rate to

30. We remark that the feedback packet can follow a different path from the forward path.

Once a QoS flow is established, not all packets in the flow need to carry the QoS header. A

QoS structure needs to be resent by the sender to update the QoS information only after a

certain interval of packet arrivals, which is typically 128 packets in the case of TIA-1039.

53



5.1.2 UDP-base Data Transfer (UDT)

The primary goal of UDT [74] is to utilize the abundant bandwidth over current long haul

networks for applications such as computational grids. The fairness issue is also taken into

account in the design of UDT. In particular, two of the major fairness objectives are to be

independent of round trip time (RTT) and to be TCP-friendly [76,77]. UDT utilizes UDP

for both data and control information.

The sender sends out a data packet every inter-packet interval, which is updated by the

rate controller. However, the sender cannot send out the packet if the number of unac-

knowledged packets exceeds a threshold, which is updated by the flow control algorithm.

A retransmission packet has higher priority than a first time packet. The receiver receives

and reorders data packets. If the receiver detects packet loss, NAK (Negative Acknowledge-

ment) packet will be sent back reporting the loss. Selective acknowledgement is used in the

protocol, which generates an ACK (Acknowledgement)packet after a constant time interval

if there are any packet to acknowledge. The receiver also measures the packet arrival rate

and the link capacity, which will be sent back together with the ACK packet. The sender

sends back an ACK2 packet for each received ACK packet, which is used by the receiver

to measure RTT, as well as to decide the next ACK value (i.e., it must be greater than

the last received ACK2). The receiver also checks the RTT variance to check if there is a

delay-increasing trend. If so, it sends back a delay increasing warning packet to the sender.

UDT consists of two parts: a UDT protocol framework and a UDT congestion control

algorithm. We modified the UDT protocol framework in order to implement explicit rate

signaling. In addition, we replaced the UDT congestion control algorithm with an explicit

rate congestion control algorithm. We chose UDT for the implementation of an explicit rate

signaling for two main reasons: (1) To reduce traffic and processing time caused by ACKs.

UDT responds to delivered packets by acknowledgement once in a given interval whereas

TCP reacts to every delivered packet. (2) UDT provides more information on lost packets

than TCP-SACK [56], which has been considered the best mechanism for multiple packet

losses. Routers compute the sending rate and feed it back to the sender so that the sender
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transmits data at the maximum rate, while avoiding congestion.

5.2 Explicit rate signaling protocol

We developed ER-UDT (Explicit Rate UDP-based Data Transfer), which estimates the

accurate sending rate with support of network equipment (e.g., router, switch). ER-UDT

achieves higher throughput compared to legacy TCP, over impaired links. For accurate rate

estimation, ER-UDT utilizes the QoS signaling mechanisms of TIA-1039. QoS signaling

helps to eliminate the slow rate increase in UDT so that sender can reach the maximum

sending rate after one round trip time, in order to avoid network congestion. For higher

throughput, we improve the retransmission algorithm in UDT. UDT has three transmission

phases: data transmission, retransmission, and idle. When the sender buffer becomes full,

the sender does not transmit any packets (i.e., idle phase). This happens due to the loss

of retransmission packet(s) over an impaired link. We utilize this idle phase to transmit

lost packets again (second retransmission) without waiting for the next NAK (Negative

Acknowledgement). Second retransmission can reduce the retransmission buffer quickly so

that ER-UDT can achieve higher throughput.

5.2.1 Connection establishment

The proposed architecture establishes a connection between source and destination via a

three-way handshake (i.e., SYN, SYN/ACK, and ACK), similar to TCP connection es-

tablishment. This three-way handshake carries the connection information as well as the

explicit rate information so that the sender can obtain the maximum sending rate to avoid

network congestion as well as to establish a connection to a destination.

The sender generates and transmits a handshake packet (i.e., SYN) to request a con-

nection establishment to a destination, and to obtain the sending rate computed by routers

along a path to destination. Note that this header format is different from that of TIA-

1039. The header of the handshake packet includes an ER field as well as information in
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TCP header. The sender can set the ER field to its desired rate and the routers along the

path to the destination update the ER field. After a handshake packet is delivered to the

destination, the destination establishes a connection between the sender and destination

pair, and then it transmits a response packet for the handshake packet (i.e., SYN/ACK).

This response packet includes the ER field carried by the handshake packet.

TIA-1039 utilizes handshake and response packets to obtain the explicit rate. However,

the proposed protocol employs one more step to confirm the ER and round trip time (RTT)

values with routers. After the sender receives the response packet from the destination, it

sets its sending rate to the ER recorded in the response packet, and then computes a round

trip time (RTT). We then form a new ACK packet, called ACK2, to carry the ER and

RTT as well as the information recorded in the ACK of legacy TCP. By transmitting the

ACK2 packet, the ER and RTT information are signaled to the routers along the path. By

confirming the ER information, routers can manage the information on ER more accurately

so that they can assign available bandwidth to flows.

For example, suppose that the network consists of a sender, two routers (routers A and

B), and a destination, as illustrated in Figure 5.2. All links are bi-directional and have a

capacity of 100 Mbps. The sender requests an explicit rate to the network. Assume that

router A assigns 100 Mbps to the flow while another router B assigns 50 Mbps for the flow.

As a result, the sender receives the ER of 50 Mbps and the sender sets its sending rate

to 50 Mbps. This ER value of 50 Mbps is informed to the network by an ACK2 packet.

Router A changes the ER for the flow from 100 Mbps to 50 Mbps. As a result, router A

can save the difference of these two rates, which can be assigned to another flows. Using

the RTT information, the routers can deal with the delay information between routers and

the sender so that they can support more accurate and stable rate computation (see Section

5.3).
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Figure 5.2: Network topology.

5.2.2 Data transfer

The data transfer phase of the proposed protocol is similar to that of UDT. The sender im-

plements a rate-based transmission mechanism which tunes the inter-packet interval when-

ever the sending rate changes. The sender transmits packets according to rate-based traffic

shaping (i.e., a packet is transmitted once every inter-packet interval). If a packet is success-

fully delivered to the destination, the destination responds to it with an acknowledgement

as in legacy TCP.

Retransmission due to a single packet loss

If a single packet loss is detected by the destination, it transmits a duplicate ACK as in TCP.

Once the sender receives a duplicate ACK, fast retransmission is implemented. However,

the congestion window of the sender is not changed because the sending rate is determined

by the network, whereas TCP-Tahoe sets the congestion window size to one and TCP-Reno

reduces the window size by half. This is the main difference between legacy TCP and an

explicit rate transport protocol.

Retransmission due to multiple packet losses

If multiple packet losses (i.e., two or more packet losses in a flow control window) are

detected by the destination, a negative acknowledgement (NAK) packet is utilized in order

to explicitly inform the sender of multiple packet losses. The NAK packet carries the list

of sequence numbers of lost packets in increasing order. Whenever the sender receives

duplicate NAKs, it retransmits the lost packet. By informing the sender of explicit loss

information, this mechanism is similar to TCP-SACK [56], but the NAK packet can provide
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more information than the TCP SACK field.

In UDT, the NAK packet consists of an array of 32 bit integers. If the sequence numbers

of the array are in increasing order, it is considered that all sequence numbers of packets

except the last sequence number in the array have been lost. In our proposed protocol, we

improve the usage of the last sequence number of the array to acknowledge the corresponding

packet, rather than indicating a lost packet as in UDT. This NAK can specify the range

of packets that are consecutively lost, as in TCP-SACK. To record sequence numbers of

consecutive lost packets, the first bit of the sequence number of the first lost packet is

flipped. This modified sequence number is recorded, followed by the last sequence number

of consecutively lost packets. For example, the following information might be carried by a

NAK packet:

00000010, 00000100, 10000110, 00001001, 00001100.

The first two numbers indicate that packets 2 and 4 have been lost. In the third number,

the first bit is flipped, indicating that packets 6 to 9 (indicated in the third number) have

been consecutively lost. The last number indicates that packet 12 has been successfully

delivered. According to the information contained in the NAK packet, the sender should

retransmit packets 2, 4, 6, 7, 8, and 9.

In order to achieve higher throughput over impaired link, we improve the retransmission

algorithm in UDT. In UDT, if retransmitted packet is not successfully delivered to desti-

nation, a sender has to stop sending packets and wait for RTO (Retransmission Time Out)

time unit, which is so called the idle phase. We utilize the idle phase of UDT to implement

the second retransmission, in which the sender transmits all lost packets again during the

idle phase. For the second retransmission, the references in [78–80] proposed a Lost Re-

transmission Detection (LRD) algorithm which can detect the retransmitted packets lost,

transmit the lost packets again, and decrease the window size. However, in our algorithm,

we do not need to implement the LRD algorithm to identify lost retransmission packet,

since our algorithm based on UDT enters the idle phase when the retransmitted packet is

lost. During the idle phase, the sender transmits lost packets again but does not change
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the window size, since the window size is adjusted by ER control, which is provides as

feedback from the routers. This second retransmission phase helps improve the end-to-end

throughput as can seen in the simulation results.

5.2.3 Simulation results

We present simulation results that evaluate the throughput performance of four different

protocols: Legacy TCP, TCP-ER, UDT, and the proposed protocol ER-UDT under various

delay and loss rate conditions. This simulation was carried out on the Emulab testbed [81],

on a simple network topology consisting of a sender, two routers (routers A and B), and

a destination, as illustrated in Figure 5.2. All links are bi-directional and have a capacity

of 100 Mbps. Various losses and delays were assigned to the link between the two routers.

However, the other two links are loss-free and have zero delay. Thus, the throughput for

each of the four different protocols is measured under various loss rate and delay conditions.

For this simulation study, the explicit rate is set to 100 Mbps to fully utilize the link capacity

for TCP-ER and the proposed protocol. The simulation results are given in Figure 5.3.

The throughputs of all four protocols become worse as the delay becomes longer and/or

the loss rate becomes higher. The proposed protocol (ER-UDT) has the best performance

among the four different protocols for various loss and delay settings, while legacy TCP

shows the worst performance. Legacy TCP and UDT have lower performance than TCP-

ER and the proposed protocol as the loss rate and/or delay increases. This low performance

is caused by the implicit rate feedback that the sender has to compute its own sending rate

according to the feedback of ACK/NAK from the destination. However, TCP-ER and

the proposed protocol employ explicit rate feedback signaling so that the sender can keep

transmitting data at the rate assigned by routers. Considering the various delay and loss

rate conditions, the best throughput is obtained by the proposed ER-UDT protocol, the

second by TCP-ER, the third by UDT, and the worst throughput achieved by legacy TCP.

59



75

100

Legacy TCP

TIA-1039

UDT

ER-UDT

Throughput (Mbps)

0

25

50

0\0 0\1 0\5 0\10 5\0 5\1 5\5 5\10 10\0 10\1 10\5 10\10 50\0 50\1 50\5 50\10 100\0 100\1 100\5 100\10

Delay(ms)\

Loss (%)

Figure 5.3: Throughput comparison under various delay and loss rate conditions.
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5.3 Interoperation with Multipath routing

We discuss an approach to interoperate explicit rate signaling protocol (i.e., ER-UDT)

with multipath routing. This is designed to overcome the limitations of current explicit

rate congestion control and single path routing protocols. In shortest path routing, when

a link/path is congested, the sender can only decrease the rate of the flow. The proposed

architecture provides an alternative solution to this problem, in which a new flow is assigned

to the best path among multiple paths in terms of achievable throughput. In contrast to

other proposed multipath algorithms, the multipath algorithm assigns each flow to a given

path. The best path is determined by collecting information from the multipath route and

then computing a rate based on the information.

5.3.1 Framework

A multipath route is maintained by the ingress router for flows traversing the routes by

using the class-c algorithm discussed in Chapter 3. Whenever a new flow arrives to the

ingress router, the router assigns the flow to a “best” path. We define the best path as the

path which provides the greatest sending rate among the multipath routes set to a given

destination. This best path is determined based on the expected flow throughput (i.e., ER)

that would be provided to the new flow and is discussed in detail in Chapter 6.

In order to determine the multipath routes to destination, the routers employs the class-

c algorithm, which utilizes the path vector describing the list of intermediate routers along

a path. In addition to the path vector in routing table, we introduce one more field, ER,

in order to decide which path provides the largest ER in the class-c routes. Whenever a

routing table exchange occurs, the value of ER is also exchanged. In order to implement

these requirements, we modify the routing table to carry the ER along with Path Vector

information. The modified routing table is periodically updated as in conventional routing

table update, and based on the updated information, the best path is determined. Whenever

the new flow arrives at the router, the new flow is assigned to the best path while existing

flows takes the pre-defined path.
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For the routing table update function, the path vector is updated by a concatenation

function. For example, if node A receives the vector of BD then, it updates to ABD.

However, the ER, r(p), is updated using the MIN function as follows:

r(p) = min{r(e), r(p′)}, (5.1)

where e is the new link and p′ is the path in advertised routing table. From the example,

link e would be AB and path p′ be BD.

Figure 5.4 illustrates the operation of the proposed architecture. Suppose that node A is

the ingress node, node D is the egress node, and the rest of the nodes are intermediate nodes.

The goal is to find the best path from node A to destination D. Each node advertises the

path it prefers to get to destination D. For example, destination D advertises its presence in

the network with the information of (D, inf); the first information is path vector which the

second is explicit rate (ER) of the path which is initially infinity. When intermediate nodes,

B and C, receive this information, they update the information and advertise it to their

neighbors. Node B updates the path vector to BD and the ER to 20 (say, ER is 20 on the

path BD). Node C also updates the path vector to CD and the ER to 10 (assuming that

ER is 10 on CD). Finally, node A receives the information from node B and C and then,

has the routing information of (ABD, 20) and (ACD, 10), with assumption that paths AB

and AC both have an ER of 100. In this case, the best path from node A to destination D

would be ABD since ER of path ABD is the greatest among the class-c routes.

5.4 Conclusion

An explicit rate transport protocol, so-called ER-UDT, is proposed to take into account

feedback transmission delay and to improve the throughput on impaired link. The proposed

protocol is implemented on top of UDT [74] with relatively minor changes. An explicit rate

signaling protocol is proposed that confirms ER and RTT information along a path to allow

more accurate and stable rate computation. The performance of the proposed explicit rate
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Figure 5.4: Incorporation of ER-UDT with multipath routing.

transport protocol was evaluated on the Emulab network emulator platform [81]. In our

simulation, it was demonstrated that the proposed protocol performs much better than

existing transport protocols under various delay and loss rate conditions.
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Chapter 6: Explicit Rate Computation

The Transmission Control Protocol (TCP) [22] has been the dominant protocol for end-to-

end congestion control in the Internet (see [23]). However, TCP has often been found to be

inefficient over links with large delays and/or high packet loss rates [25–28]. To solve the

problems of TCP, protocols based on explicit congestion control have been proposed, such

as eXplicit Control Protocol (XCP) [25, 26], Rate Control Protocol (RCP) [27], and TCP-

Explicit Rate (TCP-ER) [28]. In these protocols, congestion control is based on the feedback

of explicit congestion information determined by the network elements (e.g., routers or

switches) along the path from source to destination. Thus, the sender transmits data at a

rate signaled explicitly by the network. If congestion occurs in the network, the network

signals a reduced explicit rate to the sender in order to alleviate the congestion.

By contrast, TCP is based on the so-called AIMD (Additive Increase Multiplicative De-

crease) algorithm, which increases the transmission rate additively until a timeout indicating

that packet loss occurs. In this case, the transmission rate is decreased by a multiplicative

factor. AIMD-based congestion control then leads to large oscillations in the sender rate.

The explicit congestion protocols may underestimate the effect of the feedback (i.e., the

rate) propagation delay between the network and sender or do not take it into account.

This in turn may lead to congestion collapse due to outdated rate information. Dynamic

rate controllers in [32–35] take into account this propagation delay in the explicit rate com-

putation. These controllers are designed based on queue dynamics at the network elements,

such that their congestion avoidance mechanisms are optimized for relatively heavy traffic

conditions, but not for light traffic conditions.

In this Chapter, we propose a new explicit rate controller that adjusts the sender’s trans-

mission rate according to the network status (e.g., network congestion at the bottleneck). In
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contrast to other proposals explicit rate control, the proposed controller takes into account

various traffic conditions such as light/heavy traffic on a link as well as propagation delay in

the computation of an explicit rate. The proposed controller is designed on basis of control

theory. In particular, a Smith Predictor is employed to implement effective compensation

for the time delay in the feedback loop. It is also designed to be adaptive to all traffic

conditions at a link by taking into account both the volume of traffic and queue dynamics,

whereas existing proposals deal with one of those. Further, the proposed controller takes

into account the marginally unstable process (i.e., integrating process) that disrupts the

convergence of the traffic rate to a target when a load disturbance is present. We intro-

duce several controllers in conjunction with the Smith Predictor in order to stabilize the

proposed rate controller. We analyze the stability of the proposed controller and determine

the effective control parameters of the proposed controller. The proposed controller can

adaptively respond to various traffic conditions, compute the appropriate sending rate to

avoid network congestion, and achieve the maximum network utilization.

6.1 Related Work

Explicit rate control algorithms have been intensively studied in the context of ATM net-

works in order to control ABR (Available Bit Rate) traffic. A simple traffic control scheme,

so-called binary feedback scheme, was proposed in [82–86]. This scheme utilizes a one-bit

feedback indicating the presence or absence of congestion, which may lead to the rate oscil-

lations, unstable network condition, and even severe network congestion. To overcome this

problem, explicit rate algorithms were proposed that compute an explicit sending rate for

each flow. A number of studies, including [34, 87–89], have been done to compute a rate

for Virtual Circuit (VC) in ATM so, flow is individually maintained at ATM switch and its

rate is individually computed.

Explicit rate control algorithm have been proposed for IP networks in order to allevi-

ate network congestion and provide better network throughput in [32, 33, 35, 90–93]. The

proposed rate controllers utilize queue dynamics or outgoing link utilization to compute a
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sending rate. The rate controller proposed by Benmohamed and Meerkov in [32] was the

first attempt to develop an analytic model for the closed-loop congestion controller in order

to provide stability and fairness, using a single Proportional and Derivative (PD) controller.

However, this controller does not provide good transient response nor good steady-state re-

sponse [34,88,89]. The Benmohamed-Meerkov controller is based on queue dynamics. The

algorithm performs well under heavy traffic condition (i.e., the queue at a router is occu-

pied) but responds slowly under light traffic conditions (i.e., the queue is mostly empty).

Alternatively, rate-based algorithm could compute the rate according to link utilization. If

there is available bandwidth, the rate is increased. However, rate control algorithms based

on link utilization do not respond well under heavy traffic conditions since they do not take

into account the degree of congestion.

In order to eliminate the effect of time delay on the network, The Smith Predictor has

been employed in the design of rate controller in the literature. The Smith predictor is a

well known effective compensator for the time delay in feedback control systems and can

provide stable performance. It includes a model that can process the time delay in the

feedback controller.

Some feedback controllers have a time delay so, they can respond after the time delay.

In computer networks, a flow between a source and destination pair also has a propagation

delay so, explicit rate controllers work as feedback controllers with time delay. The Smith

Predictor includes a feedback structure that can effectively take the delay outside of the

feedback loop.

Fig. 6.1 depicts the standard Smith Predictor. It includes a controller C(s), a plant G(s),

and a delay process e−ds where d is the time delay. R(s) is the reference (i.e., the target

value), M(s) is the measured value as a output, and Y (s) is the error (i.e., the difference

between R(s) and the feedback). In order to compensate for the feedback delay, a model of

a plant GM (s), and a delay process e−dMs is introduced where dM is the model of delay. If

the plant G(s) and the delay d are known, we can design the model of GM (s) and e−dMs.

G(s) and GM (s) are typically designed to be identical. Thus, the transfer function of the

66



U(s)

-

+

-

+

+

-

R(s)

)(1 sC

)(sGM

)(sG

sdMe−

M(s)

E(s)

dse−

d

-

+

Y(s)

Figure 6.1: Standard smith predictor.

system is given by

T (s) =
M(s)

R(s)
=

G(s)C(s)

1 + G(s)C(s)
e−ds. (6.1)

This model enables to predict the non-delayed output of the plant and move the delay out

of the control loop. Therefore, this predictor works as if there were no delay in the system

and the resulting closed-loop system would show the behavior of a finite closed-loop system

with no delay. The concept of moving the delay out of the control loop applies to the new

rate controller. This makes the design of the rate controller much simpler and allows it to

work more effectively.

The Smith Predictor has been employed to compute a sending rate in [88,89,93–95]. The

feedback control algorithms of Mascolo et al. in [88,94] exploit the Smith Predictor for ATM

congestion control in which source rates are adjusted according to VC (Virtual Channel)

queue lengths at intermediate nodes along the path. However, they have a disadvantage

that more computational and informational load is placed on the ATM switch due to per-

VC FIFO queue maintenance [89]. Mascolo in [89] extends these algorithms to TCP. It can

determine the adequate sending window size at router for each TCP flow, not at the end

system. Cavendish in [95] describes the details of theoretical approach for the algorithm

in [94]. However, these algorithms are developed to compute per-flow based sending rate.
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Mascolo in [93] proposed an algorithm that can take care of multiple flows in a link. It also

modified the Smith Predictor to consider the feedback delay. However, these algorithms

focus on the queue dynamics to control the rate so that they may not be able to quickly

respond to low utilization (i.e., queue length is zero and link utilization is less than 100 %).

Furthermore, they employ an integrating process as a plant, and a proportional controller to

deal with error (i.e., difference between reference value and measured value). The integrating

process disrupts the stability of the controller when load disturbance is present [96–100].

Thus, the computed rate may not converge into a constant rate.

We propose a rate controller that can respond quickly to both heavy and low traffic

condition by taking into account both queue dynamics and link utilization. The proposed

controller employs the Smith Predictor in order to take into account multiple delays rather

than a single flow. We modify the Smith Predictor to stabilize the proposed rate controller

even if load disturbance is present, by introducing several controllers in addition to the Smith

Predictor. The proposed controller is stable, has a fast transient response, and eliminates

steady-state error.

6.2 Network Model

A flow between a source and destination pair traverses one or more network elements (e.g.,

routers, switches) in the network. The proposed rate controller resides in each router, which

calculates a desirable rate based on both the outgoing link utilization and queue length. In

TCP-ER, this rate is signaled to the source by including a QoS header in one every 128

packets.

Figure 6.2 depicts a bottleneck queue in a router that can identify incoming flows and

compute the sending rate, such as SAFIRE (Software Adaptive Flow-Intelligent Router)

router [101–103] and Anagran flow router of FR-1000 [104]. There are N different incoming

flows identified as f1, f2, . . . , fN . These flows are relayed through the router at the maximum

transmission rate of C, which is the capacity of the outgoing link. However, if the volume
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Figure 6.2: Bottleneck queue of a router with N incoming flows.

of incoming flows is greater than C, the excess volume of traffic is stored in the queue.

Let q(t) denote the length of the bottleneck queue at time t and let Q denote its max-

imum value, due to the finite size of the buffer. The service discipline of the queue is

First-Input First-Output (FIFO). Moreover, the sending rate of source i is defined by ri(t).

Each flow fi may have different time delay (i.e., round trip time) between the associated

source and destination pair, which we denote by di.

The dynamics of the queue in the case of N flows with varying delays is, in general,

given by

q(t) = SatQ

{

N
∑

i=1

ri(t− di)− C

}

, (6.2)

where

Sata(z) =























0, if z < 0,

a, if z > a,

z, otherwise.

Rate controllers based on the queue dynamics, e.g., [32–34], utilize this equation. They

are designed to determine the rate such that the queue length is kept close to a target

queue length. Since such controllers focus on queue dynamics so, they may not perform

well when the volume of incoming traffic is less than the capacity C of the outgoing link
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(i.e., under light traffic conditions). Thus, we consider the utilization of outgoing link in

addition to queue dynamics so that the controller can effectively respond to both heavy

and light traffic conditions. More precisely, we define a heavy traffic condition as occurring

when the incoming traffic is greater than the capacity of the outgoing link. In this case,

excess traffic will be stored in the queue. A light traffic condition occurs when the volume

of incoming traffic is less than or equal to the capacity of the outgoing link. In this case,

the queue does not grow.

We slightly modify Eq. (6.2) in order to take care of both queue dynamics and outgoing

link utilization at a time. The proposed system model is given by

T (t) = SatC+Q

{

q(t) +

N
∑

i=1

ri(t− di)

}

, (6.3)

where T (t) is the total traffic available for processing at the outgoing link at time t and

upperbounds by C + Q. The objective of the controller is to determine r(t) such that the

total traffic at time t satisfies

T (t) = C + q0, (6.4)

where q0 < Q is the target queue length in the controller, which can be set at the discretion

of network administrator. Based on this system model, we shall design new rate controller

to manage the queue occupancy and the traffic volume. This results in an efficient rate

control mechanism that prevents from the queue overflow and avoids low link utilization.

6.3 Rate Controller

We propose a new rate controller based on the Smith Predictor, which takes into account

the rate feedback delay. The proposed controller can achieve a near zero queue deviation,

and prevent from buffer overflow and low utilization of the outgoing link. Every source is

provided with the same sending rate such that the unfairness of TCP to far away sources
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is avoided.

The main advantage of Smith predictor method is to eliminate time delay from the

characteristic equation of the closed loop so that the controller design becomes much easier

and provides stabilized performance. However, the Smith Predictor is not adequate for the

system which includes an unstable or integrating process (i.e., marginally stable process).

Therefore, we modify the Smith Predictor to stabilize the system, especially the integrating

process.

6.3.1 Controller structure

The proposed modified Smith Predictor structure is depicted in Fig. 6.3. This new controller

works as an effective time delay compensator for the integrating process which disrupts the

stability of the proposed controller. The new structure is a relatively simple modification

of classical Smith Predictor.

Here, R(s) is the traffic (i.e., C +q0) expected to be processed at the controller and Y (s)

is the error (i.e., the difference between R(s) and the feedback). The measured volume of

traffic on the outgoing link is modeled by M(s) , which is described by theoretical processes

of G(s) and
∑N

i=1 e−dis to estimate the volume of traffic at the outgoing link as described in

Eq. (6.3). Then, M(s) is measured at the outgoing link directly, and utilized as feedback in

the proposed controller so as to compute the sending rate that can match to targeted volume

of traffic, R(s). If the value of M(s) is the same as the target volume of traffic R(s), this

feedback is canceled by E(s) which is the volume of traffic modeled by the Smith Predictor.

The quantity of E(s) requires the value of delay of each flow for accurate modeling. We

assume that this delay information is carried by the in-band signaling protocol.

The disturbance caused by the bottleneck link is represented by D(s). Even if the present

router determines a high sending rate for a given flow, the next router with a bottleneck

link may set smaller rate. Consequently, the present router obtains flow with a smaller rate

after a round trip time. This disrupts the process of accurate rate computation. Thus,

D(s) models the difference of those rates as a disturbance. However, we assume that it is
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impossible to measure D(s) as in [89]. Thus, it is important to show that D(s) does not

affect the steady-state behavior of the system, which will be shown by stability analysis in

Section 6.3.3.

The proposed rate controller introduces the multiple delays because multiple flows arrive

to the router. Thus, it is important, as in the standard Smith Predictor, to model a process

of GM (s) and a delay process of
∑N

i=1 e−dM

i
s in order to minimize the error between M(s)

and E(s), where M(s) is the traffic measured at the outgoing link and E(s) is the traffic

estimated by the model of GM (s) and
∑N

i=1 e−dM

i
s. Typically, GM (s) is set to be identical

to G(s) in the standard Smith Predictor. The output of G(s) is F (s), the Laplace transform

of the sending rate f(t), while the output of GM (s) is FM (s), a model of the sending rate.

For the model of multiple delays given by
∑N

i=1 e−dM

i
s, the signaling packet transmitted by

the sender is used to inform the router of each sender’s round trip time (RTT). The ER-

UDT (Explicit Rate UDP-based Data Transfer) protocol proposed in Chapter 5 implements

signaling that carries these delay information.

We also introduce three different controllers represented by C1(s), C2(s), and C3(s),

respectively, which are the main components of the proposed rate controller in addition

to the Smith Predictor. The controller C1(s) is designed to regulate the feedback error,

while C2(s) is used to stabilize the integrating process G(s), and C3(s) rejects the distur-

bance D(s). If C2(s) and C3(s) are removed from the proposed controller, the standard

Smith Predictor is obtained.

6.3.2 Design of controller

Under the assumption that the model parameters are exactly matched to the process, the

set point (or so-called reference or target) and disturbance responses are given by

M(s) = TR(s)R(s) + TD(s)D(s), (6.5)
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Figure 6.3: The proposed rate controller.

where

TR(s) =
GM (s)C1(s)

1 + GM (s)(C1(s) + C2(s))

N
∑

i=1

e−dM

i
s/N, (6.6)

TD(s) =
GM (s)[1 + GM (s)(C1(s) + C2(s)− C1(s)

∑N
i=1 e−dM

i
s/N)]

[1 + GM (s)(C1(s) + C2(s))][1 + C3(s)GM (s)
∑N

i=1 e−dM

i
s/N ]

×
N
∑

i=1

e−dM

i
s/N. (6.7)

The transfer function for the set point response in Eq. (6.6) shows that the set point

response is affected by only the parameters of the controllers C1(s) and C2(s). Those

parameters may be obtained by utilizing a model of the delay-free part of the process. The

transfer function of the disturbance response in Eq. (6.7) indicates that the controller C3(s)

influences the disturbance response but does not affect the set point response.

The controllers G1(s) and G2(s), and a load disturbance rejection controller G3(s) have

73



independent responsibilities for the system performance. Thus, the set point and distur-

bance responses are decoupled, which is a dominant advantage of the proposed controller.

That is, both the set point and load disturbance response can be independently optimized.

The proposed controller includes an integrating process, which disrupts the stability of the

controller when load disturbance is present. Therefore, it is important to analyze the sta-

bility of the proposed controller. We first define each process. The integrating process with

multiple dead-times (i.e., time delay) can be given by

P (s) = G(s)
N
∑

i=1

e−dis/N (6.8)

=
1

s

N
∑

i=1

e−dis/N, (6.9)

where N is the number of flows, di is the dead time of flow i, and G(s) is the delay-free

part of the process P (s).

The process GM (s) is set to be identical with G(s). Thus, it is described as

GM (s) = G(s) =
1

s
. (6.10)

The controllers C1(s), C2(s), and C3(s) are a Proportional and Integral (PI) controller, a

Proportional (P) controller, and a Proportional and Derivative (PD) controller, respectively.

They are given by

C1(s) = KP +
KI

s
= KP (1 + 1/sTI), (6.11)

C2(s) = KQ, (6.12)

C3(s) = KR + sKD = KP (1 + sTD), (6.13)
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where KP , KQ, and KR are the proportional parameters in each controller that are used to

control system response time, KI is the integral parameter in C1(s) that enables to eliminate

steady-state error, and KD is the derivative parameter in C3(s) that helps fast convergence

to steady-state.

For the set point response, substituting Eq. (6.6) from Eqs. (6.11), (6.12), and (6.13),

the set point transfer function is given by

TR(s) =
(KP s + KI)

s2 + (KP + KQ)s + KI

N
∑

i=1

e−dM

i
s/N (6.14)

=
KP (TIs + 1)

TIs2 + (KP + KQ)TIs + KP

N
∑

i=1

e−dM

i
s/N. (6.15)

Substituting Eq. (6.7) and from Eqs. (6.11), (6.12), and (6.13), we can obtain the load

disturbance transfer function as

TD(s) =
s2 + (KP + KQ)s + KI − (KP s + KI)

∑N
i=1 e−dM

i
s/N

(s2 + (KP + KQ)s + KI)
(

s + (KR + KDs)
∑N

i=1 e−dM

i
s/N

)

×
N
∑

i=1

e−dM

i
s/N, (6.16)

=
s2 + (KP + KQ)s + KP /TI −KP (s + 1/TI)

∑N
i=1 e−dM

i
s/N

(s2 + (KP + KQ)s + KP /TI)
(

s + KR(1 + sTD)
∑N

i=1 e−dM

i
s/N

)

×
N
∑

i=1

e−dM

i
s/N. (6.17)

However, for the load disturbance, reference [98] shows that even if the process is an inte-

grator, the following relations is always true:

lim
t→∞

d(t) = d. (6.18)
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Thus, the signal d(t) is an estimate of the constant input load disturbance d. However, we

assume that it is impossible to measure d. It is important to model a controller that can

completely reject any d(t). In the proposed controller, TD(s) enables the load disturbance

rejection.

6.3.3 Analysis of Controller Stability

Classical control theory enables us to design new controllers whose performance is analyti-

cally evaluated rather than rely on simulations. In order to analyze the performance of the

controller, the Laplace transform is commonly utilized so this approach is applied to the

analysis of the proposed controller.

In order to ensure the stability of the controller, the controller should guarantee that

the output of traffic is always equal to the target rate in steady-state, which is given by

m(t) = C + q0, (6.19)

where m(t) is the time domain form of M(s). We analyze the stability of the controller

under this condition. However, the stability condition of rate controllers in [89,93] suggests

that the output is less than or equal to the target rate as follows:

m(t) ≤ q0, for t > 0, (6.20)

where q0 is the bottleneck queue capacity, which guarantees that this queue is always

bounded (i.e., no packet loss). This condition provides the upper bound for the queue

occupancy but does not guarantee an error-free condition in steady-state. We propose a

new controller that can guarantee the steady-state error-free condition by rejecting load

disturbance using the PD controller of C3(s).

We analyze the proposed controller in terms of the set point and disturbance responses
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at steady-state. The Laplace transform of m(t) is given from Eq. (6.5) as

M(s) = TR(s)R(s) + TD(s)D(s)

= MR(s) + MD(s). (6.21)

Transforming these equations to the time domain, we have

m(t) = tr(t)r(t) + td(t)d(t)

= mr(t) + md(t). (6.22)

We first analyze the set point response TR(s) in steady-state. The set point response

TR(s) is given in Eq. (6.14) as

TR(s) =
(KP s + KI)

s2 + (KP + KQ)s + KI

N
∑

i=1

e−dM

i
s/N. (6.23)

Utilizing this equation, we obtain the set point response at steady-state which is given by

lim
s→0

TR(s) = 1. (6.24)

Thus, we obtain mr(t) as follows

mr(t) = C + q0. (6.25)

We also analyze the load disturbance response at steady-state as analyzed in the set

point response. In this analysis, we show that the load disturbance is completely rejected

which is assumed to be impossible to measure. The load disturbance response TD(s) is
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described in Eq. (6.16) as

TD(s) =
s2 + (KP + KQ)s + KI − (KP s + KI)

∑N
i=1 e−dM

i
s/N

(s2 + (KP + KQ)s + KI)
(

s + KR(1 + sTD)
∑N

i=1 e−dM

i
s/N

)

×
N
∑

i=1

e−dM

i
s/N. (6.26)

From this equation, we find the load disturbance response at steady-state, which can be

given by

lim
s→0

TD(s) = 0. (6.27)

Therefore, the load disturbance at time domain, md(t), becomes

md(t) = 0. (6.28)

This property of the proposed controller rejects the load disturbance which is not modeled

in the controller so that it is possible to stabilize the proposed controller which includes the

integrating process.

From Eqs. (6.25) and (6.28), we can conclude that

m(t) = mr(t) + md(t)

= C + q0, (6.29)

which shows that the proposed controller always matches the output of traffic to the set point

(i.e., targeted traffic) in steady-state. Thus, it is shown that the proposed controller can

eliminate steady-state error that can occur in the controller, which includes the integrator

process when the load disturbance is introduced.
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6.3.4 Controller Parameters

We analyze the transient response of the proposed controller in order to obtain optimal

parameters of the controllers, C1(s), C2(s), and C3(s) . These parameters determine the

behavior of the transient response in the proposed controller, that is, they can help improve

the speed of the system response and provide fast convergence to the steady-state, and

enable to eliminate the error (i.e., mismatching the output traffic to the set point). It is

important for the proposed controller to approach to the steady-state in short time without

making network congestion, in addition to ensure the stability of the controller at steady-

state.

The parameters of the main controllers, C1(s) and C2(s), may be determined using

a model of the delay-free part of the plant, which is the beneficial feature of the Smith

Predictor. We define the delay-free part of transfer function TR(s)

TRF (s) =
(KP s + KI)

s2 + (KP + KQ)s + KI

. (6.30)

The transfer function TRF (s) is a second-order system which can be modeled in one of

following two general forms:

T (s) =
ω2

n

s2 + 2ξωns + ω2
n

, (6.31)

and

T (s) =
ωns/αξ + ω2

n

s2 + 2ξωns + ω2
n

, (6.32)

where the parameter ξ is the damping ratio that can control the rate oscillation, and the

parameter ωn is the undamped natural frequency that helps to control the response time of

the system. Each of these forms may show different types of the system response according to

the poles of the system (i.e., real and unequal, real and equal, complex, or purely imaginary).

We consider only the response of stable systems whose poles have the negative real parts.
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In addition, we focus on the general form of Eq. (6.32) since our system has one zero and

two poles. In this system, the zero is placed at s = −αξωn. The parameter α controls the

rate of rise (i.e., the system response time) or decay of the system response, that is, the

parameter α controls the damping of the system, which is called the damping factor. If

the parameter α is large, the zero is placed far to the left of the poles. Thus, the zero will

have little effect on the system response because the coefficient of the s term is so small.

Reference [105] shows that the zero will have little effect on the system if the parameter

α is set to greater than 3, but as the parameter α decreases below 3, it has an increasing

effect, especially when the parameter α is less than 1. Thus, we choose the parameter α as

3 in the proposed controller. This property of the proposed controller enables a fast system

response. However, when the parameter ξ is equal to 1, the oscillations disappear and the

system is said to be critically damped. Under this condition α = ξωn. We can set the

parameter ξ to be

ξ =
α

ωn

. (6.33)

When the parameter ξ is less than 1, the system becomes underdamped and when the

parameter ξ is greater than 1, the system is overdamped. We choose the parameter ξ as

1 to minimize the oscillations on the system. This property of the proposed controller

prevents from the queue overflow.

Comparing Eq. (6.30) with the generalized form of second-order system defined in

Eq. (6.32) with the parameters, α = 3 and ξ = 1, we obtain

ω2
n = KI , (6.34)

2ωn = KP + KQ, (6.35)

ωn

3
= KP . (6.36)

It is well known that a large value of KP increases the initial control effort therefore, KP

is constrained to unity. From Eqs. (6.34), (6.35), and (6.36), we finally obtain the optimal
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parameters of the proposed controller as follows:

KI = 9K2
P , (6.37)

KQ = 5KP . (6.38)

The parameters of the controller, C3(s), may be determined using a model of the delay-

free part of the plant as seen in the controllers of C1(s) and C2(s). The delay-free part of

the transfer function TD(s) is given by

TDF (s) =
s2 + (KP + KQ)s + KP /TI −KP (s + 1/TI)

∑N
i=1 e−dM

i
s/N

(s2 + (KP + KQ)s + KP /TI)
(

s + KR(1 + sTD)
∑N

i=1 e−dM

i
s/N

) . (6.39)

The stability of the controller C3(s) depends on the roots of the characteristic equation

(

s2 + (KP + KQ)s + KP /TI

)

(

s + KR(1 + sTD)
N
∑

i=1

e−dM

i
s/N

)

= 0. (6.40)

Note that we already obtained the control parameters in the left term in Eq. (6.40). Thus,

we focus on the new characteristic equation which is the second term inside the large

parameters of Eq. (6.40) as follows:

1 + F (s) = 0, (6.41)

where

F (s) =
KR(1 + sTD)

s

N
∑

i=1

e−dM

i
s/N. (6.42)

This form of characteristic equation is analyzed in [99], which we utilize to analyze the

optimal parameters of C3(s). We introduce the parameter ΦPM which is the phase margin
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of Eq. (6.41). The phase margin is a key parameter for the stability of the controller C3(s)

since the inaccurate setting of phase margin results in system oscillations. The phase margin

is given by

ΦPM = π + arg{F (jw1)}. (6.43)

From Eqs. (6.41) and (6.42), F (jw1) is constrained by

|F (jw1)| = 1. (6.44)

We set the parameter Td to be proportional to the rate sampling interval τs, which is given

by

Td = ατs, 0 ≤ α < 1. (6.45)

Substituting into Eq. (6.43) from Eqs. (6.42) and (6.45), we obtain

w1 =
π/2− ΦPM

(1− α)τs

, 0 < ΦPM < π/2. (6.46)

From Eq. (6.44), we obtain

w1 =
KR

√

1− (KRατs)2
, 0 ≤ KRατs < 1. (6.47)

From Eqs. (6.46) and (6.47), we obtain

KR =
π/2− ΦPM

τs

√

(1− α)2 + (π/2− ΦPM )2α2
. (6.48)

It is shown in [99] that throughout numerous simulations the parameters of α and ΦPM

have optimal values of 0.4 and 64o, respectively. These optimal parameters of KP , KQ, KR,

and TD are used in our simulation experiments in order to verify the transient response of
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the proposed controller.

6.3.5 Rate Computation

The goal of rate controller is to find a rate such that traffic at outgoing link matches to the

target traffic C + q0. We utilize the derivative of traffic U(s) as seen in Fig. 6.3 to find the

rate, which is given by

U(s) =
C1(s) (R(s)−M(s) + E(s))

1 + (C1(s) + C2(s)) GM (s)
. (6.49)

By inverse-transforming U(s) to time domain, we obtain

u(t) = Kpy(t) + KI

∫

y(t) dt−KQfM (t), (6.50)

where

y(t) = C + q0 − (m(t)− e(t))− fM (t),

fM (t) is the sending rate at time t obtained by GM (s), and m(t) and e(t) are the measured

traffic at the outgoing link and the traffic estimated by the Smith Predictor, respectively.

Based on u(t), the new rate is given by

f(t) =

∫

u(t) dt. (6.51)

We use this equation to compute the rate that can control network congestion. This will

be verified by simulations experiments.
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Figure 6.4: The network topology.

6.4 Simulation Results

We present results of simulations for the proposed rate controller. The results are compared

with other existing controllers proposed in [32, 88] which are the Benmohamed-Meerkov

(BM) controller and the Mascolo-Cavendish (MC) controller, respectively. The simulations

were carried out using the NS-2 network simulation platform [106], which is a discrete event

simulator. The network topology is shown in Figure 6.4, which is the same as that used

in [32, 88] in order to compare the performance of our proposed controller with that of the

other existing controllers. The topology consists of 10 different nodes and 9 different links.

Every link has identical properties, such that each link has the capacity of 45 Mbps and the

propagation delay of 2 ms, and every link is assumed to be bi-directional.

Traffic is generated so as to cause congestion on the network, especially on the link

between nodes A and B. Nodes A, C, F , and H generate traffic using ER-UDT (see

Chapter 5), which can adjust its sending rate according to the feedback information sent by

the routers. Flows 1, 2, and 5 are destined for the right upper node I in Figure 6.4, while

flows 3 and 4 are destined for the lower node H. Thus, the five different flows compete

with each other for the bandwidth of the bottleneck link (A, B). All flows are generated

according to the predefined schedule shown in Table 6.1.

The targeted buffer size Q is set to 30 packets (i.e., 45 Kbytes). The sampling interval is

set to 30 ms at node A, which is identical to the inband signaling interval of ER-UDT. We
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Flow 1 2 3 4 5

Start time 0 200 50 350 500

End time 700 1000 850 1000 1000

Table 6.1: Traffic generation.

implemented simulations over two different scenario: 1) short RTT and 2) large RTT. For

the short RTT scenario, the propagation delay of link (A, B) is set to 2 ms, i.e., the same

as the other links. The largest RTT between source and destination in the network is less

than the sampling interval. In the large RTT scenario, the propagation delay of link (A, B)

is set to 30 ms which makes the largest RTT greater than the sampling interval while the

propagation delay on the other links remains at 2 ms. Based on these two scenarios, we

investigate the performance of the proposed rate controller.

Figure 6.5 illustrates the BM controller in terms of the rate and queue length in the

short RTT scenario. We observe that the rate fluctuates over time and does not converge

to the desired rate. We also observe that the queue length oscillates and does not converge

to the target length of 30 packets. Moreover, the queue occupancy increases dramatically

whenever new flows are introduced. Both the rate and queue length fluctuate over time in

steady-state because this controller is based on a PD controller. In our proposed controller,

a PI controller is introduced to deal with such fluctuations.

Simulation results for the large RTT scenario for the BM controller are shown in Fig-

ure 6.6. We observe that the rate slowly changes over time, while the queue length changes

drastically. We see that the BM controller does not perform reliably in the large RTT sce-

nario. The BM controller assumes that every packet can carry the signal (i.e., rate feedback)

information in its header, such that the rate feedback is updated within a single RTT on

the sender side. However, ER-UDT delivers the rate feedback information every 128 packet

so the sending rate is updated much more slowly than under the assumption of the BM

controller. Thus, the BM controller performs poorly under large RTT when ER-UDT is

used.

The performance of the MC controller is shown in Figure 6.7 and 6.8 for the two different

85



 0

 10

 20

 30

 40

 50

 60

 70

 0  200  400  600  800  1000

R
at

e 
(M

bp
s)

Time

(a) Rate.

 0

 50

 100

 150

 200

 250

 0  200  400  600  800  1000

# 
of

 Q
ue

ue
 L

en
gt

h

Time

(b) Queue size.

Figure 6.5: Performance of the BM controller in the short RTT scenario.
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Figure 6.6: Performance of the BM controller in the large RTT scenario.
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RTT scenarios. We see that the MC controller performs better than the BM controller in

both scenarios. In the short RTT scenario, the queue occupancy is high during the first

transient period, but settles to a level near the target during the middle of simulation run.

In the large RTT scenario, the controller shows large queue occupancy during each transient

period because it responds slowly to queue length changes compared with the short RTT

scenario. However, the MC controller does not result in convergence of the queue length

into the target queue length since it is based on P-PD controllers, that is, it does not employ

a PI controller.

The performance of the proposed controller in the short RTT scenario is depicted in

Figure 6.9. We see that the proposed controller has the best performance among three

controllers. It responds to the changes in the queue length quickly and accurately, both

in the transient period and in steady-state. During the transient periods, the proposed

controller responds to changes in the queue length by quickly adjusting the sending rate. For

the first transient period, the controller does not have enough information on the queue and

traffic dynamics, which results in a slightly higher queue length (i.e., 38 packets) compared

with the next transient periods. However, the proposed controller responds much better

to changes of the queue length during the first transient period compared to the other

controllers. In the subsequent transient periods, the queue length is less than 33 packets.

In addition, the queue length converges to the target queue length in steady-state, which

the other controllers cannot accomplish.

In the large RTT scenario, the queue length changes slowly in the first transient period

compared with the short RTT scenario. The main difference between two scenarios occurs

before the second flow is generated. In the short RTT scenario, the queue length is main-

tained at almost 0 until the second flow is generated, but in the long RTT scenario, the

queue fills up right after the first flow is generated. The computed sending rates in the two

scenarios are slightly different due the difference in the RTTs. However, after the second

transient period, the queue length and rate computations are almost the same. Note that

the queue length converges to the target length in steady-state, in both scenarios.
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Figure 6.7: Performance of the MC controller in the short RTT scenario.
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Figure 6.8: Performance of the MC controller in the large RTT scenario.
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Figure 6.9: Performance of the proposed controller in the short RTT scenario.
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Figure 6.10: Performance of the proposed controller in the large RTT scenario.
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Three different controllers show better performance in the short RTT scenario than

in large RTT scenario. They respond quicker and maintain the queue length to be close

to the target queue length. BC and MC controllers are based on the queue length only,

that is, their controllers respond to the queue occupancy only. Thus, they do not respond

quickly to the low link utilization, i.e., less than 100% of the link utilization. The proposed

controller is designed to respond to both the queue length and the link utilization so that

it can produce better performance than other controllers. Further, the proposed controller

eliminates fluctuations in steady-state by employing a PI (Proportional-Intergral) controller,

and provides the good transient response.

For the purpose of further comparison with existing rate controllers, we ran network

simulations using a ns-2 implementation of XCP [25, 26]. XCP is designed to improve the

unfairness among multiple flows in TCP. A router implementing XCP computes congestion

window size for multiple flows in order to fully utilize the outgoing link capacity and maintain

its queue length to be zero. Then, the congestion window size is fed back to each source.

This mechanism is somewhat different from our proposed controller, which computes a

common sending rate for multiple flows and matches the queue length to a target.

However, we can compare the performance of XCP with that of our proposed controller

in terms of the congestion window dynamics and queue dynamics. The congestion window

dynamics are related to the rate dynamics. Rather than explicitly comparing congestion

window dynamics of XCP to rate dynamics of our proposed controller, we investigate how

the congestion window responds to new incoming flows. Figure 6.11 illustrates the conges-

tion window size and queue length of XCP in a short RTT scenario and Figure 6.12 depicts

these parameters in the large RTT scenario.

During the transient period in both short and large RTT scenarios, the congestion

window shows stable window size transition since XCP computes the window size for each

XCP packet arriving to the router. However, the window size does not converge to the

desired size since it uses a PD controller mechanism. With respect to the queue length

in the short RTT scenario, the XCP router maintains 2 or 3 packets in its queue during
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Figure 6.11: Performance of XCP in the short RTT scenario.

94



 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0  100  200  300  400  500  600  700  800  900  1000

C
W

N
D

 (
# 

of
 P

ac
ke

ts
)

Time

(a) Congestion window.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  100  200  300  400  500  600  700  800  900  1000

# 
of

 Q
ue

ue
 L

en
gt

h

Time

(b) Queue size.

Figure 6.12: Performance of XCP in the large RTT scenario.
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most of the simulation run, and has 5 packets at maximum when all flows are generated.

However, in the large RTT scenario, the queue occupancy is very high during the transient

periods. We observe that as RTT becomes large, the queue length at the XCP router can

become very large, leading to packet drops which can cause packet retransmissions.

6.5 Conclusion

We have proposed a new rate controller based on the Smith Predictor that can deal with

the feedback delay, which is an critical factor in computer networks. The proposed con-

troller maintains both a stable queue length and link utilization in order to avoid network

congestion. We have analyzed the proposed controller on using tools from control theory

and demonstrated that the control parameters can guarantee system stability in steady-

state and even in transient periods. We have compared the proposed controller with several

state-of-the-art congestion control solutions in [32, 88]. Our simulations results show that

the proposed controller performs much better than those solutions in terms of rate compu-

tation and queue management. The solutions proposed in [32, 88] are designed based on

the queue length, whereas the proposed controller is developed based on both queue length

and link utilization. This enables the router to compute a sending rate which does not cause

network congestion in steady-state and even during transient periods.
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Chapter 7: Discussion and Future Research Directions

7.1 Discussion

We proposed an algorithm to find a multipath routes in Chapter 3. The algorithm for

determining multipath routes finds a set of disjoint or partially disjoint paths between a

source-destination pair based on shortest path routing information. This algorithm does not

require the pre-establishment of paths or source routing and can be implemented straight-

forwardly on top of path vector routing.

In Chapter 4, a congestion-triggered scheme is proposed to distribute traffic over a mul-

tipath route to avoid network congestion. In the proposed congestion-triggered multipath

(CTMP) routing scheme, a link is identified as being congested if the average link utiliza-

tion exceeds a given threshold. When a node detects an outgoing link as being congested,

it applies an algorithm to determine a set of alternative paths, thus forming a multipath

route. Traffic is then moved away from the congested link onto the alternative paths ac-

cording to a traffic splitting function. Our ns-2 simulation results demonstrate the ability

of the multipath routing scheme to relieve network congestion and improve overall network

utilization.

In Chapter 5, we proposed an explicit rate congestion control protocol that takes into

account the feedback of rate and propagation delay and improve the throughput over im-

paired links. The proposed protocol confirms the ER and round trip time (RTT) between

source and destination pairs. This confirmation helps routers to effectively utilize the avail-

able bandwidth in their rate computation and to compute the optimal sending rate. Also,

in terms of performance on impaired link, the simulation results show that the proposed

protocol performs much better than existing protocols.

In Chapter 6, a new rate control algorithm (ER-UDT) is proposed to compute the
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local explicit rate at a given router. The rate controller is designed to provide the sending

rate adjustment for the multiple flows (i.e., aggregate flows) on outgoing link. This rate

controller is designed based on the Smith Predictor, which can accurately compute the

sending rate under conditions of different propagation delays. It also quickly responds to

high/low link utilization conditions by using information about both the link utilization

and the queue dynamics. This results in full utilization of the outgoing link capacity,

preventing from packet loss and wasting available bandwidth. We discuss the analysis of the

proposed controller on basis of control theory and demonstrate that the control parameters

can guarantee the system stability in steady-state and even in transient period

7.2 Future research directions

The CTMP scheme proposed in Chapter 4 could be combined with the explicit rate control

scheme developed in Chapters 5 and 6. The CTMP scheme identifies flow and routes it

as a unit along a fixed path to avoid out-of-order packet delivery. It also exploits path

redundancy by distributing excess traffic onto multiple alternative paths. Moreover, the

explicit rate (ER) control limits source rate of a given flow on a given path based on explicit

rate feedback and improves throughput of a flow along a given path. Thus, the combination

of CTMP and ER control could achieve the benefits of both schemes.

7.2.1 Explicit rate based multipath routing

We have proposed an approach to interoperate explicit rate signaling protocol with multi-

path routing in Chapter 5. In this approach, the router maintains ER information associated

with links in its routing table and periodically exchanges it with others. Using ER as an

additional link metric stored in the routing table, the router can determine an optimal path

among the alternative paths in the multipath route obtained by the class-c algorithm dis-

cussed in Chapter 3. By incorporating ER information into the routing decision, the router

performs load-balancing by assigning new incoming flows to the current best path based on

bandwidth availability.
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However, the issue of incorporating ER information into routing requires further inves-

tigation. The responsiveness of the routing algorithm to changes in ER values is a critical

parameter. If the routing table updates are too infrequent, the load-balancing would be

based on old information, which would severely limit its effectiveness. On the on the other

hand, frequent routing table updates would increase the signaling load on the network.

7.2.2 Explicit Overlay

Explicit rate signaling has to be supported by every router in the network in order for

routers to feed back accurate information to the sender. However, explicit rate signaling

may not be supported by every router in the network. In practice, only a small percentage

of routers in the network may support explicit rate signaling. To facilitate the incremental

deployment of explicit rate signaling, future work could investigate the design of an overlay

network [107–110] that supports explicit rate signaling.

An overlay network is a virtual network built on top of the existing networks. The

nodes (e.g., router, switch) in the overlay network, i.e., overlay nodes, work as routers to

deliver data to their destinations. Between two overlay nodes, a virtual link is established,

so-called an overlay link. The overlay link may include one or more conventional routers as

intermediate nodes between two overlay nodes. Explicit rate control could be implemented

on the overlay nodes. Since intermediate nodes in an overlay link may not support explicit

rate signaling, a new rate computation algorithm must be designed to realize an explicit

rate overlay network. Since queue length information in the overlay link is not generally

available, one possible approach is to utilize the round trip time of overlay link as a measure

of congestion in the overlay link.

Figure 7.1 illustrates an overlay network and two overlay links: the link defined by

path (A, B, C, D) and the link defined by path (A, E, D). Nodes B, C, and E are conven-

tional routers that do not have explicit rate signaling capability. Overlay node A estimates

the base RTT and the observed RTT for the two overlay links to overlay node D, where the

observed RTT is the present measure of RTT on the overlay link, and the base RTT is the
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Figure 7.1: Overview of overlay network.

minimum observed RTT on the overlay link, similar to the base RTT and observed RTT in

Fast TCP [111–116] and TCP Vegas [117–121]. In order to estimate these two parameters,

node A encapsulates the incoming packet with an overlay packet header and then trans-

mits the encapsulated packet to node D on the appropriate overly link. The overlay packet

header includes a SN (Sequence Number) and Timestamp. Whenever node D receives an

overlay packet, it creates a response packet and transmits it back to the node A. Thus, the

node A will be able to estimate the round trip time, which can be utilized to compute the

base RTT and the observed RTT.

The two RTTs and overlay packet loss are utilized to measure the degree of congestion in

the overlay link. As the difference of two RTTs increases, the degree of congestion increases,

vice versa. Packet loss statistics could also be used to indicate severe congestion. A new

rate controller could be designed based on the base RTT, the observed RTT, and packet

loss on the overlay link. Alternatively, one could attempt to derive an approximate formula
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relating these three parameters to the queue length q on the overlay link:

q = F (RTTbase, RTTobs, ploss), (7.1)

where RTTbase is the base RTT, RTTobs is the observed RTT, and ploss is the packet loss

statistics. In this case, the rate controller proposed in Chapter 6 could be employed without

modification. The effectiveness of this approach would depend heavily on the approximate

formula for queue length.
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